Sample records for adult cardiac progenitor

  1. Left atrial appendages from adult hearts contain a reservoir of diverse cardiac progenitor cells.

    PubMed

    Leinonen, Jussi V; Emanuelov, Avishag K; Platt, Yardanna; Helman, Yaron; Feinberg, Yael; Lotan, Chaim; Beeri, Ronen

    2013-01-01

    There is strong evidence supporting the claim that endogenous cardiac progenitor cells (CPCs) are key players in cardiac regeneration, but the anatomic source and phenotype of the master cardiac progenitors remains uncertain. Our aim was to investigate the different cardiac stem cell populations in the left atrial appendage (LAA) and their fates. We investigated the CPC content and profile of adult murine LAAs using immunohistochemistry and flow cytometry. We demonstrate that the LAA contains a large number of CPCs relative to other areas of the heart, representing over 20% of the total cell number. We grew two distinct CPC populations from the LAA by varying the degree of proteolysis. These differed by their histological location, surface marker profiles and growth dynamics. Specifically, CD45(pos) cells grew with milder proteolysis, while CD45(neg) cells grew mainly with more intense proteolysis. Both cell types could be induced to differentiate into cells with cardiomyocyte markers and organelles, albeit by different protocols. Many CD45(pos) cells expressed CD45 initially and rapidly lost its expression while differentiating. Our results demonstrate that the left atrial appendage plays a role as a reservoir of multiple types of progenitor cells in murine adult hearts. Two different types of CPCs were isolated, differing in their epicardial-myocardial localization. Considering studies demonstrating layer-specific origins of different cardiac progenitor cells, our findings may shed light on possible pathways to study and utilize the diversity of endogenous progenitor cells in the adult heart.

  2. Left Atrial Appendages from Adult Hearts Contain a Reservoir of Diverse Cardiac Progenitor Cells

    PubMed Central

    Platt, Yardanna; Helman, Yaron; Feinberg, Yael; Lotan, Chaim; Beeri, Ronen

    2013-01-01

    Aims There is strong evidence supporting the claim that endogenous cardiac progenitor cells (CPCs) are key players in cardiac regeneration, but the anatomic source and phenotype of the master cardiac progenitors remains uncertain. Our aim was to investigate the different cardiac stem cell populations in the left atrial appendage (LAA) and their fates. Methods and Results We investigated the CPC content and profile of adult murine LAAs using immunohistochemistry and flow cytometry. We demonstrate that the LAA contains a large number of CPCs relative to other areas of the heart, representing over 20% of the total cell number. We grew two distinct CPC populations from the LAA by varying the degree of proteolysis. These differed by their histological location, surface marker profiles and growth dynamics. Specifically, CD45pos cells grew with milder proteolysis, while CD45neg cells grew mainly with more intense proteolysis. Both cell types could be induced to differentiate into cells with cardiomyocyte markers and organelles, albeit by different protocols. Many CD45pos cells expressed CD45 initially and rapidly lost its expression while differentiating. Conclusions Our results demonstrate that the left atrial appendage plays a role as a reservoir of multiple types of progenitor cells in murine adult hearts. Two different types of CPCs were isolated, differing in their epicardial-myocardial localization. Considering studies demonstrating layer-specific origins of different cardiac progenitor cells, our findings may shed light on possible pathways to study and utilize the diversity of endogenous progenitor cells in the adult heart. PMID:23555001

  3. Silk fibroin scaffolds enhance cell commitment of adult rat cardiac progenitor cells.

    PubMed

    Di Felice, Valentina; Serradifalco, Claudia; Rizzuto, Luigi; De Luca, Angela; Rappa, Francesca; Barone, Rosario; Di Marco, Patrizia; Cassata, Giovanni; Puleio, Roberto; Verin, Lucia; Motta, Antonella; Migliaresi, Claudio; Guercio, Annalisa; Zummo, Giovanni

    2015-11-01

    The use of three-dimensional (3D) cultures may induce cardiac progenitor cells to synthesize their own extracellular matrix (ECM) and sarcomeric proteins to initiate cardiac differentiation. 3D cultures grown on synthetic scaffolds may favour the implantation and survival of stem cells for cell therapy when pharmacological therapies are not efficient in curing cardiovascular diseases and when organ transplantation remains the only treatment able to rescue the patient's life. Silk fibroin-based scaffolds may be used to increase cell affinity to biomaterials and may be chemically modified to improve cell adhesion. In the present study, porous, partially orientated and electrospun nanometric nets were used. Cardiac progenitor cells isolated from adult rats were seeded by capillarity in the 3D structures and cultured inside inserts for 21 days. Under this condition, the cells expressed a high level of sarcomeric and cardiac proteins and synthesized a great quantity of ECM. In particular, partially orientated scaffolds induced the synthesis of titin, which is a fundamental protein in sarcomere assembly. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells

    PubMed Central

    Zhang, Yiqiang; Zhong, Jiang F; Qiu, Hongyu; Robb MacLellan, W.; Marbán, Eduardo; Wang, Charles

    2015-01-01

    It has been believed that mammalian adult cardiomyocytes (ACMs) are terminally-differentiated and are unable to proliferate. Recently, using a bi-transgenic ACM fate mapping mouse model and an in vitro culture system, we demonstrated that adult mouse cardiomyocytes were able to dedifferentiate into cardiac progenitor-like cells (CPCs). However, little is known about the molecular basis of their intrinsic cellular plasticity. Here we integrate single-cell transcriptome and whole-genome DNA methylation analyses to unravel the molecular mechanisms underlying the dedifferentiation and cell cycle reentry of mouse ACMs. Compared to parental cardiomyocytes, dedifferentiated mouse cardiomyocyte-derived CPCs (mCPCs) display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlated well with the methylome, our transcriptomic data showed that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implantation of mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. Our study demonstrates that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. PMID:26657817

  5. Effect of Environmental Chemical Exposures on Adult Human Cardiac Progenitor Cell Viability and Differentiation

    EPA Science Inventory

    Cell biology has revealed that the adult heart is not a terminally differentiated organ but is capable of generating new cardiomyocytes (CMs) from cardiac stem cells (CSC) and/or progenitor cells (CPC) throughout life. The impact that environmental chemical exposures have on adul...

  6. A Cell Model to Evaluate Chemical Effects on Adult Human Cardiac Progenitor Cell Differentiation and Function

    EPA Science Inventory

    Adult cardiac stem cells (CSC) and progenitor cells (CPC) represent a population of cells in the heart critical for its regeneration and function over a lifetime. The impact of chemicals on adult human CSC/CPC differentiation and function is unknown. Research was conducted to dev...

  7. Increased Cardiac Myocyte Progenitors in Failing Human Hearts

    PubMed Central

    Kubo, Hajime; Jaleel, Naser; Kumarapeli, Asangi; Berretta, Remus M.; Bratinov, George; Shan, Xiaoyin; Wang, Hongmei; Houser, Steven R.; Margulies, Kenneth B.

    2009-01-01

    Background Increasing evidence, derived mainly from animal models, supports the existence of endogenous cardiac renewal and repair mechanisms in adult mammalian hearts that could contribute to normal homeostasis and the responses to pathological insults. Methods and Results Translating these results, we isolated small c-kit+ cells from 36 of 37 human hearts using primary cell isolation techniques and magnetic cell sorting techniques. The abundance of these cardiac progenitor cells was increased nearly 4-fold in patients with heart failure requiring transplantation compared with nonfailing controls. Polychromatic flow cytometry of primary cell isolates (<30 μm) without antecedent c-kit enrichment confirmed the increased abundance of c-kit+ cells in failing hearts and demonstrated frequent coexpression of CD45 in these cells. Immunocytochemical characterization of freshly isolated, c-kit–enriched human cardiac progenitor cells confirmed frequent coexpression of c-kit and CD45. Primary cardiac progenitor cells formed new human cardiac myocytes at a relatively high frequency after coculture with neonatal rat ventricular myocytes. These contracting new cardiac myocytes exhibited an immature phenotype and frequent electric coupling with the rat myocytes that induced their myogenic differentiation. Conclusions Despite the increased abundance and cardiac myogenic capacity of cardiac progenitor cells in failing human hearts, the need to replace these organs via transplantation implies that adverse features of the local myocardial environment overwhelm endogenous cardiac repair capacity. Developing strategies to improve the success of endogenous cardiac regenerative processes may permit therapeutic myocardial repair without cell delivery per se. PMID:18645055

  8. Nucleostemin rejuvenates cardiac progenitor cells and antagonizes myocardial aging.

    PubMed

    Hariharan, Nirmala; Quijada, Pearl; Mohsin, Sadia; Joyo, Anya; Samse, Kaitlen; Monsanto, Megan; De La Torre, Andrea; Avitabile, Daniele; Ormachea, Lucia; McGregor, Michael J; Tsai, Emily J; Sussman, Mark A

    2015-01-20

    Functional decline in stem cell-mediated regeneration contributes to aging associated with cellular senescence in c-kit+ cardiac progenitor cells (CPCs). Clinical implementation of CPC-based therapy in elderly patients would benefit tremendously from understanding molecular characteristics of senescence to antagonize aging. Nucleostemin (NS) is a nucleolar protein regulating stem cell proliferation and pluripotency. This study sought to demonstrate that NS preserves characteristics associated with "stemness" in CPCs and antagonizes myocardial senescence and aging. CPCs isolated from human fetal (fetal human cardiac progenitor cell [FhCPC]) and adult failing (adult human cardiac progenitor cell [AhCPC]) hearts, as well as young (young cardiac progenitor cell [YCPC]) and old mice (old cardiac progenitor cell [OCPC]), were studied for senescence characteristics and NS expression. Heterozygous knockout mice with 1 functional allele of NS (NS+/-) were used to demonstrate that NS preserves myocardial structure and function and slows characteristics of aging. NS expression is decreased in AhCPCs relative to FhCPCs, correlating with lowered proliferation potential and shortened telomere length. AhCPC characteristics resemble those of OCPCs, which have a phenotype induced by NS silencing, resulting in cell flattening, senescence, multinucleated cells, decreased S-phase progression, diminished expression of stemness markers, and up-regulation of p53 and p16. CPC senescence resulting from NS loss is partially p53 dependent and is rescued by concurrent silencing of p53. Mechanistically, NS induction correlates with Pim-1 kinase-mediated stabilization of c-Myc. Engineering OCPCs and AhCPCs to overexpress NS decreases senescent and multinucleated cells, restores morphology, and antagonizes senescence, thereby preserving phenotypic properties of "stemness." Early cardiac aging with a decline in cardiac function, an increase in senescence markers p53 and p16, telomere attrition

  9. Production of zebrafish cardiospheres and cardiac progenitor cells in vitro and three-dimensional culture of adult zebrafish cardiac tissue in scaffolds.

    PubMed

    Zeng, Wendy R; Beh, Siew-Joo; Bryson-Richardson, Robert J; Doran, Pauline M

    2017-09-01

    The hearts of adult zebrafish (Danio rerio) are capable of complete regeneration in vivo even after major injury, making this species of particular interest for understanding the growth and differentiation processes required for cardiac tissue engineering. To date, little research has been carried out on in vitro culture of adult zebrafish cardiac cells. In this work, progenitor-rich cardiospheres suitable for cardiomyocyte differentiation and myocardial regeneration were produced from adult zebrafish hearts. The cardiospheres contained a mixed population of c-kit + and Mef2c + cells; proliferative peripheral cells of possible mesenchymal lineage were also observed. Cellular outgrowth from cardiac explants and cardiospheres was enhanced significantly using conditioned medium harvested from cultures of a rainbow trout cell line, suggesting that fish-specific trophic factors are required for zebrafish cardiac cell expansion. Three-dimensional culture of zebrafish heart cells in fibrous polyglycolic acid (PGA) scaffolds was carried out under dynamic fluid flow conditions. High levels of cell viability and cardiomyocyte differentiation were maintained within the scaffolds. Expression of cardiac troponin T, a marker of differentiated cardiomyocytes, increased during the first 7 days of scaffold culture; after 15 days, premature disintegration of the biodegradable scaffolds led to cell detachment and a decline in differentiation status. This work expands our technical capabilities for three-dimensional zebrafish cardiac cell culture with potential applications in tissue engineering, drug and toxicology screening, and ontogeny research. Biotechnol. Bioeng. 2017;114: 2142-2148. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. The Impact of Juvenile Coxsackievirus Infection on Cardiac Progenitor Cells and Postnatal Heart Development

    PubMed Central

    Sin, Jon; Puccini, Jenna M.; Huang, Chengqun; Konstandin, Mathias H.; Gilbert, Paul E.; Sussman, Mark A.; Gottlieb, Roberta A.; Feuer, Ralph

    2014-01-01

    Coxsackievirus B (CVB) is an enterovirus that most commonly causes a self-limited febrile illness in infants, but cases of severe infection can manifest in acute myocarditis. Chronic consequences of mild CVB infection are unknown, though there is an epidemiologic association between early subclinical infections and late heart failure, raising the possibility of subtle damage leading to late-onset dysfunction, or chronic ongoing injury due to inflammatory reactions during latent infection. Here we describe a mouse model of juvenile infection with a subclinical dose of coxsackievirus B3 (CVB3) which showed no evident symptoms, either immediately following infection or in adult mice. However following physiological or pharmacologically-induced cardiac stress, juvenile-infected adult mice underwent cardiac hypertrophy and dilation indicative of progression to heart failure. Evaluation of the vasculature in the hearts of adult mice subjected to cardiac stress showed a compensatory increase in CD31+ blood vessel formation, although this effect was suppressed in juvenile-infected mice. Moreover, CVB3 efficiently infected juvenile c-kit+ cells, and cardiac progenitor cell numbers were reduced in the hearts of juvenile-infected adult mice. These results suggest that the exhausted cardiac progenitor cell pool following juvenile CVB3 infection may impair the heart's ability to increase capillary density to adapt to increased load. PMID:25079373

  11. Early patterning and specification of cardiac progenitors in gastrulating mesoderm

    PubMed Central

    Devine, W Patrick; Wythe, Joshua D; George, Matthew; Koshiba-Takeuchi, Kazuko; Bruneau, Benoit G

    2014-01-01

    Mammalian heart development requires precise allocation of cardiac progenitors. The existence of a multipotent progenitor for all anatomic and cellular components of the heart has been predicted but its identity and contribution to the two cardiac progenitor ‘fields’ has remained undefined. Here we show, using clonal genetic fate mapping, that Mesp1+ cells in gastrulating mesoderm are rapidly specified into committed cardiac precursors fated for distinct anatomic regions of the heart. We identify Smarcd3 as a marker of early specified cardiac precursors and identify within these precursors a compartment boundary at the future junction of the left and right ventricles that arises prior to morphogenesis. Our studies define the timing and hierarchy of cardiac progenitor specification and demonstrate that the cellular and anatomical fate of mesoderm-derived cardiac cells is specified very early. These findings will be important to understand the basis of congenital heart defects and to derive cardiac regeneration strategies. DOI: http://dx.doi.org/10.7554/eLife.03848.001 PMID:25296024

  12. Isolation and expansion of functionally-competent cardiac progenitor cells directly from heart biopsies

    PubMed Central

    Davis, Darryl R; Kizana, Eddy; Terrovitis, John; Barth, Andreas S.; Zhang, Yiqiang; Smith, Rachel Ruckdeschel; Miake, Junichiro; Marbán, Eduardo

    2010-01-01

    The adult heart contains reservoirs of progenitor cells that express embryonic and stem cell-related antigens. While these antigenically-purified cells are promising candidates for autologous cell therapy, clinical application is hampered by their limited abundance and tedious isolation methods. Methods that involve an intermediate cardiosphere-forming step have proven successful and are being tested clinically, but it is unclear whether the cardiosphere step is necessary. Accordingly, we investigated the molecular profile and functional benefit of cells that spontaneously emigrate from cardiac tissue in primary culture. Adult Wistar-Kyoto rat hearts were minced, digested and cultured as separate anatomical regions. Loosely-adherent cells that surround the plated tissue were harvested weekly for a total of five harvests. Genetic lineage tracing demonstrated that a small proportion of the direct outgrowth from cardiac samples originates from myocardial cells. This outgrowth contains sub-populations of cells expressing embryonic (SSEA-1) and stem cell-related antigens (c-Kit, abcg2) that varied with time in culture but not with the cardiac chamber of origin. This direct outgrowth, and its expanded progeny, underwent marked in vitro angiogenic/cardiogenic differentiation and cytokine secretion (IGF-1, VGEF). In vivo effects included long-term functional benefits as gauged by MRI following cell injection in a rat model of myocardial infarction. Outgrowth cells afforded equivalent functional benefits to cardiosphere-derived cells, which require more processing steps to manufacture. These results provide the basis for a simplified and efficient process to generate autologous cardiac progenitor cells (and mesenchymal supporting cells) to augment clinically-relevant approaches for myocardial repair. PMID:20211627

  13. Biochemistry and biology: heart-to-heart to investigate cardiac progenitor cells.

    PubMed

    Chimenti, Isotta; Forte, Elvira; Angelini, Francesco; Messina, Elisa; Giacomello, Alessandro

    2013-02-01

    Cardiac regenerative medicine is a rapidly evolving field, with promising future developments for effective personalized treatments. Several stem/progenitor cells are candidates for cardiac cell therapy, and emerging evidence suggests how multiple metabolic and biochemical pathways strictly regulate their fate and renewal. In this review, we will explore a selection of areas of common interest for biology and biochemistry concerning stem/progenitor cells, and in particular cardiac progenitor cells. Numerous regulatory mechanisms have been identified that link stem cell signaling and functions to the modulation of metabolic pathways, and vice versa. Pharmacological treatments and culture requirements may be exploited to modulate stem cell pluripotency and self-renewal, possibly boosting their regenerative potential for cell therapy. Mitochondria and their many related metabolites and messengers, such as oxygen, ROS, calcium and glucose, have a crucial role in regulating stem cell fate and the balance of their functions, together with many metabolic enzymes. Furthermore, protein biochemistry and proteomics can provide precious clues on the definition of different progenitor cell populations, their physiology and their autocrine/paracrine regulatory/signaling networks. Interdisciplinary approaches between biology and biochemistry can provide productive insights on stem/progenitor cells, allowing the development of novel strategies and protocols for effective cardiac cell therapy clinical translation. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Characterization and functionality of cardiac progenitor cells in congenital heart patients.

    PubMed

    Mishra, Rachana; Vijayan, Kalpana; Colletti, Evan J; Harrington, Daniel A; Matthiesen, Thomas S; Simpson, David; Goh, Saik Kia; Walker, Brandon L; Almeida-Porada, Graça; Wang, Deli; Backer, Carl L; Dudley, Samuel C; Wold, Loren E; Kaushal, Sunjay

    2011-02-01

    Human cardiac progenitor cells (hCPCs) may promote myocardial regeneration in adult ischemic myocardium. The regenerative capacity of hCPCs in young patients with nonischemic congenital heart defects for potential use in congenital heart defect repair warrants exploration. Human right atrial specimens were obtained during routine congenital cardiac surgery across 3 groups: neonates (age, <30 days), infants (age, 1 month to 2 years), and children (age, >2 to ≤13 years). C-kit(+) hCPCs were 3-fold higher in neonates than in children >2 years of age. hCPC proliferation was greatest during the neonatal period as evidenced by c-kit(+) Ki67(+) expression but decreased with age. hCPC differentiation capacity was also greatest in neonatal right atrium as evidenced by c-kit(+), NKX2-5(+), NOTCH1(+), and NUMB(+) expression. Despite the age-dependent decline in resident hCPCs, we isolated and expanded right atrium-derived CPCs from all patients (n=103) across all ages and diagnoses using the cardiosphere method. Intact cardiospheres contained a mix of heart-derived cell subpopulations that included cardiac progenitor cells expressing c-kit(+), Islet-1, and supporting cells. The number of c-kit(+)-expressing cells was highest in human cardiosphere-derived cells (hCDCs) grown from neonatal and infant right atrium. Furthermore, hCDCs could differentiate into diverse cardiovascular lineages by in vitro differentiation assays. Transplanted hCDCs promoted greater myocardial regeneration and functional improvement in infarcted myocardium than transplanted cardiac fibroblasts. Resident hCPCs are most abundant in the neonatal period and rapidly decrease over time. hCDCs can be reproducibly isolated and expanded from young human myocardial samples regardless of age or diagnosis. hCPCs are functional and have potential in congenital cardiac repair.

  15. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation.

    PubMed

    Drowley, Lauren; Koonce, Chad; Peel, Samantha; Jonebring, Anna; Plowright, Alleyn T; Kattman, Steven J; Andersson, Henrik; Anson, Blake; Swanson, Bradley J; Wang, Qing-Dong; Brolen, Gabriella

    2016-02-01

    Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-β type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic

  16. Electromechanical Conditioning of Adult Progenitor Cells Improves Recovery of Cardiac Function After Myocardial Infarction

    PubMed Central

    Llucià‐Valldeperas, Aida; Soler‐Botija, Carolina; Gálvez‐Montón, Carolina; Roura, Santiago; Prat‐Vidal, Cristina; Perea‐Gil, Isaac; Sanchez, Benjamin; Bragos, Ramon; Vunjak‐Novakovic, Gordana

    2016-01-01

    Abstract Cardiac cells are subjected to mechanical and electrical forces, which regulate gene expression and cellular function. Therefore, in vitro electromechanical stimuli could benefit further integration of therapeutic cells into the myocardium. Our goals were (a) to study the viability of a tissue‐engineered construct with cardiac adipose tissue‐derived progenitor cells (cardiac ATDPCs) and (b) to examine the effect of electromechanically stimulated cardiac ATDPCs within a myocardial infarction (MI) model in mice for the first time. Cardiac ATDPCs were electromechanically stimulated at 2‐millisecond pulses of 50 mV/cm at 1 Hz and 10% stretching during 7 days. The cells were harvested, labeled, embedded in a fibrin hydrogel, and implanted over the infarcted area of the murine heart. A total of 39 animals were randomly distributed and sacrificed at 21 days: groups of grafts without cells and with stimulated or nonstimulated cells. Echocardiography and gene and protein analyses were also carried out. Physiologically stimulated ATDPCs showed increased expression of cardiac transcription factors, structural genes, and calcium handling genes. At 21 days after implantation, cardiac function (measured as left ventricle ejection fraction between presacrifice and post‐MI) increased up to 12% in stimulated grafts relative to nontreated animals. Vascularization and integration with the host blood supply of grafts with stimulated cells resulted in increased vessel density in the infarct border region. Trained cells within the implanted fibrin patch expressed main cardiac markers and migrated into the underlying ischemic myocardium. To conclude, synchronous electromechanical cell conditioning before delivery may be a preferred alternative when considering strategies for heart repair after myocardial infarction. Stem Cells Translational Medicine 2017;6:970–981 PMID:28297585

  17. Maternal diabetes and high glucose in vitro trigger Sca1+ cardiac progenitor cell apoptosis through FoxO3a.

    PubMed

    Yang, Penghua; Yang, Wendy W; Chen, Xi; Kaushal, Sunjay; Dong, Daoyin; Shen, Wei-Bin

    2017-01-22

    Recent controversies surrounding the authenticity of c-kit + cardiac progenitor cells significantly push back the advance in regenerative therapies for cardiovascular diseases. There is an urgent need for research in characterizing alternative types of cardiac progenitor cells. Towards this goal, in the present study, we determined the effect of maternal diabetes on Sca1 + cardiac progenitor cells. Maternal diabetes induced caspase 3-dependent apoptosis in Sca1 + cardiac progenitor cells derived from embryonic day 17.5 (E17.5). Similarly, high glucose in vitro but not the glucose osmotic control mannitol triggered Sca1 + cardiac progenitor cell apoptosis in a dose- and time-dependent manner. Both maternal diabetes and high glucose in vitro activated the pro-apoptotic transcription factor, Forkhead O 3a (FoxO3a) via dephosphorylation at threonine 32 (Thr-32) residue. foxo3a gene deletion abolished maternal diabetes-induced Sca1 + cardiac progenitor cell apoptosis. The dominant negative FoxO3a mutant without the transactivation domain from the C terminus blocked high glucose-induced Sca1 + cardiac progenitor cell apoptosis, whereas the constitutively active FoxO3a mutant with the three phosphorylation sites, Thr-32, Ser-253, and Ser-315, being replaced by alanine residues mimicked the pro-apoptotic effect of high glucose. Thus, maternal diabetes and high glucose in vitro may limit the regenerative potential of Sca1 + cardiac progenitor cells by inducing apoptosis through FoxO3a activation. These findings will serve as the guide in optimizing the autologous therapy using Sca1 + cardiac progenitor cells in cardiac defect babies born exposed to maternal diabetes. Copyright © 2016. Published by Elsevier Inc.

  18. Electrotaxis of cardiac progenitor cells, cardiac fibroblasts, and induced pluripotent stem cell-derived cardiac progenitor cells requires serum and is directed via PI3'K pathways.

    PubMed

    Frederich, Bert J; Timofeyev, Valeriy; Thai, Phung N; Haddad, Michael J; Poe, Adam J; Lau, Victor C; Moshref, Maryam; Knowlton, Anne A; Sirish, Padmini; Chiamvimonvat, Nipavan

    2017-11-01

    The limited regenerative capacity of cardiac tissue has long been an obstacle to treating damaged myocardium. Cell-based therapy offers an enormous potential to the current treatment paradigms. However, the efficacy of regenerative therapies remains limited by inefficient delivery and engraftment. Electrotaxis (electrically guided cell movement) has been clinically used to improve recovery in a number of tissues but has not been investigated for treating myocardial damage. The purpose of this study was to test the electrotactic behaviors of several types of cardiac cells. Cardiac progenitor cells (CPCs), cardiac fibroblasts (CFs), and human induced pluripotent stem cell-derived cardiac progenitor cells (hiPSC-CPCs) were used. CPCs and CFs electrotax toward the anode of a direct current electric field, whereas hiPSC-CPCs electrotax toward the cathode. The voltage-dependent electrotaxis of CPCs and CFs requires the presence of serum in the media. Addition of soluble vascular cell adhesion molecule to serum-free media restores directed migration. We provide evidence that CPC and CF electrotaxis is mediated through phosphatidylinositide 3-kinase signaling. In addition, very late antigen-4, an integrin and growth factor receptor, is required for electrotaxis and localizes to the anodal edge of CPCs in response to direct current electric field. The hiPSC-derived CPCs do not express very late antigen-4, migrate toward the cathode in a voltage-dependent manner, and, similar to CPCs and CFs, require media serum and phosphatidylinositide 3-kinase activity for electrotaxis. The electrotactic behaviors of these therapeutic cardiac cells may be used to improve cell-based therapy for recovering function in damaged myocardium. Published by Elsevier Inc.

  19. Cardiac mesenchymal progenitors from postmortem cardiac tissues retained cellular characterization.

    PubMed

    Kami, D; Kitani, T; Nakata, M; Gojo, S

    2014-05-01

    Currently, cells for transplantation in regenerative medicine are derived from either autologous or allogeneic tissue. The former has the drawbacks that the quality of donor cells may depend on the condition of the patient, while the quantity of the cells may also be limited. To solve these problems, we investigated the potential of allogeneic cardiac mesenchymal progenitors (CMPs) derived from postmortem hearts, which may be immunologically privileged similar to bone marrow-derived mesenchymal progenitors. We examined whether viable CMPs could be isolated from C57/B6 murine cardiac tissues harvested at 24 hours postmortem. After 2- to 3-week propagation with a high dose of basic fibroblast growth factor, we performed cellular characteristics analyses, which included proliferation and differentiation property flow cytometry and microarray analyses. Postmortem CMPs had a longer lag phase after seeding than CMPs obtained from living tissues, but otherwise had similar characteristics in all the analyses. In addition, global gene expression analysis by microarray showed that cells derived from postmortem and living tissues had similar characteristics. These results indicate that allogeneic postmortem CMPs have potential for cell transplantation because they circumvent the issue of both the quality and quantity of donor cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Electromechanical Conditioning of Adult Progenitor Cells Improves Recovery of Cardiac Function After Myocardial Infarction.

    PubMed

    Llucià-Valldeperas, Aida; Soler-Botija, Carolina; Gálvez-Montón, Carolina; Roura, Santiago; Prat-Vidal, Cristina; Perea-Gil, Isaac; Sanchez, Benjamin; Bragos, Ramon; Vunjak-Novakovic, Gordana; Bayes-Genis, Antoni

    2017-03-01

    Cardiac cells are subjected to mechanical and electrical forces, which regulate gene expression and cellular function. Therefore, in vitro electromechanical stimuli could benefit further integration of therapeutic cells into the myocardium. Our goals were (a) to study the viability of a tissue-engineered construct with cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs) and (b) to examine the effect of electromechanically stimulated cardiac ATDPCs within a myocardial infarction (MI) model in mice for the first time. Cardiac ATDPCs were electromechanically stimulated at 2-millisecond pulses of 50 mV/cm at 1 Hz and 10% stretching during 7 days. The cells were harvested, labeled, embedded in a fibrin hydrogel, and implanted over the infarcted area of the murine heart. A total of 39 animals were randomly distributed and sacrificed at 21 days: groups of grafts without cells and with stimulated or nonstimulated cells. Echocardiography and gene and protein analyses were also carried out. Physiologically stimulated ATDPCs showed increased expression of cardiac transcription factors, structural genes, and calcium handling genes. At 21 days after implantation, cardiac function (measured as left ventricle ejection fraction between presacrifice and post-MI) increased up to 12% in stimulated grafts relative to nontreated animals. Vascularization and integration with the host blood supply of grafts with stimulated cells resulted in increased vessel density in the infarct border region. Trained cells within the implanted fibrin patch expressed main cardiac markers and migrated into the underlying ischemic myocardium. To conclude, synchronous electromechanical cell conditioning before delivery may be a preferred alternative when considering strategies for heart repair after myocardial infarction. Stem Cells Translational Medicine 2017;6:970-981. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  1. Electrophysiological properties of prion-positive cardiac progenitors derived from murine embryonic stem cells.

    PubMed

    Fujii, Hiroshi; Ikeuchi, Yu; Kurata, Yasutaka; Ikeda, Nobuhito; Bahrudin, Udin; Li, Peili; Nakayama, Yuji; Endo, Ryo; Hasegawa, Akira; Morikawa, Kumi; Miake, Junichiro; Yoshida, Akio; Hidaka, Kyoko; Morisaki, Takayuki; Ninomiya, Haruaki; Shirayoshi, Yasuaki; Yamamoto, Kazuhiro; Hisatome, Ichiro

    2012-01-01

    The prion protein (PrP) has been reported to serve as a surface maker for isolation of cardiomyogenic progenitors from murine embryonic stem (ES) cells. Although PrP-positive cells exhibited automaticity, their electrophysiological characteristics remain unresolved. The aim of the present study was therefore to investigate the electrophysiological properties of PrP-positive cells in comparison with those of HCN4p-or Nkx2.5-positive cells. Differentiation of AB1, HCN5p-EGFP and hcgp7 ES cells into cardiac progenitors was induced by embryoid body (EB) formation. EBs were dissociated and cells expressing PrP, HCN4-EGFP and/or Nkx2.5-GFP were collected via flow cytometry. Sorted cells were subjected to reverse transcriptase-polymerase chain reaction, immunostaining and patch-clamp experiments. PrP-positive cells expressed mRNA of undifferentiation markers, first and second heart field markers, and cardiac-specific genes and ion channels, indicating their commitment to cardiomyogenic progenitors. PrP-positive cells with automaticity showed positive and negative chronotropic responses to isoproterenol and carbamylcholine, respectively. Hyperpolarization-activated cation current (I(f)) was barely detectable, whereas Na(+) and L-type Ca(2+) channel currents were frequently observed. Their spontaneous activity was slowed by inhibition of sarcoplasmic reticulum Ca(2+) uptake and release but not by blocking I(f). The maximum diastolic potential of their spontaneous firings was more depolarized than that of Nkx2.5-GFP-positive cells. PrP-positive cells contained cardiac progenitors that separated from the lineage of sinoatrial node cells. PrP can be used as a marker to enrich nascent cardiac progenitors.

  2. Reactivation of the Nkx2.5 cardiac enhancer after myocardial infarction does not presage myogenesis.

    PubMed

    Deutsch, Marcus-André; Doppler, Stefanie A; Li, Xinghai; Lahm, Harald; Santamaria, Gianluca; Cuda, Giovanni; Eichhorn, Stefan; Ratschiller, Thomas; Dzilic, Elda; Dreßen, Martina; Eckart, Annekathrin; Stark, Konstantin; Massberg, Steffen; Bartels, Anna; Rischpler, Christoph; Gilsbach, Ralf; Hein, Lutz; Fleischmann, Bernd K; Wu, Sean M; Lange, Rüdiger; Krane, Markus

    2018-03-20

    The contribution of resident stem or progenitor cells to cardiomyocyte renewal after injury in adult mammalian hearts remains a matter of considerable debate. We evaluated a cell population in the adult mouse heart induced by myocardial infarction (MI) and characterized by an activated Nkx2.5 enhancer element that is specific for multipotent cardiac progenitor cells during embryonic development. We hypothesized that these MI induced cells (MICs) harbor cardiomyogenic properties similar to their embryonic counterparts. MICs reside in the heart and mainly localize to the infarction area and border zone. Interestingly, gene expression profiling of purified MICs one week after infarction revealed increased expression of stem cell markers and embryonic cardiac transcription factors in these cells as compared to the non-mycoyte cell fraction of adult hearts. A subsequent global transcriptome comparison with embryonic cardiac progenitor cells and fibroblasts and in vitro culture of MICs unveiled that (myo-) fibroblastic features predominated and that cardiac transcription factors were only expressed at background levels. Adult injury induced reactivation of a cardiac-specific Nkx2.5 enhancer element known to specifically mark myocardial progenitor cells during embryonic development does not reflect hypothesized embryonic cardiomyogenic properties. Our data suggest a decreasing plasticity of cardiac progenitor (-like) cell populations with increasing age. A re-expression of embryonic, stem or progenitor cell features in the adult heart must be interpreted very carefully with respect to the definition of cardiac resident progenitor cells. Albeit, the abundance of scar formation after cardiac injury suggests a potential to target predestinated activated profibrotic cells to push them towards cardiomyogenic differentiation to improve regeneration.

  3. Identification and isolation of adult liver stem/progenitor cells.

    PubMed

    Tanaka, Minoru; Miyajima, Atsushi

    2012-01-01

    Hepatoblasts are considered to be liver stem/progenitor cells in the fetus because they propagate and differentiate into two types of liver epithelial cells, hepatocytes and cholangiocytes. In adults, oval cells that emerge in severely injured liver are considered facultative hepatic stem/progenitor cells. However, the nature of oval cells has remained unclear for long time due to the lack of a method to isolate them. It has also been unclear whether liver stem/progenitor cells exist in normal adult liver. Recently, we and others have successfully identified oval cells and adult liver stem/progenitor cells. Here, we describe the identification and isolation of mouse liver stem/progenitor cells by utilizing antibodies against specific cell surface marker molecules.

  4. miR669a and miR669q prevent skeletal muscle differentiation in postnatal cardiac progenitors

    PubMed Central

    Crippa, Stefania; Cassano, Marco; Messina, Graziella; Galli, Daniela; Galvez, Beatriz G.; Curk, Tomaz; Altomare, Claudia; Ronzoni, Flavio; Toelen, Jaan; Gijsbers, Rik; Debyser, Zeger; Janssens, Stefan; Zupan, Blaz; Zaza, Antonio; Cossu, Giulio

    2011-01-01

    Postnatal heart stem and progenitor cells are a potential therapeutic tool for cardiomyopathies, but little is known about the mechanisms that control cardiac differentiation. Recent work has highlighted an important role for microribonucleic acids (miRNAs) as regulators of cardiac and skeletal myogenesis. In this paper, we isolated cardiac progenitors from neonatal β-sarcoglycan (Sgcb)–null mouse hearts affected by dilated cardiomyopathy. Unexpectedly, Sgcb-null cardiac progenitors spontaneously differentiated into skeletal muscle fibers both in vitro and when transplanted into regenerating muscles or infarcted hearts. Differentiation potential correlated with the absence of expression of a novel miRNA, miR669q, and with down-regulation of miR669a. Other miRNAs are known to promote myogenesis, but only miR669a and miR669q act upstream of myogenic regulatory factors to prevent myogenesis by directly targeting the MyoD 3′ untranslated region. This finding reveals an added level of complexity in the mechanism of the fate choice of mesoderm progenitors and suggests that using endogenous cardiac stem cells therapeutically will require specially tailored procedures for certain genetic diseases. PMID:21708977

  5. Mesodermal iPSC–derived progenitor cells functionally regenerate cardiac and skeletal muscle

    PubMed Central

    Quattrocelli, Mattia; Swinnen, Melissa; Giacomazzi, Giorgia; Camps, Jordi; Barthélemy, Ines; Ceccarelli, Gabriele; Caluwé, Ellen; Grosemans, Hanne; Thorrez, Lieven; Pelizzo, Gloria; Muijtjens, Manja; Verfaillie, Catherine M.; Blot, Stephane; Janssens, Stefan; Sampaolesi, Maurilio

    2015-01-01

    Conditions such as muscular dystrophies (MDs) that affect both cardiac and skeletal muscles would benefit from therapeutic strategies that enable regeneration of both of these striated muscle types. Protocols have been developed to promote induced pluripotent stem cells (iPSCs) to differentiate toward cardiac or skeletal muscle; however, there are currently no strategies to simultaneously target both muscle types. Tissues exhibit specific epigenetic alterations; therefore, source-related lineage biases have the potential to improve iPSC-driven multilineage differentiation. Here, we determined that differential myogenic propensity influences the commitment of isogenic iPSCs and a specifically isolated pool of mesodermal iPSC-derived progenitors (MiPs) toward the striated muscle lineages. Differential myogenic propensity did not influence pluripotency, but did selectively enhance chimerism of MiP-derived tissue in both fetal and adult skeletal muscle. When injected into dystrophic mice, MiPs engrafted and repaired both skeletal and cardiac muscle, reducing functional defects. Similarly, engraftment into dystrophic mice of canine MiPs from dystrophic dogs that had undergone TALEN-mediated correction of the MD-associated mutation also resulted in functional striatal muscle regeneration. Moreover, human MiPs exhibited the same capacity for the dual differentiation observed in murine and canine MiPs. The findings of this study suggest that MiPs should be further explored for combined therapy of cardiac and skeletal muscles. PMID:26571398

  6. Human-induced pluripotent stem cell-derived cardiomyocytes from cardiac progenitor cells: effects of selective ion channel blockade.

    PubMed

    Altomare, Claudia; Pianezzi, Enea; Cervio, Elisabetta; Bolis, Sara; Biemmi, Vanessa; Benzoni, Patrizia; Camici, Giovanni G; Moccetti, Tiziano; Barile, Lucio; Vassalli, Giuseppe

    2016-12-01

    Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes are likely to revolutionize electrophysiological approaches to arrhythmias. Recent evidence suggests the somatic cell origin of hiPSCs may influence their differentiation potential. Owing to their cardiomyogenic potential, cardiac-stromal progenitor cells (CPCs) are an interesting cellular source for generation of hiPSC-derived cardiomyocytes. The effect of ionic current blockade in hiPSC-derived cardiomyocytes generated from CPCs has not been characterized yet. Human-induced pluripotent stem cell-derived cardiomyocytes were generated from adult CPCs and skin fibroblasts from the same individuals. The effect of selective ionic current blockade on spontaneously beating hiPSC-derived cardiomyocytes was assessed using multi-electrode arrays. Cardiac-stromal progenitor cells could be reprogrammed into hiPSCs, then differentiated into hiPSC-derived cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin showed higher upregulation of cardiac-specific genes compared with those of fibroblastic origin. Human-induced pluripotent stem cell-derived cardiomyocytes of both somatic cell origins exhibited sensitivity to tetrodotoxin, a blocker of Na +  current (I Na ), nifedipine, a blocker of L-type Ca 2+  current (I CaL ), and E4031, a blocker of the rapid component of delayed rectifier K +  current (I Kr ). Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin exhibited sensitivity to JNJ303, a blocker of the slow component of delayed rectifier K +  current (I Ks ). In hiPSC-derived cardiomyocytes of cardiac origin, I Na , I CaL , I Kr , and I Ks were present as tetrodotoxin-, nifedipine-, E4031-, and JNJ303-sensitive currents, respectively. Although cardiac differentiation efficiency was improved in hiPSCs of cardiac vs. non-cardiac origin, no major functional differences were observed between hiPSC-derived cardiomyocytes of different somatic

  7. miR-133a enhances the protective capacity of cardiac progenitors cells after myocardial infarction.

    PubMed

    Izarra, Alberto; Moscoso, Isabel; Levent, Elif; Cañón, Susana; Cerrada, Inmaculada; Díez-Juan, Antonio; Blanca, Vanessa; Núñez-Gil, Iván-J; Valiente, Iñigo; Ruíz-Sauri, Amparo; Sepúlveda, Pilar; Tiburcy, Malte; Zimmermann, Wolfram-H; Bernad, Antonio

    2014-12-09

    miR-133a and miR-1 are known as muscle-specific microRNAs that are involved in cardiac development and pathophysiology. We have shown that both miR-1 and miR-133a are early and progressively upregulated during in vitro cardiac differentiation of adult cardiac progenitor cells (CPCs), but only miR-133a expression was enhanced under in vitro oxidative stress. miR-1 was demonstrated to favor differentiation of CPCs, whereas miR-133a overexpression protected CPCs against cell death, targeting, among others, the proapoptotic genes Bim and Bmf. miR-133a-CPCs clearly improved cardiac function in a rat myocardial infarction model by reducing fibrosis and hypertrophy and increasing vascularization and cardiomyocyte proliferation. The beneficial effects of miR-133a-CPCs seem to correlate with the upregulated expression of several relevant paracrine factors and the plausible cooperative secretion of miR-133a via exosomal transport. Finally, an in vitro heart muscle model confirmed the antiapoptotic effects of miR-133a-CPCs, favoring the structuration and contractile functionality of the artificial tissue. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. miR-133a Enhances the Protective Capacity of Cardiac Progenitors Cells after Myocardial Infarction

    PubMed Central

    Izarra, Alberto; Moscoso, Isabel; Levent, Elif; Cañón, Susana; Cerrada, Inmaculada; Díez-Juan, Antonio; Blanca, Vanessa; Núñez-Gil, Iván-J.; Valiente, Iñigo; Ruíz-Sauri, Amparo; Sepúlveda, Pilar; Tiburcy, Malte; Zimmermann, Wolfram-H.; Bernad, Antonio

    2014-01-01

    Summary miR-133a and miR-1 are known as muscle-specific microRNAs that are involved in cardiac development and pathophysiology. We have shown that both miR-1 and miR-133a are early and progressively upregulated during in vitro cardiac differentiation of adult cardiac progenitor cells (CPCs), but only miR-133a expression was enhanced under in vitro oxidative stress. miR-1 was demonstrated to favor differentiation of CPCs, whereas miR-133a overexpression protected CPCs against cell death, targeting, among others, the proapoptotic genes Bim and Bmf. miR-133a-CPCs clearly improved cardiac function in a rat myocardial infarction model by reducing fibrosis and hypertrophy and increasing vascularization and cardiomyocyte proliferation. The beneficial effects of miR-133a-CPCs seem to correlate with the upregulated expression of several relevant paracrine factors and the plausible cooperative secretion of miR-133a via exosomal transport. Finally, an in vitro heart muscle model confirmed the antiapoptotic effects of miR-133a-CPCs, favoring the structuration and contractile functionality of the artificial tissue. PMID:25465869

  9. 8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Lifeng; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029; Zhou, Yong

    Genomic damage may devastate the potential of progenitor cells and consequently impair early organogenesis. We found that ogg1, a key enzyme initiating the base-excision repair, was enriched in the embryonic heart in zebrafish. So far, little is known about DNA repair in cardiogenesis. Here, we addressed the critical role of ogg1 in cardiogenesis for the first time. ogg1 mainly expressed in the anterior lateral plate mesoderm (ALPM), the primary heart tube, and subsequently the embryonic myocardium by in situ hybridisation. Loss of ogg1 resulted in severe cardiac morphogenesis and functional abnormalities, including the short heart length, arrhythmia, decreased cardiomyocytes andmore » nkx2.5{sup +} cardiac progenitor cells. Moreover, the increased apoptosis and repressed proliferation of progenitor cells caused by ogg1 deficiency might contribute to the heart phenotype. The microarray analysis showed that the expression of genes involved in embryonic heart tube morphogenesis and heart structure were significantly changed due to the lack of ogg1. Among those, foxh1 is an important partner of ogg1 in the cardiac development in response to DNA damage. Our work demonstrates the requirement of ogg1 in cardiac progenitors and heart development in zebrafish. These findings may be helpful for understanding the aetiology of congenital cardiac deficits. - Highlights: • A key DNA repair enzyme ogg1 is expressed in the embryonic heart in zebrafish. • We found that ogg1 is essential for normal cardiac morphogenesis in zebrafish. • The production of embryonic cardiomyocytes requires appropriate ogg1 expression. • Ogg1 critically regulated proliferation of cardiac progenitor cells in zebrafish. • foxh1 is a partner of ogg1 in the cardiac development in response to DNA damage.« less

  10. Functional TRPV2 and TRPV4 channels in human cardiac c-kit(+) progenitor cells.

    PubMed

    Che, Hui; Xiao, Guo-Sheng; Sun, Hai-Ying; Wang, Yan; Li, Gui-Rong

    2016-06-01

    The cellular physiology and biology of human cardiac c-kit(+) progenitor cells has not been extensively characterized and remains an area of active research. This study investigates the functional expression of transient receptor potential vanilloid (TRPV) and possible roles for this ion channel in regulating proliferation and migration of human cardiac c-kit(+) progenitor cells. We found that genes coding for TRPV2 and TRPV4 channels and their proteins are significantly expressed in human c-kit(+) cardiac stem cells. Probenecid, an activator of TRPV2, induced an increase in intracellular Ca(2+) (Ca(2+) i ), an effect that may be attenuated or abolished by the TRPV2 blocker ruthenium red. The TRPV4 channel activator 4α-phorbol 12-13-dicaprinate induced Ca(2+) i oscillations, which can be inhibited by the TRPV4 blocker RN-1734. The alteration of Ca(2+) i by probenecid or 4α-phorbol 12-13-dicprinate was dramatically inhibited in cells infected with TRPV2 short hairpin RNA (shRNA) or TRPV4 shRNA. Silencing TRPV2, but not TRPV4, significantly reduced cell proliferation by arresting cells at the G0/G1 boundary of the cell cycle. Cell migration was reduced by silencing TRPV2 or TRPV4. Western blot revealed that silencing TRPV2 decreased expression of cyclin D1, cyclin E, pERK1/2 and pAkt, whereas silencing TRPV4 only reduced pAkt expression. Our results demonstrate for the first time that functional TRPV2 and TRPV4 channels are abundantly expressed in human cardiac c-kit(+) progenitor cells. TRPV2 channels, but not TRPV4 channels, participate in regulating cell cycle progression; moreover, both TRPV2 and TRPV4 are involved in migration of human cardiac c-kit(+) progenitor cells. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  11. Characterization of Epicardial-Derived Cardiac Interstitial Cells: Differentiation and Mobilization of Heart Fibroblast Progenitors

    PubMed Central

    Ehrbar, Martin; Pérez-Pomares, José M.

    2013-01-01

    The non-muscular cells that populate the space found between cardiomyocyte fibers are known as ‘cardiac interstitial cells’ (CICs). CICs are heterogeneous in nature and include different cardiac progenitor/stem cells, cardiac fibroblasts and other cell types. Upon heart damage CICs soon respond by initiating a reparative response that transforms with time into extensive fibrosis and heart failure. Despite the biomedical relevance of CICs, controversy remains on the ontogenetic relationship existing between the different cell kinds homing at the cardiac interstitium, as well as on the molecular signals that regulate their differentiation, maturation, mutual interaction and role in adult cardiac homeostasis and disease. Our work focuses on the analysis of epicardial-derived cells, the first cell type that colonizes the cardiac interstitium. We present here a characterization and an experimental analysis of the differentiation potential and mobilization properties of a new cell line derived from mouse embryonic epicardium (EPIC). Our results indicate that these cells express some markers associated with cardiovascular stemness and retain part of the multipotent properties of embryonic epicardial derivatives, spontaneously differentiating into smooth muscle, and fibroblast/myofibroblast-like cells. Epicardium-derived cells are also shown to initiate a characteristic response to different growth factors, to display a characteristic proteolytic expression profile and to degrade biological matrices in 3D in vitro assays. Taken together, these data indicate that EPICs are relevant to the analysis of epicardial-derived CICs, and are a god model for the research on cardiac fibroblasts and the role these cells play in ventricular remodeling in both ischemic or non/ischemic myocardial disease. PMID:23349729

  12. Thyroid hormone accelerates the differentiation of adult hippocampal progenitors.

    PubMed

    Kapoor, R; Desouza, L A; Nanavaty, I N; Kernie, S G; Vaidya, V A

    2012-09-01

    Disrupted thyroid hormone function evokes severe physiological consequences in the immature brain. In adulthood, although clinical reports document an effect of thyroid hormone status on mood and cognition, the molecular and cellular changes underlying these behavioural effects are poorly understood. More recently, the subtle effects of thyroid hormone on structural plasticity in the mature brain, in particular on adult hippocampal neurogenesis, have come to be appreciated. However, the specific stages of adult hippocampal progenitor development that are sensitive to thyroid hormone are not defined. Using nestin-green fluorescent protein reporter mice, we demonstrate that thyroid hormone mediates its effects on hippocampal neurogenesis by influencing Type 2b and Type 3 progenitors, although it does not alter proliferation of either the Type 1 quiescent progenitor or the Type 2a amplifying neural progenitor. Thyroid hormone increases the number of doublecortin (DCX)-positive Type 3 progenitors, and accelerates neuronal differentiation into both DCX-positive immature neurones and neuronal nuclei-positive granule cell neurones. Furthermore, we show that this increase in neuronal differentiation is accompanied by a significant induction of specific transcription factors involved in hippocampal progenitor differentiation. In vitro studies using the neurosphere assay support a direct effect of thyroid hormone on progenitor development because neurospheres treated with thyroid hormone are shifted to a more differentiated state. Taken together, our results indicate that thyroid hormone mediates its neurogenic effects via targeting Type 2b and Type 3 hippocampal progenitors, and suggests a role for proneural transcription factors in contributing to the effects of thyroid hormone on neuronal differentiation of adult hippocampal progenitors. © 2012 The Authors. Journal of Neuroendocrinology © 2012 British Society for Neuroendocrinology.

  13. Heterogeneity and Fgf dependence of adult neural progenitors in the zebrafish telencephalon.

    PubMed

    Ganz, Julia; Kaslin, Jan; Hochmann, Sarah; Freudenreich, Dorian; Brand, Michael

    2010-08-15

    Adult telencephalic neurogenesis is a conserved trait of all vertebrates studied. It has been investigated in detail in rodents, but very little is known about the composition of neurogenic niches and the cellular nature of progenitors in nonmammalian vertebrates. To understand the components of the progenitor zones in the adult zebrafish telencephalon and the link between glial characteristics and progenitor state, we examined whether canonical glial markers are colocalized with proliferation markers. In the adult zebrafish telencephalon, we identify heterogeneous progenitors that reside in two distinct glial domains. We find that the glial composition of the progenitor zone is linked to its proliferative behavior. Analyzing both fast-cycling proliferating cells as well as slowly cycling progenitors, we find four distinct progenitor types characterized by differential expression of glial markers. Importantly, a significant proportion of progenitors do not display typical radial glia characteristics. By blocking or activating Fgf signaling by misexpression of a dominant negative Fgf-receptor 1 or Fgf8a, respectively, we find that ventral and dorsal progenitors in the telencephalon also differ in their requirement for Fgf signaling. Together with data on the expression of Fgf signaling components in the ventricular zone of the telencephalon, this suggests that Fgf signaling directly regulates proliferation of specific subsets of adult telencephalic progenitors in vivo. Taken together our results show that adult neural progenitor cells are heterogeneous with their respect to distribution into two distinct glial domains and their dependence upon Fgf signaling as a proliferative cue in the zebrafish telencephalon.

  14. Nucleostemin Rejuvenates Cardiac Progenitor Cells and Antagonizes Myocardial Aging

    PubMed Central

    Hariharan, Nirmala; Quijada, Pearl; Mohsin, Sadia; Joyo, Anya; Samse, Kaitlen; Monsanto, Megan; De La Torre, Andrea; Avitabile, Daniele; Ormachea, Lucia; McGregor, Michael J.; Tsai, Emily J; Sussman, Mark A.

    2015-01-01

    BACKGROUND Functional decline in stem cell-mediated regeneration contributes to aging associated with cellular senescence in c-kit+ cardiac progenitor cells (CPCs). Clinical implementation of CPC-based therapy with elderly patients would benefit tremendously from understanding molecular characteristics of senescence to antagonize aging. Nucleostemin (NS) is a nucleolar protein regulating stem cell proliferation and pluripotency. OBJECTIVES The goal is to demonstrate that NS preserves characteristics associated with “stemness” in CPCs and antagonizes myocardial senescence and aging. METHODS CPCs isolated from human fetal (FhCPC) and adult failing (AhCPC) hearts, as well as young (YCPC) and old mice (OCPC), were studied for senescence characteristics and NS expression. Heterozygous knockout mice with one functional allele of NS (NS+/−) were used to demonstrate that NS preserves myocardial structure and function and slows characteristics of aging. RESULTS NS expression is decreased in AhCPCs relative to FhCPC, correlating with lowered proliferation potential and shortened telomere length. AhCPC characteristics resemble OCPCs, which have a phenotype induced by NS silencing, resulting in cell flattening, senescence, multinucleated cells, decreased S phase progression, diminished expression of stemness markers and up-regulation of p53 and p16. CPC senescence resulting from NS loss is partially p53 dependent and is rescued by concurrent silencing of p53. Mechanistically, NS induction correlates with Pim-1 kinase-mediated stabilization of c-Myc. Engineering OCPCs and AhCPCs to overexpress NS decreases senescent and multinucleated cells, restores morphology, and antagonizes senescence, thereby preserving phenotypic properties of “stemness.” Early cardiac aging with decline in cardiac function, increase in senescence markers p53 and p16, telomere attrition, and accompanied CPC exhaustion is evident in NS+/− mice. CONCLUSIONS Youthful properties and antagonism of

  15. The involvement of protein kinase C-ε in isoflurane induced preconditioning of human embryonic stem cell--derived Nkx2.5(+) cardiac progenitor cells.

    PubMed

    Song, In-Ae; Oh, Ah-Young; Kim, Jin-Hee; Choi, Young-Min; Jeon, Young-Tae; Ryu, Jung-Hee; Hwang, Jung-Won

    2016-02-20

    Anesthetic preconditioning can improve survival of cardiac progenitor cells exposed to oxidative stress. We investigated the role of protein kinase C and isoform protein kinase C-ε in isoflurane-induced preconditioning of cardiac progenitor cells exposed to oxidative stress. Cardiac progenitor cells were obtained from undifferentiated human embryonic stem cells. Immunostaining with anti-Nkx2.5 was used to confirm the differentiated cardiac progenitor cells. Oxidative stress was induced by H2O2 and FeSO4. For anesthetic preconditioning, cardiac progenitor cells were exposed to 0.25, 0.5, and 1.0 mM of isoflurane. PMA and chelerythrine were used for protein kinase C activation and inhibition, while εψRACK and εV1-2 were used for protein kinase C -ε activation and inhibition, respectively. Isoflurane-preconditioning decreased the death rate of Cardiac progenitor cells exposed to oxidative stress (death rates isoflurane 0.5 mM 12.7 ± 9.3%, 1.0 mM 12.0 ± 7.7% vs. control 31.4 ± 10.2%). Inhibitors of both protein kinase C and protein kinase C -ε abolished the preconditioning effect of isoflurane 0.5 mM (death rates 27.6 ± 13.5% and 25.9 ± 8.7% respectively), and activators of both protein kinase C and protein kinase C - ε had protective effects from oxidative stress (death rates 16.0 ± 3.2% and 10.6 ± 3.8% respectively). Both PKC and PKC-ε are involved in isoflurane-induced preconditioning of human embryonic stem cells -derived Nkx2.5(+) Cardiac progenitor cells under oxidative stress.

  16. SIRT1 activation rescues doxorubicin-induced loss of functional competence of human cardiac progenitor cells.

    PubMed

    De Angelis, Antonella; Piegari, Elena; Cappetta, Donato; Russo, Rosa; Esposito, Grazia; Ciuffreda, Loreta Pia; Ferraiolo, Fiorella Angelica Valeria; Frati, Caterina; Fagnoni, Francesco; Berrino, Liberato; Quaini, Federico; Rossi, Francesco; Urbanek, Konrad

    2015-01-01

    The search for compounds able to counteract chemotherapy-induced heart failure is extremely important at the age of global cancer epidemic. The role of SIRT1 in the maintenance of progenitor cell homeostasis may contribute to its cardioprotective effects. SIRT1 activators, by preserving progenitor cells, could have a clinical relevance for the prevention of doxorubicin (DOXO)-cardiotoxicity. To determine whether SIRT1 activator, resveratrol (RES), interferes with adverse effects of DOXO on cardiac progenitor cells (CPCs): 1) human CPCs (hCPCs) were exposed in vitro to DOXO or DOXO+RES and their regenerative potential was tested in vivo in an animal model of DOXO-induced heart failure; 2) the in vivo effects of DOXO+RES co-treatment on CPCs were studied in a rat model. In contrast to healthy cells, DOXO-exposed hCPCs were ineffective in a model of anthracycline cardiomyopathy. The in vitro activation of SIRT1 decreased p53 acetylation, overcame suppression of the IGF-1/Akt pro-survival and anti-apoptotic signaling, enhanced oxidative stress defense and prevented senescence and growth arrest of hCPCs. Priming with RES counterbalanced the onset of dysfunctional phenotype in DOXO-exposed hCPCs, partly restoring their ability to repair the damage with improvement in cardiac function and animal survival. The in vivo co-treatment DOXO+RES prevented the anthracycline-induced alterations in CPCs, partly preserving cardiac function. SIRT1 activation protects DOXO-exposed CPCs and re-establishes their proper function. Pharmacological intervention at the level of tissue-specific progenitor cells may provide cardiac benefits for the growing population of long-term cancer survivors that are at risk of chemotherapy-induced cardiovascular toxicity. Copyright © 2015. Published by Elsevier Ireland Ltd.

  17. Identification, Characterization, and Utilization of Adult Meniscal Progenitor Cells

    DTIC Science & Technology

    2015-09-01

    pluripotent stem cells for osteoarthritis drug screening . Arthritis Rheumatol. 66, 3062–3072. Xia, Y., Zheng, S., Bidthanapally, A., 2008. Depth-dependent...the development of knee osteoarthritis (OA). New treatments centered on the stem /progenitor cell population resident within the adult meniscus will be...biology to develop a profile of repair cells in the adult meniscus, track meniscal stem /progenitor cell (MSPC) behavior within meniscus as function of

  18. Wnt inhibition promotes vascular specification of embryonic cardiac progenitors

    PubMed Central

    Reichman, David E.; Park, Laura; Man, Limor; Redmond, David; Chao, Kenny; Harvey, Richard P.; Taketo, Makoto M.; Rosenwaks, Zev

    2018-01-01

    ABSTRACT Several studies have demonstrated a multiphasic role for Wnt signaling during embryonic cardiogenesis and developed protocols that enrich for cardiac derivatives during in vitro differentiation of human pluripotent stem cells (hPSCs). However, few studies have investigated the role of Wnt signaling in the specification of cardiac progenitor cells (CPCs) toward downstream fates. Using transgenic mice and hPSCs, we tracked endothelial cells (ECs) that originated from CPCs expressing NKX2.5. Analysis of EC-fated CPCs at discrete phenotypic milestones during hPSC differentiation identified reduced Wnt activity as a hallmark of EC specification, and the enforced activation or inhibition of Wnt reduced or increased, respectively, the degree of vascular commitment within the CPC population during both hPSC differentiation and mouse embryogenesis. Wnt5a, which has been shown to exert an inhibitory influence on Wnt signaling during cardiac development, was dynamically expressed during vascular commitment of hPSC-derived CPCs, and ectopic Wnt5a promoted vascular specification of hPSC-derived and mouse embryonic CPCs. PMID:29217753

  19. Rescue of neonatal cardiac dysfunction in mice by administration of cardiac progenitor cells in utero

    PubMed Central

    Liu, Xiaoli; Hall, Sean R. R.; Wang, Zhihong; Huang, He; Ghanta, Sailaja; Di Sante, Moises; Leri, Annarosa; Anversa, Piero; Perrella, Mark A.

    2015-01-01

    Striated preferentially expressed gene (Speg) is a member of the myosin light chain kinase family. We previously showed that disruption of the Speg gene locus in mice leads to a dilated cardiomyopathy with immature-appearing cardiomyocytes. Here we show that cardiomyopathy of Speg−/− mice arises as a consequence of defects in cardiac progenitor cell (CPC) function, and that neonatal cardiac dysfunction can be rescued by in utero injections of wild-type CPCs into Speg−/− foetal hearts. CPCs harvested from Speg−/− mice display defects in clone formation, growth and differentiation into cardiomyocytes in vitro, which are associated with cardiac dysfunction in vivo. In utero administration of wild-type CPCs into the hearts of Speg−/− mice results in CPC engraftment, differentiation and myocardial maturation, which rescues Speg−/− mice from neonatal heart failure and increases the number of live births by fivefold. We propose that in utero administration of CPCs may have future implications for treatment of neonatal heart diseases. PMID:26593099

  20. Progenitor cell domains in the developing and adult pancreas

    PubMed Central

    Kopp, Janel L; Dubois, Claire L; Hao, Ergeng; Thorel, Fabrizio; Herrera, Pedro L

    2011-01-01

    Unlike organs with defined stem cell compartments, such as the intestine, the pancreas has limited capacity to regenerate. The question of whether the adult pancreas harbors facultative stem/progenitor cells has been a prime subject of debate. Cumulative evidence from recent genetic lineage tracing studies, in which specific cell populations were marked and traced in adult mice, suggests that endocrine and acinar cells are no longer generated from progenitors in the adult pancreas. These studies further indicate that adult pancreatic ductal cells are not a source for endocrine cells following pancreatic injury, as previously suggested. Our own studies have shown that adult ductal cells reinitiate expression of some endocrine progenitor markers, including Ngn3, after injury by partial duct ligation (PDL), but that these cells do not undergo endocrine cell differentiation. Here, we present additional evidence that endocrine cells do not arise from ducts following β-cell ablation by streptozotocin or by a diphtheria toxin-expressing transgene or when β-cell ablation is combined with PDL. In this review, we discuss findings from recent lineage tracing studies of embryonic and adult pancreatic ductal cells. Based upon the combined evidence from these studies, we propose that multipotency is associated with a specific transcriptional signature. PMID:21558806

  1. Cardiac Progenitor Cells and Bone Marrow-Derived Very Small Embryonic-Like Stem Cells for Cardiac Repair After Myocardial Infarction

    PubMed Central

    Tang, Xian-Liang; Rokosh, D. Gregg; Guo, Yiru; Bolli, Roberto

    2010-01-01

    Heart failure after myocardial infarction (MI) continues to be the most prevalent cause of morbidity and mortality worldwide. Although pharmaceutical agents and interventional strategies have contributed greatly to therapy, new and superior treatment modalities are urgently needed given the overall disease burden. Stem cell-based therapy is potentially a promising strategy to lead to cardiac repair after MI. An array of cell types has been explored in this respect, including skeletal myoblasts, bone marrow (BM)-derived stem cells, embryonic stem cells, and more recently, cardiac progenitor cells (CPCs). Recently studies have obtained evidence that transplantation of CPCs or BM-derived very small embryonic-like stem cells can improve cardiac function and alleviate cardiac remodeling, supporting the potential therapeutic utility of these cells for cardiac repair. This report summarizes the current data from those studies and discusses the potential implication of these cells in developing clinically-relevant stem cell-based therapeutic strategies for cardiac regeneration. PMID:20081317

  2. Inhibition of Oct 3/4 mitigates the cardiac progenitor-derived myocardial repair in infarcted myocardium.

    PubMed

    Zhao, Yu Tina; Du, Jianfeng; Chen, Youfang; Tang, Yaoliang; Qin, Gangjian; Lv, Guorong; Zhuang, Shougang; Zhao, Ting C

    2015-12-24

    Recent evidence has demonstrated that cardiac progenitor cells play an essential role in the induction of angiomyogenesis in infarcted myocardium. We and others have shown that engraftment of c-kit(+) cardiac stem cells (CSCs) into infarcted hearts led to myocardium regeneration and neovascularization, which was associated with an improvement of ventricular function. The purpose of this study is aimed at investigating the functional role of transcription factor (TF) Oct3/4 in facilitating CSCs to promote myocardium regeneration and preserve cardiac performance in the post-MI heart. c-kit(+) CSCs were isolated from adult hearts and re-introduced into the infarcted myocardium in which the mouse MI model was created by permanent ligation of the left anterior descending artery (LAD). The Oct3/4 of CSCs was inhibited by transfection of Oct3/4 siRNA, and transfection of CSCs with control siRNA serves as control groups. Myocardial functions were evaluated by echocardiographic measurement. Histological analysis was employed to assess newly formed cardiogenesis, neovascularization, and cell proliferations. Terminal deoxynucleotidyltransferase (TdT) nick-end labeling (TUNEL) was carried out to assess apoptotic cardiomyocytes. Real time polymerase chain reaction and Western blot were carried out to evaluate the level of Oct 3/4 in CSCs. Two weeks after engraftment, CSCs increased ventricular functional recovery as shown by a serial echocardiographic measurement, which is concomitant with the suppression of cardiac hypertrophy and attenuation of myocardial interstitial fibrosis. Suppression of Oct 3/4 of CSCs abrogated functional improvements and mitigated the hypertrophic response and cardiac remodeling. Transplantation of c-kit(+) CSCs into MI hearts promoted cardiac regeneration and neovascularization, which were abolished with the knockdown of Oct3/4. Additionally, suppression of Oct3/4 abrogated myocyte proliferation in the CSC-engrafted myocardium. Our results indicate

  3. miR-300 mediates Bmi1 function and regulates differentiation in primitive cardiac progenitors

    PubMed Central

    Cruz, F M; Tomé, M; Bernal, J A; Bernad, A

    2015-01-01

    B lymphoma Mo-MLV insertion region 1 (Bmi1) is a polycomb-family transcriptional factor critical for self-renewal in many adult stem cells and human neoplasia. We sought to identify microRNAs regulated by Bmi1 that could play a role in multipotent cardiac progenitor cell (CPC) decisions. We found that miR-300, a poorly characterized microRNA mapping in the Dlk1-Dio3 microRNA cluster, was positively regulated by Bmi1 in CPCs. Forced expression of miR-300 in CPCs promoted an improved stemness signature with a significant increase in Oct4 levels, a reduction in senescence progression and an enhanced proliferative status via p19 activation and inhibition of p16 accumulation. Endothelial and cardiogenic differentiation were clearly compromised by sustained miR-300 expression. Additionally, RNA and protein analysis revealed a significant reduction in key cardiac transcription factors, including Nkx2.5 and Tbx5. Collectively, these results suggest that some functions attributed to Bmi1 are due to induction of miR-300, which decreases the cardiogenic differentiation potential of multipotent CPCs in vitro and promotes self-renewal. PMID:26512961

  4. Expression of Coxsackievirus and Adenovirus Receptor Separates Hematopoietic and Cardiac Progenitor Cells in Fetal Liver Kinase 1-Expressing Mesoderm

    PubMed Central

    Tashiro, Katsuhisa; Hirata, Nobue; Okada, Atsumasa; Yamaguchi, Tomoko; Takayama, Kazuo; Mizuguchi, Hiroyuki

    2015-01-01

    In developing embryos or in vitro differentiation cultures using pluripotent stem cells (PSCs), such as embryonic stem cells and induced pluripotent stem cells, fetal liver kinase 1 (Flk1)-expressing mesodermal cells are thought to be a heterogeneous population that includes hematopoietic progenitors, endothelial progenitors, and cardiac progenitors. However, information on cell surface markers for separating these progenitors in Flk1+ cells is currently limited. In the present study, we show that distinct types of progenitor cells in Flk1+ cells could be separated according to the expression of coxsackievirus and adenovirus receptor (CAR, also known as CXADR), a tight junction component molecule. We found that mouse and human PSC- and mouse embryo-derived Flk1+ cells could be subdivided into Flk1+CAR+ cells and Flk1+CAR− cells. The progenitor cells with cardiac potential were almost entirely restricted to Flk1+CAR+ cells, and Flk1+CAR− cells efficiently differentiated into hematopoietic cells. Endothelial differentiation potential was observed in both populations. Furthermore, from the expression of CAR, Flk1, and platelet-derived growth factor receptor-α (PDGFRα), Flk1+ cells could be separated into three populations (Flk1+PDGFRα−CAR− cells, Flk1+PDGFRα−CAR+ cells, and Flk1+PDGFRα+CAR+ cells). Flk1+PDGFRα+ cells and Flk1+PDGFRα− cells have been reported as cardiac and hematopoietic progenitor cells, respectively. We identified a novel population (Flk1+PDGFRα−CAR+ cells) with the potential to differentiate into not only hematopoietic cells and endothelial cells but also cardiomyocytes. Our findings indicate that CAR would be a novel and prominent marker for separating PSC- and embryo-derived Flk1+ mesodermal cells with distinct differentiation potentials. PMID:25762001

  5. Identification, Characterization, and Utilization of Adult Meniscal Progenitor Cells

    DTIC Science & Technology

    2015-09-01

    the development of knee osteoarthritis (OA). New treatments centered on the stem/progenitor cell population resident within the adult meniscus will be...cells, stem cells, progenitor cells, meniscus healing, meniscus repair, osteoarthritis 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...changes that occur after injury. As a result, meniscal injuries are a common underlying cause of post-traumatic osteoarthritis . This is particularly

  6. Identification, Characterization, and Utilization of Adult Meniscal Progenitor Cells

    DTIC Science & Technology

    2016-09-01

    development of knee osteoarthritis (OA). New treatments centered on the stem/progenitor cell population resident within the adult meniscus will be key to...cells, progenitor cells, meniscus healing, meniscus repair, osteoarthritis 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER...common underlying cause of post- traumatic osteoarthritis . This is particularly striking in young, healthy individuals such as military personnel

  7. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation

    PubMed Central

    Epelman, Slava; Lavine, Kory J.; Beaudin, Anna E.; Sojka, Dorothy K.; Carrero, Javier A.; Calderon, Boris; Brija, Thaddeus; Gautier, Emmanuel L.; Ivanov, Stoyan; Satpathy, Ansuman T.; Schilling, Joel D.; Schwendener, Reto; Sergin, Ismail; Razani, Babak; Forsberg, E. Camilla; Yokoyama, Wayne; Unanue, Emil R.; Colonna, Marco; Randolph, Gwendalyn J.; Mann, Douglas L.

    2014-01-01

    Summary Cardiac macrophages are crucial for tissue repair after cardiac injury but have not been well characterized. Here we identify four populations of cardiac macrophages. At steady state, resident macrophages were primarily maintained through local proliferation. However, after macrophage depletion or during cardiac inflammation, Ly6chi monocytes contributed to all four macrophage populations, whereas resident macrophages also expanded numerically through proliferation. Genetic fate mapping revealed that yolk-sac and fetal monocyte progenitors gave rise to the majority of cardiac macrophages, and the heart was among a minority of organs in which substantial numbers of yolk-sac macrophages persisted in adulthood. CCR2 expression and dependence distinguished cardiac macrophages of adult monocyte versus embryonic origin. Transcriptional and functional data revealed that monocyte-derived macrophages coordinate cardiac inflammation, while playing redundant but lesser roles in antigen sampling and efferocytosis. These data highlight the presence of multiple cardiac macrophage subsets, with different functions, origins and strategies to regulate compartment. PMID:24439267

  8. Cardiac registers: the adult cardiac surgery register.

    PubMed

    Bridgewater, Ben

    2010-09-01

    AIMS OF THE SCTS ADULT CARDIAC SURGERY DATABASE: To measure the quality of care of adult cardiac surgery in GB and Ireland and provide information for quality improvement and research. Feedback of structured data to hospitals, publication of named hospital and surgeon mortality data, publication of benchmarked activity and risk adjusted clinical outcomes through intermittent comprehensive database reports, annual screening of all hospital and individual surgeon risk adjusted mortality rates by the professional society. All NHS hospitals in England, Scotland and Wales with input from some private providers and hospitals in Ireland. 1994-ongoing. Consecutive patients, unconsented. Current number of records: 400000. Adult cardiac surgery operations excluding cardiac transplantation and ventricular assist devices. 129 fields covering demographic factors, pre-operative risk factors, operative details and post-operative in-hospital outcomes. Entry onto local software systems by direct key board entry or subsequent transcription from paper records, with subsequent electronic upload to the central cardiac audit database. Non-financial incentives at hospital level. Local validation processes exist in the hospitals. There is currently no external data validation process. All cause mortality is obtained through linkage with Office for National Statistics. No other linkages exist at present. Available for research and audit by application to the SCTS database committee at http://www.scts.org.

  9. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish

    PubMed Central

    Hui, Subhra Prakash; Nag, Tapas Chandra; Ghosh, Sukla

    2015-01-01

    Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration. PMID:26630262

  10. Ischemia-reperfusion injury and pregnancy initiate time-dependent and robust signs of up-regulation of cardiac progenitor cells.

    PubMed

    Genead, Rami; Fischer, Helene; Hussain, Alamdar; Jaksch, Marie; Andersson, Agneta B; Ljung, Karin; Bulatovic, Ivana; Franco-Cereceda, Anders; Elsheikh, Elzafir; Corbascio, Matthias; Smith, C I Edvard; Sylvén, Christer; Grinnemo, Karl-Henrik

    2012-01-01

    To explore how cardiac regeneration and cell turnover adapts to disease, different forms of stress were studied for their effects on the cardiac progenitor cell markers c-Kit and Isl1, the early cardiomyocyte marker Nkx2.5, and mast cells. Adult female rats were examined during pregnancy, after myocardial infarction and ischemia-reperfusion injury with/out insulin like growth factor-1(IGF-1) and hepatocyte growth factor (HGF). Different cardiac sub-domains were analyzed at one and two weeks post-intervention, both at the mRNA and protein levels. While pregnancy and myocardial infarction up-regulated Nkx2.5 and c-Kit (adjusted for mast cell activation), ischemia-reperfusion injury induced the strongest up-regulation which occurred globally throughout the entire heart and not just around the site of injury. This response seems to be partly mediated by increased endogenous production of IGF-1 and HGF. Contrary to c-Kit, Isl1 was not up-regulated by pregnancy or myocardial infarction while ischemia-reperfusion injury induced not a global but a focal up-regulation in the outflow tract and also in the peri-ischemic region, correlating with the up-regulation of endogenous IGF-1. The addition of IGF-1 and HGF did boost the endogenous expression of IGF and HGF correlating to focal up-regulation of Isl1. c-Kit expression was not further influenced by the exogenous growth factors. This indicates that there is a spatial mismatch between on one hand c-Kit and Nkx2.5 expression and on the other hand Isl1 expression. In conclusion, ischemia-reperfusion injury was the strongest stimulus with both global and focal cardiomyocyte progenitor cell marker up-regulations, correlating to the endogenous up-regulation of the growth factors IGF-1 and HGF. Also pregnancy induced a general up-regulation of c-Kit and early Nkx2.5+ cardiomyocytes throughout the heart. Utilization of these pathways could provide new strategies for the treatment of cardiac disease.

  11. A comprehensive gene expression analysis at sequential stages of in vitro cardiac differentiation from isolated MESP1-expressing-mesoderm progenitors

    PubMed Central

    den Hartogh, Sabine C.; Wolstencroft, Katherine; Mummery, Christine L.; Passier, Robert

    2016-01-01

    In vitro cardiac differentiation of human pluripotent stem cells (hPSCs) closely recapitulates in vivo embryonic heart development, and therefore, provides an excellent model to study human cardiac development. We recently generated the dual cardiac fluorescent reporter MESP1mCherry/wNKX2-5eGFP/w line in human embryonic stem cells (hESCs), allowing the visualization of pre-cardiac MESP1+ mesoderm and their further commitment towards the cardiac lineage, marked by activation of the cardiac transcription factor NKX2-5. Here, we performed a comprehensive whole genome based transcriptome analysis of MESP1-mCherry derived cardiac-committed cells. In addition to previously described cardiac-inducing signalling pathways, we identified novel transcriptional and signalling networks indicated by transient activation and interactive network analysis. Furthermore, we found a highly dynamic regulation of extracellular matrix components, suggesting the importance to create a versatile niche, adjusting to various stages of cardiac differentiation. Finally, we identified cell surface markers for cardiac progenitors, such as the Leucine-rich repeat-containing G-protein coupled receptor 4 (LGR4), belonging to the same subfamily of LGR5, and LGR6, established tissue/cancer stem cells markers. We provide a comprehensive gene expression analysis of cardiac derivatives from pre-cardiac MESP1-progenitors that will contribute to a better understanding of the key regulators, pathways and markers involved in human cardiac differentiation and development. PMID:26783251

  12. Temporally Distinct Six2-Positive Second Heart Field Progenitors Regulate Mammalian Heart Development and Disease.

    PubMed

    Zhou, Zhengfang; Wang, Jingying; Guo, Chaoshe; Chang, Weiting; Zhuang, Jian; Zhu, Ping; Li, Xue

    2017-01-24

    The embryonic process of forming a complex structure such as the heart remains poorly understood. Here, we show that Six2 marks a dynamic subset of second heart field progenitors. Six2-positive (Six2 + ) progenitors are rapidly recruited and assigned, and their descendants are allocated successively to regions of the heart from the right ventricle (RV) to the pulmonary trunk. Global ablation of Six2 + progenitors resulted in RV hypoplasia and pulmonary atresia. An early stage-specific ablation of a small subset of Six2 + progenitors did not cause any apparent structural defect at birth but rather resulted in adult-onset cardiac hypertrophy and dysfunction. Furthermore, Six2 expression depends in part on Shh signaling, and Shh deletion resulted in severe deficiency of Six2 + progenitors. Collectively, these findings unveil the chronological features of cardiogenesis, in which the mammalian heart is built sequentially by temporally distinct populations of cardiac progenitors, and provide insights into late-onset congenital heart disease. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Expansion and differentiation of neural progenitors derived from the human adult enteric nervous system.

    PubMed

    Metzger, Marco; Bareiss, Petra M; Danker, Timm; Wagner, Silvia; Hennenlotter, Joerg; Guenther, Elke; Obermayr, Florian; Stenzl, Arnulf; Koenigsrainer, Alfred; Skutella, Thomas; Just, Lothar

    2009-12-01

    Neural stem and progenitor cells from the enteric nervous system have been proposed for use in cell-based therapies against specific neurogastrointestinal disorders. Recently, enteric neural progenitors were generated from human neonatal and early postnatal (until 5 years after birth) gastrointestinal tract tissues. We investigated the proliferation and differentiation of enteric nervous system progenitors isolated from human adult gastrointestinal tract. Human enteric spheroids were generated from adult small and large intestine tissues and then expanded and differentiated, depending on the applied cell culture conditions. For implantation studies, spheres were grafted into fetal slice cultures and embryonic aganglionic hindgut explants from mice. Differentiating enteric neural progenitors were characterized by 5-bromo-2-deoxyuridine labeling, in situ hybridization, immunocytochemistry, quantitative real-time polymerase chain reaction, and electrophysiological studies. The yield of human neurosphere-like bodies was increased by culture in conditional medium derived from fetal mouse enteric progenitors. We were able to generate proliferating enterospheres from adult human small or large intestine tissues; these enterospheres could be subcultured and maintained for several weeks in vitro. Spheroid-derived cells could be differentiated into a variety of neuronal subtypes and glial cells with characteristics of the enteric nervous system. Experiments involving implantation into organotypic intestinal cultures showed the differentiation capacity of neural progenitors in a 3-dimensional environment. It is feasible to isolate and expand enteric progenitor cells from human adult tissue. These findings offer new strategies for enteric stem cell research and future cell-based therapies.

  14. Embryonic Heart Progenitors and Cardiogenesis

    PubMed Central

    Brade, Thomas; Pane, Luna S.; Moretti, Alessandra; Chien, Kenneth R.; Laugwitz, Karl-Ludwig

    2013-01-01

    The mammalian heart is a highly specialized organ, comprised of many different cell types arising from distinct embryonic progenitor populations during cardiogenesis. Three precursor populations have been identified to contribute to different myocytic and nonmyocytic cell lineages of the heart: cardiogenic mesoderm cells (CMC), the proepicardium (PE), and cardiac neural crest cells (CNCCs). This review will focus on molecular cues necessary for proper induction, expansion, and lineage-specific differentiation of these progenitor populations during cardiac development in vivo. Moreover, we will briefly discuss how the knowledge gained on embryonic heart progenitor biology can be used to develop novel therapeutic strategies for the management of congenital heart disease as well as for improvement of cardiac function in ischemic heart disease. PMID:24086063

  15. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Lijuan; Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267; Wang, Yingjie

    Highlights: ► Cardiac progenitor-derived (CPC) Exosomes protect H9C2 from apoptosis in vitro. ► CPC-exosomes protect cardiomyoyctes from MI/R induced apoptosis in vivo. ► CPC-exosomes were taken up by H9C2 with high efficiency using PKH26 labeling. ► miR-451, one of GATA4-responsive miRNA cluster, is enriched in CPC-exosomes. -- Abstract: Background: Cardiac progenitors (CPC) mediate cardioprotection via paracrine effects. To date, most of studies focused on secreted paracrine proteins. Here we investigated the CPC-derived-exosomes on protecting myocardium from acute ischemia/reperfusion (MI/R) injury. Methods and results: CPC were isolated from mouse heart using two-step protocol. Exosomes were purified from conditional medium, and confirmedmore » by electron micrograph and Western blot using CD63 as a marker. qRT-PCR shows that CPC-exosomes have high level expression of GATA4-responsive-miR-451. Exosomes were ex vivo labeled with PKH26, We observed exosomes can be uptaken by H9C2 cardiomyoblasts with high efficiency after 12 h incubation. CPC-exosomes protect H9C2 from oxidative stress by inhibiting caspase 3/7 activation invitro. In vivo delivery of CPC-exosomes in an acute mouse myocardial ischemia/reperfusion model inhibited cardiomyocyte apoptosis by about 53% in comparison with PBS control (p < 0.05). Conclusion: Our results suggest, for the first time, the CPC-exosomes can be used as a therapeutic vehicle for cardioprotection, and highlights a new perspective for using non-cell exosomes for cardiac disease.« less

  16. Human adipose stem cell and ASC-derived cardiac progenitor cellular therapy improves outcomes in a murine model of myocardial infarction

    PubMed Central

    Davy, Philip MC; Lye, Kevin D; Mathews, Juanita; Owens, Jesse B; Chow, Alice Y; Wong, Livingston; Moisyadi, Stefan; Allsopp, Richard C

    2015-01-01

    Background Adipose tissue is an abundant and potent source of adult stem cells for transplant therapy. In this study, we present our findings on the potential application of adipose-derived stem cells (ASCs) as well as induced cardiac-like progenitors (iCPs) derived from ASCs for the treatment of myocardial infarction. Methods and results Human bone marrow (BM)-derived stem cells, ASCs, and iCPs generated from ASCs using three defined cardiac lineage transcription factors were assessed in an immune-compromised mouse myocardial infarction model. Analysis of iCP prior to transplant confirmed changes in gene and protein expression consistent with a cardiac phenotype. Endpoint analysis was performed 1 month posttransplant. Significantly increased endpoint fractional shortening, as well as reduction in the infarct area at risk, was observed in recipients of iCPs as compared to the other recipient cohorts. Both recipients of iCPs and ASCs presented higher myocardial capillary densities than either recipients of BM-derived stem cells or the control cohort. Furthermore, mice receiving iCPs had a significantly higher cardiac retention of transplanted cells than all other groups. Conclusion Overall, iCPs generated from ASCs outperform BM-derived stem cells and ASCs in facilitating recovery from induced myocardial infarction in mice. PMID:26604802

  17. Magnetic Resonance Imaging of Iron Oxide-Labeled Human Embryonic Stem Cell-Derived Cardiac Progenitors.

    PubMed

    Skelton, Rhys J P; Khoja, Suhail; Almeida, Shone; Rapacchi, Stanislas; Han, Fei; Engel, James; Zhao, Peng; Hu, Peng; Stanley, Edouard G; Elefanty, Andrew G; Kwon, Murray; Elliott, David A; Ardehali, Reza

    2016-01-01

    Given the limited regenerative capacity of the heart, cellular therapy with stem cell-derived cardiac cells could be a potential treatment for patients with heart disease. However, reliable imaging techniques to longitudinally assess engraftment of the transplanted cells are scant. To address this issue, we used ferumoxytol as a labeling agent of human embryonic stem cell-derived cardiac progenitor cells (hESC-CPCs) to facilitate tracking by magnetic resonance imaging (MRI) in a large animal model. Differentiating hESCs were exposed to ferumoxytol at different time points and varying concentrations. We determined that treatment with ferumoxytol at 300 μg/ml on day 0 of cardiac differentiation offered adequate cell viability and signal intensity for MRI detection without compromising further differentiation into definitive cardiac lineages. Labeled hESC-CPCs were transplanted by open surgical methods into the left ventricular free wall of uninjured pig hearts and imaged both ex vivo and in vivo. Comprehensive T2*-weighted images were obtained immediately after transplantation and 40 days later before termination. The localization and dispersion of labeled cells could be effectively imaged and tracked at days 0 and 40 by MRI. Thus, under the described conditions, ferumoxytol can be used as a long-term, differentiation-neutral cell-labeling agent to track transplanted hESC-CPCs in vivo using MRI. The development of a safe and reproducible in vivo imaging technique to track the fate of transplanted human embryonic stem cell-derived cardiac progenitor cells (hESC-CPCs) is a necessary step to clinical translation. An iron oxide nanoparticle (ferumoxytol)-based approach was used for cell labeling and subsequent in vivo magnetic resonance imaging monitoring of hESC-CPCs transplanted into uninjured pig hearts. The present results demonstrate the use of ferumoxytol labeling and imaging techniques in tracking the location and dispersion of cell grafts, highlighting its

  18. Cardiac muscle regeneration: lessons from development

    PubMed Central

    Mercola, Mark; Ruiz-Lozano, Pilar; Schneider, Michael D.

    2011-01-01

    The adult human heart is an ideal target for regenerative intervention since it does not functionally restore itself after injury yet has a modest regenerative capacity that could be enhanced by innovative therapies. Adult cardiac cells with regenerative potential share gene expression signatures with early fetal progenitors that give rise to multiple cardiac cell types, suggesting that the evolutionarily conserved regulatory networks that drive embryonic heart development might also control aspects of regeneration. Here we discuss commonalities of development and regeneration, and the application of the rich developmental biology heritage to achieve therapeutic regeneration of the human heart. PMID:21325131

  19. Cardiac side population cells and Sca-1-positive cells.

    PubMed

    Nagai, Toshio; Matsuura, Katsuhisa; Komuro, Issei

    2013-01-01

    Since the resident cardiac stem/progenitor cells were discovered, their ability to maintain the architecture and functional integrity of adult heart has been broadly explored. The methods for isolation and purification of the cardiac stem cells are crucial for the precise analysis of their developmental origin and intrinsic potential as tissue stem cells. Stem cell antigen-1 (Sca-1) is one of the useful cell surface markers to purify the cardiac progenitor cells. Another purification strategy is based on the high efflux ability of the dye, which is a common feature of tissue stem cells. These dye-extruding cells have been called side population cells because they locate in the side of dye-retaining cells after fluorescent cell sorting. In this chapter, we describe the methodology for the isolation of cardiac SP cells and Sca-1 positive cells.

  20. Precardiac deletion of Numb and Numblike reveals renewal of cardiac progenitors

    PubMed Central

    Shenje, Lincoln T; Andersen, Peter; Uosaki, Hideki; Fernandez, Laviel; Rainer, Peter P; Cho, Gun-sik; Lee, Dong-ik; Zhong, Weimin; Harvey, Richard P; Kass, David A; Kwon, Chulan

    2014-01-01

    Cardiac progenitor cells (CPCs) must control their number and fate to sustain the rapid heart growth during development, yet the intrinsic factors and environment governing these processes remain unclear. Here, we show that deletion of the ancient cell-fate regulator Numb (Nb) and its homologue Numblike (Nbl) depletes CPCs in second pharyngeal arches (PA2s) and is associated with an atrophic heart. With histological, flow cytometric and functional analyses, we find that CPCs remain undifferentiated and expansive in the PA2, but differentiate into cardiac cells as they exit the arch. Tracing of Nb- and Nbl-deficient CPCs by lineage-specific mosaicism reveals that the CPCs normally populate in the PA2, but lose their expansion potential in the PA2. These findings demonstrate that Nb and Nbl are intrinsic factors crucial for the renewal of CPCs in the PA2 and that the PA2 serves as a microenvironment for their expansion. DOI: http://dx.doi.org/10.7554/eLife.02164.001 PMID:24843018

  1. Preclinical evaluation of the immunomodulatory properties of cardiac adipose tissue progenitor cells using umbilical cord blood mesenchymal stem cells: a direct comparative study.

    PubMed

    Perea-Gil, Isaac; Monguió-Tortajada, Marta; Gálvez-Montón, Carolina; Bayes-Genis, Antoni; Borràs, Francesc E; Roura, Santiago

    2015-01-01

    Cell-based strategies to regenerate injured myocardial tissue have emerged over the past decade, but the optimum cell type is still under scrutiny. In this context, human adult epicardial fat surrounding the heart has been characterized as a reservoir of mesenchymal-like progenitor cells (cardiac ATDPCs) with potential clinical benefits. However, additional data on the possibility that these cells could trigger a deleterious immune response following implantation are needed. Thus, in the presented study, we took advantage of the well-established low immunogenicity of umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) to comparatively assess the immunomodulatory properties of cardiac ATDPCs in an in vitro allostimulatory assay using allogeneic mature monocyte-derived dendritic cells (MDDCs). Similar to UCBMSCs, increasing amounts of seeded cardiac ATDPCs suppressed the alloproliferation of T cells in a dose-dependent manner. Secretion of proinflammatory cytokines (IL6, TNFα, and IFNγ) was also specifically modulated by the different numbers of cardiac ATDPCs cocultured. In summary, we show that cardiac ATDPCs abrogate T cell alloproliferation upon stimulation with allogeneic mature MDDCs, suggesting that they could further regulate a possible harmful immune response in vivo. Additionally, UCBMSCs can be considered as valuable tools to preclinically predict the immunogenicity of prospective regenerative cells.

  2. Efficient Generation of Human Embryonic Stem Cell-Derived Cardiac Progenitors Based on Tissue-Specific Enhanced Green Fluorescence Protein Expression

    PubMed Central

    Szebényi, Kornélia; Péntek, Adrienn; Erdei, Zsuzsa; Várady, György; Orbán, Tamás I.; Sarkadi, Balázs

    2015-01-01

    Cardiac progenitor cells (CPCs) are committed to the cardiac lineage but retain their proliferative capacity before becoming quiescent mature cardiomyocytes (CMs). In medical therapy and research, the use of human pluripotent stem cell-derived CPCs would have several advantages compared with mature CMs, as the progenitors show better engraftment into existing heart tissues, and provide unique potential for cardiovascular developmental as well as for pharmacological studies. Here, we demonstrate that the CAG promoter-driven enhanced green fluorescence protein (EGFP) reporter system enables the identification and isolation of embryonic stem cell-derived CPCs. Tracing of CPCs during differentiation confirmed up-regulation of surface markers, previously described to identify cardiac precursors and early CMs. Isolated CPCs express cardiac lineage-specific transcripts, still have proliferating capacity, and can be re-aggregated into embryoid body-like structures (CAG-EGFPhigh rEBs). Expression of troponin T and NKX2.5 mRNA is up-regulated in long-term cultured CAG-EGFPhigh rEBs, in which more than 90% of the cells become Troponin I positive mature CMs. Moreover, about one third of the CAG-EGFPhigh rEBs show spontaneous contractions. The method described here provides a powerful tool to generate expandable cultures of pure human CPCs that can be used for exploring early markers of the cardiac lineage, as well as for drug screening or tissue engineering applications. PMID:24734786

  3. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes

    PubMed Central

    Tarlow, Branden D.; Pelz, Carl; Naugler, Willscott E.; Wakefield, Leslie; Wilson, Elizabeth M.; Finegold, Milton J.; Grompe, Markus

    2014-01-01

    Summary Adult liver progenitor cells are biliary-like epithelial cells that emerge only under injury conditions in the periportal region of the liver. They exhibit phenotypes of both hepatocytes and bile ducts. However, their origin and their significance to injury repair remain unclear. Here, we used a chimeric lineage tracing system to demonstrate that hepatocytes contribute to the progenitor pool. RNA-sequencing, ultrastructural analysis, and in vitro progenitor assays revealed that hepatocyte-derived progenitors were distinct from their biliary-derived counterparts. In vivo lineage tracing and serial transplantation assays showed that hepatocyte-derived proliferative ducts retained a memory of their origin and differentiated back into hepatocytes upon cessation of injury. Similarly, human hepatocytes in chimeric mice also gave rise to biliary progenitors in vivo. We conclude that human and mouse hepatocytes can undergo reversible ductal metaplasia in response to injury, expand as ducts and subsequently contribute to restoration of the hepatocyte mass. PMID:25312494

  4. Hematopoietic progenitor migration to the adult thymus

    PubMed Central

    Zlotoff, Daniel A.; Bhandoola, Avinash

    2010-01-01

    While most hematopoietic lineages develop in the bone marrow (BM), T cells uniquely complete their development in the specialized environment of the thymus. Hematopoietic stem cells with long-term self-renewal capacity are not present in the thymus. As a result, continuous T cell development requires that BM-derived progenitors be imported into the thymus throughout adult life. The process of thymic homing begins with the mobilization of progenitors out of the bone marrow, continues with their circulation in the bloodstream, and concludes with their settling in the thymus. This review will discuss each of these steps as they occur in the unirradiated and post-irradiation scenarios, focusing on the molecular mechanisms of regulation. Improved knowledge about these early steps in T cell generation may accelerate the development of new therapeutic options in patients with impaired T cell number or function. PMID:21251013

  5. Developmental origin and lineage plasticity of endogenous cardiac stem cells

    PubMed Central

    Santini, Maria Paola; Forte, Elvira; Harvey, Richard P.; Kovacic, Jason C.

