Science.gov

Sample records for adult cns neurons

  1. Neuronal intrinsic barriers for axon regeneration in the adult CNS

    PubMed Central

    Sun, Fang; He, Zhigang

    2010-01-01

    A major reason for the devastating and permanent disabilities after spinal cord and other types of CNS injury is the failure of injured axons to regenerate and to re-build the functional circuits. Thus, a long-standing goal has been to develop strategies that could promote axon regeneration and restore functions. Recent studies revealed that simply removing extracellular inhibitory activities is insufficient for successful axon regeneration in the adult CNS. On the other side, evidence from different species and different models is accumulating to support the notion that diminished intrinsic regenerative ability of mature neurons is a major contributor to regeneration failure. This review will summarize the molecular mechanisms regulating intrinsic axon growth capacity in the adult CNS and discuss potential implications for therapeutic strategies. PMID:20418094

  2. Highly efficient transduction of primary adult CNS and PNS neurons

    PubMed Central

    Levin, Evgeny; Diekmann, Heike; Fischer, Dietmar

    2016-01-01

    Delivery and expression of recombinant genes, a key methodology for many applications in biological research, remains a challenge especially for mature neurons. Here, we report easy, highly efficient and well tolerated transduction of adult peripheral and central neuronal populations of diverse species in culture using VSV-G pseudo-typed, recombinant baculovirus (BacMam). Transduction rates of up to 80% were reliably achieved at high multiplicity of infection without apparent neuro-cytopathic effects. Neurons could be transduced either shortly after plating or after several days in culture. Co-incubation with two different baculoviruses attained near complete co-localization of fluorescent protein expression, indicating multigene delivery. Finally, evidence for functional protein expression is provided by means of cre-mediated genetic recombination and neurite outgrowth assays. Recombinant protein was already detected within hours after transduction, thereby enabling functional readouts even in relatively short-lived neuronal cultures. Altogether, these results substantiate the usefulness of baculovirus-mediated transduction of mature neurons for future research in neuroscience. PMID:27958330

  3. The adult CNS retains the potential to direct region-specific differentiation of a transplanted neuronal precursor cell line.

    PubMed

    Shihabuddin, L S; Hertz, J A; Holets, V R; Whittemore, S R

    1995-10-01

    The chronic survival and differentiation of the conditionally immortalized neuronal cell line, RN33B, was examined following transplantation into the adult and neonatal rat hippocampus and cerebral cortex. In clonal culture, differentiated RN33B cells express p75NTR and trkB mRNA and protein, and respond to brain-derived neurotrophic factor treatment by inducing c-fos mRNA. Transplanted cells, identified using immunohistochemistry to detect beta-galactosidase expression, were seen in most animals up to 24 weeks posttransplantation (the latest time point examined). Stably integrated cells with various morphologies consistent with their transplantation site were observed. In the cerebral cortex, many RN33B cells differentiated with morphologies similar to pyramidal neurons and stellate cells. In the hippocampal formation, many RN33B cells assumed morphologies similar to pyramidal neurons characteristic of CA1 and CA3 regions, granular cell layer neurons of the dentate gyrus, and polymorphic neurons of the hilar region. Identical morphologies were observed in both adult and neonatal hosts, although a greater percentage of beta-galactosidase immunoreactive cells had differentiated in the neonatal brains. These results suggest that RN33B cells have the developmental plasticity to respond to local microenvironmental signals and that the adult brain retains the capacity to direct the differentiation of neuronal precursor cells in a direction that is consistent with that of endogenous neurons.

