Science.gov

Sample records for adult cardiac progenitor

  1. Epigenomic Reprogramming of Adult Cardiomyocyte-Derived Cardiac Progenitor Cells

    PubMed Central

    Zhang, Yiqiang; Zhong, Jiang F; Qiu, Hongyu; Robb MacLellan, W.; Marbán, Eduardo; Wang, Charles

    2015-01-01

    It has been believed that mammalian adult cardiomyocytes (ACMs) are terminally-differentiated and are unable to proliferate. Recently, using a bi-transgenic ACM fate mapping mouse model and an in vitro culture system, we demonstrated that adult mouse cardiomyocytes were able to dedifferentiate into cardiac progenitor-like cells (CPCs). However, little is known about the molecular basis of their intrinsic cellular plasticity. Here we integrate single-cell transcriptome and whole-genome DNA methylation analyses to unravel the molecular mechanisms underlying the dedifferentiation and cell cycle reentry of mouse ACMs. Compared to parental cardiomyocytes, dedifferentiated mouse cardiomyocyte-derived CPCs (mCPCs) display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlated well with the methylome, our transcriptomic data showed that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implantation of mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. Our study demonstrates that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. PMID:26657817

  2. Cardiac muscle plasticity in adult and embryo by heart-derived progenitor cells.

    PubMed

    Oh, Hidemasa; Chi, Xuan; Bradfute, Steven B; Mishina, Yuji; Pocius, Jennifer; Michael, Lloyd H; Behringer, Richard R; Schwartz, Robert J; Entman, Mark L; Schneider, Michael D

    2004-05-01

    The evidence of cardiomyocyte proliferation in damaged heart implied cardiac regeneration might occur by resident or extra cardiac stem cells. However, the specification and origin of these cells remain unknown. Here, we report using fluorescence-activated cell sorting that cardiac progenitor cells resided in adult heart and colocalized with small capillary vessels, within the stem cell antigen (Sca-1) population expressing high telomerase activity. Notably, hematopoietic stem cells capable of efflux Hoechst 33342, termed side population cells, also were identified within the heart-derived cells. The cardiac progenitor cells (CD45(-)/CD34(-)) express neither cardiac muscle nor endothelial cell markers at an undifferentiated stage. The exposure of 5-azacytidine induced cardiac differentiation, which depends, in part, on Bmpr1a, a type IA receptor for bone morphogenetic protein (BMP). The capability of adult Sca1(+) cells to adopt a cardiac muscle in embryogenesis was substantiated by blastocyst injection, using progenitors from the adult hearts of transgenic mice that harbor a bacterial artificial chromosome expressing GFP via the Nkx-2.5 locus. Intravenously injected progenitors, shortly after ischemic/reperfusion, homed and functionally differentiated 3.5% of total left ventricle in the host myocardium. Differentiation included both fusion-independent and fusion-associated components, proved by the Cre/loxP donor/recipient system. Our studies suggest that endogenous cardiac progenitors reside in the adult heart, regenerate cardiomyocytes functionally, and integrate into the existing heart circuitry.

  3. Human fetal cardiac progenitors: The role of stem cells and progenitors in the fetal and adult heart.

    PubMed

    Bulatovic, Ivana; Månsson-Broberg, Agneta; Sylvén, Christer; Grinnemo, Karl-Henrik

    2016-02-01

    The human fetal heart is formed early during embryogenesis as a result of cell migrations, differentiation, and formative blood flow. It begins to beat around gestation day 22. Progenitor cells are derived from mesoderm (endocardium and myocardium), proepicardium (epicardium and coronary vessels), and neural crest (heart valves, outflow tract septation, and parasympathetic innervation). A variety of molecular disturbances in the factors regulating the specification and differentiation of these cells can cause congenital heart disease. This review explores the contribution of different cardiac progenitors to the embryonic heart development; the pathways and transcription factors guiding their expansion, migration, and functional differentiation; and the endogenous regenerative capacity of the adult heart including the plasticity of cardiomyocytes. Unfolding these mechanisms will become the basis for understanding the dynamics of specific congenital heart disease as well as a means to develop therapy for fetal as well as postnatal cardiac defects and heart failure.

  4. ANGPTL8 reverses established adriamycin cardiomyopathy by stimulating adult cardiac progenitor cells

    PubMed Central

    Chen, Shuyuan; Chen, Jiaxi; Meng, Xing-Li; Shen, Jin-Song; Huang, Jing; Huang, Pintong; Pu, Zhaoxia; McNeill, Nathan H.; Grayburn, Paul A.

    2016-01-01

    Established adriamycin cardiomyopathy is a lethal disease. When congestive heart failure develops, mortality is approximately 50% in a year. It has been known that ANGPTLs has various functions in lipid metabolism, inflammation, cancer cell invasion, hematopoietic stem activity and diabetes. We hypothesized that ANGPTL8 is capable of maintaining heart function by stimulating adult cardiac progenitor cells to initiate myocardial regeneration. We employed UTMD to deliver piggybac transposon plasmids with the human ANGPTL8 gene to the liver of rats with adriamycin cardiomyopathy. After ANGPTL8 gene liver delivery, overexpression of transgenic human ANGPTL8 was found in rat liver cells and blood. UTMD- ANGPTL8 gene therapy restored LV mass, fractional shortening index, and LV posterior wall diameter to nearly normal. Our results also showed that ANGPTL8 reversed established ADM cardiomyopathy. This was associated with activation of ISL-1 positive cardiac progenitor cells in the epicardium. A time-course experiment shown that ISL-1 cardiac progenitor cells proliferated and formed a niche in the epicardial layer and then migrated into sub-epicardium. The observed myocardial regeneration accompanying reversal of adriamycin cardiomyopathy was associated with upregulation of PirB expression on the cell membrane of cardiac muscle cells or progenitor cells stimulated by ANGPTL8. PMID:27823982

  5. From ontogenesis to regeneration: learning how to instruct adult cardiac progenitor cells.

    PubMed

    Chimenti, Isotta; Forte, Elvira; Angelini, Francesco; Giacomello, Alessandro; Messina, Elisa

    2012-01-01

    Since the first observations over two centuries ago by Lazzaro Spallanzani on the extraordinary regenerative capacity of urodeles, many attempts have been made to understand the reasons why such ability has been largely lost in metazoa and whether or how it can be restored, even partially. In this context, important clues can be derived from the systematic analysis of the relevant distinctions among species and of the pathways involved in embryonic development, which might be induced and/or recapitulated in adult tissues. This chapter provides an overview on regeneration and its mechanisms, starting with the lesson learned from lower vertebrates, and will then focus on recent advancements and novel insights concerning regeneration in the adult mammalian heart, including the discovery of resident cardiac progenitor cells (CPCs). Subsequently, it explores all the important pathways involved in regulating differentiation during development and embryogenesis, and that might potentially provide important clues on how to activate and/or modulate regenerative processes in the adult myocardium, including the potential activation of endogenous CPCs. Furthermore the importance of the stem cell niche is discussed, and how it is possible to create in vitro a microenvironment and culture system to provide adult CPCs with the ideal conditions promoting their regenerative ability. Finally, the state of clinical translation of cardiac cell therapy is presented. Overall, this chapter provides a new perspective on how to approach cardiac regeneration, taking advantage of important lessons from development and optimizing biotechnological tools to obtain the ideal conditions for cell-based cardiac regenerative therapy.

  6. Silk fibroin scaffolds enhance cell commitment of adult rat cardiac progenitor cells.

    PubMed

    Di Felice, Valentina; Serradifalco, Claudia; Rizzuto, Luigi; De Luca, Angela; Rappa, Francesca; Barone, Rosario; Di Marco, Patrizia; Cassata, Giovanni; Puleio, Roberto; Verin, Lucia; Motta, Antonella; Migliaresi, Claudio; Guercio, Annalisa; Zummo, Giovanni

    2015-11-01

    The use of three-dimensional (3D) cultures may induce cardiac progenitor cells to synthesize their own extracellular matrix (ECM) and sarcomeric proteins to initiate cardiac differentiation. 3D cultures grown on synthetic scaffolds may favour the implantation and survival of stem cells for cell therapy when pharmacological therapies are not efficient in curing cardiovascular diseases and when organ transplantation remains the only treatment able to rescue the patient's life. Silk fibroin-based scaffolds may be used to increase cell affinity to biomaterials and may be chemically modified to improve cell adhesion. In the present study, porous, partially orientated and electrospun nanometric nets were used. Cardiac progenitor cells isolated from adult rats were seeded by capillarity in the 3D structures and cultured inside inserts for 21 days. Under this condition, the cells expressed a high level of sarcomeric and cardiac proteins and synthesized a great quantity of ECM. In particular, partially orientated scaffolds induced the synthesis of titin, which is a fundamental protein in sarcomere assembly.

  7. Electromechanical Conditioning of Adult Progenitor Cells Improves Recovery of Cardiac Function After Myocardial Infarction.

    PubMed

    Llucià-Valldeperas, Aida; Soler-Botija, Carolina; Gálvez-Montón, Carolina; Roura, Santiago; Prat-Vidal, Cristina; Perea-Gil, Isaac; Sanchez, Benjamin; Bragos, Ramon; Vunjak-Novakovic, Gordana; Bayes-Genis, Antoni

    2017-03-01

    Cardiac cells are subjected to mechanical and electrical forces, which regulate gene expression and cellular function. Therefore, in vitro electromechanical stimuli could benefit further integration of therapeutic cells into the myocardium. Our goals were (a) to study the viability of a tissue-engineered construct with cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs) and (b) to examine the effect of electromechanically stimulated cardiac ATDPCs within a myocardial infarction (MI) model in mice for the first time. Cardiac ATDPCs were electromechanically stimulated at 2-millisecond pulses of 50 mV/cm at 1 Hz and 10% stretching during 7 days. The cells were harvested, labeled, embedded in a fibrin hydrogel, and implanted over the infarcted area of the murine heart. A total of 39 animals were randomly distributed and sacrificed at 21 days: groups of grafts without cells and with stimulated or nonstimulated cells. Echocardiography and gene and protein analyses were also carried out. Physiologically stimulated ATDPCs showed increased expression of cardiac transcription factors, structural genes, and calcium handling genes. At 21 days after implantation, cardiac function (measured as left ventricle ejection fraction between presacrifice and post-MI) increased up to 12% in stimulated grafts relative to nontreated animals. Vascularization and integration with the host blood supply of grafts with stimulated cells resulted in increased vessel density in the infarct border region. Trained cells within the implanted fibrin patch expressed main cardiac markers and migrated into the underlying ischemic myocardium. To conclude, synchronous electromechanical cell conditioning before delivery may be a preferred alternative when considering strategies for heart repair after myocardial infarction. Stem Cells Translational Medicine 2017;6:970-981.

  8. Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease.

    PubMed

    Braitsch, Caitlin M; Kanisicak, Onur; van Berlo, Jop H; Molkentin, Jeffery D; Yutzey, Katherine E

    2013-12-01

    During embryonic heart development, the transcription factors Tcf21, Wt1, and Tbx18 regulate activation and differentiation of epicardium-derived cells, including fibroblast lineages. Expression of these epicardial progenitor factors and localization of cardiac fibrosis were examined in mouse models of cardiovascular disease and in human diseased hearts. Following ischemic injury in mice, epicardial fibrosis is apparent in the thickened layer of subepicardial cells that express Wt1, Tbx18, and Tcf21. Perivascular fibrosis with predominant expression of Tcf21, but not Wt1 or Tbx18, occurs in mouse models of pressure overload or hypertensive heart disease, but not following ischemic injury. Areas of interstitial fibrosis in ischemic and hypertensive hearts actively express Tcf21, Wt1, and Tbx18. In all areas of fibrosis, cells that express epicardial progenitor factors are distinct from CD45-positive immune cells. In human diseased hearts, differential expression of Tcf21, Wt1, and Tbx18 also is detected with epicardial, perivascular, and interstitial fibrosis, indicating conservation of reactivated developmental mechanisms in cardiac fibrosis in mice and humans. Together, these data provide evidence for distinct fibrogenic mechanisms that include Tcf21, separate from Wt1 and Tbx18, in different fibroblast populations in response to specific types of cardiac injury.

  9. Resident cardiac progenitor cells: at the heart of regeneration.

    PubMed

    Bollini, Sveva; Smart, Nicola; Riley, Paul R

    2011-02-01

    Stem cell therapy has recently emerged as an innovative strategy over conventional cardiovascular treatments to restore cardiac function in patients affected by ischemic heart disease. Various stem cell populations have been tested and their potential for cardiac repair has been analyzed. Embryonic stem cells retain the greatest differentiation potential, but concerns persist with regard to their immunogenic and teratogenic effects. Although adult somatic stem cells are not tumourigenic and easier to use in an autologous setting, they exist in small numbers and possess reduced differentiation potential. Traditionally the heart was considered to be a post-mitotic organ; however, this dogma has recently been challenged with the identification of a reservoir of resident stem cells, defined as cardiac progenitor cells (CPCs). These endogenous progenitors may represent the best candidates for cardiovascular cell therapy, as they are tissue-specific, often pre-committed to a cardiac fate, and display a greater propensity to differentiate towards cardiovascular lineages. This review will focus on current research into the biology of CPCs and their regenerative potential. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".

  10. Cardiac imaging in adults

    SciTech Connect

    Jaffe, C.C.

    1987-01-01

    This book approaches adult cardiac disease from the correlative imaging perspective. It includes chest X-rays and angiographs, 2-dimensional echocardiograms with explanatory diagrams for clarity, plus details on digital radiology, nuclear medicine techniques, CT and MRI. It also covers the normal heart, valvular heart disease, myocardial disease, pericardial disease, bacterial endocarditis, aortic aneurysm, cardiac tumors, and congenital heart disease of the adult. It points out those aspects where one imaging technique has significant superiority.

  11. Autonomic cardiac innervation: development and adult plasticity.

    PubMed

    Hasan, Wohaib

    2013-01-01

    Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targets, upon which target-derived trophic factors take over final maturation, synaptic strength and postnatal survival. Although target-derived neurotrophins have a central role to play in development, alternative sources of neurotrophins may also modulate innervation. Both developing and adult sympathetic neurons express proNGF, and adult parasympathetic cardiac ganglion neurons also synthesize and release NGF. The physiological function of these "non-classical" cardiac sources of neurotrophins remains to be determined, especially in relation to autocrine/paracrine sustenance during development.   Cardiac autonomic nerves are closely spatially associated in cardiac plexuses, ganglia and pacemaker regions and so are sensitive to release of neurotransmitter, neuropeptides and trophic factors from adjacent nerves. As such, in many cardiac pathologies, it is an imbalance within the two arms of the autonomic system that is critical for disease progression. Although this crosstalk between sympathetic and parasympathetic nerves has been well established for adult nerves, it is unclear whether a degree of paracrine regulation occurs across the autonomic limbs during development. Aberrant nerve remodeling is a common occurrence in many adult cardiovascular pathologies, and the mechanisms regulating outgrowth or denervation are disparate. However, autonomic neurons display considerable plasticity in this regard with neurotrophins and inflammatory cytokines having a central regulatory

  12. Spontaneous Calcium Oscillations Regulate Human Cardiac Progenitor Cell Growth

    PubMed Central

    Ferreira-Martins, João; Rondon-Clavo, Carlos; Tugal, Derin; Korn, Justin A; Rizzi, Roberto; Padin-Iruegas, Maria Elena; Ottolenghi, Sergio; De Angelis, Antonella; Urbanek, Konrad; Iwata, Noriko; D’Amario, Domenico; Hosoda, Toru; Leri, Annarosa; Kajstura, Jan; Anversa, Piero; Rota, Marcello

    2009-01-01

    Rationale The adult heart possesses a pool of progenitor cells stored in myocardial niches but the mechanisms involved in the activation of this cell compartment are currently unknown. Objective Ca2+ promotes cell growth raising the possibility that changes in intracellular Ca2+ initiate division of c-kit-positive human cardiac progenitor cells (hCPCs) and determine their fate. Methods and Results Ca2+ oscillations were identified in hCPCs and these events occurred independently from coupling with cardiomyocytes or the presence of extracellular Ca2+. These findings were confirmed in the heart of transgenic mice in which EGFP was under the control of the c-kit-promoter. Ca2+ oscillations in hCPCs were regulated by the release of Ca2+ from the ER through activation of inositol 1,4,5-triphosphate receptors (IP3Rs) and the re-uptake of Ca2+ by the sarco/endoplasmic reticulum Ca2+ pump (SERCA). IP3Rs and SERCA were highly expressed in hCPCs while ryanodine receptors were not detected. Although Na+-Ca2+ exchanger, store-operated Ca2+-channels and plasma membrane Ca2+-pump were present and functional in hCPCs, they had no direct effects on Ca2+ oscillations. Conversely, Ca2+ oscillations and their frequency markedly increased with ATP and histamine which activated purinoceptors and histamine-1 receptors highly expressed in hCPCs. Importantly, Ca2+ oscillations in hCPCs were coupled with the entry of cells into the cell cycle and BrdUrd incorporation. Induction of Ca2+ oscillations in hCPCs prior to their intramyocardial delivery to infarcted hearts was associated with enhanced engraftment and expansion of these cells promoting the generation of a large myocyte progeny. Conclusion IP3R-mediated Ca2+ mobilization control hCPC growth and their regenerative potential. PMID:19745162

  13. Electrically Induced Calcium Handling in Cardiac Progenitor Cells

    PubMed Central

    Wagner, Mary B.

    2016-01-01

    For nearly a century, the heart was viewed as a terminally differentiated organ until the discovery of a resident population of cardiac stem cells known as cardiac progenitor cells (CPCs). It has been shown that the regenerative capacity of CPCs can be enhanced by ex vivo modification. Preconditioning CPCs could provide drastic improvements in cardiac structure and function; however, a systematic approach to determining a mechanistic basis for these modifications founded on the physiology of CPCs is lacking. We have identified a novel property of CPCs to respond to electrical stimulation by initiating intracellular Ca2+ oscillations. We used confocal microscopy and intracellular calcium imaging to determine the spatiotemporal properties of the Ca2+ signal and the key proteins involved in this process using pharmacological inhibition and confocal Ca2+ imaging. Our results provide valuable insights into mechanisms to enhance the therapeutic potential in stem cells and further our understanding of human CPC physiology. PMID:27818693

  14. Heart Regeneration with Embryonic Cardiac Progenitor Cells and Cardiac Tissue Engineering.

    PubMed

    Tian, Shuo; Liu, Qihai; Gnatovskiy, Leonid; Ma, Peter X; Wang, Zhong

    Myocardial infarction (MI) is the leading cause of death worldwide. Recent advances in stem cell research hold great potential for heart tissue regeneration through stem cell-based therapy. While multiple cell types have been transplanted into MI heart in preclinical studies or clinical trials, reduction of scar tissue and restoration of cardiac function have been modest. Several challenges hamper the development and application of stem cell-based therapy for heart regeneration. Application of cardiac progenitor cells (CPCs) and cardiac tissue engineering for cell therapy has shown great promise to repair damaged heart tissue. This review presents an overview of the current applications of embryonic CPCs and the development of cardiac tissue engineering in regeneration of functional cardiac tissue and reduction of side effects for heart regeneration. We aim to highlight the benefits of the cell therapy by application of CPCs and cardiac tissue engineering during heart regeneration.

  15. Cardiac regeneration: still a 21st century challenge in search for cardiac progenitors from stem cells and embryos.

    PubMed

    Neri, Tui; Stefanovic, Sonia; Pucéat, Michel

    2010-07-01

    Regeneration of the heart after a stroke would be the best biologic response to restore its function. However, although this phenomenon occurs in primitive organisms, the regenerative potential is lost in mammals. Thus, the search for an appropriate cardiac progenitor with the potential to differentiate into a functional cardiomyocyte in vitro and in vivo has been the subject of intensive investigation. We summarize the cardiogenic transcriptional pathway that constitutes the molecular scaffold to drive pluripotent stem cells toward a cardiac progenitor fate. Then we overview the literature on derivation of cardiac progenitors from both embryos and stem cells.

  16. Anti‐Inflammatory Peptides From Cardiac Progenitors Ameliorate Dysfunction After Myocardial Infarction

    PubMed Central

    Liu, Mei‐Lan; Nagai, Toshio; Tokunaga, Masakuni; Iwanaga, Koji; Matsuura, Katsuhisa; Takahashi, Toshinao; Kanda, Masato; Kondo, Naomichi; Naito, Atsuhiko T.; Komuro, Issei; Kobayashi, Yoshio

    2014-01-01

    Background Cardiac cell therapy has been proposed as one of the new strategies against myocardial infarction. Although several reports showed improvement of the function of ischemic heart, the effects of cell therapy vary among the studies and the mechanisms of the beneficial effects are still unknown. Previously, we reported that clonal stem cell antigen‐1–positive cardiac progenitor cells exerted a therapeutic effect when transplanted into the ischemic heart. Our aims were to identify the cardiac progenitor‐specific paracrine factor and to elucidate the mechanism of its beneficial effect. Methods and Results By using an antibody array, we found that soluble junctional adhesion molecule‐A (JAM‐A) was abundantly secreted from cardiac progenitor cells. Pretreatment of neutrophils with conditioned medium from cultured cardiac progenitor cells or soluble JAM‐A inhibited transendothelial migration and reduced motility of neutrophils. These inhibitory effects were attenuated by anti–JAM‐A neutralizing antibody. Injection of cardiac progenitor cells into infarct heart attenuated neutrophil infiltration and expression of inflammatory cytokines. Injection of soluble JAM‐A–expressing, but not of JAM‐A siRNA–expressing, cardiac progenitor cells into the infarct heart prevented cardiac remodeling and reduced fibrosis area. Conclusions Soluble JAM‐A secreted from cardiac progenitor cells reduces infiltration of neutrophils after myocardial infarction and ameliorates tissue damage through prevention of excess inflammation. Our finding may lead to a new therapy for cardiovascular disease by using the anti‐inflammatory effect of JAM‐A. PMID:25468657

  17. Single-cell transcriptome and epigenomic reprogramming of cardiomyocyte-derived cardiac progenitor cells

    PubMed Central

    Chen, Xin; Chakravarty, Tushar; Zhang, Yiqiang; Li, Xiaojin; Zhong, Jiang F.; Wang, Charles

    2016-01-01

    The molecular basis underlying the dedifferentiation of mammalian adult cardiomyocytes (ACMs) into myocyte-derived cardiac progenitor cells (mCPCs) during cardiac tissue regeneration is poorly understood. We present data integrating single-cell transcriptome and whole-genome DNA methylome analyses of mouse mCPCs to understand the epigenomic reprogramming governing their intrinsic cellular plasticity. Compared to parental cardiomyocytes, mCPCs display epigenomic reprogramming with many differentially-methylated regions, both hypermethylated and hypomethylated, across the entire genome. Correlating well with the methylome, our single-cell transcriptomic data show that the genes encoding cardiac structure and function proteins are remarkably down-regulated in mCPCs, while those for cell cycle, proliferation, and stemness are significantly up-regulated. In addition, implanting mCPCs into infarcted mouse myocardium improves cardiac function with augmented left ventricular ejection fraction. This dataset suggests that the cellular plasticity of mammalian cardiomyocytes is the result of a well-orchestrated epigenomic reprogramming and a subsequent global transcriptomic alteration. Understanding cardiomyocyte epigenomic reprogramming may enable the design of future clinical therapies that induce cardiac regeneration, and prevent heart failure. PMID:27622691

  18. Characterization of Cardiac-Resident Progenitor Cells Expressing High Aldehyde Dehydrogenase Activity

    PubMed Central

    Roehrich, Marc-Estienne; Spicher, Albert; Milano, Giuseppina; Vassalli, Giuseppe

    2013-01-01

    High aldehyde dehydrogenase (ALDH) activity has been associated with stem and progenitor cells in various tissues. Human cord blood and bone marrow ALDH-bright (ALDHbr) cells have displayed angiogenic activity in preclinical studies and have been shown to be safe in clinical trials in patients with ischemic cardiovascular disease. The presence of ALDHbr cells in the heart has not been evaluated so far. We have characterized ALDHbr cells isolated from mouse hearts. One percent of nonmyocytic cells from neonatal and adult hearts were ALDHbr. ALDHvery-br cells were more frequent in neonatal hearts than adult. ALDHbr cells were more frequent in atria than ventricles. Expression of ALDH1A1 isozyme transcripts was highest in ALDHvery-br cells, intermediate in ALDHbr cells, and lowest in ALDHdim cells. ALDH1A2 expression was highest in ALDHvery-br cells, intermediate in ALDHdim cells, and lowest in ALDHbr cells. ALDH1A3 and ALDH2 expression was detectable in ALDHvery-br and ALDHbr cells, unlike ALDHdim cells, albeit at lower levels compared with ALDH1A1 and ALDH1A2. Freshly isolated ALDHbr cells were enriched for cells expressing stem cell antigen-1, CD34, CD90, CD44, and CD106. ALDHbr cells, unlike ALDHdim cells, could be grown in culture for more than 40 passages. They expressed sarcomeric α-actinin and could be differentiated along multiple mesenchymal lineages. However, the proportion of ALDHbr cells declined with cell passage. In conclusion, the cardiac-derived ALDHbr population is enriched for progenitor cells that exhibit mesenchymal progenitor-like characteristics and can be expanded in culture. The regenerative potential of cardiac-derived ALDHbr cells remains to be evaluated. PMID:23484127

  19. Cardiac Rehabilitation in Older Adults.

    PubMed

    Schopfer, David W; Forman, Daniel E

    2016-09-01

    The biology of aging and the pathophysiology of cardiovascular disease (CVD) overlap, with the effect that CVD is endemic in the growing population of older adults. Moreover, CVD in older adults is usually complicated by age-related complexities, including multimorbidity, polypharmacy, frailty, and other intricacies that add to the risks of ambiguous symptoms, deconditioning, iatrogenesis, falls, disability, and other challenges. Cardiac rehabilitation (CR) is a comprehensive lifestyle program that can have particular benefit for older patients with cardiovascular conditions. Although CR was originally designed primarily as an exercise training program for younger adults after a myocardial infarction or coronary artery bypass surgery, it has evolved as a comprehensive lifestyle program (promoting physical activity as well as education, diet, risk reduction, and adherence) for a broader range of CVD (coronary heart disease, heart failure, and valvular heart disease). It provides a valuable opportunity to address and moderate many of the challenges pertinent for the large and growing population of older adults with CVD. Cardiac rehabilitation promotes physical function (cardiorespiratory fitness as well as strength and balance) that helps overcome disease and deconditioning as well as related vulnerabilities such as disability, frailty, and falls. Similarly, CR facilitates education, monitoring, and guidance to reduce iatrogenesis and promote adherence. Furthermore, CR fosters cognition, socialization, and independence in older patients. Yet despite all its conceptual benefits, CR is significantly underused in older populations. This review discusses benefits and the paradoxical underuse of CR, as well as evolving models of care that may achieve greater application and efficacy.

  20. Mesodermal iPSC–derived progenitor cells functionally regenerate cardiac and skeletal muscle

    PubMed Central

    Quattrocelli, Mattia; Swinnen, Melissa; Giacomazzi, Giorgia; Camps, Jordi; Barthélemy, Ines; Ceccarelli, Gabriele; Caluwé, Ellen; Grosemans, Hanne; Thorrez, Lieven; Pelizzo, Gloria; Muijtjens, Manja; Verfaillie, Catherine M.; Blot, Stephane; Janssens, Stefan; Sampaolesi, Maurilio

    2015-01-01

    Conditions such as muscular dystrophies (MDs) that affect both cardiac and skeletal muscles would benefit from therapeutic strategies that enable regeneration of both of these striated muscle types. Protocols have been developed to promote induced pluripotent stem cells (iPSCs) to differentiate toward cardiac or skeletal muscle; however, there are currently no strategies to simultaneously target both muscle types. Tissues exhibit specific epigenetic alterations; therefore, source-related lineage biases have the potential to improve iPSC-driven multilineage differentiation. Here, we determined that differential myogenic propensity influences the commitment of isogenic iPSCs and a specifically isolated pool of mesodermal iPSC-derived progenitors (MiPs) toward the striated muscle lineages. Differential myogenic propensity did not influence pluripotency, but did selectively enhance chimerism of MiP-derived tissue in both fetal and adult skeletal muscle. When injected into dystrophic mice, MiPs engrafted and repaired both skeletal and cardiac muscle, reducing functional defects. Similarly, engraftment into dystrophic mice of canine MiPs from dystrophic dogs that had undergone TALEN-mediated correction of the MD-associated mutation also resulted in functional striatal muscle regeneration. Moreover, human MiPs exhibited the same capacity for the dual differentiation observed in murine and canine MiPs. The findings of this study suggest that MiPs should be further explored for combined therapy of cardiac and skeletal muscles. PMID:26571398

  1. Human Cardiac Progenitor Spheroids Exhibit Enhanced Engraftment Potential

    PubMed Central

    Colangelo, Donato; Gregoletto, Luca; Reano, Simone; Pietronave, Stefano; Merlin, Simone; Talmon, Maria; Novelli, Eugenio; Diena, Marco; Nicoletti, Carmine; Musarò, Antonio; Filigheddu, Nicoletta; Follenzi, Antonia; Prat, Maria

    2015-01-01

    A major obstacle to an effective myocardium stem cell therapy has always been the delivery and survival of implanted stem cells in the heart. Better engraftment can be achieved if cells are administered as cell aggregates, which maintain their extra-cellular matrix (ECM). We have generated spheroid aggregates in less than 24 h by seeding human cardiac progenitor cells (hCPCs) onto methylcellulose hydrogel-coated microwells. Cells within spheroids maintained the expression of stemness/mesenchymal and ECM markers, growth factors and their cognate receptors, cardiac commitment factors, and metalloproteases, as detected by immunofluorescence, q-RT-PCR and immunoarray, and expressed a higher, but regulated, telomerase activity. Compared to cells in monolayers, 3D spheroids secreted also bFGF and showed MMP2 activity. When spheroids were seeded on culture plates, the cells quickly migrated, displaying an increased wound healing ability with or without pharmacological modulation, and reached confluence at a higher rate than cells from conventional monolayers. When spheroids were injected in the heart wall of healthy mice, some cells migrated from the spheroids, engrafted, and remained detectable for at least 1 week after transplantation, while, when the same amount of cells was injected as suspension, no cells were detectable three days after injection. Cells from spheroids displayed the same engraftment capability when they were injected in cardiotoxin-injured myocardium. Our study shows that spherical in vivo ready-to-implant scaffold-less aggregates of hCPCs able to engraft also in the hostile environment of an injured myocardium can be produced with an economic, easy and fast protocol. PMID:26375957

  2. Second heart field cardiac progenitor cells in the early mouse embryo.

    PubMed

    Francou, Alexandre; Saint-Michel, Edouard; Mesbah, Karim; Théveniau-Ruissy, Magali; Rana, M Sameer; Christoffels, Vincent M; Kelly, Robert G

    2013-04-01

    At the end of the first week of mouse gestation, cardiomyocyte differentiation initiates in the cardiac crescent to give rise to the linear heart tube. The heart tube subsequently elongates by addition of cardiac progenitor cells from adjacent pharyngeal mesoderm to the growing arterial and venous poles. These progenitor cells, termed the second heart field, originate in splanchnic mesoderm medial to cells of the cardiac crescent and are patterned into anterior and posterior domains adjacent to the arterial and venous poles of the heart, respectively. Perturbation of second heart field cell deployment results in a spectrum of congenital heart anomalies including conotruncal and atrial septal defects seen in human patients. Here, we briefly review current knowledge of how the properties of second heart field cells are controlled by a network of transcriptional regulators and intercellular signaling pathways. Focus will be on 1) the regulation of cardiac progenitor cell proliferation in pharyngeal mesoderm, 2) the control of progressive progenitor cell differentiation and 3) the patterning of cardiac progenitor cells in the dorsal pericardial wall. Coordination of these three processes in the early embryo drives progressive heart tube elongation during cardiac morphogenesis. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.

  3. Activation of cardiac progenitor cells through paracrine effects of mesenchymal stem cells

    SciTech Connect

    Nakanishi, Chiaki; Yamagishi, Masakazu; Yamahara, Kenichi; Hagino, Ikuo; Mori, Hidezo; Sawa, Yoshiki; Yagihara, Toshikatsu; Kitamura, Soichiro; Nagaya, Noritoshi

    2008-09-12

    Mesenchymal stem cells (MSC) transplantation has been proved to be promising strategy to treat the failing heart. The effect of MSC transplantation is thought to be mediated mainly in a paracrine manner. Recent reports have suggested that cardiac progenitor cells (CPC) reside in the heart. In this study, we investigated whether MSC had paracrine effects on CPC in vitro. CPC were isolated from the neonatal rat heart using an explant method. MSC were isolated from the adult rat bone marrow. MSC-derived conditioned medium promoted proliferation of CPC and inhibited apoptosis of CPC induced by hypoxia and serum starvation. Chemotaxis chamber assay demonstrated that MSC-derived conditioned medium enhanced migration of CPC. Furthermore, MSC-derived conditioned medium upregulated expression of cardiomyocyte-related genes in CPC such as {beta}-myosin heavy chain ({beta}-MHC) and atrial natriuretic peptide (ANP). In conclusion, MSC-derived conditioned medium had protective effects on CPC and enhanced their migration and differentiation.

  4. Identification of cardiac progenitors that survive in the ischemic human heart after ventricular myocyte death

    PubMed Central

    Omatsu-Kanbe, Mariko; Nozuchi, Nozomi; Nishino, Yuka; Mukaisho, Ken-ichi; Sugihara, Hiroyuki; Matsuura, Hiroshi

    2017-01-01

    Atypically-shaped cardiomyocytes (ACMs) are beating heart cells identified in the cultures of cardiomyocyte-removed fractions obtained from adult mouse hearts. Since ACMs spontaneously develop into beating cells in the absence of hormones or chemicals, these cells are likely to be a type of cardiac progenitors rather than stem cells. “Native ACMs” are found as small interstitial cells among ventricular myocytes that co-express cellular prion protein (PrP) and cardiac troponin T (cTnT) in mouse and human heart tissues. However, the endogenous behavior of human ACMs is unclear. In the present study, we demonstrate that PrP+ cTnT+ cells are present in the human heart tissue with myocardial infarction (MI). These cells were mainly found in the border of necrotic cardiomyocytes caused by infarcts and also in the hibernating myocardium subjected to the chronic ischemia. The ratio of PrP+ cTnT+ cells to the total cells observed in the normal heart tissue section of mouse and human was estimated to range from 0.3–0.8%. Notably, living human PrP+ cTnT+ cells were identified in the cultures obtained at pathological autopsy despite exposure to lethal ischemic conditions for hours after death. These findings suggest that ACMs could survive in the ischemic human heart and develop into a sub-population of cardiac myocytes. PMID:28120944

  5. Foxa2 identifies a cardiac progenitor population with ventricular differentiation potential

    PubMed Central

    Bardot, Evan; Calderon, Damelys; Santoriello, Francis; Han, Songyan; Cheung, Kakit; Jadhav, Bharati; Burtscher, Ingo; Artap, Stanley; Jain, Rajan; Epstein, Jonathan; Lickert, Heiko; Gouon-Evans, Valerie; Sharp, Andrew J.; Dubois, Nicole C.

    2017-01-01

    The recent identification of progenitor populations that contribute to the developing heart in a distinct spatial and temporal manner has fundamentally improved our understanding of cardiac development. However, the mechanisms that direct atrial versus ventricular specification remain largely unknown. Here we report the identification of a progenitor population that gives rise primarily to cardiovascular cells of the ventricles and only to few atrial cells (<5%) of the differentiated heart. These progenitors are specified during gastrulation, when they transiently express Foxa2, a gene not previously implicated in cardiac development. Importantly, Foxa2+ cells contribute to previously identified progenitor populations in a defined pattern and ratio. Lastly, we describe an analogous Foxa2+ population during differentiation of embryonic stem cells. Together, these findings provide insight into the developmental origin of ventricular and atrial cells, and may lead to the establishment of new strategies for generating chamber-specific cell types from pluripotent stem cells. PMID:28195173

  6. miR-300 mediates Bmi1 function and regulates differentiation in primitive cardiac progenitors.

    PubMed

    Cruz, F M; Tomé, M; Bernal, J A; Bernad, A

    2015-10-29

    B lymphoma Mo-MLV insertion region 1 (Bmi1) is a polycomb-family transcriptional factor critical for self-renewal in many adult stem cells and human neoplasia. We sought to identify microRNAs regulated by Bmi1 that could play a role in multipotent cardiac progenitor cell (CPC) decisions. We found that miR-300, a poorly characterized microRNA mapping in the Dlk1-Dio3 microRNA cluster, was positively regulated by Bmi1 in CPCs. Forced expression of miR-300 in CPCs promoted an improved stemness signature with a significant increase in Oct4 levels, a reduction in senescence progression and an enhanced proliferative status via p19 activation and inhibition of p16 accumulation. Endothelial and cardiogenic differentiation were clearly compromised by sustained miR-300 expression. Additionally, RNA and protein analysis revealed a significant reduction in key cardiac transcription factors, including Nkx2.5 and Tbx5. Collectively, these results suggest that some functions attributed to Bmi1 are due to induction of miR-300, which decreases the cardiogenic differentiation potential of multipotent CPCs in vitro and promotes self-renewal.

  7. Development of Bipotent Cardiac/Skeletal Myogenic Progenitors from MESP1+ Mesoderm.

    PubMed

    Chan, Sunny Sun-Kin; Hagen, Hannah R; Swanson, Scott A; Stewart, Ron; Boll, Karly A; Aho, Joy; Thomson, James A; Kyba, Michael

    2016-01-12

    The branchiomeric skeletal muscles co-evolved with new chambers of the heart to enable predatory feeding in chordates. These co-evolved tissues develop from a common population in anterior splanchnic mesoderm, referred to as cardiopharyngeal mesoderm (CPM). The regulation and development of CPM are poorly understood. We describe an embryonic stem cell-based system in which MESP1 drives a PDGFRA+ population with dual cardiac and skeletal muscle differentiation potential, and gene expression resembling CPM. Using this system, we investigate the regulation of these bipotent progenitors, and find that cardiac specification is governed by an antagonistic TGFβ-BMP axis, while skeletal muscle specification is enhanced by Rho kinase inhibition. We define transcriptional signatures of the first committed CPM-derived cardiac and skeletal myogenic progenitors, and discover surface markers to distinguish cardiac (PODXL+) from the skeletal muscle (CDH4+) CPM derivatives. These tools open an accessible window on this developmentally and evolutionarily important population.

  8. Age-Dependent Effect of Pediatric Cardiac Progenitor Cells After Juvenile Heart Failure

    PubMed Central

    Agarwal, Udit; Smith, Amanda W.; French, Kristin M.; Boopathy, Archana V.; George, Alex; Trac, David; Brown, Milton E.; Shen, Ming; Jiang, Rong; Fernandez, Janet D.; Kogon, Brian E.; Kanter, Kirk R.; Alsoufi, Baahaldin; Wagner, Mary B.; Platt, Manu O.

    2016-01-01

    Children with congenital heart diseases have increased morbidity and mortality, despite various surgical treatments, therefore warranting better treatment strategies. Here we investigate the role of age of human pediatric cardiac progenitor cells (hCPCs) on ventricular remodeling in a model of juvenile heart failure. hCPCs isolated from children undergoing reconstructive surgeries were divided into 3 groups based on age: neonate (1 day to 1 month), infant (1 month to 1 year), and child (1 to 5 years). Adolescent athymic rats were subjected to sham or pulmonary artery banding surgery to generate a model of right ventricular (RV) heart failure. Two weeks after surgery, hCPCs were injected in RV musculature noninvasively. Analysis of cardiac function 4 weeks post-transplantation demonstrated significantly increased tricuspid annular plane systolic excursion and RV ejection fraction and significantly decreased wall thickness and fibrosis in rats transplanted with neonatal hCPCs compared with saline-injected rats. Computational modeling and systems biology analysis were performed on arrays and gave insights into potential mechanisms at the microRNA and gene level. Mechanisms including migration and proliferation assays, as suggested by computational modeling, showed improved chemotactic and proliferative capacity of neonatal hCPCs compared with infant/child hCPCs. In vivo immunostaining further suggested increased recruitment of stem cell antigen 1-positive cells in the right ventricle. This is the first study to assess the role of hCPC age in juvenile RV heart failure. Interestingly, the reparative potential of hCPCs is age-dependent, with neonatal hCPCs exerting the maximum beneficial effect compared with infant and child hCPCs. Significance Stem cell therapy for children with congenital heart defects is moving forward, with several completed and ongoing clinical trials. Although there are studies showing how children differ from adults, few focus on the differences

  9. The lectin of Dolichos biflorus agglutinin recognises glycan epitopes on the surface of a subset of cardiac progenitor cells.

    PubMed

    Chen, Zhanfeng; Wang, Man; Xiang, Qiang; Sun, Zhenliang; Zhang, Rong

    2013-11-01

    The discovery of adult cardiac progenitor cells (CPCs) provides a promising way for treating heart disease; however, their surface characteristics that play a critical role in regulating their maintenance, self-renewal, migration, and differentiation have not been fully investigated. One subpopulation of Dolichos biflorus agglutinin (DBA)-positive cells was identified in the heart of adult mice. Flow cytometry showed that 3.7% of heart cells could be labeled by FITC conjugated DBA. BrdU pulse-chase showed that 55-75% of DBA(+) cells were CPCs. Evidences from 5-FU-induced myelosuppression along with BrdU pulse-chasing suggests that DBA-positive cells are proliferative. Furthermore, DBA positive cells display a cologenic appearance in vivo. Our findings suggest that DBA-positive cells in the heart of adult mouse contained a subset of CPCs, and DBA reactivity is one novel surface characteristic on CPCs.

  10. Resveratrol Treatment Reduces Cardiac Progenitor Cell Dysfunction and Prevents Morpho-Functional Ventricular Remodeling in Type-1 Diabetic Rats

    PubMed Central

    Delucchi, Francesca; Berni, Roberta; Frati, Caterina; Cavalli, Stefano; Graiani, Gallia; Sala, Roberto; Chaponnier, Christine; Gabbiani, Giulio; Calani, Luca; Rio, Daniele Del; Bocchi, Leonardo; Lagrasta, Costanza; Quaini, Federico; Stilli, Donatella

    2012-01-01

    Emerging evidence suggests that both adult cardiac cell and the cardiac stem/progenitor cell (CSPC) compartments are involved in the patho-physiology of diabetic cardiomyopathy (DCM). We evaluated whether early administration of Resveratrol, a natural antioxidant polyphenolic compound, in addition to improving cardiomyocyte function, exerts a protective role on (i) the progenitor cell pool, and (ii) the myocardial environment and its impact on CSPCs, positively interfering with the onset of DCM phenotype. Adult Wistar rats (n = 128) with streptozotocin-induced type-1 diabetes were either untreated (D group; n = 54) or subjected to administration of trans-Resveratrol (i.p. injection: 2.5 mg/Kg/day; DR group; n = 64). Twenty-five rats constituted the control group (C). After 1, 3 or 8 weeks of hyperglycemia, we evaluated cardiac hemodynamic performance, and cardiomyocyte contractile properties and intracellular calcium dynamics. Myocardial remodeling and tissue inflammation were also assessed by morphometry, immunohistochemistry and immunoblotting. Eventually, the impact of the diabetic “milieu” on CSPC turnover was analyzed in co-cultures of healthy CSPCs and cardiomyocytes isolated from D and DR diabetic hearts. In untreated animals, cardiac function was maintained during the first 3 weeks of hyperglycemia, although a definite ventricular remodeling was already present, mainly characterized by a marked loss of CSPCs and adult cardiac cells. Relevant signs of ventricular dysfunction appeared after 8 weeks of diabetes, and included: 1) a significant reduction in ±dP/dt in comparison with C group, 2) a prolongation of isovolumic contraction/relaxation times, 3) an impaired contraction of isolated cardiomyocytes associated with altered intracellular calcium dynamics. Resveratrol administration reduced atrial CSPC loss, succeeded in preserving the functional abilities of CSPCs and mature cardiac cells, improved cardiac environment by reducing

  11. Three-dimensional perfusion cultivation of human cardiac-derived progenitors facilitates their expansion while maintaining progenitor state.

    PubMed

    Kryukov, Olga; Ruvinov, Emil; Cohen, Smadar

    2014-11-01

    The therapeutic application of autologous cardiac-derived progenitor cells (CPCs) requires a large cell quantity generated under defined conditions. Herein, we investigated the applicability of a three-dimensional (3D) perfusion cultivation system to facilitate the expansion of CPCs harvested from human heart biopsies and characterized by a relatively high percentage of c-kit(+) cells. The cells were seeded in macroporous alginate scaffolds and after cultivation for 7 days under static conditions, some of the constructs were transferred into a perfusion bioreactor, which was operated for an additional 14 days. A robust and highly reproducible human CPC (hCPC) expansion of more than seven-fold was achieved under the 3D perfusion culture conditions, while under static conditions, the expansion of CPCs was limited only to the first 7 days, after which it leveled-off. On day 21 of perfusion cultivation, the expanded cells exhibited a higher expression level of the progenitor marker c-kit, suggesting that the c-kit-positive CPCs are the main cell population undergoing proliferation. The profile of the spontaneous differentiation in the perfused construct was different from that in the static cultivated constructs; genes typical for cardiac and endothelial cell lineages were more widely expressed in the perfused constructs. By contrast, the differentiation to osteogenic (Von Kossa staining and alkaline phosphatase activity) and adipogenic (Oil Red staining) lineages was reduced in the perfused constructs compared with static cultivated constructs. Collectively, our results indicate that 3D perfusion cultivation mode is an appropriate system for robust expansion of human CPCs while maintaining their progenitor state and differentiation potential into the cardiovascular cell lineages.

  12. Cardiac progenitors derived from reprogrammed mesenchymal stem cells contribute to angiomyogenic repair of the infarcted heart.

    PubMed

    Buccini, Stephanie; Haider, Khawaja Husnain; Ahmed, Rafeeq P H; Jiang, Shujia; Ashraf, Muhammad

    2012-11-01

    The strategy to reprogram somatic stem cells to pluripotency status has provided an alternative source of surrogate ES cells (ESC). We report efficient reprogramming of multipotent bone marrow (BM) mesenchymal stem cells (MSC) to pluripotent status and the resultant MSC derived iPS cells (MiPS) and their derived progenitors effectively repaired the infarcted heart. MSC from young, male, Oct4-GFP transgenic mice were reprogrammed by retroviral transduction with Oct4, Sox2, Klf4, and c-Myc stemness factors. MiPS thus generated displayed characteristics of mouse ESC including morphology, surface antigens, gene and miR expression profiles. MiPS also formed spontaneously beating cardiac progenitors which expressed cardiac specific transcription factors and protein markers including Gata4, Mef2c, Nkx2.5, myosin heavy chain, troponin-I, and troponin-T, and showed ultra structural characteristics typical of cardiomyocytes. Intramyocardial delivery of MiPS (group-2) and their derivative cardiac-like cells (MiPS-CP; group-3) in a mouse model of acute myocardial infarction showed extensive survival and engraftment at 4 weeks with resultant attenuation of infarct size (p < 0.001 vs. DMEM injected control; n = 4). Engraftment of MiPS-CP was without cardiac tumorigenesis as compared to 21 % in MiPS transplanted animals. Furthermore, angiogenesis was improved in groups-2 and 3 (p < 0.001 vs. control). Transthoracic echocardiography revealed significantly preserved indices of cardiac contractility (ejection fraction p < 0.001 and fractional shortening p < 0.001 vs. control; n = 7). MSC were successfully reprogrammed into MiPS that displayed ESC-like characteristics and differentiated into spontaneously beating cardiomyocytes. Cardiac progenitors derived from MiPS repopulated the infarcted heart without tumorigenesis and improved global cardiac function.

  13. Generation of Functional Human Cardiac Progenitor Cells by High-Efficiency Protein Transduction

    PubMed Central

    Li, Xiao-Hong; Li, Qianqian; Jiang, Lin; Deng, Chunyu; Liu, Zaiyi; Fu, Yongheng; Zhang, Mengzhen; Tan, Honghong; Feng, Yuliang; Shan, Zhixin

    2015-01-01

    The reprogramming of fibroblasts to induced pluripotent stem cells raises the possibility that somatic cells could be directly reprogrammed to cardiac progenitor cells (CPCs). The present study aimed to assess highly efficient protein-based approaches to reduce or eliminate the genetic manipulations to generate CPCs for cardiac regeneration therapy. A combination of QQ-reagent-modified Gata4, Hand2, Mef2c, and Tbx5 and three cytokines rapidly and efficiently reprogrammed human dermal fibroblasts (HDFs) into CPCs. This reprogramming process enriched trimethylated histone H3 lysine 4, monoacetylated histone H3 lysine 9, and Baf60c at the Nkx2.5 cardiac enhancer region by the chromatin immunoprecipitation quantitative polymerase chain reaction assay. Protein-induced CPCs transplanted into rat hearts after myocardial infarction improved cardiac function, and this was related to differentiation into cardiomyocyte-like cells. These findings demonstrate that the highly efficient protein-transduction method can directly reprogram HDFs into CPCs. This protein reprogramming strategy lays the foundation for future refinements both in vitro and in vivo and might provide a source of CPCs for regenerative approaches. Significance The findings from the present study have demonstrated an efficient protein-transduction method of directly reprogramming fibroblasts into cardiac progenitor cells. These results have great potential in cell-based therapy for cardiovascular diseases. PMID:26564862

  14. The modulation of cardiac progenitor cell function by hydrogel-dependent Notch1 activation.

    PubMed

    Boopathy, Archana V; Che, Pao Lin; Somasuntharam, Inthirai; Fiore, Vincent F; Cabigas, E Bernadette; Ban, Kiwon; Brown, Milton E; Narui, Yoshie; Barker, Thomas H; Yoon, Young-Sup; Salaita, Khalid; García, Andrés J; Davis, Michael E

    2014-09-01

    Myocardial infarction is the leading cause of death worldwide and phase I clinical trials utilizing cardiac progenitor cells (CPCs) have shown promising outcomes. Notch1 signaling plays a critical role in cardiac development and in the survival, cardiogenic lineage commitment, and differentiation of cardiac stem/progenitor cells. In this study, we functionalized self-assembling peptide (SAP) hydrogels with a peptide mimic of the Notch1 ligand Jagged1 (RJ) to evaluate the therapeutic benefit of CPC delivery in the hydrogels in a rat model of myocardial infarction. The behavior of CPCs cultured in the 3D hydrogels in vitro including gene expression, proliferation, and growth factor production was evaluated. Interestingly, we observed Notch1 activation to be dependent on hydrogel polymer density/stiffness with synergistic increase in presence of RJ. Our results show that RJ mediated Notch1 activation depending on hydrogel concentration differentially regulated cardiogenic gene expression, proliferation, and growth factor production in CPCs in vitro. In rats subjected to experimental myocardial infarction, improvement in acute retention and cardiac function was observed following cell therapy in RJ hydrogels compared to unmodified or scrambled peptide containing hydrogels. This study demonstrates the potential therapeutic benefit of functionalizing SAP hydrogels with RJ for CPC based cardiac repair.

  15. Electrical stimulation of cardiac adipose tissue-derived progenitor cells modulates cell phenotype and genetic machinery.

    PubMed

    Llucià-Valldeperas, A; Sanchez, B; Soler-Botija, C; Gálvez-Montón, C; Prat-Vidal, C; Roura, S; Rosell-Ferrer, J; Bragos, R; Bayes-Genis, A

    2015-11-01

    A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. Our aim was to examine the effect of electrical stimulation on the cardiodifferentiation potential of cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs). Three different electrical stimulation protocols were tested; the selected protocol consisted of 2 ms monophasic square-wave pulses of 50 mV/cm at 1 Hz over 14 days. Cardiac and subcutaneous ATDPCs were grown on biocompatible patterned surfaces. Cardiomyogenic differentiation was examined by real-time PCR and immunocytofluorescence. In cardiac ATDPCs, MEF2A and GATA-4 were significantly upregulated at day 14 after stimulation, while subcutaneous ATDPCs only exhibited increased Cx43 expression. In response to electrical stimulation, cardiac ATDPCs elongated, and both cardiac and subcutaneous ATDPCs became aligned following the linear surface pattern of the construct. Cardiac ATDPC length increased by 11.3%, while subcutaneous ATDPC length diminished by 11.2% (p = 0.013 and p = 0.030 vs unstimulated controls, respectively). Compared to controls, electrostimulated cells became aligned better to the patterned surfaces when the pattern was perpendicular to the electric field (89.71 ± 28.47º for cardiac ATDPCs and 92.15 ± 15.21º for subcutaneous ATDPCs). Electrical stimulation of cardiac ATDPCs caused changes in cell phenotype and genetic machinery, making them more suitable for cardiac regeneration approaches. Thus, it seems advisable to use electrical cell training before delivery as a cell suspension or within engineered tissue.

  16. Functional Effect of Pim1 Depends upon Intracellular Localization in Human Cardiac Progenitor Cells.

    PubMed

    Samse, Kaitlen; Emathinger, Jacqueline; Hariharan, Nirmala; Quijada, Pearl; Ilves, Kelli; Völkers, Mirko; Ormachea, Lucia; De La Torre, Andrea; Orogo, Amabel M; Alvarez, Roberto; Din, Shabana; Mohsin, Sadia; Monsanto, Megan; Fischer, Kimberlee M; Dembitsky, Walter P; Gustafsson, Åsa B; Sussman, Mark A

    2015-05-29

    Human cardiac progenitor cells (hCPC) improve heart function after autologous transfer in heart failure patients. Regenerative potential of hCPCs is severely limited with age, requiring genetic modification to enhance therapeutic potential. A legacy of work from our laboratory with Pim1 kinase reveals effects on proliferation, survival, metabolism, and rejuvenation of hCPCs in vitro and in vivo. We demonstrate that subcellular targeting of Pim1 bolsters the distinct cardioprotective effects of this kinase in hCPCs to increase proliferation and survival, and antagonize cellular senescence. Adult hCPCs isolated from patients undergoing left ventricular assist device implantation were engineered to overexpress Pim1 throughout the cell (PimWT) or targeted to either mitochondrial (Mito-Pim1) or nuclear (Nuc-Pim1) compartments. Nuc-Pim1 enhances stem cell youthfulness associated with decreased senescence-associated β-galactosidase activity, preserved telomere length, reduced expression of p16 and p53, and up-regulation of nucleostemin relative to PimWT hCPCs. Alternately, Mito-Pim1 enhances survival by increasing expression of Bcl-2 and Bcl-XL and decreasing cell death after H2O2 treatment, thereby preserving mitochondrial integrity superior to PimWT. Mito-Pim1 increases the proliferation rate by up-regulation of cell cycle modulators Cyclin D, CDK4, and phospho-Rb. Optimal stem cell traits such as proliferation, survival, and increased youthful properties of aged hCPCs are enhanced after targeted Pim1 localization to mitochondrial or nuclear compartments. Targeted Pim1 overexpression in hCPCs allows for selection of the desired phenotypic properties to overcome patient variability and improve specific stem cell characteristics.

  17. Magnetic Resonance Imaging of Iron Oxide-Labeled Human Embryonic Stem Cell-Derived Cardiac Progenitors

    PubMed Central

    Skelton, Rhys J.P.; Khoja, Suhail; Almeida, Shone; Rapacchi, Stanislas; Han, Fei; Engel, James; Zhao, Peng; Hu, Peng; Stanley, Edouard G.; Elefanty, Andrew G.; Kwon, Murray

    2016-01-01

    Given the limited regenerative capacity of the heart, cellular therapy with stem cell-derived cardiac cells could be a potential treatment for patients with heart disease. However, reliable imaging techniques to longitudinally assess engraftment of the transplanted cells are scant. To address this issue, we used ferumoxytol as a labeling agent of human embryonic stem cell-derived cardiac progenitor cells (hESC-CPCs) to facilitate tracking by magnetic resonance imaging (MRI) in a large animal model. Differentiating hESCs were exposed to ferumoxytol at different time points and varying concentrations. We determined that treatment with ferumoxytol at 300 μg/ml on day 0 of cardiac differentiation offered adequate cell viability and signal intensity for MRI detection without compromising further differentiation into definitive cardiac lineages. Labeled hESC-CPCs were transplanted by open surgical methods into the left ventricular free wall of uninjured pig hearts and imaged both ex vivo and in vivo. Comprehensive T2*-weighted images were obtained immediately after transplantation and 40 days later before termination. The localization and dispersion of labeled cells could be effectively imaged and tracked at days 0 and 40 by MRI. Thus, under the described conditions, ferumoxytol can be used as a long-term, differentiation-neutral cell-labeling agent to track transplanted hESC-CPCs in vivo using MRI. Significance The development of a safe and reproducible in vivo imaging technique to track the fate of transplanted human embryonic stem cell-derived cardiac progenitor cells (hESC-CPCs) is a necessary step to clinical translation. An iron oxide nanoparticle (ferumoxytol)-based approach was used for cell labeling and subsequent in vivo magnetic resonance imaging monitoring of hESC-CPCs transplanted into uninjured pig hearts. The present results demonstrate the use of ferumoxytol labeling and imaging techniques in tracking the location and dispersion of cell grafts

  18. Transcription factor-induced activation of cardiac gene expression in human c-kit+ cardiac progenitor cells

    PubMed Central

    Vajravelu, Bathri N.; Moktar, Afsoon; Cao, Pengxiao; Moore, Joseph B.; Bolli, Roberto

    2017-01-01

    Although transplantation of c-kit+ cardiac progenitor cells (CPCs) significantly alleviates post-myocardial infarction left ventricular dysfunction, generation of cardiomyocytes by exogenous CPCs in the recipient heart has often been limited. Inducing robust differentiation would be necessary for improving the efficacy of the regenerative cardiac cell therapy. We assessed the hypothesis that differentiation of human c-kit+ CPCs can be enhanced by priming them with cardiac transcription factors (TFs). We introduced five different TFs (Gata4, MEF2C, NKX2.5, TBX5, and BAF60C) into CPCs, either alone or in combination, and then examined the expression of marker genes associated with the major cardiac cell types using quantitative RT-PCR. When introduced individually, Gata4 and TBX5 induced a subset of myocyte markers. Moreover, Gata4 alone significantly induced smooth muscle cell and fibroblast markers. Interestingly, these gene expression changes brought by Gata4 were also accompanied by morphological changes. In contrast, MEF2C and NKX2.5 were largely ineffective in initiating cardiac gene expression in CPCs. Surprisingly, introduction of multiple TFs in different combinations mostly failed to act synergistically. Likewise, addition of BAF60C to Gata4 and/or TBX5 did not further potentiate their effects on cardiac gene expression. Based on our results, it appears that GATA4 is able to potentiate gene expression programs associated with multiple cardiovascular lineages in CPCs, suggesting that GATA4 may be effective in priming CPCs for enhanced differentiation in the setting of stem cell therapy. PMID:28355297

  19. Transcription factor-induced activation of cardiac gene expression in human c-kit+ cardiac progenitor cells.

    PubMed

    Al-Maqtari, Tareq; Hong, Kyung U; Vajravelu, Bathri N; Moktar, Afsoon; Cao, Pengxiao; Moore, Joseph B; Bolli, Roberto

    2017-01-01

    Although transplantation of c-kit+ cardiac progenitor cells (CPCs) significantly alleviates post-myocardial infarction left ventricular dysfunction, generation of cardiomyocytes by exogenous CPCs in the recipient heart has often been limited. Inducing robust differentiation would be necessary for improving the efficacy of the regenerative cardiac cell therapy. We assessed the hypothesis that differentiation of human c-kit+ CPCs can be enhanced by priming them with cardiac transcription factors (TFs). We introduced five different TFs (Gata4, MEF2C, NKX2.5, TBX5, and BAF60C) into CPCs, either alone or in combination, and then examined the expression of marker genes associated with the major cardiac cell types using quantitative RT-PCR. When introduced individually, Gata4 and TBX5 induced a subset of myocyte markers. Moreover, Gata4 alone significantly induced smooth muscle cell and fibroblast markers. Interestingly, these gene expression changes brought by Gata4 were also accompanied by morphological changes. In contrast, MEF2C and NKX2.5 were largely ineffective in initiating cardiac gene expression in CPCs. Surprisingly, introduction of multiple TFs in different combinations mostly failed to act synergistically. Likewise, addition of BAF60C to Gata4 and/or TBX5 did not further potentiate their effects on cardiac gene expression. Based on our results, it appears that GATA4 is able to potentiate gene expression programs associated with multiple cardiovascular lineages in CPCs, suggesting that GATA4 may be effective in priming CPCs for enhanced differentiation in the setting of stem cell therapy.

  20. Multipotent adult progenitor cells on an allograft scaffold facilitate the bone repair process

    PubMed Central

    LoGuidice, Amanda; Houlihan, Alison; Deans, Robert

    2016-01-01

    Multipotent adult progenitor cells are a recently described population of stem cells derived from the bone marrow stroma. Research has demonstrated the potential of multipotent adult progenitor cells for treating ischemic injury and cardiovascular repair; however, understanding of multipotent adult progenitor cells in orthopedic applications remains limited. In this study, we evaluate the osteogenic and angiogenic capacity of multipotent adult progenitor cells, both in vitro and loaded onto demineralized bone matrix in vivo, with comparison to mesenchymal stem cells, as the current standard. When compared to mesenchymal stem cells, multipotent adult progenitor cells exhibited a more robust angiogenic protein release profile in vitro and developed more extensive vasculature within 2 weeks in vivo. The establishment of this vascular network is critical to the ossification process, as it allows nutrient exchange and provides an influx of osteoprogenitor cells to the wound site. In vitro assays confirmed the multipotency of multipotent adult progenitor cells along mesodermal lineages and demonstrated the enhanced expression of alkaline phosphatase and production of calcium-containing mineral deposits by multipotent adult progenitor cells, necessary precursors for osteogenesis. In combination with a demineralized bone matrix scaffold, multipotent adult progenitor cells demonstrated enhanced revascularization and new bone formation in vivo in an orthotopic defect model when compared to mesenchymal stem cells on demineralized bone matrix or demineralized bone matrix–only control groups. The potent combination of angiogenic and osteogenic properties provided by multipotent adult progenitor cells appears to create a synergistic amplification of the bone healing process. Our results indicate that multipotent adult progenitor cells have the potential to better promote tissue regeneration and healing and to be a functional cell source for use in orthopedic applications

  1. Ultrastructural evidence of exosome secretion by progenitor cells in adult mouse myocardium and adult human cardiospheres.

    PubMed

    Barile, Lucio; Gherghiceanu, Mihaela; Popescu, Laurentiu M; Moccetti, Tiziano; Vassalli, Giuseppe

    2012-01-01

    The demonstration of beneficial effects of cell therapy despite the persistence of only few transplanted cells in vivo suggests secreted factors may be the active component of this treatment. This so-called paracrine hypothesis is supported by observations that culture media conditioned by progenitor cells contain growth factors that mediate proangiogenic and cytoprotective effects. Cardiac progenitor cells in semi-suspension culture form spherical clusters (cardiospheres) that deliver paracrine signals to neighboring cells. A key component of paracrine secretion is exosomes, membrane vesicles that are stored intracellularly in endosomal compartments and are secreted when these structures fuse with the cell plasma membrane. Exosomes have been identified as the active component of proangiogenic effects of bone marrow CD34⁺ stem cells in mice and the regenerative effects of embryonic mesenchymal stem cells in infarcted hearts in pigs and mice. Here, we provide electron microscopic evidence of exosome secretion by progenitor cells in mouse myocardium and human cardiospheres. Exosomes are emerging as an attractive vector of paracrine signals delivered by progenitor cells. They can be stored as an "off-the-shelf" product. As such, exosomes have the potential for circumventing many of the limitations of viable cells for therapeutic applications in regenerative medicine.

  2. Transplantation of multipotent Isl1+ cardiac progenitor cells preserves infarcted heart function in mice

    PubMed Central

    Li, Yunpeng; Tian, Shuo; Lei, Ienglam; Liu, Liu; Ma, Peter; Wang, Zhong

    2017-01-01

    Cell-based cardiac therapy is a promising therapeutic strategy to restore heart function after myocardial infarction (MI). However, the cell type selection and ensuing effects remain controversial. Here, we intramyocardially injected Isl1+ cardiac progenitor cells (CPCs) derived from EGFP/luciferase double-tagged mouse embryonic stem (dt-mES) cells with vehicle (fibrin gel) or phosphate-buffered saline (PBS) into the infarcted area in nude mice to assess the contribution of CPCs to the recovery of cardiac function post-MI. Our results showed that Isl1+ CPCs differentiated normally into three cardiac lineages (cardiomyocytes (CMs), endothelial cells and smooth muscle cells) both on cell culture plates and in fibrin gel. Cell retention was significantly increased when the transplanted cells were injected with vehicle. Importantly, 28 days after injection, CPCs were observed to differentiate into CMs within the infarcted area. Moreover, numerous CD31+ endothelial cells derived from endogenous revascularization and differentiation of the injected CPCs were detected. SMMHC-, Ki67- and CX-43-positive cells were identified in the injected CPC population, further demonstrating the proliferation, differentiation and integration of the transplanted CPCs in host cells. Furthermore, animal hearts injected with CPCs showed increased angiogenesis, decreased infarct size, and improved heart function. In conclusion, our studies showed that Isl1+ CPCs, when combined with a suitable vehicle, can produce notable therapeutic effects in the infarcted heart, suggesting that CPCs might be an ideal cell source for cardiac therapy. PMID:28386378

  3. Transplantation of multipotent Isl1+ cardiac progenitor cells preserves infarcted heart function in mice.

    PubMed

    Li, Yunpeng; Tian, Shuo; Lei, Ienglam; Liu, Liu; Ma, Peter; Wang, Zhong

    2017-01-01

    Cell-based cardiac therapy is a promising therapeutic strategy to restore heart function after myocardial infarction (MI). However, the cell type selection and ensuing effects remain controversial. Here, we intramyocardially injected Isl1+ cardiac progenitor cells (CPCs) derived from EGFP/luciferase double-tagged mouse embryonic stem (dt-mES) cells with vehicle (fibrin gel) or phosphate-buffered saline (PBS) into the infarcted area in nude mice to assess the contribution of CPCs to the recovery of cardiac function post-MI. Our results showed that Isl1+ CPCs differentiated normally into three cardiac lineages (cardiomyocytes (CMs), endothelial cells and smooth muscle cells) both on cell culture plates and in fibrin gel. Cell retention was significantly increased when the transplanted cells were injected with vehicle. Importantly, 28 days after injection, CPCs were observed to differentiate into CMs within the infarcted area. Moreover, numerous CD31+ endothelial cells derived from endogenous revascularization and differentiation of the injected CPCs were detected. SMMHC-, Ki67- and CX-43-positive cells were identified in the injected CPC population, further demonstrating the proliferation, differentiation and integration of the transplanted CPCs in host cells. Furthermore, animal hearts injected with CPCs showed increased angiogenesis, decreased infarct size, and improved heart function. In conclusion, our studies showed that Isl1+ CPCs, when combined with a suitable vehicle, can produce notable therapeutic effects in the infarcted heart, suggesting that CPCs might be an ideal cell source for cardiac therapy.

  4. Beta2-adrenergic signaling affects the phenotype of human cardiac progenitor cells through EMT modulation.

    PubMed

    Pagano, Francesca; Angelini, Francesco; Siciliano, Camilla; Tasciotti, Julia; Mangino, Giorgio; De Falco, Elena; Carnevale, Roberto; Sciarretta, Sebastiano; Frati, Giacomo; Chimenti, Isotta

    2017-01-15

    Human cardiac progenitor cells (CPCs) offer great promises to cardiac cell therapy for heart failure. Many in vivo studies have shown their therapeutic benefits, paving the way for clinical translation. The 3D model of cardiospheres (CSs) represents a unique niche-like in vitro microenvironment, which includes CPCs and supporting cells. CSs have been shown to form through a process mediated by epithelial-to-mesenchymal transition (EMT). β2-Adrenergic signaling significantly affects stem/progenitor cells activation and mobilization in multiple tissues, and crosstalk between β2-adrenergic signaling and EMT processes has been reported. In the present study, we aimed at investigating the biological response of CSs to β2-adrenergic stimuli, focusing on EMT modulation in the 3D culture system of CSs. We treated human CSs and CS-derived cells (CDCs) with the β2-blocker butoxamine (BUT), using either untreated or β2 agonist (clenbuterol) treated CDCs as control. BUT-treated CS-forming cells displayed increased migration capacity and a significant increase in their CS-forming ability, consistently associated with increased expression of EMT-related genes, such as Snai1. Moreover, long-term BUT-treated CDCs contained a lower percentage of CD90+ cells, and this feature has been previously correlated with higher cardiogenic and therapeutic potential of the CDCs population. In addition, long-term BUT-treated CDCs had an increased ratio of collagen-III/collagen-I gene expression levels, and showed decreased release of inflammatory cytokines, overall supporting a less fibrosis-prone phenotype. In conclusion, β2 adrenergic receptor block positively affected the stemness vs commitment balance within CSs through the modulation of type1-EMT (so called "developmental"). These results further highlight type-1 EMT to be a key process affecting the features of resident cardiac progenitor cells, and mediating their response to the microenvironment.

  5. Targeting chronic cardiac remodeling with cardiac progenitor cells in a murine model of ischemia/reperfusion injury

    PubMed Central

    Deddens, Janine C.; Feyen, Dries A.; Zwetsloot, Peter-Paul; Brans, Maike A.; Siddiqi, Sailay; van Laake, Linda W.; Doevendans, Pieter A.; Sluijter, Joost P.

    2017-01-01

    Background Translational failure for cardiovascular disease is a substantial problem involving both high research costs and an ongoing lack of novel treatment modalities. Despite the progress already made, cell therapy for chronic heart failure in the clinical setting is still hampered by poor translation. We used a murine model of chronic ischemia/reperfusion injury to examine the effect of minimally invasive application of cardiac progenitor cells (CPC) in cardiac remodeling and to improve clinical translation. Methods 28 days after the induction of I/R injury, mice were randomized to receive either CPC (0.5 million) or vehicle by echo-guided intra-myocardial injection. To determine retention, CPC were localized in vivo by bioluminescence imaging (BLI) two days after injection. Cardiac function was assessed by 3D echocardiography and speckle tracking analysis to quantify left ventricular geometry and regional myocardial deformation. Results BLI demonstrated successful injection of CPC (18/23), which were mainly located along the needle track in the anterior/septal wall. Although CPC treatment did not result in overall restoration of cardiac function, a relative preservation of the left ventricular end-diastolic volume was observed at 4 weeks follow-up compared to vehicle control (+5.3 ± 2.1 μl vs. +10.8 ± 1.5 μl). This difference was reflected in an increased strain rate (+16%) in CPC treated mice. Conclusions CPC transplantation can be adequately studied in chronic cardiac remodeling using this study set-up and by that provide a translatable murine model facilitating advances in research for new therapeutic approaches to ultimately improve therapy for chronic heart failure. PMID:28319168

  6. Accumulation of Mitochondrial DNA Mutations Disrupts Cardiac Progenitor Cell Function and Reduces Survival.

    PubMed

    Orogo, Amabel M; Gonzalez, Eileen R; Kubli, Dieter A; Baptista, Igor L; Ong, Sang-Bing; Prolla, Tomas A; Sussman, Mark A; Murphy, Anne N; Gustafsson, Åsa B

    2015-09-04

    Transfer of cardiac progenitor cells (CPCs) improves cardiac function in heart failure patients. However, CPC function is reduced with age, limiting their regenerative potential. Aging is associated with numerous changes in cells including accumulation of mitochondrial DNA (mtDNA) mutations, but it is unknown how this impacts CPC function. Here, we demonstrate that acquisition of mtDNA mutations disrupts mitochondrial function, enhances mitophagy, and reduces the replicative and regenerative capacities of the CPCs. We show that activation of differentiation in CPCs is associated with expansion of the mitochondrial network and increased mitochondrial oxidative phosphorylation. Interestingly, mutant CPCs are deficient in mitochondrial respiration and rely on glycolysis for energy. In response to differentiation, these cells fail to activate mitochondrial respiration. This inability to meet the increased energy demand leads to activation of cell death. These findings demonstrate the consequences of accumulating mtDNA mutations and the importance of mtDNA integrity in CPC homeostasis and regenerative potential.

  7. 8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish

    SciTech Connect

    Yan, Lifeng; Zhou, Yong; Yu, Shanhe; Ji, Guixiang; Liu, Wei; Gu, Aihua

    2013-11-15

    Genomic damage may devastate the potential of progenitor cells and consequently impair early organogenesis. We found that ogg1, a key enzyme initiating the base-excision repair, was enriched in the embryonic heart in zebrafish. So far, little is known about DNA repair in cardiogenesis. Here, we addressed the critical role of ogg1 in cardiogenesis for the first time. ogg1 mainly expressed in the anterior lateral plate mesoderm (ALPM), the primary heart tube, and subsequently the embryonic myocardium by in situ hybridisation. Loss of ogg1 resulted in severe cardiac morphogenesis and functional abnormalities, including the short heart length, arrhythmia, decreased cardiomyocytes and nkx2.5{sup +} cardiac progenitor cells. Moreover, the increased apoptosis and repressed proliferation of progenitor cells caused by ogg1 deficiency might contribute to the heart phenotype. The microarray analysis showed that the expression of genes involved in embryonic heart tube morphogenesis and heart structure were significantly changed due to the lack of ogg1. Among those, foxh1 is an important partner of ogg1 in the cardiac development in response to DNA damage. Our work demonstrates the requirement of ogg1 in cardiac progenitors and heart development in zebrafish. These findings may be helpful for understanding the aetiology of congenital cardiac deficits. - Highlights: • A key DNA repair enzyme ogg1 is expressed in the embryonic heart in zebrafish. • We found that ogg1 is essential for normal cardiac morphogenesis in zebrafish. • The production of embryonic cardiomyocytes requires appropriate ogg1 expression. • Ogg1 critically regulated proliferation of cardiac progenitor cells in zebrafish. • foxh1 is a partner of ogg1 in the cardiac development in response to DNA damage.

  8. Mature Cardiac Teratoma in an Adult

    PubMed Central

    Cohen, Ronny A; Loarte, Pablo; Navarro, Victor; Mirrer, Brooks

    2012-01-01

    The incidental diagnosis in adult age is very unusual and the presence of clinical symptoms is related to its location, which is most commonly intrapericardial. The presence of intramyocardial teratoma lesions is even rarer and has been reported in few publications. The recommendations for the diagnosis and management of a cardiac teratoma depends upon the imaging studies and the pathological report after surgical excision. The prognosis of surgically treated patient is very good and a complete surgical excision is preferred in order to avoid complications.

  9. Frs2α-deficiency in cardiac progenitors disrupts a subset of FGF signals required for outflow tract morphogenesis

    PubMed Central

    Zhang, Jue; Lin, Yongshun; Zhang, Yongyou; Lan, Yongsheng; Lin, Chunhong; Moon, Anne M.; Schwartz, Robert J.; Martin, James F.; Wang, Fen

    2009-01-01

    Summary The cardiac outflow tract (OFT) is a developmentally complex structure derived from multiple lineages and is often defective in human congenital anomalies. While emerging evidence shows that the fibroblast growth factor (FGF) is essential for OFT development, the downstream pathways mediating FGF-signaling in cardiac progenitors remain poorly understood. Here, we report that FRS2α, an adaptor protein that links FGF receptor kinases to multiple signaling pathways, mediates critical aspects of FGF-dependent OFT development. Ablation of Frs2α in mesodermal OFT progenitor cells that originate in the second heart field (SHF) affects their expansion into the OFT myocardium, resulting in OFT misalignment and hypoplasia. Moreover, Frs2α mutants had defective endothelial-mesenchymal-transition and neural crest cell recruitment into the OFT cushions, resulting in OFT septation defects. The results provide new insight into the signaling molecules downstream of FGF receptor tyrosine kinases in cardiac progenitors. PMID:18832393

  10. Fate choice of post-natal mesoderm progenitors: skeletal versus cardiac muscle plasticity.

    PubMed

    Costamagna, Domiziana; Quattrocelli, Mattia; Duelen, Robin; Sahakyan, Vardine; Perini, Ilaria; Palazzolo, Giacomo; Sampaolesi, Maurilio

    2014-02-01

    Regenerative medicine for skeletal and cardiac muscles still constitutes a fascinating and ambitious frontier. In this perspective, understanding the possibilities of intrinsic cell plasticity, present in post-natal muscles, is vital to define and improve novel therapeutic strategies for acute and chronic diseases. In addition, many somatic stem cells are now crossing the boundaries of basic/translational research to enter the first clinical trials. However, it is still an open question whether a lineage switch between skeletal and cardiac adult myogenesis is possible. Therefore, this review focuses on resident somatic stem cells of post-natal skeletal and cardiac muscles and their plastic potential toward the two lineages. Furthermore, examples of myogenic lineage switch in adult stem cells are also reported and discussed.

  11. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury

    SciTech Connect

    Chen, Lijuan; Wang, Yingjie; Pan, Yaohua; Zhang, Lan; Shen, Chengxing; Qin, Gangjian; Ashraf, Muhammad; Weintraub, Neal; Ma, Genshan; Tang, Yaoliang

    2013-02-15

    Highlights: ► Cardiac progenitor-derived (CPC) Exosomes protect H9C2 from apoptosis in vitro. ► CPC-exosomes protect cardiomyoyctes from MI/R induced apoptosis in vivo. ► CPC-exosomes were taken up by H9C2 with high efficiency using PKH26 labeling. ► miR-451, one of GATA4-responsive miRNA cluster, is enriched in CPC-exosomes. -- Abstract: Background: Cardiac progenitors (CPC) mediate cardioprotection via paracrine effects. To date, most of studies focused on secreted paracrine proteins. Here we investigated the CPC-derived-exosomes on protecting myocardium from acute ischemia/reperfusion (MI/R) injury. Methods and results: CPC were isolated from mouse heart using two-step protocol. Exosomes were purified from conditional medium, and confirmed by electron micrograph and Western blot using CD63 as a marker. qRT-PCR shows that CPC-exosomes have high level expression of GATA4-responsive-miR-451. Exosomes were ex vivo labeled with PKH26, We observed exosomes can be uptaken by H9C2 cardiomyoblasts with high efficiency after 12 h incubation. CPC-exosomes protect H9C2 from oxidative stress by inhibiting caspase 3/7 activation invitro. In vivo delivery of CPC-exosomes in an acute mouse myocardial ischemia/reperfusion model inhibited cardiomyocyte apoptosis by about 53% in comparison with PBS control (p < 0.05). Conclusion: Our results suggest, for the first time, the CPC-exosomes can be used as a therapeutic vehicle for cardioprotection, and highlights a new perspective for using non-cell exosomes for cardiac disease.