    2016-01-01

    Over the past two decades, several populations of cardiac stem cells have been described in the adult mammalian heart. For the most part, however, their lineage origins and in vivo functions remain largely unexplored. This Review summarizes what is known about different populations of embryonic and adult cardiac stem cells, including KIT+, PDGFRα+, ISL1+ and SCA1+ cells, side population cells, cardiospheres and epicardial cells. We discuss their developmental origins and defining characteristics, and consider their possible contribution to heart organogenesis and regeneration. We also summarize the origin and plasticity of cardiac fibroblasts and circulating endothelial progenitor cells, and consider what role these cells have in contributing to cardiac repair. PMID:27095490

  6. Empowering human cardiac progenitor cells by P2Y14 nucleotide receptor overexpression.

    PubMed

    Khalafalla, Farid G; Kayani, Waqas; Kassab, Arwa; Ilves, Kelli; Monsanto, Megan M; Alvarez, Roberto; Chavarria, Monica; Norman, Benjamin; Dembitsky, Walter P; Sussman, Mark A

    2017-12-01

    Autologous cardiac progenitor cell (CPC) therapy is a promising approach for treatment of heart failure (HF). There is an unmet need to identify inherent deficits in aged/diseased human CPCs (hCPCs) derived from HF patients in the attempts to augment their regenerative capacity prior to use in the clinical setting. Here we report significant functional correlations between phenotypic properties of hCPCs isolated from cardiac biopsies of HF patients, clinical parameters of patients and expression of the P2Y 14 purinergic receptor (P2Y 14 R), a crucial detector for extracellular UDP-sugars released during injury/stress. P2Y 14 R is downregulated in hCPCs derived from HF patients with lower ejection fraction or diagnosed with diabetes. Augmenting P2Y 14 R expression levels in aged/diseased hCPCs antagonizes senescence and improves functional responses. This study introduces purinergic signalling modulation as a potential strategy to rejuvenate and improve phenotypic characteristics of aged/functionally compromised hCPCs prior to transplantation in HF patients. Autologous cardiac progenitor cell therapy is a promising alternative approach to current inefficient therapies for heart failure (HF). However, ex vivo expansion and pharmacological/genetic modification of human cardiac progenitor cells (hCPCs) are necessary interventions to rejuvenate aged/diseased cells and improve their regenerative capacities. This study was designed to assess the potential of improving hCPC functional capacity by targeting the P2Y 14 purinergic receptor (P2Y 14 R), which has been previously reported to induce regenerative and anti-senescence responses in a variety of experimental models. c-Kit + hCPCs were isolated from cardiac biopsies of multiple HF patients undergoing left ventricular assist device implantation surgery. Significant correlations existed between the expression of P2Y 14 R in hCPCs and clinical parameters of HF patients. P2Y 14 R was downregulated in hCPCs derived from

  7. Boosting the pentose phosphate pathway restores cardiac progenitor cell availability in diabetes.

    PubMed

    Katare, Rajesh; Oikawa, Atsuhiko; Cesselli, Daniela; Beltrami, Antonio P; Avolio, Elisa; Muthukrishnan, Deepti; Munasinghe, Pujika Emani; Angelini, Gianni; Emanueli, Costanza; Madeddu, Paolo

    2013-01-01

    Diabetes impinges upon mechanisms of cardiovascular repair. However, the biochemical adaptation of cardiac stem cells to sustained hyperglycaemia remains largely unknown. Here, we investigate the molecular targets of high glucose-induced damage in cardiac progenitor cells (CPCs) from murine and human hearts and attempt safeguarding CPC viability and function through reactivation of the pentose phosphate pathway. Type-1 diabetes was induced by streptozotocin. CPC abundance was determined by flow cytometry. Proliferating CPCs were identified in situ by immunostaining for the proliferation marker Ki67. Diabetic hearts showed marked reduction in CPC abundance and proliferation when compared with controls. Moreover, Sca-1(pos) CPCs isolated from hearts of diabetic mice displayed reduced activity of key enzymes of the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD), and transketolase, increased levels of superoxide and advanced glucose end-products (AGE), and inhibition of the Akt/Pim-1/Bcl-2 signalling pathway. Similarly, culture of murine CPCs or human CD105(pos) progenitor cells in high glucose inhibits the pentose phosphate and pro-survival signalling pathways, leading to the activation of apoptosis. In vivo and in vitro supplementation with benfotiamine reactivates the pentose phosphate pathway and rescues CPC availability and function. This benefit is abrogated by either G6PD silencing by small interfering RNA (siRNA) or Akt inhibition by dominant-negative Akt. We provide new evidence of the negative impact of diabetes and high glucose on mechanisms controlling CPC redox state and survival. Boosting the pentose phosphate pathway might represent a novel mechanistic target for protection of CPC integrity.

  8. Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas

    PubMed Central

    Rovira, Meritxell; Scott, Sherri-Gae; Liss, Andrew S.; Jensen, Jan; Thayer, Sarah P.; Leach, Steven D.

    2009-01-01

    The question of whether dedicated progenitor cells exist in adult vertebrate pancreas remains controversial. Centroacinar cells and terminal duct (CA/TD) cells lie at the junction between peripheral acinar cells and the adjacent ductal epithelium, and are frequently included among cell types proposed as candidate pancreatic progenitors. However these cells have not previously been isolated in a manner that allows formal assessment of their progenitor capacities. We have found that a subset of adult CA/TD cells are characterized by high levels of ALDH1 enzymatic activity, related to high-level expression of both Aldh1a1 and Aldh1a7. This allows their isolation by FACS using a fluorogenic ALDH1 substrate. FACS-isolated CA/TD cells are relatively depleted of transcripts associated with differentiated pancreatic cell types. In contrast, they are markedly enriched for transcripts encoding Sca1, Sdf1, c-Met, Nestin, and Sox9, markers previously associated with progenitor populations in embryonic pancreas and other tissues. FACS-sorted CA/TD cells are uniquely able to form self-renewing “pancreatospheres” in suspension culture, even when plated at clonal density. These spheres display a capacity for spontaneous endocrine and exocrine differentiation, as well as glucose-responsive insulin secretion. In addition, when injected into cultured embryonic dorsal pancreatic buds, these adult cells display a unique capacity to contribute to both the embryonic endocrine and exocrine lineages. Finally, these cells demonstrate dramatic expansion in the setting of chronic epithelial injury. These findings suggest that CA/TD cells are indeed capable of progenitor function and may contribute to the maintenance of tissue homeostasis in adult mouse pancreas. PMID:20018761

  9. Endothelial progenitor cell mobilization and increased intravascular nitric oxide in patients undergoing cardiac rehabilitation.

    PubMed

    Paul, Jonathan D; Powell, Tiffany M; Thompson, Michael; Benjamin, Moshe; Rodrigo, Maria; Carlow, Andrea; Annavajjhala, Vidhya; Shiva, Sruti; Dejam, Andre; Gladwin, Mark T; McCoy, J Philip; Zalos, Gloria; Press, Beverly; Murphy, Mandy; Hill, Jonathan M; Csako, Gyorgy; Waclawiw, Myron A; Cannon, Richard O

    2007-01-01

    We investigated whether cardiac rehabilitation participation increases circulating endothelial progenitor cells (EPCs) and benefits vasculature in patients already on stable therapy previously shown to augment EPCs and improve endothelial function. Forty-six of 50 patients with coronary artery disease completed a 36-session cardiac rehabilitation program: 45 were treated with HMG-CoA reductase inhibitor (statin) therapy > or = 1 month (average baseline low-density lipoprotein cholesterol = 81 mg/dL). Mononuclear cells isolated from blood were quantified for EPCs by flow cytometry (CD133/VEGFR-2 cells) and assayed in culture for EPC colony-forming units (CFUs). In 23 patients, EPCs were stained for annexin-V as a marker of apoptosis, and nitrite was measured in blood as an indicator of intravascular nitric oxide. Endothelial progenitor cells increased from 35 +/- 5 to 63 +/- 10 cells/mL, and EPC-CFUs increased from 0.9 +/- 0.2 to 3.1 +/- 0.6 per well (both P < .01), but 11 patients had no increase in either measure. Those patients whose EPCs increased from baseline showed significant increases in nitrite and reduction in annexin-V staining (both P < .01) versus no change in patients without increase in EPCs. Over the course of the program, EPCs increased prior to increase in nitrite in the blood. Cardiac rehabilitation in patients receiving stable statin therapy and with low-density lipoprotein cholesterol at goal increases EPC number, EPC survival, and endothelial differentiation potential, associated with increased nitric oxide in the blood. Although this response was observed in most patients, a significant minority showed neither EPC mobilization nor increased nitric oxide in the blood.

  10. Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells

    PubMed Central

    Cao, Nan; Liu, Zumei; Chen, Zhongyan; Wang, Jia; Chen, Taotao; Zhao, Xiaoyang; Ma, Yu; Qin, Lianju; Kang, Jiuhong; Wei, Bin; Wang, Liu; Jin, Ying; Yang, Huang-Tian

    2012-01-01

    Generation of induced pluripotent stem cells (iPSCs) has opened new avenues for the investigation of heart diseases, drug screening and potential autologous cardiac regeneration. However, their application is hampered by inefficient cardiac differentiation, high interline variability, and poor maturation of iPSC-derived cardiomyocytes (iPS-CMs). To identify efficient inducers for cardiac differentiation and maturation of iPSCs and elucidate the mechanisms, we systematically screened sixteen cardiomyocyte inducers on various murine (m) iPSCs and found that only ascorbic acid (AA) consistently and robustly enhanced the cardiac differentiation of eleven lines including eight without spontaneous cardiogenic potential. We then optimized the treatment conditions and demonstrated that differentiation day 2-6, a period for the specification of cardiac progenitor cells (CPCs), was a critical time for AA to take effect. This was further confirmed by the fact that AA increased the expression of cardiovascular but not mesodermal markers. Noteworthily, AA treatment led to approximately 7.3-fold (miPSCs) and 30.2-fold (human iPSCs) augment in the yield of iPS-CMs. Such effect was attributed to a specific increase in the proliferation of CPCs via the MEK-ERK1/2 pathway by through promoting collagen synthesis. In addition, AA-induced cardiomyocytes showed better sarcomeric organization and enhanced responses of action potentials and calcium transients to β-adrenergic and muscarinic stimulations. These findings demonstrate that AA is a suitable cardiomyocyte inducer for iPSCs to improve cardiac differentiation and maturation simply, universally, and efficiently. These findings also highlight the importance of stimulating CPC proliferation by manipulating extracellular microenvironment in guiding cardiac differentiation of the pluripotent stem cells. PMID:22143566

  11. A discrete in continuous mathematical model of cardiac progenitor cells formation and growth as spheroid clusters (Cardiospheres).

    PubMed

    Di Costanzo, Ezio; Giacomello, Alessandro; Messina, Elisa; Natalini, Roberto; Pontrelli, Giuseppe; Rossi, Fabrizio; Smits, Robert; Twarogowska, Monika

    2018-03-14

    We propose a discrete in continuous mathematical model describing the in vitro growth process of biophsy-derived mammalian cardiac progenitor cells growing as clusters in the form of spheres (Cardiospheres). The approach is hybrid: discrete at cellular scale and continuous at molecular level. In the present model, cells are subject to the self-organizing collective dynamics mechanism and, additionally, they can proliferate and differentiate, also depending on stochastic processes. The two latter processes are triggered and regulated by chemical signals present in the environment. Numerical simulations show the structure and the development of the clustered progenitors and are in a good agreement with the results obtained from in vitro experiments.

  12. Boosting the pentose phosphate pathway restores cardiac progenitor cell availability in diabetes

    PubMed Central

    Katare, Rajesh; Oikawa, Atsuhiko; Cesselli, Daniela; Beltrami, Antonio P.; Avolio, Elisa; Muthukrishnan, Deepti; Munasinghe, Pujika Emani; Angelini, Gianni; Emanueli, Costanza; Madeddu, Paolo

    2013-01-01

    Aims Diabetes impinges upon mechanisms of cardiovascular repair. However, the biochemical adaptation of cardiac stem cells to sustained hyperglycaemia remains largely unknown. Here, we investigate the molecular targets of high glucose-induced damage in cardiac progenitor cells (CPCs) from murine and human hearts and attempt safeguarding CPC viability and function through reactivation of the pentose phosphate pathway. Methods and results Type-1 diabetes was induced by streptozotocin. CPC abundance was determined by flow cytometry. Proliferating CPCs were identified in situ by immunostaining for the proliferation marker Ki67. Diabetic hearts showed marked reduction in CPC abundance and proliferation when compared with controls. Moreover, Sca-1pos CPCs isolated from hearts of diabetic mice displayed reduced activity of key enzymes of the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD), and transketolase, increased levels of superoxide and advanced glucose end-products (AGE), and inhibition of the Akt/Pim-1/Bcl-2 signalling pathway. Similarly, culture of murine CPCs or human CD105pos progenitor cells in high glucose inhibits the pentose phosphate and pro-survival signalling pathways, leading to the activation of apoptosis. In vivo and in vitro supplementation with benfotiamine reactivates the pentose phosphate pathway and rescues CPC availability and function. This benefit is abrogated by either G6PD silencing by small interfering RNA (siRNA) or Akt inhibition by dominant-negative Akt. Conclusion We provide new evidence of the negative impact of diabetes and high glucose on mechanisms controlling CPC redox state and survival. Boosting the pentose phosphate pathway might represent a novel mechanistic target for protection of CPC integrity. PMID:22997160

  13. Electrical stimulation of cardiac adipose tissue-derived progenitor cells modulates cell phenotype and genetic machinery.

    PubMed

    Llucià-Valldeperas, A; Sanchez, B; Soler-Botija, C; Gálvez-Montón, C; Prat-Vidal, C; Roura, S; Rosell-Ferrer, J; Bragos, R; Bayes-Genis, A

    2015-11-01

    A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. Our aim was to examine the effect of electrical stimulation on the cardiodifferentiation potential of cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs). Three different electrical stimulation protocols were tested; the selected protocol consisted of 2 ms monophasic square-wave pulses of 50 mV/cm at 1 Hz over 14 days. Cardiac and subcutaneous ATDPCs were grown on biocompatible patterned surfaces. Cardiomyogenic differentiation was examined by real-time PCR and immunocytofluorescence. In cardiac ATDPCs, MEF2A and GATA-4 were significantly upregulated at day 14 after stimulation, while subcutaneous ATDPCs only exhibited increased Cx43 expression. In response to electrical stimulation, cardiac ATDPCs elongated, and both cardiac and subcutaneous ATDPCs became aligned following the linear surface pattern of the construct. Cardiac ATDPC length increased by 11.3%, while subcutaneous ATDPC length diminished by 11.2% (p = 0.013 and p = 0.030 vs unstimulated controls, respectively). Compared to controls, electrostimulated cells became aligned better to the patterned surfaces when the pattern was perpendicular to the electric field (89.71 ± 28.47º for cardiac ATDPCs and 92.15 ± 15.21º for subcutaneous ATDPCs). Electrical stimulation of cardiac ATDPCs caused changes in cell phenotype and genetic machinery, making them more suitable for cardiac regeneration approaches. Thus, it seems advisable to use electrical cell training before delivery as a cell suspension or within engineered tissue. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Adult cardiac stem cells are multipotent and robustly myogenic: c-kit expression is necessary but not sufficient for their identification.

    PubMed

    Vicinanza, Carla; Aquila, Iolanda; Scalise, Mariangela; Cristiano, Francesca; Marino, Fabiola; Cianflone, Eleonora; Mancuso, Teresa; Marotta, Pina; Sacco, Walter; Lewis, Fiona C; Couch, Liam; Shone, Victoria; Gritti, Giulia; Torella, Annalaura; Smith, Andrew J; Terracciano, Cesare Mn; Britti, Domenico; Veltri, Pierangelo; Indolfi, Ciro; Nadal-Ginard, Bernardo; Ellison-Hughes, Georgina M; Torella, Daniele

    2017-12-01

    Multipotent adult resident cardiac stem cells (CSCs) were first identified by the expression of c-kit, the stem cell factor receptor. However, in the adult myocardium c-kit alone cannot distinguish CSCs from other c-kit-expressing (c-kit pos ) cells. The adult heart indeed contains a heterogeneous mixture of c-kit pos cells, mainly composed of mast and endothelial/progenitor cells. This heterogeneity of cardiac c-kit pos cells has generated confusion and controversy about the existence and role of CSCs in the adult heart. Here, to unravel CSC identity within the heterogeneous c-kit-expressing cardiac cell population, c-kit pos cardiac cells were separated through CD45-positive or -negative sorting followed by c-kit pos sorting. The blood/endothelial lineage-committed (Lineage pos ) CD45 pos c-kit pos cardiac cells were compared to CD45 neg (Lineage neg /Lin neg ) c-kit pos cardiac cells for stemness and myogenic properties in vitro and in vivo. The majority (~90%) of the resident c-kit pos cardiac cells are blood/endothelial lineage-committed CD45 pos CD31 pos c-kit pos cells. In contrast, the Lin neg CD45 neg c-kit pos cardiac cell cohort, which represents ⩽10% of the total c-kit pos cells, contain all the cardiac cells with the properties of adult multipotent CSCs. These characteristics are absent from the c-kit neg and the blood/endothelial lineage-committed c-kit pos cardiac cells. Single Lin neg c-kit pos cell-derived clones, which represent only 1-2% of total c-kit pos myocardial cells, when stimulated with TGF-β/Wnt molecules, acquire full transcriptome and protein expression, sarcomere organisation, spontaneous contraction and electrophysiological properties of differentiated cardiomyocytes (CMs). Genetically tagged cloned progeny of one Lin neg c-kit pos cell when injected into the infarcted myocardium, results in significant regeneration of new CMs, arterioles and capillaries, derived from the injected cells. The CSC's myogenic regenerative capacity is

  15. Regulatory System for Stem/Progenitor Cell Niches in the Adult Rodent Pituitary

    PubMed Central

    Yoshida, Saishu; Kato, Takako; Kato, Yukio

    2016-01-01

    The anterior lobe of the pituitary gland is a master endocrine tissue composed of five types of endocrine cells. Although the turnover rate of pituitary endocrine cells is as low as about 1.6% per day, recent studies have demonstrated that Sex-determining region Y-box 2 (SOX2)+-cells exist as pituitary stem/progenitor cells in the adult anterior lobe and contribute to cell regeneration. Notably, SOX2+-pituitary stem/progenitor cells form two types of niches in this tissue: the marginal cell layer (MCL-niche) and the dense cell clusters scattering in the parenchyma (parenchymal-niche). However, little is known about the mechanisms and factors for regulating the pituitary stem/progenitor cell niches, as well as the functional differences between the two types of niches. Elucidation of the regulatory mechanisms in the niches might enable us to understand the cell regeneration system that acts in accordance with physiological demands in the adult pituitary. In this review, so as to reveal the regulatory mechanisms of the two types of niche, we summarize the regulatory factors and their roles in the adult rodent pituitary niches by focusing on three components: soluble factors, cell surface proteins and extracellular matrixes. PMID:26761002

  16. Single dose of filgrastim (rhG-CSF) increases the number of hematopoietic progenitors in the peripheral blood of adult volunteers.

    PubMed

    Schwinger, W; Mache, C; Urban, C; Beaufort, F; Töglhofer, W

    1993-06-01

    Hematopoietic progenitor cell levels were monitored in the peripheral blood of ten healthy adults receiving a single dose of recombinant human granulocyte colony-stimulating factor (rhG-CSF). The objective was to determine the time and number of progenitor cells released into the peripheral blood, induced by a single dose of 15 micrograms/kg rhG-CSF administered intravenously. In all cases the absolute number of circulating progenitor cells including granulocyte-macrophage and erythroid lineages increased up to 12-fold (median 9.4-fold) 4 days after treatment. These findings were based on flow cytometric quantification of CD34+ cells and on progenitor assays. The relative distribution of granulocyte/macrophage and erythroid progenitors remained unchanged. rhG-CSF was well tolerated; mild to moderate bone pain was the most common side-effect and was noted in 6 of 10 subjects. Thus a single dose of rhG-CSF is effective in mobilizing progenitor cells into the peripheral blood in healthy adults. If these progenitors are capable of reconstituting bone marrow, peripheral progenitor cell separation following rhG-CSF administration could be a reasonable alternative to conventional bone marrow harvest in healthy adults.

  17. Low Connexin Channel-Dependent Intercellular Communication in Human Adult Hematopoietic Progenitor/Stem Cells: Probing Mechanisms of Autologous Stem Cell Therapy

    PubMed Central

    Yang, Jian; Darley, Richard L; Hallett, Maurice; Evans, W Howard

    2009-01-01

    Human bone marrow is a clinical source of autologous progenitor stem cells showing promise for cardiac repair following ischemic insult. Functional improvements following delivery of adult bone marrow CD34+ cells into heart tissue may require metabolic/electrical communication between participating cells. Since connexin43 (Cx43) channels are implicated in cardiogenesis and provide intercellular connectivity in the heart, the authors analyzed the expression of 20 connexins (Cx) in CD34+ cells and in monocytes and granulocytes in bone marrow and spinal cord. Reverse transcriptase-polymerase chain reaction (RT-PCR) detected only low expression of Cx43 and Cx37. Very low level dye coupling was detected by flow cytometry between CD34+ cells and other Cx43 expressing cells, including HL-1 cardiac cells, and was not inhibited by specific gap junction inhibitors. The results indicate that CD34+ cells are unlikely to communicate via gap junctions and the authors conclude that use of CD34+ cells to repair damaged hearts is unlikely to involve gap junctions. The results concur with the hypothesis that bone marrow cells elicit improved cardiac function through release of undefined paracrine mediators. PMID:20298144

  18. Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors

    PubMed Central

    Figueres-Oñate, Maria; López-Mascaraque, Laura

    2016-01-01

    Neurons are generated during embryonic development and in adulthood, although adult neurogenesis is restricted to two main brain regions, the hippocampus and olfactory bulb. The subventricular zone (SVZ) of the lateral ventricles generates neural stem/progenitor cells that continually provide the olfactory bulb (OB) with new granule or periglomerular neurons, cells that arrive from the SVZ via the rostral migratory stream. The continued neurogenesis and the adequate integration of these newly generated interneurons is essential to maintain homeostasis in the olfactory bulb, where the differentiation of these cells into specific neural cell types is strongly influenced by temporal cues. Therefore, identifying the critical features that control the generation of adult OB interneurons at either pre- or post-natal stages is important to understand the dynamic contribution of neural stem cells. Here, we used in utero and neonatal SVZ electroporation along with a transposase-mediated stable integration plasmid, in order to track interneurons and glial lineages in the OB. These plasmids are valuable tools to study the development of OB interneurons from embryonic and post-natal SVZ progenitors. Accordingly, we examined the location and identity of the adult progeny of embryonic and post-natally transfected progenitors by examining neurochemical markers in the adult OB. These data reveal the different cell types in the olfactory bulb that are generated in function of age and different electroporation conditions. PMID:27242400

  19. Cardiac Myocyte Cell Cycle Control in Development, Disease and Regeneration

    PubMed Central

    Ahuja, Preeti; Sdek, Patima; Maclellan, W. Robb

    2009-01-01

    Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle soon after birth in mammals. Although the extent to which adult cardiac myocytes are capable of cell cycle reentry is controversial and species-specific differences may exist, it appears that for the vast majority of adult cardiac myocytes the predominant form of growth postnatally is an increase in cell size (hypertrophy) not number. Unfortunately, this limits the ability of the heart to restore function after any significant injury. Interst in novel regenerative therapies has led to the accumulation of much information on the mechanisms that regulate the rapid proliferation of cardiac myocytes in utero, their cell cycle exit in the perinatal period and the permanent arrest (terminal differentiation) in adult myocytes. The recent identification of cardiac progenitor cells capable of giving rise to cardiac myocyte-like cells has challenged the dogma that the heart is a terminally differentiated organ and opened new prospects for cardiac regeneration. In this review, we summarize the current understanding of cardiomyocyte cell cycle control in normal development and disease. In addition, we also discuss the potential usefulness of cardiomyocyte self-renewal as well as feasibility of therapeutic manipulation of the cardiac myocyte cell cycle for cardiac regeneration. PMID:17429040

  20. Clinical cardiac regenerative studies in children.

    PubMed

    Pavo, Imre J; Michel-Behnke, Ina

    2017-02-26

    Although the incidence of pediatric heart failure is low, the mortality is relatively high, with severe clinical symptoms requiring repeated hospitalization or intensive care treatment in the surviving patients. Cardiac biopsy specimens have revealed a higher number of resident human cardiac progenitor cells, with greater proliferation and differentiation capacity, in the neonatal period as compared with adults, demonstrating the regeneration potential of the young heart, with rising interest in cardiac regeneration therapy in critically ill pediatric patients. We review here the available literature data, searching the MEDLINE, Google Scholar and EMBASE database for completed, and www.clinicaltrials.gov homepage for ongoing studies involving pediatric cardiac regeneration reports. Because of difficulties conducting randomized blinded clinical trials in pediatric patients, mostly case reports or cohort studies with a limited number of individuals have been published in the field of pediatric regenerative cardiology. The majority of pediatric autologous cell transplantations into the cardiac tissue have been performed in critically ill children with severe or terminal heart failure. Congenital heart disease, myocarditis, and idiopathic hypertrophic or dilated cardiomyopathy leading to congestive heart failure are some possible areas of interest for pediatric cardiac regeneration therapy. Autologous bone marrow mononuclear cells, progenitor cells, or cardiospheres have been applied either intracoronary or percutaneously intramyocardially in severely ill children, leading to a reported clinical benefit of cell-based cardiac therapies. In conclusion, compassionate use of autologous stem cell administration has led to at least short-term improvement in heart function and clinical stability in the majority of the critically ill pediatric patients.

  1. Inflammation increases cells expressing ZSCAN4 and progenitor cell markers in the adult pancreas

    PubMed Central

    Azuma, Sakiko; Yokoyama, Yukihiro; Yamamoto, Akiko; Kyokane, Kazuhiro; Niida, Shumpei; Ishiguro, Hiroshi; Ko, Minoru S. H.

    2013-01-01

    We have recently identified the zinc finger and SCAN domain containing 4 (Zscan4), which is transiently expressed and regulates telomere elongation and genome stability in mouse embryonic stem (ES) cells. The aim of this study was to examine the expression of ZSCAN4 in the adult pancreas and elucidate the role of ZSCAN4 in tissue inflammation and subsequent regeneration. The expression of ZSCAN4 and other progenitor or differentiated cell markers in the human pancreas was immunohistochemically examined. Pancreas sections of alcoholic or autoimmune pancreatitis patients before and under maintenance corticosteroid treatment were used in this study. In the adult human pancreas a small number of ZSCAN4-positive (ZSCAN4+) cells are present among cells located in the islets of Langerhans, acini, ducts, and oval-shaped cells. These cells not only express differentiated cell markers for each compartment of the pancreas but also express other tissue stem/progenitor cell markers. Furthermore, the number of ZSCAN4+ cells dramatically increased in patients with chronic pancreatitis, especially in the pancreatic tissues of autoimmune pancreatitis actively regenerating under corticosteroid treatment. Interestingly, a number of ZSCAN4+ cells in the pancreas of autoimmune pancreatitis returned to the basal level after 1 yr of maintenance corticosteroid treatment. In conclusion, coexpression of progenitor cell markers and differentiated cell markers with ZSCAN4 in each compartment of the pancreas may indicate the presence of facultative progenitors for both exocrine and endocrine cells in the adult pancreas. PMID:23599043

  2. Unravelling the effects of mechanical physiological conditioning on cardiac adipose tissue-derived progenitor cells in vitro and in silico.

    PubMed

    Llucià-Valldeperas, Aida; Bragós, Ramon; Soler-Botija, Carolina; Roura, Santiago; Gálvez-Montón, Carolina; Prat-Vidal, Cristina; Perea-Gil, Isaac; Bayes-Genis, Antoni

    2018-01-11

    Mechanical conditioning is incompletely characterized for stimulating therapeutic cells within the physiological range. We sought to unravel the mechanism of action underlying mechanical conditioning of adipose tissue-derived progenitor cells (ATDPCs), both in vitro and in silico. Cardiac ATDPCs, grown on 3 different patterned surfaces, were mechanically stretched for 7 days at 1 Hz. A custom-designed, magnet-based, mechanical stimulator device was developed to apply ~10% mechanical stretching to monolayer cell cultures. Gene and protein analyses were performed for each cell type and condition. Cell supernatants were also collected to analyze secreted proteins and construct an artificial neural network. Gene and protein modulations were different for each surface pattern. After mechanostimulation, cardiac ATDPCs increased the expression of structural genes and there was a rising trend on cardiac transcription factors. Finally, secretome analyses revealed upregulation of proteins associated with both myocardial infarction and cardiac regeneration, such as regulators of the immune response, angiogenesis or cell adhesion. To conclude, mechanical conditioning of cardiac ATDPCs enhanced the expression of early and late cardiac genes in vitro. Additionally, in silico analyses of secreted proteins showed that mechanical stimulation of cardiac ATDPCs was highly associated with myocardial infarction and repair.

  3. Engineering Robust and Functional Vascular Networks in Vivo with Human Adult and Cord Blood-Derived Progenitor Cells

    DTIC Science & Technology

    2008-12-01

    for other sources of ECs such as those derived from embryonic and adult progenitor cells ( Rafii ; Lyden 2003). For example, human ES-derived...functional endothelial precursors. Blood, 95, 952-958. Rafii , S., and D. Lyden, 2003: Therapeutic stem and progenitor cell transplantation for

  4. Transcription factor scleraxis vitally contributes to progenitor lineage direction in wound healing of adult tendon in mice.

    PubMed

    Sakabe, Tomoya; Sakai, Keiko; Maeda, Toru; Sunaga, Ataru; Furuta, Nao; Schweitzer, Ronen; Sasaki, Takako; Sakai, Takao

    2018-04-20

    Tendon is a dense connective tissue that transmits high mechanical forces from skeletal muscle to bone. The transcription factor scleraxis (Scx) is a highly specific marker of both precursor and mature tendon cells (tenocytes). Mice lacking scx exhibit a specific and virtually complete loss of tendons during development. However, the functional contribution of Scx to wound healing in adult tendon has not yet been fully characterized. Here, using ScxGFP -tracking and loss-of-function systems, we show in an adult mouse model of Achilles tendon injury that paratenon cells, representing a stem cell antigen-1 (Sca-1)-positive and Scx-negative progenitor subpopulation, display Scx induction, migrate to the wound site, and produce extracellular matrix (ECM) to bridge the defect, whereas resident tenocytes exhibit a delayed response. Scx induction in the progenitors is initiated by transforming growth factor β (TGF-β) signaling. scx -deficient mice had migration of Sca-1-positive progenitor cell to the lesion site but impaired ECM assembly to bridge the defect. Mechanistically, scx -null progenitors displayed higher chondrogenic potential with up-regulation of SRY-box 9 (Sox9) coactivator PPAR-γ coactivator-1α (PGC-1α) in vitro , and knock-in analysis revealed that forced expression of full-length scx significantly inhibited Sox9 expression. Accordingly, scx -null wounds formed cartilage-like tissues that developed ectopic ossification. Our findings indicate a critical role of Scx in a progenitor-cell lineage in wound healing of adult mouse tendon. These progenitor cells could represent targets in strategies to facilitate tendon repair. We propose that this lineage-regulatory mechanism in tissue progenitors could apply to a broader set of tissues or biological systems in the body. © 2018 Sakabe et al.

  5. Effect of oxidative insult on young and adult cardiac muscle cells in vitro.

    PubMed

    Nag, A C; Sreepathi, P; Lee, M L; Reddan, J R

    1996-01-01

    The effect of hydrogen peroxide on cultured neonatal and adult cardiac myocytes was investigated. On neonatal cardiac myocytes the effect was very pronounced at a low concentration (0.03 mM), whereas the adult cardiac myocytes were resistant to the same concentration of H2O2. Dividing neonatal cardiac myocytes were more susceptible to H2O2 insult than the non-dividing adult cardiac myocytes. At a concentration of 0.1 mM H2O2, the neonatal cardiac myocytes were significantly damaged compared with the adult cardiac myocytes. Cardiac muscle cells from neonatal and adult hearts at high density culture were more tolerant to the oxidative insult by H2O2 than cells in low density culture. The damaging effect of H2O2 was very selective on F-actin in neonatal and adult cardiac muscle cells. The effect of H2O2 on myosin, titin, alpha-actinin, desmin or tubulin was not pronounced. Microscopical studies suggested a more marked protection by catalase than by glutathione reductase in the neonatal cells.

  6. 12-Deoxyphorbols Promote Adult Neurogenesis by Inducing Neural Progenitor Cell Proliferation via PKC Activation

    PubMed Central

    Geribaldi-Doldán, Noelia; Flores-Giubi, Eugenia; Murillo-Carretero, Maribel; García-Bernal, Francisco; Carrasco, Manuel; Macías-Sánchez, Antonio J.; Domínguez-Riscart, Jesús; Verástegui, Cristina; Hernández-Galán, Rosario

    2016-01-01

    Background: Neuropsychiatric and neurological disorders frequently occur after brain insults associated with neuronal loss. Strategies aimed to facilitate neuronal renewal by promoting neurogenesis constitute a promising therapeutic option to treat neuronal death-associated disorders. In the adult brain, generation of new neurons occurs physiologically throughout the entire life controlled by extracellular molecules coupled to intracellular signaling cascades. Proteins participating in these cascades within neurogenic regions constitute potential pharmacological targets to promote neuronal regeneration of injured areas of the central nervous system. Methodology: We have performed in vitro and in vivo approaches to determine neural progenitor cell proliferation to understand whether activation of kinases of the protein kinase C family facilitates neurogenesis in the adult brain. Results: We have demonstrated that protein kinase C activation by phorbol-12-myristate-13-acetate induces neural progenitor cell proliferation in vitro. We also show that the nontumorogenic protein kinase C activator prostratin exerts a proliferative effect on neural progenitor cells in vitro. This effect can be reverted by addition of the protein kinase C inhibitor G06850, demonstrating that the effect of prostratin is mediated by protein kinase C activation. Additionally, we show that prostratin treatment in vivo induces proliferation of neural progenitor cells within the dentate gyrus of the hippocampus and the subventricular zone. Finally, we describe a library of diterpenes with a 12-deoxyphorbol structure similar to that of prostratin that induces a stronger effect than prostratin on neural progenitor cell proliferation both in vitro and in vivo. Conclusions: This work suggests that protein kinase C activation is a promising strategy to expand the endogenous neural progenitor cell population to promote neurogenesis and highlights the potential of 12-deoxyphorbols as pharmaceutical

  7. 12-Deoxyphorbols Promote Adult Neurogenesis by Inducing Neural Progenitor Cell Proliferation via PKC Activation.

    PubMed

    Geribaldi-Doldán, Noelia; Flores-Giubi, Eugenia; Murillo-Carretero, Maribel; García-Bernal, Francisco; Carrasco, Manuel; Macías-Sánchez, Antonio J; Domínguez-Riscart, Jesús; Verástegui, Cristina; Hernández-Galán, Rosario; Castro, Carmen

    2015-07-29

    Neuropsychiatric and neurological disorders frequently occur after brain insults associated with neuronal loss. Strategies aimed to facilitate neuronal renewal by promoting neurogenesis constitute a promising therapeutic option to treat neuronal death-associated disorders. In the adult brain, generation of new neurons occurs physiologically throughout the entire life controlled by extracellular molecules coupled to intracellular signaling cascades. Proteins participating in these cascades within neurogenic regions constitute potential pharmacological targets to promote neuronal regeneration of injured areas of the central nervous system. We have performed in vitro and in vivo approaches to determine neural progenitor cell proliferation to understand whether activation of kinases of the protein kinase C family facilitates neurogenesis in the adult brain. We have demonstrated that protein kinase C activation by phorbol-12-myristate-13-acetate induces neural progenitor cell proliferation in vitro. We also show that the nontumorogenic protein kinase C activator prostratin exerts a proliferative effect on neural progenitor cells in vitro. This effect can be reverted by addition of the protein kinase C inhibitor G06850, demonstrating that the effect of prostratin is mediated by protein kinase C activation. Additionally, we show that prostratin treatment in vivo induces proliferation of neural progenitor cells within the dentate gyrus of the hippocampus and the subventricular zone. Finally, we describe a library of diterpenes with a 12-deoxyphorbol structure similar to that of prostratin that induces a stronger effect than prostratin on neural progenitor cell proliferation both in vitro and in vivo. This work suggests that protein kinase C activation is a promising strategy to expand the endogenous neural progenitor cell population to promote neurogenesis and highlights the potential of 12-deoxyphorbols as pharmaceutical agents to facilitate neuronal renewal. © The

  8. Excitation-neurogenesis coupling in adult neural stem/progenitor cells.

    PubMed

    Deisseroth, Karl; Singla, Sheela; Toda, Hiroki; Monje, Michelle; Palmer, Theo D; Malenka, Robert C

    2004-05-27

    A wide variety of in vivo manipulations influence neurogenesis in the adult hippocampus. It is not known, however, if adult neural stem/progenitor cells (NPCs) can intrinsically sense excitatory neural activity and thereby implement a direct coupling between excitation and neurogenesis. Moreover, the theoretical significance of activity-dependent neurogenesis in hippocampal-type memory processing networks has not been explored. Here we demonstrate that excitatory stimuli act directly on adult hippocampal NPCs to favor neuron production. The excitation is sensed via Ca(v)1.2/1.3 (L-type) Ca(2+) channels and NMDA receptors on the proliferating precursors. Excitation through this pathway acts to inhibit expression of the glial fate genes Hes1 and Id2 and increase expression of NeuroD, a positive regulator of neuronal differentiation. These activity-sensing properties of the adult NPCs, when applied as an "excitation-neurogenesis coupling rule" within a Hebbian neural network, predict significant advantages for both the temporary storage and the clearance of memories.

  9. Sudden cardiac death in adults: causes, incidence and interventions.

    PubMed

    Walker, Wendy Marina

    Many nurses will be familiar with the unexpected death of an adult patient following a sudden, life-threatening cardiac event. It is a situation that demands sensitive nursing care and skilled interventions to provide a foundation for recovery and promote healthy bereavement. This article examines the causes and incidence of sudden cardiac death in adults. Possible reactions of those who are suddenly bereaved are described and immediate care interventions aimed at dealing with the grief process are discussed. The article concludes by identifying ways in which the incidence of sudden cardiac death may be reduced.

  10. Isolation and characterization of adult human liver progenitors from ischemic liver tissue derived from therapeutic hepatectomies.

    PubMed

    Stachelscheid, Harald; Urbaniak, Thomas; Ring, Alexander; Spengler, Berlind; Gerlach, Jörg C; Zeilinger, Katrin

    2009-07-01

    Recent evidence suggests that progenitor cells in adult tissues and embryonic stem cells share a high resistance to hypoxia and ischemic stress. To study the ischemic resistance of adult liver progenitors, we characterized remaining viable cells in human liver tissue after cold ischemic treatment for 24-168 h, applied to the tissue before cell isolation. In vitro cultures of isolated cells showed a rapid decline of the number of different cell types with increasing ischemia length. After all ischemic periods, liver progenitor-like cells could be observed. The comparably small cells exhibited a low cytoplasm-to-nucleus ratio, formed densely packed colonies, and showed a hepatobiliary marker profile. The cells expressed epithelial cell adhesion molecule, epithelial-specific (CK8/18) and biliary-specific (CK7/19) cytokeratins, albumin, alpha-1-antitrypsin, cytochrome-P450 enzymes, as well as weak levels of hepatocyte nuclear factor-4 and gamma-glutamyl transferase, but not alpha-fetoprotein or Thy-1. In vitro survival and expansion was facilitated by coculture with mouse embryonic fibroblasts. Hepatic progenitor-like cells exhibit a high resistance to ischemic stress and can be isolated from human liver tissue after up to 7 days of ischemia. Ischemic liver tissue from various sources, thought to be unsuitable for cell isolation, may be considered as a prospective source of hepatic progenitor cells.

  11. Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration.

    PubMed

    Leucht, Philipp; Kim, Jae-Beom; Amasha, Raimy; James, Aaron W; Girod, Sabine; Helms, Jill A

    2008-09-01

    The fetal skeleton arises from neural crest and from mesoderm. Here, we provide evidence that each lineage contributes a unique stem cell population to the regeneration of injured adult bones. Using Wnt1Cre::Z/EG mice we found that the neural crest-derived mandible heals with neural crest-derived skeletal stem cells, whereas the mesoderm-derived tibia heals with mesoderm-derived stem cells. We tested whether skeletal stem cells from each lineage were functionally interchangeable by grafting mesoderm-derived cells into mandibular defects, and vice versa. All of the grafting scenarios, except one, healed through the direct differentiation of skeletal stem cells into osteoblasts; when mesoderm-derived cells were transplanted into tibial defects they differentiated into osteoblasts but when transplanted into mandibular defects they differentiated into chondrocytes. A mismatch between the Hox gene expression status of the host and donor cells might be responsible for this aberration in bone repair. We found that initially, mandibular skeletal progenitor cells are Hox-negative but that they adopt a Hoxa11-positive profile when transplanted into a tibial defect. Conversely, tibial skeletal progenitor cells are Hox-positive and maintain this Hox status even when transplanted into a Hox-negative mandibular defect. Skeletal progenitor cells from the two lineages also show differences in osteogenic potential and proliferation, which translate into more robust in vivo bone regeneration by neural crest-derived cells. Thus, embryonic origin and Hox gene expression status distinguish neural crest-derived from mesoderm-derived skeletal progenitor cells, and both characteristics influence the process of adult bone regeneration.

  12. Morphine Modulates Adult Neurogenesis and Contextual Memory by Impeding the Maturation of Neural Progenitors.

    PubMed

    Zhang, Yue; Xu, Chi; Zheng, Hui; Loh, Horace H; Law, Ping-Yee

    2016-01-01

    The regulation of adult neurogenesis by opiates has been implicated in modulating different addiction cycles. At which neurogenesis stage opiates exert their action remains unresolved. We attempt to define the temporal window of morphine's inhibition effect on adult neurogenesis by using the POMC-EGFP mouse model, in which newborn granular cells (GCs) can be visualized between days 3-28 post-mitotic. The POMC-EGFP mice were trained under the 3-chambers conditioned place preference (CPP) paradigm with either saline or morphine. We observed after 4 days of CPP training with saline, the number of EGFP-labeled newborn GCs in sub-granular zone (SGZ) hippocampus significantly increased compared to mice injected with saline in their homecage. CPP training with morphine significantly decreased the number of EGFP-labeled GCs, whereas no significant difference in the number of EGFP-labeled GCs was observed with the homecage mice injected with the same dose of morphine. Using cell-type selective markers, we observed that morphine reduced the number of late stage progenitors and immature neurons such as Doublecortin (DCX) and βIII Tubulin (TuJ1) positive cells in the SGZ but did not reduce the number of early progenitors such as Nestin, SOX2, or neurogenic differentiation-1 (NeuroD1) positive cells. Analysis of co-localization between different cell markers shows that morphine reduced the number of adult-born GCs by interfering with differentiation of early progenitors, but not by inducing apoptosis. In addition, when NeuroD1 was over-expressed in DG by stereotaxic injection of lentivirus, it rescued the loss of immature neurons and prolonged the extinction of morphine-trained CPP. These results suggest that under the condition of CPP training paradigm, morphine affects the transition of neural progenitor/stem cells to immature neurons via a mechanism involving NeuroD1.

  13. Tmem88a mediates GATA-dependent specification of cardiomyocyte progenitors by restricting WNT signaling

    PubMed Central

    Novikov, Natasha; Evans, Todd

    2013-01-01

    Biphasic control of WNT signaling is essential during cardiogenesis, but how the pathway switches from promoting cardiac mesoderm to restricting cardiomyocyte progenitor fate is unknown. We identified genes expressed in lateral mesoderm that are dysregulated in zebrafish when both gata5 and gata6 are depleted, causing a block to cardiomyocyte specification. This screen identified tmem88a, which is expressed in the early cardiac progenitor field and was previously implicated in WNT modulation by overexpression studies. Depletion of tmem88a results in a profound cardiomyopathy, secondary to impaired cardiomyocyte specification. In tmem88a morphants, activation of the WNT pathway exacerbates the cardiomyocyte deficiency, whereas WNT inhibition rescues progenitor cells and cardiogenesis. We conclude that specification of cardiac fate downstream of gata5/6 involves activation of the tmem88a gene to constrain WNT signaling and expand the number of cardiac progenitors. Tmem88a is a novel component of the regulatory mechanism controlling the second phase of biphasic WNT activity essential for embryonic cardiogenesis. PMID:23903195

  14. Two Forkhead transcription factors regulate the division of cardiac progenitor cells by a Polo-dependent pathway

    PubMed Central

    Ahmad, Shaad M.; Tansey, Terese R.; Busser, Brian W.; Nolte, Michael T.; Jeffries, Neal; Gisselbrecht, Stephen S.; Rusan, Nasser M.; Michelson, Alan M.

    2012-01-01

    SUMMARY The development of a complex organ requires the specification of appropriate numbers of each of its constituent cell types, as well as their proper differentiation and correct positioning relative to each other. During Drosophila cardiogenesis, all three of these processes are controlled by jumeau (jumu) and Checkpoint suppressor homologue (CHES-1-like), two genes encoding forkhead transcription factors that we discovered utilizing an integrated genetic, genomic and computational strategy for identifying genes expressed in the developing Drosophila heart. Both jumu and CHES-1-like are required during asymmetric cell division for the derivation of two distinct cardiac cell types from their mutual precursor, and in symmetric cell divisions that produce yet a third type of heart cell. jumu and CHES-1-like control the division of cardiac progenitors by regulating the activity of Polo, a kinase involved in multiple steps of mitosis. This pathway demonstrates how transcription factors integrate diverse developmental processes during organogenesis. PMID:22814603

  15. Unipotent, Atoh1+ progenitors maintain the Merkel cell population in embryonic and adult mice

    PubMed Central

    Wright, Margaret C.; Reed-Geaghan, Erin G.; Bolock, Alexa M.; Fujiyama, Tomoyuki; Hoshino, Mikio

    2015-01-01

    Resident progenitor cells in mammalian skin generate new cells as a part of tissue homeostasis. We sought to identify the progenitors of Merkel cells, a unique skin cell type that plays critical roles in mechanosensation. We found that some Atoh1-expressing cells in the hairy skin and whisker follicles are mitotically active at embryonic and postnatal ages. Genetic fate-mapping revealed that these Atoh1-expressing cells give rise solely to Merkel cells. Furthermore, selective ablation of Atoh1+ skin cells in adult mice led to a permanent reduction in Merkel cell numbers, demonstrating that other stem cell populations are incapable of producing Merkel cells. These data identify a novel, unipotent progenitor population in the skin that gives rise to Merkel cells both during development and adulthood. PMID:25624394

  16. Agmatine inhibits chronic morphine exposure-induced impairment of hippocampal neural progenitor proliferation in adult rats.

    PubMed

    Liu, Ying; Lu, Guan-Yi; Chen, Wen-Qiang; Li, Yun-Feng; Wu, Ning; Li, Jin

    2018-01-05

    Our previous studies have shown that agmatine inhibited opioid dependence, yet the neural mechanism remains unclear. Growing evidence showed that opioids decrease neurogenesis in the adult hippocampal subgranular zone by inhibiting neural progenitor proliferation. However, whether agmatine affects chronic opioid exposure-induced impairment to hippocampal neural progenitor cell proliferation remains unknown. In the present study, we investigated the role of agmatine in hippocampal neural progenitors in morphine dependence rats. We found that chronic administration of morphine for 12 days induced morphine dependence in rats. This treatment not only decreased the proliferation of hippocampal neural progenitors in the granule cell layer, but also decreased the levels of hippocampal cAMP, pCREB and BDNF. However, these alterations can be restored to normal levels by co-treatment of agmatine (10mg/kg, s.c.). In vitro treatment with agmatine (10µM) for two days significantly increased proliferation of the cultured hippocampal neural progenitors. Concurrent treatment of agmatine (10µM) with morphine (10 or 50µM) reversed the supression of morphine-induced neural progenitor proliferation. In conclusion, we found that agmatine abolished chronic morphine-induced decrease in proliferation of hippocampal progenitors in vivo and in vitro, which may be due to the increase in cAMP-CREB-BDNF signaling. The enhancement of agmatine to proliferation of hippocampal progenitors may be one of the important mechanisms involved in the inhibition of morphine dependence by agmatine. Copyright © 2017. Published by Elsevier B.V.

  17. Characterization of TLX expression in neural stem cells and progenitor cells in adult brains.

    PubMed

    Li, Shengxiu; Sun, Guoqiang; Murai, Kiyohito; Ye, Peng; Shi, Yanhong

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression. Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells.

  18. JAK-STAT signaling in cardiomyogenesis of cardiac stem cells

    PubMed Central

    Mohri, Tomomi; Iwakura, Tomohiko; Nakayama, Hiroyuki; Fujio, Yasushi

    2012-01-01

    Recently various kinds of cardiac stem/progenitor cells have been identified and suggested to be involved in cardiac repair and regeneration in injured myocardium. In this review, we focus on the roles of JAK-STAT signaling in cardiac stem/progenitor cells in cardiomyogenesis. JAK-STAT signaling plays important roles in the differentiation of stem cells into cardiac lineage cells. The activation of JAK-STAT signal elicits the mobilization of mesenchymal stem cells as well, contributing to the maintenance of cardiac function. Thus we propose that JAK-STAT could be a target signaling pathway in cardiac regenerative therapy. PMID:24058761

  19. Zfp488 promotes oligodendrocyte differentiation of neural progenitor cells in adult mice after demyelination

    PubMed Central

    Soundarapandian, Mangala M.; Selvaraj, Vimal; Lo, U-Ging; Golub, Mari S.; Feldman, Daniel H.; Pleasure, David E.; Deng, Wenbin

    2011-01-01

    Basic helix-loop-helix transcription factors Olig1 and Olig2 critically regulate oligodendrocyte development. Initially identified as a downstream effector of Olig1, an oligodendrocyte-specific zinc finger transcription repressor, Zfp488, cooperates with Olig2 function. Although Zfp488 is required for oligodendrocyte precursor formation and differentiation during embryonic development, its role in oligodendrogenesis of adult neural progenitor cells is not known. In this study, we tested whether Zfp488 could promote an oligodendrogenic fate in adult subventricular zone (SVZ) neural stem/progenitor cells (NSPCs). Using a cuprizone-induced demyelination model in mice, we examined the effect of retrovirus-mediated Zfp488 overexpression in SVZ NSPCs. Our results showed that Zfp488 efficiently promoted the differentiation of the SVZ NSPCs into mature oligodendrocytes in vivo. After cuprizone-induced demyelination injury, Zfp488-transduced mice also showed significant restoration of motor function to levels comparable to control mice. Together, these findings identify a previously unreported role for Zfp488 in adult oligodendrogenesis and functional remyelination after injury. PMID:22355521

  20. Heterogeneity of adult masseter muscle satellite cells with cardiomyocyte differentiation potential.

    PubMed

    Huang, Wei; Liang, Jialiang; Feng, Yuliang; Jia, Zhanfeng; Jiang, Lin; Cai, Wenfeng; Paul, Christian; Gu, Jianguo G; Stambrook, Peter J; Millard, Ronald W; Zhu, Xiao-Lan; Zhu, Ping; Wang, Yigang

    2018-05-26

    Although resident cardiac stem cells have been reported, regeneration of functional cardiomyocytes (CMs) remains a challenge. The present study identifies an alternative progenitor source for CM regeneration without the need for genetic manipulation or invasive heart biopsy procedures. Unlike limb skeletal muscles, masseter muscles (MM) in the mouse head are developed from Nkx2-5 mesodermal progenitors. Adult masseter muscle satellite cells (MMSCs) display heterogeneity in developmental origin and cell phenotypes. The heterogeneous MMSCs that can be characterized by cell sorting based on stem cell antigen-1 (Sca1) show different lineage potential. While cardiogenic potential is preserved in Sca1 + MMSCs as shown by expression of cardiac progenitor genes (including Nkx2-5), skeletal myogenic capacity is maintained in Sca1 - MMSCs with Pax7 expression. Sca1 + MMSC-derived beating cells express cardiac genes and exhibit CM-like morphology. Electrophysiological properties of MMSC-derived CMs are demonstrated by calcium transients and action potentials. These findings show that MMSCs could serve as a novel cell source for cardiomyocyte replacement. Copyright © 2018. Published by Elsevier Inc.

  1. CD24-Positive Cells from Normal Adult Mouse Liver Are Hepatocyte Progenitor Cells

    PubMed Central

    Qiu, Qiong; Hernandez, Julio Cesar; Dean, Adam M.; Rao, Pulivarthi H.

    2011-01-01

    The identification of specific cell surface markers that can be used to isolate liver progenitor cells will greatly facilitate experimentation to determine the role of these cells in liver regeneration and their potential for therapeutic transplantation. Previously, the cell surface marker, CD24, was observed to be expressed on undifferentiated bipotential mouse embryonic liver stem cells and 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced oval cells. Here, we describe the isolation and characterization of a rare, primary, nonhematopoietic, CD24+ progenitor cell population from normal, untreated mouse liver. By immunohistochemistry, CD24-expressing cells in normal adult mouse liver were colocalized with CK19-positive cholangiocytes. This nonhematopoietic (CD45−, Ter119−) CD24+ cell population isolated by flow cytometry represented 0.04% of liver cells and expressed several markers of liver progenitor/oval cells. The immunophenotype of nonhematopoietic CD24+ cells was CD133, Dlk, and Sca-1 high, but c-Kit, Thy-1, and CD34 low. The CD24+ cells had increased expression of CK19, epithelial cell adhesion molecule, Sox 9, and FN14 compared with the unsorted cells. Upon transplantation of nonhematopoietic CD24+ cells under the sub-capsule of the livers of Fah knockout mice, cells differentiated into mature functional hepatocytes. Analysis of X and Y chromosome complements were used to determine whether or not fusion of the engrafted cells with the recipient hepatocytes occurred. No cells were found that contained XXXY or any other combination of donor and host sex chromosomes as would be expected if cell fusion had occurred. These results suggested that CD24 can be used as a cell surface marker for isolation of hepatocyte progenitor cells from normal adult liver that are able to differentiate into hepatocytes. PMID:21361791

  2. CD24-positive cells from normal adult mouse liver are hepatocyte progenitor cells.

    PubMed

    Qiu, Qiong; Hernandez, Julio Cesar; Dean, Adam M; Rao, Pulivarthi H; Darlington, Gretchen J

    2011-12-01

    The identification of specific cell surface markers that can be used to isolate liver progenitor cells will greatly facilitate experimentation to determine the role of these cells in liver regeneration and their potential for therapeutic transplantation. Previously, the cell surface marker, CD24, was observed to be expressed on undifferentiated bipotential mouse embryonic liver stem cells and 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced oval cells. Here, we describe the isolation and characterization of a rare, primary, nonhematopoietic, CD24+ progenitor cell population from normal, untreated mouse liver. By immunohistochemistry, CD24-expressing cells in normal adult mouse liver were colocalized with CK19-positive cholangiocytes. This nonhematopoietic (CD45-, Ter119-) CD24+ cell population isolated by flow cytometry represented 0.04% of liver cells and expressed several markers of liver progenitor/oval cells. The immunophenotype of nonhematopoietic CD24+ cells was CD133, Dlk, and Sca-1 high, but c-Kit, Thy-1, and CD34 low. The CD24+ cells had increased expression of CK19, epithelial cell adhesion molecule, Sox 9, and FN14 compared with the unsorted cells. Upon transplantation of nonhematopoietic CD24+ cells under the sub-capsule of the livers of Fah knockout mice, cells differentiated into mature functional hepatocytes. Analysis of X and Y chromosome complements were used to determine whether or not fusion of the engrafted cells with the recipient hepatocytes occurred. No cells were found that contained XXXY or any other combination of donor and host sex chromosomes as would be expected if cell fusion had occurred. These results suggested that CD24 can be used as a cell surface marker for isolation of hepatocyte progenitor cells from normal adult liver that are able to differentiate into hepatocytes.

  3. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial.

    PubMed

    Hess, David C; Wechsler, Lawrence R; Clark, Wayne M; Savitz, Sean I; Ford, Gary A; Chiu, David; Yavagal, Dileep R; Uchino, Ken; Liebeskind, David S; Auchus, Alexander P; Sen, Souvik; Sila, Cathy A; Vest, Jeffrey D; Mays, Robert W

    2017-05-01

    Multipotent adult progenitor cells are a bone marrow-derived, allogeneic, cell therapy product that modulates the immune system, and represents a promising therapy for acute stroke. We aimed to identify the highest, well-tolerated, and safest single dose of multipotent adult progenitor cells, and if they were efficacious as a treatment for stroke recovery. We did a phase 2, randomised, double-blind, placebo-controlled, dose-escalation trial of intravenous multipotent adult progenitor cells in 33 centres in the UK and the USA. We used a computer-generated randomisation sequence and interactive voice and web response system to assign patients aged 18-83 years with moderately severe acute ischaemic stroke and a National Institutes of Health Stroke Scale (NIHSS) score of 8-20 to treatment with intravenous multipotent adult progenitor cells (400 million or 1200 million cells) or placebo between 24 h and 48 h after symptom onset. Patients were ineligible if there was a change in NIHSS of four or more points during at least a 6 h period between screening and randomisation, had brainstem or lacunar infarct, a substantial comorbid disease, an inability to undergo an MRI scan, or had a history of splenectomy. In group 1, patients were enrolled and randomly assigned in a 3:1 ratio to receive 400 million cells or placebo and assessed for safety through 7 days. In group 2, patients were randomly assigned in a 3:1 ratio to receive 1200 million cells or placebo and assessed for safety through the first 7 days. In group 3, patients were enrolled, randomly assigned, and stratified by baseline NIHSS score to receive 1200 million cells or placebo in a 1:1 ratio within 24-48 h. Patients, investigators, and clinicians were masked to treatment assignment. The primary safety outcome was dose-limiting toxicity effects. The primary efficacy endpoint was global stroke recovery, which combines dichotomised results from the modified Rankin scale, change in NIHSS score from baseline, and

  4. Characterization of TLX Expression in Neural Stem Cells and Progenitor Cells in Adult Brains

    PubMed Central

    Li, Shengxiu; Sun, Guoqiang; Murai, Kiyohito; Ye, Peng; Shi, Yanhong

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression.Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells. PMID:22952666

  5. Adult Congenital Cardiac Care.

    PubMed

    Kogon, Brian E; Miller, Kati; Miller, Paula; Alsoufi, Bahaaldin; Rosenblum, Joshua M

    2017-03-01

    The Adult Congenital Heart Association (ACHA) is dedicated to supporting patients with congenital heart disease. To guide patients to qualified providers and programs, it maintains a publicly accessible directory of dedicated adult congenital cardiac programs. We analyzed the directory in 2006 and 2015, aiming to evaluate the growth of the directory as a whole and to evaluate the growth of individual programs within the directory. We also hope this raises awareness of the growing opportunities that exist in adult congenital cardiology and cardiac surgery. Data in the directory are self-reported. Only data from US programs were collected and analyzed. By the end of 2015, compared to 2006, there were more programs reporting to the directory in more states (107 programs across 42 states vs 57 programs across 33 states), with higher overall clinical volume (591 vs 164 half-day clinics per week, 96,611 vs 34,446 patient visits). On average, each program was busier (5 vs 2 half-day clinics per week per program). Over the time period, the number of reported annual operations performed nearly doubled (4,346 operations by 210 surgeons vs 2,461 operations by 125 surgeons). Access to ancillary services including specific clinical diagnostic and therapeutic services also expanded. Between 2006 and 2015, the clinical directory and the individual programs have grown. Current directory data may provide benchmarks for staffing and services for newly emerging and existing programs. Verifying the accuracy of the information and inclusion of all programs will be important in the future.

  6. The cellular prion protein identifies bipotential cardiomyogenic progenitors.

    PubMed

    Hidaka, Kyoko; Shirai, Manabu; Lee, Jong-Kook; Wakayama, Takanari; Kodama, Itsuo; Schneider, Michael D; Morisaki, Takayuki

    2010-01-08

    The paucity of specific surface markers for cardiomyocytes and their progenitors has impeded the development of embryonic or pluripotent stem cell-based transplantation therapy. Identification of relevant surface markers may also enhance our understanding of the mechanisms underlying differentiation. Here, we show that cellular prion protein (PrP) serves as an effective surface marker for isolating nascent cardiomyocytes as well as cardiomyogenic progenitors. Embryonic stem (or embryo-derived) cells were analyzed using flow cytometry to detect surface expression of PrP and intracellular myosin heavy chain (Myhc) proteins. Sorted cells were then analyzed for their differentiation potential. PrP+ cells from beating embryoid bodies (EBs) frequently included nascent Myhc+ cardiomyocytes. Cultured PrP+ cells further differentiated, giving rise to cardiac troponin I+ definitive cardiomyocytes with either an atrial or a ventricular identity. These cells were electrophysiologically functional and able to survive in vivo after transplantation. Combining PrP with a second marker, platelet-derived growth factor receptor (PDGFR)alpha, enabled us to identify an earlier cardiomyogenic population from prebeating EBs, the PrP+PDGFRalpha+ (PRa) cells. The Myhc- PRa cells expressed cardiac transcription factors, such as Nkx2.5, T-box transcription factor 5, and Isl1 (islet LIM homeobox 1), although they were not completely committed. In mouse embryos, PRa cells in cardiac crescent at the 1 to 2 somite stage were Myhc+, whereas they were Myhc- at headfold stages. PRa cells clonally expanded in methlycellulose cultures. Furthermore, single Myhc- PRa cell-derived colonies contained both cardiac and smooth muscle cells. Thus, PrP demarcates a population of bipotential cardiomyogenic progenitor cells that can differentiate into cardiac or smooth muscle cells.

  7. Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction.

    PubMed

    Poleshko, Andrey; Shah, Parisha P; Gupta, Mudit; Babu, Apoorva; Morley, Michael P; Manderfield, Lauren J; Ifkovits, Jamie L; Calderon, Damelys; Aghajanian, Haig; Sierra-Pagán, Javier E; Sun, Zheng; Wang, Qiaohong; Li, Li; Dubois, Nicole C; Morrisey, Edward E; Lazar, Mitchell A; Smith, Cheryl L; Epstein, Jonathan A; Jain, Rajan

    2017-10-19

    Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin, and independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Direct Reprogramming of Murine Fibroblasts to Hematopoietic Progenitor Cells

    PubMed Central

    Batta, Kiran; Florkowska, Magdalena; Kouskoff, Valerie; Lacaud, Georges

    2014-01-01

    Summary Recent reports have shown that somatic cells, under appropriate culture conditions, could be directly reprogrammed to cardiac, hepatic, or neuronal phenotype by lineage-specific transcription factors. In this study, we demonstrate that both embryonic and adult somatic fibroblasts can be efficiently reprogrammed to clonal multilineage hematopoietic progenitors by the ectopic expression of the transcription factors ERG, GATA2, LMO2, RUNX1c, and SCL. These reprogrammed cells were stably expanded on stromal cells and possessed short-term reconstitution ability in vivo. Loss of p53 function facilitated reprogramming to blood, and p53−/− reprogrammed cells efficiently generated erythroid, megakaryocytic, myeloid, and lymphoid lineages. Genome-wide analyses revealed that generation of hematopoietic progenitors was preceded by the appearance of hemogenic endothelial cells expressing endothelial and hematopoietic genes. Altogether, our findings suggest that direct reprogramming could represent a valid alternative approach to the differentiation of embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) for disease modeling and autologous blood cell therapies. PMID:25466247

  9. Type 2 Diabetes Dysregulates Glucose Metabolism in Cardiac Progenitor Cells*

    PubMed Central

    Salabei, Joshua K.; Lorkiewicz, Pawel K.; Mehra, Parul; Gibb, Andrew A.; Haberzettl, Petra; Hong, Kyung U.; Wei, Xiaoli; Zhang, Xiang; Li, Qianhong; Wysoczynski, Marcin; Bolli, Roberto; Bhatnagar, Aruni; Hill, Bradford G.

    2016-01-01

    Type 2 diabetes is associated with increased mortality and progression to heart failure. Recent studies suggest that diabetes also impairs reparative responses after cell therapy. In this study, we examined potential mechanisms by which diabetes affects cardiac progenitor cells (CPCs). CPCs isolated from the diabetic heart showed diminished proliferation, a propensity for cell death, and a pro-adipogenic phenotype. The diabetic CPCs were insulin-resistant, and they showed higher energetic reliance on glycolysis, which was associated with up-regulation of the pro-glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). In WT CPCs, expression of a mutant form of PFKFB, which mimics PFKFB3 activity and increases glycolytic rate, was sufficient to phenocopy the mitochondrial and proliferative deficiencies found in diabetic cells. Consistent with activation of phosphofructokinase in diabetic cells, stable isotope carbon tracing in diabetic CPCs showed dysregulation of the pentose phosphate and glycero(phospho)lipid synthesis pathways. We describe diabetes-induced dysregulation of carbon partitioning using stable isotope metabolomics-based coupling quotients, which relate relative flux values between metabolic pathways. These findings suggest that diabetes causes an imbalance in glucose carbon allocation by uncoupling biosynthetic pathway activity, which could diminish the efficacy of CPCs for myocardial repair. PMID:27151219

  10. Wnt signaling balances specification of the cardiac and pharyngeal muscle fields

    PubMed Central

    Mandal, Amrita; Holowiecki, Andrew; Song, Yuntao Charlie; Waxman, Joshua S.

    2017-01-01

    Canonical Wnt/β-catenin (Wnt) signaling plays multiple conserved roles during fate specification of cardiac progenitors in developing vertebrate embryos. Although lineage analysis in ascidians and mice has indicated there is a close relationship between the cardiac second heart field (SHF) and pharyngeal muscle (PM) progenitors, the signals underlying directional fate decisions of the cells within the cardio-pharyngeal muscle field in vertebrates are not yet understood. Here, we examined the temporal requirements of Wnt signaling in cardiac and PM development. In contrast to a previous report in chicken embryos that suggested Wnt inhibits PM development during somitogenesis, we find that in zebrafish embryos Wnt signaling is sufficient to repress PM development during anterior-posterior patterning. Importantly, the temporal sensitivity of dorso-anterior PMs to increased Wnt signaling largely overlaps with when Wnt signaling promotes specification of the adjacent cardiac progenitors. Furthermore, we find that excess early Wnt signaling can cell autonomously promote expansion of the first heart field (FHF) progenitors at the expense of PM and SHF within the anterior lateral plate mesoderm (ALPM). Our study provides insight into an antagonistic developmental mechanism that balances the sizes of the adjacent cardiac and PM progenitor fields in early vertebrate embryos. PMID:28087459

  11. Effects of endurance exercise training on inflammatory circulating progenitor cell content in lean and obese adults.

    PubMed

    Niemiro, Grace M; Allen, Jacob M; Mailing, Lucy J; Khan, Naiman A; Holscher, Hannah D; Woods, Jeffrey A; De Lisio, Michael

    2018-06-19

    Chronic inflammation underlies many of the health decrements associated with obesity. Circulating progenitor cells can sense and respond to inflammatory stimuli, increasing the local inflammatory response within tissues. Here we show that 6 weeks of endurance exercise training significantly decreases inflammatory circulating progenitor cells in obese adults. These findings provide novel cellular mechanisms for the beneficial effects of exercise in obese adults. Circulating progenitor cells (CPCs) and subpopulations are normally found in the bone marrow, but can migrate to peripheral tissues to participate in local inflammation and/or remodelling. The purpose of this study was to compare the CPC response, particularly the inflammatory-primed haematopoietic stem and progenitor (HSPC) subpopulation, to a 6 week endurance exercise training (EET) intervention between lean and obese adults. Seventeen healthy weight (age: 23.9 ± 5.4 years, body mass index (BMI): 22.0 ± 2.6 kg m -2 ) and 10 obese (age: 29.0 ± 8.0 years, BMI: 33.1 ± 6.0 kg m -2 ) previously sedentary adults participated in an EET. Blood was collected before and after EET for quantification of CPCs and subpopulations via flow cytometry, colony forming unit assays and plasma concentrations of C-X-C motif chemokine 12 (CXCL12), granulocyte-colony stimulating factor (G-CSF), and chemokine (C-C motif) ligand 2 (CCL2). Exercise training reduced the number of circulating HSPCs and adipose tissue-derived mesenchymal stem cells (AT-MSCs). EET increased the colony forming potential of granulocytes and macrophages irrespective of BMI. EET reduced the number of HSPCs expressing the chemokine receptor CCR2 and the pro-inflammatory marker TLR4. EET-induced changes in adipose tissue-derived MSCs and bone marrow-derived MSCs were negatively related to changes in absolute fitness. Our results indicate that EET, regardless of BMI status, decreases CPCs and subpopulations, particularly those primed for

  12. A national survey of antimicrobial prophylaxis in adult cardiac surgery across Canada

    PubMed Central

    Paradiso-Hardy, Fran L; Cornish, Patti; Pharand, Chantal; Fremes, Stephen E

    2002-01-01

    OBJECTIVE: To characterize national and regional patterns of antimicrobial prophylaxis in adult cardiac surgery across Canada. DESIGN: Retrospective, cross-sectional analysis. SETTING: Thirty-three adult cardiac surgical centres across Canada. INTERVENTIONS: A one-page questionnaire collecting information regarding institutional demographics and antimicrobial prophylaxis regimens for adult cardiac surgical procedures was mailed to all adult surgical centres across Canada. If a response was not received within one month, a second survey was mailed, followed by a telephone reminder within two weeks of the second mailing. MAIN RESULTS: The Overall response rate was 100%. Prophylactic antimicrobials were used in all the adult cardiac centres; single-agent prophylaxis was used in 97% (32 of 33) of centres; Single-dose antimicrobial prophylaxis was used in only 3% (one of 33) of centres. Preoperative and postoperative antimicrobial prophylaxis regimens varied both between provinces and within provinces across Canada. Cefazolin was the antimicrobial used in 88% (38 of 43) and 87% (33 of 38) of the reported pre-operative and post-operative prophylaxis regimens, respectively. Antimicrobial prophylaxis was initiated in the operating room 72% (26 of 36) of the time and intra-operative supplemental antimicrobial doses were administered for cardiac procedures longer than a median of 4 hours (range 4 to 8 hr). Overall, the median duration of antimicrobial prophylaxis was 36 hours (range 8 to 96 hr). CONCLUSIONS: Despite the availability of various published guidelines, our survey identified several areas for improvement with respect to antimicrobial prophylaxis in adult cardiac surgery across Canada. PMID:18159370

  13. [Isolation, purification and primary culture of adult mouse cardiac fibroblasts].

    PubMed

    Li, Rujun; Gong, Kaizheng; Zhang, Zhengang

    2017-01-01

    Objective To establish a method for primary culture of adult mouse cardiac fibroblasts. Methods Myocardial tissues from adult mice were digested with 1 g/L trypsin and 0.8 g/L collagenase IV by oscillating water bath for a short time repeatedly. Cardiac fibroblasts and myocardial cells were isolated with differential adhesion method. Immunofluorescence staining was used to assess the purity of cardiac fibroblasts. The cell morphology was observed under an inverted phase contrast microscope. The proliferation of cardiac fibroblasts was analyzed by growth curve and CCK-8 assay. The Smad2/3 phosphorylation induced by TGF-β1 was detected by Western blotting. Results After 90 minutes of differential adhesion, adherent fibroblasts formed spherical cell mass and after 3 days, cells were spindle-shaped and proliferated rapidly. Cells were confluent after 5 days and the growth curve presented nearly "S" shape. The positive expression rate of vimentin was 95%. CCK-8 assay showed that the optimal cell proliferating activity was found from day 3 to day 5. The level of phosphorylated Smad2/3 obviously increased at the second passage induced by TGF-β1. Conclusion This method is economical and stable to isolate cardiac fibroblasts with high activity and high purity from adult mice.

  14. Evidence of progenitor cells in the adult human cochlea: sphere formation and identification of ABCG2.

    PubMed

    Massucci-Bissoli, Milene; Lezirovitz, Karina; Oiticica, Jeanne; Bento, Ricardo Ferreira

    2017-11-01

    The aim of this study was to search for evidence of stem or progenitor cells in the adult human cochlea by testing for sphere formation capacity and the presence of the stem cell marker ABCG2. Cochleas removed from patients undergoing vestibular schwannoma resection (n=2) and from brain-dead organ donors (n=4) were dissociated for either flow cytometry analysis for the stem cell marker ABCG2 or a sphere formation assay that is widely used to test the sphere-forming capacity of cells from mouse inner ear tissue. Spheres were identified after 2-5 days in vitro, and the stem cell marker ABCG2 was detected using flow cytometric analysis after cochlear dissociation. Evidence suggests that there may be progenitor cells in the adult human cochlea, although further studies are required.

  15. Engraftment of enteric neural progenitor cells into the injured adult brain.

    PubMed

    Belkind-Gerson, Jaime; Hotta, Ryo; Whalen, Michael; Nayyar, Naema; Nagy, Nandor; Cheng, Lily; Zuckerman, Aaron; Goldstein, Allan M; Dietrich, Jorg

    2016-01-25

    A major area of unmet need is the development of strategies to restore neuronal network systems and to recover brain function in patients with neurological disease. The use of cell-based therapies remains an attractive approach, but its application has been challenging due to the lack of suitable cell sources, ethical concerns, and immune-mediated tissue rejection. We propose an innovative approach that utilizes gut-derived neural tissue for cell-based therapies following focal or diffuse central nervous system injury. Enteric neuronal stem and progenitor cells, able to differentiate into neuronal and glial lineages, were isolated from the postnatal enteric nervous system and propagated in vitro. Gut-derived neural progenitors, genetically engineered to express fluorescent proteins, were transplanted into the injured brain of adult mice. Using different models of brain injury in combination with either local or systemic cell delivery, we show that transplanted enteric neuronal progenitor cells survive, proliferate, and differentiate into neuronal and glial lineages in vivo. Moreover, transplanted cells migrate extensively along neuronal pathways and appear to modulate the local microenvironment to stimulate endogenous neurogenesis. Our findings suggest that enteric nervous system derived cells represent a potential source for tissue regeneration in the central nervous system. Further studies are needed to validate these findings and to explore whether autologous gut-derived cell transplantation into the injured brain can result in functional neurologic recovery.

  16. Cardiac Nerve Growth Factor Overexpression Induces Bone Marrow-derived Progenitor Cells Mobilization and Homing to the Infarcted Heart.

    PubMed

    Meloni, Marco; Cesselli, Daniela; Caporali, Andrea; Mangialardi, Giuseppe; Avolio, Elisa; Reni, Carlotta; Fortunato, Orazio; Martini, Stefania; Madeddu, Paolo; Valgimigli, Marco; Nikolaev, Evgeni; Kaczmarek, Leszek; Angelini, Gianni D; Beltrami, Antonio P; Emanueli, Costanza

    2015-12-01

    Reparative response by bone marrow (BM)-derived progenitor cells (PCs) to ischemia is a multistep process that comprises the detachment from the BM endosteal niche through activation of osteoclasts and proteolytic enzymes (such as matrix metalloproteinases (MMPs)), mobilization to the circulation, and homing to the injured tissue. We previously showed that intramyocardial nerve growth factor gene transfer (NGF-GT) promotes cardiac repair following myocardial infarction (MI) in mice. Here, we investigate the impact of cardiac NGF-GT on postinfarction BM-derived PCs mobilization and homing at different time points after adenovirus-mediated NGF-GT in mice. Immunohistochemistry and flow cytometry newly illustrate the temporal profile of osteoclast and activation of MMP9, PCs expansion in the BM, and liberation/homing to the injured myocardium. NGF-GT amplified these responses and increased the BM levels of active osteoclasts and MMP9, which were not observed in MMP9-deficient mice. Taken together, our results suggest a novel role for NGF in BM-derived PCs mobilization/homing following MI.

  17. Functional Effect of Pim1 Depends upon Intracellular Localization in Human Cardiac Progenitor Cells

    PubMed Central

    Samse, Kaitlen; Emathinger, Jacqueline; Hariharan, Nirmala; Quijada, Pearl; Ilves, Kelli; Völkers, Mirko; Ormachea, Lucia; De La Torre, Andrea; Orogo, Amabel M.; Alvarez, Roberto; Din, Shabana; Mohsin, Sadia; Monsanto, Megan; Fischer, Kimberlee M.; Dembitsky, Walter P.; Gustafsson, Åsa B.; Sussman, Mark A.

    2015-01-01

    Human cardiac progenitor cells (hCPC) improve heart function after autologous transfer in heart failure patients. Regenerative potential of hCPCs is severely limited with age, requiring genetic modification to enhance therapeutic potential. A legacy of work from our laboratory with Pim1 kinase reveals effects on proliferation, survival, metabolism, and rejuvenation of hCPCs in vitro and in vivo. We demonstrate that subcellular targeting of Pim1 bolsters the distinct cardioprotective effects of this kinase in hCPCs to increase proliferation and survival, and antagonize cellular senescence. Adult hCPCs isolated from patients undergoing left ventricular assist device implantation were engineered to overexpress Pim1 throughout the cell (PimWT) or targeted to either mitochondrial (Mito-Pim1) or nuclear (Nuc-Pim1) compartments. Nuc-Pim1 enhances stem cell youthfulness associated with decreased senescence-associated β-galactosidase activity, preserved telomere length, reduced expression of p16 and p53, and up-regulation of nucleostemin relative to PimWT hCPCs. Alternately, Mito-Pim1 enhances survival by increasing expression of Bcl-2 and Bcl-XL and decreasing cell death after H2O2 treatment, thereby preserving mitochondrial integrity superior to PimWT. Mito-Pim1 increases the proliferation rate by up-regulation of cell cycle modulators Cyclin D, CDK4, and phospho-Rb. Optimal stem cell traits such as proliferation, survival, and increased youthful properties of aged hCPCs are enhanced after targeted Pim1 localization to mitochondrial or nuclear compartments. Targeted Pim1 overexpression in hCPCs allows for selection of the desired phenotypic properties to overcome patient variability and improve specific stem cell characteristics. PMID:25882843

  18. Apoptosis-Resistant Cardiac Progenitor Cells Modified With Apurinic/Apyrimidinic Endonuclease/Redox Factor 1 Gene Overexpression Regulate Cardiac Repair After Myocardial Infarction.

    PubMed

    Aonuma, Tatsuya; Takehara, Naofumi; Maruyama, Keisuke; Kabara, Maki; Matsuki, Motoki; Yamauchi, Atsushi; Kawabe, Jun-Ichi; Hasebe, Naoyuki

    2016-08-01

    : Overcoming the insufficient survival of cell grafts is an essential objective in cell-based therapy. Apurinic/apyrimidinic endonuclease/redox factor 1 (APE1) promotes cell survival and may enhance the therapeutic effect of engrafted cells. The aim of this study is to determine whether APE1 overexpression in cardiac progenitor cells (CPCs) could ameliorate the efficiency of cell-based therapy. CPCs isolated from 8- to 10-week-old C57BL/6 mouse hearts were infected with retrovirus harboring APE1-DsRed (APE1-CPC) or a DsRed control (control-CPC). Oxidative stress-induced apoptosis was then assessed in APE1-CPCs, control-CPCs, and neonatal rat ventricular myocytes (NRVMs) cocultured with these CPCs. This analysis revealed that APE1 overexpression inhibited CPC apoptosis with activation of transforming growth factor β-activated kinase 1 (TAK1) and nuclear factor (NF)-κB. In the coculture model, NRVM apoptosis was inhibited to a greater extent in the presence of APE1-CPCs compared with control-CPCs. Moreover, the number of surviving DsRed-positive CPC grafts was significantly higher 7 days after the transplant of APE1-CPCs into a mouse myocardial infarction model, and the left ventricular ejection fraction showed greater improvement with attenuation of fibrosis 28 days after the transplant of APE1-CPCs compared with control-CPCs. Additionally, fewer inflammatory macrophages and a higher percentage of cardiac α-sarcomeric actinin-positive CPC-grafts were observed in mice injected with APE1-CPCs compared with control-CPCs after 7 days. In conclusion, antiapoptotic APE1-CPC graft, which increased TAK1-NF-κB pathway activation, survived effectively in the ischemic heart, restored cardiac function, and reduced cardiac inflammation and fibrosis. APE1 overexpression in CPCs may serve as a novel strategy to improve cardiac cell therapy. Improving the survival of cell grafts is essential to maximize the efficacy of cell therapy. The authors investigated the role of APE1 in

  19. Light-sheet fluorescence imaging to localize cardiac lineage and protein distribution

    PubMed Central

    Ding, Yichen; Lee, Juhyun; Ma, Jianguo; Sung, Kevin; Yokota, Tomohiro; Singh, Neha; Dooraghi, Mojdeh; Abiri, Parinaz; Wang, Yibin; Kulkarni, Rajan P.; Nakano, Atsushi; Nguyen, Thao P.; Fei, Peng; Hsiai, Tzung K.

    2017-01-01

    Light-sheet fluorescence microscopy (LSFM) serves to advance developmental research and regenerative medicine. Coupled with the paralleled advances in fluorescence-friendly tissue clearing technique, our cardiac LSFM enables dual-sided illumination to rapidly uncover the architecture of murine hearts over 10 by 10 by 10 mm3 in volume; thereby allowing for localizing progenitor differentiation to the cardiomyocyte lineage and AAV9-mediated expression of exogenous transmembrane potassium channels with high contrast and resolution. Without the steps of stitching image columns, pivoting the light-sheet and sectioning the heart mechanically, we establish a holistic strategy for 3-dimentional reconstruction of the “digital murine heart” to assess aberrant cardiac structures as well as the spatial distribution of the cardiac lineages in neonates and ion-channels in adults. PMID:28165052

  20. Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase.

    PubMed

    Fischer, Kimberlee M; Cottage, Christopher T; Wu, Weitao; Din, Shabana; Gude, Natalie A; Avitabile, Daniele; Quijada, Pearl; Collins, Brett L; Fransioli, Jenna; Sussman, Mark A

    2009-11-24

    Despite numerous studies demonstrating the efficacy of cellular adoptive transfer for therapeutic myocardial regeneration, problems remain for donated cells with regard to survival, persistence, engraftment, and long-term benefits. This study redresses these concerns by enhancing the regenerative potential of adoptively transferred cardiac progenitor cells (CPCs) via genetic engineering to overexpress Pim-1, a cardioprotective kinase that enhances cell survival and proliferation. Intramyocardial injections of CPCs overexpressing Pim-1 were given to infarcted female mice. Animals were monitored over 4, 12, and 32 weeks to assess cardiac function and engraftment of Pim-1 CPCs with echocardiography, in vivo hemodynamics, and confocal imagery. CPCs overexpressing Pim-1 showed increased proliferation and expression of markers consistent with cardiogenic lineage commitment after dexamethasone exposure in vitro. Animals that received CPCs overexpressing Pim-1 also produced greater levels of cellular engraftment, persistence, and functional improvement relative to control CPCs up to 32 weeks after delivery. Salutary effects include reduction of infarct size, greater number of c-kit(+) cells, and increased vasculature in the damaged region. Myocardial repair is significantly enhanced by genetic engineering of CPCs with Pim-1 kinase. Ex vivo gene delivery to enhance cellular survival, proliferation, and regeneration may overcome current limitations of stem cell-based therapeutic approaches.

  1. Predictors of operating room extubation in adult cardiac surgery.

    PubMed

    Subramaniam, Kathirvel; DeAndrade, Diana S; Mandell, Daniel R; Althouse, Andrew D; Manmohan, Rajan; Esper, Stephen A; Varga, Jeffrey M; Badhwar, Vinay

    2017-11-01

    The primary objective of the study was to identify perioperative factors associated with successful immediate extubation in the operating room after adult cardiac surgery. The secondary objective was to derive a simplified predictive scoring system to guide clinicians in operating room extubation. All 1518 patients in this retrospective cohort study underwent standardized fast-track cardiac anesthetic protocol during adult cardiac surgery. Perioperative variables between patients who had successful extubation in the operating room versus in the intensive care unit were retrospectively analyzed using both univariate and multivariable logistic regression analyses. A predictive score of successful operating room extubation was constructed from the multivariable results of 800 patients (derivation set), and the scoring system was further tested using a validation set of 398 patients. Younger age, lower body mass index, higher preoperative serum albumin, absence of chronic lung disease and diabetes, less-invasive surgical approach, isolated coronary bypass surgery, elective surgery, and lower doses of intraoperative intravenous fentanyl were independently associated with higher probability of operating room extubation. The extubation prediction score created in a derivation set of patients performed well in the validation set. Patient scores less than 0 had a minimal probability of successful operating room extubation. Operating room extubation was highly predicted with scores of 5 or greater. Perioperative factors that are independently associated with successful operating room extubation after adult cardiac operations were identified, and an operating room extubation prediction scoring system was validated. This scoring system may be used to guide safe operating room extubation after cardiac operations. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  2. "String theory" of c-kit(pos) cardiac cells: a new paradigm regarding the nature of these cells that may reconcile apparently discrepant results.

    PubMed

    Keith, Matthew C L; Bolli, Roberto

    2015-03-27

    Although numerous preclinical investigations have consistently demonstrated salubrious effects of c-kit(pos) cardiac cells administered after myocardial infarction, the mechanism of action remains highly controversial. We and others have found little or no evidence that these cells differentiate into mature functional cardiomyocytes, suggesting paracrine effects. In this review, we propose a new paradigm predicated on a comprehensive analysis of the literature, including studies of cardiac development; we have (facetiously) dubbed this conceptual construct "string theory" of c-kit(pos) cardiac cells because it reconciles multifarious and sometimes apparently discrepant results. There is strong evidence that, during development, the c-kit receptor is expressed in different pools of cardiac progenitors (some capable of robust cardiomyogenesis and others with little or no contribution to myocytes). Accordingly, c-kit positivity, in itself, does not define the embryonic origins, lineage capabilities, or differentiation capacities of specific cardiac progenitors. C-kit(pos) cells derived from the first heart field exhibit cardiomyogenic potential during development, but these cells are likely depleted shortly before or after birth. The residual c-kit(pos) cells found in the adult heart are probably of proepicardial origin, possess a mesenchymal phenotype (resembling bone marrow mesenchymal stem/stromal cells), and are capable of contributing significantly only to nonmyocytic lineages (fibroblasts, smooth muscle cells, and endothelial cells). If these 2 populations (first heart field and proepicardium) express different levels of c-kit, the cardiomyogenic potential of first heart field progenitors might be reconciled with recent results of c-kit(pos) cell lineage tracing studies. The concept that c-kit expression in the adult heart identifies epicardium-derived, noncardiomyogenic precursors with a mesenchymal phenotype helps to explain the beneficial effects of c

  3. Hepatic progenitor populations in embryonic, neonatal, and adult liver.

    PubMed

    Brill, S; Holst, P; Sigal, S; Zvibel, I; Fiorino, A; Ochs, A; Somasundaran, U; Reid, L M

    1993-12-01

    Oval cells, small cells with oval-shaped nuclei, are induced to proliferate in the livers of animals treated with carcinogens and are thought to be related to liver stem cells and/or committed liver progenitor cell populations. We have developed protocols for identifying and isolating antigenically related cell populations present in normal tissues using monoclonal antibodies to oval cell antigens and fluorescence-activated cell sorting. We have isolated oval cell-antigen-positive (OCAP) cells from embryonic, neonatal, and adult rat livers and have identified culture conditions permitting their growth in culture. The requirements for growth of the OCAP cells included substrata of type IV collagen mixed with laminin, basal medium with complex lipids and low calcium, specific growth factors (most potently, insulin-like growth factor II and granulocyte-macrophage colony-stimulating factor), and co-cultures of embryonic, liver-specific stroma, strongly suggesting paracrine signaling between hepatic and hemopoietic precursor cells. The growing OCAP cultures proved to be uniformly expressing oval cell markers but were nevertheless a mixture of hepatic and hemopoietic precursor cells. To separate the hepatic and hemopoietic subpopulations of OCAP cells, we surveyed known antibodies and found ones that uniquely identify either hepatic or hemopoietic cells. Several of these antibodies were used in panning procedures and fluorescence-activated cell sorting to eliminate contaminant cell populations, particularly hemopoietic and endothelial cells. Using specific flow cytometric parameters, three cellular subpopulations could be isolated separately that were identified by immunochemistry and molecular hybridization assays as probable: (i) committed progenitors to hepatocytes; (ii) committed progenitors to bile ducts; or (iii) a mixed population of hemopoietic cells that contained a small percentage of hepatic blasts that are possibly pluripotent. The hepatic precursor cells

  4. Simple new risk score model for adult cardiac extracorporeal membrane oxygenation: simple cardiac ECMO score.

    PubMed

    Peigh, Graham; Cavarocchi, Nicholas; Keith, Scott W; Hirose, Hitoshi

    2015-10-01

    Although the use of cardiac extracorporeal membrane oxygenation (ECMO) is increasing in adult patients, the field lacks understanding of associated risk factors. While standard intensive care unit risk scores such as SAPS II (simplified acute physiology score II), SOFA (sequential organ failure assessment), and APACHE II (acute physiology and chronic health evaluation II), or disease-specific scores such as MELD (model for end-stage liver disease) and RIFLE (kidney risk, injury, failure, loss of function, ESRD) exist, they may not apply to adult cardiac ECMO patients as their risk factors differ from variables used in these scores. Between 2010 and 2014, 73 ECMOs were performed for cardiac support at our institution. Patient demographics and survival were retrospectively analyzed. A new easily calculated score for predicting ECMO mortality was created using identified risk factors from univariate and multivariate analyses, and model discrimination was compared with other scoring systems. Cardiac ECMO was performed on 73 patients (47 males and 26 females) with a mean age of 48 ± 14 y. Sixty-four percent of patients (47/73) survived ECMO support. Pre-ECMO SAPS II, SOFA, APACHE II, MELD, RIFLE, PRESERVE, and ECMOnet scores, were not correlated with survival. Univariate analysis of pre-ECMO risk factors demonstrated that increased lactate, renal dysfunction, and postcardiotomy cardiogenic shock were risk factors for death. Applying these data into a new simplified cardiac ECMO score (minimal risk = 0, maximal = 5) predicted patient survival. Survivors had a lower risk score (1.8 ± 1.2) versus the nonsurvivors (3.0 ± 0.99), P < 0.0001. Common intensive care unit or disease-specific risk scores calculated for cardiac ECMO patients did not correlate with ECMO survival, whereas a new simplified cardiac ECMO score provides survival predictability. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. G-CSF treatment after myocardial infarction: impact on bone marrow-derived vs cardiac progenitor cells.

    PubMed

    Brunner, Stefan; Huber, Bruno C; Fischer, Rebekka; Groebner, Michael; Hacker, Marcus; David, Robert; Zaruba, Marc-Michael; Vallaster, Marcus; Rischpler, Christoph; Wilke, Andrea; Gerbitz, Armin; Franz, Wolfgang-Michael

    2008-06-01

    Besides its classical function in the field of autologous and allogenic stem cell transplantation, granulocyte colony-stimulating factor (G-CSF) was shown to have protective effects after myocardial infarction (MI) by mobilization of bone marrow-derived progenitor cells (BMCs) and in addition by activation of multiple signaling pathways. In the present study, we focused on the impact of G-CSF on migration of BMCs and the impact on resident cardiac cells after MI. Mice (C57BL/6J) were sublethally irradiated, and BM from green fluorescent protein (GFP)-transgenic mice was transplanted. Coronary artery ligation was performed 10 weeks later. G-CSF (100 microg/kg) was daily injected for 6 days. Subpopulations of enhanced GFP(+) cells in peripheral blood, bone marrow, and heart were characterized by flow cytometry. Growth factor expression in the heart was analyzed by quantitative real-time polymerase chain reaction. Perfusion was investigated in vivo by gated single photon emission computed tomography (SPECT). G-CSF-treated animals revealed a reduced migration of c-kit(+) and CXCR-4(+) BMCs associated with decreased expression levels of the corresponding growth factors, namely stem cell factor and stromal-derived factor-1 alpha in ischemic myocardium. In contrast, the number of resident cardiac Sca-1(+) cells was significantly increased. However, SPECT-perfusion showed no differences in infarct size between G-CSF-treated and control animals 6 days after MI. Our study shows that G-CSF treatment after MI reduces migration capacity of BMCs into ischemic tissue, but increases the number of resident cardiac cells. To optimize homing capacity a combination of G-CSF with other agents may optimize cytokine therapy after MI.

  6. Endothelial progenitor cells--an evolving story.

    PubMed

    Pearson, Jeremy D

    2010-05-01

    The first description of endothelial progenitor cells (EPC) in 1997 led rapidly to substantial changes in our understanding of angiogenesis, and within 5 years to the first clinical studies in humans using bone marrow derived EPC to enhance coronary neovascularisation and cardiac function after myocardial ischemia. However, to improve the success of this therapy a clearer understanding of the biology of EPC is needed. This article summarises recent data indicating that most EPC are not, in fact, endothelial progenitors but can be better described as angiogenic monocytes, and explores the implications this has for their future therapeutic use. Copyright 2009 Elsevier Inc. All rights reserved.

  7. Functional Effect of Pim1 Depends upon Intracellular Localization in Human Cardiac Progenitor Cells.

    PubMed

    Samse, Kaitlen; Emathinger, Jacqueline; Hariharan, Nirmala; Quijada, Pearl; Ilves, Kelli; Völkers, Mirko; Ormachea, Lucia; De La Torre, Andrea; Orogo, Amabel M; Alvarez, Roberto; Din, Shabana; Mohsin, Sadia; Monsanto, Megan; Fischer, Kimberlee M; Dembitsky, Walter P; Gustafsson, Åsa B; Sussman, Mark A

    2015-05-29

    Human cardiac progenitor cells (hCPC) improve heart function after autologous transfer in heart failure patients. Regenerative potential of hCPCs is severely limited with age, requiring genetic modification to enhance therapeutic potential. A legacy of work from our laboratory with Pim1 kinase reveals effects on proliferation, survival, metabolism, and rejuvenation of hCPCs in vitro and in vivo. We demonstrate that subcellular targeting of Pim1 bolsters the distinct cardioprotective effects of this kinase in hCPCs to increase proliferation and survival, and antagonize cellular senescence. Adult hCPCs isolated from patients undergoing left ventricular assist device implantation were engineered to overexpress Pim1 throughout the cell (PimWT) or targeted to either mitochondrial (Mito-Pim1) or nuclear (Nuc-Pim1) compartments. Nuc-Pim1 enhances stem cell youthfulness associated with decreased senescence-associated β-galactosidase activity, preserved telomere length, reduced expression of p16 and p53, and up-regulation of nucleostemin relative to PimWT hCPCs. Alternately, Mito-Pim1 enhances survival by increasing expression of Bcl-2 and Bcl-XL and decreasing cell death after H2O2 treatment, thereby preserving mitochondrial integrity superior to PimWT. Mito-Pim1 increases the proliferation rate by up-regulation of cell cycle modulators Cyclin D, CDK4, and phospho-Rb. Optimal stem cell traits such as proliferation, survival, and increased youthful properties of aged hCPCs are enhanced after targeted Pim1 localization to mitochondrial or nuclear compartments. Targeted Pim1 overexpression in hCPCs allows for selection of the desired phenotypic properties to overcome patient variability and improve specific stem cell characteristics. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Growth Factor-Induced Mobilization of Cardiac Progenitor Cells Reduces the Risk of Arrhythmias, in a Rat Model of Chronic Myocardial Infarction

    PubMed Central

    Graiani, Gallia; Rossi, Stefano; Agnetti, Aldo; Stillitano, Francesca; Lagrasta, Costanza; Baruffi, Silvana; Berni, Roberta; Frati, Caterina; Vassalle, Mario; Squarcia, Umberto; Cerbai, Elisabetta; Macchi, Emilio; Stilli, Donatella; Quaini, Federico; Musso, Ezio

    2011-01-01

    Heart repair by stem cell treatment may involve life-threatening arrhythmias. Cardiac progenitor cells (CPCs) appear best suited for reconstituting lost myocardium without posing arrhythmic risks, being commissioned towards cardiac phenotype. In this study we tested the hypothesis that mobilization of CPCs through locally delivered Hepatocyte Growth Factor and Insulin-Like Growth Factor-1 to heal chronic myocardial infarction (MI), lowers the proneness to arrhythmias. We used 133 adult male Wistar rats either with one-month old MI and treated with growth factors (GFs, n = 60) or vehicle (V, n = 55), or sham operated (n = 18). In selected groups of animals, prior to and two weeks after GF/V delivery, we evaluated stress-induced ventricular arrhythmias by telemetry-ECG, cardiac mechanics by echocardiography, and ventricular excitability, conduction velocity and refractoriness by epicardial multiple-lead recording. Invasive hemodynamic measurements were performed before sacrifice and eventually the hearts were subjected to anatomical, morphometric, immunohistochemical, and molecular biology analyses. When compared with untreated MI, GFs decreased stress-induced arrhythmias and concurrently prolonged the effective refractory period (ERP) without affecting neither the duration of ventricular repolarization, as suggested by measurements of QTc interval and mRNA levels for K-channel α-subunits Kv4.2 and Kv4.3, nor the dispersion of refractoriness. Further, markers of cardiomyocyte reactive hypertrophy, including mRNA levels for K-channel α-subunit Kv1.4 and β-subunit KChIP2, interstitial fibrosis and negative structural remodeling were significantly reduced in peri-infarcted/remote ventricular myocardium. Finally, analyses of BrdU incorporation and distribution of connexin43 and N-cadherin indicated that cytokines generated new vessels and electromechanically-connected myocytes and abolished the correlation of infarct size with deterioration of mechanical

  9. The mechanical coupling of adult marrow stromal stem cells during cardiac regeneration assessed in a 2-D co-culture model

    PubMed Central

    Valarmathi, Mani T.; Fuseler, John W.; Goodwin, Richard L.; Davis, Jeffrey M.; Potts, Jay D.