  4. Erythropoietin promotes regeneration of adult CNS neurons via Jak2/Stat3 and PI3K/AKT pathway activation.

    PubMed

    Kretz, Alexandra; Happold, Caroline J; Marticke, Julia K; Isenmann, Stefan

    2005-08-01

    The cytokine hormone erythropoietin (EPO) has proved neuroprotective in CNS injury, and clinical trials for ischemic stroke are ongoing. The capability of EPO to restore postmitotic CNS architecture and function by fibre regeneration has not been examined. Here, we compared in vitro outgrowth capacity of adult retinal ganglion cells (RGCs) following optic nerve (ON) lesion in the presence and absence of EPO. Immediate EPO conditioning in vivo, or delayed EPO treatment of cultures with 10--10,000 IU rhEPO significantly increased numbers (2.66-fold) and length (8.31-fold) of newly generated neurites, without evoking rheological complications. EPO induced Stat3 phosphorylation in RGCs, and inhibition of Jak2/Stat3 abolished EPO-induced growth. EPO-facilitated neuritogenesis was paralleled by upregulation of Bcl-X(L), a Bcl-2 homologue capable of promoting RGC regeneration. The PI3K/Akt pathway was also involved in antiapoptotic and regeneration-enhancing EPO actions. In conclusion, EPO treatment may offer a unique dual-function strategy for neuroprotection and regeneration.

  5. Long-term fate of neural precursor cells following transplantation into developing and adult CNS.

    PubMed

    Lepore, A C; Neuhuber, B; Connors, T M; Han, S S W; Liu, Y; Daniels, M P; Rao, M S; Fischer, I

    2006-05-12

    Successful strategies for transplantation of neural precursor cells for replacement of lost or dysfunctional CNS cells require long-term survival of grafted cells and integration with the host system, potentially for the life of the recipient. It is also important to demonstrate that transplants do not result in adverse outcomes. Few studies have examined the long-term properties of transplanted neural precursor cells in the CNS, particularly in non-neurogenic regions of the adult. The aim of the present study was to extensively characterize the fate of defined populations of neural precursor cells following transplantation into the developing and adult CNS (brain and spinal cord) for up to 15 months, including integration of graft-derived neurons with the host. Specifically, we employed neuronal-restricted precursors and glial-restricted precursors, which represent neural precursor cells with lineage restrictions for neuronal and glial fate, respectively. Transplanted cells were prepared from embryonic day-13.5 fetal spinal cord of transgenic donor rats that express the marker gene human placental alkaline phosphatase to achieve stable and reliable graft tracking. We found that in both developing and adult CNS grafted cells showed long-term survival, morphological maturation, extensive distribution and differentiation into all mature CNS cell types (neurons, astrocytes and oligodendrocytes). Graft-derived neurons also formed synapses, as identified by electron microscopy, suggesting that transplanted neural precursor cells integrated with adult CNS. Furthermore, grafts did not result in any apparent deleterious outcomes. We did not detect tumor formation, cells did not localize to unwanted locations and no pronounced immune response was present at the graft sites. The long-term stability of neuronal-restricted precursors and glial-restricted precursors and the lack of adverse effects suggest that transplantation of lineage-restricted neural precursor cells can

  6. Regeneration of Zebrafish CNS: Adult Neurogenesis

    PubMed Central

    Ghosh, Sukla; Hui, Subhra Prakash

    2016-01-01

    Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming. PMID:27382491

  7. Axonal Localization of Integrins in the CNS Is Neuronal Type and Age Dependent

    PubMed Central

    Soleman, Sara; Mason, Matthew R. J.; Verhaagen, Joost; Bensadoun, Jean-Charles; Aebischer, Patrick

    2016-01-01

    The regenerative ability of CNS axons decreases with age, however, this ability remains largely intact in PNS axons throughout adulthood. These differences are likely to correspond with age-related silencing of proteins necessary for axon growth and elongation. In previous studies, it has been shown that reintroduction of the α9 integrin subunit (tenascin-C receptor, α9) that is downregulated in adult CNS can improve neurite outgrowth and sensory axon regeneration after a dorsal rhizotomy or a dorsal column crush spinal cord lesion. In the current study, we demonstrate that virally expressed integrins (α9, α6, or β1 integrin) in the adult rat sensorimotor cortex and adult red nucleus are excluded from axons following neuronal transduction. Attempts to stimulate transport by inclusion of a cervical spinal injury and thus an upregulation of extracellular matrix molecules at the lesion site, or cotransduction with its binding partner, β1 integrin, did not induce integrin localization within axons. In contrast, virally expressed α9 integrin in developing rat cortex (postnatal day 5 or 10) demonstrated clear localization of integrins in cortical axons revealed by the presence of integrin in the axons of the corpus callosum and internal capsule, as well as in the neuronal cell body. Furthermore, examination of dorsal root ganglia neurons and retinal ganglion cells demonstrated integrin localization both within peripheral nerve as well as dorsal root axons and within optic nerve axons, respectively. Together, our results suggest a differential ability for in vivo axonal transport of transmembrane proteins dependent on neuronal age and subtype. PMID:27570822