  12. Cardiac progenitor cells and bone marrow-derived very small embryonic-like stem cells for cardiac repair after myocardial infarction.

    PubMed

    Tang, Xian-Liang; Rokosh, D Gregg; Guo, Yiru; Bolli, Roberto

    2010-03-01

    Heart failure after myocardial infarction (MI) continues to be the most prevalent cause of morbidity and mortality worldwide. Although pharmaceutical agents and interventional strategies have contributed greatly to therapy, new and superior treatment modalities are urgently needed given the overall disease burden. Stem cell-based therapy is potentially a promising strategy to lead to cardiac repair after MI. An array of cell types has been explored in this respect, including skeletal myoblasts, bone marrow (BM)-derived stem cells, embryonic stem cells, and more recently, cardiac progenitor cells (CPCs). Recently studies have obtained evidence that transplantation of CPCs or BM-derived very small embryonic-like stem cells can improve cardiac function and alleviate cardiac remodeling, supporting the potential therapeutic utility of these cells for cardiac repair. This report summarizes the current data from those studies and discusses the potential implication of these cells in developing clinically-relevant stem cell-based therapeutic strategies for cardiac regeneration.

  13. Adult human liver mesenchymal progenitor cells express phenylalanine hydroxylase.

    PubMed

    Baruteau, Julien; Nyabi, Omar; Najimi, Mustapha; Fauvart, Maarten; Sokal, Etienne

    2014-09-01

    Phenylketonuria (PKU) is one of the most prevalent inherited metabolic diseases and is accountable for a severe encephalopathy by progressive intoxication of the brain by phenylalanine. This results from an ineffective L-phenylalanine hydroxylase enzyme (PAH) due to a mutated phenylalanine hydroxylase (PAH) gene. Neonatal screening programs allow an early dietetic treatment with restrictive phenylalanine intake. This diet prevents most of the neuropsychological disabilities but remains challenging for lifelong compliance. Adult-derived human liver progenitor cells (ADHLPC) are a pool of precursors that can differentiate into hepatocytes. We aim to study PAH expression and PAH activity in a differenciated ADHLPC. ADHLPC were isolated from human hepatocyte primary culture of two different donors and differenciated under specific culture conditions. We demonstrated the high expression of PAH and a large increase of PAH activity in differenciated LPC. The age of the donor, the cellular viability after liver digestion and cryopreservation affects PAH activity. ADHLPC might therefore be considered as a suitable source for cell therapy in PKU.

  14. Fibronectin and Cyclic Strain Improve Cardiac Progenitor Cell Regenerative Potential In Vitro

    PubMed Central

    Ghosh-Choudhary, Shohini; Fierro, Marcos J.; Christman, Karen L.; Taylor, W. Robert

    2016-01-01

    Cardiac progenitor cells (CPCs) have rapidly advanced to clinical trials, yet little is known regarding their interaction with the microenvironment. Signaling cues present in the microenvironment change with development and disease. This work aims to assess the influence of two distinct signaling moieties on CPCs: cyclic biaxial strain and extracellular matrix. We evaluate four endpoints for improving CPC therapy: paracrine signaling, proliferation, connexin43 expression, and alignment. Vascular endothelial growth factor A (about 900 pg/mL) was secreted by CPCs cultured on fibronectin and collagen I. The application of mechanical strain increased vascular endothelial growth factor A secretion 2–4-fold for CPCs cultured on poly-L-lysine, laminin, or a naturally derived cardiac extracellular matrix. CPC proliferation was at least 25% higher on fibronectin than that on other matrices, especially for lower strain magnitudes. At 5% strain, connexin43 expression was highest on fibronectin. With increasing strain magnitude, connexin43 expression decreased by as much as 60% in CPCs cultured on collagen I and a naturally derived cardiac extracellular matrix. Cyclic mechanical strain induced the strongest CPC alignment when cultured on fibronectin or collagen I. This study demonstrates that culturing CPCs on fibronectin with 5% strain magnitude is optimal for their vascular endothelial growth factor A secretion, proliferation, connexin43 expression, and alignment. PMID:27610140

  15. Evidence of progenitor cells of glandular and myoepithelial cell lineages in the human adult female breast epithelium: a new progenitor (adult stem) cell concept.

    PubMed

    Boecker, Werner; Buerger, Horst

    2003-10-01

    Although experimental data clearly confirm the existence of self-renewing mammary stem cells, the characteristics of such progenitor cells have never been satisfactorily defined. Using a double immunofluorescence technique for simultaneous detection of the basal cytokeratin 5, the glandular cytokeratins 8/18 and the myoepithelial differentiation marker smooth muscle actin (SMA), we were able to demonstrate the presence of CK5+ cells in human adult breast epithelium. These cells have the potential to differentiate to either glandular (CK8/18+) or myoepithelial cells (SMA+) through intermediary cells (CK5+ and CK8/18+ or SMA+). We therefore proceeded on the assumption that the CK5+ cells are phenotypically and behaviourally progenitor (committed adult stem) cells of human breast epithelium. Furthermore, we furnish evidence that most of these progenitor cells are located in the luminal epithelium of the ductal lobular tree. Based on data obtained in extensive analyses of proliferative breast disease lesions, we have come to regard usual ductal hyperplasia as a progenitor cell-derived lesion, whereas most breast cancers seem to evolve from differentiated glandular cells. Double immunofluorescence experiments provide a new tool to characterize phenotypically progenitor (adult stem) cells and their progenies. This model has been shown to be of great value for a better understanding not only of normal tissue regeneration but also of proliferative breast disease. Furthermore, this model provides a new tool for unravelling further the regulatory mechanisms that govern normal and pathological cell growth.

  16. Preclinical Evaluation of the Immunomodulatory Properties of Cardiac Adipose Tissue Progenitor Cells Using Umbilical Cord Blood Mesenchymal Stem Cells: A Direct Comparative Study

    PubMed Central

    Perea-Gil, Isaac; Monguió-Tortajada, Marta; Gálvez-Montón, Carolina; Bayes-Genis, Antoni; Borràs, Francesc E.; Roura, Santiago

    2015-01-01

    Cell-based strategies to regenerate injured myocardial tissue have emerged over the past decade, but the optimum cell type is still under scrutiny. In this context, human adult epicardial fat surrounding the heart has been characterized as a reservoir of mesenchymal-like progenitor cells (cardiac ATDPCs) with potential clinical benefits. However, additional data on the possibility that these cells could trigger a deleterious immune response following implantation are needed. Thus, in the presented study, we took advantage of the well-established low immunogenicity of umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) to comparatively assess the immunomodulatory properties of cardiac ATDPCs in an in vitro allostimulatory assay using allogeneic mature monocyte-derived dendritic cells (MDDCs). Similar to UCBMSCs, increasing amounts of seeded cardiac ATDPCs suppressed the alloproliferation of T cells in a dose-dependent manner. Secretion of proinflammatory cytokines (IL6, TNFα, and IFNγ) was also specifically modulated by the different numbers of cardiac ATDPCs cocultured. In summary, we show that cardiac ATDPCs abrogate T cell alloproliferation upon stimulation with allogeneic mature MDDCs, suggesting that they could further regulate a possible harmful immune response in vivo. Additionally, UCBMSCs can be considered as valuable tools to preclinically predict the immunogenicity of prospective regenerative cells. PMID:25861626

  17. A Twist2-dependent progenitor cell contributes to adult skeletal muscle.

    PubMed

    Liu, Ning; Garry, Glynnis A; Li, Stephen; Bezprozvannaya, Svetlana; Sanchez-Ortiz, Efrain; Chen, Beibei; Shelton, John M; Jaichander, Priscilla; Bassel-Duby, Rhonda; Olson, Eric N

    2017-03-01

    Skeletal muscle possesses remarkable regenerative potential due to satellite cells, an injury-responsive stem cell population located beneath the muscle basal lamina that expresses Pax7. By lineage tracing of progenitor cells expressing the Twist2 (Tw2) transcription factor in mice, we discovered a myogenic lineage that resides outside the basal lamina of adult skeletal muscle. Tw2(+) progenitors are molecularly and anatomically distinct from satellite cells, are highly myogenic in vitro, and can fuse with themselves and with satellite cells. Tw2(+) progenitors contribute specifically to type IIb/x myofibres during adulthood and muscle regeneration, and their genetic ablation causes wasting of type IIb myofibres. We show that Tw2 expression maintains progenitor cells in an undifferentiated state that is poised to initiate myogenesis in response to appropriate cues that extinguish Tw2 expression. Tw2-expressing myogenic progenitors represent a previously unrecognized, fibre-type-specific stem cell involved in postnatal muscle growth and regeneration.

  18. Foetal bovine serum-derived exosomes affect yield and phenotype of human cardiac progenitor cell culture

    PubMed Central

    Angelini, Francesco; Ionta, Vittoria; Rossi, Fabrizio; Miraldi, Fabio; Messina, Elisa; Giacomello, Alessandro

    2016-01-01

    Introduction: Cardiac progenitor cells (CPCs) represent a powerful tool in cardiac regenerative medicine. Pre-clinical studies suggest that most of the beneficial effects promoted by the injected cells are due to their paracrine activity exerted on endogenous cells and tissue. Exosomes are candidate mediators of this paracrine effects. According to their potential, many researchers have focused on characterizing exosomes derived from specific cell types, but, up until now, only few studies have analyzed the possible in vitro effects of bovine serum-derived exosomes on cell proliferation or differentiation. Methods: The aim of this study was to analyse, from a qualitative and quantitative point of view, the in vitro effects of bovine serum exosomes on human CPCs cultured either as cardiospheres or as monolayers of cardiosphere-forming cells. Results: Effects on proliferation, yield and molecular patterning were detected. We show, for the first time, that exogenous bovine exosomes support the proliferation and migration of human cardiosphere-forming cells, and that their depletion affects cardiospheres formation, in terms of size, yield and extra-cellular matrix production. Conclusion: These results stress the importance of considering differential biological effects of exogenous cell culture supplements on the final phenotype of primary human cell cultures. PMID:27340620

  19. Isolation, Characterization, and Differentiation of Progenitor Cells from Human Adult Adrenal Medulla

    PubMed Central

    Santana, Magda M.; Chung, Kuei-Fang; Vukicevic, Vladimir; Rosmaninho-Salgado, Joana; Kanczkowski, Waldemar; Cortez, Vera; Hackmann, Karl; Bastos, Carlos A.; Mota, Alfredo; Schrock, Evelin; Bornstein, Stefan R.; Cavadas, Cláudia

    2012-01-01

    Chromaffin cells, sympathetic neurons of the dorsal ganglia, and the intermediate small intensely fluorescent cells derive from a common neural crest progenitor cell. Contrary to the closely related sympathetic nervous system, within the adult adrenal medulla a subpopulation of undifferentiated progenitor cells persists, and recently, we established a method to isolate and differentiate these progenitor cells from adult bovine adrenals. However, no studies have elucidated the existence of adrenal progenitor cells within the human adrenal medulla. Here we describe the isolation, characterization, and differentiation of chromaffin progenitor cells obtained from adult human adrenals. Human chromaffin progenitor cells were cultured in low-attachment conditions for 10–12 days as free-floating spheres in the presence of fibroblast growth factor-2 (FGF-2) and epidermal growth factor. These primary human chromosphere cultures were characterized by the expression of several progenitor markers, including nestin, CD133, Notch1, nerve growth factor receptor, Snai2, Sox9, Sox10, Phox2b, and Ascl1 on the molecular level and of Sox9 on the immunohistochemical level. In opposition, phenylethanolamine N-methyltransferase (PNMT), a marker for differentiated chromaffin cells, significantly decreased after 12 days in culture. Moreover, when plated on poly-l-lysine/laminin-coated slides in the presence of FGF-2, human chromaffin progenitor cells were able to differentiate into two distinct neuron-like cell types, tyrosine hydroxylase (TH)+/β-3-tubulin+ cells and TH−/β-3-tubulin+ cells, and into chromaffin cells (TH+/PNMT+). This study demonstrates the presence of progenitor cells in the human adrenal medulla and reveals their potential use in regenerative medicine, especially in the treatment of neuroendocrine and neurodegenerative diseases. PMID:23197690

  20. Isolation, characterization, and differentiation of progenitor cells from human adult adrenal medulla.

    PubMed

    Santana, Magda M; Chung, Kuei-Fang; Vukicevic, Vladimir; Rosmaninho-Salgado, Joana; Kanczkowski, Waldemar; Cortez, Vera; Hackmann, Klaus; Bastos, Carlos A; Mota, Alfredo; Schrock, Evelin; Bornstein, Stefan R; Cavadas, Cláudia; Ehrhart-Bornstein, Monika

    2012-11-01

    Chromaffin cells, sympathetic neurons of the dorsal ganglia, and the intermediate small intensely fluorescent cells derive from a common neural crest progenitor cell. Contrary to the closely related sympathetic nervous system, within the adult adrenal medulla a subpopulation of undifferentiated progenitor cells persists, and recently, we established a method to isolate and differentiate these progenitor cells from adult bovine adrenals. However, no studies have elucidated the existence of adrenal progenitor cells within the human adrenal medulla. Here we describe the isolation, characterization, and differentiation of chromaffin progenitor cells obtained from adult human adrenals. Human chromaffin progenitor cells were cultured in low-attachment conditions for 10-12 days as free-floating spheres in the presence of fibroblast growth factor-2 (FGF-2) and epidermal growth factor. These primary human chromosphere cultures were characterized by the expression of several progenitor markers, including nestin, CD133, Notch1, nerve growth factor receptor, Snai2, Sox9, Sox10, Phox2b, and Ascl1 on the molecular level and of Sox9 on the immunohistochemical level. In opposition, phenylethanolamine N-methyltransferase (PNMT), a marker for differentiated chromaffin cells, significantly decreased after 12 days in culture. Moreover, when plated on poly-l-lysine/laminin-coated slides in the presence of FGF-2, human chromaffin progenitor cells were able to differentiate into two distinct neuron-like cell types, tyrosine hydroxylase (TH)(+)/β-3-tubulin(+) cells and TH(-)/β-3-tubulin(+) cells, and into chromaffin cells (TH(+)/PNMT(+)). This study demonstrates the presence of progenitor cells in the human adrenal medulla and reveals their potential use in regenerative medicine, especially in the treatment of neuroendocrine and neurodegenerative diseases.

  1. Hiding inside? Intracellular expression of non-glycosylated c-kit protein in cardiac progenitor cells.

    PubMed

    Shi, Huilin; Drummond, Christopher A; Fan, Xiaoming; Haller, Steven T; Liu, Jiang; Malhotra, Deepak; Tian, Jiang

    2016-05-01

    Cardiac progenitor cells including c-kit(+) cells and cardiosphere-derived cells (CDCs) play important roles in cardiac repair and regeneration. CDCs were reported to contain only small subpopulations of c-kit(+) cells and recent publications suggested that depletion of the c-kit(+) subpopulation of cells has no effect on regenerative properties of CDCs. However, our current study showed that the vast majority of CDCs from murine heart actually express c-kit, albeit, in an intracellular and non-glycosylated form. Immunostaining and flow cytometry showed that the fluorescent signal indicative of c-kit immunostaining significantly increased when cell membranes were permeabilized. Western blots further demonstrated that glycosylation of c-kit was increased during endothelial differentiation in a time dependent manner. Glycosylation inhibition by 1-deoxymannojirimycin hydrochloride (1-DMM) blocked c-kit glycosylation and reduced expression of endothelial cell markers such as Flk-1 and CD31 during differentiation. Pretreatment of these cells with a c-kit kinase inhibitor (imatinib mesylate) also attenuated Flk-1 and CD31 expression. These results suggest that c-kit glycosylation and its kinase activity are likely needed for these cells to differentiate into an endothelial lineage. In vivo, we found that intracellular c-kit expressing cells are located in the wall of cardiac blood vessels in mice subjected to myocardial infarction. In summary, our work demonstrated for the first time that c-kit is not only expressed in CDCs but may also directly participate in CDC differentiation into an endothelial lineage.

  2. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish

    PubMed Central

    Hui, Subhra Prakash; Nag, Tapas Chandra; Ghosh, Sukla

    2015-01-01

    Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration. PMID:26630262

  3. A discrete in continuous mathematical model of cardiac progenitor cells formation and growth as spheroid clusters (Cardiospheres).

    PubMed

    Di Costanzo, Ezio; Giacomello, Alessandro; Messina, Elisa; Natalini, Roberto; Pontrelli, Giuseppe; Rossi, Fabrizio; Smits, Robert; Twarogowska, Monika

    2017-01-23

    We propose a discrete in continuous mathematical model describing the in vitro growth process of biophsy-derived mammalian cardiac progenitor cells growing as clusters in the form of spheres (Cardiospheres). The approach is hybrid: discrete at cellular scale and continuous at molecular level. In the present model, cells are subject to the self-organizing collective dynamics mechanism and, additionally, they can proliferate and differentiate, also depending on stochastic processes The two latter processes are triggered and regulated by chemical signals present in the environment. Numerical simulations show the structure and the development of the clustered progenitors and are in a good agreement with the results obtained from in vitro experiments.

  4. Machine learning classification of cell-specific cardiac enhancers uncovers developmental subnetworks regulating progenitor cell division and cell fate specification.

    PubMed

    Ahmad, Shaad M; Busser, Brian W; Huang, Di; Cozart, Elizabeth J; Michaud, Sébastien; Zhu, Xianmin; Jeffries, Neal; Aboukhalil, Anton; Bulyk, Martha L; Ovcharenko, Ivan; Michelson, Alan M

    2014-02-01

    The Drosophila heart is composed of two distinct cell types, the contractile cardial cells (CCs) and the surrounding non-muscle pericardial cells (PCs), development of which is regulated by a network of conserved signaling molecules and transcription factors (TFs). Here, we used machine learning with array-based chromatin immunoprecipitation (ChIP) data and TF sequence motifs to computationally classify cell type-specific cardiac enhancers. Extensive testing of predicted enhancers at single-cell resolution revealed the added value of ChIP data for modeling cell type-specific activities. Furthermore, clustering the top-scoring classifier sequence features identified novel cardiac and cell type-specific regulatory motifs. For example, we found that the Myb motif learned by the classifier is crucial for CC activity, and the Myb TF acts in concert with two forkhead domain TFs and Polo kinase to regulate cardiac progenitor cell divisions. In addition, differential motif enrichment and cis-trans genetic studies revealed that the Notch signaling pathway TF Suppressor of Hairless [Su(H)] discriminates PC from CC enhancer activities. Collectively, these studies elucidate molecular pathways used in the regulatory decisions for proliferation and differentiation of cardiac progenitor cells, implicate Su(H) in regulating cell fate decisions of these progenitors, and document the utility of enhancer modeling in uncovering developmental regulatory subnetworks.

  5. Machine learning classification of cell-specific cardiac enhancers uncovers developmental subnetworks regulating progenitor cell division and cell fate specification

    PubMed Central

    Ahmad, Shaad M.; Busser, Brian W.; Huang, Di; Cozart, Elizabeth J.; Michaud, Sébastien; Zhu, Xianmin; Jeffries, Neal; Aboukhalil, Anton; Bulyk, Martha L.; Ovcharenko, Ivan; Michelson, Alan M.

    2014-01-01

    The Drosophila heart is composed of two distinct cell types, the contractile cardial cells (CCs) and the surrounding non-muscle pericardial cells (PCs), development of which is regulated by a network of conserved signaling molecules and transcription factors (TFs). Here, we used machine learning with array-based chromatin immunoprecipitation (ChIP) data and TF sequence motifs to computationally classify cell type-specific cardiac enhancers. Extensive testing of predicted enhancers at single-cell resolution revealed the added value of ChIP data for modeling cell type-specific activities. Furthermore, clustering the top-scoring classifier sequence features identified novel cardiac and cell type-specific regulatory motifs. For example, we found that the Myb motif learned by the classifier is crucial for CC activity, and the Myb TF acts in concert with two forkhead domain TFs and Polo kinase to regulate cardiac progenitor cell divisions. In addition, differential motif enrichment and cis-trans genetic studies revealed that the Notch signaling pathway TF Suppressor of Hairless [Su(H)] discriminates PC from CC enhancer activities. Collectively, these studies elucidate molecular pathways used in the regulatory decisions for proliferation and differentiation of cardiac progenitor cells, implicate Su(H) in regulating cell fate decisions of these progenitors, and document the utility of enhancer modeling in uncovering developmental regulatory subnetworks. PMID:24496624

  6. Radial glia and neural progenitors in the adult zebrafish central nervous system.

    PubMed

    Than-Trong, Emmanuel; Bally-Cuif, Laure

    2015-08-01

    The adult central nervous system (CNS) of the zebrafish, owing to its enrichment in constitutive neurogenic niches, is becoming an increasingly used model to address fundamental questions pertaining to adult neural stem cell (NSC) biology, adult neurogenesis and neuronal repair. Studies conducted in several CNS territories (notably the telencephalon, retina, midbrain, cerebellum and spinal cord) highlighted the presence, in these niches, of progenitor cells displaying NSC-like characters. While pointing to radial glial cells (RG) as major long-lasting, constitutively active and/or activatable progenitors in most domains, these studies also revealed a high heterogeneity in the progenitor subtypes used at the top of neurogenic hierarchies, including the persistence of neuroepithelial (NE) progenitors in some areas. Likewise, dissecting the molecular pathways underlying RG maintenance and recruitment under physiological conditions and upon repair in the zebrafish model revealed shared processes but also specific cascades triggering or sustaining reparative NSC recruitment. Together, the zebrafish adult brain reveals an extensive complexity of adult NSC niches, properties and control pathways, which extends existing understanding of adult NSC biology and gives access to novel mechanisms of efficient NSC maintenance and recruitment in an adult vertebrate brain.

  7. National Adult Cardiac Surgery Registry: past, present and future.

    PubMed

    Uva, Miguel Sousa; Mota, João Carlos

    2003-10-01

    A task force commission was created with the support of the Portuguese Society for Cardiothoracic and Vascular Surgery with the aim of organizing a National Adult Cardiac Surgery Registry, collecting clinical data and types of cardiac surgical procedure performed in Portugal. Selected variables include risk factors, cardiac status, preoperative hemodynamics, surgical procedure, hospital stay and mortality. Information is collected into a database in each institution and sent via the internet to a central database responsible for grouping and data analysis. It is hoped that this National Registry, through standardized data collection, will provide information on cardiac surgery activity in Portugal and its risk adjusted results.

  8. Adult retinal pigment epithelium cells express neural progenitor properties and the neuronal precursor protein doublecortin.

    PubMed

    Engelhardt, Maren; Bogdahn, Ulrich; Aigner, Ludwig

    2005-04-08

    The adult mammalian retina is devoid of any detectable neurogenesis. However, different cell types have been suggested to potentially act as neural progenitors in the adult mammalian retina in vitro, such as ciliary body (CB), Muller glia, and retinal pigment epithelium (RPE) cells. In rodents and humans, strong evidence for neural stem or progenitor properties exists only for CB-derived cells, but not for other retinal cell types. Here, we provide a comparative analysis of adult rat CB- and RPE-derived cells suggesting that the two cell types share certain neural progenitor properties in vitro. CB and RPE cells expressed neural progenitor markers such as Nestin, Flk-1, Hes1, and Musashi. They proliferated under adherent and neurosphere conditions and showed limited self-renewal. Moreover, they differentiated into neuronal and glial cells based on the expression of differentiation markers such as the young neuronal marker beta-III tubulin and the glial and progenitor markers GFAP and NG2. Expression of beta-III tubulin was found in cells with neuronal and non-neuronal morphology. A subpopulation of RPE- and CB-derived progenitor cells expressed the neurogenesis-specific protein doublecortin (DCX). Interestingly, DCX expression defined a beta-III tubulin-positive CB and RPE fraction with a distinct neuronal morphology. In summary, the data suggest that RPE cells share with CB cells the potential to de-differentiate into a cell type with neural progenitor-like identity. In addition, DCX expression might define the neuronal-differentiating RPE- and CB-derived progenitor population.

  9. Ascl3 marks adult progenitor cells of the mouse salivary gland

    PubMed Central

    Rugel-Stahl, Anastasia; Elliot, Marilyn; Ovitt, Catherine E.

    2012-01-01

    The Ascl3 transcription factor marks a subset of salivary gland duct cells present in the three major salivary glands of the mouse. In vivo, these cells generate both duct and secretory acinar cell descendants. Here, we have analyzed whether Ascl3-expressing cells retain this multipotent lineage potential in adult glands. Cells isolated from mouse salivary glands were cultured in vitro as non-adherent spheres. Lineage tracing of the Ascl3-expressing cells within the spheres demonstrates that Ascl3+ cells isolated from adult glands remain multipotent, generating both duct and acinar cell types in vitro. Furthermore, we demonstrate that the progenitor cells characterized by Keratin 5 expression are an independent population from Ascl3+ progenitor cells. We conclude that the Ascl3+ cells are intermediate lineage-restricted progenitor cells of the adult salivary glands. PMID:22370009

  10. Simulated Microgravity and 3D Culture Enhance Induction, Viability, Proliferation and Differentiation of Cardiac Progenitors from Human Pluripotent Stem Cells

    PubMed Central

    Jha, Rajneesh; Wu, Qingling; Singh, Monalisa; Preininger, Marcela K.; Han, Pengcheng; Ding, Gouliang; Cho, Hee Cheol; Jo, Hanjoong; Maher, Kevin O.; Wagner, Mary B.; Xu, Chunhui

    2016-01-01

    Efficient generation of cardiomyocytes from human pluripotent stem cells is critical for their regenerative applications. Microgravity and 3D culture can profoundly modulate cell proliferation and survival. Here, we engineered microscale progenitor cardiac spheres from human pluripotent stem cells and exposed the spheres to simulated microgravity using a random positioning machine for 3 days during their differentiation to cardiomyocytes. This process resulted in the production of highly enriched cardiomyocytes (99% purity) with high viability (90%) and expected functional properties, with a 1.5 to 4-fold higher yield of cardiomyocytes from each undifferentiated stem cell as compared with 3D-standard gravity culture. Increased induction, proliferation and viability of cardiac progenitors as well as up-regulation of genes associated with proliferation and survival at the early stage of differentiation were observed in the 3D culture under simulated microgravity. Therefore, a combination of 3D culture and simulated microgravity can be used to efficiently generate highly enriched cardiomyocytes. PMID:27492371

  11. Hypoxic Preconditioning Enhances the Benefit of Cardiac Progenitor-Cell Therapy for Treatment of Myocardial Infarction by Inducing CXCR4 Expression

    PubMed Central

    Tang, Yao Liang; Zhu, Wuqiang; Cheng, Min; Chen, Lijuan; Zhang, John; Sun, Tao; Kishore, Raj; Phillips, M. Ian; Losordo, Douglas W.; Qin, Gangjian

    2009-01-01

    Myocardial infarction (MI) rapidly depletes the endogenous cardiac progenitor-cell pool, and the inefficient recruitment of exogenously administered progenitor cells limits the effectiveness of cardiac-cell therapy. Recent reports indicate that interactions between the CXC chemokine stromal-cell–derived factor 1 (SDF-1) and its receptor CXC chemokine receptor 4 (CXCR4) critically mediate the ischemia-induced recruitment of bone-marrow—derived circulating stem/progenitor cells, but the expression of CXCR4 in cardiac progenitor cells is very low. Here, we studied the influence of hypoxia on CXCR4 expression in cardiac progenitor cells, on the recruitment of intravenously administered cells to ischemic heart tissue, and on the preservation of heart function in a murine MI model. We found that hypoxic preconditioning increased CXCR4 expression in cardiosphere-derived, Lin−/c-kit+ progenitor (CLK) cells and markedly augmented CLK-cell migration (in vitro) and recruitment (in vivo) to the ischemic myocardium. Four weeks after surgically induced MI, infarct size and heart function were significantly better in mice administered hypoxia-preconditioned CLK cells than in mice treated with cells cultured under normoxic conditions. Furthermore, these effects were largely abolished by the addition of a CXCR4 inhibitor, indicating that the benefits of hypoxic preconditioning are mediated by the SDF-1/CXCR4 axis, and that therapies targeting this axis may enhance cardiac-progenitor-cell—based regenerative therapy. PMID:19407239

  12. β-Adrenergic Regulation of Cardiac Progenitor Cell Death Versus Survival and Proliferation

    PubMed Central

    Khan, Mohsin; Mohsin, Sadia; Avitabile, Daniele; Siddiqi, Sailay; Nguyen, Jonathan; Wallach, Kathleen; Quijada, Pearl; McGregor, Michael; Gude, Natalie; Alvarez, Roberto; Tilley, Douglas G.; Koch, Walter J.; Sussman, Mark A.

    2013-01-01

    Rationale Short-term β-adrenergic stimulation promotes contractility in response to stress but is ultimately detrimental in the failing heart because of accrual of cardiomyocyte death. Endogenous cardiac progenitor cell (CPC) activation may partially offset cardiomyocyte losses, but consequences of long-term β-adrenergic drive on CPC survival and proliferation are unknown. Objective We sought to determine the relationship between β-adrenergic activity and regulation of CPC function. Methods and Results Mouse and human CPCs express only β2 adrenergic receptor (β2-AR) in conjunction with stem cell marker c-kit. Activation of β2-AR signaling promotes proliferation associated with increased AKT, extracellular signal-regulated kinase 1/2, and endothelial NO synthase phosphorylation, upregulation of cyclin D1, and decreased levels of G protein–coupled receptor kinase 2. Conversely, silencing of β2-AR expression or treatment with β2-antagonist ICI 118, 551 impairs CPC proliferation and survival. β1-AR expression in CPC is induced by differentiation stimuli, sensitizing CPC to isoproterenol-induced cell death that is abrogated by metoprolol. Efficacy of β1-AR blockade by metoprolol to increase CPC survival and proliferation was confirmed in vivo by adoptive transfer of CPC into failing mouse myocardium. Conclusions β-adrenergic stimulation promotes expansion and survival of CPCs through β2-AR, but acquisition of β1-AR on commitment to the myocyte lineage results in loss of CPCs and early myocyte precursors. PMID:23243208

  13. Identification of Radial Glia Progenitors in the Developing and Adult Retina of Sharks

    PubMed Central

    Sánchez-Farías, Nuria; Candal, Eva

    2016-01-01

    Neural stem cells give rise to transient progenitors termed neuroepithelial cells (NECs) and radial glial cells (RGCs). RGCs represent the major source of neurons, glia and adult stem cells in several regions of the central nervous system (CNS). RGCs are mostly transient in mammals, but they are widely maintained in the adult CNS of fishes, where they continue to be morphologically similar to RGCs in the mammalian brain and fulfill similar roles as progenitors and guide for migrating neurons. The retina of fishes offers an exceptional model to approach the study of adult neurogenesis because of the presence of constitutive proliferation from the ciliary marginal zone (CMZ), containing NECs, and from adult glial cells with radial morphology (the Müller glia). However, the cellular hierarchies and precise contribution of different types of progenitors to adult neurogenesis remain unsolved. We have analyzed the transition from NECs to RGCs and RGC differentiation in the retina of the cartilaginous fish Scyliorhinus canicula, which offers a particularly good spatial and temporal frame to investigate this process. We have characterized progenitor and adult RGCs by immunohistochemical detection of glial markers as glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS). We have compared the emergence and localization of glial markers with that of proliferating cell nuclear antigen (PCNA, a proliferation maker) and Doublecortin (DCX, which increases at early stages of neuronal differentiation). During retinal development, GFAP-immunoreactive NECs located in the most peripheral CMZ (CMZp) codistribute with DCX-immunonegative cells. GFAP-immunoreactive RGCs and Müller cells are located in successive more central parts of the retina and codistribute with DCX- and DCX/GS-immunoreactive cells, respectively. The same types of progenitors are found in juveniles, suggesting that the contribution of the CMZ to adult neurogenesis implies a transition through the

  14. Wnt/β-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells

    PubMed Central

    Månsson-Broberg, Agneta; Rodin, Sergey; Bulatovic, Ivana; Ibarra, Cristián; Löfling, Marie; Genead, Rami; Wärdell, Eva; Felldin, Ulrika; Granath, Carl; Alici, Evren; Le Blanc, Katarina; Smith, C.I. Edvard; Salašová, Alena; Westgren, Magnus; Sundström, Erik; Uhlén, Per; Arenas, Ernest; Sylvén, Christer; Tryggvason, Karl; Corbascio, Matthias; Simonson, Oscar E.; Österholm, Cecilia; Grinnemo, Karl-Henrik

    2016-01-01

    Summary The intrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs) has not been fully characterized. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts. Cells cultured on cardiac muscle laminin (LN)-based substrata in combination with stimulation of the canonical Wnt/β-catenin pathway showed increased gene expression of ISL1, OCT4, KDR, and NKX2.5. The majority of cells stained positive for PDGFR-α, ISL1, and NKX2.5, and subpopulations also expressed the progenitor markers TBX18, KDR, c-KIT, and SSEA-1. Upon culture of the cardiac MSCs in differentiation media and on relevant LNs, portions of the cells differentiated into spontaneously beating cardiomyocytes, and endothelial and smooth muscle-like cells. Our protocol for large-scale culture of human fetal cardiac MSCs enables future exploration of the regenerative functions of these cells in the context of myocardial injury in vitro and in vivo. PMID:27052314

  15. Wnt/β-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells.

    PubMed

    Månsson-Broberg, Agneta; Rodin, Sergey; Bulatovic, Ivana; Ibarra, Cristián; Löfling, Marie; Genead, Rami; Wärdell, Eva; Felldin, Ulrika; Granath, Carl; Alici, Evren; Le Blanc, Katarina; Smith, C I Edvard; Salašová, Alena; Westgren, Magnus; Sundström, Erik; Uhlén, Per; Arenas, Ernest; Sylvén, Christer; Tryggvason, Karl; Corbascio, Matthias; Simonson, Oscar E; Österholm, Cecilia; Grinnemo, Karl-Henrik

    2016-04-12

    The intrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs) has not been fully characterized. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts. Cells cultured on cardiac muscle laminin (LN)-based substrata in combination with stimulation of the canonical Wnt/β-catenin pathway showed increased gene expression of ISL1, OCT4, KDR, and NKX2.5. The majority of cells stained positive for PDGFR-α, ISL1, and NKX2.5, and subpopulations also expressed the progenitor markers TBX18, KDR, c-KIT, and SSEA-1. Upon culture of the cardiac MSCs in differentiation media and on relevant LNs, portions of the cells differentiated into spontaneously beating cardiomyocytes, and endothelial and smooth muscle-like cells. Our protocol for large-scale culture of human fetal cardiac MSCs enables future exploration of the regenerative functions of these cells in the context of myocardial injury in vitro and in vivo.

  16. Great promise of tissue-resident adult stem/progenitor cells in transplantation and cancer therapies.

    PubMed

    Mimeault, Murielle; Batra, Surinder K

    2012-01-01

    Recent progress in tissue-resident adult stem/progenitor cell research has inspired great interest because these immature cells from your own body can act as potential, easily accessible cell sources for cell transplantation in regenerative medicine and cancer therapies. The use of adult stem/progenitor cells endowed with a high self-renewal ability and multilineage differentiation potential, which are able to regenerate all the mature cells in the tissues from their origin, offers great promise in replacing non-functioning or lost cells and regenerating diseased and damaged tissues. The presence of a small subpopulation of adult stem/progenitor cells in most tissues and organs provides the possibility of stimulating their in vivo differentiation, or of using their ex vivo expanded progenies for cell-replacement and gene therapies with multiple applications in humans without a high-risk of graft rejection and major side effects. Among the diseases that could be treated by adult stem cell-based therapies are hematopoietic and immune disorders, multiple degenerative disorders such as Parkinson's and Alzheimer's diseases, Types 1 and 2 diabetes mellitus as well as skin, eye, liver, lung, tooth and cardiovascular disorders. In addition, a combination of the current cancer treatments with an adjuvant treatment consisting of an autologous or allogeneic adult stem/progenitor cell transplantation also represents a promising strategy for treating and even curing diverse aggressive, metastatic, recurrent and lethal cancers. In this chapter, we reviewed the most recent advancements on the characterization of phenotypic and functional properties of adult stem/progenitor cell types found in bone marrow, heart, brain and other tissues and discussed their therapeutic implications in the stem cell-based transplantation therapy.

  17. Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms.

    PubMed

    Prockop, Darwin J

    2009-06-01

    Research on stem cells has progressed at a rapid pace and, as might be anticipated, the results have generated several controversies, a few myths and a change in a major paradigm. Some of these issues will be reviewed in this study with special emphasis on how they can be applied to the adult stem/progenitor cells from bone marrow, referred to as MSCs.

  18. Outcomes After Cardiac Arrest in an Adult Burn Center

    DTIC Science & Technology

    2013-12-07

    Cardiopulmonary resuscitation Burn patients Thermal injury a b s t r a c t Objective: Adult burn patients who experience in-hospital cardiac arrest (CA) and...undergo cardiopulmonary resuscitation (CPR) represent a unique patient population. We believe that they tend to be younger and have the added burden of the...Support; BICU, burn intensive care unit; BOR, burn operating room; CA, cardiac arrest; CPR, cardiopulmonary resuscitation; DNR, do not resuscitate; EG

  19. Presenilin-1 regulates neural progenitor cell differentiation in the adult brain

    PubMed Central

    Gadadhar, Archana; Marr, Robert; Lazarov, Orly

    2011-01-01

    Presenilin-1 (PS1) is the catalytic core of the aspartyl protease γ-secretase. Previous genetic studies using germ-line deletion of PS1 and conditional knockout mice demonstrated that PS1 plays an essential role in neuronal differentiation during neural development, but it remained unclear whether PS1 plays a similar role in neurogenesis in the adult brain. Here we show that neural progenitor cells infected with lentiviral vectors expressing short interfering RNA (siRNA) for the exclusive knockdown of PS1 in the neurogenic microenvironments, exhibit a dramatic enhancement of cell differentiation. Infected cells differentiated into neurons, astrocytes and oligodendrocytes, suggesting that multipotentiality of neural progenitor cells is not affected by reduced levels of PS1. Neurosphere cultures treated with γ-secretase inhibitors exhibit a similar phenotype of enhanced cell differentiation, suggesting that PS1 function in neural progenitor cells is γ-secretase-dependent. Neurospheres infected with lentiviral vectors expressing siRNA for the targeting of PS1 differentiated even in the presence of the proliferation factors epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), suggesting that PS1 dominates EFG and bFGF signaling pathways. Reduction of PS1 expression in neural progenitor cells was accompanied by a decrease in epidermal growth factor receptor (EGFR) and β-catenin expression level, suggesting that they are downstream essential transducers of PS1 signaling in adult neural progenitor cells. These findings suggest a physiological role for PS1 in adult neurogenesis, and a potential target for the manipulation of neural progenitor cell differentiation. PMID:21325529

  20. Doxorubicin Regulates Autophagy Signals via Accumulation of Cytosolic Ca2+ in Human Cardiac Progenitor Cells

    PubMed Central

    Park, Ji Hye; Choi, Sung Hyun; Kim, Hyungtae; Ji, Seung Taek; Jang, Woong Bi; Kim, Jae Ho; Baek, Sang Hong; Kwon, Sang Mo

    2016-01-01

    Doxorubicin (DOXO) is widely used to treat solid tumors. However, its clinical use is limited by side effects including serious cardiotoxicity due to cardiomyocyte damage. Resident cardiac progenitor cells (hCPCs) act as key regulators of homeostasis in myocardial cells. However, little is known about the function of hCPCs in DOXO-induced cardiotoxicity. In this study, we found that DOXO-mediated hCPC toxicity is closely related to calcium-related autophagy signaling and was significantly attenuated by blocking mTOR signaling in human hCPCs. DOXO induced hCPC apoptosis with reduction of SMP30 (regucalcin) and autophagosome marker LC3, as well as remarkable induction of the autophagy-related markers, Beclin-1, APG7, and P62/SQSTM1 and induction of calcium-related molecules, CaM (Calmodulin) and CaMKII (Calmodulin kinase II). The results of an LC3 puncta assay further indicated that DOXO reduced autophagosome formation via accumulation of cytosolic Ca2+. Additionally, DOXO significantly induced mTOR expression in hCPCs, and inhibition of mTOR signaling by rapamycin, a specific inhibitor, rescued DOXO-mediated autophagosome depletion in hCPCs with significant reduction of DOXO-mediated cytosolic Ca2+ accumulation in hCPCs, and restored SMP30 and mTOR expression. Thus, DOXO-mediated hCPC toxicity is linked to Ca2+-related autophagy signaling, and inhibition of mTOR signaling may provide a cardio-protective effect against DOXO-mediated hCPC toxicity. PMID:27735842

  1. Raf-mediated cardiac hypertrophy in adult Drosophila.

    PubMed

    Yu, Lin; Daniels, Joseph; Glaser, Alex E; Wolf, Matthew J

    2013-07-01

    In response to stress and extracellular signals, the heart undergoes a process called cardiac hypertrophy during which cardiomyocytes increase in size. If untreated, cardiac hypertrophy can progress to overt heart failure that causes significant morbidity and mortality. The identification of molecular signals that cause or modify cardiomyopathies is necessary to understand how the normal heart progresses to cardiac hypertrophy and heart failure. Receptor tyrosine kinase (RTK) signaling is essential for normal human cardiac function, and the inhibition of RTKs can cause dilated cardiomyopathies. However, neither investigations of activated RTK signaling pathways nor the characterization of hypertrophic cardiomyopathy in the adult fly heart has been previously described. Therefore, we developed strategies using Drosophila as a model to circumvent some of the complexities associated with mammalian models of cardiovascular disease. Transgenes encoding activated EGFR(A887T), Ras85D(V12) and Ras85D(V12S35), which preferentially signal to Raf, or constitutively active human or fly Raf caused hypertrophic cardiomyopathy as determined by decreased end diastolic lumen dimensions, abnormal cardiomyocyte fiber morphology and increased heart wall thicknesses. There were no changes in cardiomyocyte cell numbers. Additionally, activated Raf also induced an increase in cardiomyocyte ploidy compared with control hearts. However, preventing increases in cardiomyocyte ploidy using fizzy-related (Fzr) RNAi did not rescue Raf-mediated cardiac hypertrophy, suggesting that Raf-mediated polyploidization is not required for cardiac hypertrophy. Similar to mammals, the cardiac-specific expression of RNAi directed against MEK or ERK rescued Raf-mediated cardiac hypertrophy. However, the cardiac-specific expression of activated ERK(D334N), which promotes hyperplasia in non-cardiac tissues, did not cause myocyte hypertrophy. These results suggest that ERK is necessary, but not sufficient, for

  2. Development and specification of cerebellar stem and progenitor cells in zebrafish: from embryo to adult

    PubMed Central

    2013-01-01

    Background Teleost fish display widespread post-embryonic neurogenesis originating from many different proliferative niches that are distributed along the brain axis. During the development of the central nervous system (CNS) different cell types are produced in a strict temporal order from increasingly committed progenitors. However, it is not known whether diverse neural stem and progenitor cell types with restricted potential or stem cells with broad potential are maintained in the teleost fish brain. Results To study the diversity and output of neural stem and progenitor cell populations in the zebrafish brain the cerebellum was used as a model brain region, because of its well-known architecture and development. Transgenic zebrafish lines, in vivo imaging and molecular markers were used to follow and quantify how the proliferative activity and output of cerebellar progenitor populations progress. This analysis revealed that the proliferative activity and progenitor marker expression declines in juvenile zebrafish before they reach sexual maturity. Furthermore, this correlated with the diminished repertoire of cell types produced in the adult. The stem and progenitor cells derived from the upper rhombic lip were maintained into adulthood and they actively produced granule cells. Ventricular zone derived progenitor cells were largely quiescent in the adult cerebellum and produced a very limited number of glia and inhibitory inter-neurons. No Purkinje or Eurydendroid cells were produced in fish older than 3 months. This suggests that cerebellar cell types are produced in a strict temporal order from distinct pools of increasingly committed stem and progenitor cells. Conclusions Our results in the zebrafish cerebellum show that neural stem and progenitor cell types are specified and they produce distinct cell lineages and sub-types of brain cells. We propose that only specific subtypes of brain cells are continuously produced throughout life in the teleost fish

  3. Unipotent, Atoh1+ progenitors maintain the Merkel cell population in embryonic and adult mice.

    PubMed

    Wright, Margaret C; Reed-Geaghan, Erin G; Bolock, Alexa M; Fujiyama, Tomoyuki; Hoshino, Mikio; Maricich, Stephen M

    2015-02-02

    Resident progenitor cells in mammalian skin generate new cells as a part of tissue homeostasis. We sought to identify the progenitors of Merkel cells, a unique skin cell type that plays critical roles in mechanosensation. We found that some Atoh1-expressing cells in the hairy skin and whisker follicles are mitotically active at embryonic and postnatal ages. Genetic fate-mapping revealed that these Atoh1-expressing cells give rise solely to Merkel cells. Furthermore, selective ablation of Atoh1(+) skin cells in adult mice led to a permanent reduction in Merkel cell numbers, demonstrating that other stem cell populations are incapable of producing Merkel cells. These data identify a novel, unipotent progenitor population in the skin that gives rise to Merkel cells both during development and adulthood.

  4. 12-Deoxyphorbols Promote Adult Neurogenesis by Inducing Neural Progenitor Cell Proliferation via PKC Activation

    PubMed Central

    Geribaldi-Doldán, Noelia; Flores-Giubi, Eugenia; Murillo-Carretero, Maribel; García-Bernal, Francisco; Carrasco, Manuel; Macías-Sánchez, Antonio J.; Domínguez-Riscart, Jesús; Verástegui, Cristina; Hernández-Galán, Rosario

    2016-01-01

    Background: Neuropsychiatric and neurological disorders frequently occur after brain insults associated with neuronal loss. Strategies aimed to facilitate neuronal renewal by promoting neurogenesis constitute a promising therapeutic option to treat neuronal death-associated disorders. In the adult brain, generation of new neurons occurs physiologically throughout the entire life controlled by extracellular molecules coupled to intracellular signaling cascades. Proteins participating in these cascades within neurogenic regions constitute potential pharmacological targets to promote neuronal regeneration of injured areas of the central nervous system. Methodology: We have performed in vitro and in vivo approaches to determine neural progenitor cell proliferation to understand whether activation of kinases of the protein kinase C family facilitates neurogenesis in the adult brain. Results: We have demonstrated that protein kinase C activation by phorbol-12-myristate-13-acetate induces neural progenitor cell proliferation in vitro. We also show that the nontumorogenic protein kinase C activator prostratin exerts a proliferative effect on neural progenitor cells in vitro. This effect can be reverted by addition of the protein kinase C inhibitor G06850, demonstrating that the effect of prostratin is mediated by protein kinase C activation. Additionally, we show that prostratin treatment in vivo induces proliferation of neural progenitor cells within the dentate gyrus of the hippocampus and the subventricular zone. Finally, we describe a library of diterpenes with a 12-deoxyphorbol structure similar to that of prostratin that induces a stronger effect than prostratin on neural progenitor cell proliferation both in vitro and in vivo. Conclusions: This work suggests that protein kinase C activation is a promising strategy to expand the endogenous neural progenitor cell population to promote neurogenesis and highlights the potential of 12-deoxyphorbols as pharmaceutical

  5. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells

    PubMed Central

    Chen, Qi; Zhang, Hui; Liu, Yang; Adams, Susanne; Eilken, Hanna; Stehling, Martin; Corada, Monica; Dejana, Elisabetta; Zhou, Bin; Adams, Ralf H.

    2016-01-01

    Mural cells of the vessel wall, namely pericytes and vascular smooth muscle cells, are essential for vascular integrity. The developmental sources of these cells and molecular mechanisms controlling their progenitors in the heart are only partially understood. Here we show that endocardial endothelial cells are progenitors of pericytes and vascular smooth muscle cells in the murine embryonic heart. Endocardial cells undergo endothelial–mesenchymal transition and convert into primitive mesenchymal progenitors expressing the platelet-derived growth factor receptors, PDGFRα and PDGFRβ. These progenitors migrate into the myocardium, differentiate and assemble the wall of coronary vessels, which requires canonical Wnt signalling involving Frizzled4, β-catenin and endothelial cell-derived Wnt ligands. Our findings identify a novel and unexpected population of progenitors for coronary mural cells with potential relevance for heart function and disease conditions. PMID:27516371

  6. Isolation of neural crest derived chromaffin progenitors from adult adrenal medulla.

    PubMed

    Chung, Kuei-Fang; Sicard, Flavie; Vukicevic, Vladimir; Hermann, Andreas; Storch, Alexander; Huttner, Wieland B; Bornstein, Stefan R; Ehrhart-Bornstein, Monika

    2009-10-01

    Chromaffin cells of the adrenal medulla are neural crest-derived cells of the sympathoadrenal lineage. Unlike the closely-related sympathetic neurons, a subpopulation of proliferation-competent cells exists even in the adult. Here, we describe the isolation, expansion, and in vitro characterization of proliferation-competent progenitor cells from the bovine adrenal medulla. Similar to neurospheres, these cells, when prevented from adherence to the culture dish, grew in spheres, which we named chromospheres. These chromospheres were devoid of mRNA specific for smooth muscle cells (MYH11) or endothelial cells (PECAM1). During sphere formation, markers for differentiated chromaffin cells, such as phenylethanolamine-N-methyl transferase, were downregulated while neural progenitor markers nestin, vimentin, musashi 1, and nerve growth factor receptor, as well as markers of neural crest progenitor cells such as Sox1 and Sox9, were upregulated. Clonal analysis and bromo-2'-deoxyuridine-incorporation analysis demonstrated the self-renewing capacity of chromosphere cells. Differentiation protocols using NGF and BMP4 or dexamethasone induced neuronal or endocrine differentiation, respectively. Electrophysiological analyses of neural cells derived from chromospheres revealed functional properties of mature nerve cells, such as tetrodotoxin-sensitive sodium channels and action potentials. Our study provides evidence that proliferation and differentiation competent chromaffin progenitor cells can be isolated from adult adrenal medulla and that these cells might harbor the potential for the treatment of neurodegenerative diseases, such as Parkinson's disease.

  7. Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors

    PubMed Central

    Figueres-Oñate, Maria; López-Mascaraque, Laura

    2016-01-01

    Neurons are generated during embryonic development and in adulthood, although adult neurogenesis is restricted to two main brain regions, the hippocampus and olfactory bulb. The subventricular zone (SVZ) of the lateral ventricles generates neural stem/progenitor cells that continually provide the olfactory bulb (OB) with new granule or periglomerular neurons, cells that arrive from the SVZ via the rostral migratory stream. The continued neurogenesis and the adequate integration of these newly generated interneurons is essential to maintain homeostasis in the olfactory bulb, where the differentiation of these cells into specific neural cell types is strongly influenced by temporal cues. Therefore, identifying the critical features that control the generation of adult OB interneurons at either pre- or post-natal stages is important to understand the dynamic contribution of neural stem cells. Here, we used in utero and neonatal SVZ electroporation along with a transposase-mediated stable integration plasmid, in order to track interneurons and glial lineages in the OB. These plasmids are valuable tools to study the development of OB interneurons from embryonic and post-natal SVZ progenitors. Accordingly, we examined the location and identity of the adult progeny of embryonic and post-natally transfected progenitors by examining neurochemical markers in the adult OB. These data reveal the different cell types in the olfactory bulb that are generated in function of age and different electroporation conditions. PMID:27242400

  8. Adult c-Kit(+) progenitor cells are necessary for maintenance and regeneration of olfactory neurons.

    PubMed

    Goldstein, Bradley J; Goss, Garrett M; Hatzistergos, Konstantinos E; Rangel, Erika B; Seidler, Barbara; Saur, Dieter; Hare, Joshua M

    2015-01-01

    The olfactory epithelium houses chemosensory neurons, which transmit odor information from the nose to the brain. In adult mammals, the olfactory epithelium is a uniquely robust neuroproliferative zone, with the ability to replenish its neuronal and non-neuronal populations due to the presence of germinal basal cells. The stem and progenitor cells of these germinal layers, and their regulatory mechanisms, remain incompletely defined. Here we show that progenitor cells expressing c-Kit, a receptor tyrosine kinase marking stem cells in a variety of embryonic tissues, are required for maintenance of the adult neuroepithelium. Mouse genetic fate-mapping analyses show that embryonically, a c-Kit(+) population contributes to olfactory neurogenesis. In adults under conditions of normal turnover, there is relatively sparse c-Kit(+) progenitor cell (ckPC) activity. However, after experimentally induced neuroepithelial injury, ckPCs are activated such that they reconstitute the neuronal population. There are also occasional non-neuronal cells found to arise from ckPCs. Moreover, the selective depletion of the ckPC population, utilizing temporally controlled targeted diphtheria toxin A expression, results in failure of neurogenesis after experimental injury. Analysis of this model indicates that most ckPCs reside among the globose basal cell populations and act downstream of horizontal basal cells, which can serve as stem cells. Identification of the requirement for olfactory c-Kit-expressing progenitors in olfactory maintenance provides new insight into the mechanisms involved in adult olfactory neurogenesis. Additionally, we define an important and previously unrecognized site of adult c-Kit activity.

  9. Two Forkhead transcription factors regulate the division of cardiac progenitor cells by a Polo-dependent pathway

    PubMed Central

    Ahmad, Shaad M.; Tansey, Terese R.; Busser, Brian W.; Nolte, Michael T.; Jeffries, Neal; Gisselbrecht, Stephen S.; Rusan, Nasser M.; Michelson, Alan M.

    2012-01-01

    SUMMARY The development of a complex organ requires the specification of appropriate numbers of each of its constituent cell types, as well as their proper differentiation and correct positioning relative to each other. During Drosophila cardiogenesis, all three of these processes are controlled by jumeau (jumu) and Checkpoint suppressor homologue (CHES-1-like), two genes encoding forkhead transcription factors that we discovered utilizing an integrated genetic, genomic and computational strategy for identifying genes expressed in the developing Drosophila heart. Both jumu and CHES-1-like are required during asymmetric cell division for the derivation of two distinct cardiac cell types from their mutual precursor, and in symmetric cell divisions that produce yet a third type of heart cell. jumu and CHES-1-like control the division of cardiac progenitors by regulating the activity of Polo, a kinase involved in multiple steps of mitosis. This pathway demonstrates how transcription factors integrate diverse developmental processes during organogenesis. PMID:22814603

  10. The Role of Cardiac Side Population Cells in Cardiac Regeneration

    PubMed Central

    Yellamilli, Amritha; van Berlo, Jop H.

    2016-01-01

    The heart has a limited ability to regenerate. It is important to identify therapeutic strategies that enhance cardiac regeneration in order to replace cardiomyocytes lost during the progression of heart failure. Cardiac progenitor cells are interesting targets for new regenerative therapies because they are self-renewing, multipotent cells located in the heart. Cardiac side population cells (cSPCs), the first cardiac progenitor cells identified in the adult heart, have the ability to differentiate into cardiomyocytes, endothelial cells, smooth muscle cells, and fibroblasts. They become activated in response to cardiac injury and transplantation of cSPCs into the injured heart improves cardiac function. In this review, we will discuss the current literature on the progenitor cell properties and therapeutic potential of cSPCs. This body of work demonstrates the great promise cSPCs hold as targets for new regenerative strategies. PMID:27679798

  11. Identification, Characterization, and Utilization of Adult Meniscal Progenitor Cells

    DTIC Science & Technology

    2014-09-01

    year old mouse menisci. MSPCs grow as colonies, express stem cell and meniscal gene signature markers found in adult human meniscus, and can be...be collected from parallel cultures for measurement of meniscus signature genes , stem cell markers as well as markers that identify bone, cartilage...in control media from both 8wk and 6month old meniscal explants. We then used real time PCR to analyze gene expression. 0   1   2   3

  12. Regulatory System for Stem/Progenitor Cell Niches in the Adult Rodent Pituitary

    PubMed Central

    Yoshida, Saishu; Kato, Takako; Kato, Yukio

    2016-01-01

    The anterior lobe of the pituitary gland is a master endocrine tissue composed of five types of endocrine cells. Although the turnover rate of pituitary endocrine cells is as low as about 1.6% per day, recent studies have demonstrated that Sex-determining region Y-box 2 (SOX2)+-cells exist as pituitary stem/progenitor cells in the adult anterior lobe and contribute to cell regeneration. Notably, SOX2+-pituitary stem/progenitor cells form two types of niches in this tissue: the marginal cell layer (MCL-niche) and the dense cell clusters scattering in the parenchyma (parenchymal-niche). However, little is known about the mechanisms and factors for regulating the pituitary stem/progenitor cell niches, as well as the functional differences between the two types of niches. Elucidation of the regulatory mechanisms in the niches might enable us to understand the cell regeneration system that acts in accordance with physiological demands in the adult pituitary. In this review, so as to reveal the regulatory mechanisms of the two types of niche, we summarize the regulatory factors and their roles in the adult rodent pituitary niches by focusing on three components: soluble factors, cell surface proteins and extracellular matrixes. PMID:26761002

  13. Morphine Modulates Adult Neurogenesis and Contextual Memory by Impeding the Maturation of Neural Progenitors.

    PubMed

    Zhang, Yue; Xu, Chi; Zheng, Hui; Loh, Horace H; Law, Ping-Yee

    2016-01-01

    The regulation of adult neurogenesis by opiates has been implicated in modulating different addiction cycles. At which neurogenesis stage opiates exert their action remains unresolved. We attempt to define the temporal window of morphine's inhibition effect on adult neurogenesis by using the POMC-EGFP mouse model, in which newborn granular cells (GCs) can be visualized between days 3-28 post-mitotic. The POMC-EGFP mice were trained under the 3-chambers conditioned place preference (CPP) paradigm with either saline or morphine. We observed after 4 days of CPP training with saline, the number of EGFP-labeled newborn GCs in sub-granular zone (SGZ) hippocampus significantly increased compared to mice injected with saline in their homecage. CPP training with morphine significantly decreased the number of EGFP-labeled GCs, whereas no significant difference in the number of EGFP-labeled GCs was observed with the homecage mice injected with the same dose of morphine. Using cell-type selective markers, we observed that morphine reduced the number of late stage progenitors and immature neurons such as Doublecortin (DCX) and βIII Tubulin (TuJ1) positive cells in the SGZ but did not reduce the number of early progenitors such as Nestin, SOX2, or neurogenic differentiation-1 (NeuroD1) positive cells. Analysis of co-localization between different cell markers shows that morphine reduced the number of adult-born GCs by interfering with differentiation of early progenitors, but not by inducing apoptosis. In addition, when NeuroD1 was over-expressed in DG by stereotaxic injection of lentivirus, it rescued the loss of immature neurons and prolonged the extinction of morphine-trained CPP. These results suggest that under the condition of CPP training paradigm, morphine affects the transition of neural progenitor/stem cells to immature neurons via a mechanism involving NeuroD1.

  14. Morphine Modulates Adult Neurogenesis and Contextual Memory by Impeding the Maturation of Neural Progenitors

    PubMed Central

    Zhang, Yue; Xu, Chi; Zheng, Hui; Loh, Horace H.; Law, Ping-Yee

    2016-01-01

    The regulation of adult neurogenesis by opiates has been implicated in modulating different addiction cycles. At which neurogenesis stage opiates exert their action remains unresolved. We attempt to define the temporal window of morphine’s inhibition effect on adult neurogenesis by using the POMC-EGFP mouse model, in which newborn granular cells (GCs) can be visualized between days 3–28 post-mitotic. The POMC-EGFP mice were trained under the 3-chambers conditioned place preference (CPP) paradigm with either saline or morphine. We observed after 4 days of CPP training with saline, the number of EGFP-labeled newborn GCs in sub-granular zone (SGZ) hippocampus significantly increased compared to mice injected with saline in their homecage. CPP training with morphine significantly decreased the number of EGFP-labeled GCs, whereas no significant difference in the number of EGFP-labeled GCs was observed with the homecage mice injected with the same dose of morphine. Using cell-type selective markers, we observed that morphine reduced the number of late stage progenitors and immature neurons such as Doublecortin (DCX) and βIII Tubulin (TuJ1) positive cells in the SGZ but did not reduce the number of early progenitors such as Nestin, SOX2, or neurogenic differentiation-1 (NeuroD1) positive cells. Analysis of co-localization between different cell markers shows that morphine reduced the number of adult-born GCs by interfering with differentiation of early progenitors, but not by inducing apoptosis. In addition, when NeuroD1 was over-expressed in DG by stereotaxic injection of lentivirus, it rescued the loss of immature neurons and prolonged the extinction of morphine-trained CPP. These results suggest that under the condition of CPP training paradigm, morphine affects the transition of neural progenitor/stem cells to immature neurons via a mechanism involving NeuroD1. PMID:27078155

  15. Modified ultrafiltration in adult patients undergoing cardiac surgery.

    PubMed

    Zakkar, Mustafa; Guida, Gustavo; Angelini, Gianni D

    2015-03-01

    A best evidence topic in cardiac surgery was written according to a structured protocol. The question addressed was the impact of modified ultrafiltration on adult patients undergoing cardiac surgery in terms of inflammatory and metabolic changes, blood loss and early clinical outcomes. A total of 155 papers were identified using the search as described below. Of these, six papers presented the best evidence to answer the clinical question as they reported data to reach conclusions regarding the issues of interest for this review. The author, date and country of publication, patient group, study type and weaknesses and relevant outcomes were tabulated. Modified ultrafiltration in adult patients undergoing cardiac surgery seems to attenuate the levels of inflammatory molecules associated with surgery, reduces blood loss and blood transfusion and improves cardiac output, index and systemic vascular resistance. However, this was not translated in any reduction in length of stay in intensive care unit or hospital. Most studies were single-centre prospective non-blinded trials that included a small cohort of elective coronary artery bypass grafting patients, which makes it underpowered to provide unbiased evidence regarding clinical outcomes. Properly designed and conducted prospective randomized studies are required to answer whether the beneficial effect of modified ultrafiltration on systemic inflammatory molecules associated with surgery can translate with improvement in clinical outcome.

  16. Effects of addictive drugs on adult neural stem/progenitor cells

    PubMed Central

    Xu, Chi; Loh, Horace H.; Law, Ping-Yee

    2015-01-01

    Neural stem/progenitor cells (NSPCs) undergo a series of developmental processes before giving rise to newborn neurons, astrocytes and oligodendrocytes in adult neurogenesis. During the past decade, the role of NSPCs has been highlighted by studies on adult neurogenesis modulated by addictive drugs. It has been proven that these drugs regulate the proliferation, differentiation and survival of adult NSPCs in different manners, which results in the varying consequences of adult neurogenesis. The effects of addictive drugs on NSPCs are exerted via a variety of different mechanisms and pathways, which interact with one another and contribute to the complexity of NSPC regulation. Here, we review the effects of different addictive drugs on NSPCs, and the related experimental methods and paradigms. We also discuss the current understanding of major signaling molecules, especially the putative common mechanisms, underlying such effects. Finally, we review the future directions of research in this area. PMID:26468052

  17. Starving for more: Nutrient sensing by LIN-28 in adult intestinal progenitor cells.

    PubMed

    Luhur, Arthur; Sokol, Nicholas

    2015-01-01

    In this Extra View, we extend our recent work on the protein LIN-28 and its role in adult stem cell divisions. LIN-28 is an mRNA- and microRNA-binding protein that is conserved from worms to humans. When expressed ectopically, it promotes the reprogramming of differentiated vertebrate cells into pluripotent stem cells as well as the regeneration of vertebrate tissues after injury. However, its endogenous function in stem cell populations is less clear. We recently reported that LIN-28 is specifically expressed in progenitor cells in the adult Drosophila intestine and enhances insulin signaling within this population. Loss of lin-28 alters the division patterns of these progenitor cells, limiting the growth of the intestinal epithelium that is ordinarily caused by feeding. Thus, LIN-28 is part of an uncharacterized circuit used to remodel a tissue in response to environmental cues like nutrition. Here, we extend this analysis by reporting that the levels of LIN-28 in progenitor cells are sensitive to nutrient availability. In addition, we speculate about the role of LIN-28 in the translational control of target mRNAs such as Insulin Receptor (InR) and how such translational control may be an important mechanism that underlies the stem cell dynamics needed for tissue homeostasis and growth.

  18. The addicted brain craves new neurons: putative role for adult-born progenitors in promoting recovery.

    PubMed

    Mandyam, Chitra D; Koob, George F

    2012-04-01

    Addiction is a chronic relapsing disorder associated with compulsive drug taking, drug seeking and a loss of control in limiting intake, reflected in three stages of a recurrent cycle: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation ("craving"). This review discusses the role of adult-born neural and glial progenitors in drug seeking associated with the different stages of the addiction cycle. A review of the current literature suggests that the loss of newly born progenitors, particularly in hippocampal and cortical regions, plays a role in determining vulnerability to relapse in rodent models of drug addiction. The normalization of drug-impaired neurogenesis or gliogenesis may help reverse neuroplasticity during abstinence and, thus, may help reduce the vulnerability to relapse and aid recovery.

  19. Lycium barbarum polysaccharides promotes in vivo proliferation of adult rat retinal progenitor cells

    PubMed Central

    Wang, Hua; Lau, Benson Wui-Man; Wang, Ning-li; Wang, Si-ying; Lu, Qing-jun; Chang, Raymond Chuen-Chung; So, Kwok-fai

    2015-01-01

    Lycium barbarum is a widely used Chinese herbal medicine prescription for protection of optic nerve. However, it remains unclear regarding the effects of Lycium barbarum polysaccharides, the main component of Lycium barbarum, on in vivo proliferation of adult ciliary body cells. In this study, adult rats were intragastrically administered low- and high-dose Lycium barbarum polysaccharides (1 and 10 mg/kg) for 35 days and those intragastrically administered phosphate buffered saline served as controls. The number of Ki-67-positive cells in rat ciliary body in the Lycium barbarum polysaccharides groups, in particular low-dose Lycium barbarum polysaccharides group, was significantly greater than that in the phosphate buffered saline group. Ki-67-positive rat ciliary body cells expressed nestin but they did not express glial fibrillary acidic protein. These findings suggest that Lycium barbarum polysaccharides can promote the proliferation of adult rat retinal progenitor cells and the proliferated cells present with neuronal phenotype. PMID:26889185

  20. Huntingtin Is Required for Neural But Not Cardiac/Pancreatic Progenitor Differentiation of Mouse Embryonic Stem Cells In vitro

    PubMed Central

    Yu, Man Shan; Tanese, Naoko

    2017-01-01

    Mutation in the huntingtin (HTT) gene causes Huntington’s disease (HD). It is an autosomal dominant trinucleotide-repeat expansion disease in which CAG repeat sequence expands to >35. This results in the production of mutant HTT protein with an increased stretch of glutamines near the N-terminus. The wild type HTT gene encodes a 350 kD protein whose function remains elusive. Mutant HTT protein has been implicated in transcription, axonal transport, cytoskeletal structure/function, signal transduction, and autophagy. HD is characterized by the appearance of nuclear inclusions and degeneration of the striatum. Although HTT protein is expressed early in embryos, most patients develop symptoms in mid-life. It is also unclear why the ubiquitously expressed mutant HTT specifically causes striatal atrophy. Wild type Htt is essential for development as Htt knockout mice die at day E7.5. Increasing evidence suggests mutant Htt may alter neurogenesis and development of striatal neurons resulting in neuronal loss. Using a mouse embryonic stem cell model, we examined the role of Htt in neural differentiation. We found cells lacking Htt inefficient in generating neural stem cells. In contrast differentiation into progenitors of mesoderm and endoderm lineages was not affected. The data suggests Htt is essential for neural but not cardiac/pancreatic progenitor differentiation of embryonic stem cells in vitro. PMID:28270748

  1. Roles of store-operated Ca2+ channels in regulating cell cycling and migration of human cardiac c-kit+ progenitor cells.

    PubMed

    Che, Hui; Li, Gang; Sun, Hai-Ying; Xiao, Guo-Sheng; Wang, Yan; Li, Gui-Rong

    2015-11-15

    Cardiac c-kit(+) progenitor cells are important for maintaining cardiac homeostasis and can potentially contribute to myocardial repair. However, cellular physiology of human cardiac c-kit(+) progenitor cells is not well understood. The present study investigates the functional store-operated Ca(2+) entry (SOCE) channels and the potential role in regulating cell cycling and migration using confocal microscopy, RT-PCR, Western blot, coimmunoprecipitation, cell proliferation, and migration assays. We found that SOCE channels mediated Ca(2+) influx, and TRPC1, STIM1, and Orai1 were involved in the formation of SOCE channels in human cardiac c-kit(+) progenitor cells. Silencing TRPC1, STIM1, or Orai1 with the corresponding siRNA significantly reduced the Ca(2+) signaling through SOCE channels, decreased cell proliferation and migration, and reduced expression of cyclin D1, cyclin E, and/or p-Akt. Our results demonstrate the novel information that Ca(2+) signaling through SOCE channels regulates cell cycling and migration via activating cyclin D1, cyclin E, and/or p-Akt in human cardiac c-kit(+) cells.

  2. Cardiac involvement in adult and juvenile idiopathic inflammatory myopathies

    PubMed Central

    Schwartz, Thomas; Diederichsen, Louise Pyndt; Lundberg, Ingrid E; Sanner, Helga

    2016-01-01

    Idiopathic inflammatory myopathies (IIM) include the main subgroups polymyositis (PM), dermatomyositis (DM), inclusion body myositis (IBM) and juvenile DM (JDM). The mentioned subgroups are characterised by inflammation of skeletal muscles leading to muscle weakness and other organs can also be affected as well. Even though clinically significant heart involvement is uncommon, heart disease is one of the major causes of death in IIM. Recent studies show an increased prevalence of traditional cardiovascular risk factors in JDM and DM/PM, which need attention. The risk of developing atherosclerotic coronary artery disease is increased twofold to fourfold in DM/PM. New and improved diagnostic methods have in recent studies in PM/DM and JDM demonstrated a high prevalence of subclinical cardiac involvement, especially diastolic dysfunction. Interactions between proinflammatory cytokines and traditional risk factors might contribute to the pathogenesis of cardiac dysfunction. Heart involvement could also be related to myocarditis and/or myocardial fibrosis, leading to arrhythmias and congestive heart failure, demonstrated both in adult and juvenile IIM. Also, reduced heart rate variability (a known risk factor for cardiac morbidity and mortality) has been shown in long-standing JDM. Until more information is available, patients with IIM should follow the same recommendations for cardiovascular risk stratification and prevention as for the corresponding general population, but be aware that statins might worsen muscle symptoms mimicking myositis relapse. On the basis of recent studies, we recommend a low threshold for cardiac workup and follow-up in patients with IIM. PMID:27752355

  3. Hhex is Required at Multiple Stages of Adult Hematopoietic Stem and Progenitor Cell Differentiation

    PubMed Central

    Goodings, Charnise; Smith, Elizabeth; Mathias, Elizabeth; Elliott, Natalina; Cleveland, Susan M.; Tripathi, Rati M.; Layer, Justin H.; Chen, Xi; Guo, Yan; Shyr, Yu; Hamid, Rizwan; Du, Yang; Davé, Utpal P.

    2015-01-01

    Hhex encodes a homeodomain transcription factor that is widely expressed in hematopoietic stem and progenitor cell populations. Its enforced expression induces T-cell leukemia and we have implicated it as an important oncogene in early T-cell precursor leukemias where it is immediately downstream of an LMO2-associated protein complex. Conventional Hhex knockouts cause embryonic lethality precluding analysis of adult hematopoiesis. Thus, we induced highly efficient conditional knockout (cKO) using vav-Cre transgenic mice. Hhex cKO mice were viable and born at normal litter sizes. At steady state, we observed a defect in B-cell development that we localized to the earliest B-cell precursor, the pro-B-cell stage. Most remarkably, bone marrow transplantation using Hhex cKO donor cells revealed a more profound defect in all hematopoietic lineages. In contrast, sublethal irradiation resulted in normal myeloid cell repopulation of the bone marrow but markedly impaired repopulation of T- and B-cell compartments. We noted that Hhex cKO stem and progenitor cell populations were skewed in their distribution and showed enhanced proliferation compared to WT cells. Our results implicate Hhex in the maintenance of LT-HSCs and in lineage allocation from multipotent progenitors especially in stress hematopoiesis. PMID:25968920

  4. Minimizing the risk of allo-sensitization to optimize the benefit of allogeneic cardiac-derived stem/progenitor cells

    PubMed Central

    Hocine, Hocine R.; Costa, Hicham E. L.; Dam, Noemie; Giustiniani, Jerome; Palacios, Itziar; Loiseau, Pascale; Benssusan, Armand; Borlado, Luis R.; Charron, Dominique; Suberbielle, Caroline; Jabrane-Ferrat, Nabila; Al-Daccak, Reem

    2017-01-01

    Allogeneic human cardiac-derived stem/progenitor cells (hCPC) are currently under clinical investigation for cardiac repair. While cellular immune response against allogeneic hCPC could be part of their beneficial-paracrine effects, their humoral immune response remains largely unexplored. Donor-specific HLA antibodies (DSA-HLA-I/DSA-HLA-II), primary elements of antibody-mediated allograft injury, might present an unidentified risk to allogeneic hCPC therapy. Here we established that the binding strength of anti-HLA monoclonal antibodies delineates hCPC proneness to antibody-mediated injury. In vitro modeling of clinical setting demonstrated that specific DSA-HLA-I of high/intermediate binding strength are harmful for hCPC whereas DSA-HLA-II are benign. Furthermore, the Luminex-based solid-phase assays are suitable to predict the DSA-HLA risk to therapeutic hCPC. Our data indicate that screening patient sera for the presence of HLA antibodies is important to provide an immune-educated choice of allogeneic therapeutic cells, minimize the risk of precipitous elimination and promote the allogeneic reparative effects. PMID:28117403

  5. Fragile x mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells.

    PubMed

    Luo, Yuping; Shan, Ge; Guo, Weixiang; Smrt, Richard D; Johnson, Eric B; Li, Xuekun; Pfeiffer, Rebecca L; Szulwach, Keith E; Duan, Ranhui; Barkho, Basam Z; Li, Wendi; Liu, Changmei; Jin, Peng; Zhao, Xinyu

    2010-04-08

    Fragile X syndrome (FXS), the most common form of inherited mental retardation, is caused by the loss of functional fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that can regulate the translation of specific mRNAs. Adult neurogenesis, a process considered important for neuroplasticity and memory, is regulated at multiple molecular levels. In this study, we investigated whether Fmrp deficiency affects adult neurogenesis. We show that in a mouse model of fragile X syndrome, adult neurogenesis is indeed altered. The loss of Fmrp increases the proliferation and alters the fate specification of adult neural progenitor/stem cells (aNPCs). We demonstrate that Fmrp regulates the protein expression of several components critical for aNPC function, including CDK4 and GSK3beta. Dysregulation of GSK3beta led to reduced Wnt signaling pathway activity, which altered the expression of neurogenin1 and the fate specification of aNPCs. These data unveil a novel regulatory role for Fmrp and translational regulation in adult neurogenesis.

  6. Mechanically induced orientation of adult rat cardiac myocytes in vitro

    NASA Technical Reports Server (NTRS)

    Samuel, J.-L.; Vandenburgh, H. H.

    1990-01-01

    The present study describes the spatial orientation of a population of freshly isolated adult rat cardiac myocytes using a computerized mechanical cell stimulator device for tissue cultured cells. A continuous unidirectional stretch of the substratum at 60 to 400 microns/min for 120 to 30 min, respectively, during the cell attachment period in a serum-free medium was found to induce a significant threefold increase in the number of rod-shaped myocytes oriented parallel to the direction of movement. The myocytes orient less well with unidirectional substratum stretching after their adhesion to the substratum. Adult myocytes plated onto a substratum undergoing continuous 10-percent stretch-relaxation cycling show no significant change in the myocyte orientation or cytoskeletal organization. In addition to the type of mechanical activity, orientation of rod-shaped myocytes is dependent on the speed of the substratum, the final stretch amplitude, and the timing between initiation of substratum stretching and adhesion of myocytes to the substratum.

  7. [Cardiac magnetic resonance imaging of congenital heart defects in adults].

    PubMed

    Bastarrika Alemañ, G; Gavira Gómez, J J; Zudaire Díaz-Tejeiro, B; Castaño Rodríguez, S; Romero Ibarra, C; Sáenz de Buruaga, J D

    2007-01-01

    The study of congenital cardiopathies (CC) is one of the most clearly established indications of cardiac magnetic resonance imaging (CMRI). Different sequences, including anatomic, functional, flow (phase contrast), and 3D angiographic sequences, enable the diagnosis, treatment planning, and follow-up of these conditions. CMRI allows the anatomy, function, and alterations of flow in these cardiopathies to be evaluated in a single examination. Three-dimensional MR angiography enables the study of the great vessels and the anomalies associated to congenital heart defects in adults. This article describes an examination protocol and provides examples of MR images of the most common CC in adults: atrial septal defect, interventricular communication, atrioventricular canal, tetralogy of Fallot, transposition of the great arteries, congenitally corrected transposition of the great arteries, bicuspid aortic valve, subaortic stenosis, aortic coarctation, and Ebstein's anomaly.