    2011-01-01

    Postnatal cardiomyocytes undergo terminal differentiation and a restricted number of human cardiomyocytes retain the ability to divide and regenerate in response to ischemic injury. However, whether these neo-cardiomyocytes are derived from endogenous population of resident cardiac stem cells or from the exogenous double assurance population of resident bone marrow-derived stem cells that populate the damaged myocardium is unresolved and under intense investigation. The vital challenge is to ameliorate and/or regenerate the damaged myocardium. This can be achieved by stimulating proliferation of native quiescent cardiomyocytes and/or cardiac stem cell, or by recruiting exogenous autologous or allogeneic cells such as fetal or embryonic cardiomyocyte progenitors or bone marrow-derived stromal stem cells. The prerequisites are that these neo-cardiomyocytes must have the ability to integrate well within the native myocardium and must exhibit functional synchronization. Adult bone marrow stromal cells (BMSCs) have been shown to differentiate into cardiomyocyte-like cells both in vitro and in vivo. As a result, BMSCs may potentially play an essential role in cardiac repair and regeneration, but this concept requires further validation. In this report, we have provided compelling evidence that functioning cardiac tissue can be generated by the interaction of multipotent BMSCs with embryonic cardiac myocytes (ECMs) in two-dimensional (2-D) co-cultures. The differentiating BMSCs were induced to undergo cardiomyogenic differentiation pathway and were able to express unequivocal electromechanical coupling and functional synchronization with ECMs. Our 2-D co-culture system provides a useful in vitro model to elucidate various molecular mechanisms underpinning the integration and orderly maturation and differentiation of BMSCs into neo-cardiomyocytes during myocardial repair and regeneration. PMID:21288568

  10. Coordinated Proliferation and Differentiation of Human-Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Depend on Bone Morphogenetic Protein Signaling Regulation by GREMLIN 2

    PubMed Central

    Bylund, Jeffery B.; Trinh, Linh T.; Awgulewitsch, Cassandra P.; Paik, David T.; Jetter, Christopher; Jha, Rajneesh; Zhang, Jianhua; Nolan, Kristof; Xu, Chunhui; Thompson, Thomas B.; Kamp, Timothy J.

    2017-01-01

    Heart development depends on coordinated proliferation and differentiation of cardiac progenitor cells (CPCs), but how the two processes are synchronized is not well understood. Here, we show that the secreted Bone Morphogenetic Protein (BMP) antagonist GREMLIN 2 (GREM2) is induced in CPCs shortly after cardiac mesoderm specification during differentiation of human pluripotent stem cells. GREM2 expression follows cardiac lineage differentiation independently of the differentiation method used, or the origin of the pluripotent stem cells, suggesting that GREM2 is linked to cardiogenesis. Addition of GREM2 protein strongly increases cardiomyocyte output compared to established procardiogenic differentiation methods. Our data show that inhibition of canonical BMP signaling by GREM2 is necessary to promote proliferation of CPCs. However, canonical BMP signaling inhibition alone is not sufficient to induce cardiac differentiation, which depends on subsequent JNK pathway activation specifically by GREM2. These findings may have broader implications in the design of approaches to orchestrate growth and differentiation of pluripotent stem cell-derived lineages that depend on precise regulation of BMP signaling. PMID:28125926

  11. Coordinated Proliferation and Differentiation of Human-Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Depend on Bone Morphogenetic Protein Signaling Regulation by GREMLIN 2.

    PubMed

    Bylund, Jeffery B; Trinh, Linh T; Awgulewitsch, Cassandra P; Paik, David T; Jetter, Christopher; Jha, Rajneesh; Zhang, Jianhua; Nolan, Kristof; Xu, Chunhui; Thompson, Thomas B; Kamp, Timothy J; Hatzopoulos, Antonis K

    2017-05-01

    Heart development depends on coordinated proliferation and differentiation of cardiac progenitor cells (CPCs), but how the two processes are synchronized is not well understood. Here, we show that the secreted Bone Morphogenetic Protein (BMP) antagonist GREMLIN 2 (GREM2) is induced in CPCs shortly after cardiac mesoderm specification during differentiation of human pluripotent stem cells. GREM2 expression follows cardiac lineage differentiation independently of the differentiation method used, or the origin of the pluripotent stem cells, suggesting that GREM2 is linked to cardiogenesis. Addition of GREM2 protein strongly increases cardiomyocyte output compared to established procardiogenic differentiation methods. Our data show that inhibition of canonical BMP signaling by GREM2 is necessary to promote proliferation of CPCs. However, canonical BMP signaling inhibition alone is not sufficient to induce cardiac differentiation, which depends on subsequent JNK pathway activation specifically by GREM2. These findings may have broader implications in the design of approaches to orchestrate growth and differentiation of pluripotent stem cell-derived lineages that depend on precise regulation of BMP signaling.

  12. Tissue kallikrein promotes cardiac neovascularization by enhancing endothelial progenitor cell functional capacity.

    PubMed

    Yao, Yuyu; Sheng, Zulong; Li, Yefei; Yan, Fengdi; Fu, Cong; Li, Yongjun; Ma, Genshan; Liu, Naifeng; Chao, Julie; Chao, Lee

    2012-08-01

    Tissue kallikrein (TK) has been demonstrated to improve neovasculogenesis after myocardial infarction (MI). In the present study, we examined the role and underlying mechanisms of TK in peripheral endothelial progenitor cell (EPC) function. Peripheral blood-derived mononuclear cells containing EPCs were isolated from rat. The in vitro effects of TK on EPC differentiation, apoptosis, migration, and vascular tube formation capacity were studied in the presence or absence of TK, kinin B(2) receptor antagonist (icatibant), and phosphatidylinositol-3 kinase inhibitor (LY294002). Apoptosis was evaluated by flow-cytometry analysis using Annexin V-FITC/PI staining, as well as western-blot analysis of Akt phosphorylation and cleaved caspase-3. Using an MI mouse model, we then examined the in vivo effects of human TK gene adenoviral vector (Ad.hTK) administration on the number of CD34(+)Flk-1(+) progenitors in the peripheral circulation, heart tissue, extent of vasculogenesis, and heart function. Administration of TK significantly increased the number of Dil-LDL/UEA-lectin double-positive early EPCs, as well as their migration and tube formation properties in vitro. Transduction of TK in cultured EPCs attenuated apoptosis induced by hypoxia and led to an increase in Akt phosphorylation and a decrease in cleaved caspase-3 levels. The beneficial effects of TK were blocked by pretreatment with icatibant and LY294002. The expression of recombinant human TK in the ischemic mouse heart significantly improved cardiac contractility and reduced infarct size 7 days after gene delivery. Compared with the Ad.Null group, Ad.hTK reduced mortality and preserved left ventricular function by increasing the number of CD34(+)Flk-1(+) EPCs and promoting the growth of capillaries and arterioles in the peri-infarct myocardium. These data provide direct evidence that TK promotes vessel growth by increasing the number of EPCs and enhancing their functional properties through the kinin B(2) receptor

  13. Protein expression differs between neural progenitor cells from the adult rat brain subventricular zone and olfactory bulb.

    PubMed

    Maurer, Martin H; Feldmann, Robert E; Bürgers, Heinrich F; Kuschinsky, Wolfgang

    2008-01-16

    Neural progenitor cells can be isolated from various regions of the adult mammalian brain, including the forebrain structures of the subventricular zone and the olfactory bulb. Currently it is unknown whether functional differences in these progenitor cell populations can already be found on the molecular level. Therefore, we compared protein expression profiles between progenitor cells isolated from the subventricular zone and the olfactory bulb using a proteomic approach based on two-dimensional gel electrophoresis and mass spectrometry. The subventricular zone and the olfactory bulb are connected by the Rostral Migratory Stream (RMS), in which glial fibrillary acidic protein (GFAP)-positive cells guide neuroblasts. Recent literature suggested that these GFAP-positive cells possess neurogenic potential themselves. In the current study, we therefore compared the cultured neurospheres for the fraction of GFAP-positive cells and their morphology of over a prolonged period of time. We found significant differences in the protein expression patterns between subventricular zone and olfactory bulb neural progenitor cells. Of the differentially expressed protein spots, 105 were exclusively expressed in the subventricular zone, 23 showed a lower expression and 51 a higher expression in the olfactory bulb. The proteomic data showed that more proteins are differentially expressed in olfactory bulb progenitors with regard to proteins involved in differentiation and microenvironmental integration, as compared to the subventricular zone progenitors. Compared to 94% of all progenitors of the subventricular zone expressed GFAP, nearly none in the olfactory bulb cultures expressed GFAP. Both GFAP-positive subpopulations differed also in morphology, with the olfactory bulb cells showing more branching. No differences in growth characteristics such as doubling time, and passage lengths could be found over 26 consecutive passages in the two cultures. In this study, we describe

  14. Induced adult stem (iAS) cells and induced transit amplifying progenitor (iTAP) cells-a possible alternative to induced pluripotent stem (iPS) cells?

    PubMed

    Heng, Boon Chin; Richards, Mark; Ge, Zigang; Shu, Yimin

    2010-02-01

    The successful derivation of iPSC lines effectively demonstrates that it is possible to reset the 'developmental clock' of somatic cells all the way back to the initial embryonic state. Hence, it is plausible that this clock may instead be turned back half-way to a less immature developmental stage that is more directly applicable to clinical therapeutic applications or for in vitro pharmacology/toxicology screening assays. Such a suitable developmental state is postulated to be either the putative transit amplifying progenitor stage or adult stem cell stage. It is hypothetically possible to reprogram mature and terminally differentiated somatic cells back to the adult stem cell or transit amplifying progenitor stage, in a manner similar to the derivation of iPSC. It is proposed that the terminology 'Induced Adult Stem Cells' (iASC) or 'Induced Transit Amplifying Progenitor Cells' (iTAPC) be used to described such reprogrammed somatic cells. Of particular interest, is the possibility of resetting the developmental clock of mature differentiated somatic cells of the mesenchymal lineage, explanted from adipose tissue, bone marrow and cartilage. The putative adult stem cell sub-population from which these cells are derived, commonly referred to as 'mesenchymal stem cells', are highly versatile and hold much therapeutic promise in regenerative medicine, as attested to by numerous human clinical trials and animal studies. Perhaps it may be appropriate to term such reprogrammed cells as 'Induced Mesenchymal Stem Cells' (iMSC) or as 'Induced Mesenchumal Progenitor Cells' (iMPC). Given that cells from the same organ/tissue will share some commonalities in gene expression, we hypothesize that the generation of iASC or iTAPC would be more efficient as compared to iPSC generation, since a common epigenetic program must exist between the reprogrammed cells, adult stem cell or progenitor cell types and terminally differentiated cell types from the same organ/tissue.

  15. Impact of Milrinone Administration in Adult Cardiac Surgery Patients: Updated Meta-Analysis.

    PubMed

    Ushio, Masahiro; Egi, Moritoki; Wakabayashi, Junji; Nishimura, Taichi; Miyatake, Yuji; Obata, Norihiko; Mizobuchi, Satoshi

    2016-12-01

    To determine the effects of milrinone on short-term mortality in cardiac surgery patients with focus on the presence or absence of heterogeneity of the effect. A systematic review and meta-analysis. Five hundred thirty-seven adult cardiac surgery patients from 12 RCTs. Milrinone administration. The authors conducted a systematic Medline and Pubmed search to assess the effect of milrinone on short-term mortality in adult cardiac surgery patients. Subanalysis was performed according to the timing for commencement of milrinone administration and the type of comparators. The primary outcome was any short-term mortality. Overall analysis showed no difference in mortality rates in patients who received milrinone and patients who received comparators (odds ratio = 1.25, 95% CI 0.45-3.51, p = 0.67). In subanalysis for the timing to commence milrinone administration and the type of comparators, odds ratio for mortality varied from 0.19 (placebo as control drug, start of administration after cardiopulmonary bypass) to 2.58 (levosimendan as control drug, start of administration after cardiopulmonary bypass). Among RCTs to assess the effect of milrinone administration in adult cardiac surgery patients, there are wide variations of the odds ratios of administration of milrinone for short-term mortality according to the comparators and the timing of administration. This fact may suggest that a simple pooling meta-analysis is not applicable for assessing the risk and benefit of milrinone administration in an adult cardiac surgery cohort. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart

    PubMed Central

    Malliaras, Konstantinos; Zhang, Yiqiang; Seinfeld, Jeffrey; Galang, Giselle; Tseliou, Eleni; Cheng, Ke; Sun, Baiming; Aminzadeh, Mohammad; Marbán, Eduardo

    2013-01-01

    Cardiosphere-derived cells (CDCs) have been shown to regenerate infarcted myocardium in patients after myocardial infarction (MI). However, whether the cells of the newly formed myocardium originate from the proliferation of adult cardiomyocytes or from the differentiation of endogenous stem cells remains unknown. Using genetic fate mapping to mark resident myocytes in combination with long-term BrdU pulsing, we investigated the origins of postnatal cardiomyogenesis in the normal, infarcted and cell-treated adult mammalian heart. In the normal mouse heart, cardiomyocyte turnover occurs predominantly through proliferation of resident cardiomyocytes at a rate of ∼1.3–4%/year. After MI, new cardiomyocytes arise from both progenitors as well as pre-existing cardiomyocytes. Transplantation of CDCs upregulates host cardiomyocyte cycling and recruitment of endogenous progenitors, while boosting heart function and increasing viable myocardium. The observed phenomena cannot be explained by cardiomyocyte polyploidization, bi/multinucleation, cell fusion or DNA repair. Thus, CDCs induce myocardial regeneration by differentially upregulating two mechanisms of endogenous cell proliferation. PMID:23255322

  17. Genetic and Epigenetic Regulation of Human Cardiac Reprogramming and Differentiation in Regenerative Medicine

    PubMed Central

    Burridge, Paul W.; Sharma, Arun; Wu, Joseph C.

    2016-01-01

    Regeneration or replacement of lost cardiomyocytes within the heart has the potential to revolutionize cardiovascular medicine. Numerous methodologies have been used to achieve this aim, including the engraftment of bone marrow- and heart-derived cells as well as the identification of modulators of adult cardiomyocyte proliferation. Recently, the conversion of human somatic cells into induced pluripotent stem cells and induced cardiomyocyte-like cells has transformed potential approaches toward this goal, and the engraftment of cardiac progenitors derived from human embryonic stem cells into patients is now feasible. Here we review recent advances in our understanding of the genetic and epigenetic control of human cardiogenesis, cardiac differentiation, and the induced reprogramming of somatic cells to cardiomyocytes. We also cover genetic programs for inducing the proliferation of endogenous cardiomyocytes and discuss the genetic state of cells used in cardiac regenerative medicine. PMID:26631515

  18. Stem cells in cardiac repair.

    PubMed

    Henning, Robert J

    2011-01-01

    Myocardial infarction is the leading cause of death among people in industrialized nations. Although the heart has some ability to regenerate after infarction, myocardial restoration is inadequate. Consequently, investigators are currently exploring the use of human embryonic stem cells (hESCs), skeletal myoblasts and adult bone marrow stem cells to limit infarct size. hESCs are pluripotent cells that can regenerate myocardium in infarcted hearts, attenuate heart remodeling and contribute to left ventricle (LV) systolic force development. Since hESCs can form heart teratomas, investigators are differentiating hESCs toward cardiac progenitor cells prior to transplantation into hearts. Large quantities of hESCs cardiac progenitor cells, however, must be generated, immune rejection must be prevented and grafts must survive over the long term to significantly improve myocardial performance. Transplanted autologous skeletal myoblasts can survive in infarcted myocardium in small numbers, proliferate, differentiate into skeletal myofibers and increase the LV ejection fraction. These cells, however, do not form electromechanical connections with host cardiomyocytes. Consequently, electrical re-entry can occur and cause cardiac arrhythmias. Autologous bone marrow mononuclear cells contain hematopoietic and mesenchymal stem cells. In several meta-analyses, patients with coronary disease who received autologous bone marrow cells by intracoronary injection show significant 3.7% (range: 1.9-5.4%) increases in LV ejection fraction, decreases in LV end-systolic volume of -4.8 ml (range: -1.4 to -8.2 ml) and reductions in infarct size of 5.5% (-1.9 to -9.1%), without experiencing arrhythmias. Bone marrow cells appear to release biologically active factors that limit myocardial damage. Unfortunately, bone marrow cells from patients with chronic diseases propagate poorly and can die prematurely. Substantial challenges must be addressed and resolved to advance the use of stem cells

  19. Quality and Safety in Health Care, Part XXVI: The Adult Cardiac Surgery Database.

    PubMed

    Harolds, Jay A

    2017-09-01

    The Adult Cardiac Surgery Database of the Society of Thoracic Surgeons has provided highly useful information in quality and safety in general thoracic surgery, including ratings of the surgeons and institutions participating in this type of surgery. The Adult Cardiac Surgery Database information is very helpful for writing guidelines and determining optimal protocols and for many research projects. This article discusses the history and current status of this database.

  20. Identification of oocyte progenitor cells in the zebrafish ovary.

    PubMed

    Draper, Bruce W

    2012-01-01

    Zebrafish breed year round and females are capable of producing thousands of eggs during their lifetime. This amazing fecundity is due to the fact that the adult ovary, contains premeiotic oocyte progenitor cells, called oogonia, which produce a continuous supply of new oocytes throughout adult life. Oocyte progenitor cells can be easily identified based on their expression of Vasa, and their characteristic nuclear morphology. Thus, the zebrafish ovary provides a unique and powerful system to study the genetic regulation of oocyte production in a vertebrate animal. A method is presented here for identifying oocyte progenitor cells in the zebrafish ovary using whole-mount confocal immunofluorescence that is simple and accurate.

  1. PW1 gene/paternally expressed gene 3 (PW1/Peg3) identifies multiple adult stem and progenitor cell populations

    PubMed Central

    Besson, Vanessa; Smeriglio, Piera; Wegener, Amélie; Relaix, Frédéric; Nait Oumesmar, Brahim; Sassoon, David A.; Marazzi, Giovanna

    2011-01-01

    A variety of markers are invaluable for identifying and purifying stem/progenitor cells. Here we report the generation of a murine reporter line driven by Pw1 that reveals cycling and quiescent progenitor/stem cells in all adult tissues thus far examined, including the intestine, blood, testis, central nervous system, bone, skeletal muscle, and skin. Neurospheres generated from the adult PW1-reporter mouse show near 100% reporter-gene expression following a single passage. Furthermore, epidermal stem cells can be purified solely on the basis of reporter-gene expression. These cells are clonogenic, repopulate the epidermal stem-cell niches, and give rise to new hair follicles. Finally, we demonstrate that only PW1 reporter-expressing epidermal cells give rise to follicles that are capable of self-renewal following injury. Our data demonstrate that PW1 serves as an invaluable marker for competent self-renewing stem cells in a wide array of adult tissues, and the PW1-reporter mouse serves as a tool for rapid stem cell isolation and characterization. PMID:21709251

  2. Roles of mineralocorticoid and glucocorticoid receptors in the regulation of progenitor proliferation in the adult hippocampus.

    PubMed

    Wong, Edmund Y H; Herbert, Joe

    2005-08-01

    New neurons are produced continually in the dentate gyrus of the hippocampus. Numerous factors modulate the rate of neuron production. One of the most important is the adrenal-derived corticoids. Raised levels of corticoids suppress proliferation of progenitor cells, while removal of corticoids by adrenalectomy reverses this. The exact mechanisms by which corticoids mediate such regulation are unknown, but corticoids are believed to act through the receptors for mineralocorticoids (MR) and glucocorticoids (GR). Previous reports regarding the roles of these receptors in regulating cell proliferation came to contrasting conclusions. Here we use both agonists and antagonists to these receptors in adult male rats to investigate and clarify their roles. Blockade of MR with spironolactone in adrenalectomised male rats implanted with a corticosterone pellet to reproduce basal levels enhanced proliferation, whereas treatment with the GR antagonist mifepristone had no effect. However, mifepristone reversed the suppressive effect of additional corticosterone in intact rats. Both aldosterone and RU362, agonists of MR and GR, respectively, reduced proliferation in adrenalectomised rats, and combined treatment with both agonists had an additional suppressive action. These results clearly show that occupancies of both receptors act in the same direction on progenitor proliferation. The existence of two receptors with different affinities for corticoids may ensure that proliferation of progenitor cells in the adult dentate gyrus is regulated across the range of adrenal corticoid activity, including both basal and stressful contexts. Although a small proportion of newly formed cells may express GR and MR, corticosterone probably regulates proliferation indirectly through other local cells.

  3. Extra-cardiac manifestations of adult congenital heart disease.

    PubMed

    Gaeta, Stephen A; Ward, Cary; Krasuski, Richard A

    2016-10-01

    Advancement in correction or palliation of congenital cardiac lesions has greatly improved the lifespan of congenital heart disease patients, resulting in a rapidly growing adult congenital heart disease (ACHD) population. As this group has increased in number and age, emerging science has highlighted the systemic nature of ACHD. Providers caring for these patients are tasked with long-term management of multiple neurologic, pulmonary, hepatic, renal, and endocrine manifestations that arise as syndromic associations with congenital heart defects or as sequelae of primary structural or hemodynamic abnormalities. In this review, we outline the current understanding and recent research into these extra-cardiac manifestations. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Rejuvenation of human cardiac progenitor cells with Pim-1 kinase.

    PubMed

    Mohsin, Sadia; Khan, Mohsin; Nguyen, Jonathan; Alkatib, Monique; Siddiqi, Sailay; Hariharan, Nirmala; Wallach, Kathleen; Monsanto, Megan; Gude, Natalie; Dembitsky, Walter; Sussman, Mark A

    2013-10-25

    Myocardial function is enhanced by adoptive transfer of human cardiac progenitor cells (hCPCs) into a pathologically challenged heart. However, advanced age, comorbidities, and myocardial injury in patients with heart failure constrain the proliferation, survival, and regenerative capacity of hCPCs. Rejuvenation of senescent hCPCs will improve the outcome of regenerative therapy for a substantial patient population possessing functionally impaired stem cells. Reverse phenotypic and functional senescence of hCPCs by ex vivo modification with Pim-1. C-kit-positive hCPCs were isolated from heart biopsy samples of patients undergoing left ventricular assist device implantation. Growth kinetics, telomere lengths, and expression of cell cycle regulators showed significant variation between hCPC isolated from multiple patients. Telomere length was significantly decreased in hCPC with slow-growth kinetics concomitant with decreased proliferation and upregulation of senescent markers compared with hCPC with fast-growth kinetics. Desirable youthful characteristics were conferred on hCPCs by genetic modification using Pim-1 kinase, including increases in proliferation, telomere length, survival, and decreased expression of senescence markers. Senescence characteristics of hCPCs are ameliorated by Pim-1 kinase resulting in rejuvenation of phenotypic and functional properties. hCPCs show improved cellular properties resulting from Pim-1 modification, but benefits were more pronounced in hCPC with slow-growth kinetics relative to hCPC with fast-growth kinetics. With the majority of patients with heart failure presenting advanced age, infirmity, and impaired regenerative capacity, the use of Pim-1 modification should be incorporated into cell-based therapeutic approaches to broaden inclusion criteria and address limitations associated with the senescent phenotype of aged hCPC.

  5. Rejuvenation of Human Cardiac Progenitor Cells With Pim-1 Kinase

    PubMed Central

    Mohsin, Sadia; Khan, Mohsin; Nguyen, Jonathan; Alkatib, Monique; Siddiqi, Sailay; Hariharan, Nirmala; Wallach, Kathleen; Monsanto, Megan; Gude, Natalie; Dembitsky, Walter; Sussman, Mark A.

    2014-01-01

    Rationale Myocardial function is enhanced by adoptive transfer of human cardiac progenitor cells (hCPCs) into a pathologically challenged heart. However, advanced age, comorbidities, and myocardial injury in patients with heart failure constrain the proliferation, survival, and regenerative capacity of hCPCs. Rejuvenation of senescent hCPCs will improve the outcome of regenerative therapy for a substantial patient population possessing functionally impaired stem cells. Objective Reverse phenotypic and functional senescence of hCPCs by ex vivo modification with Pim-1. Methods and Results C-kit–positive hCPCs were isolated from heart biopsy samples of patients undergoing left ventricular assist device implantation. Growth kinetics, telomere lengths, and expression of cell cycle regulators showed significant variation between hCPC isolated from multiple patients. Telomere length was significantly decreased in hCPC with slow-growth kinetics concomitant with decreased proliferation and upregulation of senescent markers compared with hCPC with fast-growth kinetics. Desirable youthful characteristics were conferred on hCPCs by genetic modification using Pim-1 kinase, including increases in proliferation, telomere length, survival, and decreased expression of senescence markers. Conclusions Senescence characteristics of hCPCs are ameliorated by Pim-1 kinase resulting in rejuvenation of phenotypic and functional properties. hCPCs show improved cellular properties resulting from Pim-1 modification, but benefits were more pronounced in hCPC with slow-growth kinetics relative to hCPC with fast-growth kinetics. With the majority of patients with heart failure presenting advanced age, infirmity, and impaired regenerative capacity, the use of Pim-1 modification should be incorporated into cell-based therapeutic approaches to broaden inclusion criteria and address limitations associated with the senescent phenotype of aged hCPC. PMID:24044948

  6. Loss of Adult Cardiac Myocyte GSK-3 Leads to Mitotic Catastrophe Resulting in Fatal Dilated Cardiomyopathy

    PubMed Central

    Zhou, Jibin; Ahmad, Firdos; Parikh, Shan; Hoffman, Nichole E.; Rajan, Sudarsan; Verma, Vipin K.; Song, Jianliang; Yuan, Ancai; Shanmughapriya, Santhanam; Guo, Yuanjun; Gao, Erhe; Koch, Walter; Woodgett, James R.; Muniswamy, Madesh; Kishore, Raj; Lal, Hind; Force, Thomas

    2016-01-01

    Rationale Cardiac myocyte-specific deletion of either Glycogen Synthase Kinase (GSK)3A or GSK3B leads to cardiac protection following myocardial infarction, suggesting that deletion of both isoforms may provide synergistic protection. This is an important consideration due to the fact that all GSK-3–targeted drugs including the drugs already in clinical trial target both isoforms of GSK-3 and none are isoform specific. Objective To identify the consequences of combined deletion of cardiac myocyte GSK3A and GSK3B in heart function. Methods and Results We generated tamoxifen-inducible cardiac myocyte-specific mice lacking both GSK-3 isoforms (double knockout, DKO). We unexpectedly found that cardiac myocyte GSK-3 is essential for cardiac homeostasis and overall survival. Serial echocardiographic analysis reveals that within 2 weeks of tamoxifen treatment, DKO hearts leads to excessive dilatative remodeling and ventricular dysfunction. Further experimentation with isolated adult cardiac myocytes and fibroblasts from DKO implicated cardiac myocytes intrinsic factors responsible for observed phenotype. Mechanistically, loss of GSK-3 in adult cardiac myocytes resulted in induction of mitotic catastrophe, a previously unreported event in cardiac myocytes. DKO cardiac myocytes showed cell cycle progression resulting in increased DNA content and multi-nucleation. However, increased cell cycle activity was rivaled by marked activation of DNA damage, cell cycle checkpoint activation, and mitotic catastrophe induced apoptotic cell death. Importantly, mitotic catastrophe was also confirmed in isolated adult cardiac myocytes. Conclusion Together, our findings suggest that cardiac myocyte GSK-3 is required to maintain normal cardiac homeostasis and its loss is incompatible with life due to cell cycle dysregulation that ultimately results in a severe fatal dilated cardiomyopathy. PMID:26976650

  7. Loss of Adult Cardiac Myocyte GSK-3 Leads to Mitotic Catastrophe Resulting in Fatal Dilated Cardiomyopathy.

    PubMed

    Zhou, Jibin; Ahmad, Firdos; Parikh, Shan; Hoffman, Nichole E; Rajan, Sudarsan; Verma, Vipin K; Song, Jianliang; Yuan, Ancai; Shanmughapriya, Santhanam; Guo, Yuanjun; Gao, Erhe; Koch, Walter; Woodgett, James R; Madesh, Muniswamy; Kishore, Raj; Lal, Hind; Force, Thomas

    2016-04-15

    Cardiac myocyte-specific deletion of either glycogen synthase kinase (GSK)-3α and GSK-3β leads to cardiac protection after myocardial infarction, suggesting that deletion of both isoforms may provide synergistic protection. This is an important consideration because of the fact that all GSK-3-targeted drugs, including the drugs already in clinical trial target both isoforms of GSK-3, and none are isoform specific. To identify the consequences of combined deletion of cardiac myocyte GSK-3α and GSK-3β in heart function. We generated tamoxifen-inducible cardiac myocyte-specific mice lacking both GSK-3 isoforms (double knockout). We unexpectedly found that cardiac myocyte GSK-3 is essential for cardiac homeostasis and overall survival. Serial echocardiographic analysis reveals that within 2 weeks of tamoxifen treatment, double-knockout hearts leads to excessive dilatative remodeling and ventricular dysfunction. Further experimentation with isolated adult cardiac myocytes and fibroblasts from double-knockout implicated cardiac myocytes intrinsic factors responsible for observed phenotype. Mechanistically, loss of GSK-3 in adult cardiac myocytes resulted in induction of mitotic catastrophe, a previously unreported event in cardiac myocytes. Double-knockout cardiac myocytes showed cell cycle progression resulting in increased DNA content and multinucleation. However, increased cell cycle activity was rivaled by marked activation of DNA damage, cell cycle checkpoint activation, and mitotic catastrophe-induced apoptotic cell death. Importantly, mitotic catastrophe was also confirmed in isolated adult cardiac myocytes. Together, our findings suggest that cardiac myocyte GSK-3 is required to maintain normal cardiac homeostasis, and its loss is incompatible with life because of cell cycle dysregulation that ultimately results in a severe fatal dilated cardiomyopathy. © 2016 American Heart Association, Inc.

  8. Cardiac surgery in adults with high-surgical complexity CHD: results of a network collaborative programme.

    PubMed

    Gilad, Vered; Santoro, Francesco; Ribera, Elena; Calevo, Maria G; Cipriani, Adriano; Pasquè, Achille; Chierchia, Sergio L

    2018-01-01

    Adults with CHD often exhibit complex cardiac abnormalities, whose management requires specific clinical and surgical expertise. To enable easier access of these patients to highly specialised care, we implemented a collaborative programme that incorporates medical and surgical specialists belonging to both paediatric and adult cardiovascular institutions. The objective of this study was to review the experience gained and to analyse the surgical outcome of major cardiac surgery. We retrospectively reviewed all consecutive patients admitted for major cardiac surgery using our network between January, 2010 and December, 2013. Analysis of surgical outcome was performed in patients selected for major cardiac surgery with cardiopulmonary bypass. Early and late outcomes were evaluated. Out of a total of 433 inward patients, 86 were selected for surgery. The median age was 25.5 years, -64 patients (74.4%) had previously undergone heart surgery, and -55 patients (64%) had been subjected to at least one sternotomy. Abnormalities of the left ventricular and right ventricular outflow tract were the most frequent (37.2% and 30.2%, respectively), and despite high-surgical complexity only one death occurred (in-hospital mortality 1.1%). On a median follow-up time of 4 years no deaths and no heart-failure events have occurred; one patient underwent further cardiac surgery programmed at the time of discharge. Low mortality and morbidity rates can be obtained in high-surgical complexity adults with CHD populations when paediatric and adult cardiac specialists operate in the same multidisciplinary environment.

  9. Cardiac and Metabolic Effects of Dietary Selenomethionine Exposure in Adult Zebrafish.

    PubMed

    Pettem, Connor M; Weber, Lynn P; Janz, David M

    2017-10-01

    Selenium (Se) is an essential micronutrient involved in important metabolic functions for all vertebrate species. As Se is reported to have a narrow margin between essentiality and toxicity, there is growing concern surrounding the adverse effects of elevated Se exposure caused by anthropogenic activities. Recent studies have reported that elevated dietary exposure of fish to selenomethionine (Se-Met) can alter aerobic metabolic capacity, energetics and swimming performance. This study aims to further investigate mechanisms of sublethal Se-Met toxicity, particularly potential underlying cardiovascular implications of chronic exposure to environmentally relevant concentrations of dietary Se-Met in adult zebrafish (Danio rerio). Adult zebrafish were fed either control food (1.1 μg Se/g dry mass [d.m.]) or Se-Met spiked food (10.3 or 28.8 μg Se/g d.m.) for 90 d at 5% body weight per day. Following exposure, ultrahigh resolution B-mode and Doppler ultrasound was used to characterize cardiac function. Chronic dietary exposure to elevated Se-Met significantly reduced ventricular contractile rate, stroke volume, and cardiac output. Exposure to Se-Met significantly decreased mRNA expression of methionine adenosyltransferase 1 alpha and glutathione-S-transferase pi class in liver, and a key cardiac remodelling enzyme, matrix metalloproteinase 2, in adult zebrafish heart. Se-Met significantly increased echodensity at the junction between atrium and ventricle, and these results combined with increased matrix metalloproteinase 2 expression are consistent with cardiac remodelling and fibrosis. The results of this study suggest that chronic exposure to dietary Se-Met can negatively impact cardiac function, and such physiological consequences could reduce the aerobic capacity and survivability of fish. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Reference Values for Cardiac and Aortic Magnetic Resonance Imaging in Healthy, Young Caucasian Adults.

    PubMed

    Eikendal, Anouk L M; Bots, Michiel L; Haaring, Cees; Saam, Tobias; van der Geest, Rob J; Westenberg, Jos J M; den Ruijter, Hester M; Hoefer, Imo E; Leiner, Tim

    2016-01-01

    Reference values for morphological and functional parameters of the cardiovascular system in early life are relevant since they may help to identify young adults who fall outside the physiological range of arterial and cardiac ageing. This study provides age and sex specific reference values for aortic wall characteristics, cardiac function parameters and aortic pulse wave velocity (PWV) in a population-based sample of healthy, young adults using magnetic resonance (MR) imaging. In 131 randomly selected healthy, young adults aged between 25 and 35 years (mean age 31.8 years, 63 men) of the general-population based Atherosclerosis-Monitoring-and-Biomarker-measurements-In-The-YOuNg (AMBITYON) study, descending thoracic aortic dimensions and wall thickness, thoracic aortic PWV and cardiac function parameters were measured using a 3.0T MR-system. Age and sex specific reference values were generated using dedicated software. Differences in reference values between two age groups (25-30 and 30-35 years) and both sexes were tested. Aortic diameters and areas were higher in the older age group (all p<0.007). Moreover, aortic dimensions, left ventricular mass, left and right ventricular volumes and cardiac output were lower in women than in men (all p<0.001). For mean and maximum aortic wall thickness, left and right ejection fraction and aortic PWV we did not observe a significant age or sex effect. This study provides age and sex specific reference values for cardiovascular MR parameters in healthy, young Caucasian adults. These may aid in MR guided pre-clinical identification of young adults who fall outside the physiological range of arterial and cardiac ageing.

  11. CIP, a cardiac Isl1-interacting protein, represses cardiomyocyte hypertrophy

    PubMed Central

    Huang, Zhan-Peng; Seok, Hee Young; Zhou, Bin; Chen, Jinghai; Chen, Jian-Fu; Tao, Yazhong; Pu, William T.; Wang, Da-Zhi

    2012-01-01

    Rationale Mammalian heart has minimal regenerative capacity. In response to mechanical or pathological stress, the heart undergoes cardiac remodeling. Pressure and volume overload in the heart cause increased size (hypertrophic growth) of cardiomyocytes. Whereas the regulatory pathways that activate cardiac hypertrophy have been well established, the molecular events that inhibit or repress cardiac hypertrophy are less known. Objective To identify and investigate novel regulators that modulate cardiac hypertrophy. Methods and Results Here, we report the identification, characterization and functional examination of CIP, a novel cardiac Isl1-interacting protein. CIP was identified from a bioinformatic search for novel cardiac-expressed genes in mouse embryonic hearts. CIP encodes a nuclear protein without recognizable motifs. Northern blotting, in situ hybridization and reporter gene tracing demonstrated that CIP is highly expressed in cardiomyocytes of developing and adult hearts. Yeast-two-hybrid screening identified Isl1, a LIM/homeodomain transcription factor essential for the specification of cardiac progenitor cells in the second heart field, as a co-factor of CIP. CIP directly interacted with Isl1 and we mapped the domains of these two proteins which mediate their interaction. We show that CIP represses the transcriptional activity of Isl1 in the activation of the MEF2C enhancer. The expression of CIP was dramatically reduced in hypertrophic cardiomyocytes. Most importantly, overexpression of CIP repressed agonist-induced cardiomyocyte hypertrophy. Conclusions Our studies therefore identify CIP a novel regulator of cardiac hypertrophy. PMID:22343712

  12. CIP, a cardiac Isl1-interacting protein, represses cardiomyocyte hypertrophy.

    PubMed

    Huang, Zhan-Peng; Young Seok, Hee; Zhou, Bin; Chen, Jinghai; Chen, Jian-Fu; Tao, Yazhong; Pu, William T; Wang, Da-Zhi

    2012-03-16

    Mammalian heart has minimal regenerative capacity. In response to mechanical or pathological stress, the heart undergoes cardiac remodeling. Pressure and volume overload in the heart cause increased size (hypertrophic growth) of cardiomyocytes. Whereas the regulatory pathways that activate cardiac hypertrophy have been well-established, the molecular events that inhibit or repress cardiac hypertrophy are less known. To identify and investigate novel regulators that modulate cardiac hypertrophy. Here, we report the identification, characterization, and functional examination of a novel cardiac Isl1-interacting protein (CIP). CIP was identified from a bioinformatic search for novel cardiac-expressed genes in mouse embryonic hearts. CIP encodes a nuclear protein without recognizable motifs. Northern blotting, in situ hybridization, and reporter gene tracing demonstrated that CIP is highly expressed in cardiomyocytes of developing and adult hearts. Yeast two-hybrid screening identified Isl1, a LIM/homeodomain transcription factor essential for the specification of cardiac progenitor cells in the second heart field, as a cofactor of CIP. CIP directly interacted with Isl1, and we mapped the domains of these two proteins, which mediate their interaction. We show that CIP represses the transcriptional activity of Isl1 in the activation of the myocyte enhancer factor 2C. The expression of CIP was dramatically reduced in hypertrophic cardiomyocytes. Most importantly, overexpression of CIP repressed agonist-induced cardiomyocyte hypertrophy. Our studies therefore identify CIP as a novel regulator of cardiac hypertrophy.

  13. Pre-Treatment with Melatonin Enhances Therapeutic Efficacy of Cardiac Progenitor Cells for Myocardial Infarction.

    PubMed

    Ma, Wenya; He, Fang; Ding, Fengzhi; Zhang, Lai; Huang, Qi; Bi, Chongwei; Wang, Xiuxiu; Hua, Bingjie; Yang, Fan; Yuan, Ye; Han, Zhenbo; Jin, Mengyu; Liu, Tianyi; Yu, Ying; Cai, Benzhi; Lu, Yanjie; Du, Zhimin

    2018-06-15

    Melatonin possesses many biological activities such as antioxidant and anti-aging. Cardiac progenitor cells (CPCs) have emerged as a promising therapeutic strategy for myocardial infarction (MI). However, the low survival of transplanted CPCs in infarcted myocardium limits the successful use in treating MI. In the present study, we aimed to investigate if melatonin protects against oxidative stress-induced CPCs damage and enhances its therapeutic efficacy for MI. TUNEL assay and EdU assay were used to detect the effects of melatonin and miR-98 on H2O2-induced apoptosis and proliferation. MI model was used to evaluate the potential cardioprotective effects of melatonin and miR-98. Melatonin attenuated H2O2-induced the proliferation reduction and apoptosis of c-kit+ CPCs in vitro, and CPCs which pretreated with melatonin significantly improved the functions of post-infarct hearts compared with CPCs alone in vivo. Melatonin was capable to inhibit the increase of miR-98 level by H2O2 in CPCs. The proliferation reduction and apoptosis of CPCs induced by H2O2 was aggravated by miR-98. In vivo, transplantation of CPCs with miR-98 silencing caused the more significant improvement of cardiac functions in MI than CPCs. MiR-98 targets at the signal transducer and activator of the transcription 3 (STAT3), and thus aggravated H2O2-induced the reduction of Bcl-2 protein. Pre-treatment with melatonin protects c-kit+ CPCs against oxidative stress-induced damage via downregulation of miR-98 and thereby increasing STAT3, representing a potentially new strategy to improve CPC-based therapy for MI. © 2018 The Author(s). Published by S. Karger AG, Basel.

  14. Cardiac resource utilization in adults at a freestanding children's hospital.

    PubMed

    Ermis, Peter; Dietzman, Thomas; Franklin, Wayne; Kim, Jeffrey; Moodie, Douglas; Parekh, Dhaval

    2014-01-01

    This article aims to give a comprehensive description of cardiac resource utilization in adults at a freestanding children's hospital. Retrospective chart review. Large, tertiary, freestanding children's hospital. Adults (18 years of age and older) seen within the heart center or evaluated by heart center personnel from January 1, 2006 through December 31, 2010. There were 2794 adults that utilized cardiology services during the study period. The mean patient age was 23.5 ± 8.4 years (18-70.5). The 1748 (62.6%) patients had a diagnosis of congenital heart disease. There were a total of 525 catheterization laboratory encounters and 104 cardiac surgical procedures performed on adult patients during the 5-year study period. The in-hospital mortality for all invasive encounters was 0%. The minor adverse event rate for all invasive encounters was 6.7% and 4.8%, respectively. Also, the overall major adverse event rates were 1.9% and 4.8%, respectively. There were 162 cardiology evaluations performed on adults in the emergency room. There were a total of 5489 adult cardiology clinic visits. The most common congenital heart disease diagnoses were: tetralogy of Fallot: 228 (13%), D-transposition of the great arteries: 208 (11.9%), single ventricle physiology: 187 (10.7%), atrial septal defect 128: (7.3%), and ventricular septal defect: 117 (6.7%). Overall, the complexity of congenital heart disease was: simple: 41%, moderate: 37%, and complex: 22%. A significant and growing number of adult patients are currently being cared for at pediatric institutions. Excellent outcomes have been achieved at these centers with dedicated adult congenital heart disease services, consisting of both cardiologists and other faculty trained in adult medicine. Others with training in adult medicine, whether they be staff or contracted consulting services, are also required to help manage adult comorbidities. © 2014 Wiley Periodicals, Inc.

  15. Fast-track cardiac care for adult cardiac surgical patients.

    PubMed

    Zhu, Fang; Lee, Anna; Chee, Yee Eot

    2012-10-17

    Fast-track cardiac care is a complex intervention involving several components of care during cardiac anaesthesia and in the postoperative period, all with the ultimate aim of early extubation after surgery, to reduce the length of stay in the intensive care unit and in the hospital. Safe and effective fast-track cardiac care may reduce hospital costs. This is an update of a Cochrane review published in 2003. To update the evidence on the safety and effectiveness of fast-track cardiac care compared to conventional (not fast-track) care in adult patients undergoing cardiac surgery. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (2012, Issue 3), MEDLINE (January 1966 to April 2012), EMBASE (January 1980 to April 2012), CINAHL (January 1982 to April 2012), and ISI Web of Science (January 2003 to April 2012). We searched reference lists of articles and contacted experts in the field. All randomized controlled trials of adult cardiac surgical patients (coronary artery bypass grafts, aortic valve replacement, mitral valve replacement) that compared fast-track cardiac care and conventional (not fast-track) care groups were included. We focused on the following fast-track interventions that were designed for early extubation after surgery, administration of low-dose opioid based general anaesthesia during cardiac surgery and the use of a time-directed extubation protocol after surgery. The primary outcome was the risk of mortality. Secondary outcomes included postoperative complications, reintubation within 24 hours of surgery, time to extubation, length of stay in the intensive care unit and in the hospital, quality of life after surgery and hospital costs. Two review authors independently assessed trial quality and extracted the data. Study authors were contacted for additional information. We used a random-effects model and reported relative risk (RR), mean difference (MD) and 95% confidence intervals (95% CI). Twenty-five trials involving 4118

  16. Adult Mouse Subventricular Zone Stem and Progenitor Cells Are Sessile and Epidermal Growth Factor Receptor Negatively Regulates Neuroblast Migration

    PubMed Central

    Kim, Yongsoo; Comte, Isabelle; Szabo, Gabor; Hockberger, Philip; Szele, Francis G.

    2009-01-01

    Background The adult subventricular zone (SVZ) contains stem and progenitor cells that generate neuroblasts throughout life. Although it is well accepted that SVZ neuroblasts are migratory, recent evidence suggests their progenitor cells may also exhibit motility. Since stem and progenitor cells are proliferative and multipotential, if they were also able to move would have important implications for SVZ neurogenesis and its potential for repair. Methodology/Principal Findings We studied whether SVZ stem and/or progenitor cells are motile in transgenic GFP+ slices with two photon time lapse microscopy and post hoc immunohistochemistry. We found that stem and progenitor cells; mGFAP-GFP+ cells, bright nestin-GFP+ cells and Mash1+ cells were stationary in the SVZ and rostral migratory stream (RMS). In our search for motile progenitor cells, we uncovered a population of motile βIII-tubulin+ neuroblasts that expressed low levels of epidermal growth factor receptor (EGFr). This was intriguing since EGFr drives proliferation in the SVZ and affects migration in other systems. Thus we examined the potential role of EGFr in modulating SVZ migration. Interestingly, EGFrlow neuroblasts moved slower and in more tortuous patterns than EGFr-negative neuroblasts. We next questioned whether EGFr stimulation affects SVZ cell migration by imaging Gad65-GFP+ neuroblasts in the presence of transforming growth factor alpha (TGF-α), an EGFr-selective agonist. Indeed, acute exposure to TGF-α decreased the percentage of motile cells by approximately 40%. Conclusions/Significance In summary, the present study directly shows that SVZ stem and progenitor cells are static, that EGFr is retained on some neuroblasts, and that EGFr stimulation negatively regulates migration. This result suggests an additional role for EGFr signaling in the SVZ. PMID:19956583

  17. Nonesterified fatty acids and risk of sudden cardiac death in older adults.

    PubMed

    Djoussé, Luc; Biggs, Mary L; Ix, Joachim H; Kizer, Jorge R; Lemaitre, Rozenn N; Sotoodehnia, Nona; Zieman, Susan J; Mozaffarian, Dariush; Tracy, Russell P; Mukamal, Kenneth J; Siscovick, David S

    2012-04-01

    Although nonesterified fatty acids (NEFA) have been positively associated with coronary heart disease risk factors, limited and inconsistent data are available on the relation between NEFA and sudden cardiac death. Using a prospective design, we studied 4657 older men and women (mean age, 75 years) from the Cardiovascular Health Study (1992-2006) to evaluate the association between plasma NEFA and the risk of sudden cardiac death in older adults. Plasma concentrations of NEFA were measured using established enzymatic methods, and sudden death was adjudicated using medical records, death certificates, proxy interview, and autopsy reports. We used Cox proportional hazard models to estimate multivariable-adjusted relative risks. During a median follow-up of 10.0 years, 221 new cases of sudden cardiac death occurred. In a multivariable model adjusting for age, sex, race, clinic site, alcohol intake, smoking, prevalent coronary heart disease and heart failure, and self-reported health status, relative risks (95% confidence interval) for sudden cardiac death were 1.0 (ref), 1.15 (0.81-1.64), 1.06 (0.72-1.55), and 0.91 (0.60-1.38) across consecutive quartiles of NEFA concentration. In secondary analyses restricted to the first 5 years of follow-up, we also did not observe a statistically significant association between plasma NEFA and sudden cardiac death. Our data do not provide evidence for an association between plasma NEFA measured late in life and the risk of sudden cardiac death in older adults.

  18. Hypoxic exercise training improves cardiac/muscular hemodynamics and is associated with modulated circulating progenitor cells in sedentary men.

    PubMed

    Wang, Jong-Shyan; Lee, Mei-Yi; Lien, Hen-Yu; Weng, Tzu-Pin

    2014-01-01

    Circulating progenitor cells (CPCs) improve cardiovascular function and organ perfusion by enhancing the capacities of endothelial repair and neovasculogenesis. This study investigates whether exercise regimens with/without hypoxia affect cardiac and muscular hemodynamics by modulating CPCs and angiogenic factors. Forty sedentary males were randomly divided into hypoxic (HT, n=20) and normoxic (NT, n=20) training groups. The subjects were trained on a bicycle ergometer at 60%VO(2max) under 15% (HT) or 21% (NT) O2 conditions for 30 min daily, five days weekly for five weeks. After the five-week interventions, the HT group exhibited a larger improvement in aerobic capacity than the NT group. Furthermore, the HT regimen (i) enhanced cardiac output (Q(H)) and perfusion (Q(M))/oxygenation of vastus lateralis during exercise; (ii) increased levels of CD34(+)/KDR(+)/CD117(+), CD34(+)/KDR(+)/CD133(+), and CD34(+)/KDR(+)/CD31(+) cells in blood; (iii) promoted the proliferative capacity of these CPC subsets, and (iv) elevated plasma nitrite/nitrate, stromal cell-derived factor-1 (SDF-1), matrix metalloproteinase-9 (MMP-9), and vascular endothelial growth factor-A (VEGF-A) concentrations. Despite the lack of changes in Q(H) and the number or proliferative capacity of CD34(+)/KDR(+)/CD117(+) or CD34(+)/KDR(+)/CD31(+) cells, the NT regimen elevated both Q(M) and plasma nitrite/nitrate levels and suppressed the shedding of endothelial cells (CD34(-)/KDR(+)/phosphatidylserine(+) cells). The HT regimen improves cardiac and muscular hemodynamic adaptations, possibly by promoting the mobilization/function of CPCs and the production of angiogenic factors. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve

    PubMed Central

    Lang, Hainan; Xing, Yazhi; Brown, LaShardai N.; Samuvel, Devadoss J.; Panganiban, Clarisse H.; Havens, Luke T.; Balasubramanian, Sundaravadivel; Wegner, Michael; Krug, Edward L.; Barth, Jeremy L.

    2015-01-01

    The auditory nerve is the primary conveyor of hearing information from sensory hair cells to the brain. It has been believed that loss of the auditory nerve is irreversible in the adult mammalian ear, resulting in sensorineural hearing loss. We examined the regenerative potential of the auditory nerve in a mouse model of auditory neuropathy. Following neuronal degeneration, quiescent glial cells converted to an activated state showing a decrease in nuclear chromatin condensation, altered histone deacetylase expression and up-regulation of numerous genes associated with neurogenesis or development. Neurosphere formation assays showed that adult auditory nerves contain neural stem/progenitor cells (NSPs) that were within a Sox2-positive glial population. Production of neurospheres from auditory nerve cells was stimulated by acute neuronal injury and hypoxic conditioning. These results demonstrate that a subset of glial cells in the adult auditory nerve exhibit several characteristics of NSPs and are therefore potential targets for promoting auditory nerve regeneration. PMID:26307538

  20. S-Nitrosoglutathione Reductase Deficiency Enhances the Proliferative Expansion of Adult Heart Progenitors and Myocytes Post Myocardial Infarction

    PubMed Central

    Hatzistergos, Konstantinos E; Paulino, Ellena C; Dulce, Raul A; Takeuchi, Lauro M; Bellio, Michael A; Kulandavelu, Shathiyah; Cao, Yenong; Balkan, Wayne; Kanashiro-Takeuchi, Rosemeire M; Hare, Joshua M

    2015-01-01

    Background Mammalian heart regenerative activity is lost before adulthood but increases after cardiac injury. Cardiac repair mechanisms, which involve both endogenous cardiac stem cells (CSCs) and cardiomyocyte cell-cycle reentry, are inadequate to achieve full recovery after myocardial infarction (MI). Mice deficient in S-nitrosoglutathione reductase (GSNOR−⁄−), an enzyme regulating S-nitrosothiol turnover, have preserved cardiac function after MI. Here, we tested the hypothesis that GSNOR activity modulates cardiac cell proliferation in the post-MI adult heart. Methods and Results GSNOR−⁄− and C57Bl6/J (wild-type [WT]) mice were subjected to sham operation (n=3 GSNOR−⁄−; n=3 WT) or MI (n=41 GSNOR−⁄−; n=65 WT). Compared with WT,GSNOR−⁄− mice exhibited improved survival, cardiac performance, and architecture after MI, as demonstrated by higher ejection fraction (P<0.05), lower endocardial volumes (P<0.001), and diminished scar size (P<0.05). In addition, cardiomyocytes from post-MI GSNOR−⁄− hearts exhibited faster calcium decay and sarcomeric relaxation times (P<0.001). Immunophenotypic analysis illustrated that post-MI GSNOR−⁄− hearts demonstrated enhanced neovascularization (P<0.001), c-kit+ CSC abundance (P=0.013), and a ≈3-fold increase in proliferation of adult cardiomyocytes and c-kit+/CD45− CSCs (P<0.0001 and P=0.023, respectively) as measured by using 5-bromodeoxyuridine. Conclusions Loss of GSNOR confers enhanced post-MI cardiac regenerative activity, characterized by enhanced turnover of cardiomyocytes and CSCs. Endogenous denitrosylases exert an inhibitory effect over cardiac repair mechanisms and therefore represents a potential novel therapeutic target. PMID:26178404

  1. β-Adrenergic Regulation of Cardiac Progenitor Cell Death Versus Survival and Proliferation

    PubMed Central

    Khan, Mohsin; Mohsin, Sadia; Avitabile, Daniele; Siddiqi, Sailay; Nguyen, Jonathan; Wallach, Kathleen; Quijada, Pearl; McGregor, Michael; Gude, Natalie; Alvarez, Roberto; Tilley, Douglas G.; Koch, Walter J.; Sussman, Mark A.

    2013-01-01

    Rationale Short-term β-adrenergic stimulation promotes contractility in response to stress but is ultimately detrimental in the failing heart because of accrual of cardiomyocyte death. Endogenous cardiac progenitor cell (CPC) activation may partially offset cardiomyocyte losses, but consequences of long-term β-adrenergic drive on CPC survival and proliferation are unknown. Objective We sought to determine the relationship between β-adrenergic activity and regulation of CPC function. Methods and Results Mouse and human CPCs express only β2 adrenergic receptor (β2-AR) in conjunction with stem cell marker c-kit. Activation of β2-AR signaling promotes proliferation associated with increased AKT, extracellular signal-regulated kinase 1/2, and endothelial NO synthase phosphorylation, upregulation of cyclin D1, and decreased levels of G protein–coupled receptor kinase 2. Conversely, silencing of β2-AR expression or treatment with β2-antagonist ICI 118, 551 impairs CPC proliferation and survival. β1-AR expression in CPC is induced by differentiation stimuli, sensitizing CPC to isoproterenol-induced cell death that is abrogated by metoprolol. Efficacy of β1-AR blockade by metoprolol to increase CPC survival and proliferation was confirmed in vivo by adoptive transfer of CPC into failing mouse myocardium. Conclusions β-adrenergic stimulation promotes expansion and survival of CPCs through β2-AR, but acquisition of β1-AR on commitment to the myocyte lineage results in loss of CPCs and early myocyte precursors. PMID:23243208

  2. Older Adults in Cardiac Rehabilitation: A New Strategy for Enhancing Physical Function.

    ERIC Educational Resources Information Center

    Rejeski, W. Jack; Foy, Capri Gabrielle; Brawley, Lawrence R.; Brubaker, Peter H.; Focht, Brian C.; Norris, James L., III; Smith, Marci L.

    2002-01-01

    Contrasted the effect of a group-mediated cognitive- behavioral intervention (GMCB) versus traditional cardiac rehabilitation (CRP) upon changes in objective and self-reported physical function of older adults after 3 months of exercise therapy. Both groups improved significantly. Adults with lower function at the outset of the intervention…

  3. Concurrent Isolation of 3 Distinct Cardiac Stem Cell Populations From a Single Human Heart Biopsy.

    PubMed

    Monsanto, Megan M; White, Kevin S; Kim, Taeyong; Wang, Bingyan J; Fisher, Kristina; Ilves, Kelli; Khalafalla, Farid G; Casillas, Alexandria; Broughton, Kathleen; Mohsin, Sadia; Dembitsky, Walter P; Sussman, Mark A

    2017-07-07

    The relative actions and synergism between distinct myocardial-derived stem cell populations remain obscure. Ongoing debates on optimal cell population(s) for treatment of heart failure prompted implementation of a protocol for isolation of multiple stem cell populations from a single myocardial tissue sample to develop new insights for achieving myocardial regeneration. Establish a robust cardiac stem cell isolation and culture protocol to consistently generate 3 distinct stem cell populations from a single human heart biopsy. Isolation of 3 endogenous cardiac stem cell populations was performed from human heart samples routinely discarded during implantation of a left ventricular assist device. Tissue explants were mechanically minced into 1 mm 3 pieces to minimize time exposure to collagenase digestion and preserve cell viability. Centrifugation removes large cardiomyocytes and tissue debris producing a single cell suspension that is sorted using magnetic-activated cell sorting technology. Initial sorting is based on tyrosine-protein kinase Kit (c-Kit) expression that enriches for 2 c-Kit + cell populations yielding a mixture of cardiac progenitor cells and endothelial progenitor cells. Flowthrough c-Kit - mesenchymal stem cells are positively selected by surface expression of markers CD90 and CD105. After 1 week of culture, the c-Kit + population is further enriched by selection for a CD133 + endothelial progenitor cell population. Persistence of respective cell surface markers in vitro is confirmed both by flow cytometry and immunocytochemistry. Three distinct cardiac cell populations with individualized phenotypic properties consistent with cardiac progenitor cells, endothelial progenitor cells, and mesenchymal stem cells can be successfully concurrently isolated and expanded from a single tissue sample derived from human heart failure patients. © 2017 American Heart Association, Inc.

  4. Cardiac outflow tract anomalies

    PubMed Central

    Neeb, Zachary; Lajiness, Jacquelyn D.; Bolanis, Esther; Conway, Simon J

    2014-01-01

    The mature outflow tract (OFT) is, in basic terms, a short conduit. It is a simple, although vital, connection situated between contracting muscular heart chambers and a vast embryonic vascular network. Unfortunately, it is also a focal point underlying many multifactorial congenital heart defects (CHDs). Through the use of various animal models combined with human genetic investigations, we are beginning to comprehend the molecular and cellular framework that controls OFT morphogenesis. Clear roles of neural crest cells (NCC) and second heart field (SHF) derivatives have been established during OFT formation and remodeling. The challenge now is to determine how the SHF and cardiac NCC interact, the complex reciprocal signaling that appears to be occurring at various stages of OFT morphogenesis, and finally how endocardial progenitors and primary heart field (PHF) communicate with both these colonizing extra-cardiac lineages. Although we are beginning to understand that this dance of progenitor populations is wonderfully intricate, the underlying pathogenesis and the spatiotemporal cell lineage interactions remain to be fully elucidated. What is now clear is that OFT alignment and septation are independent processes, invested via separate SHF and cardiac neural crest (CNC) lineages. This review will focus on our current understanding of the respective contributions of the SHF and CNC lineage during OFT development and pathogenesis. PMID:24014420

  5. P2Y2 Nucleotide Receptor Prompts Human Cardiac Progenitor Cell Activation by Modulating Hippo Signaling.

    PubMed

    Khalafalla, Farid G; Greene, Steven; Khan, Hashim; Ilves, Kelli; Monsanto, Megan M; Alvarez, Roberto; Chavarria, Monica; Nguyen, Jonathan; Norman, Benjamin; Dembitsky, Walter P; Sussman, Mark A

    2017-11-10

    Autologous stem cell therapy using human c-Kit + cardiac progenitor cells (hCPCs) is a promising therapeutic approach for treatment of heart failure (HF). However, hCPCs derived from aged patients with HF with genetic predispositions and comorbidities of chronic diseases exhibit poor proliferative and migratory capabilities, which impair overall reparative potential for injured myocardium. Therefore, empowering functionally compromised hCPCs with proregenerative molecules ex vivo is crucial for improving the therapeutic outcome in patients with HF. To improve hCPC proliferation and migration responses that are critical for regeneration by targeting proregenerative P2Y 2 nucleotide receptor (P2Y 2 R) activated by extracellular ATP and UTP molecules released following injury/stress. c-Kit + hCPCs were isolated from cardiac tissue of patients with HF undergoing left ventricular assist device implantation surgery. Correlations between P2 nucleotide receptor expression and hCPC growth kinetics revealed downregulation of select P2 receptors, including P2Y 2 R, in slow-growing hCPCs compared with fast growers. hCPC proliferation and migration significantly improved by overexpressing or stimulating P2Y 2 R. Mechanistically, P2Y 2 R-induced proliferation and migration were dependent on activation of YAP (yes-associated protein)-the downstream effector of Hippo signaling pathway. Proliferation and migration of functionally impaired hCPCs are enhanced by P2Y 2 R-mediated YAP activation, revealing a novel link between extracellular nucleotides released during injury/stress and Hippo signaling-a central regulator of cardiac regeneration. Functional correlations exist between hCPC phenotypic properties and P2 purinergic receptor expression. Lack of P2Y 2 R and other crucial purinergic stress detectors could compromise hCPC responsiveness to presence of extracellular stress signals. These findings set the stage for subsequent studies to assess purinergic signaling modulation as a

  6. SOX2 expression levels distinguish between neural progenitor populations of the developing dorsal telencephalon.

    PubMed

    Hutton, Scott R; Pevny, Larysa H

    2011-04-01

    The HMG-Box transcription factor SOX2 is expressed in neural progenitor populations throughout the developing and adult central nervous system and is necessary to maintain their progenitor identity. However, it is unclear whether SOX2 levels are uniformly expressed across all neural progenitor populations. In the developing dorsal telencephalon, two distinct populations of neural progenitors, radial glia and intermediate progenitor cells, are responsible for generating a majority of excitatory neurons found in the adult neocortex. Here we demonstrate, using both cellular and molecular analyses, that SOX2 is differentially expressed between radial glial and intermediate progenitor populations. Moreover, utilizing a SOX2(EGFP) mouse line, we show that this differential expression can be used to prospectively isolate distinct, viable populations of radial glia and intermediate cells for in vitro analysis. Given the limited repertoire of cell-surface markers currently available for neural progenitor cells, this provides an invaluable tool for prospectively identifying and isolating distinct classes of neural progenitor cells from the central nervous system. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Contemporary cardiac surgery for adults with congenital heart disease.

    PubMed

    Beurtheret, Sylvain; Tutarel, Oktay; Diller, Gerhard Paul; West, Cathy; Ntalarizou, Evangelia; Resseguier, Noémie; Papaioannou, Vasileios; Jabbour, Richard; Simpkin, Victoria; Bastin, Anthony J; Babu-Narayan, Sonya V; Bonello, Beatrice; Li, Wei; Sethia, Babulal; Uemura, Hideki; Gatzoulis, Michael A; Shore, Darryl

    2017-08-01

    Advances in early management of congenital heart disease (CHD) have led to an exponential growth in adults with CHD (ACHD). Many of these patients require cardiac surgery. This study sought to examine outcome and its predictors for ACHD cardiac surgery. This is an observational cohort study of prospectively collected data on 1090 consecutive adult patients with CHD, undergoing 1130 cardiac operations for CHD at the Royal Brompton Hospital between 2002 and 2011. Early mortality was the primary outcome measure. Midterm to longer-term survival, cumulative incidence of reoperation, other interventions and/or new-onset arrhythmia were secondary outcome measures. Predictors of early/total mortality were identified. Age at surgery was 35±15 years, 53% male, 52.3% were in New York Heart Association (NYHA) class I, 37.2% in class II and 10.4% in class III/IV. Early mortality was 1.77% with independent predictors NYHA class ≥ III, tricuspid annular plane systolic excursion (TAPSE) <15 mm and female gender. Over a mean follow-up of 2.8±2.6 years, 46 patients died. Baseline predictors of total mortality were NYHA class ≥ III, TAPSE <15 mm and non-elective surgery. The number of sternotomies was not independently associated with neither early nor total mortality. At 10 years, probability of survival was 94%. NYHA class among survivors was significantly improved, compared with baseline. Contemporary cardiac surgery for ACHD performed at a single, tertiary reference centre with a multidisciplinary approach is associated with low mortality and improved functional status. Also, our findings emphasise the point that surgery should not be delayed because of reluctance to reoperate only. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Running rescues defective adult neurogenesis by shortening the length of the cell cycle of neural stem and progenitor cells.

    PubMed

    Farioli-Vecchioli, Stefano; Mattera, Andrea; Micheli, Laura; Ceccarelli, Manuela; Leonardi, Luca; Saraulli, Daniele; Costanzi, Marco; Cestari, Vincenzo; Rouault, Jean-Pierre; Tirone, Felice

    2014-07-01

    Physical exercise increases the generation of new neurons in adult neurogenesis. However, only few studies have investigated the beneficial effects of physical exercise in paradigms of impaired neurogenesis. Here, we demonstrate that running fully reverses the deficient adult neurogenesis within the hippocampus and subventricular zone of the lateral ventricle, observed in mice lacking the antiproliferative gene Btg1. We also evaluated for the first time how running influences the cell cycle kinetics of stem and precursor subpopulations of wild-type and Btg1-null mice, using a new method to determine the cell cycle length. Our data show that in wild-type mice running leads to a cell cycle shortening only of NeuroD1-positive progenitor cells. In contrast, in Btg1-null mice, physical exercise fully reactivates the defective hippocampal neurogenesis, by shortening the S-phase length and the overall cell cycle duration of both neural stem (glial fibrillary acidic protein(+) and Sox2(+)) and progenitor (NeuroD1(+)) cells. These events are sufficient and necessary to reactivate the hyperproliferation observed in Btg1-null early-postnatal mice and to expand the pool of adult neural stem and progenitor cells. Such a sustained increase of cell proliferation in Btg1-null mice after running provides a long-lasting increment of proliferation, differentiation, and production of newborn neurons, which rescues the impaired pattern separation previously identified in Btg1-null mice. This study shows that running positively affects the cell cycle kinetics of specific subpopulations of newly generated neurons and suggests that the plasticity of neural stem cells without cell cycle inhibitory control is reactivated by running, with implications for the long-term modulation of neurogenesis. © 2014 AlphaMed Press.

  9. Management of Postoperative Fever in Adult Cardiac Surgical Patients.

    PubMed

    O'Mara, Susan K

    Postoperative fever after cardiac surgery is a common occurrence. Most fevers are benign and self-limiting resulting from inflammation caused by surgical trauma and blood contact with cardiopulmonary bypass circuit resulting in the release of cytokines. Only a small percentage of time is postoperative fever due to an infection complicating surgery. The presence of fever frequently triggers a battery of diagnostic tests that are costly, could expose the patient to unnecessary risks, and can produce misleading or inconclusive results. It is therefore important that fever be evaluated in a systematic, prudent, clinically appropriate, and cost-effective manner. This article focuses on the current evidence regarding pathophysiology, incidence, causes, evaluation, and management of fever in postoperative adult cardiac surgical patients.

  10. Arginine Methylation Regulates MEIS2 Nuclear Localization to Promote Neuronal Differentiation of Adult SVZ Progenitors.

    PubMed

    Kolb, Jasmine; Anders-Maurer, Marie; Müller, Tanja; Hau, Ann-Christin; Grebbin, Britta Moyo; Kallenborn-Gerhardt, Wiebke; Behrends, Christian; Schulte, Dorothea

    2018-04-10

    Adult neurogenesis is regulated by stem cell niche-derived extrinsic factors and cell-intrinsic regulators, yet the mechanisms by which niche signals impinge on the activity of intrinsic neurogenic transcription factors remain poorly defined. Here, we report that MEIS2, an essential regulator of adult SVZ neurogenesis, is subject to posttranslational regulation in the SVZ olfactory bulb neurogenic system. Nuclear accumulation of MEIS2 in adult SVZ-derived progenitor cells follows downregulation of EGFR signaling and is modulated by methylation of MEIS2 on a conserved arginine, which lies in close proximity to nested binding sites for the nuclear export receptor CRM1 and the MEIS dimerization partner PBX1. Methylation impairs interaction with CRM1 without affecting PBX1 dimerization and thereby allows MEIS2 nuclear accumulation, a prerequisite for neuronal differentiation. Our results describe a form of posttranscriptional modulation of adult SVZ neurogenesis whereby an extrinsic signal fine-tunes neurogenesis through posttranslational modification of a transcriptional regulator of cell fate. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ounzain, Samir; Pezzuto, Iole; Micheletti, Rudi

    We report here that the key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (lncRNAs) during cardiac differentiation and morphogenesis. Enhancer expression correlates with the emergence of active enhancer chromatin states, the initiation of RNA polymerase II at enhancer loci and expression of target genes. Orthologous human sequences are also transcribed in fetal human hearts and cardiac progenitor cells. Throughmore » a systematic bioinformatic analysis, we identified and characterized, for the first time, a catalog of lncRNAs that are expressed during embryonic stem cell differentiation into cardiomyocytes and associated with active cardiac enhancer sequences. RNA-sequencing demonstrates that many of these transcripts are polyadenylated, multi-exonic long noncoding RNAs. Moreover, knockdown of two enhancer-associated lncRNAs resulted in the specific downregulation of their predicted target genes. Interestingly, the reactivation of the fetal gene program, a hallmark of the stress response in the adult heart, is accompanied by increased expression of fetal cardiac enhancer transcripts. Altogether, these findings demonstrate that the activity of cardiac enhancers and expression of their target genes are associated with the production of enhancer-derived lncRNAs.« less

  12. Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease

    DOE PAGES

    Ounzain, Samir; Pezzuto, Iole; Micheletti, Rudi; ...

    2014-08-19

    We report here that the key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (lncRNAs) during cardiac differentiation and morphogenesis. Enhancer expression correlates with the emergence of active enhancer chromatin states, the initiation of RNA polymerase II at enhancer loci and expression of target genes. Orthologous human sequences are also transcribed in fetal human hearts and cardiac progenitor cells. Throughmore » a systematic bioinformatic analysis, we identified and characterized, for the first time, a catalog of lncRNAs that are expressed during embryonic stem cell differentiation into cardiomyocytes and associated with active cardiac enhancer sequences. RNA-sequencing demonstrates that many of these transcripts are polyadenylated, multi-exonic long noncoding RNAs. Moreover, knockdown of two enhancer-associated lncRNAs resulted in the specific downregulation of their predicted target genes. Interestingly, the reactivation of the fetal gene program, a hallmark of the stress response in the adult heart, is accompanied by increased expression of fetal cardiac enhancer transcripts. Altogether, these findings demonstrate that the activity of cardiac enhancers and expression of their target genes are associated with the production of enhancer-derived lncRNAs.« less

  13. Margaret Buckingham, discoveries in skeletal and cardiac muscle development, elected to the National Academy of Science.

    PubMed

    Rudnicki, Michael A

    2012-06-07

    Margaret Buckingham was presented as a newly elected member to the National Academy of Sciences on 28 April 2012. Over the course of her career, Dr Buckingham made many seminal contributions to the understanding of skeletal muscle and cardiac development. Her studies on cardiac progenitor populations has provided insight into understanding heart malformations, while her work on skeletal muscle progenitors has elucidated their embryonic origins and the transcriptional hierarchies controlling their developmental progression.

  14. Noninvasive Imaging of Administered Progenitor Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven R Bergmann, M.D., Ph.D.

    The objective of this research grant was to develop an approach for labeling progenitor cells, specifically those that we had identified as being able to replace ischemic heart cells, so that the distribution could be followed non-invasively. In addition, the research was aimed at determining whether administration of progenitor cells resulted in improved myocardial perfusion and function. The efficiency and toxicity of radiolabeling of progenitor cells was to be evaluated. For the proposed clinical protocol, subjects with end-stage ischemic coronary artery disease were to undergo a screening cardiac positron emission tomography (PET) scan using N-13 ammonia to delineate myocardial perfusionmore » and function. If they qualified based on their PET scan, they would undergo an in-hospital protocol whereby CD34+ cells were stimulated by the administration of granulocytes-colony stimulating factor (G-CSF). CD34+ cells would then be isolated by apharesis, and labeled with indium-111 oxine. Cells were to be re-infused and subjects were to undergo single photon emission computed tomography (SPECT) scanning to evaluate uptake and distribution of labeled progenitor cells. Three months after administration of progenitor cells, a cardiac PET scan was to be repeated to evaluate changes in myocardial perfusion and/or function. Indium oxine is a radiopharmaceutical for labeling of autologous lymphocytes. Indium-111 (In-111) decays by electron capture with a t{sub ½} of 67.2 hours (2.8 days). Indium forms a saturated complex that is neutral, lipid soluble, and permeates the cell membrane. Within the cell, the indium-oxyquinolone complex labels via indium intracellular chelation. Following leukocyte labeling, ~77% of the In-111 is incorporated in the cell pellet. The presence of red cells and /or plasma reduces the labeling efficacy. Therefore, the product needed to be washed to eliminate plasma proteins. This repeated washing can damage cells. The CD34 selected product was a

  15. Undernutrition during pregnancy in mice leads to dysfunctional cardiac muscle respiration in adult offspring.

    PubMed

    Beauchamp, Brittany; Thrush, A Brianne; Quizi, Jessica; Antoun, Ghadi; McIntosh, Nathan; Al-Dirbashi, Osama Y; Patti, Mary-Elizabeth; Harper, Mary-Ellen

    2015-04-10

    Intrauterine growth restriction (IUGR) is associated with an increased risk of developing obesity, insulin resistance and cardiovascular disease. However, its effect on energetics in heart remains unknown. In the present study, we examined respiration in cardiac muscle and liver from adult mice that were undernourished in utero. We report that in utero undernutrition is associated with impaired cardiac muscle energetics, including decreased fatty acid oxidative capacity, decreased maximum oxidative phosphorylation rate and decreased proton leak respiration. No differences in oxidative characteristics were detected in liver. We also measured plasma acylcarnitine levels and found that short-chain acylcarnitines are increased with in utero undernutrition. Results reveal the negative impact of suboptimal maternal nutrition on adult offspring cardiac energy metabolism, which may have life-long implications for cardiovascular function and disease risk. © 2015 Authors.

  16. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult

    PubMed Central

    Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr -/- and in utero TCDD-exposed Ahr +/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr -/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  17. [Stem cells: searching predisposition to cardiac commitment by surface markers expression].

    PubMed

    Lara-Martínez, Luis A; Gutiérrez-Villegas, Ingrid; Arenas-Luna, Victor M; Hernández-Gutierrez, Salomón

    2018-01-05

    It is well-known that cardiovascular diseases are the leading cause of death worldwide, and represent an important economic burden to health systems. In an attempt to solve this problem, stem cell therapy has emerged as a therapeutic option. Within the last 20 years, a great variety of stem cells have been used in different myocardial infarction models. Up until now, the use of cardiac stem cells (CSCs) has seemed to be the best option, but the inaccessibility and scarcity of these cells make their use unreliable. Additionally, there is a high risk as they have to be obtained directly from the heart of the patient. Unlike CSCs, adult stem cells originating from bone marrow or adipose tissue, among others, appear to be an attractive option due to their easier accessibility and abundance, but particularly due to the probable existence of cardiac progenitors among their different sub-populations. In this review an analysis is made of the surface markers present in CSCs compared with other adult stem cells. This suggested the pre-existence of cells sharing specific surface markers with CSCs, a predictable immunophenotype present in some cells, although in low proportions, and with a potential of cardiac differentiation that could be similar to CSCs, thus increasing their therapeutic value. This study highlights new perspectives regarding MSCs that would enable some of these sub-populations to be differentiated at cardiac tissue level. Copyright © 2017 Instituto Nacional de Cardiología Ignacio Chávez. Publicado por Masson Doyma México S.A. All rights reserved.

  18. mAb C19 targets a novel surface marker for the isolation of human cardiac progenitor cells from human heart tissue and differentiated hESCs.

    PubMed

    Leung, Hau Wan; Moerkamp, Asja T; Padmanabhan, Jayanthi; Ng, Sze-Wai; Goumans, Marie-José; Choo, Andre

    2015-05-01

    Cardiac progenitor cells (CPCs) have been isolated from adult and developing hearts using an anti-mouse Sca-1 antibody. However, the absence of a human Sca-1 homologue has hampered the clinical application of the CPCs. Therefore, we generated novel monoclonal antibodies (mAbs) specifically raised against surface markers expressed by resident human CPCs. Here, we explored the suitability of one of these mAbs, mAb C19, for the identification, isolation and characterization of CPCs from fetal heart tissue and differentiating cultures of human embryonic stem cells (hESCs). Using whole-cell immunization, mAbs were raised against Sca-1+ CPCs and screened for reactivity to various CPC lines by flow cytometry. mAb C19 was found to be specific for Sca-1+ CPCs, with high cell surface binding capabilities. mAb C19 stained small stem-like cells in cardiac tissue sections. Moreover, during differentiation of hESCs towards cardiomyocytes, a transient population of cells with mAb C19 reactivity was identified and isolated using magnetic-activated cell sorting. Their cell fate was tracked and found to improve cardiomyocyte purity from hESC-derived cultures. mAb C19+ CPCs, from both hESC differentiation and fetal heart tissues, were maintained and expanded in culture, while retaining their CPC-like characteristics and their ability to further differentiate into cardiomyocytes by stimulation with TGFβ1. Finally, gene expression profiling of these mAb C19+ CPCs suggested a highly angiogenic nature, which was further validated by cell-based angiogenesis assays. mAb C19 is a new surface marker for the isolation of multipotent CPCs from both human heart tissues and differentiating hESCs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Arshi, Armin; Nakashima, Yasuhiro; Nakano, Haruko; Eaimkhong, Sarayoot; Evseenko, Denis; Reed, Jason; Stieg, Adam Z.; Gimzewski, James K.; Nakano, Atsushi

    2013-04-01

    While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell-cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes.

  20. GLI1+ progenitor cells in the adrenal capsule of the adult mouse give rise to heterotopic gonadal-like tissue.

    PubMed

    Dörner, Julia; Martinez Rodriguez, Verena; Ziegler, Ricarda; Röhrig, Theresa; Cochran, Rebecca S; Götz, Ronni M; Levin, Mark D; Pihlajoki, Marjut; Heikinheimo, Markku; Wilson, David B

    2017-02-05

    As certain strains of mice age, hyperplastic lesions resembling gonadal tissue accumulate beneath the adrenal capsule. Gonadectomy (GDX) accelerates this heterotopic differentiation, resulting in the formation of wedge-shaped adrenocortical neoplasms that produce sex steroids. Stem/progenitor cells that reside in the adrenal capsule and retain properties of the adrenogonadal primordium are thought to be the source of this heterotopic tissue. Here, we demonstrate that GLI1 + progenitors in the adrenal capsule give rise to gonadal-like cells that accumulate in the subcapsular region. A tamoxifen-inducible Cre driver (Gli1-creER T2 ) and two reporters (R26R-lacZ, R26R-confetti) were used to track the fate of GLI1 + cells in the adrenal glands of B6D2F2 mice, a strain that develops both GDX-induced adrenocortical neoplasms and age-dependent subcapsular cell hyperplasia. In gonadectomized B6D2F2 mice GLI1 + progenitors contributed to long-lived adrenal capsule cells and to adrenocortical neoplasms that expressed Gata4 and Foxl2, two prototypical gonadal markers. Pdgfra, a gene expressed in adrenocortical stromal cells, was upregulated in the GDX-induced neoplasms. In aged non-gonadectomized B6D2F2 mice GLI1 + progenitors gave rise to patches of subcapsular cell hyperplasia. Treatment with GANT61, a small-molecule GLI antagonist, attenuated the upregulation of gonadal-like markers (Gata4, Amhr2, Foxl2) in response to GDX. These findings support the premise that GLI1 + progenitor cells in the adrenal capsule of the adult mouse give rise to heterotopic tissue. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice.

    PubMed

    La Merrill, Michele A; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph

    2016-11-01

    Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. We hypothesized that perinatal DDT exposure causes hypertension in adult mice. DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722-1727; http://dx.doi.org/10.1289/EHP164.

  2. Cardiomyocyte differentiation of rat bone marrow multipotent progenitor cells is associated with downregulation of Oct-4 expression.

    PubMed

    Lu, Tiewei; Pelacho, Beatriz; Hao, Hong; Luo, Min; Zhu, Jing; Verfaillie, Catherine M; Tian, Jie; Liu, Zhenguo

    2010-10-01

    This study was to determine if bone marrow multipotent adult progenitor cells (MAPCs) underwent cardiac specification and Oct-4 expression during their cardiomyocyte differentiation in vitro. MAPCs were isolated from rat bone marrow, treated with 5-azacytidine (5-aza, 1μM) for 24h, and cultured in a serum-free medium for cardiac differentiation for up to 35 days. The cells started to express early cardiac-specific genes Nkx2.5 and GATA-4 with a significant increase in their mRNA level within 24h after 5-aza treatment. Western blotting analysis and immunofluorescence staining revealed that the cardiac-specific proteins connexin-43 and troponin I were expressed in the cells 7 days after 5-aza treatment. Flow cytometry analysis demonstrated that over 37% of the cells were positive for troponin I by 35 days of differentiation, although the cells did not display spontaneous contraction. On the other hand, the undifferentiated MAPCs expressed a significant level of the stem-cell-specific marker Oct-4 that was dramatically decreased in the cells shortly after the initiation of cardiomyocyte differentiation as evaluated using real-time (RT)-polymerase chain reaction, Western blotting, immunofluorescence staining, and flow cytometry. These data indicated that MAPCs were able to effectively differentiate into cardiomyocyte-like cells after 5-aza induction in association with downregulation of Oct-4 expression.

  3. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages

    PubMed Central

    Laugwitz, Karl-Ludwig; Moretti, Alessandra; Lam, Jason; Gruber, Peter; Chen, Yinhong; Woodard, Sarah; Lin, Li-Zhu; Cai, Chen-Leng; Lu, Min Min; Reth, Michael; Platoshyn, Oleksandr; Yuan, Jason X.-J.; Evans, Sylvia; Chien, Kenneth R.

    2017-01-01

    The purification, renewal and differentiation of native cardiac progenitors would form a mechanistic underpinning for unravelling steps for cardiac cell lineage formation, and their links to forms of congenital and adult cardiac diseases1–3. Until now there has been little evidence for native cardiac precursor cells in the postnatal heart4. Herein, we report the identification of isl1+ cardiac progenitors in postnatal rat, mouse and human myocardium. A cardiac mesenchymal feeder layer allows renewal of the isolated progenitor cells with maintenance of their capability to adopt a fully differentiated cardiomyocyte phenotype. Tamoxifen-inducible Cre/lox technology enables selective marking of this progenitor cell population including its progeny, at a defined time, and purification to relative homogeneity. Co-culture studies with neonatal myocytes indicate that isl1+ cells represent authentic, endogenous cardiac progenitors (cardioblasts) that display highly efficient conversion to a mature cardiac phenotype with stable expression of myocytic markers (25%) in the absence of cell fusion, intact Ca2+-cycling, and the generation of action potentials. The discovery of native cardioblasts represents a genetically based system to identify steps in cardiac cell lineage formation and maturation in development and disease. PMID:15703750

  4. FGF10/FGFR2b signaling is essential for cardiac fibroblast development and growth of the myocardium

    PubMed Central

    Vega-Hernández, Mónica; Kovacs, Attila; De Langhe, Stijn; Ornitz, David M.

    2011-01-01

    The epicardium serves as a source of growth factors that regulate myocardial proliferation and as a source of epicardial-derived cells (EPDC), which give rise to interstitial cardiac fibroblasts and perivascular cells. These progenitors populate the compact myocardium to become part of the mature coronary vasculature and fibrous skeleton of the heart. Little is known about the mechanisms that regulate EPDC migration into the myocardium or the functions carried out by these cells once they enter the myocardium. However, it has been proposed that cardiac fibroblasts are important for growth of the heart during late gestation and are a source of homeostatic factors in the adult. Here, we identify a myocardial to epicardial fibroblast growth factor (FGF) signal, mediated by FGF10 and FGFR2b, that is essential for movement of cardiac fibroblasts into the compact myocardium. Inactivation of this signaling pathway results in fewer epicardial derived cells within the compact myocardium, decreased myocardial proliferation and a resulting smaller thin-walled heart. PMID:21750042

  5. Chemical genetics and its potential in cardiac stem cell therapy

    PubMed Central

    Vieira, Joaquim M; Riley, Paul R

    2013-01-01

    Over the last decade or so, intensive research in cardiac stem cell biology has led to significant discoveries towards a potential therapy for cardiovascular disease; the main cause of morbidity and mortality in humans. The major goal within the field of cardiovascular regenerative medicine is to replace lost or damaged cardiac muscle and coronaries following ischaemic disease. At present, de novo cardiomyocytes can be generated either in vitro, for cell transplantation or disease modelling using directed differentiation of embryonic stem cells or induced pluripotent stem cells, or in vivo via direct reprogramming of resident adult cardiac fibroblast or ectopic stimulation of resident cardiac stem or progenitor cells. A major bottleneck with all of these approaches is the low efficiency of cardiomyocyte differentiation alongside their relative functional immaturity. Chemical genetics, and the application of phenotypic screening with small molecule libraries, represent a means to enhance understanding of the molecular pathways controlling cardiovascular cell differentiation and, moreover, offer the potential for discovery of new drugs to invoke heart repair and regeneration. Here, we review the potential of chemical genetics in cardiac stem cell therapy, highlighting not only the major contributions to the field so far, but also the future challenges. LINKED ARTICLES This article is part of a themed section on Regenerative Medicine and Pharmacology: A Look to the Future. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-2 PMID:22385148

  6. Congenital and hereditary causes of sudden cardiac death in young adults: diagnosis, differential diagnosis, and risk stratification.

    PubMed

    Stojanovska, Jadranka; Garg, Anubhav; Patel, Smita; Melville, David M; Kazerooni, Ella A; Mueller, Gisela C

    2013-01-01

    Sudden cardiac death is defined as death from unexpected circulatory arrest-usually a result of cardiac arrhythmia-that occurs within 1 hour of the onset of symptoms. Proper and timely identification of individuals at risk for sudden cardiac death and the diagnosis of its predisposing conditions are vital. A careful history and physical examination, in addition to electrocardiography and cardiac imaging, are essential to identify conditions associated with sudden cardiac death. Among young adults (18-35 years), sudden cardiac death most commonly results from a previously undiagnosed congenital or hereditary condition, such as coronary artery anomalies and inherited cardiomyopathies (eg, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy [ARVC], dilated cardiomyopathy, and noncompaction cardiomyopathy). Overall, the most common causes of sudden cardiac death in young adults are, in descending order of frequency, hypertrophic cardiomyopathy, coronary artery anomalies with an interarterial or intramural course, and ARVC. Often, sudden cardiac death is precipitated by ventricular tachycardia or fibrillation and may be prevented with an implantable cardioverter defibrillator (ICD). Risk stratification to determine the need for an ICD is challenging and involves imaging, particularly echocardiography and cardiac magnetic resonance (MR) imaging. Coronary artery anomalies, a diverse group of congenital disorders with a variable manifestation, may be depicted at coronary computed tomographic angiography or MR angiography. A thorough understanding of clinical risk stratification, imaging features, and complementary diagnostic tools for the evaluation of cardiac disorders that may lead to sudden cardiac death is essential to effectively use imaging to guide diagnosis and therapy.

  7. Age-Associated Defects in EphA2 Signaling Impair the Migration of Human Cardiac Progenitor Cells

    PubMed Central

    Goichberg, Polina; Kannappan, Ramaswamy; Cimini, Maria; Bai, Yingnan; Sanada, Fumihiro; Sorrentino, Andrea; Signore, Sergio; Kajstura, Jan; Rota, Marcello; Anversa, Piero; Leri, Annarosa

    2014-01-01

    Background Aging negatively impacts on the function of resident human cardiac progenitor cells (hCPCs). Effective regeneration of the injured heart requires mobilization of hCPCs to the sites of damage. In the young heart, signaling by the guidance receptor EphA2 in response to the ephrin A1 ligand promotes hCPC motility and improves cardiac recovery after infarction. Methods and Results We report that old hCPCs are characterized by cell-autonomous inhibition of their migratory ability ex vivo and impaired translocation in vivo in the damaged heart. EphA2 expression was not decreased in old hCPCs; however, the elevated level of reactive oxygen species in aged cells induced post-translational modifications of the EphA2 protein. EphA2 oxidation interfered with ephrin A1-stimulated receptor auto-phosphorylation, activation of Src family kinases, and caveolin-1-mediated internalization of the receptor. Cellular aging altered the EphA2 endocytic route, affecting the maturation of EphA2-containing endosomes and causing premature signal termination. Over-expression of functionally intact EphA2 in old hCPCs corrected the defects in endocytosis and downstream signaling, enhancing cell motility. Based on the ability of phenotypically young hCPCs to respond efficiently to ephrin A1, we developed a novel methodology for the prospective isolation of live hCPCs with preserved migratory capacity and growth reserve. Conclusions Our data demonstrate that the ephrin A1/EphA2 pathway may serve as a target to facilitate trafficking of hCPCs in the senescent myocardium. Importantly, EphA2 receptor function can be implemented for the selection of hCPCs with high therapeutic potential, a clinically relevant strategy that does not require genetic manipulation of stem cells. PMID:24141256

  8. Strategies to reverse endothelial progenitor cell dysfunction in diabetes.

    PubMed

    Petrelli, Alessandra; Di Fenza, Raffaele; Carvello, Michele; Gatti, Francesca; Secchi, Antonio; Fiorina, Paolo

    2012-01-01

    Bone-marrow-derived cells-mediated postnatal vasculogenesis has been reported as the main responsible for the regulation of vascular homeostasis in adults. Since their discovery, endothelial progenitor cells have been depicted as mediators of postnatal vasculogenesis for their peculiar phenotype (partially staminal and partially endothelial), their ability to differentiate in endothelial cell line and to be incorporated into the vessels wall during ischemia/damage. Diabetes mellitus, a condition characterized by cardiovascular disease, nephropathy, and micro- and macroangiopathy, showed a dysfunction of endothelial progenitor cells. Herein, we review the mechanisms involved in diabetes-related dysfunction of endothelial progenitor cells, highlighting how hyperglycemia affects the different steps of endothelial progenitor cells lifetime (i.e., bone marrow mobilization, trafficking into the bloodstream, differentiation in endothelial cells, and homing in damaged tissues/organs). Finally, we review preclinical and clinical strategies that aim to revert diabetes-induced dysfunction of endothelial progenitor cells as a means of finding new strategies to prevent diabetic complications.

  9. Centroacinar Cells Are Progenitors That Contribute to Endocrine Pancreas Regeneration

    PubMed Central

    Delaspre, Fabien; Beer, Rebecca L.; Rovira, Meritxell; Huang, Wei; Wang, Guangliang; Gee, Stephen; Vitery, Maria del Carmen; Wheelan, Sarah J.

    2015-01-01

    Diabetes is associated with a paucity of insulin-producing β-cells. With the goal of finding therapeutic routes to treat diabetes, we aim to find molecular and cellular mechanisms involved in β-cell neogenesis and regeneration. To facilitate discovery of such mechanisms, we use a vertebrate organism where pancreatic cells readily regenerate. The larval zebrafish pancreas contains Notch-responsive progenitors that during development give rise to adult ductal, endocrine, and centroacinar cells (CACs). Adult CACs are also Notch responsive and are morphologically similar to their larval predecessors. To test our hypothesis that adult CACs are also progenitors, we took two complementary approaches: 1) We established the transcriptome for adult CACs. Using gene ontology, transgenic lines, and in situ hybridization, we found that the CAC transcriptome is enriched for progenitor markers. 2) Using lineage tracing, we demonstrated that CACs do form new endocrine cells after β-cell ablation or partial pancreatectomy. We concluded that CACs and their larval predecessors are the same cell type and represent an opportune model to study both β-cell neogenesis and β-cell regeneration. Furthermore, we show that in cftr loss-of-function mutants, there is a deficiency of larval CACs, providing a possible explanation for pancreatic complications associated with cystic fibrosis. PMID:26153247

  10. The role of the sca-1+/CD31- cardiac progenitor cell population in postinfarction left ventricular remodeling.

    PubMed

    Wang, Xiaohong; Hu, Qingsong; Nakamura, Yasuhiro; Lee, Joseph; Zhang, Ge; From, Arthur H L; Zhang, Jianyi

    2006-07-01

    Cardiac stem cell-like populations exist in adult hearts, and their roles in cardiac repair remain to be defined. Sca-1 is an important surface marker for cardiac and other somatic stem cells. We hypothesized that heart-derived Sca-1(+)/CD31(-) cells may play a role in myocardial infarction-induced cardiac repair/remodeling. Mouse heart-derived Sca-1(+)/CD31(-) cells cultured in vitro could be induced to express both endothelial cell and cardiomyocyte markers. Immunofluorescence staining and fluorescence-activated cell sorting analysis indicated that endogenous Sca-1(+)/CD31(-) cells were significantly increased in the mouse heart 7 days after myocardial infarction (MI). Western blotting confirmed elevated Sca-1 protein expression in myocardium 7 days after MI. Transplantation of Sca-1(+)/CD31(-) cells into the acutely infarcted mouse heart attenuated the functional decline and adverse structural remodeling initiated by MI as evidenced by an increased left ventricular (LV) ejection fraction, a decreased LV end-diastolic dimension, a decreased LV end-systolic dimension, a significant increase of myocardial neovascularization, and modest cardiomyocyte regeneration. Attenuation of LV remodeling was accompanied by remarkably improved myocardial bioenergetic characteristics. The beneficial effects of cell transplantation appear to primarily depend on paracrine effects of the transplanted cells on new vessel formation and native cardiomyocyte function. Sca-1(+)/CD31(-) cells may hold therapeutic possibilities with regard to the treatment of ischemic heart disease.