  8. CXCR4/CXCR7 molecular involvement in neuronal and neural progenitor migration: focus in CNS repair.

    PubMed

    Merino, José Joaquín; Bellver-Landete, Victor; Oset-Gasque, María Jesús; Cubelos, Beatriz

    2015-01-01

    In the adult brain, neural progenitor cells (NPCs) reside in the subventricular zone (SVZ) of the lateral ventricles, the dentate gyrus and the olfactory bulb. Following CNS insult, NPCs from the SVZ can migrate along the rostral migratory stream (RMS), a migration of NPCs that is directed by proinflammatory cytokines. Cells expressing CXCR4 follow a homing signal that ultimately leads to neuronal integration and CNS repair, although such molecules can also promote NPC quiescence. The ligand, SDF1 alpha (or CXCL12) is one of the chemokines secreted at sites of injury that it is known to attract NSC-derived neuroblasts, cells that express CXCR4. In function of its concentration, CXCL12 can induce different responses, promoting NPC migration at low concentrations while favoring cell adhesion via EGF and the alpha 6 integrin at high CXCL12 concentrations. However, the preclinical effectiveness of chemokines and their relationship with NPC mobilization requires further study, particularly with respect to CNS repair. NPC migration may also be affected by the release of cytokines or chemokines induced by local inflammation, through autocrine or paracrine mechanisms, as well as through erythropoietin (EPO) or nitric oxide (NO) release. CXCL12 activity requires G-coupled proteins and the availability of its ligand may be modulated by its binding to CXCR7, for which it shows a stronger affinity than for CXCR4.

  9. MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4.

    PubMed

    Walsh, James T; Hendrix, Sven; Boato, Francesco; Smirnov, Igor; Zheng, Jingjing; Lukens, John R; Gadani, Sachin; Hechler, Daniel; Gölz, Greta; Rosenberger, Karen; Kammertöns, Thomas; Vogt, Johannes; Vogelaar, Christina; Siffrin, Volker; Radjavi, Ali; Fernandez-Castaneda, Anthony; Gaultier, Alban; Gold, Ralf; Kanneganti, Thirumala-Devi; Nitsch, Robert; Zipp, Frauke; Kipnis, Jonathan

    2015-02-01

    A body of experimental evidence suggests that T cells mediate neuroprotection following CNS injury; however, the antigen specificity of these T cells and how they mediate neuroprotection are unknown. Here, we have provided evidence that T cell-mediated neuroprotection after CNS injury can occur independently of major histocompatibility class II (MHCII) signaling to T cell receptors (TCRs). Using two murine models of CNS injury, we determined that damage-associated molecular mediators that originate from injured CNS tissue induce a population of neuroprotective, IL-4-producing T cells in an antigen-independent fashion. Compared with wild-type mice, IL-4-deficient animals had decreased functional recovery following CNS injury; however, transfer of CD4+ T cells from wild-type mice, but not from IL-4-deficient mice, enhanced neuronal survival. Using a culture-based system, we determined that T cell-derived IL-4 protects and induces recovery of injured neurons by activation of neuronal IL-4 receptors, which potentiated neurotrophin signaling via the AKT and MAPK pathways. Together, these findings demonstrate that damage-associated molecules from the injured CNS induce a neuroprotective T cell response that is independent of MHCII/TCR interactions and is MyD88 dependent. Moreover, our results indicate that IL-4 mediates neuroprotection and recovery of the injured CNS and suggest that strategies to enhance IL-4-producing CD4+ T cells have potential to attenuate axonal damage in the course of CNS injury in trauma, inflammation, or neurodegeneration.