  8. Functional response to SDF1 alpha through over-expression of CXCR4 on adult subventricular zone progenitor cells.

    PubMed

    Liu, Xian Shuang; Chopp, Michael; Santra, Manoranjan; Hozeska-Solgot, Ann; Zhang, Rui Lan; Wang, Lei; Teng, Hua; Lu, Mei; Zhang, Zheng Gang

    2008-08-21

    The chemokine receptor CXCR4 and its ligand, stromal cell derived factor-1 alpha (SDF1 alpha) regulate neuroblast migration towards the ischemic boundary after stroke. Using loss- and gain-function, we investigated the biological effect of CXCR4/SDF1 alpha on neural progenitor cells. Neural progenitor cells, from the subventricular zone (SVZ) of the adult rat, were transfected with rat CXCR4-pLEGFP-C1 and pSIREN-RetroQ-CXCR4-siRNA retroviral vectors. Migration assay analysis showed that inhibition of CXCR4 by siRNA significantly reduced cell migration compared to the empty vector, indicating that CXCR4 mediated neural progenitor cell motility. When neural progenitor cells were cultured in growth medium containing bFGF (20 ng/ml), over-expression of CXCR4 significantly reduced the cell proliferation as measured by the number of bromodeoxyuridine+ (BrdU+) cells (26.4%) compared with the number in the control group (54.0%). Addition of a high concentration of SDF1 alpha (500 ng/ml) into the progenitor cells with over-expression of CXCR4 reversed the cell proliferation back to the control levels (57.6%). Immunostaining analysis showed that neither over-expression nor inhibition of CXCR4 altered the population of neurons and astrocytes, when neural progenitor cells were cultured in differentiation medium. These in vitro results suggest that CXCR4/SDF1 alpha primarily regulates adult neural progenitor cell motility but not differentiation, while over-expression of CXCR4 in the absence of SDF1 alpha decreases neural progenitor cell proliferation.

  9. α-Aminoadipate Induces Progenitor Cell Properties of Müller Glia in Adult Mice

    PubMed Central

    Takeda, Masumi; Takamiya, Akira; Jiao, Jian-wei; Cho, Kin-Sang; Trevino, Simon G.; Matsuda, Takahiko; Chen, Dong F.

    2008-01-01

    PURPOSE Retinal Müller glia in higher vertebrates have been reported to possess progenitor cell properties and the ability to generate new neurons after injury. This study was conducted to determine the signals that can activate this dormant capacity of Müller glia in adult mice, by studying their behavior during glutamate stimulation. METHODS Various concentrations of glutamate and its analogue α-aminoadipate, which specifically binds Müller glia, were injected subretinally in adult mice. Proliferating retinal cells were labeled by subretinal injection of 5′-bromo-2′-deoxyuridine (BrdU) followed by immunohistochemistry. Müller cell fates were analyzed in retinal sections by using double immunolabeling with primary antibodies against Müller and other retinaspecific cell markers. The effects of glutamate and α-aminoadipate were also determined in purified Müller cell cultures. RESULTS Although high levels of glutamate induce retinal damage, subtoxic levels of glutamate directly stimulate Müller glia to re-enter the cell cycle and induce neurogenesis in vivo and in purified Müller cell cultures. α-Aminoadipate, which selectively target glial cells, also induced expression of progenitor cell markers by Müller cells in vitro or stimulated Müller cell migration to the outer nuclear layer (ONL) and to differentiate into photoreceptors in vivo. CONCLUSIONS Mature Müller glia in adult mice can be induced to dedifferentiate, migrate, and generate new retinal neurons and photoreceptor cells by α-aminoadipate or glutamate signaling. The results of this study suggest a novel potential strategy for treating retinal neurodegeneration, including retinitis pigmentosa and age-related macular degeneration, without transplanting exogenous cells. PMID:18326742

  10. Neural Progenitor Cells Promote Axonal Growth and Alter Axonal mRNA Localization in Adult Neurons

    PubMed Central

    Merianda, Tanuja T.; Jin, Ying

    2017-01-01

    Abstract The inhibitory environment of the spinal cord and the intrinsic properties of neurons prevent regeneration of axons following CNS injury. However, both ascending and descending axons of the injured spinal cord have been shown to regenerate into grafts of embryonic neural progenitor cells (NPCs). Previous studies have shown that grafts composed of glial-restricted progenitors (GRPs) and neural-restricted progenitors (NRPs) can provide a permissive microenvironment for axon growth. We have used cocultures of adult rat dorsal root ganglion (DRG) neurons together with NPCs, which have shown significant enhancement of axon growth by embryonic rat GRP and GRPs/NRPs, both in coculture conditions and when DRGs are exposed to conditioned medium from the NPC cultures. This growth-promoting effect of NPC-conditioned medium was also seen in injury-conditioned neurons. DRGs cocultured with GRPs/NRPs showed altered expression of regeneration-associated genes at transcriptional and post-transcriptional levels. We found that levels of GAP-43 mRNA increased in DRG cell bodies and axons. However, hepcidin antimicrobial peptide (HAMP) mRNA decreased in the cell bodies of DRGs cocultured with GRPs/NRPs, which is distinct from the increase in cell body HAMP mRNA levels seen in DRGs after injury conditioning. Endogenous GAP-43 and β-actin mRNAs as well as reporter RNAs carrying axonally localizing 3'UTRs of these transcripts showed significantly increased levels in distal axons in the DRGs cocultured with GRPs/NRPs. These results indicate that axon growth promoted by NPCs is associated not only with enhanced transcription of growth-associated genes but also can increase localization of some mRNAs into growing axons. PMID:28197547

  11. Melatonin attenuates methamphetamine-induced inhibition of proliferation of adult rat hippocampal progenitor cells in vitro.

    PubMed

    Ekthuwapranee, Kasima; Sotthibundhu, Areechun; Govitrapong, Piyarat

    2015-05-01

    Methamphetamine (METH) is an extremely addictive stimulatory drug. A recent study suggested that METH may cause an impairment in the proliferation of hippocampal neural progenitor cells, but the underlying mechanism of this effect remains unknown. Blood and cerebrospinal levels of melatonin derive primarily from the pineal gland, and that performs many biological functions. Our previous study demonstrated that melatonin promotes the proliferation of progenitor cells originating from the hippocampus. In this study, hippocampal progenitor cells from adult Wistar rats were used to determine the effects of METH on cell proliferation and the mechanisms underlying these effects. We investigated the effects of melatonin on the METH-induced alteration in cell proliferation. The results demonstrated that 500 μm METH induced a decrease (63.0%) in neurosphere cell proliferation and altered the expression of neuronal phenotype markers in the neurosphere cell population. Moreover, METH induced an increase in the protein expression of the tumor suppressor p53 (124.4%) and the cell cycle inhibitor p21(CIP) (1) (p21) (128.1%), resulting in the accumulation of p21 in the nucleus. We also found that METH altered the expression of the N-methyl-d-aspartate (NMDA) receptor subunits NR2A (79.6%) and NR2B (126.7%) and Ca(2+) /calmodulin-dependent protein kinase II (CAMKII) (74.0%). In addition, pretreatment with 1 μm melatonin attenuated the effects induced by METH treatment. According to these results, we concluded that METH induces a reduction in cell proliferation by upregulating the cell cycle regulators p53/p21 and promoting the accumulation of p21 in the nucleus and that melatonin ameliorates these negative effects of METH.

  12. Efficient generation of human embryonic stem cell-derived cardiac progenitors based on tissue-specific enhanced green fluorescence protein expression.

    PubMed

    Szebényi, Kornélia; Péntek, Adrienn; Erdei, Zsuzsa; Várady, György; Orbán, Tamás I; Sarkadi, Balázs; Apáti, Ágota

    2015-01-01

    Cardiac progenitor cells (CPCs) are committed to the cardiac lineage but retain their proliferative capacity before becoming quiescent mature cardiomyocytes (CMs). In medical therapy and research, the use of human pluripotent stem cell-derived CPCs would have several advantages compared with mature CMs, as the progenitors show better engraftment into existing heart tissues, and provide unique potential for cardiovascular developmental as well as for pharmacological studies. Here, we demonstrate that the CAG promoter-driven enhanced green fluorescence protein (EGFP) reporter system enables the identification and isolation of embryonic stem cell-derived CPCs. Tracing of CPCs during differentiation confirmed up-regulation of surface markers, previously described to identify cardiac precursors and early CMs. Isolated CPCs express cardiac lineage-specific transcripts, still have proliferating capacity, and can be re-aggregated into embryoid body-like structures (CAG-EGFP(high) rEBs). Expression of troponin T and NKX2.5 mRNA is up-regulated in long-term cultured CAG-EGFP(high) rEBs, in which more than 90% of the cells become Troponin I positive mature CMs. Moreover, about one third of the CAG-EGFP(high) rEBs show spontaneous contractions. The method described here provides a powerful tool to generate expandable cultures of pure human CPCs that can be used for exploring early markers of the cardiac lineage, as well as for drug screening or tissue engineering applications.

  13. Hippocampal adult neurogenesis is maintained by Neil3-dependent repair of oxidative DNA lesions in neural progenitor cells.

    PubMed

    Regnell, Christine Elisabeth; Hildrestrand, Gunn Annette; Sejersted, Yngve; Medin, Tirill; Moldestad, Olve; Rolseth, Veslemøy; Krokeide, Silje Zandstra; Suganthan, Rajikala; Luna, Luisa; Bjørås, Magnar; Bergersen, Linda H

    2012-09-27

    Accumulation of oxidative DNA damage has been proposed as a potential cause of age-related cognitive decline. The major pathway for removal of oxidative DNA base lesions is base excision repair, which is initiated by DNA glycosylases. In mice, Neil3 is the main DNA glycosylase for repair of hydantoin lesions in single-stranded DNA of neural stem/progenitor cells, promoting neurogenesis. Adult neurogenesis is crucial for maintenance of hippocampus-dependent functions involved in behavior. Herein, behavioral studies reveal learning and memory deficits and reduced anxiety-like behavior in Neil3(-/-) mice. Neural stem/progenitor cells from aged Neil3(-/-) mice show impaired proliferative capacity and reduced DNA repair activity. Furthermore, hippocampal neurons in Neil3(-/-) mice display synaptic irregularities. It appears that Neil3-dependent repair of oxidative DNA damage in neural stem/progenitor cells is required for maintenance of adult neurogenesis to counteract the age-associated deterioration of cognitive performance.

  14. A comparison of epithelial and neural properties in progenitor cells derived from the adult human ciliary body and brain.

    PubMed

    Moe, Morten C; Kolberg, Rebecca S; Sandberg, Cecilie; Vik-Mo, Einar; Olstorn, Havard; Varghese, Mercy; Langmoen, Iver A; Nicolaissen, Bjørn

    2009-01-01

    Cells isolated from the ciliary body (CB) of the adult human eye possess properties of retinal stem/progenitor cells and can be propagated as spheres in culture. As these cells are isolated from a non-neural epithelium which has neuroepithelial origin, they may have both epithelial and neural lineages. Since it is the properties of neural progenitor cells that are sought after in a future scenario of autotransplantation, we wanted to directly compare human CB spheres with neurospheres derived from the human subventricular zone (SVZ), which is the best characterized neural stem cell niche in the CNS of adults. The CB epithelium was dissected from donor eyes (n = 8). Biopsies from the ventricular wall were harvested during neurosurgery due to epilepsy (n = 7). CB and SVZ tissue were also isolated from Brown Norwegian rats. Dissociated single cells were cultivated in a sphere-promoting medium and passaged every 10-30 days. Fixed spheres were studied by immunohistochemistry, quantitative RT-PCR and scanning/transmission electron microscopy. We found that both CB and SVZ spheres contained a mixed population of cells embedded in extracellular matrix. CB spheres, in contrast to SVZ neurospheres, contained pigmented cells with epithelial morphology that stained for cytokeratins (3/12 + 19), were connected through desmosomes and tight-junctions and produced PEDF. Markers of neural progenitors (nestin, Sox-2, GFAP) were significantly lower expressed in human CB compared to SVZ spheres, and nestin positive cells in the CB spheres also contained pigment. There was higher expression of EGF and TGF-beta receptors in human CB spheres, and a comparative greater activation of the canonical Wnt pathway. These results indicate that adult human CB spheres contain progenitor cells with epithelial properties and limited expression of neural progenitor markers compared to CNS neurospheres. Further studies mapping the regulation between epithelial and neural properties in the adult human

  15. Effects of BKCa and Kir2.1 Channels on Cell Cycling Progression and Migration in Human Cardiac c-kit+ Progenitor Cells.

    PubMed

    Zhang, Ying-Ying; Li, Gang; Che, Hui; Sun, Hai-Ying; Xiao, Guo-Sheng; Wang, Yan; Li, Gui-Rong

    2015-01-01

    Our previous study demonstrated that a large-conductance Ca2+-activated K+ current (BKCa), a voltage-gated TTX-sensitive sodium current (INa.TTX), and an inward rectifier K+ current (IKir) were heterogeneously present in most of human cardiac c-kit+ progenitor cells. The present study was designed to investigate the effects of these ion channels on cell cycling progression and migration of human cardiac c-kit+ progenitor cells with approaches of cell proliferation and mobility assays, siRNA, RT-PCR, Western blots, flow cytometry analysis, etc. It was found that inhibition of BKCa with paxilline, but not INa.TTX with tetrodotoxin, decreased both cell proliferation and migration. Inhibition of IKir with Ba2+ had no effect on cell proliferation, while enhanced cell mobility. Silencing KCa.1.1 reduced cell proliferation by accumulating the cells at G0/G1 phase and decreased cell mobility. Interestingly, silencing Kir2.1 increased the cell migration without affecting cell cycling progression. These results demonstrate the novel information that blockade or silence of BKCa channels, but not INa.TTX channels, decreases cell cycling progression and mobility, whereas inhibition of Kir2.1 channels increases cell mobility without affecting cell cycling progression in human cardiac c-kit+ progenitor cells.

  16. Effects of BKCa and Kir2.1 Channels on Cell Cycling Progression and Migration in Human Cardiac c-kit+ Progenitor Cells

    PubMed Central

    Zhang, Ying-Ying; Li, Gang; Che, Hui; Sun, Hai-Ying; Xiao, Guo-Sheng; Wang, Yan; Li, Gui-Rong

    2015-01-01

    Our previous study demonstrated that a large-conductance Ca2+-activated K+ current (BKCa), a voltage-gated TTX-sensitive sodium current (INa.TTX), and an inward rectifier K+ current (IKir) were heterogeneously present in most of human cardiac c-kit+ progenitor cells. The present study was designed to investigate the effects of these ion channels on cell cycling progression and migration of human cardiac c-kit+ progenitor cells with approaches of cell proliferation and mobility assays, siRNA, RT-PCR, Western blots, flow cytometry analysis, etc. It was found that inhibition of BKCa with paxilline, but not INa.TTX with tetrodotoxin, decreased both cell proliferation and migration. Inhibition of IKir with Ba2+ had no effect on cell proliferation, while enhanced cell mobility. Silencing KCa.1.1 reduced cell proliferation by accumulating the cells at G0/G1 phase and decreased cell mobility. Interestingly, silencing Kir2.1 increased the cell migration without affecting cell cycling progression. These results demonstrate the novel information that blockade or silence of BKCa channels, but not INa.TTX channels, decreases cell cycling progression and mobility, whereas inhibition of Kir2.1 channels increases cell mobility without affecting cell cycling progression in human cardiac c-kit+ progenitor cells. PMID:26390131

  17. Multipotent Adult Progenitor Cells from Bone Marrow Differentiate into Chondrocyte-Like Cells.

    PubMed

    Yu, Lele; Weng, Yimin; Shui, Xiaolong; Fang, Wenlai; Zhang, Erge; Pan, Jun

    2015-07-01

    Cartilage tissue engineering has great potential for treating chondral and osteochondral injuries. Efficient seed cells are the key to cartilage tissue engineering. Multipotent adult progenitor cells (MAPCs) have greater differentiation ability than other bone-marrow stem cells, and thus may be candidate seed cells. We attempted to differentiate MAPCs into chondrocyte-like cells to evaluate their suitability as seed cells for cartilage tissue engineering. Toluidine blue and Alcian blue staining suggested that glycosaminoglycan was expressed in differentiated cells. Immunofluorostaining indicated that differentiated human MAPCs (hMAPCs) expressed collagen II. Based on these results, we concluded that bone-marrow-derived hMAPCs could differentiate into chondrocyte-like cells in vitro.

  18. Derivation, characterization, and phenotypic variation of hepatic progenitor cell lines isolated from adult rats.

    PubMed

    Yin, Li; Sun, Mingzeng; Ilic, Zoran; Leffert, Hyam L; Sell, Stewart

    2002-02-01

    Liver progenitor cells (LPCs) cloned from adult rat livers following allyl alcohol injury express hematopoietic stem cell and early hepatic lineage markers when cultured on feeder layers; under these conditions, neither mature hepatocyte nor bile duct, Ito, stellate, Kupffer cell, or macrophage markers are detected. These phenotypes have remained stable without aneuploidy or morphological transformation after more than 100 population doublings. When cultured without feeder layers, the early lineage markers disappear, and mature hepatocyte markers are expressed; mature hepatocytic differentiation and cell size are also augmented by polypeptide and steroidal growth factors. In contrast to hepatocytic potential, duct-like structures and biliary epithelial markers are expressed on Matrigel. Because they were derived without carcinogens or mutagens, these bipotential LPC lines provide novel tools for models of cellular plasticity and hepatocarcinogenesis, as well as lines for use in cellular transplantation, gene therapy, and bioreactor construction.

  19. Identification of a common mesenchymal stromal progenitor for the adult haematopoietic niche

    PubMed Central

    Hu, Xingbin; Garcia, Mayra; Weng, Lihong; Jung, Xiaoman; Murakami, Jodi L.; Kumar, Bijender; Warden, Charles D.; Todorov, Ivan; Chen, Ching-Cheng

    2016-01-01

    Microenvironment cues received by haematopoietic stem cells (HSC) are important in regulating the choice between self-renewal and differentiation. On the basis of the differential expression of cell-surface markers, here we identify a mesenchymal stromal progenitor hierarchy, where CD45−Ter119−CD31−CD166−CD146−Sca1+(Sca1+) progenitors give rise to CD45−Ter119−CD31−CD166−CD146+(CD146+) intermediate and CD45−Ter119−CD31−CD166+CD146−(CD166+) mature osteo-progenitors. All three progenitors preserve HSC long-term multi-lineage reconstitution capability in vitro; however, their in vivo fates are different. Post-transplantation, CD146+ and CD166+ progenitors form bone only. While Sca1+ progenitors produce CD146+, CD166+ progenitors, osteocytes and CXCL12-producing stromal cells. Only Sca1+ progenitors are capable of homing back to the marrow post-intravenous infusion. Ablation of Sca1+ progenitors results in a decrease of all three progenitor populations as well as haematopoietic stem/progenitor cells. Moreover, suppressing production of KIT-ligand in Sca1+ progenitors inhibits their ability to support HSCs. Our results indicate that Sca1+ progenitors, through the generation of both osteogenic and stromal cells, provide a supportive environment for hematopoiesis. PMID:27721421

  20. Response of ependymal progenitors to spinal cord injury or enhanced physical activity in adult rat.

    PubMed

    Cizkova, Dasa; Nagyova, Miriam; Slovinska, Lucia; Novotna, Ivana; Radonak, Jozef; Cizek, Milan; Mechirova, Eva; Tomori, Zoltan; Hlucilova, Jana; Motlik, Jan; Sulla, Igor; Vanicky, Ivo

    2009-09-01

    Ependymal cells (EC) in the spinal cord central canal (CC) are believed to be responsible for the postnatal neurogenesis following pathological or stimulatory conditions. In this study, we have analyzed the proliferation of the CC ependymal progenitors in adult rats processed to compression SCI or enhanced physical activity. To label dividing cells, a single daily injection of Bromo-deoxyuridine (BrdU) was administered over a 14-day-survival period. Systematic quantification of BrdU-positive ependymal progenitors was performed by using stereological principles of systematic, random sampling, and optical Dissector software. The number of proliferating BrdU-labeled EC increased gradually with the time of survival after both paradigms, spinal cord injury, or increased physical activity. In the spinal cord injury group, we have found 4.9-fold (4 days), 7.1-fold (7 days), 4.9-fold (10 days), and 5.6-fold (14 days) increase of proliferating EC in the rostro-caudal regions, 4 mm away from the epicenter. In the second group subjected to enhanced physical activity by running wheel, we have observed 2.1-2.6 fold increase of dividing EC in the thoracic spinal cord segments at 4 and 7 days, but no significant progression at 10-14 days. Nestin was rapidly induced in the ependymal cells of the CC by 2-4 days and expression decreased by 7-14 days post-injury. Double immunohistochemistry showed that dividing cells adjacent to CC expressed astrocytic (GFAP, S100beta) or nestin markers at 14 days. These data demonstrate that SCI or enhanced physical activity in adult rats induces an endogenous ependymal cell response leading to increased proliferation and differentiation primarily into macroglia or cells with nestin phenotype.

  1. NTPDase2 and purinergic signaling control progenitor cell proliferation in neurogenic niches of the adult mouse brain.

    PubMed

    Gampe, Kristine; Stefani, Jennifer; Hammer, Klaus; Brendel, Peter; Pötzsch, Alexandra; Enikolopov, Grigori; Enjyoji, Keiichi; Acker-Palmer, Amparo; Robson, Simon C; Zimmermann, Herbert

    2015-01-01

    Nerve cells are continuously generated from stem cells in the adult mammalian subventricular zone (SVZ) and hippocampal dentate gyrus. We have previously noted that stem/progenitor cells in the SVZ and the subgranular layer (SGL) of the dentate gyrus express high levels of plasma membrane-bound nucleoside triphosphate diphosphohydrolase 2 (NTPDase2), an ectoenzyme that hydrolyzes extracellular nucleoside diphosphates and triphosphates. We inferred that deletion of NTPDase2 would increase local extracellular nucleoside triphosphate concentrations perturbing purinergic signaling and boosting progenitor cell proliferation and neurogenesis. Using newly generated mice globally null for Entpd2, we demonstrate that NTPDase2 is the major ectonucleotidase in these progenitor cell-rich areas. Using BrdU-labeling protocols, we have measured stem cell proliferation and determined long-term survival of cell progeny under basal conditions. Brains of Entpd2 null mice revealed increased progenitor cell proliferation in both the SVZ and the SGL. However, this occurred without noteworthy alterations in long-term progeny survival. The hippocampal stem cell pool and the pool of the intermediate progenitor type-2 cells clearly expanded. However, substantive proportions of these proliferating cells were lost during expansion at around type-3 stage. Cell loss was paralleled by decreases in cAMP response element-binding protein phosphorylation in the doublecortin-positive progenitor cell population and by an increase in labeling for activated caspase-3 levels. We propose that NTPDase2 has functionality in scavenging mitogenic extracellular nucleoside triphosphates in neurogenic niches of the adult brain, thereby acting as a homeostatic regulator of nucleotide-mediated neural progenitor cell proliferation and expansion.

  2. Liver Progenitors Isolated from Adult Healthy Mouse Liver Efficiently Differentiate to Functional Hepatocytes In Vitro and Repopulate Liver Tissue.

    PubMed

    Tanimizu, Naoki; Ichinohe, Norihisa; Ishii, Masayuki; Kino, Junichi; Mizuguchi, Toru; Hirata, Koichi; Mitaka, Toshihiro

    2016-12-01

    It has been proposed that tissue stem cells supply multiple epithelial cells in mature tissues and organs. However, it is unclear whether tissue stem cells generally contribute to cellular turnover in normal healthy organs. Here, we show that liver progenitors distinct from bipotent liver stem/progenitor cells (LPCs) persistently exist in mouse livers and potentially contribute to tissue maintenance. We found that, in addition to LPCs isolated as EpCAM(+) cells, liver progenitors were enriched in CD45(-) TER119(-) CD31(-) EpCAM(-) ICAM-1(+) fraction isolated from late-fetal and postnatal livers. ICAM-1(+) liver progenitors were abundant by 4 weeks (4W) after birth. Although their number decreased with age, ICAM-1(+) liver progenitors existed in livers beyond that stage. We established liver progenitor clones derived from ICAM-1(+) cells between 1 and 20W and found that those clones efficiently differentiated into mature hepatocytes (MHs), which secreted albumin, eliminated ammonium ion, stored glycogen, and showed cytochrome P450 activity. Even after long-term culture, those clones kept potential to differentiate to MHs. When ICAM-1(+) clones were transplanted into nude mice after retrorsine treatment and 70% partial hepatectomy, donor cells were incorporated into liver plates and expressed hepatocyte nuclear factor 4α, CCAAT/enhancer binding protein α, and carbamoylphosphate synthetase I. Moreover, after short-term treatment with oncostatin M, ICAM-1(+) clones could efficiently repopulate the recipient liver tissues. Our results indicate that liver progenitors that can efficiently differentiate to MHs exist in normal adult livers. Those liver progenitors could be an important source of new MHs for tissue maintenance and repair in vivo, and for regenerative medicine ex vivo. Stem Cells 2016;34:2889-2901.

  3. Ketamine in adult cardiac surgery and the cardiac surgery Intensive Care Unit: An evidence-based clinical review

    PubMed Central

    Mazzeffi, Michael; Johnson, Kyle; Paciullo, Christopher

    2015-01-01

    Ketamine is a unique anesthetic drug that provides analgesia, hypnosis, and amnesia with minimal respiratory and cardiovascular depression. Because of its sympathomimetic properties it would seem to be an excellent choice for patients with depressed ventricular function in cardiac surgery. However, its use has not gained widespread acceptance in adult cardiac surgery patients, perhaps due to its perceived negative psychotropic effects. Despite this limitation, it is receiving renewed interest in the United States as a sedative and analgesic drug for critically ill-patients. In this manuscript, the authors provide an evidence-based clinical review of ketamine use in cardiac surgery patients for intensive care physicians, cardio-thoracic anesthesiologists, and cardio-thoracic surgeons. All MEDLINE indexed clinical trials performed during the last 20 years in adult cardiac surgery patients were included in the review. PMID:25849690

  4. The adult pituitary shows stem/progenitor cell activation in response to injury and is capable of regeneration.

    PubMed

    Fu, Qiuli; Gremeaux, Lies; Luque, Raul M; Liekens, Daisy; Chen, Jianghai; Buch, Thorsten; Waisman, Ari; Kineman, Rhonda; Vankelecom, Hugo

    2012-07-01

    The pituitary gland constitutes, together with the hypothalamus, the regulatory core of the endocrine system. Whether the gland is capable of cell regeneration after injury, in particular when suffered at adult age, is unknown. To investigate the adult pituitary's regenerative capacity and the response of its stem/progenitor cell compartment to damage, we constructed a transgenic mouse model to conditionally destroy pituitary cells. GHCre/iDTR mice express diphtheria toxin (DT) receptor after transcriptional activation by Cre recombinase, which is driven by the GH promoter. Treatment with DT for 3 d leads to gradual GH(+) (somatotrope) cell obliteration with a final ablation grade of 80-90% 1 wk later. The stem/progenitor cell-clustering side population promptly expands after injury, concordant with the immediate increase in Sox2(+) stem/progenitor cells. In addition, folliculo-stellate cells, previously designated as pituitary stem/progenitor cells and significantly overlapping with Sox2(+) cells, also increase in abundance. In situ examination reveals expansion of the Sox2(+) marginal-zone niche and appearance of remarkable Sox2(+) cells that contain GH. When mice are left after the DT-provoked lesion, GH(+) cells considerably regenerate during the following months. Double Sox2(+)/GH(+) cells are observed throughout the regenerative period, suggesting recovery of somatotropes from stem/progenitor cells, as further supported by 5-ethynyl-2'-deoxyuridine (EdU) pulse-chase lineage tracing. In conclusion, our study demonstrates that the adult pituitary gland holds regenerative competence and that tissue repair follows prompt activation and plausible involvement of the stem/progenitor cells.

  5. Migration of bone marrow progenitor cells in the adult brain of rats and rabbits

    PubMed Central

    Dennie, Donnahue; Louboutin, Jean-Pierre; Strayer, David S

    2016-01-01

    Neurogenesis takes place in the adult mammalian brain in three areas: Subgranular zone of the dentate gyrus (DG); subventricular zone of the lateral ventricle; olfactory bulb. Different molecular markers can be used to characterize the cells involved in adult neurogenesis. It has been recently suggested that a population of bone marrow (BM) progenitor cells may migrate to the brain and differentiate into neuronal lineage. To explore this hypothesis, we injected recombinant SV40-derived vectors into the BM and followed the potential migration of the transduced cells. Long-term BM-directed gene transfer using recombinant SV40-derived vectors leads to expression of the genes delivered to the BM firstly in circulating cells, then after several months in mature neurons and microglial cells, and thus without central nervous system (CNS) lesion. Most of transgene-expressing cells expressed NeuN, a marker of mature neurons. Thus, BM-derived cells may function as progenitors of CNS cells in adult animals. The mechanism by which the cells from the BM come to be neurons remains to be determined. Although the observed gradual increase in transgene-expressing neurons over 16 mo suggests that the pathway involved differentiation of BM-resident cells into neurons, cell fusion as the principal route cannot be totally ruled out. Additional studies using similar viral vectors showed that BM-derived progenitor cells migrating in the CNS express markers of neuronal precursors or immature neurons. Transgene-positive cells were found in the subgranular zone of the DG of the hippocampus 16 mo after intramarrow injection of the vector. In addition to cells expressing markers of mature neurons, transgene-positive cells were also positive for nestin and doublecortin, molecules expressed by developing neuronal cells. These cells were actively proliferating, as shown by short term BrdU incorporation studies. Inducing seizures by using kainic acid increased the number of BM progenitor cells

  6. Migration of bone marrow progenitor cells in the adult brain of rats and rabbits.

    PubMed

    Dennie, Donnahue; Louboutin, Jean-Pierre; Strayer, David S

    2016-04-26

    Neurogenesis takes place in the adult mammalian brain in three areas: Subgranular zone of the dentate gyrus (DG); subventricular zone of the lateral ventricle; olfactory bulb. Different molecular markers can be used to characterize the cells involved in adult neurogenesis. It has been recently suggested that a population of bone marrow (BM) progenitor cells may migrate to the brain and differentiate into neuronal lineage. To explore this hypothesis, we injected recombinant SV40-derived vectors into the BM and followed the potential migration of the transduced cells. Long-term BM-directed gene transfer using recombinant SV40-derived vectors leads to expression of the genes delivered to the BM firstly in circulating cells, then after several months in mature neurons and microglial cells, and thus without central nervous system (CNS) lesion. Most of transgene-expressing cells expressed NeuN, a marker of mature neurons. Thus, BM-derived cells may function as progenitors of CNS cells in adult animals. The mechanism by which the cells from the BM come to be neurons remains to be determined. Although the observed gradual increase in transgene-expressing neurons over 16 mo suggests that the pathway involved differentiation of BM-resident cells into neurons, cell fusion as the principal route cannot be totally ruled out. Additional studies using similar viral vectors showed that BM-derived progenitor cells migrating in the CNS express markers of neuronal precursors or immature neurons. Transgene-positive cells were found in the subgranular zone of the DG of the hippocampus 16 mo after intramarrow injection of the vector. In addition to cells expressing markers of mature neurons, transgene-positive cells were also positive for nestin and doublecortin, molecules expressed by developing neuronal cells. These cells were actively proliferating, as shown by short term BrdU incorporation studies. Inducing seizures by using kainic acid increased the number of BM progenitor cells

  7. Xenotransplantation of Human Cardiomyocyte Progenitor Cells Does Not Improve Cardiac Function in a Porcine Model of Chronic Ischemic Heart Failure. Results from a Randomized, Blinded, Placebo Controlled Trial

    PubMed Central

    Jansen of Lorkeers, Sanne J.; Gho, Johannes M. I. H.; Koudstaal, Stefan; van Hout, Gerardus P. J.; Zwetsloot, Peter Paul M.; van Oorschot, Joep W. M.; van Eeuwijk, Esther C. M.; Leiner, Tim; Hoefer, Imo E.; Goumans, Marie-José; Doevendans, Pieter A.; Sluijter, Joost P. G.; Chamuleau, Steven A. J.

    2015-01-01

    Background Recently cardiomyocyte progenitor cells (CMPCs) were successfully isolated from fetal and adult human hearts. Direct intramyocardial injection of human CMPCs (hCMPCs) in experimental mouse models of acute myocardial infarction significantly improved cardiac function compared to controls. Aim Here, our aim was to investigate whether xenotransplantation via intracoronary infusion of fetal hCMPCs in a pig model of chronic myocardial infarction is safe and efficacious, in view of translation purposes. Methods & Results We performed a randomized, blinded, placebo controlled trial. Four weeks after ischemia/reperfusion injury by 90 minutes of percutaneous left anterior descending artery occlusion, pigs (n = 16, 68.5 ± 5.4 kg) received intracoronary infusion of 10 million fetal hCMPCs or placebo. All animals were immunosuppressed by cyclosporin (CsA). Four weeks after infusion, endpoint analysis by MRI displayed no difference in left ventricular ejection fraction, left ventricular end diastolic and left ventricular end systolic volumes between both groups. Serial pressure volume (PV-)loop and echocardiography showed no differences in functional parameters between groups at any timepoint. Infarct size at follow-up, measured by late gadolinium enhancement MRI showed no difference between groups. Intracoronary pressure and flow measurements showed no signs of coronary obstruction 30 minutes after cell infusion. No premature death occurred in cell treated animals. Conclusion Xenotransplantation via intracoronary infusion of hCMPCs is feasible and safe, but not associated with improved left ventricular performance and infarct size compared to placebo in a porcine model of chronic myocardial infarction. PMID:26678993

  8. Inducible expression of noggin selectively expands neural progenitors in the adult SVZ.

    PubMed

    Morell, M; Tsan, Yao-chang; O'Shea, K Sue

    2015-01-01

    Multipotent, self-renewing stem cells are present throughout the developing nervous system remaining in discrete regions of the adult brain. In the subventricular zone (SVZ) signaling molecules, including the bone morphogenetic proteins and their secreted inhibitor, noggin appear to play a critical role in controlling neural stem cell (NSC) behavior. To examine the function of this signaling pathway in the intact nervous system, we developed a transgenic mouse model in which noggin expression can be induced specifically in NSC via a nestin-driven reverse tetracycline-controlled transactivator (rtTA). In adult animals, the induction of noggin expression promotes the proliferation of neural progenitors in the SVZ, and shifts the differentiation of B cells (NSC) from mature astrocytes to transit amplifying C cells and oligodendrocyte precursor cells without depleting the NSC population. Noggin expression significantly increases neuronal and oligodendrocyte differentiation both in vivo and in vitro when NSCs are grown as neurospheres. These results demonstrate that noggin/BMP interactions tightly control cell fate in the SVZ.

  9. Dissection of the Human Multipotent Adult Progenitor Cell Secretome by Proteomic Analysis

    PubMed Central

    van't Hof, Wouter; Newell, Laura F.; Reddy, Ashok; Wilmarth, Phillip A.; David, Larry L.; Raber, Amy; Bogaerts, Annelies; Pinxteren, Jef; Deans, Robert J.; Maziarz, Richard T.

    2013-01-01

    Multipotent adult progenitor cells (MAPCs) are adult adherent stromal stem cells currently being assessed in acute graft versus host disease clinical trials with demonstrated immunomodulatory capabilities and the potential to ameliorate detrimental autoimmune and inflammation-related processes. Our previous studies documented that MAPCs secrete factors that play a role in regulating T-cell activity. Here we expand our studies using a proteomics approach to characterize and quantify MAPC secretome components secreted over 72 hours in vitro under steady-state conditions and in the presence of the inflammatory triggers interferon-γ and lipopolysaccharide, or a tolerogenic CD74 ligand, RTL1000. MAPCs differentially responded to each of the tested stimuli, secreting molecules that regulate the biological activity of the extracellular matrix (ECM), including proteins that make up the ECM itself, proteins that regulate its construction/deconstruction, and proteins that serve to attach and detach growth factors from ECM components for redistribution upon appropriate stimulation. MAPCs secreted a wide array of proteases, some detectable in their zymogen forms. MAPCs also secreted protease inhibitors that would regulate protease activity. MAPCs secreted chemokines and cytokines that could provide molecular guidance cues to various cell types, including neutrophils, macrophages, and T cells. In addition, MAPCs secreted factors involved in maintenance of a homeostatic environment, regulating such diverse programs as innate immunity, angiogenesis/angiostasis, targeted delivery of growth factors, and the matrix-metalloprotease cascade. PMID:23981727

  10. Intravenous multipotent adult progenitor cell treatment decreases inflammation leading to functional recovery following spinal cord injury

    PubMed Central

    DePaul, Marc A.; Palmer, Marc; Lang, Bradley T.; Cutrone, Rochelle; Tran, Amanda P.; Madalena, Kathryn M.; Bogaerts, Annelies; Hamilton, Jason A.; Deans, Robert J.; Mays, Robert W.; Busch, Sarah A.; Silver, Jerry

    2015-01-01

    Following spinal cord injury (SCI), immune-mediated secondary processes exacerbate the extent of permanent neurological deficits. We investigated the capacity of adult bone marrow-derived stem cells, which exhibit immunomodulatory properties, to alter inflammation and promote recovery following SCI. In vitro, we show that human multipotent adult progenitor cells (MAPCs) have the ability to modulate macrophage activation, and prior exposure to MAPC secreted factors can reduce macrophage-mediated axonal dieback of dystrophic axons. Using a contusion model of SCI, we found that intravenous delivery of MAPCs one day, but not immediately, after SCI significantly improves urinary and locomotor recovery, which was associated with marked spinal cord tissue sparing. Intravenous MAPCs altered the immune response in the spinal cord and periphery, however biodistribution studies revealed that no MAPCs were found in the cord and instead preferentially homed to the spleen. Our results demonstrate that MAPCs exert their primary effects in the periphery and provide strong support for the use of these cells in acute human contusive SCI. PMID:26582249

  11. Temporally Distinct Six2-Positive Second Heart Field Progenitors Regulate Mammalian Heart Development and Disease.

    PubMed

    Zhou, Zhengfang; Wang, Jingying; Guo, Chaoshe; Chang, Weiting; Zhuang, Jian; Zhu, Ping; Li, Xue

    2017-01-24

    The embryonic process of forming a complex structure such as the heart remains poorly understood. Here, we show that Six2 marks a dynamic subset of second heart field progenitors. Six2-positive (Six2(+)) progenitors are rapidly recruited and assigned, and their descendants are allocated successively to regions of the heart from the right ventricle (RV) to the pulmonary trunk. Global ablation of Six2(+) progenitors resulted in RV hypoplasia and pulmonary atresia. An early stage-specific ablation of a small subset of Six2(+) progenitors did not cause any apparent structural defect at birth but rather resulted in adult-onset cardiac hypertrophy and dysfunction. Furthermore, Six2 expression depends in part on Shh signaling, and Shh deletion resulted in severe deficiency of Six2(+) progenitors. Collectively, these findings unveil the chronological features of cardiogenesis, in which the mammalian heart is built sequentially by temporally distinct populations of cardiac progenitors, and provide insights into late-onset congenital heart disease.

  12. In utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure: effects on fetal and adult cardiac gene expression and adult cardiac and renal morphology.

    PubMed

    Aragon, Andrea C; Kopf, Phillip G; Campen, Matthew J; Huwe, Janice K; Walker, Mary K

    2008-02-01

    The mouse heart is a target of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during fetal development, and microarray analysis demonstrates significant changes in expression of cardiac genes involved in extracellular matrix (ECM) remodeling. We tested the hypothesis that developmental TCDD exposure would disrupt cardiac ECM expression and be associated with changes in cardiac morphology in adulthood. In one study, time-pregnant C57BL/6 mice were dosed with corn oil or 1.5, 3.0, or 6.0 microg TCDD/kg on gestation day (GD) 14.5 and sacrificed on GD 17.5, when changes in fetal cardiac mRNA expression were analyzed using quantitative PCR. TCDD induced mRNA expression of genes associated with ECM remodeling (matrix metalloproteinase 9 and 13, preproendothelin-1 [preproET-1]), cardiac hypertrophy (atrial natriuretic peptide, beta-myosin heavy chain, osteopontin), and aryl hydrocarbon receptor (AHR) activation (cytochrome P4501A1, AHR repressor). Further, all TCDD-induced changes required the AHR since gene expression was not altered in AHR knockout fetuses. In a second study, time-pregnant mice were treated with corn oil or 6.0 microg TCDD/kg on GD 14.5, and male offspring were assessed for changes in cardiac gene expression and cardiac and renal morphology at 3 months. All TCDD-induced changes in cardiac gene expression observed fetally, except for preproET-1, remained induced in the hearts of adult male offspring. Adult male offspring of TCDD-exposed dams also displayed cardiac hypertrophy, decreased plasma volume, and mild hydronephrosis. These results demonstrate that in utero and lactational TCDD exposures alter cardiac gene expression and cardiac and renal morphology in adulthood, which may increase the susceptibility to cardiovascular dysfunction.

  13. A multistep procedure to prepare pre-vascularized cardiac tissue constructs using adult stem sells, dynamic cell cultures, and porous scaffolds

    PubMed Central

    Pagliari, Stefania; Tirella, Annalisa; Ahluwalia, Arti; Duim, Sjoerd; Goumans, Marie-Josè; Aoyagi, Takao; Forte, Giancarlo

    2014-01-01

    The vascularization of tissue engineered products represents a key issue in regenerative medicine which needs to be addressed before the translation of these protocols to the bedside can be foreseen. Here we propose a multistep procedure to prepare pre-vascularized three-dimensional (3D) cardiac bio-substitutes using dynamic cell cultures and highly porous biocompatible gelatin scaffolds. The strategy adopted exploits the peculiar differentiation potential of two distinct subsets of adult stem cells to obtain human vascularized 3D cardiac tissues. In the first step of the procedure, human mesenchymal stem cells (hMSCs) are seeded onto gelatin scaffolds to provide interconnected vessel-like structures, while human cardiomyocyte progenitor cells (hCMPCs) are stimulated in vitro to obtain their commitment toward the cardiac phenotype. The use of a modular bioreactor allows the perfusion of the whole scaffold, providing superior performance in terms of cardiac tissue maturation and cell survival. Both the cell culture on natural-derived polymers and the continuous medium perfusion of the scaffold led to the formation of a densely packaged proto-tissue composed of vascular-like and cardiac-like cells, which might complete maturation process and interconnect with native tissue upon in vivo implantation. In conclusion, the data obtained through the approach here proposed highlight the importance to provide stem cells with complementary signals in vitro able to resemble the complexity of cardiac microenvironment. PMID:24917827

  14. Physical exercise and cardiac autonomic activity in healthy adult men.

    PubMed

    Panda, Kaninika; Krishna, Pushpa

    2014-01-01

    Physical inactivity is an important risk factor for cardiovascular mortality and morbidity. Regular exercise is known to improve health and maintain physical fitness. The heart rate response to exercise reflects autonomic control of heart and has shown to predict cardiovascular prognosis. Decreased heart rate variability (HRV) is known as a risk factor for cardiovascular mortality. The objective of this study was to study the effect of exercise on cardiac autonomic activity. Thirty two healthy adult men in the age group of 18-25 years with normal body mass index (BMI) were recruited from different physical fitness centers, who were undergoing regular exercise for past 3 months. Resting ECG was recorded for 5 minutes and analyzed for frequency analysis of HRV. HRV parameters of the subjects were compared with fifty age and BMI matched subjects who were not undergoing any exercise program. Physical activity level of all subjects was assessed by using Global Physical Activity Questionnaire. The exercising (E) subjects were found to have a lesser heart rate (73.27 ± 8.6 vs 74.41 ± 8.59) compared to non-exercising (NE) group, which was not significant. No significant difference was found in frequency domain parameters of HRV between exercising and non-exercising group with LF (47.12 ± 19.17 vs 43.55 ± 16.66), HF (41.03 ± 17.65 vs 46.03 ± 15.89) and LF/HF (1.61 ± 1.16 vs 1.22 ± 0.93) respectively. Physical activity level was significantly different between the two groups (4175 ± 1481.53 vs 1176.4?1103.83, p<0.001). This study showed 3 months of exercise did not have any effect on cardiac autonomic activity despite the difference in physical activity.

  15. Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells.

    PubMed

    Kilcoyne, Karen R; Smith, Lee B; Atanassova, Nina; Macpherson, Sheila; McKinnell, Chris; van den Driesche, Sander; Jobling, Matthew S; Chambers, Thomas J G; De Gendt, Karel; Verhoeven, Guido; O'Hara, Laura; Platts, Sophie; Renato de Franca, Luiz; Lara, Nathália L M; Anderson, Richard A; Sharpe, Richard M

    2014-05-06

    Fetal growth plays a role in programming of adult cardiometabolic disorders, which in men, are associated with lowered testosterone levels. Fetal growth and fetal androgen exposure can also predetermine testosterone levels in men, although how is unknown, because the adult Leydig cells (ALCs) that produce testosterone do not differentiate until puberty. To explain this conundrum, we hypothesized that stem cells for ALCs must be present in the fetal testis and might be susceptible to programming by fetal androgen exposure during masculinization. To address this hypothesis, we used ALC ablation/regeneration to identify that, in rats, ALCs derive from stem/progenitor cells that express chicken ovalbumin upstream promoter transcription factor II. These stem cells are abundant in the fetal testis of humans and rodents, and lineage tracing in mice shows that they develop into ALCs. The stem cells also express androgen receptors (ARs). Reduction in fetal androgen action through AR KO in mice or dibutyl phthalate (DBP) -induced reduction in intratesticular testosterone in rats reduced ALC stem cell number by ∼40% at birth to adulthood and induced compensated ALC failure (low/normal testosterone and elevated luteinizing hormone). In DBP-exposed males, this failure was probably explained by reduced testicular steroidogenic acute regulatory protein expression, which is associated with increased histone methylation (H3K27me3) in the proximal promoter. Accordingly, ALCs and ALC stem cells immunoexpressed increased H3K27me3, a change that was also evident in ALC stem cells in fetal testes. These studies highlight how a key component of male reproductive development can fundamentally reprogram adult hormone production (through an epigenetic change), which might affect lifetime disease risk.

  16. Stimulating endogenous cardiac repair

    PubMed Central

    Finan, Amanda; Richard, Sylvain

    2015-01-01

    The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration, a combination of these approaches could ameliorate the overall repair process to incorporate the participation of multiple cellular players. PMID:26484341

  17. Two Forkhead transcription factors regulate cardiac progenitor specification by controlling the expression of receptors of the fibroblast growth factor and Wnt signaling pathways

    PubMed Central

    Ahmad, Shaad M.; Bhattacharyya, Pritha; Jeffries, Neal; Gisselbrecht, Stephen S.; Michelson, Alan M.

    2016-01-01

    Cardiogenesis involves the coordinated regulation of multiple biological processes by a finite set of transcription factors (TFs). Here, we show that the Forkhead TFs Checkpoint suppressor homologue (CHES-1-like) and Jumeau (Jumu), which govern cardiac progenitor cell divisions by regulating Polo kinase activity, play an additional, mutually redundant role in specifying the cardiac mesoderm (CM) as eliminating the functions of both Forkhead genes in the same Drosophila embryo results in defective hearts with missing hemisegments. This process is mediated by the Forkhead TFs regulating the fibroblast growth factor receptor Heartless (Htl) and the Wnt receptor Frizzled (Fz): CHES-1-like and jumu exhibit synergistic genetic interactions with htl and fz in CM specification, thereby implying that they function through the same genetic pathways, and transcriptionally activate the expression of both receptor-encoding genes. Furthermore, ectopic overexpression of either htl or fz in the mesoderm partially rescues the defective CM specification phenotype in embryos lacking both Forkhead genes. Together, these data emphasize the functional redundancy that leads to robustness in the cardiac progenitor specification process, and illustrate the pleiotropic functions of Forkhead TFs in different aspects of cardiogenesis. PMID:26657774

  18. Characterization of thrombopoietin (TPO)-responsive progenitor cells in adult mouse bone marrow with in vivo megakaryocyte and erythroid potential.

    PubMed

    Ng, Ashley P; Kauppi, Maria; Metcalf, Donald; Di Rago, Ladina; Hyland, Craig D; Alexander, Warren S

    2012-02-14

    Hematopoietic progenitor cells are the progeny of hematopoietic stem cells that coordinate the production of precise numbers of mature blood cells of diverse functional lineages. Identification of cell-surface antigen expression associated with hematopoietic lineage restriction has allowed prospective isolation of progenitor cells with defined hematopoietic potential. To clarify further the cellular origins of megakaryocyte commitment, we assessed the in vitro and in vivo megakaryocyte and platelet potential of defined progenitor populations in the adult mouse bone marrow. We show that megakaryocytes arise from CD150(+) bipotential progenitors that display both platelet- and erythrocyte-producing potential in vivo and that can develop from the Flt3(-) fraction of the pregranulocyte-macrophage population. We define a bipotential erythroid-megakaryocyte progenitor population, the CD150(+)CD9(lo)endoglin(lo) fraction of Lin(-)cKit(+)IL7 receptor alpha(-)FcγRII/III(lo)Sca1(-) cells, which contains the bulk of the megakaryocyte colony-forming capacity of the bone marrow, including bipotential megakaryocyte-erythroid colony-forming capacity, and can generate both erythrocytes and platelets efficiently in vivo. This fraction is distinct from the CD150(+)CD9(hi)endoglin(lo) fraction, which contains bipotential precursors with characteristics of increased megakaryocytic maturation, and the CD150(+)CD9(lo)endoglin(hi) fraction, which contains erythroid lineage-committed cells. Finally, we demonstrate that bipotential erythroid-megakaryocyte progenitor and CD150(+)CD9(hi)endoglin(lo) cells are TPO-responsive and that the latter population specifically expands in the recovery from thrombocytopenia induced by anti-platelet serum.

  19. Cell cycle and lineage progression of neural progenitors in the ventricular-subventricular zones of adult mice

    PubMed Central

    Ponti, Giovanna; Obernier, Kirsten; Guinto, Cristina; Jose, Lingu; Bonfanti, Luca; Alvarez-Buylla, Arturo

    2013-01-01

    Proliferating neural stem cells and intermediate progenitors persist in the ventricular-subventricular zone (V-SVZ) of the adult mammalian brain. This extensive germinal layer in the walls of the lateral ventricles is the site of birth of different types of interneurons destined for the olfactory bulb. The cell cycle dynamics of stem cells (B1 cells), intermediate progenitors (C cells), and neuroblasts (A cells) in the V-SVZ and the number of times these cells divide remain unknown. Using whole mounts of the walls of the lateral ventricles of adult mice and three cell cycle analysis methods using thymidine analogs, we determined the proliferation dynamics of B1, C, and A cells in vivo. Achaete-scute complex homolog (Ascl)1+ C cells were heterogeneous with a cell cycle length (TC) of 18–25 h and a long S phase length (TS) of 14–17 h. After C cells, Doublecortin+ A cells were the second-most common dividing cell type in the V-SVZ and had a TC of 18 h and TS of 9 h. Human glial fibrillary acidic protein (hGFAP)::GFP+ B1 cells had a surprisingly short Tc of 17–18 h and a TS of 4 h. Progenitor population analysis suggests that following the initial division of B1 cells, C cells divide three times and A cells once, possibly twice. These data provide essential information on the dynamics of adult progenitor cell proliferation in the V-SVZ and how large numbers of new neurons continue to be produced in the adult mammalian brain. PMID:23431204

  20. Engineering Robust and Functional Vascular Networks in Vivo with Human Adult and Cord Blood-Derived Progenitor Cells

    DTIC Science & Technology

    2008-12-01

    endothelial progenitor cells (EPCs) have the required proliferative and vasculogenic activity to create vascular networks in vivo. To test this...networks in vivo. To test this, EPCs isolated from human umbilical cord blood or from adult peripheral blood as described(Melero-Martin et al. 2007...hypothesized that abEPCs combined with bmMPCs at an optimized ratio would yield high density vascular networks. Therefore, we tested abEPCs + bmMPCs in

  1. Pomalidomide reverses γ-globin silencing through the transcriptional reprogramming of adult hematopoietic progenitors.

    PubMed

    Dulmovits, Brian M; Appiah-Kubi, Abena O; Papoin, Julien; Hale, John; He, Mingzhu; Al-Abed, Yousef; Didier, Sebastien; Gould, Michael; Husain-Krautter, Sehba; Singh, Sharon A; Chan, Kyle W H; Vlachos, Adrianna; Allen, Steven L; Taylor, Naomi; Marambaud, Philippe; An, Xiuli; Gallagher, Patrick G; Mohandas, Narla; Lipton, Jeffrey M; Liu, Johnson M; Blanc, Lionel

    2016-03-17

    Current therapeutic strategies for sickle cell anemia are aimed at reactivating fetal hemoglobin. Pomalidomide, a third-generation immunomodulatory drug, was proposed to induce fetal hemoglobin production by an unknown mechanism. Here, we report that pomalidomide induced a fetal-like erythroid differentiation program, leading to a reversion of γ-globin silencing in adult human erythroblasts. Pomalidomide acted early by transiently delaying erythropoiesis at the burst-forming unit-erythroid/colony-forming unit-erythroid transition, but without affecting terminal differentiation. Further, the transcription networks involved in γ-globin repression were selectively and differentially affected by pomalidomide including BCL11A, SOX6, IKZF1, KLF1, and LSD1. IKAROS (IKZF1), a known target of pomalidomide, was degraded by the proteasome, but was not the key effector of this program, because genetic ablation of IKZF1 did not phenocopy pomalidomide treatment. Notably, the pomalidomide-induced reprogramming was conserved in hematopoietic progenitors from individuals with sickle cell anemia. Moreover, multiple myeloma patients treated with pomalidomide demonstrated increased in vivo γ-globin levels in their erythrocytes. Together, these data reveal the molecular mechanisms by which pomalidomide reactivates fetal hemoglobin, reinforcing its potential as a treatment for patients with β-hemoglobinopathies.

  2. Multiple Functions of MSCA-1/TNAP in Adult Mesenchymal Progenitor/Stromal Cells

    PubMed Central

    Estève, David; Galitzky, Jean; Bouloumié, Anne; Fonta, Caroline; Buchet, René; Magne, David

    2016-01-01

    Our knowledge about mesenchymal stem cells has considerably grown in the last years. Since the proof of concept of the existence of such cells in the 70s by Friedenstein et al., a growing mass of reports were conducted for a better definition of these cells and for the reevaluation from the term “mesenchymal stem cells” to the term “mesenchymal stromal cells (MSCs).” Being more than a semantic shift, concepts behind this new terminology reveal the complexity and the heterogeneity of the cells grouped in MSC family especially as these cells are present in nearly all adult tissues. Recently, mesenchymal stromal cell antigen-1 (MSCA-1)/tissue nonspecific alkaline phosphatase (TNAP) was described as a new cell surface marker of MSCs from different tissues. The alkaline phosphatase activity of this protein could be involved in wide range of MSC features described below from cell differentiation to immunomodulatory properties, as well as occurrence of pathologies. The present review aims to decipher and summarize the role of TNAP in progenitor cells from different tissues focusing preferentially on brain, bone marrow, and adipose tissue. PMID:26839555

  3. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells

    PubMed Central

    Schwartz, Robert E.; Reyes, Morayma; Koodie, Lisa; Jiang, Yuehua; Blackstad, Mark; Lund, Troy; Lenvik, Todd; Johnson, Sandra; Hu, Wei-Shou; Verfaillie, Catherine M.

    2002-01-01

    We have derived from normal human, mouse, and rat postnatal bone marrow primitive, multipotent adult progenitor cells (MAPCs) that can differentiate into most mesodermal cells and neuroectodermal cells in vitro and into all embryonic lineages in vivo. Here, we show that MAPCs can also differentiate into hepatocyte-like cells in vitro. Human, mouse, and rat MAPCs, cultured on Matrigel with FGF-4 and HGF, differentiated into epithelioid cells that expressed hepatocyte nuclear factor-3β (HNF-3β), GATA4, cytokeratin 19 (CK19), transthyretin, and α-fetoprotein by day 7, and expressed CK18, HNF-4, and HNF-1α on days 14–28. Virtually all human, as well as a majority of rodent cells stained positive for albumin and CK18 on day 21; 5% (rodent) to 25% (human) cells were binucleated by day 21. These cells also acquired functional characteristics of hepatocytes: they secreted urea and albumin, had phenobarbital-inducible cytochrome p450, could take up LDL, and stored glycogen. MAPCs, which can be expanded in vitro and maintained in an undifferentiated state for more than 100 population doublings, can thus differentiate into cells with morphological, phenotypic, and functional characteristics of hepatocytes. MAPCs may therefore be an ideal cell for in vivo therapies for liver disorders or for use in bioartificial liver devices. PMID:12021244

  4. The Society of Thoracic Surgeons Adult Cardiac Surgery Database: 2016 Update on Outcomes and Quality.

    PubMed

    D'Agostino, Richard S; Jacobs, Jeffrey P; Badhwar, Vinay; Paone, Gaetano; Rankin, J Scott; Han, Jane M; McDonald, Donna; Shahian, David M

    2016-01-01

    The Society of Thoracic Surgeons Adult Cardiac Database is one of the longest-standing, largest, and most highly regarded clinical data registries in health care. It serves as the foundation for all quality measurement and improvement activities of The Society of Thoracic Surgeons. This report summarizes current aggregate national outcomes in adult cardiac surgery and reviews database-related activities in the areas of quality measurement and performance improvement.

  5. P2X7 receptors at adult neural progenitor cells of the mouse subventricular zone.

    PubMed

    Messemer, Nanette; Kunert, Christin; Grohmann, Marcus; Sobottka, Helga; Nieber, Karen; Zimmermann, Herbert; Franke, Heike; Nörenberg, Wolfgang; Straub, Isabelle; Schaefer, Michael; Riedel, Thomas; Illes, Peter; Rubini, Patrizia

    2013-10-01

    Neurogenesis requires the balance between the proliferation of newly formed progenitor cells and subsequent death of surplus cells. RT-PCR and immunocytochemistry demonstrated the presence of P2X7 receptor mRNA and immunoreactivity in cultured neural progenitor cells (NPCs) prepared from the adult mouse subventricular zone (SVZ). Whole-cell patch-clamp recordings showed a marked potentiation of the inward current responses both to ATP and the prototypic P2X7 receptor agonist dibenzoyl-ATP (Bz-ATP) at low Ca(2+) and zero Mg(2+) concentrations in the bath medium. The Bz-ATP-induced currents reversed their polarity near 0 mV; in NPCs prepared from P2X7(-/-) mice, Bz-ATP failed to elicit membrane currents. The general P2X/P2Y receptor antagonist PPADS and the P2X7 selective antagonists Brilliant Blue G and A-438079 strongly depressed the effect of Bz-ATP. Long-lasting application of Bz-ATP induced an initial current, which slowly increased to a steady-state response. In combination with the determination of YO-PRO uptake, these experiments suggest the dilation of a receptor-channel and/or the recruitment of a dye-uptake pathway. Ca(2+)-imaging by means of Fura-2 revealed that in a Mg(2+)-deficient bath medium Bz-ATP causes [Ca(2+)](i) transients fully depending on the presence of external Ca(2+). The MTT test indicated a concentration-dependent decrease in cell viability by Bz-ATP treatment. Correspondingly, Bz-ATP led to an increase in active caspase 3 immunoreactivity, indicating a P2X7-controlled apoptosis. In acute SVZ brain slices of transgenic Tg(nestin/EGFP) mice, patch-clamp recordings identified P2X7 receptors at NPCs with pharmacological properties identical to those of their cultured counterparts. We suggest that the apoptotic/necrotic P2X7 receptors at NPCs may be of particular relevance during pathological conditions which lead to increased ATP release and thus could counterbalance the ensuing excessive cell proliferation.

  6. The influence of hypoxia during different pregnancy stages on cardiac collagen accumulation in the adult offspring.

    PubMed

    Wang, Lingxing; Li, Meimei; Huang, Ziyang; Wang, Zhenhua

    2014-01-01

    We evaluated whether the timing of maternal hypoxia during pregnancy influenced cardiac extracellular matrix accumulation in the adult offspring. Rats in different periods of pregnancy were assigned to maternal hypoxia or control groups. Maternal hypoxia from day 3 to 21 of pregnancy or day 9 to 21 of pregnancy increased collagen I and collagen III expression in the left ventricle of adult offspring (both P<0.05). Maternal hypoxia from day 15 to 21 of pregnancy had no effect on adult collagen levels. Our results indicate that maternal hypoxia at critical windows of cardiovascular development can induce pathological cardiac remodeling in the adult rat offspring.

  7. Adult-onset Still's disease and cardiac tamponade: a rare association.

    PubMed

    Carrilho-Ferreira, Pedro; Silva, Doroteia; de Jesus Silva, Maria; André, Rui; Varela, Manuel Gato; Diogo, António Nunes

    2015-06-01

    Adult-onset Still's disease is a rare disorder with potentially severe clinical features, including cardiac involvement. This systemic inflammatory disease of unknown origin should be considered in the differential diagnosis of pericarditis, with or without pericardial effusion. Cardiac tamponade is a very rare sequela that requires an invasive approach, such as percutaneous or surgical pericardial drainage, in addition to the usual conservative therapy. The authors describe a case of adult-onset Still's disease rendered more difficult by pericarditis and cardiac tamponade, and they briefly review the literature on this entity.

  8. Adult-Onset Still's Disease and Cardiac Tamponade: A Rare Association

    PubMed Central

    Silva, Doroteia; de Jesus Silva, Maria; André, Rui; Varela, Manuel Gato; Diogo, António Nunes

    2015-01-01

    Adult-onset Still's disease is a rare disorder with potentially severe clinical features, including cardiac involvement. This systemic inflammatory disease of unknown origin should be considered in the differential diagnosis of pericarditis, with or without pericardial effusion. Cardiac tamponade is a very rare sequela that requires an invasive approach, such as percutaneous or surgical pericardial drainage, in addition to the usual conservative therapy. The authors describe a case of adult-onset Still's disease rendered more difficult by pericarditis and cardiac tamponade, and they briefly review the literature on this entity. PMID:26175648

  9. Hyperoxia Induces Inflammation and Cytotoxicity in Human Adult Cardiac Myocytes.

    PubMed

    Hafner, Christina; Wu, Jing; Tiboldi, Akos; Hess, Moritz; Mitulovic, Goran; Kaun, Christoph; Krychtiuk, Konstantin Alexander; Wojta, Johann; Ullrich, Roman; Tretter, Eva Verena; Markstaller, Klaus; Klein, Klaus Ulrich

    2017-04-01

    Supplemental oxygen (O2) is used as adjunct therapy in anesthesia, emergency, and intensive care medicine. We hypothesized that excessive O2 levels (hyperoxia) can directly injure human adult cardiac myocytes (HACMs). HACMs obtained from the explanted hearts of transplantation patients were exposed to constant hyperoxia (95% O2), intermittent hyperoxia (alternating 10 min exposures to 5% and 95% O2), constant normoxia (21% O2), or constant mild hypoxia (5% O2) using a bioreactor. Changes in cell morphology, viability as assessed by lactate dehydrogenase (LDH) release and trypan blue (TB) staining, and secretion of vascular endothelial growth factor (VEGF), macrophage migration inhibitory factor (MIF), and various pro-inflammatory cytokines (interleukin, IL; chemokine C-X-C motif ligand, CXC; granulocyte-colony stimulating factor, G-CSF; intercellular adhesion molecule, ICAM; chemokine C-C motif ligand, CCL) were compared among treatment groups at baseline (0 h) and after 8, 24, and 72 h of treatment. Changes in HACM protein expression were determined by quantitative proteomic analysis after 48 h of exposure. Compared with constant normoxia and mild hypoxia, constant hyperoxia resulted in a higher TB-positive cell count, greater release of LDH, and elevated secretion of VEGF, MIF, IL-1β, IL-6, IL-8, CXCL-1, CXCL-10, G-CSF, ICAM-1, CCL-3, and CCL-5. Cellular inflammation and cytotoxicity gradually increased and was highest after 72 h of constant and intermittent hyperoxia. Quantitative proteomic analysis revealed that hypoxic and hyperoxic O2 exposure differently altered the expression levels of proteins involved in cell-cycle regulation, energy metabolism, and cell signaling. In conclusion, constant and intermittent hyperoxia induced inflammation and cytotoxicity in HACMs. Cell injury occurred earliest and was greatest after constant hyperoxia, but even relatively brief repeating hyperoxic episodes induced a substantial inflammatory response.

  10. Platelet-derived growth factor receptor-alpha positive cardiac progenitor cells derived from multipotent germline stem cells are capable of cardiomyogenesis in vitro and in vivo.

    PubMed

    Kim, Bang-Jin; Kim, Yong-Hee; Lee, Yong-An; Jung, Sang-Eun; Hong, Yeong Ho; Lee, Eun-Ju; Kim, Byung-Gak; Hwang, Seongsoo; Do, Jeong Tae; Pang, Myung-Geol; Ryu, Buom-Yong

    2017-03-31

    Cardiac cell therapy has the potential to revolutionize treatment of heart diseases, but its success hinders on the development of a stem cell therapy capable of efficiently producing functionally differentiated cardiomyocytes. A key to unlocking the therapeutic application of stem cells lies in understanding the molecular mechanisms that govern the differentiation process. Here we report that a population of platelet-derived growth factor receptor alpha (PDGFRA) cells derived from mouse multipotent germline stem cells (mGSCs) were capable of undergoing cardiomyogenesis in vitro. Cells derived in vitro from PDGFRA positive mGSCs express significantly higher levels of cardiac marker proteins compared to PDGFRA negative mGSCs. Using Pdgfra shRNAs to investigate the dependence of Pdgfra on cardiomyocyte differentiation, we observed that Pdgfra silencing inhibited cardiac differentiation. In a rat myocardial infarction (MI) model, transplantation of a PDGFRAenriched cell population into the rat heart readily underwent functional differentiation into cardiomyocytes and reduced areas of fibrosis associated with MI injury. Together, these results suggest that mGSCs may provide a unique source of cardiac stem/progenitor cells for future regenerative therapy of damaged heart tissue.

  11. p300/β-Catenin Interactions Regulate Adult Progenitor Cell Differentiation Downstream of WNT5a/Protein Kinase C (PKC)*

    PubMed Central

    Rieger, Megan E.; Zhou, Beiyun; Solomon, Nicola; Sunohara, Mitsuhiro; Li, Changgong; Nguyen, Cu; Liu, Yixin; Pan, Jie-hong; Minoo, Parviz; Crandall, Edward D.; Brody, Steven L.; Kahn, Michael; Borok, Zea

    2016-01-01

    Maintenance of stem/progenitor cell-progeny relationships is required for tissue homeostasis during normal turnover and repair. Wnt signaling is implicated in both maintenance and differentiation of adult stem/progenitor cells, yet how this pathway serves these dichotomous roles remains enigmatic. We previously proposed a model suggesting that specific interaction of β-catenin with either of the homologous Kat3 co-activators, p300 or CREB-binding protein, differentially regulates maintenance versus differentiation of embryonic stem cells. Limited knowledge of endogenous mechanisms driving differential β-catenin/co-activator interactions and their role in adult somatic stem/progenitor cell maintenance versus differentiation led us to explore this process in defined models of adult progenitor cell differentiation. We focused primarily on alveolar epithelial type II (AT2) cells, progenitors of distal lung epithelium, and identified a novel axis whereby WNT5a/protein kinase C (PKC) signaling regulates specific β-catenin/co-activator interactions to promote adult progenitor cell differentiation. p300/β-catenin but not CBP/β-catenin interaction increases as AT2 cells differentiate to a type I (AT1) cell-like phenotype. Additionally, p300 transcriptionally activates AT1 cell-specific gene Aqp-5. IQ-1, a specific inhibitor of p300/β-catenin interaction, prevents differentiation of not only primary AT2 cells, but also tracheal epithelial cells, and C2C12 myoblasts. p300 phosphorylation at Ser-89 enhances p300/β-catenin interaction, concurrent with alveolar epithelial cell differentiation. WNT5a, a traditionally non-canonical WNT ligand regulates Ser-89 phosphorylation and p300/β-catenin interactions in a PKC-dependent manner, likely involving PKCζ. These studies identify a novel intersection of canonical and non-canonical Wnt signaling in adult progenitor cell differentiation that has important implications for targeting β-catenin to modulate adult progenitor cell

  12. Hoxb1 regulates proliferation and differentiation of second heart field progenitors in pharyngeal mesoderm and genetically interacts with Hoxa1 during cardiac outflow tract development.

    PubMed

    Roux, Marine; Laforest, Brigitte; Capecchi, Mario; Bertrand, Nicolas; Zaffran, Stéphane

    2015-10-15

    Outflow tract (OFT) anomalies are among the most common congenital heart defects found at birth. The embryonic OFT grows by the progressive addition of cardiac progenitors, termed the second heart field (SHF), which originate from splanchnic pharyngeal mesoderm. Development of the SHF is controlled by multiple intercellular signals and transcription factors; however the relationship between different SHF regulators remains unclear. We have recently shown that Hoxa1 and Hoxb1 are expressed in a sub-population of the SHF contributing to the OFT. Here, we report that Hoxb1 deficiency results in a shorter OFT and ventricular septal defects (VSD). Mechanistically, we show that both FGF/ERK and BMP/SMAD signaling, which regulate proliferation and differentiation of cardiac progenitor cells and OFT morphogenesis, are enhanced in the pharyngeal region in Hoxb1 mutants. Absence of Hoxb1 also perturbed SHF development through premature myocardial differentiation. Hence, the positioning and remodeling of the mutant OFT is disrupted. Hoxa1(-/-) embryos, in contrast, have low percentage of VSD and normal SHF development. However, compound Hoxa1(-/-); Hoxb1(+/-) embryos display OFT defects associated with premature SHF differentiation, demonstrating redundant roles of these factors during OFT development. Our findings provide new insights into the gene regulatory network controlling SHF and OFT formation.

  13. New Developments in Cardiac Regeneration.

    PubMed

    Le, Thi Yen Loan; Thavapalachandran, Sujitha; Kizana, Eddy; Chong, James Jh

    2017-04-01

    Numerous pharmacological and device therapies have improved adverse cardiac remodelling and mortality in heart failure. However, none are able to regenerate damaged cardiac tissue. Stem cell based therapies using multipotent (adult) stem cells and pluripotent stem cells are new approaches that could potentially achieve the elusive goal of true cardiac regeneration. Over the past two decades, various stem cell based approaches have been shown to improve left ventricular function in pre-clinical animal models. Promising results rapidly led to clinical trials, initially using bone marrow-derived mononuclear cells, then mesenchymal stromal cell populations and, more recently, progenitor cells from the adult heart itself. These have been shown to be safe and have advanced our understanding of potential suitable recipients, cell delivery routes, and possible mechanisms of action. However, efficacy in these trials has been inconsistent. Human pluripotent stem cells (hPSCs) are another potential source of stem cells for cardiac regeneration. They could theoretically provide an unlimited source of cardiomyocytes or cardiac progenitors. Pre-clinical studies in both small and large animal models have shown robust engraftment and improvements in cardiac function. The first clinical trial using hPSC-derived cardiac derivatives has now commenced and others are imminent. In this brief review article, we summarise recent developments in stem cell therapies aimed at cardiac regeneration, including discussion of types of cell and non-cell-based strategies being explored.

  14. The Society of Thoracic Surgeons Adult Cardiac Surgery Database: The Driving Force for Improvement in Cardiac Surgery.

    PubMed

    Winkley Shroyer, Annie Laurie; Bakaeen, Faisal; Shahian, David M; Carr, Brendan M; Prager, Richard L; Jacobs, Jeffrey P; Ferraris, Victor; Edwards, Fred; Grover, Frederick L

    2015-01-01

    Initiated in 1989, the Society of Thoracic Surgeons (STS) Adult Cardiac Surgery Database (ACSD) includes more than 1085 participating centers, representing 90%-95% of current US-based adult cardiac surgery hospitals. Since its inception, the primary goal of the STS ACSD has been to use clinical data to track and improve cardiac surgical outcomes. Patients' preoperative risk characteristics, procedure-related processes of care, and clinical outcomes data have been captured and analyzed, with timely risk-adjusted feedback reports to participating providers. In 2006, STS initiated an external audit process to evaluate STS ACSD completeness and accuracy. Given the extremely high inter-rater reliability and completeness rates of STS ACSD, it is widely regarded as the "gold standard" for benchmarking cardiac surgery risk-adjusted outcomes. Over time, STS ACSD has expanded its quality horizons beyond the traditional focus on isolated, risk-adjusted short-term outcomes such as perioperative morbidity and mortality. New quality indicators have evolved including composite measures of key processes of care and outcomes (risk-adjusted morbidity and risk-adjusted mortality), longer-term outcomes, and readmissions. Resource use and patient-reported outcomes would be added in the future. These additional metrics provide a more comprehensive perspective on quality as well as additional end points. Widespread acceptance and use of STS ACSD has led to a cultural transformation within cardiac surgery by providing nationally benchmarked data for internal quality assessment, aiding data-driven quality improvement activities, serving as the basis for a voluntary public reporting program, advancing cardiac surgery care through STS ACSD-based research, and facilitating data-driven informed consent dialogues and alternative treatment-related discussions.

  15. Older Adults in Cardiac Rehabilitation: A New Strategy for Enhancing Physical Function.

    ERIC Educational Resources Information Center

    Rejeski, W. Jack; Foy, Capri Gabrielle; Brawley, Lawrence R.; Brubaker, Peter H.; Focht, Brian C.; Norris, James L., III; Smith, Marci L.

    2002-01-01

    Contrasted the effect of a group-mediated cognitive- behavioral intervention (GMCB) versus traditional cardiac rehabilitation (CRP) upon changes in objective and self-reported physical function of older adults after 3 months of exercise therapy. Both groups improved significantly. Adults with lower function at the outset of the intervention…

  16. Optimizing Survival Outcomes For Adult Patients With Nontraumatic Cardiac Arrest.

    PubMed

    Jung, Julianna

    2016-10-01

    Patient survival after cardiac arrest can be improved significantly with prompt and effective resuscitative care. This systematic review analyzes the basic life support factors that improve survival outcome, including chest compression technique and rapid defibrillation of shockable rhythms. For patients who are successfully resuscitated, comprehensive postresuscitation care is essential. Targeted temperature management is recommended for all patients who remain comatose, in addition to careful monitoring of oxygenation, hemodynamics, and cardiac rhythm. Management of cardiac arrest in circumstances such as pregnancy, pulmonary embolism, opioid overdose and other toxicologic causes, hypothermia, and coronary ischemia are also reviewed.

  17. Provision of Transition Education and Referral Patterns from Pediatric Cardiology to Adult Cardiac Care.

    PubMed

    Harbison, Anna L; Grady, Stafford; Chi, Kevin; Fernandes, Susan M

    2016-02-01

    ACC/AHA guidelines recommend a structured preparation for and transfer to adult-oriented cardiac care for adult survivors of pediatric onset heart disease (POHD). Given this, we sought to describe the transition and transfer practices for a cohort of young adults with POHD and to determine factors associated with successful transfer to adult-oriented cardiac care. We performed a single-center, retrospective chart review on patients ≥18 years of age, with POHD likely to require lifelong cardiac care, who were seen in outpatient pediatric cardiology (PC) between 2008 and 2011. Successful transfer was defined as the subsequent attendance at adult cardiology (AC) within 2 years of PC visit. We identified 118 patients who met study criteria. Mean age 22.4 ± 2.0 years, 59 % male, 64 % white and 40 % Hispanic. Mean transition education topics noted was 3.3 ± 1.8 out of 20 and covered the underlying cardiac disease (89 %), follow-up and current medications (56 %) and exercise limitations (34 %). Recommendations for follow-up were AC (57 %) and PC (33 %). Of those told to transfer to AC, 79 % successfully transferred. Characteristics of successful transfer included: prior cardiac surgery (p = 0.008), cardiac medication use (p = 0.006) and frequency of follow-up ≤1 year (p = 0.037). One-quarter of all subjects did not follow-up within at least 2 years. Despite published guidelines, transition education appears lacking and the approach to transfer to adult cardiac care is not consistent. Given the increased risk of morbidity and mortality in this patient population, standardization of transition education and transfer processes appear warranted.

  18. Running rescues defective adult neurogenesis by shortening the length of the cell cycle of neural stem and progenitor cells.

    PubMed

    Farioli-Vecchioli, Stefano; Mattera, Andrea; Micheli, Laura; Ceccarelli, Manuela; Leonardi, Luca; Saraulli, Daniele; Costanzi, Marco; Cestari, Vincenzo; Rouault, Jean-Pierre; Tirone, Felice

    2014-07-01

    Physical exercise increases the generation of new neurons in adult neurogenesis. However, only few studies have investigated the beneficial effects of physical exercise in paradigms of impaired neurogenesis. Here, we demonstrate that running fully reverses the deficient adult neurogenesis within the hippocampus and subventricular zone of the lateral ventricle, observed in mice lacking the antiproliferative gene Btg1. We also evaluated for the first time how running influences the cell cycle kinetics of stem and precursor subpopulations of wild-type and Btg1-null mice, using a new method to determine the cell cycle length. Our data show that in wild-type mice running leads to a cell cycle shortening only of NeuroD1-positive progenitor cells. In contrast, in Btg1-null mice, physical exercise fully reactivates the defective hippocampal neurogenesis, by shortening the S-phase length and the overall cell cycle duration of both neural stem (glial fibrillary acidic protein(+) and Sox2(+)) and progenitor (NeuroD1(+)) cells. These events are sufficient and necessary to reactivate the hyperproliferation observed in Btg1-null early-postnatal mice and to expand the pool of adult neural stem and progenitor cells. Such a sustained increase of cell proliferation in Btg1-null mice after running provides a long-lasting increment of proliferation, differentiation, and production of newborn neurons, which rescues the impaired pattern separation previously identified in Btg1-null mice. This study shows that running positively affects the cell cycle kinetics of specific subpopulations of newly generated neurons and suggests that the plasticity of neural stem cells without cell cycle inhibitory control is reactivated by running, with implications for the long-term modulation of neurogenesis.

  19. Therapeutic application of inhaled nitric oxide in adult cardiac surgical patients.

    PubMed

    Makker, Robina; Mehta, Yatin; Trehan, Naresh; Bapna, Rk

    2006-01-01

    Increased pulmonary vascular resistance can be detrimental to the cardiac output in post-operative cardiac surgical patients. Pulmonary vasodilator therapy by systemic pharmacologic agents is non-selective. Inhaled nitric oxide is a selective pulmonary vasodilator and does not cause systemic hypotension. In this prospective study, 14 adult post-operative cardiac surgical patients with pulmonary hypertension underwent inhaled nitric oxide therapy and their hemodynamic changes were evaluated. Inhaled nitric oxide was administered in doses of 5 ppm-25 ppm. The result was a decrease in pulmonary vascular resistance from 456.57 +/- 137.13 to 357.64 +/- 119.80 dynes-sec- Continued. - See Free Full Text.