  11. Generation of immortal cell lines from the adult pituitary: role of cAMP on differentiation of SOX2-expressing progenitor cells to mature gonadotropes.

    PubMed

    Kim, Ginah L; Wang, Xiaomei; Chalmers, Jennifer A; Thompson, David R; Dhillon, Sandeep S; Koletar, Margaret M; Belsham, Denise D

    2011-01-01

    The pituitary is a complex endocrine tissue composed of a number of unique cell types distinguished by the expression and secretion of specific hormones, which in turn control critical components of overall physiology. The basic function of these cells is understood; however, the molecular events involved in their hormonal regulation are not yet fully defined. While previously established cell lines have provided much insight into these regulatory mechanisms, the availability of representative cell lines from each cell lineage is limited, and currently none are derived from adult pituitary. We have therefore used retroviral transfer of SV40 T-antigen to mass immortalize primary pituitary cell culture from an adult mouse. We have generated 19 mixed cell cultures that contain cells from pituitary cell lineages, as determined by RT-PCR analysis and immunocytochemistry for specific hormones. Some lines expressed markers associated with multipotent adult progenitor cells or transit-amplifying cells, including SOX2, nestin, S100, and SOX9. The progenitor lines were exposed to an adenylate cyclase activator, forskolin, over 7 days and were induced to differentiate to a more mature gonadotrope cell, expressing significant levels of α-subunit, LHβ, and FSHβ mRNAs. Additionally, clonal populations of differentiated gonadotropes were exposed to 30 nM gonadotropin-releasing hormone and responded appropriately with a significant increase in α-subunit and LHβ transcription. Further, exposure of the lines to a pulse paradigm of GnRH, in combination with 17β-estradiol and dexamethasone, significantly increased GnRH receptor mRNA levels. This array of adult-derived pituitary cell models will be valuable for both studies of progenitor cell characteristics and modulation, and the molecular analysis of individual pituitary cell lineages.

  12. Cardiac progenitor cell‑derived exosomes promote H9C2 cell growth via Akt/mTOR activation.

    PubMed

    Li, Shentang; Jiang, Jie; Yang, Zuocheng; Li, Zhuoying; Ma, Xing; Li, Xin

    2018-05-21

    Exosomes are cell‑derived vesicles released from a variety of mammalian cells that are involved in cell‑to‑cell signalling. It has been reported that cardiac progenitor cells (CPCs) derived from an adult heart are one of the most promising stem cell types for cardioprotection and repair. The mammalian target of rapamycin (mTOR) signalling pathway is a pivotal regulator in CPCs, therefore, CPC‑derived exosomes were used in the present study to investigate whether it can promote H9C2 cell growth through the protein kinase B (PKB, or Akt)/mTOR signalling pathway. The CPCs were isolated from Sprague‑Dawley hearts. Following treatment with a specific medium, the exosomes were purified and identified by electron micrograph and western blot assays, using CD63 and CD81 as markers. The methyl‑thiazolyl‑tetrazolium and 5‑ethynyl‑2'‑deoxyuridine methods were used to detect H9C2 cell growth. The expression of Akt and mTOR were detected by western blot analysis following treatment with 200 or 400 µg/ml of exosomes for 24 or 48 h, respectively. It was found that, compared with higher concentrations of exosomes, prolonging the duration of exposure promoted cell growth. Accordingly, CPC‑derived exosomes stimulated the expression of Akt to a marked degree; groups treated with exosomes for 48 h showed higher expression of Akt than those treated for 24 h at the same concentration. mTOR was also stimulated by CPC‑derived exosomes. The activation of mTOR increased in accordance with the treatment time at an exosome concentration of 200 µg/ml and decreased with treatment time at an exosome concentration of 400 µg/ml. In conclusion, the present study demonstrated that CPC‑derived exosomes promoted H9C2 cell growth via the activation of Akt/mTOR in a time‑dependent manner at a relatively low exosome concentration, which may provide a novel therapy for cardiovascular disease.

  13. p62 Promotes Amino Acid Sensitivity of mTOR Pathway and Hepatic Differentiation in Adult Liver Stem/Progenitor Cells.

    PubMed

    Sugiyama, Masakazu; Yoshizumi, Tomoharu; Yoshida, Yoshihiro; Bekki, Yuki; Matsumoto, Yoshihiro; Yoshiya, Shohei; Toshima, Takeo; Ikegami, Toru; Itoh, Shinji; Harimoto, Norifumi; Okano, Shinji; Soejima, Yuji; Shirabe, Ken; Maehara, Yoshihiko

    2017-08-01

    Autophagy is a homeostatic process regulating turnover of impaired proteins and organelles, and p62 (sequestosome-1, SQSTM1) functions as the autophagic receptor in this process. p62 also functions as a hub for intracellular signaling such as that in the mammalian target of rapamycin (mTOR) pathway. Liver stem/progenitor cells have the potential to differentiate to form hepatocytes or cholangiocytes. In this study, we examined effects of autophagy, p62, and associated signaling on hepatic differentiation. Adult stem/progenitor cells were isolated from the liver of mice with chemically induced liver injury. Effects of autophagy, p62, and related signaling pathways on hepatic differentiation were investigated by silencing the genes for autophagy protein 5 (ATG5) and/or SQSTM1/p62 using small interfering RNAs. Hepatic differentiation was assessed based on increased albumin and hepatocyte nuclear factor 4α, as hepatocyte markers, and decreased cytokeratin 19 and SOX9, as stem/progenitor cell markers. These markers were measured using quantitative RT-PCR, immunofluorescence, and Western blotting. ATG5 silencing decreased active LC3 and increased p62, indicating inhibition of autophagy. Inhibition of autophagy promoted hepatic differentiation in the stem/progenitor cells. Conversely, SQSTM1/p62 silencing impaired hepatic differentiation. A suggested mechanism for p62-dependent hepatic differentiation in our study was activation of the mTOR pathway by amino acids. Amino acid activation of mTOR signaling was enhanced by ATG5 silencing and suppressed by SQSTM1/p62 silencing. Our findings indicated that promoting amino acid sensitivity of the mTOR pathway is dependent on p62 accumulated by inhibition of autophagy and that this process plays an important role in the hepatic differentiation of stem/progenitor cells. J. Cell. Physiol. 232: 2112-2124, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice

    PubMed Central

    La Merrill, Michele A.; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph

    2016-01-01

    Background: Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. Objective: We hypothesized that perinatal DDT exposure causes hypertension in adult mice. Methods: DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Results: Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. Conclusions: These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722–1727; http://dx.doi.org/10.1289/EHP164 PMID:27325568

  15. Prognostic value of serum phosphate level in adult patients resuscitated from cardiac arrest.

    PubMed

    Jung, Yong Hun; Lee, Byung Kook; Jeung, Kyung Woon; Youn, Chun Song; Lee, Dong Hun; Lee, Sung Min; Heo, Tag; Min, Yong Il

    2018-07-01

    Several studies have reported increased levels of phosphate after cardiac arrest. Given the relationship between phosphate level and the severity of ischaemic injury reported in previous studies, higher phosphate levels may be associated with worse outcomes. We investigated the prognostic value of phosphate level after the restoration of spontaneous circulation (ROSC) in adult cardiac arrest patients. This study was a retrospective observational study including adult cardiac arrest survivors treated at the Chonnam National University Hospital between January 2014 and June 2017. From medical records, data regarding clinical characteristics, outcome at hospital discharge, and laboratory parameters including phosphate levels after ROSC were collected. The primary outcome was poor outcome at hospital discharge, defined as Cerebral Performance Categories 3-5. Of the 674 included patients, 465 had poor outcome at hospital discharge. Serum phosphate level was significantly higher in patients with poor outcome than in those with good outcome (p < 0.001). Phosphate level was correlated with time to ROSC (r = 0.350, p < 0.001). Receiver operating characteristic curve analysis revealed an area under the curve of 0.805 (95% confidence interval [CI], 0.777-0.838) for phosphate level. In multivariate analysis, a higher phosphate level was independently associated with poor outcome at hospital discharge (odds ratio, 1.432; 95% CI, 1.245-1.626; p < 0.001). A higher phosphate level after ROSC was independently associated with poor outcome at hospital discharge in adult cardiac arrest patients. However, given its modest prognostic performance, phosphate level should be used in combination with other prognostic indicators. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord.

    PubMed

    Keirstead, H S; Levine, J M; Blakemore, W F

    1998-02-01

    Elucidation of the response of oligodendrocyte progenitor cell populations to demyelination in the adult central nervous system (CNS) is critical to understanding why remyelination fails in multiple sclerosis. Using the anti-NG2 monoclonal antibody to identify oligodendrocyte progenitor cells, we have documented their response to antibody-induced demyelination in the dorsal column of the adult rat spinal cord. The number of NG2+ cells in the vicinity of demyelinated lesions increased by 72% over the course of 3 days following the onset of demyelination. This increase in NG2+ cell numbers did not reflect a nonspecific staining of reactive cells, as GFAP, OX-42, and Rip antibodies did not co-localise with NG2 + cells in double immunostained tissue sections. NG2 + cells incorporated BrdU 48-72 h following the onset of demyelination. After the onset of remyelination (10-14 days), the number of NG2+ cells decreased to 46% of control levels and remained consistently low for 2 months. When spinal cords were exposed to 40 Grays of x-irradiation prior to demyelination, the number of NG2+ cells decreased to 48% of control levels by 3 days following the onset of demyelination and remained unchanged at 3 weeks. Since 40 Grays of x-irradiation kills dividing cells, these studies illustrate a responsive and nonresponsive NG2+ cell population following demyelination in the adult spinal cord and suggest that the responsive NG2+ cell population does not renew itself.

  17. Disturbance of cardiac gene expression and cardiomyocyte structure predisposes Mecp2-null mice to arrhythmias

    PubMed Central

    Hara, Munetsugu; Takahashi, Tomoyuki; Mitsumasu, Chiaki; Igata, Sachiyo; Takano, Makoto; Minami, Tomoko; Yasukawa, Hideo; Okayama, Satoko; Nakamura, Keiichiro; Okabe, Yasunori; Tanaka, Eiichiro; Takemura, Genzou; Kosai, Ken-ichiro; Yamashita, Yushiro; Matsuishi, Toyojiro

    2015-01-01

    Methyl-CpG-binding protein 2 (MeCP2) is an epigenetic regulator of gene expression that is essential for normal brain development. Mutations in MeCP2 lead to disrupted neuronal function and can cause Rett syndrome (RTT), a neurodevelopmental disorder. Previous studies reported cardiac dysfunction, including arrhythmias in both RTT patients and animal models of RTT. In addition, recent studies indicate that MeCP2 may be involved in cardiac development and dysfunction, but its role in the developing and adult heart remains unknown. In this study, we found that Mecp2-null ESCs could differentiate into cardiomyocytes, but the development and further differentiation of cardiovascular progenitors were significantly affected in MeCP2 deficiency. In addition, we revealed that loss of MeCP2 led to dysregulation of endogenous cardiac genes and myocardial structural alterations, although Mecp2-null mice did not exhibit obvious cardiac functional abnormalities. Furthermore, we detected methylation of the CpG islands in the Tbx5 locus, and showed that MeCP2 could target these sequences. Taken together, these results suggest that MeCP2 is an important regulator of the gene-expression program responsible for maintaining normal cardiac development and cardiomyocyte structure. PMID:26073556

  18. Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities.

    PubMed

    Casey, Alison E; Sinha, Ankit; Singhania, Rajat; Livingstone, Julie; Waterhouse, Paul; Tharmapalan, Pirashaanthy; Cruickshank, Jennifer; Shehata, Mona; Drysdale, Erik; Fang, Hui; Kim, Hyeyeon; Isserlin, Ruth; Bailey, Swneke; Medina, Tiago; Deblois, Genevieve; Shiah, Yu-Jia; Barsyte-Lovejoy, Dalia; Hofer, Stefan; Bader, Gary; Lupien, Mathieu; Arrowsmith, Cheryl; Knapp, Stefan; De Carvalho, Daniel; Berman, Hal; Boutros, Paul C; Kislinger, Thomas; Khokha, Rama

    2018-06-19

    The mammary epithelium depends on specific lineages and their stem and progenitor function to accommodate hormone-triggered physiological demands in the adult female. Perturbations of these lineages underpin breast cancer risk, yet our understanding of normal mammary cell composition is incomplete. Here, we build a multimodal resource for the adult gland through comprehensive profiling of primary cell epigenomes, transcriptomes, and proteomes. We define systems-level relationships between chromatin-DNA-RNA-protein states, identify lineage-specific DNA methylation of transcription factor binding sites, and pinpoint proteins underlying progesterone responsiveness. Comparative proteomics of estrogen and progesterone receptor-positive and -negative cell populations, extensive target validation, and drug testing lead to discovery of stem and progenitor cell vulnerabilities. Top epigenetic drugs exert cytostatic effects; prevent adult mammary cell expansion, clonogenicity, and mammopoiesis; and deplete stem cell frequency. Select drugs also abrogate human breast progenitor cell activity in normal and high-risk patient samples. This integrative computational and functional study provides fundamental insight into mammary lineage and stem cell biology. © 2018 Casey et al.

  19. Excessive bleeding predictors after cardiac surgery in adults: integrative review.

    PubMed

    Lopes, Camila Takao; Dos Santos, Talita Raquel; Brunori, Evelise Helena Fadini Reis; Moorhead, Sue A; Lopes, Juliana de Lima; Barros, Alba Lucia Bottura Leite de

    2015-11-01

    To integrate literature data on the predictors of excessive bleeding after cardiac surgery in adults. Perioperative nursing care requires awareness of the risk factors for excessive bleeding after cardiac surgery to assure vigilance prioritising and early correction of those that are modifiable. Integrative literature review. Articles were searched in seven databases. Seventeen studies investigating predictive factors for excessive bleeding after open-heart surgery from 2004-2014 were included. Predictors of excessive bleeding after cardiac surgery were: Patient-related: male gender, higher preoperative haemoglobin levels, lower body mass index, diabetes mellitus, impaired left ventricular function, lower amount of prebypass thrombin generation, lower preoperative platelet counts, decreased preoperative platelet aggregation, preoperative platelet inhibition level >20%, preoperative thrombocytopenia and lower preoperative fibrinogen concentration. Procedure-related: the operating surgeon, coronary artery bypass surgery with three or more bypasses, use of the internal mammary artery, duration of surgery, increased cross-clamp time, increased cardiopulmonary bypass time, lower intraoperative core body temperature and bypass-induced haemostatic disorders. Postoperative: fibrinogen levels and metabolic acidosis. Patient-related, procedure-related and postoperative predictors of excessive bleeding after cardiac surgery were identified. The predictors summarised in this review can be used for risk stratification of excessive bleeding after cardiac surgery. Assessment, documentation and case reporting can be guided by awareness of these factors, so that postoperative vigilance can be prioritised. Timely identification and correction of the modifiable factors can be facilitated. © 2015 John Wiley & Sons Ltd.

  20. Night-time care routine interaction and sleep disruption in adult cardiac surgery.

    PubMed

    Casida, Jesus M; Davis, Jean E; Zalewski, Aaron; Yang, James J

    2018-04-01

    To explore the context and the influence of night-time care routine interactions (NCRIs) on night-time sleep effectiveness (NSE) and daytime sleepiness (DSS) of patients in the cardiac surgery critical-care and progressive-care units of a hospital. There exists a paucity of empirical data regarding the influence of NCRIs on sleep and associated outcomes in hospitalised adult cardiac surgery patients. An exploratory repeated-measures research design was employed on the data provided by 38 elective cardiac surgery patients (mean age 60.0 ± 15.9 years). NCRI forms were completed by the bedside nurses and patients completed a 9-item Visual Analogue Sleep Scale (100-mm horizontal lines measuring NSE and DSS variables). All data were collected during postoperative nights/days (PON/POD) 1 through 5 and analysed with IBM SPSS software. Patient assessment, medication administration and laboratory/diagnostic procedures were the top three NCRIs reported between midnight and 6:00 a.m. During PON/POD 1 through 5, the respective mean NSE and DSS scores ranged from 52.9 ± 17.2 to 57.8 ± 13.5 and from 27.0 ± 22.6 to 45.6 ± 16.5. Repeated-measures ANOVA showed significant changes in DSS scores (p < .05). NSE and DSS were negatively correlated (r = -.44, p < .05), but changes in NSE scores were not significant (p > .05). Finally, of 8 NCRIs, only 1 (postoperative exercises) was significantly related to sleep variables (r > .40, p < .05). Frequent NCRIs are a common occurrence in cardiac surgery units of a hospital. Further research is needed to make a definitive conclusion about the impact of NCRIs on sleep/sleep disruptions and daytime sleepiness in adult cardiac surgery. Worldwide, acute and critical-care nurses are well positioned to lead initiatives aimed at improving sleep and clinical outcomes in cardiac surgery. © 2018 John Wiley & Sons Ltd.

  1. Aortic Sca-1+ Progenitor Cells Arise from the Somitic Mesoderm Lineage in Mice.

    PubMed

    Steinbach, Sarah K; Wang, Tao; Carruthers, Martha H; Li, Angela; Besla, Rickvinder; Johnston, Adam P; Robbins, Clinton S; Husain, Mansoor

    2018-05-31

    Sca-1 + progenitor cells in the adult mouse aorta are known to generate vascular smooth muscle cells (VSMCs), but their embryological origins and temporal abundance are not known. Using tamoxifen-inducible Myf5-Cre ER mice, we demonstrate that Sca-1 + adult aortic cells arise from the somitic mesoderm beginning at E8.5 and continue throughout somitogenesis. Myf5 lineage-derived Sca-1 + cells greatly expand in situ, starting at 4 weeks of age, and become a major source of aortic Sca-1 + cells by 6 weeks of age. Myf5-derived adult aortic cells are capable of forming multicellular sphere-like structures in vitro and express the pluripotency marker Sox2. Exposure to transforming growth factor-β3 induces these spheres to differentiate into calponin-expressing VSMCs. Pulse-chase experiments using tamoxifen-inducible Sox2-Cre ERT2 mice at 8 weeks of age demonstrate that ∼35% of all adult aortic Sca-1 + cells are derived from Sox2 + cells. The present study demonstrates that aortic Sca-1 + progenitor cells are derived from the somitic mesoderm formed at the earliest stages of somitogenesis and from Sox2-expressing progenitors in adult mice.

  2. NK4 Antagonizes Tbx1/10 to Promote Cardiac versus Pharyngeal Muscle Fate in the Ascidian Second Heart Field

    PubMed Central

    Wang, Wei; Razy-Krajka, Florian; Siu, Eric; Ketcham, Alexandra; Christiaen, Lionel

    2013-01-01

    The heart and head muscles share common developmental origins and genetic underpinnings in vertebrates, including humans. Parts of the heart and cranio-facial musculature derive from common mesodermal progenitors that express NKX2-5, ISL1, and TBX1. This ontogenetic kinship is dramatically reflected in the DiGeorge/Cardio-Velo-Facial syndrome (DGS/CVFS), where mutations of TBX1 cause malformations in the pharyngeal apparatus and cardiac outflow tract. Cardiac progenitors of the first heart field (FHF) do not require TBX1 and segregate precociously from common progenitors of the second heart field (SHF) and pharyngeal muscles. However, the cellular and molecular mechanisms that govern heart versus pharyngeal muscle specification within this lineage remain elusive. Here, we harness the simplicity of the ascidian larva to show that, following asymmetric cell division of common progenitors, NK4/NKX2-5 promotes GATAa/GATA4/5/6 expression and cardiac specification in the second heart precursors by antagonizing Tbx1/10-mediated inhibition of GATAa and activation of Collier/Olf/EBF (COE), the determinant of atrial siphon muscle (ASM) specification. Our results uncover essential regulatory connections between the conserved cardio-pharyngeal factor Tbx1/10 and muscle determinant COE, as well as a mutual antagonism between NK4 and Tbx1/10 activities upstream of GATAa and COE. The latter cross-antagonism underlies a fundamental heart versus pharyngeal muscle fate choice that occurs in a conserved lineage of cardio-pharyngeal progenitors. We propose that this basic ontogenetic motif underlies cardiac and pharyngeal muscle development and evolution in chordates. PMID:24311985

  3. Effect of E-OJ-01 on Cardiac Conditioning in Young Exercising Adults: A Randomized Controlled Trial.

    PubMed

    Girandola, Robert N; Srivastava, Shalini

    2017-05-01

    Cardiac health is a determinant of athletic performance. A body of data suggests that in healthy young adults, an increase in maximal cardiac output leads to an increase in endurance. Terminalia arjuna (TA) has been studied for multiple benefits in cardiovascular health although its effects as a cardioprotective ergogenic aid require further exploration. The current trial was planned to study the effect of the proprietary TA extract (E-OJ-01) on the markers of cardiac conditioning in healthy young adults. No study has assessed the effect of TA extract on cardiac conditioning by improvement of left ventricular ejection fraction (LVEF) in young exercising individuals. A randomized, double-blind, placebo-controlled, parallel group study was conducted to determine the efficacy and safety of E-OJ-01 for use as an ergogenic supplements in young exercising adults. This trial was registered at ClinicalTrials.gov (NCT02207101) and reported according to Consolidated Standards of Reporting Trials (CONSORT) requirements. Thirty-two healthy males, aged 18-40 years performing regular endurance exercise, were randomly assigned to 400 mg of E-OJ-01 or placebo for 56 days. LVEF, right and left ventricular Myocardial Performance Index, and Borg Rated Perceived Exertion (RPE) were assessed at baseline, day 28, and day 56; creatine kinase-MB and troponin-T were assessed at baseline and at day 56. As compared with placebo, 56 days of E-OJ-01 supplementation significantly improved the LVEF (P = 0.0001) and decreased the right ventricular Myocardial Performance Index (P = 0.001). The fatigue level captured by Borg Scale after completion of exercise showed a greater decrease in the E-OJ-01 group as compared with placebo. Creatine kinase-MB and troponin-T did not change significantly. TA (E-OJ-01) significantly increased cardiovascular efficiency and improved the cardiac conditioning in young healthy adults.

  4. Purification of adult hepatic progenitor cells using green fluorescent protein (GFP)-transgenic mice and fluorescence-activated cell sorting.

    PubMed

    Fujikawa, Takahisa; Hirose, Tetsuro; Fujii, Hideaki; Oe, Shoshiro; Yasuchika, Kentaro; Azuma, Hisaya; Yamaoka, Yoshio

    2003-08-01

    Recent advances in stem cell research have revealed that hepatic stem/progenitor cells may play an important role in liver development and regeneration. However, a lack of detectable definitive markers in viable cells has hindered their primary culture from adult livers. Enzymatically dissociated liver cells from green fluorescent protein (GFP)-transgenic mice, which express GFP highly in liver endodermal cells, were sorted by GFP expression using a fluorescence-activated cell sorter. Sorted cells were characterized, and also low-density cultured for extended periods to determine their proliferation and clonal differentiation capacities. When CD45(-)TER119(-) side-scatter(low) GFP(high) cells were sorted, alpha-fetoprotein-positive immature endoderm-characterized cells, having high growth potential, were present in this population. Clonal analysis and electron microscopic evaluation revealed that each single cell of this population could differentiate not only into hepatocytes, but also into biliary epithelial cells, showing their bilineage differentiation activity. When surface markers were analyzed, they were positive for Integrin-alpha6 and -beta1, but negative for c-Kit and Thy1.1. Combination of GFP-transgenic mice and fluorescence-activated cell sorting enabled purification of hepatic progenitor cells from adult mouse liver. Further analysis of this population may lead to purification of their human correspondence that would be an ideal cell-source candidate for regenerative medicine.

  5. Prion protein- and cardiac troponin T-marked interstitial cells from the adult myocardium spontaneously develop into beating cardiomyocytes

    PubMed Central

    Omatsu-Kanbe, Mariko; Nishino, Yuka; Nozuchi, Nozomi; Sugihara, Hiroyuki; Matsuura, Hiroshi

    2014-01-01

    Atypically-shaped cardiomyocytes (ACMs) constitute a novel subpopulation of beating heart cells found in the cultures of cardiac myocyte-removed crude fraction cells obtained from adult mouse cardiac ventricles. Although ~500 beating ACMs are observed under microscope in the cell cultures obtained from the hearts of either male or female mice, the origin of these cells in cardiac tissue has yet to be elucidated due to the lack of exclusive markers. In the present study, we demonstrate the efficacy of cellular prion protein (PrP) as a surface marker of ACMs. Cells expressing PrP at the plasma membrane in the culture of the crude fraction cells were found to develop into beating ACMs by themselves or fuse with each other to become larger multinuclear beating ACMs. Combining PrP with a cardiac-specific contractile protein cardiac troponin T (cTnT) allowed us to identify native ACMs in the mouse cardiac ventricles as either clustered or solitary cells. PrP- and cTnT-marked cells were also found in the adult, even aged, human cardiac ventricles. These findings suggest that interstitial cells marked by PrP and cTnT, native ACMs, exhibit life-long survival in the cardiac ventricles of both mice and humans. PMID:25466571

  6. Management of cardiac involvement in muscular dystrophies: paediatric versus adult forms.

    PubMed

    Palladino, Alberto; D'Ambrosio, Paola; Papa, Andrea Antonio; Petillo, Roberta; Orsini, Chiara; Scutifero, Marianna; Nigro, Gerardo; Politano, Luisa

    2016-12-01

    Muscular dystrophies are a group of genetic disorders characterized by muscle degeneration and consequent substitution by fat and fibrous tissue. Cardiac involvement is an almost constant feature in a great part of these diseases, as both primary myocardial involvement and secondary involvement due to respiratory insufficiency, pulmonary hypertension or reduced mobility. Primary myocardial involvement usually begins more precociously compared to the secondary involvement. In fact the first signs of cardiomyopathy can be observed in the first decade of life in muscular dystrophies with childhood onset and later in adult form of muscular dystrophies as myotonic dystrophy type 1. At least an annual cardiac follow-up is recommended in these patients including clinical and instrumental examination (ECG, 24h Holter monitoring, ECHO), to detect cardiac involvement. A more frequent monitoring may be required according to the type of cardiomyopathy and the patient's needs. In this short review practical guide-lines are shown for physicians routinely involved in the management of these patients.

  7. Cardiac Autonomic Function during Submaximal Treadmill Exercise in Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo

    2011-01-01

    This study determined whether the cardiac autonomic function of adults with Down syndrome (DS) differs from that of nondisabled persons during submaximal dynamic exercise. Thirteen participants with DS and 12 nondisabled individuals performed maximal and submaximal treadmill tests with metabolic and heart rate (HR) measurements. Spectral analysis…

  8. TBX1 Represses Vegfr2 Gene Expression and Enhances the Cardiac Fate of VEGFR2+ Cells

    PubMed Central

    Lania, Gabriella; Ferrentino, Rosa; Baldini, Antonio

    2015-01-01

    The T-box transcription factor TBX1 has critical roles in maintaining proliferation and inhibiting differentiation of cardiac progenitor cells of the second heart field (SHF). Haploinsufficiency of the gene that encodes it is a cause of congenital heart disease. Here, we developed an embryonic stem (ES) cell-based model in which Tbx1 expression can be modulated by tetracycline. Using this model, we found that TBX1 down regulates the expression of VEGFR2, and we confirmed this finding in vivo during embryonic development. In addition, we found a Vegfr2 domain of expression, not previously described, in the posterior SHF and this expression is extended by loss of Tbx1. VEGFR2 has been previously described as a marker of a subpopulation of cardiac progenitors. Clonal analysis of ES-derived VEGFR2+ cells indicated that 12.5% of clones expressed three markers of cardiac lineage (cardiomyocyte, smooth muscle and endothelium). However, a pulse of Tbx1 expression was sufficient to increase the percentage to 20.8%. In addition, the percentage of clones expressing markers of multiple cardiac lineages increased from 41.6% to 79.1% after Tbx1 pulse. These results suggest that TBX1 plays a role in maintaining a progenitor state in VEGFR2+ cells. PMID:26382615

  9. Evaluation and comparison of the in vitro characteristics and chondrogenic capacity of four adult stem/progenitor cells for cartilage cell-based repair.

    PubMed

    Shafiee, Abbas; Kabiri, Mahboubeh; Langroudi, Lida; Soleimani, Masoud; Ai, Jafar

    2016-03-01

    Cell-based therapy is being considered as a promising approach to regenerate damaged cartilage. Though, autologous chondrocyte implantation is the most effective strategy currently in use, but is hampered by some drawbacks seeking comprehensive research to surmount existing limitations or introducing alternative cell sources. In this study, we aimed to evaluate and compare the in vitro characteristics and chondrogenic capacity of some easily available adult cell sources for use in cartilage repair which includes: bone marrow-derived mesenchymal stem cells (MSC), adipose tissue-derived MSC, articular chondrocyte progenitors, and nasal septum-derived progenitors. Human stem/progenitor cells were isolated and expanded. Cell's immunophenotype, biosafety, and cell cycle status were evaluated. Also, cells were seeded onto aligned electrospun poly (l-lactic acid)/poly (ε-caprolactone) nanofibrous scaffolds and their proliferation rate as well as chondrogenic potential were assessed. Cells were almost phenotypically alike as they showed similar cell surface marker expression pattern. The aligned nanofibrous hybrid scaffolds could support the proliferation and chondrogenic differentiation of all cell types. However, nasal cartilage progenitors showed a higher proliferation potential and a higher chondrogenic capacity. Though, mostly similar in the majority of the studied features, nasal septum progenitors demonstrated a higher chondrogenic potential that in combination with their higher proliferation rate and easier access to the source tissue, introduces it as a promising cell source for cartilage tissue engineering and regenerative medicine. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 600-610, 2016. © 2015 Wiley Periodicals, Inc.

  10. Older Adults' Music Listening Preferences to Support Physical Activity Following Cardiac Rehabilitation.

    PubMed

    Clark, Imogen N; Baker, Felicity A; Taylor, Nicholas F

    2016-01-01

    Music listening during exercise is thought to increase physiological arousal and enhance subjective experience, and may support physical activity participation among older adults with cardiac disease. However, little is known about how music preferences, or perceptions of music during exercise, inform clinical practice with this population. Identify predominant musical characteristics of preferred music selected by older adults, and explore participants' music listening experiences during walking-based exercise following cardiac rehabilitation. Twenty-seven participants aged 60 years and older (21 men, 6 women; mean age = 67.3 years) selected music to support walking over a 6-month intervention period, and participated in post-intervention interviews. In this two-phase study, we first identified predominant characteristics of participant-selected music using the Structural Model of Music Analysis. Second, we used inductive thematic analysis to explore participant experiences. Predominant characteristics of participant-selected music included duple meter, consistent rhythm, major key, rounded melodic shape, legato articulation, predictable harmonies, variable volume, and episodes of tension with delayed resolution. There was no predominant tempo, with music selections ranging from slow through to medium and fast. Four themes emerged from thematic analysis of participant interviews: psycho-emotional responses, physical responses, influence on exercise behavior, and negative experiences. Findings are consistent with theory and research explaining influences from music listening on physiological arousal and subjective experience during exercise. Additionally, for older adults with cardiac disease, a holistic approach to music selection considering general well-being and adjustment issues, rather than just exercise performance, may improve long-term lifestyle changes and compliance with physical activity guidelines. © the American Music Therapy Association 2016. All

  11. Adult oligodendrocyte progenitor cells - multifaceted regulators of the CNS in health and disease

    PubMed Central

    Fernandez-Castaneda, Anthony; Gaultier, Alban

    2016-01-01

    Oligodendrocyte progenitor cells (OPCs) are the often-overlooked fourth glial cell type in the central nervous system (CNS), comprising about 5% of the CNS. For a long time, our vision of OPC function was limited to the generation of mature oligodendrocytes. However, new studies have highlighted the multifaceted nature of the OPCs. During homeostatic and pathological conditions, OPCs are the most proliferative cell type in the CNS, a property not consistent with the need to generate new oligodendrocytes. Indeed, OPCs modulate neuronal activity and OPC depletion in the brain can trigger depressive-like behavior. More importantly, OPCs are actively recruited to injury sites, where they orchestrate glial scar formation and contribute to the immune response. The following is a comprehensive analysis of the literature on OPC function beyond myelination, in the context of the healthy and diseased adult CNS. PMID:26796621

  12. NG2-expressing cells as oligodendrocyte progenitors in the normal and demyelinated adult central nervous system

    PubMed Central

    Polito, Annabella; Reynolds, Richard

    2005-01-01

    The mammalian adult central nervous system (CNS) is known to respond rapidly to demyelinating insults by regenerating oligodendrocytes for remyelination from a dividing precursor population. A widespread population of cells exists within the adult CNS that is thought to belong to the oligodendrocyte lineage, but which do not express proteins characteristic of mature myelinating oligodendrocytes, such as myelin basic protein (MBP) and 2,3-cyclic nucleotide 3-phosphodiesterase (CNP). Instead, these cells have phenotypic characteristics of a more immature stage of the oligodendrocyte lineage. They express the NG2 chondroitin sulphate proteoglycan, in addition to O4 and the platelet-derived growth factor α-receptor, all widely accepted as markers for oligodendrocyte progenitor cells (OPCs) throughout development. However, NG2+ cells residing in the adult CNS do not resemble embryonic or neonatal NG2+ cells in terms of their morphology or proliferation characteristics, but instead represent a unique type of glial cell that has the ability to react rapidly to CNS damage. In this review, we present the evidence that adult NG2+ cells are part of the oligodendrocyte lineage and are capable of giving rise to new oligodendrocytes under both normal and demyelinating conditions. We also review the literature that these cells may have multiple functional roles within the adult CNS, notwithstanding their primary role as OPCs. PMID:16367798

  13. Doxorubicin Regulates Autophagy Signals via Accumulation of Cytosolic Ca2+ in Human Cardiac Progenitor Cells.

    PubMed

    Park, Ji Hye; Choi, Sung Hyun; Kim, Hyungtae; Ji, Seung Taek; Jang, Woong Bi; Kim, Jae Ho; Baek, Sang Hong; Kwon, Sang Mo

    2016-10-09

    Doxorubicin (DOXO) is widely used to treat solid tumors. However, its clinical use is limited by side effects including serious cardiotoxicity due to cardiomyocyte damage. Resident cardiac progenitor cells (hCPCs) act as key regulators of homeostasis in myocardial cells. However, little is known about the function of hCPCs in DOXO-induced cardiotoxicity. In this study, we found that DOXO-mediated hCPC toxicity is closely related to calcium-related autophagy signaling and was significantly attenuated by blocking mTOR signaling in human hCPCs. DOXO induced hCPC apoptosis with reduction of SMP30 (regucalcin) and autophagosome marker LC3, as well as remarkable induction of the autophagy-related markers, Beclin-1, APG7, and P62/SQSTM1 and induction of calcium-related molecules, CaM (Calmodulin) and CaMKII (Calmodulin kinase II). The results of an LC3 puncta assay further indicated that DOXO reduced autophagosome formation via accumulation of cytosolic Ca 2+ . Additionally, DOXO significantly induced mTOR expression in hCPCs, and inhibition of mTOR signaling by rapamycin, a specific inhibitor, rescued DOXO-mediated autophagosome depletion in hCPCs with significant reduction of DOXO-mediated cytosolic Ca 2+ accumulation in hCPCs, and restored SMP30 and mTOR expression. Thus, DOXO-mediated hCPC toxicity is linked to Ca 2+ -related autophagy signaling, and inhibition of mTOR signaling may provide a cardio-protective effect against DOXO-mediated hCPC toxicity.

  14. Doxorubicin Regulates Autophagy Signals via Accumulation of Cytosolic Ca2+ in Human Cardiac Progenitor Cells

    PubMed Central

    Park, Ji Hye; Choi, Sung Hyun; Kim, Hyungtae; Ji, Seung Taek; Jang, Woong Bi; Kim, Jae Ho; Baek, Sang Hong; Kwon, Sang Mo

    2016-01-01

    Doxorubicin (DOXO) is widely used to treat solid tumors. However, its clinical use is limited by side effects including serious cardiotoxicity due to cardiomyocyte damage. Resident cardiac progenitor cells (hCPCs) act as key regulators of homeostasis in myocardial cells. However, little is known about the function of hCPCs in DOXO-induced cardiotoxicity. In this study, we found that DOXO-mediated hCPC toxicity is closely related to calcium-related autophagy signaling and was significantly attenuated by blocking mTOR signaling in human hCPCs. DOXO induced hCPC apoptosis with reduction of SMP30 (regucalcin) and autophagosome marker LC3, as well as remarkable induction of the autophagy-related markers, Beclin-1, APG7, and P62/SQSTM1 and induction of calcium-related molecules, CaM (Calmodulin) and CaMKII (Calmodulin kinase II). The results of an LC3 puncta assay further indicated that DOXO reduced autophagosome formation via accumulation of cytosolic Ca2+. Additionally, DOXO significantly induced mTOR expression in hCPCs, and inhibition of mTOR signaling by rapamycin, a specific inhibitor, rescued DOXO-mediated autophagosome depletion in hCPCs with significant reduction of DOXO-mediated cytosolic Ca2+ accumulation in hCPCs, and restored SMP30 and mTOR expression. Thus, DOXO-mediated hCPC toxicity is linked to Ca2+-related autophagy signaling, and inhibition of mTOR signaling may provide a cardio-protective effect against DOXO-mediated hCPC toxicity. PMID:27735842

  15. Dissection of the Human Multipotent Adult Progenitor Cell Secretome by Proteomic Analysis

    PubMed Central

    van't Hof, Wouter; Newell, Laura F.; Reddy, Ashok; Wilmarth, Phillip A.; David, Larry L.; Raber, Amy; Bogaerts, Annelies; Pinxteren, Jef; Deans, Robert J.; Maziarz, Richard T.

    2013-01-01

    Multipotent adult progenitor cells (MAPCs) are adult adherent stromal stem cells currently being assessed in acute graft versus host disease clinical trials with demonstrated immunomodulatory capabilities and the potential to ameliorate detrimental autoimmune and inflammation-related processes. Our previous studies documented that MAPCs secrete factors that play a role in regulating T-cell activity. Here we expand our studies using a proteomics approach to characterize and quantify MAPC secretome components secreted over 72 hours in vitro under steady-state conditions and in the presence of the inflammatory triggers interferon-γ and lipopolysaccharide, or a tolerogenic CD74 ligand, RTL1000. MAPCs differentially responded to each of the tested stimuli, secreting molecules that regulate the biological activity of the extracellular matrix (ECM), including proteins that make up the ECM itself, proteins that regulate its construction/deconstruction, and proteins that serve to attach and detach growth factors from ECM components for redistribution upon appropriate stimulation. MAPCs secreted a wide array of proteases, some detectable in their zymogen forms. MAPCs also secreted protease inhibitors that would regulate protease activity. MAPCs secreted chemokines and cytokines that could provide molecular guidance cues to various cell types, including neutrophils, macrophages, and T cells. In addition, MAPCs secreted factors involved in maintenance of a homeostatic environment, regulating such diverse programs as innate immunity, angiogenesis/angiostasis, targeted delivery of growth factors, and the matrix-metalloprotease cascade. PMID:23981727

  16. Adaptive remodeling of the biliary tree: the essence of liver progenitor cell expansion.

    PubMed

    Kok, Cindy Yuet-Yin; Miyajima, Atsushi; Itoh, Tohru

    2015-07-01

    The liver progenitor cell population has long been thought to exist within the liver. However, there are no standardized criteria for defining the liver progenitor cells, and there has been intense debate about the origin of these cells in the adult liver. The characteristics of such cells vary depending on the disease model used and also on the method of analysis. Visualization of three-dimensional biliary structures has revealed that the emergence of liver progenitor cells essentially reflects the adaptive remodeling of the hepatic biliary network in response to liver injury. We propose that the progenitor cell exists as a subpopulation in the biliary tree and show that the appearance of liver progenitor cells in injured parenchyma is reflective of extensive remodeling of the biliary structure. © 2015 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  17. Biologic properties of endothelial progenitor cells and their potential for cell therapy.

    PubMed

    Young, Pampee P; Vaughan, Douglas E; Hatzopoulos, Antonis K

    2007-01-01

    Recent studies indicate that portions of ischemic and tumor neovasculature are derived by neovasculogenesis, whereby bone marrow (BM)-derived circulating endothelial progenitor cells (EPCs) home to sites of regenerative or malignant growth and contribute to blood vessel formation. Recent data from animal models suggest that a variety of cell types, including unfractionated BM mononuclear cells and those obtained by ex vivo expansion of human peripheral blood or enriched progenitors, can function as EPCs to promote tissue vasculogenesis, regeneration, and repair when introduced in vivo. The promising preclinical results have led to several human clinical trials using BM as a potential source of EPCs in cardiac repair as well as ongoing basic research on using EPCs in tissue engineering or as cell therapy to target tumor growth.

  18. Mature Hepatocytes Exhibit Unexpected Plasticity by Direct Dedifferentiation into Liver Progenitor Cells in Culture

    PubMed Central

    Chen, Yixin; Wong, Philip P.; Sjeklocha, Lucas; Steer, Clifford J.; Sahin, M. Behnan

    2011-01-01

    Although there have been numerous reports describing the isolation of liver progenitor cells from adult liver, their exact origin has not been clearly defined; and the role played by mature hepatocytes as direct contributors to the hepatic progenitor cell pool has remained largely unknown. Here we report strong evidence that mature hepatocytes in culture have the capacity to dedifferentiate into a population of adult liver progenitors without genetic or epigenetic manipulations. By using highly-purified mature hepatocytes, which were obtained from untreated, healthy rat liver and labeled with fluorescent dye PKH2, we found that hepatocytes in culture gave rise to a population of PKH2-positive liver progenitor cells. These cells, Liver Derived Progenitor Cells or LDPCS, which share phenotypic similarities with oval cells, were previously reported to be capable of forming mature hepatocytes both in culture and in animals. Studies done at various time points during the course of dedifferentiation cultures revealed that hepatocytes rapidly transformed into liver progenitors within one week through a transient oval cell-like stage. This finding was supported by lineage-tracing studies involving double-transgenic AlbuminCreXRosa26 mice expressing β-galactosidase exclusively in hepatocytes. Cultures set up with hepatocytes obtained from these mice resulted in generation of β-galactosidase-positive liver progenitor cells demonstrating that they were a direct dedifferentiation product of mature hepatocytes. Additionally, these progenitors differentiated into hepatocytes in vivo when transplanted into rats that had undergone retrorsine pretreatment and partial hepatectomy. Conclusion Our studies provide strong evidence for the unexpected plasticity of mature hepatocytes to dedifferentiate into progenitor cells in culture; and this may potentially have a significant impact on the treatment of liver diseases requiring liver or hepatocyte transplantation. PMID:21953633

  19. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis

    PubMed Central

    Huch, Meritxell; Bonfanti, Paola; Boj, Sylvia F; Sato, Toshiro; Loomans, Cindy J M; van de Wetering, Marc; Sojoodi, Mozhdeh; Li, Vivian S W; Schuijers, Jurian; Gracanin, Ana; Ringnalda, Femke; Begthel, Harry; Hamer, Karien; Mulder, Joyce; van Es, Johan H; de Koning, Eelco; Vries, Robert G J; Heimberg, Harry; Clevers, Hans

    2013-01-01

    Lgr5 marks adult stem cells in multiple adult organs and is a receptor for the Wnt-agonistic R-spondins (RSPOs). Intestinal, stomach and liver Lgr5+ stem cells grow in 3D cultures to form ever-expanding organoids, which resemble the tissues of origin. Wnt signalling is inactive and Lgr5 is not expressed under physiological conditions in the adult pancreas. However, we now report that the Wnt pathway is robustly activated upon injury by partial duct ligation (PDL), concomitant with the appearance of Lgr5 expression in regenerating pancreatic ducts. In vitro, duct fragments from mouse pancreas initiate Lgr5 expression in RSPO1-based cultures, and develop into budding cyst-like structures (organoids) that expand five-fold weekly for >40 weeks. Single isolated duct cells can also be cultured into pancreatic organoids, containing Lgr5 stem/progenitor cells that can be clonally expanded. Clonal pancreas organoids can be induced to differentiate into duct as well as endocrine cells upon transplantation, thus proving their bi-potentiality. PMID:24045232

  20. Vinpocetine Attenuates Pathological Cardiac Remodeling by Inhibiting Cardiac Hypertrophy and Fibrosis.

    PubMed

    Wu, Mei-Ping; Zhang, Yi-Shuai; Xu, Xiangbin; Zhou, Qian; Li, Jian-Dong; Yan, Chen

    2017-04-01

    Pathological cardiac remodeling, characterized by cardiac hypertrophy and fibrosis, is a pathological feature of many cardiac disorders that leads to heart failure and cardiac arrest. Vinpocetine, a derivative of the alkaloid vincamine, has been used for enhancing cerebral blood flow to treat cognitive impairment. However, its role in pathological cardiac remodeling remains unknown. The aim of this study is to examine the effect of vinpocetine on pathological cardiac remodeling induced by chronic stimulation with angiotensin II (Ang II). Mice received Ang II infusion via osmotic pumps in the presence of vehicle or vinpocetine. Cardiac hypertrophy and fibrosis were assessed by morphological, histological, and biochemical analyses. Mechanistic studies were carried out in vitro with isolated mouse adult cardiac myocytes and fibroblasts. We showed that chronic Ang II infusion caused cardiac hypertrophy and fibrosis, which were all significantly attenuated by systemic administration of vinpocetine. In isolated adult mouse cardiomyocytes, vinpocetine suppressed Ang II-stimulated myocyte hypertrophic growth. In cultured cardiac fibroblasts, vinpocetine suppressed TGFβ-induced fibroblast activation and matrix gene expression, consistent with its effect in attenuating cardiac fibrosis. The effects of vinpocetine on cardiac myocyte hypertrophy and fibroblast activation are likely mediated by targeting cyclic nucleotide phosphodiesterase 1 (PDE1). Our results reveal a novel protective effect of vinpocetine in attenuating pathological cardiac remodeling through suppressing cardiac myocyte hypertrophic growth and fibroblast activation and fibrotic gene expression. These studies may also shed light on developing novel therapeutic agents for antagonizing pathological cardiac remodeling.

  1. Biological and physicochemical characterization of a serum- and xeno-free chemically defined cryopreservation procedure for adult human progenitor cells.

    PubMed

    Zeisberger, Steffen M; Schulz, Julia C; Mairhofer, Mario; Ponsaerts, Peter; Wouters, Guy; Doerr, Daniel; Katsen-Globa, Alisa; Ehrbar, Martin; Hescheler, Jurgen; Hoerstrup, Simon P; Zisch, Andreas H; Kolbus, Andrea; Zimmermann, Heiko

    2011-01-01

    While therapeutic cell transplantations using progenitor cells are increasingly evolving towards phase I and II clinical trials and chemically defined cell culture is established, standardization in biobanking is still in the stage of infancy. In this study, the EU FP6-funded CRYSTAL (CRYo-banking of Stem cells for human Therapeutic AppLication) consortium aimed to validate novel Standard Operating Procedures (SOPs) to perform and validate xeno-free and chemically defined cryopreservation of human progenitor cells and to reduce the amount of the potentially toxic cryoprotectant additive (CPA) dimethyl sulfoxide (DMSO). To achieve this goal, three human adult progenitor and stem cell populations-umbilical cord blood (UCB)-derived erythroid cells (UCB-ECs), UCB-derived endothelial colony forming cells (UCB-ECFCs), and adipose tissue (AT)-derived mesenchymal stromal cells (AT-MSCs)-were cryopreserved in chemically defined medium supplemented with 10% or 5% DMSO. Cell recovery, cell repopulation, and functionality were evaluated postthaw in comparison to cryopreservation in standard fetal bovine serum (FBS)-containing freezing medium. Even with a reduction of the DMSO CPA to 5%, postthaw cell count and viability assays indicated no overall significant difference versus standard cryomedium. Additionally, to compare cellular morphology/membrane integrity and ice crystal formation during cryopreservation, multiphoton laser-scanning cryomicroscopy (cryo-MPLSM) and scanning electron microscopy (SEM) were used. Neither cryo-MPLSM nor SEM indicated differences in membrane integrity for the tested cell populations under various conditions. Moreover, no influence was observed on functional properties of the cells following cryopreservation in chemically defined freezing medium, except for UCB-ECs, which showed a significantly reduced differentiation capacity after cryopreservation in chemically defined medium supplemented with 5% DMSO. In summary, these results demonstrate the

  2. Combined KIT and FGFR2b Signaling Regulates Epithelial Progenitor Expansion during Organogenesis

    PubMed Central

    Lombaert, Isabelle M.A.; Abrams, Shaun R.; Li, Li; Eswarakumar, Veraragavan P.; Sethi, Aditya J.; Witt, Robert L.; Hoffman, Matthew P.

    2013-01-01

    Summary Organ formation and regeneration require epithelial progenitor expansion to engineer, maintain, and repair the branched tissue architecture. Identifying the mechanisms that control progenitor expansion will inform therapeutic organ (re)generation. Here, we discover that combined KIT and fibroblast growth factor receptor 2b (FGFR2b) signaling specifically increases distal progenitor expansion during salivary gland organogenesis. FGFR2b signaling upregulates the epithelial KIT pathway so that combined KIT/FGFR2b signaling, via separate AKT and mitogen-activated protein kinase (MAPK) pathways, amplifies FGFR2b-dependent transcription. Combined KIT/FGFR2b signaling selectively expands the number of KIT+K14+SOX10+ distal progenitors, and a genetic loss of KIT signaling depletes the distal progenitors but also unexpectedly depletes the K5+ proximal progenitors. This occurs because the distal progenitors produce neurotrophic factors that support gland innervation, which maintains the proximal progenitors. Furthermore, a rare population of KIT+FGFR2b+ cells is present in adult glands, in which KIT signaling also regulates epithelial-neuronal communication during homeostasis. Our findings provide a framework to direct regeneration of branched epithelial organs. PMID:24371813

  3. A Simplified, Langendorff-Free Method for Concomitant Isolation of Viable Cardiac Myocytes and Nonmyocytes From the Adult Mouse Heart

    PubMed Central

    Ackers-Johnson, Matthew; Li, Peter Yiqing; Holmes, Andrew P.; O’Brien, Sian-Marie; Pavlovic, Davor; Foo, Roger S.

    2018-01-01

    Rationale Cardiovascular disease represents a global pandemic. The advent of and recent advances in mouse genomics, epigenomics, and transgenics offer ever-greater potential for powerful avenues of research. However, progress is often constrained by unique complexities associated with the isolation of viable myocytes from the adult mouse heart. Current protocols rely on retrograde aortic perfusion using specialized Langendorff apparatus, which poses considerable logistical and technical barriers to researchers and demands extensive training investment. Objective To identify and optimize a convenient, alternative approach, allowing the robust isolation and culture of adult mouse cardiac myocytes using only common surgical and laboratory equipment. Methods and Results Cardiac myocytes were isolated with yields comparable to those in published Langendorff-based methods, using direct needle perfusion of the LV ex vivo and without requirement for heparin injection. Isolated myocytes can be cultured antibiotic free, with retained organized contractile and mitochondrial morphology, transcriptional signatures, calcium handling, responses to hypoxia, neurohormonal stimulation, and electric pacing, and are amenable to patch clamp and adenoviral gene transfer techniques. Furthermore, the methodology permits concurrent isolation, separation, and coculture of myocyte and nonmyocyte cardiac populations. Conclusions We present a novel, simplified method, demonstrating concomitant isolation of viable cardiac myocytes and nonmyocytes from the same adult mouse heart. We anticipate that this new approach will expand and accelerate innovative research in the field of cardiac biology. PMID:27502479

  4. Competent for commitment: you've got to have heart!

    PubMed

    Jain, Rajan; Epstein, Jonathan A

    2018-01-01

    The mature heart is composed primarily of four different cell types: cardiac myocytes, endothelium, smooth muscle, and fibroblasts. These cell types derive from pluripotent progenitors that become progressively restricted with regard to lineage potential, giving rise to multipotent cardiac progenitor cells and, ultimately, the differentiated cell types of the heart. Recent studies have begun to shed light on the defining characteristics of the intermediary cell types that exist transiently during this developmental process and the extrinsic and cell-autonomous factors that influence cardiac lineage decisions and cellular competence. This information will shape our understanding of congenital and adult cardiac disease and guide regenerative therapeutic approaches. In addition, cardiac progenitor specification can serve as a model for understanding basic mechanisms regulating the acquisition of cellular identity. In this review, we present the concept of "chromatin competence" that describes the potential for three-dimensional chromatin organization to function as the molecular underpinning of the ability of a progenitor cell to respond to inductive lineage cues and summarize recent studies advancing our understanding of cardiac cell specification, gene regulation, and chromatin organization and how they impact cardiac development. © 2018 Jain and Epstein; Published by Cold Spring Harbor Laboratory Press.

  5. Tryptase activates isolated adult cardiac fibroblasts via protease activated receptor-2 (PAR-2).

    PubMed

    Murray, David B; McLarty-Williams, Jennifer; Nagalla, Krishna T; Janicki, Joseph S

    2012-03-01

    Protease activated receptor-2 (PAR-2) derived cycloxygenase-2 (COX-2) was recently implicated in a cardiac mast cell and fibroblast cross-talk signaling cascade mediating myocardial remodeling secondary to mechanical stress. We designed this study to investigate in vitro assays of isolated adult cardiac fibroblasts to determine whether binding of tryptase to the PAR-2 receptor on cardiac fibroblasts will lead to increased expression of COX-2 and subsequent formation of the arachodonic acid metabolite 15-d-Prostaglandin J(2) (15-d-PGJ(2)). The effects of tryptase (100 mU) and co-incubation with PAR-2 inhibitor peptide sequence FSLLRY-NH(2) (10(-6)M) on proliferation, hydroxyproline concentration, 15-d-PGJ(2) formation and PAR-2/COX-2 expression were investigated in fibroblasts isolated from 9 week old SD rats. Tryptase induced a significant increase in fibroproliferation, hydroxyproline, 15-d-PGJ(2) formation and PAR-2 expression which were markedly attenuated by FSLLRY. Tryptase-induced changes in cardiac fibroblast function utilize a PAR-2 dependent mechanism.

  6. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddad, Rami, E-mail: rami.haddad@mail.mcgill.ca; Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2; Kasneci, Amanda, E-mail: amanda.kasneci@mail.mcgill.ca

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentarymore » or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation.

  7. Chlorpyrifos induces oxidative stress in oligodendrocyte progenitor cells.

    PubMed

    Saulsbury, Marilyn D; Heyliger, Simone O; Wang, Kaiyu; Johnson, Deadre J

    2009-05-02

    There are increasing concerns regarding the relative safety of chlorpyrifos (CPF) to various facets of the environment. Although published works suggest that CPF is relatively safe in adult animals, recent evidence indicates that juveniles, both animals and humans, may be more sensitive to CPF toxicity than adults. In young animals, CPF is neurotoxic and mechanistically interferes with cellular replication and cellular differentiation, which culminates in the alteration of synaptic neurotransmission in neurons. However, the effects of CPF on glial cells are not fully elucidated. Here we report that chlorpyrifos is toxic to oligodendrocyte progenitors. In addition, CPF produced dose-dependent increases in 2',7'-dichlorodihydrofluorescein diacetate (H(2)DCF-DA) and dihydroethidium (DHE) fluorescence intensities relative to the vehicle control. Moreover, CPF toxicity is associated with nuclear condensation and elevation of caspase 3/7 activity and Heme oxygenase-1 mRNA expression. Pan-caspase inhibitor QVDOPh and cholinergic receptor antagonists' atropine and mecamylamine failed to protect oligodendrocyte progenitors from CPF-induced injury. Finally, glutathione (GSH) depletion enhanced CPF-induced toxicity whereas nitric oxide synthetase inhibitor L-NAME partially protected progenitors and the non-specific antioxidant vitamin E (alpha-tocopherol) completely spared cells from injury. Collectively, this data suggests that CPF induced toxicity is independent of cholinergic stimulation and is most likely caused by the induction of oxidative stress.

  8. NFIX Regulates Neural Progenitor Cell Differentiation During Hippocampal Morphogenesis

    PubMed Central

    Heng, Yee Hsieh Evelyn; McLeay, Robert C.; Harvey, Tracey J.; Smith, Aaron G.; Barry, Guy; Cato, Kathleen; Plachez, Céline; Little, Erica; Mason, Sharon; Dixon, Chantelle; Gronostajski, Richard M.; Bailey, Timothy L.; Richards, Linda J.; Piper, Michael

    2014-01-01

    Neural progenitor cells have the ability to give rise to neurons and glia in the embryonic, postnatal and adult brain. During development, the program regulating whether these cells divide and self-renew or exit the cell cycle and differentiate is tightly controlled, and imbalances to the normal trajectory of this process can lead to severe functional consequences. However, our understanding of the molecular regulation of these fundamental events remains limited. Moreover, processes underpinning development of the postnatal neurogenic niches within the cortex remain poorly defined. Here, we demonstrate that Nuclear factor one X (NFIX) is expressed by neural progenitor cells within the embryonic hippocampus, and that progenitor cell differentiation is delayed within Nfix−/− mice. Moreover, we reveal that the morphology of the dentate gyrus in postnatal Nfix−/− mice is abnormal, with fewer subgranular zone neural progenitor cells being generated in the absence of this transcription factor. Mechanistically, we demonstrate that the progenitor cell maintenance factor Sry-related HMG box 9 (SOX9) is upregulated in the hippocampus of Nfix−/− mice and demonstrate that NFIX can repress Sox9 promoter-driven transcription. Collectively, our findings demonstrate that NFIX plays a central role in hippocampal morphogenesis, regulating the formation of neuronal and glial populations within this structure. PMID:23042739

  9. Cardiac-Specific Disruption of GH Receptor Alters Glucose Homeostasis While Maintaining Normal Cardiac Performance in Adult Male Mice.

    PubMed

    Jara, Adam; Liu, Xingbo; Sim, Don; Benner, Chance M; Duran-Ortiz, Silvana; Qian, Yanrong; List, Edward O; Berryman, Darlene E; Kim, Jason K; Kopchick, John J

    2016-05-01

    GH is considered necessary for the proper development and maintenance of several tissues, including the heart. Studies conducted in both GH receptor null and bovine GH transgenic mice have demonstrated specific cardiac structural and functional changes. In each of these mouse lines, however, GH-induced signaling is altered systemically, being decreased in GH receptor null mice and increased in bovine GH transgenic mice. Therefore, to clarify the direct effects GH has on cardiac tissue, we developed a tamoxifen-inducible, cardiac-specific GHR disrupted (iC-GHRKO) mouse line. Cardiac GH receptor was disrupted in 4-month-old iC-GHRKO mice to avoid developmental effects due to perinatal GHR gene disruption. Surprisingly, iC-GHRKO mice showed no difference vs controls in baseline or postdobutamine stress test echocardiography measurements, nor did iC-GHRKO mice show differences in longitudinal systolic blood pressure measurements. Interestingly, iC-GHRKO mice had decreased fat mass and improved insulin sensitivity at 6.5 months of age. By 12.5 months of age, however, iC-GHRKO mice no longer had significant decreases in fat mass and had developed glucose intolerance and insulin resistance. Furthermore, investigation via immunoblot analysis demonstrated that iC-GHRKO mice had appreciably decreased insulin stimulated Akt phosphorylation, specifically in heart and liver, but not in epididymal white adipose tissue. These changes were accompanied by a decrease in circulating IGF-1 levels in 12.5-month-old iC-GHRKO mice. These data indicate that whereas the disruption of cardiomyocyte GH-induced signaling in adult mice does not affect cardiac function, it does play a role in systemic glucose homeostasis, in part through modulation of circulating IGF-1.

  10. Vinpocetine Attenuates Pathological Cardiac Remodeling by Inhibiting Cardiac Hypertrophy and Fibrosis

    PubMed Central

    Wu, Mei-ping; Zhang, Yi-shuai; Xu, Xiangbin; Zhou, Qian

    2017-01-01

    Purpose Pathological cardiac remodeling, characterized by cardiac hypertrophy and fibrosis, is a pathological feature of many cardiac disorders that leads to heart failure and cardiac arrest. Vinpocetine, a derivative of the alkaloid vincamine, has been used for enhancing cerebral blood flow to treat cognitive impairment. However, its role in pathological cardiac remodeling remains unknown. The aim of this study is to examine the effect of vinpocetine on pathological cardiac remodeling induced by chronic stimulation with angiotensin II (Ang II). Methods Mice received Ang II infusion via osmotic pumps in the presence of vehicle or vinpocetine. Cardiac hypertrophy and fibrosis were assessed by morphological, histological, and biochemical analyses. Mechanistic studies were carried out in vitro with isolated mouse adult cardiac myocytes and fibroblasts. Results We showed that chronic Ang II infusion caused cardiac hypertrophy and fibrosis, which were all significantly attenuated by systemic administration of vinpocetine. In isolated adult mouse cardiomyocytes, vinpocetine suppressed Ang II-stimulated myocyte hypertrophic growth. In cultured cardiac fibroblasts, vinpocetine suppressed TGFβ-induced fibroblast activation and matrix gene expression, consistent with its effect in attenuating cardiac fibrosis. The effects of vinpocetine on cardiac myocyte hypertrophy and fibroblast activation are likely mediated by targeting cyclic nucleotide phosphodiesterase 1 (PDE1). Conclusions Our results reveal a novel protective effect of vinpocetine in attenuating pathological cardiac remodeling through suppressing cardiac myocyte hypertrophic growth and fibroblast activation and fibrotic gene expression. These studies may also shed light on developing novel therapeutic agents for antagonizing pathological cardiac remodeling. PMID:28321644

  11. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice.

    PubMed

    Buscariollo, Daniela L; Fang, Xiefan; Greenwood, Victoria; Xue, Huiling; Rivkees, Scott A; Wendler, Christopher C

    2014-01-01

    Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs) mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg) or vehicle (0.09% NaCl) i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs) within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.

  12. Pancreatic β-cell regeneration: Facultative or dedicated progenitors?

    PubMed

    Afelik, Solomon; Rovira, Meritxell

    2017-04-15

    The adult pancreas is only capable of limited regeneration. Unlike highly regenerative tissues such as the skin, intestinal crypts and hematopoietic system, no dedicated adult stem cells or stem cell niche have so far been identified within the adult pancreas. New β cells have been shown to form in the adult pancreas, in response to high physiological demand or experimental β-cell ablation, mostly by replication of existing β cells. The possibility that new β cells are formed from other sources is currently a point of major controversy. Under particular injury conditions, fully differentiated pancreatic duct and acinar cells have been shown to dedifferentiate into a progenitor-like state, however the extent, to which ductal, acinar or other endocrine cells contribute to restoring pancreatic β-cell mass remains to be resolved. In this review we focus on regenerative events in the pancreas with emphasis on the restoration of β-cell mass. We present an overview of regenerative responses noted within the different pancreatic lineages, following injury. We also highlight the intrinsic plasticity of the adult pancreas that allows for inter-conversion of fully differentiated pancreatic lineages through manipulation of few genes or growth factors. Taken together, evidence from a number of studies suggest that differentiated pancreatic lineages could act as facultative progenitor cells, but the extent to which these contribute to β-cell regeneration in vivo is still a matter of contention. Copyright © 2016. Published by Elsevier B.V.

  13. PRMT5 is essential for the maintenance of chondrogenic progenitor cells in the limb bud

    PubMed Central

    Norrie, Jacqueline L.; Li, Qiang; Co, Swanie; Huang, Bau-Lin; Ding, Ding; Uy, Jann C.; Ji, Zhicheng; Mackem, Susan; Bedford, Mark T.; Galli, Antonella; Ji, Hongkai

    2016-01-01

    During embryonic development, undifferentiated progenitor cells balance the generation of additional progenitor cells with differentiation. Within the developing limb, cartilage cells differentiate from mesodermal progenitors in an ordered process that results in the specification of the correct number of appropriately sized skeletal elements. The internal pathways by which these cells maintain an undifferentiated state while preserving their capacity to differentiate is unknown. Here, we report that the arginine methyltransferase PRMT5 has a crucial role in maintaining progenitor cells. Mouse embryonic buds lacking PRMT5 have severely truncated bones with wispy digits lacking joints. This novel phenotype is caused by widespread cell death that includes mesodermal progenitor cells that have begun to precociously differentiate into cartilage cells. We propose that PRMT5 maintains progenitor cells through its regulation of Bmp4. Intriguingly, adult and embryonic stem cells also require PRMT5 for maintaining pluripotency, suggesting that similar mechanisms might regulate lineage-restricted progenitor cells during organogenesis. PMID:27827819

  14. PRMT5 is essential for the maintenance of chondrogenic progenitor cells in the limb bud.

    PubMed

    Norrie, Jacqueline L; Li, Qiang; Co, Swanie; Huang, Bau-Lin; Ding, Ding; Uy, Jann C; Ji, Zhicheng; Mackem, Susan; Bedford, Mark T; Galli, Antonella; Ji, Hongkai; Vokes, Steven A

    2016-12-15

    During embryonic development, undifferentiated progenitor cells balance the generation of additional progenitor cells with differentiation. Within the developing limb, cartilage cells differentiate from mesodermal progenitors in an ordered process that results in the specification of the correct number of appropriately sized skeletal elements. The internal pathways by which these cells maintain an undifferentiated state while preserving their capacity to differentiate is unknown. Here, we report that the arginine methyltransferase PRMT5 has a crucial role in maintaining progenitor cells. Mouse embryonic buds lacking PRMT5 have severely truncated bones with wispy digits lacking joints. This novel phenotype is caused by widespread cell death that includes mesodermal progenitor cells that have begun to precociously differentiate into cartilage cells. We propose that PRMT5 maintains progenitor cells through its regulation of Bmp4 Intriguingly, adult and embryonic stem cells also require PRMT5 for maintaining pluripotency, suggesting that similar mechanisms might regulate lineage-restricted progenitor cells during organogenesis. © 2016. Published by The Company of Biologists Ltd.

  15. Stem cells for cardiac repair: problems and possibilities.

    PubMed

    Henning, Robert J

    2013-11-01

    Ischemic heart disease is a major cause of death throughout the world. In order to limit myocardial damage and possibly generate new myocardium, stem cells are currently being injected into patients with ischemic heart disease. Three major patient investigations, The LateTIME, the TIME and the Swiss Myocardial Infarction trials, have recently addressed the questions of whether progenitor cells from unfractionated bone marrow mononuclear cells limit myocardial damage and what the optimal time to inject these cells after acute myocardial infarctions (AMIs) is. In each of these trials, there were no significant differences between treated and control patients when bone marrow cells were administered 5-7 days or 2-3 weeks after AMIs. Nevertheless, these investigations provide important information regarding clinical trial designs. Patients with AMIs in these trials were treated with percutaneous coronary intervention within a median of 4-5 h after the onset of chest pain. Thereafter, all patients received guideline-guided optimal medical therapy. Consequently, the sizes of AMIs were significantly limited. In patients with small AMIs and near-normal left ventricular ejection fractions, progenitor cells are least effective. However, these trials do question whether autologous bone marrow mononuclear cells are the optimal cells for myocardial repair owing to low numbers of progenitor cells in bone marrow aspirates and the significant variability in potency and efficacy of these cells in patients with chronic multisystem diseases. In contrast, the SCIPIO and the CAUDUCEUS trials examined cardiac progenitor cells in patients with ischemic cardiomyopathies. These trials reported over 1-2 years that cardiac progenitor cells produced significant improvements in left ventricular contractility due to 12-24 g decreases in myocardial scars and 18-23 g increases in viable myocardial muscle. However, caution must be exercised in the interpretation of these studies due to the small

  16. Solution-Phase Crosstalk and Regulatory Interactions Between Multipotent Adult Progenitor Cells and Peripheral Blood Mononuclear Cells

    PubMed Central

    van’t Hof, Wouter; Reddy, Ashok P.; Wilmarth, Phillip A.; David, Larry L.; Raber, Amy; Bogaerts, Annelies; Timmerman, Lien; Pinxteren, Jef; Roobrouck, Valerie D.; Deans, Robert J.; Maziarz, Richard T.

    2015-01-01

    Multipotent adult progenitor cells (MAPCs) are adult adherent stromal stem cells currently being assessed in clinical trials for acute graft versus host disease with demonstrated immunomodulatory capabilities and the potential to ameliorate detrimental autoimmune and inflammation-related processes. Anti-CD3/anti-CD28 (3/28) activation of T cells within the peripheral blood mononuclear cell (PBMC) compartment was performed in the presence or absence of MAPCs. Liquid chromatography-coupled tandem mass spectrometry was used to characterize the differential secretion of proteins, and transcriptional profiling was used to monitor mRNA expression changes in both cell populations. Overall, 239 secreted and/or ectodomain-shed proteins were detected in the secretomes of PBMCs and MAPCs. In addition, 3/28 activation of PBMCs induced differential expression of 2,925 genes, and 22% of these transcripts were differentially expressed on exposure to MAPCs in Transwell. MAPCs exposed to 3/28-activated PBMCs showed differential expression of 1,247 MAPC genes. Crosstalk was demonstrated by reciprocal transcriptional regulation. Secretome proteins and transcriptional signatures were used to predict molecular activities by which MAPCs could dampen local and systemic inflammatory responses. These data support the hypothesis that MAPCs block PBMC proliferation via cell cycle arrest coupled to metabolic stress in the form of tryptophan depletion, resulting in GCN2 kinase activation, downstream signaling, and inhibition of cyclin D1 translation. These data also provide a plausible explanation for the immune privilege reported with administration of donor MAPCs. Although most components of the major histocompatibility complex class II antigen presentation pathway were markedly transcriptionally upregulated, cell surface expression of human leukocyte antigen-DR is minimal on MAPCs exposed to 3/28-activated PBMCs. Significance This study documents experiments quantifying solution

  17. Hippo/Yap signaling controls epithelial progenitor cell proliferation and differentiation in the embryonic and adult lung

    PubMed Central

    Lange, Alexander W.; Sridharan, Anusha; Xu, Yan; Stripp, Barry R.; Perl, Anne-Karina; Whitsett, Jeffrey A.

    2015-01-01

    The Hippo/Yap pathway is a well-conserved signaling cascade that regulates cell proliferation and differentiation to control organ size and stem/progenitor cell behavior. Following airway injury, Yap was dynamically regulated in regenerating airway epithelial cells. To determine the role of Hippo signaling in the lung, the mammalian Hippo kinases, Mst1 and Mst2, were deleted in epithelial cells of the embryonic and mature mouse lung. Mst1/2 deletion in the fetal lung enhanced proliferation and inhibited sacculation and epithelial cell differentiation. The transcriptional inhibition of cell proliferation and activation of differentiation during normal perinatal lung maturation were inversely regulated following embryonic Mst1/2 deletion. Ablation of Mst1/2 from bronchiolar epithelial cells in the adult lung caused airway hyperplasia and altered differentiation. Inhibitory Yap phosphorylation was decreased and Yap nuclear localization and transcriptional targets were increased after Mst1/2 deletion, consistent with canonical Hippo/Yap signaling. YAP potentiated cell proliferation and inhibited differentiation of human bronchial epithelial cells in vitro. Loss of Mst1/2 and expression of YAP regulated transcriptional targets controlling cell proliferation and differentiation, including Ajuba LIM protein. Ajuba was required for the effects of YAP on cell proliferation in vitro. Hippo/Yap signaling regulates Ajuba and controls proliferation and differentiation of lung epithelial progenitor cells. PMID:25480985

  18. Targeting human oligodendrocyte progenitors for myelin repair☆

    PubMed Central

    Dietz, Karen C.; Polanco, Jessie J.; Pol, Suyog U.; Sim, Fraser J.

    2017-01-01

    Oligodendrocyte development has been studied for several decades, and has served as a model system for both neurodevelopmental and stem/progenitor cell biology. Until recently, the vast majority of studies have been conducted in lower species, especially those focused on rodent development and remyelination. In humans, the process of myelination requires the generation of vastly more myelinating glia, occurring over a period of years rather than weeks. Furthermore, as evidenced by the presence of chronic demyelination in a variety of human neurologic diseases, it appears likely that the mechanisms that regulate development and become dysfunctional in disease may be, in key ways, divergent across species. Improvements in isolation techniques, applied to primary human neural and oligodendrocyte progenitors from both fetal and adult brain, as well as advancements in the derivation of defined progenitors from human pluripotent stem cells, have begun to reveal the extent of both species-conserved signaling pathways and potential key differences at cellular and molecular levels. In this article, we will review the commonalities and differences in myelin development between rodents and man, describing the approaches used to study human oligodendrocyte differentiation and myelination, as well as heterogeneity within targetable progenitor pools, and discuss the advances made in determining which conserved pathways may be both modeled in rodents and translate into viable therapeutic strategies to promote myelin repair. PMID:27001544

  19. Mutually exclusive signaling signatures define the hepatic and pancreatic progenitor cell lineage divergence

    PubMed Central

    Rodríguez-Seguel, Elisa; Mah, Nancy; Naumann, Heike; Pongrac, Igor M.; Cerdá-Esteban, Nuria; Fontaine, Jean-Fred; Wang, Yongbo; Chen, Wei; Andrade-Navarro, Miguel A.; Spagnoli, Francesca M.

    2013-01-01

    Understanding how distinct cell types arise from multipotent progenitor cells is a major quest in stem cell biology. The liver and pancreas share many aspects of their early development and possibly originate from a common progenitor. However, how liver and pancreas cells diverge from a common endoderm progenitor population and adopt specific fates remains elusive. Using RNA sequencing (RNA-seq), we defined the molecular identity of liver and pancreas progenitors that were isolated from the mouse embryo at two time points, spanning the period when the lineage decision is made. The integration of temporal and spatial gene expression profiles unveiled mutually exclusive signaling signatures in hepatic and pancreatic progenitors. Importantly, we identified the noncanonical Wnt pathway as a potential developmental regulator of this fate decision and capable of inducing the pancreas program in endoderm and liver cells. Our study offers an unprecedented view of gene expression programs in liver and pancreas progenitors and forms the basis for formulating lineage-reprogramming strategies to convert adult hepatic cells into pancreatic cells. PMID:24013505

  20. Clinical-Grade Human Multipotent Adult Progenitor Cells Block CD8+ Cytotoxic T Lymphocytes

    PubMed Central

    Dekimpe, Emily; Van Woensel, Matthias; Roobrouck, Valerie D.; Bullens, Dominique M.; Pinxteren, Jef; Verfaillie, Catherine M.; Van Gool, Stefaan W.

    2016-01-01

    MultiStem cells are clinical-grade multipotent adult bone marrow-derived progenitor cells (MAPCs), with extensive replication potential and broader differentiation capacity compared with mesenchymal stem cells. Human MAPCs suppress T-cell proliferation induced by alloantigens and mutually interact with allogeneic natural killer cells. In this study, the interaction between MultiStem and CD8+ cytotoxic T lymphocytes (CTLs) was addressed for the first time. In an in vitro setting, the immunogenicity of MultiStem, the susceptibility of MultiStem toward CTL-mediated lysis, and its effects on CTL function were investigated. MultiStem was nonimmunogenic for alloreactive CTL induction and was—even after major histocompatibility complex class I upregulation—insensitive to alloantigen-specific CTL-mediated lysis. Furthermore, MultiStem reduced CTL proliferation and significantly decreased perforin expression during the T-cell activation phase. As a consequence, MultiStem dose-dependently impaired the induction of CTL function. These effects of MultiStem were mediated predominantly through contact-dependent mechanisms. Moreover, MultiStem cells considerably influenced the expression of T-cell activation markers CD25, CD69, and human leukocyte antigen-DR. The MultiStem-induced CD8−CD69+ T-cell population displayed a suppressive effect on the induction of CTL function during a subsequent mixed-lymphocyte culture. Finally, the killer activity of activated antigen-specific CTLs during their cytolytic effector phase was also diminished in the presence of MultiStem. This study confirms that these clinical-grade MAPCs are an immune-modulating population that inhibits CTL activation and effector responses and are, consequently, a highly valuable cell population for adoptive immunosuppressive therapy in diseases where damage is induced by CTLs. Significance Because multipotent adult progenitor cells (MAPCs) are among the noteworthy adult mesenchymal stem cell populations for

  1. Clinical-Grade Human Multipotent Adult Progenitor Cells Block CD8+ Cytotoxic T Lymphocytes.

    PubMed

    Plessers, Jeroen; Dekimpe, Emily; Van Woensel, Matthias; Roobrouck, Valerie D; Bullens, Dominique M; Pinxteren, Jef; Verfaillie, Catherine M; Van Gool, Stefaan W

    2016-12-01

    : MultiStem cells are clinical-grade multipotent adult bone marrow-derived progenitor cells (MAPCs), with extensive replication potential and broader differentiation capacity compared with mesenchymal stem cells. Human MAPCs suppress T-cell proliferation induced by alloantigens and mutually interact with allogeneic natural killer cells. In this study, the interaction between MultiStem and CD8 + cytotoxic T lymphocytes (CTLs) was addressed for the first time. In an in vitro setting, the immunogenicity of MultiStem, the susceptibility of MultiStem toward CTL-mediated lysis, and its effects on CTL function were investigated. MultiStem was nonimmunogenic for alloreactive CTL induction and was-even after major histocompatibility complex class I upregulation-insensitive to alloantigen-specific CTL-mediated lysis. Furthermore, MultiStem reduced CTL proliferation and significantly decreased perforin expression during the T-cell activation phase. As a consequence, MultiStem dose-dependently impaired the induction of CTL function. These effects of MultiStem were mediated predominantly through contact-dependent mechanisms. Moreover, MultiStem cells considerably influenced the expression of T-cell activation markers CD25, CD69, and human leukocyte antigen-DR. The MultiStem-induced CD8 - CD69 + T-cell population displayed a suppressive effect on the induction of CTL function during a subsequent mixed-lymphocyte culture. Finally, the killer activity of activated antigen-specific CTLs during their cytolytic effector phase was also diminished in the presence of MultiStem. This study confirms that these clinical-grade MAPCs are an immune-modulating population that inhibits CTL activation and effector responses and are, consequently, a highly valuable cell population for adoptive immunosuppressive therapy in diseases where damage is induced by CTLs. Because multipotent adult progenitor cells (MAPCs) are among the noteworthy adult mesenchymal stem cell populations for immune therapy

  2. Retinoid-signaling in progenitors controls specification and regeneration of the urothelium

    PubMed Central

    Reiley, Maia; Laufer, Ed; Metzger, Daniel; Liang, Fengxia; Liao, Yi; Sun, Tung-Tien; Aronow, Bruce; Rosen, Roni; Mauney, Josh; Adam, Rosalyn; Rosselot, Carolina; Van Batavia, Jason; McMahon, Andrew; McMahon, Jill; Guo, Jin-Jin; Mendelsohn, Cathy

    2013-01-01

    The urothelium is a stratified epithelium that prevents exchange of water and toxic substances between the urinary tract and blood. It is composed of Keratin-5-expressing-basal-cells (K5-BCs), intermediate cells and superficial cells specialized for synthesis and transport of uroplakins that assemble into the apical barrier. K5-BCs are considered to be a progenitor cell type in the urothelium and other stratified epithelia. Fate mapping studies however, reveal that P-cells, a transient population, are urothelial progenitors in the embryo, intermediate cells are superficial cell progenitors in the adult regenerating urothelium, and K5-BCs are a distinct lineage. Our studies indicate that retinoids, potent regulators of ES cells and other progenitors, are also required in P-cells and intermediate cells for their specification. These observations have important implications for tissue engineering and repair, and ultimately, may lead to treatments that prevent loss of the urothelial barrier, a major cause of voiding dysfunction and bladder pain syndrome. PMID:23993789

  3. Progenitor Outgrowth from the Niche in Drosophila Trachea Is Guided by FGF from Decaying Branches

    PubMed Central

    Chen, Feng; Krasnow, Mark A.

    2014-01-01

    Although there has been progress identifying adult stem and progenitor cells and the signals that control their proliferation and differentiation, little is known about the substrates and signals that guide them out of their niche. By examining Drosophila tracheal outgrowth during metamorphosis, we show that progenitors follow a stereotyped path out of the niche, tracking along a subset of tracheal branches destined for destruction. The embryonic tracheal inducer branchless FGF (fibroblast growth factor) is expressed dynamically just ahead of progenitor outgrowth in decaying branches. Knockdown of branchless abrogates progenitor outgrowth, whereas misexpression redirects it. Thus, reactivation of an embryonic tracheal inducer in decaying branches directs outgrowth of progenitors that replace them. This explains how the structure of a newly generated tissue is coordinated with that of the old. PMID:24408434

  4. Progenitor outgrowth from the niche in Drosophila trachea is guided by FGF from decaying branches.

    PubMed

    Chen, Feng; Krasnow, Mark A

    2014-01-10

    Although there has been progress identifying adult stem and progenitor cells and the signals that control their proliferation and differentiation, little is known about the substrates and signals that guide them out of their niche. By examining Drosophila tracheal outgrowth during metamorphosis, we show that progenitors follow a stereotyped path out of the niche, tracking along a subset of tracheal branches destined for destruction. The embryonic tracheal inducer branchless FGF (fibroblast growth factor) is expressed dynamically just ahead of progenitor outgrowth in decaying branches. Knockdown of branchless abrogates progenitor outgrowth, whereas misexpression redirects it. Thus, reactivation of an embryonic tracheal inducer in decaying branches directs outgrowth of progenitors that replace them. This explains how the structure of a newly generated tissue is coordinated with that of the old.

  5. Characteristics of hepatic stem/progenitor cells in the fetal and adult liver.

    PubMed

    Koike, Hiroyuki; Taniguchi, Hideki

    2012-11-01

    The liver is an essential organ that maintains vital activity through its numerous important functions. It has a unique capability of fully regenerating after injury. Regulating a balance between self-renewal and differentiation of hepatic stem cells that are resources for functional mature liver cells is required for maintenance of tissue homeostasis. This review describes the characteristics of hepatic stem/progenitor cells and the regulatory mechanism of their self-renewal and differentiation capacity. In liver organogenesis, undifferentiated hepatic stem/progenitor cells expand their pool by repeated self-renewal in the early stage of liver development and then differentiate into two different types of cell lineage, namely hepatocytes and cholangiocytes. Liver development is regulated by expression of stem cell transcription factors in a complex multistep process. Recent studies suggest that stem cells are maintained by integrative regulation of gene expression patterns related to self-renewal and differentiation by epigenetic mechanisms such as histone modification and DNA methylation. Analysis of the proper regulatory mechanism of hepatic stem/progenitor cells is important for regenerative medicine that utilizes hepatic stem cells and for preventing liver cancer through clarification of the carcinogenetic mechanism involved in stem cell system failure.

  6. Glomerular parietal epithelial cells of adult murine kidney undergo EMT to generate cells with traits of renal progenitors

    PubMed Central

    G, Swetha; Chandra, Vikash; Phadnis, Smruti; Bhonde, Ramesh

    2011-01-01

    Abstract Glomerular parietal epithelial cells (GPECs) are known to revert to embryonic phenotype in response to renal injury. However, the mechanism of de-differentiation in GPECs and the underlying cellular processes are not fully understood. In the present study, we show that cultured GPECs of adult murine kidney undergo epithelial-mesenchymal transition (EMT) to generate cells, which express CD24, CD44 and CD29 surface antigens. Characterization by qRT-PCR and immunostaining of these clonogenic cells demonstrate that they exhibit metastable phenotype with co-expression of both epithelial (cytokeratin-18) and mesenchymal (vimentin) markers. Transcript analysis by qRT-PCR revealed high expression of metanephric mesenchymal (Pax-2, WT-1, Six-1, Eya-1, GDNF) and uteric bud (Hoxb-7, C-Ret) genes in these cells, indicating their bipotent progenitor status. Incubation of GPECs with EMT blocker Prostaglandin E2, resulted in low expression of renal progenitor markers reflecting the correlation between EMT and acquired stemness in these cells. Additional in vitro renal commitment assays confirmed their functional staminality. When injected into E13.5 kidney rudiments, the cells incorporated into the developing kidney primordia and co-culture with E13.5 spinal cord resulted in branching and tubulogenesis in these cells. When implanted under renal capsule of unilaterally nephrectomized mice, these cells differentiated into immature glomeruli and vascular ducts. Our study demonstrates that EMT plays a major role in imparting plasticity to terminally differentiated GPECs by producing metastable cells with traits of kidney progenitors. The present study would improve our understanding on epithelial cell plasticity, furthering our knowledge of its role in renal repair and regeneration. PMID:19840197

  7. Intersections of lung progenitor cells, lung disease and lung cancer.

    PubMed

    Kim, Carla F

    2017-06-30

    The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials. Copyright ©ERS 2017.

  8. Risk-adjusted sequential probability ratio tests: applications to Bristol, Shipman and adult cardiac surgery.

    PubMed

    Spiegelhalter, David; Grigg, Olivia; Kinsman, Robin; Treasure, Tom

    2003-02-01

    To investigate the use of the risk-adjusted sequential probability ratio test in monitoring the cumulative occurrence of adverse clinical outcomes. Retrospective analysis of three longitudinal datasets. Patients aged 65 years and over under the care of Harold Shipman between 1979 and 1997, patients under 1 year of age undergoing paediatric heart surgery in Bristol Royal Infirmary between 1984 and 1995, adult patients receiving cardiac surgery from a team of cardiac surgeons in London,UK. Annual and 30-day mortality rates. Using reasonable boundaries, the procedure could have indicated an 'alarm' in Bristol after publication of the 1991 Cardiac Surgical Register, and in 1985 or 1997 for Harold Shipman depending on the data source and the comparator. The cardiac surgeons showed no significant deviation from expected performance. The risk-adjusted sequential probability test is simple to implement, can be applied in a variety of contexts, and might have been useful to detect specific instances of past divergent performance. The use of this and related techniques deserves further attention in the context of prospectively monitoring adverse clinical outcomes.

  9. Reactivation of NCAM1 defines a subpopulation of human adult kidney epithelial cells with clonogenic and stem/progenitor properties.

    PubMed

    Buzhor, Ella; Omer, Dorit; Harari-Steinberg, Orit; Dotan, Zohar; Vax, Einav; Pri-Chen, Sara; Metsuyanim, Sally; Pleniceanu, Oren; Goldstein, Ronald S; Dekel, Benjamin

    2013-11-01

    The nephron is composed of a monolayer of epithelial cells that make up its various compartments. In development, these cells begin as mesenchyme. NCAM1, abundant in the mesenchyme and early nephron lineage, ceases to express in mature kidney epithelia. We show that, once placed in culture and released from quiescence, adult human kidney epithelial cells (hKEpCs), uniformly positive for CD24/CD133, re-express NCAM1 in a specific cell subset that attains a stem/progenitor state. Immunosorted NCAM1(+) cells overexpressed early nephron progenitor markers (PAX2, SALL1, SIX2, WT1) and acquired a mesenchymal fate, indicated by high vimentim and reduced E-cadherin levels. Gene expression and microarray analysis disclosed both a proximal tubular origin of these cells and molecules regulating epithelial-mesenchymal transition. NCAM1(+) cells generated clonal progeny when cultured in the presence of fetal kidney conditioned medium, differentiated along mesenchymal lineages but retained the unique propensity to generate epithelial kidney spheres and produce epithelial renal tissue on single-cell grafting in chick CAM and mouse. Depletion of NCAM1(+) cells from hKEpCs abrogated stemness traits in vitro. Eliminating these cells during the regenerative response that follows glycerol-induced acute tubular necrosis worsened peak renal injury in vivo. Thus, higher clone-forming and developmental capacities characterize a distinct subset of adult kidney-derived cells. The ability to influence an endogenous regenerative response via NCAM1 targeting may lead to novel therapeutics for renal diseases. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Oligodendrocytes and Progenitors Become Progressively Depleted within Chronically Demyelinated Lesions

    PubMed Central

    Mason, Jeffrey L.; Toews, Arrel; Hostettler, Janell D.; Morell, Pierre; Suzuki, Kinuko; Goldman, James E.; Matsushima, Glenn K.

    2004-01-01

    To understand mechanisms that may underlie the progression of a demyelinated lesion to a chronic state, we have used the cuprizone model of chronic demyelination. In this study, we investigated the fate of oligodendrocytes during the progression of a demyelinating lesion to a chronic state and determined whether transplanted adult oligodendrocyte progenitors could remyelinate the chronically demyelinated axons. Although there is rapid regeneration of the oligodendrocyte population following an acute lesion, most of these newly regenerated cells undergo apoptosis if mice remain on a cuprizone diet. Furthermore, the oligodendrocyte progenitors also become progressively depleted within the lesion, which appears to contribute to the chronic demyelination. Interestingly, even if the mice are returned to a normal diet following 12 weeks of exposure to cuprizone, remyelination and oligodendrocyte regeneration does not occur. However, if adult O4+ progenitors are transplanted into the chronically demyelinated lesion of mice treated with cuprizone for 12 weeks, mature oligodendrocyte regeneration and remyelination occurs after the mice are returned to a normal diet. Thus, the formation of chronically demyelinated lesions induced by cuprizone appears to be the result of oligodendrocyte depletion within the lesion and not due to the inability of the chronically demyelinated axons to be remyelinated. PMID:15111314

  11. Proinflammatory Stem Cell Signaling in Cardiac Ischemia

    PubMed Central

    Herrmann, Jeremy L.; Markel, Troy A.; Abarbanell, Aaron M.; Weil, Brent R.; Wang, Meijing; Wang, Yue; Tan, Jiangning

    2009-01-01

    Abstract Cardiovascular disease remains a leading cause of mortality in developed nations, despite continued advancement in modern therapy. Progenitor and stem cell–based therapy is a novel treatment for cardiovascular disease, and modest benefits in cardiac recovery have been achieved in small clinical trials. This therapeutic modality remains challenged by limitations of low donor-cell survival rates, transient recovery of cardiac function, and the technical difficulty of applying directed cell therapy. Understanding the signaling mechanisms involved in the stem cell response to ischemia has revealed opportunities to modify directly aspects of these pathways to improve their cardioprotective abilities. This review highlights general considerations of stem cell therapy for cardiac disease, reviews the major proinflammatory signaling pathways of mesenchymal stem cells, and reviews ex vivo modifications of stem cells based on these pathways. Antioxid. Redox Signal. 11, 1883–1896. PMID:19187005

  12. Determinants of the relationship between cost and survival time after elective adult cardiac surgery.

    PubMed

    Ho, K M

    2014-05-01

    Cardiac surgery is increasingly performed on elderly patients with multiple comorbid conditions, but the determinants of the relationship between cost and survival time after cardiac surgery for patients with a serious cardiac condition remain uncertain. Using the long-term outcome data of a cohort study on adult cardiac surgical patients, the relationship between cost and survival time after cardiac surgery from a hospital service perspective was determined. The total cost for each patient was estimated by the costs of the surgical procedures, intra-aortic balloon pump utilisation, operating theatre utilisation, blood products, intensive care unit stay and cumulative hospital stay up to a median follow-up time of 30 months. Of the 2131 patients considered in this study, a total cost >A$100,000 per life-year after cardiac surgery was observed only in 171 patients (8.0%, 95% confidence interval 6.9 to 9.3%). Age, Charlson Comorbidity Index and EuroSCORE were all related to the cost per life-year after cardiac surgery, but EuroSCORE (odds ratio 1.26 per score increment, 95% confidence interval 1.18 to 1.35, P=0.001) was, by far, the most important determinant and explained 32% of the variability in cost per life-year after cardiac surgery. Patients with a high EuroSCORE were associated with a substantially longer length of intensive care unit stay and cumulative hospital stay, as well as a shorter survival time after cardiac surgery compared to patients with a lower EuroSCORE. Of all the subgroups of patients examined, only patients with a EuroSCORE >5 were consistently associated with a cost >A$100,000 per life-year (cost per life-year $183,148, 95% confidence interval 125, 394 to 240, 902).

  13. Impairment of adult hippocampal neural progenitor proliferation by methamphetamine: role for nitrotyrosination

    PubMed Central

    2011-01-01

    Methamphetamine (METH) abuse has reached epidemic proportions, and it has become increasingly recognized that abusers suffer from a wide range of neurocognitive deficits. Much previous work has focused on the deleterious effects of METH on mature neurons, but little is known about the effects of METH on neural progenitor cells (NPCs). It is now well established that new neurons are continuously generated from NPCs in the adult hippocampus, and accumulating evidence suggests important roles for these neurons in hippocampal-dependent cognitive functions. In a rat hippocampal NPC culture system, we find that METH results in a dose-dependent reduction of NPC proliferation, and higher concentrations of METH impair NPC survival. NPC differentiation, however, is not affected by METH, suggesting cell-stage specificity of the effects of METH. We demonstrate that the effects of METH on NPCs are, in part, mediated through oxidative and nitrosative stress. Further, we identify seventeen NPC proteins that are post-translationally modified via 3-nitrotyrosination in response to METH, using mass spectrometric approaches. One such protein was pyruvate kinase isoform M2 (PKM2), an important mediator of cellular energetics and proliferation. We identify sites of PKM2 that undergo nitrotyrosination, and demonstrate that nitration of the protein impairs its activity. Thus, METH abuse may result in impaired adult hippocampal neurogenesis, and effects on NPCs may be mediated by protein nitration. Our study has implications for the development of novel therapeutic approaches for METH-abusing individuals with neurologic dysfunction and may be applicable to other neurodegenerative diseases in which hippocampal neurogenesis is impaired. PMID:21708025

  14. Cardiac differentiation of cardiosphere-derived cells in scaffolds mimicking morphology of the cardiac extracellular matrix.

    PubMed

    Xu, Yanyi; Patnaik, Sourav; Guo, Xiaolei; Li, Zhenqing; Lo, Wilson; Butler, Ryan; Claude, Andrew; Liu, Zhenguo; Zhang, Ge; Liao, Jun; Anderson, Peter M; Guan, Jianjun

    2014-08-01

    Stem cell therapy has the potential to regenerate heart tissue after myocardial infarction (MI). The regeneration is dependent upon cardiac differentiation of the delivered stem cells. We hypothesized that timing of the stem cell delivery determines the extent of cardiac differentiation as cell differentiation is dependent on matrix properties such as biomechanics, structure and morphology, and these properties in cardiac extracellular matrix (ECM) continuously vary with time after MI. In order to elucidate the relationship between ECM properties and cardiac differentiation, we created an in vitro model based on ECM-mimicking fibers and a type of cardiac progenitor cell, cardiosphere-derived cells (CDCs). A simultaneous fiber electrospinning and cell electrospraying technique was utilized to fabricate constructs. By blending a highly soft hydrogel with a relatively stiff polyurethane and modulating fabrication parameters, tissue constructs with similar cell adhesion property but different global modulus, single fiber modulus, fiber density and fiber alignment were achieved. The CDCs remained alive within the constructs during a 1week culture period. CDC cardiac differentiation was dependent on the scaffold modulus, fiber volume fraction and fiber alignment. Two constructs with relatively low scaffold modulus, ∼50-60kPa, most significantly directed the CDC differentiation into mature cardiomyocytes as evidenced by gene expressions of cardiac troponin T (cTnT), calcium channel (CACNA1c) and cardiac myosin heavy chain (MYH6), and protein expressions of cardiac troponin I (cTnI) and connexin 43 (CX43). Of these two low-modulus constructs, the extent of differentiation was greater for lower fiber alignment and higher fiber volume fraction. These results suggest that cardiac ECM properties may have an effect on cardiac differentiation of delivered stem cells. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Heart grafts tolerized through third-party multipotent adult progenitor cells can be retransplanted to secondary hosts with no immunosuppression.