  10. Neuron-specific SALM5 limits inflammation in the CNS via its interaction with HVEM.

    PubMed

    Zhu, Yuwen; Yao, Sheng; Augustine, Mathew M; Xu, Haiying; Wang, Jun; Sun, Jingwei; Broadwater, Megan; Ruff, William; Luo, Liqun; Zhu, Gefeng; Tamada, Koji; Chen, Lieping

    2016-04-01

    The central nervous system (CNS) is an immune-privileged organ with the capacity to prevent excessive inflammation. Aside from the blood-brain barrier, active immunosuppressive mechanisms remain largely unknown. We report that a neuron-specific molecule, synaptic adhesion-like molecule 5 (SALM5), is a crucial contributor to CNS immune privilege. We found that SALM5 suppressed lipopolysaccharide-induced inflammatory responses in the CNS and that a SALM-specific monoclonal antibody promoted inflammation in the CNS, and thereby aggravated clinical symptoms of mouse experimental autoimmune encephalomyelitis. In addition, we identified herpes virus entry mediator as a functional receptor that mediates SALM5's suppressive function. Our findings reveal a molecular link between the neuronal system and the immune system, and provide potential therapeutic targets for the control of CNS diseases.

  11. Live or let die - retinal ganglion cell death and survival during development and in the lesioned adult CNS.

    PubMed

    Bähr, M

    2000-10-01

    Programmed cell death or apoptosis is a common and widespread phenomenon that is important for proper development of the nervous system. In the adult CNS, however, apoptosis contributes to secondary cell loss after various types of lesions. The retino-tectal system has been successfully used as a convenient model system to study the molecular mechanisms of neuronal apoptosis and survival during development and in the lesioned adult CNS. This review describes the current knowledge about the interactions of cell death and survival pathways in general and for retinal ganglion cells specifically.

  12. The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS.

    PubMed

    Holmseth, Silvia; Dehnes, Yvette; Huang, Yanhua H; Follin-Arbelet, Virginie V; Grutle, Nina J; Mylonakou, Maria N; Plachez, Celine; Zhou, Yun; Furness, David N; Bergles, Dwight E; Lehre, Knut P; Danbolt, Niels C

    2012-04-25

    The extracellular levels of excitatory amino acids are kept low by the action of the glutamate transporters. Glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) are the most abundant subtypes and are essential for the functioning of the mammalian CNS, but the contribution of the EAAC1 subtype in the clearance of synaptic glutamate has remained controversial, because the density of this transporter in different tissues has not been determined. We used purified EAAC1 protein as a standard during immunoblotting to measure the concentration of EAAC1 in different CNS regions. The highest EAAC1 levels were found in the young adult rat hippocampus. Here, the concentration of EAAC1 was ∼0.013 mg/g tissue (∼130 molecules μm⁻³), 100 times lower than that of GLT-1. Unlike GLT-1 expression, which increases in parallel with circuit formation, only minor changes in the concentration of EAAC1 were observed from E18 to adulthood. In hippocampal slices, photolysis of MNI-D-aspartate (4-methoxy-7-nitroindolinyl-D-aspartate) failed to elicit EAAC1-mediated transporter currents in CA1 pyramidal neurons, and D-aspartate uptake was not detected electron microscopically in spines. Using EAAC1 knock-out mice as negative controls to establish antibody specificity, we show that these relatively small amounts of EAAC1 protein are widely distributed in somata and dendrites of all hippocampal neurons. These findings raise new questions about how so few transporters can influence the activation of NMDA receptors at excitatory synapses.

  13. Adult myelination: wrapping up neuronal plasticity

    PubMed Central

    O’Rourke, Megan; Gasperini, Robert; Young, Kaylene M.

    2014-01-01

    In this review, we outline the major neural plasticity mechanisms that have been identified in the adult central nervous system (CNS), and offer a perspective on how they regulate CNS function. In particular we examine how myelin plasticity can operate alongside neurogenesis and synaptic plasticity to influence information processing and transfer in the mature CNS. PMID:25221576

  14. Consequences of brain-derived neurotrophic factor withdrawal in CNS neurons and implications in disease.

    PubMed

    Mariga, Abigail; Mitre, Mariela; Chao, Moses V

    2017-01-01

    Growth factor withdrawal has been studied across different species and has been shown to have dramatic consequences on cell survival. In the nervous system, withdrawal of nerve growth factor (NGF) from sympathetic and sensory neurons results in substantial neuronal cell death, signifying a requirement for NGF for the survival of neurons in the peripheral nervous system (PNS). In contrast to the PNS, withdrawal of central nervous system (CNS) enriched brain-derived neurotrophic factor (BDNF) has little effect on cell survival but is indispensible for synaptic plasticity. Given that most early events in neuropsychiatric disorders are marked by a loss of synapses, lack of BDNF may thus be an important part of a cascade of events that leads to neuronal degeneration. Here we review reports on the effects of BDNF withdrawal on CNS neurons and discuss the relevance of the loss in disease.