  20. The Society of Thoracic Surgeons Adult Cardiac Surgery Database: 2017 Update on Outcomes and Quality.

    PubMed

    D'Agostino, Richard S; Jacobs, Jeffrey P; Badhwar, Vinay; Paone, Gaetano; Rankin, J Scott; Han, Jane M; McDonald, Donna; Edwards, Fred H; Shahian, David M

    2017-01-01

    Established in 1989, The Society of Thoracic Surgeons Adult Cardiac Surgery Database is one of the most comprehensive clinical data registries in health care. It is widely regarded as the gold standard for benchmarking risk-adjusted outcomes in cardiac surgery and is the foundation for all quality measurement and improvement activities of The Society of Thoracic Surgeons. This is the second in a series of annual reports that summarizes current aggregate national outcomes in cardiac surgery and reviews database-related activities in the areas of quality measurement and performance improvement during the past year.

  1. Early life exposure to air pollution induces adult cardiac dysfunction

    PubMed Central

    Gorr, Matthew W.; Velten, Markus; Nelin, Timothy D.; Youtz, Dane J.; Sun, Qinghua

    2014-01-01

    Exposure to ambient air pollution contributes to the progression of cardiovascular disease, particularly in susceptible populations. The objective of the present study was to determine whether early life exposure to air pollution causes persistent cardiovascular consequences measured at adulthood. Pregnant FVB mice were exposed to filtered (FA) or concentrated ambient particulate matter (PM2.5) during gestation and nursing. Mice were exposed to PM2.5 at an average concentration of 51.69 μg/m3 from the Columbus, OH region for 6 h/day, 7 days/wk in utero until weaning at 3 wk of age. Birth weight was reduced in PM2.5 pups compared with FA (1.36 ± 0.12 g FA, n = 42 mice; 1.30 ± 0.15 g PM2.5, n = 67 P = 0.012). At adulthood, mice exposed to perinatal PM2.5 had reduced left ventricular fractional shortening compared with FA-exposed mice (43.6 ± 2.1% FA, 33.2 ± 1.6% PM2.5, P = 0.001) with greater left ventricular end systolic diameter. Pressure-volume loops showed reduced ejection fraction (79.1 ± 3.5% FA, 35.5 ± 9.5% PM2.5, P = 0.005), increased end-systolic volume (10.4 ± 2.5 μl FA, 39.5 ± 3.8 μl PM2.5, P = 0.001), and reduced dP/dt maximum (11,605 ± 200 μl/s FA, 9,569 ± 800 μl/s PM2.5, P = 0.05) and minimum (−9,203 ± 235 μl/s FA, −7,045 ± 189 μl/s PM2.5, P = 0.0005) in PM2.5-exposed mice. Isolated cardiomyocytes from the hearts of PM2.5-exposed mice had reduced peak shortening (%PS, 8.53 ± 2.82% FA, 6.82 ± 2.04% PM2.5, P = 0.003), slower calcium reuptake (τ, 0.22 ± 0.09 s FA, 0.26 ± 0.07 s PM2.5, P = 0.048), and reduced response to β-adrenergic stimulation compared with cardiomyocytes isolated from mice that were exposed to FA. Histological analyses revealed greater picro-sirius red-positive-stained areas in the PM2.5 vs. FA group, indicative of increased collagen deposition. We concluded that these data demonstrate the detrimental role of early life exposure to ambient particulate air pollution in programming of adult cardiovascular

  2. Developmental origin and lineage plasticity of endogenous cardiac stem cells.

    PubMed

    Santini, Maria Paola; Forte, Elvira; Harvey, Richard P; Kovacic, Jason C

    2016-04-15

    Over the past two decades, several populations of cardiac stem cells have been described in the adult mammalian heart. For the most part, however, their lineage origins and in vivo functions remain largely unexplored. This Review summarizes what is known about different populations of embryonic and adult cardiac stem cells, including KIT(+), PDGFRα(+), ISL1(+)and SCA1(+)cells, side population cells, cardiospheres and epicardial cells. We discuss their developmental origins and defining characteristics, and consider their possible contribution to heart organogenesis and regeneration. We also summarize the origin and plasticity of cardiac fibroblasts and circulating endothelial progenitor cells, and consider what role these cells have in contributing to cardiac repair.

  3. The MMP-1/PAR-1 Axis Enhances Proliferation and Neuronal Differentiation of Adult Hippocampal Neural Progenitor Cells

    PubMed Central

    Valente, Maria Maddalena; Allen, Megan; Bortolotto, Valeria; Lim, Seung T.; Conant, Katherine; Grilli, Mariagrazia

    2015-01-01

    Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that play a role in varied forms of developmental and postnatal neuroplasticity. MMP substrates include protease-activated receptor-1 (PAR-1), a G-protein coupled receptor expressed in hippocampus. We examined proliferation and differentiation of adult neural progenitor cells (aNPCs) from hippocampi of mice that overexpress the potent PAR-1 agonist MMP-1. We found that, as compared to aNPCs from littermate controls, MMP-1 tg aNPCs display enhanced proliferation. Under differentiating conditions, these cells give rise to a higher percentage of MAP-2+ neurons and a reduced number of oligodendrocyte precursors, and no change in the number of astrocytes. The fact that these results are MMP and PAR-1 dependent is supported by studies with distinct antagonists. Moreover, JSH-23, an inhibitor of NF-κB p65 nuclear translocation, counteracted both the proliferation and differentiation changes seen in MMP-1 tg-derived NPCs. In complementary studies, we found that the percentage of Sox2+ undifferentiated progenitor cells is increased in hippocampi of MMP-1 tg animals, compared to wt mice. Together, these results add to a growing body of data suggesting that MMPs are effectors of hippocampal neuroplasticity in the adult CNS and that the MMP-1/PAR-1 axis may play a role in neurogenesis following physiological and/or pathological stimuli. PMID:26783471

  4. Cardiac-Specific Disruption of GH Receptor Alters Glucose Homeostasis While Maintaining Normal Cardiac Performance in Adult Male Mice.

    PubMed

    Jara, Adam; Liu, Xingbo; Sim, Don; Benner, Chance M; Duran-Ortiz, Silvana; Qian, Yanrong; List, Edward O; Berryman, Darlene E; Kim, Jason K; Kopchick, John J

    2016-05-01

    GH is considered necessary for the proper development and maintenance of several tissues, including the heart. Studies conducted in both GH receptor null and bovine GH transgenic mice have demonstrated specific cardiac structural and functional changes. In each of these mouse lines, however, GH-induced signaling is altered systemically, being decreased in GH receptor null mice and increased in bovine GH transgenic mice. Therefore, to clarify the direct effects GH has on cardiac tissue, we developed a tamoxifen-inducible, cardiac-specific GHR disrupted (iC-GHRKO) mouse line. Cardiac GH receptor was disrupted in 4-month-old iC-GHRKO mice to avoid developmental effects due to perinatal GHR gene disruption. Surprisingly, iC-GHRKO mice showed no difference vs controls in baseline or postdobutamine stress test echocardiography measurements, nor did iC-GHRKO mice show differences in longitudinal systolic blood pressure measurements. Interestingly, iC-GHRKO mice had decreased fat mass and improved insulin sensitivity at 6.5 months of age. By 12.5 months of age, however, iC-GHRKO mice no longer had significant decreases in fat mass and had developed glucose intolerance and insulin resistance. Furthermore, investigation via immunoblot analysis demonstrated that iC-GHRKO mice had appreciably decreased insulin stimulated Akt phosphorylation, specifically in heart and liver, but not in epididymal white adipose tissue. These changes were accompanied by a decrease in circulating IGF-1 levels in 12.5-month-old iC-GHRKO mice. These data indicate that whereas the disruption of cardiomyocyte GH-induced signaling in adult mice does not affect cardiac function, it does play a role in systemic glucose homeostasis, in part through modulation of circulating IGF-1.

  5. Simultaneous orientation and cellular force measurements in adult cardiac myocytes using three-dimensional polymeric microstructures.

    PubMed

    Zhao, Yi; Lim, Chee Chew; Sawyer, Douglas Brian; Liao, Ronglih; Zhang, Xin

    2007-09-01

    A number of techniques have been developed to monitor contractile function in isolated cardiac myocytes. While invaluable observations have been gained from these methodologies in understanding the contractile processes of the heart, they are invariably limited by their in vitro conditions. The present challenge is to develop innovative assays to mimic the in vivo milieu so as to allow a more physiological assessment of cardiac myocyte contractile forces. Here we demonstrate the use of a silicone elastomer, poly(dimethylsiloxane) (PDMS), to simultaneously orient adult cardiac myocytes in primary culture and measure the cellular forces in a three-dimensional substrate. The realignment of adult cardiac myocytes in long-term culture (7 days) was achieved due to directional reassembly of the myofibrils along the parallel polymeric sidewalls. The cellular mechanical forces were recorded in situ by observing the deformation of the micropillars embedded in the substrate. By coupling the cellular mechanical force measurements with on-chip cell orientation, this novel assay is expected to provide a means of a more physiological assessment of single cardiac myocyte contractile function and may facilitate the future development of in vitro assembled functional cardiac tissue.

  6. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice.

    PubMed

    Han, Xiaoning; Chen, Michael; Wang, Fushun; Windrem, Martha; Wang, Su; Shanz, Steven; Xu, Qiwu; Oberheim, Nancy Ann; Bekar, Lane; Betstadt, Sarah; Silva, Alcino J; Takano, Takahiro; Goldman, Steven A; Nedergaard, Maiken

    2013-03-07

    Human astrocytes are larger and more complex than those of infraprimate mammals, suggesting that their role in neural processing has expanded with evolution. To assess the cell-autonomous and species-selective properties of human glia, we engrafted human glial progenitor cells (GPCs) into neonatal immunodeficient mice. Upon maturation, the recipient brains exhibited large numbers and high proportions of both human glial progenitors and astrocytes. The engrafted human glia were gap-junction-coupled to host astroglia, yet retained the size and pleomorphism of hominid astroglia, and propagated Ca2+ signals 3-fold faster than their hosts. Long-term potentiation (LTP) was sharply enhanced in the human glial chimeric mice, as was their learning, as assessed by Barnes maze navigation, object-location memory, and both contextual and tone fear conditioning. Mice allografted with murine GPCs showed no enhancement of either LTP or learning. These findings indicate that human glia differentially enhance both activity-dependent plasticity and learning in mice.

  7. Clonal proliferation of multipotent stem/progenitor cells in the neonatal and adult salivary glands

    SciTech Connect

    Kishi, Teruki; Takao, Tukasa; Fujita, Kiyohide; Taniguchi, Hideki . E-mail: rtanigu@med.yokohama-cu.ac.jp

    2006-02-10

    Salivary gland stem/progenitor cells are thought to be present in intercalated ductal cells, but the fact is unclear. In this study, we sought to clarify if stem/progenitor cells are present in submandibular glands using colony assay, which is one of the stem cell assay methods. Using a low-density culture of submandibular gland cells of neonatal rats, we developed a novel culture system that promotes single cell colony formation. Average doubling time for the colony-forming cells was 24.7 (SD = {+-}7.02) h, indicating high proliferative potency. When epidermal growth factor (EGF) and hepatocyte growth factor (HGF) were added to the medium, the number of clonal colonies increased greater than those cultured without growth factors (13.2 {+-} 4.18 vs. 4.5 {+-} 1.73). The RT-PCR and immunostaining demonstrated expressing acinar, ductal, and myoepithelial cell lineage markers. This study demonstrated the presence of the salivary gland stem/progenitor cells that are highly proliferative and multipotent in salivary glands.

  8. Cardiac Autonomic Function during Submaximal Treadmill Exercise in Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Mendonca, Goncalo V.; Pereira, Fernando D.; Fernhall, Bo

    2011-01-01

    This study determined whether the cardiac autonomic function of adults with Down syndrome (DS) differs from that of nondisabled persons during submaximal dynamic exercise. Thirteen participants with DS and 12 nondisabled individuals performed maximal and submaximal treadmill tests with metabolic and heart rate (HR) measurements. Spectral analysis…

  9. SWI/SNF Protein Component BAF250a Regulates Cardiac Progenitor Cell Differentiation by Modulating Chromatin Accessibility during Second Heart Field Development*

    PubMed Central

    Lei, Ienglam; Gao, Xiaolin; Sham, Mai Har; Wang, Zhong

    2012-01-01

    ATP-dependent SWI/SNF chromatin remodeling complexes alter the structure of chromatin at specific loci and facilitate tissue-specific gene regulation during development. Several SWI/SNF subunits are required for cardiogenesis. However, the function and mechanisms of SWI/SNF in mediating cardiac progenitor cell (CPC) differentiation during cardiogenesis are not well understood. Our studies of the SWI/SNF chromatin remodeling complex identified that BAF250a, a regulatory subunit of the SWI/SNF, plays a key role in CPC differentiation. BAF250a ablation in mouse second heart field (SHF) led to trabeculation defects in the right ventricle, ventricular septal defect, persistent truncus arteriosus, reduced myocardial proliferation, and embryonic lethality around E13. Using an embryonic stem cell culture system that models the formation and differentiation of SHF CPCs in vivo, we have shown that BAF250a ablation in CPCs specifically inhibits cardiomyocyte formation. Moreover, BAF250a selectively regulates the expression of key cardiac factors Mef2c, Nkx2.5, and Bmp10 in SHF CPCs. Chromatin immunoprecipitation and DNase I digestion assays indicate that BAF250a regulates gene expression by binding selectively to its target gene promoters and recruiting Brg1, the catalytic subunit of SWI/SNF, to modulate chromatin accessibility. Our results thus identify BAF250a-mediated chromatin remodeling as an essential epigenetic mechanism mediating CPC differentiation. PMID:22621927

  10. Comparative analysis of the frequency and distribution of stem and progenitor cells in the adult mouse brain.

    PubMed

    Golmohammadi, Mohammad G; Blackmore, Daniel G; Large, Beatrice; Azari, Hassan; Esfandiary, Ebrahim; Paxinos, George; Franklin, Keith B J; Reynolds, Brent A; Rietze, Rodney L

    2008-04-01

    The neurosphere assay can detect and expand neural stem cells (NSCs) and progenitor cells, but it cannot discriminate between these two populations. Given two assays have purported to overcome this shortfall, we performed a comparative analysis of the distribution and frequency of NSCs and progenitor cells detected in 400 mum coronal segments along the ventricular neuraxis of the adult mouse brain using the neurosphere assay, the neural colony forming cell assay (N-CFCA), and label-retaining cell (LRC) approach. We observed a large variation in the number of progenitor/stem cells detected in serial sections along the neuraxis, with the number of neurosphere-forming cells detected in individual 400 mum sections varying from a minimum of eight to a maximum of 891 depending upon the rostral-caudal coordinate assayed. Moreover, the greatest variability occurred in the rostral portion of the lateral ventricles, thereby explaining the large variation in neurosphere frequency previously reported. Whereas the overall number of neurospheres (3730 +/- 276) or colonies (4275 +/- 124) we detected along the neuraxis did not differ significantly, LRC numbers were significantly reduced (1186 +/- 188, 7 month chase) in comparison to both total colonies and neurospheres. Moreover, approximately two orders of magnitude fewer NSC-derived colonies (50 +/- 10) were detected using the N-CFCA as compared to LRCs. Given only 5% of the LRCs are cycling (BrdU+/Ki-67+) or competent to divide (BrdU+/Mcm-2+), and proliferate upon transfer to culture, it is unclear whether this technique selectively detects endogenous NSCs. Overall, caution should be taken with the interpretation and employment of all these techniques.

  11. Perioperative Hemoglobin Trajectory in Adult Cardiac Surgical Patients

    PubMed Central

    Scott, David A.; Tung, Hon-Ming Andrew; Slater, Reuben

    2015-01-01

    Abstract: Preoperative anemia and nadir hemoglobin (Hb) during cardiopulmonary bypass (CPB) have been identified as significant risk factors for blood transfusion during cardiac surgery. The aim of this study was to confirm the association between preoperative anemia, perioperative fluid management, and blood transfusion. In addition, the proportion of elective cardiac surgery patients presenting for surgery with anemia was identified to examine whether the opportunity exists for timely diagnosis and intervention. Data from referral until hospital discharge were comprehensively reviewed over a 12-month period for all nonemergency cardiac surgical patients operated on in our institution. Of the 342 patients identified, elective cases were referred a median of 35 days before preoperative clinic and operated on a median of 14 days subsequently. Subacute cases had a median of 3 days from referral to surgery. As per the World Health Organization (WHO) criteria for anemia, 24.2% of elective and 29.6% of subacute patients were anemic. Blood transfusion was administered to 46.2% of patients during their admission. Transfusion was more likely in patients who were female (odds ratio [OR]: 2.45, 95%confidence interval [CI]: 1.28–4.70), had a low body mass index (BMI) (OR: .89, 95% CI: .84–.94), preoperative anemia (OR: 5.15, 95% CI: 2.59–10.24), or renal impairment (OR: 5.44, 95% CI: 2.42–12.22). Hemodilution minimization strategies reduced the Hb fall during CPB, but not transfusion rates. This study identifies a high prevalence of preoperative anemia with sufficient time for elective referrals to undergo appropriate diagnosis and interventions. It also confirms that low red cell mass (anemia and low BMI) and renal impairment are predictors of perioperative blood transfusion. Perfusion strategies to reduce hemodilution are effective at minimizing the intraoperative fall in Hb concentration but did not influence transfusion rate. PMID:26543251

  12. Reference Values for Cardiac and Aortic Magnetic Resonance Imaging in Healthy, Young Caucasian Adults

    PubMed Central

    Eikendal, Anouk L. M.; Bots, Michiel L.; Haaring, Cees; Saam, Tobias; van der Geest, Rob J.; Westenberg, Jos J. M.; den Ruijter, Hester M.; Hoefer, Imo E.; Leiner, Tim

    2016-01-01

    Background Reference values for morphological and functional parameters of the cardiovascular system in early life are relevant since they may help to identify young adults who fall outside the physiological range of arterial and cardiac ageing. This study provides age and sex specific reference values for aortic wall characteristics, cardiac function parameters and aortic pulse wave velocity (PWV) in a population-based sample of healthy, young adults using magnetic resonance (MR) imaging. Materials and Methods In 131 randomly selected healthy, young adults aged between 25 and 35 years (mean age 31.8 years, 63 men) of the general-population based Atherosclerosis-Monitoring-and-Biomarker-measurements-In-The-YOuNg (AMBITYON) study, descending thoracic aortic dimensions and wall thickness, thoracic aortic PWV and cardiac function parameters were measured using a 3.0T MR-system. Age and sex specific reference values were generated using dedicated software. Differences in reference values between two age groups (25–30 and 30–35 years) and both sexes were tested. Results Aortic diameters and areas were higher in the older age group (all p<0.007). Moreover, aortic dimensions, left ventricular mass, left and right ventricular volumes and cardiac output were lower in women than in men (all p<0.001). For mean and maximum aortic wall thickness, left and right ejection fraction and aortic PWV we did not observe a significant age or sex effect. Conclusion This study provides age and sex specific reference values for cardiovascular MR parameters in healthy, young Caucasian adults. These may aid in MR guided pre-clinical identification of young adults who fall outside the physiological range of arterial and cardiac ageing. PMID:27732640

  13. Defining a developmental path to neural fate by global expression profiling of mouse embryonic stem cells and adult neural stem/progenitor cells.

    PubMed

    Aiba, Kazuhiro; Sharov, Alexei A; Carter, Mark G; Foroni, Chiara; Vescovi, Angelo L; Ko, Minoru S H

    2006-04-01

    To understand global features of gene expression changes during in vitro neural differentiation, we carried out the microarray analysis of embryonic stem cells (ESCs), embryonal carcinoma cells, and adult neural stem/progenitor (NS) cells. Expression profiling of ESCs during differentiation in monolayer culture revealed three distinct phases: undifferentiated ESCs, primitive ectoderm-like cells, and neural progenitor cells. Principal component (PC) analysis revealed that these cells were aligned on PC1 over the course of 6 days. This PC1 represents approximately 4,000 genes, the expression of which increased with neural commitment/differentiation. Furthermore, NS cells derived from adult brain and their differentiated cells were positioned along this PC axis further away from undifferentiated ESCs than embryonic stem-derived neural progenitors. We suggest that this PC1 defines a path to neural fate, providing a scale for the degree of commitment/differentiation.

  14. Inhibition of G9a Histone Methyltransferase Converts Bone Marrow Mesenchymal Stem Cells to Cardiac Competent Progenitors

    PubMed Central

    Yang, Jinpu; Kaur, Keerat; Ong, Li Lin; Eisenberg, Carol A.; Eisenberg, Leonard M.

    2015-01-01

    The G9a histone methyltransferase inhibitor BIX01294 was examined for its ability to expand the cardiac capacity of bone marrow cells. Inhibition of G9a histone methyltransferase by gene specific knockdown or BIX01294 treatment was sufficient to induce expression of precardiac markers Mesp1 and brachyury in bone marrow cells. BIX01294 treatment also allowed bone marrow mesenchymal stem cells (MSCs) to express the cardiac transcription factors Nkx2.5, GATA4, and myocardin when subsequently exposed to the cardiogenic stimulating factor Wnt11. Incubation of BIX01294-treated MSCs with cardiac conditioned media provoked formation of phase bright cells that exhibited a morphology and molecular profile resembling similar cells that normally form from cultured atrial tissue. Subsequent aggregation and differentiation of BIX01294-induced, MSC-derived phase bright cells provoked their cardiomyogenesis. This latter outcome was indicated by their widespread expression of the primary sarcomeric proteins muscle α-actinin and titin. MSC-derived cultures that were not initially treated with BIX01294 exhibited neither a commensurate burst of phase bright cells nor stimulation of sarcomeric protein expression. Collectively, these data indicate that BIX01294 has utility as a pharmacological agent that could enhance the ability of an abundant and accessible stem cell population to regenerate new myocytes for cardiac repair. PMID:26089912

  15. Contrary microRNA Expression Pattern Between Fetal and Adult Cardiac Remodeling: Therapeutic Value for Heart Failure.

    PubMed

    Yan, Hualin; Li, Yifei; Wang, Chuan; Zhang, Yi; Liu, Cong; Zhou, Kaiyu; Hua, Yimin

    2016-08-10

    microRNAs (miRNAs) belong to a class of non-coding RNAs that regulate post-transcriptional gene expression during development and disease. Growing evidence indicates abundant miRNA expression changes and their important role in cardiac hypertrophy and failure. However, the role of miRNAs in fetal cardiac remodeling is little known. Here, we investigated the altered expression of fifteen miRNAs in rat fetal cardiac remodeling compared with adult cardiac remodeling. Among fifteen tested miRNAs, eleven and five miRNAs (miR-199a-5p, miR-214-3p, miR-155-3p, miR-155-5p and miR-499-5p) are significantly differentially expressed in fetal and adult cardiac remodeling, respectively. After comparison of miRNA expression in fetal and adult cardiac remodeling, we find that miRNA expression returns to the fetal level in adult cardiac failure and is activated in advance of the adult level in fetal failure. The current study highlights the contrary expression pattern between fetal and adult cardiac remodeling and that supports a novel potential therapeutic approach to treating heart failure.

  16. Does Glucagon Improve Survival in a Porcine (Sus Scrofa) of Adult Asphyxial Cardiac Arrest in Addition to Standard Epinephrine Therapy?

    DTIC Science & Technology

    2012-01-17

    UDIIILI: oa. I..UN I ItA!.. I NUMDI:It Does Glucagon improve survival in a porcine (Sus Scrofa ) of adult asphyxial cardiac arrest in addition to...EXPIRATION DATE: 25 Mar 13 PROTOCOL TITLE: Does Glucagon Improve Survival in a Porcine (Sus scrofa ) Model of Adult Asphyxial Cardiac Arrest in Addition...Additions: Deletions: 2 Protocol No: A-2007-03 Protocol Title: Does Glucagon Improve Survival in a Porcine (Sus scrofa ) Model of Adult Asphyxial

  17. Differential mechanisms of x-ray-induced cell death in human endothelial progenitor cells isolated from cord blood and adults.

    PubMed

    Mendonca, Marc S; Chin-Sinex, Helen; Dhaemers, Ryan; Mead, Laura E; Yoder, Merv C; Ingram, David A

    2011-08-01

    Endothelial colony-forming cells (ECFCs) are endothelial progenitor cells that circulate at low concentration in human umbilical cord and adult peripheral blood and are largely resident in blood vessels. ECFCs not only appear to be critical for normal vascular homeostasis and repair but may also contribute to tumor angiogenesis and response to therapy. To begin to characterize the potential role of ECFCs during the treatment of tumors in children and adults with radiation, we characterized the X-ray sensitivity of cord and adult blood-derived ECFCs. We found both cord blood and adult ECFCs to be highly radiation sensitive (3 Gy resulted in >90% killing without induction of apoptosis). The X-ray survival curves suggested reduced potential for repair capacity, but X-ray fractionation studies demonstrated that all the ECFCs exhibited repair when the radiation was fractionated. Finally, the mechanisms of X-ray-induced cell death for cord blood and adult ECFCs were different at low and high dose. At low dose, all ECFCs appear to die by mitotic death/catastrophe. However, at high radiation doses (≥ 10 Gy) cord blood ECFCs underwent p53 stabilization and Bax-dependent apoptosis as well as p21-dependent G₁ and G₂/M cell cycle checkpoints. By contrast, after 10 Gy adult ECFCs undergo only large-scale radiation-induced senescence, which is a cellular phenotype linked to premature development of atherosclerosis and vasculopathies. These data demonstrate that the ECFC response to radiation is dose-dependent and developmentally regulated and may provide potential mechanistic insight into their role in tumor and normal tissue response after ionizing radiation treatment.

  18. Changing nature of cardiac interventions in older adults

    PubMed Central

    Dodson, John A; Maurer, Mathew S

    2011-01-01

    Older adults represent a rapidly growing segment of the population in developed countries. Advancing age is the most powerful risk factor for the development of cardiovascular disease (CVD), and CVD-related mortality increases markedly in older individuals. Procedures for patients with CVD, including percutaneous coronary intervention, aortic valve replacement and implantable cardioverter defibrillators were all initially validated in younger individuals but are increasingly being applied in older adults who for the most part have been significantly understudied in clinical trials. While advanced age alone is not a contraindication to these procedures, with the advent of less invasive methods to manage CVD including percutaneous techniques to treat both coronary artery disease and valvular heart disease, future research will need to weigh the potential harms of intervention in a population of older adults with multiple medical comorbidities and complex physiologic phenotypes against outcomes that include preventing functional decline and improving quality of life. PMID:21743812

  19. Cardiac fibroblast-derived extracellular matrix (biomatrix) as a model for the studies of cardiac primitive cell biological properties in normal and pathological adult human heart.

    PubMed

    Castaldo, Clotilde; Di Meglio, Franca; Miraglia, Rita; Sacco, Anna Maria; Romano, Veronica; Bancone, Ciro; Della Corte, Alessandro; Montagnani, Stefania; Nurzynska, Daria

    2013-01-01

    Cardiac tissue regeneration is guided by stem cells and their microenvironment. It has been recently described that both cardiac stem/primitive cells and extracellular matrix (ECM) change in pathological conditions. This study describes the method for the production of ECM typical of adult human heart in the normal and pathological conditions (ischemic heart disease) and highlights the potential use of cardiac fibroblast-derived ECM for in vitro studies of the interactions between ECM components and cardiac primitive cells responsible for tissue regeneration. Fibroblasts isolated from adult human normal and pathological heart with ischemic cardiomyopathy were cultured to obtain extracellular matrix (biomatrix), composed of typical extracellular matrix proteins, such as collagen and fibronectin, and matricellular proteins, laminin, and tenascin. After decellularization, this substrate was used to assess biological properties of cardiac primitive cells: proliferation and migration were stimulated by biomatrix from normal heart, while both types of biomatrix protected cardiac primitive cells from apoptosis. Our model can be used for studies of cell-matrix interactions and help to determine the biochemical cues that regulate cardiac primitive cell biological properties and guide cardiac tissue regeneration.

  20. Recent insights into the molecular mechanisms involved in aging and the malignant transformation of adult stem/progenitor cells and their therapeutic implications

    PubMed Central

    Mimeault, Murielle; Batra, Surinder K.

    2013-01-01

    Recent advancements in tissue-resident adult stem/progenitor cell research have revealed that enhanced telomere attrition, oxidative stress, ultraviolet radiation exposure and oncogenic events leading to severe DNA damages and genomic instability may occur in these immature and regenerative cells during chronological aging. Particularly, the alterations in key signaling components controlling their self-renewal capacity and an up-regulation of tumor suppressor gene products such as p16INK4A, p19ARF, ataxia-telangiectasia mutated (ATM) kinase, p53and/or theforkhead box O (FOXOs) family of transcription factors may result in their dysfunctions, growth arrest and senescence or apoptotic death during the aging process. These molecular events may culminate in a progressive decline in the regenerative functions and the number of tissue-resident adult stem/progenitor cells, and age-related disease development. Conversely, the telomerase re-activation and accumulation of numerous genetic and/or epigenetic alterations in adult stem/progenitor cells with advancing age may result in their immortalization and malignant transformation into highly leukemic or tumorigenic cancer-initiating cells and cancer initiation. Therefore, the cell-replacement and gene therapies and molecular targeting of aged and dysfunctional adult stem/progenitor cells including their malignant counterpart, cancer-initiating cells, hold great promise for treating and even curing diverse devastating human diseases. These diseases include premature aging diseases, hematopoietic, cardiovascular, musculoskeletal, pulmonary, ocular, urogenital, neurodegenerative and skin disorders and aggressive and recurrent cancers. PMID:19114129

  1. Notch signaling induces retinal stem-like properties in perinatal neural retina progenitors and promotes symmetric divisions in adult retinal stem cells.

    PubMed

    Balenci, Laurent; van der Kooy, Derek

    2014-02-01

    Understanding the mechanisms regulating retinal stem cell (RSC) activity is fundamental for future stem cell-based therapeutic purposes. By combining gain and loss of function approaches, we addressed whether Notch signaling may play a selective role in retinal stem versus retinal progenitor cells in both developing and adult eyes. Inhibition of either Notch or fibroblast growth factor signaling reduced proliferation of retinal stem and retinal progenitor cells, and inhibited RSC self-renewal. Conversely, exogenous Delta-like 3 and direct intrinsic Notch activation stimulated expansionary symmetric divisions in adult RSCs with the concomitant upregulation of Hes5. Knocking down Hes5 expression specifically decreased the numbers, but not the diameters, of adult RSC primary spheres, indicating that HES5 is the downstream effector of Notch receptor in controlling adult RSC proliferation. In addition, constitutive Notch activation induced retinal stem-like asymmetric self-renewal properties, with no expansion (no symmetrical division) in perinatal neural retina progenitor cells. These findings highlight central roles of Notch signaling activity in regulating the modes of division of retinal stem and retinal progenitor cells.

  2. Adult Human Olfactory Epithelial-Derived Progenitors: A Potential Autologous Source for Cell-Based Treatment for Parkinson's Disease

    PubMed Central

    Wang, Meng; Lu, Chengliang

    2012-01-01

    Human adult olfactory epithelial-derived neural progenitors (hONPs) can differentiate along several neural lineages in response to morphogenic signals in vitro. A previous study optimized the transfection paradigm for the differentiation of hONPs to dopaminergic neurons. This study engrafted cells modified by the most efficient transfection paradigm for dopaminergic neural restriction and pretransfected controls into a unilateral neurotoxin, 6-hydroxydopamine-induced parkinsonian rat model. Approximately 35% of the animals engrafted with hONPs had improved behavioral recovery as demonstrated by the amphetamine-induced rotation test, as well as a corner preference and cylinder paw preference, over a period of 24 weeks. The pre- and post-transfected groups produced equivalent responses, indicating that the toxic host environment supported hONP dopaminergic differentiation in situ. Human fibroblasts used as a cellular control did not diminish the parkinsonian rotational deficits at any point during the study. Increased numbers of tyrosine hydroxylase (TH)-positive cells were detected in the engrafted brains compared with the fibroblast-implanted and medium-only controls. Engrafted TH-positive hONPs were detected for a minimum of 6 months in vivo; they were multipolar, had long processes, and migrated beyond their initial injection sites. Higher dopamine levels were detected in the striatum of behaviorally improved animals than in equivalent regions of their nonrecovered counterparts. Throughout these experiments, no evidence of tumorigenicity was observed. These results support our hypothesis that human adult olfactory epithelial-derived progenitors represent a unique autologous cell type with promising potential for future use in a cell-based therapy for patients with Parkinson's disease. PMID:23197853

  3. Neutralization of nerve growth factor impairs proliferation and differentiation of adult neural progenitors in the subventricular zone.

    PubMed

    Scardigli, Raffaella; Capelli, Paolo; Vignone, Domenico; Brandi, Rossella; Ceci, Marcello; La Regina, Federico; Piras, Eleonora; Cintoli, Simona; Berardi, Nicoletta; Capsoni, Simona; Cattaneo, Antonino

    2014-09-01

    Adult neurogenesis is a multistep process regulated by several extrinsic factors, including neurotrophins. Among them, little is known about the role of nerve growth factor (NGF) in the neurogenic niches of the mouse. Here we analyzed the biology of adult neural stem cells (NSCs) from the subventricular zone (SVZ) of AD11 anti-NGF transgenic mice, in which the expression of the recombinant antibody aD11 leads to a chronic postnatal neutralization of endogenous NGF. We showed that AD11-NSCs proliferate 10-fold less, with respect to their control counterparts, and display a significant impairment in their ability to differentiate into β-tubulin positive neurons. We found a considerable reduction in the number of SVZ progenitors and neuroblasts also in vivo, which correlates with a lower number of newborn neurons in the olfactory bulbs of AD11 mice and a severe deficit in the ability of these mice to discriminate between different odors. We also demonstrated that, in AD11 mice, the morphology of both SVZ-resident and neurosphere-derived astrocytes is significantly altered. We were able to reproduce the AD11 phenotype in vitro, by acutely treating wild type NSCs with the anti-NGF antibody, further demonstrating that both the proliferation and the differentiation defects are due to the NGF deprivation. Consistently, the proliferative impairment of AD11 progenitors, as well as the atrophic morphology of AD11 astrocytes, can be partly rescued in vitro and in vivo by exogenous NGF addition. Altogether, our results demonstrate a causal link between NGF signaling and proper proliferation and differentiation of neural stem cells from the SVZ.

  4. Congenital subclavian arteriovenous malformation causing cardiac failure in an adult.

    PubMed

    Anoop, T M; Sreejith, P; Thomas, Joby K; Gailin, B; Jabbar, P K; Ittycheria, Cherian C; George, Raju

    2009-07-01

    Congenital arteriovenous malformations (AVMs) of the thoracic region are rarely reported in adults. The authors report an unusual case of a 30-year-old man who presented with a large congenital AVM and heart failure. The diagnosis was made using transthoracic Doppler echocardiography and computed tomography. Embolization followed by surgical resection of the AVM resulted in the prompt relief of heart failure.

  5. The BAF complex interacts with Pax6 in adult neural progenitors to establish a neurogenic cross-regulatory transcriptional network.

    PubMed

    Ninkovic, Jovica; Steiner-Mezzadri, Andrea; Jawerka, Melanie; Akinci, Umut; Masserdotti, Giacomo; Petricca, Stefania; Fischer, Judith; von Holst, Alexander; Beckers, Johanes; Lie, Chichung D; Petrik, David; Miller, Erik; Tang, Jiong; Wu, Jiang; Lefebvre, Veronique; Demmers, Jeroen; Eisch, Amelia; Metzger, Daniel; Crabtree, Gerald; Irmler, Martin; Poot, Raymond; Götz, Magdalena

    2013-10-03

    Numerous transcriptional regulators of neurogenesis have been identified in the developing and adult brain, but how neurogenic fate is programmed at the epigenetic level remains poorly defined. Here, we report that the transcription factor Pax6 directly interacts with the Brg1-containing BAF complex in adult neural progenitors. Deletion of either Brg1 or Pax6 in the subependymal zone (SEZ) causes the progeny of adult neural stem cells to convert to the ependymal lineage within the SEZ while migrating neuroblasts convert to different glial lineages en route to or in the olfactory bulb (OB). Genome-wide analyses reveal that the majority of genes downregulated in the Brg1 null SEZ and OB contain Pax6 binding sites and are also downregulated in Pax6 null SEZ and OB. Downstream of the Pax6-BAF complex, we find that Sox11, Nfib, and Pou3f4 form a transcriptional cross-regulatory network that drives neurogenesis and can convert postnatal glia into neurons. Taken together, elements of our work identify a tripartite effector network activated by Pax6-BAF that programs neuronal fate.

  6. High neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids

    PubMed Central

    Peirouvi, T.; Yekani, F.; Azarnia, M.; Massumi, M.

    2015-01-01

    Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic cerebrospinal fluid (E-CSF) including E13.5, E17-CSF and the adult cerebrospinal fluid (A-CSF), all extracted from rats. CSF samples were selected based on their effects on cell behavioral parameters. Primary cell culture was performed in the presence of either normal or high levels of KCL in a culture medium. High levels of KCL cause cell depolarization, and thus the activation of quiescent NSCs. Results from immunocytochemistry (ICC) and semi-quantitative RT-PCR (sRT-PCR) techniques showed that in E-CSF-treated groups, neuronal differentiation increased (E17>E13.5). In contrast, A-CSF decreased and increased neuronal and astroglial differentiations, respectively. Cell survivability and/or proliferation (S/P), evaluated by an MTT assay, increased by E13.5 CSF, but decreased by both E17 CSF and A-CSF. Based on the results, it is finally concluded that adult rat hippocampal proliferative cells are not restricted progenitors but rather show high plasticity in neuronal/astroglial differentiation according to the effects of CSF samples. In addition, using high concentrations of KCL in the primary cell culture led to an increase in the number of NSCs, which in turn resulted in the increase in neuronal or astroglial differentiations after CSF treatment. PMID:27175157

  7. C-Kit Promotes Growth and Migration of Human Cardiac Progenitor Cells via the PI3K-AKT and MEK-ERK Pathways.

    PubMed

    Vajravelu, Bathri N; Hong, Kyung U; Al-Maqtari, Tareq; Cao, Pengxiao; Keith, Matthew C L; Wysoczynski, Marcin; Zhao, John; Moore, Joseph B; Bolli, Roberto

    2015-01-01

    A recent phase I clinical trial (SCIPIO) has shown that autologous c-kit+ cardiac progenitor cells (CPCs) improve cardiac function and quality of life when transplanted into patients with ischemic heart disease. Although c-kit is widely used as a marker of resident CPCs, its role in the regulation of the cellular characteristics of CPCs remains unknown. We hypothesized that c-kit plays a role in the survival, growth, and migration of CPCs. To test this hypothesis, human CPCs were grown under stress conditions in the presence or absence of SCF, and the effects of SCF-mediated activation of c-kit on CPC survival/growth and migration were measured. SCF treatment led to a significant increase in cell survival and a reduction in cell death under serum depletion conditions. In addition, SCF significantly promoted CPC migration in vitro. Furthermore, the pro-survival and pro-migratory effects of SCF were augmented by c-kit overexpression and abrogated by c-kit inhibition with imatinib. Mechanistically, c-kit activation in CPCs led to activation of the PI3K and the MAPK pathways. With the use of specific inhibitors, we confirmed that the SCF/c-kit-dependent survival and chemotaxis of CPCs are dependent on both pathways. Taken together, our findings suggest that c-kit promotes the survival/growth and migration of human CPCs cultured ex vivo via the activation of PI3K and MAPK pathways. These results imply that the efficiency of CPC homing to the injury site as well as their survival after transplantation may be improved by modulating the activity of c-kit.

  8. Spliced stromal cell-derived factor-1α analog stimulates endothelial progenitor cell migration and improves cardiac function in a dose-dependent manner after myocardial infarction

    PubMed Central

    Hiesinger, William; Frederick, John R.; Atluri, Pavan; McCormick, Ryan C.; Marotta, Nicole; Muenzer, Jeffrey R.; Woo, Y. Joseph

    2011-01-01

    Objectives Stromal cell-derived factor (SDF)-1α is a potent endogenous endothelial progenitor cell (EPC) chemokine and key angiogenic precursor. Recombinant SDF-1α has been demonstrated to improve neovasculogenesis and cardiac function after myocardial infarction (MI) but SDF-1α is a bulky protein with a short half-life. Small peptide analogs might provide translational advantages, including ease of synthesis, low manufacturing costs, and the potential to control delivery within tissues using engineered biomaterials. We hypothesized that a minimized peptide analog of SDF-1α, designed by splicing the N-terminus (activation and binding) and C-terminus (extracellular stabilization) with a truncated amino acid linker, would induce EPC migration and preserve ventricular function after MI. Methods EPC migration was first determined in vitro using a Boyden chamber assay. For in vivo analysis, male rats (n=48) underwent left anterior descending coronary artery ligation. At infarction, the rats were randomized into 4 groups and received peri-infarct intramyocardial injections of saline, 3 μg/kg of SDF-1α, 3 μg/kg of spliced SDF analog, or 6 μg/kg spliced SDF analog. After 4 weeks, the rats underwent closed chest pressure volume conductance catheter analysis. Results EPCs showed significantly increased migration when placed in both a recombinant SDF-1α and spliced SDF analog gradient. The rats treated with spliced SDF analog at MI demonstrated a significant dose-dependent improvement in end-diastolic pressure, stroke volume, ejection fraction, cardiac output, and stroke work compared with the control rats. Conclusions A spliced peptide analog of SDF-1α containing both the N- and C- termini of the native protein induced EPC migration, improved ventricular function after acute MI, and provided translational advantages compared with recombinant human SDF-1α. PMID:20951261

  9. Modifiable Risk Factors and Major Cardiac Events Among Adult Survivors of Childhood Cancer

    PubMed Central

    Armstrong, Gregory T.; Oeffinger, Kevin C.; Chen, Yan; Kawashima, Toana; Yasui, Yutaka; Leisenring, Wendy; Stovall, Marilyn; Chow, Eric J.; Sklar, Charles A.; Mulrooney, Daniel A.; Mertens, Ann C.; Border, William; Durand, Jean-Bernard; Robison, Leslie L.; Meacham, Lillian R.

    2013-01-01

    Purpose To evaluate the relative contribution of modifiable cardiovascular risk factors on the development of major cardiac events in aging adult survivors of childhood cancer. Patients and Methods Among 10,724 5-year survivors (median age, 33.7 years) and 3,159 siblings in the Childhood Cancer Survivor Study, the prevalence of hypertension, diabetes mellitus, dyslipidemia, and obesity was determined, along with the incidence and severity of major cardiac events such as coronary artery disease, heart failure, valvular disease, and arrhythmia. On longitudinal follow-up, rate ratios (RRs) of subsequent cardiac events associated with cardiovascular risk factors and cardiotoxic therapy were assessed in multivariable Poisson regression models. Results Among survivors, the cumulative incidence of coronary artery disease, heart failure, valvular disease, and arrhythmia by 45 years of age was 5.3%, 4.8%, 1.5%, and 1.3%, respectively. Two or more cardiovascular risk factors were reported by 10.3% of survivors and 7.9% of siblings. The risk for each cardiac event increased with increasing number of cardiovascular risk factors (all Ptrend < .001). Hypertension significantly increased risk for coronary artery disease (RR, 6.1), heart failure (RR, 19.4), valvular disease (RR, 13.6), and arrhythmia (RR, 6.0; all P values < .01). The combined effect of chest-directed radiotherapy plus hypertension resulted in potentiation of risk for each of the major cardiac events beyond that anticipated on the basis of an additive expectation. Hypertension was independently associated with risk of cardiac death (RR, 5.6; 95% CI, 3.2 to 9.7). Conclusion Modifiable cardiovascular risk factors, particularly hypertension, potentiate therapy-associated risk for major cardiac events in this population and should be the focus of future interventional studies. PMID:24002505

  10. Constitutive properties of adult mammalian cardiac muscle cells

    NASA Technical Reports Server (NTRS)

    Zile, M. R.; Richardson, K.; Cowles, M. K.; Buckley, J. M.; Koide, M.; Cowles, B. A.; Gharpuray, V.; Cooper, G. 4th

    1998-01-01

    BACKGROUND: The purpose of this study was to determine whether changes in the constitutive properties of the cardiac muscle cell play a causative role in the development of diastolic dysfunction. METHODS AND RESULTS: Cardiocytes from normal and pressure-hypertrophied cats were embedded in an agarose gel, placed on a stretching device, and subjected to a change in stress (sigma), and resultant changes in cell strain (epsilon) were measured. These measurements were used to examine the passive elastic spring, viscous damping, and myofilament activation. The passive elastic spring was assessed in protocol A by increasing the sigma on the agarose gel at a constant rate to define the cardiocyte sigma-versus-epsilon relationship. Viscous damping was assessed in protocol B from the loop area between the cardiocyte sigma-versus-epsilon relationship during an increase and then a decrease in sigma. In both protocols, myofilament activation was minimized by a reduction in [Ca2+]i. Myofilament activation effects were assessed in protocol C by defining cardiocyte sigma versus epsilon during an increase in sigma with physiological [Ca2+]i. In protocol A, the cardiocyte sigma-versus-epsilon relationship was similar in normal and hypertrophied cells. In protocol B, the loop area was greater in hypertrophied than normal cardiocytes. In protocol C, the sigma-versus-epsilon relation in hypertrophied cardiocytes was shifted to the left compared with normal cells. CONCLUSIONS: Changes in viscous damping and myofilament activation in combination may cause pressure-hypertrophied cardiocytes to resist changes in shape during diastole and contribute to diastolic dysfunction.

  11. Brain self-protection: the role of endogenous neural progenitor cells in adult brain after cerebral cortical ischemia.

    PubMed

    Li, Bin; Piao, Chun-Shu; Liu, Xiao-Yun; Guo, Wen-Ping; Xue, Yue-Qiang; Duan, Wei-Ming; Gonzalez-Toledo, Maria E; Zhao, Li-Ru

    2010-04-23

    Convincing evidence has shown that brain ischemia causes the proliferation of neural stem cells/neural progenitor cells (NSCs/NPCs) in both the subventricular zone (SVZ) and the subgranular zone (SGZ) of adult brain. The role of brain ischemia-induced NSC/NPC proliferation, however, has remained unclear. Here we have determined whether brain ischemia-induced amplification of the NSCs/NPCs in adult brain is required for brain self-protection. The approach of intracerebroventricular (ICV) infusion of cytosine arabinoside (Ara-C), an inhibitor for cell proliferation, for the first 7days after brain ischemia was used to block ischemia-induced NSC/NPC proliferation. We observed that ICV infusion of Ara-C caused a complete blockade of NSC/NPC proliferation in the SVZ and a dramatic reduction of NSC/NPC proliferation in the SGZ. Additionally, as a result of the inhibition of ischemia-induced NSC/NPC pool amplification, the number of neurons in the hippocampal CA1 and CA3 was significantly reduced, the infarction size was significantly enlarged, and neurological deficits were significantly worsened after focal brain ischemia. We also found that an NSC/NPC-conditioned medium showed neuroprotective effects in vitro and that adult NSC/NPC-released brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) are required for NSC/NPC-conditioned medium-induced neuroprotection. These data suggest that NSC/NPC-generated trophic factors are neuroprotective and that brain ischemia-triggered NSC/NPC proliferation is crucial for brain protection. This study provides insights into the contribution of endogenous NSCs/NPCs to brain self-protection in adult brain after ischemia injury.

  12. Solution-Phase Crosstalk and Regulatory Interactions Between Multipotent Adult Progenitor Cells and Peripheral Blood Mononuclear Cells

    PubMed Central

    van’t Hof, Wouter; Reddy, Ashok P.; Wilmarth, Phillip A.; David, Larry L.; Raber, Amy; Bogaerts, Annelies; Timmerman, Lien; Pinxteren, Jef; Roobrouck, Valerie D.; Deans, Robert J.; Maziarz, Richard T.

    2015-01-01

    Multipotent adult progenitor cells (MAPCs) are adult adherent stromal stem cells currently being assessed in clinical trials for acute graft versus host disease with demonstrated immunomodulatory capabilities and the potential to ameliorate detrimental autoimmune and inflammation-related processes. Anti-CD3/anti-CD28 (3/28) activation of T cells within the peripheral blood mononuclear cell (PBMC) compartment was performed in the presence or absence of MAPCs. Liquid chromatography-coupled tandem mass spectrometry was used to characterize the differential secretion of proteins, and transcriptional profiling was used to monitor mRNA expression changes in both cell populations. Overall, 239 secreted and/or ectodomain-shed proteins were detected in the secretomes of PBMCs and MAPCs. In addition, 3/28 activation of PBMCs induced differential expression of 2,925 genes, and 22% of these transcripts were differentially expressed on exposure to MAPCs in Transwell. MAPCs exposed to 3/28-activated PBMCs showed differential expression of 1,247 MAPC genes. Crosstalk was demonstrated by reciprocal transcriptional regulation. Secretome proteins and transcriptional signatures were used to predict molecular activities by which MAPCs could dampen local and systemic inflammatory responses. These data support the hypothesis that MAPCs block PBMC proliferation via cell cycle arrest coupled to metabolic stress in the form of tryptophan depletion, resulting in GCN2 kinase activation, downstream signaling, and inhibition of cyclin D1 translation. These data also provide a plausible explanation for the immune privilege reported with administration of donor MAPCs. Although most components of the major histocompatibility complex class II antigen presentation pathway were markedly transcriptionally upregulated, cell surface expression of human leukocyte antigen-DR is minimal on MAPCs exposed to 3/28-activated PBMCs. Significance This study documents experiments quantifying solution

  13. Gender differences in circulating endothelial progenitor cell colony-forming capacity and migratory activity in middle-aged adults.

    PubMed

    Hoetzer, Greta L; MacEneaney, Owen J; Irmiger, Heather M; Keith, Rebecca; Van Guilder, Gary P; Stauffer, Brian L; DeSouza, Christopher A

    2007-01-01

    Middle-aged women have a lower prevalence and incidence of cardiovascular events compared with men. The mechanisms responsible for this gender-specific difference are unclear. Numeric and functional impairments of bone marrow-derived circulating endothelial progenitor cells (EPCs) are associated with increased cardiovascular and cerebrovascular morbidity and mortality. It is currently unknown whether there are gender-related differences in EPC number and function in middle-aged adults. We tested the hypothesis that EPCs isolated from middle-aged women demonstrate greater colony-forming capacity and migratory activity compared with men of similar age. Peripheral blood samples were collected from 50 sedentary adults, 25 men (59 +/- 1 years of age) and 25 women (58 +/- 1 years of age). Mononuclear cells were isolated and preplated for 2 days, and nonadherent cells were further cultured for 7 days to determine EPC colony-forming units. Migratory activity of EPCs was determined using a modified Boyden chamber. The number of EPC colony-forming units was significantly higher (approximately 150%) in samples collected from women (16 +/- 3) compared with that collected from men (7 +/- 1). In addition, EPC migration (relative fluorescent units) was approximately 40% greater in women (729 +/- 74) than in men (530 +/- 67). In conclusion, these results demonstrate that EPC colony-forming capacity and migratory activity are higher in middle-aged women than in men.

  14. Cell-permeable p38 MAP kinase promotes migration of adult neural stem/progenitor cells

    PubMed Central

    Hamanoue, Makoto; Morioka, Kazuhito; Ohsawa, Ikuroh; Ohsawa, Keiko; Kobayashi, Masaaki; Tsuburaya, Kayo; Akasaka, Yoshikiyo; Mikami, Tetsuo; Ogata, Toru; Takamatsu, Ken

    2016-01-01

    Endogenous neural stem/progenitor cells (NPCs) can migrate toward sites of injury, but the migration activity of NPCs is insufficient to regenerate damaged brain tissue. In this study, we showed that p38 MAP kinase (p38) is expressed in doublecortin-positive adult NPCs. Experiments using the p38 inhibitor SB203580 revealed that endogenous p38 participates in NPC migration. To enhance NPC migration, we generated a cell-permeable wild-type p38 protein (PTD-p38WT) in which the HIV protein transduction domain (PTD) was fused to the N-terminus of p38. Treatment with PTD-p38WT significantly promoted the random migration of adult NPCs without affecting cell survival or differentiation; this effect depended on the cell permeability and kinase activity of the fusion protein. These findings indicate that PTD-p38WT is a novel and useful tool for unraveling the roles of p38, and that this protein provides a reasonable approach for regenerating the injured brain by enhancing NPC migration. PMID:27067799

  15. Enhanced genetic modification of adult growth factor mobilized peripheral blood hematopoietic stem and progenitor cells with rapamycin.

    PubMed

    Li, Lijing; Torres-Coronado, Mónica; Gu, Angel; Rao, Anitha; Gardner, Agnes M; Epps, Elizabeth W; Gonzalez, Nancy; Tran, Chy-Anh; Wu, Xiwei; Wang, Jin-Hui; DiGiusto, David L

    2014-10-01

    Genetic modification of adult human hematopoietic stem and progenitor cells (HSPCs) with lentiviral vectors leads to long-term gene expression in the progeny of the HSPCs and has been used to successfully treat several monogenic diseases. In some cases, the gene-modified cells have a selective growth advantage over nonmodified cells and eventually are the dominant engrafted population. However, in disease indications for which the gene-modified cells do not have a selective advantage, optimizing transduction of HSPC is paramount to successful stem cell-based gene therapy. We demonstrate here that transduction of adult CD34+ HSPCs with lentiviral vectors in the presence of rapamycin, a widely used mTORC1 inhibitor, results in an approximately threefold increase in stable gene marking with minimal effects on HSPC growth and differentiation. Using this approach, we have demonstrated that we can enhance the frequency of gene-modified HSPCs that give rise to clonogenic progeny in vitro without excessive increases in the number of vector copies per cell or changes in integration pattern. The genetic marking of HSPCs and expression of transgenes is durable, and transplantation of gene-modified HSPCs into immunodeficient mice results in high levels of gene marking of the lymphoid and myeloid progeny in vivo. The prior safe clinical history of rapamycin in other applications supports the use of this compound to generate gene-modified autologous HSPCs for our HIV gene therapy clinical trials.

  16. Cardiac shockwave therapy improves myocardial function in patients with refractory coronary artery disease by promoting VEGF and IL-8 secretion to mediate the proliferation of endothelial progenitor cells

    PubMed Central

    CAI, HONG-YAN; LI, LIN; GUO, TAO; WANG, YU; MA, TIE-KUN; XIAO, JIAN-MING; ZHAO, LING; FANG, YIN; YANG, PING; ZHAO, HU

    2015-01-01

    Cardiac shockwave therapy (CSWT) is a potential and effective remedy to promote revascularization in the ischemic myocardium of patients with refractory coronary heart disease (CHD). The technique is both safe and non-invasive; however, the underlying molecular mechanism remains unclear. The aim of this study was to evaluate the efficacy of CSWT in treating CHD patients and investigate a potential mechanism. A total of 26 patients with CHD were enrolled in the study, and CSWT was performed over a 3-month period. The efficacy of CSWT was assessed using several clinical parameters. Peripheral blood (PB) was collected prior to and following treatment. The number of circulating endothelial progenitor cells (EPCs) in the PB was counted using a flow cytometer, and the levels of vascular endothelial growth factor (VEGF), interleukin-8 (IL-8), stromal cell-derived factor 1 and matrix metalloproteinase 9 in the PB were analyzed. Mononuclear cells were isolated from the PB and cultured in vitro. The EPCs and EPC-colony forming units (EPC-CFUs) in the PB mononuclear cell culture were counted using an inverted phase contrast microscope. Following CSWT, the tested clinical parameters were significantly improved. The levels of circulating EPCs, VEGF and IL-8 in the PB were significantly increased, as were the EPCs and EPC-CFUs from the PB mononuclear cell culture. We suggest that EPC proliferation, mediated by VEGF and IL-8 secretion, may be among the potential mechanisms associated with CSWT. PMID:26668649

  17. Adult non-cardiac ECMO for the treatment of ARDS--the Mississippi experience.

    PubMed

    Frei, Lonnie W

    2013-07-01

    The University of Mississippi Medical Center (UMMC) has become a center for ECMO (Extracorporeal Membrane Oxygenation), providing this service to patients requiring this life-saving modality. UMMC is the only ECMO center in the state. Prior to the cases presented, ECMO use at UMMC has been limited to neonates and the pediatric patient population as well as by the cardiothoracic service for patients with cardiac failure or inability to wean from bypass. The use of ECMO for non-cardiac support in the adult population has been limited in the past, but recent reports in the literature and experience elsewhere has proven the viability of the technology. This is a retrospective report of the first three adult non-cardiac cases employing ECMO for ARDS (Adult Respiratory Distress Syndrome) in Mississippi. We achieved 100% survival in a disease process which reportedly carries a mortality ranging from 20-50%. A brief review of ECMO and its use in this population is also presented.

  18. Interventional and surgical treatment of cardiac arrhythmias in adults with congenital heart disease.

    PubMed

    Koyak, Zeliha; de Groot, Joris R; Mulder, Barbara J M

    2010-12-01

    Arrhythmias are a major cause of morbidity, mortality and hospital admission in adults with congenital heart disease (CHD). The etiology of arrhythmias in this population is often multifactorial and includes electrical disturbances as part of the underlying defect, surgical intervention or hemodynamic abnormalities. Despite the numerous existing arrhythmia management tools including drug therapy, pacing and ablation, management of arrhythmias in adults with CHD remains difficult and challenging. Owing to improvement in mapping and ablation techniques, ablation and arrhythmia surgery are being performed more frequently in adults with CHD. However, there is little information on the long-term results of these treatment strategies. The purpose of this article is therefore to review the available data on nonpharmacological treatment of cardiac arrhythmias in adult patients with CHD and to give an overview of the available data on the early and late outcomes of these treatment strategies.

  19. Methylglyoxal Causes Cell Death in Neural Progenitor Cells and Impairs Adult Hippocampal Neurogenesis.

    PubMed

    Chun, Hye Jeong; Lee, Yujeong; Kim, Ah Hyun; Lee, Jaewon

    2016-04-01

    Methylglyoxal (MG) is formed during normal metabolism by processes like glycolysis, lipid peroxidation, and threonine catabolism, and its accumulation is associated with various degenerative diseases, such as diabetes and arterial atherogenesis. Furthermore, MG has also been reported to have toxic effects on hippocampal neurons. However, these effects have not been studied in the context of neurogenesis. Here, we report that MG adversely affects hippocampal neurogenesis and induces neural progenitor cell (NPC) death. MG significantly reduced C17.2 NPC proliferation, and high concentration of MG (500 μM) induced cell death and elevated oxidative stress. Further, MG was found to activate the ERK signaling pathway, indicating elevated stress response. To determine the effects of MG in vivo, mice were administrated with vehicle or MG (0.5 or 1 % in drinking water) for 4 weeks. The numbers of BrdU-positive cells in hippocampi were significantly lower in MG-treated mice, indicating impaired neurogenesis, but MG did not induce neuronal damage or glial activations. Interestingly, MG reduced memory retention when administered to mice at 1 % but not at 0.5 %. In addition, the levels of hippocampal BDNF and synaptophysin were significantly lower in the hippocampi of mice treated with MG at 1 %. Collectively, our findings suggest MG could be harmful to NPCs and to hippocampal neurogenesis.

  20. Tissue kallikrein-modified human endothelial progenitor cell implantation improves cardiac function via enhanced activation of akt and increased angiogenesis.

    PubMed

    Yao, Yuyu; Sheng, Zulong; Li, YeFei; Fu, Cong; Ma, Genshan; Liu, Naifeng; Chao, Julie; Chao, Lee

    2013-05-01

    Endothelial progenitor cells (EPCs) have been shown to enhance angiogenesis not only by incorporating into the vasculature but also by secreting cytokines, thereby serving as an ideal vehicle for gene transfer. As tissue kallikrein (TK) has pleiotropic effects in inhibiting apoptosis and oxidative stress, and promoting angiogenesis, we evaluated the salutary potential of kallikrein-modified human EPCs (hEPCs; Ad.hTK-hEPCs) after acute myocardial infarction (MI). We genetically modified hEPCs with a TK gene and evaluated cell survival, engraftment, revascularization, and functional improvement in a nude mouse left anterior descending ligation model. hEPCs were manipulated to overexpress the TK gene. In vitro, the antiapoptotic and paracrine effects were assessed under oxidative stress. TK protects hEPCs from oxidative stress-induced apoptosis via inhibition of activation of caspase-3 and -9, induction of Akt phosphorylation, and secretion of vascular endothelial growth factor. In vivo, the Ad.hTK-hEPCs were transplanted after MI via intracardiac injection. The surviving cells were tracked after transplantation using near-infrared optical imaging. Left ventricular (LV) function was evaluated by transthoracic echocardiography. Capillary density was quantified using immunohistochemical staining. Engrafted Ad.hTK-hEPCs exhibited advanced protection against ischemia by increasing LV ejection fraction. Compared with Ad.Null-hEPCs, transplantation with Ad.hTK-hEPCs significantly decreased cardiomyocyte apoptosis in association with increased retention of transplanted EPCs in the myocardium. Capillary density and arteriolar density in the infarct border zone was significantly higher in Ad.hTK-hEPC-transplanted mice than in Ad.Null-hEPC-treated mice. Transplanted hEPCs were clearly incorporated into CD31(+) capillaries. These results indicate that implantation of kallikrein-modified EPCs in the heart provides advanced benefits in protection against ischemia-induced MI by

  1. Transformation of adult rat cardiac myocytes in primary culture.

    PubMed

    Banyasz, Tamas; Lozinskiy, Ilya; Payne, Charles E; Edelmann, Stephanie; Norton, Byron; Chen, Biyi; Chen-Izu, Ye; Izu, Leighton T; Balke, C William

    2008-03-01

    We characterized the morphological, electrical and mechanical alterations of cardiomyocytes in long-term cell culture. Morphometric parameters, sarcomere length, T-tubule density, cell capacitance, L-type calcium current (I(Ca,L)), inward rectifier potassium current (I(K1)), cytosolic calcium transients, action potential and contractile parameters of adult rat ventricular myocytes were determined on each day of 5 days in culture. We also analysed the health of the myocytes using an apoptotic/necrotic viability assay. The data show that myocytes undergo profound morphological and functional changes during culture. We observed a progressive reduction in the cell area (from 2502 +/- 70 microm(2) on day 0 to 1432 +/- 50 microm(2) on day 5), T-tubule density, systolic shortening (from 0.11 +/- 0.02 to 0.05 +/- 0.01 microm) and amplitude of calcium transients (from 1.54 +/- 0.19 to 0.67 +/- 0.19) over 5 days of culture. The negative force-frequency relationship, characteristic of rat myocardium, was maintained during the first 2 days but diminished thereafter. Cell capacitance (from 156 +/- 8 to 105 +/- 11 pF) and membrane currents were also reduced (I(Ca,L), from 3.98 +/- 0.39 to 2.12 +/- 0.37 pA pF; and I(K1), from 34.34p +/- 2.31 to 18.00 +/- 5.97 pA pF(-1)). We observed progressive depolarization of the resting membrane potential during culture (from 77.3 +/- 2.5 to 34.2 +/- 5.9 mV) and, consequently, action potential morphology was profoundly altered as well. The results of the viability assays indicate that these alterations could not be attributed to either apoptosis or necrosis but are rather an adaptation to the culture conditions over time.

  2. Standardized echocardiographic assessment of cardiac function in normal adult zebrafish and heart disease models.

    PubMed

    Wang, Louis W; Huttner, Inken G; Santiago, Celine F; Kesteven, Scott H; Yu, Ze-Yan; Feneley, Michael P; Fatkin, Diane

    2017-01-01

    The zebrafish (Danio rerio) is an increasingly popular model organism in cardiovascular research. Major insights into cardiac developmental processes have been gained by studies of embryonic zebrafish. However, the utility of zebrafish for modeling adult-onset heart disease has been limited by a lack of robust methods for in vivo evaluation of cardiac function. We established a physiological protocol for underwater zebrafish echocardiography using high frequency ultrasound, and evaluated its reliability in detecting altered cardiac function in two disease models. Serial assessment of cardiac function was performed in wild-type zebrafish aged 3 to 12 months and the effects of anesthetic agents, age, sex and background strain were evaluated. There was a varying extent of bradycardia and ventricular contractile impairment with different anesthetic drugs and doses, with tricaine 0.75 mmol l(-1) having a relatively more favorable profile. When compared with males, female fish were larger and had more measurement variability. Although age-related increments in ventricular chamber size were greater in females than males, there were no sex differences when data were normalized to body size. Systolic ventricular function was similar in both sexes at all time points, but differences in diastolic function were evident from 6 months onwards. Wild-type fish of both sexes showed a reliance on atrial contraction for ventricular diastolic filling. Echocardiographic evaluation of adult zebrafish with diphtheria toxin-induced myocarditis or anemia-induced volume overload accurately identified ventricular dilation and altered contraction, with suites of B-mode, ventricular strain, pulsed-wave Doppler and tissue Doppler indices showing concordant changes indicative of myocardial hypocontractility or hypercontractility, respectively. Repeatability, intra-observer and inter-observer correlations for echocardiographic measurements were high. We demonstrate that high frequency

  3. Standardized echocardiographic assessment of cardiac function in normal adult zebrafish and heart disease models

    PubMed Central

    Wang, Louis W.; Huttner, Inken G.; Santiago, Celine F.; Kesteven, Scott H.; Yu, Ze-Yan; Feneley, Michael P.

    2017-01-01

    ABSTRACT The zebrafish (Danio rerio) is an increasingly popular model organism in cardiovascular research. Major insights into cardiac developmental processes have been gained by studies of embryonic zebrafish. However, the utility of zebrafish for modeling adult-onset heart disease has been limited by a lack of robust methods for in vivo evaluation of cardiac function. We established a physiological protocol for underwater zebrafish echocardiography using high frequency ultrasound, and evaluated its reliability in detecting altered cardiac function in two disease models. Serial assessment of cardiac function was performed in wild-type zebrafish aged 3 to 12 months and the effects of anesthetic agents, age, sex and background strain were evaluated. There was a varying extent of bradycardia and ventricular contractile impairment with different anesthetic drugs and doses, with tricaine 0.75 mmol l−1 having a relatively more favorable profile. When compared with males, female fish were larger and had more measurement variability. Although age-related increments in ventricular chamber size were greater in females than males, there were no sex differences when data were normalized to body size. Systolic ventricular function was similar in both sexes at all time points, but differences in diastolic function were evident from 6 months onwards. Wild-type fish of both sexes showed a reliance on atrial contraction for ventricular diastolic filling. Echocardiographic evaluation of adult zebrafish with diphtheria toxin-induced myocarditis or anemia-induced volume overload accurately identified ventricular dilation and altered contraction, with suites of B-mode, ventricular strain, pulsed-wave Doppler and tissue Doppler indices showing concordant changes indicative of myocardial hypocontractility or hypercontractility, respectively. Repeatability, intra-observer and inter-observer correlations for echocardiographic measurements were high. We demonstrate that high

  4. A comprehensive analysis of cardiac valve plane displacement in healthy adults: age-stratified normal values by cardiac magnetic resonance.

    PubMed

    Ochs, Marco M; Fritz, Thomas; André, Florian; Riffel, Johannes; Mereles, Derliz; Müller-Hennessen, Matthias; Giannitsis, Evangelos; Katus, Hugo A; Friedrich, Matthias G; Buss, Sebastian J

    2017-01-21

    Cardiac valve plane displacement (CVPD) reflects longitudinal LV function. The purpose of the present study was to determine regional heterogeneity of CVPD in healthy adults to provide normal values by cardiac magnetic resonance (CMR). We measured the anterior aortic plane systolic excursion (AAPSE); the anterior, anterolateral, inferolateral, inferior, and inferoseptal mitral annular plane systolic excursion (MAPSE); and the lateral tricuspid annulus plane systolic excursion (TAPSE). Systolic excursion was measured as the distance from peak end-diastolic to peak end-sysstolic annular position (peak-to-peak) in cine images acquired in 2-, 3- and 4-chamber views. Echocardiographic measurements of CVPD were performed in M-Mode as previously described. We retrospectively analyzed 209 healthy Caucasians (57% men), who participated in the Heidelberg normal cohort between March 2009 and September 2014. The analysis was possible in all participants. Mean values were: AAPSE = 14 ± 3 mm (8-20); MAPSEanterior = 14 ± 3 mm (8-20); MAPSEanterolateral = 16 ± 3 mm (10-22); MAPSEinferolateral = 16 ± 3 mm (10-22); MAPSEinferior = 17 ± 3 mm (11-23); MAPSEinferoseptal = 13 ± 3 mm (7-19) and TAPSE = 26 ± 4 mm (18-34) respectively. MAPSE was significantly elevated in lateral compared to septal regions (p = 0.0001). Sex-differences for CVPD were not found. Age-dependency of CVPD revealed distinct regional differences. AAPSE decreased the most with age (B=-0.48; p = 0.0001), whereas MAPSEinferior was the least age-dependent site (B=-0.17; p = 0.01). AAPSE revealed favorable intra-/interobserver reproducibility and interstudy agreement. Intermethod-comparison of CMR and M-Mode echocardiography showed good agreement between both measurements of CVPD. Age-stratified normal values of regional CVPD are provided. AAPSE revealed the most pronounced age-related decrease and provided favorable reproducibility

  5. Suppression of IL-7-dependent Effector T-cell Expansion by Multipotent Adult Progenitor Cells and PGE2

    PubMed Central

    Reading, James L; Vaes, Bart; Hull, Caroline; Sabbah, Shereen; Hayday, Thomas; Wang, Nancy S; DiPiero, Anthony; Lehman, Nicholas A; Taggart, Jen M; Carty, Fiona; English, Karen; Pinxteren, Jef; Deans, Robert; Ting, Anthony E; Tree, Timothy I M

    2015-01-01

    T-cell depletion therapy is used to prevent acute allograft rejection, treat autoimmunity and create space for bone marrow or hematopoietic cell transplantation. The evolved response to T-cell loss is a transient increase in IL-7 that drives compensatory homeostatic proliferation (HP) of mature T cells. Paradoxically, the exaggerated form of this process that occurs following lymphodepletion expands effector T-cells, often causing loss of immunological tolerance that results in rapid graft rejection, autoimmunity, and exacerbated graft-versus-host disease (GVHD). While standard immune suppression is unable to treat these pathologies, growing evidence suggests that manipulating the incipient process of HP increases allograft survival, prevents autoimmunity, and markedly reduces GVHD. Multipotent adult progenitor cells (MAPC) are a clinical grade immunomodulatory cell therapy known to alter γ-chain cytokine responses in T-cells. Herein, we demonstrate that MAPC regulate HP of human T-cells, prevent the expansion of Th1, Th17, and Th22 effectors, and block the development of pathogenic allograft responses. This occurs via IL-1β-primed secretion of PGE2 and activates T-cell intrinsic regulatory mechanisms (SOCS2, GADD45A). These data provide proof-of-principle that HP of human T-cells can be targeted by cellular and molecular therapies and lays a basis for the development of novel strategies to prevent immunopathology in lymphodepleted patients. PMID:26216515

  6. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice

    PubMed Central

    La Merrill, Michele A.; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph

    2016-01-01

    Background: Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. Objective: We hypothesized that perinatal DDT exposure causes hypertension in adult mice. Methods: DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Results: Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. Conclusions: These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722–1727; http://dx.doi.org/10.1289/EHP164 PMID:27325568

  7. Endometrial adult/progenitor stem cells: pathogenetic theory and new antiangiogenic approach for endometriosis therapy.

    PubMed

    Pittatore, G; Moggio, A; Benedetto, C; Bussolati, B; Revelli, A

    2014-03-01

    The cyclical arrival of endometrial cells into the abdominal cavity through retrograde flux at menstruation represents the etiopathogenetic basis of endometriosis. The endometrium has peculiar regenerative properties linked to the presence of adult stem cells similar to mesenchymal stem cells (MSCs). Once in the abdominal cavity, these MSCs could proliferate, invade, and differentiate into endometrial cells, finally generating ectopic implants. As only differentiated endometrial cells, and not endometrial MSCs, possess steroid hormone receptors, MSCs could be responsible for the high rate of persistence/recurrence of the disease after hypoestrogenism-inducing therapies. Even angiogenesis promoted by MSCs could play an important role, as survival and proliferation of endometriotic tissue depend on the formation of new blood vessels. Inhibition of angiogenesis represents, in fact, a new, promising therapeutic approach for the disease. Further, medications directly targeting endometriosis MSCs could be effective, alone or in association with hormonal treatments, in increasing the success of medical treatment.

  8. Postnatal stem/progenitor cells derived from the dental pulp of adult chimpanzee

    PubMed Central

    Cheng, Pei-Hsun; Snyder, Brooke; Fillos, Dimitri; Ibegbu, Chris C; Huang, Anderson Hsien-Cheng; Chan, Anthony WS

    2008-01-01

    Background Chimpanzee dental pulp stem/stromal cells (ChDPSCs) are very similar to human bone marrow derived mesenchymal stem/stromal cells (hBMSCs) as demonstrated by the expression pattern of cell surface markers and their multipotent differentiation capability. Results ChDPSCs were isolated from an incisor and a canine of a forty-seven year old female chimpanzee. A homogenous population of ChDPSCs was established in early culture at a high proliferation rate and verified by the expression pattern of thirteen cell surface markers. The ChDPSCs are multipotent and were capable of differentiating into osteogenic, adipogenic and chondrogenic lineages under appropriate in vitro culture conditions. ChDPSCs also express stem cell (Sox-2, Nanog, Rex-1, Oct-4) and osteogenic (Osteonectin, osteocalcin, osteopontin) markers, which is comparable to reported results of rhesus monkey BMSCs (rBMSCs), hBMSCs and hDPSCs. Although ChDPSCs vigorously proliferated during the initial phase and gradually decreased in subsequent passages, the telomere length indicated that telomerase activity was not significantly reduced. Conclusion These results demonstrate that ChDPSCs can be efficiently isolated from post-mortem teeth of adult chimpanzees and are multipotent. Due to the almost identical genome composition of humans and chimpanzees, there is an emergent need for defining the new role of chimpanzee modeling in comparative medicine. Teeth are easy to recover at necropsy and easy to preserve prior to the retrieval of dental pulp for stem/stromal cells isolation. Therefore, the establishment of ChDPSCs would preserve and maximize the applications of such a unique and invaluable animal model, and could advance the understanding of cellular functions and differentiation control of adult stem cells in higher primates. PMID:18430234

  9. Loss of thyroid hormone receptor β is associated with increased progenitor proliferation and NeuroD positive cell number in the adult hippocampus.

    PubMed

    Kapoor, Richa; Ghosh, Himanish; Nordstrom, Kristina; Vennstrom, Björn; Vaidya, Vidita A

    2011-01-07

    Adult hippocampal neurogenesis is modulated by perturbations in thyroid hormone status; however the role of specific thyroid hormone receptors (TRs) in this process is not completely understood. We show here that loss of the TRβ gene results in a significant increase in the proliferation of adult hippocampal progenitors, without any change in immature neuron number or in the neuronal and glial differentiation of progenitors. Using the mitotic marker 5'-bromo-2-deoxyuridine (BrdU) or the endogenous cell cycle marker, proliferating cell nuclear antigen (PCNA), we find a significant increase in the number of BrdU- and PCNA-immunopositive cells within the subgranular zone (SGZ) of the dentate gyrus subfield in TRβ-/- mice. Further, we find that TRβ-/- mice exhibit a significant increase in the numbers of NeuroD-positive cells within the SGZ, suggesting that the increased numbers of proliferating progenitors translate into enhanced numbers of neuroblasts. Interestingly, the number of BrdU-positive cells that persist 4 weeks post-BrdU injection is unaltered in TRβ-/- mice, indicating that the enhanced proliferation does not result in increased hippocampal neurogenesis. This is also supported by the evidence of no change in the numbers of cells expressing markers of immature neurons such as doublecortin or polysialylated neural cell adhesion molecule. Furthermore, no change is observed in the neuronal or glial differentiation of BrdU-positive cells in the TRβ-/- mice. Taken together, our results provide novel evidence for a role of TRβ in modulating hippocampal progenitor cell division, and implicate this receptor in the effects of thyroid hormone on adult hippocampal neurogenesis.