    PubMed

    Eggenhofer, Elke; Popp, Felix C; Mendicino, Michael; Silber, Paula; Van't Hof, Wouter; Renner, Philipp; Hoogduijn, Martin J; Pinxteren, Jef; van Rooijen, Nico; Geissler, Edward K; Deans, Robert; Schlitt, Hans J; Dahlke, Marc H

    2013-08-01

    Multipotent adult progenitor cells (MAPCs) are an adherent stem cell population that belongs to the mesenchymal-type progenitor cell family. Although MAPCs are emerging as candidate agents for immunomodulation after solid organ transplantation, their value requires further validation in a clinically relevant cell therapy model using an organ donor- and organ recipient-independent, third-party cell product. We report that stable allograft survival can be achieved following third-party MAPC infusion in a rat model of fully allogeneic, heterotopic heart transplantation. Furthermore, long-term accepted heart grafts recovered from MAPC-treated animals can be successfully retransplanted to naïve animals without additional immunosuppression. This prolongation of MAPC-mediated allograft acceptance depends upon a myeloid cell population since depletion of macrophages by clodronate abrogates the tolerogenic MAPC effect. We also show that MAPC-mediated allograft acceptance differs mechanistically from drug-induced tolerance regarding marker gene expression, T regulatory cell induction, retransplantability, and macrophage dependence. MAPC-based immunomodulation represents a promising pathway for clinical immunotherapy that has led us to initiate a phase I clinical trial for testing safety and feasibility of third-party MAPC therapy after liver transplantation.

  16. In vitro culture of stress erythroid progenitors identifies distinct progenitor populations and analogous human progenitors.

    PubMed

    Xiang, Jie; Wu, Dai-Chen; Chen, Yuanting; Paulson, Robert F

    2015-03-12

    Tissue hypoxia induces a systemic response designed to increase oxygen delivery to tissues. One component of this response is increased erythropoiesis. Steady-state erythropoiesis is primarily homeostatic, producing new erythrocytes to replace old erythrocytes removed from circulation by the spleen. In response to anemia, the situation is different. New erythrocytes must be rapidly made to increase hemoglobin levels. At these times, stress erythropoiesis predominates. Stress erythropoiesis is best characterized in the mouse, where it is extramedullary and utilizes progenitors and signals that are distinct from steady-state erythropoiesis. In this report, we use an in vitro culture system that recapitulates the in vivo development of stress erythroid progenitors. We identify cell-surface markers that delineate a series of stress erythroid progenitors with increasing maturity. In addition, we use this in vitro culture system to expand human stress erythroid progenitor cells that express analogous cell-surface markers. Consistent with previous suggestions that human stress erythropoiesis is similar to fetal erythropoiesis, we demonstrate that human stress erythroid progenitors express fetal hemoglobin upon differentiation. These data demonstrate that similar to murine bone marrow, human bone marrow contains cells that can generate BMP4-dependent stress erythroid burst-forming units when cultured under stress erythropoiesis conditions. © 2015 by The American Society of Hematology.

  17. Assessment of DNA synthesis in Islet-1{sup +} cells in the adult murine heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberger, Florian, E-mail: f.weinberger@uke.de; Mehrkens, Dennis, E-mail: dennis.mehrkens@uk-koeln.de; Starbatty, Jutta, E-mail: starbatty@uke.uni-hamburg.de

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1{sup +}) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1{sup +} cells retain proliferative activitymore » and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ({sup 3}H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of {sup 3}H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1{sup +} cells. Whereas Islet{sup −} non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1{sup +} cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes.« less

  18. Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation.

    PubMed

    Stennard, Fiona A; Costa, Mauro W; Lai, Donna; Biben, Christine; Furtado, Milena B; Solloway, Mark J; McCulley, David J; Leimena, Christiana; Preis, Jost I; Dunwoodie, Sally L; Elliott, David E; Prall, Owen W J; Black, Brian L; Fatkin, Diane; Harvey, Richard P

    2005-05-01

    The genetic hierarchies guiding lineage specification and morphogenesis of the mammalian embryonic heart are poorly understood. We now show by gene targeting that murine T-box transcription factor Tbx20 plays a central role in these pathways, and has important activities in both cardiac development and adult function. Loss of Tbx20 results in death of embryos at mid-gestation with grossly abnormal heart morphogenesis. Underlying these disturbances was a severely compromised cardiac transcriptional program, defects in the molecular pre-pattern, reduced expansion of cardiac progenitors and a block to chamber differentiation. Notably, Tbx20-null embryos showed ectopic activation of Tbx2 across the whole heart myogenic field. Tbx2 encodes a transcriptional repressor normally expressed in non-chamber myocardium, and in the atrioventricular canal it has been proposed to inhibit chamber-specific gene expression through competition with positive factor Tbx5. Our data demonstrate a repressive activity for Tbx20 and place it upstream of Tbx2 in the cardiac genetic program. Thus, hierarchical, repressive interactions between Tbx20 and other T-box genes and factors underlie the primary lineage split into chamber and non-chamber myocardium in the forming heart, an early event upon which all subsequent morphogenesis depends. Additional roles for Tbx20 in adult heart integrity and contractile function were revealed by in-vivo cardiac functional analysis of Tbx20 heterozygous mutant mice. These data suggest that mutations in human cardiac transcription factor genes, possibly including TBX20, underlie both congenital heart disease and adult cardiomyopathies.

  19. Hippo/Yap signaling controls epithelial progenitor cell proliferation and differentiation in the embryonic and adult lung.

    PubMed

    Lange, Alexander W; Sridharan, Anusha; Xu, Yan; Stripp, Barry R; Perl, Anne-Karina; Whitsett, Jeffrey A

    2015-02-01

    The Hippo/Yap pathway is a well-conserved signaling cascade that regulates cell proliferation and differentiation to control organ size and stem/progenitor cell behavior. Following airway injury, Yap was dynamically regulated in regenerating airway epithelial cells. To determine the role of Hippo signaling in the lung, the mammalian Hippo kinases, Mst1 and Mst2, were deleted in epithelial cells of the embryonic and mature mouse lung. Mst1/2 deletion in the fetal lung enhanced proliferation and inhibited sacculation and epithelial cell differentiation. The transcriptional inhibition of cell proliferation and activation of differentiation during normal perinatal lung maturation were inversely regulated following embryonic Mst1/2 deletion. Ablation of Mst1/2 from bronchiolar epithelial cells in the adult lung caused airway hyperplasia and altered differentiation. Inhibitory Yap phosphorylation was decreased and Yap nuclear localization and transcriptional targets were increased after Mst1/2 deletion, consistent with canonical Hippo/Yap signaling. YAP potentiated cell proliferation and inhibited differentiation of human bronchial epithelial cells in vitro. Loss of Mst1/2 and expression of YAP regulated transcriptional targets controlling cell proliferation and differentiation, including Ajuba LIM protein. Ajuba was required for the effects of YAP on cell proliferation in vitro. Hippo/Yap signaling regulates Ajuba and controls proliferation and differentiation of lung epithelial progenitor cells. © The Author (2014). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  20. Agreement of Bioreactance Cardiac Output Monitoring With Thermodilution During Hemorrhagic Shock and Resuscitation in Adult Swine.

    PubMed

    Berlin, David A; Peprah-Mensah, Harrison; Manoach, Seth; Heerdt, Paul M

    2017-02-01

    The study tests the hypothesis that noninvasive cardiac output monitoring based upon bioreactance (Cheetah Medical, Portland, OR) has acceptable agreement with intermittent bolus thermodilution over a wide range of cardiac output in an adult porcine model of hemorrhagic shock and resuscitation. Prospective laboratory animal investigation. Preclinical university laboratory. Eight ~ 50 kg Yorkshire swine with a femoral artery catheter for blood pressure measurement and a pulmonary artery catheter for bolus thermodilution. With the pigs anesthetized and mechanically ventilated, 40 mL/kg of blood was removed yielding marked hypotension and a rise in plasma lactate. After 60 minutes, pigs were resuscitated with shed blood and crystalloid. Noninvasive cardiac output monitoring and intermittent thermodilution cardiac output were simultaneously measured at nine time points spanning baseline, hemorrhage, and resuscitation. Simultaneous noninvasive cardiac output monitoring and thermodilution measurements of cardiac output were compared by Bland-Altman analysis. A plot was constructed using the difference of each paired measurement expressed as a percentage of the mean of the pair plotted against the mean of the pair. Percent bias was used to scale the differences in the measurements for the magnitude of the cardiac output. Method concordance was assessed from a four-quadrant plot with a 15% zone of exclusion. Overall, noninvasive cardiac output monitoring percent bias was 1.47% (95% CI, -2.5 to 5.4) with limits of agreement of upper equal to 33.4% (95% CI, 26.5-40.2) and lower equal to -30.4% (95% CI, -37.3 to -23.6). Trending analysis demonstrated a 97% concordance between noninvasive cardiac output monitoring and thermodilution cardiac output. Over the wide range of cardiac output produced by hemorrhage and resuscitation in large pigs, noninvasive cardiac output monitoring has acceptable agreement with thermodilution cardiac output.

  1. C-Kit Promotes Growth and Migration of Human Cardiac Progenitor Cells via the PI3K-AKT and MEK-ERK Pathways

    PubMed Central

    Al-Maqtari, Tareq; Cao, Pengxiao; Keith, Matthew C. L.; Wysoczynski, Marcin; Zhao, John; Moore IV, Joseph B.; Bolli, Roberto

    2015-01-01

    A recent phase I clinical trial (SCIPIO) has shown that autologous c-kit+ cardiac progenitor cells (CPCs) improve cardiac function and quality of life when transplanted into patients with ischemic heart disease. Although c-kit is widely used as a marker of resident CPCs, its role in the regulation of the cellular characteristics of CPCs remains unknown. We hypothesized that c-kit plays a role in the survival, growth, and migration of CPCs. To test this hypothesis, human CPCs were grown under stress conditions in the presence or absence of SCF, and the effects of SCF-mediated activation of c-kit on CPC survival/growth and migration were measured. SCF treatment led to a significant increase in cell survival and a reduction in cell death under serum depletion conditions. In addition, SCF significantly promoted CPC migration in vitro. Furthermore, the pro-survival and pro-migratory effects of SCF were augmented by c-kit overexpression and abrogated by c-kit inhibition with imatinib. Mechanistically, c-kit activation in CPCs led to activation of the PI3K and the MAPK pathways. With the use of specific inhibitors, we confirmed that the SCF/c-kit-dependent survival and chemotaxis of CPCs are dependent on both pathways. Taken together, our findings suggest that c-kit promotes the survival/growth and migration of human CPCs cultured ex vivo via the activation of PI3K and MAPK pathways. These results imply that the efficiency of CPC homing to the injury site as well as their survival after transplantation may be improved by modulating the activity of c-kit. PMID:26474484

  2. Physical Therapy Management for Adult Patients Undergoing Cardiac Surgery: A Canadian Practice Survey

    PubMed Central

    Anderson, Cathy M.; Jackson, Jennifer; Lucy, S. Deborah; Prendergast, Monique; Sinclair, Susanne

    2010-01-01

    ABSTRACT Purpose: To determine current Canadian physical therapy practice for adult patients requiring routine care following cardiac surgery. Methods: A telephone survey was conducted of a selected sample (n=18) of Canadian hospitals performing cardiac surgery to determine cardiorespiratory care, mobility, exercises, and education provided to patients undergoing cardiac surgery. Results: An average of 21 cardiac surgeries per week (range: 6–42) were performed, with an average length of stay of 6.4 days (range: 4.0–10.6). Patients were seen preoperatively at 7 of 18 sites and on postoperative day 1 (POD-1) at 16 of 18 sites. On POD-1, 16 sites performed deep breathing and coughing, 7 used incentive spirometers, 13 did upper-extremity exercises, and 12 did lower-extremity exercises. Nine sites provided cardiorespiratory treatment on POD-3. On POD-1, patients were dangled at 17 sites and mobilized out of bed at 13. By POD-3, patients ambulated 50–120 m per session 2–5 times per day. Sternal precautions were variable, but the lifting limit was reported as ranging between 5 lb and 10 lb. Conclusions: Canadian physical therapists reported the provision of cardiorespiratory treatment after POD-1. According to current available evidence, this level of care may be unnecessary for uncomplicated patients following cardiac surgery. In addition, some sites provide cardiorespiratory treatment techniques that are not supported by evidence in the literature. Further research is required. PMID:21629599

  3. Incidence and outcome of in-hospital cardiac arrest in the United Kingdom National Cardiac Arrest Audit.

    PubMed

    Nolan, Jerry P; Soar, Jasmeet; Smith, Gary B; Gwinnutt, Carl; Parrott, Francesca; Power, Sarah; Harrison, David A; Nixon, Edel; Rowan, Kathryn

    2014-08-01

    To report the incidence, characteristics and outcome of adult in-hospital cardiac arrest in the United Kingdom (UK) National Cardiac Arrest Audit database. A prospectively defined analysis of the UK National Cardiac Arrest Audit (NCAA) database. 144 acute hospitals contributed data relating to 22,628 patients aged 16 years or over receiving chest compressions and/or defibrillation and attended by a hospital-based resuscitation team in response to a 2222 call. The main outcome measures were incidence of adult in-hospital cardiac arrest and survival to hospital discharge. The overall incidence of adult in-hospital cardiac arrest was 1.6 per 1000 hospital admissions with a median across hospitals of 1.5 (interquartile range 1.2-2.2). Incidence varied seasonally, peaking in winter. Overall unadjusted survival to hospital discharge was 18.4%. The presenting rhythm was shockable (ventricular fibrillation or pulseless ventricular tachycardia) in 16.9% and non-shockable (asystole or pulseless electrical activity) in 72.3%; rates of survival to hospital discharge associated with these rhythms were 49.0% and 10.5%, respectively, but varied substantially across hospitals. These first results from the NCAA database describing the current incidence and outcome of adult in-hospital cardiac arrest in UK hospitals will serve as a benchmark from which to assess the future impact of changes in service delivery, organisation and treatment for in-hospital cardiac arrest. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Mutant Ataxin-1 Inhibits Neural Progenitor Cell Proliferation in SCA1

    PubMed Central

    Cvetanovic, Marija; Hu, Yuan-Shih; Opal, Puneet

    2017-01-01

    Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by the expansion of a polyglutamine (Q) repeat tract in the protein ataxin-1 (ATXN1). Beginning as a cerebellar ataxic disorder, SCA1 progresses to involve the cerebral cortex, hippocampus, and brainstem. Using SCA1 knock-in mice that mirror the complexity of the human disease, we report a significant decrease in the capacity of adult neuronal progenitor cells (NPCs) to proliferate. Remarkably, a decrease in NPCs proliferation can be observed in vitro, outside the degenerative milieu of surrounding neurons or glia, demonstrating that mutant ATXN1 acting cell autonomously within progenitor cells interferes with their ability to proliferate. Our findings suggest that compromised adult neurogenesis contributes to the progressive pathology of the disease particularly in areas such as the hippocampus and cerebral cortex where stem cells provide neurotropic factors and participate in adult neurogenesis. These findings not only shed light on the biology of the disease but also have therapeutic implications in any future stem cell- based clinical trials. PMID:27306906

  5. Mutant Ataxin-1 Inhibits Neural Progenitor Cell Proliferation in SCA1.

    PubMed

    Cvetanovic, Marija; Hu, Yuan-Shih; Opal, Puneet

    2017-04-01

    Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by the expansion of a polyglutamine (Q) repeat tract in the protein ataxin-1 (ATXN1). Beginning as a cerebellar ataxic disorder, SCA1 progresses to involve the cerebral cortex, hippocampus, and brainstem. Using SCA1 knock-in mice that mirror the complexity of the human disease, we report a significant decrease in the capacity of adult neuronal progenitor cells (NPCs) to proliferate. Remarkably, a decrease in NPCs proliferation can be observed in vitro, outside the degenerative milieu of surrounding neurons or glia, demonstrating that mutant ATXN1 acting cell autonomously within progenitor cells interferes with their ability to proliferate. Our findings suggest that compromised adult neurogenesis contributes to the progressive pathology of the disease particularly in areas such as the hippocampus and cerebral cortex where stem cells provide neurotropic factors and participate in adult neurogenesis. These findings not only shed light on the biology of the disease but also have therapeutic implications in any future stem cell-based clinical trials.

  6. KDR (VEGFR2) identifies a conserved human and murine hepatic progenitor and instructs early liver development

    PubMed Central

    Goldman, Orit; Han, Songyan; Sourrisseau, Marion; Dziedzic, Noelle; Hamou, Wissam; Corneo, Barbara; D’Souza, Sunita; Sato, Thomas; Kotton, Darrell N.; Bissig, Karl-Dimiter; Kalir, Tamara; Jacobs, Adam; Evans, Todd; Evans, Matthew J.; Gouon-Evans, Valerie

    2013-01-01

    SUMMARY Understanding the fetal hepatic niche is essential for optimizing the generation of functional hepatocyte-like (hepatic) cells from human embryonic stem cells (hESCs). Here, we show that KDR (VEGFR2), previously assumed to be mostly restricted to mesodermal lineages, marks a hESC-derived hepatic progenitor. hESC-derived endoderm cells do not express KDR, but when cultured in media supporting hepatic differentiation, generate KDR+ hepatic progenitors and KDR- hepatic cells. KDR+ progenitors require active KDR signaling both to instruct their own differentiation into hepatic cells, and to support non-cell-autonomously the functional maturation of co-cultured KDR- hepatic cells. Analysis of human fetal livers suggests that similar progenitors are present in human livers. Lineage tracing in mice provides in vivo evidence of a KDR+ hepatic progenitor for fetal hepatoblasts and subsequently adult hepatocytes and cholangiocytes. Altogether, our findings reveal that KDR is a conserved marker for endoderm-derived hepatic progenitors, and a functional receptor instructing early liver development. PMID:23746980

  7. Novel approaches to determine contractile function of the isolated adult zebrafish ventricular cardiac myocyte.

    PubMed

    Dvornikov, Alexey V; Dewan, Sukriti; Alekhina, Olga V; Pickett, F Bryan; de Tombe, Pieter P

    2014-05-01

    The zebrafish (Danio rerio) has been used extensively in cardiovascular biology, but mainly in the study of heart development. The relative ease of its genetic manipulation may indicate the suitability of this species as a cost-effective model system for the study of cardiac contractile biology. However, whether the zebrafish heart is an appropriate model system for investigations pertaining to mammalian cardiac contractile structure-function relationships remains to be resolved. Myocytes were isolated from adult zebrafish hearts by enzymatic digestion, attached to carbon rods, and twitch force and intracellular Ca(2+) were measured. We observed the modulation of twitch force, but not of intracellular Ca(2+), by both extracellular [Ca(2+)] and sarcomere length. In permeabilized cells/myofibrils, we found robust myofilament length-dependent activation. Moreover, modulation of myofilament activation-relaxation and force redevelopment kinetics by varied Ca(2+) activation levels resembled that found previously in mammalian myofilaments. We conclude that the zebrafish is a valid model system for the study of cardiac contractile structure-function relationships.

  8. Concise Review: Kidney Stem/Progenitor Cells: Differentiate, Sort Out, or Reprogram?

    PubMed Central

    Pleniceanu, Oren; Harari-Steinberg, Orit; Dekel, Benjamin

    2010-01-01

    End-stage renal disease (ESRD) is defined as the inability of the kidneys to remove waste products and excess fluid from the blood. ESRD progresses from earlier stages of chronic kidney disease (CKD) and occurs when the glomerular filtration rate (GFR) is below 15 ml/minute/1.73 m2. CKD and ESRD are dramatically rising due to increasing aging population, population demographics, and the growing rate of diabetes and hypertension. Identification of multipotential stem/progenitor populations in mammalian tissues is important for therapeutic applications and for understanding developmental processes and tissue homeostasis. Progenitor populations are ideal targets for gene therapy, cell transplantation, and tissue engineering. The demand for kidney progenitors is increasing due to severe shortage of donor organs. Because dialysis and transplantation are currently the only successful therapies for ESRD, cell therapy offers an alternative approach for kidney diseases. However, this approach may be relevant only in earlier stages of CKD, when kidney function and histology are still preserved, allowing for the integration of cells and/or for their paracrine effects, but not when small and fibrotic end-stage kidneys develop. Although blood- and bone marrow-derived stem cells hold a therapeutic promise, they are devoid of nephrogenic potential, emphasizing the need to seek kidney stem cells beyond known extrarenal sources. Moreover, controversies regarding the existence of a true adult kidney stem cell highlight the importance of studying cell-based therapies using pluripotent cells, progenitor cells from fetal kidney, or dedifferentiated/reprogrammed adult kidney cells. Stem Cells 2010; 28:1649–1660. PMID:20652959

  9. Outcomes of cardiac pacing in adult patients after a Fontan operation.

    PubMed

    Egbe, Alexander C; Huntley, Geoffery D; Connolly, Heidi M; Ammash, Naser M; Deshmukh, Abhishek J; Khan, Arooj R; Said, Sameh M; Akintoye, Emmanuel; Warnes, Carole A; Kapa, Suraj

    2017-12-01

    Cardiac pacing can be challenging after a Fontan operation, and limited data exist regarding pacing in adult Fontan patients. The objectives of our study were to determine risk factors for pacing and occurrence of device-related complications (DRCs) and pacemaker reinterventions. We performed a retrospective review of Fontan patients from 1994 through 2014. We defined DRCs as lead failure, lead recall, cardiac perforation, lead thrombus/vegetation, or device-related infection, and cardiovascular adverse events (CAEs) as venous thrombosis, stroke, death, or heart transplant. Pacemaker reintervention was defined as lead failure or recall. Of 439 patients, 166 (38%) had pacemakers implanted (79 during childhood; 87, adulthood); 114 patients (69%) received epicardial leads initially, and 52 (31%), endocardial leads. Pacing was initially atrial in 52 patients (31%); ventricular, 30 (18%); or dual chamber, 84 (51%). There were 37 reinterventions (1.9% per year) and 48 DRCs (2.4% per year). Pacemaker implantation during childhood was a risk factor for DRCs (hazard ratio, 2.01 [CI, 1.22-5.63]; P = .03). There were 70 CAEs (venous thrombosis, 5; stroke, 11; transplant, 8; and death, 46), yielding a rate of 3.5% per year. DRCs, CAEs, and reintervention rates were comparable for patients with epicardial or endocardial leads. More than one-third of adult Fontan patients referred to Mayo Clinic had pacemaker implantation. Epicardial leads were associated with high rate of pacemaker reinterventions but similar DRC rates in comparison to endocardial leads. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Postembryonic Nephrogenesis and Persistence of Six2-Expressing Nephron Progenitor Cells in the Reptilian Kidney.

    PubMed

    Camarata, Troy; Howard, Alexis; Elsey, Ruth M; Raza, Sarah; O'Connor, Alice; Beatty, Brian; Conrad, Jack; Solounias, Nikos; Chow, Priscilla; Mukta, Saima; Vasilyev, Aleksandr

    2016-01-01

    New nephron formation (nephrogenesis) ceases in mammals around birth and is completely absent in adults. In contrast, postembryonic nephrogenesis is well documented in the mesonephric kidneys of fishes and amphibians. The transient mesonephros in reptiles (including birds) and mammals is replaced by the metanephros during embryogenesis. Thus, one may speculate that postembryonic nephrogenesis is restricted to the mesonephric kidney. Previous reports have suggested the metanephros of non-avian reptiles (hereafter reptiles) may continually form nephrons throughout life. We investigated the presence of adult nephrogenesis in reptiles by examining adult kidneys from several species including Trachemys scripta, Chrysemys picta, Boa constrictor, Tupinambis tegu, Anolis carolinensis, and Alligator mississipiensis among others. We found that all major reptilian groups (Testudines, Crocodylia, and Squamates) showed the presence of adult nephrogenesis. The total amount of nephrogenesis varied greatly between species with turtles displaying the highest density of nephrogenesis. In contrast, we were unable to detect adult nephrogenesis in monotremes, and in the iguanid A. carolinensis. Nephron progenitor cells express the transcription factor Six2, which in mammals, becomes downregulated as the progenitor cell population is exhausted and nephrogenesis ends. Using the alligator as a model, we were able to detect Six2-positive cap mesenchyme cells in the adult kidney, which spatially correlated with areas of nephrogenesis. These results suggest that the metanephric kidney of reptiles has maintained the ability to continually grow new nephrons during postembryonic life, a process lost early in mammalian evolution, likely due to the persistence of a Six2-expressing progenitor cell population.

  11. Postembryonic Nephrogenesis and Persistence of Six2-Expressing Nephron Progenitor Cells in the Reptilian Kidney

    PubMed Central

    Camarata, Troy; Howard, Alexis; Elsey, Ruth M.; Raza, Sarah; O’Connor, Alice; Beatty, Brian; Conrad, Jack; Solounias, Nikos; Chow, Priscilla; Mukta, Saima; Vasilyev, Aleksandr

    2016-01-01

    New nephron formation (nephrogenesis) ceases in mammals around birth and is completely absent in adults. In contrast, postembryonic nephrogenesis is well documented in the mesonephric kidneys of fishes and amphibians. The transient mesonephros in reptiles (including birds) and mammals is replaced by the metanephros during embryogenesis. Thus, one may speculate that postembryonic nephrogenesis is restricted to the mesonephric kidney. Previous reports have suggested the metanephros of non-avian reptiles (hereafter reptiles) may continually form nephrons throughout life. We investigated the presence of adult nephrogenesis in reptiles by examining adult kidneys from several species including Trachemys scripta, Chrysemys picta, Boa constrictor, Tupinambis tegu, Anolis carolinensis, and Alligator mississipiensis among others. We found that all major reptilian groups (Testudines, Crocodylia, and Squamates) showed the presence of adult nephrogenesis. The total amount of nephrogenesis varied greatly between species with turtles displaying the highest density of nephrogenesis. In contrast, we were unable to detect adult nephrogenesis in monotremes, and in the iguanid A. carolinensis. Nephron progenitor cells express the transcription factor Six2, which in mammals, becomes downregulated as the progenitor cell population is exhausted and nephrogenesis ends. Using the alligator as a model, we were able to detect Six2-positive cap mesenchyme cells in the adult kidney, which spatially correlated with areas of nephrogenesis. These results suggest that the metanephric kidney of reptiles has maintained the ability to continually grow new nephrons during postembryonic life, a process lost early in mammalian evolution, likely due to the persistence of a Six2-expressing progenitor cell population. PMID:27144443

  12. Structural and functional cardiac cholinergic deficits in adult neurturin knockout mice.

    PubMed

    Mabe, Abigail M; Hoover, Donald B

    2009-04-01

    Previous work provided indirect evidence that the neurotrophic factor neurturin (NRTN) is required for normal cholinergic innervation of the heart. This study used nrtn knockout (KO) and wild-type (WT) mice to determine the effect of nrtn deletion on cardiac cholinergic innervation and function in the adult heart. Immunohistochemistry, confocal microscopy, and quantitative image analysis were used to directly evaluate intrinsic cardiac neuronal development. Atrial acetylcholine (ACh) levels were determined as an indirect index of cholinergic innervation. Cholinergic function was evaluated by measuring negative chronotropic responses to right vagal nerve stimulation in anaesthetized mice and responses of isolated atria to muscarinic agonists. KO hearts contained only 35% the normal number of cholinergic neurons, and the residual cholinergic neurons were 15% smaller than in WT. Cholinergic nerve density at the sinoatrial node was reduced by 87% in KOs, but noradrenergic nerve density was unaffected. Atrial ACh levels were substantially lower in KO mice (0.013 +/- 0.004 vs. 0.050 +/- 0.011 pmol/microg protein; P < 0.02) as expected from cholinergic neuron and nerve fibre deficits. Maximum bradycardia evoked by vagal stimulation was reduced in KO mice (38 +/- 6% vs. 69 +/- 3% decrease at 20 Hz; P < 0.001), and chronotropic responses took longer to develop and fade. In contrast to these deficits, isolated atria from KO mice had normal post-junctional sensitivity to carbachol and bethanechol. These findings demonstrate that NRTN is essential for normal cardiac cholinergic innervation and cholinergic control of heart rate. The presence of residual cardiac cholinergic neurons and vagal bradycardia in KO mice suggests that additional neurotrophic factors may influence this system.

  13. Mechanically induced orientation of adult rat cardiac myocytes in vitro

    NASA Technical Reports Server (NTRS)

    Samuel, J.-L.; Vandenburgh, H. H.

    1990-01-01

    The present study describes the spatial orientation of a population of freshly isolated adult rat cardiac myocytes using a computerized mechanical cell stimulator device for tissue cultured cells. A continuous unidirectional stretch of the substratum at 60 to 400 microns/min for 120 to 30 min, respectively, during the cell attachment period in a serum-free medium was found to induce a significant threefold increase in the number of rod-shaped myocytes oriented parallel to the direction of movement. The myocytes orient less well with unidirectional substratum stretching after their adhesion to the substratum. Adult myocytes plated onto a substratum undergoing continuous 10-percent stretch-relaxation cycling show no significant change in the myocyte orientation or cytoskeletal organization. In addition to the type of mechanical activity, orientation of rod-shaped myocytes is dependent on the speed of the substratum, the final stretch amplitude, and the timing between initiation of substratum stretching and adhesion of myocytes to the substratum.

  14. Distribution and Characterization of Progenitor Cells within the Human Filum Terminale

    PubMed Central

    Jaff, Nasren; Ossoinak, Amina; Jansson, Katarina; Hägerstrand, Anders; Johansson, Clas B.; Brundin, Lou; Svensson, Mikael

    2011-01-01

    Background Filum terminale (FT) is a structure that is intimately associated with conus medullaris, the most caudal part of the spinal cord. It is well documented that certain regions of the adult human central nervous system contains undifferentiated, progenitor cells or multipotent precursors. The primary objective of this study was to describe the distribution and progenitor features of this cell population in humans, and to confirm their ability to differentiate within the neuroectodermal lineage. Methodology/Principal Findings We demonstrate that neural stem/progenitor cells are present in FT obtained from patients treated for tethered cord. When human or rat FT-derived cells were cultured in defined medium, they proliferated and formed neurospheres in 13 out of 21 individuals. Cells expressing Sox2 and Musashi-1 were found to outline the central canal, and also to be distributed in islets throughout the whole FT. Following plating, the cells developed antigen profiles characteristic of astrocytes (GFAP) and neurons (β-III-tubulin). Addition of PDGF-BB directed the cells towards a neuronal fate. Moreover, the cells obtained from young donors shows higher capacity for proliferation and are easier to expand than cells derived from older donors. Conclusion/Significance The identification of bona fide neural progenitor cells in FT suggests a possible role for progenitor cells in this extension of conus medullaris and may provide an additional source of such cells for possible therapeutic purposes. Filum terminale, human, progenitor cells, neuron, astrocytes, spinal cord. PMID:22096566

  15. The effects of obesity and type 2 diabetes mellitus on cardiac structure and function in adolescents and young adults.

    PubMed

    Shah, A S; Khoury, P R; Dolan, L M; Ippisch, H M; Urbina, E M; Daniels, S R; Kimball, T R

    2011-04-01

    We sought to evaluate the effects of obesity and obesity-related type 2 diabetes mellitus on cardiac geometry (remodelling) and systolic and diastolic function in adolescents and young adults. Cardiac structure and function were compared by echocardiography in participants who were lean, obese or obese with type 2 diabetes (obese diabetic), in a cross sectional study. Group differences were assessed using ANOVA. Independent determinants of cardiac outcome measures were evaluated with general linear models. Adolescents with obesity and obesity-related type 2 diabetes were found to have abnormal cardiac geometry compared with lean controls (16% and 20% vs <1%, p < 0.05). These two groups also had increased systolic function. Diastolic function decreased from the lean to obese to obese diabetic groups with the lowest diastolic function observed in the obese diabetic group (p < 0.05). Regression analysis showed that group, BMI z score (BMIz), group × BMIz interaction and systolic BP z score (BPz) were significant determinants of cardiac structure, while group, BMIz, systolic BPz, age and fasting glucose were significant determinants of the diastolic function (all p < 0.05). Adolescents with obesity and obesity-related type 2 diabetes demonstrate changes in cardiac geometry consistent with cardiac remodelling. These two groups also demonstrate decreased diastolic function compared with lean controls, with the greatest decrease observed in those with type 2 diabetes. Adults with diastolic dysfunction are known to be at increased risk of progressing to heart failure. Therefore, our findings suggest that adolescents with obesity-related type 2 diabetes may be at increased risk of progressing to early heart failure compared with their obese and lean counterparts.

  16. In vitro effects of Epidiferphane™ on adult human neural progenitor cells

    USDA-ARS?s Scientific Manuscript database

    Neural stem cells have the capacity to respond to their environment, migrate to the injury site and generate functional cell types, and thus they hold great promise for cell therapies. In addition to representing a source for central nervous system (CNS) repair, neural stem and progenitor cells als...

  17. Influence of aging on the activity of mice Sca-1+CD31- cardiac stem cells.

    PubMed

    Wu, Qiong; Zhan, Jinxi; Pu, Shiming; Qin, Liu; Li, Yun; Zhou, Zuping

    2017-01-03

    Therapeutic application of cardiac resident stem/progenitor cells (CSC/CPCs) is limited due to decline of their regenerative potential with donor age. A variety of studies have shown that the cardiac aging was the problem of the stem cells, but little is known about the impact of age on the subgroups CSC/CPCs, the relationship between subgroups CSC/CPCs ageing and age-related dysfunction. Here, we studied Sca-1+CD31- subgroups of CSCs from younger(2~3months) and older(22~24months) age mice, biological differentiation was realized using specific mediums for 14 days to induce cardiomyocyte, smooth muscle cells or endothelial cells and immunostain analysis of differentiated cell resulting were done. Proliferation and cell cycle were measured by flow cytometry assay, then used microarray to dissect variability from younger and older mice. Although the number of CSCs was higher in older mice, the advanced age significantly reduced the differentiation ability into cardiac cell lineages and the proliferation ability. Transcriptional changes in Sca-1+CD31- subgroups of CSCs during aging are related to Vitamin B6 metabolism, circadian rhythm, Tyrosine metabolism, Complement and coagulation cascades. Taking together these results indicate that Cardiac resident stem/progenitor cells have significant differences in their proliferative, pluripotency and gene profiles and those differences are age depending.

  18. miR-1915 and miR-1225-5p Regulate the Expression of CD133, PAX2 and TLR2 in Adult Renal Progenitor Cells

    PubMed Central

    Costantino, Vincenzo; Curci, Claudia; Cox, Sharon N.; De Palma, Giuseppe; Schena, Francesco P.

    2013-01-01

    Adult renal progenitor cells (ARPCs) were recently identified in the cortex of the renal parenchyma and it was demonstrated that they were positive for PAX2, CD133, CD24 and exhibited multipotent differentiation ability. Recent studies on stem cells indicated that microRNAs (miRNAs), a class of noncoding small RNAs that participate in the regulation of gene expression, may play a key role in stem cell self-renewal and differentiation. Distinct sets of miRNAs are specifically expressed in pluripotent stem cells but not in adult tissues, suggesting a role for miRNAs in stem cell self-renewal. We compared miRNA expression profiles of ARPCs with that of mesenchymal stem cells (MSCs) and renal proximal tubular cells (RPTECs) finding distinct sets of miRNAs that were specifically expressed in ARPCs. In particular, miR-1915 and miR-1225-5p regulated the expression of important markers of renal progenitors, such as CD133 and PAX2, and important genes involved in the repair mechanisms of ARPCs, such as TLR2. We demonstrated that the expression of both the renal stem cell markers CD133 and PAX2 depends on lower miR-1915 levels and that the increase of miR-1915 levels improved capacity of ARPCs to differentiate into adipocyte-like and epithelial-like cells. Finally, we found that the low levels of miR-1225-5p were responsible for high TLR2 expression in ARPCs. Therefore, together, miR-1915 and miR-1225-5p seem to regulate important traits of renal progenitors: the stemness and the repair capacity. PMID:23861881

  19. Expression of a mutation causing hypertrophic cardiomyopathy disrupts sarcomere assembly in adult feline cardiac myocytes.

    PubMed

    Marian, A J; Yu, Q T; Mann, D L; Graham, F L; Roberts, R

    1995-07-01

    Mutations in the beta-myosin heavy chain (beta MyHC) induce hypertrophic cardiomyopathy (HCM), cardiac hypertrophy, and sarcomere disarray, with the latter being the characteristic hallmark. Thus, we sought to determine whether expression of mutant beta MyHC in adult feline cardiac myocytes, a species known to develop HCM with a phenotype identical to that in humans, induces sarcomere disarray. A full-length beta MyHC cDNA was cloned from a human heart cDNA library, and an HCM-causing mutation (Arg403Gln) was induced in the beta MyHC cDNA by site-directed mutagenesis using polymerase chain reaction (PCR). The normal and mutant beta MyHC cDNAs were cloned into p delta E1spIB shuttle vector, downstream from a cytomegalovirus (CMV) promoter. Replication-deficient recombinant adenoviral constructs (Ad5/CMV/beta MyHC-N and Ad5/CMV/beta MyHC-403) were generated through homologous recombination of p delta E1spIB/CMV/beta MyHC-N or Ad5/CMV/beta MyHC-403 and pBHG10 after cotransfection in 293 host cells. Infection of COS-1 cells with the beta MyHC construct resulted in the expression of a full-length myosin protein. Efficiency of infection of isolated adult cardiac myocytes was > 95%. Expression of the beta MyHC constructs into mRNA at 48 hours after infection of feline cardiac myocytes was confirmed by reverse transcription-PCR. The net total protein and beta-myosin synthesis were determined by using the amount of incorporation of [3H]phenylalanine into total protein and beta-myosin, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Validation of the cardiac health behavior scale for Korean adults with cardiovascular risks or diseases.

    PubMed

    Song, Rhayun; Oh, Hyunkyoung; Ahn, Sukhee; Moorhead, Sue

    2018-02-01

    The purpose of this study was to validate the Cardiac Health Behavior Scale for Korean adults (CHB-K) to determine its validity and reliability. Cardiovascular diseases (CVDs) are one of the most important chronic diseases due to their high prevalence and mortality rates. Patients with cardiovascular risks or diseases need to perform appropriate cardiac health behaviors that help to prevent the progression of the disease and improve their health status. This secondary analysis obtained data from two clinical trials of cardiac rehabilitation. Data from 298 patients with cardiovascular risks or diseases were analyzed for validation. Data analyses included correlation coefficients, t-tests, and exploratory and confirmatory factor analyses using SPSS (version WIN 22.0) and AMOS (version 20.0). The Self-Efficacy Scale was used to assess convergent validity, while reliability was assessed using Cronbach's alpha coefficients. Five main factors were verified: health responsibility, physical activity, diet habit (eating habit and food choice), stress management, and smoking cessation. A set of 21 items from the 25-item scale was verified after performing item analysis, factor analyses, and critical evaluation of the statistical results. The 21-item CHB-K (CHB-K21) exhibited acceptable validity, and the model of the CHB-K21 provided a good fit to the data. Most of the factors were found to be moderately correlated with SES scores (r=0.45-0.52, p<0.001). The CHB-K21 also demonstrated acceptable reliability (Cronbach's alpha=0.83). The CHB-K21 demonstrates strong validity and reliability. It can be used to assess cardiac health behaviors in Korean adults with cardiovascular risks or diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. High-Content Screening in hPSC-Neural Progenitors Identifies Drug Candidates that Inhibit Zika Virus Infection in Fetal-like Organoids and Adult Brain.

    PubMed

    Zhou, Ting; Tan, Lei; Cederquist, Gustav Y; Fan, Yujie; Hartley, Brigham J; Mukherjee, Suranjit; Tomishima, Mark; Brennand, Kristen J; Zhang, Qisheng; Schwartz, Robert E; Evans, Todd; Studer, Lorenz; Chen, Shuibing

    2017-08-03

    Zika virus (ZIKV) infects fetal and adult human brain and is associated with serious neurological complications. To date, no therapeutic treatment is available to treat ZIKV-infected patients. We performed a high-content chemical screen using human pluripotent stem cell-derived cortical neural progenitor cells (hNPCs) and found that hippeastrine hydrobromide (HH) and amodiaquine dihydrochloride dihydrate (AQ) can inhibit ZIKV infection in hNPCs. Further validation showed that HH also rescues ZIKV-induced growth and differentiation defects in hNPCs and human fetal-like forebrain organoids. Finally, HH and AQ inhibit ZIKV infection in adult mouse brain in vivo. Strikingly, HH suppresses viral propagation when administered to adult mice with active ZIKV infection, highlighting its therapeutic potential. Our approach highlights the power of stem cell-based screens and validation in human forebrain organoids and mouse models in identifying drug candidates for treating ZIKV infection and related neurological complications in fetal and adult patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cardiogenic Genes Expressed in Cardiac Fibroblasts Contribute to Heart Development and Repair

    PubMed Central

    Furtado, Milena B.; Costa, Mauro W.; Pranoto, Edward Adi; Salimova, Ekaterina; Pinto, Alex; Lam, Nicholas T.; Park, Anthony; Snider, Paige; Chandran, Anjana; Harvey, Richard P.; Boyd, Richard; Conway, Simon J.; Pearson, James; Kaye, David M.; Rosenthal, Nadia A.

    2014-01-01

    Rationale Cardiac fibroblasts are critical to proper heart function through multiple interactions with the myocardial compartment but appreciation of their contribution has suffered from incomplete characterization and lack of cell-specific markers. Objective To generate an unbiased comparative gene expression profile of the cardiac fibroblast pool, identify and characterize the role of key genes in cardiac fibroblast function, and determine their contribution to myocardial development and regeneration. Methods and Results High-throughput cell surface and intracellular profiling of cardiac and tail fibroblasts identified canonical MSC and a surprising number of cardiogenic genes, some expressed at higher levels than in whole heart. Whilst genetically marked fibroblasts contributed heterogeneously to interstitial but not cardiomyocyte compartments in infarcted hearts, fibroblast-restricted depletion of one highly expressed cardiogenic marker, Tbx20, caused marked myocardial dysmorphology and perturbations in scar formation upon myocardial infarction. Conclusions The surprising transcriptional identity of cardiac fibroblasts, the adoption of cardiogenic gene programs and direct contribution to cardiac development and repair provokes alternative interpretations for studies on more specialized cardiac progenitors, offering a novel perspective for reinterpreting cardiac regenerative therapies. PMID:24650916

  3. Advances in Progenitor Cell Therapy Using Scaffolding Constructs for Central Nervous System Injury

    PubMed Central

    Walker, Peter A.; Aroom, Kevin R.; Jimenez, Fernando; Shah, Shinil K.; Harting, Matthew T.; Gill, Brijesh S.

    2010-01-01

    Traumatic brain injury (TBI) is a major cause of morbidity and mortality in the United States. Current clinical therapy is focused on optimization of the acute/subacute intracerebral milieu, minimizing continued cell death, and subsequent intense rehabilitation to ameliorate the prolonged physical, cognitive, and psychosocial deficits that result from TBI. Adult progenitor (stem) cell therapies have shown promise in pre-clinical studies and remain a focus of intense scientific investigation. One of the fundamental challenges to successful translation of the large body of pre-clinical work is the delivery of progenitor cells to the target location/organ. Classically used vehicles such as intravenous and intra arterial infusion have shown low engraftment rates and risk of distal emboli. Novel delivery methods such as nanofiber scaffold implantation could provide the structural and nutritive support required for progenitor cell proliferation, engraftment, and differentiation. The focus of this review is to explore the current state of the art as it relates to current and novel progenitor cell delivery methods. PMID:19644777

  4. Cardiac oxidative stress following maternal separation stress was mitigated following adolescent voluntary exercise in adult male rat.

    PubMed

    Sahafi, Ehtramolsadat; Peeri, Maghsoud; Hosseini, Mir-Jamal; Azarbyjani, Mohammad Ali

    2018-01-01

    Early life stress (ELS) is known as a risk factor for the development of depression and its associated comorbidities, such as cardiomyopathy in depressed patients. Mitochondrial dysfunction plays a critical role in the pathophysiology of depression and cardiovascular diseases. Evidence indicates that regular physical activity has therapeutic effects on both mood and cardiovascular disorders. Therefore, the voluntary running wheel exercise (RW) during adolescence may be able to attenuate the negative impact of maternal separation stress (MS) as a valid animal model of depression on the behavior and cardiac mitochondrial function of adult rats. To do this, we applied MS to rat pups by separating them from their mothers for 180min during the postnatal day (PND) 2 to PND 14. Next, the animals were randomly divided into different treatment groups (fluoxetine [FLX] and RW) and received the treatments during adolescence, between PND 28 to PND 60. Then, we evaluated the effects of MS on the rat behaviors test, and finally, we assessed reactive oxygen species, mitochondrial glutathione, ATP and cytochrome c release in the cardiac tissue of animals. Our results showed that depressive-like behaviors following MS in adult male rats were associated with oxidative stress in cardiac tissue. Further, we found that treating animals with chronic FLX or RW during adolescence improved animal's behavior as well as cardiac mitochondrial function. The results of this study highlight the importance of adolescence as a period during which treating animals with non-pharmacological agents has significant protective effects against the negative influence of ELS on mood and cardiac energy hemostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Hydrogel formulation determines cell fate of fetal and adult neural progenitor cells

    PubMed Central

    Wagner, Jennifer L.; Shandas, Robin; Bjugstad, Kimberly B.

    2014-01-01

    Hydrogels provide a unique tool for neural tissue engineering. These materials can be customized for certain functions, i.e. to provide cell/drug delivery or act as a physical scaffold. Unfortunately, hydrogel complexities can negatively impact their biocompatibility, resulting in unintended consequences. These adverse effects may be combated with a better understanding of hydrogel chemical, physical, and mechanical properties, and how these properties affect encapsulated neural cells. We defined the polymerization and degradation rates and compressive moduli of 25 hydrogels formulated from different concentrations of hyaluronic acid (HA) and poly(ethylene glycol) (PEG). Changes in compressive modulus were driven primarily by the HA concentration. The in vitro biocompatibility of fetal-derived (fNPC) and adult-derived (aNPC) neural progenitor cells was dependent on hydrogel formulation. Acute survival of fNPC benefited from hydrogel encapsulation. NPC differentiation was divergent: fNPC differentiated into mostly glial cells, compared with neuronal differentiation of aNPC. Differentiation was influenced in part by the hydrogel mechanical properties. This study indicates that there can be a wide range of HA and PEG hydrogels compatible with NPC. Additionally, this is the first study comparing hydrogel encapsulation of NPC derived from different aged sources, with data suggesting that fNPC and aNPC respond dissimilarly within the same hydrogel formulation. PMID:24141109

  6. Expansion and hepatic differentiation of rat multipotent adult progenitor cells in microcarrier suspension culture.

    PubMed

    Park, Y; Subramanian, K; Verfaillie, C M; Hu, W S

    2010-10-01

    Many potential applications of stem cells require large quantities of cells, especially those involving large organs such as the liver. For such applications, a scalable reactor system is desirable to ensure a reliable supply of sufficient quantities of differentiation competent or differentiated cells. We employed a microcarrier culture system for the expansion of undifferentiated rat multipotent adult progenitor cells (rMAPC) as well as for directed differentiation of these cells to hepatocyte-like cells. During the 4-day expansion culture, cell concentration increased by 85-fold while expression level of pluripotency markers were maintained, as well as the MAPC differentiation potential. Directed differentiation into hepatocyte-like cells on the microcarriers themselves gave comparable results as observed with cells cultured in static cultures. The cells expressed several mature hepatocyte-lineage genes and asialoglycoprotein receptor-1 (ASGPR-1) surface protein, and secreted albumin and urea. Microcarrier culture thus offers the potential of large-scale expansion and differentiation of stem cells in a more controlled bioreactor environment. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. [Histopathological and immunohistochemical features of cardiac myxomas].

    PubMed

    Hernández-Bringas, Omar; Ortiz-Hidalgo, Carlos

    2013-01-01

    Mixomas are the most common primary cardiac tumors with an estimate incidence of 0,5-1 per 10(6) individuals per year. These tumors have generated interest due to their unique location (left side of the atrial septum near the fossa ovalis), variable clinical presentation and undefined histogenesis. Most cardiac myxomas occur sporadically while approximately 10% of diagnosed cases develop as part of Carney complex. This neoplasm is of uncertain histogenesis, however, endothelial, neurogenic, fibroblastic, and cardiac and smooth muscle cells differentiation has been proposed, and rarely glandular differentiation has been observed. Recently, due to the expression of certain cardiomyocyte-specific factors, an origin of mesenchymal cardiomyocytes progenitor cells has been suggested. Histologically cardiac myxomas are mainly composed of stellated, fusiform and polygonal cells, immersed in an amorphous myxoid matrix. Immunohistochemically some endothelial markers, such as CD31, CD34, FVIIIAg, are present. Positive staining has also been reported for S-100 protein, calretinin, vimentin, desmin, smooth muscle myosin, CD56, α1 antitrypsin and α 1antichymotrypsin. Surgical resection is currently the only treatment of choice. We present in this article a histopathological and immunohistochemical review of cardiac myxomas. Copyright © 2012 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  8. Concise Review: Fluorescent Reporters in Human Pluripotent Stem Cells: Contributions to Cardiac Differentiation and Their Applications in Cardiac Disease and Toxicity.

    PubMed

    Den Hartogh, Sabine C; Passier, Robert

    2016-01-01

    In the last decade, since the first report of induced pluripotent stem cells, the stem cell field has made remarkable progress in the differentiation to specialized cell-types of various tissues and organs, including the heart. Cardiac lineage- and tissue-specific human pluripotent stem cell (hPSC) reporter lines have been valuable for the identification, selection, and expansion of cardiac progenitor cells and their derivatives, and for our current understanding of the underlying molecular mechanisms. In order to further advance the use of hPSCs in the fields of regenerative medicine, disease modeling, and preclinical drug development in cardiovascular research, it is crucial to identify functionally distinct cardiac subtypes and to study their biological signaling events and functional aspects in healthy and diseased conditions. In this review, we discuss the various strategies that have been followed to generate and study fluorescent reporter lines in hPSCs and provide insights how these reporter lines contribute to a better understanding and improvement of cell-based therapies and preclinical drug and toxicity screenings in the cardiac field. © AlphaMed Press.

  9. Btg1 is Required to Maintain the Pool of Stem and Progenitor Cells of the Dentate Gyrus and Subventricular Zone

    PubMed Central

    Farioli-Vecchioli, Stefano; Micheli, Laura; Saraulli, Daniele; Ceccarelli, Manuela; Cannas, Sara; Scardigli, Raffaella; Leonardi, Luca; Cinà, Irene; Costanzi, Marco; Ciotti, Maria Teresa; Moreira, Pedro; Rouault, Jean-Pierre; Cestari, Vincenzo; Tirone, Felice

    2012-01-01

    Btg1 belongs to a family of cell cycle inhibitory genes. We observed that Btg1 is highly expressed in adult neurogenic niches, i.e., the dentate gyrus and subventricular zone (SVZ). Thus, we generated Btg1 knockout mice to analyze the role of Btg1 in the process of generation of adult new neurons. Ablation of Btg1 causes a transient increase of the proliferating dentate gyrus stem and progenitor cells at post-natal day 7; however, at 2 months of age the number of these proliferating cells, as well as of mature neurons, greatly decreases compared to wild-type controls. Remarkably, adult dentate gyrus stem and progenitor cells of Btg1-null mice exit the cell cycle after completing the S phase, express p53 and p21 at high levels and undergo apoptosis within 5 days. In the SVZ of adult (two-month-old) Btg1-null mice we observed an equivalent decrease, associated to apoptosis, of stem cells, neuroblasts, and neurons; furthermore, neurospheres derived from SVZ stem cells showed an age-dependent decrease of the self-renewal and expansion capacity. We conclude that ablation of Btg1 reduces the pool of dividing adult stem and progenitor cells in the dentate gyrus and SVZ by decreasing their proliferative capacity and inducing apoptosis, probably reflecting impairment of the control of the cell cycle transition from G1 to S phase. As a result, the ability of Btg1-null mice to discriminate among overlapping contextual memories was affected. Btg1 appears, therefore, to be required for maintaining adult stem and progenitor cells quiescence and self-renewal. PMID:22969701

  10. Cardiac Epithelial-Mesenchymal Transition Is Blocked by Monomethylarsonous Acid (III)

    PubMed Central

    Huang, Tianfang; Barnett, Joey V.; Camenisch, Todd D.

    2014-01-01

    Arsenic exposure during embryonic development can cause ischemic heart pathologies later in adulthood which may originate from impairment in proper blood vessel formation. The arsenic-associated detrimental effects are mediated by arsenite (iAsIII) and its most toxic metabolite, monomethylarsonous acid [MMA (III)]. The impact of MMA (III) on coronary artery development has not yet been studied. The key cellular process that regulates coronary vessel development is the epithelial-mesenchymal transition (EMT). During cardiac EMT, activated epicardial progenitor cells transform to mesenchymal cells to form the cellular components of coronary vessels. Smad2/3 mediated TGFβ2 signaling, the key regulator of cardiac EMT, is disrupted by arsenite exposure. In this study, we compared the cardiac toxicity of MMA (III) with arsenite. Epicardial progenitor cells are 15 times more sensitive to MMA (III) cytotoxicity when compared with arsenite. MMA (III) caused a significant blockage in epicardial cellular transformation and invasion at doses 10 times lower than arsenite. Key EMT genes including TGFβ ligands, TβRIII, Has2, CD44, Snail1, TBX18, and MMP2 were down regulated by MMA (III) exposure. MMA (III) disrupted Smad2/3 activation at a dose 20 times lower than arsenite. Both arsenite and MMA (III) significantly inhibited Erk1/2 and Erk5 phosphorylation. Nuclear translocation of Smad2/3 and Erk5 was also blocked by arsenical exposure. However, p38 activation, as well as smooth muscle differentiation, was refractory to the inhibition by the arsenicals. Collectively, these findings revealed that MMA (III) is a selective disruptor of cardiac EMT and as such may predispose to arsenic-associated cardiovascular disorders. PMID:25145660

  11. Raman spectroscopy for discrimination of neural progenitor cells and their lineages (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Keren; Ong, William; Chew, Sing Yian; Liu, Quan

    2017-02-01

    Neurological diseases are one of the leading causes of adult disability and they are estimated to cause more deaths than cancer in the elderly population by 2040. Stem cell therapy has shown great potential in treating neurological diseases. However, before cell therapy can be widely adopted in the long term, a number of challenges need to be addressed, including the fundamental research about cellular development of neural progenitor cells. To facilitate the fundamental research of neural progenitor cells, many methods have been developed to identify neural progenitor cells. Although great progress has been made, there is still lack of an effective method to achieve fast, label-free and noninvasive differentiation of neural progenitor cells and their lineages. As a fast, label-free and noninvasive technique, spontaneous Raman spectroscopy has been conducted to characterize many types of stem cells including neural stem cells. However, to our best knowledge, it has not been studied for the discrimination of neural progenitor cells from specific lineages. Here we report the differentiation of neural progenitor cell from their lineages including astrocytes, oligodendrocytes and neurons using spontaneous Raman spectroscopy. Moreover, we also evaluate the influence of system parameters during spectral acquisition on the quality of measured Raman spectra and the accuracy of classification using the spectra, which yield a set of optimal system parameters facilitating future studies.

  12. Milrinone and mortality in adult cardiac surgery: a meta-analysis.

    PubMed

    Zangrillo, Alberto; Biondi-Zoccai, Giuseppe; Ponschab, Martin; Greco, Massimiliano; Corno, Laura; Covello, Remo Daniel; Cabrini, Luca; Bignami, Elena; Melisurgo, Giulio; Landoni, Giovanni

    2012-02-01

    The authors conducted a review of randomized studies to show whether there are any increases or decreases in survival when using milrinone in patients undergoing cardiac surgery. A meta-analysis. Hospitals. Five hundred eighteen patients from 13 randomized trials. None. BioMedCentral, PubMed EMBASE, the Cochrane central register of clinical trials, and conference proceedings were searched for randomized trials that compared milrinone versus placebo or any other control in the setting of cardiac surgery that reported data on mortality. Overall analysis showed that milrinone increased perioperative mortality (13/249 [5.2%] in the milrinone group v 6/269 [2.2%] in the control arm, odds ratio [OR] = 2.67 [1.05-6.79], p for effect = 0.04, p for heterogeneity = 0.23, I(2) = 25% with 518 patients and 13 studies included). Subanalyses confirmed increased mortality with milrinone (9/84 deaths [10.7%] v 3/105 deaths [2.9%] with other drugs as control, OR = 4.19 [1.27-13.84], p = 0.02) with 189 patients and 5 studies included) but did not confirm a difference in mortality (4/165 [2.4%] in the milrinone group v 3/164 [1.8%] with placebo or nothing as control, OR = 1.27 [0.28-5.84], p = 0.76 with 329 patients and 8 studies included). This analysis suggests that milrinone might increase mortality in adult patients undergoing cardiac surgery. The effect was seen only in patients having an active inotropic drug for comparison and not in the placebo subgroup. Therefore, the question remains whether milrinone increased mortality or if the control inotropic drugs were more protective. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Recent progress on normal and malignant pancreatic stem/progenitor cell research: therapeutic implications for the treatment of type 1 or 2 diabetes mellitus and aggressive pancreatic cancer

    PubMed Central

    Mimeault, M; Batra, S K

    2010-01-01

    Recent progress on pancreatic stem/progenitor cell research has revealed that the putative multipotent pancreatic stem/progenitor cells and/or more committed beta cell precursors may persist in the pancreatic gland in adult life. The presence of immature pancreatic cells with stem cell-like properties offers the possibility of stimulating their in vivo expansion and differentiation or to use their ex vivo expanded progenies for beta cell replacement-based therapies for type 1 or 2 diabetes mellitus in humans. In addition, the transplantation of either insulin-producing beta cells derived from embryonic, fetal and other tissue-resident adult stem/progenitor cells or genetically modified adult stem/progenitor cells may also constitute alternative promising therapies for treating diabetic patients. The genetic and/or epigenetic alterations in putative pancreatic adult stem/progenitor cells and/or their early progenies may, however, contribute to their acquisition of a dysfunctional behaviour as well as their malignant transformation into pancreatic cancer stem/progenitor cells. More particularly, the activation of distinct tumorigenic signalling cascades, including the hedgehog, epidermal growth factor–epidermal growth factor receptor (EGF–EGFR) system, wingless ligand (Wnt)/β-catenin and/or stromal cell-derived factor-1 (SDF-1)–CXC chemokine receptor 4 (CXCR4) pathways may play a major role in the sustained growth, survival, metastasis and/or drug resistance of pancreatic cancer stem/progenitor cells and their further differentiated progenies. The combination of drugs that target the oncogenic elements in pancreatic cancer stem/progenitor cells and their microenvironment, with the conventional chemotherapeutic regimens, could represent promising therapeutic strategies. These novel targeted therapies should lead to the development of more effective treatments of locally advanced and metastatic pancreatic cancers, which remain incurable with current therapies

  14. Retinoid signaling in progenitors controls specification and regeneration of the urothelium.

    PubMed

    Gandhi, Devangini; Molotkov, Andrei; Batourina, Ekatherina; Schneider, Kerry; Dan, Hanbin; Reiley, Maia; Laufer, Ed; Metzger, Daniel; Liang, Fengxia; Liao, Yi; Sun, Tung-Tien; Aronow, Bruce; Rosen, Roni; Mauney, Josh; Adam, Rosalyn; Rosselot, Carolina; Van Batavia, Jason; McMahon, Andrew; McMahon, Jill; Guo, Jin-Jin; Mendelsohn, Cathy

    2013-09-16

    The urothelium is a multilayered epithelium that serves as a barrier between the urinary tract and blood, preventing the exchange of water and toxic substances. It consists of superficial cells specialized for synthesis and transport of uroplakins that assemble into a tough apical plaque, one or more layers of intermediate cells, and keratin 5-expressing basal cells (K5-BCs), which are considered to be progenitors in the urothelium and other specialized epithelia. Fate mapping, however, reveals that intermediate cells rather than K5-BCs are progenitors in the adult regenerating urothelium, that P cells, a transient population, are progenitors in the embryo, and that retinoids are critical in P cells and intermediate cells, respectively, for their specification during development and regeneration. These observations have important implications for tissue engineering and repair and, ultimately, may lead to treatments that prevent loss of the urothelial barrier, a major cause of voiding dysfunction and bladder pain syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Notch3-Jagged signaling controls the pool of undifferentiated airway progenitors

    PubMed Central

    Mori, Munemasa; Mahoney, John E.; Stupnikov, Maria R.; Paez-Cortez, Jesus R.; Szymaniak, Aleksander D.; Varelas, Xaralabos; Herrick, Dan B.; Schwob, James; Zhang, Hong; Cardoso, Wellington V.

    2015-01-01

    Basal cells are multipotent airway progenitors that generate distinct epithelial cell phenotypes crucial for homeostasis and repair of the conducting airways. Little is known about how these progenitor cells expand and transition to differentiation to form the pseudostratified airway epithelium in the developing and adult lung. Here, we show by genetic and pharmacological approaches that endogenous activation of Notch3 signaling selectively controls the pool of undifferentiated progenitors of upper airways available for differentiation. This mechanism depends on the availability of Jag1 and Jag2, and is key to generating a population of parabasal cells that later activates Notch1 and Notch2 for secretory-multiciliated cell fate selection. Disruption of this mechanism resulted in aberrant expansion of basal cells and altered pseudostratification. Analysis of human lungs showing similar abnormalities and decreased NOTCH3 expression in subjects with chronic obstructive pulmonary disease suggests an involvement of NOTCH3-dependent events in the pathogenesis of this condition. PMID:25564622

  16. Progenitor potential of nkx6.1-expressing cells throughout zebrafish life and during beta cell regeneration.

    PubMed

    Ghaye, Aurélie P; Bergemann, David; Tarifeño-Saldivia, Estefania; Flasse, Lydie C; Von Berg, Virginie; Peers, Bernard; Voz, Marianne L; Manfroid, Isabelle

    2015-09-02

    In contrast to mammals, the zebrafish has the remarkable capacity to regenerate its pancreatic beta cells very efficiently. Understanding the mechanisms of regeneration in the zebrafish and the differences with mammals will be fundamental to discovering molecules able to stimulate the regeneration process in mammals. To identify the pancreatic cells able to give rise to new beta cells in the zebrafish, we generated new transgenic lines allowing the tracing of multipotent pancreatic progenitors and endocrine precursors. Using novel bacterial artificial chromosome transgenic nkx6.1 and ascl1b reporter lines, we established that nkx6.1-positive cells give rise to all the pancreatic cell types and ascl1b-positive cells give rise to all the endocrine cell types in the zebrafish embryo. These two genes are initially co-expressed in the pancreatic primordium and their domains segregate, not as a result of mutual repression, but through the opposite effects of Notch signaling, maintaining nkx6.1 expression while repressing ascl1b in progenitors. In the adult zebrafish, nkx6.1 expression persists exclusively in the ductal tree at the tip of which its expression coincides with Notch active signaling in centroacinar/terminal end duct cells. Tracing these cells reveals that they are able to differentiate into other ductal cells and into insulin-expressing cells in normal (non-diabetic) animals. This capacity of ductal cells to generate endocrine cells is supported by the detection of ascl1b in the nkx6.1:GFP ductal cell transcriptome. This transcriptome also reveals, besides actors of the Notch and Wnt pathways, several novel markers such as id2a. Finally, we show that beta cell ablation in the adult zebrafish triggers proliferation of ductal cells and their differentiation into insulin-expressing cells. We have shown that, in the zebrafish embryo, nkx6.1+ cells are bona fide multipotent pancreatic progenitors, while ascl1b+ cells represent committed endocrine precursors. In

  17. Hematopoietic stem cells can differentiate into restricted myeloid progenitors before cell division in mice.

    PubMed

    Grinenko, Tatyana; Eugster, Anne; Thielecke, Lars; Ramasz, Beáta; Krüger, Anja; Dietz, Sevina; Glauche, Ingmar; Gerbaulet, Alexander; von Bonin, Malte; Basak, Onur; Clevers, Hans; Chavakis, Triantafyllos; Wielockx, Ben

    2018-05-15

    Hematopoietic stem cells (HSCs) continuously replenish all blood cell types through a series of differentiation steps and repeated cell divisions that involve the generation of lineage-committed progenitors. However, whether cell division in HSCs precedes differentiation is unclear. To this end, we used an HSC cell-tracing approach and Ki67 RFP knock-in mice, in a non-conditioned transplantation model, to assess divisional history, cell cycle progression, and differentiation of adult HSCs. Our results reveal that HSCs are able to differentiate into restricted progenitors, especially common myeloid, megakaryocyte-erythroid and pre-megakaryocyte progenitors, without undergoing cell division and even before entering the S phase of the cell cycle. Additionally, the phenotype of the undivided but differentiated progenitors correlated with the expression of lineage-specific genes and loss of multipotency. Thus HSC fate decisions can be uncoupled from physical cell division. These results facilitate a better understanding of the mechanisms that control fate decisions in hematopoietic cells.

  18. Establishment and characterization of a unique 1 microm diameter liver-derived progenitor cell line.

    PubMed

    Aravalli, Rajagopal N; Behnan Sahin, M; Cressman, Erik N K; Steer, Clifford J

    2010-01-01

    Liver-derived progenitor cells (LDPCs) are recently identified novel stem/progenitor cells from healthy, unmanipulated adult rat livers. They are distinct from other known liver stem/progenitor cells such as the oval cells. In this study, we have generated a LDPC cell line RA1 by overexpressing the simian virus 40 (SV40) large T antigen (TAg) in primary LDPCs. This cell line was propagated continuously for 55 passages in culture, after which it became senescent. Interestingly, following transformation with SV40 TAg, LDPCs decreased in size significantly and the propagating cells measured 1 microm in diameter. RA1 cells proliferated in vitro with a doubling time of 5-7 days, and expressed cell surface markers of LDPCs. In this report, we describe the characterization of this novel progenitor cell line that might serve as a valuable model to study liver cell functions and stem cell origin of liver cancers. Copyright 2009 Elsevier Inc. All rights reserved.

  19. Perioperative prediction of agitated (hyperactive) delirium after cardiac surgery in adults - The development of a practical scorecard.

    PubMed

    Mufti, Hani N; Hirsch, Gregory M

    2017-12-01

    Delirium is a temporary mental disorder that occurs frequently among hospitalized patients. In this study we sought to develop a user-friendly scorecard based on perioperative features to identify patients at risk of developing agitated delirium after cardiac surgery. Retrospective analysis was performed on adult patients undergoing cardiac surgery in a single center. A parsimonious predictive model was created, with subsequent internal validation. Then a simple scorecard was developed that can be used to predict the probability of agitated delirium. Among the 5584 patients who met the study criteria, 614 (11.4%) developed postoperative agitated delirium. Independent predictors of postoperative agitated delirium were age, male gender, history of cerebrovascular disease, procedure other than isolated Coronary Arteries Bypass Surgery, transfusion of blood products within the first 48h, mechanical ventilation for >24h, length of stay in the Intensive Care Unit. The scorecard stratified patients into 4 categories at risk of postoperative agitated delirium ranging from <5% to >30%. Using a large cohort of adult patient's undergoing cardiac surgery, a user-friendly scorecard was developed and validated, which will facilitate the implementation of timely interventions to mitigate adverse effects of agitated delirium in this high risk population. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury

    PubMed Central

    Di Siena, S; Gimmelli, R; Nori, S L; Barbagallo, F; Campolo, F; Dolci, S; Rossi, P; Venneri, M A; Giannetta, E; Gianfrilli, D; Feigenbaum, L; Lenzi, A; Naro, F; Cianflone, E; Mancuso, T; Torella, D; Isidori, A M; Pellegrini, M

    2016-01-01

    The role of endogenous c-Kit receptor activation on cardiac cell homeostasis and repair remains largely unexplored. Transgenic mice carrying an activating point mutation (TgD814Y) in the kinase domain of the c-Kit gene were generated. c-KitTgD814Y receptor was expressed in the heart during embryonic development and postnatal life, in a similar timing and expression pattern to that of the endogenous gene, but not in the hematopoietic compartment allowing the study of a cardiac-specific phenotype. c-KitTgD814Y mutation produced a constitutive active c-Kit receptor in cardiac tissue and cells from transgenic mice as demonstrated by the increased phosphorylation of ERK1/2 and AKT, which are the main downstream molecular effectors of c-Kit receptor signaling. In adult transgenic hearts, cardiac morphology, size and total c-Kit+ cardiac cell number was not different compared with wt mice. However, when c-KitTgD814Y mice were subjected to transmural necrotic heart damage by cryoinjury (CI), all transgenic survived, compared with half of wt mice. In the sub-acute phase after CI, transgenic and wt mice showed similar heart damage. However, 9 days after CI, transgenic mice exhibited an increased number of c-Kit+CD31+ endothelial progenitor cells surrounding the necrotic area. At later follow-up, a consistent reduction of fibrotic area, increased capillary density and increased cardiomyocyte replenishment rate (as established by BrdU incorporation) were observed in transgenic compared with wt mice. Consistently, CD45−c-Kit+ cardiac stem cells isolated from transgenic c-KitTgD814Y mice showed an enhanced endothelial and cardiomyocyte differentiation potential compared with cells isolated from the wt. Constitutive activation of c-Kit receptor in mice is associated with an increased cardiac myogenic and vasculogenic reparative potential after injury, with a significant improvement of survival. PMID:27468693

  1. Current status of stem cells in cardiac repair.

    PubMed

    Henning, Robert J

    2018-03-01

    One out of every two men and one out of every three women greater than the age of 40 will experience an acute myocardial infarction (AMI) at some time during their lifetime. As more patients survive their AMIs, the incidence of congestive heart failure (CHF) is increasing. 6 million people in the USA have ischemic cardiomyopathies and CHF. The search for new and innovative treatments for patients with AMI and CHF has led to investigations and use of human embryonic stem cells, cardiac stem/progenitor cells, bone marrow-derived mononuclear cells and mesenchymal stem cells for treatment of these heart conditions. This paper reviews current investigations with human embryonic, cardiac, bone marrow and mesenchymal stem cells, and also stem cell paracrine factors and exosomes.

  2. The effect of cannabichromene on adult neural stem/progenitor cells.

    PubMed

    Shinjyo, Noriko; Di Marzo, Vincenzo

    2013-11-01

    Apart from the psychotropic compound Δ(9)-tetrahydrocannabinol (THC), evidence suggests that other non-psychotropic phytocannabinoids are also of potential clinical use. This study aimed at elucidating the effect of major non-THC phytocannabinoids on the fate of adult neural stem progenitor cells (NSPCs), which are an essential component of brain function in health as well as in pathology. We tested three compounds: cannabidiol, cannabigerol, and cannabichromene (CBC), and found that CBC has a positive effect on the viability of mouse NSPCs during differentiation in vitro. The expression of NSPC and astrocyte markers nestin and Glial fibrillary acidic protein (GFAP), respectively, was up- and down-regulated, respectively. CBC stimulated ERK1/2 phosphorylation; however, this effect had a slower onset in comparison to typical MAPK stimulation. A MEK inhibitor, U0126, antagonized the up-regulation of nestin but not the down-regulation of GFAP. Based on a previous report, we studied the potential involvement of the adenosine A1 receptor in the effect of CBC on these cells and found that the selective adenosine A1 receptor antagonist, DPCPX, counteracted both ERK1/2 phosphorylation and up-regulation of nestin by CBC, indicating that also adenosine is involved in these effects of CBC, but possibly not in CBC inhibitory effect on GFAP expression. Next, we measured ATP levels as an equilibrium marker of adenosine and found higher ATP levels during differentiation of NSPCs in the presence of CBC. Taken together, our results suggest that CBC raises the viability of NSPCs while inhibiting their differentiation into astroglia, possibly through up-regulation of ATP and adenosine signalling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Regulation of adult neural progenitor cell functions by purinergic signaling.

    PubMed

    Tang, Yong; Illes, Peter

    2017-02-01

    Extracellular purines are signaling molecules in the neurogenic niches of the brain and spinal cord, where they activate cell surface purinoceptors at embryonic neural stem cells (NSCs) and adult neural progenitor cells (NPCs). Although mRNA and protein are expressed at NSCs/NPCs for almost all subtypes of the nucleotide-sensitive P2X/P2Y, and the nucleoside-sensitive adenosine receptors, only a few of those have acquired functional significance. ATP is sequentially degraded by ecto-nucleotidases to ADP, AMP, and adenosine with agonistic properties for distinct receptor-classes. Nucleotides/nucleosides facilitate or inhibit NSC/NPC proliferation, migration and differentiation. The most ubiquitous effect of all agonists (especially of ATP and ADP) appears to be the facilitation of cell proliferation, usually through P2Y1Rs and sometimes through P2X7Rs. However, usually P2X7R activation causes necrosis/apoptosis of NPCs. Differentiation can be initiated by P2Y2R-activation or P2X7R-blockade. A key element in the transduction mechanism of either receptor is the increase of the intracellular free Ca 2+ concentration, which may arise due to its release from intracellular storage sites (G protein-coupling; P2Y) or due to its passage through the receptor-channel itself from the extracellular space (ATP-gated ion channel; P2X). Further research is needed to clarify how purinergic signaling controls NSC/NPC fate and how the balance between the quiescent and activated states is established with fine and dynamic regulation. GLIA 2017;65:213-230. © 2016 Wiley Periodicals, Inc.

  4. Sleep Disruption is Associated with Increased Ventricular Ectopy and Cardiac Arrest in Hospitalized Adults

    PubMed Central

    Miner, Steven Edward Stuart; Pahal, Dev; Nichols, Laurel; Darwood, Amanda; Nield, Lynne Elizabeth; Wulffhart, Zaev

    2016-01-01

    Study Objectives: To determine whether sleep disruption increases ventricular ectopy and the risk of cardiac arrest in hospitalized patients. Methods: Hospital emergency codes (HEC) trigger multiple hospital-wide overhead announcements. In 2014 an electronic “code white” program was instituted to protect staff from violent patients. This resulted in an increase in nocturnal HEC. Telemetry data was examined between September 14 and October 2, 2014. The frequency of nocturnal announcements was correlated with changes in frequency of premature ventricular complexes per hour (PVC/h). Cardiac arrest data were examined over a 3-y period. All HEC were assumed to have triggered announcements. The relationship between nocturnal HEC and the incidence of subsequent cardiac arrest was examined. Results: 2,603 hours of telemetry were analyzed in 87 patients. During nights with two or fewer announcements, PVC/h decreased 33% and remained 30% lower the next day. On nights with four or more announcements, PVC/h increased 23% (P < 0.001) and further increased 85% the next day (P = 0.001). In 2014, following the introduction of the code white program, the frequency of all HEC increased from 1.1/day to 6.2/day (P < 0.05). The frequency of cardiac arrest/24 h rose from 0.46/day in 2012–2013 to 0.62/day in 2014 (P = 0.001). During daytime hours (06:00–22:00), from 2012 through 2014, the frequency of cardiac arrest following zero, one or at least two nocturnal HEC were 0.331 ± 0.03, 0.396 ± 0.04 and 0.471 ± 0.09 respectively (R2 = 0.99, P = 0.03). Conclusions: Sleep disruption is associated with increased ventricular ectopy and increased frequency of cardiac arrest. Citation: Miner SE, Pahal D, Nichols L, Darwood A, Nield LE, Wulffart Z. Sleep disruption is associated with increased ventricular ectopy and cardiac arrest in hospitalized adults. SLEEP 2016;39(4):927–935. PMID:26715226

  5. Strategies for Analyzing Cardiac Phenotypes in the Zebrafish Embryo

    PubMed Central

    Houk, Andrew R.; Yelon, Deborah

    2017-01-01

    The molecular mechanisms underlying cardiogenesis are of critical biomedical importance due to the high prevalence of cardiac birth defects. Over the past two decades, the zebrafish has served as a powerful model organism for investigating heart development, facilitated by its powerful combination of optical access to the embryonic heart and plentiful opportunities for genetic analysis. Work in zebrafish has identified numerous factors that are required for various aspects of heart formation, including the specification and differentiation of cardiac progenitor cells, the morphogenesis of the heart tube, cardiac chambers, and atrioventricular canal, and the establishment of proper cardiac function. However, our current roster of regulators of cardiogenesis is by no means complete. It is therefore valuable for ongoing studies to continue pursuit of additional genes and pathways that control the size, shape, and function of the zebrafish heart. An extensive arsenal of techniques is available to distinguish whether particular mutations, morpholinos, or small molecules disrupt specific processes during heart development. In this chapter, we provide a guide to the experimental strategies that are especially effective for the characterization of cardiac phenotypes in the zebrafish embryo. PMID:27312497

  6. CARDIAC-LIKE OSCILLATION IN LIVER STEM CELLS INDUCE THEIR ACQUISITION OF CARDIAC PHENOTYPE

    EPA Science Inventory

    We examined in a cardiac microenvironment the plasticity of a liver stem cell line (WB F344) generated from a cloned, single, non-parenchymal epithelial cell from a normal adult male rat. Our previous studies suggested that WB F344 cells acquire a cardiac phenotype in the absenc...

  7. Characteristics and outcomes of young adults who suffered an out-of-hospital cardiac arrest (OHCA).

    PubMed

    Chia, Michael Yih-Chong; Lu, Qing Shu; Rahman, Nik Hisamuddin; Doctor, Nausheen Edwin; Nishiuchi, Tatsuya; Leong, Benjamin Sieu-Hon; Tham, Lai Peng; Goh, E-Shaun; Tiah, Ling; Monsomboon, Apichaya; Ong, Marcus Eng Hock

    2017-02-01

    There is paucity of data examining the incidence and outcomes of young OHCA adults. The aim of this study is to determine the outcomes and characteristics of young adults who suffered an OHCA and identify factors that are associated with favourable neurologic outcomes. All EMS-attended OHCA adults between the ages of 16 and 35 years in the Pan-Asian Resuscitation Outcomes Study (PAROS) registry were analysed. The primary outcome was favourable neurologic outcome (Cerebral Performance Category 1 or 2) at hospital discharge or at 30th day post OHCA if not discharged. Regression analysis was performed to identify factors associated with favourable neurologic outcomes. 66,780 OHCAs were collected between January 2009 and December 2013; 3244 young OHCAs had resuscitation attempted by emergency medical services (EMS). 56.8% of patients had unwitnessed arrest; 47.9% were of traumatic etiology. 17.2% of patients (95% CI: 15.9-18.5%) had return of spontaneous circulation; 7.8% (95% CI: 6.9-8.8%) survived to one month; 4.6% (95% CI: 4.0-5.4%) survived with favourable neurologic outcomes. Factors associated with favourable neurologic outcomes include witnessed arrest (adjusted RR=2.42, p-value<0.0001), bystander CPR (adjusted RR=1.57, p-value=0.004), first arrest shockable rhythm (adjusted RR=27.24, p-value<0.0001), and cardiac etiology (adjusted RR=3.99, p-value<0.0001). OHCA among young adults are not uncommon. Traumatic OHCA, occurring most frequently in young adults had dismal prognosis. First arrest rhythms of VF/VT/unknown shockable rhythm, cardiac etiology, bystander-witnessed arrest, and bystander CPR were associated with favourable neurological outcomes. The results of the study would be useful for planning preventive and interventional strategies, improving EMS, and guiding future research. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Successful cardiac transplantation outcomes in patients with adult congenital heart disease.

    PubMed

    Menachem, Jonathan N; Golbus, Jessica R; Molina, Maria; Mazurek, Jeremy A; Hornsby, Nicole; Atluri, Pavan; Fuller, Stephanie; Birati, Edo Y; Kim, Yuli Y; Goldberg, Lee R; Wald, Joyce W

    2017-09-01

    The purpose of our study is (1) to characterise patients with congenital heart disease undergoing heart transplantation by adult cardiac surgeons in a large academic medical centre and (2) to describe successful outcomes associated with our multidisciplinary approach to the evaluation and treatment of adults with congenital heart disease (ACHD) undergoing orthotopic heart transplantation (OHT). Heart failure is the leading cause of death in patients with ACHD leading to increasing referrals for OHT. The Penn Congenital Transplant Database comprises a cohort of patients with ACHD who underwent OHT between March 2010 and April 2016. We performed a retrospective cohort study of the 20 consecutive patients. Original cardiac diagnoses include single ventricle palliated with Fontan (n=8), dextro-transposition of the great arteries after atrial switch (n=4), tetralogy of Fallot (n=4), pulmonary atresia (n=1), Ebstein anomaly (n=1), unrepaired ventricular septal defect (n=1) and Noonan syndrome with coarctation of the aorta (n=1). Eight patients required pretransplant inotropes and two required pretransplant mechanical support. Nine patients underwent heart-liver transplant and three underwent heart-lung transplant. Three patients required postoperative mechanical circulatory support. Patients were followed for an average of 38 months as of April 2016, with 100% survival at 30 days and 1 year and 94% overall survival (19/20 patients). ACHD-OHT patients require highly specialised, complex and multidisciplinary healthcare. The success of our programme is attributed to using team-based, patient-centred care including our multidisciplinary staff and specialists across programmes and departments. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Neural Progenitors Adopt Specific Identities by Directly Repressing All Alternative Progenitor Transcriptional Programs.

    PubMed

    Kutejova, Eva; Sasai, Noriaki; Shah, Ankita; Gouti, Mina; Briscoe, James

    2016-03-21

    In the vertebrate neural tube, a morphogen-induced transcriptional network produces multiple molecularly distinct progenitor domains, each generating different neuronal subtypes. Using an in vitro differentiation system, we defined gene expression signatures of distinct progenitor populations and identified direct gene-regulatory inputs corresponding to locations of specific transcription factor binding. Combined with targeted perturbations of the network, this revealed a mechanism in which a progenitor identity is installed by active repression of the entire transcriptional programs of other neural progenitor fates. In the ventral neural tube, sonic hedgehog (Shh) signaling, together with broadly expressed transcriptional activators, concurrently activates the gene expression programs of several domains. The specific outcome is selected by repressive input provided by Shh-induced transcription factors that act as the key nodes in the network, enabling progenitors to adopt a single definitive identity from several initially permitted options. Together, the data suggest design principles relevant to many developing tissues. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Progenitor cells for regenerative medicine and consequences of ART and cloning-associated epimutations.

    PubMed

    Laprise, Shari L

    2010-06-01

    The "holy grail" of regenerative medicine is the identification of an undifferentiated progenitor cell that is pluripotent, patient specific, and ethically unambiguous. Such a progenitor cell must also be able to differentiate into functional, transplantable tissue, while avoiding the risks of immune rejection. With reports detailing aberrant genomic imprinting associated with assisted reproductive technologies (ART) and reproductive cloning, the idea that human embryonic stem cells (hESCs) derived from surplus in vitro fertilized embryos or nuclear transfer ESCs (ntESCs) harvested from cloned embryos may harbor dangerous epigenetic errors has gained attention. Various progenitor cell sources have been proposed for human therapy, from hESCs to ntESCs, and from adult stem cells to induced pluripotent stem cells (iPS and piPS cells). This review highlights the advantages and disadvantages of each of these technologies, with particular emphasis on epigenetic stability.

  11. Adult patient decision-making regarding implantation of complex cardiac devices: a scoping review.

    PubMed

    Malecki-Ketchell, Alison; Marshall, Paul; Maclean, Joan

    2017-10-01

    Complex cardiac rhythm management device (CRMD) therapy provides an important treatment option for people at risk of sudden cardiac death. Despite the survival benefit, device implantation is associated with significant physical and psychosocial concerns presenting considerable challenges for the decision-making process surrounding CRMD implantation for patients and physicians. The purpose of this scoping review was to explore what is known about how adult (>16 years) patients make decisions regarding implantation of CRMD therapy. Published, peer reviewed, English language studies from 2000 to 2016 were identified in a search across eight healthcare databases. Eligible studies were concerned with patient decision-making for first time device implantation. Quality assessment was completed using the mixed methods appraisal tool for all studies meeting the inclusion criteria. The findings of eight qualitative and seven quantitative studies, including patients who accepted or declined primary or secondary sudden cardiac death prevention devices, were clustered into two themes: knowledge acquisition and the process of decision-making, exposing similarities and distinctions with the treatment decision-making literature. The review revealed some insight in to the way patients approach decision-making but also exposed a lack of clarity and research activity specific to CRMD patients. Further research is recommended to support the development and application of targeted decision support mechanisms.

  12. Rhythms and outcomes of adult in-hospital cardiac arrest.

    PubMed

    Meaney, Peter A; Nadkarni, Vinay M; Kern, Karl B; Indik, Julia H; Halperin, Henry R; Berg, Robert A

    2010-01-01

    To determine the relationship of electrocardiographic rhythm during cardiac arrest with survival outcomes. Prospective, observational study. Total of 411 hospitals in the National Registry of Cardiopulmonary Resuscitation. Total of 51,919 adult patients with pulseless cardiac arrests from April 1999 to July 2005. Registry data collected included first documented rhythm, patient demographics, pre-event data, event data, and survival and neurologic outcome data. Of 51,919 indexed cardiac arrests, first documented pulseless rhythm was ventricular tachycardia (VT) in 3810 (7%), ventricular fibrillation (VF) in 8718 (17%), pulseless electrical activity (PEA) in 19,262 (37%) and asystole 20,129 (39%). Subsequent VT/VF (that is, VT or VF occurring during resuscitation for PEA or asystole) occurred in 5154 (27%), with first documented rhythm of PEA and 4988 (25%) with asystole. Survival to hospital discharge rate was not different between those with first documented VF and VT (37% each, adjusted odds ratio [OR]) 1.08; 95% confidence interval [CI] 0.95-1.23). Survival to hospital discharge was slightly more likely after PEA than asystole (12% vs. 11%, adjusted OR 1.1; 95% CI 1.00-1.18), Survival to discharge was substantially more likely after first documented VT/VF than PEA/asystole (adjusted OR 1.68; 95% CI 1.55-1.82). Survival to discharge was also more likely after PEA/asystole without subsequent VT/VF compared with PEA/asystole with subsequent VT/VF (14% vs. 7% for PEA without vs. with subsequent VT/VF; 12% vs. 8% for asystole without vs. with subsequent VT/VF; adjusted OR 1.60; 95% CI, 1.44-1.80). Survival to hospital discharge was substantially more likely when the first documented rhythm was shockable rather than nonshockable, and slightly more likely after PEA than asystole. Survival to hospital discharge was less likely following PEA/asystole with subsequent VT/VF compared to PEA/asystole without subsequent VT/VF.

  13. Adult DRG Stem/Progenitor Cells Generate Pericytes in the Presence of Central Nervous System (CNS) Developmental Cues, and Schwann Cells in Response to CNS Demyelination.

    PubMed

    Vidal, Marie; Maniglier, Madlyne; Deboux, Cyrille; Bachelin, Corinne; Zujovic, Violetta; Baron-Van Evercooren, Anne

    2015-06-01

    It has been proposed that the adult dorsal root ganglia (DRG) harbor neural stem/progenitor cells (NPCs) derived from the neural crest. However, the thorough characterization of their stemness and differentiation plasticity was not addressed. In this study, we investigated adult DRG-NPC stem cell properties overtime, and their fate when ectopically grafted in the central nervous system. We compared them in vitro and in vivo to the well-characterized adult spinal cord-NPCs derived from the same donors. Using micro-dissection and neurosphere cultures, we demonstrate that adult DRG-NPCs have quasi unlimited self-expansion capacities without compromising their tissue specific molecular signature. Moreover, they differentiate into multiple peripheral lineages in vitro. After transplantation, adult DRG-NPCs generate pericytes in the developing forebrain but remyelinating Schwann cells in response to spinal cord demyelination. In addition, we show that axonal and endothelial/astrocytic factors as well astrocytes regulate the fate of adult DRG-NPCs in culture. Although the adult DRG-NPC multipotency is restricted to the neural crest lineage, their dual responsiveness to developmental and lesion cues highlights their impressive adaptive and repair potentials making them valuable targets for regenerative medicine. © 2015 AlphaMed Press.

  14. The EGFR signaling pathway controls gut progenitor differentiation during planarian regeneration and homeostasis.

    PubMed

    Barberán, Sara; Fraguas, Susanna; Cebrià, Francesc

    2016-06-15

    The planarian Schmidtea mediterranea maintains and regenerates all its adult tissues through the proliferation and differentiation of a single population of pluripotent adult stem cells (ASCs) called neoblasts. Despite recent advances, the mechanisms regulating ASC differentiation into mature cell types are poorly understood. Here, we show that silencing of the planarian EGF receptor egfr-1 by RNA interference (RNAi) impairs gut progenitor differentiation into mature cells, compromising gut regeneration and maintenance. We identify a new putative EGF ligand, nrg-1, the silencing of which phenocopies the defects observed in egfr-1(RNAi) animals. These findings indicate that egfr-1 and nrg-1 promote gut progenitor differentiation, and are thus essential for normal cell turnover and regeneration in the planarian gut. Our study demonstrates that the EGFR signaling pathway is an important regulator of ASC differentiation in planarians. © 2016. Published by The Company of Biologists Ltd.

  15. Pulsed electromagnetic field improves cardiac function in response to myocardial infarction.

    PubMed

    Hao, Chang-Ning; Huang, Jing-Juan; Shi, Yi-Qin; Cheng, Xian-Wu; Li, Hao-Yun; Zhou, Lin; Guo, Xin-Gui; Li, Rui-Lin; Lu, Wei; Zhu, Yi-Zhun; Duan, Jun-Li

    2014-01-01

    Extracorporeal pulsed electromagnetic field (PEMF) has been shown the ability to improve regeneration in various ischemic episodes. Here, we examined whether PEMF therapy facilitate cardiac recovery in rat myocardial infarction (MI), and the cellular/molecular mechanisms underlying PEMF-related therapy was further investigated. The MI rats were exposed to active PEMF for 4 cycles per day (8 minutes/cycle, 30 ± 3 Hz, 5 mT) after MI induction. The data demonstrated that PEMF treatment significantly inhibited cardiac apoptosis and improved cardiac systolic function. Moreover, PEMF treatment increased capillary density, the levels of vascular endothelial growth factor (VEGF) and hypoxic inducible factor-1α in infarct border zone. Furthermore, the number and function of circulating endothelial progenitor cells were advanced in PEMF treating rats. In vitro, PEMF induced the degree of human umbilical venous endothelial cells tubulization and increased soluble pro-angiogenic factor secretion (VEGF and nitric oxide). In conclusion, PEMF therapy preserves cardiac systolic function, inhibits apoptosis and trigger postnatal neovascularization in ischemic myocardium.

  16. A bird's-eye view of cell therapy and tissue engineering for cardiac regeneration.

    PubMed

    Soler-Botija, Carolina; Bagó, Juli R; Bayes-Genis, Antoni

    2012-04-01

    Complete recovery of ischemic cardiac muscle after myocardial infarction is still an unresolved concern. In recent years, intensive research efforts have focused on mimicking the physical and biological properties of myocardium for cardiac repair. Here we show how heart regeneration approaches have evolved from cell therapy to refined tissue engineering. Despite progressive improvements, the best cell type and delivery strategy are not well established. Our group has identified a new population of cardiac adipose tissue-derived progenitor cells with inherent cardiac and angiogenic potential that is a promising candidate for cell therapy to restore ischemic myocardium. We also describe results from three strategies for cell delivery into a murine model of myocardial infarction: intramyocardial injection, implantation of a fibrin patch loaded with cells, and an engineered bioimplant (a combination of chemically designed scaffold, peptide hydrogel, and cells); dual-labeling noninvasive bioluminescence imaging enables in vivo monitoring of cardiac-specific markers and cell survival. © 2012 New York Academy of Sciences.

  17. The relationship between traffic-related air pollutants and cardiac autonomic function in a panel of healthy adults: a further analysis with existing data.

    PubMed

    Wu, Shaowei; Deng, Furong; Niu, Jie; Huang, Qinsheng; Liu, Youcheng; Guo, Xinbiao

    2011-04-01

    Epidemiological studies have linked particulate matter (PM) and carbon monoxide (CO) exposures with alterations in cardiac autonomic function as measured by heart rate variability (HRV) in populations. Recently, we reported association of several HRV indices with marked changes in particulate air pollution around the Beijing 2008 Olympic Games in a panel of healthy adults. We further investigated the cardiac effects of traffic-related air pollutants over wide exposure ranges with expanded data set in this panel of healthy adults. We obtained real-time data on nine taxi drivers' in-car exposures to PM ≤ 2.5 µm in aerodynamic diameter (PM₂.₅) and CO and on multiple HRV indices during a separate daily work shift in four study periods with dramatically changing air pollution levels around the Beijing 2008 Olympic Games. Mixed effect models and a less smoother method were used to investigate the associations of exposures with HRV indices. Results showed overall negative associations of traffic-related air pollutants with HRV indices across periods, as well as differences in period-specific and individual associations. After stratifying the individuals into two different response groups (positive/negative), cardiac effects of air pollutants became stronger within each group. Exposure-response modeling identified changed curvilinear relationships between air pollution exposures and HRV indices with threshold effects. Our results support the association of exposure to traffic-related air pollution with altered cardiac autonomic function in young healthy adults free of cardiovascular compromises. These results suggest a complicated mechanism that traffic-related air pollutants influence the cardiovascular system of healthy adults.

  18. Cardiovascular Development and the Colonizing Cardiac Neural Crest Lineage

    PubMed Central

    Snider, Paige; Olaopa, Michael; Firulli, Anthony B.; Conway, Simon J.

    2007-01-01

    Although it is well established that transgenic manipulation of mammalian neural crest-related gene expression and microsurgical removal of premigratory chicken and Xenopus embryonic cardiac neural crest progenitors results in a wide spectrum of both structural and functional congenital heart defects, the actual functional mechanism of the cardiac neural crest cells within the heart is poorly understood. Neural crest cell migration and appropriate colonization of the pharyngeal arches and outflow tract septum is thought to be highly dependent on genes that regulate cell-autonomous polarized movement (i.e., gap junctions, cadherins, and noncanonical Wnt1 pathway regulators). Once the migratory cardiac neural crest subpopulation finally reaches the heart, they have traditionally been thought to participate in septation of the common outflow tract into separate aortic and pulmonary arteries. However, several studies have suggested these colonizing neural crest cells may also play additional unexpected roles during cardiovascular development and may even contribute to a crest-derived stem cell population. Studies in both mice and chick suggest they can also enter the heart from the venous inflow as well as the usual arterial outflow region, and may contribute to the adult semilunar and atrioventricular valves as well as part of the cardiac conduction system. Furthermore, although they are not usually thought to give rise to the cardiomyocyte lineage, neural crest cells in the zebrafish (Danio rerio) can contribute to the myocardium and may have different functions in a species-dependent context. Intriguingly, both ablation of chick and Xenopus premigratory neural crest cells, and a transgenic deletion of mouse neural crest cell migration or disruption of the normal mammalian neural crest gene expression profiles, disrupts ventral myocardial function and/or cardiomyocyte proliferation. Combined, this suggests that either the cardiac neural crest secrete factor/s that

  19. Mesenchymal progenitor cells for the osteogenic lineage.

    PubMed

    Ono, Noriaki; Kronenberg, Henry M

    2015-09-01

    Mesenchymal progenitors of the osteogenic lineage provide the flexibility for bone to grow, maintain its function and homeostasis. Traditionally, colony-forming-unit fibroblasts (CFU-Fs) have been regarded as surrogates for mesenchymal progenitors; however, this definition cannot address the function of these progenitors in their native setting. Transgenic murine models including lineage-tracing technologies based on the cre-lox system have proven to be useful in delineating mesenchymal progenitors in their native environment. Although heterogeneity of cell populations of interest marked by a promoter-based approach complicates overall interpretation, an emerging complexity of mesenchymal progenitors has been revealed. Current literatures suggest two distinct types of bone progenitor cells; growth-associated mesenchymal progenitors contribute to explosive growth of bone in early life, whereas bone marrow mesenchymal progenitors contribute to the much slower remodeling process and response to injury that occurs mainly in adulthood. More detailed relationships of these progenitors need to be studied through further experimentation.