  15. Consequences of brain-derived neurotrophic factor withdrawal in CNS neurons and implications in disease

    PubMed Central

    Mariga, Abigail; Mitre, Mariela; Chao, Moses V.

    2017-01-01

    Growth factor withdrawal has been studied across different species and has been shown to have dramatic consequences on cell survival. In the nervous system, withdrawal of nerve growth factor (NGF) from sympathetic and sensory neurons results in substantial neuronal cell death, signifying a requirement for NGF for the survival of neurons in the peripheral nervous system (PNS). In contrast to the PNS, withdrawal of central nervous system (CNS) enriched brain-derived neurotrophic factor (BDNF) has little effect on cell survival but is indispensible for synaptic plasticity. Given that most early events in neuropsychiatric disorders are marked by a loss of synapses, lack of BDNF may thus be an important part of a cascade of events that leads to neuronal degeneration. Here we review reports on the effects of BDNF withdrawal on CNS neurons and discuss the relevance of the loss in disease. PMID:27015693

  16. MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4

    PubMed Central

    Walsh, James T.; Hendrix, Sven; Boato, Francesco; Smirnov, Igor; Zheng, Jingjing; Lukens, John R.; Gadani, Sachin; Hechler, Daniel; Gölz, Greta; Rosenberger, Karen; Kammertöns, Thomas; Vogt, Johannes; Vogelaar, Christina; Siffrin, Volker; Radjavi, Ali; Fernandez-Castaneda, Anthony; Gaultier, Alban; Gold, Ralf; Kanneganti, Thirumala-Devi; Nitsch, Robert; Zipp, Frauke; Kipnis, Jonathan

    2015-01-01

    A body of experimental evidence suggests that T cells mediate neuroprotection following CNS injury; however, the antigen specificity of these T cells and how they mediate neuroprotection are unknown. Here, we have provided evidence that T cell–mediated neuroprotection after CNS injury can occur independently of major histocompatibility class II (MHCII) signaling to T cell receptors (TCRs). Using two murine models of CNS injury, we determined that damage-associated molecular mediators that originate from injured CNS tissue induce a population of neuroprotective, IL-4–producing T cells in an antigen-independent fashion. Compared with wild-type mice, IL-4–deficient animals had decreased functional recovery following CNS injury; however, transfer of CD4+ T cells from wild-type mice, but not from IL-4–deficient mice, enhanced neuronal survival. Using a culture-based system, we determined that T cell–derived IL-4 protects and induces recovery of injured neurons by activation of neuronal IL-4 receptors, which potentiated neurotrophin signaling via the AKT and MAPK pathways. Together, these findings demonstrate that damage-associated molecules from the injured CNS induce a neuroprotective T cell response that is independent of MHCII/TCR interactions and is MyD88 dependent. Moreover, our results indicate that IL-4 mediates neuroprotection and recovery of the injured CNS and suggest that strategies to enhance IL-4–producing CD4+ T cells have potential to attenuate axonal damage in the course of CNS injury in trauma, inflammation, or neurodegeneration. PMID:25607842

  17. Studying neuronal biomechanics and its role in CNS development

    NASA Astrophysics Data System (ADS)

    Franze, Kristian; Svoboda, Hanno; da F. Costa, Luciano; Guck, Jochen; Holt, Christine

    2013-03-01

    During the development of the nervous system, neurons migrate and grow over great distances. Currently, our understanding of nervous tissue development is, in large part, based on studies of biochemical signaling. Despite the fact that forces are involved in any kind of cell motion, mechanical aspects have so far rarely been considered. Here we used deformable cell culture substrates, traction force microscopy and calcium imaging to investigate how neurons probe and respond to their mechanical environment. While the growth rate of retinal ganglion cell axons was increased on stiffer substrates, their tendency to grow in bundles, which they show in vivo, was significantly enhanced on more compliant substrates. Moreover, if grown on substrates incorporating linear stiffness gradients, neuronal axons were repelled by stiff substrates. Mechanosensing involved the application of forces driven by the interaction of actin and myosin II, and the activation of stretch-activated ion channels leading to calcium influxes into the cells. Applying a modified atomic force microscopy techniquein vivo, we found mechanical gradients in developing brain tissue along which neurons grow. The application of chondroitin sulfate, which is a major extracellular matrix component in the developing brain, changed tissue mechanics and disrupted axonal pathfinding. Hence, our data suggest that neuronal growth is not only guided by chemical signals - as it is currently assumed - but also by the nervous tissue's mechanical properties.