  10. Inactivation of Vhl in Osteochondral Progenitor Cells Causes High Bone Mass Phenotype and Protects Against Age-Related Bone Loss in Adult Mice

    PubMed Central

    Weng, Tujun; Xie, Yangli; Huang, Junlan; Luo, Fengtao; Yi, Lingxian; He, Qifen; Chen, Di; Chen, Lin

    2014-01-01

    Previous studies have shown that disruption of von Hippel–Lindau gene (Vhl) coincides with activation of hypoxia-inducible factor α (HIFα) signaling in bone cells and plays an important role in bone development, homeostasis, and regeneration. It is known that activation of HIF1α signaling in mature osteoblasts is central to the coupling between angiogenesis and bone formation. However, the precise mechanisms responsible for the coupling between skeletal angiogenesis and osteogenesis during bone remodeling are only partially elucidated. To evaluate the role of Vhl in bone homeostasis and the coupling between vascular physiology and bone, we generated mice lacking Vhl in osteochondral progenitor cells (referred to as Vhl cKO mice) at postnatal and adult stages in a tamoxifen-inducible manner and changes in skeletal morphology were assessed by micro–computed tomography (µCT), histology, and bone histomorphometry. We found that mice with inactivation of Vhl in osteochondral progenitor cells at the postnatal stage largely phenocopied that of mice lacking Vhl in mature osteoblasts, developing striking and progressive accumulation of cancellous bone with increased microvascular density and bone formation. These were accompanied with a significant increase in osteoblast proliferation, upregulation of differentiation marker Runx2 and osteocalcin, and elevated expression of vascular endothelial growth factor (VEGF) and phosphorylation of Smad1/5/8. In addition, we found that Vhl deletion in osteochondral progenitor cells in adult bone protects mice from aging-induced bone loss. Our data suggest that the VHL-mediated signaling in osteochondral progenitor cells plays a critical role in bone remodeling at postnatal/adult stages through coupling osteogenesis and angiogenesis. © 2014 American Society for Bone and Mineral Research. PMID:23999831

  11. Novel approaches to determine contractile function of the isolated adult zebrafish ventricular cardiac myocyte

    PubMed Central

    Dvornikov, Alexey V; Dewan, Sukriti; Alekhina, Olga V; Pickett, F Bryan; de Tombe, Pieter P

    2014-01-01

    The zebrafish (Danio rerio) has been used extensively in cardiovascular biology, but mainly in the study of heart development. The relative ease of its genetic manipulation may indicate the suitability of this species as a cost-effective model system for the study of cardiac contractile biology. However, whether the zebrafish heart is an appropriate model system for investigations pertaining to mammalian cardiac contractile structure–function relationships remains to be resolved. Myocytes were isolated from adult zebrafish hearts by enzymatic digestion, attached to carbon rods, and twitch force and intracellular Ca2+ were measured. We observed the modulation of twitch force, but not of intracellular Ca2+, by both extracellular [Ca2+] and sarcomere length. In permeabilized cells/myofibrils, we found robust myofilament length-dependent activation. Moreover, modulation of myofilament activation–relaxation and force redevelopment kinetics by varied Ca2+ activation levels resembled that found previously in mammalian myofilaments. We conclude that the zebrafish is a valid model system for the study of cardiac contractile structure–function relationships. PMID:24591576

  12. Neonatal Diesel Exhaust Particulate Exposure Does Not Predispose Mice to Adult Cardiac Hypertrophy or Heart Failure

    PubMed Central

    Liu, Yonggang; Weldy, Chad S.; Chin, Michael T.

    2016-01-01

    Background: We have previously reported that in utero and early life exposure to diesel exhaust particulates predisposes mice to adult heart failure, and that in utero exposure alone is sufficient to confer this predisposition. This follow up study addresses whether neonatal exposure alone can also confer this predisposition. Methods: Newborn male C57BL/6 mice were exposed to diesel exhaust (DE) particulates immediately after birth until weaning at 21 days of age, whereupon they were transferred to filtered air (FA) conditions. At the age of 12 weeks, transverse aortic constriction (TAC) was performed followed by weekly echocardiography for three weeks. After the last echocardiogram, mice were euthanized for organ harvest, gravimetry and histology. Results: Neonatal exposure to DE particulates did not increase susceptibility to cardiac hypertrophy or heart failure after TAC when compared to FA exposed controls (ventricular weight/body weight ratio 7.505 vs. 7.517 mg/g, p = Not Significant (NS)). The left ventricular ejection fraction after TAC was similar between groups at one week, two weeks, and three weeks after procedure. Histological analysis showed no difference in the degree of cardiac hypertrophy or fibrosis. Conclusions: Neonatal exposure to DE particulates does not predispose mice to TAC-induced cardiac hypertrophy and heart failure in adulthood, in contrast to previously published results showing susceptibility due to in utero exposure. PMID:27886143

  13. Isolation of multipotent neural stem/progenitor cells from both the dentate gyrus and subventricular zone of a single adult mouse

    PubMed Central

    Guo, Weixiang; Patzlaff, Natalie E.; Jobe, Emily M.; Zhao, Xinyu

    2013-01-01

    In adult mammals, the subventricular zone of the lateral ventricles (SVZ) and the subgranular zone of the dentate gyrus (DG) demonstrate ongoing neurogenesis, and multipotent neural stem/progenitor cells (NSCs) in these two regions exhibit different intrinsic properties. However, investigation of the mechanisms underlying such differences has been limited by a lack of efficient methods for isolating NSCs, particularly from the adult DG. Here we describe a protocol that enables us to isolate self-renewing and multipotent NSCs from the SVZ and the DG of the same adult mouse. The protocol involves the microdissection of the SVZ and DG from one adult mouse brain, isolation of NSCs from specific regions, and cultivation of NSCs in vitro. The entire procedure takes 2 to 3 hours. Since only one mouse is needed for each cell isolation procedure, this protocol will be particularly useful for studies with limited availability of mice, such as mice that contain multiple genetic modifications. PMID:23080272

  14. TRAF-4 expression in epithelial progenitor cells. Analysis in normal adult, fetal, and tumor tissues.

    PubMed Central

    Krajewska, M.; Krajewski, S.; Zapata, J. M.; Van Arsdale, T.; Gascoyne, R. D.; Berern, K.; McFadden, D.; Shabaik, A.; Hugh, J.; Reynolds, A.; Clevenger, C. V.; Reed, J. C.

    1998-01-01

    TRAF-4 was discovered because of its expression in breast cancers and is a member of the tumor necrosis factor (TNF) receptor-associated factor (TRAF) family of putative signal-transducing proteins. In vitro binding assays demonstrated that TRAF-4 interacts with the cytosolic domain of the lymphotoxin-beta receptor (LT beta R) and weakly with the p75 nerve growth factor receptor (NGFR) but not with TNFR1, TNFR2, Fas, or CD40. Immunofluorescence analysis of TRAF-4 in transfected cells demonstrated localization to cytosol but not nucleus. Immunohistochemical assays of normal human adult tissues revealed prominent cytosolic immunostaining in thymic epithelial cells and lymph node dendritic cells but not in lymphocytes or thymocytes, paralleling the reported patterns of LT beta R expression. The basal cell layer of most epithelia in the body was very strongly TRAF-4 immunopositive, including epidermis, nasopharynx, respiratory tract, salivary gland, and esophagus. Similar findings were obtained in 12- to 18-week human fetal tissue, indicating a highly restricted pattern of expression even during development in the mammary gland, epithelial cells of the terminal ducts were strongly TRAF-4 immunopositive whereas myoepithelial cells and most of the mammary epithelial cells lining the extralobular ducts were TRAF-4 immunonegative. Of 84 primary breast cancers evaluated, only 7 expressed TRAF-4. Ductal carcinoma in situ (DCIS) lesions were uniformly TRAF-4 immunonegative (n = 21). In the prostate, the basal cells were strongly immunostained for TRAF-4, whereas the secretory epithelial cells were TRAF-4 negative. Basal cells in prostate hypertrophy (n = 6) and prostatic intraepithelial neoplasia (PIN; n = 6) were strongly TRAF-4 positive, but none of the 32 primary and 16 metastatic prostate cancer specimens examined contained TRAF-4-positive malignant cells. Although also expressed in some types of mesenchymal cells, these findings suggest that TRAF-4 is a marker of normal

  15. FLRF, a novel evolutionarily conserved RING finger gene, is differentially expressed in mouse fetal and adult hematopoietic stem cells and progenitors.

    PubMed

    Abdullah, J M; Li, X; Nachtman, R G; Jurecic, R

    2001-01-01

    Through differential screening of mouse hematopoietic stem cell (HSC) and progenitor subtracted cDNA libraries we have identified a HSC-specific transcript that represents a novel RING finger gene, named FLRF (fetal liver ring finger). FLRF represent a novel evolutionarily highly conserved RING finger gene, present in Drosophila, zebrafish, Xenopus, mouse, and humans. Full-length cDNA clones for mouse and human gene encode an identical protein of 317 amino acids with a C3HC4 RING finger domain at the amino terminus. During embryonic hematopoiesis FLRF is abundantly transcribed in mouse fetal liver HSC (Sca-1+c-kit+AA4.1+Lin- cells), but is not expressed in progenitors (AA4.1-). In adult mice FLRF is not transcribed in a highly enriched population of bone marrow HSC (Rh-123lowSca-1+c-kit+Lin- cells). Its expression is upregulated in a more heterogeneous population of bone marrow HSC (Lin-Sca-1+ cells), downregulated as they differentiate into progenitors (Lin-Sca-1- cells), and upregulated as progenitors differentiate into mature lymphoid and myeloid cell types. The human FLRF gene that spans a region of at least 12 kb and consists of eight exons was localized to chromosome 12q13, a region with frequent chromosome aberrations associated with multiple cases of acute myeloid leukemia and non-Hodgkin's lymphoma. The analysis of the genomic sequence upstream of the first exon in the mouse and human FLRF gene has revealed that both putative promoters contain multiple putative binding sites for several hematopoietic (GATA-1, GATA-2, GATA-3, Ikaros, SCL/Tal-1, AML1, MZF-1, and Lmo2) and other transcription factors, suggesting that mouse and human FLRF expression could be regulated in a developmental and cell-specific manner during hematopoiesis. Evolutionary conservation and differential expression in fetal and adult HSC and progenitors suggest that the FLRF gene could play an important role in HSC/progenitor cell lineage commitment and differentiation and could be

  16. Adolescents and adults differ in the immediate and long-term impact of nicotine administration and withdrawal on cardiac norepinephrine.

    PubMed

    Slotkin, Theodore A; Stadler, Ashley; Skavicus, Samantha; Seidler, Frederic J

    2016-04-01

    Cardiovascular responses to smoking cessation may differ in adolescents compared to adults. We administered nicotine by osmotic minipump infusion for 17 days to adolescent and adult rats (30 and 90 days of age, respectively) and examined cardiac norepinephrine levels during treatment, after withdrawal, and for months after cessation. In adults, nicotine evoked a significant elevation of cardiac norepinephrine and a distinct spike upon withdrawal, after which the levels returned to normal; the effect was specific to males. In contrast, adolescents did not show significant changes during nicotine treatment or in the immediate post-withdrawal period. However, beginning in young adulthood, males exposed to adolescent nicotine showed sustained elevations of cardiac norepinephrine, followed by later-emerging deficits that persisted through six months of age. We then conducted adolescent exposure using twice-daily injections, a regimen that augments stress associated with inter-dose withdrawal episodes. With the injection route, adolescents showed an enhanced cardiac norepinephrine response, reinforcing the relationship between withdrawal stress and a surge in cardiac norepinephrine levels. The relative resistance of adolescents to the acute nicotine withdrawal response is likely to make episodic nicotine exposure less stressful or aversive than in adults. Equally important, the long-term changes after adolescent nicotine exposure resemble those known to be associated with risk of hypertension in young adulthood (elevated norepinephrine) or subsequent congestive heart disease (norepinephrine deficits). Our findings reinforce the unique responses and consequences of nicotine exposure in adolescence, the period in which most smokers commence tobacco use.

  17. Adolescents and Adults Differ in the Immediate and Long-Term Impact of Nicotine Administration and Withdrawal on Cardiac Norepinephrine

    PubMed Central

    Slotkin, Theodore A.; Stadler, Ashley; Skavicus, Samantha; Seidler, Frederic J.

    2016-01-01

    Cardiovascular responses to smoking cessation may differ in adolescents compared to adults. We administered nicotine by osmotic minipump infusion for 17 days to adolescent and adult rats (30 and 90 days of age, respectively) and examined cardiac norepinephrine levels during treatment, after withdrawal, and for months after cessation. In adults, nicotine evoked a significant elevation of cardiac norepinephrine and a distinct spike upon withdrawal, after which the levels returned to normal; the effect was specific to males. In contrast, adolescents did not show significant changes during nicotine treatment or in the immediate post-withdrawal period. However, beginning in young adulthood, males exposed to adolescent nicotine showed sustained elevations of cardiac norepinephrine, followed by later-emerging deficits that persisted through six months of age. We then conducted adolescent exposure using twice-daily injections, a regimen that augments stress associated with inter-dose withdrawal episodes. With the injection route, adolescents showed an enhanced cardiac norepinephrine response, reinforcing the relationship between withdrawal stress and a surge in cardiac norepinephrine levels. The relative resistance of adolescents to the acute nicotine withdrawal response is likely to make episodic nicotine exposure less stressful or aversive than in adults. Equally important, the long-term changes after adolescent nicotine exposure resemble those known to be associated with risk of hypertension in young adulthood (elevated norepinephrine) or subsequent congestive heart disease (norepinephrine deficits). Our findings reinforce the unique responses and consequences of nicotine exposure in adolescence, the period in which most smokers commence tobacco use. PMID:26993795

  18. Lessons for cardiac regeneration and repair through development.

    PubMed

    Alexander, Jeffrey M; Bruneau, Benoit G

    2010-09-01

    Cell-based regenerative strategies have the potential to revolutionize the way cardiovascular injury is treated, but successful therapies will require a precise understanding of the mechanisms that dictate cell fate, survival and differentiation. Recent advances in the study of cardiac development hold promise for unlocking the keys for successful therapies. Using mouse models and embryonic stem cells, researchers are uncovering cardiac progenitor cells in both embryonic and adult contexts. Furthermore, the signaling molecules and transcriptional regulators that govern these cells and their behavior are being revealed. Here, we focus on the recent advances in these areas of cardiac developmental research and their impact on the expanding field of regenerative medicine.

  19. Adult human brain neural progenitor cells (NPCs) and fibroblast-like cells have similar properties in vitro but only NPCs differentiate into neurons.

    PubMed

    Park, Thomas In-Hyeup; Monzo, Hector; Mee, Edward W; Bergin, Peter S; Teoh, Hoon H; Montgomery, Johanna M; Faull, Richard L M; Curtis, Maurice A; Dragunow, Mike

    2012-01-01

    The ability to culture neural progenitor cells from the adult human brain has provided an exciting opportunity to develop and test potential therapies on adult human brain cells. To achieve a reliable and reproducible adult human neural progenitor cell (AhNPC) culture system for this purpose, this study fully characterized the cellular composition of the AhNPC cultures, as well as the possible changes to this in vitro system over prolonged culture periods. We isolated cells from the neurogenic subventricular zone/hippocampus (SVZ/HP) of the adult human brain and found a heterogeneous culture population comprised of several types of post-mitotic brain cells (neurons, astrocytes, and microglia), and more importantly, two distinct mitotic cell populations; the AhNPCs, and the fibroblast-like cells (FbCs). These two populations can easily be mistaken for a single population of AhNPCs, as they both proliferate under AhNPC culture conditions, form spheres and express neural progenitor cell and early neuronal markers, all of which are characteristics of AhNPCs in vitro. However, despite these similarities under proliferating conditions, under neuronal differentiation conditions, only the AhNPCs differentiated into functional neurons and glia. Furthermore, AhNPCs showed limited proliferative capacity that resulted in their depletion from culture by 5-6 passages, while the FbCs, which appear to be from a neurovascular origin, displayed a greater proliferative capacity and dominated the long-term cultures. This gradual change in cellular composition resulted in a progressive decline in neurogenic potential without the apparent loss of self-renewal in our cultures. These results demonstrate that while AhNPCs and FbCs behave similarly under proliferative conditions, they are two different cell populations. This information is vital for the interpretation and reproducibility of AhNPC experiments and suggests an ideal time frame for conducting AhNPC-based experiments.

  20. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte.

    PubMed

    Claycomb, W C; Lanson, N A; Stallworth, B S; Egeland, D B; Delcarpio, J B; Bahinski, A; Izzo, N J

    1998-03-17

    We have derived a cardiac muscle cell line, designated HL-1, from the AT-1 mouse atrial cardiomyocyte tumor lineage. HL-1 cells can be serially passaged, yet they maintain the ability to contract and retain differentiated cardiac morphological, biochemical, and electrophysiological properties. Ultrastructural characteristics typical of embryonic atrial cardiac muscle cells were found consistently in the cultured HL-1 cells. Reverse transcriptase-PCR-based analyses confirmed a pattern of gene expression similar to that of adult atrial myocytes, including expression of alpha-cardiac myosin heavy chain, alpha-cardiac actin, and connexin43. They also express the gene for atrial natriuretic factor. Immunohistochemical staining of the HL-1 cells indicated that the distribution of the cardiac-specific markers desmin, sarcomeric myosin, and atrial natriuretic factor was similar to that of cultured atrial cardiomyocytes. A delayed rectifier potassium current (IKr) was the most prominent outward current in HL-1 cells. The activating currents displayed inward rectification and deactivating current tails were voltage-dependent, saturated at >+20 mV, and were highly sensitive to dofetilide (IC50 of 46.9 nM). Specific binding of [3H]dofetilide was saturable and fit a one-site binding isotherm with a Kd of 140 +/- 60 nM and a Bmax of 118 fmol per 10(5) cells. HL-1 cells represent a cardiac myocyte cell line that can be repeatedly passaged and yet maintain a cardiac-specific phenotype.

  1. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult

    PubMed Central

    Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  2. Adult interfollicular tumour-initiating cells are reprogrammed into an embryonic hair follicle progenitor-like fate during basal cell carcinoma initiation.

    PubMed

    Youssef, Khalil Kass; Lapouge, Gaëlle; Bouvrée, Karine; Rorive, Sandrine; Brohée, Sylvain; Appelstein, Ornella; Larsimont, Jean-Christophe; Sukumaran, Vijayakumar; Van de Sande, Bram; Pucci, Doriana; Dekoninck, Sophie; Berthe, Jean-Valery; Aerts, Stein; Salmon, Isabelle; del Marmol, Véronique; Blanpain, Cédric

    2012-12-01

    Basal cell carcinoma, the most frequent human skin cancer, arises from activating hedgehog (HH) pathway mutations; however, little is known about the temporal changes that occur in tumour-initiating cells from the first oncogenic hit to the development of invasive cancer. Using an inducible mouse model enabling the expression of a constitutively active Smoothened mutant (SmoM2) in the adult epidermis, we carried out transcriptional profiling of SmoM2-expressing cells at different times during cancer initiation. We found that tumour-initiating cells are massively reprogrammed into a fate resembling that of embryonic hair follicle progenitors (EHFPs). Wnt/ β-catenin signalling was very rapidly activated following SmoM2 expression in adult epidermis and coincided with the expression of EHFP markers. Deletion of β-catenin in adult SmoM2-expressing cells prevents EHFP reprogramming and tumour initiation. Finally, human basal cell carcinomas also express genes of the Wnt signalling and EHFP signatures.

  3. Environmental Ligands of the Aryl Hydrocarbon Receptor and Their Effects in Models of Adult Liver Progenitor Cells

    PubMed Central

    Vondráček, Jan; Machala, Miroslav

    2016-01-01

    The toxicity of environmental and dietary ligands of the aryl hydrocarbon receptor (AhR) in mature liver parenchymal cells is well appreciated, while considerably less attention has been paid to their impact on cell populations exhibiting phenotypic features of liver progenitor cells. Here, we discuss the results suggesting that the consequences of the AhR activation in the cellular models derived from bipotent liver progenitors could markedly differ from those in hepatocytes. In contact-inhibited liver progenitor cells, the AhR agonists induce a range of effects potentially linked with tumor promotion. They can stimulate cell cycle progression/proliferation and deregulate cell-to-cell communication, which is associated with downregulation of proteins forming gap junctions, adherens junctions, and desmosomes (such as connexin 43, E-cadherin, β-catenin, and plakoglobin), as well as with reduced cell adhesion and inhibition of intercellular communication. At the same time, toxic AhR ligands may affect the activity of the signaling pathways contributing to regulation of liver progenitor cell activation and/or differentiation, such as downregulation of Wnt/β-catenin and TGF-β signaling, or upregulation of transcriptional targets of YAP/TAZ, the effectors of Hippo signaling pathway. These data illustrate the need to better understand the potential role of liver progenitors in the AhR-mediated liver carcinogenesis and tumor promotion. PMID:27274734

  4. WNT/β-Catenin Signaling Is Required for Integration of CD24+ Renal Progenitor Cells into Glycerol-Damaged Adult Renal Tubules

    PubMed Central

    Zhang, Zhao; Iglesias, Diana M.; Corsini, Rachel; Chu, LeeLee; Goodyer, Paul

    2015-01-01

    During development, nephron progenitor cells (NPC) are induced to differentiate by WNT9b signals from the ureteric bud. Although nephrogenesis ends in the perinatal period, acute kidney injury (AKI) elicits repopulation of damaged nephrons. Interestingly, embryonic NPC infused into adult mice with AKI are incorporated into regenerating tubules. Since WNT/β-catenin signaling is crucial for primary nephrogenesis, we reasoned that it might also be needed for the endogenous repair mechanism and for integration of exogenous NPC. When we examined glycerol-induced AKI in adult mice bearing a β-catenin/TCF reporter transgene, endogenous tubular cells reexpressed the NPC marker, CD24, and showed widespread β-catenin/TCF signaling. We isolated CD24+ cells from E15 kidneys of mice with the canonical WNT signaling reporter. 40% of cells responded to WNT3a in vitro and when infused into glycerol-injured adult, the cells exhibited β-catenin/TCF reporter activity when integrated into damaged tubules. When embryonic CD24+ cells were treated with a β-catenin/TCF pathway inhibitor (IWR-1) prior to infusion into glycerol-injured mice, tubular integration of cells was sharply reduced. Thus, the endogenous canonical β-catenin/TCF pathway is reactivated during recovery from AKI and is required for integration of exogenous embryonic renal progenitor cells into damaged tubules. These events appear to recapitulate the WNT-dependent inductive process which drives primary nephrogenesis. PMID:26089915

  5. Plasma Fatty Acid Binding Protein 4 and Risk of Sudden Cardiac Death in Older Adults

    PubMed Central

    Djoussé, Luc; Maziarz, Marlena; Biggs, Mary L.; Ix, Joachim H.; Zieman, Susan J.; Kizer, Jorge R.; Lemaitre, Rozenn N.; Mozaffarian, Dariush; Tracy, Russell P.; Mukamal, Kenneth J.; Siscovick, David S.; Sotoodehnia, Nona

    2013-01-01

    Although fatty acid binding protein 4 (FABP4) may increase risk of diabetes and exert negative cardiac inotropy, it is unknown whether plasma concentrations of FABP4 are associated with incidence of sudden cardiac death (SCD). We prospectively analyzed data on 4,560 participants of the Cardiovascular Health Study. FABP4 was measured at baseline using ELISA, and SCD events were adjudicated through review of medical records. We used Cox proportional hazards to estimate effect measures. During a median followup of 11.8 years, 146 SCD cases occurred. In a multivariable model adjusting for demographic, lifestyle, and metabolic factors, relative risk of SCD associated with each higher standard deviation (SD) of plasma FABP4 was 1.15 (95% CI: 0.95–1.38), P = 0.15. In a secondary analysis stratified by prevalent diabetes status, FABP4 was associated with higher risk of SCD in nondiabetic participants, (RR per SD higher FABP4: 1.33 (95% CI: 1.07–1.65), P = 0.009) but not in diabetic participants (RR per SD higher FABP4: 0.88 (95% CI: 0.62–1.27), P = 0.50), P for diabetes-FABP4 interaction 0.049. In summary, a single measure of plasma FABP4 obtained later in life was not associated with the risk of SCD in older adults overall. Confirmation of our post-hoc results in nondiabetic people in other studies is warranted. PMID:24455402

  6. Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells.

    PubMed

    Ye, Lei; Haider, Husnain Kh; Sim, Eugene K W

    2006-01-01

    The real promise of a stem cell-based approach for cardiac regeneration and repair lies in the promotion of myogenesis and angiogenesis at the site of the cell graft to achieve both structural and functional benefits. Despite all of the progress and promise in this field, many unanswered questions remain; the answers to these questions will provide the much-needed breakthrough to harness the real benefits of cell therapy for the heart in the clinical perspective. One of the major issues is the choice of donor cell type for transplantation. Multiple cell types with varying potentials have been assessed for their ability to repopulate the infarcted myocardium; however, only the adult stem cells, that is, skeletal myoblasts (SkM) and bone marrow-derived stem cells (BMC), have been translated from the laboratory bench to clinical use. Which of these two cell types will provide the best option for clinical application in heart cell therapy remains arguable. With results pouring in from the long-term follow-ups of previously conducted phase I clinical studies, and with the onset of phase II clinical trials involving larger population of patients, transplantation of stem cells as a sole therapy without an adjunct conventional revascularization procedure will provide a deeper insight into the effectiveness of this approach. The present article discusses the pros and cons of using SkM and BMC individually or in combination for cardiac repair, and critically analyzes the progress made with each cell type.

  7. Natural and synthetic antifibrinolytics in adult cardiac surgery: efficacy, effectiveness and efficiency.

    PubMed

    Hardy, J F; Bélisle, S

    1994-11-01

    Epsilon-aminocaproic acid and tranexamic acid, two synthetic antifibrinolytics, and aprotinin, an antifibrinolytic derived from bovine lung, are used to reduce excessive bleeding and transfusion of homologous blood products (HBP) after cardiac surgery. This review analyzes the studies on the utilization of antifibrinolytics in adult cardiac surgery according to the epidemiological concepts of efficacy, effectiveness and efficiency. A majority of published studies confirm the efficacy of antifibrinolytics administered prophylactically to reduce postoperative bleeding and transfusion of HBP. More studies are needed, however, to compare antifibrinolytics and determine if any one is superior to the others. Despite their demonstrated efficacy, antifibrinolytics are only one of the options available to diminish the use of HBP. Other blood-saving techniques, surgical expertise, temperature during cardiopulmonary bypass and respect of established transfusion guidelines may modify the effectiveness of antifibrinolytics to the point where antifibrinolytics may not be necessary. At this time, insufficient data have been published to perform a cost vs benefit analysis of the use of antifibrinolytics. This complex analysis takes into account not only direct costs (cost of the drug and of blood products), but also the ensuing effects of treatment such as: length of stay in the operating room, in the intensive care unit and in the hospital; need for surgical re-exploration; treatment of transfusion or drug-related complications, etc. In particular, the risk of thrombotic complications associated with antifibrinolytics is the subject of an ongoing, unresolved controversy.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. A 3-D cardiac muscle construct for exploring adult marrow stem cell based myocardial regeneration.

    PubMed

    Valarmathi, Mani T; Goodwin, Richard L; Fuseler, John W; Davis, Jeffrey M; Yost, Michael J; Potts, Jay D

    2010-04-01

    Adult bone marrow stromal cells (BMSCs) are capable of differentiating into cardiomyocyte-like cells in vitro and contribute to myocardial regeneration in vivo. Consequently, BMSCs may potentially play a vital role in cardiac repair and regeneration. However, this concept has been limited by inadequate and inconsistent differentiation of BMSCs into cardiomyocytes along with poor survival and integration of neo-cardiomyocytes after implantation into ischemic myocardium. In order to overcome these barriers and to explore adult stem cell based myocardial regeneration, we have developed an in vitro model of three-dimensional (3-D) cardiac muscle using rat ventricular embryonic cardiomyocytes (ECMs) and BMSCs. When ECMs and BMSCs were seeded sequentially onto a 3-D tubular scaffold engineered from topographically aligned type I collagen-fibers and cultured in basal medium for 7, 14, 21, or 28 days, the maturation and co-differentiation into a cardiomyocyte lineage was observed. Phenotypic induction was characterized at morphological, immunological, biochemical and molecular levels. The observed expression of transcripts coding for cardiomyocyte phenotypic markers and the immunolocalization of cardiomyogenic lineage-associated proteins revealed typical expression patterns of neo-cardiomyogenesis. At the biochemical level differentiating cells exhibited appropriate metabolic activity and at the ultrastructural level myofibrillar and sarcomeric organization were indicative of an immature phenotype. Our 3-D co-culture system sustains the ECMs in vitro continuum of differentiation process and simultaneously induces the maturation and differentiation of BMSCs into cardiomyocyte-like cells. Thus, this novel 3-D co-culture system provides a useful in vitro model to investigate the functional role and interplay of developing ECMs and BMSCs during cardiomyogenic differentiation.

  9. Repair of liver mediated by adult mouse liver neuro-glia antigen 2-positive progenitor cell transplantation in a mouse model of cirrhosis

    PubMed Central

    Zhang, Hongyu; Siegel, Christopher T.; Shuai, Ling; Lai, Jiejuan; Zeng, Linli; Zhang, Yujun; Lai, Xiangdong; Bie, Ping; Bai, Lianhua

    2016-01-01

    NG2-expressing cells are a population of periportal vascular stem/progenitors (MLpvNG2+ cells) that were isolated from healthy adult mouse liver by using a “Percoll-Plate-Wait” procedure. We demonstrated that isolated cells are able to restore liver function after transplantation into a cirrhotic liver, and co-localized with the pericyte marker (immunohistochemistry: PDGFR-β) and CK19. Cells were positive for: stem cell (Sca-1, CD133, Dlk) and liver stem cell markers (EpCAM, CD14, CD24, CD49f); and negative for: hematopoietic (CD34, CD45) and endothelial markers (CD31, vWf, von Willebrand factor). Cells were transplanted (1 × 106 cells) in mice with diethylnitrosamine-induced cirrhosis at week 6. Cells showed increased hepatic associated gene expression of alpha-fetoprotein (AFP), Albumin (Alb), Glucose-6-phosphatase (G6Pc), SRY (sex determining region Y)-box 9 (Sox9), hepatic nuclear factors (HNF1a, HNF1β, HNF3β, HNF4α, HNF6, Epithelial cell adhesion molecule (EpCAM), Leucine-rich repeated-containing G-protein coupled receptor 5-positive (Lgr5) and Tyrosine aminotransferase (TAT). Cells showed decreased fibrogenesis, hepatic stellate cell infiltration, Kupffer cells and inflammatory cytokines. Liver function markers improved. In a cirrhotic liver environment, cells could differentiate into hepatic lineages. In addition, grafted MLpvNG2+ cells could mobilize endogenous stem/progenitors to participate in liver repair. These results suggest that MLpvNG2+ cells may be novel adult liver progenitors that participate in liver regeneration. PMID:26905303

  10. Enhanced propagation of adult human renal epithelial progenitor cells to improve cell sourcing for tissue-engineered therapeutic devices for renal diseases.

    PubMed

    Westover, Angela J; Buffington, Deborah A; Humes, H D

    2012-08-01

    Renal cell therapy employing cells derived from adult renal epithelial cell (REC) progenitors promises to reduce the morbidity of patients with renal insufficiency due to acute renal failure and end stage renal disease. To this end, tissue engineered devices addressing the neglected biologic component of renal replacement therapy are being developed. Because human donor tissue is limited, novel enhanced progenitor cell propagation (EP) techniques have been developed and applied to adult human kidney transplant discards from six donors. Changes include more efficient digestion and the amplification of progenitors prior to terminal epithelial differentiation promoted by contact inhibition and the addition of retinoic acid. Differentiated morphology in EP populations was demonstrated by the ability to form polarized epithelium with tight junctions, apical central cilia and expression of brush border membrane enzymes. Evaluation of lipopolysaccharide stimulated interleukin-8 secretion and γ-glutamyl transpeptisade activity in EP derived cells was used to confirm therapeutic equivalence to REC obtained using published techniques, which have previously shown efficacy in large animal models and clinical trials. Yield exceeded 10(16) cells/gram cortex from the only kidney obtained due to an anatomical defect, while the average yield from diseased kidneys ranged from 1.1 × 10(9) to 8.8 × 10(11) cells/gram cortex, representing an increase of more than 10 doublings over standard methods. Application of the EP protocol to REC expansion has solved the problem of cell sourcing as the limiting factor to the manufacture of cell based therapies targeting renal diseases and may provide a method for autologous device fabrication from core kidney biopsies.

  11. Hepatic progenitor cell lines from allyl alcohol-treated adult rats are derived from gamma-irradiated mouse STO cells.

    PubMed

    Zhang, Mingjun; Sell, Stewart; Leffert, Hyam L

    2003-01-01

    In attempts to recharacterize several markers of putative rat liver progenitor cells, single-stage reverse transcription-polymerase chain reaction (RT-PCR) analyses failed to confirm the reported immunochemical detection of albumin, alpha(1)-fetoprotein, and cytochrome P450-1A2 in the clonal line, 3(8)#21, and the cloned derivative, 3(8)#21-EGFP (enhanced green fluorescent protein). Undetectable expression occurred whether or not both lines were cultured on or off feeder layers of gamma-irradiated mouse embryonic STO (SIM [Sandoz inbred Swiss mouse] thioguanine-resistant ouabain-resistant) cells. PCR amplification of liver progenitor cell chromosomal (rat and mouse Pigr, rat INS1, mouse INS2) and mitochondrial (rat and mouse COX1) genes revealed only mouse sequences. Further analyses of rat and mouse COX1 sequences in cells from untampered storage vials of all 11 reported liver progenitor cell lines and strains revealed only mouse sequences. In addition, uniquely similar metaphase spreads were observed in STO, 3(8)#21, and 3(8)#21-EGFP cells. The combined results suggest that the previously reported "rat" liver progenitor cell lines were most likely generated during early derivation in cell culture from gamma-radiation-resistant or ineffectively irradiated mouse STO cells used as the feeder layers. These findings reveal new types of artifacts encountered in cocultures of tissue progenitor cells and feeder layer cell lines, and they sound a cautionary note: phenotypic and genotypic properties of feeder layers should be well-characterized before and during coculture with newly derived stem cells and clonal derivatives.

  12. RE1 silencing transcription factor/neuron-restrictive silencing factor regulates expansion of adult mouse subventricular zone-derived neural stem/progenitor cells in vitro.

    PubMed

    Soldati, Chiara; Caramanica, Pasquale; Burney, Matthew J; Toselli, Camilla; Bithell, Angela; Augusti-Tocco, Gabriella; Stanton, Lawrence W; Biagioni, Stefano; Buckley, Noel J; Cacci, Emanuele

    2015-08-01

    Adult neural stem cell (aNSC) activity is tuned by external stimuli through the recruitment of transcription factors. This study examines the RE1 silencing transcription factor (REST) in neural stem/progenitor cells isolated from the subventricular zone of adult mouse brain and provides the first extensive characterization of REST-mediated control of the cellular and molecular properties. This study shows that REST knockdown affects the capacity of progenitor cells to generate neurospheres, reduces cell proliferation, and triggers cell differentiation despite the presence of growth factors. Genome- and transcriptome-wide analyses show that REST binding sites are significantly enriched in genes associated with synaptic transmission and nervous system development and function. Seeking candidate regulators of aNSC function, this study identifies a member of the bone morphogenetic protein (BMP) family, BMP6, the mRNA and protein of which increased after REST knockdown. The results of this study extend previous findings, demonstrating a reciprocal control of REST expression by BMPs. Administration of exogenous BMP6 inhibits aNSC proliferation and induces the expression of the astrocytic marker glial fibrillary acidic protein, highlighting its antimitogenic and prodifferentiative effects. This study suggests that BMP6 produced in a REST-regulated manner together with other signals can contribute to regulation of NSC maintenance and fate.

  13. Transient overexpression of cyclin D2/CDK4/GLP1 genes induces proliferation and differentiation of adult pancreatic progenitors and mediates islet regeneration.

    PubMed

    Chen, Shuyuan; Shimoda, Masayuki; Chen, Jiaxi; Matsumoto, Shinichi; Grayburn, Paul A

    2012-02-15

    The molecular mechanism of β-cell regeneration remains poorly understood. Cyclin D2/CDK4 expresses in normal β cells and maintains adult β-cell growth. We hypothesized that gene therapy with cyclin D2/CDK4/GLP-1 plasmids targeted to the pancreas of STZ-treated rats by ultrasound-targeted microbubble destruction (UTMD) would force cell cycle re-entry of residual G(0)-phase islet cells into G(1)/S phase to regenerate β cells. A single UTMD treatment induced β-cell regeneration with reversal of diabetes for 6 mo without evidence of toxicity. We observed that this β-cell regeneration was not mediated by self-replication of pre-existing β cells. Instead, cyclin D2/CDK4/GLP-1 initiated robust proliferation of adult pancreatic progenitor cells that exist within islets and terminally differentiate to mature islets with β cells and α cells.

  14. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    SciTech Connect

    Haddad, Rami; Kasneci, Amanda; Mepham, Kathryn; Sebag, Igal A.; and others

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES

  15. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice.

    PubMed

    Buscariollo, Daniela L; Fang, Xiefan; Greenwood, Victoria; Xue, Huiling; Rivkees, Scott A; Wendler, Christopher C

    2014-01-01

    Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs) mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg) or vehicle (0.09% NaCl) i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs) within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.

  16. Beating and insulting children as a risk for adult cancer, cardiac disease and asthma.

    PubMed

    Hyland, Michael E; Alkhalaf, Ahmed M; Whalley, Ben

    2013-12-01

    The use of physical punishment for children is associated with poor psychological and behavioral outcomes, but the causal pathway is controversial, and the effects on later physical health unknown. We conducted a cross-sectional survey of asthma, cancer, and cardiac patients (150 in each category, 75 male) recruited from outpatient clinics and 250 healthy controls (125 male). All participants were 40-60 years old and citizens of Saudi Arabia, where the use of beating and insults is an acceptable parenting style. Demographic data and recalled frequency of beatings and insults as a child were assessed on an 8-point scale. Beating and insults were highly correlated (ρ = 0.846). Propensity score matching was used to control for demographic differences between the disease and healthy groups. After controlling for differences, more frequent beating (once or more per month) and insults were associated with a significantly increased risk for cancer (RR = 1.7), cardiac disease (RR = 1.3) and asthma (RR = 1.6), with evidence of increased risk for cancer and asthma with beating frequency of once every 6 months or more. Our results show that a threatening parenting style of beating and insults is associated with increased risk for somatic disease, possibly because this form of parenting induces stress. Our findings are consistent with previous research showing that child abuse and other early life stressors adversely affect adult somatic health, but provide evidence that the pathogenic effects occur also with chronic minor stress. A stress-inducing parenting style, even when normative, has long term adverse health consequences.

  17. Optimal range for parvalbumin as relaxing agent in adult cardiac myocytes: gene transfer and mathematical modeling.

    PubMed Central

    Coutu, Pierre; Metzger, Joseph M

    2002-01-01

    Parvalbumin (PV) has recently been shown to increase the relaxation rate when expressed in intact isolated cardiac myocytes via adenovirus gene transfer. We report here a combined experimental and mathematical modeling approach to determine the dose-response and the sarcomere length (SL) shortening-frequency relationship of PV in adult rat cardiac myocytes in primary culture. The dose-response was obtained experimentally by observing the PV-transduced myocytes at different time points after gene transfer. Calcium transients and unloaded mechanical contractions were measured. The results were as follows. At low estimated [PV] (approximately 0.01 mM), contractile parameters were unchanged; at intermediate [PV], relaxation rate of the mechanical contraction and the decay rate of the calcium transient increased with little effects on amplitude; and at high [PV] (approximately 0.1 mM), relaxation rate was further increased, but the amplitudes of the mechanical contraction and the calcium transient were diminished when compared with control myocytes. The SL shortening-frequency relationship exhibited a biphasic response to increasing stimulus frequency in controls (decrease in amplitude and re-lengthening time from 0.2 to 1.0 Hz followed by an increase in these parameters from 2.0 to 4.0 Hz). The effect of PV was to flatten this frequency response. This flattening effect was partly explained by a reduction in the variation in fractional binding of PV to calcium during beats at high frequency. In conclusion, experimental results and mathematical modeling indicate that there is an optimal PV range for which relaxation rate is increased with little effect on contractile amplitude and that PV effectiveness decreases as the stimulus frequency increases. PMID:11964244

  18. Plasma Levels of High Sensitivity Cardiac Troponin T in Adults with Repaired Tetralogy of Fallot

    PubMed Central

    Lai, Clare T. M.; Wong, Sophia J.; Ip, Janice J. K.; Wong, Wai-keung; Tsang, Kwong-cheong; Lam, Wendy W. M.; Cheung, Yiu-fai

    2015-01-01

    Detectable low circulating level of cardiac troponin T (cTnT) may reflect subclinical myocardial injury. We tested the hypothesis that circulating levels of hs-cTnT are altered in adults with repaired tetralogy of Fallot (TOF) and associated with ventricular volume load and function. Eighty-eight TOF patients and 48 controls were studied. Plasma hs-cTnT levels were determined using a highly sensitive assay (hs-cTnT). The right (RV) and left ventricular (LV) volumes and ejection fraction (EF) were measured using 3D echocardiography and, in 52 patients, cardiac magnetic resonance (CMR). The median (interquartile range) for male and female patients were 4.87 (3.83–6.62) ng/L and 3.11 (1.00–3.87) ng/L, respectively. Thirty percent of female but none of the male patients had increased hs-cTnT levels. Female patients with elevated hs-cTnT levels, compared to those without, had greater RV end-diastolic and end-systolic volumes and LV systolic dyssynchrony index (all p < 0.05). For patient cohort only, hs-cTnT levels correlated positively with CMR-derived RV end-diastolic volume and negatively with echocardiography-derived LV and RV EF (all p < 0.05). Multiple linear regression identified sex and RV EF as significant correlates of log-transformed hs-cTnT levels. Increased hs-cTnT levels occur in 30% of female patients after TOF repair, and are associated with greater RV volumes and worse RV EF. PMID:26360613

  19. Human embryonic and fetal mesenchymal stem cells differentiate toward three different cardiac lineages in contrast to their adult counterparts.

    PubMed

    Ramkisoensing, Arti A; Pijnappels, Daniël A; Askar, Saïd F A; Passier, Robert; Swildens, Jim; Goumans, Marie José; Schutte, Cindy I; de Vries, Antoine A F; Scherjon, Sicco; Mummery, Christine L; Schalij, Martin J; Atsma, Douwe E

    2011-01-01

    Mesenchymal stem cells (MSCs) show unexplained differences in differentiation potential. In this study, differentiation of human (h) MSCs derived from embryonic, fetal and adult sources toward cardiomyocytes, endothelial and smooth muscle cells was investigated. Labeled hMSCs derived from embryonic stem cells (hESC-MSCs), fetal umbilical cord, bone marrow, amniotic membrane and adult bone marrow and adipose tissue were co-cultured with neonatal rat cardiomyocytes (nrCMCs) or cardiac fibroblasts (nrCFBs) for 10 days, and also cultured under angiogenic conditions. Cardiomyogenesis was assessed by human-specific immunocytological analysis, whole-cell current-clamp recordings, human-specific qRT-PCR and optical mapping. After co-culture with nrCMCs, significantly more hESC-MSCs than fetal hMSCs stained positive for α-actinin, whereas adult hMSCs stained negative. Furthermore, functional cardiomyogenic differentiation, based on action potential recordings, was shown to occur, but not in adult hMSCs. Of all sources, hESC-MSCs expressed most cardiac-specific genes. hESC-MSCs and fetal hMSCs contained significantly higher basal levels of connexin43 than adult hMSCs and co-culture with nrCMCs increased expression. After co-culture with nrCFBs, hESC-MSCs and fetal hMSCs did not express α-actinin and connexin43 expression was decreased. Conduction velocity (CV) in co-cultures of nrCMCs and hESC-MSCs was significantly higher than in co-cultures with fetal or adult hMSCs. In angiogenesis bioassays, only hESC-MSCs and fetal hMSCs were able to form capillary-like structures, which stained for smooth muscle and endothelial cell markers.Human embryonic and fetal MSCs differentiate toward three different cardiac lineages, in contrast to adult MSCs. Cardiomyogenesis is determined by stimuli from the cellular microenvironment, where connexin43 may play an important role.

  20. Prevention and Monitoring of Cardiac Dysfunction in Survivors of Adult Cancers: American Society of Clinical Oncology Clinical Practice Guideline.

    PubMed

    Armenian, Saro H; Lacchetti, Christina; Barac, Ana; Carver, Joseph; Constine, Louis S; Denduluri, Neelima; Dent, Susan; Douglas, Pamela S; Durand, Jean-Bernard; Ewer, Michael; Fabian, Carol; Hudson, Melissa; Jessup, Mariell; Jones, Lee W; Ky, Bonnie; Mayer, Erica L; Moslehi, Javid; Oeffinger, Kevin; Ray, Katharine; Ruddy, Kathryn; Lenihan, Daniel

    2016-12-05

    Purpose Cardiac dysfunction is a serious adverse effect of certain cancer-directed therapies that can interfere with the efficacy of treatment, decrease quality of life, or impact the actual survival of the patient with cancer. The purpose of this effort was to develop recommendations for prevention and monitoring of cardiac dysfunction in survivors of adult-onset cancers. Methods Recommendations were developed by an expert panel with multidisciplinary representation using a systematic review (1996 to 2016) of meta-analyses, randomized clinical trials, observational studies, and clinical experience. Study quality was assessed using established methods, per study design. The guideline recommendations were crafted in part using the Guidelines Into Decision Support methodology. Results A total of 104 studies met eligibility criteria and compose the evidentiary basis for the recommendations. The strength of the recommendations in these guidelines is based on the quality, amount, and consistency of the evidence and the balance between benefits and harms. Recommendations It is important for health care providers to initiate the discussion regarding the potential for cardiac dysfunction in individuals in whom the risk is sufficiently high before beginning therapy. Certain higher risk populations of survivors of cancer may benefit from prevention and screening strategies implemented during cancer-directed therapies. Clinical suspicion for cardiac disease should be high and threshold for cardiac evaluation should be low in any survivor who has received potentially cardiotoxic therapy. For certain higher risk survivors of cancer, routine surveillance with cardiac imaging may be warranted after completion of cancer-directed therapy, so that appropriate interventions can be initiated to halt or even reverse the progression of cardiac dysfunction.

  1. Adrenergic responsiveness is reduced, while baseline cardiac function is preserved in old adult conscious monkeys

    NASA Technical Reports Server (NTRS)

    Sato, N.; Kiuchi, K.; Shen, Y. T.; Vatner, S. F.; Vatner, D. E.

    1995-01-01

    To examine the physiological deficit to adrenergic stimulation with aging, five younger adult (3 +/- 1 yr old) and nine older adult (17 +/- 1 yr old) healthy monkeys were studied after instrumentation with a left ventricular (LV) pressure gauge, aortic and left atrial catheters, and aortic flow probes to measure cardiac output directly. There were no significant changes in baseline hemodynamics in conscious older monkeys. For example, an index of contractility, the first derivative of LV pressure (LV dP/dt) was similar (3,191 +/- 240, young vs. 3,225 +/- 71 mmHg/s, old) as well as in isovolumic relaxation, tau (24.3 +/- 1.7 ms, young vs. 23.0 +/- 1.0 ms, old) was similar. However, inotropic, lusitropic, and chronotropic responses to isoproterenol (Iso; 0.1 micrograms/kg), norepinephrine (NE; 0.4 micrograms/kg), and forskolin (For; 75 nmol/kg) were significantly (P < 0.05) depressed in older monkeys. For example. Iso increased LV dP/dt by by 146 +/- 14% in younger monkeys and by only 70 +/- 5% in older monkeys. Iso also reduced tau more in younger monkeys (-28 +/- 7%) compared with older monkeys (-13 +/- 3%). Furthermore, peripheral vascular responsiveness to Iso, NE, For, and phenylephrine (PE; 5 micrograms/kg) was significantly (P < 0.05) reduced in older monkeys. For example, phenylephrine (5 micrograms/kg) increased total peripheral resistence by 69 +/- 4% in younger monkeys and by only 45 +/- 3% in older monkeys. Thus in older monkeys without associated cardiovascular disease, baseline hemodynamics are preserved, but adrenergic receptor responsiveness is reduced systemically, not just in the heart.

  2. Phosphatidic acid stimulates inositol 1,4,5-trisphosphate production in adult cardiac myocytes.

    PubMed

    Kurz, T; Wolf, R A; Corr, P B

    1993-03-01

    The cellular content of phosphatidic acid can increase in response to several agonists either by phosphorylation of diacylglycerol after phospholipase C-catalyzed hydrolysis of phospholipids or directly through activation of phospholipase D. Although previous findings indicated that the generation of phosphatidic acid was exclusively a means of regulation of the cellular concentration of diacylglycerol, more recent studies have indicated that phosphatidic acid may also directly regulate several cellular functions. Accordingly, the present study was performed to assess whether phosphatidic acid could stimulate cardiac phospholipase C in intact adult rabbit ventricular myocytes. The mass of inositol 1,4,5-trisphosphate [Ins (1,4,5)P3] was determined by a specific and sensitive binding protein assay and by direct mass measurement using anion exchange chromatography for separation of selected inositol phosphates and gas chromatography and mass spectrometry for quantification of inositol monophosphate (IP1), inositol bisphosphate (IP2), inositol trisphosphate (IP3), and inositol tetrakisphosphate (IP4). Phosphatidic acid (10(-9)-10(-6) M) elicited a rapid concentration-dependent increase in Ins (1,4,5)P3 accumulation, with the peak fourfold to fivefold increase at 30 seconds of stimulation; the concentration required for 50% of maximal stimulation was 4.4 x 10(-8) M. The time course of individual inositol phosphates indicated a successive increase in the mass of IP3, IP4, IP2, and IP1 in response to stimulation with phosphatidic acid. The production of Ins (1,4,5)P3 in response to phosphatidic acid was not altered in the absence of extracellular calcium or in the presence of extracellular EGTA (10(-3) M). Thus, these findings indicate that phosphatidic acid is a potent activator of inositol phosphate production in adult ventricular myocytes.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Differential regulation of proliferation and neuronal differentiation in adult rat spinal cord neural stem/progenitors by ERK1/2, Akt, and PLCγ

    PubMed Central

    Chan, Wai Si; Sideris, Alexandra; Sutachan, Jhon J.; Montoya G, Jose V.; Blanck, Thomas J. J.; Recio-Pinto, Esperanza

    2013-01-01

    Proliferation of endogenous neural stem/progenitor cells (NSPCs) has been identified in both normal and injured adult mammalian spinal cord. Yet the signaling mechanisms underlying the regulation of adult spinal cord NSPCs proliferation and commitment toward a neuronal lineage remain undefined. In this study, the role of three growth factor-mediated signaling pathways in proliferation and neuronal differentiation was examined. Adult spinal cord NSPCs were enriched in the presence of fibroblast growth factor 2 (FGF2). We observed an increase in the number of cells expressing the microtubule-associated protein 2 (MAP2) over time, indicating neuronal differentiation in the culture. Inhibition of the mitogen-activated protein kinase or extracellular signal-regulated kinase (ERK) kinase 1 and 2/ERK 1 and 2 (MEK/ERK1/2) or the phosphoinositide 3-kinase (PI3K)/Akt pathways suppressed active proliferation in adult spinal cord NSPC cultures; whereas neuronal differentiation was negatively affected only when the ERK1/2 pathway was inhibited. Inhibition of the phospholipase Cγ (PLCγ) pathway did not affect proliferation or neuronal differentiation. Finally, we demonstrated that the blockade of either the ERK1/2 or PLCγ signaling pathways reduced neurite branching of MAP2+ cells derived from the NSPC cultures. Many of the MAP2+ cells expressed synaptophysin and had a glutamatergic phenotype, indicating that over time adult spinal cord NSPCs had differentiated into mostly glutamatergic neurons. Our work provides new information regarding the contribution of these pathways to the proliferation and neuronal differentiation of NSPCs derived from adult spinal cord cultures, and emphasizes that the contribution of these pathways is dependent on the origin of the NSPCs. PMID:23986655

  4. In utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure: Effects on fetal and adult cardiac gene expression and adult cardiac and renal morphology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mouse heart is a target of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during fetal development, and microarray analysis demonstrates significant changes in expression of cardiac genes involved in extracellular matrix (ECM) remodeling. We tested the hypothesis that developmental TCDD exposure wo...

  5. The cardiac stem cell compartment is indispensable for myocardial cell homeostasis, repair and regeneration in the adult.

    PubMed

    Nadal-Ginard, Bernardo; Ellison, Georgina M; Torella, Daniele

    2014-11-01

    Resident cardiac stem cells in embryonic, neonatal and adult mammalian heart have been identified by different membrane markers and transcription factors. However, despite a flurry of publications no consensus has been reached on the identity and actual regenerative effects of the adult cardiac stem cells. Intensive research on the adult mammalian heart's capacity for self-renewal of its muscle cell mass has led to a consensus that new cardiomyocytes (CMs) are indeed formed throughout adult mammalian life albeit at a disputed frequency. The physiological significance of this renewal, the origin of the new CMs, and the rate of adult CM turnover are still highly debated. Myocyte replacement, particularly after injury, was originally attributed to differentiation of a stem cell compartment. More recently, it has been reported that CMs are mainly replaced by the division of pre-existing post-mitotic CMs. These latter results, if confirmed, would shift the target of regenerative therapy toward boosting mature CM cell-cycle re-entry. Despite this controversy, it is documented that the adult endogenous c-kit(pos) cardiac stem cells (c-kit(pos) eCSCs) participate in adaptations to myocardial stress, and, when transplanted into the myocardium, regenerate most cardiomyocytes and microvasculature lost in an infarct. Nevertheless, the in situ myogenic potential of adult c-kit(pos) cardiac cells has been questioned. To revisit the regenerative potential of c-kit(pos) eCSCs, we have recently employed experimental protocols of severe diffuse myocardial damage in combination with several genetic murine models and cell transplantation approaches showing that eCSCs are necessary and sufficient for CM regeneration, leading to complete cellular, anatomical, and functional myocardial recovery. Here we will review the available data on adult eCSC biology and their regenerative potential placing it in the context of the different claimed mechanisms of CM replacement. These data are in

  6. Canadian Cardiovascular Society 2009 Consensus Conference on the management of adults with congenital heart disease: complex congenital cardiac lesions.

    PubMed

    Silversides, Candice K; Salehian, Omid; Oechslin, Erwin; Schwerzmann, Markus; Vonder Muhll, Isabelle; Khairy, Paul; Horlick, Eric; Landzberg, Mike; Meijboom, Folkert; Warnes, Carole; Therrien, Judith

    2010-03-01

    With advances in pediatric cardiology and cardiac surgery, the population of adults with congenital heart disease (CHD) has increased. In the current era, there are more adults with CHD than children. This population has many unique issues and needs. They have distinctive forms of heart failure and their cardiac disease can be associated with pulmonary hypertension, thromboemboli, complex arrhythmias and sudden death. Medical aspects that need to be considered relate to the long-term and multisystemic effects of single ventricle physiology, cyanosis, systemic right ventricles, complex intracardiac baffles and failing subpulmonary right ventricles. Since the 2001 Canadian Cardiovascular Society Consensus Conference report on the management of adults with CHD, there have been significant advances in the field of adult CHD. Therefore, new clinical guidelines have been written by Canadian adult CHD physicians in collaboration with an international panel of experts in the field. Part III of the guidelines includes recommendations for the care of patients with complete transposition of the great arteries, congenitally corrected transposition of the great arteries, Fontan operations and single ventricles, Eisenmenger's syndrome, and cyanotic heart disease. Topics addressed include genetics, clinical outcomes, recommended diagnostic workup, surgical and interventional options, treatment of arrhythmias, assessment of pregnancy risk and follow-up requirements. The complete document consists of four manuscripts, which are published online in the present issue of The Canadian Journal of Cardiology. The complete document and references can also be found at www.ccs.ca or www.cachnet.org.

  7. Seipin knockout in mice impairs stem cell proliferation and progenitor cell differentiation in the adult hippocampal dentate gyrus via reduced levels of PPARγ

    PubMed Central

    Li, Guoxi; Zhou, Libin; Zhu, Ying; Wang, Conghui; Sha, Sha; Xian, Xunde; Ji, Yong; Liu, George; Chen, Ling

    2015-01-01

    ABSTRACT The seipin gene (BSCL2) was originally identified in humans as a loss-of-function gene associated with congenital generalized lipodystrophy type 2 (CGL2). Neuronal seipin-knockout (seipin-nKO) mice display a depression-like phenotype with a reduced level of hippocampal peroxisome proliferator-activated receptor gamma (PPARγ). The present study investigated the influence of seipin deficiency on adult neurogenesis in the hippocampal dentate gyrus (DG) and the underlying mechanisms of the effects. We show that the proliferative capability of stem cells in seipin-nKO mice was substantially reduced compared to in wild-type (WT) mice, and that this could be rescued by the PPARγ agonist rosiglitazone (rosi). In seipin-nKO mice, neuronal differentiation of progenitor cells was inhibited, with the enhancement of astrogliogenesis; both of these effects were recovered by rosi treatment during early stages of progenitor cell differentiation. In addition, rosi treatment could correct the decline in hippocampal ERK2 phosphorylation and cyclin A mRNA level in seipin-nKO mice. The MEK inhibitor U0126 abolished the rosi-rescued cell proliferation and cyclin A expression in seipin-nKO mice. In seipin-nKO mice, the hippocampal Wnt3 protein level was less than that in WT mice, and there was a reduction of neurogenin 1 (Neurog1) and neurogenic differentiation 1 (NeuroD1) mRNA, levels of which were corrected by rosi treatment. STAT3 phosphorylation (Tyr705) was enhanced in seipin-nKO mice, and was further elevated by rosi treatment. Finally, rosi treatment for 10 days could alleviate the depression-like phenotype in seipin-nKO mice, and this alleviation was blocked by the MEK inhibitor U0126. The results indicate that, by reducing PPARγ, seipin deficiency impairs proliferation and differentiation of neural stem and progenitor cells, respectively, in the adult DG, which might be responsible for the production of the depression-like phenotype in seipin-nKO mice. PMID

  8. Electrical stimulation of the medullary pyramid promotes proliferation and differentiation of oligodendrocyte progenitor cells in the corticospinal tract of the adult rat

    PubMed Central

    Li, Qun; Brus-Ramer, Marcel; Martin, John H.; McDonald, John W.

    2010-01-01

    Endogenous tri-potential neural stem cells (eNSCs) exist in the adult spinal cord and differentiate primarily into oligodendrocytes (OLs) and astrocytes. Previous in vivo and in vitro studies have shown that during development proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) depend on activity in neighboring axons. However, this activity-dependent development of OPCs has not been examined in the adult CNS. In the present study, we stimulated unilateral corticospinal (CS) axons of the adult rat and investigated proliferation and differentiation of OPCs in dorsal corticospinal tract (dCST). eNSCs were labeled with the mitotic indicator 5-Bromo-2′-deoxyuridine (BrdU). Phenotypes of proliferating cells were identified by double-immunolabeling of BrdU with a panel of antibodies to cell markers: NG2, Nkx2.2, APC, GFAP, and Glut-1. Electrical stimulation of CS axons increased BrdU labeled eNSCs and promoted the proliferation and differentiation of OPCs, but not astrocytes and endothelial cells. Our findings demonstrate the importance of neural activity in regulating OPC proliferation/differentiation in the mature CNS. Selective pathway electrical stimulation could be used to promote remyelination and recovery of function in CNS injury and disease. PMID:20493923

  9. An in vitro model for the assessment of stem cell fate following implantation within the infarct microenvironment identifies ISL-1 expression as the strongest predictor of c-Kit(+) cardiac progenitor cells' therapeutic potential.

    PubMed

    Sullivan, Kelly E; Burns, Laura J; Black, Lauren D

    2015-11-01

    Cell therapy has the potential to drastically improve clinical outcomes for the 1.45 million patients suffering from a myocardial infarction (MI) each year in the U.S. However, the limitations associated with this treatment - including poor engraftment, significant cell death and poor differentiation potential - have prevented its widespread application clinically. To optimize functional improvements provided by transplanted cells, there is a need to develop methods that increase cellular retention and viability, while supporting differentiation and promoting paracrine signaling. Current in vivo models are expensive, difficult to access and manipulate and are time consuming. We have developed an in vitro model of MI which allows for a straightforward, consistent and relatively accurate prediction of cell fate following injection in vivo. The model demonstrated how the infarct environment impairs cellular engraftment and differentiation, but identified an implantation strategy which enhanced cell fate in vitro. Multivariate linear regression identified variables within the model that regulated vascular differentiation potential including oxygen tension, stiffness and cytokine presence, while cardiac differentiation was more accurately predicted by Isl-1 expression in the original cell isolate than any other variable present within the model system. The model highlighted how the cells' sensitivity to the infarct variables varied from line to line, which emphasizes the importance of the model system for the prediction of cell fate on a patient specific basis. Further development of this model system could help predict the clinical efficacy of cardiac progenitor cell therapy at the patient level as well as identify the optimal strategy for cell delivery.

  10. Clinical cardiac regenerative studies in children

    PubMed Central

    Pavo, Imre J; Michel-Behnke, Ina

    2017-01-01

    Although the incidence of pediatric heart failure is low, the mortality is relatively high, with severe clinical symptoms requiring repeated hospitalization or intensive care treatment in the surviving patients. Cardiac biopsy specimens have revealed a higher number of resident human cardiac progenitor cells, with greater proliferation and differentiation capacity, in the neonatal period as compared with adults, demonstrating the regeneration potential of the young heart, with rising interest in cardiac regeneration therapy in critically ill pediatric patients. We review here the available literature data, searching the MEDLINE, Google Scholar and EMBASE database for completed, and www.clinicaltrials.gov homepage for ongoing studies involving pediatric cardiac regeneration reports. Because of difficulties conducting randomized blinded clinical trials in pediatric patients, mostly case reports or cohort studies with a limited number of individuals have been published in the field of pediatric regenerative cardiology. The majority of pediatric autologous cell transplantations into the cardiac tissue have been performed in critically ill children with severe or terminal heart failure. Congenital heart disease, myocarditis, and idiopathic hypertrophic or dilated cardiomyopathy leading to congestive heart failure are some possible areas of interest for pediatric cardiac regeneration therapy. Autologous bone marrow mononuclear cells, progenitor cells, or cardiospheres have been applied either intracoronary or percutaneously intramyocardially in severely ill children, leading to a reported clinical benefit of cell-based cardiac therapies. In conclusion, compassionate use of autologous stem cell administration has led to at least short-term improvement in heart function and clinical stability in the majority of the critically ill pediatric patients. PMID:28289528

  11. Clinical cardiac regenerative studies in children.

    PubMed

    Pavo, Imre J; Michel-Behnke, Ina

    2017-02-26

    Although the incidence of pediatric heart failure is low, the mortality is relatively high, with severe clinical symptoms requiring repeated hospitalization or intensive care treatment in the surviving patients. Cardiac biopsy specimens have revealed a higher number of resident human cardiac progenitor cells, with greater proliferation and differentiation capacity, in the neonatal period as compared with adults, demonstrating the regeneration potential of the young heart, with rising interest in cardiac regeneration therapy in critically ill pediatric patients. We review here the available literature data, searching the MEDLINE, Google Scholar and EMBASE database for completed, and www.clinicaltrials.gov homepage for ongoing studies involving pediatric cardiac regeneration reports. Because of difficulties conducting randomized blinded clinical trials in pediatric patients, mostly case reports or cohort studies with a limited number of individuals have been published in the field of pediatric regenerative cardiology. The majority of pediatric autologous cell transplantations into the cardiac tissue have been performed in critically ill children with severe or terminal heart failure. Congenital heart disease, myocarditis, and idiopathic hypertrophic or dilated cardiomyopathy leading to congestive heart failure are some possible areas of interest for pediatric cardiac regeneration therapy. Autologous bone marrow mononuclear cells, progenitor cells, or cardiospheres have been applied either intracoronary or percutaneously intramyocardially in severely ill children, leading to a reported clinical benefit of cell-based cardiac therapies. In conclusion, compassionate use of autologous stem cell administration has led to at least short-term improvement in heart function and clinical stability in the majority of the critically ill pediatric patients.

  12. Cardiac magnetic resonance imaging and the assessment of ebstein anomaly in adults.

    PubMed

    Yalonetsky, Sergey; Tobler, Daniel; Greutmann, Matthias; Crean, Andrew M; Wintersperger, Bernd J; Nguyen, Elsie T; Oechslin, Erwin N; Silversides, Candice K; Wald, Rachel M

    2011-03-01

    No published studies have evaluated the role of cardiac magnetic resonance (CMR) imaging for the assessment of Ebstein anomaly. Our objective was to evaluate the right heart characteristics in adults with unrepaired Ebstein anomaly using contemporary CMR imaging techniques. Consecutive patients with unrepaired Ebstein anomaly and complete CMR studies from 2004 to 2009 were identified (n = 32). Volumetric measurements were obtained from the short-axis and axial views, including assessment of the functional right ventricular (RV) end-diastolic volume (EDV) and end-systolic volume. The volume of the atrialized portion of the right ventricle in end-diastole was calculated as the difference between the total RVEDV and the functional RVEDV. The reproducibility of the measurements in the axial and short-axis views was determined within and between observers. The median value derived from the short-axis and axial views was 136 ml/m(2) (range 59 to 347) and 136 ml/m(2) (range 63 to 342) for the functional RVEDV, 153 ml/m(2) (range 64 to 441) and 154 ml/m(2) (range 67 to 436) for the total RVEDV, 49% (range 32% to 46%) and 50% (range 40% to 64%) for the functional RV ejection fraction, respectively. The axial measurements demonstrated lower intraobserver and interobserver variability than the short-axis approach for all values, with the exception of the intraobserver functional RVEDV and interobserver total RVEDV for which the limits of agreement and variance were not significantly different between the 2 views. In conclusion, measurements of right heart size and systolic function in patients with Ebstein anomaly can be reliably achieved using CMR imaging. Axial imaging appeared to provide more reproducible data than that obtained from the short-axis views.

  13. Murine adult neural progenitor cells alter their proliferative behavior and gene expression after the activation of Toll-like-receptor 3

    PubMed Central

    Melnik, A.; Tauber, S.; Dumrese, C.; Ullrich, O.; Wolf, S. A.

    2012-01-01

    Viral infections during pregnancy significantly increase the risk for psychological pathologies like schizophrenia in the offspring. One of the main morphological hallmarks of schizophrenia is a reduced size of the hippocampus. Since new neurons are produced in this particular brain compartment throughout life, it might be possible that low neurogenesis levels triggered by a maternal viral infection contribute to developmental deficits of the hippocampus. We injected polyinosinic:polycytidylic acid (Poly I:C) in pregnant C57Bl/6 mice to stimulate an anti-viral response through TLR3 and examined gene expressions in the neuronal progenitor cells (NPCs) of the offspring at different ages. Additionally, we treated adult NPC lines with Poly I:C to investigate its direct effect. We could show for the first time that TLR3 and its downstream effector molecule IRF3 are expressed in adult NPCs. Poly I:C treatment in vitro and in vivo led to the regulation of proliferation and genes involved in antiviral response, migration, and survival. These findings indicate that NPCs of the fetus are able to react towards an in utero immune response, and thus, changes in the neuronal stem cell pool can contribute to the development of neurological diseases like schizophrenia. PMID:24688771

  14. The expansion of adult stem/progenitor cells and their marker expression fluctuations are linked with pituitary plastic adaptation during gestation and lactancy.

    PubMed

    Vaca, Alicia Maldré; Guido, Carolina Beatriz; Sosa, Liliana Del Valle; Nicola, Juan Pablo; Mukdsi, Jorge; Petiti, Juan Pablo; Torres, Alicia Ines

    2016-08-01

    Extensive evidence has revealed variations in the number of hormone-producing cells in the pituitary gland, which occur under physiological conditions such as gestation and lactancy. It has been proposed that new hormone-producing cells differentiate from stem cells. However, exactly how and when this takes place is not clear. In this work, we used immunoelectron microscopy to identify adult pituitary stem/progenitor cells (SC/P) localized in the marginal zone (MZ), and additionally, we detected GFRa2-, Sox2-, and Sox9-positive cells in the adenoparenchyma (AP) by fluorescence microscopy. Then, we evaluated fluctuations of SC/P mRNA and protein level markers in MZ and AP during gestation and lactancy. An upregulation in stemness markers was shown at term of gestation (AT) in MZ, whereas there were more progenitor cell markers in the middle of gestation and active lactancy. Concerning committed cell markers, we detected a rise in AP at beginning of lactancy (d1L). We performed a BrdU uptake analysis in MZ and AP cells. The highest level of BrdU uptake was observed in MZ AT cells, whereas in AP this was detected in d1L, followed by a decrease in both the MZ and AP. Finally, we detected double immunostaining for BrdU-GFRa2 in MZ AT cells and BrdU-Sox9 in the AP d1L cells. Taken together, we hypothesize that the expansion of the SC/P niche took place mainly in MZ from pituitary rats in AT and d1L. These results suggest that the SC niche actively participates in pituitary plasticity during these reproductive states, contributing to the origin of hormone cell populations.

  15. Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat.

    PubMed

    Mothe, A J; Tator, C H

    2005-01-01

    Ependymal cells of the adult mammalian spinal cord exhibit stem/progenitor cell properties following injury. In the present study, we utilized intraventricular injection of 1,1'-dioctadecyl-6,6'-di(4-sulfophenyl)-3,3,3',3'-tetramethylindocarbocyanine (DiI) to label the ependyma lining the central canal to allow tracking of the migration of endogenous ependymal cells and their progeny after spinal cord injury (SCI). We developed a minimal injury model that preserved the integrity of the central canal and did not interfere with ependymal cell labeling. Three days following SCI, there was an 8.6-fold increase in the proliferative labeling index of the ependymal cells at the level of the needle track based on bromodeoxyuridine labeling, compared with 1 day post-injury. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) positive cells were not detected in the ependyma or surrounding gray matter, indicating that ependymal cells do not undergo apoptosis in response to minimal injury. Nestin was rapidly induced in the ependyma by 1 day and expression peaked by 7 days post-injury. We quantitated the number and distance of ependymal cell migration following minimal injury. The number of ependymal cells migrating from the region of the central canal increased by 3 days following minimal injury and DiI-labeled glial fibrillary acidic protein expressing cells were detected 14 days post-SCI, most of which migrated within 70 microm of the region of the central canal. These results show that a minimal SCI adjacent to the ependyma is sufficient to induce an endogenous ependymal cell response where ependymal stem/progenitor cells proliferate and migrate from the region of the central canal, differentiating primarily into astrocytes.

  16. Measurement of cardiac output in adult and newborn animals by ascorbic acid dilution.

    PubMed

    Smallwood, J K; Haselby, K A; Paradise, R R

    1984-05-01

    We have developed an ascorbic acid-dilution method for measuring cardiac output which requires minimal blood withdrawal. Ascorbate is injected into a central venous catheter. The indicator-dilution curve is obtained by drawing blood from an arterial catheter through an amperometric cell at 0.96 ml/min for 35 s. The current is measured by a picoammeter . A calibration curve is obtained in 15 s prior to each indicator-dilution curve. An on-line digital computer measures the curve areas and calculates the cardiac output. Cardiac outputs of heparinized dogs anesthetized with pentobarbital and halothane measured by this method (AA) compared closely to cardiac outputs measured by the dye-dilution method (CG) (AA = 0.96 CG + 20 ml/min, r = 0.98). Both the cardiac output and the arterial blood pressure remained stable during replicate measurements of the cardiac output of 1-day-old piglets. This system allows cardiac output determinations of neonatal subjects without excessive blood removal and, with further development, should be practical in human neonates.

  17. Prophylactic furosemide infusion decreasing early major postoperative renal dysfunction in on-pump adult cardiac surgery: a randomized clinical trial

    PubMed Central

    Fakhari, Solmaz; Bavil, Fariba Mirzaei; Bilehjani, Eissa; Abolhasani, Sona; Mirinazhad, Moussa; Naghipour, Bahman

    2017-01-01

    Introduction Acute renal dysfunction is a common complication of cardiac surgery. Furosemide is used in prevention, or treatment, of acute renal dysfunction. This study was conducted to evaluate the protective effects of intra- and early postoperative furosemide infusion on preventing acute renal dysfunction in elective adult cardiac surgery. Methods Eighty-one patients, candidates of elective cardiac surgery, were enrolled in this study in either the furosemide (n=41) or placebo (n=40) group. Furosemide (2 mg/h) or 0.9% saline was administered and continued up to 12 hours postoperatively. We measured serum creatinine (Scr) at preoperative and on the second and fifth postoperative days. Then calculated estimated glomerular filtration rate (eGFR) at these times. An increase in Scr of >0.5 mg/dL and/or >25%–50%, compared to preoperative values, was considered as acute kidney injury (AKI). In contrast, an increase in Scr by >50% and/or the need for hemodialysis was regarded as acute renal failure (ARF). At the end we compared the AKI or ARF incidence between the two groups. Results On the second and fifth postoperative days, Scr was lower, and the eGFR was higher in the furosemide group. AKI incidence was similar in the two groups (11 vs 12 cases; P-value 0.622); however, ARF rate was lower in furosemide group (1 vs 6 cases; P-value 0.044). During the study period, Scr was more stable in the furosemide group, however in the placebo group, Scr initially increased and then decreased to its preoperative value after a few days. Conclusion This study showed that intra- and early postoperative furosemide infusion has a renal protective effect in adult cardiac surgery with cardiopulmonary bypass. Although this protective effect cannot be discovered in mild renal dysfunctions, it apparently reduces the rate of the more severe renal dysfunctions. A more multidisciplinary strategy may be needed in reducing the milder renal damage. PMID:28176949

  18. Cardiac structure/function, protein expression, and DNA methylation are changed in adult female mice exposed to diethylstilbestrol in utero.

    PubMed

    Haddad, Rami; Kasneci, Amanda; Sebag, Igal A; Chalifour, Lorraine E

    2013-09-01

    The detrimental effects of in utero exposure to the non-steroidal estrogen diethylstilbestrol (DES) are particularly marked in women. Fetal hearts express estrogen receptors, making them potentially responsive to DES. To examine whether gestational exposure to DES would impact the heart, we exposed pregnant C57bl/6n dams to DES (0.1, 1.0, and 10.0 μg·(kg body mass)(-1)·day(-1)) on gestation days 11.5-14.5, and examined the measured cardiac structure/function and calcium homeostasis protein expression in adult females. At baseline, echocardiography revealed eccentric hypertrophy in mice treated with 10.0 μg·(kg body mass)(-1)·day(-1) DES, and immunoblots showed increased SERCA2a in all DES-treated mice. Mice were swim-trained to assess cardiac remodeling. Swim-trained vehicle-treated mice developed eccentric hypertrophy without changing SERCA2 or calsequestrin 2 expression. In contrast, no DES-treated mice hypertrophied, and all increased in SERCA2a and calsequestrin 2 expression after training. To determine whether DES-induced changes in DNA methylation is part of the mechanism for its long-term effects, we measured DNA methyltransferase expression and DNA methylation. Global DNA methylation and DNA methyltransferase 3a expression were unchanged. However, DES-treated mice had increased DNA methylation in the calsequestrin 2 promoter. Thus, gestational exposure to DES altered female ventricular DNA, cardiac structure/function, and calcium homeostasis protein expression. We conclude that gestational exposure to estrogenizing compounds may impact cardiac structure/function in adult females.

  19. Evaluation of the estimated continuous cardiac output monitoring system in adults and children undergoing kidney transplant surgery: a pilot study.

    PubMed

    Terada, Takashi; Maemura, Yumi; Yoshida, Akiko; Muto, Rika; Ochiai, Ryoichi

    2014-02-01

    Evaluation of the estimated continuous cardiac output (esCCO) allows non-invasive and continuous assessment of cardiac output. However, the applicability of this approach in children has not been assessed thus far. We compared the correlation coefficient, bias, standard deviation (SD), and the lower and upper 95 % limits of agreement for esCCO and dye densitography-cardiac output (DDG-CO) measurements by pulse dye densitometry (PDD) in adults and children. On the basis of these assessments, we aimed to examine whether esCCO can be used in pediatric patients. DDG-CO was measured by pulse dye densitometry (PDD) using indocyanine green. Modified-pulse wave transit time, obtained using pulse oximetry and electrocardiography, was used to measure esCCO. Correlations between DDG-CO and esCCO in adults and children were analyzed using regression analysis with the least squares method. Differences between the two correlation coefficients were statistically analyzed using a correlation coefficient test. Bland-Altman plots were used to evaluate bias and SD for DDG-CO and esCCO in both adults and children, and 95 % limits of agreement (bias ± 1.96 SD) and percentage error (1.96 SD/mean DDG-CO) were calculated and compared. The average age of the adult patients (n = 10) was 39.3 ± 12.1 years, while the average age of the pediatric patients (n = 7) was 9.4 ± 3.1 years (p < 0.001). For adults, the correlation coefficient was 0.756; bias, -0.258 L/min; SD, 1.583 L/min; lower and upper 95 % limits of agreement for DDG-CO and esCCO, -3.360 and 2.844 L/min, respectively; and percentage error, 42.7 %. For children, the corresponding values were 0.904; -0.270; 0.908; -2.051 and 1.510 L/min, respectively; and 35.7 %. Due to the high percentage error values, we could not establish a correlation between esCCO and DDG-CO. However, the 95 % limits of agreement and percentage error were better in children than in adults. Due to the high percentage error, we could not confirm a correlation

  20. Incidence of inferior vena cava thrombosis detected by transthoracic echocardiography in the immediate postoperative period after adult cardiac and general surgery.

    PubMed

    Saranteas, T; Kostopanagiotou, G; Tzoufi, M; Drachtidi, K; Knox, G M; Panou, F

    2013-11-01

    Venous thromboembolism is an important complication after general and cardiac surgery. Using transthoracic echocardiography, this study assessed the incidence of inferior vena cava (IVC) thrombosis among a total of 395 and 289 cardiac surgical and major surgical patients in the immediate postoperative period after cardiac and major surgery, respectively. All transthoracic echocardiography was performed by a specialist intensivist within 24 hours after surgery with special emphasis on using the subcostal view in the supine position to visualise the IVC. Of the 395 cardiac surgical patients studied, the IVC was successfully visualised using the subcostal view in 315 patients (79.8%) and eight of these patients (2.5%) had a partially obstructive thrombosis in the IVC. In 250 out of 289 (85%) general surgical patients, the IVC was also clearly visualised, but only one patient (0.4%) had an IVC thrombosis (2.5 vs 0.4%, P <0.05). In summary, visualisation of the IVC was feasible in most patients in the immediate postoperative period after both adult cardiac and major surgery. IVC thrombosis appeared to be more common after adult cardiac surgery than general surgery. A large prospective cohort study is needed to define the risk factors for IVC thrombus and whether early thromboprophylaxis can reduce the incidence of IVC thrombus after adult cardiac surgery.