  20. Transient gestational and neonatal hypothyroidism-induced specific changes in androgen receptor expression in skeletal and cardiac muscles of adult rat.

    PubMed

    Annapoorna, K; Anbalagan, J; Neelamohan, R; Vengatesh, G; Stanley, J; Amudha, G; Aruldhas, M M

    2013-03-01

    The present study aims to identify the association between androgen status and metabolic activity in skeletal and cardiac muscles of adult rats with transient gestational/neonatal-onset hypothyroidism. Pregnant and lactating rats were made hypothyroid by exposing to 0.05% methimazole in drinking water; gestational exposure was from embryonic day 9-14 (group II) or 21 (group III), lactational exposure was from postnatal day 1-14 (group IV) or 29 (group V). Serum was collected for hormone assay. Androgen receptor status, Glu-4 expression, and enzyme activities were assessed in the skeletal and cardiac muscles. Serum testosterone and estradiol levels decreased in adult rats of groups II and III, whereas testosterone remained normal but estradiol increased in group IV and V, when compared to coeval control. Androgen receptor ligand binding activity increased in both muscle phenotypes with a consistent increase in the expression level of its mRNA and protein expressions except in the forelimb of adult rats with transient hypothyroidism (group II-V). Glut-4 expression remained normal in skeletal and cardiac muscle of experimental rats. Specific activity of hexokinase and lactate dehydrogenase increased in both muscle phenotypes whereas, creatine kinase activity increased in skeletal muscles alone. It is concluded that transient gestational/lactational exposure to methimazole results in hypothyroidism during prepuberal life whereas it increases AR status and glycolytic activity in skeletal and cardiac muscles even at adulthood. Thus, the present study suggests that euthyroid status during prenatal and early postnatal life is essential to have optimal AR status and metabolic activity at adulthood. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Pediatric Donor to Adult Recipients in Donation After Cardiac Death Liver Transplantation: A Single-Center Experience.

    PubMed

    Lan, C; Song, J L; Yan, L N; Yang, J Y; Wen, T F; Li, B; Xu, M Q

    The impact of using liver allografts from donors who are younger than 14 years at the time of donation after cardiac death (DCD) liver transplantation in terms of early allograft dysfunction (EAD) and graft survival is undefined. To determine if adults undergoing DCD liver transplantation who receive a graft from a donor age younger than or equal to 13 years have similar outcomes to recipients of organs from older than 18-year-old donors. Records from adult patients undergoing DCD liver transplantation between March 2012 and December 2015 who received whole grafts from donors after cardiac death were reviewed. Patients with donors younger than or equal to 13 years (group 1) and older than 18 years (group 2) were compared for EAD rates, hepatic artery thrombosis (HAT), and graft survival. Records of 60 DCD liver transplantation patients were analyzed. The 90-day and 1-year graft survival rate of both groups was 90% versus 96% (P = .427) and 80% versus 84% (P = .668), respectively. The EAD rates of groups 1 and 2 were 30% versus 34% (P = .806). The incidence of HAT was 20% in group 1 compared with 12% in group 2 (P = .610). Also, 0.7% < graft to recipient weight ratio (GRWR) <0.8% was also usable for pediatric donor to adult recipients. Whole liver grafts from donors younger than or equal to 13 years can potentially be used in selected size-matched (GRWR >0.7%) DCD adult recipients. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Nuclear Orphan Receptor TLX Induces Oct-3/4 for the Survival and Maintenance of Adult Hippocampal Progenitors upon Hypoxia*

    PubMed Central

    Chavali, Pavithra Lakshminarasimhan; Saini, Ravi Kanth Rao; Matsumoto, Yoshiki; Ågren, Hans; Funa, Keiko

    2011-01-01

    Hypoxia promotes neural stem cell proliferation, the mechanism of which is poorly understood. Here, we have identified the nuclear orphan receptor TLX as a mediator for proliferation and pluripotency of neural progenitors upon hypoxia. We found an enhanced early protein expression of TLX under hypoxia potentiating sustained proliferation of neural progenitors. Moreover, TLX induction upon hypoxia in differentiating conditions leads to proliferation and a stem cell-like phenotype, along with coexpression of neural stem cell markers. Following hypoxia, TLX is recruited to the Oct-3/4 proximal promoter, augmenting the gene transcription and promoting progenitor proliferation and pluripotency. Knockdown of Oct-3/4 significantly reduced TLX-mediated proliferation, highlighting their interdependence in regulating the progenitor pool. Additionally, TLX synergizes with basic FGF to sustain cell viability upon hypoxia, since the knockdown of TLX along with the withdrawal of growth factor results in cell death. This can be attributed to the activation of Akt signaling pathway by TLX, the depletion of which results in reduced proliferation of progenitor cells. Cumulatively, the data presented here demonstrate a new role for TLX in neural stem cell proliferation and pluripotency upon hypoxia. PMID:21135096

  3. Nuclear orphan receptor TLX induces Oct-3/4 for the survival and maintenance of adult hippocampal progenitors upon hypoxia.

    PubMed

    Chavali, Pavithra Lakshminarasimhan; Saini, Ravi Kanth Rao; Matsumoto, Yoshiki; Ågren, Hans; Funa, Keiko

    2011-03-18

    Hypoxia promotes neural stem cell proliferation, the mechanism of which is poorly understood. Here, we have identified the nuclear orphan receptor TLX as a mediator for proliferation and pluripotency of neural progenitors upon hypoxia. We found an enhanced early protein expression of TLX under hypoxia potentiating sustained proliferation of neural progenitors. Moreover, TLX induction upon hypoxia in differentiating conditions leads to proliferation and a stem cell-like phenotype, along with coexpression of neural stem cell markers. Following hypoxia, TLX is recruited to the Oct-3/4 proximal promoter, augmenting the gene transcription and promoting progenitor proliferation and pluripotency. Knockdown of Oct-3/4 significantly reduced TLX-mediated proliferation, highlighting their interdependence in regulating the progenitor pool. Additionally, TLX synergizes with basic FGF to sustain cell viability upon hypoxia, since the knockdown of TLX along with the withdrawal of growth factor results in cell death. This can be attributed to the activation of Akt signaling pathway by TLX, the depletion of which results in reduced proliferation of progenitor cells. Cumulatively, the data presented here demonstrate a new role for TLX in neural stem cell proliferation and pluripotency upon hypoxia.

  4. Rho-associated kinase inhibitors promote the cardiac differentiation of embryonic and induced pluripotent stem cells.

    PubMed

    Cheng, Ya-Ting; Yeih, Dong-Feng; Liang, Shu-Man; Chien, Chia-Ying; Yu, Yen-Ling; Ko, Bor-Sheng; Jan, Yee-Jee; Kuo, Cheng-Chin; Sung, Li-Ying; Shyue, Song-Kun; Chen, Ming-Fong; Yet, Shaw-Fang; Wu, Kenneth K; Liou, Jun-Yang

    2015-12-15

    Rho-associated kinase (ROCK) plays an important role in maintaining embryonic stem (ES) cell pluripotency. To determine whether ROCK is involved in ES cell differentiation into cardiac and hematopoietic lineages, we evaluated the effect of ROCK inhibitors, Y-27632 and fasudil on murine ES and induced pluripotent stem (iPS) cell differentiation. Gene expression levels were determined by real-time PCR, Western blot analysis and immunofluorescent confocal microscopy. Cell transplantation of induced differentiated cells were assessed in vivo in a mouse model (three groups, n=8/group) of acute myocardial infarction (MI). The cell engraftment was examined by immunohistochemical staining and the outcome was analyzed by echocardiography. Cells were cultured in hematopoietic differentiation medium in the presence or absence of ROCK inhibitor and colony formation as well as markers of ES, hematopoietic stem cells (HSC) and cells of cardiac lineages were analyzed. ROCK inhibition resulted in a drastic change in colony morphology accompanied by loss of hematopoietic markers (GATA-1, CD41 and β-Major) and expressed markers of cardiac lineages (GATA-4, Isl-1, Tbx-5, Tbx-20, MLC-2a, MLC-2v, α-MHC, cTnI and cTnT) in murine ES and iPS cells. Fasudil-induced cardiac progenitor (Mesp-1 expressing) cells were infused into a murine MI model. They engrafted into the peri-infarct and infarct regions and preserved left ventricular function. These findings provide new insights into the signaling required for ES cell differentiation into hematopoietic as well as cardiac lineages and suggest that ROCK inhibitors are useful in directing iPS cell differentiation into cardiac progenitor cells for cell therapy of cardiovascular diseases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Exercise-based cardiac rehabilitation for adults after heart valve surgery.

    PubMed

    Sibilitz, Kirstine L; Berg, Selina K; Tang, Lars H; Risom, Signe S; Gluud, Christian; Lindschou, Jane; Kober, Lars; Hassager, Christian; Taylor, Rod S; Zwisler, Ann-Dorthe

    2016-03-21

    Exercise-based cardiac rehabilitation may benefit heart valve surgery patients. We conducted a systematic review to assess the evidence for the use of exercise-based intervention programmes following heart valve surgery. To assess the benefits and harms of exercise-based cardiac rehabilitation compared with no exercise training intervention, or treatment as usual, in adults following heart valve surgery. We considered programmes including exercise training with or without another intervention (such as a psycho-educational component). We searched: the Cochrane Central Register of Controlled Trials (CENTRAL); the Database of Abstracts of Reviews of Effects (DARE); MEDLINE (Ovid); EMBASE (Ovid); CINAHL (EBSCO); PsycINFO (Ovid); LILACS (Bireme); and Conference Proceedings Citation Index-S (CPCI-S) on Web of Science (Thomson Reuters) on 23 March 2015. We handsearched Web of Science, bibliographies of systematic reviews and trial registers (ClinicalTrials.gov, Controlled-trials.com, and The World Health Organization International Clinical Trials Registry Platform). We included randomised clinical trials that investigated exercise-based interventions compared with no exercise intervention control. The trial participants comprised adults aged 18 years or older who had undergone heart valve surgery for heart valve disease (from any cause) and received either heart valve replacement, or heart valve repair. Two authors independently extracted data. We assessed the risk of systematic errors ('bias') by evaluation of bias risk domains. Clinical and statistical heterogeneity were assessed. Meta-analyses were undertaken using both fixed-effect and random-effects models. We used the GRADE approach to assess the quality of evidence. We sought to assess the risk of random errors with trial sequential analysis. We included two trials from 1987 and 2004 with a total 148 participants who have had heart valve surgery. Both trials had a high risk of bias.There was insufficient evidence

  6. Exfoliated Human Olfactory Neuroepithelium: A Source of Neural Progenitor Cells.

    PubMed

    Jiménez-Vaca, Ana L; Benitez-King, Gloria; Ruiz, Víctor; Ramírez-Rodríguez, Gerardo B; Hernández-de la Cruz, Beatriz; Salamanca-Gómez, Fabio A; González-Márquez, Humberto; Ramírez-Sánchez, Israel; Ortíz-López, Leonardo; Vélez-Del Valle, Cristina; Ordoñez-Razo, Rosa Ma

    2018-03-01

    Neural progenitor cells (NPC) contained in the human adult olfactory neuroepithelium (ONE) possess an undifferentiated state, the capability of self-renewal, the ability to generate neural and glial cells as well as being kept as neurospheres in cell culture conditions. Recently, NPC have been isolated from human or animal models using high-risk surgical methods. Therefore, it was necessary to improve methodologies to obtain and maintain human NPC as well as to achieve better knowledge of brain disorders. In this study, we propose the establishment and characterization of NPC cultures derived from the human olfactory neuroepithelium, using non-invasive procedures. Twenty-two healthy individuals (29.7 ± 4.5 years of age) were subjected to nasal exfoliation. Cells were recovered and kept as neurospheres under serum-free conditions. The neural progenitor origin of these neurospheres was determined by immunocytochemistry and qPCR. Their ability for self-renewal and multipotency was analyzed by clonogenic and differentiation assays, respectively. In the cultures, the ONE cells preserved the phenotype of the neurospheres. The expression levels of Nestin, Musashi, Sox2, and βIII-tubulin demonstrated the neural origin of the neurospheres; 48% of the cells separated could generate neurospheres, determining that they retained their self-renewal capacity. Neurospheres were differentiated in the absence of growth factors (EGF and FGF), and their multipotency ability was maintained as well. We were also able to isolate and grow human neural progenitor cells (neurospheres) through nasal exfoliates (non-invasive method) of the ONE from healthy adults, which is an extremely important contribution for the study of brain disorders and for the development of new therapies.

  7. Participant-selected music and physical activity in older adults following cardiac rehabilitation: a randomized controlled trial.

    PubMed

    Clark, Imogen N; Baker, Felicity A; Peiris, Casey L; Shoebridge, Georgie; Taylor, Nicholas F

    2017-03-01

    To evaluate effects of participant-selected music on older adults' achievement of activity levels recommended in the physical activity guidelines following cardiac rehabilitation. A parallel group randomized controlled trial with measurements at Weeks 0, 6 and 26. A multisite outpatient rehabilitation programme of a publicly funded metropolitan health service. Adults aged 60 years and older who had completed a cardiac rehabilitation programme. Experimental participants selected music to support walking with guidance from a music therapist. Control participants received usual care only. The primary outcome was the proportion of participants achieving activity levels recommended in physical activity guidelines. Secondary outcomes compared amounts of physical activity, exercise capacity, cardiac risk factors, and exercise self-efficacy. A total of 56 participants, mean age 68.2 years (SD = 6.5), were randomized to the experimental ( n = 28) and control groups ( n = 28). There were no differences between groups in proportions of participants achieving activity recommended in physical activity guidelines at Week 6 or 26. Secondary outcomes demonstrated between-group differences in male waist circumference at both measurements (Week 6 difference -2.0 cm, 95% CI -4.0 to 0; Week 26 difference -2.8 cm, 95% CI -5.4 to -0.1), and observed effect sizes favoured the experimental group for amounts of physical activity (d = 0.30), exercise capacity (d = 0.48), and blood pressure (d = -0.32). Participant-selected music did not increase the proportion of participants achieving recommended amounts of physical activity, but may have contributed to exercise-related benefits.

  8. Does Lifestyle Exercise After a Cardiac Event Improve Metabolic Syndrome Profile in Older Adults?

    PubMed

    Wright, Kathy D; Moore-Schiltz, Laura; Sattar, Abdus; Josephson, Richard; Moore, Shirley M

    Exercise is a common recommendation to reduce the risk factors of metabolic syndrome, yet there are limited data on the influence of lifestyle exercise after cardiac events on metabolic syndrome factors. The purpose of this study was to determine whether lifestyle exercise improves metabolic syndrome profile in older adults after a cardiac event. Participants were from a post-cardiac-event lifestyle exercise study. Five metabolic syndrome factors were assessed: waist circumference, triglycerides, high-density lipids, glucose, and systolic and diastolic blood pressure. Objective measures of exercise were obtained from heart rate monitors over a year. Logistic regression was used to determine whether participants who engaged in the minimum recommendation of 130 hours of exercise or greater during the 12-month period improved their metabolic syndrome profile by improving at least 1 metabolic syndrome factor. In the sample of 116 participants (74% men; average age, 67.5 years), 43% exercised at the recommended amount (≥130 h/y) and 28% (n = 33) improved their metabolic syndrome profile. After controlling for confounding factors of age, gender, race, diabetes, functional ability, and employment, subjects who exercised at least 130 hours a year were 3.6 times more likely to improve at least 1 metabolic syndrome factor (95% confidence interval, 1.24-10.49). Of the 28% who improved their metabolic syndrome profile, 72% increased their high-density lipoprotein and 60.6% reduced their waist circumference and glucose. After a cardiac event, older patients who engage in lifestyle exercise at the recommended amount have improvement in their metabolic syndrome profile.

  9. Human Cartilage-Derived Progenitor Cells From Committed Chondrocytes for Efficient Cartilage Repair and Regeneration

    PubMed Central

    Jiang, Yangzi; Cai, Youzhi; Zhang, Wei; Yin, Zi; Hu, Changchang; Tong, Tong; Lu, Ping; Zhang, Shufang; Neculai, Dante

    2016-01-01

    Articular cartilage is not a physiologically self-renewing tissue. Injury of cartilage often progresses from the articular surface to the subchondral bone, leading to pathogenesis of tissue degenerative diseases, such as osteoarthritis. Therapies to treat cartilage defects using autologous chondrocyte-based tissue engineering have been developed and used for more than 20 years; however, the challenge of chondrocyte expansion in vitro remains. A promising cell source, cartilage stem/progenitor cells (CSPCs), has attracted recent attention. Because their origin and identity are still unclear, the application potential of CSPCs is under active investigation. Here we have captured the emergence of a group of stem/progenitor cells derived from adult human chondrocytes, highlighted by dynamic changes in expression of the mature chondrocyte marker, COL2, and mesenchymal stromal/stem cell (MSC) marker, CD146. These cells are termed chondrocyte-derived progenitor cells (CDPCs). The stem cell-like potency and differentiation status of CDPCs were determined by physical and biochemical cues during culture. A low-density, low-glucose 2-dimensional culture condition (2DLL) was critical for the emergence and proliferation enhancement of CDPCs. CDPCs showed similar phenotype as bone marrow mesenchymal stromal/stem cells but exhibited greater chondrogenic potential. Moreover, the 2DLL-cultured CDPCs proved efficient in cartilage formation both in vitro and in vivo and in repairing large knee cartilage defects (6–13 cm2) in 15 patients. These findings suggest a phenotype conversion between chondrocytes and CDPCs and provide conditions that promote the conversion. These insights expand our understanding of cartilage biology and may enhance the success of chondrocyte-based therapies. Significance Injury of cartilage, a non-self-repairing tissue, often progresses to pathogenesis of degenerative joint diseases, such as osteoarthritis. Although tissue-derived stem cells have been shown

  10. Human Cartilage-Derived Progenitor Cells From Committed Chondrocytes for Efficient Cartilage Repair and Regeneration.

    PubMed

    Jiang, Yangzi; Cai, Youzhi; Zhang, Wei; Yin, Zi; Hu, Changchang; Tong, Tong; Lu, Ping; Zhang, Shufang; Neculai, Dante; Tuan, Rocky S; Ouyang, Hong Wei

    2016-06-01

    Articular cartilage is not a physiologically self-renewing tissue. Injury of cartilage often progresses from the articular surface to the subchondral bone, leading to pathogenesis of tissue degenerative diseases, such as osteoarthritis. Therapies to treat cartilage defects using autologous chondrocyte-based tissue engineering have been developed and used for more than 20 years; however, the challenge of chondrocyte expansion in vitro remains. A promising cell source, cartilage stem/progenitor cells (CSPCs), has attracted recent attention. Because their origin and identity are still unclear, the application potential of CSPCs is under active investigation. Here we have captured the emergence of a group of stem/progenitor cells derived from adult human chondrocytes, highlighted by dynamic changes in expression of the mature chondrocyte marker, COL2, and mesenchymal stromal/stem cell (MSC) marker, CD146. These cells are termed chondrocyte-derived progenitor cells (CDPCs). The stem cell-like potency and differentiation status of CDPCs were determined by physical and biochemical cues during culture. A low-density, low-glucose 2-dimensional culture condition (2DLL) was critical for the emergence and proliferation enhancement of CDPCs. CDPCs showed similar phenotype as bone marrow mesenchymal stromal/stem cells but exhibited greater chondrogenic potential. Moreover, the 2DLL-cultured CDPCs proved efficient in cartilage formation both in vitro and in vivo and in repairing large knee cartilage defects (6-13 cm(2)) in 15 patients. These findings suggest a phenotype conversion between chondrocytes and CDPCs and provide conditions that promote the conversion. These insights expand our understanding of cartilage biology and may enhance the success of chondrocyte-based therapies. Injury of cartilage, a non-self-repairing tissue, often progresses to pathogenesis of degenerative joint diseases, such as osteoarthritis. Although tissue-derived stem cells have been shown to

  11. Novel insights into the role of NF-κB p50 in astrocyte-mediated fate specification of adult neural progenitor cells

    PubMed Central

    Bortolotto, Valeria; Grilli, Mariagrazia

    2017-01-01

    Within the CNS nuclear factor-kappa B (NF-κB) transcription factors are involved in a wide range of functions both in homeostasis and in pathology. Over the years, our and other groups produced a vast array of information on the complex involvement of NF-κB proteins in different aspects of postnatal neurogenesis. In particular, several extracellular signals and membrane receptors have been identified as being able to affect neural progenitor cells (NPC) and their progeny via NF-κB activation. A crucial role in the regulation of neuronal fate specification in adult hippocampal NPC is played by the NF-κB p50 subunit. NF-κB p50KO mice display a remarkable reduction in adult hippocampal neurogenesis which correlates with a selective defect in hippocampal-dependent short-term memory. Moreover absence of NF-κB p50 can profoundly affect the in vitro proneurogenic response of adult hippocampal NPC (ahNPC) to several endogenous signals and drugs. Herein we briefly review the current knowledge on the pivotal role of NF-κB p50 in the regulation of adult hippocampal neurogenesis. In addition we discuss more recent data that further extend the relevance of NF-κB p50 to novel astroglia-derived signals which can influence neuronal specification of ahNPC and to astrocyte-NPC cross-talk. PMID:28469638

  12. Abnormal lung function in adults with congenital heart disease: prevalence, relation to cardiac anatomy, and association with survival.

    PubMed

    Alonso-Gonzalez, Rafael; Borgia, Francesco; Diller, Gerhard-Paul; Inuzuka, Ryo; Kempny, Aleksander; Martinez-Naharro, Ana; Tutarel, Oktay; Marino, Philip; Wustmann, Kerstin; Charalambides, Menelaos; Silva, Margarida; Swan, Lorna; Dimopoulos, Konstantinos; Gatzoulis, Michael A

    2013-02-26

    Restrictive lung defects are associated with higher mortality in patients with acquired chronic heart failure. We investigated the prevalence of abnormal lung function, its relation to severity of underlying cardiac defect, its surgical history, and its impact on outcome across the spectrum of adult congenital heart disease. A total of 1188 patients with adult congenital heart disease (age, 33.1±13.1 years) undergoing lung function testing between 2000 and 2009 were included. Patients were classified according to the severity of lung dysfunction based on predicted values of forced vital capacity. Lung function was normal in 53% of patients with adult congenital heart disease, mildly impaired in 17%, and moderately to severely impaired in the remainder (30%). Moderate to severe impairment of lung function related to complexity of underlying cardiac defect, enlarged cardiothoracic ratio, previous thoracotomy/ies, body mass index, scoliosis, and diaphragm palsy. Over a median follow-up period of 6.7 years, 106 patients died. Moderate to severe impairment of lung function was an independent predictor of survival in this cohort. Patients with reduced force vital capacity of at least moderate severity had a 1.6-fold increased risk of death compared with patients with normal lung function (P=0.04). A reduced forced vital capacity is prevalent in patients with adult congenital heart disease; its severity relates to the complexity of the underlying heart defect, surgical history, and scoliosis. Moderate to severe impairment of lung function is an independent predictor of mortality in contemporary patients with adult congenital heart disease.

  13. Smad7 Regulates the Adult Neural Stem/Progenitor Cell Pool in a Transforming Growth Factor β- and Bone Morphogenetic Protein-Independent Manner▿

    PubMed Central

    Krampert, Monika; Chirasani, Sridhar Reddy; Wachs, Frank-Peter; Aigner, Robert; Bogdahn, Ulrich; Yingling, Jonathan M.; Heldin, Carl-Henrik; Aigner, Ludwig; Heuchel, Rainer

    2010-01-01

    Members of the transforming growth factor β (TGF-β) family of proteins modulate the proliferation, differentiation, and survival of many different cell types. Neural stem and progenitor cells (NPCs) in the adult brain are inhibited in their proliferation by TGF-β and by bone morphogenetic proteins (BMPs). Here, we investigated neurogenesis in a hypomorphic mouse model for the TGF-β and BMP inhibitor Smad7, with the hypothesis that NPC proliferation might be reduced due to increased TGF-β and BMP signaling. Unexpectedly, we found enhanced NPC proliferation as well as an increased number of label-retaining cells in vivo. The enhanced proliferation potential of mutant cells was retained in vitro in neurosphere cultures. We observed a higher sphere-forming capacity as well as faster growth and cell cycle progression. Use of specific inhibitors revealed that these effects were independent of TGF-β and BMP signaling. The enhanced proliferation might be at least partially mediated by elevated signaling via epidermal growth factor (EGF) receptor, as mutant cells showed higher expression and activation levels of the EGF receptor. Conversely, an EGF receptor inhibitor reduced the proliferation of these cells. Our data indicate that endogenous Smad7 regulates neural stem/progenitor cell proliferation in a TGF-β- and BMP-independent manner. PMID:20479122

  14. Heart repair by reprogramming non-myocytes with cardiac transcription factors

    PubMed Central

    Song, Kunhua; Nam, Young-Jae; Luo, Xiang; Qi, Xiaoxia; Tan, Wei; Huang, Guo N.; Acharya, Asha; Smith, Christopher L.; Tallquist, Michelle D.; Neilson, Eric G.; Hill, Joseph A.; Bassel-Duby, Rhonda; Olson, Eric N.

    2012-01-01

    The adult mammalian heart possesses little regenerative potential following injury. Fibrosis due to activation of cardiac fibroblasts impedes cardiac regeneration and contributes to loss of contractile function, pathological remodeling and susceptibility to arrhythmias. Cardiac fibroblasts account for a majority of cells in the heart and represent a potential cellular source for restoration of cardiac function following injury through phenotypic reprogramming to a myocardial cell fate. Here we show that four transcription factors, GATA4, Hand2, MEF2C and Tbx5 can cooperatively reprogram adult mouse tail-tip and cardiac fibroblasts into beating cardiac-like myocytes in vitro. Forced expression of these factors in dividing non-cardiomyocytes in mice reprograms these cells into functional cardiac-like myocytes, improves cardiac function and reduces adverse ventricular remodeling following myocardial infarction. Our results suggest a strategy for cardiac repair through reprogramming fibroblasts resident in the heart with cardiogenic transcription factors or other molecules. PMID:22660318

  15. Neurologic Complications After Cardiac Transplant.

    PubMed

    Öcal, Ruhsen; Kibaroğlu, Seda; Derle, Eda; Tanoğlu, Ceyda; Camkıran, Aynur; Pirat, Arash; Can, Ufuk; Sezgin, Atilla

    2016-06-15

    Cardiac transplant is the best available therapy for patients with end-stage heart failure. Neurologic complications occur at a rate of 30% to 70% in patients undergoing cardiac transplant, and they affect mortality and morbidity of these patients. Risk factors for neurologic complications include immunosuppressive medication toxicity, infections, brain lesions, and metabolic disorders. The aim of our study was to determine the incidence of neurologic complications in adult patients undergoing cardiac transplant. We retrospectively evaluated the medical records of 70 patients who underwent cardiac transplant between 2004 and April 2016. We recorded the demographic data, neurologic symptoms, neurologic examination findings, laboratory test results, brain imaging study results, and treatments received of the patients. Of the 70 patients enrolled, 55 were male and 15 were female patients. The age range was 18 to 63 years, and the mean age was 42.4 years. Twelve patients had encephalopathy, 4 had neuropathic pain, 3 had tremor, 2 had ischemic cerebrovascular accident, 7 had posterior reversible encephalopathy syndrome, and 1 had drop foot. Encephalopathy usually developed secondary to other neurologic disorders. The incidence of neurologic complications in adult patients undergoing cardiac transplant was 30%. Neurologic complications are common after cardiac transplant. We observed an incidence of 30% for neurologic complications in our clinic, with encephalopathy being the most common complication. Encephalopathy most commonly developed secondary to posterior reversible encephalopathy syndrome.

  16. Imparting regenerative capacity to limbs by progenitor cell transplantation

    PubMed Central

    Lin, Gufa; Chen, Ying; Slack, Jonathan M.W.

    2012-01-01

    Summary The frog Xenopus can normally regenerate its limbs at early developmental stages but loses the ability during metamorphosis. This behavior provides a potential gain-of-function model for measures that can enhance limb regeneration. Here we show that frog limbs can be caused to form multidigit regenerates after receiving transplants of larval limb progenitor cells. It is necessary to activate Wnt/β -catenin signaling in the cells, and to add Sonic hedgehog, FGF10 and thymosin β4. These factors promote survival and growth of the grafted cells and also provide pattern information. The eventual regenerates are not composed solely of donor tissue; the host cells also make a substantial contribution despite their lack of regeneration-competence. Cells from adult frog legs or from regenerating tadpole tails do not promote limb regeneration, demonstrating the necessity for limb progenitor cells. These findings have obvious implications for the development of a technology to promote limb regeneration in mammals. PMID:23273877

  17. Anesthesia preparation time is not affected by the experience level of the resident involved during his/her first month of adult cardiac surgery.

    PubMed

    Broussard, David M; Couch, Michael C

    2011-10-01

    This study was designed to answer the question of whether the experience level of the resident on his/her first month of adult cardiothoracic anesthesiology has an impact on operating room efficiency in a large academic medical center. Traditionally, the resident's 1st month of cardiac anesthesia had been reserved for the clinical anesthesia (CA)-2 year of training. This study analyzed the impact on operating room efficiency of moving the 1st month of cardiac anesthesia into the CA-1 year. The authors hypothesized that there would be no difference in anesthesia preparation times (defined as the interval between "in-room" and "anesthesia-ready" times) between CA-1 and CA-2 residents on their 1st month of cardiac anesthesia. This study was retrospective and used an electronic anesthesia information management system database. This study was conducted on care provided at a single 450-bed academic medical center. This study included 12 residents in their 1st month of cardiac anesthesia. The anesthesia preparation time (defined as the interval between "in-room" and "anesthesia-ready" times) was measured for cases involving residents on their first month of cardiac anesthesia. Anesthesia preparation times for 6 CA-1 resident months and 6 CA-2 resident months (100 adult cardiac procedures in total) were analyzed (49 for the CA-1 residents and 51 for the CA-2s). There were no differences in preparation time between CA-1 and CA-2 residents as a group (p = 0.8169). The CA-1 residents had an unadjusted mean (±standard error) of 51.1 ± 3.18 minutes, whereas the CA-2 residents' unadjusted mean was 50.2 ± 2.41 minutes. Adjusting for case mix (valves v coronary artery bypass graft surgery), the CA-1 mean was 49.1 ± 5.22 minutes, whereas the CA-2 mean was 49.1 ± 4.54 minutes. These findings suggest that operating room efficiency as measured by the anesthesia preparation time may not be affected by the level of the resident on his/her 1st month of adult cardiac anesthesia

  18. Distinct roles of neuroepithelial-like and radial glia-like progenitor cells in cerebellar regeneration.

    PubMed

    Kaslin, Jan; Kroehne, Volker; Ganz, Julia; Hans, Stefan; Brand, Michael

    2017-04-15

    Zebrafish can regenerate after brain injury, and the regenerative process is driven by resident stem cells. Stem cells are heterogeneous in the vertebrate brain, but the significance of having heterogeneous stem cells in regeneration is not understood. Limited availability of specific stem cells might impair the regeneration of particular cell lineages. We studied regeneration of the adult zebrafish cerebellum, which contains two major stem and progenitor cell types: ventricular zone and neuroepithelial cells. Using conditional lineage tracing we demonstrate that cerebellar regeneration depends on the availability of specific stem cells. Radial glia-like cells are thought to be the predominant stem cell type in homeostasis and after injury. However, we find that radial glia-like cells play a minor role in adult cerebellar neurogenesis and in recovery after injury. Instead, we find that neuroepithelial cells are the predominant stem cell type supporting cerebellar regeneration after injury. Zebrafish are able to regenerate many, but not all, cell types in the cerebellum, which emphasizes the need to understand the contribution of different adult neural stem and progenitor cell subtypes in the vertebrate central nervous system. © 2017. Published by The Company of Biologists Ltd.

  19. Dclk1 Defines Quiescent Pancreatic Progenitors that Promote Injury-Induced Regeneration and Tumorigenesis | Office of Cancer Genomics

    Cancer.gov

    The existence of adult pancreatic progenitor cells has been debated. While some favor the concept of facultative progenitors involved in homeostasis and repair, neither a location nor markers for such cells have been defined. Using genetic lineage tracing, we show that Doublecortin-like kinase-1 (Dclk1) labels a rare population of long-lived, quiescent pancreatic cells. In vitro, Dclk1+ cells proliferate readily and sustain pancreatic organoid growth. In vivo, Dclk1+ cells are necessary for pancreatic regeneration following injury and chronic inflammation.

  20. Nitric oxide synthase 2 is required for conversion of pro-fibrogenic inflammatory CD133(+) progenitors into F4/80(+) macrophages in experimental autoimmune myocarditis.

    PubMed

    Blyszczuk, Przemyslaw; Berthonneche, Corrine; Behnke, Silvia; Glönkler, Marcel; Moch, Holger; Pedrazzini, Thierry; Lüscher, Thomas F; Eriksson, Urs; Kania, Gabriela

    2013-02-01

    Experimental autoimmune myocarditis (EAM) model mirrors important mechanisms of inflammatory dilated cardiomyopathy (iDCM). In EAM, inflammatory CD133(+) progenitors are a major cellular source of cardiac myofibroblasts in the post-inflammatory myocardium. We hypothesized that exogenous delivery of macrophage-colony-stimulating factor (M-CSF) can stimulate macrophage lineage differentiation of inflammatory progenitors and, therefore, prevent their naturally occurring myofibroblast fate in EAM. EAM was induced in wild-type (BALB/c) and nitric oxide synthase 2-deficient (Nos2(-/-)) mice and CD133(+) progenitors were isolated from inflamed hearts. In vitro, M-CSF converted inflammatory CD133(+) progenitors into nitric oxide-producing F4/80(+) macrophages and prevented transforming growth factor-β-mediated myofibroblast differentiation. Importantly, only a subset of heart-infiltrating CD133(+) progenitors expresses macrophage-specific antigen F4/80 in EAM. These CD133(+)/F4/80(hi) cells show impaired myofibrogenic potential compared with CD133(+)/F4/80(-) cells. M-CSF treatment of wild-type mice with EAM at the peak of disease markedly increased CD133(+)/F4/80(hi) cells in the myocardium, and CD133(+) progenitors isolated from M-CSF-treated mice failed to differentiate into myofibroblasts. In contrast, M-CSF was not effective in converting CD133(+) progenitors from inflamed hearts of Nos2(-/-) mice into macrophages, and M-CSF treatment did not result in increased CD133(+)/F4/80(hi) cell population in hearts of Nos2(-/-) mice. Accordingly, M-CSF prevented post-inflammatory fibrosis and left ventricular dysfunction in wild-type but not in Nos2(-/-) mice. Active and NOS2-dependent induction of macrophage lineage differentiation abrogates the myofibrogenic potential of heart-infiltrating CD133(+) progenitors. Modulating the in vivo differentiation fate of specific progenitors might become a novel approach for the treatment of inflammatory heart diseases.

  1. Progenitor Epithelium

    PubMed Central

    Marty-Santos, Leilani

    2015-01-01

    Insulin-producing β cells within the vertebrate fetal pancreas acquire their fate in a step-wise manner. Whereas the intrinsic factors dictating the transcriptional or epigenetic status of pancreatic lineages have been intensely examined, less is known about cell–cell interactions that might constitute a niche for the developing β cell lineage. It is becoming increasingly clear that understanding and recapitulating these steps may instruct in vitro differentiation of embryonic stem cells and/or therapeutic regeneration. Indeed, directed differentiation techniques have improved since transitioning from 2D to 3D cultures, suggesting that the 3D microenvironment in which β cells are born is critical. However, to date, it remains unknown whether the changing architecture of the pancreatic epithelium impacts the fate of cells therein. An emerging challenge in the field is to elucidate how progenitors are allocated during key events, such as the stratification and subsequent resolution of the pre-pancreatic epithelium, as well as the formation of lumens and branches. Here, we assess the progenitor epithelium and examine how it might influence the emergence of pancreatic multipotent progenitors (MPCs), which give rise to β cells and other pancreatic lineages. PMID:26216134

  2. Endothelial progenitor cells regenerate infracted myocardium with neovascularisation development.

    PubMed

    Abd El Aziz, M T; Abd El Nabi, E A; Abd El Hamid, M; Sabry, D; Atta, H M; Rahed, L A; Shamaa, A; Mahfouz, S; Taha, F M; Elrefaay, S; Gharib, D M; Elsetohy, Khaled A

    2015-03-01

    We achieved possibility of isolation, characterization human umbilical cord blood endothelial progenitor cells (EPCs), examination potency of EPCs to form new blood vessels and differentiation into cardiomyoctes in canines with acute myocardial infarction (AMI). EPCs were separated and cultured from umbilical cord blood. Their phenotypes were confirmed by uptake of double stains dioctadecyl tetramethylindocarbocyanine-labeled acetylated LDL and FITC-labeled Ulex europaeus agglutinin 1 (DILDL-UEA-1). EPCs of cord blood were counted. Human VEGFR-2 and eNOS from the cultured EPCs were assessed by qPCR. Human EPCs was transplanted intramyocardially in canines with AMI. ECG and cardiac enzymes (CK-MB and Troponin I) were measured to assess severity of cellular damage. Histopathology was done to assess neovascularisation. Immunostaining was done to detect EPCs transdifferentiation into cardiomyocytes in peri-infarct cardiac tissue. qPCR for human genes (hVEGFR-2, and eNOS) was done to assess homing and angiogenic function of transplanted EPCs. Cultured human cord blood exhibited an increased number of EPCs and significant high expression of hVEGFR-2 and eNOS genes in the culture cells. Histopathology showed increased neovascularization and immunostaining showed presence of EPCs newly differentiated into cardiomyocyte-like cells. Our findings suggested that hEPCs can mediate angiogenesis and differentiate into cardiomyoctes in canines with AMI.

  3. Initial Efficacy of a Cardiac Rehabilitation Transition Program: Cardiac TRUST

    PubMed Central

    Zullo, Melissa; Boxer, Rebecca; Moore, Shirley M.

    2012-01-01

    Patients recovering from cardiac events are increasingly using postacute care, such as home health care and skilled nursing facility services. The purpose of this pilot study was to test the initial efficacy, feasibility, and safety of a specially designed postacute care transitional rehabilitation intervention for cardiac patients. Cardiac Transitional Rehabilitation Using Self- Management Techniques (Cardiac TRUST) is a family-focused intervention that includes progressive low-intensity walking and education in self-management skills to facilitate recovery following a cardiac event. Using a randomized two-group design, exercise self-efficacy, steps walked, and participation in an outpatient cardiac rehabilitation program were compared in a sample of 38 older adults; 17 who received the Cardiac TRUST program and 21 who received usual care only. At discharge from postacute care, the intervention group had a trend for higher levels of self-efficacy for exercise outcomes (X=39.1, SD=7.4) than the usual care group (X=34.5; SD=7.0) (t-test 1.9, p=.06). During the 6 weeks following discharge, compared with the usual care group, the intervention group had more attendance in out-patient cardiac rehabilitation (33% compared to 11.8%, F=7.1, p=.03) and a trend toward more steps walked during the first week (X=1,307, SD=652 compared to X=782, SD=544, t-test 1.8, p=.07). The feasibility of the intervention was better for the home health participants than for those in the skilled nursing facility and there were no safety concerns. The provision of cardiac-focused rehabilitation during postacute care has the potential to bridge the gap in transitional services from hospitalization to outpatient cardiac rehabilitation for these patients at high risk for future cardiac events. Further evidence of the efficacy of Cardiac TRUST is warranted. PMID:22084960

  4. Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF.

    PubMed

    Pfeiffer, Verena; Götz, Rudolf; Camarero, Guadelupe; Heinsen, Helmut; Blum, Robert; Rapp, Ulf Rüdiger

    2018-01-01

    RAF kinases are major constituents of the mitogen activated signaling pathway, regulating cell proliferation, differentiation and cell survival of many cell types, including neurons. In mammals, the family of RAF proteins consists of three members, ARAF, BRAF, and CRAF. Ablation of CRAF kinase in inbred mouse strains causes major developmental defects during fetal growth and embryonic or perinatal lethality. Heterozygous germline mutations in CRAF result in Noonan syndrome, which is characterized by neurocognitive impairment that may involve hippocampal physiology. The role of CRAF signaling during hippocampal development and generation of new postnatal hippocampal granule neurons has not been examined and may provide novel insight into the cause of hippocampal dysfunction in Noonan syndrome. In this study, by crossing CRAF-deficiency to CD-1 outbred mice, a CRAF mouse model was established which enabled us to investigate the interplay of neural progenitor proliferation and postmitotic differentiation during adult neurogenesis in the hippocampus. Albeit the general morphology of the hippocampus was unchanged, CRAF-deficient mice displayed smaller granule cell layer (GCL) volume at postnatal day 30 (P30). In CRAF-deficient mice a substantial number of abnormal, chromophilic, fast dividing cells were found in the subgranular zone (SGZ) and hilus of the dentate gyrus (DG), indicating that CRAF signaling contributes to hippocampal neural progenitor proliferation. CRAF-deficient neural progenitor cells showed an increased cell death rate and reduced neuronal maturation. These results indicate that CRAF function affects postmitotic neural cell differentiation and points to a critical role of CRAF-dependent growth factor signaling pathway in the postmitotic development of adult-born neurons.

  5. Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF

    PubMed Central

    Götz, Rudolf; Camarero, Guadelupe; Heinsen, Helmut; Blum, Robert; Rapp, Ulf Rüdiger

    2018-01-01

    RAF kinases are major constituents of the mitogen activated signaling pathway, regulating cell proliferation, differentiation and cell survival of many cell types, including neurons. In mammals, the family of RAF proteins consists of three members, ARAF, BRAF, and CRAF. Ablation of CRAF kinase in inbred mouse strains causes major developmental defects during fetal growth and embryonic or perinatal lethality. Heterozygous germline mutations in CRAF result in Noonan syndrome, which is characterized by neurocognitive impairment that may involve hippocampal physiology. The role of CRAF signaling during hippocampal development and generation of new postnatal hippocampal granule neurons has not been examined and may provide novel insight into the cause of hippocampal dysfunction in Noonan syndrome. In this study, by crossing CRAF-deficiency to CD-1 outbred mice, a CRAF mouse model was established which enabled us to investigate the interplay of neural progenitor proliferation and postmitotic differentiation during adult neurogenesis in the hippocampus. Albeit the general morphology of the hippocampus was unchanged, CRAF-deficient mice displayed smaller granule cell layer (GCL) volume at postnatal day 30 (P30). In CRAF-deficient mice a substantial number of abnormal, chromophilic, fast dividing cells were found in the subgranular zone (SGZ) and hilus of the dentate gyrus (DG), indicating that CRAF signaling contributes to hippocampal neural progenitor proliferation. CRAF-deficient neural progenitor cells showed an increased cell death rate and reduced neuronal maturation. These results indicate that CRAF function affects postmitotic neural cell differentiation and points to a critical role of CRAF-dependent growth factor signaling pathway in the postmitotic development of adult-born neurons. PMID:29590115

  6. Impact of a cardiac rehabilitation program and inflammatory state on endothelial progenitor cells in acute coronary syndrome patients.

    PubMed

    Cesari, Francesca; Marcucci, Rossella; Gori, Anna Maria; Burgisser, Costanza; Francini, Sara; Sofi, Francesco; Gensini, Gian Franco; Abbate, Rosanna; Fattirolli, Francesco

    2013-09-01

    Among the benefits of a cardiac rehabilitation (CR) program for patients after an acute coronary syndrome (ACS) is the mobilization of endothelial progenitor cells (EPCs). However not all patients respond to CR with an increase of EPC. We performed this study to identify the characteristics of patients who will not benefit from an increase of EPCs at the end of a CR program. 112 ACS patients were admitted to a four-week CR program. EPCs, high sensitivity C-reactive protein (hsCRP) and NT-ProBNP levels were determined at the beginning (T1) and at the end (T2) of the CR program. All patients performed a cardiopulmonary exercise test at T1 and at T2. EPCs were defined as CD34+KDR+, CD133+KDR+ and CD34+CD133+KDR+. hsCRP and NT-ProBNP were measured by nephelometric and immunometric method, respectively. At T2, we observed a significant increase of EPCs (p=0.001), VO2 peak, Watt max HDL-cholesterol (p<0.0001) and a significant decrease (p<0.001) of hsCRP and NT-ProBNP, triglycerides, HbA1c, systolic blood pressure and waist circumference. Variations of VO2 peak were significantly correlated with the variations of EPCs. Patients with increased EPCs showed significantly (p=0.01) lower baseline levels of CRP and higher basal Watt max (p=0.04). In a multivariate logistic regression analysis, the lowest tertile of baseline hsCRP significantly affected the likelihood of having an increase of EPCs at the end of the CR program. A CR program determines an increase of EPCs with a decrease of CRP and NT-ProBNP. A different trend for EPCs can be detected among patients correlated to CRP levels and exercise tolerance. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Strategies for blood conservation in pediatric cardiac surgery

    PubMed Central

    Singh, Sarvesh Pal

    2016-01-01

    Cardiac surgery accounts for the majority of blood transfusions in a hospital. Blood transfusion has been associated with complications and major adverse events after cardiac surgery. Compared to adults it is more difficult to avoid blood transfusion in children after cardiac surgery. This article takes into account the challenges and emphasizes on the various strategies that could be implemented, to conserve blood during pediatric cardiac surgery. PMID:27716703

  8. The Oligodendrocyte Progenitor Response to Demyelination

    DTIC Science & Technology

    2006-01-01

    DATE 2006 2. REPORT TYPE 3. DATES COVERED 00-00-2006 to 00-00-2006 4. TITLE AND SUBTITLE The Oligodendrocyte Progenitor Response to Demyelination...material in the thesis manuscript entitled: “The Oligodendrocyte Progenitor Response to Demyelination” is appropriately acknowledged and, beyond... oligodendrocyte progenitor (OP) amplification prior to remyelination. Myelin transcription factor 1 (Myt1) influences OP proliferation, differentiation, and

  9. Very late antigen-5 facilitates stromal progenitor cell differentiation into myofibroblast.

    PubMed

    Sen, Namita; Weingarten, Mark; Peter, Yakov

    2014-11-01

    Fibrotic disease is associated with abrogated stromal cell proliferation and activity. The precise identity of the cells that drive fibrosis remains obscure, in part because of a lack of information on their lineage development. To investigate the role of an early stromal progenitor cell (SPC) on the fibrotic process, we selected for, and monitored the stages of, fibroblast development from a previously reported free-floating anchorage-independent cell (AIC) progenitor population. Our findings demonstrate that organotypic pulmonary, cardiac, and renal fibroblast commitment follows a two-step process of attachment and remodeling in culture. Cell differentiation was confirmed by the inability of SPCs to revert to the free-floating state and functional mesenchymal stem/stromal cell (MSC) differentiation into osteoblast, adipocyte, chondrocyte, and fibroblastic lineages. The myofibroblastic phenotype was reflected by actin stress-fiber formation, α-smooth muscle production, and a greater than threefold increase in proliferative activity compared with that of the progenitors. SPC-derived pulmonary myofibroblasts demonstrated a more than 300-fold increase in fibronectin-1 (Fn1), collagen, type 1, α1, integrin α-5 (Itga5), and integrin β-1 (Itgb1) transcript levels. Very late antigen-5 (ITGA5/ITGB1) protein cluster formations were also prevalent on the differentiated cells. Normalized SPC-derived myofibroblast expression patterns reflected those of primary cultured lung myofibroblasts. Intratracheal implantation of pulmonary AICs into recipient mouse lungs resulted in donor cell FN1 production and evidence of epithelial derivation. SPC derivation into stromal tissue in vitro and in vivo and the observation that MSC and fibroblast lineages share a common ancestor could potentially lead to personalized antifibrotic therapies. ©AlphaMed Press.

  10. "Young at heart": Regenerative potential linked to immature cardiac phenotypes.

    PubMed

    Gomes, Renata S M; Skroblin, Philipp; Munster, Alex B; Tomlins, Hannah; Langley, Sarah R; Zampetaki, Anna; Yin, Xiaoke; Wardle, Fiona C; Mayr, Manuel

    2016-03-01

    The adult human myocardium is incapable of regeneration; yet, the zebrafish (Danio rerio) can regenerate damaged myocardium. Similar to the zebrafish heart, hearts of neonatal, but not adult mice are capable of myocardial regeneration. We performed a proteomics analysis of adult zebrafish hearts and compared their protein expression profile to hearts from neonatal and adult mice. Using difference in-gel electrophoresis (DIGE), there was little overlap between the proteome from adult mouse (>8weeks old) and adult zebrafish (18months old) hearts. Similarly, there was a significant degree of mismatch between the protein expression in neonatal and adult mouse hearts. Enrichment analysis of the selected proteins revealed over-expression of DNA synthesis-related proteins in the cardiac proteome of the adult zebrafish heart similar to neonatal and 4days old mice, whereas in hearts of adult mice there was a mitochondria-related predominance in protein expression. Importantly, we noted pronounced differences in the myofilament composition: the adult zebrafish heart lacks many of the myofilament proteins of differentiated adult cardiomyocytes such as the ventricular isoforms of myosin light chains and nebulette. Instead, troponin I and myozenin 1 were expressed as skeletal isoforms rather than cardiac isoforms. The relative immaturity of the adult zebrafish heart was further supported by cardiac microRNA data. Our assessment of zebrafish and mammalian hearts challenges the assertions on the translational potential of cardiac regeneration in the zebrafish model. The immature myofilament composition of the fish heart may explain why adult mouse and human cardiomyocytes lack this endogenous repair mechanism. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Linking an Anxiety-Related Personality Trait to Cardiac Autonomic Regulation in Well-Defined Healthy Adults: Harm Avoidance and Resting Heart Rate Variability.

    PubMed

    Kao, Lien-Cheng; Liu, Yu-Wen; Tzeng, Nian-Sheng; Kuo, Terry B J; Huang, San-Yuan; Chang, Chuan-Chia; Chang, Hsin-An

    2016-07-01

    Anxiety trait, anxiety and depression states have all been reported to increase risks for cardiovascular disease (CVD), possibly through altering cardiac autonomic regulation. Our aim was to investigate whether the relationship between harm avoidance (HA, an anxiety-related personality trait) and cardiac autonomic regulation is independent of anxiety and depression states in healthy adults. We recruited 535 physically and mentally healthy volunteers. Participants completed the Beck Anxiety Inventory (BAI), Beck Depression Inventory (BDI) and Tri-dimensional Personality Questionnaire. Participants were divided into high or low HA groups as discriminated by the quartile value. Cardiac autonomic function was evaluated by measuring heart rate variability (HRV). We obtained the time and frequency-domain indices of HRV including variance (total HRV), the low-frequency power (LF; 0.05-0.15 Hz), which may reflect baroreflex function, the high-frequency power (HF; 0.15-0.40 Hz), which reflects cardiac parasympathetic activity, as well as the LF/HF ratio. The BDI and HA scores showed associations with HRV parameters. After adjustment for the BDI scores and other control variables, HA is still associated with reduced variance, LF and HF power. Compared with the participants with low HA, those with high HA displayed significant reductions in variance, LF and HF power and a significant increase in their LF/HF ratio. This study highlights the independent role of HA in contributing to decreased autonomic cardiac regulation in healthy adults and provides a potential underlying mechanism for anxiety trait to confer increased risk for CVD.

  12. Linking an Anxiety-Related Personality Trait to Cardiac Autonomic Regulation in Well-Defined Healthy Adults: Harm Avoidance and Resting Heart Rate Variability

    PubMed Central

    Kao, Lien-Cheng; Liu, Yu-Wen; Tzeng, Nian-Sheng; Kuo, Terry B. J.; Huang, San-Yuan

    2016-01-01

    Objective Anxiety trait, anxiety and depression states have all been reported to increase risks for cardiovascular disease (CVD), possibly through altering cardiac autonomic regulation. Our aim was to investigate whether the relationship between harm avoidance (HA, an anxiety-related personality trait) and cardiac autonomic regulation is independent of anxiety and depression states in healthy adults. Methods We recruited 535 physically and mentally healthy volunteers. Participants completed the Beck Anxiety Inventory (BAI), Beck Depression Inventory (BDI) and Tri-dimensional Personality Questionnaire. Participants were divided into high or low HA groups as discriminated by the quartile value. Cardiac autonomic function was evaluated by measuring heart rate variability (HRV). We obtained the time and frequency-domain indices of HRV including variance (total HRV), the low-frequency power (LF; 0.05–0.15 Hz), which may reflect baroreflex function, the high-frequency power (HF; 0.15–0.40 Hz), which reflects cardiac parasympathetic activity, as well as the LF/HF ratio. Results The BDI and HA scores showed associations with HRV parameters. After adjustment for the BDI scores and other control variables, HA is still associated with reduced variance, LF and HF power. Compared with the participants with low HA, those with high HA displayed significant reductions in variance, LF and HF power and a significant increase in their LF/HF ratio. Conclusion This study highlights the independent role of HA in contributing to decreased autonomic cardiac regulation in healthy adults and provides a potential underlying mechanism for anxiety trait to confer increased risk for CVD. PMID:27482240

  13. Protection of adult rat cardiac myocytes from ischemic cell death: role of caveolar microdomains and delta-opioid receptors.

    PubMed

    Patel, Hemal H; Head, Brian P; Petersen, Heidi N; Niesman, Ingrid R; Huang, Diane; Gross, Garrett J; Insel, Paul A; Roth, David M

    2006-07-01

    The role of caveolae, membrane microenvironments enriched in signaling molecules, in myocardial ischemia is poorly defined. In the current study, we used cardiac myocytes prepared from adult rats to test the hypothesis that opioid receptors (OR), which are capable of producing cardiac protection in vivo, promote cardiac protection in cardiac myocytes in a caveolae-dependent manner. We determined protein expression and localization of delta-OR (DOR) using coimmunohistochemistry, caveolar fractionation, and immunoprecipitations. DOR colocalized in fractions with caveolin-3 (Cav-3), a structural component of caveolae in muscle cells, and could be immunoprecipitated by a Cav-3 antibody. Immunohistochemistry confirmed plasma membrane colocalization of DOR with Cav-3. Cardiac myocytes were subjected to simulated ischemia (2 h) or an ischemic preconditioning (IPC) protocol (10 min ischemia, 30 min recovery, 2 h ischemia) in the presence and absence of methyl-beta-cyclodextrin (MbetaCD, 2 mM), which binds cholesterol and disrupts caveolae. We also assessed the cardiac protective effects of SNC-121 (SNC), a selective DOR agonist, on cardiac myocytes with or without MbetaCD and MbetaCD preloaded with cholesterol. Ischemia, simulated by mineral oil layering to inhibit gas exchange, promoted cardiac myocyte cell death (trypan blue staining), a response blunted by SNC (37 +/- 3 vs. 59 +/- 3% dead cells in the presence and absence of 1 muM SNC, respectively, P < 0.01) or by use of the IPC protocol (35 +/- 4 vs. 62 +/- 3% dead cells, P < 0.01). MbetaCD treatment, which disrupted caveolae (as detected by electron microscopy), fully attenuated the protective effects of IPC or SNC, resulting in cell death comparable to that of the ischemic group. By contrast, SNC-induced protection was not abrogated in cells incubated with cholesterol-saturated MbetaCD, which maintained caveolae structure and function. These findings suggest a key role for caveolae, perhaps through enrichment of

  14. Different gene expression in human heart tissue and progenitor cells from control and diabetic subjects: relevance to the pathogenesis of human diabetic cardiomyopathy.

    PubMed

    de Cillis, Emanuela; Leonardini, Anna; Laviola, Luigi; Giorgino, Francesco; Tupputi Schinosa, Luigi de Luca; Bortone, Alessandro Santo

    2010-04-01

    The The aim of our study is to investigate the molecular mechanisms of diabetic cardiomyopathy through the identification of remarkable genes for the myocardial function that are expressed differently between diabetic and normal subjects. Moreover, we intend to characterize both in human myocardial tissue and in the related cardiac progenitor cells the pattern of gene expression and the levels of expression and protein activation of molecular effectors involved in the regulation of the myocardial function and differentiation to clarify whether in specific human pathological conditions (type 2 diabetes mellitus, cardiac failure, coronary artery disease) specific alterations of the aforementioned factors could take place. Thirty-five patients scheduled for coronary artery bypass grafting (CABG) or for aortic or mitral valve replacement were recruited into the study. There were 13 men and 22 women with a mean age of 64.8 +/- 13.4 years. A list of anamnestic, anthropometric, clinical, and instrumental data required for an optimal phenotypical characterization of the patients is reported. The small cardiac biopsy specimens were placed in the nourishing buffer, in a sterile tube provided the day of the procedure, to maintain the stability of the sample for several hours at room temperature. The cells were isolated by a dedicated protocol and then cultured in vitro. The sample was processed for total RNA extraction and levels of gene expression and protein activation of molecular effectors involved in the regulation of function and differentiation of human myocardium was analyzed. In particular, cardiac genes that modulate the oxidative stress response or the stress induced by pro-inflammatory cytokines (p66Shc, SOCS-1, SOCS-3) were analyzed. From a small sample of myocardium cardiac stem cells and cardiomyoblasts were also isolated and characterized. These cells showed a considerable proliferative capacity due to the fact that they demonstrate stability up to the

  15. Novel and conventional serum biomarkers predicting acute kidney injury in adult cardiac surgery--a prospective cohort study.

    PubMed

    Haase-Fielitz, Anja; Bellomo, Rinaldo; Devarajan, Prasad; Story, David; Matalanis, George; Dragun, Duska; Haase, Michael

    2009-02-01

    To compare the value of novel with conventional serum biomarkers in the prediction of acute kidney injury (AKI) in adult cardiac surgical patients according to preoperative renal function. Single-center, prospective observational study. Tertiary hospital. One hundred adult cardiac surgical patients. We measured concentrations of plasma neutrophil gelatinase-associated lipocalin (NGAL), and serum cystatin C, and creatinine and urea at baseline, on arrival in the intensive care unit (ICU) and at 24 hours postoperatively. We assessed such biomarkers in relation to the development of AKI (>50% increase in creatinine from baseline) and to a composite end point (need for renal replacement therapy and in-hospital mortality). We defined an area under the receiver operating characteristic curve of 0.60-0.69 as poor, 0.70-0.79 as fair, 0.80-0.89 as good, and 0.90-1.00 as excellent in terms of predictive value. On arrival in ICU, plasma NGAL and serum cystatin C were of good predictive value, but creatinine and urea were of poor predictive value. After exclusion of patients with preoperative renal impairment (estimated glomerular filtration rate <60 mL/min), the predictive performance for AKI of all renal biomarkers on arrival in ICU remained unchanged except for cystatin C, which was of fair value in such patients. At 24 hours postoperatively, all renal biomarkers were of good predictive value. On arrival in ICU, novel biomarkers were superior to conventional biomarkers (p < 0.05). Plasma NGAL (p = 0.015) and serum cystatin C (p = 0.007) were independent predictors of AKI and of excellent value in the prediction of the composite end point. Early postoperative measurement of plasma NGAL was of good value in identifying patients who developed AKI after adult cardiac surgery. Plasma NGAL and serum cystatin C were superior to conventional biomarkers in the prediction of AKI and were also of prognostic value in this setting.

  16. Lgr5(+ve) stem/progenitor cells contribute to nephron formation during kidney development.

    PubMed

    Barker, Nick; Rookmaaker, Maarten B; Kujala, Pekka; Ng, Annie; Leushacke, Marc; Snippert, Hugo; van de Wetering, Marc; Tan, Shawna; Van Es, Johan H; Huch, Meritxell; Poulsom, Richard; Verhaar, Marianne C; Peters, Peter J; Clevers, Hans

    2012-09-27

    Multipotent stem cells and their lineage-restricted progeny drive nephron formation within the developing kidney. Here, we document expression of the adult stem cell marker Lgr5 in the developing kidney and assess the stem/progenitor identity of Lgr5(+ve) cells via in vivo lineage tracing. The appearance and localization of Lgr5(+ve) cells coincided with that of the S-shaped body around embryonic day 14. Lgr5 expression remained restricted to cell clusters within developing nephrons in the cortex until postnatal day 7, when expression was permanently silenced. In vivo lineage tracing identified Lgr5 as a marker of a stem/progenitor population within nascent nephrons dedicated to generating the thick ascending limb of Henle's loop and distal convoluted tubule. The Lgr5 surface marker and experimental models described here will be invaluable for deciphering the contribution of early nephron stem cells to developmental defects and for isolating human nephron progenitors as a prerequisite to evaluating their therapeutic potential. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Dclk1 Defines Quiescent Pancreatic Progenitors that Promote Injury-Induced Regeneration and Tumorigenesis.

    PubMed

    Westphalen, C Benedikt; Takemoto, Yoshihiro; Tanaka, Takayuki; Macchini, Marina; Jiang, Zhengyu; Renz, Bernhard W; Chen, Xiaowei; Ormanns, Steffen; Nagar, Karan; Tailor, Yagnesh; May, Randal; Cho, Youngjin; Asfaha, Samuel; Worthley, Daniel L; Hayakawa, Yoku; Urbanska, Aleksandra M; Quante, Michael; Reichert, Maximilian; Broyde, Joshua; Subramaniam, Prem S; Remotti, Helen; Su, Gloria H; Rustgi, Anil K; Friedman, Richard A; Honig, Barry; Califano, Andrea; Houchen, Courtney W; Olive, Kenneth P; Wang, Timothy C

    2016-04-07

    The existence of adult pancreatic progenitor cells has been debated. While some favor the concept of facultative progenitors involved in homeostasis and repair, neither a location nor markers for such cells have been defined. Using genetic lineage tracing, we show that Doublecortin-like kinase-1 (Dclk1) labels a rare population of long-lived, quiescent pancreatic cells. In vitro, Dclk1+ cells proliferate readily and sustain pancreatic organoid growth. In vivo, Dclk1+ cells are necessary for pancreatic regeneration following injury and chronic inflammation. Accordingly, their loss has detrimental effects after cerulein-induced pancreatitis. Expression of mutant Kras in Dclk1+ cells does not affect their quiescence or longevity. However, experimental pancreatitis converts Kras mutant Dclk1+ cells into potent cancer-initiating cells. As a potential effector of Kras, Dclk1 contributes functionally to the pathogenesis of pancreatic cancer. Taken together, these observations indicate that Dclk1 marks quiescent pancreatic progenitors that are candidates for the origin of pancreatic cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Functional screening identifies miRNAs inducing cardiac regeneration.

    PubMed

    Eulalio, Ana; Mano, Miguel; Dal Ferro, Matteo; Zentilin, Lorena; Sinagra, Gianfranco; Zacchigna, Serena; Giacca, Mauro

    2012-12-20

    In mammals, enlargement of the heart during embryonic development is primarily dependent on the increase in cardiomyocyte numbers. Shortly after birth, however, cardiomyocytes stop proliferating and further growth of the myocardium occurs through hypertrophic enlargement of the existing myocytes. As a consequence of the minimal renewal of cardiomyocytes during adult life, repair of cardiac damage through myocardial regeneration is very limited. Here we show that the exogenous administration of selected microRNAs (miRNAs) markedly stimulates cardiomyocyte proliferation and promotes cardiac repair. We performed a high-content microscopy, high-throughput functional screening for human miRNAs that promoted neonatal cardiomyocyte proliferation using a whole-genome miRNA library. Forty miRNAs strongly increased both DNA synthesis and cytokinesis in neonatal mouse and rat cardiomyocytes. Two of these miRNAs (hsa-miR-590 and hsa-miR-199a) were further selected for testing and were shown to promote cell cycle re-entry of adult cardiomyocytes ex vivo and to promote cardiomyocyte proliferation in both neonatal and adult animals. After myocardial infarction in mice, these miRNAs stimulated marked cardiac regeneration and almost complete recovery of cardiac functional parameters. The miRNAs identified hold great promise for the treatment of cardiac pathologies consequent to cardiomyocyte loss.

  19. The progenitors of stripped-envelope supernovae

    NASA Astrophysics Data System (ADS)

    Elias-Rosa, N.

    2013-05-01

    The type Ib/c SNe are those explosions which come from massive star populations, but lack hydrogen and helium. These have been proposed to originate in the explosions of massive Wolf-Rayet stars, and we should easily be able to detect the very luminous, young progenitors if they exist. However, there has not been any detection of progenitors so far. I present the study of two extinguished Type Ic SNe 2003jg and 2004cc. In both cases there is no clear evidence of a direct detection of their progenitors in deep pre-explosion images. Upper limits derived by inserting artificial stars of known brightness at random positions around the progenitor positions (M_v>-8.8 and M_v>-9 magnitudes for the progenitors of SN 2003jg and SN 2004cc, respectively) are brighter than those expected for a massive WC (Wolf-Rayet, carbon-rich) or WO (Wolf-Rayet, oxygen-rich) (e.g., approximately between -3 and -6 in the LMC). Therefore, this is perhaps further evidence that the most massive stars may give rise to black-holes forming SNe, or it is an undetected, compact massive star hidden by a thick dust lane. However the extinction toward these SNe is currently one of the largest known. Even if these results do not directly reveal the nature of the type Ic SN progenitors, they can help to characterize the dusty environment which surrounded the progenitor of the stripped-envelope CC-SNe.

  20. Enhanced genetic modification of adult growth factor mobilized peripheral blood hematopoietic stem and progenitor cells with rapamycin.

    PubMed

    Li, Lijing; Torres-Coronado, Mónica; Gu, Angel; Rao, Anitha; Gardner, Agnes M; Epps, Elizabeth W; Gonzalez, Nancy; Tran, Chy-Anh; Wu, Xiwei; Wang, Jin-Hui; DiGiusto, David L

    2014-10-01

    Genetic modification of adult human hematopoietic stem and progenitor cells (HSPCs) with lentiviral vectors leads to long-term gene expression in the progeny of the HSPCs and has been used to successfully treat several monogenic diseases. In some cases, the gene-modified cells have a selective growth advantage over nonmodified cells and eventually are the dominant engrafted population. However, in disease indications for which the gene-modified cells do not have a selective advantage, optimizing transduction of HSPC is paramount to successful stem cell-based gene therapy. We demonstrate here that transduction of adult CD34+ HSPCs with lentiviral vectors in the presence of rapamycin, a widely used mTORC1 inhibitor, results in an approximately threefold increase in stable gene marking with minimal effects on HSPC growth and differentiation. Using this approach, we have demonstrated that we can enhance the frequency of gene-modified HSPCs that give rise to clonogenic progeny in vitro without excessive increases in the number of vector copies per cell or changes in integration pattern. The genetic marking of HSPCs and expression of transgenes is durable, and transplantation of gene-modified HSPCs into immunodeficient mice results in high levels of gene marking of the lymphoid and myeloid progeny in vivo. The prior safe clinical history of rapamycin in other applications supports the use of this compound to generate gene-modified autologous HSPCs for our HIV gene therapy clinical trials. ©AlphaMed Press.

  1. Enhanced Genetic Modification of Adult Growth Factor Mobilized Peripheral Blood Hematopoietic Stem and Progenitor Cells With Rapamycin

    PubMed Central

    Li, Lijing; Torres-Coronado, Mónica; Gu, Angel; Rao, Anitha; Gardner, Agnes M.; Epps, Elizabeth W.; Gonzalez, Nancy; Tran, Chy-Anh; Wu, Xiwei; Wang, Jin-Hui

    2014-01-01

    Genetic modification of adult human hematopoietic stem and progenitor cells (HSPCs) with lentiviral vectors leads to long-term gene expression in the progeny of the HSPCs and has been used to successfully treat several monogenic diseases. In some cases, the gene-modified cells have a selective growth advantage over nonmodified cells and eventually are the dominant engrafted population. However, in disease indications for which the gene-modified cells do not have a selective advantage, optimizing transduction of HSPC is paramount to successful stem cell-based gene therapy. We demonstrate here that transduction of adult CD34+ HSPCs with lentiviral vectors in the presence of rapamycin, a widely used mTORC1 inhibitor, results in an approximately threefold increase in stable gene marking with minimal effects on HSPC growth and differentiation. Using this approach, we have demonstrated that we can enhance the frequency of gene-modified HSPCs that give rise to clonogenic progeny in vitro without excessive increases in the number of vector copies per cell or changes in integration pattern. The genetic marking of HSPCs and expression of transgenes is durable, and transplantation of gene-modified HSPCs into immunodeficient mice results in high levels of gene marking of the lymphoid and myeloid progeny in vivo. The prior safe clinical history of rapamycin in other applications supports the use of this compound to generate gene-modified autologous HSPCs for our HIV gene therapy clinical trials. PMID:25107584

  2. Alpha-2 adrenergic agonists for the prevention of cardiac complications among adults undergoing surgery.

    PubMed

    Duncan, Dallas; Sankar, Ashwin; Beattie, W Scott; Wijeysundera, Duminda N

    2018-03-06

    The surgical stress response plays an important role on the pathogenesis of perioperative cardiac complications. Alpha-2 adrenergic agonists attenuate this response and may help prevent postoperative cardiac complications. To determine the efficacy and safety of α-2 adrenergic agonists for reducing mortality and cardiac complications in adults undergoing cardiac surgery and non-cardiac surgery. We searched CENTRAL (2017, Issue 4), MEDLINE (1950 to April Week 4, 2017), Embase (1980 to May 2017), the Science Citation Index, clinical trial registries, and reference lists of included articles. We included randomized controlled trials that compared α-2 adrenergic agonists (i.e. clonidine, dexmedetomidine or mivazerol) against placebo or non-α-2 adrenergic agonists. Included trials had to evaluate the efficacy and safety of α-2 adrenergic agonists for preventing perioperative mortality or cardiac complications (or both), or measure one or more relevant outcomes (i.e. death, myocardial infarction, heart failure, acute stroke, supraventricular tachyarrhythmia and myocardial ischaemia). Two authors independently assessed trial quality, extracted data and independently performed computer entry of abstracted data. We contacted study authors for additional information. Adverse event data were gathered from the trials. We evaluated included studies using the Cochrane 'Risk of bias' tool, and the quality of the evidence underlying pooled treatment effects using GRADE methodology. Given the clinical heterogeneity between cardiac and non-cardiac surgery, we analysed these subgroups separately. We expressed treatment effects as pooled risk ratios (RR) with 95% confidence intervals (CI). We included 47 trials with 17,039 participants. Of these studies, 24 trials only included participants undergoing cardiac surgery, 23 only included participants undergoing non-cardiac surgery and eight only included participants undergoing vascular surgery. The α-2 adrenergic agonist studied

  3. Identifying Important Gaps in Randomized Controlled Trials of Adult Cardiac Arrest Treatments: A Systematic Review of the Published Literature

    PubMed Central

    Sinha, Shashank S.; Sukul, Devraj; Lazarus, John J.; Polavarapu, Vivek; Chan, Paul S.; Neumar, Robert W.; Nallamothu, Brahmajee K.

    2016-01-01

    Background Cardiac arrests are a major public health concern worldwide. The extent and types of randomized controlled trials (RCTs) – our most reliable source of clinical evidence – conducted in these high-risk patients over recent years are largely unknown. Methods and Results We performed a systematic review, identifying all RCTs published in PubMed, EMBASE, Scopus, Web of Science, and the Cochrane Library from 1995 to 2014 that focused on acute treatment of non-traumatic cardiac arrest in adults. We then extracted data on the setting of study populations, types and timing of interventions studied, risk of bias, outcomes reported and how these factors have changed over time. Over this twenty-year period, 92 RCTs were published containing 64,309 patients (median, 225.5 per trial). Of these, 81 RCTs (88.0%) involved out-of-hospital cardiac arrest whereas 4 (4.3%) involved in-hospital cardiac arrest and 7 (7.6%) included both. Eighteen RCTs (19.6%) were performed in the U.S., 68 (73.9%) were performed outside the U.S., and 6 (6.5%) were performed in both settings. Thirty-eight RCTs (41.3%) evaluated drug therapy, 39 (42.4%) evaluated device therapy, and 15 (16.3%) evaluated protocol improvements. Seventy-four RCTs (80.4%) examined interventions during the cardiac arrest, 15 (16.3%) examined post-cardiac arrest treatment, and 3 (3.3%) studied both. Overall, reporting of risk of bias was limited. The most common outcome reported was ROSC: 86 (93.5%) with only 22 (23.9%) reporting survival beyond 6 months. Fifty-three RCTs (57.6%) reported global ordinal outcomes whereas 15 (16.3%) reported quality-of-life. RCTs in the last 5 years were more likely to be focused on protocol improvement and post-cardiac arrest care. Conclusions Important gaps in RCTs of cardiac arrest treatments exist, especially those examining in-hospital cardiac arrest, protocol improvement, post-cardiac arrest care, and long-term or quality-of-life outcomes. PMID:27756794

  4. MAPK signaling pathways and HDAC3 activity are disrupted during differentiation of emerin-null myogenic progenitor cells

    PubMed Central

    Collins, Carol M.; Ellis, Joseph A.

    2017-01-01

    ABSTRACT Mutations in the gene encoding emerin cause Emery–Dreifuss muscular dystrophy (EDMD). Emerin is an integral inner nuclear membrane protein and a component of the nuclear lamina. EDMD is characterized by skeletal muscle wasting, cardiac conduction defects and tendon contractures. The failure to regenerate skeletal muscle is predicted to contribute to the skeletal muscle pathology of EDMD. We hypothesize that muscle regeneration defects are caused by impaired muscle stem cell differentiation. Myogenic progenitors derived from emerin-null mice were used to confirm their impaired differentiation and analyze selected myogenic molecular pathways. Emerin-null progenitors were delayed in their cell cycle exit, had decreased myosin heavy chain (MyHC) expression and formed fewer myotubes. Emerin binds to and activates histone deacetylase 3 (HDAC3). Here, we show that theophylline, an HDAC3-specific activator, improved myotube formation in emerin-null cells. Addition of the HDAC3-specific inhibitor RGFP966 blocked myotube formation and MyHC expression in wild-type and emerin-null myogenic progenitors, but did not affect cell cycle exit. Downregulation of emerin was previously shown to affect the p38 MAPK and ERK/MAPK pathways in C2C12 myoblast differentiation. Using a pure population of myogenic progenitors completely lacking emerin expression, we show that these pathways are also disrupted. ERK inhibition improved MyHC expression in emerin-null cells, but failed to rescue myotube formation or cell cycle exit. Inhibition of p38 MAPK prevented differentiation in both wild-type and emerin-null progenitors. These results show that each of these molecular pathways specifically regulates a particular stage of myogenic differentiation in an emerin-dependent manner. Thus, pharmacological targeting of multiple pathways acting at specific differentiation stages may be a better therapeutic approach in the future to rescue muscle regeneration in vivo. PMID:28188262

  5. Stimulation of endogenous cardioblasts by exogenous cell therapy after myocardial infarction

    PubMed Central

    Malliaras, Konstantinos; Ibrahim, Ahmed; Tseliou, Eleni; Liu, Weixin; Sun, Baiming; Middleton, Ryan C; Seinfeld, Jeffrey; Wang, Lai; Sharifi, Behrooz G; Marbán, Eduardo

    2014-01-01

    Controversy surrounds the identity, origin, and physiologic role of endogenous cardiomyocyte progenitors in adult mammals. Using an inducible genetic labeling approach to identify small non-myocyte cells expressing cardiac markers, we find that activated endogenous cardioblasts are rarely evident in the normal adult mouse heart. However, myocardial infarction results in significant cardioblast activation at the site of injury. Genetically labeled isolated cardioblasts express cardiac transcription factors and sarcomeric proteins, exhibit spontaneous contractions, and form mature cardiomyocytes in vivo after injection into unlabeled recipient hearts. The activated cardioblasts do not arise from hematogenous seeding, cardiomyocyte dedifferentiation, or mere expansion of a preformed progenitor pool. Cell therapy with cardiosphere-derived cells amplifies innate cardioblast-mediated tissue regeneration, in part through the secretion of stromal cell-derived factor 1 by transplanted cells. Thus, stimulation of endogenous cardioblasts by exogenous cells mediates therapeutic regeneration of injured myocardium. PMID:24797668

  6. Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via re-specification of lineage-restricted precursors

    PubMed Central

    Doulatov, Sergei; Vo, Linda T.; Chou, Stephanie S.; Kim, Peter G.; Arora, Natasha; Li, Hu; Hadland, Brandon K.; Bernstein, Irwin D.; Collins, James J.; Zon, Leonard I.; Daley, George Q.

    2013-01-01

    Summary Human pluripotent stem cells (hPSCs) represent a promising source of patient-specific cells for disease modeling, drug screens, and cellular therapies. However, the inability to derive engraftable human hematopoietic stem and progenitor (HSPCs) has limited their characterization to in vitro assays. We report a strategy to re-specify lineage-restricted CD34+CD45+ myeloid precursors derived from hPSCs into multilineage progenitors that can be expanded in vitro and engraft in vivo. HOXA9, ERG, and RORA conferred self-renewal and multilineage potential in vitro and maintained primitive CD34+CD38− cells. Screening cells via transplantation revealed that two additional factors, SOX4 and MYB, were required for engraftment. Progenitors specified with all five factors gave rise to reproducible short-term engraftment with myeloid and erythroid lineages. Erythroid precursors underwent hemoglobin switching in vivo, silencing embryonic and activating adult globin expression. Our combinatorial screening approach establishes a strategy for obtaining transcription factor-mediated engraftment of blood progenitors from human pluripotent cells. PMID:24094326

  7. Cardiomyogenic Differentiation in Cardiac Myxoma Expressing Lineage-Specific Transcription Factors

    PubMed Central

    Kodama, Hiroaki; Hirotani, Takashi; Suzuki, Yusuke; Ogawa, Satoshi; Yamazaki, Kazuto

    2002-01-01

    We investigated five cases of cardiac myxoma and one case of cardiac undifferentiated sarcoma by light and electron microscopy, in situ hybridization, immunohistochemical staining, and reverse transcriptase-polymerase chain reaction for cardiomyocyte-specific transcription factors, Nkx2.5/Csx, GATA-4, MEF2, and eHAND. Conventional light microscopy revealed that cardiac myxoma and sarcoma cells presented variable cellular arrangements and different histological characteristics. Ultrastructurally, some of the myxoma cells exhibited endothelium-like or immature mesenchymal cell differentiation. Immunohistochemistry for Nkx2.5/Csx, GATA-4, and eHAND was slightly to intensely positive in all myxoma cases. MEF2 immunoreactivity was observed in all cases including the case of sarcoma, thus suggesting myogenic differentiation of myxoma or sarcoma cells. In situ hybridization for Nkx2.5/Csx also revealed that all myxoma cells, but not sarcoma cells, expressed mRNA of the cardiac homeobox gene, Nkx2.5/Csx. Furthermore, nested reverse transcriptase-polymerase chain reaction from formalin-fixed, paraffin-embedded tissue was performed and demonstrated that the Nkx2.5/Csx and eHAND gene product to be detected in all cases, and in three of six cases, respectively. In conclusion, cardiac myxoma cells were found to express various amounts of cardiomyocyte-specific transcription factor gene products at the mRNA and protein levels, thus suggesting cardiomyogenic differentiation. These results support the concept that cardiac myxoma might arise from mesenchymal cardiomyocyte progenitor cells. PMID:12163362

  8. Embryonic multipotent progenitors remodel the Drosophila airways during metamorphosis

    PubMed Central

    Pitsouli, Chrysoula; Perrimon, Norbert

    2010-01-01

    Adult structures in holometabolous insects such as Drosophila are generated by groups of imaginal cells dedicated to the formation of different organs. Imaginal cells are specified in the embryo and remain quiescent until the larval stages, when they proliferate and differentiate to form organs. The Drosophila tracheal system is extensively remodeled during metamorphosis by a small number of airway progenitors. Among these, the spiracular branch tracheoblasts are responsible for the generation of the pupal and adult abdominal airways. To understand the coordination of proliferation and differentiation during organogenesis of tubular organs, we analyzed the remodeling of Drosophila airways during metamorphosis. We show that the embryonic spiracular branch tracheoblasts are multipotent cells that express the homeobox transcription factor Cut, which is necessary for their survival and normal development. They give rise to three distinct cell populations at the end of larval development, which generate the adult tracheal tubes, the spiracle and the epidermis surrounding the spiracle. Our study establishes the series of events that lead to the formation of an adult tubular structure in Drosophila. PMID:20940225

  9. Cardiac Endothelial Cell Transcriptome.

    PubMed

    Lother, Achim; Bergemann, Stella; Deng, Lisa; Moser, Martin; Bode, Christoph; Hein, Lutz

    2018-03-01

    Endothelial cells (ECs) are a highly specialized cell type with marked diversity between different organs or vascular beds. Cardiac ECs are an important player in cardiac physiology and pathophysiology but are not sufficiently characterized yet. Thus, the aim of the present study was to analyze the cardiac EC transcriptome. We applied fluorescence-assisted cell sorting to isolate pure ECs from adult mouse hearts. RNAseq revealed 1288 genes predominantly expressed in cardiac ECs versus heart tissue including several transcription factors. We found an overrepresentation of corresponding transcription factor binding motifs within the promotor region of EC-enriched genes, suggesting that they control the EC transcriptome. Cardiac ECs exhibit a distinct gene expression profile when compared with renal, cerebral, or pulmonary ECs. For example, we found the Meox2 / Tcf15, Fabp4 , and Cd36 signaling cascade higher expressed in cardiac ECs which is a key regulator of fatty acid uptake and involved in the development of atherosclerosis. The results from this study provide a comprehensive resource of gene expression and transcriptional control in cardiac ECs. The cardiac EC transcriptome exhibits distinct differences in gene expression compared with other cardiac cell types and ECs from other organs. We identified new candidate genes that have not been investigated in ECs yet as promising targets for future evaluation. © 2018 American Heart Association, Inc.

  10. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells

    NASA Astrophysics Data System (ADS)

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-01

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation.

  11. Sudden cardiac death in adults with congenital heart disease.

    PubMed

    Yap, Sing-Chien; Harris, Louise

    2009-12-01

    Sudden cardiac death is one of the leading causes of death in patients with congenital heart disease, especially in patients with repaired cyanotic and left heart obstructive lesions. While the overall annual incidence of sudden cardiac death is relatively low, estimated at 0.09% per year, this nonetheless represents a many-fold increase over that of comparable age-matched control populations. The most frequent cause of sudden cardiac death is believed to be arrhythmic, usually ventricular arrhythmia. Most studies investigating risk factors for ventricular arrhythmia and/or sudden cardiac death have focused on patients with repaired tetralogy of Fallot and patients with Mustard/Senning repair for complete transposition of the great arteries. Despite a multitude of risk factors, their predictive value for the occurrence of sudden cardiac death is relatively low. Current experience with implantable cardioverter defibrillators in this patient population is limited to observational studies and the selection of patients for prophylactic implantable cardioverter defibrillator implantation is impeded both by the absence of randomized trials and weak predictors. Catheter ablation of ventricular tachycardia has emerged as a promising therapy for abolishing or reducing the burden of arrhythmia but experience is still limited and the impact on long-term outcome uncertain. Future studies will have to focus on improving risk stratification of patients with congenital heart disease.

  12. Towards the therapeutic use of vascular smooth muscle progenitor cells.

    PubMed

    Merkulova-Rainon, Tatyana; Broquères-You, Dong; Kubis, Nathalie; Silvestre, Jean-Sébastien; Lévy, Bernard I

    2012-07-15

    Recent advances in the development of alternative proangiogenic and revascularization processes, including recombinant protein delivery, gene therapy, and cell therapy, hold the promise of greater efficacy in the management of cardiovascular disease in the coming years. In particular, vascular progenitor cell-based strategies have emerged as an efficient treatment approach to promote vessel formation and repair and to improve tissue perfusion. During the past decade, considerable progress has been achieved in understanding therapeutic properties of endothelial progenitor cells, while the therapeutic potential of vascular smooth muscle progenitor cells (SMPC) has only recently been explored; the number of the circulating SMPC being correlated with cardiovascular health. Several endogenous SMPC populations with varying phenotypes have been identified and characterized in the peripheral blood, bone marrow, and vascular wall. While the phenotypic entity of vascular SMPC is not fully defined and remains an evolving area of research, SMPC are increasingly recognized to play a special role in cardiovascular biology. In this review, we describe the current approaches used to define vascular SMPC. We further summarize the data on phenotype and functional properties of SMPC from various sources in adults. Finally, we discuss the role of SMPC in cardiovascular disease, including the contribution of SMPC to intimal proliferation, angiogenesis, and atherosclerotic plaque instability as well as the benefits resulting from the therapeutic use of SMPC.

  13. Demonstrating success in reducing adult cardiac surgical site infections and the economic impact of using multidisciplinary collaboration.

    PubMed

    Chiwera, Lilian; Wigglesworth, Neil; McCoskery, Carol; Lucchese, Gianluca; Newsholme, William

    2018-03-28

    Cardiac surgical site infections (SSIs) have devastating consequences and present several challenges for patients and healthcare providers. Adult cardiac SSI surveillance commenced in 2009 at our hospitals, Guy's & St Thomas' NHS Foundation Trust, London, as a patient safety initiative amid reported increased incidence of SSIs. Before this time, infection incidence was unclear because data collection was not standardised. Our aim was to standardise SSI data collection and establish baseline SSI rates to facilitate deployment of evidence based targeted interventions within clinical governance structures to improve quality, safety and efficiency in line with our organisational targets. We standardised local data collection protocols in line with Public Health England recommendations and identified local champions. We undertook prospective SSI surveillance collaboratively to enable us to identify potential practice concerns and address them more effectively through a series of initiatives. Clinical staff completed dedicated surveillance forms intraoperatively and post operatively. Overall adult cardiac SSI rates fell from 5.4% in 2009 to 1.2% in 2016 and Coronary Artery Bypass Graft (CABG) rates from 6.5% in 2009 to 1.7% in 2016, p<0.001. Gram negative bacteria were recognised as important SSI causative organisms and were better controlled after introducing stringent infection control measures. We successfully implemented comprehensive, evidence-based infection control practices through a multidisciplinary collaborative approach; an approach we consider to have great potential to reduce Gram negative, Staphylococcus aureus, polymicrobial and overall SSI burden and/or associated costs. We now investigate all SSIs using an established SSI detailed investigation protocol to promote continual quality improvement that aligns us perfectly with global efforts to fight antimicrobial resistance. Copyright © 2018. Published by Elsevier Ltd.

  14. Sphingosine mediates the immediate negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian cardiac myocyte.

    PubMed

    Oral, H; Dorn, G W; Mann, D L

    1997-02-21

    To determine whether activation of the neutral sphingomyelinase pathway was responsible for the immediate (<30 min) negative inotropic effects of tumor necrosis factor-alpha (TNF-alpha), we examined sphingosine levels in diluent and TNF-alpha-stimulated cardiac myocytes. TNF-alpha stimulation of adult feline cardiac myocytes provoked a rapid (<15 min) increase in the hydrolysis of [14C]sphingomyelin in cell-free extracts, as well as an increase in ceramide mass, consistent with cytokine-induced activation of the neutral sphingomyelinase pathway. High performance liquid chromatographic analysis of lipid extracts from TNF-alpha-stimulated cardiac myocytes showed that TNF-alpha stimulation produced a rapid (<30 min) increase in free sphingosine levels. Moreover, exogenous D-sphingosine mimicked the effects of TNF-alpha on intracellular calcium homeostasis, as well as the negative inotropic effects of TNF-alpha in isolated contracting myocytes; time course studies showed that exogenous D-sphingosine produced abnormalities in cell shortening that were maximal at 5 min. Finally, blocking sphingosine production using an inhibitor of ceramidase, n-oleoylethanolamine, completely abrogated the negative inotropic effects of TNF-alpha in isolated contracting cardiac myocytes. Additional studies employing biologically active ceramide analogs and sphingosine 1-phosphate suggested that neither the immediate precursor of sphingosine nor the immediate metabolite of sphingosine, respectively, were likely to be responsible for the immediate negative inotropic effects of TNF-alpha. Thus, these studies suggest that sphingosine mediates the immediate negative inotropic effects of TNF-alpha in isolated cardiac myocytes.

  15. Primary Prevention of Sudden Cardiac Death in Adults with Transposition of the Great Arteries: A Review of Implantable Cardioverter-Defibrillator Placement

    PubMed Central

    Cedars, Ari M.

    2015-01-01

    Transposition of the great arteries encompasses a set of structural congenital cardiac lesions that has in common ventriculoarterial discordance. Primarily because of advances in medical and surgical care, an increasing number of children born with this anomaly are surviving into adulthood. Depending upon the subtype of lesion or the particular corrective surgery that the patient might have undergone, this group of adult congenital heart disease patients constitutes a relatively new population with unique medical sequelae. Among the more common and difficult to manage are cardiac arrhythmias and other sequelae that can lead to sudden cardiac death. To date, the question of whether implantable cardioverter-defibrillators should be placed in this cohort as a preventive measure to abort sudden death has largely gone unanswered. Therefore, we review the available literature surrounding this issue. PMID:26413012

  16. Transcoronary infusion of cardiac progenitor cells in hypoplastic left heart syndrome: Three-year follow-up of the Transcoronary Infusion of Cardiac Progenitor Cells in Patients With Single-Ventricle Physiology (TICAP) trial.

    PubMed

    Tarui, Suguru; Ishigami, Shuta; Ousaka, Daiki; Kasahara, Shingo; Ohtsuki, Shinichi; Sano, Shunji; Oh, Hidemasa

    2015-11-01

    Our aim was to assess midterm safety and clinical outcomes of intracoronary infusion of cardiosphere-derived cells (CDCs) after staged palliation in patients with hypoplastic left heart syndrome (HLHS). In this prospective, controlled study, 14 consecutive patients with HLHS who were undergoing 2- or 3-stage surgical palliations were assigned to receive intracoronary CDC infusion 1 month after cardiac surgery (n = 7), followed by 7 patients allocated to a control group with standard care alone. The primary end point was to assess procedural feasibility and safety; the secondary end point was to evaluate cardiac function and heart failure status through 36-month follow-up. No complications, including tumor formation, were reported within 36 months after CDC infusion. Echocardiography showed significantly greater improvement in right ventricular ejection fraction (RVEF) in infants receiving CDCs than in controls at 36 months (+8.0% ± 4.7% vs +2.2% ± 4.3%; P = .03). These cardiac function improvements resulted in reduced brain natriuretic peptide levels (P = .04), lower incidence of unplanned catheter interventions (P = .04), and higher weight-for-age z score (P = .02) at 36 months relative to controls. As independent predictors of treatment responsiveness, absolute changes in RVEF at 36 months were negatively correlated with age, weight-for-age z score, and RVEF at CDC infusion. Intracoronary CDC infusion after staged procedure in patients with HLHS is safe and improves RVEF, which persists during 36-month follow-up. This therapeutic strategy may enhance somatic growth and reduce incidence of heart failure. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  17. Milrinone for cardiac dysfunction in critically ill adult patients: a systematic review of randomised clinical trials with meta-analysis and trial sequential analysis.

    PubMed

    Koster, Geert; Bekema, Hanneke J; Wetterslev, Jørn; Gluud, Christian; Keus, Frederik; van der Horst, Iwan C C

    2016-09-01

    Milrinone is an inotrope widely used for treatment of cardiac failure. Because previous meta-analyses had methodological flaws, we decided to conduct a systematic review of the effect of milrinone in critically ill adult patients with cardiac dysfunction. This systematic review was performed according to The Cochrane Handbook for Systematic Reviews of Interventions. Searches were conducted until November 2015. Patients with cardiac dysfunction were included. The primary outcome was serious adverse events (SAE) including mortality at maximum follow-up. The risk of bias was evaluated and trial sequential analyses were conducted. The quality of evidence was assessed by the Grading of Recommendations Assessment, Development and Evaluation criteria. A total of 31 randomised clinical trials fulfilled the inclusion criteria, of which 16 provided data for our analyses. All trials were at high risk of bias, and none reported the primary composite outcome SAE. Fourteen trials with 1611 randomised patients reported mortality data at maximum follow-up (RR 0.96; 95% confidence interval 0.76-1.21). Milrinone did not significantly affect other patient-centred outcomes. All analyses displayed statistical and/or clinical heterogeneity of patients, interventions, comparators, outcomes, and/or settings and all featured missing data. The current evidence on the use of milrinone in critically ill adult patients with cardiac dysfunction suffers from considerable risks of both bias and random error and demonstrates no benefits. The use of milrinone for the treatment of critically ill patients with cardiac dysfunction can be neither recommended nor refuted. Future randomised clinical trials need to be sufficiently large and designed to have low risk of bias.

  18. Exercise-based cardiac rehabilitation for adults with atrial fibrillation.

    PubMed

    Risom, Signe S; Zwisler, Ann-Dorthe; Johansen, Pernille P; Sibilitz, Kirstine L; Lindschou, Jane; Gluud, Christian; Taylor, Rod S; Svendsen, Jesper H; Berg, Selina K

    2017-02-09

    Exercise-based cardiac rehabilitation may benefit adults with atrial fibrillation or those who had been treated for atrial fibrillation. Atrial fibrillation is caused by multiple micro re-entry circuits within the atrial tissue, which result in chaotic rapid activity in the atria. To assess the benefits and harms of exercise-based rehabilitation programmes, alone or with another intervention, compared with no-exercise training controls in adults who currently have AF, or have been treated for AF. We searched the following electronic databases; CENTRAL and the Database of Abstracts of Reviews of Effectiveness (DARE) in the Cochrane Library, MEDLINE Ovid, Embase Ovid, PsycINFO Ovid, Web of Science Core Collection Thomson Reuters, CINAHL EBSCO, LILACS Bireme, and three clinical trial registers on 14 July 2016. We also checked the bibliographies of relevant systematic reviews identified by the searches. We imposed no language restrictions. We included randomised controlled trials (RCT) that investigated exercise-based interventions compared with any type of no-exercise control. We included trials that included adults aged 18 years or older with atrial fibrillation, or post-treatment for atrial fibrillation. Two authors independently extracted data. We assessed the risk of bias using the domains outlined in the Cochrane Handbook for Systematic Reviews of Interventions. We assessed clinical and statistical heterogeneity by visual inspection of the forest plots, and by using standard Chi² and I² statistics. We performed meta-analyses using fixed-effect and random-effects models; we used standardised mean differences where different scales were used for the same outcome. We assessed the risk of random errors with trial sequential analysis (TSA) and used the GRADE methodology to rate the quality of evidence, reporting it in the 'Summary of findings' table. We included six RCTs with a total of 421 patients with various types of atrial fibrillation. All trials were

  19. The C. elegans embryonic fate specification factor EGL-18 (GATA) is reutilized downstream of Wnt signaling to maintain a population of larval progenitor cells.