  18. Selective transduction of astrocytic and neuronal CNS subpopulations by lentiviral vectors pseudotyped with Chikungunya virus envelope.

    PubMed

    Eleftheriadou, Ioanna; Dieringer, Michael; Poh, Xuan Ying; Sanchez-Garrido, Julia; Gao, Yunan; Sgourou, Argyro; Simmons, Laura E; Mazarakis, Nicholas D

    2017-04-01

    Lentiviral vectors are gene delivery vehicles that integrate into the host genome of dividing and non-dividing mammalian cells facilitating long-term transgene expression. Lentiviral vector versatility is greatly increased by incorporating heterologous viral envelope proteins onto the vector particles instead of the native envelope, conferring on these pseudotyped vectors a modified tropism and host range specificity. We investigated the pseudotyping efficiency of HIV-1 based lentiviral vectors with alphaviral envelope proteins from the Chikungunya Virus (CHIKV-G) and Sindbis Virus (SINV-G). Following vector production optimisation, titres for the CHIKV-G pseudotype were comparable to the VSV-G pseudotype but those for the SINV-G pseudotype were significantly lower. High titre CHIKV-G pseudotyped vector efficiently transduced various human and mouse neural cell lines and normal human astrocytes (NHA) in vitro. Although transduction was broad, tropism for NHAs was observed. In vivo stereotaxic delivery in striatum, thalamus and hippocampus respectively in the adult rat brain revealed localised transduction restricted to striatal astrocytes and hippocampal dentate granule neurons. Transduction of different subtypes of granule neurons from precursor to post-mitotic stages of differentiation was evident in the sub-granular zone and dentate granule cell layer. No significant inflammatory response was observed, but comparable to that of VSV-G pseudotyped lentiviral vectors. Robust long-term expression followed for three months post-transduction along with absence of neuroinflammation, coupled to the selective and unique neuron/glial tropism indicates that these vectors could be useful for modelling and gene therapy studies in the CNS.

  19. A patterned recombinant human IgM guides neurite outgrowth of CNS neurons

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohua; Wittenberg, Nathan J.; Jordan, Luke R.; Kumar, Shailabh; Watzlawik, Jens O.; Warrington, Arthur E.; Oh, Sang-Hyun; Rodriguez, Moses

    2013-07-01

    Matrix molecules convey biochemical and physical guiding signals to neurons in the central nervous system (CNS) and shape the trajectory of neuronal fibers that constitute neural networks. We have developed recombinant human IgMs that bind to epitopes on neural cells, with the aim of treating neurological diseases. Here we test the hypothesis that recombinant human IgMs (rHIgM) can guide neurite outgrowth of CNS neurons. Microcontact printing was employed to pattern rHIgM12 and rHIgM22, antibodies that were bioengineered to have variable regions capable of binding to neurons or oligodendrocytes, respectively. rHIgM12 promoted neuronal attachment and guided outgrowth of neurites from hippocampal neurons. Processes from spinal neurons followed grid patterns of rHIgM12 and formed a physical network. Comparison between rHIgM12 and rHIgM22 suggested the biochemistry that facilitates anchoring the neuronal surfaces is a prerequisite for the function of IgM, and spatial properties cooperate in guiding the assembly of neuronal networks.