  1. Myogenic progenitors and imaging single-cell flow analysis: a model to study commitment of adult muscle stem cells.

    PubMed

    Trapecar, Martin; Kelc, Robi; Gradisnik, Lidija; Vogrin, Matjaz; Rupnik, Marjan Slak

    2014-12-01

    Research on skeletal muscles suffers from a lack of appropriate human models to study muscle formation and regeneration on the regulatory level of single cells. This hampers both basic understanding and the development of new therapeutic approaches. The use of imaging multicolour flow cytometry and myogenic stem cells can help fill this void by allowing researchers to visualize and quantify the reaction of individual cultured cells to bioactives or other physiological impulses. As proof of concept, we subjected human CD56+ satellite cells to reference bioactives follistatin and Malva sylvestris extracts and then used imaging multicolor flow cytometry to visualize the stepwise activation of myogenic factors MyoD and myogenin in individual cells. This approach enabled us to evaluate the potency of these bioactives to stimulate muscle commitment. To validate this method, we used multi-photon confocal microscopy to confirm the potential of bioactives to stimulate muscle differentiation and expression of desmin. Imaging multicolor flow cytometry revealed statistically significant differences between treated and untreated groups of myogenic progenitors and we propose the utilization of this concept as an integral part of future muscle research strategies.

  2. Cardiopulmonary resuscitation of adults with in-hospital cardiac arrest using the Utstein style

    PubMed Central

    da Silva, Rose Mary Ferreira Lisboa; Silva, Bruna Adriene Gomes de Lima e; Silva, Fábio Junior Modesto e; Amaral, Carlos Faria Santos

    2016-01-01

    Objective The objective of this study was to analyze the clinical profile of patients with in-hospital cardiac arrest using the Utstein style. Methods This study is an observational, prospective, longitudinal study of patients with cardiac arrest treated in intensive care units over a period of 1 year. Results The study included 89 patients who underwent cardiopulmonary resuscitation maneuvers. The cohort was 51.6% male with a mean age 59.0 years. The episodes occurred during the daytime in 64.6% of cases. Asystole/bradyarrhythmia was the most frequent initial rhythm (42.7%). Most patients who exhibited a spontaneous return of circulation experienced recurrent cardiac arrest, especially within the first 24 hours (61.4%). The mean time elapsed between hospital admission and the occurrence of cardiac arrest was 10.3 days, the mean time between cardiac arrest and cardiopulmonary resuscitation was 0.68 min, the mean time between cardiac arrest and defibrillation was 7.1 min, and the mean duration of cardiopulmonary resuscitation was 16.3 min. Associations between gender and the duration of cardiopulmonary resuscitation (19.2 min in women versus 13.5 min in men, p = 0.02), the duration of cardiopulmonary resuscitation and the return of spontaneous circulation (10.8 min versus 30.7 min, p < 0.001) and heart disease and age (60.6 years versus 53.6, p < 0.001) were identified. The immediate survival rates after cardiac arrest, until hospital discharge and 6 months after discharge were 71%, 9% and 6%, respectively. Conclusions The main initial rhythm detected was asystole/bradyarrhythmia; the interval between cardiac arrest and cardiopulmonary resuscitation was short, but defibrillation was delayed. Women received cardiopulmonary resuscitation for longer periods than men. The in-hospital survival rate was low. PMID:28099640

  3. Magnesium Elevation Promotes Neuronal Differentiation While Suppressing Glial Differentiation of Primary Cultured Adult Mouse Neural Progenitor Cells through ERK/CREB Activation

    PubMed Central

    Liao, Wang; Jiang, Mujun; Li, Mei; Jin, Congli; Xiao, Songhua; Fan, Shengnuo; Fang, Wenli; Zheng, Yuqiu; Liu, Jun

    2017-01-01

    This study aimed to explore the influence of magnesium elevation on fate determination of adult neural progenitor cells (aNPCs) and the underlying mechanism in vitro. Adult neurogenesis, which is the generation of functional neurons from neural precursors, occurs throughout life in restricted anatomical regions in mammals. Magnesium is the fourth most abundant ion in mammals, and its elevation in the brain has been shown to enhance memory and synaptic plasticity in vivo. However, the effects of magnesium on fate determination of aNPCs, which are vital processes in neurogenesis, remain unknown. NPCs isolated from the dentate gyrus of adult C57/BL6 mice were induced to differentiate in a medium with varying magnesium concentrations (0.6, 0.8, and 1.0 mM) and extracellular signal-regulated kinase (ERK) inhibitor PD0325901. The proportion of cells that differentiated into neurons and glial cells was evaluated using immunofluorescence. Quantitative real-time polymerase chain reaction and Western blot methods were used to determine the expression of β-III tubulin (Tuj1) and glial fibrillary acidic protein (GFAP). The activation of ERK and cAMP response element-binding protein (CREB) was examined by Western blot to reveal the underlying mechanism. Magnesium elevation increased the proportion of Tju1-positive cells and decreased the proportion of GFAP-positive cells. Also, the expression of Tuj1 was upregulated, whereas the expression of GFAP was downregulated. Moreover, magnesium elevation enhanced the activation of both ERK and CREB. Treatment with PD0325901 reversed these effects in a dose-dependent manner. Magnesium elevation promoted neural differentiation while suppressing glial cell differentiation, possibly via ERK-induced CREB activation. PMID:28280456

  4. Direct Stimulation of Adult Neural Stem/Progenitor Cells In Vitro and Neurogenesis In Vivo by Salvianolic Acid B

    PubMed Central

    Zhuang, Pengwei; Zhang, Yanjun; Cui, Guangzhi; Bian, Yuhong; Zhang, Mixia; Zhang, Jinbao; Liu, Yang; Yang, Xinpeng; Isaiah, Adejobi Oluwaniyi; Lin, Yingxue; Jiang, Yongbo

    2012-01-01

    Background Small molecules have been shown to modulate the neurogenesis processes. In search for new therapeutic drugs, the herbs used in traditional medicines for neurogenesis are promising candidates. Methodology and Principal Findings We selected a total of 45 natural compounds from Traditional Chinese herbal medicines which are extensively used in China to treat stroke clinically, and tested their proliferation-inducing activities on neural stem/progenitor cells (NSPCs). The screening results showed that salvianolic acid B (Sal B) displayed marked effects on the induction of proliferation of NSPCs. We further demonstrated that Sal B promoted NSPCs proliferation in dose- and time-dependent manners. To explore the molecular mechanism, PI3K/Akt, MEK/ERK and Notch signaling pathways were investigated. Cell proliferation assay demonstrated that Ly294002 (PI3K/Akt inhibitor), but neither U0126 (ERK inhibitor) nor DAPT (Notch inhibitor) inhibited the Sal B-induced proliferation of cells. Western Blotting results showed that stimulation of NSPCs with Sal B enhanced the phosphorylation of Akt, and Ly294002 abolished this effect, confirming the role of Akt in Sal B mediated proliferation of NSPCs. Rats exposed to transient cerebral ischemia were treated for 4 weeks with Sal B from the 7th day after stroke. BrdU incorporation assay results showed that exposure Sal B could maintain the proliferation of NSPCs after cerebral ischemia. Morris water maze test showed that delayed post-ischemic treatment with Sal B improved cognitive impairment after stroke in rats. Significance Sal B could maintain the NSPCs self-renew and promote proliferation, which was mediated by PI3K/Akt signal pathway. And delayed post-ischemic treatment with Sal B improved cognitive impairment after stroke in rats. These findings suggested that Sal B may act as a potential drug in treatment of brain injury or neurodegenerative diseases. PMID:22545124

  5. A role for matrix stiffness in the regulation of cardiac side population cell function.

    PubMed

    Qiu, Yiling; Bayomy, Ahmad F; Gomez, Marcus V; Bauer, Michael; Du, Ping; Yang, Yanfei; Zhang, Xin; Liao, Ronglih

    2015-05-01

    The mechanical properties of the local microenvironment may have important influence on the fate and function of adult tissue progenitor cells, altering the regenerative process. This is particularly critical following a myocardial infarction, in which the normal, compliant myocardial tissue is replaced with fibrotic, stiff scar tissue. In this study, we examined the effects of matrix stiffness on adult cardiac side population (CSP) progenitor cell behavior. Ovine and murine CSP cells were isolated and cultured on polydimethylsiloxane substrates, replicating the elastic moduli of normal and fibrotic myocardium. Proliferation capacity and cell cycling were increased in CSP cells cultured on the stiff substrate with an associated reduction in cardiomyogeneic differentiation and accelerated cell ageing. In addition, culture on stiff substrate stimulated upregulation of extracellular matrix and adhesion proteins gene expression in CSP cells. Collectively, we demonstrate that microenvironment properties, including matrix stiffness, play a critical role in regulating progenitor cell functions of endogenous resident CSP cells. Understanding the effects of the tissue microenvironment on resident cardiac progenitor cells is a critical step toward achieving functional cardiac regeneration.

  6. Parsing the roles of the transcription factors GATA-4 and GATA-6 in the adult cardiac hypertrophic response.

    PubMed

    van Berlo, Jop H; Aronow, Bruce J; Molkentin, Jeffery D

    2013-01-01

    The transcriptional code that programs cardiac hypertrophy involves the zinc finger-containing DNA binding factors GATA-4 and GATA-6, both of which are required to mount a hypertrophic response of the adult heart. Here we performed conditional gene deletion of Gata4 or Gata6 in the mouse heart in conjunction with reciprocal gene replacement using a transgene encoding either GATA-4 or GATA-6 in the heart as a means of parsing dosage effects of GATA-4 and GATA-6 versus unique functional roles. We determined that GATA-4 and GATA-6 play a redundant and dosage-sensitive role in programming the hypertrophic growth response of the heart following pressure overload stimulation. However, non-redundant functions were identified in allowing the heart to compensate and resist heart failure after pressure overload stimulation, as neither Gata4 nor Gata6 deletion was fully rescued by expression of the reciprocal transgene. For example, only Gata4 heart-specific deletion blocked the neoangiogenic response to pressure overload stimulation. Gene expression profiling from hearts of these gene-deleted mice showed both overlapping and unique transcriptional codes, which is presented. These results indicate that GATA-4 and GATA-6 play a dosage-dependent and redundant role in programming cardiac hypertrophy, but that each has a more complex role in maintaining cardiac homeostasis and resistance to heart failure following injury that cannot be compensated by the other.

  7. p38α MAPK regulates adult muscle stem cell fate by restricting progenitor proliferation during postnatal growth and repair.

    PubMed

    Brien, Patrick; Pugazhendhi, Dhamayanthi; Woodhouse, Samuel; Oxley, David; Pell, Jennifer M

    2013-08-01

    Stem cell function is essential for the maintenance of adult tissue homeostasis. Controlling the balance between self-renewal and differentiation is crucial to maintain a receptive satellite cell pool capable of responding to growth and regeneration cues. The mitogen-activated protein kinase p38α has been implicated in the regulation of these processes but its influence in adult muscle remains unknown. Using conditional satellite cell p38α knockout mice we have demonstrated that p38α restricts excess proliferation in the postnatal growth phase while promoting timely myoblast differentiation. Differentiation was still able to occur in the p38α-null satellite cells, however, but was delayed. An absence of p38α resulted in a postnatal growth defect along with the persistence of an increased reservoir of satellite cells into adulthood. This population was still capable of responding to cardiotoxin-induced injury, resulting in complete, albeit delayed, regeneration, with further enhancement of the satellite cell population. Increased p38γ phosphorylation accompanied the absence of p38α, and inhibition of p38γ ex vivo substantially decreased the myogenic defect. We have used genome-wide transcriptome analysis to characterize the changes in expression that occur between resting and regenerating muscle, and the influence p38α has on these expression profiles. This study provides novel evidence for the fundamental role of p38α in adult muscle homeostasis in vivo.

  8. Quantitative evaluation of endothelial progenitors and cardiac valve endothelial cells: proliferation and differentiation on poly-glycolic acid/poly-4-hydroxybutyrate scaffold in response to vascular endothelial growth factor and transforming growth factor beta1.

    PubMed

    Dvorin, Evan L; Wylie-Sears, Jill; Kaushal, Sunjay; Martin, David P; Bischoff, Joyce

    2003-06-01

    Three-dimensional scaffolds made of bioabsorbable polymeric constituents are currently being tested for use in tissue engineering of various tissues. A composite scaffold of poly-glycolic acid (PGA) non-woven mesh dip-coated in a 1% solution of poly-4-hydroxybutyrate (P4HB) was shown to be suitable as a scaffold for creation of tissue-engineered trileaflet pulmonic valve replacements in sheep [Hoerstrup, S.P., et al., Circulation 102(Suppl. 3), III44, 2000]. However, little is known about how cells seeded on PGA/P4HB respond in vitro to soluble factors supplied in the culture medium. To optimize tissue development in vitro, before implantation, we set out to develop quantitative biochemical assays to measure how cells seeded on PGA/P4HB respond to growth and differentiation factors. Herein we show that ovine aortic valvular endothelial cells and circulating endothelial progenitor cells (EPCs) seeded onto PGA/P4HB proliferate in response to vascular endothelial growth factor and transdifferentiate to a mesenchymal phenotype in response to transforming growth factor beta(1). Transdifferentiation from an endothelial to mesenchymal phenotype is a critical step during embryonic development of cardiac valves. Our results demonstrate that valvular endothelial cells and EPCs isolated from peripheral blood can recapitulate critical developmental steps on PGA/P4HB. These results demonstrate that PGA/P4HB provides a conducive environment for cellular proliferation, differentiation, and tissue development.

  9. How Necessary is the Vasculature in the Life of Neural Stem and Progenitor Cells? Evidence from Evolution, Development and the Adult Nervous System

    PubMed Central

    Koutsakis, Christos; Kazanis, Ilias

    2016-01-01

    Augmenting evidence suggests that such is the functional dependance of neural stem cells (NSCs) on the vasculature that they normally reside in “perivascular niches”. Two examples are the “neurovascular” and the “oligovascular” niches of the adult brain, which comprise specialized microenvironments where NSCs or oligodendrocyte progenitor cells survive and remain mitotically active in close proximity to blood vessels (BVs). The often observed co-ordination of angiogenesis and neurogenesis led to these processes being described as “coupled”. Here, we adopt an evo-devo approach to argue that some stages in the life of a NSC, such as specification and commitment, are independent of the vasculature, while stages such as proliferation and migration are largely dependent on BVs. We also explore available evidence on the possible involvement of the vasculature in other phenomena such as the diversification of NSCs during evolution and we provide original data on the senescence of NSCs in the subependymal zone stem cell niche. Finally, we will comment on the other side of the story; that is, on how much the vasculature is dependent on NSCs and their progeny. PMID:26909025

  10. Comprehensive Screening of Cell Surface Markers Expressed by Adult-Derived Human Liver Stem/Progenitor Cells Harvested at Passage 5: Potential Implications for Engraftment

    PubMed Central

    Sokal, Etienne

    2016-01-01

    Mesenchymal stromal cells (MSCs) are known to have potential therapeutic benefits for a number of diseases. However, many studies report low engraftment levels, regardless of the target organ. One possible explanation could be that MSCs do not express the necessary receptors for engraftment. Indeed, MSCs appear to use a similar mechanism to leukocytes to engraft into injured organs, relying on various receptors for rolling, firm adhesion, and transmigration. In this study, we conducted an extensive surface molecule screening of adult-derived human liver stem/progenitor cells (ADHLSC) in an attempt to shed some light on this subject. We observed that ADHLSCs lack expression of most of the costimulatory molecules tested. Furthermore, study of the adhesion molecule profile of ADHLSCs revealed that they do not express selectin ligands or LFA-1 which are, respectively, involved in the rolling process and the firm adhesion. In addition, ADHLSCs slightly express VLA-4 and lose expression of CXCR4 altogether on their surface during culture expansion. However, ADHLSCs express all the integrin couples and matrix metalloproteinases needed to bind and integrate the extracellular matrix once the endothelial barrier is crossed. Collectively, these results suggest that binding to the endothelium may be the critical weak point in the engraftment process. PMID:27956903

  11. Tumor Necrosis Factor Receptor Associated Factor 2 Signaling Provokes Adverse Cardiac Remodeling in the Adult Mammalian Heart

    PubMed Central

    Divakaran, Vijay G.; Evans, Sarah; Topkara, Veli K.; Diwan, Abhinav; Burchfield, Jana; Gao, Feng; Dong, Jianwen; Tzeng, Huei-Ping; Sivasubramanian, Natarajan; Barger, Philip M.; Mann, Douglas L.

    2013-01-01

    Background Tumor necrosis factor (TNF) superfamily ligands that provoke a dilated cardiac phenotype signal through a common scaffolding protein termed TNF receptor associated factor 2 (TRAF2); however, virtually nothing is known with regard to TRAF2 signaling in the adult mammalian heart. Methods and Results We generated multiple founder lines of mice with cardiac restricted overexpression of TRAF2 and characterized the phenotype of mice with higher expression levels of TRAF2 (MHC-TRAF2HC). MHC-TRAF2HC transgenic mice developed a time-dependent increase in cardiac hypertrophy, LV dilation and adverse LV remodeling, and a significant decrease in LV +dP/dt and −dP/dt when compared to littermate (LM) controls (p < 0.05 compared to LM). During the early phases of LV remodeling there was a significant increase in total matrix metalloproteinase (MMP) activity that corresponded with a decrease in total myocardial fibrillar collagen content. As the MHC-TRAF2HC mice aged, there was a significant decrease in total MMP activity accompanied by an increase in total fibrillar collagen content and an increase in myocardial tissue inhibitor of metalloproteinase-1 levels. There was a significant increase in NF-κB activation at 4 – 12 weeks and JNK activation at 4 weeks in the MHCs TRAF2HC mice. Transciptional profiling revealed that > 95% of the hypertrophic/dilated cardiomyopathy-related genes that were significantly upregulated genes in the MHC-TRAF2HC hearts contained κB elements in their promoters. Conclusions These results show for the first time that targeted overexpression of TRAF2 is sufficient to mediate adverse cardiac remodeling in the heart. PMID:23493088

  12. Cardiac surgery as a stressor and the response of the vulnerable older adult.

    PubMed

    Neupane, Iva; Arora, Rakesh C; Rudolph, James L

    2017-01-01

    In an aging population, recovery and restoration of function are critical to maintaining independence. Over the past 50years, there have been dramatic improvements made in cardiac surgery processes and outcomes that allow for procedures to be performed on an increasingly older population with the goal of improving function. Although improved function is possible, major surgical procedures are associated with substantial stress, which can severely impact outcomes. Past literature has identified that frail patients, who are vulnerable to the stress of surgery, are more likely to have postoperative major adverse cardiac and cerebrovascular events (OR 4.9, 95% confidence interval 1.6, 14.6). The objective of this manuscript is to examine preoperative frailty in biological, psychological, and social domains using cardiac surgery to induce stress. We systematically searched PubMed for keywords including "cardiac surgery, frailty, and aged" in addition to the biological, psychological, and social keywords. In the biological domain, we examine the association of physiological and physical vulnerabilities, as well as, the impact of comorbidities and inflammation on negative surgical outcomes. In the psychological domain, the impact of cognitive impairment, depression, and anxiety as vulnerabilities were examined. In the social domain, social structure, coping, disparities, and addiction as vulnerabilities are described. Importantly, there is substantial overlap in the domains of vulnerability. While frailty research has largely focused on discrete physical vulnerability criteria, a broader definition of frailty demonstrates that vulnerabilities in biological, psychological, and social domains can limit recovery after the stress of cardiac surgery. Identification of vulnerability in these domains can allow better understanding of the risks of cardiac surgery and tailoring of interventions to improve outcomes.

  13. Engraftment and Lineage Potential of Adult Hematopoietic Stem and Progenitor Cells Is Compromised Following Short-Term Culture in the Presence of an Aryl Hydrocarbon Receptor Antagonist

    PubMed Central

    Gu, Angel; Torres-Coronado, Monica; Tran, Chy-Anh; Vu, Hieu; Epps, Elizabeth W.; Chung, Janet; Gonzalez, Nancy; Blanchard, Suzette

    2014-01-01

    Abstract Hematopoietic stem cell gene therapy for HIV/AIDS is a promising alternative to lifelong antiretroviral therapy. One of the limitations of this approach is the number and quality of stem cells available for transplant following in vitro manipulations associated with stem cell isolation and genetic modification. The development of methods to increase the number of autologous, gene-modified stem cells available for transplantation would overcome this barrier. Hematopoietic stem and progenitor cells (HSPC) from adult growth factor-mobilized peripheral blood were cultured in the presence of an aryl hydrocarbon receptor antagonist (AhRA) previously shown to expand HSPC from umbilical cord blood. Qualitative and quantitative assessment of the hematopoietic potential of minimally cultured (MC-HSPC) or expanded HSPC (Exp-HSPC) was performed using an immunodeficient mouse model of transplantation. Our results demonstrate robust, multilineage engraftment of both MC-HSPC and Exp-HSPC although estimates of expansion based on stem cell phenotype were not supported by a corresponding increase in in vivo engrafting units. Bone marrow of animals transplanted with either MC-HSPC or Exp-HSPC contained secondary engrafting cells verifying the presence of primitive stem cells in both populations. However, the frequency of in vivo engrafting units among the more primitive CD34+/CD90+ HSPC population was significantly lower in Exp-HSPC compared with MC-HSPC. Exp-HSPC also produced fewer lymphoid progeny and more myeloid progeny than MC-HSPC. These results reveal that in vitro culture of adult HSPC in AhRA maintains but does not increase the number of in vivo engrafting cells and that HSPC expanded in vitro contain defects in lymphopoiesis as assessed in this model system. Further investigation is required before implementation of this approach in the clinical setting. PMID:25003230

  14. Dose-dependent effect of Bisphenol-A on insulin signaling molecules in cardiac muscle of adult male rat.

    PubMed

    Sivashanmugam, Preethi; Mullainadhan, Vigneswari; Karundevi, Balasubramanian

    2017-03-25

    Environmental contaminant, Bisphenol-A (BPA) is a xenoestrogen, an essential component used for the production of two classes of polymers such as polycarbonate and epoxy resin which disrupts the normal endocrine function. BPA has intense effects on mice endocrine pancreas, an essential tissue involved in glucose metabolism. It disrupts pancreatic β-cell insulin content, induces hyperinsulinemia and insulin resistance in male rats. Cardiac muscle is an insulin responsive organ and insulin has direct effects on glucose transport. The present study was designed to assess the effect of BPA on insulin signaling molecules in the cardiac muscle of adult male Wistar rat. Adult male Wistar rats (200-250 g) were selected and divided into following groups: Group 1: Control (vehicle treated), Group 2: Rats treated with 10 mg BPA/kg b.wt./day for 30 days orally, Group 3: Rats treated with 100 mg BPA/kg b.wt./day for 30 days orally, Group 4: Rats treated with 400 mg BPA/kg b.wt./day for 30 days orally. IR (insulin receptor) and pIR(Tyr1162) proteins were significantly decreased in the high dose group (400 mg). There was no change in IRS1 (insulin receptor substrate-1) and Akt proteins. Whereas, a decrease in pIRS1(Tyr632) (100 mg and 400 mg), pAkt (Ser473) (400 mg) and GLUT4 (glucose transporter 4) (cytosolic and plasma membrane) proteins was observed which may affect the cardiovascular function. It is concluded that BPA exposure has adverse effect on cardiac insulin signal transduction which may affect its function.

  15. Regionally distinct responses of microglia and glial progenitor cells to whole brain irradiation in adult and aging rats.

    PubMed

    Hua, Kun; Schindler, Matthew K; McQuail, Joseph A; Forbes, M Elizabeth; Riddle, David R

    2012-01-01

    Radiation therapy has proven efficacy for treating brain tumors and metastases. Higher doses and larger treatment fields increase the probability of eliminating neoplasms and preventing reoccurrence, but dose and field are limited by damage to normal tissues. Normal tissue injury is greatest during development and in populations of proliferating cells but also occurs in adults and older individuals and in non-proliferative cell populations. To better understand radiation-induced normal tissue injury and how it may be affected by aging, we exposed young adult, middle-aged, and old rats to 10 Gy of whole brain irradiation and assessed in gray- and white matter the responses of microglia, the primary cellular mediators of radiation-induced neuroinflammation, and oligodendrocyte precursor cells, the largest population of proliferating cells in the adult brain. We found that aging and/or irradiation caused only a few microglia to transition to the classically "activated" phenotype, e.g., enlarged cell body, few processes, and markers of phagocytosis, that is seen following more damaging neural insults. Microglial changes in response to aging and irradiation were relatively modest and three markers of reactivity - morphology, proliferation, and expression of the lysosomal marker CD68- were regulated largely independently within individual cells. Proliferation of oligodendrocyte precursors did not appear to be altered during normal aging but increased following irradiation. The impacts of irradiation and aging on both microglia and oligodendrocyte precursors were heterogeneous between white- and gray matter and among regions of gray matter, indicating that there are regional regulators of the neural response to brain irradiation. By several measures, the CA3 region of the hippocampus appeared to be differentially sensitive to effects of aging and irradiation. The changes assessed here likely contribute to injury following inflammatory challenges like brain irradiation and

  16. [Cardiac arrest during anaesthesia in a young adult with occult cardiomyopathy].

    PubMed

    Fjølner, Jesper; Franzen, Niels; Sloth, Erik; Grøfte, Thorbjørn

    2012-05-07

    Severe heart failure is a significant risk factor in anaesthesia. We present a case of circulatory collapse and cardiac arrest during routine anaesthesia of a younger man, caused by occult dilated cardiomyopathy. We propose preoperative focus assessed transthoracic echocardiography as useful in detecting cardiopulmonary pathology.

  17. Lay Referral Patterns Involved in Cardiac Treatment Decision Making among Middle-Aged and Older Adults

    ERIC Educational Resources Information Center

    Schoenberg, Nancy E.; Amey, Cheryl H.; Stoller, Eleanor Palo; Muldoon, Susan B.

    2003-01-01

    Purpose: This study examined age and contextually related factors that are influential in lay referral patterns during cardiac treatment decision making. Design and Methods: A complementary design was used. The Myocardial Infarction (MI) Onset Study identified demographic correlates of who sought medical care for 1,388 MI (heart attack) survivors.…

  18. Return of Viable Cardiac Function After Sonographic Cardiac Standstill in Pediatric Cardiac Arrest.

    PubMed

    Steffen, Katherine; Thompson, W Reid; Pustavoitau, Aliaksei; Su, Erik

    2017-01-01

    Sonographic cardiac standstill during adult cardiac arrest is associated with failure to get return to spontaneous circulation. This report documents 3 children whose cardiac function returned after standstill with extracorporeal membranous oxygenation. Sonographic cardiac standstill may not predict cardiac death in children.

  19. Impairment of diastolic function in adult patients affected by osteogenesis imperfecta clinically asymptomatic for cardiac disease: casuality or causality?

    PubMed

    Migliaccio, Silvia; Barbaro, Giuseppe; Fornari, Rachele; Di Lorenzo, Gabriella; Celli, Mauro; Lubrano, Carla; Falcone, Stefania; Fabbrini, Elisa; Greco, Emanuela; Zambrano, Anna; Brama, Marina; Prossomariti, Giancarlo; Marzano, Sara; Marini, Mario; Conti, Francesco; D'Eufemia, Patrizia; Spera, Giovanni

    2009-01-09

    Osteogenesis imperfecta (OI) is a rare inherited connective disorder causing increased bone fragility and low bone mass. OI includes severe bone fragility, impaired dentinogenesis, with less common alterations in the joints, blood vessels, heart valves, skin. Interestingly, description of left ventricular rupture, aortic dissection and heart valves incompetence has been previously described. Death may occur in OI patients for cardiac disease in asyntomatic subjects. Aim of our study has been to evaluate the presence of potential subclinical cardiac disorders and to characterize cardiac functional parameters by echocardiography in adults with OI in absence of cardiac symptoms. Forty patients (21 females and 19 males) affected by type I, III, IV OI and 40 control subjects (20 females and 20 males) were evaluated in the study. Patients and controls underwent clinical examination, screening for endocrine and metabolic disorders, 12-lead electrocardiogram and echocardiogram. In particular, all subjects were evaluated by two-dimensional echocardiography with continuous- and pulse-wave Doppler. Patients and controls belonged to NYHA class I and no significant electrocardiographic alteration was documented in both groups. Thirty-eight patients (95%) showed valvular regurgitation compared to one control subject (2.5%; P<0.001). As regards the diastolic function parameters, in OI patients E wave velocity was reduced by 23% (95% CI: 9% to 29%; P<0.001), E/A ratio was reduced by 17% (95% CI: 15% to 26%; P<0.001) while isovolumetric relaxation time (IRT) was increased by 47% (95% CI: 26% to 53%; P<0.001) and E wave deceleration time (DT) was increased by 18% (95% CI: 13% to 26%; P<0.001) compared to controls. In conclusion, our data indicate that adult patients affected by OI have an altered diastolic function in absence of other metabolic alterations. These diastolic echocardiographic parameters might worsen over time, especially if other cardiovascular risk factors (e

  20. Reduced Long-Term Relative Survival in Females and Younger Adults Undergoing Cardiac Surgery: A Prospective Cohort Study

    PubMed Central

    Enger, Tone Bull; Pleym, Hilde; Stenseth, Roar; Greiff, Guri; Wahba, Alexander; Videm, Vibeke

    2016-01-01

    Objectives To assess long-term survival and mortality in adult cardiac surgery patients. Methods 8,564 consecutive patients undergoing cardiac surgery in Trondheim, Norway from 2000 until censoring 31.12.2014 were prospectively followed. Observed long-term mortality following surgery was compared to the expected mortality in the Norwegian population, matched on gender, age and calendar year. This enabled assessment of relative survival (observed/expected survival rates) and relative mortality (observed/expected deaths). Long-term mortality was compared across gender, age and surgical procedure. Predictors of reduced survival were assessed with multivariate analyses of observed and relative mortality. Results During follow-up (median 6.4 years), 2,044 patients (23.9%) died. The observed 30-day, 1-, 3- and 5-year mortality rates were 2.2%, 4.4%, 8.2% and 13.8%, respectively, and remained constant throughout the study period. Comparing observed mortality to that expected in a matched sample from the general population, patients undergoing cardiac surgery showed excellent survival throughout the first seven years of follow-up (relative survival ≥ 1). Subsequently, survival decreased, which was more pronounced in females and patients undergoing other procedures than isolated coronary artery bypass grafting (CABG). Relative mortality was higher in younger age groups, females and patients undergoing aortic valve replacement (AVR). The female survival advantage in the general population was obliterated (relative mortality ratio (RMR) 1.35 (1.19–1.54), p<0.001). Increasing observed long-term mortality seen with ageing was due to population risk, and younger age was independently associated with increased relative mortality (RMR per 5 years 0.81 (0.79–0.84), p<0.001)). Conclusions Cardiac surgery patients showed comparable survival to that expected in the general Norwegian population, underlining the benefits of cardiac surgery in appropriately selected patients. The

  1. Adult-Derived Human Liver Stem/Progenitor Cells Infused 3 Days Postsurgery Improve Liver Regeneration in a Mouse Model of Extended Hepatectomy.

    PubMed

    Herrero, Astrid; Prigent, Julie; Lombard, Catherine; Rosseels, Valérie; Daujat-Chavanieu, Martine; Breckpot, Karine; Najimi, Mustapha; Deblandre, Gisèle; Sokal, Etienne M

    2017-02-16

    There is growing evidence that cell therapy constitutes a promising strategy for liver regenerative medicine. In the setting of hepatic cancer treatments, cell therapy could prove a useful therapeutic approach for managing the acute liver failure that occurs following extended hepatectomy. In this study, we examined the influence of delivering adult-derived human liver stem/progenitor cells (ADHLSCs) at two different early time points in an immunodeficient mouse model (Rag2-/-IL2Rγ-/-) that had undergone a 70% hepatectomy procedure. The hepatic mesenchymal cells were intrasplenically infused either immediately after surgery (n = 26) or following a critical 3-day period (n = 26). We evaluated the cells' capacity to engraft at day 1 and day 7 following transplantation by means of human Alu qPCR quantification, along with histological assessment of human albumin and α-smooth muscle actin. In addition, cell proliferation (anti-mouse and human Ki-67 staining) and murine liver weight were measured in order to evaluate liver regeneration. At day 1 posttransplantation, the ratio of human to mouse cells was similar in both groups, whereas 1 week posttransplantation this ratio was significantly improved (p < 0.016) in mice receiving ADHLSC injection at day 3 posthepatectomy (1.7%), compared to those injected at the time of surgery (1%). On the basis of liver weight, mouse liver regeneration was more extensive 1 week posttransplantation in mice transplanted with ADHLSCs (+65.3%) compared to that of mice from the sham vehicle group (+42.7%). In conclusion, infusing ADHLSCs 3 days after extensive hepatectomy improves the cell engraftment and murine hepatic tissue regeneration, thereby confirming that ADHLSCs could be a promising cell source for liver cell therapy and hepatic tissue repair.

  2. Cardiac catheterization

    MedlinePlus

    Catheterization - cardiac; Heart catheterization; Angina - cardiac catheterization; CAD - cardiac catheterization; Coronary artery disease - cardiac catheterization; Heart valve - cardiac catheterization; Heart failure - ...

  3. OPLA scaffold, collagen I, and horse serum induce an higher degree of myogenic differentiation of adult rat cardiac stem cells.

    PubMed

    Di Felice, Valentina; Ardizzone, Nella Maria; De Luca, Angela; Marcianò, Vito; Marino Gammazza, Antonella; Macaluso, Filippo; Manente, Lucrezia; Cappello, Francesco; De Luca, Antonio; Zummo, Giovanni

    2009-12-01

    In the last few years, a major goal of cardiac research has been to drive stem cell differentiation to replace damaged myocardium. Several research groups have attempted to differentiate potential cardiac stem cells (CSCs) using bi- or three-dimensional systems supplemented with growth factors or molecules acting as differentiating substances. We hypothesize that these systems failed to induce a complete differentiation because they lacked an architectural space. In the present study, we isolated a pool of small proliferating and fibroblast-like cells from adult rat myocardium. The phenotype of these cells was assessed and the characterized cells were cultured in a collagen I/OPLA scaffold with horse serum to obtain fine myocardial differentiation. C-Kit(POS)/Sca-1(POS) CSCs fully differentiated in vitro when an environment more similar to the CSC niche was created. These experiments demonstrated an important model for the study of the biology of CSCs and the biochemical pathways that lead to myocardial differentiation. The results pave the way for a new surgical approach.

  4. Effects of crude oil on in situ cardiac function in young adult mahi-mahi (Coryphaena hippurus).

    PubMed

    Nelson, Derek; Heuer, Rachael M; Cox, Georgina K; Stieglitz, John D; Hoenig, Ronald; Mager, Edward M; Benetti, Daniel D; Grosell, Martin; Crossley, Dane A

    2016-11-01

    Exposure to polycyclic aromatic hydrocarbons (PAH) negatively impacts exercise performance in fish species but the physiological modifications that result in this phenotype are poorly understood. Prior studies have shown that embryonic and juvenile mahi-mahi (Coryphaeus hippurus) exposed to PAH exhibit morphological abnormalities, altered cardiac development and reduced swimming performance. It has been suggested that cardiovascular function inhibited by PAH exposure accounts for the compromised exercise performance in fish species. In this study we used in-situ techniques to measure hemodynamic responses of young adult mahi-mahi exposed to PAH for 24h. The data indicate that stroke volume was reduced 44% in mahi-mahi exposed to 9.6±2.7μgl(-1) geometric mean PAH (∑PAH) and resulted in a 39% reduction in cardiac output and a 52% reduction in stroke work. Maximal change in pressure over change in time was 28% lower in mahi-mahi exposed to this level of ∑PAH. Mean intraventricular pressures and heart rate were not significantly changed. This study suggests exposure to environmentally relevant PAH concentrations impairs aspects of cardiovascular function in mahi-mahi.

  5. Sublethal exposure to crude oil during embryonic development alters cardiac morphology and reduces aerobic capacity in adult fish

    PubMed Central

    Hicken, Corinne E.; Linbo, Tiffany L.; Baldwin, David H.; Willis, Maryjean L.; Myers, Mark S.; Holland, Larry; Larsen, Marie; Stekoll, Michael S.; Rice, Stanley D.; Collier, Tracy K.; Scholz, Nathaniel L.; Incardona, John P.

    2011-01-01

    Exposure to high concentrations of crude oil produces a lethal syndrome of heart failure in fish embryos. Mortality is caused by cardiotoxic polycyclic aromatic hydrocarbons (PAHs), ubiquitous components of petroleum. Here, we show that transient embryonic exposure to very low concentrations of oil causes toxicity that is sublethal, delayed, and not counteracted by the protective effects of cytochrome P450 induction. Nearly a year after embryonic oil exposure, adult zebrafish showed subtle changes in heart shape and a significant reduction in swimming performance, indicative of reduced cardiac output. These delayed physiological impacts on cardiovascular performance at later life stages provide a potential mechanism linking reduced individual survival to population-level ecosystem responses of fish species to chronic, low-level oil pollution. PMID:21482755

  6. Evaluation of the influence of pulmonary hypertension in ultra-fast-track anesthesia technique in adult patients undergoing cardiac surgery

    PubMed Central

    da Silva, Paulo Sérgio; Cartacho, Márcio Portugal Trindade; de Castro, Casimiro Cardoso; Salgado Filho, Marcello Fonseca; Brandão, Antônio Carlos Aguiar

    2015-01-01

    Objective To evaluate the influence of pulmonary hypertension in the ultra-fast-track anesthesia technique in adult cardiac surgery. Methods A retrospective study. They were included 40 patients divided into two groups: GI (without pulmonary hypertension) and GII (with pulmonary hypertension). Based on data obtained by transthoracic echocardiography. We considered as the absence of pulmonary hypertension: a pulmonary artery systolic pressure (sPAP) <36 mmHg, with tricuspid regurgitation velocity <2.8 m/s and no additional echocardiographic signs of PH, and PH as presence: a sPAP >40 mmHg associated with additional echocardiographic signs of PH. It was established as influence of pulmonary hypertension: the impossibility of extubation in the operating room, the increase in the time interval for extubation and reintubation the first 24 hours postoperatively. Univariate and multivariate analyzes were performed when necessary. Considered significant a P value <0.05. Results The GI was composed of 21 patients and GII for 19. All patients (100%) were extubated in the operating room in a medium time interval of 17.58±8.06 min with a median of 18 min in GII and 17 min in GI. PH did not increase the time interval for extubation (P=0.397). It required reintubation of 2 patients in GII (5% of the total), without statistically significant as compared to GI (P=0.488). Conclusion In this study, pulmonary hypertension did not influence on ultra-fast-track anesthesia in adult cardiac surgery. PMID:27163419

  7. Novel biomarkers for early diagnosis of acute kidney injury after cardiac surgery in adults

    PubMed Central

    Kališnik, Jurij Matija

    2016-01-01

    Acute kidney injury after cardiac surgery with cardiopulmonary bypass is a common and serious complication and it is associated with increased morbidity and mortality. Diagnosis of acute kidney injury is based on the serum creatinine levels which rise several hours to days after the initial injury. Thus, novel biomarkers that will enable faster diagnosis are needed in clinical practice. There are numerous urine and serum proteins that indicate kidney injury and are under extensive research. Despite promising basic research results and assembled data, which indicate superiority of some biomarkers to creatinine, we are still awaiting clinical application. PMID:27212976

  8. Anesthetic Management of the Adult Patient with Concomitant Cardiac and Pulmonary Disease.

    PubMed

    Radosevich, Misty A; Brown, Daniel R

    2016-12-01

    Several common diseases of the cardiac and pulmonary systems and the interactions of the two in disease and anesthetic management are discussed. Management of these disease processes in isolation is reviewed and how the management of one organ system impacts another is then explored. For example, in a patient with acute lung injury and right heart failure, lung-protective ventilation may directly conflict with strategies to minimize right heart afterload. Such challenging clinical scenarios require appreciation of each disease entity, their appropriate management, and the balance between competing priorities.

  9. Hand2 Function in Second Heart Field Progenitors is Essential for Cardiogenesis

    PubMed Central

    Tsuchihashi, Takatoshi; Maeda, Jun; Shin, Chong; Ivey, Kathryn N.; Black, Brian; Olson, Eric N.; Yamagishi, Hiroyuki; Srivastava, Deepak

    2011-01-01

    Cardiogenesis involves the contributions of multiple progenitor pools, including mesoderm-derived cardiac progenitors known as the first and second heart fields. Disruption of genetic pathways regulating individual subsets of cardiac progenitors likely underlies many forms of human cardiac malformations. Hand2 is a member of the basic helix loop helix (bHLH) family of transcription factors and is expressed in numerous cell lineages that contribute to the developing heart. However, the early embryonic lethality of Hand2-null mice has precluded lineage-specific study of its function in myocardial progenitors. Here, we generated and used a floxed allele of Hand2 to ablate its expression in specific cardiac cell populations at defined developmental points. We found that Hand2 expression within the mesoderm-derived second heart field progenitors was required for their survival and deletion in this domain recapitulated the complete Hand2-null phenotype. Loss of Hand2 at later stages of development and in restricted domains of the second heart field revealed a spectrum of cardiac anomalies resembling forms of human congenital heart disease. Molecular analyses of Hand2 mutant cells revealed several genes by which Hand2 may influence expansion of the cardiac progenitors. These findings demonstrate that Hand2 is essential for survival of second heart field progenitors and that the graded loss of Hand2 function in this cardiac progenitor pool can cause a spectrum of congenital heart malformation. PMID:21185281

  10. Human fetal brain-derived neural stem/progenitor cells grafted into the adult epileptic brain restrain seizures in rat models of temporal lobe epilepsy.

    PubMed

    Lee, Haejin; Yun, Seokhwan; Kim, Il-Sun; Lee, Il-Shin; Shin, Jeong Eun; Park, Soo Chul; Kim, Won-Joo; Park, Kook In

    2014-01-01

    Cell transplantation has been suggested as an alternative therapy for temporal lobe epilepsy (TLE) because this can suppress spontaneous recurrent seizures in animal models. To evaluate the therapeutic potential of human neural stem/progenitor cells (huNSPCs) for treating TLE, we transplanted huNSPCs, derived from an aborted fetal telencephalon at 13 weeks of gestation and expanded in culture as neurospheres over a long time period, into the epileptic hippocampus of fully kindled and pilocarpine-treated adult rats exhibiting TLE. In vitro, huNSPCs not only produced all three central nervous system neural cell types, but also differentiated into ganglionic eminences-derived γ-aminobutyric acid (GABA)-ergic interneurons and released GABA in response to the depolarization induced by a high K+ medium. NSPC grafting reduced behavioral seizure duration, afterdischarge duration on electroencephalograms, and seizure stage in the kindling model, as well as the frequency and the duration of spontaneous recurrent motor seizures in pilocarpine-induced animals. However, NSPC grafting neither improved spatial learning or memory function in pilocarpine-treated animals. Following transplantation, grafted cells showed extensive migration around the injection site, robust engraftment, and long-term survival, along with differentiation into β-tubulin III+ neurons (∼34%), APC-CC1+ oligodendrocytes (∼28%), and GFAP+ astrocytes (∼8%). Furthermore, among donor-derived cells, ∼24% produced GABA. Additionally, to explain the effect of seizure suppression after NSPC grafting, we examined the anticonvulsant glial cell-derived neurotrophic factor (GDNF) levels in host hippocampal astrocytes and mossy fiber sprouting into the supragranular layer of the dentate gyrus in the epileptic brain. Grafted cells restored the expression of GDNF in host astrocytes but did not reverse the mossy fiber sprouting, eliminating the latter as potential mechanism. These results suggest that human fetal

  11. Human Fetal Brain-Derived Neural Stem/Progenitor Cells Grafted into the Adult Epileptic Brain Restrain Seizures in Rat Models of Temporal Lobe Epilepsy

    PubMed Central

    Lee, Haejin; Yun, Seokhwan; Kim, Il-Sun; Lee, Il-Shin; Shin, Jeong Eun; Park, Soo Chul; Kim, Won-Joo; Park, Kook In

    2014-01-01

    Cell transplantation has been suggested as an alternative therapy for temporal lobe epilepsy (TLE) because this can suppress spontaneous recurrent seizures in animal models. To evaluate the therapeutic potential of human neural stem/progenitor cells (huNSPCs) for treating TLE, we transplanted huNSPCs, derived from an aborted fetal telencephalon at 13 weeks of gestation and expanded in culture as neurospheres over a long time period, into the epileptic hippocampus of fully kindled and pilocarpine-treated adult rats exhibiting TLE. In vitro, huNSPCs not only produced all three central nervous system neural cell types, but also differentiated into ganglionic eminences-derived γ-aminobutyric acid (GABA)-ergic interneurons and released GABA in response to the depolarization induced by a high K+ medium. NSPC grafting reduced behavioral seizure duration, afterdischarge duration on electroencephalograms, and seizure stage in the kindling model, as well as the frequency and the duration of spontaneous recurrent motor seizures in pilocarpine-induced animals. However, NSPC grafting neither improved spatial learning or memory function in pilocarpine-treated animals. Following transplantation, grafted cells showed extensive migration around the injection site, robust engraftment, and long-term survival, along with differentiation into β-tubulin III+ neurons (∼34%), APC-CC1+ oligodendrocytes (∼28%), and GFAP+ astrocytes (∼8%). Furthermore, among donor-derived cells, ∼24% produced GABA. Additionally, to explain the effect of seizure suppression after NSPC grafting, we examined the anticonvulsant glial cell-derived neurotrophic factor (GDNF) levels in host hippocampal astrocytes and mossy fiber sprouting into the supragranular layer of the dentate gyrus in the epileptic brain. Grafted cells restored the expression of GDNF in host astrocytes but did not reverse the mossy fiber sprouting, eliminating the latter as potential mechanism. These results suggest that human fetal

  12. Anatomic correction of ALCAPA in an adult presenting with sudden cardiac death

    PubMed Central

    Simry, Walid; Afifi, Ahmed; Hosny, Hatem; Elguindy, Ahmed; Yacoub, Magdi

    2015-01-01

    We report on a young adult with ALCAPA, who was successfully resuscitated after collapsing in ventricular fibrillation while playing football. This was followed by anatomical correction of the anomaly with a smooth recovery and return to his daily activities. The advantages of this approach are discussed in this brief report. PMID:26779521

  13. Functional liver tissue engineering by an adult mouse liver-derived neuro-glia antigen 2-expressing stem/progenitor population.

    PubMed

    Zhang, Hongyu; Siegel, Christopher T; Li, Jing; Lai, Jiejuan; Shuai, Ling; Lai, Xiangdong; Zhang, Yujun; Jiang, Yan; Bie, Ping; Bai, Lianhua

    2016-09-17

    Deaths due to end-stage liver diseases (ESLD) are increasingly registered annually in the world. Liver transplantation is the ultimate treatment for ESLD to date, which has been hampered by a critical shortage of organs. The potential of decellularized liver scaffolds (DLS) derived from solid organs as a three dimensional (3D) platform has been evolved as a promising approach in liver tissue engineering for translating functional liver organ replacements, but questions still exist regarding the optimal cell population for seeding in DLS and the preparation of the DLS themselves. The aim of our study was to utilize a sodium dodecyl sulfate (SDS) decellularization procedure in combination with a low concentration of trypsin (0.005%)-EDTA (0.002%) process to manufacture DLS from whole mouse livers and recellularized with hepatic stem/progenitors for use in liver tissue engineering and injured liver treatment. Results showed that the DLS generated with all the necessary microstructure and the extracellular components to support seeded hepatic stem/progenitor cell attachment, functional hepatic cell differentiation. Hepatic differentiation from stem/progenitor cells loaded by DLS was more efficient than that of the stem/progenitor cells in the 2D cell culture model. In summary, the method of DLS loaded by hepatic stem/progenitor cells provided by this study was effective in maintaining DLS extracellular matrix (ECM) to introduce seeded stem/progenitor cell differentiation, hepatic-like tissue formation and functional hepatic protein production in vitro that promoted functional recovery and survival in a mouse model of dimethylnitrosamine (DEN)-induced liver cirrhosis after auxiliary heterotopic liver transplantation.

  14. Incremental value of cardiac magnetic resonance for the evaluation of cardiac tumors in adults: experience of a high volume tertiary cardiology centre.

    PubMed

    Giusca, Sorin; Mereles, Derliz; Ochs, Andreas; Buss, Sebastian; André, Florian; Seitz, Sebastian; Riffel, Johannes; Fortner, Philipp; Andrulis, Mindaugas; Schönland, Stefan; Katus, Hugo A; Korosoglou, Grigorios

    2017-01-30

    To assess the value of cardiac magnetic resonance imaging (CMR) in evaluating cardiac tumours in a tertiary cardiology centre. Between 2004 and 2014, 125 patients (pts.) from a total of 17000 who received a CMR examination in our institution were referred with the suspicion of cardiac tumours. A dedicated protocol was used that included standard cine SSFP acquisitions as well as tissue characterization using T1 and T2 black-blood (T1 BB and T2 BB respectively) with and without fat suppression, perfusion of the structure and late gadolinium enhancement. Patients' files were retrospectively analysed and data related to clinical status, results from other examinations (echocardiography), therapeutic approach and histology results, when performed, were collected. In 65 pts., a diagnosis of cardiac tumour was reached. 45 Pts had a biopsy. The CMR examination was concordant with the histology results in 35 (76%) pts. superior to that showed by echocardiography, 26 (58%) pts., p = 0.03. Forty-two (65%) pts. had a benign tumour and 23 (35%) a malignant process. Myxoma was the most frequent benign tumour, 27 (65%) and cardiac metastases were the most frequent form of malignancies, 21 (91%), with B cell non-Hodgkin lymphoma being the most frequent one, 4 (19%). Benign tumours were mostly located in the left atrium, 27 (64%) versus 6 (26%), p = 0.007, whereas malignant tumours had a predilection for the right atrium und left ventricle [11 (48%) vs. 3 (7%), p = 0.001 and 8 (35%) vs. 3 (7%), p = 0.03]. All benign cardiac tumours were single and did not show signs of infiltration. Conversely, malignant cardiac tumours were larger (43 ± 35 vs. 24 ± 16, p = 0.007) with a significant proportion (65%) showing myocardial infiltration. Pts with malignant cardiac tumours had a higher proportion of LGE (82 vs. 60%, p = 0.05) and exhibited more frequently an isointense signal in T1 BB images (78 vs. 61%, p = 0.04). Both groups showed similar

  15. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair.

    PubMed

    Xin, Mei; Olson, Eric N; Bassel-Duby, Rhonda

    2013-08-01

    As the adult mammalian heart has limited potential for regeneration and repair, the loss of cardiomyocytes during injury and disease can result in heart failure and death. The cellular processes and regulatory mechanisms involved in heart growth and development can be exploited to repair the injured adult heart through 'reawakening' pathways that are active during embryogenesis. Heart function has been restored in rodents by reprogramming non-myocytes into cardiomyocytes, by expressing transcription factors (GATA4, HAND2, myocyte-specific enhancer factor 2C (MEF2C) and T-box 5 (TBX5)) and microRNAs (miR-1, miR-133, miR-208 and miR-499) that control cardiomyocyte identity. Stimulating cardiomyocyte dedifferentiation and proliferation by activating mitotic signalling pathways involved in embryonic heart growth represents a complementary approach for heart regeneration and repair. Recent advances in understanding the mechanistic basis of heart development offer exciting opportunities for effective therapies for heart failure.

  16. Primary Prevention of Sudden Cardiac Death in Adults with Transposition of the Great Arteries: A Review of Implantable Cardioverter-Defibrillator Placement

    PubMed Central

    Cedars, Ari M.

    2015-01-01

    Transposition of the great arteries encompasses a set of structural congenital cardiac lesions that has in common ventriculoarterial discordance. Primarily because of advances in medical and surgical care, an increasing number of children born with this anomaly are surviving into adulthood. Depending upon the subtype of lesion or the particular corrective surgery that the patient might have undergone, this group of adult congenital heart disease patients constitutes a relatively new population with unique medical sequelae. Among the more common and difficult to manage are cardiac arrhythmias and other sequelae that can lead to sudden cardiac death. To date, the question of whether implantable cardioverter-defibrillators should be placed in this cohort as a preventive measure to abort sudden death has largely gone unanswered. Therefore, we review the available literature surrounding this issue. PMID:26413012

  17. Harnessing the potential of adult cardiac stem cells: lessons from haematopoiesis, the embryo and the niche.

    PubMed

    Balmer, Gemma M; Riley, Paul R

    2012-10-01

    Across biomedicine, there is a major drive to develop stem cell (SC) treatments for debilitating diseases. Most effective treatments restore an embryonic phenotype to adult SCs. This has led to two emerging paradigms in SC biology: the application of developmental biology studies and the manipulation of the SC niche. Developmental studies can reveal how SCs are orchestrated to build organs, the understanding of which is important in order to instigate tissue repair in the adult. SC niche studies can reveal cues that maintain SC 'stemness' and how SCs may be released from the constraints of the niche to differentiate and repopulate a 'failing' organ. The haematopoietic system provides an exemplar whereby characterisation of the blood lineages during development and the bone marrow niche has resulted in therapeutics now routinely used in the clinic. Ischaemic heart disease is a major cause of morbidity and mortality in humans and the question remains as to whether these principles can be applied to the heart, in order to exploit the potential of adult SCs for use in cardiovascular repair and regeneration.

  18. The neonate versus adult mammalian immune system in cardiac repair and regeneration.

    PubMed

    Sattler, Susanne; Rosenthal, Nadia

    2016-07-01

    The immune system is a crucial player in tissue homeostasis and wound healing. A sophisticated cascade of events triggered upon injury ensures protection from infection and initiates and orchestrates healing. While the neonatal mammal can readily regenerate damaged tissues, adult regenerative capacity is limited to specific tissue types, and in organs such as the heart, adult wound healing results in fibrotic repair and loss of function. Growing evidence suggests that the immune system greatly influences the balance between regeneration and fibrotic repair. The neonate mammalian immune system has impaired pro-inflammatory function, is prone to T-helper type 2 responses and has an immature adaptive immune system skewed towards regulatory T cells. While these characteristics make infants susceptible to infection and prone to allergies, it may also provide an immunological environment permissive of regeneration. In this review we will give a comprehensive overview of the immune cells involved in healing and regeneration of the heart and explore differences between the adult and neonate immune system that may explain differences in regenerative ability. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  19. How I manage the adult potential organ donor: donation after cardiac death (part 2).

    PubMed

    Frontera, Jennifer A

    2010-02-01

    To address the gap between organs available for transplant and the number of patients on the transplant waiting list, the Joint Commission on the Accreditation of Healthcare Organizations, Institute of Medicine, United Network for Organ Sharing and the federal government have recommended the increased used of donation after cardiac death (DCD) (JCAHOnline http://www.jointcommission.org/Library/JCAHOnline/jo_06.06.htm ; UNOS, Highlights of the June Board Meeting, 2006). DCD is defined as organ donation once death is declared after irreversible cessation of circulatory and respiratory functions, as opposed to brain death (donation after neurological death). Though DCD is one of the fastest growing categories of organ donors, it comprises only 8% of all deceased donors (Steinbrook in N Engl J Med 357:209-213, 2007). Prior to 1968, when the Ad Hoc Committee of Harvard Medical School proposed a neurological definition of death based on brain-death criteria, organs from deceased donors came from patients who had suffered cardio-pulmonary demise (IOM, Non-heart-beating organ transplantation: practice and protocols, 2000). Early transplantation from DCD donors met with limited success and most transplant surgeons turned to brain-dead donors. Consequently, DCD fell out of vogue and, until recently, has not been the focus of transplant initiatives.

  20. Child-to-Adult Liver Transplantation With Donation After Cardiac Death Donors: Three Case Reports.

    PubMed

    Hu, Liangshuo; Liu, Xuemin; Zhang, Xiaogang; Yu, Liang; Sha, Huanchen; Zhou, Ying; Tian, Min; Shi, Jianhua; Wang, Wanli; Liu, Chang; Guo, Kun; Lv, Yi; Wang, Bo

    2016-02-01

    Development of organ transplantation is restricted by the discrepancy between the lack of donors and increasing number of patients. The outcome of pediatric donors transplanted into adult recipients especially with donation after circulatory death (DCD) pattern has not been well studied. The aim of this paper is to describe our experience of 3 successful DCD donor child-to-adult liver transplantations lately. Three DCD donors were separately 7, 5, and 8 years old. The ratio between donor graft weight and recipient body weight was 1.42%, 1.00%, and 1.33%, respectively. Ratio between the volume of donor liver and the expected liver volume was 0.65, 0.46, and 0.60. Splenectomy was undertaken for the second recipient according to the portal vein pressure (PVP) which was observed during the operation. Two out of 3 of the recipients suffered with acute kidney injury and got recovered after renal replacement therapy. The first recipient also went through early allograft dysfunction and upper gastrointestinal bleeding. The hospital course of the third recipient was uneventful. After 1 year of follow-up visit, the first and second recipients maintain good quality of life and liver function. The third patient was followed up for 5 months until now and recovered well. DCD child-to-adult liver transplantation should only be used for comparatively matched donor and recipient. PVP should be monitored during the operation. The short-term efficacy is good, but long-term follow-up and clinical study with large sample evaluation are still needed.

  1. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair

    PubMed Central

    Xin, Mei; Olson, Eric N.; Bassel-Duby, Rhonda

    2013-01-01

    As the adult mammalian heart has limited potential for regeneration and repair, the loss of cardiomyocytes during injury and disease can result in heart failure and death. The cellular processes and regulatory mechanisms involved in heart growth and development can be exploited to repair the injured adult heart through ‘reawakening’ pathways that are active during embryogenesis. Heart function has been restored in rodents by reprogramming non-myocytes into cardiomyocytes, by expressing transcription factors (GATA4, HAND2, myocyte-specific enhancer factor 2C (MEF2C) and T-box 5 (TBX5)) and microRNAs (miR-1, miR-133, miR-208 and miR-499) that control cardiomyocyte identity. Stimulating cardiomyocyte dedifferentiation and proliferation by activating mitotic signalling pathways involved in embryonic heart growth represents a complementary approach for heart regeneration and repair. Recent advances in understanding the mechanistic basis of heart development offer exciting opportunities for effective therapies for heart failure. PMID:23839576

  2. Effects of pressure- or volume-overload hypertrophy on passive stiffness in isolated adult cardiac muscle cells

    NASA Technical Reports Server (NTRS)

    Kato, S.; Koide, M.; Cooper, G. 4th; Zile, M. R.

    1996-01-01

    It has been hypothesized that the changes in myocardial stiffness induced by chronic hemodynamic overloading are dependent on changes in the passive stiffness of the cardiac muscle cell (cardiocyte). However, no previous studies have examined the passive constitutive properties of cardiocytes isolated from animals with myocardial hypertrophy. Accordingly, changes in relative passive stiffness of cardiocytes isolated from animals with chronic pressure- or volume-overload hypertrophy were determined by examining the effects of anisosmotic stress on cardiocyte size. Anisosmotic stress was produced by altering superfusate osmolarity. Hypertrophied cardiocytes were enzymatically isolated from 16 adult cats with right ventricular (RV) pressure-overload hypertrophy induced by pulmonary artery banding (PAB) and from 6 adult cats with RV volume-overload hypertrophy induced by creating an atrial septal defect (ASD). Left ventricular (LV) cardiocytes from each cat served as nonhypertrophied, normally loaded, same-animal controls. Superfusate osmolarity was decreased from 305 +/- 3 to 135 +/- 5 mosM and increased to 645 +/- 4 mosM. During anisosmotic stress, there were no significant differences between hypertrophied RV and normal LV cardiocytes in pressure overload PAB cats with respect to percent change in cardiocyte area (47 +/- 2% in RV vs. 48 +/- 2% in LV), diameter (46 +/- 3% in RV vs. 48 +/- 2% in LV), or length (2.4 +/- 0.2% in RV vs. 2.0 +/- 0.3% in LV), or sarcomere length (1.5 +/- 0.1% in RV vs. 1.3 +/- 0.3% in LV). Likewise, there were no significant differences in cardiocyte strain between hypertrophied RV and normal LV cardiocytes from ASD cats. In conclusion, chronic pressure-overload hypertrophy and chronic volume-overload hypertrophy did not alter the cardiocyte response to anisosmotic stress. Thus chronic overload hypertrophy did not alter relative passive cardiocyte stiffness.

  3. The influence of patient size on dose conversion coefficients: a hybrid phantom study for adult cardiac catheterization

    NASA Astrophysics Data System (ADS)

    Johnson, Perry; Lee, Choonsik; Johnson, Kevin; Siragusa, Daniel; Bolch, Wesley E.

    2009-06-01

    In this study, the influence of patient size on organ and effective dose conversion coefficients (DCCs) was investigated for a representative interventional fluoroscopic procedure—cardiac catheterization. The study was performed using hybrid phantoms representing an underweight, average and overweight American adult male. Reference body sizes were determined using the NHANES III database and parameterized based on standing height and total body mass. Organ and effective dose conversion coefficients were calculated for anterior-posterior, posterior-anterior, left anterior oblique and right anterior oblique projections using the Monte Carlo code MCNPX 2.5.0 with the metric dose area product being used as the normalization factor. Results show body size to have a clear influence on DCCs which increased noticeably when body size decreased. It was also shown that if patient size is neglected when choosing a DCC, the organ and effective dose will be underestimated to an underweight patient and will be overestimated to an underweight patient, with errors as large as 113% for certain projections. Results were further compared with those published for a KTMAN-2 Korean patient-specific tomographic phantom. The published DCCs aligned best with the hybrid phantom which most closely matched in overall body size. These results highlighted the need for and the advantages of phantom-patient matching, and it is recommended that hybrid phantoms be used to create a more diverse library of patient-dependent anthropomorphic phantoms for medical dose reconstruction.

  4. Small Fractions of Muscular Dystrophy Embryonic Stem Cells Yield Severe Cardiac and Skeletal Muscle Defects in Adult Mouse Chimeras.

    PubMed

    Gonzalez, J Patrick; Kyrychenko, Sergii; Kyrychenko, Viktoriia; Schneider, Joel S; Granier, Celine J; Himelman, Eric; Lahey, Kevin C; Zhao, Qingshi; Yehia, Ghassan; Tao, Yuan-Xiang; Bhaumik, Mantu; Shirokova, Natalia; Fraidenraich, Diego

    2017-03-01

    Duchenne muscular dystrophy (DMD) is characterized by the loss of the protein dystrophin, leading to muscle fragility, progressive weakening, and susceptibility to mechanical stress. Although dystrophin-negative mdx mouse models have classically been used to study DMD, phenotypes appear mild compared to patients. As a result, characterization of muscle pathology, especially in the heart, has proven difficult. We report that injection of mdx embryonic stem cells (ESCs) into Wild Type blastocysts produces adult mouse chimeras with severe DMD phenotypes in the heart and skeletal muscle. Inflammation, regeneration and fibrosis are observed at the whole organ level, both in dystrophin-negative and dystrophin-positive portions of the chimeric tissues. Skeletal and cardiac muscle function are also decreased to mdx levels. In contrast to mdx heterozygous carriers, which show no significant phenotypes, these effects are even observed in chimeras with low levels of mdx ESC incorporation (10%-30%). Chimeric mice lack typical compensatory utrophin upregulation, and show pathological remodeling of Connexin-43. In addition, dystrophin-negative and dystrophin-positive isolated cardiomyocytes show augmented calcium response to mechanical stress, similar to mdx cells. These global effects highlight a novel role of mdx ESCs in triggering muscular dystrophy even when only low amounts are present. Stem Cells 2017;35:597-610.

  5. The interface between glial progenitors and gliomas

    PubMed Central

    Canoll, Peter

    2009-01-01

    The mammalian brain and spinal cord contain heterogeneous populations of cycling, immature cells. These include cells with stem cell-like properties as well as progenitors in various stages of early glial differentiation. This latter population is distributed widely throughout gray and white matter and numerically represents an extremely large cell pool. In this review, we discuss the possibility that the glial progenitors that populate the adult CNS are one source of gliomas. Indeed, the marker phenotypes, morphologies, and migratory properties of cells in gliomas strongly resemble glial progenitors in many ways. We review briefly some salient features of normal glial development and then examine the similarities and differences between normal progenitors and cells in gliomas, focusing on the phenotypic plasticity of glial progenitors and the responses to growth factors in promoting proliferation and migration of normal and glioma cells, and discussing known mutational changes in gliomas in the context of how these might affect the proliferative and migratory behaviors of progenitors. Finally, we will discuss the “cancer stem cell” hypothesis in light of the possibility that glial progenitors can generate gliomas. PMID:18784926

  6. Role of Cardiac Stem Cells in Cardiac Pathophysiology: A Paradigm Shift in Human Myocardial Biology

    PubMed Central

    Leri, Annarosa; Kajstura, Jan; Anversa, Piero

    2012-01-01

    For nearly a century, the human heart has been viewed as a terminally differentiated post-mitotic organ in which the number of cardiomyocytes is established at birth and these cells persist throughout the lifespan of the organ and organism. However, the discovery that cardiac stem cells (CSCs) live in the heart and differentiate into the various cardiac cell lineages has changed profoundly our understanding of myocardial biology. CSCs regulate myocyte turnover and condition myocardial recovery following injury. This novel information imposes a reconsideration of the mechanisms involved in myocardial aging and the progression of cardiac hypertrophy to heart failure. Similarly, the processes implicated in the adaptation of the infarcted heart have to be dissected in terms of the critical role that CSCs and myocyte regeneration play in the restoration of myocardial mass and ventricular function. Several categories of cardiac progenitors have been described but, thus far, the c-kit-positive cell is the only class of resident cells with the biological and functional properties of tissue specific adult stem cells. PMID:21960726

  7. Gene Expression Profiling Supports the Neural Crest Origin of Adult Rodent Carotid Body Stem Cells and Identifies CD10 as a Marker for Mesectoderm-Committed Progenitors.

    PubMed

    Navarro-Guerrero, Elena; Platero-Luengo, Aida; Linares-Clemente, Pedro; Cases, Ildefonso; López-Barneo, José; Pardal, Ricardo

    2016-06-01

    Neural stem cells (NSCs) are promising tools for understanding nervous system plasticity and repair, but their use is hampered by the lack of markers suitable for their prospective isolation and characterization. The carotid body (CB) contains a population of peripheral NSCs, which support organ growth during acclimatization to hypoxia. We have set up CB neurosphere (NS) cultures enriched in differentiated neuronal (glomus) cells versus undifferentiated progenitors to investigate molecular hallmarks of cell classes within the CB stem cell (CBSC) niche. Microarray gene expression analysis in NS is compatible with CBSCs being neural crest derived-multipotent progenitor cells able to sustain CB growth upon exposure to hypoxia. Moreover, we have identified CD10 as a marker suitable for isolation of a population of CB mesectoderm-committed progenitor cells. CD10 + cells are resting in normoxia, and during hypoxia they are activated to proliferate and to eventually complete maturation into mesectodermal cells, thus participating in the angiogenesis necessary for CB growth. Our results shed light into the molecular and cellular mechanisms involved in CBSC fate choice, favoring a potential use of these cells for cell therapy. Stem Cells 2016;34:1637-1650.

  8. Linking an Anxiety-Related Personality Trait to Cardiac Autonomic Regulation in Well-Defined Healthy Adults: Harm Avoidance and Resting Heart Rate Variability

    PubMed Central

    Kao, Lien-Cheng; Liu, Yu-Wen; Tzeng, Nian-Sheng; Kuo, Terry B. J.; Huang, San-Yuan

    2016-01-01

    Objective Anxiety trait, anxiety and depression states have all been reported to increase risks for cardiovascular disease (CVD), possibly through altering cardiac autonomic regulation. Our aim was to investigate whether the relationship between harm avoidance (HA, an anxiety-related personality trait) and cardiac autonomic regulation is independent of anxiety and depression states in healthy adults. Methods We recruited 535 physically and mentally healthy volunteers. Participants completed the Beck Anxiety Inventory (BAI), Beck Depression Inventory (BDI) and Tri-dimensional Personality Questionnaire. Participants were divided into high or low HA groups as discriminated by the quartile value. Cardiac autonomic function was evaluated by measuring heart rate variability (HRV). We obtained the time and frequency-domain indices of HRV including variance (total HRV), the low-frequency power (LF; 0.05–0.15 Hz), which may reflect baroreflex function, the high-frequency power (HF; 0.15–0.40 Hz), which reflects cardiac parasympathetic activity, as well as the LF/HF ratio. Results The BDI and HA scores showed associations with HRV parameters. After adjustment for the BDI scores and other control variables, HA is still associated with reduced variance, LF and HF power. Compared with the participants with low HA, those with high HA displayed significant reductions in variance, LF and HF power and a significant increase in their LF/HF ratio. Conclusion This study highlights the independent role of HA in contributing to decreased autonomic cardiac regulation in healthy adults and provides a potential underlying mechanism for anxiety trait to confer increased risk for CVD. PMID:27482240

  9. Comparative study of the effect of verapamil and vitamin D on iron overload-induced oxidative stress and cardiac structural changes in adult male rats.

    PubMed

    Abd Allah, Eman S H; Ahmed, Marwa A; Abdel Mola, Asmaa Fathi

    2014-11-01

    The present study was designed to compare the effect of verapamil and vitamin D on the expression of the voltage-dependent LTCC alpha 1c subunit (Cav1.2) and thereby on iron overload-induced cardiac dysfunction in adult male rat. Forty rats were randomly divided into four groups. Control group received the vehicle, iron overload group received ferrous sulfate intraperitoneally (IP) for 4 weeks, iron overload+verapamil received ferrous sulfate and verapamil IP concurrently for 4 weeks and iron overload+vitamin D group received ferrous sulfate IP and vitamin D3 orally concurrently for 4 weeks. Serum ferritin, total antioxidant capacity (TAC), total peroxide (TP) and cardiac iron and calcium were determined. Oxidative stress index (OSI) was calculated. Histopathological studies using H&E, Masson trichrome and Prussian blue stains and immunohistochemical studies using Cav1.2 antibody were also carried out. Administration of ferrous sulfate induced a significant increase in serum ferritin, OSI, cardiac iron and calcium contents. Moreover, cardiomyocytes were degenerated and the expression of Cav1.2 protein was increased in iron overload group as compared to control. Verapamil decreased ferrous sulfate-induced increase in serum ferritin, OSI and cardiac iron deposition. In addition, verapamil improved myocardial degeneration and decreased the expression of Cav1.2 protein. In contrast, vitamin D produced insignificant changes in ferrous sulfate-induced increase in cardiac iron content, myocardial degeneration and the expression of Cav1.2 protein. These results indicate that verapamil has a protective effect against iron overload-induced cardiac dysfunction, oxidative stress and structural changes, while vitamin D has an insignificant effect on these parameters.

  10. Cardiac and metabolic effects of chronic growth hormone and insulin-like growth factor I excess in young adults with pituitary gigantism.

    PubMed

    Bondanelli, Marta; Bonadonna, Stefania; Ambrosio, Maria Rosaria; Doga, Mauro; Gola, Monica; Onofri, Alessandro; Zatelli, Maria Chiara; Giustina, Andrea; degli Uberti, Ettore C

    2005-09-01

    Chronic growth hormone (GH)/insulin-like growth factor I (IGF-I) excess is associated with considerable mortality in acromegaly, but no data are available in pituitary gigantism. The aim of the study was to evaluate the long-term effects of early exposure to GH and IGF-I excess on cardiovascular and metabolic parameters in adult patients with pituitary gigantism. Six adult male patients with newly diagnosed gigantism due to GH secreting pituitary adenoma were studied and compared with 6 age- and sex-matched patients with acromegaly and 10 healthy subjects. Morphologic and functional cardiac parameters were evaluated by Doppler echocardiography. Glucose metabolism was assessed by evaluating glucose tolerance and homeostasis model assessment index. Disease duration was significantly longer (P<.05) in patients with gigantism than in patients with acromegaly, whereas GH and IGF-I concentrations were comparable. Left ventricular mass was increased both in patients with gigantism and in patients with acromegaly, as compared with controls. Left ventricular hypertrophy was detected in 2 of 6 of both patients with gigantism and patients with acromegaly, and isolated intraventricular septum thickening in 1 patient with gigantism. Inadequate diastolic filling (ratio between early and late transmitral flow velocity<1) was detected in 2 of 6 patients with gigantism and 1 of 6 patients with acromegaly. Impaired glucose metabolism occurrence was higher in patients with acromegaly (66%) compared with patients with gigantism (16%). Concentrations of IGF-I were significantly (P<.05) higher in patients with gigantism who have cardiac abnormalities than in those without cardiac abnormalities. In conclusion, our data suggest that GH/IGF-I excess in young adult patients is associated with morphologic and functional cardiac abnormalities that are similar in patients with gigantism and in patients with acromegaly, whereas occurrence of impaired glucose metabolism appears to be higher in

  11. Chemical genetics and its potential in cardiac stem cell therapy.

    PubMed

    Vieira, Joaquim M; Riley, Paul R

    2013-05-01

    Over the last decade or so, intensive research in cardiac stem cell biology has led to significant discoveries towards a potential therapy for cardiovascular disease; the main cause of morbidity and mortality in humans. The major goal within the field of cardiovascular regenerative medicine is to replace lost or damaged cardiac muscle and coronaries following ischaemic disease. At present, de novo cardiomyocytes can be generated either in vitro, for cell transplantation or disease modelling using directed differentiation of embryonic stem cells or induced pluripotent stem cells, or in vivo via direct reprogramming of resident adult cardiac fibroblast or ectopic stimulation of resident cardiac stem or progenitor cells. A major bottleneck with all of these approaches is the low efficiency of cardiomyocyte differentiation alongside their relative functional immaturity. Chemical genetics, and the application of phenotypic screening with small molecule libraries, represent a means to enhance understanding of the molecular pathways controlling cardiovascular cell differentiation and, moreover, offer the potential for discovery of new drugs to invoke heart repair and regeneration. Here, we review the potential of chemical genetics in cardiac stem cell therapy, highlighting not only the major contributions to the field so far, but also the future challenges.

  12. Plasma IL-6 and IL-10 Concentrations Predict AKI and Long-Term Mortality in Adults after Cardiac Surgery

    PubMed Central

    Zhang, William R.; Garg, Amit X.; Coca, Steven G.; Devereaux, Philip J.; Eikelboom, John; Kavsak, Peter; McArthur, Eric; Thiessen-Philbrook, Heather; Shortt, Colleen; Shlipak, Michael; Whitlock, Richard

    2015-01-01

    Inflammation has an integral role in the pathophysiology of AKI. We investigated the associations of two biomarkers of inflammation, plasma IL-6 and IL-10, with AKI and mortality in adults undergoing cardiac surgery. Patients were enrolled at six academic centers (n=960). AKI was defined as a ≥50% or ≥0.3-mg/dl increase in serum creatinine from baseline. Pre- and postoperative IL-6 and IL-10 concentrations were categorized into tertiles and evaluated for associations with outcomes of in-hospital AKI or postdischarge all-cause mortality at a median of 3 years after surgery. Preoperative concentrations of IL-6 and IL-10 were not significantly associated with AKI or mortality. Elevated first postoperative IL-6 concentration was significantly associated with higher risk of AKI, and the risk increased in a dose-dependent manner (second tertile adjusted odds ratio [OR], 1.61 [95% confidence interval (95% CI), 1.10 to 2.36]; third tertile adjusted OR, 2.13 [95% CI, 1.45 to 3.13]). First postoperative IL-6 concentration was not associated with risk of mortality; however, the second tertile of peak IL-6 concentration was significantly associated with lower risk of mortality (adjusted hazard ratio, 0.75 [95% CI, 0.57 to 0.99]). Elevated first postoperative IL-10 concentration was significantly associated with higher risk of AKI (adjusted OR, 1.57 [95% CI, 1.04 to 2.38]) and lower risk of mortality (adjusted HR, 0.72 [95% CI, 0.56 to 0.93]). There was a significant interaction between the concentration of neutrophil gelatinase-associated lipocalin, an established AKI biomarker, and the association of IL-10 concentration with mortality (P=0.01). These findings suggest plasma IL-6 and IL-10 may serve as biomarkers for perioperative outcomes. PMID:25855775

  13. Preoperative evaluation of the adult patient undergoing non-cardiac surgery: guidelines from the European Society of Anaesthesiology.

    PubMed

    De Hert, Stefan; Imberger, Georgina; Carlisle, John; Diemunsch, Pierre; Fritsch, Gerhard; Moppett, Iain; Solca, Maurizio; Staender, Sven; Wappler, Frank; Smith, Andrew

    2011-10-01

    The purpose of these guidelines on the preoperative evaluation of the adult non-cardiac surgery patient is to present recommendations based on available relevant clinical evidence. The ultimate aims of preoperative evaluation are two-fold. First, we aim to identify those patients for whom the perioperative period may constitute an increased risk of morbidity and mortality, aside from the risks associated with the underlying disease. Second, this should help us to design perioperative strategies that aim to reduce additional perioperative risks. Very few well performed randomised studies on the topic are available and many recommendations rely heavily on expert opinion and are adapted specifically to the healthcare systems in individual countries. This report aims to provide an overview of current knowledge on the subject with an assessment of the quality of the evidence in order to allow anaesthetists all over Europe to integrate - wherever possible - this knowledge into daily patient care. The Guidelines Committee of the European Society of Anaesthesiology (ESA) formed a task force with members of subcommittees of scientific subcommittees and individual members of the ESA. Electronic databases were searched from the year 2000 until July 2010 without language restrictions. These searches produced 15 425 abstracts. Relevant systematic reviews with meta-analyses, randomised controlled trials, cohort studies, case-control studies and cross-sectional surveys were selected. The Scottish Intercollegiate Guidelines Network grading system was used to assess the level of evidence and to grade recommendations. The final draft guideline was posted on the ESA website for 4 weeks and the link was sent to all ESA members, individual or national (thus including most European national anaesthesia societies). Comments were collated and the guidelines amended as appropriate. When the final draft was complete, the Guidelines Committee and ESA Board ratified the guidelines.