    PubMed

    Gorrepati, Lakshmi; Eisenmann, David M

    2015-01-01

    In metazoans, stem cells in developing and adult tissues can divide asymmetrically to give rise to a daughter that differentiates and a daughter that retains the progenitor fate. Although the short-lived nematode C. elegans does not possess adult somatic stem cells, the lateral hypodermal seam cells behave in a similar manner: they divide once per larval stage to generate an anterior daughter that adopts a non-dividing differentiated fate and a posterior daughter that retains the seam fate and the ability to divide further. Wnt signaling pathway is known to regulate the asymmetry of these divisions and maintain the progenitor cell fate in one daughter, but how activation of the Wnt pathway accomplished this was unknown. We describe here our recent work that identified the GATA transcription factor EGL-18 as a downstream target of Wnt signaling necessary for maintenance of a progenitor population of larval seam cells. EGL-18 was previously shown to act in the initial specification of the seam cells in the embryo. Thus the acquisition of a Wnt-responsive cis-regulatory module allows an embryonic fate specification factor to be reutilized later in life downstream of a different regulator (Wnt signaling) to maintain a progenitor cell population. These results support the use of seam cell development in C. elegans as a simple model system for studying stem and progenitor cell biology.

  20. Smad4 is essential for directional progression from committed neural progenitor cells through neuronal differentiation in the postnatal mouse brain.

    PubMed

    Kawaguchi-Niida, Motoko; Shibata, Noriyuki; Furuta, Yasuhide

    2017-09-01

    Signaling by the TGFβ super-family, consisting of TGFβ/activin- and bone morphogenetic protein (BMP) branch pathways, is involved in the central nervous system patterning, growth, and differentiation during embryogenesis. Neural progenitor cells are implicated in various pathological conditions, such as brain injury, infarction, Parkinson's disease and Alzheimer's disease. However, the roles of TGFβ/BMP signaling in the postnatal neural progenitor cells in the brain are still poorly understood. We examined the functional contribution of Smad4, a key integrator of TGFβ/BMP signaling pathways, to the regulation of neural progenitor cells in the subventricular zone (SVZ). Conditional loss of Smad4 in neural progenitor cells caused an increase in the number of neural stem like cells in the SVZ. Smad4 conditional mutants also exhibited attenuation in neuronal lineage differentiation in the adult brain that led to a deficit in olfactory bulb neurons as well as to a reduction of brain parenchymal volume. SVZ-derived neural stem/progenitor cells from the Smad4 mutant brains yielded increased growth of neurospheres, elevated self-renewal capacity and resistance to differentiation. These results indicate that loss of Smad4 in neural progenitor cells causes defects in progression of neural progenitor cell commitment within the SVZ and subsequent neuronal differentiation in the postnatal mouse brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Notch3 deficiency impairs coronary microvascular maturation and reduces cardiac recovery after myocardial ischemia.

    PubMed

    Tao, Yong-Kang; Zeng, Heng; Zhang, Guo-Qiang; Chen, Sean T; Xie, Xue-Jiao; He, Xiaochen; Wang, Shuo; Wen, Hongyan; Chen, Jian-Xiong

    2017-06-01

    Vascular maturation plays an important role in wound repair post-myocardial infarction (MI). The Notch3 is critical for pericyte recruitment and vascular maturation during embryonic development. This study is to test whether Notch3 deficiency impairs vascular maturation and blunts cardiac functional recovery post-MI. Wild type (WT) and Notch3 knockout (Notch3KO) mice were subjected to MI by the ligation of left anterior descending coronary artery (LAD). Cardiac function and coronary blood flow reserve (CFR) were measured by echocardiography. The expression of angiogenic growth factor, pericyte/capillary coverage and arteriolar formation were analyzed. Loss of Notch3 in mice resulted in a significant reduction of pericytes and small arterioles. Notch3 KO mice had impaired pericyte/capillary coverage and CFR compared to WT mice. Notch3 KO mice were more prone to ischemic injury with larger infarcted size and higher rates of mortality. The expression of CXCR-4 and VEGF/Ang-1 was significantly decreased in Notch3 KO mice. Notch3 KO mice also had few NG2 + /Sca1 + and NG2 + /c-kit + progenitor cells in the ischemic area and exhibited worse cardiac function recovery at 2weeks after MI. These were accompanied by a significant reduction of pericyte/capillary coverage and arteriolar maturation. Furthermore, Notch3 KO mice subjected to MI had increased intracellular adhesion molecule-2 (ICAM-2) expression and CD11b + macrophage infiltration into ischemic areas compared to that of WT mice. Notch3 mutation impairs recovery of cardiac function post-MI by the mechanisms involving the pre-existing coronary microvascular dysfunction conditions, and impairment of pericyte/progenitor cell recruitment and microvascular maturation. Copyright © 2016. Published by Elsevier B.V.

  2. Sensitivity and dose dependency of radiation-induced injury in hematopoietic stem/progenitor cells in mice

    PubMed Central

    Guo, Chang-Ying; Luo, Lan; Urata, Yoshishige; Goto, Shinji; Huang, Wen-Jing; Takamura, Syu; Hayashi, Fumiko; Doi, Hanako; Kitajima, Yuriko; Ono, Yusuke; Ogi, Tomoo; Li, Tao-Sheng

    2015-01-01

    We evaluated the sensitivity and dose dependency of radiation-induced injury in hematopoietic stem/progenitor cells. Adult C57BL/6 mice were daily exposed to 0, 2, 10, 50, and 250 mGy γ-ray for 1 month in succession, respectively. The damage of hematopoietic stem/progenitor cells in bone marrow were investigated within 2 hours (acute phase) or at 3 months (chronic phase) after the last exposure. Daily exposure to over 10 mGy γ-ray significantly decreased the number and colony-forming capacity of hematopoietic stem/progenitor cells at acute phase, and did not completely recover at chronic phase with 250 mGy exposure. Interestingly, the daily exposure to 10 or 50 mGy γ-ray decreased the formation of mixed types of colonies at chronic phase, but the total number of colonies was comparable to control. Immunostaining analysis showed that the formation of 53BP1 foci in c-kit+ stem/progenitor cells was significantly increased with daily exposure to 50 and 250 mGy at acute phase, and 250 mGy at chronic phase. Many genes involved in toxicity responses were up- or down-regulated with the exposures to all doses. Our data have clearly shown the sensitivity and dose dependency of radiation-induced injury in hematopoietic stem/progenitor cells of mice with daily exposures to 2 ~ 250 mGy γ-ray. PMID:25623887

  3. Adherence to lifestyle modifications after a cardiac rehabilitation program and endothelial progenitor cells. A six-month follow-up study.

    PubMed

    Cesari, F; Marcucci, R; Gori, A M; Burgisser, C; Francini, S; Roberts, A T; Sofi, F; Gensini, G F; Abbate, R; Fattirolli, F

    2014-07-03

    An increase of endothelial progenitor cells (EPCs) among acute myocardial infarction (AMI) patients participating in a cardiac rehabilitation (CR) program has been reported, but no data on the impact of adherence to lifestyle recommendations provided during a CR program on EPCs are available. It was our aim to investigate the effect of adherence to lifestyle recommendations on EPCs, inflammatory and functional parameters after six months of a CR program in AMI patients. In 110 AMI patients (90 male/20 female; mean age 57.9 ± 9.4 years) EPCs, high sensitivity C-reactive protein (hsCRP), N-terminal pro-brain natriuretic peptide (NT-ProBNP) levels, and cardiopulmonary testings were determined at the end of the CR (T1) and at a six-month follow-up (T2). At T2 we administered a questionnaire assessing dietary habits and physical activity. At T2, we observed a decrease of EPCs (p<0.05), of hsCRP (p=0.009) and of NT-ProBNP (p<0.0001). Patient population was divided into three categories by Healthy Lifestyle (HL) score (none/low, moderate and high adherence to lifestyle recommendations). We observed a significant association between adherence to lifestyle recommendations, increase in EPCs and exercise capacity between T1 and T2 (Δ EPCs p for trend <0.05; ΔWatt max p for trend=0.004). In a multivariate logistic regression analyses, being in the highest tertile of HL score affected the likelihood of an increase of EPC levels at T2 [OR (95% confidence interval): 3.36 (1.0-10.72) p=0.04]. In conclusion, adherence to lifestyle recommendations provided during a CR program positively influences EPC levels and exercise capacity.

  4. Cardiac and metabolic effects of chronic growth hormone and insulin-like growth factor I excess in young adults with pituitary gigantism.

    PubMed

    Bondanelli, Marta; Bonadonna, Stefania; Ambrosio, Maria Rosaria; Doga, Mauro; Gola, Monica; Onofri, Alessandro; Zatelli, Maria Chiara; Giustina, Andrea; degli Uberti, Ettore C

    2005-09-01

    Chronic growth hormone (GH)/insulin-like growth factor I (IGF-I) excess is associated with considerable mortality in acromegaly, but no data are available in pituitary gigantism. The aim of the study was to evaluate the long-term effects of early exposure to GH and IGF-I excess on cardiovascular and metabolic parameters in adult patients with pituitary gigantism. Six adult male patients with newly diagnosed gigantism due to GH secreting pituitary adenoma were studied and compared with 6 age- and sex-matched patients with acromegaly and 10 healthy subjects. Morphologic and functional cardiac parameters were evaluated by Doppler echocardiography. Glucose metabolism was assessed by evaluating glucose tolerance and homeostasis model assessment index. Disease duration was significantly longer (P<.05) in patients with gigantism than in patients with acromegaly, whereas GH and IGF-I concentrations were comparable. Left ventricular mass was increased both in patients with gigantism and in patients with acromegaly, as compared with controls. Left ventricular hypertrophy was detected in 2 of 6 of both patients with gigantism and patients with acromegaly, and isolated intraventricular septum thickening in 1 patient with gigantism. Inadequate diastolic filling (ratio between early and late transmitral flow velocity<1) was detected in 2 of 6 patients with gigantism and 1 of 6 patients with acromegaly. Impaired glucose metabolism occurrence was higher in patients with acromegaly (66%) compared with patients with gigantism (16%). Concentrations of IGF-I were significantly (P<.05) higher in patients with gigantism who have cardiac abnormalities than in those without cardiac abnormalities. In conclusion, our data suggest that GH/IGF-I excess in young adult patients is associated with morphologic and functional cardiac abnormalities that are similar in patients with gigantism and in patients with acromegaly, whereas occurrence of impaired glucose metabolism appears to be higher in

  5. Cardiac Med1 deletion promotes early lethality, cardiac remodeling, and transcriptional reprogramming

    PubMed Central

    Spitler, Kathryn M.; Ponce, Jessica M.; Oudit, Gavin Y.; Hall, Duane D.

    2017-01-01

    The mediator complex, a multisubunit nuclear complex, plays an integral role in regulating gene expression by acting as a bridge between transcription factors and RNA polymerase II. Genetic deletion of mediator subunit 1 (Med1) results in embryonic lethality, due in large part to impaired cardiac development. We first established that Med1 is dynamically expressed in cardiac development and disease, with marked upregulation of Med1 in both human and murine failing hearts. To determine if Med1 deficiency protects against cardiac stress, we generated two cardiac-specific Med1 knockout mouse models in which Med1 is conditionally deleted (Med1cKO mice) or inducibly deleted in adult mice (Med1cKO-MCM mice). In both models, cardiac deletion of Med1 resulted in early lethality accompanied by pronounced changes in cardiac function, including left ventricular dilation, decreased ejection fraction, and pathological structural remodeling. We next defined how Med1 deficiency alters the cardiac transcriptional profile using RNA-sequencing analysis. Med1cKO mice demonstrated significant dysregulation of genes related to cardiac metabolism, in particular genes that are coordinated by the transcription factors Pgc1α, Pparα, and Errα. Consistent with the roles of these transcription factors in regulation of mitochondrial genes, we observed significant alterations in mitochondrial size, mitochondrial gene expression, complex activity, and electron transport chain expression under Med1 deficiency. Taken together, these data identify Med1 as an important regulator of vital cardiac gene expression and maintenance of normal heart function. NEW & NOTEWORTHY Disruption of transcriptional gene expression is a hallmark of dilated cardiomyopathy; however, its etiology is not well understood. Cardiac-specific deletion of the transcriptional coactivator mediator subunit 1 (Med1) results in dilated cardiomyopathy, decreased cardiac function, and lethality. Med1 deletion disrupted cardiac

  6. Does Parsonnet scoring model predict mortality following adult cardiac surgery in India?

    PubMed

    Srilata, Moningi; Padhy, Narmada; Padmaja, Durga; Gopinath, Ramachandran

    2015-01-01

    To validate the Parsonnet scoring model to predict mortality following adult cardiac surgery in Indian scenario. A total of 889 consecutive patients undergoing adult cardiac surgery between January 2010 and April 2011 were included in the study. The Parsonnet score was determined for each patient and its predictive ability for in-hospital mortality was evaluated. The validation of Parsonnet score was performed for the total data and separately for the sub-groups coronary artery bypass grafting (CABG), valve surgery and combined procedures (CABG with valve surgery). The model calibration was performed using Hosmer-Lemeshow goodness of fit test and receiver operating characteristics (ROC) analysis for discrimination. Independent predictors of mortality were assessed from the variables used in the Parsonnet score by multivariate regression analysis. The overall mortality was 6.3% (56 patients), 7.1% (34 patients) for CABG, 4.3% (16 patients) for valve surgery and 16.2% (6 patients) for combined procedures. The Hosmer-Lemeshow statistic was <0.05 for the total data and also within the sub-groups suggesting that the predicted outcome using Parsonnet score did not match the observed outcome. The area under the ROC curve for the total data was 0.699 (95% confidence interval 0.62-0.77) and when tested separately, it was 0.73 (0.64-0.81) for CABG, 0.79 (0.63-0.92) for valve surgery (good discriminatory ability) and only 0.55 (0.26-0.83) for combined procedures. The independent predictors of mortality determined for the total data were low ejection fraction (odds ratio [OR] - 1.7), preoperative intra-aortic balloon pump (OR - 10.7), combined procedures (OR - 5.1), dialysis dependency (OR - 23.4), and re-operation (OR - 9.4). The Parsonnet score yielded a good predictive value for valve surgeries, moderate predictive value for the total data and for CABG and poor predictive value for combined procedures.

  7. A novel method of mouse ex utero transplantation of hepatic progenitor cells into the fetal liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shikanai, Mima; Asahina, Kinji; Iseki, Sachiko

    2009-04-03

    Avoiding the limitations of the adult liver niche, transplantation of hepatic stem/progenitor cells into fetal liver is desirable to analyze immature cells in a hepatic developmental environment. Here, we established a new monitor tool for cell fate of hepatic progenitor cells transplanted into the mouse fetal liver by using ex utero surgery. When embryonic day (ED) 14.5 hepatoblasts were injected into the ED14.5 fetal liver, the transplanted cells expressed albumin abundantly or {alpha}-fetoprotein weakly, and contained glycogen in the neonatal liver, indicating that transplanted hepatoblasts can proliferate and differentiate in concord with surrounding recipient parenchymal cells. The transplanted cells becamemore » mature in the liver of 6-week-old mice. Furthermore, this method was applicable to transplantation of hepatoblast-like cells derived from mouse embryonic stem cells. These data indicate that this unique technique will provide a new in vivo experimental system for studying cell fate of hepatic stem/progenitor cells and liver organogenesis.« less

  8. Erythropoietin protects myocardin-expressing cardiac stem cells against cytotoxicity of tumor necrosis factor-{alpha}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madonna, Rosalinda; Institute of Cardiology, and Center of Excellence on Aging, 'G. d'Annunzio' University, Chieti; Shelat, Harnath

    2009-10-15

    Cardiac stem cells are vulnerable to inflammation caused by infarction or ischemic injury. The growth factor, erythropoietin (Epo), ameliorates the inflammatory response of the myocardium to ischemic injury. This study was designed to assess the role of Epo in regulation of expression and activation of the cell death-associated intracellular signaling components in cardiac myoblasts stimulated with the proinflammatory cytokine tumor necrosis factor (TNF)-{alpha}. Cardiac myoblasts isolated from canine embryonic hearts characterized by expression of myocardin A, a promyogenic transcription factor for cardiovascular muscle development were pretreated with Epo and then exposed to TNF-{alpha}. Compared to untreated cells, the Epo-treated cardiacmore » myoblasts exhibited better morphology and viability. Immunoblotting revealed lower levels of active caspase-3 and reductions in iNOS expression and NO production in Epo-treated cells. Furthermore, Epo pretreatment reduced nuclear translocation of NF-{kappa}B and inhibited phosphorylation of inhibitor of kappa B (I{kappa}B) in TNF-{alpha}-stimulated cardiac myoblasts. Thus, Epo protects cardiac myocyte progenitors or myoblasts against the cytotoxic effects of TNF-{alpha} by inhibiting NF-{kappa}B-mediated iNOS expression and NO production and by preventing caspase-3 activation.« less

  9. Serial cardiac MRIs in adult Fontan patients detect progressive hepatic enlargement and congestion.

    PubMed

    Lewis, Matthew J; Hecht, Elizabeth; Ginns, Jonathan; Benton, Joshua; Prince, Martin; Rosenbaum, Marlon S

    2017-03-01

    The progression of hepatic disease in adult Fontan patients is not well understood. They reviewed the experience with serial cardiac MRIs (CMR) in adult Fontan patients to determine if hepatic anatomic markers of prolonged Fontan exposure were present and if clinical predictors of progressive hepatic congestion could be identified. A retrospective cohort study of all adult Fontan patients who had undergone at least two CMRs was performed. Hepatic dimensions, inferior vena cava (IVC) size, right hepatic vein (RHV) size and spleen diameter were determined from images acquired at the time of clinically guided CMR. Two radiologists with expertise in hepatic imaging graded congestion and liver size independently using post-gadolinium contrast sequences. Twenty-seven patients met inclusion criteria. Over a mean time of 5.1 years between CMRs, there was a significant increase in mean lateral-medial hepatic dimension (P = .005), mean RHV diameter (P = .004), and mean splenic diameter (P = .001). Serial post-gadolinium imaging was available in 25/27 (93%) patients of which 15/27 (55%) showed evidence of progressive hepatic congestion across serial studies. Progressive hepatic congestion was associated with single ventricle ejection fraction (SVEF) less than 50% (P = .008), and larger indexed end-diastolic (EDVI) and end-systolic volume (ESVI). RHV diameter was the only anatomic variable significantly correlated with time from Fontan completion (P = .004). Serial CMRs detected progressive liver and hepatic vein enlargement in our cohort of adult Fontan patients over a mean time of 5.2 years. Progressive hepatic congestion occurs in a significant number of adult Fontan patients and may be associated with ventricular enlargement and decreased ventricular function by CMR. © 2016 Wiley Periodicals, Inc.

  10. Foetal hepatic progenitor cells assume a cholangiocytic cell phenotype during two-dimensional pre-culture.

    PubMed

    Anzai, Kazuya; Chikada, Hiromi; Tsuruya, Kota; Ida, Kinuyo; Kagawa, Tatehiro; Inagaki, Yutaka; Mine, Tesuya; Kamiya, Akihide

    2016-06-23

    Liver consists of parenchymal hepatocytes and other cells. Liver progenitor cell (LPC) is the origin of both hepatocytes and cholangiocytic cells. The analyses of mechanism regulating differentiation of LPCs into these functional cells are important for liver regenerative therapy using progenitor cells. LPCs in adult livers were found to form cysts with cholangiocytic characteristics in 3D culture. In contrast, foetal LPCs cannot form these cholangiocytic cysts in the same culture. Thus, the transition of foetal LPCs into cholangiocytic progenitor cells might occur during liver development. Primary CD45(-)Ter119(-)Dlk1(+) LPCs derived from murine foetal livers formed ALBUMIN (ALB)(+)CYTOKERATIN (CK)19(-) non-cholangiocytic cysts within 3D culture. In contrast, when foetal LPCs were pre-cultured on gelatine-coated dishes, they formed ALB(-)CK19(+) cholangiocytic cysts. When hepatocyte growth factor or oncostatin M, which are inducers of hepatocytic differentiation, was added to pre-culture, LPCs did not form cholangiocytic cysts. These results suggest that the pre-culture on gelatine-coated dishes changed the characteristics of foetal LPCs into cholangiocytic cells. Furthermore, neonatal liver progenitor cells were able to form cholangiocytic cysts in 3D culture without pre-culture. It is therefore possible that the pre-culture of mid-foetal LPCs in vitro functioned as a substitute for the late-foetal maturation step in vivo.

  11. Loss of the tumor suppressor p15Ink4b enhances myeloid progenitor formation from common myeloid progenitors.

    PubMed

    Rosu-Myles, Michael; Taylor, Barbara J; Wolff, Linda

    2007-03-01

    The tumor suppressor p15Ink4b (Ink4b) is a cell-cycle inhibitor that is inactivated in a high percentage of acute myeloid leukemia and myeloid dysplasia syndrome cases. Despite this, the role of Ink4b in hematopoiesis remains unclear. Here we examined the role of Ink4b in blood cell formation using Ink4b-deficient (Ink4b(-/-)) mice. We compared the bone marrow (BM) of Ink4b(-/-) and wild-type mice using flow cytometric, colony-forming unit and competitive repopulating assays (CRA). The proliferation, differentiation, self-renewal, and apoptosis of progenitor cells were further compared by in vitro and in vivo methods. BM from Ink4b(-/-) mice contained increased numbers of granulocyte-monocyte progenitors and Gr-1(+) cells and showed a competitive advantage over wild-type cells in myeloid cell formation by CRA. Ink4b(-/-) progenitors did not demonstrate increased proliferation, self-renewing potential, or reduced apoptosis. Instead, Ink4b(-/-) common myeloid progenitors (CMPs) showed increased myeloid progenitor formation concomitant with reduced erythroid potential. This work establishes a role for Ink4b in regulating the differentiation of CMPs and indicates that loss of Ink4b enhances the formation of myeloid progenitors.

  12. Perception of self in the intensive care unit after cardiac surgery among adult Taiwanese and American-Chinese patients.

    PubMed

    Shih, F J

    1997-02-01

    A descriptive qualitative design was used to compare Taiwanese and American-Chinese patients' perceptions of self during their ICU recovery transition from cardiac surgery. A convenience sample consisting of 35 adult patients having cardiac surgery was obtained from two study sites in Taiwan (N = 30) and the USA (N = 5). Data were gathered through semi-structured interviews and analyzed by qualitative content analysis. Patients' perceptions of self in the ICU included global sensations of abnormality, 'Tong-Kou' (Chinese, meaning physiologically and/or psychologically painful), and "Chin-Son' (Chinese, meaning physiologically and/or psychologically relaxed). The specific perceptions were the physical, psychological, cognitive, social, and spiritual self. The nature and conceptual definition of Chinese patients' perceptions of self, as well as the impact of these perceptions on their recovery in the ICU were further delineated.

  13. G-Protein-Coupled Receptors in Adult Neurogenesis

    PubMed Central

    Doze, Van A.

    2012-01-01

    The importance of adult neurogenesis has only recently been accepted, resulting in a completely new field of investigation within stem cell biology. The regulation and functional significance of adult neurogenesis is currently an area of highly active research. G-protein-coupled receptors (GPCRs) have emerged as potential modulators of adult neurogenesis. GPCRs represent a class of proteins with significant clinical importance, because approximately 30% of all modern therapeutic treatments target these receptors. GPCRs bind to a large class of neurotransmitters and neuromodulators such as norepinephrine, dopamine, and serotonin. Besides their typical role in cellular communication, GPCRs are expressed on adult neural stem cells and their progenitors that relay specific signals to regulate the neurogenic process. This review summarizes the field of adult neurogenesis and its methods and specifies the roles of various GPCRs and their signal transduction pathways that are involved in the regulation of adult neural stem cells and their progenitors. Current evidence supporting adult neurogenesis as a model for self-repair in neuropathologic conditions, adult neural stem cell therapeutic strategies, and potential avenues for GPCR-based therapeutics are also discussed. PMID:22611178

  14. Optimizing Survival Outcomes For Adult Patients With Nontraumatic Cardiac Arrest.

    PubMed

    Jung, Julianna

    2016-10-01

    Patient survival after cardiac arrest can be improved significantly with prompt and effective resuscitative care. This systematic review analyzes the basic life support factors that improve survival outcome, including chest compression technique and rapid defibrillation of shockable rhythms. For patients who are successfully resuscitated, comprehensive postresuscitation care is essential. Targeted temperature management is recommended for all patients who remain comatose, in addition to careful monitoring of oxygenation, hemodynamics, and cardiac rhythm. Management of cardiac arrest in circumstances such as pregnancy, pulmonary embolism, opioid overdose and other toxicologic causes, hypothermia, and coronary ischemia are also reviewed.

  15. The Progenitor Dependence of Core-collapse Supernovae from Three-dimensional Simulations with Progenitor Models of 12–40 M ⊙

    NASA Astrophysics Data System (ADS)

    Ott, Christian D.; Roberts, Luke F.; da Silva Schneider, André; Fedrow, Joseph M.; Haas, Roland; Schnetter, Erik

    2018-03-01

    We present a first study of the progenitor star dependence of the three-dimensional (3D) neutrino mechanism of core-collapse supernovae. We employ full 3D general-relativistic multi-group neutrino radiation-hydrodynamics and simulate the postbounce evolutions of progenitors with zero-age main sequence masses of 12, 15, 20, 27, and 40 M ⊙. All progenitors, with the exception of the 12 M ⊙ star, experience shock runaway by the end of their simulations. In most cases, a strongly asymmetric explosion will result. We find three qualitatively distinct evolutions that suggest a complex dependence of explosion dynamics on progenitor density structure, neutrino heating, and 3D flow. (1) Progenitors with massive cores, shallow density profiles, and high post-core-bounce accretion rates experience very strong neutrino heating and neutrino-driven turbulent convection, leading to early shock runaway. Accretion continues at a high rate, likely leading to black hole formation. (2) Intermediate progenitors experience neutrino-driven, turbulence-aided explosions triggered by the arrival of density discontinuities at the shock. These occur typically at the silicon/silicon–oxygen shell boundary. (3) Progenitors with small cores and density profiles without strong discontinuities experience shock recession and develop the 3D standing-accretion shock instability (SASI). Shock runaway ensues late, once declining accretion rate, SASI, and neutrino-driven convection create favorable conditions. These differences in explosion times and dynamics result in a non-monotonic relationship between progenitor and compact remnant mass.

  16. Stimulation of endogenous cardioblasts by exogenous cell therapy after myocardial infarction.

    PubMed

    Malliaras, Konstantinos; Ibrahim, Ahmed; Tseliou, Eleni; Liu, Weixin; Sun, Baiming; Middleton, Ryan C; Seinfeld, Jeffrey; Wang, Lai; Sharifi, Behrooz G; Marbán, Eduardo

    2014-06-01

    Controversy surrounds the identity, origin, and physiologic role of endogenous cardiomyocyte progenitors in adult mammals. Using an inducible genetic labeling approach to identify small non-myocyte cells expressing cardiac markers, we find that activated endogenous cardioblasts are rarely evident in the normal adult mouse heart. However, myocardial infarction results in significant cardioblast activation at the site of injury. Genetically labeled isolated cardioblasts express cardiac transcription factors and sarcomeric proteins, exhibit spontaneous contractions, and form mature cardiomyocytes in vivo after injection into unlabeled recipient hearts. The activated cardioblasts do not arise from hematogenous seeding, cardiomyocyte dedifferentiation, or mere expansion of a preformed progenitor pool. Cell therapy with cardiosphere-derived cells amplifies innate cardioblast-mediated tissue regeneration, in part through the secretion of stromal cell-derived factor 1 by transplanted cells. Thus, stimulation of endogenous cardioblasts by exogenous cells mediates therapeutic regeneration of injured myocardium. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  17. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice.

    PubMed

    Han, Xiaoning; Chen, Michael; Wang, Fushun; Windrem, Martha; Wang, Su; Shanz, Steven; Xu, Qiwu; Oberheim, Nancy Ann; Bekar, Lane; Betstadt, Sarah; Silva, Alcino J; Takano, Takahiro; Goldman, Steven A; Nedergaard, Maiken

    2013-03-07

    Human astrocytes are larger and more complex than those of infraprimate mammals, suggesting that their role in neural processing has expanded with evolution. To assess the cell-autonomous and species-selective properties of human glia, we engrafted human glial progenitor cells (GPCs) into neonatal immunodeficient mice. Upon maturation, the recipient brains exhibited large numbers and high proportions of both human glial progenitors and astrocytes. The engrafted human glia were gap-junction-coupled to host astroglia, yet retained the size and pleomorphism of hominid astroglia, and propagated Ca2+ signals 3-fold faster than their hosts. Long-term potentiation (LTP) was sharply enhanced in the human glial chimeric mice, as was their learning, as assessed by Barnes maze navigation, object-location memory, and both contextual and tone fear conditioning. Mice allografted with murine GPCs showed no enhancement of either LTP or learning. These findings indicate that human glia differentially enhance both activity-dependent plasticity and learning in mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice

    PubMed Central

    Han, Xiaoning; Chen, Michael; Wang, Fushun; Windrem, Martha; Wang, Su; Shanz, Steven; Xu, Qiwu; Oberheim, Nancy Ann; Bekar, Lane; Betstadt, Sarah; Silva, Alcino J.; Takano, Takahiro; Goldman, Steven A.; Nedergaard, Maiken

    2013-01-01

    Human astrocytes are larger and more complex than those of infraprimate mammals, suggesting that their role in neural processing has expanded with evolution. To assess the cell-autonomous and species-selective properties of human glia, we engrafted human glial progenitor cells (GPCs) into neonatal immunodeficient mice. Upon maturation, the recipient brains exhibited large numbers and high proportions of both human glial progenitors and astrocytes. The engrafted human glia were gap junction-coupled to host astroglia, yet retained the size and pleomorphism of hominid astroglia, and propagated Ca2+ signals 3-fold faster than their hosts. Long term potentiation (LTP) was sharply enhanced in the human glial chimeric mice, as was their learning, as assessed by Barnes maze navigation, object-location memory, and both contextual and tone fear conditioning. Mice allografted with murine GPCs showed no enhancement of either LTP or learning. These findings indicate that human glia differentially enhance both activity-dependent plasticity and learning in mice. PMID:23472873

  19. Novel All-Extremity High-Intensity Interval Training Improves Aerobic Fitness, Cardiac Function and Insulin Resistance in Healthy Older Adults

    PubMed Central

    Hwang, Chueh-Lung; Yoo, Jeung-Ki; Kim, Han-Kyul; Hwang, Moon-Hyon; Handberg, Eileen M.; Petersen, John W.; Christou, Demetra D.

    2016-01-01

    Aging is associated with decreased aerobic fitness and cardiac remodeling leading to increased risk for cardiovascular disease. High-intensity interval training (HIIT) on the treadmill has been reported to be more effective in ameliorating these risk factors compared with moderate-intensity continuous training (MICT) in patients with cardiometabolic disease. In older adults, however, weight-bearing activities are frequently limited due to musculoskeletal and balance problems. The purpose of this study was to examine the feasibility and safety of non-weight-bearing all-extremity HIIT in older adults. In addition, we tested the hypothesis that all-extremity HIIT will be more effective in improving aerobic fitness, cardiac function, and metabolic risk factors compared with all-extremity MICT. Fifty-one healthy sedentary older adults (age: 65±1 years) were randomized to HIIT (n=17), MICT (n=18) or non-exercise control (CONT; n=16). HIIT (4×4 minutes 90% of peak heart rate; HRpeak) and isocaloric MICT (70% of HRpeak) were performed on a non-weight-bearing all-extremity ergometer, 4x/week for 8 weeks under supervision. All-extremity HIIT was feasible in older adults and resulted in no adverse events. Aerobic fitness (peak oxygen consumption; VO2peak) and ejection fraction (echocardiography) improved by 11% (P<0.0001) and 4% (P=0.001) respectively in HIIT, while no changes were observed in MICT and CONT (P≥0.1). Greater improvements in ejection fraction were associated with greater improvements in VO2peak (r=0.57; P<0.0001). Insulin resistance (homeostatic model assessment) decreased only in HIIT by 26% (P=0.016). Diastolic function, body composition, glucose and lipids were unaffected (P≥0.1). In conclusion, all-extremity HIIT is feasible and safe in older adults. HIIT, but not MICT, improved aerobic fitness, ejection fraction, and insulin resistance. PMID:27346646

  20. Novel all-extremity high-intensity interval training improves aerobic fitness, cardiac function and insulin resistance in healthy older adults.

    PubMed

    Hwang, Chueh-Lung; Yoo, Jeung-Ki; Kim, Han-Kyul; Hwang, Moon-Hyon; Handberg, Eileen M; Petersen, John W; Christou, Demetra D

    2016-09-01

    Aging is associated with decreased aerobic fitness and cardiac remodeling leading to increased risk for cardiovascular disease. High-intensity interval training (HIIT) on the treadmill has been reported to be more effective in ameliorating these risk factors compared with moderate-intensity continuous training (MICT) in patients with cardiometabolic disease. In older adults, however, weight-bearing activities are frequently limited due to musculoskeletal and balance problems. The purpose of this study was to examine the feasibility and safety of non-weight-bearing all-extremity HIIT in older adults. In addition, we tested the hypothesis that all-extremity HIIT will be more effective in improving aerobic fitness, cardiac function, and metabolic risk factors compared with all-extremity MICT. Fifty-one healthy sedentary older adults (age: 65±1years) were randomized to HIIT (n=17), MICT (n=18) or non-exercise control (CONT; n=16). HIIT (4×4min 90% of peak heart rate; HRpeak) and isocaloric MICT (70% of HRpeak) were performed on a non-weight-bearing all-extremity ergometer, 4×/week for 8weeks under supervision. All-extremity HIIT was feasible in older adults and resulted in no adverse events. Aerobic fitness (peak oxygen consumption; VO2peak) and ejection fraction (echocardiography) improved by 11% (P<0.0001) and 4% (P=0.001), respectively in HIIT, while no changes were observed in MICT and CONT (P≥0.1). Greater improvements in ejection fraction were associated with greater improvements in VO2peak (r=0.57; P<0.0001). Insulin resistance (homeostatic model assessment) decreased only in HIIT by 26% (P=0.016). Diastolic function, body composition, glucose and lipids were unaffected (P≥0.1). In conclusion, all-extremity HIIT is feasible and safe in older adults. HIIT, but not MICT, improved aerobic fitness, ejection fraction, and insulin resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Circulating endothelial progenitor cells and cardiovascular outcomes.

    PubMed

    Werner, Nikos; Kosiol, Sonja; Schiegl, Tobias; Ahlers, Patrick; Walenta, Katrin; Link, Andreas; Böhm, Michael; Nickenig, Georg

    2005-09-08

    Endothelial progenitor cells derived from bone marrow are believed to support the integrity of the vascular endothelium. The number and function of endothelial progenitor cells correlate inversely with cardiovascular risk factors, but the prognostic value associated with circulating endothelial progenitor cells has not been defined. The number of endothelial progenitor cells positive for CD34 and kinase insert domain receptor (KDR) was determined with the use of flow cytometry in 519 patients with coronary artery disease as confirmed on angiography. After 12 months, we evaluated the association between baseline levels of endothelial progenitor cells and death from cardiovascular causes, the occurrence of a first major cardiovascular event (myocardial infarction, hospitalization, revascularization, or death from cardiovascular causes), revascularization, hospitalization, and death from all causes. A total of 43 participants died, 23 from cardiovascular causes. A first major cardiovascular event occurred in 214 patients. The cumulative event-free survival rate increased stepwise across three increasing baseline levels of endothelial progenitor cells in an analysis of death from cardiovascular causes, a first major cardiovascular event, revascularization, and hospitalization. After adjustment for age, sex, vascular risk factors, and other relevant variables, increased levels of endothelial progenitor cells were associated with a reduced risk of death from cardiovascular causes (hazard ratio, 0.31; 95 percent confidence interval, 0.16 to 0.63; P=0.001), a first major cardiovascular event (hazard ratio, 0.74; 95 percent confidence interval, 0.62 to 0.89; P=0.002), revascularization (hazard ratio, 0.77; 95 percent confidence interval, 0.62 to 0.95; P=0.02), and hospitalization (hazard ratio, 0.76; 95 percent confidence interval, 0.63 to 0.94; P=0.01). Endothelial progenitor-cell levels were not predictive of myocardial infarction or of death from all causes. The level of

  2. Discovery and progress of direct cardiac reprogramming.

    PubMed

    Kojima, Hidenori; Ieda, Masaki

    2017-06-01

    Cardiac disease remains a major cause of death worldwide. Direct cardiac reprogramming has emerged as a promising approach for cardiac regenerative therapy. After the discovery of MyoD, a master regulator for skeletal muscle, other single cardiac reprogramming factors (master regulators) have been sought. Discovery of cardiac reprogramming factors was inspired by the finding that multiple, but not single, transcription factors were needed to generate induced pluripotent stem cells (iPSCs) from fibroblasts. We first reported a combination of cardiac-specific transcription factors, Gata4, Mef2c, and Tbx5 (GMT), that could convert mouse fibroblasts into cardiomyocyte-like cells, which were designated as induced cardiomyocyte-like cells (iCMs). Following our first report of cardiac reprogramming, many researchers, including ourselves, demonstrated an improvement in cardiac reprogramming efficiency, in vivo direct cardiac reprogramming for heart regeneration, and cardiac reprogramming in human cells. However, cardiac reprogramming in human cells and adult fibroblasts remains inefficient, and further efforts are needed. We believe that future research elucidating epigenetic barriers and molecular mechanisms of direct cardiac reprogramming will improve the reprogramming efficiency, and that this new technology has great potential for clinical applications.

  3. Neighbor of Punc E 11: expression pattern of the new hepatic stem/progenitor cell marker during murine liver development.

    PubMed

    Schievenbusch, Stephanie; Sauer, Elisabeth; Curth, Harald-Morten; Schulte, Sigrid; Demir, Münevver; Toex, Ulrich; Goeser, Tobias; Nierhoff, Dirk

    2012-09-20

    We have previously identified Neighbor of Punc E 11 (Nope) as a specific cell surface marker of stem/progenitor cells in the murine fetal liver that is also expressed in hepatocellular carcinoma. Here, we focus on the differential expression pattern of Nope during murine fetal and postnatal liver development as well as in a normal and regenerating adult liver including oval cell activation. In the fetal liver, Nope shows a constantly high expression level and is a useful surface marker for the identification of Dlk, E-cadherin, and CD133-positive hepatoblasts by flow cytometry. Postnatally, Nope expression declines rapidly and remains barely detectable in the adult liver as shown by quantitative real-time reverse-transcriptase polymerase chain reaction and western blot analyses. Immunohistochemically, costainings for Nope- and epithelial-specific markers (E-cadherin), markers of early hepatoblasts (alpha-fetoprotein), and biliary marker proteins (CK19) demonstrate that Nope is initially expressed on bipotent hepatoblasts and persists thereafter on commited hepatocytic as well as cholangiocytic progenitor cells during late fetal liver development. Postnatally, Nope loses its circular expression pattern and is specifically directed to the sinusoidal membrane of early hepatocytes. While Nope is only weakly expressed on cholangiocytes in the normal adult liver, activated stem/progenitor (oval) cells clearly coexpress Nope together with the common markers A6, EpCAM, and CD24 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model. In conclusion, Nope should be most useful in future research to define the differentiation stage of hepatic-specified cells of various sources and is a promising candidate to identify and isolate hepatic stem cells from the adult liver.

  4. Cell-type-specific expression of NFIX in the developing and adult cerebellum.

    PubMed

    Fraser, James; Essebier, Alexandra; Gronostajski, Richard M; Boden, Mikael; Wainwright, Brandon J; Harvey, Tracey J; Piper, Michael

    2017-07-01

    Transcription factors from the nuclear factor one (NFI) family have been shown to play a central role in regulating neural progenitor cell differentiation within the embryonic and post-natal brain. NFIA and NFIB, for instance, promote the differentiation and functional maturation of granule neurons within the cerebellum. Mice lacking Nfix exhibit delays in the development of neuronal and glial lineages within the cerebellum, but the cell-type-specific expression of this transcription factor remains undefined. Here, we examined the expression of NFIX, together with various cell-type-specific markers, within the developing and adult cerebellum using both chromogenic immunohistochemistry and co-immunofluorescence labelling and confocal microscopy. In embryos, NFIX was expressed by progenitor cells within the rhombic lip and ventricular zone. After birth, progenitor cells within the external granule layer, as well as migrating and mature granule neurons, expressed NFIX. Within the adult cerebellum, NFIX displayed a broad expression profile, and was evident within granule cells, Bergmann glia, and interneurons, but not within Purkinje neurons. Furthermore, transcriptomic profiling of cerebellar granule neuron progenitor cells showed that multiple splice variants of Nfix are expressed within this germinal zone of the post-natal brain. Collectively, these data suggest that NFIX plays a role in regulating progenitor cell biology within the embryonic and post-natal cerebellum, as well as an ongoing role within multiple neuronal and glial populations within the adult cerebellum.

  5. Identifying Important Gaps in Randomized Controlled Trials of Adult Cardiac Arrest Treatments: A Systematic Review of the Published Literature.

    PubMed

    Sinha, Shashank S; Sukul, Devraj; Lazarus, John J; Polavarapu, Vivek; Chan, Paul S; Neumar, Robert W; Nallamothu, Brahmajee K

    2016-11-01

    Cardiac arrest is a major public health concern worldwide. The extent and types of randomized controlled trials (RCT)-our most reliable source of clinical evidence-conducted in these high-risk patients over recent years are largely unknown. We performed a systematic review, identifying all RCTs published in PubMed, EMBASE, Scopus, Web of Science, and the Cochrane Library from 1995 to 2014 that focused on the acute treatment of nontraumatic cardiac arrest in adults. We then extracted data on the setting of study populations, types and timing of interventions studied, risk of bias, outcomes reported, and how these factors have changed over time. Over this 20-year period, 92 RCTs were published containing 64 309 patients (median, 225.5 per trial). Of these, 81 RCTs (88.0%) involved out-of-hospital cardiac arrest, whereas 4 (4.3%) involved in-hospital cardiac arrest and 7 (7.6%) included both. Eighteen RCTs (19.6%) were performed in the United States, 68 (73.9%) were performed outside the United States, and 6 (6.5%) were performed in both settings. Thirty-eight RCTs (41.3%) evaluated drug therapy, 39 (42.4%) evaluated device therapy, and 15 (16.3%) evaluated protocol improvements. Seventy-four RCTs (80.4%) examined interventions during the cardiac arrest, 15 (16.3%) examined post cardiac arrest treatment, and 3 (3.3%) studied both. Overall, reporting of the risk of bias was limited. The most common outcome reported was return of spontaneous circulation: 86 (93.5%) with only 22 (23.9%) reporting survival beyond 6 months. Fifty-three RCTs (57.6%) reported global ordinal outcomes, whereas 15 (16.3%) reported quality-of-life. RCTs in the past 5 years were more likely to be focused on protocol improvements and postcardiac arrest care. Important gaps in RCTs of cardiac arrest treatments exist, especially those examining in-hospital cardiac arrest, protocol improvement, postcardiac arrest care, and long-term or quality-of-life outcomes. © 2016 American Heart Association

  6. The Thoc1 Encoded Ribonucleoprotein Is Required for Myeloid Progenitor Cell Homeostasis in the Adult Mouse

    PubMed Central

    Chinnam, Meenalakshmi; Povinelli, Benjamin J.; Fisher, Daniel T.; Golding, Michelle; Appenheimer, Michelle M.; Nemeth, Michael J.; Evans, Sharon; Goodrich, David W.

    2014-01-01

    Co-transcriptionally assembled ribonucleoprotein (RNP) complexes are critical for RNA processing and nuclear export. RNPs have been hypothesized to contribute to the regulation of coordinated gene expression, and defects in RNP biogenesis contribute to genome instability and disease. Despite the large number of RNPs and the importance of the molecular processes they mediate, the requirements for individual RNP complexes in mammalian development and tissue homeostasis are not well characterized. THO is an evolutionarily conserved, nuclear RNP complex that physically links nascent transcripts with the nuclear export apparatus. THO is essential for early mouse embryonic development, limiting characterization of the requirements for THO in adult tissues. To address this shortcoming, a mouse strain has been generated allowing inducible deletion of the Thoc1 gene which encodes an essential protein subunit of THO. Bone marrow reconstitution was used to generate mice in which Thoc1 deletion could be induced specifically in the hematopoietic system. We find that granulocyte macrophage progenitors have a cell autonomous requirement for Thoc1 to maintain cell growth and viability. Lymphoid lineages are not detectably affected by Thoc1 loss under the homeostatic conditions tested. Myeloid lineages may be more sensitive to Thoc1 loss due to their relatively high rate of proliferation and turnover. PMID:24830368

  7. The Thoc1 encoded ribonucleoprotein is required for myeloid progenitor cell homeostasis in the adult mouse.

    PubMed

    Pitzonka, Laura; Ullas, Sumana; Chinnam, Meenalakshmi; Povinelli, Benjamin J; Fisher, Daniel T; Golding, Michelle; Appenheimer, Michelle M; Nemeth, Michael J; Evans, Sharon; Goodrich, David W

    2014-01-01

    Co-transcriptionally assembled ribonucleoprotein (RNP) complexes are critical for RNA processing and nuclear export. RNPs have been hypothesized to contribute to the regulation of coordinated gene expression, and defects in RNP biogenesis contribute to genome instability and disease. Despite the large number of RNPs and the importance of the molecular processes they mediate, the requirements for individual RNP complexes in mammalian development and tissue homeostasis are not well characterized. THO is an evolutionarily conserved, nuclear RNP complex that physically links nascent transcripts with the nuclear export apparatus. THO is essential for early mouse embryonic development, limiting characterization of the requirements for THO in adult tissues. To address this shortcoming, a mouse strain has been generated allowing inducible deletion of the Thoc1 gene which encodes an essential protein subunit of THO. Bone marrow reconstitution was used to generate mice in which Thoc1 deletion could be induced specifically in the hematopoietic system. We find that granulocyte macrophage progenitors have a cell autonomous requirement for Thoc1 to maintain cell growth and viability. Lymphoid lineages are not detectably affected by Thoc1 loss under the homeostatic conditions tested. Myeloid lineages may be more sensitive to Thoc1 loss due to their relatively high rate of proliferation and turnover.

  8. Date Palm (Phoenix dactylifera) Fruits as a Potential Cardioprotective Agent: The Role of Circulating Progenitor Cells

    PubMed Central

    Alhaider, Ibrahim A.; Mohamed, Maged E.; Ahmed, K. K. M.; Kumar, Arun H. S.

    2017-01-01

    Context: Date palms, along with their fruits’ dietary consumption, possess enormous medicinal and pharmacological activities manifested in their usage in a variety of ailments in the various traditional systems of medicine. In recent years, the identification of progenitor cells in the adult organ systems has opened an altogether new approach to therapeutics, due to the ability of these cells to repair the damaged cells/tissues. Hence, the concept of developing therapeutics, which can mobilize endogenous progenitor cells, following tissue injury, to enhance tissue repair process is clinically relevant. Objectives: The present study investigates the potential of date of palm fruit extracts in repairing tissue injury following myocardial infarction (MI) potentially by mobilizing circulating progenitor cells. Methods: Extracts of four different varieties of date palm fruits common in Saudi Arabia eastern provision were scrutinized for their total flavonoid, total phenolic, in vitro antioxidant capacity, as well as their effects on two different rodent MI models. Results: High concentrations of phenolic and flavonoid compounds were observed in date palm fruit extracts, which contributed to the promising antioxidant activities of these extracts and the observed high protective effect against various induced in vivo MI. The extracts showed ability to build up reserves and to mobilize circulating progenitor cells from bone marrow and peripheral circulation to the site of myocardial infraction. Conclusion: Date palm fruit extracts have the potential to mobilize endogenous circulating progenitor cells, which can promote tissue repair following ischemic injury. PMID:28928656

  9. Date Palm (Phoenix dactylifera) Fruits as a Potential Cardioprotective Agent: The Role of Circulating Progenitor Cells.

    PubMed

    Alhaider, Ibrahim A; Mohamed, Maged E; Ahmed, K K M; Kumar, Arun H S

    2017-01-01

    Context: Date palms, along with their fruits' dietary consumption, possess enormous medicinal and pharmacological activities manifested in their usage in a variety of ailments in the various traditional systems of medicine. In recent years, the identification of progenitor cells in the adult organ systems has opened an altogether new approach to therapeutics, due to the ability of these cells to repair the damaged cells/tissues. Hence, the concept of developing therapeutics, which can mobilize endogenous progenitor cells, following tissue injury, to enhance tissue repair process is clinically relevant. Objectives: The present study investigates the potential of date of palm fruit extracts in repairing tissue injury following myocardial infarction (MI) potentially by mobilizing circulating progenitor cells. Methods: Extracts of four different varieties of date palm fruits common in Saudi Arabia eastern provision were scrutinized for their total flavonoid, total phenolic, in vitro antioxidant capacity, as well as their effects on two different rodent MI models. Results: High concentrations of phenolic and flavonoid compounds were observed in date palm fruit extracts, which contributed to the promising antioxidant activities of these extracts and the observed high protective effect against various induced in vivo MI. The extracts showed ability to build up reserves and to mobilize circulating progenitor cells from bone marrow and peripheral circulation to the site of myocardial infraction. Conclusion: Date palm fruit extracts have the potential to mobilize endogenous circulating progenitor cells, which can promote tissue repair following ischemic injury.

  10. Pathological Left Ventricular Hypertrophy and Stem Cells: Current Evidence and New Perspectives.

    PubMed

    Marketou, Maria E; Parthenakis, Fragiskos; Vardas, Panos E

    2016-01-01

    Left ventricular hypertrophy (LVH) is a strong predictor of adverse cardiovascular outcomes. It is the result of complex mechanisms that include not only an increase in protein synthesis and cell size but also proliferating cardiac progenitor cells and the influx of bone marrow-derived cells developing into cardiomyocytes. Stem and progenitor cells are known to contribute to the renewal of adult mammalian cardiomyocytes in case of myocardial injury or pressure and volume overload. They are activated in LVH and play a regulatory role in myocardial repair. They have high proliferative potential and secrete numerous cytokines, growth factors, and microRNAs that play important roles in cell differentiation, cardiac remodeling, and neovascularization. They are mobilized in response to either mechanical or chemical stimuli, hormones, or pharmacologic agents. Another important source of progenitor cells is the epicardial layer. It appears that precursor cells migrate from the epicardium to the myocardium in order to interact with myocardial cells. In addition, migratory cells participate in the formation of almost all cardiac structures in myocardial hypertrophy. Although the pathophysiological mechanisms are still obscure and further studies are required, their properties may open the door to regenerative cell therapy for the prevention of adverse remodeling.

  11. Cardiac surgeons and the quality movement: the Michigan experience.

    PubMed

    Prager, Richard L; Armenti, Frederick R; Bassett, Joseph S; Bell, Gail F; Drake, Daniel; Hanson, Eric C; Heiser, John C; Johnson, Scott H; Plasman, F B; Shannon, Francis L; Share, David; Theurer, Patty; Williams, Jaelene

    2009-01-01

    The Michigan Society of Thoracic and Cardiovascular Surgeons created a voluntary quality collaborative with all the cardiac surgeons in the state and all hospitals doing adult cardiac surgery. Utilizing this collaborative over the last 3 years and creating a unique relationship with a payor, an approach to processes and outcomes has produced improvements in the quality of care for cardiac patients in the state of Michigan.

  12. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo

    PubMed Central

    Ren, Wenwen; Lewandowski, Brian C.; Watson, Jaime; Aihara, Eitaro; Iwatsuki, Ken; Bachmanov, Alexander A.; Margolskee, Robert F.; Jiang, Peihua

    2014-01-01

    Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and its homologs (e.g., Lgr6) mark adult stem cells in multiple tissues. Recently, we and others have shown that Lgr5 marks adult taste stem/progenitor cells in posterior tongue. However, the regenerative potential of Lgr5-expressing (Lgr5+) cells and the identity of adult taste stem/progenitor cells that regenerate taste tissue in anterior tongue remain elusive. In the present work, we describe a culture system in which single isolated Lgr5+ or Lgr6+ cells from taste tissue can generate continuously expanding 3D structures (“organoids”). Many cells within these taste organoids were cycling and positive for proliferative cell markers, cytokeratin K5 and Sox2, and incorporated 5-bromo-2’-deoxyuridine. Importantly, mature taste receptor cells that express gustducin, carbonic anhydrase 4, taste receptor type 1 member 3, nucleoside triphosphate diphosphohydrolase-2, or cytokeratin K8 were present in the taste organoids. Using calcium imaging assays, we found that cells grown out from taste organoids derived from isolated Lgr5+ cells were functional and responded to tastants in a dose-dependent manner. Genetic lineage tracing showed that Lgr6+ cells gave rise to taste bud cells in taste papillae in both anterior and posterior tongue. RT-PCR data demonstrated that Lgr5 and Lgr6 may mark the same subset of taste stem/progenitor cells both anteriorly and posteriorly. Together, our data demonstrate that functional taste cells can be generated ex vivo from single Lgr5+ or Lgr6+ cells, validating the use of this model for the study of taste cell generation. PMID:25368147

  13. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo.

    PubMed

    Ren, Wenwen; Lewandowski, Brian C; Watson, Jaime; Aihara, Eitaro; Iwatsuki, Ken; Bachmanov, Alexander A; Margolskee, Robert F; Jiang, Peihua

    2014-11-18

    Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and its homologs (e.g., Lgr6) mark adult stem cells in multiple tissues. Recently, we and others have shown that Lgr5 marks adult taste stem/progenitor cells in posterior tongue. However, the regenerative potential of Lgr5-expressing (Lgr5(+)) cells and the identity of adult taste stem/progenitor cells that regenerate taste tissue in anterior tongue remain elusive. In the present work, we describe a culture system in which single isolated Lgr5(+) or Lgr6(+) cells from taste tissue can generate continuously expanding 3D structures ("organoids"). Many cells within these taste organoids were cycling and positive for proliferative cell markers, cytokeratin K5 and Sox2, and incorporated 5-bromo-2'-deoxyuridine. Importantly, mature taste receptor cells that express gustducin, carbonic anhydrase 4, taste receptor type 1 member 3, nucleoside triphosphate diphosphohydrolase-2, or cytokeratin K8 were present in the taste organoids. Using calcium imaging assays, we found that cells grown out from taste organoids derived from isolated Lgr5(+) cells were functional and responded to tastants in a dose-dependent manner. Genetic lineage tracing showed that Lgr6(+) cells gave rise to taste bud cells in taste papillae in both anterior and posterior tongue. RT-PCR data demonstrated that Lgr5 and Lgr6 may mark the same subset of taste stem/progenitor cells both anteriorly and posteriorly. Together, our data demonstrate that functional taste cells can be generated ex vivo from single Lgr5(+) or Lgr6(+) cells, validating the use of this model for the study of taste cell generation.

  14. Radio electric conveyed fields directly reprogram human dermal skin fibroblasts toward cardiac, neuronal, and skeletal muscle-like lineages.

    PubMed

    Maioli, Margherita; Rinaldi, Salvatore; Santaniello, Sara; Castagna, Alessandro; Pigliaru, Gianfranco; Gualini, Sara; Cavallini, Claudia; Fontani, Vania; Ventura, Carlo

    2013-01-01

    Somatic cells can be directly reprogrammed to alternative differentiated fates without first becoming stem/progenitor cells. Nevertheless, the initial need for viral-mediated gene delivery renders this strategy unsafe in humans. Here, we provide evidence that exposure of human skin fibroblasts to a Radio Electric Asymmetric Conveyer (REAC), an innovative device delivering radio electric conveyed fields at a radiofrequency of 2.4 GHz, afforded remarkable commitment toward cardiac, neuronal, and skeletal muscle lineages. REAC induced the transcription of tissue-restricted genes, including Mef2c, Tbx5, GATA4, Nkx2.5, and prodynorphin for cardiac reprogramming, as well as myoD, and neurogenin 1 for skeletal myogenesis and neurogenesis, respectively. Conversely, REAC treatment elicited a biphasic effect on a number of stemness-related genes, leading to early transcriptional increase of Oct4, Sox2, cMyc, Nanog, and Klf4 within 6-20 h, followed by a downregulation at later times. The REAC action bypassed a persistent reprogramming toward an induced pluripotent stem cell-like state and involved the transcriptional induction of the NADPH oxidase subunit Nox4. Our results show for the first time the feasibility of using a physical stimulus to afford the expression of pluripotentiality in human adult somatic cells up to the attainment of three major target lineages for regenerative medicine.

  15. Autologous hematopoietic progenitor cell mobilization and collection in adult patients presenting with multiple myeloma and lymphoma: A position-statement from the Turkish Society of Apheresis (TSA).

    PubMed

    Tekgündüz, Emre; Arat, Mutlu; Göker, Hakan; Özdoğu, Hakan; Kaynar, Leylagül; Çağırgan, Seçkin; Erkurt, Mehmet Ali; Vural, Filiz; Kiki, İlhami; Altuntaş, Fevzi; Demirkan, Fatih

    2017-12-01

    Autologous hematopoietic cell transplantation (AHCT) is a routinely used procedure in the treatment of adult patients presenting with multiple myeloma (MM), Hodgkin lymphoma (HL) and various subtypes of non-Hodgkin lymphoma (NHL) in upfront and relapsed/refractory settings. Successful hematopoietic progenitor cell mobilization (HPCM) and collection are the rate limiting first steps for application of AHCT. In 2015, almost 1700 AHCT procedures have been performed for MM, HL and NHL in Turkey. Although there are recently published consensus guidelines addressing critical issues regarding autologous HPCM, there is a tremendous heterogeneity in terms of mobilization strategies of transplant centers across the world. In order to pave the way to a more standardized HPCM approach in Turkey, Turkish Society of Apheresis (TSA) assembled a working group consisting of experts in the field. Here we report the position statement of TSA regarding autologous HPCM mobilization strategies in adult patients presenting with MM and lymphoma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Uterine-derived progenitor cells are immunoprivileged and effectively improve cardiac regeneration when used for cell therapy.

    PubMed

    Ludke, Ana; Wu, Jun; Nazari, Mansoreh; Hatta, Kota; Shao, Zhengbo; Li, Shu-Hong; Song, Huifang; Ni, Nathan C; Weisel, Richard D; Li, Ren-Ke

    2015-07-01

    Cell therapy to prevent cardiac dysfunction after myocardial infarction (MI) is less effective in aged patients because aged cells have decreased regenerative capacity. Allogeneic transplanted stem cells (SCs) from young donors are usually rejected. Maintaining transplanted SC immunoprivilege may dramatically improve regenerative outcomes. The uterus has distinct immune characteristics, and we showed that reparative uterine SCs home to the myocardium post-MI. Here, we identify immunoprivileged uterine SCs and assess their effects on cardiac regeneration after allogeneic transplantation. We found more than 20% of cells in the mouse uterus have undetectable MHC I expression by flow cytometry. Uterine MHC I((neg)) and MHC I((pos)) cells were separated by magnetic cell sorting. The MHC I((neg)) population expressed the SC markers CD34, Sca-1 and CD90, but did not express MHC II or c-kit. In vitro, MHC I((neg)) and ((pos)) SCs show colony formation and endothelial differentiation capacity. In mixed leukocyte co-culture, MHC I((neg)) cells showed reduced cell death and leukocyte proliferation compared to MHC I((pos)) cells. MHC I((neg)) and ((pos)) cells had significantly greater angiogenic capacity than mesenchymal stem cells. The benefits of intramyocardial injection of allogeneic MHC I((neg)) cells after MI were comparable to syngeneic bone marrow cell transplantation, with engraftment in cardiac tissue and limited recruitment of CD4 and CD8 cells up to 21 days post-MI. MHC I((neg)) cells preserved cardiac function, decreased infarct size and improved regeneration post-MI. This new source of immunoprivileged cells can induce neovascularization and could be used as allogeneic cell therapy for regenerative medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Health in adults with congenital heart disease.

    PubMed

    Cuypers, Judith A A E; Utens, Elisabeth M W J; Roos-Hesselink, Jolien W

    2016-09-01

    Since the introduction of cardiac surgery, the prospects for children born with a cardiac defect have improved spectacularly. Many reach adulthood and the population of adults with congenital heart disease is increasing and ageing. However, repair of congenital heart disease does not mean cure. Many adults with congenital heart disease encounter late complications. Late morbidity can be related to the congenital heart defect itself, but may also be the consequence of the surgical or medical treatment or longstanding alterations in hemodynamics, neurodevelopment and psychosocial development. This narrative review describes the cardiac and non-cardiac long-term morbidity in the adult population with congenital heart disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. A Cardiopulmonary Bypass Based Blood Management Strategy in Adult Cardiac Surgery.

    PubMed

    Budak, Ali Baran; McCusker, Kevin; Gunaydin, Serdar

    2017-10-24

    Despite the recent introduction of a number of technical and pharmacologic blood conservation measures, bleeding and allogeneic transfusion remain persistent problems in open-heart surgical procedures. Efforts should be made to decrease or completely avoid transfusions to avoid these negative reactions. Our coronary artery bypass grafting database was reviewed retrospectively and a total of 243 patients who underwent cardiac surgery with cardiopulmonary bypass (CPB) were studied in a 12-month period (January-December 2016) after the implementation of the new program, and compared with 275 patients of the previous 12-month period.All the staff involved in the care of the patients were educated about the risks and benefits of blood transfusions and the new transfusion guidelines in a 45-min training. We revised our guidelines for transfusions based on the STS. A transfusion log was created. Reduction in IV fluid volume was targeted. CPB circuitry was redesigned to achieve significantly less prime volume. Results: The proportion of patients transfused with red blood cells was 56% (n =154) in the control group and reduced by 26.8% in the study group (29.2%; 71 patients; P < .01). Blood transfusion rate (1.7 ± 1/3.05 ± 1 units), postoperative hemorrhage (545 ± 50/ 775 ± 55 mL), respiratory support duration (12.4 ± 7/16.8 ± 8 h) and ICU stay (2.2±1.1/ 3.5±1.2 days) were significantly better in the blood conservation group.  Conclusion: These findings, in addition to risks and side effects of blood transfusion and the rising cost of safer blood products, justify blood conservation in adult cardiac operations.

  19. Osteoblast Production by Reserved Progenitor Cells in Zebrafish Bone Regeneration and Maintenance.

    PubMed

    Ando, Kazunori; Shibata, Eri; Hans, Stefan; Brand, Michael; Kawakami, Atsushi

    2017-12-04

    Mammals cannot re-form heavily damaged bones as in large fracture gaps, whereas zebrafish efficiently regenerate bones even after amputation of appendages. However, the source of osteoblasts that mediate appendage regeneration is controversial. Several studies in zebrafish have shown that osteoblasts are generated by dedifferentiation of existing osteoblasts at injured sites, but other observations suggest that de novo production of osteoblasts also occurs. In this study, we found from cell-lineage tracing and ablation experiments that a group of cells reserved in niches serves as osteoblast progenitor cells (OPCs) and has a significant role in fin ray regeneration. Besides regeneration, OPCs also supply osteoblasts for normal bone maintenance. We further showed that OPCs are derived from embryonic somites, as is the case with embryonic osteoblasts, and are replenished from mesenchymal precursors in adult zebrafish. Our findings reveal that reserved progenitors are a significant and complementary source of osteoblasts for zebrafish bone regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Radmis, a Novel Mitotic Spindle Protein that Functions in Cell Division of Neural Progenitors

    PubMed Central

    Yumoto, Takahito; Nakadate, Kazuhiko; Nakamura, Yuki; Sugitani, Yoshinobu; Sugitani-Yoshida, Reiko; Ueda, Shuichi; Sakakibara, Shin-ichi

    2013-01-01

    Developmental dynamics of neural stem/progenitor cells (NSPCs) are crucial for embryonic and adult neurogenesis, but its regulatory factors are not fully understood. By differential subtractive screening with NSPCs versus their differentiated progenies, we identified the radmis (radial fiber and mitotic spindle)/ckap2l gene, a novel microtubule-associated protein (MAP) enriched in NSPCs. Radmis is a putative substrate for the E3-ubiquitin ligase, anaphase promoting complex/cyclosome (APC/C), and is degraded via the KEN box. Radmis was highly expressed in regions of active neurogenesis throughout life, and its distribution was dynamically regulated during NSPC division. In embryonic and perinatal brains, radmis localized to bipolar mitotic spindles and radial fibers (basal processes) of dividing NSPCs. As central nervous system development proceeded, radmis expression was lost in most brain regions, except for several neurogenic regions. In adult brain, radmis expression persisted in the mitotic spindles of both slowly-dividing stem cells and rapid amplifying progenitors. Overexpression of radmis in vitro induced hyper-stabilization of microtubules, severe defects in mitotic spindle formation, and mitotic arrest. In vivo gain-of-function using in utero electroporation revealed that radmis directed a reduction in NSPC proliferation and a concomitant increase in cell cycle exit, causing a reduction in the Tbr2-positive basal progenitor population and shrinkage of the embryonic subventricular zone. Besides, radmis loss-of-function by shRNAs induced the multipolar mitotic spindle structure, accompanied with the catastrophe of chromosome segregation including the long chromosome bridge between two separating daughter nuclei. These findings uncover the indispensable role of radmis in mitotic spindle formation and cell-cycle progression of NSPCs. PMID:24260314

  1. A 3-D Cardiac Muscle Construct for Exploring Adult Marrow Stem Cell Based Myocardial Regeneration

    PubMed Central

    Valarmathi, Mani T.; Goodwin, Richard L.; Fuseler, John W.; Davis, Jeffrey M.; Yost, Michael J.; Potts, Jay D.

    2010-01-01

    Adult bone marrow stromal cells (BMSCs) are capable of differentiating into cardiomyocyte-like cells in vitro and contribute to myocardial regeneration in vivo. Consequently, BMSCs may potentially play a vital role in cardiac repair and regeneration. However, this concept has been limited by inadequate and inconsistent differentiation of BMSCs into cardiomyocytes along with poor survival and integration of neo-cardiomyocytes after implantation into ischemic myocardium. In order to overcome these barriers and to explore adult stem cell based myocardial regeneration, we have developed an in vitro model of three-dimensional (3-D) cardiac muscle using rat ventricular embryonic cardiomyocytes (ECMs) and BMSCs. When ECMs and BMSCs were seeded sequentially onto a 3-D tubular scaffold engineered from topographically aligned type I collagen fibers and cultured in basal medium for 7, 14, 21, or 28 days, the maturation and co-differentiation into a cardiomyocyte lineage was observed. Phenotypic induction was characterized at morphological, immunological, biochemical and molecular levels. The observed expression of transcripts coding for cardiomyocyte phenotypic markers and the immunolocalization of cardiomyogenic lineage-associated proteins revealed typical expression patterns of neo-cardiomyogenesis. At the biochemical level differentiating cells exhibited appropriate metabolic activity and at the ultrastructural level myofibrillar and sarcomeric organization were indicative of an immature phenotype. Our 3-D co-culture system sustains the ECMs in vitro continuum of differentiation process and simultaneously induces the maturation and differentiation of BMSCs into cardiomyocyte-like cells. Thus, this novel 3-D co-culture system provides a useful in vitro model to investigate the functional role and interplay of developing ECMs and BMSCs during cardiomyogenic differentiation. PMID:20129663

  2. Thymosin β4: multiple functions in protection, repair and regeneration of the mammalian heart.

    PubMed

    Bollini, Sveva; Riley, Paul R; Smart, Nicola

    2015-01-01

    Despite recent improvements in interventional medicine, cardiovascular disease still represents the major cause of morbidity worldwide, with myocardial infarction being the most common cardiac injury. This has sustained the development of several regenerative strategies based on the use of stem cells and tissue engineering approaches in order to achieve cardiac repair and regeneration by enhancing coronary neovascularization, modulating acute inflammation and supporting myocardial regeneration to provide new functional muscle. The actin monomer binding peptide, Thymosin β4 (Tβ4), has recently been described as a powerful regenerative agent with angiogenic, anti-inflammatory and cardioprotective effects on the heart and which specifically acts on its resident cardiac progenitor cells. In this review we will discuss the state of the art regarding the many roles of Tβ4 in preserving and regenerating the mammalian heart, with specific attention to its ability to activate the quiescent adult epicardium and specific subsets of epicardial progenitor cells for repair. The therapeutic potential of Tβ4 for the treatment of cardiac failure is herein evaluated alongside existing, emerging and prospective novel treatments.

  3. Cardiac Fibroblast: The Renaissance Cell

    PubMed Central

    Souders, Colby A.; Bowers, Stephanie L.K.; Baudino, Troy A.

    2012-01-01

    The permanent cellular constituents of the heart include cardiac fibroblasts, myocytes, endothelial cells and vascular smooth muscle cells. Previous studies have demonstrated that there are undulating changes in cardiac cell populations during embryonic development, through neonatal development and into the adult. Transient cell populations include lymphocytes, mast cells and macrophages, which can interact with these permanent cell types to affect cardiac function. It has also been observed that there are marked differences in the makeup of the cardiac cell populations depending on the species, which may be important when examining myocardial remodeling. Current dogma states that the fibroblast makes up the largest cell population of the heart; however, this appears to vary for different species, especially mice. Cardiac fibroblasts play a critical role in maintaining normal cardiac function, as well as in cardiac remodeling during pathological conditions such as myocardial infarct and hypertension. These cells have numerous functions, including synthesis and deposition of extracellular matrix, cell-cell communication with myocytes, cell-cell signaling with other fibroblasts, as well as with endothelial cells. These contacts affect the electrophysiological properties, secretion of growth factors and cytokines, as well as potentiating blood vessel formation. While a plethora of information is known about several of these processes, relatively little is understood about fibroblasts and their role in angiogenesis during development or cardiac remodeling. In this review we provide insight into the various properties of cardiac fibroblasts that helps illustrate their importance in maintaining proper cardiac function, as well as their critical role in the remodeling heart. PMID:19959782

  4. Live imaging of heart tube development in mouse reveals alternating phases of cardiac differentiation and morphogenesis

    PubMed Central

    Ivanovitch, Kenzo; Temiño, Susana

    2017-01-01

    During vertebrate heart development, two progenitor populations, first and second heart fields (FHF, SHF), sequentially contribute to longitudinal subdivisions of the heart tube (HT), with the FHF contributing the left ventricle and part of the atria, and the SHF the rest of the heart. Here, we study the dynamics of cardiac differentiation and morphogenesis by tracking individual cells in live analysis of mouse embryos. We report that during an initial phase, FHF precursors differentiate rapidly to form a cardiac crescent, while limited morphogenesis takes place. In a second phase, no differentiation occurs while extensive morphogenesis, including splanchnic mesoderm sliding over the endoderm, results in HT formation. In a third phase, cardiac precursor differentiation resumes and contributes to SHF-derived regions and the dorsal closure of the HT. These results reveal tissue-level coordination between morphogenesis and differentiation during HT formation and provide a new framework to understand heart development. PMID:29202929

  5. Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis.

    PubMed

    Harel, Itamar; Maezawa, Yoshiro; Avraham, Roi; Rinon, Ariel; Ma, Hsiao-Yen; Cross, Joe W; Leviatan, Noam; Hegesh, Julius; Roy, Achira; Jacob-Hirsch, Jasmine; Rechavi, Gideon; Carvajal, Jaime; Tole, Shubha; Kioussi, Chrissa; Quaggin, Susan; Tzahor, Eldad

    2012-11-13

    The search for developmental mechanisms driving vertebrate organogenesis has paved the way toward a deeper understanding of birth defects. During embryogenesis, parts of the heart and craniofacial muscles arise from pharyngeal mesoderm (PM) progenitors. Here, we reveal a hierarchical regulatory network of a set of transcription factors expressed in the PM that initiates heart and craniofacial organogenesis. Genetic perturbation of this network in mice resulted in heart and craniofacial muscle defects, revealing robust cross-regulation between its members. We identified Lhx2 as a previously undescribed player during cardiac and pharyngeal muscle development. Lhx2 and Tcf21 genetically interact with Tbx1, the major determinant in the etiology of DiGeorge/velo-cardio-facial/22q11.2 deletion syndrome. Furthermore, knockout of these genes in the mouse recapitulates specific cardiac features of this syndrome. We suggest that PM-derived cardiogenesis and myogenesis are network properties rather than properties specific to individual PM members. These findings shed new light on the developmental underpinnings of congenital defects.

  6. Prospective isolation of multipotent pancreatic progenitors using flow-cytometric cell sorting.

    PubMed

    Suzuki, Atsushi; Nakauchi, Hiromitsu; Taniguchi, Hideki

    2004-08-01

    During pancreatic development, neogenesis, and regeneration, stem cells might act as a central player to generate endocrine, acinar, and duct cells. Although these cells are well known as pancreatic stem cells (PSCs), indisputable proof of their existence has not been reported. Identification of phenotypic markers for PSCs leads to their prospective isolation and precise characterization to clear whether stem cells exist in the pancreas. By combining flow cytometry and clonal analysis, we show here that a possible pancreatic stem or progenitor cell candidate that resides in the developing and adult mouse pancreas expresses the receptor for the hepatocyte growth factor (HGF) c-Met, but does not express hematopoietic and vascular endothelial antigens such as CD45, TER119, c-Kit, and Flk-1. These cells formed clonal colonies in vitro and differentiated into multiple pancreatic lineage cells from single cells. Some of them could largely expand with self-renewing cell divisions in culture, and, following cell transplantation, they differentiated into pancreatic endocrine and acinar cells in vivo. Furthermore, they produced cells expressing multiple markers of nonpancreatic organs including liver, stomach, and intestine in vitro. Our data strongly suggest that c-Met/HGF signaling plays an important role in stem/progenitor cell function in both developing and adult pancreas. By using this antigen, PSCs could be isolated prospectively, enabling a detailed investigation of stem cell markers and application toward regenerative therapies for diabetes.

  7. THY-1 Receptor Expression Differentiates Cardiosphere-Derived Cells with Divergent Cardiogenic Differentiation Potential

    PubMed Central

    Gago-Lopez, Nuria; Awaji, Obinna; Zhang, Yiqiang; Ko, Christopher; Nsair, Ali; Liem, David; Stempien-Otero, April; MacLellan, W. Robb

    2014-01-01

    Summary Despite over a decade of intense research, the identity and differentiation potential of human adult cardiac progenitor cells (aCPC) remains controversial. Cardiospheres have been proposed as a means to expand aCPCs in vitro, but the identity of the progenitor cell within these 3D structures is unknown. We show that clones derived from cardiospheres could be subdivided based on expression of thymocyte differentiation antigen 1 (THY-1/CD90) into two distinct populations that exhibit divergent cardiac differentiation potential. One population, which is CD90+, expressed markers consistent with a mesenchymal/myofibroblast cell. The second clone type was CD90− and could form mature, functional myocytes with sarcomeres albeit at a very low rate. These two populations of cardiogenic clones displayed distinct cell surface markers and unique transcriptomes. Our study suggests that a rare aCPC exists in cardiospheres along with a mesenchymal/myofibroblast cell, which demonstrates incomplete cardiac myocyte differentiation. PMID:24936447

  8. Cost-effectiveness of In-home Automated External Defibrillators for Individuals at Increased Risk of Sudden Cardiac Death

    PubMed Central

    Cram, Peter; Vijan, Sandeep; Katz, David; Fendrick, A Mark

    2005-01-01

    BACKGROUND/OBJECTIVE In-home automated external defibrillators (AEDs) are increasingly recommended as a means for improving survival of cardiac arrests that occur at home. The current study was conducted to explore the relationship between individuals' risk of cardiac arrest and cost-effectiveness of in-home AED deployment. DESIGN Markov decision model employing a societal perspective. PATIENTS Four hypothetical cohorts of American adults 60 years of age at progressively greater risk for sudden cardiac death (SCD): 1) all adults (annual probability of SCD 0.4%); 2) adults with multiple SCD risk factors (probability 2%); 3) adults with previous myocardial infarction (probability 4%); and 4) adults with ischemic cardiomyopathy unable to receive an implantable defibrillator (probability 6%). INTERVENTION Strategy 1: individuals suffering an in-home cardiac arrest were treated with emergency medical services equipped with AEDs (EMS-D). Strategy 2: individuals suffering an in-home cardiac arrest received initial treatment with an in-home AED, followed by EMS. RESULTS Assuming cardiac arrest survival rates of 15% with EMS-D and 30% with AEDs, the cost per quality-adjusted life-year gained (QALY) of providing in-home AEDs to all adults 60 years of age is $216,000. Costs of providing in-home AEDs to adults with multiple risk factors (2% probability of SCD), previous myocardial infarction (4% probability), and ischemic cardiomyopathy (6% probability) are $132,000, $104,000, and $88,000, respectively. CONCLUSIONS The cost-effectiveness of in-home AEDs is intimately linked to individuals' risk of SCD. However, providing in-home AEDs to all adults over age 60 appears relatively expensive. PMID:15836529

  9. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes

    PubMed Central

    Qian, Li; Huang, Yu; Spencer, C. Ian; Foley, Amy; Vedantham, Vasanth; Liu, Lei; Conway, Simon J.; Fu, Ji-dong; Srivastava, Deepak

    2012-01-01

    SUMMARY The reprogramming of adult cells into pluripotent cells or directly into alternative adult cell types holds great promise for regenerative medicine. We reported that cardiac fibroblasts, which represent 50% of the cells in the mammalian heart, can be directly reprogrammed to adult cardiomyocyte-like cells in vitro by the addition of Gata4, Mef2c and Tbx5 (GMT). Here, we use genetic lineage-tracing to show that resident non-myocytes in the murine heart can be reprogrammed into cardiomyocyte-like cells in vivo by local delivery of GMT after coronary ligation. Induced cardiomyocytes became bi-nucleate, assembled sarcomeres and had cardiomyocyte-like gene expression. Analysis of single cells revealed ventricular cardiomyocyte-like action potentials, beating upon electrical stimulation, and evidence of electrical coupling. In vivo delivery of GMT decreased infarct size and modestly attenuated cardiac dysfunction up to 3 months after coronary ligation. Delivery of the pro-angiogenic and fibroblast activating peptide, Thymosin β4, along with GMT, resulted in further improvements in scar area and cardiac function. These findings demonstrate that cardiac fibroblasts can be reprogrammed into cardiomyocyte-like cells in their native environment for potential regenerative purposes. PMID:22522929

  10. Left Recumbent Position Decreases Heart Rate without Alterations in Cardiac Autonomic Nervous System Activity in Healthy Young Adults.

    PubMed

    Sasaki, Konosuke; Haga, Mayu; Endo, Yoichi; Fujiwara, Junko; Maruyama, Ryoko

    2017-04-01

    Some studies have reported that recumbent position may have advantages in patients with heart disease and in pregnancy. However, it remains controversial whether recumbent position affects autonomic nervous system activity and hemodynamics in healthy adults. The aim of this study was to evaluate alterations in heart rate variability (HRV) and hemodynamics in the supine, left recumbent and right recumbent positions in healthy young adults. A total of 80 participants aged 22.8 ± 3.1 years were enrolled in this observational study. Fifty-eight volunteers (29 men and 29 women) maintained the supine position followed by the left and right recumbent positions, while electrocardiographic data were recorded for spectral analysis of HRV to assess cardiac vagal nerve and sympathetic nerve activities. The heart rate (HR) was significantly lower in the left recumbent position than in the other positions. There were no statistically significant differences in HRV among the three positions. Considering the possibility that the echographic procedure affects autonomic nervous system (ANS) activity, the other 22 participants (11 men and 11 women) underwent an echographic evaluation of hemodynamics in the heart and inferior vena cava (IVC) across the three positions. Although a low HR was also observed, there were no statistically significant differences in the IVC or the heart blood volume between the supine and the left recumbent positions. A postural change to the left recumbent position does not affect the cardiac blood circulation or ANS activity, though it does decrease HR in healthy young adults. This finding indicates that the lower HR in the left recumbent position is not attributable to the ANS activity.

  11. Clinical, biochemical and genetic risk factors for 30-day and 5-year mortality in 518 adult patients subjected to cardiopulmonary bypass during cardiac surgery - the INFLACOR study.

    PubMed

    Kowalik, Maciej Michał; Lango, Romuald; Siondalski, Piotr; Chmara, Magdalena; Brzeziński, Maciej; Lewandowski, Krzysztof; Jagielak, Dariusz; Klapkowski, Andrzej; Rogowski, Jan

    2018-04-25

    There is increasing evidence that genetic variability influences patients' early morbidity after cardiac surgery performed using cardiopulmonary bypass (CPB). The use of mortality as an outcome measure in cardiac surgical genetic association studies is rare. We publish the 30-day and 5-year survival analyses with focus on pre-, intra-, postoperative variables, biochemical parameters, and genetic variants in the INFLACOR (INFLAmmation in Cardiac OpeRations) cohort. In a prospectively recruited cohort of 518 adult Polish Caucasians, who underwent cardiac surgery in which CPB was used, the clinical data, biochemical parameters, IL-6, soluble ICAM-1, TNFα, soluble E-selectin, and 10 single nucleotide polymorphisms were evaluated for their association with 30-day and 5-year mortality. The 30-day mortality was associated with: pre-operative prothrombin international normalized ratio, intra-operative blood lactate, postoperative serum creatine phosphokinase, and acute kidney injury requiring renal replacement therapy (AKI-RRT) in logistic regression. Factors that determined the 5-year survival included: pre-operative NYHA class, history of peripheral artery disease and severe chronic obstructive pulmonary disease, intra-operative blood transfusion; and postoperative peripheral hypothermia, myocardial infarction, infection, and AKI-RRT in Cox regression. Serum levels of IL-6 and ICAM-1 measured three hours after the operation were associated with 30-day and 5-year mortality, respectively. The ICAM1 rs5498 was associated with 30-day and 5-year survival with borderline significance. Different risk factors determined the early (30-day) and late (5-year) survival after adult cardiac surgery in which cardiopulmonary bypass was used. Future genetic association studies in cardiac surgical patients should account for the identified chronic and perioperative risk factors.

  12. Fibroblast Growth Factor 1 (FGFR1) Modulation Regulates Repair Capacity of Oligodendrocyte Progenitor Cells Following Chronic Demyelination

    PubMed Central

    Zhou, Yong-Xing; Pannu, Ravinder; Le, Tuan Q.; Armstrong, Regina C.

    2011-01-01

    The adult mammalian brain contains multiple populations of endogenous progenitor cell types. However, following CNS trauma or disease, the regenerative capacity of progenitor populations is typically insufficient and may actually be limited by non-permissive or inhibitory signals in the damaged parenchyma. Remyelination is the most effective and simplest regenerative process in the adult CNS yet is still insufficient following repeated or chronic demyelination. Our previous in vitro studies demonstrated that fibroblast growth factor receptor 1 (FGFR1) signaling inhibited oligodendrocyte progenitor (OP) differentiation into mature oligodendrocytes. Therefore, we questioned whether FGFR1 signaling may inhibit the capacity of OP cells to generate oligodendrocytes in a demyelinating disease model and whether genetically reducing FGFR1 signaling in oligodendrocyte lineage cells could enhance the capacity for remyelination. FGFR1 was found to be upregulated in the corpus callosum during cuprizone mediated demyelination and expressed on OP cells just prior to remyelination. Plp/CreERT:Fgfr1fl/flmice were administered tamoxifen to induce conditional Fgfr1 deletion in oligodendrocyte lineage cells. Tamoxifen administration during chronic demyelination resulted in reduced FGFR1 expression in OP cells. OP proliferation and population size were not altered one week after tamoxifen treatment. Tamoxifen was then administered during chronic demyelination and mice were given a six week recovery period without cuprizone in the chow. After the recovery period, OP numbers were reduced and the number of mature oligodendrocytes was increased, indicating an effect of FGFR1 reduction on OP differentiation. Importantly, tamoxifen administration in Plp/CreERT:Fgfr1fl/fl mice significantly promoted remyelination and axon integrity. These results demonstrate a direct effect of FGFR1 signaling in oligodendrocyte lineage cells as inhibiting the repair capacity of OP cells following chronic

  13. Cardiac computed tomography of an asymptomatic 48-year-old woman with ALCAPA syndrome.

    PubMed

    Sajjadieh Khajouei, Amirreza; Samie-Nasab, Mohammadreza; Behjati, Mohaddeseh; Biederman, Robert W

    2016-12-01

    Untreated ALCAPA cases most often die in infancy. Adults with untreated ALCAPA commonly present with mitral regurgitation, severe left ventricular dysfunction, and sometimes myocardial infarction. Herein, we present an asymptomatic adult female with ALCAPA recognized through cardiac computed tomography (CT). In ALCAPA, like other coronary anomalies, cardiac CT is often instrumental in providing unique noninvasive and clinically relevant evaluation. Herein, we present an atypical presentation of an asymptomatic middle-aged adult female with ALCAPA. © 2016, Wiley Periodicals, Inc.

  14. Identification of a novel putative pancreatic stem/progenitor cell marker DCAMKL-1 in normal mouse pancreas.

    PubMed

    May, Randal; Sureban, Sripathi M; Lightfoot, Stan A; Hoskins, Aimee B; Brackett, Daniel J; Postier, Russell G; Ramanujam, Rama; Rao, Chinthalapally V; Wyche, James H; Anant, Shrikant; Houchen, Courtney W

    2010-08-01

    Stem cells are critical in maintaining adult homeostasis and have been proposed to be the origin of many solid tumors, including pancreatic cancer. Here we demonstrate the expression patterns of the putative intestinal stem cell marker DCAMKL-1 in the pancreas of uninjured C57BL/6 mice compared with other pancreatic stem/progenitor cell markers. We then determined the viability of isolated pancreatic stem/progenitor cells in isotransplantation assays following DCAMKL-1 antibody-based cell sorting. Sorted cells were grown in suspension culture and injected into the flanks of athymic nude mice. Here we report that DCAMKL-1 is expressed in the main pancreatic duct epithelia and islets, but not within acinar cells. Coexpression was observed with somatostatin, NGN3, and nestin, but not glucagon or insulin. Isolated DCAMKL-1+ cells formed spheroids in suspension culture and induced nodule formation in isotransplantation assays. Analysis of nodules demonstrated markers of early pancreatic development (PDX-1), glandular epithelium (cytokeratin-14 and Ep-CAM), and isletlike structures (somatostatin and secretin). These data taken together suggest that DCAMKL-1 is a novel putative stem/progenitor marker, can be used to isolate normal pancreatic stem/progenitors, and potentially regenerates pancreatic tissues. This may represent a novel tool for regenerative medicine and a target for anti-stem cell-based therapeutics in pancreatic cancer.

  15. Identification of a novel putative pancreatic stem/progenitor cell marker DCAMKL-1 in normal mouse pancreas

    PubMed Central

    May, Randal; Sureban, Sripathi M.; Lightfoot, Stan A.; Hoskins, Aimee B.; Brackett, Daniel J.; Postier, Russell G.; Ramanujam, Rama; Rao, Chinthalapally V.; Wyche, James H.; Anant, Shrikant

    2010-01-01

    Stem cells are critical in maintaining adult homeostasis and have been proposed to be the origin of many solid tumors, including pancreatic cancer. Here we demonstrate the expression patterns of the putative intestinal stem cell marker DCAMKL-1 in the pancreas of uninjured C57BL/6 mice compared with other pancreatic stem/progenitor cell markers. We then determined the viability of isolated pancreatic stem/progenitor cells in isotransplantation assays following DCAMKL-1 antibody-based cell sorting. Sorted cells were grown in suspension culture and injected into the flanks of athymic nude mice. Here we report that DCAMKL-1 is expressed in the main pancreatic duct epithelia and islets, but not within acinar cells. Coexpression was observed with somatostatin, NGN3, and nestin, but not glucagon or insulin. Isolated DCAMKL-1+ cells formed spheroids in suspension culture and induced nodule formation in isotransplantation assays. Analysis of nodules demonstrated markers of early pancreatic development (PDX-1), glandular epithelium (cytokeratin-14 and Ep-CAM), and isletlike structures (somatostatin and secretin). These data taken together suggest that DCAMKL-1 is a novel putative stem/progenitor marker, can be used to isolate normal pancreatic stem/progenitors, and potentially regenerates pancreatic tissues. This may represent a novel tool for regenerative medicine and a target for anti-stem cell-based therapeutics in pancreatic cancer. PMID:20522640

  16. Functional Definition of Progenitors Versus Mature Endothelial Cells Reveals Key SoxF-Dependent Differentiation Process.

    PubMed

    Patel, Jatin; Seppanen, Elke J; Rodero, Mathieu P; Wong, Ho Yi; Donovan, Prudence; Neufeld, Zoltan; Fisk, Nicholas M; Francois, Mathias; Khosrotehrani, Kiarash

    2017-02-21

    During adult life, blood vessel formation is thought to occur via angiogenic processes involving branching from existing vessels. An alternate proposal suggests that neovessels form from endothelial progenitors able to assemble the intimal layers. We here aimed to define vessel-resident endothelial progenitors in vivo in a variety of tissues in physiological and pathological situations such as normal aorta, lungs, and wound healing, tumors, and placenta, as well. Based on protein expression levels of common endothelial markers using flow cytometry, 3 subpopulations of endothelial cells could be identified among VE-Cadherin+ and CD45- cells. Lineage tracing by using Cdh5cre ERt2 /Rosa-YFP reporter strategy demonstrated that the CD31-/loVEGFR2lo/intracellular endothelial population was indeed an endovascular progenitor (EVP) of an intermediate CD31intVEGFR2lo/intracellular transit amplifying (TA) and a definitive differentiated (D) CD31hiVEGFR2hi/extracellular population. EVP cells arose from vascular-resident beds that could not be transferred by bone marrow transplantation. Furthermore, EVP displayed progenitor-like status with a high proportion of cells in a quiescent cell cycle phase as assessed in wounds, tumors, and aorta. Only EVP cells and not TA and D cells had self-renewal capacity as demonstrated by colony-forming capacity in limiting dilution and by transplantation in Matrigel plugs in recipient mice. RNA sequencing revealed prominent gene expression differences between EVP and D cells. In particular, EVP cells highly expressed genes related to progenitor function including Sox9 , Il33 , Egfr , and Pdfgrα. Conversely, D cells highly expressed genes related to differentiated endothelium including Ets1&2 , Gata2 , Cd31 , Vwf , and Notch . The RNA sequencing also pointed to an essential role of the Sox18 transcription factor. The role of SOX18 in the differentiation process was validated by using lineage-tracing experiments based on S ox18Cre ERt2 /Rosa

  17. Cardiac Denial and Psychological Predictors of Cardiac Care Adherence in Adults With Congenital Heart Disease.

    PubMed

    White, Kamila S; Pardue, Caleb; Ludbrook, Philip; Sodhi, Sandeep; Esmaeeli, Amirhossein; Cedars, Ari

    2016-01-01

    The current study examined cardiac denial and psychological predictors (i.e., depression, anxiety) of health outcomes including medical nonadherence and physical health in a sample of 80 adults with congenital heart disease (ACHD). Results indicated that denial of impact was elevated in this patient group compared with reference groups, and denial was negatively associated with depression and anxiety at ps < .01. Results indicated that depression, anxiety, and denial predicted unique variance in medical nonadherence, and gender moderated the relationships between these psychological factors and nonadherence. For depression, men and women showed similar relationships between depression and nonadherence at high levels of depression; however, at low levels of depression (i.e., a more normal mood state), men were less adherent compared with women. For anxiety, men and women did not differ in adherence at low levels of anxiety; however, men experiencing high anxiety were less adherent compared with women experiencing high anxiety. Implications of this study are discussed including the role of gender and denial and the impact of denial functioning to reduce negative affect. Depression was the only significant predictor of physical functioning. Results of this study suggest that psychological interventions aimed at depression and anxiety may function differently across gender to improve patient medical adherence and improve physical functioning in ACHD. © The Author(s) 2015.

  18. Aging Neural Progenitor Cells Have Decreased Mitochondrial Content and Lower Oxidative Metabolism*

    PubMed Central

    Stoll, Elizabeth A.; Cheung, Willy; Mikheev, Andrei M.; Sweet, Ian R.; Bielas, Jason H.; Zhang, Jing; Rostomily, Robert C.; Horner, Philip J.

    2011-01-01

    Although neurogenesis occurs in discrete areas of the adult mammalian brain, neural progenitor cells (NPCs) produce fewer new neurons with age. To characterize the molecular changes that occur during aging, we performed a proteomic comparison between primary-cultured NPCs from the young adult and aged mouse forebrain. This analysis yielded changes in proteins necessary for cellular metabolism. Mitochondrial quantity and oxygen consumption rates decrease with aging, although mitochondrial DNA in aged NPCs does not have increased mutation rates. In addition, aged cells are resistant to the mitochondrial inhibitor rotenone and proliferate in response to lowered oxygen conditions. These results demonstrate that aging NPCs display an altered metabolic phenotype, characterized by a coordinated shift in protein expression, subcellular structure, and metabolic physiology. PMID:21900249

  19. CD34+ Testicular Stromal Cells Support Long-Term Expansion of Embryonic and Adult Stem and Progenitor Cells

    PubMed Central

    Kim, Jiyeon; Seandel, Marco; Falciatori, Ilaria; Wen, Duancheng; Rafii, Shahin

    2010-01-01

    Stem cells reside in specialized microenvironments created by supporting stromal cells that orchestrate self-renewal and lineage-specific differentiation. However, the precise identity of the cellular and molecular pathways that support self-renewal of stem cells is not known. For example, long-term culture of prototypical stem cells, such as adult spermatogonial stem and progenitor cells (SPCs), in vitro has been impeded by the lack of an optimal stromal cell line that initiates and sustains proliferation of these cells. Indeed, current methods, including the use of mouse embryonic fibroblasts (MEFs), have not been efficient and have generally led to inconsistent results. Here, we report the establishment of a novel CD34-positive cell line, referred to as JK1, derived from mouse testicular stromal cells that not only facilitated long-term SPC culture but also allowed faithful generation of SPCs and multipotent stem cells. SPCs generated on JK1 maintained key features of germ line stem cells, including expression of PLZF, DAZL, and GCNA. Furthermore, these feeders also promoted the long-term cultivation of other types of primitive cells including multi-potent adult spermatogonial-derived stem cells, pluripotent murine embryonic stem cells, and embryonic germ cells derived from primordial germ cells. Stem cells could be passaged serially and still maintained expression of characteristic markers such as OCT4 and NANOG in vitro, as well as the ability to generate all three germ layers in vivo. These results indicate that the JK1 cell line is capable of promoting long-term culture of primitive cells. As such, this cell line allows for identification of stromal-derived factors that support long-term proliferation of various types of stem cells and constitutes a convenient alternative to other types of feeder layers. PMID:18669907

  20. Flt3 Ligand Regulates the Development of Innate Lymphoid Cells in Fetal and Adult Mice.

    PubMed

    Baerenwaldt, Anne; von Burg, Nicole; Kreuzaler, Matthias; Sitte, Selina; Horvath, Edit; Peter, Annick; Voehringer, David; Rolink, Antonius G; Finke, Daniela

    2016-03-15

    Flt3 ligand (Flt3L) promotes survival of lymphoid progenitors in the bone marrow and differentiation of dendritic cells (DCs), but its role in regulating innate lymphoid cells (ILCs) during fetal and adult life is not understood. By using Flt3L knockout and transgenic mice, we demonstrate that Flt3L controls ILC numbers by regulating the pool of α4β7(-) and α4β7(+) lymphoid tissue inducer cell progenitors in the fetal liver and common lymphoid progenitors in the bone marrow. Deletion of flt3l severely reduced the number of fetal liver progenitors and lymphoid tissue inducer cells in the neonatal intestine, resulting in impaired development of Peyer's patches. In the adult intestine, NK cells and group 2 and 3 ILCs were severely reduced. This effect occurred independently of DCs as ILC numbers were normal in mice in which DCs were constitutively deleted. Finally, we could show that administration of Flt3L increased the number of NKp46(-) group 3 ILCs in wild-type and even in Il7(-/-) mice, which generally have reduced numbers of ILCs. Taken together, Flt3L significantly contributes to ILC and Peyer's patches development by targeting lymphoid progenitor cells during fetal and adult life. Copyright © 2016 by The American Association of Immunologists, Inc.