  14. Comparison of del Nido cardioplegia and St. Thomas Hospital solution – two types of cardioplegia in adult cardiac surgery

    PubMed Central

    Mishra, Prashant; Jadhav, Ranjit B.; Khandekar, Jayant; Raut, Chaitanya; Ammannaya, Ganesh Kumar; Seth, Harsh S.; Singh, Jaskaran; Shah, Vaibhav

    2016-01-01

    Introduction St. Thomas’ cardioplegic solution No. 2 (ST), although most widely used in adult cardiac surgery, needs to be given at short intervals, causing additional myocardial injury. Aim To determine whether del Nido (DN) cardioplegia, with longer periods of arrest, provides equivalent myocardial protection as compared to ST. Material and methods The study population comprised 100 patients who underwent elective coronary artery bypass grafting (CABG) or double valve replacement (DVR) surgery between January 2015 and January 2016. The patients were divided into two groups based on the type of cardioplegia administered during surgery: 1) intermittent ST (ST, n = 50) and 2) DN cardioplegia (DN, n = 50). We compared the aortic cross clamp (CC) and cardiopulmonary bypass (CPB) times, number of intra-operative DC shocks required, and postoperative changes in left ventricular ejection fraction (LVEF) in the two groups. Results The aortic cross clamp and bypass times were shorter with DN (110.15 ±36.84 vs. 133.56 ±35.66 and 158.60 ±39.92 vs. 179.81 ±42.36 min respectively, p < 0.05). Fewer cardioplegia doses were required in the DN group vs. the ST group (1.38 ±0.59 vs. 4.15 ±1.26; p = 0.001), while a single cardioplegia dose was given to 35 DN patients (70%) vs. 0 ST patients (p < 0.001). Postoperative LVEF was better preserved in the DN group. Conclusions The use of DN leads to shorter cross clamp and CPB times, reduces cardioplegia dosage, and provides potentially better myocardial protection in terms of LVEF preservation, with a safety profile comparable to ST cardioplegia. PMID:28096823

  15. Outcomes of Adult In-Hospital Cardiac Arrest Treated with Targeted Temperature Management: A Retrospective Cohort Study

    PubMed Central

    Chang, Wei-Tien; Tsai, Min-Shan; Yu, Ping-Hsun; Wu, Yen-Wen; Chen, Wen-Jone

    2016-01-01

    Aim Targeted temperature management (TTM) for in-hospital cardiac arrest (IHCA) is given different recommendation levels within international resuscitation guidelines. We aimed to identify whether TTM would be associated with favourable outcomes following IHCA and to determine which factors would influence the decision to implement TTM. Methods We conducted a retrospective observational study in a single medical centre. We included adult patients suffering IHCA between 2006 and 2014. We used multivariable logistic regression analysis to evaluate associations between independent variables and outcomes. Results We included a total of 678 patients in our analysis; only 22 (3.2%) patients received TTM. Most (81.1%) patients met at least one exclusion criteria for TTM. In all, 144 (21.2%) patients survived to hospital discharge; among them, 60 (8.8%) patients displayed favourable neurological status at discharge. TTM use was significantly associated with favourable neurological outcome (OR: 3.74, 95% confidence interval [CI]: 1.19–11.00; p-value = 0.02), but it was not associated with survival (OR: 1.41, 95% CI: 0.54–3.66; p-value = 0.48). Arrest in the emergency department was positively associated with TTM use (OR: 22.48, 95% CI: 8.40–67.64; p value < 0.001) and having vasopressors in place at the time of arrest was inversely associated with TTM use (OR: 0.08, 95% CI: 0.004–0.42; p-value = 0.02). Conclusion TTM might be associated with favourable neurological outcome of IHCA patients, irrespective of arrest rhythms. The prevalence of proposed exclusion criteria for TTM was high among IHCA patients, but these factors did not influence the use of TTM in clinical practice or neurological outcomes after IHCA. PMID:27820847

  16. MONTE CARLO STUDY OF THE CARDIAC ABSORBED DOSE DURING X-RAY EXAMINATION OF AN ADULT PATIENT.

    PubMed

    Kadri, O; Manai, K; Alfuraih, A

    2016-12-01

    The computational voxel phantom 'High-Definition Reference Korean-Man (HDRK-Man)' was implemented into the Monte Carlo transport toolkit Geant4. The voxel model, adjusted to the Reference Korean Man, is 171 cm in height and 68 kg in weight and composed of ∼30 million voxels whose size is 1.981 × 1.981 × 2.0854 mm(3) The Geant4 code is then utilised to compute the dose conversion coefficients (DCCs) expressed in absorbed dose per air kerma free in air for >30 tissues and organs, including almost all organs required in the new recommendation of the ICRP 103, due to a broad parallel beam of monoenergetic photons impinging in antero-postero direction with energy ranging from 10 to 150 keV. The computed DCCs of different organs are found to be in good agreement with data published using other simulation codes. Also, the influence of patient size on DCC values was investigated for a representative body size of the adult Korean patient population. The study was performed using five different sizes covering the range of 0.8-1.2 magnification order of the original HDRK-Man. It focussed on the computation of DCC for the human heart. Moreover, the provided DCCs were used to present an analytical parameterisation for the calculation of the cardiac absorbed dose for any arbitrary X-ray spectrum and for those patient sizes. Thus, the present work can be considered as an enhancement of the continuous studies performed by medical physicist as part of quality control tests and radiation protection dosimetry.

  17. Centrifugal pump and roller pump in adult cardiac surgery: a meta-analysis of randomized controlled trials.

    PubMed

    Saczkowski, Richard; Maklin, Michelle; Mesana, Thierry; Boodhwani, Munir; Ruel, Marc

    2012-08-01

    Centrifugal pump (CP) and roller pump (RP) designs are the dominant main arterial pumps used in cardiopulmonary bypass (CPB). Trials reporting clinical outcome measures comparing CP and RP are controversial. Therefore, a meta-analysis was undertaken to evaluate clinical variables from randomized controlled trials (RCTs). Keyword searches were performed on Medline (1966-2011), EmBase (1980-2011), and CINAHL (1981-2011) for studies comparing RP and CP as the main arterial pump in adult CPB. Pooled fixed-effects estimates for dichotomous and continuous data were calculated as an odds ratio and weighted-mean difference, respectively. The P value was utilized to assess statistical significance (P < 0.05) between CP and RP groups. Eighteen RCTs met inclusion criteria, which represented 1868 patients (CP = 961, RP = 907). The prevailing operation was isolated coronary artery bypass graft surgery (CP = 88%, RP = 87%). Fixed-effects pooled estimates were performed for end-of-CPB (ECP) and postoperative day one (PDO) for platelet count (ECP: P = 0.51, PDO: P = 0.16), plasma free hemoglobin (ECP: P = 0.36, PDO: P = 0.24), white blood cell count (ECP: P = 0.21, PDO: P = 0.66), and hematocrit (ECP: P = 0.06, PDO: P = 0.51). No difference was demonstrated for postoperative blood loss (P = 0.65) or red blood cell transfusion (P = 0.71). Intensive care unit length of stay (P = 0.30), hospital length of stay (P = 0.33), and mortality (P = 0.91) were similar between the CP and RP groups. Neurologic outcomes were not amenable to pooled analysis; nevertheless, the results were inconclusive. There was no reported pump-related malfunction or mishap. The meta-analysis of RCTs comparing CP and RP in adult cardiac surgery suggests no significant difference for hematological variables, postoperative blood loss, transfusions, neurological outcomes, or mortality.

  18. Epicardial origin of cardiac CFU-Fs.

    PubMed

    Slukvin, Igor I

    2011-12-02

    The epicardium has been recognized as a source of cardiovascular progenitors during embryogenesis and postnatal life. In this issue of Cell Stem Cell, Chong et al. (2011) identify cardiac CFU-Fs as cardiac-resident cells of epicardial origin with broad multilineage differentiation potential.

  19. A cardiac-specific health-related quality of life module for young adults with congenital heart disease: development and validation.

    PubMed

    Kamphuis, M; Zwinderman, K H; Vogels, T; Vliegen, H W; Kamphuis, R P; Ottenkamp, J; Verloove-Vanhorick, S P; Bruil, J

    2004-05-01

    This study represents the development and validation of a cardiac-specific module of the generic health-related quality of life (HRQoL) instrument, the TAAQOL (TNO/AZL Adult Quality Of Life), for young adults with congenital heart disease (CHD). Items were selected based on literature, an explorative previous study in CHD patients, interviews with patients, and the advice of experts. The newly developed Congenital Heart Disease-TNO/AZL Adult Quality of Life (CHD-TAAQOL) was tested in 156 patients with mild or complex CHD and consisted of three hypothesised subject scales: 'Symptoms' (9 items), 'Impact Cardiac Surveillance' (7 items), and 'Worries' (10 items). Cronbach's alpha for the three scales were 0.77, 0.78, and 0.82, respectively. Scale structure was confirmed by Principal Component Analysis, corrected item-scale and interscale correlations. Overall, 55% of reported health status problems were associated with negative emotions, which is an argument for assessing HRQoL as a concept distinct from health status. Convergent validity with validated generic instruments (TAAQOL and Short Form-36, SF-36) showed satisfactory coefficients. Discriminant validity was proven by significantly higher scores for mild CHD patients compared with those with complex CHD. In conclusion, the CHD-TAAQOL module together with the generic TAAQOL can be used to assess group differences for cardiac-specific HRQoL in young adults with CHD. Testing psychometric properties of the CHD-TAAQOL shows satisfactory results. However, to detect changes in HRQoL over time, further research is needed.

  20. Light-sheet fluorescence imaging to localize cardiac lineage and protein distribution

    PubMed Central

    Ding, Yichen; Lee, Juhyun; Ma, Jianguo; Sung, Kevin; Yokota, Tomohiro; Singh, Neha; Dooraghi, Mojdeh; Abiri, Parinaz; Wang, Yibin; Kulkarni, Rajan P.; Nakano, Atsushi; Nguyen, Thao P.; Fei, Peng; Hsiai, Tzung K.

    2017-01-01

    Light-sheet fluorescence microscopy (LSFM) serves to advance developmental research and regenerative medicine. Coupled with the paralleled advances in fluorescence-friendly tissue clearing technique, our cardiac LSFM enables dual-sided illumination to rapidly uncover the architecture of murine hearts over 10 by 10 by 10 mm3 in volume; thereby allowing for localizing progenitor differentiation to the cardiomyocyte lineage and AAV9-mediated expression of exogenous transmembrane potassium channels with high contrast and resolution. Without the steps of stitching image columns, pivoting the light-sheet and sectioning the heart mechanically, we establish a holistic strategy for 3-dimentional reconstruction of the “digital murine heart” to assess aberrant cardiac structures as well as the spatial distribution of the cardiac lineages in neonates and ion-channels in adults. PMID:28165052

  1. Light-sheet fluorescence imaging to localize cardiac lineage and protein distribution

    NASA Astrophysics Data System (ADS)

    Ding, Yichen; Lee, Juhyun; Ma, Jianguo; Sung, Kevin; Yokota, Tomohiro; Singh, Neha; Dooraghi, Mojdeh; Abiri, Parinaz; Wang, Yibin; Kulkarni, Rajan P.; Nakano, Atsushi; Nguyen, Thao P.; Fei, Peng; Hsiai, Tzung K.

    2017-02-01

    Light-sheet fluorescence microscopy (LSFM) serves to advance developmental research and regenerative medicine. Coupled with the paralleled advances in fluorescence-friendly tissue clearing technique, our cardiac LSFM enables dual-sided illumination to rapidly uncover the architecture of murine hearts over 10 by 10 by 10 mm3 in volume; thereby allowing for localizing progenitor differentiation to the cardiomyocyte lineage and AAV9-mediated expression of exogenous transmembrane potassium channels with high contrast and resolution. Without the steps of stitching image columns, pivoting the light-sheet and sectioning the heart mechanically, we establish a holistic strategy for 3-dimentional reconstruction of the “digital murine heart” to assess aberrant cardiac structures as well as the spatial distribution of the cardiac lineages in neonates and ion-channels in adults.

  2. The LIM Protein Ajuba Restricts the Second Heart Field Progenitor Pool by Regulating Isl1 Activity

    PubMed Central

    Witzel, Hagen R.; Jungblut, Benno; Choe, Chong Pyo; Crump, J. Gage; Braun, Thomas; Dobreva, Gergana

    2013-01-01

    SUMMARY Morphogenesis of the heart requires tight control of cardiac progenitor cell specification, expansion, and differentiation. Retinoic acid (RA) signaling restricts expansion of the second heart field (SHF), serving as an important morphogen in heart development. Here, we identify the LIM domain protein Ajuba as a crucial regulator of the SHF progenitor cell specification and expansion. Ajuba-deficient zebra-fish embryos show an increased pool of Isl1+ cardiac progenitors and, subsequently, dramatically increased numbers of cardiomyocytes at the arterial and venous poles. Furthermore, we show that Ajuba binds Isl1, represses its transcriptional activity, and is also required for autorepression of Isl1 expression in an RA-dependent manner. Lack of Ajuba abrogates the RA-dependent restriction of Isl1+ cardiac cells. We conclude that Ajuba plays a central role in regulating the SHF during heart development by linking RA signaling to the function of Isl1, a key transcription factor in cardiac progenitor cells. PMID:22771034

  3. Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease

    SciTech Connect

    Ounzain, Samir; Pezzuto, Iole; Micheletti, Rudi; Burdet, Frédéric; Sheta, Razan; Nemir, Mohamed; Gonzales, Christine; Sarre, Alexandre; Alexanian, Michael; Blow, Matthew J.; May, Dalit; Johnson, Rory; Dauvillier, Jérôme; Pennacchio, Len A.; Pedrazzini, Thierry

    2014-08-19

    We report here that the key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (lncRNAs) during cardiac differentiation and morphogenesis. Enhancer expression correlates with the emergence of active enhancer chromatin states, the initiation of RNA polymerase II at enhancer loci and expression of target genes. Orthologous human sequences are also transcribed in fetal human hearts and cardiac progenitor cells. Through a systematic bioinformatic analysis, we identified and characterized, for the first time, a catalog of lncRNAs that are expressed during embryonic stem cell differentiation into cardiomyocytes and associated with active cardiac enhancer sequences. RNA-sequencing demonstrates that many of these transcripts are polyadenylated, multi-exonic long noncoding RNAs. Moreover, knockdown of two enhancer-associated lncRNAs resulted in the specific downregulation of their predicted target genes. Interestingly, the reactivation of the fetal gene program, a hallmark of the stress response in the adult heart, is accompanied by increased expression of fetal cardiac enhancer transcripts. Altogether, these findings demonstrate that the activity of cardiac enhancers and expression of their target genes are associated with the production of enhancer-derived lncRNAs.

  4. Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease

    DOE PAGES

    Ounzain, Samir; Pezzuto, Iole; Micheletti, Rudi; ...

    2014-08-19

    We report here that the key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (lncRNAs) during cardiac differentiation and morphogenesis. Enhancer expression correlates with the emergence of active enhancer chromatin states, the initiation of RNA polymerase II at enhancer loci and expression of target genes. Orthologous human sequences are also transcribed in fetal human hearts and cardiac progenitor cells. Throughmore » a systematic bioinformatic analysis, we identified and characterized, for the first time, a catalog of lncRNAs that are expressed during embryonic stem cell differentiation into cardiomyocytes and associated with active cardiac enhancer sequences. RNA-sequencing demonstrates that many of these transcripts are polyadenylated, multi-exonic long noncoding RNAs. Moreover, knockdown of two enhancer-associated lncRNAs resulted in the specific downregulation of their predicted target genes. Interestingly, the reactivation of the fetal gene program, a hallmark of the stress response in the adult heart, is accompanied by increased expression of fetal cardiac enhancer transcripts. Altogether, these findings demonstrate that the activity of cardiac enhancers and expression of their target genes are associated with the production of enhancer-derived lncRNAs.« less

  5. Cardiac arrhythmias as the initial manifestation of adult primary Sjögren's syndrome: a case report and literature review.

    PubMed

    Liang, Minrui; Bao, Liwen; Xiong, Nanqing; Jin, Bo; Ni, Huanchun; Zhang, Jinjin; Zou, Hejian; Luo, Xinping; Li, Jian

    2015-09-01

    Two middle-aged female patients presenting with heart palpitation and electrocardiogram revealed complex cardiac arrhythmias. A review of systems was positive for dry mouth and transient arthralgia, while laboratory and instrumental tests enabled us to make the diagnosis of primary Sjögren's syndrome (pSS). Cardiac electrophysiology revealed atrioventricular node dysfunction and impaired intraventricular conduction. Prednisone therapy induced a significant improvement in symptoms and electrocardiographic readings. The diagnosis of pSS should be considered in a patient presenting with complex cardiac arrhythmias.

  6. Novel all-extremity high-intensity interval training improves aerobic fitness, cardiac function and insulin resistance in healthy older adults.

    PubMed

    Hwang, Chueh-Lung; Yoo, Jeung-Ki; Kim, Han-Kyul; Hwang, Moon-Hyon; Handberg, Eileen M; Petersen, John W; Christou, Demetra D

    2016-09-01

    Aging is associated with decreased aerobic fitness and cardiac remodeling leading to increased risk for cardiovascular disease. High-intensity interval training (HIIT) on the treadmill has been reported to be more effective in ameliorating these risk factors compared with moderate-intensity continuous training (MICT) in patients with cardiometabolic disease. In older adults, however, weight-bearing activities are frequently limited due to musculoskeletal and balance problems. The purpose of this study was to examine the feasibility and safety of non-weight-bearing all-extremity HIIT in older adults. In addition, we tested the hypothesis that all-extremity HIIT will be more effective in improving aerobic fitness, cardiac function, and metabolic risk factors compared with all-extremity MICT. Fifty-one healthy sedentary older adults (age: 65±1years) were randomized to HIIT (n=17), MICT (n=18) or non-exercise control (CONT; n=16). HIIT (4×4min 90% of peak heart rate; HRpeak) and isocaloric MICT (70% of HRpeak) were performed on a non-weight-bearing all-extremity ergometer, 4×/week for 8weeks under supervision. All-extremity HIIT was feasible in older adults and resulted in no adverse events. Aerobic fitness (peak oxygen consumption; VO2peak) and ejection fraction (echocardiography) improved by 11% (P<0.0001) and 4% (P=0.001), respectively in HIIT, while no changes were observed in MICT and CONT (P≥0.1). Greater improvements in ejection fraction were associated with greater improvements in VO2peak (r=0.57; P<0.0001). Insulin resistance (homeostatic model assessment) decreased only in HIIT by 26% (P=0.016). Diastolic function, body composition, glucose and lipids were unaffected (P≥0.1). In conclusion, all-extremity HIIT is feasible and safe in older adults. HIIT, but not MICT, improved aerobic fitness, ejection fraction, and insulin resistance.

  7. Curvature Analysis of Cardiac Excitation Wavefronts

    DTIC Science & Technology

    2013-04-01

    computational cardiac-cell network accurately reproduces a particular kind of cardiac arrhythmia , such as ventricular fibrillation. Curvature Analysis of Cardiac...network accurately reproduces a particular kind of cardiac arrhythmia , such as ventricular fibrillation. Index Terms Cardiac excitation waves...isopotentials, Bézier curves, curvature, cardiac arrhythmia and fibrillation Ç 1 INTRODUCTION AN estimated 81,000,000 American adults, more than onein three

  8. Translational research of adult stem cell therapy.

    PubMed

    Suzuki, Gen

    2015-11-26

    Congestive heart failure (CHF) secondary to chronic coronary artery disease is a major cause of morbidity and mortality world-wide. Its prevalence is increasing despite advances in medical and device therapies. Cell based therapies generating new cardiomyocytes and vessels have emerged as a promising treatment to reverse functional deterioration and prevent the progression to CHF. Functional efficacy of progenitor cells isolated from the bone marrow and the heart have been evaluated in preclinical large animal models. Furthermore, several clinical trials using autologous and allogeneic stem cells and progenitor cells have demonstrated their safety in humans yet their clinical relevance is inconclusive. This review will discuss the clinical therapeutic applications of three specific adult stem cells that have shown particularly promising regenerative effects in preclinical studies, bone marrow derived mesenchymal stem cell, heart derived cardiosphere-derived cell and cardiac stem cell. We will also discuss future therapeutic approaches.

  9. Cardiac Outcomes in Adult Survivors of Childhood Cancer Exposed to Cardiotoxic Therapy: A Cross-Sectional Study from the St. Jude Lifetime Cohort

    PubMed Central

    Mulrooney, Daniel A.; Armstrong, Gregory T.; Huang, Sujuan; Ness, Kirsten K.; Ehrhardt, Matthew J.; Joshi, Vijaya M.; Plana, Juan Carlos; Soliman, Elsayed Z.; Green, Daniel M.; Srivastava, Deokumar; Santucci, Aimee; Krasin, Matthew J.; Robison, Leslie L.; Hudson, Melissa M.

    2016-01-01

    Background Studies of cardiac disease among adult survivors of childhood cancer have generally relied upon self-reported or registry-based data. Objective Systematically assess cardiac outcomes among childhood cancer survivors Design Cross-sectional Setting St. Jude Children's Research Hospital Patients 1,853 adult survivors of childhood cancer, ≥18 years old, and ≥10 years from treatment with cardiotoxic therapy for childhood cancer. Measurements History/physical examination, fasting metabolic and lipid panels, echocardiogram, electrocardiogram (ECG), 6-minute walk test (6MWT) all collected at baseline evaluation. Results Half (52.3%) of the survivors were male, median age 8.0 years (range: 0-24) at cancer diagnosis, 31.0 years (18-60) at evaluation. Cardiomyopathy was present in 7.4% (newly identified at the time of evaluation in 4.7%), coronary artery disease (CAD) in 3.8% (newly identified in 2.2%), valvular regurgitation/stenosis in 28.0% (newly identified in 24.8%), and conduction/rhythm abnormalities in 4.6% (newly identified in 1.4%). Nearly all (99.7%) were asymptomatic. The prevalences of cardiac conditions increased with age at evaluation, ranging from 3-24% among those 30-39 years to 10-37% among those ≥40 years. On multivariable analysis, anthracycline exposure ≥250 mg/m2 increased the odds of cardiomyopathy (odds ratio [OR] 2.7, 95% CI 1.1-6.9) compared to anthracycline unexposed survivors. Radiation to the heart increased the odds of cardiomyopathy (OR 1.9 95% CI 1.1-3.7) compared to radiation unexposed survivors. Radiation >1500 cGy with any anthracycline exposure conferred the greatest odds for valve findings. Limitations 61% participation rate of survivors exposed to cardiotoxic therapies, which were limited to anthracyclines and cardiac-directed radiation. A comparison group and longitudinal assessments are not available. Conclusions Cardiovascular screening identified considerable subclinical disease among adult survivors of childhood

  10. Transesophageal Echocardiography in Healthy Young Adult Male Baboons (Papio hamadryas anubis): Normal Cardiac Anatomy and Function in Subhuman Primates Compared to Humans.

    PubMed

    Bert, Arthur A; Drake, William B; Quinn, Rachael W; Brasky, Kathleen M; O'Brien, James E; Lofland, Gary K; Hopkins, Richard A

    2013-08-01

    Implantable, viable tissue engineered cardiovascular constructs are rapidly approaching clinical translation. Species typically utilized as preclinical large animal models are food stock ungulates for which cross species biological and genomic differences with humans are great. Multiple authorities have recommended developing subhuman primate models for testing regenerative surgical strategies to mitigate xenotransplant inflammation. However, there is a lack of specific quantitative cardiac imaging comparisons between humans and the genomically similar baboons (Papio hamadryas anubis). This study was undertaken to translate to baboons transesophageal echocardiographic functional and dimensional criteria defined as necessary for defining cardiac anatomy and function in the perioperative setting. Seventeen young, healthy baboons (approximately 30 kg, similar to 5 year old children) were studied to determine whether the requisite 11 views and 52 measurement parameters could be reliably acquired by transesophageal echocardiography (TEE). The obtained measurements were compared to human adult normative literature values and to a large relational database of pediatric "normal heart" echo measurements. Comparisons to humans, when normalized to BSA, revealed a trend in baboons toward larger mitral and aortic valve effective orifice areas and much larger left ventricular muscle mass and wall thickness, but similar pulmonary and tricuspid valves. By modifying probe positioning relative to human techniques, all recommended TEE views except transgastric could be replicated. To supplement, two transthoracic apical views were discovered that in baboons could reliably replace the transgastric TEE view. Thus, all requisite echo views could be obtained for a complete cardiac evaluation in Papio hamadryas anubis to noninvasively quantify cardiac structural anatomy, physiology, and dimensions. Despite similarities between the species, there are subtle and important physiologic and

  11. Evaluation of the preliminary effectiveness of hand massage therapy on postoperative pain of adults in the intensive care unit after cardiac surgery: a pilot randomized controlled trial.

    PubMed

    Boitor, Mădălina; Martorella, Géraldine; Arbour, Caroline; Michaud, Cécile; Gélinas, Céline

    2015-06-01

    Although many intensive care unit patients experience significant pain, very few studies explored massage to maximize their pain relief. This study aimed to evaluate the preliminary effects of hand massage on pain after cardiac surgery in the adult intensive care unit. A pilot randomized controlled trial was used for this study. The study was conducted in a Canadian medical-surgical intensive care unit. Forty adults who were admitted to the intensive care unit after undergoing elective cardiac surgery in the previous 24 hours participated in the study. They were randomly assigned to the experimental (n = 21) or control (n = 19) group. The experimental group received a 15-minute hand massage, and the control group received a 15-minute hand-holding without massage. In both groups the intervention was followed by a 30-minute rest period. The interventions were offered on 2-3 occasions within 24 hours after surgery. Pain, muscle tension, and vital signs were assessed. Pain intensity and behavioral scores were decreased for the experimental group. Although hand massage decreased muscle tension, fluctuations in vital signs were not significant. This study supports potential benefits of hand massage for intensive care unit postoperative pain management. Although larger randomized controlled trials are necessary, this low-cost nonpharmacologic intervention can be safely administered.

  12. Lactate Elevation During and After Major Cardiac Surgery in Adults: A Review of Etiology, Prognostic Value, and Management.

    PubMed

    Andersen, Lars W

    2017-03-08

    Elevated lactate is a common occurrence after cardiac surgery. This review summarizes the literature on the complex etiology of lactate elevation during and after cardiac surgery, including considerations of oxygen delivery, oxygen utilization, increased metabolism, lactate clearance, medications and fluids, and postoperative complications. Second, the association between lactate and a variety of outcomes are described, and the prognostic role of lactate is critically assessed. Despite the fact that elevated lactate is strongly associated with many important outcomes, including postoperative complications, length of stay, and mortality, little is known about the optimal management of postoperative patients with lactate elevations. This review ends with an assessment of the limited literature on this subject.

  13. Endothelial progenitor cells in cardiovascular diseases

    PubMed Central

    Lee, Poay Sian Sabrina; Poh, Kian Keong

    2014-01-01

    Endothelial dysfunction has been associated with the development of atherosclerosis and cardiovascular diseases. Adult endothelial progenitor cells (EPCs) are derived from hematopoietic stem cells and are capable of forming new blood vessels through a process of vasculogenesis. There are studies which report correlations between circulating EPCs and cardiovascular risk factors. There are also studies on how pharmacotherapies may influence levels of circulating EPCs. In this review, we discuss the potential role of endothelial progenitor cells as both diagnostic and prognostic biomarkers. In addition, we look at the interaction between cardiovascular pharmacotherapies and endothelial progenitor cells. We also discuss how EPCs can be used directly and indirectly as a therapeutic agent. Finally, we evaluate the challenges facing EPC research and how these may be overcome. PMID:25126384

  14. Stem and progenitor cell dysfunction in human trisomies

    PubMed Central

    Liu, Binbin; Filippi, Sarah; Roy, Anindita; Roberts, Irene

    2015-01-01

    Trisomy 21, the commonest constitutional aneuploidy in humans, causes profound perturbation of stem and progenitor cell growth, which is both cell context dependent and developmental stage specific and mediated by complex genetic mechanisms beyond increased Hsa21 gene dosage. While proliferation of fetal hematopoietic and testicular stem/progenitors is increased and may underlie increased susceptibility to childhood leukemia and testicular cancer, fetal stem/progenitor proliferation in other tissues is markedly impaired leading to the characteristic craniofacial, neurocognitive and cardiac features in individuals with Down syndrome. After birth, trisomy 21-mediated premature aging of stem/progenitor cells may contribute to the progressive multi-system deterioration, including development of Alzheimer's disease. PMID:25520324

  15. Adrenomedullary progenitor cells: Isolation and characterization of a multi-potent progenitor cell population.

    PubMed

    Vukicevic, Vladimir; Rubin de Celis, Maria Fernandez; Pellegata, Natalia S; Bornstein, Stefan R; Androutsellis-Theotokis, Andreas; Ehrhart-Bornstein, Monika

    2015-06-15

    The adrenal is a highly plastic organ with the ability to adjust to physiological needs by adapting hormone production but also by generating and regenerating both adrenocortical and adrenomedullary tissue. It is now apparent that many adult tissues maintain stem and progenitor cells that contribute to their maintenance and adaptation. Research from the last years has proven the existence of stem and progenitor cells also in the adult adrenal medulla throughout life. These cells maintain some neural crest properties and have the potential to differentiate to the endocrine and neural lineages. In this article, we discuss the evidence for the existence of adrenomedullary multi potent progenitor cells, their isolation and characterization, their differentiation potential as well as their clinical potential in transplantation therapies but also in pathophysiology.

  16. Akt1 signaling coordinates BMP signaling and β-catenin activity to regulate second heart field progenitor development.

    PubMed

    Luo, Wen; Zhao, Xia; Jin, Hengwei; Tao, Lichan; Zhu, Jingai; Wang, Huijuan; Hemmings, Brian A; Yang, Zhongzhou

    2015-02-15

    Second heart field (SHF) progenitors exhibit continued proliferation and delayed differentiation, which are modulated by FGF4/8/10, BMP and canonical Wnt/β-catenin signaling. PTEN-Akt signaling regulates the stem cell/progenitor cell homeostasis in several systems, such as hematopoietic stem cells, intestinal stem cells and neural progenitor cells. To address whether PTEN-Akt signaling is involved in regulating cardiac progenitors, we deleted Pten in SHF progenitors. Deletion of Pten caused SHF expansion and increased the size of the SHF derivatives, the right ventricle and the outflow tract. Cell proliferation of cardiac progenitors was enhanced, whereas cardiac differentiation was unaffected by Pten deletion. Removal of Akt1 rescued the phenotype and early lethality of Pten deletion mice, suggesting that Akt1 was the key downstream target that was negatively regulated by PTEN in cardiac progenitors. Furthermore, we found that inhibition of FOXO by Akt1 suppressed the expression of the gene encoding the BMP ligand (BMP7), leading to dampened BMP signaling in the hearts of Pten deletion mice. Cardiac activation of Akt also increased the Ser552 phosphorylation of β-catenin, thus enhancing its activity. Reducing β-catenin levels could partially rescue heart defects of Pten deletion mice. We conclude that Akt signaling regulates the cell proliferation of SHF progenitors through coordination of BMP signaling and β-catenin activity.

  17. Matrix adhesion polarizes heart progenitor induction in the invertebrate chordate Ciona intestinalis.

    PubMed

    Norton, Jennifer; Cooley, James; Islam, A F M Tariqul; Cota, Christina D; Davidson, Brad

    2013-03-01

    Cell-matrix adhesion strongly influences developmental signaling. Resulting impacts on cell migration and tissue morphogenesis are well characterized. However, the in vivo impact of adhesion on fate induction remains ambiguous. Here, we employ the invertebrate chordate Ciona intestinalis to delineate an essential in vivo role for matrix adhesion in heart progenitor induction. In Ciona pre-cardiac founder cells, invasion of the underlying epidermis promotes localized induction of the heart progenitor lineage. We found that these epidermal invasions are associated with matrix adhesion along the pre-cardiac cell/epidermal boundary. Through targeted manipulations of RAP GTPase activity, we were able to manipulate pre-cardiac cell-matrix adhesion. Targeted disruption of pre-cardiac cell-matrix adhesion blocked heart progenitor induction. Conversely, increased matrix adhesion generated expanded induction. We were also able to selectively restore cell-matrix adhesion and heart progenitor induction through targeted expression of Ci-Integrin β2. These results indicate that matrix adhesion functions as a necessary and sufficient extrinsic cue for regional heart progenitor induction. Furthermore, time-lapse imaging suggests that cytokinesis acts as an intrinsic temporal regulator of heart progenitor adhesion and induction. Our findings highlight a potentially conserved role for matrix adhesion in early steps of vertebrate heart progenitor specification.

  18. Resident vascular progenitor cells.

    PubMed

    Torsney, Evelyn; Xu, Qingbo

    2011-02-01

    Homeostasis of the vessel wall is essential for maintaining its function, including blood pressure and patency of the lumen. In physiological conditions, the turnover rate of vascular cells, i.e. endothelial and smooth muscle cells, is low, but markedly increased in diseased situations, e.g. vascular injury after angioplasty. It is believed that mature vascular cells have an ability to proliferate to replace lost cells normally. On the other hand, recent evidence indicates stem/progenitor cells may participate in vascular repair and the formation of neointimal lesions in severely damaged vessels. It was found that all three layers of the vessels, the intima, media and adventitia, contain resident progenitor cells, including endothelial progenitor cells, mesenchymal stromal cells, Sca-1+ and CD34+ cells. Data also demonstrated that these resident progenitor cells could differentiate into a variety of cell types in response to different culture conditions. However, collective data were obtained mostly from in vitro culture assays and phenotypic marker studies. There are many unanswered questions concerning the mechanism of cell differentiation and the functional role of these cells in vascular repair and the pathogenesis of vascular disease. In the present review, we aim to summarize the data showing the presence of the resident progenitor cells, to highlight possible signal pathways orchestrating cell differentiation toward endothelial and smooth muscle cells, and to discuss the data limitations, challenges and controversial issues related to the role of progenitors. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".

  19. Mechanisms of Cardiac Regeneration

    PubMed Central

    Uygur, Aysu; Lee, Richard T.

    2016-01-01

    Adult humans fail to regenerate their hearts following injury, and this failure to regenerate myocardium is a leading cause of heart failure and death worldwide. Although all adult mammals appear to lack significant cardiac regeneration potential, some vertebrates can regenerate myocardium throughout life. In addition, new studies indicate that mammals have cardiac regeneration potential during development and very soon after birth. The mechanisms of heart regeneration among model organisms, including neonatal mice, appear remarkably similar. Orchestrated waves of inflammation, matrix deposition and remodeling, and cardiomyocyte proliferation are commonly seen in heart regeneration models. Understanding why adult mammals develop extensive scarring instead of regeneration is a crucial goal for regenerative biology. PMID:26906733

  20. Administration of anabolic steroid during adolescence induces long-term cardiac hypertrophy and increases susceptibility to ischemia/reperfusion injury in adult Wistar rats.

    PubMed

    Cruz Seara, Fernando de Azevedo; Barbosa, Raiana Andrade Quintanilha; Oliveira, Dahienne Ferreira de; Silva, Diorney Luiz Souza Gran da; Carvalho, Adriana Bastos; Ferreira, Andrea Claudia Freitas; Nascimento, José Hamilton Matheus; Olivares, Emerson Lopes

    2017-02-05

    Chronic administration of anabolic androgenic steroids (AAS) in adult rats results in cardiac hypertrophy and increased susceptibility to myocardial ischemia/reperfusion (IR) injury. Molecular analyses demonstrated that hyperactivation of type 1 angiotensin II (AT1) receptor mediates cardiac hypertrophy induced by AAS and also induces down-regulation of myocardial ATP-sensitive potassium channel (KATP), resulting in loss of exercise-induced cardioprotection. Exposure to AAS during adolescence promoted long-term cardiovascular dysfunctions, such as dysautonomia. We tested the hypothesis that chronic AAS exposure in the pre/pubertal phase increases the susceptibility to myocardial ischemia/reperfusion (IR) injury in adult rats. Male Wistar rats (26day old) were treated with vehicle (Control, n=12) or testosterone propionate (TP) (AAS, 5mgkg(-1) n=12) 5 times/week during 5 weeks. At the end of AAS exposure, rats underwent 23days of washout period and were submitted to euthanasia. Langendorff-perfused hearts were submitted to IR injury and evaluated for mechanical dysfunctions and infarct size. Molecular analysis was performed by mRNA levels of α-myosin heavy chain (MHC), βMHC and brain-derived natriuretic peptide (BNP), ryanodine receptor (RyR2) and sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) by quantitative RT-PCR (qRT-PCR). The expression of AT1 receptor and KATP channel subunits (Kir6.1 and SURa) was analyzed by qRT-PCR and Western Blot. NADPH oxidase (Nox)-related reactive oxygen species generation was assessed by spectrofluorimetry. The expression of antioxidant enzymes was measured by qRT-PCR in order to address a potential role of redox unbalance. AAS exposure promoted long-term cardiac hypertrophy characterized by increased expression of βMHC and βMHC/αMHC ratio. Baseline derivative of pressure (dP/dt) was impaired by AAS exposure. Postischemic recovery of mechanical properties was impaired (decreased left ventricle [LV] developed pressure and

  1. A practical and efficient cellular substrate for the generation of induced pluripotent stem cells from adults: blood-derived endothelial progenitor cells.

    PubMed

    Geti, Imbisaat; Ormiston, Mark L; Rouhani, Foad; Toshner, Mark; Movassagh, Mehregan; Nichols, Jennifer; Mansfield, William; Southwood, Mark; Bradley, Allan; Rana, Amer Ahmed; Vallier, Ludovic; Morrell, Nicholas W

    2012-12-01

    Induced pluripotent stem cells (iPSCs) have the potential to generate patient-specific tissues for disease modeling and regenerative medicine applications. However, before iPSC technology can progress to the translational phase, several obstacles must be overcome. These include uncertainty regarding the ideal somatic cell type for reprogramming, the low kinetics and efficiency of reprogramming, and karyotype discrepancies between iPSCs and their somatic precursors. Here we describe the use of late-outgrowth endothelial progenitor cells (L-EPCs), which possess several favorable characteristics, as a cellular substrate for the generation of iPSCs. We have developed a protocol that allows the reliable isolation of L-EPCs from peripheral blood mononuclear cell preparations, including frozen samples. As a proof-of-principle for clinical applications we generated EPC-iPSCs from both healthy individuals and patients with heritable and idiopathic forms of pulmonary arterial hypertension. L-EPCs grew clonally; were highly proliferative, passageable, and bankable; and displayed higher reprogramming kinetics and efficiencies compared with dermal fibroblasts. Unlike fibroblasts, the high efficiency of L-EPC reprogramming allowed for the reliable generation of iPSCs in a 96-well format, which is compatible with high-throughput platforms. Array comparative genome hybridization analysis of L-EPCs versus donor-matched circulating monocytes demonstrated that L-EPCs have normal karyotypes compared with their subject's reference genome. In addition, >80% of EPC-iPSC lines tested did not acquire any copy number variations during reprogramming compared with their parent L-EPC line. This work identifies L-EPCs as a practical and efficient cellular substrate for iPSC generation, with the potential to address many of the factors currently limiting the translation of this technology.

  2. Comparison of hepatic-like cell production from human embryonic stem cells and adult liver progenitor cells: CAR transduction activates a battery of detoxification genes.

    PubMed

    Funakoshi, Natalie; Duret, Cédric; Pascussi, Jean-Marc; Blanc, Pierre; Maurel, Patrick; Daujat-Chavanieu, Martine; Gerbal-Chaloin, Sabine

    2011-09-01

    In vitro production of human hepatocytes is of primary importance in basic research, pharmacotoxicology and biotherapy of liver diseases. We have developed a protocol of differentiation of human embryonic stem cells (ES) towards hepatocyte-like cells (ES-Hep). Using a set of human adult markers including CAAT/enhancer binding protein (C/EBPalpha), hepatocyte nuclear factor 4/7 ratio (HNF4alpha1/HNF4alpha7), cytochrome P450 7A1 (CYP7A1), CYP3A4 and constitutive androstane receptor (CAR), and fetal markers including alpha-fetoprotein, CYP3A7 and glutathione S-transferase P1, we analyzed the expression of a panel of 41 genes in ES-Hep comparatively with human adult primary hepatocytes, adult and fetal liver. The data revealed that after 21 days of differentiation, ES-Hep are representative of fetal hepatocytes at less than 20 weeks of gestation. The glucocorticoid receptor pathway was functional in ES-Hep. Extending protocols of differentiation to 4 weeks did not improve cell maturation. When compared with hepatocyte-like cells derived from adult liver non parenchymal epithelial (NPE) cells (NPE-Hep), ES-Hep expressed several adult and fetal liver makers at much greater levels (at least one order of magnitude), consistent with greater expression of liver-enriched transcription factors Forkhead box A2, C/EBPalpha, HNF4alpha and HNF6. It therefore seems that ES-Hep reach a better level of differentiation than NPE-Hep and that these cells use different lineage pathways towards the hepatic phenotype. Finally we showed that lentivirus-mediated expression of xenoreceptor CAR in ES-Hep induced the expression of several detoxification genes including CYP2B6, CYP2C9, CYP3A4, UDP-glycosyltransferase 1A1, solute carriers 21A6, as well as biotransformation of midazolam, a CYP3A4-specific substrate.

  3. The Alberta Cardiac Access Collaborative: improving the cardiac patient journey.

    PubMed

    Blackadar, Robyn; Houle, Mishaela

    2009-01-01

    The Alberta Cardiac Access Collaborative (ACAC) is a joint initiative of Alberta's health system to improve access to adult cardiac services across the patient journey. ACAC has created new care delivery models and implemented best practices across Alberta in four streams across the continuum: heart attack, patient navigation, heart failure and arrhythmia. Emergency medical providers, nurses, primary care physicians, hospitals, cardiac specialists and clinicians are all working together to integrate services, bridge jurisdictions and geography with one aim--improving the patient journey for adults in need of cardiac care.

  4. "String theory" of c-kit(pos) cardiac cells: a new paradigm regarding the nature of these cells that may reconcile apparently discrepant results.

    PubMed

    Keith, Matthew C L; Bolli, Roberto

    2015-03-27

    Although numerous preclinical investigations have consistently demonstrated salubrious effects of c-kit(pos) cardiac cells administered after myocardial infarction, the mechanism of action remains highly controversial. We and others have found little or no evidence that these cells differentiate into mature functional cardiomyocytes, suggesting paracrine effects. In this review, we propose a new paradigm predicated on a comprehensive analysis of the literature, including studies of cardiac development; we have (facetiously) dubbed this conceptual construct "string theory" of c-kit(pos) cardiac cells because it reconciles multifarious and sometimes apparently discrepant results. There is strong evidence that, during development, the c-kit receptor is expressed in different pools of cardiac progenitors (some capable of robust cardiomyogenesis and others with little or no contribution to myocytes). Accordingly, c-kit positivity, in itself, does not define the embryonic origins, lineage capabilities, or differentiation capacities of specific cardiac progenitors. C-kit(pos) cells derived from the first heart field exhibit cardiomyogenic potential during development, but these cells are likely depleted shortly before or after birth. The residual c-kit(pos) cells found in the adult heart are probably of proepicardial origin, possess a mesenchymal phenotype (resembling bone marrow mesenchymal stem/stromal cells), and are capable of contributing significantly only to nonmyocytic lineages (fibroblasts, smooth muscle cells, and endothelial cells). If these 2 populations (first heart field and proepicardium) express different levels of c-kit, the cardiomyogenic potential of first heart field progenitors might be reconciled with recent results of c-kit(pos) cell lineage tracing studies. The concept that c-kit expression in the adult heart identifies epicardium-derived, noncardiomyogenic precursors with a mesenchymal phenotype helps to explain the beneficial effects of c

  5. Comparison of three point-of-care testing devices to detect hemostatic changes in adult elective cardiac surgery: a prospective observational study

    PubMed Central

    2014-01-01

    Background Bleeding complications in cardiac surgery may lead to increased morbidity and mortality. Traditional blood coagulation tests are not always suitable to detect rapid changes in the patient's coagulation status. Point-of-care instruments such as the TEG (thromboelastograph) and RoTEM (thromboelastometer) have been shown to be useful as a guide for the clinician in the choice of blood products and they may lead to a reduction in the need for blood transfusion, contributing to better patient blood management. Methods The purpose of this study was to evaluate the ability of the TEG, RoTEM and Sonoclot instruments to detect changes in hemostasis in elective cardiac surgery with cardiopulmonary bypass and to investigate possible correlations between variables from these three instruments and routine hematological coagulation tests. Blood samples from thirty-five adult patients were drawn before and after surgery and analyzed in TEG, RoTEM, Sonoclot and routine coagulation tests. Data were compared using repeated measures analysis of variance and Pearson's test for linear correlation. Results We found significant changes for all TEG variables after surgery, for three of the RoTEM variables, and for one variable from the Sonoclot. There were significant correlations postoperatively between plasma fibrinogen levels and variables from the three instruments. Conclusions TEG and RoTEM may be used to detect changes in hemostasis following cardiac surgery with CPB. Sonoclot seems to be less suitable to detect such changes. Variables from the three instruments correlated with plasma fibrinogen and could be used to monitor treatment with fibrinogen concentrate. PMID:25276093

  6. Efficacy of methylprednisolone and lignocaine on propofol injection pain: A randomised, double-blind, prospective study in adult cardiac surgical patients

    PubMed Central

    Shivanna, Shivaprakash; Priye, Shio; Singh, Dipali; Jagannath, Sathyanarayan; Mudassar, Syed; Reddy, Durga Prasad

    2016-01-01

    Background and Aims: Propofol (2, 6-di-isopropylphenol) used for the induction of anaesthesia often causes mild to severe pain or discomfort on injection. We designed this double-blind study to compare the efficacy of methylprednisolone and lignocaine in reducing the pain of propofol injection in patients scheduled for cardiac surgery. Methods: A total of 165 adult patients, scheduled for elective cardiac surgery, were divided into three groups: saline (group S, n = 55), lignocaine 20 mg (Group L, n = 55) and methylprednisolone 125 mg diluted into 2 ml of distilled water (Group MP, n = 55). Drugs were administered after tourniquet application and occlusion was released after 1 min and 1/4th of the total dose of propofol (2 mg/kg) was administered at the rate of 0.5 ml/s. Pain on propofol injection was evaluated by four-point verbal rating scale. Statistical methods used included Student's t-test and Chi-square test/Fisher's exact test. Results: The overall incidence of pain was 70.9% in the saline group, 30.9% in the lignocaine group and 36.4% in the methylprednisolone group. The intensity of pain was significantly less in patients receiving methylprednisolone and lignocaine than those receiving saline (P < 0.012). Conclusion: Pre-treatment with intravenous methylprednisolone was found to be as effective as lignocaine in reducing propofol injection-induced pain. PMID:27942060

  7. The alpha1 isoform of the Na+/K+ ATPase is up-regulated in dedifferentiated progenitor cells that mediate lens and retina regeneration in adult newts.

    PubMed

    Vergara, M Natalia; Smiley, Laura K; Del Rio-Tsonis, Katia; Tsonis, Panagiotis A

    2009-02-01

    Adult newts are able to regenerate their retina and lens after injury or complete removal through transdifferentiation of the pigmented epithelial tissues of the eye. This process needs to be tightly controlled, and several different mechanisms are likely to be recruited for this function. The Na(+)/K(+) ATPase is a transmembrane protein that establishes electrochemical gradients through the transport of Na(+) and K(+) and has been implicated in the modulation of key cellular processes such as cell division, migration and adhesion. Even though it is expressed in all cells, its isoform composition varies with cell type and is tightly controlled during development and regeneration. In the present study we characterize the expression pattern of Na(+)/K(+) ATPase alpha1 in the adult newt eye and during the process of lens and retina regeneration. We show that this isoform is up-regulated in undifferentiated cells during transdifferentiation. Such change in composition could be one of the mechanisms that newt cells utilize to modulate this process.

  8. Bivalirudin as an Alternative Anticoagulant for Cardiopulmonary Bypass During Adult Cardiac Surgery-A Change in Practice.

    PubMed

    Gatt, Peter; Galea, Samuel Anthony; Busuttil, Walter; Grima, Charles; Muscat, Jeffrey; Farrugia, Yvette

    2017-03-01

    The referral of patients for open heart surgery, presenting with a history of heparin hypersensitivity instigated a multidisciplinary effort to find an alternative anticoagulant to heparin. The various options mentioned in the literature call for changes in the routine practice of open heart surgery on cardiopulmonary bypass. These changes involve mostly the perfusion setup and conduct on bypass and to a lesser extent the anesthetic and surgical practice. Nevertheless, the different professions involved in the cardiac surgical firm discussed the proposed changes in a multidisciplinary effort. A new protocol was drafted, endorsed, and executed. The authors highlight these changes and their successful use in the subsequent case study.

  9. Effects of an 18 week walking programme on cardiac function in previously sedentary or relatively inactive adults.

    PubMed Central

    Woolf-May, K; Bird, S; Owen, A

    1997-01-01

    OBJECTIVE: To investigate the effects of an 18 week walking programme upon cardiac function. METHODS: 29 sedentary or relatively inactive but otherwise healthy subjects (15 walkers and 14 controls, aged 40-68 years) completed the study. The walkers completed a progressive 18 week walking programme which required an estimated average energy expenditure of 900 kcal week-1 for the total duration of the study and 1161 kcal week-1 during the final six weeks. Walking was carried out at an intensity of 67.8 (SD 4.99)% of maximum oxygen consumption and 73.8(6.99%) of maximum heart rate. Before and after the intervention all subjects underwent an M mode echocardiogram, graded treadmill walking test, and step test for the assessment of aerobic fitness. RESULTS: After 18 weeks the results of the control group showed no change in any of the variables measured while the walkers showed a statistically significant increase in the velocity of relaxation of the longitudinal myocardial fibres of the left ventricle and a decrease in heart rate measured during the step tests, indicating an improvement in aerobic capacity. CONCLUSIONS: Walking promotes improvements in cardiovascular fitness. Moderate forms of exercise may improve cardiac function. Images p50-a PMID:9132212

  10. Procedural pain does not raise plasma levels of cortisol or catecholamines in adult intensive care patients after cardiac surgery.

    PubMed

    van Gulik, L; Ahlers, Sjgm; van Dijk, M; Bruins, P; Meima, M E; de Rijke, Y B; Biemond-Moeniralam, H S; Tibboel, D; Knibbe, C A J

    2016-01-01

    The gold standard for quantification of pain is a person's self-report. However, we need objective parameters for pain measurement when intensive care patients, for example, are not able to report pain themselves. An increase in pain is currently thought to coincide with an increase in stress hormones. This observational study investigated whether procedure-related pain is associated with an increase of plasma cortisol, adrenaline, and noradrenaline. In 59 patients receiving intensive care after cardiac surgery, cortisol, adrenaline, and noradrenaline plasma levels were measured immediately before and immediately after patients were turned for washing, either combined with the removal of chest tubes or not. Numeric rating scale scores were obtained before, during, and after the procedure. Unacceptably severe pain (numeric rating scale ≥ 4) was reported by seven (12%), 26 (44%), and nine (15%) patients, before, during and after the procedure, respectively. There was no statistically significant association between numeric rating scale scores and change in cortisol, adrenaline, and noradrenaline plasma levels during the procedure. Despite current convictions that pain coincides with an increase in stress hormones, procedural pain was not associated with a significant increase in plasma stress hormone levels in patients who had undergone cardiac surgery. Thus, plasma levels of cortisol, adrenaline, and noradrenaline seem unsuitable for further research on the measurement of procedural pain.

  11. Very small embryonic-like stem cells (VSELs)-a new promising candidate for use in cardiac regeneration.

    PubMed

    Zhang, Qian; Yang, Yue-Jin; Qian, Hai-Yan; Wang, Hong; Xu, Hui

    2011-01-01

    In recent years, stem cell-based therapy has been given increased attention in terms of its potential contribution to cardiac regeneration and repair, after acute myocardial infarction (AMI). The published studies have identified many kinds of stem cells with the ability to regenerate and repair damaged myocardium after AMI. These include embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), multipotent adult progenitor cells, unrestricted somatic stem cells, etc. More recently, very small embryonic-like stem cells (VSELs) were identified from murine, as a population of very small CXCR4(+) Lin(-) CD45(-) cells and from human, as a population of very small CD34(+) CD133(+) CXCR4(+) Lin(-) CD45(-) cells. These cells exhibit beneficial effects on improving cardiac function and attenuating cardiac remodeling after AMI. However, the mechanisms underlying the benefits associated with VSELs therapy, in cardiac regeneration and repair, remain poorly understood. This review summarizes the current studies on cardiac repair with VSELs after AMI, and discusses the potential mechanisms and implications of these cells in cardiac repair.

  12. Targeting human oligodendrocyte progenitors for myelin repair.

    PubMed

    Dietz, Karen C; Polanco, Jessie J; Pol, Suyog U; Sim, Fraser J

    2016-09-01

    Oligodendrocyte development has been studied for several decades, and has served as a model system for both neurodevelopmental and stem/progenitor cell biology. Until recently, the vast majority of studies have been conducted in lower species, especially those focused on rodent development and remyelination. In humans, the process of myelination requires the generation of vastly more myelinating glia, occurring over a period of years rather than weeks. Furthermore, as evidenced by the presence of chronic demyelination in a variety of human neurologic diseases, it appears likely that the mechanisms that regulate development and become dysfunctional in disease may be, in key ways, divergent across species. Improvements in isolation techniques, applied to primary human neural and oligodendrocyte progenitors from both fetal and adult brain, as well as advancements in the derivation of defined progenitors from human pluripotent stem cells, have begun to reveal the extent of both species-conserved signaling pathways and potential key differences at cellular and molecular levels. In this article, we will review the commonalities and differences in myelin development between rodents and man, describing the approaches used to study human oligodendrocyte differentiation and myelination, as well as heterogeneity within targetable progenitor pools, and discuss the advances made in determining which conserved pathways may be both modeled in rodents and translate into viable therapeutic strategies to promote myelin repair.

  13. Analysing human neural stem cell ontogeny by consecutive isolation of Notch active neural progenitors.

    PubMed

    Edri, Reuven; Yaffe, Yakey; Ziller, Michael J; Mutukula, Naresh; Volkman, Rotem; David, Eyal; Jacob-Hirsch, Jasmine; Malcov, Hagar; Levy, Carmit; Rechavi, Gideon; Gat-Viks, Irit; Meissner, Alexander; Elkabetz, Yechiel

    2015-03-23

    Decoding heterogeneity of pluripotent stem cell (PSC)-derived neural progeny is fundamental for revealing the origin of diverse progenitors, for defining their lineages, and for identifying fate determinants driving transition through distinct potencies. Here we have prospectively isolated consecutively appearing PSC-derived primary progenitors based on their Notch activation state. We first isolate early neuroepithelial cells and show their broad Notch-dependent developmental and proliferative potential. Neuroepithelial cells further yield successive Notch-dependent functional primary progenitors, from early and midneurogenic radial glia and their derived basal progenitors, to gliogenic radial glia and adult-like neural progenitors, together recapitulating hallmarks of neural stem cell (NSC) ontogeny. Gene expression profiling reveals dynamic stage-specific transcriptional patterns that may link development of distinct progenitor identities through Notch activation. Our observations provide a platform for characterization and manipulation of distinct progenitor cell types amenable for developing streamlined neural lineage specification paradigms for modelling development in health and disease.

  14. Cardiac stem cell research: an elephant in the room?

    PubMed

    Di Felice, Valentina; De Luca, Angela; Colorito, Maria Luisa; Montalbano, Antonella; Ardizzone, Nella Maria; Macaluso, Filippo; Gammazza, Antonella Marino; Cappello, Francesco; Zummo, Giovanni

    2009-03-01

    Heart disease is the leading cause of death in the industrialized world, and stem cell therapy seems to be a promising treatment for injured cardiac tissue. To reach this goal, the scientific community needs to find a good source of stem cells that can be used to obtain new myocardium in a very period range of time. Since there are many ethical and technical problems with using embryonic stem cells as a source of cells with cardiogenic potential, many laboratories have attempted to isolate potential cardiac stem cells from several tissues. The best candidates seem to be cardiac "progenitor" and/or "stem" cells, which can be isolated from subendocardial biopsies from the same patient or from embryonic and/or fetal myocardium. Regardless of the technique used to isolate and characterize these cells, it appears that the different cells isolated from adult myocardium to date are all phenotypic variations of a unique cell type that expresses several markers, such as c-Kit, CD34, MDR-1, Sca-1, CD45, nestin, or Isl-1, in various combinations.

  15. Noninvasive Imaging of Administered Progenitor Cells

    SciTech Connect

    Steven R Bergmann, M.D., Ph.D.

    2012-12-03

    The objective of this research grant was to develop an approach for labeling progenitor cells, specifically those that we had identified as being able to replace ischemic heart cells, so that the distribution could be followed non-invasively. In addition, the research was aimed at determining whether administration of progenitor cells resulted in improved myocardial perfusion and function. The efficiency and toxicity of radiolabeling of progenitor cells was to be evaluated. For the proposed clinical protocol, subjects with end-stage ischemic coronary artery disease were to undergo a screening cardiac positron emission tomography (PET) scan using N-13 ammonia to delineate myocardial perfusion and function. If they qualified based on their PET scan, they would undergo an in-hospital protocol whereby CD34+ cells were stimulated by the administration of granulocytes-colony stimulating factor (G-CSF). CD34+ cells would then be isolated by apharesis, and labeled with indium-111 oxine. Cells were to be re-infused and subjects were to undergo single photon emission computed tomography (SPECT) scanning to evaluate uptake and distribution of labeled progenitor cells. Three months after administration of progenitor cells, a cardiac PET scan was to be repeated to evaluate changes in myocardial perfusion and/or function. Indium oxine is a radiopharmaceutical for labeling of autologous lymphocytes. Indium-111 (In-111) decays by electron capture with a t{sub ½} of 67.2 hours (2.8 days). Indium forms a saturated complex that is neutral, lipid soluble, and permeates the cell membrane. Within the cell, the indium-oxyquinolone complex labels via indium intracellular chelation. Following leukocyte labeling, ~77% of the In-111 is incorporated in the cell pellet. The presence of red cells and /or plasma reduces the labeling efficacy. Therefore, the product needed to be washed to eliminate plasma proteins. This repeated washing can damage cells. The CD34 selected product was a 90

  16. Diabetes, cardiac disorders and asthma as risk factors for severe organ involvement among adult dengue patients: A matched case-control study

    PubMed Central

    Pang, Junxiong; Hsu, Jung Pu; Yeo, Tsin Wen; Leo, Yee Sin; Lye, David C.

    2017-01-01

    Progression to severe organ involvement due to dengue infection has been associated with severe dengue disease, intensive care treatment, and mortality. However, there is a lack of understanding of the impact of pre-existing comorbidities and other risk factors of severe organ involvement among dengue adults. The aim of this retrospective case-control study is to characterize and identify risk factors that predispose dengue adults at risk of progression with severe organ involvement. This study involved 174 dengue patients who had progressed with severe organ involvement and 865 dengue patients without severe organ involvement, matched by the year of presentation of the cases, who were admitted to Tan Tock Seng Hospital between year 2005 and 2008. Age group of 60 years or older, diabetes, cardiac disorders, asthma, and having two or more pre-existing comorbidities were independent risk factors of severe organ involvement. Abdominal pain, clinical fluid accumulation, and hematocrit rise and rapid platelet count drop at presentation were significantly associated with severe organ involvement. These risk factors, when validated in a larger study, will be useful for triage by clinicians for prompt monitoring and clinical management at first presentation, to minimize the risk of severe organ involvement and hence, disease severity. PMID:28045096

  17. Cardiac catheterization - discharge

    MedlinePlus

    Catheterization - cardiac - discharge; Heart catheterization - discharge: Catheterization - cardiac; Heart catheterization; Angina - cardiac catheterization discharge; CAD - cardiac catheterization discharge; Coronary artery disease - cardiac catheterization ...

  18. Non-coding RNA in control of gene regulatory programs in cardiac development and disease.

    PubMed

    Philippen, Leonne E; Dirkx, Ellen; da Costa-Martins, Paula A; De Windt, Leon J

    2015-12-01

    Organogenesis of the vertebrate heart is a highly specialized process involving progressive specification and differentiation of distinct embryonic cardiac progenitor cell populations driven by specialized gene programming events. Likewise, the onset of pathologies in the adult heart, including cardiac hypertrophy, involves the reactivation of embryonic gene programs. In both cases, these intricate genomic events are temporally and spatially regulated by complex signaling networks and gene regulatory networks. Apart from well-established transcriptional mechanisms, increasing evidence indicates that gene programming in both the developing and the diseased myocardium are under epigenetic control by non-coding RNAs (ncRNAs). MicroRNAs regulate gene expression at the post-transcriptional level, and numerous studies have now established critical roles for this species of tiny RNAs in a broad range of aspects from cardiogenesis towards adult heart failure. Recent reports now also implicate the larger family of long non-coding RNAs (lncRNAs) in these processes as well. Here we discuss the involvement of these two ncRNA classes in proper cardiac development and hypertrophic disease processes of the adult myocardium. This article is part of a Special Issue entitled: Non-coding RNAs.

  19. Hyperlactatemia in patients undergoing adult cardiac surgery under cardiopulmonary bypass: Causative factors and its effect on surgical outcome

    PubMed Central

    Naik, Rakesh; George, Gladdy; Karuppiah, Sathappan; Philip, Madhu Andrew

    2016-01-01

    Objectives of the Study: To identify the factors causing high lactate levels in patients undergoing cardiac surgery under cardiopulmonary bypass (CPB) and to assess the association between high blood lactate levels and postoperative morbidity and mortality. Methods: A retrospective observational study including 370 patients who underwent cardiac surgeries under cardiopulmonary bypass. The patients were divided into 2 groups based on serum lactate levels; those with serum lactate levels greater than or equal to 4 mmol/L considered as hyperlactatemia and those with serum lactate levels less than 4 mmol/L. Blood lactate samples were collected intraoperatively and postoperatively in the ICU. Preoperative and intraoperative risk factors for hyperlactatemia were identified using the highest intraoperative value of lactate. The postoperative morbidity and mortality associated with hyperlactatemia was studied using the overall (intraoperative and postoperative values) peak lactate levels. Preoperative clinical data, perioperative events and postoperative morbidity and mortality were recorded. Results: Intraoperative peak blood lactate levels of 4.0 mmol/L or more were present in 158 patients (42.7%). Females had higher peak intra operative lactate levels (P = 0.011). There was significant correlation between CPB time (Pearson correlation coefficient r = 0.024; P = 0.003) and aortic cross clamp time (r = 0.02, P = 0.007) with peak intraoperative blood lactate levels. Patients with hyperlactatemia had significantly higher rate of postoperative morbidity like atrial fibrillation (19.9% vs. 5.3%; P = 0.004), prolonged requirement of inotropes (34% vs. 11.8%; P = 0.001), longer stay in the ICU (P = 0.013) and hospital (P = 0.001). Conclusions: Hyperlactatemia had significant association with post-operative morbidity. Detection of hyperlactatemia in the perioperative period should be considered as an indicator of inadequate tissue oxygen delivery and must be aggressively

  20. Acute effects of tai chi exercise on cardiac autonomic function in healthy adults with tai chi experience.

    PubMed

    Kalsaria, Pratik; Li, Hongtao; Waite, Gabi N; Moga, Margaret M; Kingsley, Derek J; Geib, Roy W

    2012-01-01

    About 1 in 3 American adults have cardiovascular disease associated with risk factors such as physical inactivity, obesity, and stress. Heart rate variability (HRV) analysis is considered a non-invasive procedure for analyzing cardiovascular autonomic influence. Depressed HRV has been linked to abnormal cardiovascular autonomic modulation.

  1. Dual Function of Sox1 in Telencephalic Progenitor Cells

    PubMed Central

    Kan, Lixin; Jalali, Ali; Zhao, Li-Ru; Zhou, Xiaojing; McGuire, Tammy; Kazanis, Ilias; Episkopou, Vasso; Bassuk, Alexander G.; Kessler, John A.

    2012-01-01

    The transcription factor, Sox1 has been implicated in the maintenance of neural progenitor cell status, but accumulating evidence suggests that this is only part of its function. This study examined the role of Sox1 expression in proliferation, lineage commitment, and differentiation by telencephalic neural progenitor cells in vitro and in vivo, and further clarified the pattern of Sox1 expression in postnatal and adult mouse brain. Telencephalic neural progenitor cells isolated from Sox1 null embryos formed neurospheres normally, but were specifically deficient in neuronal differentiation. Conversely, overexpression of Sox1 in the embryonic telencephalon in vivo both expanded the progenitor pool and biased neural progenitor cells towards neuronal lineage commitment. Sox1 mRNA and protein were found to be persistently expressed in the postnatal and adult brain in both differentiated and neurogenic regions. Importantly, in differentiated regions Sox1 co-labeled only with neuronal markers. These observations, coupled with previous studies, suggest that Sox1 expression by early embryonic progenitor cells initially helps to maintain the cells in cell cycle, but that continued expression subsequently promotes neuronal lineage commitment. PMID:17719572

  2. Functional Assessment of Cardiac Responses of Adult Zebrafish (Danio rerio) to Acute and Chronic Temperature Change Using High-Resolution Echocardiography

    PubMed Central

    Cua, Michelle; Sheng, Xiaoye; Rayani, Kaveh; Beg, Mirza F.; Sarunic, Marinko V.; Tibbits, Glen F.

    2016-01-01

    The zebrafish (Danio rerio) is an important organism as a model for understanding vertebrate cardiovascular development. However, little is known about adult ZF cardiac function and how contractile function changes to cope with fluctuations in ambient temperature. The goals of this study were to: 1) determine if high resolution echocardiography (HRE) in the presence of reduced cardiodepressant anesthetics could be used to accurately investigate the structural and functional properties of the ZF heart and 2) if the effect of ambient temperature changes both acutely and chronically could be determined non-invasively using HRE in vivo. Heart rate (HR) appears to be the critical factor in modifying cardiac output (CO) with ambient temperature fluctuation as it increases from 78 ± 5.9 bpm at 18°C to 162 ± 9.7 bpm at 28°C regardless of acclimation state (cold acclimated CA– 18°C; warm acclimated WA– 28°C). Stroke volume (SV) is highest when the ambient temperature matches the acclimation temperature, though this difference did not constitute a significant effect (CA 1.17 ± 0.15 μL at 18°C vs 1.06 ± 0.14 μl at 28°C; WA 1.10 ± 0.13 μL at 18°C vs 1.12 ± 0.12 μl at 28°C). The isovolumetric contraction time (IVCT) was significantly shorter in CA fish at 18°C. The CA group showed improved systolic function at 18°C in comparison to the WA group with significant increases in both ejection fraction and fractional shortening and decreases in IVCT. The decreased early peak (E) velocity and early peak velocity / atrial peak velocity (E/A) ratio in the CA group are likely associated with increased reliance on atrial contraction for ventricular filling. PMID:26730947

  3. Cardiovascular Development and the Colonizing Cardiac Neural Crest Lineage

    PubMed Central

    Snider, Paige; Olaopa, Michael; Firulli, Anthony B.

    2008-01-01

    Although it is well established that transgenic manipulation of mammalian neural crest-related gene expression and microsurgical removal of premigratory chicken and Xenopus embryonic cardiac neural crest progenitors results in a wide spectrum of both structural and functional congenital heart defects, the actual functional mechanism of the cardiac neural crest cells within the heart is poorly understood. Neural crest cell migration and appropriate colonization of the pharyngeal arches and outflow tract septum is thought to be highly dependent on genes that regulate cell-autonomous polarized movement (i.e., gap junctions, cadherins, and noncanonical Wnt1 pathway regulators). Once the migratory cardiac neural crest subpopulation finally reaches the heart, they have traditionally been thought to participate in septation of the common outflow tract into separate aortic and pulmonary arteries. However, several studies have suggested these colonizing neural crest cells may also play additional unexpected roles during cardiovascular development and may even contribute to a crest-derived stem cell population. Studies in both mice and chick suggest they can also enter the heart from the venous inflow as well as the usual arterial outflow region, and may contribute to the adult semilunar and atrioventricular valves as well as part of the cardiac conduction system. Furthermore, although they are not usually thought to give rise to the cardiomyocyte lineage, neural crest cells in the zebrafish (Danio rerio) can contribute to the myocardium and may have different functions in a species-dependent context. Intriguingly, both ablation of chick and Xenopus premigratory neural crest cells, and a transgenic deletion of mouse neural crest cell migration or disruption of the normal mammalian neural crest gene expression profiles, disrupts ventral myocardial function and/or cardiomyocyte proliferation. Combined, this suggests that either the cardiac neural crest secrete factor/s that

  4. Interneuron Progenitor Transplantation to Treat CNS Dysfunction

    PubMed Central

    Chohan, Muhammad O.; Moore, Holly

    2016-01-01

    Due to the inadequacy of endogenous repair mechanisms diseases of the nervous system remain a major challenge to scientists and clinicians. Stem cell based therapy is an exciting and viable strategy that has been shown to ameliorate or even reverse symptoms of CNS dysfunction in preclinical animal models. Of particular importance has been the use of GABAergic interneuron progenitors as a therapeutic strategy. Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors retain their unique capacity to disperse, integrate and induce plasticity in adult host circuitries following transplantation. Here we discuss the potential of interneuron based transplantation strategies as it relates to CNS disease therapeutics. We also discuss mechanisms underlying their therapeutic efficacy and some of the challenges that face the field. PMID:27582692

  5. Human progenitor cells for bone engineering applications.

    PubMed

    de Peppo, G M; Thomsen, P; Karlsson, C; Strehl, R; Lindahl, A; Hyllner, J

    2013-06-01

    In this report, the authors review the human skeleton and the increasing burden of bone deficiencies, the limitations encountered with the current treatments and the opportunities provided by the emerging field of cell-based bone engineering. Special emphasis is placed on different sources of human progenitor cells, as well as their pros and cons in relation to their utilization for the large-scale construction of functional bone-engineered substitutes for clinical applications. It is concluded that, human pluripotent stem cells represent a valuable source for the derivation of progenitor cells, which combine the advantages of both embryonic and adult stem cells, and indeed display high potential for the construction of functional substitutes for bone replacement therapies.

  6. Effect of Vortioxetine on Cardiac Repolarization in Healthy Adult Male Subjects: Results of a Thorough QT/QTc Study.

    PubMed

    Wang, Ying; Nomikos, George G; Karim, Aziz; Munsaka, Melvin; Serenko, Michael; Liosatos, Maggie; Harris, Stuart

    2013-10-01

    This double-blind, randomized, placebo- and positive-controlled, parallel-group study evaluated the effect of vortioxetine (Lu AA21004), an investigational multimodal antidepressant, on QT interval in accordance with current guidelines of the International Conference on Harmonisation (ICH-E14). A total of 340 healthy men were randomized to receive 1 of 4 treatments for 14 days: (1) vortioxetine 10 mg once daily (QD), (2) vortioxetine 40 mg QD, (3) placebo QD, or (4) placebo QD on Days 1 through 13 followed by a single dose of moxifloxacin 400 mg (positive control). The primary endpoint was the largest time-matched, baseline-adjusted least-squares (LS) mean difference for the individual-corrected QT interval (QTcNi [linear]) between vortioxetine and placebo. Alternative QT correction formulas (i.e., Fredericia [QTcF], Bazett [QTcB], Framingham [QTcFm], and QTcNi [nonlinear]) were used as secondary endpoints. The upper bound of the 2-sided 90% confidence interval around the LS mean difference from placebo for baseline-adjusted QTcNi (linear), QTcF, QTcB, QTcFm, and QTcNi (nonlinear) did not exceed 10 ms at any time point after multiple doses of vortioxetine 10 mg (therapeutic) or 40 mg (supratherapeutic). Overall, the study results indicate that vortioxetine is unlikely to affect cardiac repolarization in healthy subjects.

  7. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury

    PubMed Central

    Di Siena, S; Gimmelli, R; Nori, S L; Barbagallo, F; Campolo, F; Dolci, S; Rossi, P; Venneri, M A; Giannetta, E; Gianfrilli, D; Feigenbaum, L; Lenzi, A; Naro, F; Cianflone, E; Mancuso, T; Torella, D; Isidori, A M; Pellegrini, M

    2016-01-01

    The role of endogenous c-Kit receptor activation on cardiac cell homeostasis and repair remains largely unexplored. Transgenic mice carrying an activating point mutation (TgD814Y) in the kinase domain of the c-Kit gene were generated. c-KitTgD814Y receptor was expressed in the heart during embryonic development and postnatal life, in a similar timing and expression pattern to that of the endogenous gene, but not in the hematopoietic compartment allowing the study of a cardiac-specific phenotype. c-KitTgD814Y mutation produced a constitutive active c-Kit receptor in cardiac tissue and cells from transgenic mice as demonstrated by the increased phosphorylation of ERK1/2 and AKT, which are the main downstream molecular effectors of c-Kit receptor signaling. In adult transgenic hearts, cardiac morphology, size and total c-Kit+ cardiac cell number was not different compared with wt mice. However, when c-KitTgD814Y mice were subjected to transmural necrotic heart damage by cryoinjury (CI), all transgenic survived, compared with half of wt mice. In the sub-acute phase after CI, transgenic and wt mice showed similar heart damage. However, 9 days after CI, transgenic mice exhibited an increased number of c-Kit+CD31+ endothelial progenitor cells surrounding the necrotic area. At later follow-up, a consistent reduction of fibrotic area, increased capillary density and increased cardiomyocyte replenishment rate (as established by BrdU incorporation) were observed in transgenic compared with wt mice. Consistently, CD45−c-Kit+ cardiac stem cells isolated from transgenic c-KitTgD814Y mice showed an enhanced endothelial and cardiomyocyte differentiation potential compared with cells isolated from the wt. Constitutive activation of c-Kit receptor in mice is associated with an increased cardiac myogenic and vasculogenic reparative potential after injury, with a significant improvement of survival. PMID:27468693

  8. [Congenital heart disease in adults: residua, sequelae, and complications of cardiac defects repaired at an early age].

    PubMed

    Oliver Ruiz, José María

    2003-01-01

    Nowadays, it is estimated that 85% of the infants born with congenital heart disease (CHD) will survive to adulthood, thanks mainly to surgical or therapeutic procedures performed during infancy or childhood. The clinical profile and disease pattern of adults with CHD is changing. The prevalence of certain adult CHDs, such as tetralogy of Fallot, transposition of the great arteries or univentricular heart, is rising, but these conditions have practically become new diseases as a result of therapy. Most surviving patients present residua, sequelae, or complications, which can progress during adult life. These disorders can present electrophysiological disturbances, valvular disease, persistent shunts, myocardial dysfunction, pulmonary or systemic vascular disease, problems caused by prosthetic materials, infectious complications, thromboembolic events, or extravascular disorders involving multiple organs or systems. In tetralogy of Fallot, the most striking problems that affect long-term prognosis are pulmonary valve regurgitation, right ventricle dysfunction, and atrial or ventricular arrhythmias. The main problems appearing after physiological atrial repair of transposition of the great arteries are related to right ventricular function, since it is structurally unprepared for systemic circulation, and atrial arrhythmias. Surgical repair of univentricular heart using Fontan techniques should be considered a palliative procedure that does not modify the underlying structural disorder and exposes the postoperative patient to severe complications and problems. The increase in the number of patients with CHD who will reach adulthood in the coming decades makes it necessary to carefully consider the new healthcare demands that are being generated, who should be responsible for them, and how and where solutions can be found.

  9. Walnut ingestion in adults at risk for diabetes: effects on body composition, diet quality, and cardiac risk measures

    PubMed Central

    Njike, Valentine Yanchou; Ayettey, Rockiy; Petraro, Paul; Treu, Judith A; Katz, David L

    2015-01-01

    Background Despite their energy density, walnuts can be included in the diet without adverse effects on weight or body composition. The effect of habitual walnut intake on total calorie intake is not well studied. Effects on overall diet quality have not been reported. Methods Randomized, controlled, modified Latin square parallel design study with 2 treatment arms. The 112 participants were randomly assigned to a diet with or without dietary counseling to adjust calorie intake. Within each treatment arm, participants were further randomized to 1 of the 2 possible sequence permutations to receive a walnut-included diet with 56 g (providing 366 kcal) of walnuts per day and a walnut-excluded diet. Participants were assessed for diet quality, body composition, and cardiac risk measures. Results When compared with a walnut-excluded diet, a walnut-included diet for 6 months, with or without dietary counseling to adjust caloric intake, significantly improved diet quality as measured by the Healthy Eating Index 2010 (9.14±17.71 vs 0.40±15.13; p=0.02 and 7.02±15.89 vs -5.92±21.84; p=0.001, respectively). Endothelial function, total and low-density lipoprotein (LDL) cholesterol improved significantly from baseline in the walnut-included diet. Body mass index, percent body fat, visceral fat, fasting glucose, glycated hemoglobin, and blood pressure did not change significantly. Conclusions The inclusion of walnuts in an ad libitum diet for 6 months, with or without dietary counseling to adjust calorie intake, significantly improved diet quality, endothelial function, total and LDL cholesterol, but had no effects on anthropometric measures, blood glucose level, and blood pressure. Trial registration number: NCT02330848 PMID:26688734

  10. Mitochondrial calcium transients in adult rabbit cardiac myocytes: inhibition by ruthenium red and artifacts caused by lysosomal loading of Ca(2+)-indicating fluorophores.