  1. Effect of the full implementation of the European Working Time Directive on operative training in adult cardiac surgery.

    PubMed

    Mahesh, Balakrishnan; Sharples, Linda; Codispoti, Massimiliano

    2014-01-01

    Surgical specialties rely on practice and apprenticeship to acquire technical skills. In 2009, the final reduction in working hours to 48 per week, in accordance with the European Working Time Directive (EWTD), has also led to an expansion in the number of trainees. We examined the effect of these changes on operative training in a single high-volume [>1500 procedures/year] adult cardiac surgical center. Setting: A single high-volume [>1500 procedures/year] adult cardiac surgical center. Design: Consecutive data were prospectively collected into a database and retrospectively analyzed. Procedures and Main Outcome Measures: Between January 2006 and August 2010, 6688 consecutive adult cardiac surgical procedures were analyzed. The proportion of cases offered for surgical training were compared for 2 non-overlapping consecutive time periods: 4504 procedures were performed before the final implementation of the EWTD (Phase 1: January 2006-December 2008) and 2184 procedures after the final implementation of the EWTD (Phase 2: January 2009-August 2010). Other predictors of training considered in the analysis were grade of trainee, logistic European system for cardiac operative risk evaluation (EuroSCORE), type of surgical procedure, weekend or late procedure, and consultant. Logistic regression analysis was used to determine the predictors of training cases (procedure performed by trainee) and to evaluate the effect of the EWTD on operative surgical training after correcting for confounding factors. Proportion of training cases rose from 34.6% (1558/4504) during Phase 1 to 43.6% (953/2184) in Phase 2 (p < 0.0001), despite higher mean logistic EuroSCORE [4.29 (6.8) during Phase 1 vs 4.95 (7.2) during Phase 2, p < 0.0001] and higher proportion of cases performed out of hours [153 (3.4) during Phase 1 vs 116 (5.3) during Phase 2, p < 0.0001]. During Phase 1, senior trainees (last 2 years of training) performed 803 (17.8%) procedures, whereas other trainees (first 4 years of

  2. Myogenic Progenitor Cells Control Extracellular Matrix Production by Fibroblasts during Skeletal Muscle Hypertrophy.

    PubMed

    Fry, Christopher S; Kirby, Tyler J; Kosmac, Kate; McCarthy, John J; Peterson, Charlotte A

    2017-01-05

    Satellite cells, the predominant stem cell population in adult skeletal muscle, are activated in response to hypertrophic stimuli and give rise to myogenic progenitor cells (MPCs) within the extracellular matrix (ECM) that surrounds myofibers. This ECM is composed largely of collagens secreted by interstitial fibrogenic cells, which influence satellite cell activity and muscle repair during hypertrophy and aging. Here we show that MPCs interact with interstitial fibrogenic cells to ensure proper ECM deposition and optimal muscle remodeling in response to hypertrophic stimuli. MPC-dependent ECM remodeling during the first week of a growth stimulus is sufficient to ensure long-term myofiber hypertrophy. MPCs secrete exosomes containing miR-206, which represses Rrbp1, a master regulator of collagen biosynthesis, in fibrogenic cells to prevent excessive ECM deposition. These findings provide insights into how skeletal stem and progenitor cells interact with other cell types to actively regulate their extracellular environments for tissue maintenance and adaptation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Wnt and Notch Pathways Have Interrelated Opposing Roles on Prostate Progenitor Cell Proliferation and Differentiation

    PubMed Central

    Shahi, Payam; Seethammagari, Mamatha R.; Valdez, Joseph M.; Xin, Li; Spencer, David M.

    2011-01-01

    Tissue stem cells are capable of both self-renewal and differentiation to maintain a constant stem cell population and give rise to the plurality of cells within a tissue. Wnt signaling has been previously identified as a key mediator for the maintenance of tissue stem cells; however, possible cross-regulation with other developmentally critical signaling pathways involved in adult tissue homeostasis, such as Notch, is not well understood. By using an in vitro prostate stem cell colony (“prostasphere”) formation assay and in vivo prostate reconstitution experiments, we demonstrate that Wnt pathway induction on Sca-1+ CD49f+ basal/stem cells (B/SCs) promotes expansion of the basal epithelial compartment with noticeable increases in “triple positive” (cytokeratin [CK] 5+, CK8+, p63+) prostate progenitor cells, concomitant with upregulation of known Wnt target genes involved in cell-cycle induction. Moreover, Wnt induction affects expression of epithelial-to-mesenchymal transition signature genes, suggesting a possible mechanism for priming B/SC to act as potential tumor-initiating cells. Interestingly, induction of Wnt signaling in B/SCs results in downregulation of Notch1 transcripts, consistent with its postulated antiproliferative role in prostate cells. In contrast, induction of Notch signaling in prostate progenitors inhibits their proliferation and disrupts prostasphere formation. In vivo prostate reconstitution assays further demonstrate that induction of Notch in B/SCs disrupts proper acini formation in cells expressing the activated Notch1 allele, Notch-1 intracellular domain. These data emphasize the importance of Wnt/Notch cross-regulation in adult stem cell biology and suggest that Wnt signaling controls the proliferation and/or maintenance of epithelial progenitors via modulation of Notch signaling. PMID:21308863

  4. PDL Progenitor-Mediated PDL Recovery Contributes to Orthodontic Relapse.

    PubMed

    Feng, L; Yang, R; Liu, D; Wang, X; Song, Y; Cao, H; He, D; Gan, Y; Kou, X; Zhou, Y

    2016-08-01

    Periodontal ligament (PDL) is subjected to mechanical force during physiologic activities. PDL stem /: progenitor cells are the main mesenchymal stem cells in PDL. However, how PDL progenitors participate in PDL homeostasis upon and after mechanical force is largely unknown. In this study, force-triggered orthodontic tooth movement and the following relapse were used as models to demonstrate the response of PDL progenitors and their role in PDL remodeling upon and after mechanical force. Upon orthodontic force, PDL collagen on the compression side significantly degraded, showing a broken and disorganized pattern. After force withdrawal, the degraded PDL collagen recovered during the early stage of relapse. Correspondingly, increased CD90(+) PDL progenitors with suppressed expression of type I collagen (Col-I) were observed upon orthodontic force, whereas these cells accumulated at the degradation regions and regained Col-I expression after force withdrawal during early relapse. Our results further showed that compressive force altered cell morphology and repressed collagen expression in cultured PDL progenitors, which both recovered after force withdrawal. Force withdrawal-induced recovery of collagen expression in cultured PDL progenitors could be regulated by transforming growth factor-β (TGF-β), a key molecule for tissue homeostasis and extracellular matrix remodeling. More interesting, inhibiting the regained Col-I expression in CD90(+) PDL progenitors by blocking TGF-β interrupted PDL collagen recovery and partially inhibited the early relapse. These data suggest that PDL progenitors can respond to mechanical force and may process intrinsic stability to recover to original status after force withdrawal. PDL progenitors with intrinsic stability are required for PDL recovery and consequently contribute to early orthodontic relapse, which can be regulated by TGF-β signaling. © International & American Associations for Dental Research 2016.

  5. Biology and flow cytometry of proangiogenic hematopoietic progenitors cells.

    PubMed

    Rose, Jonathan A; Erzurum, Serpil; Asosingh, Kewal

    2015-01-01

    During development, hematopoiesis and neovascularization are closely linked to each other via a common bipotent stem cell called the hemangioblast that gives rise to both hematopoietic cells and endothelial cells. In postnatal life, this functional connection between the vasculature and hematopoiesis is maintained by a subset of hematopoietic progenitor cells endowed with the capacity to differentiate into potent proangiogenic cells. These proangiogenic hematopoietic progenitors comprise a specific subset of bone marrow (BM)-derived cells that homes to sites of neovascularization and possess potent paracrine angiogenic activity. There is emerging evidence that this subpopulation of hematopoietic progenitors plays a critical role in vascular health and disease. Their angiogenic activity is distinct from putative "endothelial progenitor cells" that become structural cells of the endothelium by differentiation into endothelial cells. Proangiogenic hematopoietic progenitor cell research requires multidisciplinary expertise in flow cytometry, hematology, and vascular biology. This review provides a comprehensive overview of proangiogenic hematopoietic progenitor cell biology and flow cytometric methods to detect these cells in the peripheral blood circulation and BM. © 2014 International Society for Advancement of Cytometry.

  6. Lgr6 labels a rare population of mammary gland progenitor cells that are able to originate luminal mammary tumours

    PubMed Central

    Messal, Hendrik A.; Andersson, Agneta B.; Ruiz, E. Josue; Gerling, Marco; Douagi, Iyadh; Spencer-Dene, Bradley; Musch, Alexandra; Mitter, Richard; Bhaw, Leena; Stone, Richard; Bornhorst, Dorothee; Sesay, Abdul K.; Jonkers, Jos; Stamp, Gordon; Malanchi, Ilaria; Toftgård, Rune; Behrens, Axel

    2018-01-01

    The mammary gland is composed of a complex cellular hierarchy with unusual postnatal plasticity. The identities of stem/progenitor cell populations, as well as tumour-initiating cells that give rise to breast cancer, are incompletely understood. Here we show that Lgr6 marks rare populations of cells in both basal and luminal mammary gland compartments in mice. Lineage tracing analysis showed that Lgr6+ cells are unipotent progenitors, which expand clonally during puberty but diminish in adulthood. In pregnancy or upon stimulation with ovarian hormones, adult Lgr6+ cells regained proliferative potency and their progeny formed alveoli over repeated pregnancies. Oncogenic mutations in Lgr6+ cells resulted in expansion of luminal cells, culminating in mammary gland tumours. Conversely, depletion of Lgr6+ cells in the MMTV-PyMT model of mammary tumourigenesis significantly impaired tumour growth. Thus, Lgr6 marks mammary gland progenitor cells that can initiate tumours, and cells of luminal breast tumours required for efficient tumour maintenance. PMID:27798604

  7. p63 Silencing induces reprogramming of cardiac fibroblasts into cardiomyocyte-like cells.

    PubMed

    Patel, Vivekkumar; Singh, Vivek P; Pinnamaneni, Jaya Pratap; Sanagasetti, Deepthi; Olive, Jacqueline; Mathison, Megumi; Cooney, Austin; Flores, Elsa R; Crystal, Ronald G; Yang, Jianchang; Rosengart, Todd K

    2018-04-13

    Reprogramming of fibroblasts into induced cardiomyocytes represents a potential new therapy for heart failure. We hypothesized that inactivation of p63, a p53 gene family member, may help overcome human cell resistance to reprogramming. p63 Knockout ( -/- ) and knockdown murine embryonic fibroblasts (MEFs), p63 -/- adult murine cardiac fibroblasts, and human cardiac fibroblasts were assessed for cardiomyocyte-specific feature changes, with or without treatment by the cardiac transcription factors Hand2-Myocardin (HM). Flow cytometry revealed that a significantly greater number of p63 -/- MEFs expressed the cardiac-specific marker cardiac troponin T (cTnT) in culture compared with wild-type (WT) cells (38% ± 11% vs 0.9% ± 0.9%, P < .05). HM treatment of p63 -/- MEFs increased cTnT expression to 74% ± 3% of cells but did not induce cTnT expression in wild-type murine embryonic fibroblasts. shRNA-mediated p63 knockdown likewise yielded a 20-fold increase in cTnT microRNA expression compared with untreated MEFs. Adult murine cardiac fibroblasts demonstrated a 200-fold increase in cTnT gene expression after inducible p63 knockout and expressed sarcomeric α-actinin as well as cTnT. These p63 -/- adult cardiac fibroblasts exhibited calcium transients and electrically stimulated contractions when co-cultured with neonatal rat cardiomyocytes and treated with HM. Increased expression of cTnT and other marker genes was also observed in p63 knockdown human cardiac fibroblasts procured from patients undergoing procedures for heart failure. Downregulation of p63 facilitates direct cardiac cellular reprogramming and may help overcome the resistance of human cells to reprogramming. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  8. Myocardin-related transcription factors are required for cardiac development and function

    PubMed Central

    Mokalled, Mayssa H.; Carroll, Kelli J.; Cenik, Bercin K.; Chen, Beibei; Liu, Ning; Olson, Eric N.; Bassel-Duby, Rhonda

    2016-01-01

    Myocardin-Related Transcription Factors A and B (MRTF-A and MRTF-B) are highly homologous proteins that function as powerful coactivators of serum response factor (SRF), a ubiquitously expressed transcription factor essential for cardiac development. The SRF/MRTF complex binds to CArG boxes found in the control regions of genes that regulate cytoskeletal dynamics and muscle contraction, among other processes. While SRF is required for heart development and function, the role of MRTFs in the developing or adult heart has not been explored. Through cardiac-specific deletion of MRTF alleles in mice, we show that either MRTF-A or MRTF-B is dispensable for cardiac development and function, whereas deletion of both MRTF-A and MRTF-B causes a spectrum of structural and functional cardiac abnormalities. Defects observed in MRTF-A/B null mice ranged from reduced cardiac contractility and adult onset heart failure to neonatal lethality accompanied by sarcomere disarray. RNA-seq analysis on neonatal hearts identified the most altered pathways in MRTF double knockout hearts as being involved in cytoskeletal organization. Together, these findings demonstrate redundant but essential roles of the MRTFs in maintenance of cardiac structure and function and as indispensible links in cardiac cytoskeletal gene regulatory networks. PMID:26386146

  9. Association between a Hospital’s Rate of Cardiac Arrest Incidence and Cardiac Arrest Survival

    PubMed Central

    Chen, Lena M.; Nallamothu, Brahmajee K.; Spertus, John A.; Li, Yan; Chan, Paul S.

    2014-01-01

    Context National efforts to measure hospital performance for cardiac arrest have focused on case survival, with the hope of improving survival after cardiac arrest. However, it is plausible that hospitals with high case-survival rates do a poor job of preventing cardiac arrests in the first place. Objective To describe the association between inpatient cardiac arrest incidence and survival rates. Design, Setting, and Patients Within a large, national registry, we identified hospitals with at least 50 adult in-hospital cardiac arrest cases between January 1, 2000 and November 30, 2009. We used multivariable hierarchical regression to evaluate the correlation between a hospital’s cardiac arrest incidence rate and its case-survival rate after adjusting for patient and hospital characteristics. Main Outcome Measure The correlation between a hospital’s incidence rate and case-survival rate for cardiac arrest. Results Of 102,153 cases at 358 hospitals, the median hospital cardiac arrest incidence rate was 4.02 per 1000 admissions (IQR: 2.95 to 5.65 per 1000 admissions), and the median hospital case-survival rate was 18.8% (IQR: 14.5% to 22.6%). In crude analyses, hospitals with higher case-survival rates also had lower cardiac arrest incidence (correlation of -0.16; P=0.003). This relationship persisted after adjusting for patient characteristics (correlation of -0.15; P=0.004). After adjusting for potential mediators of this relationship (i.e., hospital characteristics), the relationship between incidence and case-survival was attenuated (correlation of -0.07; P=0.18). The one modifiable hospital factor that most attenuated this relationship was a hospital’s nurse-to-bed ratio (correlation of -0.12; P=0.03). Conclusions Hospitals with exceptional rates of survival for in-hospital cardiac arrest are also better at preventing cardiac arrests, even after adjusting for patient case-mix. This relationship is partially mediated by measured hospital attributes

  10. Transfusion Support for ABO-Incompatible Progenitor Cell Transplantation

    PubMed Central

    Kopko, Patricia M.

    2016-01-01

    Summary ABO-incompatible transplants comprise up to 50% of allogeneic progenitor cell transplants. Major, minor and bidirectional ABO-incompatible transplants each have unique complications that can occur, including hemolysis at the time of progenitor cell infusion, hemolysis during donor engraftment, passenger lymphocyte syndrome, delayed red blood cell engraftment, and pure red cell aplasia. Appropriate transfusion support during the different phases of the allogeneic progenitor cell transplant process is an important part of ABO-incompatible transplantation. PMID:27022318

  11. Reporter-Based Isolation of Developmental Myogenic Progenitors

    PubMed Central

    Kheir, Eyemen; Cusella, Gabriella; Messina, Graziella; Cossu, Giulio; Biressi, Stefano

    2018-01-01

    The formation and activity of mammalian tissues entail finely regulated processes, involving the concerted organization and interaction of multiple cell types. In recent years the prospective isolation of distinct progenitor and stem cell populations has become a powerful tool in the hands of developmental biologists and has rendered the investigation of their intrinsic properties possible. In this protocol, we describe how to purify progenitors with different lineage history and degree of differentiation from embryonic and fetal skeletal muscle by fluorescence-activated cell sorting (FACS). The approach takes advantage of a panel of murine strains expressing fluorescent reporter genes specifically in the myogenic progenitors. We provide a detailed description of the dissection procedures and of the enzymatic dissociation required to maximize the yield of mononucleated cells for subsequent FACS-based purification. The procedure takes ~6–7 h to complete and allows for the isolation and the subsequent molecular and phenotypic characterization of developmental myogenic progenitors. PMID:29674978

  12. The heart and cardiac pacing in Steinert disease.

    PubMed

    Nigro, Gerardo; Papa, Andrea Antonio; Politano, Luisa

    2012-10-01

    Myotonic dystrophy (Dystrophia Myotonica, DM) is the most frequently inherited neuromuscular disease of adult life. It is a multisystemic disease with major cardiac involvement. Core features of myotonic dystrophy are myotonia, muscle weakness, cataract, respiratory failure and cardiac conduction abnormalities. Classical DM, first described by Steinert and called Steinert's disease or DM1 (Dystrophia Myotonica type 1) has been identified as an autosomal dominant disorder associated with the presence of an abnormal expansion of a CTG trinucleotide repeat in the 3' untranslated region of DMPK gene on chromosome 19. This review will mainly focus on the various aspects of cardiac involvement in DM1 patients and the current role of cardiac pacing in their treatment.

  13. EpCAM and the biology of hepatic stem/progenitor cells

    PubMed Central

    Theise, Neil D.; Schmelzer, Eva; Boulter, Luke; Gires, Olivier; van Grunsven, Leo A.

    2014-01-01

    Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein, which is frequently and highly expressed on carcinomas, tumor-initiating cells, selected tissue progenitors, and embryonic and adult stem cells. During liver development, EpCAM demonstrates a dynamic expression, since it can be detected in fetal liver, including cells of the parenchyma, whereas mature hepatocytes are devoid of EpCAM. Liver regeneration is associated with a population of EpCAM-positive cells within ductular reactions, which gradually lose the expression of EpCAM along with maturation into hepatocytes. EpCAM can be switched on and off through a wide panel of strategies to fine-tune EpCAM-dependent functional and differentiative traits. EpCAM-associated functions relate to cell–cell adhesion, proliferation, maintenance of a pluripotent state, regulation of differentiation, migration, and invasion. These functions can be conferred by the full-length protein and/or EpCAM-derived fragments, which are generated upon regulated intramembrane proteolysis. Control by EpCAM therefore not only depends on the presence of full-length EpCAM at cellular membranes but also on varying rates of the formation of EpCAM-derived fragments that have their own regulatory properties and on changes in the association of EpCAM with interaction partners. Thus spatiotemporal localization of EpCAM in immature liver progenitors, transit-amplifying cells, and mature liver cells will decisively impact the regulation of EpCAM functions and might be one of the triggers that contributes to the adaptive processes in stem/progenitor cell lineages. This review will summarize EpCAM-related molecular events and how they relate to hepatobiliary differentiation and regeneration. PMID:25477371

  14. Identifying the progenitors of present-day early-type galaxies in observational surveys: correcting `progenitor bias' using the Horizon-AGN simulation

    NASA Astrophysics Data System (ADS)

    Martin, G.; Kaviraj, S.; Devriendt, J. E. G.; Dubois, Y.; Pichon, C.; Laigle, C.

    2018-03-01

    As endpoints of the hierarchical mass-assembly process, the stellar populations of local early-type galaxies encode the assembly history of galaxies over cosmic time. We use Horizon-AGN, a cosmological hydrodynamical simulation, to study the merger histories of local early-type galaxies and track how the morphological mix of their progenitors evolves over time. We provide a framework for alleviating `progenitor bias' - the bias that occurs if one uses only early-type galaxies to study the progenitor population. Early types attain their final morphology at relatively early epochs - by z ˜ 1, around 60 per cent of today's early types have had their last significant merger. At all redshifts, the majority of mergers have one late-type progenitor, with late-late mergers dominating at z > 1.5 and early-early mergers becoming significant only at z < 0.5. Progenitor bias is severe at all but the lowest redshifts - e.g. at z ˜ 0.6, less than 50 per cent of the stellar mass in today's early types is actually in progenitors with early-type morphology, while, at z ˜ 2, studying only early types misses almost all (80 per cent) of the stellar mass that eventually ends up in local early-type systems. At high redshift, almost all massive late-type galaxies, regardless of their local environment or star formation rate, are progenitors of local early-type galaxies, as are lower mass (M⋆ < 1010.5 M_{⊙}) late-types as long as they reside in high-density environments. In this new era of large observational surveys (e.g. LSST, JWST), this study provides a framework for studying how today's early-type galaxies have been built up over cosmic time.

  15. Pulmonary vascular volume ratio measured by cardiac computed tomography in children and young adults with congenital heart disease: comparison with lung perfusion scintigraphy.

    PubMed

    Goo, Hyun Woo; Park, Sang Hyub

    2017-11-01

    Lung perfusion scintigraphy is regarded as the gold standard for evaluating differential lung perfusion ratio in congenital heart disease. To compare cardiac CT with lung perfusion scintigraphy for estimated pulmonary vascular volume ratio in patients with congenital heart disease. We included 52 children and young adults (median age 4 years, range 2 months to 28 years; 31 males) with congenital heart disease who underwent cardiac CT and lung perfusion scintigraphy without an interim surgical or transcatheter intervention and within 1 year. We calculated the right and left pulmonary vascular volumes using threshold-based CT volumetry. Then we compared right pulmonary vascular volume percentages at cardiac CT with right lung perfusion percentages at lung perfusion scintigraphy by using paired t-test and Bland-Altman analysis. The right pulmonary vascular volume percentages at cardiac CT (66.3 ± 14.0%) were significantly smaller than the right lung perfusion percentages at lung perfusion scintigraphy (69.1 ± 15.0%; P=0.001). Bland-Altman analysis showed a mean difference of -2.8 ± 5.8% and 95% limits of agreement (-14.1%, 8.5%) between these two variables. Cardiac CT, in a single examination, can offer pulmonary vascular volume ratio in addition to pulmonary artery anatomy essential for evaluating peripheral pulmonary artery stenosis in patients with congenital heart disease. However there is a wide range of agreement between cardiac CT and lung perfusion scintigraphy.

  16. Dedifferentiation of Human Primary Thyrocytes into Multilineage Progenitor Cells without Gene Introduction

    PubMed Central

    Saenko, Vladimir; Suzuki, Masatoshi; Matsuse, Michiko; Ohtsuru, Akira; Kumagai, Atsushi; Uga, Tatsuya; Yano, Hiroshi; Nagayama, Yuji; Yamashita, Shunichi

    2011-01-01

    While identification and isolation of adult stem cells have potentially important implications, recent reports regarding dedifferentiation/reprogramming from differentiated cells have provided another clue to gain insight into source of tissue stem/progenitor cells. In this study, we developed a novel culture system to obtain dedifferentiated progenitor cells from normal human thyroid tissues. After enzymatic digestion, primary thyrocytes, expressing thyroglobulin, vimentin and cytokeratin-18, were cultured in a serum-free medium called SAGM. Although the vast majority of cells died, a small proportion (∼0.5%) survived and proliferated. During initial cell expansion, thyroglobulin/cytokeratin-18 expression was gradually declined in the proliferating cells. Moreover, sorted cells expressing thyroid peroxidase gave rise to proliferating clones in SAGM. These data suggest that those cells are derived from thyroid follicular cells or at least thyroid-committed cells. The SAGM-grown cells did not express any thyroid-specific genes. However, after four-week incubation with FBS and TSH, cytokeratin-18, thyroglobulin, TSH receptor, PAX8 and TTF1 expressions re-emerged. Moreover, surprisingly, the cells were capable of differentiating into neuronal or adipogenic lineage depending on differentiating conditions. In summary, we have developed a novel system to generate multilineage progenitor cells from normal human thyroid tissues. This seems to be achieved by dedifferentiation of thyroid follicular cells. The presently described culture system may be useful for regenerative medicine, but the primary importance will be as a tool to elucidate the mechanisms of thyroid diseases. PMID:21556376

  17. Reduced Erg Dosage Impairs Survival of Hematopoietic Stem and Progenitor Cells.

    PubMed

    Xie, Ying; Koch, Mia Lee; Zhang, Xin; Hamblen, Melanie J; Godinho, Frank J; Fujiwara, Yuko; Xie, Huafeng; Klusmann, Jan-Henning; Orkin, Stuart H; Li, Zhe

    2017-07-01

    ERG, an ETS family transcription factor frequently overexpressed in human leukemia, has been implicated as a key regulator of hematopoietic stem cells. However, how ERG controls normal hematopoiesis, particularly at the stem and progenitor cell level, and how it contributes to leukemogenesis remain incompletely understood. Using homologous recombination, we generated an Erg knockdown allele (Erg kd ) in which Erg expression can be conditionally restored by Cre recombinase. Erg kd/kd animals die at E10.5-E11.5 due to defects in endothelial and hematopoietic cells, but can be completely rescued by Tie2-Cre-mediated restoration of Erg in these cells. In Erg kd/+ mice, ∼40% reduction in Erg dosage perturbs both fetal liver and bone marrow hematopoiesis by reducing the numbers of Lin - Sca-1 + c-Kit + (LSK) hematopoietic stem and progenitor cells (HSPCs) and megakaryocytic progenitors. By genetic mosaic analysis, we find that Erg-restored HSPCs outcompete Erg kd/+ HSPCs for contribution to adult hematopoiesis in vivo. This defect is in part due to increased apoptosis of HSPCs with reduced Erg dosage, a phenotype that becomes more drastic during 5-FU-induced stress hematopoiesis. Expression analysis reveals that reduced Erg expression leads to changes in expression of a subset of ERG target genes involved in regulating survival of HSPCs, including increased expression of a pro-apoptotic regulator Bcl2l11 (Bim) and reduced expression of Jun. Collectively, our data demonstrate that ERG controls survival of HSPCs, a property that may be used by leukemic cells. Stem Cells 2017;35:1773-1785. © 2017 AlphaMed Press.

  18. Stress, glucocorticoid hormones, and hippocampal neural progenitor cells: implications to mood disorders.

    PubMed

    Kino, Tomoshige

    2015-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis and its end-effectors glucocorticoid hormones play central roles in the adaptive response to numerous stressors that can be either internal or external. Thus, this system has a strong impact on the brain hippocampus and its major functions, such as cognition, memory as well as behavior, and mood. The hippocampal area of the adult brain contains neural stem cells or more committed neural progenitor cells, which retain throughout the human life the ability of self-renewal and to differentiate into multiple neural cell lineages, such as neurons, astrocytes, and oligodendrocytes. Importantly, these characteristic cells contribute significantly to the above-indicated functions of the hippocampus, while various stressors and glucocorticoids influence proliferation, differentiation, and fate of these cells. This review offers an overview of the current understanding on the interactions between the HPA axis/glucocorticoid stress-responsive system and hippocampal neural progenitor cells by focusing on the actions of glucocorticoids. Also addressed is a further discussion on the implications of such interactions to the pathophysiology of mood disorders.

  19. Transplantation of Epigenetically Modified Adult Cardiac c-Kit+ Cells Retards Remodeling and Improves Cardiac Function in Ischemic Heart Failure Model

    PubMed Central

    Zakharova, Liudmila; Nural-Guvener, Hikmet; Feehery, Lorraine; Popovic-Sljukic, Snjezana

    2015-01-01

    Cardiac c-Kit+ cells have a modest cardiogenic potential that could limit their efficacy in heart disease treatment. The present study was designed to augment the cardiogenic potential of cardiac c-Kit+ cells through class I histone deacetylase (HDAC) inhibition and evaluate their therapeutic potency in the chronic heart failure (CHF) animal model. Myocardial infarction (MI) was created by coronary artery occlusion in rats. c-Kit+ cells were treated with mocetinostat (MOCE), a specific class I HDAC inhibitor. At 3 weeks after MI, CHF animals were retrogradely infused with untreated (control) or MOCE-treated c-Kit+ cells (MOCE/c-Kit+ cells) and evaluated at 3 weeks after cell infusion. We found that class I HDAC inhibition in c-Kit+ cells elevated the level of acetylated histone H3 (AcH3) and increased AcH3 levels in the promoter regions of pluripotent and cardiac-specific genes. Epigenetic changes were accompanied by increased expression of cardiac-specific markers. Transplantation of CHF rats with either control or MOCE/c-Kit+ cells resulted in an improvement in cardiac function, retardation of CHF remodeling made evident by increased vascularization and scar size, and cardiomyocyte hypertrophy reduction. Compared with CHF infused with control cells, infusion of MOCE/c-Kit+ cells resulted in a further reduction in left ventricle end-diastolic pressure and total collagen and an increase in interleukin-6 expression. The low engraftment of infused cells suggests that paracrine effects might account for the beneficial effects of c-Kit+ cells in CHF. In conclusion, selective inhibition of class I HDACs induced expression of cardiac markers in c-Kit+ cells and partially augmented the efficacy of these cells for CHF repair. Significance The study has shown that selective class 1 histone deacetylase inhibition is sufficient to redirect c-Kit+ cells toward a cardiac fate. Epigenetically modified c-Kit+ cells improved contractile function and retarded remodeling of the

  20. [Cardiac sarcoidosis: Diagnosis and therapeutic challenges].

    PubMed

    Cohen Aubart, F; Nunes, H; Mathian, A; Haroche, J; Hié, M; Le-Thi Huong Boutin, D; Cluzel, P; Soussan, M; Waintraub, X; Fouret, P; Valeyre, D; Amoura, Z

    2017-01-01

    Sarcoidosis is a granulomatous disorder of unknown cause characterized by non-caseating granuloma in young adults. Cardiac involvement is rare and range from 2 to 75% depending on diagnostic criteria. Cardiac involvement in sarcoidosis may be asymptomatic or may manifest as rhythm/conduction troubles or congestive heart failure. The diagnosis and treatment of cardiac sarcoidosis may be challenging. However, advances have come in recent years from the use of cardiac MRI and 18 FDG-TEP scanner, as well as from the stratification of the risk of ventricular tachycardia/fibrillation. Due to the rarity of the disease, there is no reliable prospective large study to guide therapeutic strategy for cardiac sarcoidosis. Corticosteroids are probably efficacious, in particular in case of atrio-ventricular block or moderate heart failure. Immunosuppressive drugs have not been largely studied but methotrexate could be helpful. In refractory forms, TNF-α antagonists have been used with success. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  1. Inducible and Conditional Deletion of Extracellular Signal-regulated Kinase 5 Disrupts Adult Hippocampal Neurogenesis*

    PubMed Central

    Pan, Yung-Wei; Zou, Junhui; Wang, Wenbin; Sakagami, Hiroyuki; Garelick, Michael G.; Abel, Glen; Kuo, Chay T.; Storm, Daniel R.; Xia, Zhengui

    2012-01-01

    Recent studies have led to the exciting idea that adult-born neurons in the dentate gyrus of the hippocampus may play a role in hippocampus-dependent memory formation. However, signaling mechanisms that regulate adult hippocampal neurogenesis are not well defined. Here we report that extracellular signal-regulated kinase 5 (ERK5), a member of the mitogen-activated protein kinase family, is selectively expressed in the neurogenic regions of the adult mouse brain. We present evidence that shRNA suppression of ERK5 in adult hippocampal neural stem/progenitor cells (aNPCs) reduces the number of neurons while increasing the number of cells expressing markers for stem/progenitor cells or proliferation. Furthermore, shERK5 attenuates both transcription and neuronal differentiation mediated by Neurogenin 2, a transcription factor expressed in adult hippocampal neural progenitor cells. By contrast, ectopic activation of endogenous ERK5 signaling via expression of constitutive active MEK5, an upstream activating kinase for ERK5, promotes neurogenesis in cultured aNPCs and in the dentate gyrus of the mouse brain. Moreover, neurotrophins including NT3 activate ERK5 and stimulate neuronal differentiation in aNPCs in an ERK5-dependent manner. Finally, inducible and conditional deletion of ERK5 specifically in the neurogenic regions of the adult mouse brain delays the normal progression of neuronal differentiation and attenuates adult neurogenesis in vivo. These data suggest ERK5 signaling as a critical regulator of adult hippocampal neurogenesis. PMID:22645146

  2. S6K links cell fate, cell cycle and nutrient response in C. elegans germline stem/progenitor cells

    PubMed Central

    Korta, Dorota Z.; Tuck, Simon; Hubbard, E. Jane Albert

    2012-01-01

    Coupling of stem/progenitor cell proliferation and differentiation to organismal physiological demands ensures the proper growth and homeostasis of tissues. However, in vivo mechanisms underlying this control are poorly characterized. We investigated the role of ribosomal protein S6 kinase (S6K) at the intersection of nutrition and the establishment of a stem/progenitor cell population using the C. elegans germ line as a model. We find that rsks-1 (which encodes the worm homolog of mammalian p70S6K) is required germline-autonomously for proper establishment of the germline progenitor pool. In the germ line, rsks-1 promotes cell cycle progression and inhibits larval progenitor differentiation, promotes growth of adult tumors and requires a conserved TOR phosphorylation site. Loss of rsks-1 and ife-1 (eIF4E) together reduces the germline progenitor pool more severely than either single mutant and similarly to reducing the activity of let-363 (TOR) or daf-15 (RAPTOR). Moreover, rsks-1 acts in parallel with the glp-1 (Notch) and daf-2 (insulin-IGF receptor) pathways, and does not share the same genetic dependencies with its role in lifespan control. We show that overall dietary restriction and amino acid deprivation cause germline defects similar to a subset of rsks-1 mutant phenotypes. Consistent with a link between diet and germline proliferation via rsks-1, loss of rsks-1 renders the germ line largely insensitive to the effects of dietary restriction. Our studies establish the C. elegans germ line as an in vivo model to understand TOR-S6K signaling in proliferation and differentiation and suggest that this pathway is a key nutrient-responsive regulator of germline progenitors. PMID:22278922

  3. Adult Bone Marrow Mesenchymal Stem Cells Primed for fhe Repair of Damaged Cardiac Tissue After Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Marks, Edward D.

    The burden of cardiovascular disease around the world is growing, despite improvements in hospital care and time to treatment. As more people survive an initial myocardial infarction (MI), the decompensated heart tissue is strained, leading to heart failure (HF) and an increased risk for a second MI. While extensive progress has been made in treating the symptoms after MI, including HF and angina, little success has come from repairing the damaged heart tissue to alleviate the progression to these end- stage symptoms. One promising area of regenerative research has been the use of adult stem cells, particularly from the bone marrow (BMSCs). These cells can differentiate towards the cardiac cell lineage in vitro while producing trophic factors that can repair damaged tissue. When placed in the heart after MI though, BMSCs have mixed results, producing profound changes in some patients but zero or even negative effects in others. In this report, we used BMSCs as a stem cell base for a regenerative medicine system for the repair of damaged cardiac tissue. These cells are seeded on a polycaprolactone nanoscaffolding support system, which provides a growth substrate for in vitro work, as well as a housing system for protected in vivo delivery. When the nanoscaffold is pre-coated with a novel combination of a cardiac protein, thymosin beta4 (Tbeta4), and a small molecule effector of the WNT protein pathway, IWP-2, BMSCs differentiated towards the cardiac lineage in as little as 24hours. When injected into rat hearts that have been given an ischemic MI, the nanoscaffolding system slowly dissolves, leaving the cells in place of the damaged cardiac tissue. After two weeks of monitoring, BMSCs are present within the damaged hearts, as evidenced by immunofluorescence and nanoparticle tracking. Injections of the nanoscaffolding/cell system led to robust healing of the rat hearts that had been given small- and medium- damage heart attacks, outperforming PBS sham and cell

  4. Micromanaging cardiac regeneration: Targeted delivery of microRNAs for cardiac repair and regeneration

    PubMed Central

    Kamps, Jan AAM; Krenning, Guido

    2016-01-01

    The loss of cardiomyocytes during injury and disease can result in heart failure and sudden death, while the adult heart has a limited capacity for endogenous regeneration and repair. Current stem cell-based regenerative medicine approaches modestly improve cardiomyocyte survival, but offer neglectable cardiomyogenesis. This has prompted the need for methodological developments that crease de novo cardiomyocytes. Current insights in cardiac development on the processes and regulatory mechanisms in embryonic cardiomyocyte differentiation provide a basis to therapeutically induce these pathways to generate new cardiomyocytes. Here, we discuss the current knowledge on embryonic cardiomyocyte differentiation and the implementation of this knowledge in state-of-the-art protocols to the direct reprogramming of cardiac fibroblasts into de novo cardiomyocytes in vitro and in vivo with an emphasis on microRNA-mediated reprogramming. Additionally, we discuss current advances on state-of-the-art targeted drug delivery systems that can be employed to deliver these microRNAs to the damaged cardiac tissue. Together, the advances in our understanding of cardiac development, recent advances in microRNA-based therapeutics, and innovative drug delivery systems, highlight exciting opportunities for effective therapies for myocardial infarction and heart failure. PMID:26981212

  5. Suppression of IL-7-dependent Effector T-cell Expansion by Multipotent Adult Progenitor Cells and PGE2

    PubMed Central

    Reading, James L; Vaes, Bart; Hull, Caroline; Sabbah, Shereen; Hayday, Thomas; Wang, Nancy S; DiPiero, Anthony; Lehman, Nicholas A; Taggart, Jen M; Carty, Fiona; English, Karen; Pinxteren, Jef; Deans, Robert; Ting, Anthony E; Tree, Timothy I M

    2015-01-01

    T-cell depletion therapy is used to prevent acute allograft rejection, treat autoimmunity and create space for bone marrow or hematopoietic cell transplantation. The evolved response to T-cell loss is a transient increase in IL-7 that drives compensatory homeostatic proliferation (HP) of mature T cells. Paradoxically, the exaggerated form of this process that occurs following lymphodepletion expands effector T-cells, often causing loss of immunological tolerance that results in rapid graft rejection, autoimmunity, and exacerbated graft-versus-host disease (GVHD). While standard immune suppression is unable to treat these pathologies, growing evidence suggests that manipulating the incipient process of HP increases allograft survival, prevents autoimmunity, and markedly reduces GVHD. Multipotent adult progenitor cells (MAPC) are a clinical grade immunomodulatory cell therapy known to alter γ-chain cytokine responses in T-cells. Herein, we demonstrate that MAPC regulate HP of human T-cells, prevent the expansion of Th1, Th17, and Th22 effectors, and block the development of pathogenic allograft responses. This occurs via IL-1β-primed secretion of PGE2 and activates T-cell intrinsic regulatory mechanisms (SOCS2, GADD45A). These data provide proof-of-principle that HP of human T-cells can be targeted by cellular and molecular therapies and lays a basis for the development of novel strategies to prevent immunopathology in lymphodepleted patients. PMID:26216515

  6. A-kinase anchoring proteins that regulate cardiac remodeling.

    PubMed

    Carnegie, Graeme K; Burmeister, Brian T

    2011-11-01

    In response to injury or stress, the adult heart undergoes maladaptive changes, collectively defined as pathological cardiac remodeling. Here, we focus on the role of A-kinase anchoring proteins (AKAPs) in 3 main areas associated with cardiac remodeling and the progression of heart failure: excitation-contraction coupling, sarcomeric regulation, and induction of pathological hypertrophy. AKAPs are a diverse family of scaffold proteins that form multiprotein complexes, integrating cAMP signaling with protein kinases, phosphatases, and other effector proteins. Many AKAPs have been characterized in the heart, where they play a critical role in modulating cardiac function.

  7. A-Kinase Anchoring Proteins That Regulate Cardiac Remodeling

    PubMed Central

    Carnegie, Graeme K.; Burmeister, Brian T.

    2012-01-01

    In response to injury or stress, the adult heart undergoes maladaptive changes, collectively defined as pathological cardiac remodeling. Here, we focus on the role of A-kinase anchoring proteins (AKAPs) in 3 main areas associated with cardiac remodeling and the progression of heart failure: excitation–contraction coupling, sarcomeric regulation, and induction of pathological hypertrophy. AKAPs are a diverse family of scaffold proteins that form multi-protein complexes, integrating cAMP signaling with protein kinases, phosphatases, and other effector proteins. Many AKAPs have been characterized in the heart, where they play a critical role in modulating cardiac function. PMID:22075671

  8. Regular physical exercise improves cardiac autonomic and muscle vasodilatory responses to isometric exercise in healthy elderly.

    PubMed

    Sarmento, Adriana de Oliveira; Santos, Amilton da Cruz; Trombetta, Ivani Credidio; Dantas, Marciano Moacir; Oliveira Marques, Ana Cristina; do Nascimento, Leone Severino; Barbosa, Bruno Teixeira; Dos Santos, Marcelo Rodrigues; Andrade, Maria do Amparo; Jaguaribe-Lima, Anna Myrna; Brasileiro-Santos, Maria do Socorro

    2017-01-01

    The objective of this study was to evaluate cardiac autonomic control and muscle vasodilation response during isometric exercise in sedentary and physically active older adults. Twenty healthy participants, 10 sedentary and 10 physically active older adults, were evaluated and paired by gender, age, and body mass index. Sympathetic and parasympathetic cardiac activity (spectral and symbolic heart rate analysis) and muscle blood flow (venous occlusion plethysmography) were measured for 10 minutes at rest (baseline) and during 3 minutes of isometric handgrip exercise at 30% of the maximum voluntary contraction (sympathetic excitatory maneuver). Variables were analyzed at baseline and during 3 minutes of isometric exercise. Cardiac autonomic parameters were analyzed by Wilcoxon and Mann-Whitney tests. Muscle vasodilatory response was analyzed by repeated-measures analysis of variance followed by Tukey's post hoc test. Sedentary older adults had higher cardiac sympathetic activity compared to physically active older adult subjects at baseline (63.13±3.31 vs 50.45±3.55 nu, P =0.02). The variance (heart rate variability index) was increased in active older adults (1,438.64±448.90 vs 1,402.92±385.14 ms, P =0.02), and cardiac sympathetic activity (symbolic analysis) was increased in sedentary older adults (5,660.91±1,626.72 vs 4,381.35±1,852.87, P =0.03) during isometric handgrip exercise. Sedentary older adults showed higher cardiac sympathetic activity (spectral analysis) (71.29±4.40 vs 58.30±3.50 nu, P =0.03) and lower parasympathetic modulation (28.79±4.37 vs 41.77±3.47 nu, P =0.03) compared to physically active older adult subjects during isometric handgrip exercise. Regarding muscle vasodilation response, there was an increase in the skeletal muscle blood flow in the second (4.1±0.5 vs 3.7±0.4 mL/min per 100 mL, P =0.01) and third minute (4.4±0.4 vs 3.9±0.3 mL/min per 100 mL, P =0.03) of handgrip exercise in active older adults. The results indicate

  9. Regular physical exercise improves cardiac autonomic and muscle vasodilatory responses to isometric exercise in healthy elderly

    PubMed Central

    Sarmento, Adriana de Oliveira; Santos, Amilton da Cruz; Trombetta, Ivani Credidio; Dantas, Marciano Moacir; Oliveira Marques, Ana Cristina; do Nascimento, Leone Severino; Barbosa, Bruno Teixeira; Dos Santos, Marcelo Rodrigues; Andrade, Maria do Amparo; Jaguaribe-Lima, Anna Myrna; Brasileiro-Santos, Maria do Socorro

    2017-01-01

    The objective of this study was to evaluate cardiac autonomic control and muscle vasodilation response during isometric exercise in sedentary and physically active older adults. Twenty healthy participants, 10 sedentary and 10 physically active older adults, were evaluated and paired by gender, age, and body mass index. Sympathetic and parasympathetic cardiac activity (spectral and symbolic heart rate analysis) and muscle blood flow (venous occlusion plethysmography) were measured for 10 minutes at rest (baseline) and during 3 minutes of isometric handgrip exercise at 30% of the maximum voluntary contraction (sympathetic excitatory maneuver). Variables were analyzed at baseline and during 3 minutes of isometric exercise. Cardiac autonomic parameters were analyzed by Wilcoxon and Mann–Whitney tests. Muscle vasodilatory response was analyzed by repeated-measures analysis of variance followed by Tukey’s post hoc test. Sedentary older adults had higher cardiac sympathetic activity compared to physically active older adult subjects at baseline (63.13±3.31 vs 50.45±3.55 nu, P=0.02). The variance (heart rate variability index) was increased in active older adults (1,438.64±448.90 vs 1,402.92±385.14 ms, P=0.02), and cardiac sympathetic activity (symbolic analysis) was increased in sedentary older adults (5,660.91±1,626.72 vs 4,381.35±1,852.87, P=0.03) during isometric handgrip exercise. Sedentary older adults showed higher cardiac sympathetic activity (spectral analysis) (71.29±4.40 vs 58.30±3.50 nu, P=0.03) and lower parasympathetic modulation (28.79±4.37 vs 41.77±3.47 nu, P=0.03) compared to physically active older adult subjects during isometric handgrip exercise. Regarding muscle vasodilation response, there was an increase in the skeletal muscle blood flow in the second (4.1±0.5 vs 3.7±0.4 mL/min per 100 mL, P=0.01) and third minute (4.4±0.4 vs 3.9±0.3 mL/min per 100 mL, P=0.03) of handgrip exercise in active older adults. The results indicate that

  10. Apoptosis and proliferation of oligodendrocyte progenitor cells in the irradiated rodent spinal cord

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkinson, Shelley L.; Li Yuqing; Wong, C. Shun

    2005-06-01

    Purpose: Oligodendrocytes undergo early apoptosis after irradiation. The aim of this study was to determine the relationship between oligodendroglial apoptosis and proliferation of oligodendrocyte progenitor cells (OPC) in the irradiated central nervous system. Methods and Materials: Adult rats and p53 transgenic mice were given single doses of 2 Gy, 8 Gy, or 22 Gy to the cervical spinal cord. Apoptosis was assessed using TUNEL (Tdt-mediated dUTP terminal nick-end labeling) staining or by examining nuclear morphology. Oligodendrocyte progenitor cells were identified with an NG2 antibody or by in situ hybridization for platelet-derived growth factor receptor {alpha}. Proliferation of OPC was assessedmore » by in vivo bromodeoxyuridine (BrdU) labeling and subsequent immunohistochemistry. Because radiation-induced apoptosis of oligodendroglial cells is p53 dependent, p53 transgenic mice were used to study the relationship between apoptosis and cell proliferation. Results: Oligodendrocyte progenitor cells underwent apoptosis within 24 h of irradiation in the rat. That did not result in a change in OPC density at 24 h. Oligodendrocyte progenitor cell density was significantly reduced by 2-4 weeks, but showed recovery by 6 weeks after irradiation. An increase in BrdU-labeled cells was observed at 2 weeks after 8 Gy or 22 Gy, and proliferating cells in the rat spinal cord were immunoreactive for NG2. The mouse spinal cord showed a similar early cell proliferation after irradiation. No difference was observed in the proliferation response in the spinal cord of p53 -/- mice compared with wild type animals. Conclusions: Oligodendroglial cells undergo early apoptosis and OPC undergo early proliferation after ionizing radiation. However, apoptosis is not likely to be the trigger for early proliferation of OPC in the irradiated central nervous system.« less

  11. Vascular pattern of the dentate gyrus is regulated by neural progenitors.

    PubMed

    Pombero, Ana; Garcia-Lopez, Raquel; Estirado, Alicia; Martinez, Salvador

    2018-05-01

    Neurogenesis is a vital process that begins during early embryonic development and continues until adulthood, though in the latter case, it is restricted to the subventricular zone and the subgranular zone of the dentate gyrus (DG). In particular, the DG's neurogenic properties are structurally and functionally unique, which may be related to its singular vascular pattern. Neurogenesis and angiogenesis share molecular signals and act synergistically, supporting the concept of a neurogenic niche as a functional unit between neural precursors cells and their environment, in which the blood vessels play an important role. Whereas it is well known that vascular development controls neural proliferation in the embryonary and in the adult brain, by releasing neurotrophic factors; the potential influence of neural cells on vascular components during angiogenesis is largely unknown. We have demonstrated that the reduction of neural progenitors leads to a significant impairment of vascular development. Since VEGF is a potential regulator in the neurogenesis-angiogenesis crosstalk, we were interested in assessing the possible role of this molecule in the hippocampal neurovascular development. Our results showed that VEGF is the molecule involved in the regulation of vascular development by neural progenitor cells in the DG.

  12. c-Myb is required for progenitor cell homeostasis in colonic crypts

    PubMed Central

    Malaterre, Jordane; Carpinelli, Marina; Ernst, Matthias; Alexander, Warren; Cooke, Michael; Sutton, Susan; Dworkin, Sebastian; Heath, Joan K.; Frampton, Jon; McArthur, Grant; Clevers, Hans; Hilton, Douglas; Mantamadiotis, Theo; Ramsay, Robert G.

    2007-01-01

    The colonic crypt is the functional unit of the colon mucosa with a central role in ion and water reabsorption. Under steady-state conditions, the distal colonic crypt harbors a single stem cell at its base that gives rise to highly proliferative progenitor cells that differentiate into columnar, goblet, and endocrine cells. The role of c-Myb in crypt homeostasis has not been elucidated. Here we have studied three genetically distinct hypomorphic c-myb mutant mouse strains, all of which show reduced colonic crypt size. The mutations target the key domains of the transcription factor: the DNA binding, transactivation, and negative regulatory domains. In vivo proliferation and cell cycle marker studies suggest that these mice have a progenitor cell proliferation defect mediated in part by reduced Cyclin E1 expression. To independently assess the extent to which c-myb is required for colonic crypt homeostasis we also generated a novel tissue-specific mouse model to allow the deletion of c-myb in adult colon, and using these mice we show that c-Myb is required for crypt integrity, normal differentiation, and steady-state proliferation. PMID:17360438

  13. β-Cell regeneration through the transdifferentiation of pancreatic cells: Pancreatic progenitor cells in the pancreas.

    PubMed

    Kim, Hyo-Sup; Lee, Moon-Kyu

    2016-05-01

    Pancreatic progenitor cell research has been in the spotlight, as these cells have the potential to replace pancreatic β-cells for the treatment of type 1 and 2 diabetic patients with the absence or reduction of pancreatic β-cells. During the past few decades, the successful treatment of diabetes through transplantation of the whole pancreas or isolated islets has nearly been achieved. However, novel sources of pancreatic islets or insulin-producing cells are required to provide sufficient amounts of donor tissues. To overcome this limitation, the use of pancreatic progenitor cells is gaining more attention. In particular, pancreatic exocrine cells, such as duct epithelial cells and acinar cells, are attractive candidates for β-cell regeneration because of their differentiation potential and pancreatic lineage characteristics. It has been assumed that β-cell neogenesis from pancreatic progenitor cells could occur in pancreatic ducts in the postnatal stage. Several studies have shown that insulin-producing cells can arise in the duct tissue of the adult pancreas. Acinar cells also might have the potential to differentiate into insulin-producing cells. The present review summarizes recent progress in research on the transdifferentiation of pancreatic exocrine cells into insulin-producing cells, especially duct and acinar cells.

  14. Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development.

    PubMed

    Mitchell, Kathryn J; Pannérec, Alice; Cadot, Bruno; Parlakian, Ara; Besson, Vanessa; Gomes, Edgar R; Marazzi, Giovanna; Sassoon, David A

    2010-03-01

    Satellite cells are resident myogenic progenitors in postnatal skeletal muscle involved in muscle postnatal growth and adult regenerative capacity. Here, we identify and describe a population of muscle-resident stem cells, which are located in the interstitium, that express the cell stress mediator PW1 but do not express other markers of muscle stem cells such as Pax7. PW1(+)/Pax7(-) interstitial cells (PICs) are myogenic in vitro and efficiently contribute to skeletal muscle regeneration in vivo as well as generating satellite cells and PICs. Whereas Pax7 mutant satellite cells show robust myogenic potential, Pax7 mutant PICs are unable to participate in myogenesis and accumulate during postnatal growth. Furthermore, we found that PICs are not derived from a satellite cell lineage. Taken together, our findings uncover a new and anatomically identifiable population of muscle progenitors and define a key role for Pax7 in a non-satellite cell population during postnatal muscle growth.

  15. Constraining Core-collapse Supernova Theory Predictions with 400 Progenitor Masses

    NASA Astrophysics Data System (ADS)

    Murphy, Jeremiah

    2017-08-01

    A new era is emerging in which we will have hundreds of progenitor masses for supernovae (SNe) and supernova remnants (SNRs); we propose to develop the statistical and theoretical tools needed to interpret this data. Two of the fundamental predictions of stellar evolution theory are that stars more massive than about 8 solar masses will explode and that some of these stars will not explode and form black holes. These statements are clear and simple, yet constraining them with observations has remained elusive until recently. For many years, the rate of progenitor discovery was steady but slow; each progenitor discovery required rare serendipitous pre-cursor imaging. With this steady drip of direct imaging, the number of progenitor masses numbered no more than 20. Recently, we developed a technique that increased the number of progenitor masses by a factor of 10 or more. In this new technique, we use HST photometry to age-date the stellar populations surrounding SNRs. From this age, we derive a progenitor mass for each SNR. We currently have progenitor masses for 115 SNRs in M31 and M33, soon we will have 300 more from M83, and there are hundreds more SNRs that could be analyzed in other nearby galaxies. To prepare for this watershed, we propose to develop the Bayesian framework needed to properly infer the progenitor mass distribution. This work will culminate in a direct constraint on the predictions of core-collapse supernova theory.

  16. Paediatric cardiac intensive care unit: current setting and organization in 2010.

    PubMed

    Fraisse, Alain; Le Bel, Stéphane; Mas, Bertrand; Macrae, Duncan

    2010-10-01

    Over recent decades, specialized paediatric cardiac intensive care has emerged as a central component in the management of critically ill, neonatal, paediatric and adult patients with congenital and acquired heart disease. The majority of high-volume centres (dealing with over 300 surgical cases per year) have dedicated paediatric cardiac intensive care units, with the smallest programmes more likely to care for paediatric cardiac patients in mixed paediatric or adult intensive care units. Specialized nursing staff are also a crucial presence at the patient's bedside for quality of care. A paediatric cardiac intensive care programme should have patients (preoperative and postoperative) grouped together geographically, and should provide proximity to the operating theatre, catheterization laboratory and radiology department, as well as to the regular ward. Age-appropriate medical equipment must be provided. An optimal strategy for running a paediatric cardiac intensive care programme should include: multidisciplinary collaboration and involvement with paediatric cardiology, anaesthesia, cardiac surgery and many other subspecialties; a risk-stratification strategy for quantifying perioperative risk; a personalized patient approach; and anticipatory care. Finally, progressive withdrawal from heavy paediatric cardiac intensive care management should be institutionalized. Although the countries of the European Union do not share any common legislation on the structure and organization of paediatric intensive care or paediatric cardiac intensive care, any paediatric cardiac surgery programme in France that is agreed by the French Health Ministry must perform at least '150 major procedures per year in children' and must provide a 'specialized paediatric intensive care unit'. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  17. December 2014 HeartWeek issue of cardiology in the young: highlights of HeartWeek 2014: diseases of the cardiac valves from the foetus to the adult.

    PubMed

    Jacobs, Jeffrey P

    2014-12-01

    This December Issue of Cardiology in the Young represents the 12th annual publication generated from the two meetings that compose "HeartWeek in Florida". "HeartWeek in Florida", the joint collaborative project sponsored by the Cardiac Center at the Children's Hospital of Philadelphia, Pennsylvania, together with Johns Hopkins All Children's Heart Institute of Saint Petersburg, Florida, averages over 1000 attendees every year and is now recognised as one of the major planks of continuing medical and nursing education for those working in the fields of diagnosis and treatment of cardiac disease in the foetus, neonate, infant, child, and adult. "HeartWeek in Florida" combines the International Symposium on Congenital Heart Disease, organised by All Children's Hospital and Johns Hopkins Medicine and entering its 15th year, with the Annual Postgraduate Course in Pediatric Cardiovascular Disease, organised by The Children's Hospital of Philadelphia and entering its 18th year. This December, 2014 Issue of Cardiology in the Young features highlights of Johns Hopkins All Children's Heart Institute's 14th Annual International Symposium on Congenital Heart Disease, which was held at the Renaissance Vinoy Resort & Golf Club, Saint Petersburg, Florida, from 15-18 February, 2014. This Symposium was co-sponsored by The American Association for Thoracic Surgery (AATS) and had as its special focus " Diseases of the Cardiac Valves from the Fetus to the Adult ". We acknowledge the tremendous contributions made to paediatric and congenital cardiac care by Duke Cameron and Joel Brenner, and therefore we dedicate this December, 2014 HeartWeek Issue of Cardiology in the Young to them. Duke Cameron is Professor of Surgery at Johns Hopkins University and Cardiac Surgeon-in-Charge at The Johns Hopkins Hospital. Joel Brenner is Professor of Pediatrics at Johns Hopkins University and Director of the Taussig Heart Center at Bloomberg Children's Center, The Johns Hopkins Hospital. Together

  18. Widespread Non-Hematopoietic Tissue Distribution by Transplanted Human Progenitor Cells with High Aldehyde Dehydrogenase Activity

    PubMed Central

    Hess, David A.; Craft, Timothy P.; Wirthlin, Louisa; Hohm, Sarah; Zhou, Ping; Eades, William C.; Creer, Michael H.; Sands, Mark S.; Nolta, Jan A.

    2011-01-01

    Transplanted adult progenitor cells distribute to peripheral organs and can promote endogenous cellular repair in damaged tissues. However, development of cell-based regenerative therapies has been hindered by the lack of pre-clinical models to efficiently assess multiple organ distribution and difficulty defining human cells with regenerative function. After transplantation into beta-glucuronidase (GUSB)-deficient NOD/SCID/MPSVII mice, we characterized the distribution of lineage depleted human umbilical cord blood-derived cells purified by selection using high aldehyde dehydrogenase activity (ALDH) with CD133 co-expression. ALDHhi or ALDHhiCD133+ cells produced robust hematopoietic reconstitution, and variable levels of tissue distribution in multiple organs. GUSB+ donor cells that co-expressed human (HLA-A,B,C) and hematopoietic (CD45+) cell surface markers were the primary cell phenotype found adjacent to the vascular beds of several tissues, including islet and ductal regions of mouse pancreata. In contrast, variable phenotypes were detected in the chimeric liver, with HLA+/CD45+ cells demonstrating robust GUSB expression adjacent to blood vessels, and CD45−/HLA− cells with diluted GUSB expression predominant in the liver parenchyma. However, true non-hematopoietic human (HLA+/CD45−) cells were rarely detected in other peripheral tissues, suggesting that these GUSB+/HLA−/CD45− cells in the liver were a result of downregulated human surface marker expression in vivo, not widespread seeding of non-hematopoietic cells. However, relying solely on continued expression of cell surface markers, as employed in traditional xenotransplantation models, may underestimate true tissue distribution. ALDH-expressing progenitor cells demonstrated widespread and tissue-specific distribution of variable cellular phenotypes, indicating that these adult progenitor cells should be explored in transplantation models of tissue damage. PMID:18055447

  19. Premyogenic progenitors derived from human pluripotent stem cells expand in floating culture and differentiate into transplantable myogenic progenitors.

    PubMed

    Sakai-Takemura, Fusako; Narita, Asako; Masuda, Satoru; Wakamatsu, Toshifumi; Watanabe, Nobuharu; Nishiyama, Takashi; Nogami, Ken'ichiro; Blanc, Matthias; Takeda, Shin'ichi; Miyagoe-Suzuki, Yuko

    2018-04-26

    Human induced pluripotent stem cells (hiPSCs) are a potential source for cell therapy of Duchenne muscular dystrophy. To reliably obtain skeletal muscle progenitors from hiPSCs, we treated hiPS cells with a Wnt activator, CHIR-99021 and a BMP receptor inhibitor, LDN-193189, and then induced skeletal muscle cells using a previously reported sphere-based culture. This protocol greatly improved sphere formation efficiency and stably induced the differentiation of myogenic cells from hiPS cells generated from both healthy donors and a patient with congenital myasthenic syndrome. hiPSC-derived myogenic progenitors were enriched in the CD57(-) CD108(-) CD271(+) ERBB3(+) cell fraction, and their differentiation was greatly promoted by TGF-β inhibitors. TGF-β inhibitors down-regulated the NFIX transcription factor, and NFIX short hairpin RNA (shRNA) improved the differentiation of iPS cell-derived myogenic progenitors. These results suggest that NFIX inhibited differentiation of myogenic progenitors. hiPSC-derived myogenic cells differentiated into myofibers in muscles of NSG-mdx 4Cv mice after direct transplantation. Our results indicate that our new muscle induction protocol is useful for cell therapy of muscular dystrophies.

  20. Impact of Cardiac Progenitor Cells on Heart Failure and Survival in Single Ventricle Congenital Heart Disease.

    PubMed

    Sano, Toshikazu; Ousaka, Daiki; Goto, Takuya; Ishigami, Shuta; Hirai, Kenta; Kasahara, Shingo; Ohtsuki, Shinichi; Sano, Shunji; Oh, Hidemasa

    2018-03-30

    Intracoronary administration of cardiosphere-derived cells (CDCs) in patients with single ventricles resulted in a short-term improvement in cardiac function. To test the hypothesis that CDC infusion is associated with improved cardiac function and reduced mortality in patients with heart failure. We evaluated the effectiveness of CDCs using an integrated cohort study in 101 patients with single ventricles, including 41 patients who received CDC infusion and 60 controls treated with staged palliation alone. Heart failure with preserved ejection fraction (EF) or reduced EF was stratified by the cardiac function after surgical reconstruction. The main outcome measure was to evaluate the magnitude of improvement in cardiac function and all-cause mortality at 2 years. Animal studies were conducted to clarify the underlying mechanisms of heart failure with preserved EF and heart failure with reduced EF phenotypes. At 2 years, CDC infusion increased ventricular function (stage 2: +8.4±10.0% versus +1.6±6.4%, P =0.03; stage 3: +7.9±7.5% versus -1.1±5.5%, P <0.001) compared with controls. In all available follow-up data, survival did not differ between the 2 groups (log-rank P =0.225), whereas overall patients treated by CDCs had lower incidences of late failure ( P =0.022), adverse events ( P =0.013), and catheter intervention ( P =0.005) compared with controls. CDC infusion was associated with a lower risk of adverse events (hazard ratio, 0.411; 95% CI, 0.179-0.942; P =0.036). Notably, CDC infusion reduced mortality ( P =0.038) and late complications ( P <0.05) in patients with heart failure with reduced EF but not with heart failure with preserved EF. CDC-treated rats significantly reversed myocardial fibrosis with differential collagen deposition and inflammatory responses between the heart failure phenotypes. CDC administration in patients with single ventricles showed favorable effects on ventricular function and was associated with reduced late complications

  1. Brain size and limits to adult neurogenesis.

    PubMed

    Paredes, Mercedes F; Sorrells, Shawn F; Garcia-Verdugo, Jose M; Alvarez-Buylla, Arturo

    2016-02-15

    The walls of the cerebral ventricles in the developing embryo harbor the primary neural stem cells from which most neurons and glia derive. In many vertebrates, neurogenesis continues postnatally and into adulthood in this region. Adult neurogenesis at the ventricle has been most extensively studied in organisms with small brains, such as reptiles, birds, and rodents. In reptiles and birds, these progenitor cells give rise to young neurons that migrate into many regions of the forebrain. Neurogenesis in adult rodents is also relatively widespread along the lateral ventricles, but migration is largely restricted to the rostral migratory stream into the olfactory bulb. Recent work indicates that the wall of the lateral ventricle is highly regionalized, with progenitor cells giving rise to different types of neurons depending on their location. In species with larger brains, young neurons born in these spatially specified domains become dramatically separated from potential final destinations. Here we hypothesize that the increase in size and topographical complexity (e.g., intervening white matter tracts) in larger brains may severely limit the long-term contribution of new neurons born close to, or in, the ventricular wall. We compare the process of adult neuronal birth, migration, and integration across species with different brain sizes, and discuss how early regional specification of progenitor cells may interact with brain size and affect where and when new neurons are added. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  2. Nkx2-5 regulates cardiac growth through modulation of Wnt signaling by R-spondin3

    PubMed Central

    Cambier, Linda; Plate, Markus; Sucov, Henry M.; Pashmforoush, Mohammad

    2014-01-01

    A complex regulatory network of morphogens and transcription factors is essential for normal cardiac development. Nkx2-5 is among the earliest known markers of cardiac mesoderm that is central to the regulatory pathways mediating second heart field (SHF) development. Here, we have examined the specific requirements for Nkx2-5 in the SHF progenitors. We show that Nkx2-5 potentiates Wnt signaling by regulating the expression of the R-spondin3 (Rspo3) gene during cardiogenesis. R-spondins are secreted factors and potent Wnt agonists that in part regulate stem cell proliferation. Our data show that Rspo3 is markedly downregulated in Nkx2-5 mutants and that Rspo3 expression is regulated by Nkx2-5. Conditional inactivation of Rspo3 in the Isl1 lineage resulted in embryonic lethality secondary to impaired development of SHF. More importantly, we find that Wnt signaling is significantly attenuated in Nkx2-5 mutants and that enhancing Wnt/β-catenin signaling by pharmacological treatment or by transgenic expression of Rspo3 rescues the SHF defects in the conditional Nkx2-5+/− mutants. We have identified a previously unrecognized genetic link between Nkx2-5 and Wnt signaling that supports continued cardiac growth and proliferation during development. Identification of Rspo3 in cardiac development provides a new paradigm in temporal regulation of Wnt signaling by cardiac-specific transcription factors. PMID:25053429

  3. The cardiac regenerative potential of myoblasts remains limited despite improving their survival via antioxidant treatment.

    PubMed

    Beckman, Sarah A; Sekiya, Naosumi; Chen, William C W; Mlakar, Logan; Tobita, Kimimassa; Huard, Johnny

    2014-01-01

    Since myoblasts have been limited by poor cell survival after cellular myoplasty, the major goal of the current study was to determine whether improving myoblast survival with an antioxidant could improve cardiac function after the transplantation of the myoblasts into an acute myocardial infarction. We previously demonstrated that early myogenic progenitors such as muscle-derived stem cells (MDSCs) exhibited superior cell survival and improved cardiac repair after transplantation into infarcted hearts compared to myoblasts, which we partially attributed to MDSC's higher antioxidant levels. To determine if antioxidant treatment could increase myoblast survival, subsequently improving cardiac function after myoblast transplantation into infarcted hearts. Myoblasts were pre-treated with the antioxidant N-acetylcysteine (NAC) or the glutathione depleter, diethyl maleate (DEM), and injected into infarcted murine hearts. Regenerative potential was monitored by cell survival and cardiac function. At early time points, hearts injected with NAC-treated myoblasts exhibited increased donor cell survival, greater cell proliferation, and decreased cellular apoptosis, compared to untreated myoblasts. NAC-treated myoblasts significantly improved cardiac contractility, reduced fibrosis, and increased vascular density compared to DEM-treated myoblasts, but compared to untreated myoblasts, no difference was noted. While early survival of myoblasts transplanted into infarcted hearts was augmented by NAC pre-treatment, cardiac function remained unchanged compared to non-treated myoblasts. Despite improving cell survival with NAC treated myoblast transplantation in a MI heart, cardiac function remained similar to untreated myoblasts. These results suggest that the reduced cardiac regenerative potential of myoblasts, when compared to MDSCs, is not only attributable to cell survival but is probably also related to the secretion of paracrine factors by the MDSCs.

  4. Disruption of Canonical TGFβ-signaling in Murine Coronary Progenitor Cells by Low Level Arsenic

    PubMed Central

    Allison, Patrick; Huang, Tianfang; Broka, Derrick; Parker, Patti; Barnett, Joey V.; Camenisch, Todd D.

    2013-01-01

    Exposure to arsenic results in several types of cancers as well as heart disease. A major contributor to ischemic heart pathologies is coronary artery disease, however the influences by environmental arsenic in this disease process are not known. Similarly, the impact of toxicants on blood vessel formation and function during development has not been studied. During embryogenesis, the epicardium undergoes proliferation, migration, and differentiation into several cardiac cell types including smooth muscle cells which contribute to the coronary vessels. The TGFβ family of ligands and receptors are essential for developmental cardiac epithelial to mesenchymal transition (EMT) and differentiation into coronary smooth muscle cells. In this in vitrostudy, 18 hour exposure to 1.34 μMarsenite disrupted developmental EMT programming in murine epicardial cells causing a deficit in cardiac mesenchyme. The expression of EMT genes including TGFβ2, TGFβ receptor-3, Snail, and Has-2 are decreased in a dose-dependent manner following exposure to arsenite. TGFβ2 cell signaling is abrogated as detected by decreases in phosphorylated Smad2/3 when cells are exposed to 1.34 μMarsenite. There is also loss of nuclear accumulation pSmad due to arsenite exposure. These observations coincide with a decrease invimentinpositive mesenchymal cells invading three-dimensional collagen gels. However, arsenite does not block TGFβ2 mediated smooth muscle cell differentiation by epicardial cells. Overall these results show that arsenic exposure blocks developmental EMT gene programming in murine coronary progenitor cells by disrupting TGFβ2 signals and Smad activation, and that smooth muscle cell differentiation is refractory to this arsenic toxicity. PMID:23732083

  5. Tissue and Animal Models of Sudden Cardiac Death

    PubMed Central

    Sallam, Karim; Li, Yingxin; Sager, Philip T.; Houser, Steven R.; Wu, Joseph C.

    2015-01-01

    Sudden Cardiac Death (SCD) is a common cause of death in patients with structural heart disease, genetic mutations or acquired disorders affecting cardiac ion channels. A wide range of platforms exist to model and study disorders associated with SCD. Human clinical studies are cumbersome and are thwarted by the extent of investigation that can be performed on human subjects. Animal models are limited by their degree of homology to human cardiac electrophysiology including ion channel expression. Most commonly used cellular models are cellular transfection models, which are able to mimic the expression of a single ion channel offering incomplete insight into changes of the action potential profile. Induced pluripotent stem cell derived Cardiomyocytes (iPSC-CMs) resemble, but are not identical, to adult human cardiomyocytes, and provide a new platform for studying arrhythmic disorders leading to SCD. A variety of platforms exist to phenotype cellular models including conventional and automated patch clamp, multi-electrode array, and computational modeling. iPSC-CMs have been used to study Long QT syndrome, catecholaminergic polymorphic ventricular tachycardia, hypertrophic cardiomyopathy and other hereditary cardiac disorders. Although iPSC-CMs are distinct from adult cardiomyocytes, they provide a robust platform to advance the science and clinical care of SCD. PMID:26044252

  6. Muscle: a source of progenitor cells for bone fracture healing.

    PubMed

    Henrotin, Yves

    2011-12-22

    Bone repair failure is a major complication of open fracture, leading to non-union of broken bone extremities and movement at the fracture site. This results in a serious disability for patients. The role played by the periosteum and bone marrow progenitors in bone repair is now well documented. In contrast, limited information is available on the role played by myogenic progenitor cells in bone repair. In a recent article published in BMC Musculoskeletal Disorders, Liu et al. compared the presence of myogenic progenitor (MyoD lineage cells) in closed and open fractures. They showed that myogenic progenitors are present in open, but not closed fractures, suggesting that muscle satellite cells may colonize the fracture site in the absence of intact periosteum. Interestingly, these progenitors sequentially expressed a chondrogenic and, thereafter, an osteoblastic phenotype, suggestive of a functional role in the repair process. This finding opens up new perspectives for the research of orthopedic surgical methods, which could maximize myogenic progenitor access and mobilization to augment bone repair. Please see related article: http://www.biomedcentral.com/1471-2474/12/288.

  7. A model of survival following pre-hospital cardiac arrest based on the Victorian Ambulance Cardiac Arrest Register.

    PubMed

    Fridman, Masha; Barnes, Vanessa; Whyman, Andrew; Currell, Alex; Bernard, Stephen; Walker, Tony; Smith, Karen L

    2007-11-01

    This study describes the epidemiology of sudden cardiac arrest patients in Victoria, Australia, as captured via the Victorian Ambulance Cardiac Arrest Register (VACAR). We used the VACAR data to construct a new model of out-of-hospital cardiac arrest (OHCA), which was specified in accordance with observed trends. All cases of cardiac arrest in Victoria that were attended by Victorian ambulance services during the period of 2002-2005. Overall survival to hospital discharge was 3.8% among 18,827 cases of OHCA. Survival was 15.7% among 1726 bystander witnessed, adult cardiac arrests of presumed cardiac aetiology, presenting in ventricular fibrillation or ventricular tachycardia (VF/VT), where resuscitation was attempted. In multivariate logistic regression analysis, bystander CPR, cardiac arrest (CA) location, response time, age and sex were predictors of VF/VT, which, in turn, was a strong predictor of survival. The same factors that affected VF/VT made an additional contribution to survival. However, for bystander CPR, CA location and response time this additional contribution was limited to VF/VT patients only. There was no detectable association between survival and age younger than 60 years or response time over 15min. The new model accounts for relationships among predictors of survival. These relationships indicate that interventions such as reduced response times and bystander CPR act in multiple ways to improve survival.

  8. Cannabinoid receptor signaling in progenitor/stem cell proliferation and differentiation.

    PubMed

    Galve-Roperh, Ismael; Chiurchiù, Valerio; Díaz-Alonso, Javier; Bari, Monica; Guzmán, Manuel; Maccarrone, Mauro

    2013-10-01

    Cannabinoids, the active components of cannabis (Cannabis sativa) extracts, have attracted the attention of human civilizations for centuries, much earlier than the discovery and characterization of their substrate of action, the endocannabinoid system (ECS). The latter is an ensemble of endogenous lipids, their receptors [in particular type-1 (CB1) and type-2 (CB2) cannabinoid receptors] and metabolic enzymes. Cannabinoid signaling regulates cell proliferation, differentiation and survival, with different outcomes depending on the molecular targets and cellular context involved. Cannabinoid receptors are expressed and functional from the very early developmental stages, when they regulate embryonic and trophoblast stem cell survival and differentiation, and thus may affect the formation of manifold adult specialized tissues derived from the three different germ layers (ectoderm, mesoderm and endoderm). In the ectoderm-derived nervous system, both CB1 and CB2 receptors are present in neural progenitor/stem cells and control their self-renewal, proliferation and differentiation. CB1 and CB2 show opposite patterns of expression, the former increasing and the latter decreasing along neuronal differentiation. Recently, endocannabinoid (eCB) signaling has also been shown to regulate proliferation and differentiation of mesoderm-derived hematopoietic and mesenchymal stem cells, with a key role in determining the formation of several cell types in peripheral tissues, including blood cells, adipocytes, osteoblasts/osteoclasts and epithelial cells. Here, we will review these new findings, which unveil the involvement of eCB signaling in the regulation of progenitor/stem cell fate in the nervous system and in the periphery. The developmental regulation of cannabinoid receptor expression and cellular/subcellular localization, together with their role in progenitor/stem cell biology, may have important implications in human health and disease. Copyright © 2013 Elsevier Ltd

  9. Cardiac pathologic findings reveal a high rate of sudden cardiac death of undetermined etiology in younger women.

    PubMed

    Chugh, Sumeet S; Chung, Kiyon; Zheng, Zhi-Jie; John, Benjamin; Titus, Jack L

    2003-10-01

    Between 1989 and 1998 there was a 21% increase in estimated sudden cardiac death among US women aged 35 to 44 years. In contrast, the sudden cardiac death rate in age-matched men showed a decreasing trend (-2.8%). Due to under-representation of younger adults in published autopsy series, etiologies of sudden cardiac death merit further investigation. We reviewed autopsy and detailed cardiac pathologic findings in younger women (age 35-44 years) from a 270-patient, 13-year (1984-1996) autopsy series of sudden cardiac death, and performed comparisons with findings in age-matched men. Women aged 35 to 44 years constituted 32% of all women in the series compared to men, who constituted 24% of total men (P =.004 vs women). A presumptive cause of sudden cardiac death could not be determined in 13 women (50%). Among women, 6 cases (22%) had significant coronary artery disease. Findings in others included coronary artery anomalies (n = 3), myocarditis (n = 2), hypertrophic cardiomyopathy (n = 1), coronary artery dissection (n = 1) and accessory pathway (n = 1). In younger men, a presumptive cause of sudden cardiac death remained undetermined in only 24% (P =.025 vs younger women), and coronary artery disease accounted for 40% of cases. In younger women, despite autopsy and detailed cardiac pathologic examination, an attributable cause of sudden cardiac death was not determined in 50% of cases; a 2-fold increase compared to men of the same age. Given the dynamic and multifactorial nature of sudden cardiac death, comprehensive population-based investigations are likely to be necessary to further investigate this unexpected sex-based disparity.

  10. A new algorithm for segmentation of cardiac quiescent phases and cardiac time intervals using seismocardiography

    NASA Astrophysics Data System (ADS)

    Jafari Tadi, Mojtaba; Koivisto, Tero; Pänkäälä, Mikko; Paasio, Ari; Knuutila, Timo; Teräs, Mika; Hänninen, Pekka

    2015-03-01

    Systolic time intervals (STI) have significant diagnostic values for a clinical assessment of the left ventricle in adults. This study was conducted to explore the feasibility of using seismocardiography (SCG) to measure the systolic timings of the cardiac cycle accurately. An algorithm was developed for the automatic localization of the cardiac events (e.g. the opening and closing moments of the aortic and mitral valves). Synchronously acquired SCG and electrocardiography (ECG) enabled an accurate beat to beat estimation of the electromechanical systole (QS2), pre-ejection period (PEP) index and left ventricular ejection time (LVET) index. The performance of the algorithm was evaluated on a healthy test group with no evidence of cardiovascular disease (CVD). STI values were corrected based on Weissler's regression method in order to assess the correlation between the heart rate and STIs. One can see from the results that STIs correlate poorly with the heart rate (HR) on this test group. An algorithm was developed to visualize the quiescent phases of the cardiac cycle. A color map displaying the magnitude of SCG accelerations for multiple heartbeats visualizes the average cardiac motions and thereby helps to identify quiescent phases. High correlation between the heart rate and the duration of the cardiac quiescent phases was observed.

  11. Cardiopulmonary resuscitation of adults with in-hospital cardiac arrest using the Utstein style.

    PubMed

    Silva, Rose Mary Ferreira Lisboa da; Silva, Bruna Adriene Gomes de Lima E; Silva, Fábio Junior Modesto E; Amaral, Carlos Faria Santos

    2016-01-01

    The objective of this study was to analyze the clinical profile of patients with in-hospital cardiac arrest using the Utstein style. This study is an observational, prospective, longitudinal study of patients with cardiac arrest treated in intensive care units over a period of 1 year. The study included 89 patients who underwent cardiopulmonary resuscitation maneuvers. The cohort was 51.6% male with a mean age 59.0 years. The episodes occurred during the daytime in 64.6% of cases. Asystole/bradyarrhythmia was the most frequent initial rhythm (42.7%). Most patients who exhibited a spontaneous return of circulation experienced recurrent cardiac arrest, especially within the first 24 hours (61.4%). The mean time elapsed between hospital admission and the occurrence of cardiac arrest was 10.3 days, the mean time between cardiac arrest and cardiopulmonary resuscitation was 0.68 min, the mean time between cardiac arrest and defibrillation was 7.1 min, and the mean duration of cardiopulmonary resuscitation was 16.3 min. Associations between gender and the duration of cardiopulmonary resuscitation (19.2 min in women versus 13.5 min in men, p = 0.02), the duration of cardiopulmonary resuscitation and the return of spontaneous circulation (10.8 min versus 30.7 min, p < 0.001) and heart disease and age (60.6 years versus 53.6, p < 0.001) were identified. The immediate survival rates after cardiac arrest, until hospital discharge and 6 months after discharge were 71%, 9% and 6%, respectively. The main initial rhythm detected was asystole/bradyarrhythmia; the interval between cardiac arrest and cardiopulmonary resuscitation was short, but defibrillation was delayed. Women received cardiopulmonary resuscitation for longer periods than men. The in-hospital survival rate was low.

  12. [Immortalization of erythroid progenitors for in vitro large-scale red cell production].

    PubMed

    Caulier, A; Guyonneau Harmand, L; Garçon, L

    2017-09-01

    Population ageing and increase in cancer incidence may lead to a decreased availability of red blood cell units. Thus, finding an alternative source of red blood cells is a highly relevant challenge. The possibility to reproduce in vitro the human erythropoiesis opens a new era, particularly since the improvement in the culture systems allows to produce erythrocytes from induced-Pluripotent Stem Cells (iPSCs), or CD34 + Hematopoietic Stem Cells (HSCs). iPSCs have the advantage of in vitro self-renewal, but lead to poor amplification and maturation defects (high persistence of nucleated erythroid precursors). Erythroid differentiation from HSC allows a far better amplification and adult-like hemoglobin synthesis. But the inability of these progenitors to self-renew in vitro remains a limit in their use as a source of stem cells. A major improvement would consist in immortalizing these erythroid progenitors so that they could expand indefinitively. Inducible transgenesis is the first way to achieve this goal. To date, the best immortalized-cell models involve strong oncogenes induction, such as c-Myc, Bcl-xL, and mostly E6/E7 HPV16 viral oncoproteins. However, the quality of terminal differentiation of erythroid progenitors generated by these oncogenes is not optimal yet and the long-term stability of such systems is unknown. Moreover, viral transgenesis and inducible expression of oncogenes raise important problems in term of safety, since the enucleation rate is not 100% and no nucleated cells having replicative capacities should be present in the final product. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Inflammation, functional status, and weight loss during recovery from cardiac surgery in older adults: a pilot study.

    PubMed

    DiMaria-Ghalili, Rose Ann; Sullivan-Marx, Eileen M; Compher, Charlene

    2014-07-01

    To determine the nutritional, inflammatory, and functional aspects of unintentional weight loss after cardiac surgery that warrant further investigation. Twenty community-dwelling adults > 65 years old undergoing cardiac surgery (coronary artery bypass graft [CABG] or CABG + valve) were recruited for this prospective longitudinal (preoperative and 4-6 weeks postdischarge) pilot study. Anthropometrics (weight, standing height, and mid-arm and calf circumference), nutritional status (Mini-Nutritional Assessment™ [MNA]), appetite, physical performance (timed chair stand), muscle strength (hand grip) and functional status (basic and instrumental activities of daily living), and inflammatory markers (plasma leptin, ghrelin, interleukin [IL]-6, high-sensitivity[hs] C-reactive protein, and serum albumin and prealbumin) were measured. Participants who completed the study (n = 11 males, n = 3 females) had a mean age 70.21 ± 4.02 years. Of these, 12 lost 3.66 ± 1.44 kg over the study period. Weight, BMI, activities of daily living, and leptin decreased over time (p < .05). IL-6 increased over time (p < .05). Ghrelin, hs-CRP, and timed chair stand increased over time in those who underwent combined procedures (p < .05). Grip strength decreased in those who developed complications (p = .004). Complications, readmission status, and lowered grip strength were found in those with low preoperative MNA scores (p < .05). After cardiac surgery, postdischarge weight loss occurs during a continued inflammatory response accompanied by decreased physical functioning and may not be a positive outcome. The impacts of weight loss, functional impairment, and inflammation during recovery on disability and frailty warrant further study. © The Author(s) 2013.

  14. Conversion of immortal liver progenitor cells into pancreatic endocrine progenitor cells by persistent expression of Pdx-1.

    PubMed

    Jin, Cai-Xia; Li, Wen-Lin; Xu, Fang; Geng, Zhen H; He, Zhi-Ying; Su, Juan; Tao, Xin-Rong; Ding, Xiao-Yan; Wang, Xin; Hu, Yi-Ping

    2008-05-01

    The conversion of expandable liver progenitor cells into pancreatic beta cells would provide a renewable cell source for diabetes cell therapy. Previously, we reported the establishment of liver epithelial progenitor cells (LEPCs). In this work, LEPCs were modified into EGFP/Pdx-1 LEPCs, cells with stable expression of both Pdx-1 and EGFP. Unlike previous work, with persistent expression of Pdx-1, EGFP/Pdx-1 LEPCs acquired the phenotype of pancreatic endocrine progenitor cells rather than giving rise to insulin-producing cells directly. EGFP/Pdx-1 LEPCs proliferated vigorously and expressed the crucial transcription factors involved in beta cell development, including Ngn3, NeuroD, Nkx2.2, Nkx6.1, Pax4, Pax6, Isl1, MafA and endogenous Pdx-1, but did not secrete insulin. When cultured in high glucose/low serum medium supplemented with cytokines, EGFP/Pdx-1 LEPCs stopped proliferating and gave rise to functional beta cells without any evidence of exocrine or other islet cell lineage differentiation. When transplanted into diabetic SCID mice, EGFP/Pdx-1 LEPCs ameliorated hyperglycemia by secreting insulin in a glucose regulated manner. Considering the limited availability of beta cells, we propose that our experiments will provide a framework for utilizing the immortal liver progenitor cells as a renewable cell source for the generation of functional pancreatic beta cells.

  15. Task-related changes in degree centrality and local coherence of the posterior cingulate cortex after major cardiac surgery in older adults.

    PubMed

    Browndyke, Jeffrey N; Berger, Miles; Smith, Patrick J; Harshbarger, Todd B; Monge, Zachary A; Panchal, Viral; Bisanar, Tiffany L; Glower, Donald D; Alexander, John H; Cabeza, Roberto; Welsh-Bohmer, Kathleen; Newman, Mark F; Mathew, Joseph P

    2018-02-01

    Older adults often display postoperative cognitive decline (POCD) after surgery, yet it is unclear to what extent functional connectivity (FC) alterations may underlie these deficits. We examined for postoperative voxel-wise FC changes in response to increased working memory load demands in cardiac surgery patients and nonsurgical controls. Older cardiac surgery patients (n = 25) completed a verbal N-back working memory task during MRI scanning and cognitive testing before and 6 weeks after surgery; nonsurgical controls with cardiac disease (n = 26) underwent these assessments at identical time intervals. We measured postoperative changes in degree centrality, the number of edges attached to a brain node, and local coherence, the temporal homogeneity of regional functional correlations, using voxel-wise graph theory-based FC metrics. Group × time differences were evaluated in these FC metrics associated with increased N-back working memory load (2-back > 1-back), using a two-stage partitioned variance, mixed ANCOVA. Cardiac surgery patients demonstrated postoperative working memory load-related degree centrality increases in the left dorsal posterior cingulate cortex (dPCC; p < .001, cluster p-FWE < .05). The dPCC also showed a postoperative increase in working memory load-associated local coherence (p < .001, cluster p-FWE < .05). dPCC degree centrality and local coherence increases were inversely associated with global cognitive change in surgery patients (p < .01), but not in controls. Cardiac surgery patients showed postoperative increases in working memory load-associated degree centrality and local coherence of the dPCC that were inversely associated with postoperative global cognitive outcomes and independent of perioperative cerebrovascular damage. © 2017 Wiley Periodicals, Inc.

  16. Lower Cardiac Vagal Tone in Non-Obese Healthy Men with Unfavorable Anthropometric Characteristics

    PubMed Central

    Ramos, Plínio S.; Araújo, Claudio Gil S.

    2010-01-01

    OBJECTIVES: to determine if there are differences in cardiac vagal tone values in non-obese healthy, adult men with and without unfavorable anthropometric characteristics. INTRODUCTION: It is well established that obesity reduces cardiac vagal tone. However, it remains unknown if decreases in cardiac vagal tone can be observed early in non-obese healthy, adult men presenting unfavorable anthropometric characteristics. METHODS: Among 1688 individuals assessed between 2004 and 2008, we selected 118 non-obese (BMI <30 kg/m2), healthy men (no known disease conditions or regular use of relevant medications), aged between 20 and 77 years old (42 ± 12-years-old). Their evaluation included clinical examination, anthropometric assessment (body height and weight, sum of six skinfolds, waist circumference and somatotype), a 4-second exercise test to estimate cardiac vagal tone and a maximal cardiopulmonary exercise test to exclude individuals with myocardial ischemia. The same physician performed all procedures. RESULTS: A lower cardiac vagal tone was found for the individuals in the higher quintiles – unfavorable anthropometric characteristics - of BMI (p=0.005), sum of six skinfolds (p=0.037) and waist circumference (p<0.001). In addition, the more endomorphic individuals also presented a lower cardiac vagal tone (p=0.023), while an ectomorphic build was related to higher cardiac vagal tone values as estimated by the 4-second exercise test (r=0.23; p=0.017). CONCLUSIONS: Non-obese and healthy adult men with unfavorable anthropometric characteristics tend to present lower cardiac vagal tone levels. Early identification of this trend by simple protocols that are non-invasive and risk-free, using select anthropometric characteristics, may be clinically useful in a global strategy to prevent cardiovascular disease. PMID:20126345

  17. The direct identification of core-collapse supernova progenitors.

    PubMed

    Van Dyk, Schuyler D

    2017-10-28

    To place core-collapse supernovae (SNe) in context with the evolution of massive stars, it is necessary to determine their stellar origins. I describe the direct identification of SN progenitors in existing pre-explosion images, particularly those obtained through serendipitous imaging of nearby galaxies by the Hubble Space Telescope I comment on specific cases representing the various core-collapse SN types. Establishing the astrometric coincidence of a SN with its putative progenitor is relatively straightforward. One merely needs a comparably high-resolution image of the SN itself and its stellar environment to perform this matching. The interpretation of these results, though, is far more complicated and fraught with larger uncertainties, including assumptions of the distance to and the extinction of the SN, as well as the metallicity of the SN environment. Furthermore, existing theoretical stellar evolutionary tracks exhibit significant variations one from the next. Nonetheless, it appears fairly certain that Type II-P (plateau) SNe arise from massive stars in the red supergiant phase. Many of the known cases are associated with subluminous Type II-P events. The progenitors of Type II-L (linear) SNe are less established. Among the stripped-envelope SNe, there are now a number of examples of cool, but not red, supergiants (presumably in binaries) as Type IIb progenitors. We appear now finally to have an identified progenitor of a Type Ib SN, but no known example yet for a Type Ic. The connection has been made between some Type IIn SNe and progenitor stars in a luminous blue variable phase, but that link is still thin, based on direct identifications. Finally, I also describe the need to revisit the SN site, long after the SN has faded, to confirm the progenitor identification through the star's disappearance and potentially to detect a putative binary companion that may have survived the explosion.This article is part of the themed issue 'Bridging the gap: from

  18. MitoQ administration prevents endotoxin-induced cardiac dysfunction.

    PubMed

    Supinski, G S; Murphy, M P; Callahan, L A

    2009-10-01

    Sepsis elicits severe alterations in cardiac function, impairing cardiac mitochondrial and pressure-generating capacity. Currently, there are no therapies to prevent sepsis-induced cardiac dysfunction. We tested the hypothesis that administration of a mitochondrially targeted antioxidant, 10-(6'-ubiquinonyl)-decyltriphenylphosphonium (MitoQ), would prevent endotoxin-induced reductions in cardiac mitochondrial and contractile function. Studies were performed on adult rodents (n = 52) given either saline, endotoxin (8 mg x kg(-1) x day(-1)), saline + MitoQ (500 microM), or both endotoxin and MitoQ. At 48 h animals were killed and hearts were removed for determination of either cardiac mitochondrial function (using polarography) or cardiac pressure generation (using the Langendorf technique). We found that endotoxin induced reductions in mitochondrial state 3 respiration rates, the respiratory control ratio, and ATP generation. Moreover, MitoQ administration prevented each of these endotoxin-induced abnormalities, P < 0.001. We also found that endotoxin produced reductions in cardiac pressure-generating capacity, reducing the systolic pressure-diastolic relationship. MitoQ also prevented endotoxin-induced reductions in cardiac pressure generation, P < 0.01. One potential link between mitochondrial and contractile dysfunction is caspase activation; we found that endotoxin increased cardiac levels of active caspases 9 and 3 (P < 0.001), while MitoQ prevented this increase (P < 0.01). These data demonstrate that MitoQ is a potent inhibitor of endotoxin-induced mitochondrial and cardiac abnormalities. We speculate that this agent may prove a novel therapy for sepsis-induced cardiac dysfunction.

  19. Differentiation stage-specific regulation of primitive human hematopoietic progenitor cycling by exogenous and endogenous inhibitors in an in vivo model.

    PubMed

    Cashman, J D; Clark-Lewis, I; Eaves, A C; Eaves, C J

    1999-12-01

    Nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice transplanted with human cord blood or adult marrow cells and injected 6 weeks posttransplant with 2 daily doses of transforming growth factor-beta(1) (TGF-beta(1)), monocyte chemoattractant protein-1 (MCP-1), or a nonaggregating form of macrophage inflammatory protein-1alpha (MIP-1alpha) showed unique patterns of inhibition of human progenitor proliferation 1 day later. TGF-beta(1) was active on long-term culture initiating cells (LTC-IC) and on primitive erythroid and granulopoietic colony-forming cells (HPP-CFC), but had no effect on mature CFC. MCP-1 inhibited the cycling of both types of HPP-CFC but not LTC-IC. MIP-1alpha did not inhibit either LTC-IC or granulopoietic HPP-CFC but was active on erythroid HPP-CFC and mature granulopoietic CFC. All of these responses were independent of the source of human cells transplanted. LTC-IC of either human cord blood or adult marrow origin continue to proliferate in NOD/SCID mice for many weeks, although the turnover of all types of human CFC in mice transplanted with adult human marrow (but not cord blood) is downregulated after 6 weeks. Interestingly, administration of either MIP-1beta, an antagonist of both MIP-1alpha and MCP-1 or MCP-1(9-76), an antagonist of MCP-1 (and MCP-2 and MCP-3), into mice in which human marrow-derived CFC had become quiescent, caused the rapid reactivation of these progenitors in vivo. These results provide the first definition of stage-specific inhibitors of human hematopoietic progenitor cell cycling in vivo. In addition they show that endogenous chemokines can contribute to late graft failure, which can be reversed by the administration of specific antagonists.

  20. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema

    PubMed Central

    Tracy, Russell P.; Parikh, Megha A.; Hoffman, Eric A.; Shimbo, Daichi; Austin, John H. M.; Smith, Benjamin M.; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R. Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema. PMID:28291826