    PubMed Central

    Trollinger, D R; Cascio, W E; Lemasters, J J

    2000-01-01

    A cold/warm loading protocol was used to ester-load Rhod 2 into mitochondria and other organelles and Fluo 3 into the cytosol of adult rabbit cardiac myocytes for confocal fluorescence imaging. Transient increases in both cytosolic Fluo 3 and mitochondrial Rhod 2 fluorescence occurred after electrical stimulation. Ruthenium red, a blocker of the mitochondrial Ca(2+) uniporter, inhibited mitochondrial Rhod 2 fluorescence transients but not cytosolic Fluo 3 transients. Thus the ruthenium red-sensitive mitochondrial Ca(2+) uniporter catalyzes Ca(2+) uptake during beat-to-beat transients of mitochondrial free Ca(2+), which in turn may help match mitochondrial ATP production to myocardial ATP demand. After ester loading, substantial amounts of Ca(2+)-indicating fluorophores localized into an acidic lysosomal/endosomal compartment. This lysosomal fluorescence did not respond to electrical stimulation. Because fluorescence arose predominantly from lysosomes after the cold loading/warm incubation procedure, total cellular fluorescence failed to track beat-to-beat changes of mitochondrial fluorescence. Only three-dimensionally resolved confocal imaging distinguished the relatively weak mitochondrial signal from the bright lysosomal fluorescence. PMID:10866936

  11. Association of interatrial septal abnormalities with cardiac impulse conduction disorders in adult patients: experience from a tertiary center in Kosovo

    PubMed Central

    Bakalli, Aurora; Pllana, Ejup; Koçinaj, Dardan; Bekteshi, Tefik; Dragusha, Gani; Gashi, Masar; Musliu, Nebih; Gashi, Zaim

    2011-01-01

    Interatrial septal disorders, which include: atrial septal defect, patent foramen ovale and atrial septal aneurysm, are frequent congenital anomalies found in adult patients. Early detection of these anomalies is important to prevent their hemodynamic and/or thromboembolic consequences. The aims of this study were: to assess the association between impulse conduction disorders and anomalies of interatrial septum; to determine the prevalence of different types of interatrial septum abnormalities; to assess anatomic, hemodynamic, and clinical consequences of interatrial septal pathologies. Fifty-three adult patients with impulse conduction disorders and patients without ECG changes but with signs of interatrial septal abnormalities, who were referred to our center for echocardiography, were included in a prospective transesophageal echocardiography study. Interatrial septal anomalies were detected in around 85% of the examined patients. Patent foramen ovale was encountered in 32% of the patients, and in combination with atrial septal aneurysm in an additional 11.3% of cases. Atrial septal aneurysm and atrial septal defect were diagnosed with equal frequency in 20.7% of our study population. Impulse conduction disorders were significantly more suggestive of interatrial septal anomalies than clinical signs and symptoms observed in our patients (84.91% vs 30.19%, P=0.002). Right bundle branch block was the most frequent impulse conduction disorder, found in 41 (77.36%) cases. We conclude that interatrial septal anomalies are highly associated with impulse conduction disorders, particularly with right bundle branch block. Impulse conduction disorders are more indicative of interatrial septal abnormalities in earlier stages than can be understood from the patient’s clinical condition. PMID:21977304

  12. Maternal embryonic leucine zipper kinase (MELK) regulates multipotent neural progenitor proliferation.

    PubMed

    Nakano, Ichiro; Paucar, Andres A; Bajpai, Ruchi; Dougherty, Joseph D; Zewail, Amani; Kelly, Theresa K; Kim, Kevin J; Ou, Jing; Groszer, Matthias; Imura, Tetsuya; Freije, William A; Nelson, Stanley F; Sofroniew, Michael V; Wu, Hong; Liu, Xin; Terskikh, Alexey V; Geschwind, Daniel H; Kornblum, Harley I

    2005-08-01

    Maternal embryonic leucine zipper kinase (MELK) was previously identified in a screen for genes enriched in neural progenitors. Here, we demonstrate expression of MELK by progenitors in developing and adult brain and that MELK serves as a marker for self-renewing multipotent neural progenitors (MNPs) in cultures derived from the developing forebrain and in transgenic mice. Overexpression of MELK enhances (whereas knockdown diminishes) the ability to generate neurospheres from MNPs, indicating a function in self-renewal. MELK down-regulation disrupts the production of neurogenic MNP from glial fibrillary acidic protein (GFAP)-positive progenitors in vitro. MELK expression in MNP is cell cycle regulated and inhibition of MELK expression down-regulates the expression of B-myb, which is shown to also mediate MNP proliferation. These findings indicate that MELK is necessary for proliferation of embryonic and postnatal MNP and suggest that it regulates the transition from GFAP-expressing progenitors to rapid amplifying progenitors in the postnatal brain.

  13. Maternal and Zygotic Sphingosine Kinase 2 Are Indispensable for Cardiac Development in Zebrafish.

    PubMed

    Hisano, Yu; Inoue, Asuka; Okudaira, Michiyo; Taimatsu, Kiyohito; Matsumoto, Hirotaka; Kotani, Hirohito; Ohga, Rie; Aoki, Junken; Kawahara, Atsuo

    2015-06-12

    Sphingosine 1-phosphate (S1P) is synthesized from sphingosine by sphingosine kinases (SPHK1 and SPHK2) in invertebrates and vertebrates, whereas specific receptors for S1P (S1PRs) selectively appear in vertebrates, suggesting that S1P acquires novel functions in vertebrates. Because the developmental functions of SPHK1 and SPHK2 remain obscure in vertebrates, we generated sphk1 or sphk2 gene-disrupted zebrafish by introducing premature stop codons in their coding regions using transcription activator-like effector nucleases. Both zygotic sphk1 and sphk2 zebrafish mutants exhibited no obvious developmental defects and grew to adults. The maternal-zygotic sphk2 mutant (MZsphk2), but not the maternal-zygotic sphk1 mutant and maternal sphk2 mutant, had a defect in the cardiac progenitor migration and a concomitant decrease in S1P level, leading to a two-heart phenotype (cardia bifida). Cardia bifida in MZsphk2, which was rescued by injecting sphk2 mRNA, was a phenotype identical to that of zygotic mutants of the S1P transporter spns2 and S1P receptor s1pr2, indicating that the Sphk2-Spns2-S1pr2 axis regulates the cardiac progenitor migration in zebrafish. The contribution of maternally supplied lipid mediators during vertebrate organogenesis presents as a requirement for maternal-zygotic Sphk2.

  14. Comparison of Bispectral Index Monitoring With the Critical-Care Pain Observation Tool in the Pain Assessment of Intubated Adult Patients After Cardiac Surgery

    PubMed Central

    Faritous, Zahra; Barzanji, Arvin; Azarfarin, Rasoul; Ghadrdoost, Behshid; Ziyaeifard, Mohsen; Aghdaei, Nahid; Alavi, Mostafa

    2016-01-01

    Background Detecting pain is crucial in sedated and mechanically ventilated patients, as they are unable to communicate verbally. Objectives This study aimed to compare Bispectral index (BIS) monitoring with the Critical-care pain observation tool (CPOT) and vital signs for pain assessment during painful procedures in intubated adult patients after cardiac surgery. Materials and Methods Seventy consecutive patients who underwent cardiac surgery (coronary artery bypass graft or valvular surgery) were enrolled in the study. Pain evaluations were performed early after the operation in the intubated and sedated patients by using BIS and CPOT, and also checking the vital signs. The pain assessments were done at three different times: 1) baseline (immediately before any painful procedure, including tracheal suctioning or changing the patient’s position), 2) during any painful procedure, and 3) five minutes after the procedure (recovery time). Results The mean values for CPOT, BIS, and mean arterial pressure (MAP) scores were significantly different at different times; they were increased during suctioning or changing position, and decreased five minutes after these procedures (CPOT: 3.98 ± 1.65 versus 1.31 ± 1.07, respectively (P ≤ 0.0001); BIS: 84.94 ± 10.52 versus 63.48 ± 12.17, respectively (P ≤ 0.0001); MAP: 92.88 ± 15.37 versus 89.77 ± 14.72, respectively (P = 0.003)). Change in heart rate (HR) was not significant over time (95.68 ± 16.78 versus 93.61 ± 16.56, respectively; P = 0.34). CPOT scores were significantly positively correlated with BIS at baseline, during painful stimulation, and at recovery time, but were not correlated with HR or MAP, except at baseline. BIS scores were significantly correlated with MAP but not with HR. Conclusions It appears that BIS monitoring can be used for pain assessment along with the CPOT tool in intubated patients, and it is much more sensitive than monitoring of hemodynamic changes. BIS monitoring can be used more

  15. Prevalence of coronary artery ectasia in older adults and the relationship with epicardial fat volume by cardiac computed tomography angiography

    PubMed Central

    Yang, Jun-Jie; Yang, Xia; Chen, Zhi-Ye; Wang, Qi; He, Bai; Du, Luo-Shan; Chen, Yun-Dai

    2013-01-01

    Objective Coronary artery ectasia (CAE) refers to abnormal dilation of coronary artery segments to 1.5 times of adjacent normal ones. Epicardial fat is associated with cardiovascular risk factors. The relationship between CAE and epicardial fat has not yet been investigated. This study aimed to assess the relationship between CAE and epicardial fat volume (EFV) in older people by dual-source computed tomography coronary angiography (CTCA). Methods We prospectively enrolled 1400 older adults who were scheduled for dual-source CTCA. Under reconstruction protocols, patients with abnormal segments 1.5 times larger than the adjacent segments were accepted as CAE. EFV was measured by semi-automated software. Traditional risk factors in CAE patients, as well as the extent of EFV, were analyzed and compared to non-CAE group. Results A total of 885 male and 515 female older patients were enrolled. CAE was identified by univariable analysis in 131 patients and significantly correlated to hypertension, smoking, hyperlipidemia, prior percutaneous coronary intervention and ascending aorta aneurysm. EFV was shown to be significantly higher in CAE patients than patients without ectasia. In multivariable analyses, EFV (P = 0.018), hypertension (P < 0.001) and hyperlipidemia (P < 0.001) were significantly correlated to CAE. There was a significant negative correlation between EFV and Markis classification. Conclusions CAE can be reliably recognized by dual-source CTCA. Epicardial fat might play a role in etiopathogenesis and progression of CAE, providing a new target for treating ectasia. PMID:23610568

  16. Characterization of hematopoietic progenitors from human yolk sacs and embryos.

    PubMed

    Huyhn, A; Dommergues, M; Izac, B; Croisille, L; Katz, A; Vainchenker, W; Coulombel, L

    1995-12-15

    Hematopoiesis first arises in the extraembryonic yolk sac, and it is generally believed that yolk sac-derived stem cells migrate and seed the fetal liver at approximately week 6 of development in humans. Recently, the identification at day 8.5 to 9 of multipotential stem cells in intraembryonic sites different from the liver suggests that the establishment of hematopoiesis might be more complex than initially believed. In an attempt to understand initial steps of hematopoiesis during human ontogeny, we characterized clonogenic myeloid progenitor cells in human yolk sacs and corresponding embryos at 25 to 50 days of development. Most erythroid colonies derived from the yolk sacs differed from adult marrow-derived progenitors in that they also contained cells of the granulomacrophagic lineage, suggesting that they were pluripotent and exhibited a different response to cytokines. Furthermore, a subclass of nonerythroid progenitors generated very large granulomacrophagic colonies, some of which generated secondary erythroid colonies on replating. Analysis of the distribution of progenitors revealed that in contrast to erythroid progenitors, whose numbers were equally distributed between the yolk sac and the embryo, 80% of the nonerythroid progenitors were found in the embryo at stages II and III. Interestingly, a high proportion of nonerythroid progenitors (including high proliferative potential cells) was present in colony assays initiated with cells remaining after the liver has been removed. These findings were validated in colony assays established with CD34+ cells purified from extraembryonic yolk sacs and intraembryonic tissues. Increased knowledge about the biology of hematopoietic stem cells early in life may help to further understanding of the mechanisms associated with the restriction in proliferative and differentiative potential observed in the adult hematopoietic stem cell compartment.

  17. Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Arshi, Armin; Nakashima, Yasuhiro; Nakano, Haruko; Eaimkhong, Sarayoot; Evseenko, Denis; Reed, Jason; Stieg, Adam Z.; Gimzewski, James K.; Nakano, Atsushi

    2013-04-01

    While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell-cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes.

  18. Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells

    PubMed Central

    Arshi, Armin; Nakashima, Yasuhiro; Nakano, Haruko; Eaimkhong, Sarayoot; Evseenko, Denis; Reed, Jason; Stieg, Adam Z; Gimzewski, James K; Nakano, Atsushi

    2013-01-01

    While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell–cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes. PMID:24311969

  19. Whole-body cardiovascular MRI for the comparison of atherosclerotic burden and cardiac remodelling in healthy South Asian and European adults

    PubMed Central

    Cassidy, Deirdre B; Belch, Jill J F; Gandy, Stephen J; Lambert, Matthew A; Littleford, Roberta C; Rowland, Janice; Struthers, Allan D; Khan, Faisel

    2016-01-01

    Objective: To determine the feasibility of using whole-body cardiovascular MRI (WB-CVMR) to compare South Asians (SAs)—a population known to have a higher risk of cardiovascular disease (CVD) but paradoxically lower prevalence of peripheral arterial disease—and Western Europeans (WEs). Methods: 19 SAs and 38 age-, gender- and body mass index-matched WEs were recruited. All were aged 40 years and over, free from CVD and with a 10-year risk of CVD <20% as assessed by the adult treatment panel (ATP) III risk score. WB-CVMR was performed, comprising a whole-body angiogram (WBA) and cardiac MR (CMR), on a 3-T MRI scanner (Magnetom® Trio; Siemens, Erlangen, Germany) following dual-phase injection of gadolinium-based contrast agent. A standardized atheroma score (SAS) was calculated from the WBA while indexed left ventricular mass and volumes were calculated from the CMR. Results: SAs exhibited a significantly lower iliofemoral atheroma burden (regional SAS 0.0 ± 0.0 vs 1.9 ± 6.9, p = 0.048) and a trend towards lower overall atheroma burden (whole-body SAS 0.7 ± 0.8 vs 1.8 ± 2.3, p = 0.1). They had significantly lower indexed left ventricular mass (46.9 ± 11.8 vs 56.9 ± 13.4 ml m−2, p = 0.008), end diastolic volume (63.9 ± 10.4 vs 75.2 ± 11.4 ml m−2, p=0.001), end systolic volume (20.5 ± 6.1 vs 24.6 ± 6.8 ml m−2, p = 0.03) and stroke volume (43.4 ± 6.6 vs 50.6 ± 7.9 ml m−2, p = 0.001), but with no significant difference in ejection fraction, mass-volume ratio or global functioning index. These differences persisted after accounting for CVD risk factors. Conclusion: WB-CVMR can quantify cardiac and atheroma burden and can detect differences in these metrics between ethnic groups that, if validated, may suggest that the paradoxical high risk of CVD compared with PVD risk may be due to an adverse cardiac haemodynamic status incurred by the smaller heart rather than

  20. Wnt5a and Wnt11 are essential for second heart field progenitor development

    PubMed Central

    Cohen, Ethan David; Miller, Mayumi F.; Wang, Zichao; Moon, Randall T.; Morrisey, Edward E.

    2012-01-01

    Wnt/β-catenin has a biphasic effect on cardiogenesis, promoting the induction of cardiac progenitors but later inhibiting their differentiation. Second heart field progenitors and expression of the second heart field transcription factor Islet1 are inhibited by the loss of β-catenin, indicating that Wnt/β-catenin signaling is necessary for second heart field development. However, expressing a constitutively active β-catenin with Islet1-Cre also inhibits endogenous Islet1 expression, reflecting the inhibitory effect of prolonged Wnt/β-catenin signaling on second heart field development. We show that two non-canonical Wnt ligands, Wnt5a and Wnt11, are co-required to regulate second heart field development in mice. Loss of Wnt5a and Wnt11 leads to a dramatic loss of second heart field progenitors in the developing heart. Importantly, this loss of Wnt5a and Wnt11 is accompanied by an increase in Wnt/β-catenin signaling, and ectopic Wnt5a/Wnt11 inhibits β-catenin signaling and promotes cardiac progenitor development in differentiating embryonic stem cells. These data show that Wnt5a and Wnt11 are essential regulators of the response of second heart field progenitors to Wnt/β-catenin signaling and that they act by restraining Wnt/β-catenin signaling during cardiac development. PMID:22569553

  1. The effect of head up tilting on bioreactance cardiac output and stroke volume readings using suprasternal transcutaneous Doppler as a control in healthy young adults.

    PubMed

    Zhang, Jie; Critchley, Lester A H; Lee, Daniel C W; Khaw, Kim S; Lee, Shara W Y

    2016-10-01

    To compare the performance of a bioreactance cardiac output (CO) monitor (NICOM) and transcutaneous Doppler (USCOM) during head up tilting (HUT). Healthy young adult subjects, age 22 ± 1 years, 7 male and 7 female, were tilted over 3-5 s from supine to 70° HUT, 30° HUT and back to supine. Positions were held for 3 min. Simultaneous readings of NICOM and USCOM were performed 30 s into each new position. Mean blood pressure (MBP), heart rate (HR), CO and stroke volume (SV), and thoracic fluid content (TFC) were recorded. Bland-Altman, percentage changes and analysis of variance for repeated measures were used for statistical analysis. Pre-tilt NICOM CO and SV readings (6.1 ± 1.0 L/min and 113 ± 25 ml) were higher than those from USCOM (4.1 ± 0.6 L/min and 77 ± 9 ml) (P < 0.001). Bland-Altman limits of agreement for CO were wide with a percentage error of 38 %. HUT increased MBP and HR (P < 0.001). CO and SV readings decreased with HUT. However, the percentage changes in USCOM and NICOM readings did not concur (P < 0.001). Whereas USCOM provided gravitational effect proportional changes in SV readings of 23 ± 15 % (30° half tilt) and 44 ± 11 % (70° near full tilt), NICOM changes did not being 28 ± 10 and 33 ± 11 %. TFC decreased linearly with HUT. The NICOM does not provide linear changes in SV as predicted by physiology when patients are tilted. Furthermore there is a lack of agreement with USCOM measurements at baseline and during tilting.

  2. Phospholemman Overexpression Inhibits Na+-K+-ATPase in Adult Rat Cardiac Myocytes: Relevance to Decreased Na+ pump Activity in Post-Infarction Myocytes

    PubMed Central

    Zhang, Xue-Qian; Moorman, J. Randall; Ahlers, Belinda A.; Carl, Lois L.; Lake, Douglas E.; Song, Jianliang; Mounsey, J. Paul; Tucker, Amy L.; Chan, Yiu-mo; Rothblum, Lawrence I.; Stahl, Richard C.; Carey, David J.; Cheung, Joseph Y.

    2005-01-01

    Messenger RNA levels of phospholemman (PLM), a member of the FXYD family of small single-span membrane proteins with putative ion-transport regulatory properties, were increased in postinfarction (MI) rat myocytes. We tested the hypothesis that the previously observed reduction in Na+-K+-ATPase activity in MI rat myocytes was due to PLM overexpression. In rat hearts harvested 3 and 7 days post-MI, PLM protein expression was increased by 2- and 4-fold, respectively. To simulate increased PLM expression post-MI, PLM was overexpressed in normal adult rat myocytes by adenovirus-mediated gene transfer. PLM overexpression did not affect the relative level of phosphorylation on serine68 of PLM. Na+-K+-ATPase activity was measured as ouabain-sensitive Na+-K+ pump current (Ip). Compared to control myocytes overexpressing green fluorescent protein alone, Ip measured in myocytes overexpressing PLM was significantly (P<0.0001) lower at similar membrane voltages, pipette Na+ ([Na+]pip) and extracellular K+ concentrations ([K+]o). From −70 to +60 mV, neither [Na+]pip nor [K+]o required to attain half-maximal Ip was significantly different between control and PLM myocytes. This phenotype of decreased Vmax without appreciable changes in Km for Na+ and K+ in PLM overexpressed myocytes was similar to that observed in MI rat myocytes. Inhibition of Ip by PLM overexpression was not due to decreased Na+-K+-ATPase expression since there were no changes in either protein or messenger RNA levels of either α1 or α2 isoforms of Na+-K+-ATPase. In native rat cardiac myocytes, PLM co-immunoprecipitated with α-subunits of Na+-K+-ATPase. Inhibition of Na+-K+-ATPase by PLM overexpression, in addition to previously reported decrease in Na+-K+-ATPase expression, may explain altered Vmax but not Km of Na+-K+-ATPase in postinfarction rat myocytes. PMID:16195392

  3. Cardiac Sarcoidosis.

    PubMed

    Birnie, David; Ha, Andrew C T; Gula, Lorne J; Chakrabarti, Santabhanu; Beanlands, Rob S B; Nery, Pablo

    2015-12-01

    Studies suggest clinically manifest cardiac involvement occurs in 5% of patients with pulmonary/systemic sarcoidosis. The principal manifestations of cardiac sarcoidosis (CS) are conduction abnormalities, ventricular arrhythmias, and heart failure. Data indicate that an 20% to 25% of patients with pulmonary/systemic sarcoidosis have asymptomatic (clinically silent) cardiac involvement. An international guideline for the diagnosis and management of CS recommends that patients be screened for cardiac involvement. Most studies suggest a benign prognosis for patients with clinically silent CS. Immunosuppression therapy is advocated for clinically manifest CS. Device therapy, with implantable cardioverter defibrillators, is recommended for some patients.

  4. Characterization of Interstitial Cajal Progenitors Cells and Their Changes in Hirschsprung’s Disease

    PubMed Central

    Chen, Zhi-Hua; Zhang, Yong-Chang; Jiang, Wei-Fang; Yang, Cissy; Zou, Gang-Ming; Kong, Yu; Cai, Wei

    2014-01-01

    Interstitial cells of Cajal (ICC) are critical to gastrointestinal motility. The phenotypes of ICC progenitors have been observed in the mouse gut, but whether they exist in the human colon and what abnormal changes in their quantity and ultrastructure are present in Hirschsprung’s disease (HSCR) colon remains uncertain. In this study, we collected the surgical resection of colons, both proximal and narrow segments, from HSCR patients and normal controls. First, we identified the progenitor of ICC in normal adult colon using immunofluorescent localization techniques with laser confocal microscopy. Next, the progenitors were sorted to observe their morphology. We further applied flow cytometry to examine the content of ICC progenitors in these fresh samples. The ultrastructural changes in the narrow and proximal parts of the HSCR colon were observed using transmission electron microscopy (TEM) and were compared with the normal adult colon. The presumed early progenitor (c-KitlowCD34+Igf1r+) and committed progenitor (c-Kit+CD34+Igf1r+) of ICC exist in adult normal colon as well as in the narrow and proximal parts of the HSCR colon. However, the proportions of mature, early and committed progenitors of ICC were dramatically reduced in the narrow segment of the HSCR colon. The proportions of mature and committed progenitors of ICC in the proximal segment of the HSCR colon were lower than in the adult normal colon. Ultrastructurally, ICC, enteric nerves, and smooth muscle in the narrow segment of the HSCR colon showed severe injury, including swollen vacuola or ted mitochondria, disappearance of mitochondrial cristae, dilated rough endoplasmic reticulum, vesiculation and degranulation, and disappearance of the caveolae on the ICC membrane surface. The contents of ICC and its progenitors in the narrow part of the HSCR colon were significantly decreased than those of adult colon, which may be associated with HSCR pathogenesis. PMID:24475076

  5. Lacrimal Gland Repair Using Progenitor Cells.

    PubMed

    Gromova, Anastasia; Voronov, Dmitry A; Yoshida, Miya; Thotakura, Suharika; Meech, Robyn; Dartt, Darlene A; Makarenkova, Helen P

    2017-01-01

    In humans, the lacrimal gland (LG) is the primary contributor to the aqueous layer of the tear film. Production of tears in insufficient quantity or of inadequate quality may lead to aqueous-deficiency dry eye (ADDE). Currently there is no cure for ADDE. The development of strategies to reliably isolate LG stem/progenitor cells from the LG tissue brings great promise for the design of cell replacement therapies for patients with ADDE. We analyzed the therapeutic potential of epithelial progenitor cells (EPCPs) isolated from adult wild-type mouse LGs by transplanting them into the LGs of TSP -1(-/-) mice, which represent a novel mouse model for ADDE. TSP-1(-/-) mice are normal at birth but progressively develop a chronic form of ocular surface disease, characterized by deterioration, inflammation, and secretory dysfunction of the lacrimal gland. Our study shows that, among c-kit-positive epithelial cell adhesion molecule (EpCAM(+) ) populations sorted from mouse LGs, the c-kit(+) dim/EpCAM(+) /Sca1 (-) /CD34 (-) /CD45 (-) cells have the hallmarks of an epithelial cell progenitor population. Isolated EPCPs express pluripotency factors and markers of the epithelial cell lineage Runx1 and EpCAM, and they form acini and ducts when grown in reaggregated three-dimensional cultures. Moreover, when transplanted into injured or "diseased" LGs, they engraft into acinar and ductal compartments. EPCP-injected TSP-1(-/-) LGs showed reduction of cell infiltration, differentiation of the donor EPCPs within secretory acini, and substantial improvement in LG structural integrity and function. This study provides the first evidence for the effective use of adult EPCP cell transplantation to rescue LG dysfunction in a model system. Stem Cells Translational Medicine 2017;6:88-98.

  6. Lacrimal Gland Repair Using Progenitor Cells.

    PubMed

    Gromova, Anastasia; Voronov, Dmitry A; Yoshida, Miya; Thotakura, Suharika; Meech, Robyn; Dartt, Darlene A; Makarenkova, Helen P

    2016-08-15

    : In humans, the lacrimal gland (LG) is the primary contributor to the aqueous layer of the tear film. Production of tears in insufficient quantity or of inadequate quality may lead to aqueous-deficiency dry eye (ADDE). Currently there is no cure for ADDE. The development of strategies to reliably isolate LG stem/progenitor cells from the LG tissue brings great promise for the design of cell replacement therapies for patients with ADDE. We analyzed the therapeutic potential of epithelial progenitor cells (EPCPs) isolated from adult wild-type mouse LGs by transplanting them into the LGs of TSP-1(-/-) mice, which represent a novel mouse model for ADDE. TSP-1(-/-) mice are normal at birth but progressively develop a chronic form of ocular surface disease, characterized by deterioration, inflammation, and secretory dysfunction of the lacrimal gland. Our study shows that, among c-kit-positive epithelial cell adhesion molecule (EpCAM(+)) populations sorted from mouse LGs, the c-kit(+)dim/EpCAM(+)/Sca1(-)/CD34(-)/CD45(-) cells have the hallmarks of an epithelial cell progenitor population. Isolated EPCPs express pluripotency factors and markers of the epithelial cell lineage Runx1 and EpCAM, and they form acini and ducts when grown in reaggregated three-dimensional cultures. Moreover, when transplanted into injured or "diseased" LGs, they engraft into acinar and ductal compartments. EPCP-injected TSP-1(-/-) LGs showed reduction of cell infiltration, differentiation of the donor EPCPs within secretory acini, and substantial improvement in LG structural integrity and function. This study provides the first evidence for the effective use of adult EPCP cell transplantation to rescue LG dysfunction in a model system.

  7. Sustained Release of Engineered Stromal Cell–Derived Factor 1-α From Injectable Hydrogels Effectively Recruits Endothelial Progenitor Cells and Preserves Ventricular Function After Myocardial Infarction

    PubMed Central

    MacArthur, John W.; Purcell, Brendan P.; Shudo, Yasuhiro; Cohen, Jeffrey E.; Fairman, Alex; Trubelja, Alen; Patel, Jay; Hsiao, Philip; Yang, Elaine; Lloyd, Kelsey; Hiesinger, William; Atluri, Pavan; Burdick, Jason A.; Woo, Y. Joseph

    2014-01-01

    Background Exogenously delivered chemokines have enabled neovasculogenic myocardial repair in models of ischemic cardiomyopathy; however, these molecules have short half-lives in vivo. In this study, we hypothesized that the sustained delivery of a synthetic analog of stromal cell–derived factor 1-α (engineered stromal cell–derived factor analog [ESA]) induces continuous homing of endothelial progenitor cells and improves left ventricular function in a rat model of myocardial infarction. Methods and Results Our previously designed ESA peptide was synthesized by the addition of a fluorophore tag for tracking. Hyaluronic acid was chemically modified with hydroxyethyl methacrylate to form hydrolytically degradable hydrogels through free-radical–initiated crosslinking. ESA was encapsulated in hyaluronic acid hydrogels during gel formation, and then ESA release, along with gel degradation, was monitored for more than 4 weeks in vitro. Chemotactic properties of the eluted ESA were assessed at multiple time points using rat endothelial progenitor cells in a transwell migration assay. Finally, adult male Wistar rats (n=33) underwent permanent ligation of the left anterior descending (LAD) coronary artery, and 100 μL of saline, hydrogel alone, or hydrogel+25 μg ESA was injected into the borderzone. ESA fluorescence was monitored in animals for more than 4 weeks, after which vasculogenic, geometric, and functional parameters were assessed to determine the therapeutic benefit of each treatment group. ESA release was sustained for 4 weeks in vitro, remained active, and enhanced endothelial progenitor cell chemotaxis. In addition, ESA was detected in the rat heart >3 weeks when delivered within the hydrogels and significantly improved vascularity, ventricular geometry, ejection fraction, cardiac output, and contractility compared with controls. Conclusions We have developed a hydrogel delivery system that sustains the release of a bioactive endothelial progenitor cell

  8. Endothelial progenitor and mesenchymal stem cell-derived cells persist in tissue-engineered patch in vivo: application of green and red fluorescent protein-expressing retroviral vector.

    PubMed

    Sales, Virna L; Mettler, Bret A; Lopez-Ilasaca, Marco; Johnson, John A; Mayer, John E

    2007-03-01

    An unresolved question regarding tissue-engineered (TE) cardiac valves and vessels is the fate of the transplanted cells in vivo. We have developed a strategy to track the anatomic location of seeded cells within TE constructs and neighboring tissues using a retroviral vector system encoding green and red fluorescent proteins (GFPs and RFPs, respectively) in ovine circulating endothelial progenitor cells (EPCs) and bone marrow-derived mesenchymal stem cells (BMSCs). We demonstrate that stable transduction ex vivo with high-titer Moloney murine leukemia virus-based retroviral vector yields transduction efficiency of greater than 97% GFP(+) EPC- and RFP(+) mesenchymal stem cell (MSC)-derived cells. Cellular phenotype and transgene expression were also maintained through 25 subsequent passages. Using a retroviral vector system to distinguish our pre-seeded cells from tissue-resident progenitor cells and circulating endothelial and marrow-derived precursors, we simultaneously co-seeded 2 x 10(6) GFP(+) EPCs and 2 x 10(5) RFP(+) MSCs onto the TE patches. In a series of ovine pulmonary artery patch augmentation studies, transplanted GFP(+) EPC- and RFP(+) MSC-derived cells persisted within the TE patch 7 to 14 days after implantation, as identified using immunofluorescence. Analysis showed 81% luminal coverage of the TE patches before implantation with transduced cells, increasing to 96% at day 7 and decreasing to 67% at day 14 post-implantation. This suggests a temporal association between retroviral expression of progenitor cells and mediating effects of these cells on the physiological remodeling and maturation of the TE constructs. To our knowledge, this is the first cardiovascular tissue-engineering in vivo study using a double-labeling method to demonstrate a direct evidence of the source, persistence, and incorporation into a TE vascular patch of co-cultured and simultaneously pre-seeded adult progenitor cells.

  9. Regulation of development of rat stem and progenitor Leydig cells by activin.

    PubMed

    Li, L; Wang, Y; Li, X; Liu, S; Wang, G; Lin, H; Zhu, Q; Guo, J; Chen, H; Ge, H-S; Ge, R-S

    2017-01-01

    Stem Leydig cells have been demonstrated to differentiate into adult Leydig cells via intermediate stages of progenitor and immature Leydig cells. However, the exact regulatory mechanisms are unclear. We hypothesized that the development of stem or progenitor Leydig cells depends upon locally produced growth factors. Microarray analysis revealed that the expression levels of activin type I receptor (Acvr1) and activin A receptor type II-like 1 (Acvrl1) were stem > progenitor = immature = adult Leydig cells. This indicates that their ligand activin might play an important role in stem and progenitor Leydig cell proliferation and differentiation. When seminiferous tubules were incubated with 1 or 10 ng/mL activin A for 3 days, it concentration-dependently increased EdU incorporation into stem Leydig cells by up to 20-fold. When progenitor Leydig cells were incubated with 1 or 10 ng/mL activin A for 2 days, it concentration-dependently increased (3) H-thymidine incorporation into progenitor Leydig cells by up to 200%. Real-time PCR analysis showed that activin A primarily increased Pcna expression but reduced Star, Hsd3b1, and Cyp17a1 expression levels. Activin A also significantly inhibited the basal and luteinizing hormone-stimulated androgen production. In conclusion, activin A primarily stimulates the proliferation of stem and progenitor Leydig cells, but inhibits the differentiation of stem and progenitor Leydig cells into the Leydig cell lineage in rat testis.

  10. miR-18a counteracts AKT and ERK activation to inhibit the proliferation of pancreatic progenitor cells

    PubMed Central

    Li, Xuyan; Zhang, Zhenwu; Li, Yunchao; Zhao, Yicheng; Zhai, Wenjun; Yang, Lin; Kong, Delin; Wu, Chunyan; Chen, Zhenbao; Teng, Chun-Bo

    2017-01-01

    Activation of endogenous stem/progenitor cells to repair injured tissues is an ideal option for disease treatment. However, adult pancreatic progenitor cells remain in a quiescent state in vivo. Thus, it is difficult to stimulate proliferation and differentiation in these progenitor cells, and the cause remains elusive. miR-17-92 cluster miRNAs are highly conserved in mammals and are expressed in multiple tissue stem/progenitor cells, but their role in pancreatic progenitor cells are less well known. In the present study, we demonstrate that miR-18a, but not the other members of the miR-17-92 gene cluster, inhibits the proliferation of pancreatic progenitor cells in vitro and ex vivo. miR-18a inhibits proliferation of adult pancreatic progenitor cells through arresting the cell cycle at G1 stage, indicating that miR-18a plays a role in keeping the adult pancreatic progenitor cells in quiescence. miR-18a inhibits pancreatic progenitor proliferation by targeting the gene expressions of connective tissue growth factor (CTGF), neural precursor cell expressed, developmentally down-regulated 9 (Nedd9), and cyclin dependent kinase 19 (CDK19), as well as by suppressing activation of the proliferation-related signaling pathways phosphatidylinositol 3-kinase–protein kinase B (PI3K/AKT) and extracellular signal-regulated kinase (ERK). PMID:28332553

  11. Driving vascular endothelial cell fate of human multipotent Isl1+ heart progenitors with VEGF modified mRNA.

    PubMed

    Lui, Kathy O; Zangi, Lior; Silva, Eduardo A; Bu, Lei; Sahara, Makoto; Li, Ronald A; Mooney, David J; Chien, Kenneth R

    2013-10-01

    Distinct families of multipotent heart progenitors play a central role in the generation of diverse cardiac, smooth muscle and endothelial cell lineages during mammalian cardiogenesis. The identification of precise paracrine signals that drive the cell-fate decision of these multipotent progenitors, and the development of novel approaches to deliver these signals in vivo, are critical steps towards unlocking their regenerative therapeutic potential. Herein, we have identified a family of human cardiac endothelial intermediates located in outflow tract of the early human fetal hearts (OFT-ECs), characterized by coexpression of Isl1 and CD144/vWF. By comparing angiocrine factors expressed by the human OFT-ECs and non-cardiac ECs, vascular endothelial growth factor (VEGF)-A was identified as the most abundantly expressed factor, and clonal assays documented its ability to drive endothelial specification of human embryonic stem cell (ESC)-derived Isl1+ progenitors in a VEGF receptor-dependent manner. Human Isl1-ECs (endothelial cells differentiated from hESC-derived ISL1+ progenitors) resemble OFT-ECs in terms of expression of the cardiac endothelial progenitor- and endocardial cell-specific genes, confirming their organ specificity. To determine whether VEGF-A might serve as an in vivo cell-fate switch for human ESC-derived Isl1-ECs, we established a novel approach using chemically modified mRNA as a platform for transient, yet highly efficient expression of paracrine factors in cardiovascular progenitors. Overexpression of VEGF-A promotes not only the endothelial specification but also engraftment, proliferation and survival (reduced apoptosis) of the human Isl1+ progenitors in vivo. The large-scale derivation of cardiac-specific human Isl1-ECs from human pluripotent stem cells, coupled with the ability to drive endothelial specification, engraftment, and survival following transplantation, suggest a novel strategy for vascular regeneration in the heart.

  12. Omega-3 Fatty Acid Supplementation Appears to Attenuate Particulate Air Pollution-induced Cardiac Effects and Lipid Changes in Healthy Middle-aged Adults.

    EPA Science Inventory

    Context: Air pollution exposure has been associated with adverse cardiovascular effects. A recent epidemiologic study reported that omega-3 fatty acid (fish oil) supplementation blunted the cardiac responses to air pollution exposure. Objective: To evaluate in a randomized contro...

  13. Circulating Progenitor Cells and Scleroderma

    PubMed Central

    2010-01-01

    Scleroderma (systemic sclerosis) is a disease of unknown origins that involves tissue ischemia and fibrosis in the skin and internal organs such as the lungs. The tissue ischemia is due to a lack of functional blood vessels and an inability to form new blood vessels. Bone marrow–derived circulating endothelial progenitor cells play a key role in blood vessel repair and neovascularization. Scleroderma patients appear to have defects in the number and function of circulating endothelial progenitor cells. Scleroderma patients also develop fibrotic lesions, possibly as the result of tissue ischemia. Fibroblast-like cells called fibrocytes that differentiate from a different pool of bone marrow–derived circulating progenitor cells seem to be involved in this process. Manipulating the production, function, and differentiation of circulating progenitor cells represents an exciting new possibility for treating scleroderma. PMID:18638425

  14. MicroRNAs and cardiac regeneration

    PubMed Central

    Hodgkinson, Conrad P.; Kang, Martin H.; Dal-Pra, Sophie; Mirotsou, Maria; Dzau, Victor J.

    2015-01-01

    The human heart has a very limited capacity to regenerate lost or damaged cardiomyocytes following cardiac insult. Instead, myocardial injury is characterized by extensive cardiac remodeling by fibroblasts, resulting in the eventual deterioration of cardiac structure and function. Cardiac function would be improved if these fibroblasts could be converted into cardiomyocytes. MicroRNAs (miRNAs), small non-coding RNAs that promote mRNA degradation and inhibit mRNA translation, have been shown to be important in cardiac development. Using this information various researchers have utilized miRNAs to promote the formation of cardiomyocytes through a number of approaches. Several miRNAs acting in combination promote the direct conversion of cardiac fibroblasts into cardiomyocytes. Moreover, a number of miRNAs have been identified that aid the formation of iPS cells and miRNAs also induce these cells to adopt a cardiac fate. MiRNAs have also been implicated in resident cardiac progenitor cell differentiation. In this review we will discuss the current literature as it pertains to these processes as well as discussing the therapeutic implications of these findings. PMID:25953925

  15. Single adult rabbit and rat cardiac myocytes retain the Ca2+- and species-dependent systolic and diastolic contractile properties of intact muscle

    PubMed Central

    1986-01-01

    The systolic and diastolic properties of single myocytes and intact papillary muscles isolated from hearts of adult rats and rabbits were examined at 37 degrees C over a range of stimulation frequencies and bathing [Ca2+]o (Cao). In both rabbit myocytes and intact muscles bathed in 1 mM Cao, increasing the frequency of stimulation from 6 to 120 min-1 resulted in a positive staircase of twitch performance. During stimulation at 2 min-1, twitch performance also increased with increases in Cao up to 20 mM. In the absence of stimulation, both rabbit myocytes and muscles were completely quiescent in less than 15 mM Cao. Further increases in Cao caused the appearance of spontaneous asynchronous contractile waves in myocytes and in intact muscles caused scattered light intensity fluctuations (SLIF), which were previously demonstrated to be caused by Ca2+-dependent spontaneous contractile waves. In contrast to rabbit preparations, intact rat papillary muscles exhibited SLIF in 1.0 mM Cao. Two populations of rat myocytes were observed in 1 mM Cao: approximately 85% of unstimulated cells exhibited low-frequency (3-4 min-1) spontaneous contractile waves, whereas 15%, during a 1-min observation period, were quiescent. In a given Cao, the contractile wave frequency in myocytes and SLIF in intact muscles were constant for long periods of time. In both intact rat muscles and myocytes with spontaneous waves, in 1 mM Cao, increasing the frequency of stimulation from 6 to 120 min-1 resulted, on the average, in a 65% reduction in steady state twitch amplitude. Of the rat myocytes that did not manifest waves, some had a positive, some had a flat, and some had a negative staircase; the average steady state twitch amplitude of these cells during stimulation at 120 min-1 was 30% greater than that at 6 min-1. In contrast to rabbit preparations, twitch performance during stimulation at 2 min-1 saturated at 1.5 mM Cao in both intact rat muscles and in the myocytes with spontaneous waves. We

  16. Cardiac Cephalgia

    PubMed Central

    Wassef, Nancy; Ali, Ali Turab; Katsanevaki, Alexia-Zacharoula; Nishtar, Salman

    2014-01-01

    Although most of the patients presenting with ischemic heart disease have chest pains, there are other rare presenting symptoms like cardiac cephalgia. In this report, we present a case of acute coronary syndrome with an only presentation of exertional headache. It was postulated as acute presentation of coronary artery disease, due to previous history of similar presentation associated with some chest pains with previous left coronary artery stenting. We present an unusual case with cardiac cephalgia in a young patient under the age of 50 which was not reported at that age before. There are four suggested mechanisms for this cardiac presentation. PMID:28352454

  17. Fetal and neonatal hematopoietic progenitors are functionally and transcriptionally resistant to Flt3-ITD mutations

    PubMed Central

    Porter, Shaina N; Cluster, Andrew S; Yang, Wei; Busken, Kelsey A; Patel, Riddhi M; Ryoo, Jiyeon; Magee, Jeffrey A

    2016-01-01

    The FLT3 Internal Tandem Duplication (FLT3ITD) mutation is common in adult acute myeloid leukemia (AML) but rare in early childhood AML. It is not clear why this difference occurs. Here we show that Flt3ITD and cooperating Flt3ITD/Runx1 mutations cause hematopoietic stem cell depletion and myeloid progenitor expansion during adult but not fetal stages of murine development. In adult progenitors, FLT3ITD simultaneously induces self-renewal and myeloid commitment programs via STAT5-dependent and STAT5-independent mechanisms, respectively. While FLT3ITD can activate STAT5 signal transduction prior to birth, this signaling does not alter gene expression until hematopoietic progenitors transition from fetal to adult transcriptional states. Cooperative interactions between Flt3ITD and Runx1 mutations are also blunted in fetal/neonatal progenitors. Fetal/neonatal progenitors may therefore be protected from leukemic transformation because they are not competent to express FLT3ITD target genes. Changes in the transcriptional states of developing hematopoietic progenitors may generally shape the mutation spectra of human leukemias. DOI: http://dx.doi.org/10.7554/eLife.18882.001 PMID:27879203

  18. Centroacinar Cells Are Progenitors That Contribute to Endocrine Pancreas Regeneration

    PubMed Central

    Delaspre, Fabien; Beer, Rebecca L.; Rovira, Meritxell; Huang, Wei; Wang, Guangliang; Gee, Stephen; Vitery, Maria del Carmen; Wheelan, Sarah J.

    2015-01-01

    Diabetes is associated with a paucity of insulin-producing β-cells. With the goal of finding therapeutic routes to treat diabetes, we aim to find molecular and cellular mechanisms involved in β-cell neogenesis and regeneration. To facilitate discovery of such mechanisms, we use a vertebrate organism where pancreatic cells readily regenerate. The larval zebrafish pancreas contains Notch-responsive progenitors that during development give rise to adult ductal, endocrine, and centroacinar cells (CACs). Adult CACs are also Notch responsive and are morphologically similar to their larval predecessors. To test our hypothesis that adult CACs are also progenitors, we took two complementary approaches: 1) We established the transcriptome for adult CACs. Using gene ontology, transgenic lines, and in situ hybridization, we found that the CAC transcriptome is enriched for progenitor markers. 2) Using lineage tracing, we demonstrated that CACs do form new endocrine cells after β-cell ablation or partial pancreatectomy. We concluded that CACs and their larval predecessors are the same cell type and represent an opportune model to study both β-cell neogenesis and β-cell regeneration. Furthermore, we show that in cftr loss-of-function mutants, there is a deficiency of larval CACs, providing a possible explanation for pancreatic complications associated with cystic fibrosis. PMID:26153247

  19. Effect of exercise training and anabolic androgenic steroids on hemodynamics, glycogen content, angiogenesis and apoptosis of cardiac muscle in adult male rats

    PubMed Central

    Hassan, Asmaa F.; Kamal, Manal M.

    2013-01-01

    Objectives To investigate the effects of exercise training and anabolic androgenic steroids (AAS) on hemodynamics, glycogen content, angiogenesis, apoptosis and histology of cardiac muscle. Methods Forty rats were divided into 4 groups; control, steroid, exercise-trained and exercise-trained plus steroid groups. The exercise-trained and trained plus steroid groups, after one week of water adaptation, were exercised by jumping into water for 5 weeks. The steroid and trained plus steroid groups received nandrolone decanoate, for 5 weeks. Systolic blood pressure and heart rate (HR) were monitored weekly. Heart weight/body weight ratio (HW/BW ratio) were determined. Serum testosterone, vascular endothelial growth factor (VEGF), cardiac caspase-3 activity and glycogen content were measured. Results Compared with control, the steroid group had significantly higher blood pressure, HR, sympathetic nerve activity, testosterone level, HW/BW and cardiac caspase-3 activity. Histological examination revealed apoptotic changes and hypertrophy of cardiomyocytes. In exercise-trained group, cardiac glycogen, VEGF and testosterone levels were significantly higher while HR was significantly lower than control. HW/BW was more than control confirmed by hypertrophy of cardiomyocytes with angiogenesis on histological examination. Trained plus steroid group, had no change in HR, with higher blood pressure and HW/BW than control, cardiac glycogen and serum VEGF were higher than control but lower than exercise-trained group. Histological examination showed hypertrophy of cardiomyoctes with mild angiogenesis rather than apoptosis. Conclusion When exercise is augmented with AAS, exercise-associated cardiac benefits may not be fully gained with potential cardiac risk from AAS if used alone or combined with exercise. PMID:23559905

  20. Discovery and progress of direct cardiac reprogramming.

    PubMed

    Kojima, Hidenori; Ieda, Masaki

    2017-02-14

    Cardiac disease remains a major cause of death worldwide. Direct cardiac reprogramming has emerged as a promising approach for cardiac regenerative therapy. After the discovery of MyoD, a master regulator for skeletal muscle, other single cardiac reprogramming factors (master regulators) have been sought. Discovery of cardiac reprogramming factors was inspired by the finding that multiple, but not single, transcription factors were needed to generate induced pluripotent stem cells (iPSCs) from fibroblasts. We first reported a combination of cardiac-specific transcription factors, Gata4, Mef2c, and Tbx5 (GMT), that could convert mouse fibroblasts into cardiomyocyte-like cells, which were designated as induced cardiomyocyte-like cells (iCMs). Following our first report of cardiac reprogramming, many researchers, including ourselves, demonstrated an improvement in cardiac reprogramming efficiency, in vivo direct cardiac reprogramming for heart regeneration, and cardiac reprogramming in human cells. However, cardiac reprogramming in human cells and adult fibroblasts remains inefficient, and further efforts are needed. We believe that future research elucidating epigenetic barriers and molecular mechanisms of direct cardiac reprogramming will improve the reprogramming efficiency, and that this new technology has great potential for clinical applications.

  1. Nuclear cardiac

    SciTech Connect

    Slutsky, R.; Ashburn, W.L.

    1982-01-01

    The relationship between nuclear medicine and cardiology has continued to produce a surfeit of interesting, illuminating, and important reports involving the analysis of cardiac function, perfusion, and metabolism. To simplify the presentation, this review is broken down into three major subheadings: analysis of myocardial perfusion; imaging of the recent myocardial infarction; and the evaluation of myocardial function. There appears to be an increasingly important relationship between cardiology, particularly cardiac physiology, and nuclear imaging techniques. (KRM)

  2. Mesenchymal progenitor cells for the osteogenic lineage.

    PubMed

    Ono, Noriaki; Kronenberg, Henry M

    2015-09-01

    Mesenchymal progenitors of the osteogenic lineage provide the flexibility for bone to grow, maintain its function and homeostasis. Traditionally, colony-forming-unit fibroblasts (CFU-Fs) have been regarded as surrogates for mesenchymal progenitors; however, this definition cannot address the function of these progenitors in their native setting. Transgenic murine models including lineage-tracing technologies based on the cre-lox system have proven to be useful in delineating mesenchymal progenitors in their native environment. Although heterogeneity of cell populations of interest marked by a promoter-based approach complicates overall interpretation, an emerging complexity of mesenchymal progenitors has been revealed. Current literatures suggest two distinct types of bone progenitor cells; growth-associated mesenchymal progenitors contribute to explosive growth of bone in early life, whereas bone marrow mesenchymal progenitors contribute to the much slower remodeling process and response to injury that occurs mainly in adulthood. More detailed relationships of these progenitors need to be studied through further experimentation.

  3. Cardiac cameras.

    PubMed

    Travin, Mark I

    2011-05-01

    Cardiac imaging with radiotracers plays an important role in patient evaluation, and the development of suitable imaging instruments has been crucial. While initially performed with the rectilinear scanner that slowly transmitted, in a row-by-row fashion, cardiac count distributions onto various printing media, the Anger scintillation camera allowed electronic determination of tracer energies and of the distribution of radioactive counts in 2D space. Increased sophistication of cardiac cameras and development of powerful computers to analyze, display, and quantify data has been essential to making radionuclide cardiac imaging a key component of the cardiac work-up. Newer processing algorithms and solid state cameras, fundamentally different from the Anger camera, show promise to provide higher counting efficiency and resolution, leading to better image quality, more patient comfort and potentially lower radiation exposure. While the focus has been on myocardial perfusion imaging with single-photon emission computed tomography, increased use of positron emission tomography is broadening the field to include molecular imaging of the myocardium and of the coronary vasculature. Further advances may require integrating cardiac nuclear cameras with other imaging devices, ie, hybrid imaging cameras. The goal is to image the heart and its physiological processes as accurately as possible, to prevent and cure disease processes.

  4. Endothelin-1 supports clonal derivation and expansion of cardiovascular progenitors derived from human embryonic stem cells.

    PubMed

    Soh, Boon-Seng; Ng, Shi-Yan; Wu, Hao; Buac, Kristina; Park, Joo-Hye C; Lian, Xiaojun; Xu, Jiejia; Foo, Kylie S; Felldin, Ulrika; He, Xiaobing; Nichane, Massimo; Yang, Henry; Bu, Lei; Li, Ronald A; Lim, Bing; Chien, Kenneth R

    2016-03-08

    Coronary arteriogenesis is a central step in cardiogenesis, requiring coordinated generation and integration of endothelial cell and vascular smooth muscle cells. At present, it is unclear whether the cell fate programme of cardiac progenitors to generate complex muscular or vascular structures is entirely cell autonomous. Here we demonstrate the intrinsic ability of vascular progenitors to develop and self-organize into cardiac tissues by clonally isolating and expanding second heart field cardiovascular progenitors using WNT3A and endothelin-1 (EDN1) human recombinant proteins. Progenitor clones undergo long-term expansion and differentiate primarily into endothelial and smooth muscle cell lineages in vitro, and contribute extensively to coronary-like vessels in vivo, forming a functional human-mouse chimeric circulatory system. Our study identifies EDN1 as a key factor towards the generation and clonal derivation of ISL1(+) vascular intermediates, and demonstrates the intrinsic cell-autonomous nature of these progenitors to differentiate and self-organize into functional vasculatures in vivo.

  5. Endothelial Progenitor Cells Physiology and Metabolic Plasticity in Brain Angiogenesis and Blood-Brain Barrier Modeling

    PubMed Central

    Malinovskaya, Natalia A.; Komleva, Yulia K.; Salmin, Vladimir V.; Morgun, Andrey V.; Shuvaev, Anton N.; Panina, Yulia A.; Boitsova, Elizaveta B.; Salmina, Alla B.

    2016-01-01

    Currently, there is a considerable interest to the assessment of blood-brain barrier (BBB) development as a part of cerebral angiogenesis developmental program. Embryonic and adult angiogenesis in the brain is governed by the coordinated activity of endothelial progenitor cells, brain microvascular endothelial cells, and non-endothelial cells contributing to the establishment of the BBB (pericytes, astrocytes, neurons). Metabolic and functional plasticity of endothelial progenitor cells controls their timely recruitment, precise homing to the brain microvessels, and efficient support of brain angiogenesis. Deciphering endothelial progenitor cells physiology would provide novel engineering approaches to establish adequate microfluidically-supported BBB models and brain microphysiological systems for translational studies. PMID:27990124

  6. Progenitors for Ly-1 B cells are distinct from progenitors for other B cells

    PubMed Central

    1985-01-01

    Data from previous multiparameter fluorescence-activated cell sorter (FACS) analysis and sorting studies define a subset of murine B cells that expresses the Ly-1 surface determinant in conjunction with IgM, IgD, Ia, and other typical B cell markers. These Ly-1 B cells are physically and functionally distinct. They express more IgM and less IgD than most other B cells; they are not normally found in lymph node or bone marrow; they are always present at low frequencies (1-5%) in normal spleens, and, as we show here, they comprise about half of the B cells (10-20% of total cells) recovered from the peritoneal cavity in normal mice. Furthermore, most of the commonly studied IgM autoantibodies in normal and autoimmune mice are produced by these Ly-1 B cells, even though they seldom produce antibodies to exogenous antigens such as trinitrophenyl-Ficoll or trinitrophenyl-keyhole limpet hemocyanin. Cell transfer studies presented here demonstrate that the progenitors of Ly-1 B cells are different from the progenitors of the predominant B cell populations in spleen and lymph node. In these studies, we used FACS analysis and functional assays to characterize donor-derived (allotype-marked) B cells present in lethally irradiated recipients 1-2 mo after transfer. Surprisingly, adult bone marrow cells typically used to reconstitute B cells in irradiated recipients selectively failed to reconstitute the Ly-1 B subset. Liver, spleen, and bone marrow cells from young mice, in contrast, reconstituted all B cells (including Ly-1 B), and peritoneal "washout" cells (PerC) from adult mice uniquely reconstituted Ly-1 B. Bone marrow did not block Ly- 1 B development, since PerC and newborn liver still gave rise to Ly-1 B when jointly transferred with marrow. These findings tentatively assign Ly-1 B to a distinct developmental lineage originating from progenitors that inhabit the same locations as other B cell progenitors in young animals, but move to unique location(s) in adults. PMID

  7. Cardiac Regeneration and Stem Cells

    PubMed Central

    Zhang, Yiqiang; Mignone, John; MacLellan, W. Robb

    2015-01-01

    After decades of believing the heart loses the ability to regenerate soon after birth, numerous studies are now reporting that the adult heart may indeed be capable of regeneration, although the magnitude of new cardiac myocyte formation varies greatly. While this debate has energized the field of cardiac regeneration and led to a dramatic increase in our understanding of cardiac growth and repair, it has left much confusion in the field as to the prospects of regenerating the heart. Studies applying modern techniques of genetic lineage tracing and carbon-14 dating have begun to establish limits on the amount of endogenous regeneration after cardiac injury, but the underlying cellular mechanisms of this regeneration remained unclear. These same studies have also revealed an astonishing capacity for cardiac repair early in life that is largely lost with adult differentiation and maturation. Regardless, this renewed focus on cardiac regeneration as a therapeutic goal holds great promise as a novel strategy to address the leading cause of death in the developed world. PMID:26269526

  8. Spirituality and Autonomic Cardiac Control

    PubMed Central

    Berntson, Gary G.; Norman, Greg J.; Hawkley, Louise C.; Cacioppo, John T.

    2009-01-01

    Background Spirituality has been suggested to be associated with positive health, but potential biological mediators have not been well characterized. Purpose and Methods The present study examined, in a population based sample of middle-aged and older adults, the potential relationship between spirituality and patterns of cardiac autonomic control, which may have health significance. Measures of parasympathetic (high-frequency heart rate variability) and sympathetic (pre-ejection period) cardiac control were obtained from a representative sample of 229 participants. Participants completed questionnaires to assess spirituality (closeness to and satisfactory relation with God). Personality, demographic, anthropometric, health behavior, and health status information was also obtained. A series of multivariate regression models was used to examine the relations between spirituality, the autonomic measures, and two derived indexes-- cardiac autonomic balance (CAB, reflecting parasympathetic to sympathetic balance) and cardiac autonomic regulation (CAR, reflecting total autonomic control). Results Spirituality, net of demographics or other variables, was found to be associated with enhanced parasympathetic as well as sympathetic cardiac control (yielding a higher CAR); but was not associated with CAB. Although the number of cases was small (N=11), both spirituality and CAR were significant negative predictors of the prior occurrence of a myocardial infarction. Conclusions In a population based sample, spirituality appears to be associated with a specific pattern of cardiac autonomic regulation, characterized by a high level of cardiac autonomic control, irrespective of the relative contribution of the two autonomic branches. This pattern of autonomic control may have health significance. PMID:18357497

  9. Relationship of cardiac structure and function to cardiorespiratory fitness and lean body mass in adolescents and young adults with Type 2 Diabetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate the relationships of cardiac structure and function with body composition and cardiorespiratory fitness (CRF) among adolescents with type 2 diabetes in the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) Study Group. Cross-sectional evaluation of 233 participant...

  10. In vitro culture of stress erythroid progenitors identifies distinct progenitor populations and analogous human progenitors

    PubMed Central

    Xiang, Jie; Wu, Dai-Chen; Chen, Yuanting

    2015-01-01

    Tissue hypoxia induces a systemic response designed to increase oxygen delivery to tissues. One component of this response is increased erythropoiesis. Steady-state erythropoiesis is primarily homeostatic, producing new erythrocytes to replace old erythrocytes removed from circulation by the spleen. In response to anemia, the situation is different. New erythrocytes must be rapidly made to increase hemoglobin levels. At these times, stress erythropoiesis predominates. Stress erythropoiesis is best characterized in the mouse, where it is extramedullary and utilizes progenitors and signals that are distinct from steady-state erythropoiesis. In this report, we use an in vitro culture system that recapitulates the in vivo development of stress erythroid progenitors. We identify cell-surface markers that delineate a series of stress erythroid progenitors with increasing maturity. In addition, we use this in vitro culture system to expand human stress erythroid progenitor cells that express analogous cell-surface markers. Consistent with previous suggestions that human stress erythropoiesis is similar to fetal erythropoiesis, we demonstrate that human stress erythroid progenitors express fetal hemoglobin upon differentiation. These data demonstrate that similar to murine bone marrow, human bone marrow contains cells that can generate BMP4-dependent stress erythroid burst-forming units when cultured under stress erythropoiesis conditions. PMID:25608563

  11. Developmental origin of postnatal cardiomyogenic progenitor cells

    PubMed Central

    Liu, Yuan-Hung; Lai, Ling-Ping; Huang, Shih-Yun; Lin, Yi-Shuan; Wu, Shinn-Chih; Chou, Chih-Jen; Lin, Jiunn-Lee

    2016-01-01

    Aim: To trace the cell origin of the cells involved in postnatal cardiomyogenesis. Materials & methods: Nkx2.5 enhancer-eGFP (Nkx2.5 enh-eGFP) mice were used to test the cardiomyogenic potential of Nkx2.5 enhancer-expressing cells. By analyzing Cre excision of activated Nkx2.5-eGFP+ cells from different lineage-Cre/Nkx2.5 enh-eGFP/ROSA26 reporter mice, we traced the developmental origin of Nkx2.5 enhancer-expressing cells. Results: Nkx2.5 enhancer-expressing cells could differentiate into striated cardiomyocytes both in vitro and in vivo. Nkx2.5-eGFP+ cells increased remarkably after experimental myocardial infarction (MI). The post-MI Nkx2.5-eGFP+ cells originated from the embryonic epicardial cells, not from the pre-existing cardiomyocytes, endothelial cells, cardiac neural crest cells or perinatal/postnatal epicardial cells. Conclusion: Postnatal Nkx2.5 enhancer-expressing cells are cardiomyogenic progenitor cells and originate from embryonic epicardium-derived cells. PMID:28031967

  12. Repair of injured proximal tubule does not involve specialized progenitors

    PubMed Central

    Humphreys, Benjamin D.; Czerniak, Suzanne; DiRocco, Derek P.; Hasnain, Wirasat; Cheema, Rabia; Bonventre, Joseph V.

    2011-01-01

    Recently we have established that the kidney tubular epithelium is repaired by surviving epithelial cells. It is not known, however, whether a population of intratubular adult progenitor cells are responsible for this epithelial repair after acute kidney injury. In this study, we used an unbiased DNA analog-based approach that does not rely on candidate markers to track multiple rounds of cell division in vivo. In the proximal tubule, robust thymidine analog incorporation was observed postinjury. Cell division was stochastic and enriched among cells that were injured and dedifferentiated. There was no evidence for the presence of a population of specialized progenitors that repeatedly divide in response to injury. Instead, these results indicate that after injury, new epithelial cells arise from self-duplication of surviving cells, most of which are injured. Because the renal papilla contains DNA label-retaining cells and has been proposed as a stem cell niche, we examined the proliferative behavior of these putative progenitors after ischemia-reperfusion injury. Although label-retaining cells in the renal papilla diminished with time after ischemia-reperfusion injury, they neither proliferated nor migrated to the outer medulla or cortex. Thus, nonlethally injured cells repopulate the kidney epithelium after injury in the absence of any specialized progenitor cell population. PMID:21576461

  13. Roles of nonmyogenic mesenchymal progenitors in pathogenesis and regeneration of skeletal muscle

    PubMed Central

    Uezumi, Akiyoshi; Ikemoto-Uezumi, Madoka; Tsuchida, Kunihiro

    2014-01-01

    Adult skeletal muscle possesses a remarkable regenerative ability that is dependent on satellite cells. However, skeletal muscle is replaced by fatty and fibrous connective tissue in several pathological conditions. Fatty and fibrous connective tissue becomes a major cause of muscle weakness and leads to further impairment of muscle function. Because the occurrence of fatty and fibrous connective tissue is usually associated with severe destruction of muscle, the idea that dysregulation of the fate switch in satellite cells may underlie this pathological change has emerged. However, recent studies identified nonmyogenic mesenchymal progenitors in skeletal muscle and revealed that fatty and fibrous connective tissue originates from these progenitors. Later, these progenitors were also demonstrated to be the major contributor to heterotopic ossification in skeletal muscle. Because nonmyogenic mesenchymal progenitors represent a distinct cell population from satellite cells, targeting these progenitors could be an ideal therapeutic strategy that specifically prevents pathological changes of skeletal muscle, while preserving satellite cell-dependent regeneration. In addition to their roles in pathogenesis of skeletal muscle, nonmyogenic mesenchymal progenitors may play a vital role in muscle regeneration by regulating satellite cell behavior. Conversely, muscle cells appear to regulate behavior of nonmyogenic mesenchymal progenitors. Thus, these cells regulate each other reciprocally and a proper balance between them is a key determinant of muscle integrity. Furthermore, nonmyogenic mesenchymal progenitors have been shown to maintain muscle mass in a steady homeostatic condition. Understanding the nature of nonmyogenic mesenchymal progenitors will provide valuable insight into the pathophysiology of skeletal muscle. In this review, we focus on nonmyogenic mesenchymal progenitors and discuss their roles in muscle pathogenesis, regeneration, and homeostasis. PMID

  14. Strategies for blood conservation in pediatric cardiac surgery

    PubMed Central

    Singh, Sarvesh Pal

    2016-01-01

    Cardiac surgery accounts for the majority of blood transfusions in a hospital. Blood transfusion has been associated with complications and major adverse events after cardiac surgery. Compared to adults it is more difficult to avoid blood transfusion in children after cardiac surgery. This article takes into account the challenges and emphasizes on the various strategies that could be implemented, to conserve blood during pediatric cardiac surgery. PMID:27716703

  15. Wnt signaling balances specification of the cardiac and pharyngeal muscle fields.

    PubMed

    Mandal, Amrita; Holowiecki, Andrew; Song, Yuntao Charlie; Waxman, Joshua S

    2017-02-01

    Canonical Wnt/β-catenin (Wnt) signaling plays multiple conserved roles during fate specification of cardiac progenitors in developing vertebrate embryos. Although lineage analysis in ascidians and mice has indicated there is a close relationship between the cardiac second heart field (SHF) and pharyngeal muscle (PM) progenitors, the signals underlying directional fate decisions of the cells within the cardio-pharyngeal muscle field in vertebrates are not yet understood. Here, we examined the temporal requirements of Wnt signaling in cardiac and PM development. In contrast to a previous report in chicken embryos that suggested Wnt inhibits PM development during somitogenesis, we find that in zebrafish embryos Wnt signaling is sufficient to repress PM development during anterior-posterior patterning. Importantly, the temporal sensitivity of dorso-anterior PMs to increased Wnt signaling largely overlaps with when Wnt signaling promotes specification of the adjacent cardiac progenitors. Furthermore, we find that excess early Wnt signaling can cell autonomously promote expansion of the first heart field (FHF) progenitors at the expense of PM and SHF within the anterior lateral plate mesoderm (ALPM). Our study provides insight into an antagonistic developmental mechanism that balances the sizes of the adjacent cardiac and PM progenitor fields in early vertebrate embryos.

  16. Myocardial hypoperfusion detected by cardiac computed tomography in an adult patient with heart failure after classic repair for corrected transposition of the great arteries.

    PubMed

    Okayama, Satoshi; Seno, Ayako; Soeda, Tsunenari; Takami, Yasuhiro; Horii, Manabu; Uemura, Shiro; Saito, Yoshihiko

    2011-08-01

    A 69-year-old male with a history of classic repair for corrected transposition of the great arteries (TGA) arrived at our hospital with dyspnoea upon exertion. Echocardiography revealed severe dilation and diffuse hypokinesis of the systemic ventricle without obvious valvular dysfunction. Cardiac computed tomography (CT) revealed no significant stenosis. However, the morphological right coronary artery (CA) on the left side was unequally distributed to the large systemic ventricle and was mostly obscured, especially on the anterior wall. A low attenuation area in the anterior wall of the systemic ventricle and prominent trabeculations suggested ischaemia or infarction. We considered that chronic myocardial hypoperfusion due to an inadequate coronary arterial supply was one cause of the exacerbated heart failure long after the classic repair. Cardiac CT is useful for evaluating the distribution of the CA and to predict blood supply to the myocardium in corrected TGA.

  17. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development.

    PubMed

    Mizoguchi, Toshihide; Pinho, Sandra; Ahmed, Jalal; Kunisaki, Yuya; Hanoun, Maher; Mendelson, Avital; Ono, Noriaki; Kronenberg, Henry M; Frenette, Paul S

    2014-05-12

    Mesenchymal stem and progenitor cells (MSPCs) contribute to bone marrow (BM) homeostasis by generating multiple types of stromal cells. MSPCs can be labeled in the adult BM by Nestin-GFP, whereas committed osteoblast progenitors are marked by Osterix expression. However, the developmental origin and hierarchical relationship of stromal cells remain largely unknown. Here, by using a lineage-tracing system, we describe three distinct waves of contributions of Osterix(+) cells in the BM. First, Osterix(+) progenitors in the fetal BM contribute to nascent bone tissues and transient stromal cells that are replaced in the adult marrow. Second, Osterix-expressing cells perinatally contribute to osteolineages and long-lived BM stroma, which have characteristics of Nestin-GFP(+) MSPCs. Third, Osterix labeling in the adult marrow is osteolineage-restricted, devoid of stromal contribution. These results uncover a broad expression profile of Osterix and raise the intriguing possibility that distinct waves of stromal cells, primitive and definitive, may organize the developing BM.

  18. Cardiac Rehabilitation

    MedlinePlus

    ... your risk of future heart problems, and to improve your health and quality of life. Cardiac rehabilitation programs increase ... exercise routine at home or at a local gym. You may also continue to ... health concerns. Education about nutrition, lifestyle and weight loss ...

  19. Tet1 Regulates Adult Hippocampal Neurogenesis and Cognition

    PubMed Central

    Zhang, Run-Rui; Cui, Qing-Yan; Murai, Kiyohito; Lim, Yen Ching; Smith, Zachary D.; Jin, Shengnan; Ye, Peng; Rosa, Luis; Lee, Yew Kok; Wu, Hai-Ping; Liu, Wei; Xu, Zhi-Mei; Yang, Lu; Ding, Yu-Qiang; Tang, Fuchou; Meissner, Alexander; Ding, Chunming; Shi, Yanhong; Xu, Guo-Liang

    2015-01-01

    SUMMARY DNA hydroxylation catalyzed by Tet dioxygenases occurs abundantly in embryonic stem cells and neurons in mammals. However, its biological function in vivo is largely unknown. Here we demonstrate that Tet1 plays an important role in regulating neural progenitor cell proliferation in adult mouse brain. Mice lacking Tet1 exhibit impaired hippocampal neurogenesis accompanied by poor learning and memory. In adult neural progenitor cells deficient in Tet1, a cohort of genes involved in progenitor proliferation were hypermethylated and down-regulated. Our results indicate that Tet1 is positively involved in the epigenetic regulation of neural progenitor cell proliferation in the adult brain. PMID:23770080

  20. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy.

    PubMed

    Kirk, Edwin P; Sunde, Margaret; Costa, Mauro W; Rankin, Scott A; Wolstein, Orit; Castro, M Leticia; Butler, Tanya L; Hyun, Changbaig; Guo, Guanglan; Otway, Robyn; Mackay, Joel P; Waddell, Leigh B; Cole, Andrew D; Hayward, Christopher; Keogh, Anne; Macdonald, Peter; Griffiths, Lyn; Fatkin, Diane; Sholler, Gary F; Zorn, Aaron M; Feneley, Michael P; Winlaw, David S; Harvey, Richard P

    2007-08-01

    The T-box family transcription factor gene TBX20 acts in a conserved regulatory network, guiding heart formation and patterning in diverse species. Mouse Tbx20 is expressed in cardiac progenitor cells, differentiating cardiomyocytes, and developing valvular tissue, and its deletion or RNA interference-mediated knockdown is catastrophic for heart development. TBX20 interacts physically, functionally, and genetically with other cardiac transcription factors, including NKX2-5, GATA4, and TBX5, mutations of which cause congenital heart disease (CHD). Here, we report nonsense (Q195X) and missense (I152M) germline mutations within the T-box DNA-binding domain of human TBX20 that were associated with a family history of CHD and a complex spectrum of developmental anomalies, including defects in septation, chamber growth, and valvulogenesis. Biophysical characterization of wild-type and mutant proteins indicated how the missense mutation disrupts the structure and function of the TBX20 T-box. Dilated cardiomyopathy was a feature of the TBX20 mutant phenotype in humans and mice, suggesting that mutations in developmental transcription factors can provide a sensitized template for adult-onset heart disease. Our findings are the first to link TBX20 mutations to human pathology. They provide insights into how mutation of different genes in an interactive regulatory circuit lead to diverse clinical phenotypes, with implications for diagnosis, genetic screening, and patient follow-up.

  1. Stem cell sources for cardiac regeneration.

    PubMed

    Roccio, M; Goumans, M J; Sluijter, J P G; Doevendans, P A

    2008-03-01

    Cell-based cardiac repair has the ambitious aim to replace the malfunctioning cardiac muscle developed after myocardial infarction, with new contractile cardiomyocytes and vessels. Different stem cell populations have been intensively studied in the last decade as a potential source of new cardiomyocytes to ameliorate the injured myocardium, compensate for the loss of ventricular mass and contractility and eventually restore cardiac function. An array of cell types has been explored in this respect, including skeletal muscle, bone marrow derived stem cells, embryonic stem cells (ESC) and more recently cardiac progenitor cells. The best-studied cell types are mouse and human ESC cells, which have undisputedly been demonstrated to differentiate into cardiomyocyte and vascular lineages and have been of great help to understand the differentiation process of pluripotent cells. However, due to their immunogenicity, risk of tumor development and the ethical challenge arising from their embryonic origin, they do not provide a suitable cell source for a regenerative therapy approach. A better option, overcoming ethical and allogenicity problems, seems to be provided by bone marrow derived cells and by the recently identified cardiac precursors. This report will overview current knowledge on these different cell types and their application in cardiac regeneration and address issues like implementation of delivery methods, including tissue engineering approaches that need to be developed alongside.

  2. Stem Cells and Progenitor Cells for Tissue-Engineered Solutions to Congenital Heart Defects

    PubMed Central

    Gao, Yang; Jacot, Jeffrey G

    2015-01-01

    Synthetic patches and fixed grafts currently used in the repair of congenital heart defects are nonliving, noncontractile, and not electrically responsive, leading to increased risk of complication, reoperation, and sudden cardiac death. Studies suggest that tissue-engineered patches made from living, functional cells could grow with the patient, facilitate healing, and help recover cardiac function. In this paper, we review the research into possible sources of cardiomyocytes and other cardiac cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, adipose-derived stem cells, umbilical cord blood cells, amniotic fluid-derived stem cells, and cardiac progenitor cells. Each cell source has advantages, but also has technical hurdles to overcome, including heterogeneity, functional maturity, immunogenicity, and pathogenicity. Additionally, biomaterials used as patch materials will need to attract and support desired cells and induce minimal immune responses. PMID:26379417

  3. BMI is a Better Indicator of Cardiac Risk Factors, as against Elevated Blood Pressure in Apparently Healthy Female Adolescents and Young Adult Students: Results From a Cross-Sectional Study in Tripura

    PubMed Central

    Debnath, Surajit

    2016-01-01

    Background: Anthropometric measures are used as indicators of elevated blood pressure, but reported to have variable sensitivity among populations. This study was undertaken to identify the better indicator of Cardiac-risk factors by statistical comparison of BMI, Waist circumference, and Waist to Height (WtHr) ratio in apparently healthy adolescents and young adult female students of Tripura. Materials and Methods: A cross-sectional study was conducted in a resource limited setup on 210 apparently healthy female adolescents and young adult students in Tripura. Mean (±SD) of all parameters were compared (ANOVA) to recognize significant independent (anthropometric measures) and dependent factors (blood pressure indices and so on). Correlation (r) analysis was used to identify the better (p) indicator of blood pressure indices (dependent variable) and its impact was assessed by Multiple Regression analysis. Results: blood pressure indices are comparatively higher in obese and overweight participants with statistically significant (95.5% confidence) mean differences. Significant correlation with dependent factors is observed with BMI followed by WtHr and Waist Circumference. Impact of anthropometric measures with blood pressure Indices is most significant for BMI (P ≤ 0.020) followed by WtHr (P ≤ 0.500) and waist circumference (P ≤ 0.520). Conclusion: BMI is a superior indicator of blood pressure indices and can identify participants at risk even in apparently healthy adolescent and young adult females. PMID:27890980

  4. CARDIAC-LIKE OSCILLATION IN LIVER STEM CELLS INDUCE THEIR ACQUISITION OF CARDIAC PHENOTYPE

    EPA Science Inventory

    We examined in a cardiac microenvironment the plasticity of a liver stem cell line (WB F344) generated from a cloned, single, non-parenchymal epithelial cell from a normal adult male rat. Our previous studies suggested that WB F344 cells acquire a cardiac phenotype in the absenc...

  5. Dynamic gene expression by putative hair-cell progenitors during regeneration in the zebrafish lateral line.

    PubMed

    Steiner, Aaron B; Kim, Taeryn; Cabot, Victoria; Hudspeth, A J

    2014-04-08

    Hearing loss is most commonly caused by the destruction of mechanosensory hair cells in the ear. This condition is usually permanent: Despite the presence of putative hair-cell progenitors in the cochlea, hair cells are not naturally replenished in adult mammals. Unlike those of the mammalian ear, the progenitor cells of nonmammalian vertebrates can regenerate hair cells throughout life. The basis of this difference remains largely unexplored but may lie in molecular dissimilarities that affect how progenitors respond to hair-cell death. To approach this issue, we analyzed gene expression in hair-cell progenitors of the lateral-line system. We developed a transgenic line of zebrafish that expresses a red fluorescent protein in the presumptive hair-cell progenitors known as mantle cells. Fluorescence-activated cell sorting from the skins of transgenic larvae, followed by microarray-based expression analysis, revealed a constellation of transcripts that are specifically enriched in these cells. Gene expression analysis after hair-cell ablation uncovered a cohort of genes that are differentially regulated early in regeneration, suggesting possible roles in the response of progenitors to hair-cell death. These results provide a resource for studying hair-cell regeneration and the biology of sensory progenitor cells.

  6. Dynamic gene expression by putative hair-cell progenitors during regeneration in the zebrafish lateral line

    PubMed Central

    Kim, Taeryn; Cabot, Victoria; Hudspeth, A. J.

    2014-01-01

    Hearing loss is most commonly caused by the destruction of mechanosensory hair cells in the ear. This condition is usually permanent: Despite the presence of putative hair-cell progenitors in the cochlea, hair cells are not naturally replenished in adult mammals. Unlike those of the mammalian ear, the progenitor cells of nonmammalian vertebrates can regenerate hair cells throughout life. The basis of this difference remains largely unexplored but may lie in molecular dissimilarities that affect how progenitors respond to hair-cell death. To approach this issue, we analyzed gene expression in hair-cell progenitors of the lateral-line system. We developed a transgenic line of zebrafish that expresses a red fluorescent protein in the presumptive hair-cell progenitors known as mantle cells. Fluorescence-activated cell sorting from the skins of transgenic larvae, followed by microarray-based expression analysis, revealed a constellation of transcripts that are specifically enriched in these cells. Gene expression analysis after hair-cell ablation uncovered a cohort of genes that are differentially regulated early in regeneration, suggesting possible roles in the response of progenitors to hair-cell death. These results provide a resource for studying hair-cell regeneration and the biology of sensory progenitor cells. PMID:24706895

  7. Nf2/Merlin controls progenitor homeostasis and tumorigenesis in the liver

    PubMed Central

    Benhamouche, Samira; Curto, Marcello; Saotome, Ichiko; Gladden, Andrew B.; Liu, Ching-Hui; Giovannini, Marco; McClatchey, Andrea I.

    2010-01-01

    The molecular signals that control the maintenance and activation of liver stem/progenitor cells are poorly understood, and the role of liver progenitor cells in hepatic tumorigenesis is unclear. We report here that liver-specific deletion of the neurofibromatosis type 2 (Nf2) tumor suppressor gene in the developing or adult mouse specifically yields a dramatic, progressive expansion of progenitor cells throughout the liver without affecting differentiated hepatocytes. All surviving mice eventually developed both cholangiocellular and hepatocellular carcinoma, suggesting that Nf2−/− progenitors can be a cell of origin for these tumors. Despite the suggested link between Nf2 and the Hpo/Wts/Yki signaling pathway in Drosophila, and recent studies linking the corresponding Mst/Lats/Yap pathway to mammalian liver tumorigenesis, our molecular studies suggest that Merlin is not a major regulator of YAP in liver progenitors, and that the overproliferation of Nf2−/− liver