  20. Endothelial β-Catenin Signaling Is Required for Maintaining Adult Blood-Brain Barrier Integrity and CNS Homeostasis

    PubMed Central

    Tran, Khiem A.; Zhang, Xianming; Predescu, Dan; Huang, Xiaojia; Machado, Roberto F.; Göthert, Joachim R.; Malik, Asrar B.; Valyi-Nagy, Tibor; Zhao, You-Yang

    2015-01-01

    Background The blood-brain barrier (BBB) formed by brain endothelial cells (ECs) interconnected by tight junctions (TJs) is essential for the homeostasis of the central nervous system (CNS). Although studies have shown the importance of various signaling molecules in BBB formation during development, little is known about the molecular basis regulating the integrity of the adult BBB. Methods and Results Using a mouse model with tamoxifen-inducible EC-restricted disruption of ctnnb1 (iCKO), here we show that endothelial β-catenin signaling is essential for maintaining BBB integrity and CNS homeostasis in adult. The iCKO mice developed severe seizures accompanied by neuronal injury, multiple brain petechial hemorrhages, and CNS inflammation, and all died postictal. Disruption of endothelial β-catenin induced BBB breakdown and downregulation of specific TJ proteins Claudin-1 and -3 in adult brain ECs. The clinical relevance of the data is indicated by the observation of decreased expression of Claudin-1 and nuclear β-catenin in brain ECs of hemorrhagic lesions of hemorrhagic stroke patients. Conclusion These results demonstrate the prerequisite role of endothelial β-catenin in maintaining the integrity of adult BBB. The results suggest that BBB dysfunction secondary to defective β-catenin transcription activity is a key pathogenic factor in hemorrhagic stroke, seizure activity and CNS inflammation. PMID:26538583

  1. Non-neuronal Cells in ALS: Role of Glial, Immune cells and Blood-CNS Barriers.

    PubMed

    Puentes, Fabiola; Malaspina, Andrea; van Noort, Johannes M; Amor, Sandra

    2016-03-01

    Neurological dysfunction and motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is strongly associated with neuroinflammation reflected by activated microglia and astrocytes in the CNS. In ALS endogenous triggers in the CNS such as aggregated protein and misfolded proteins activate a pathogenic response by innate immune cells. However, there is also strong evidence for a neuroprotective immune response in ALS. Emerging evidence also reveals changes in the peripheral adaptive immune responses as well as alterations in the blood brain barrier that may aid traffic of lymphocytes and antibodies into the CNS. Understanding the triggers of neuroinflammation is key to controlling neuronal loss. Here, we review the current knowledge regarding the roles of non-neuronal cells as well as the innate and adaptive immune responses in ALS. Existing ALS animal models, in particular genetic rodent models, are very useful to study the underlying pathogenic mechanisms of motor neuron degeneration. We also discuss the approaches used to target the pathogenic immune responses and boost the neuroprotective immune pathways as novel immunotherapies for ALS.

  2. Analysis of dendritic spine morphology in cultured CNS neurons.

    PubMed

    Srivastava, Deepak P; Woolfrey, Kevin M; Penzes, Peter

    2011-07-13

    Dendritic spines are the sites of the majority of excitatory connections within the brain, and form the post-synaptic compartment of synapses. These structures are rich in actin and have been shown to be highly dynamic. In response to classical Hebbian plasticity as well as neuromodulatory signals, dendritic spines can change shape and number, which is thought to be critical for the refinement of neural circuits and the processing and storage of information within the brain. Within dendritic spines, a complex network of proteins link extracellular signals with the actin cyctoskeleton allowing for control of dendritic spine morphology and number. Neuropathological studies have demonstrated that a number of disease states, ranging from schizophrenia to autism spectrum disorders, display abnormal dendritic spine morphology or numbers. Moreover, recent genetic studies have identified mutations in numerous genes that encode synaptic proteins, leading to suggestions that these proteins may contribute to aberrant spine plasticity that, in part, underlie the pathophysiology of these disorders. In order to study the potential role of these proteins in controlling dendritic spine morphologies/number, the use of cultured cortical neurons offers several advantages. Firstly, this system allows for high-resolution imaging of dendritic spines in fixed cells as well as time-lapse imaging of live cells. Secondly, this in vitro system allows for easy manipulation of protein function by expression of mutant proteins, knockdown by shRNA constructs, or pharmacological treatments. These techniques allow researchers to begin to dissect the role of disease-associated proteins and to predict how mutations of these proteins may function in vivo.

  3. Defining modulatory inputs into CNS neuronal subclasses by functional pharmacological profiling

    PubMed Central

    Raghuraman, Shrinivasan; Garcia, Alfredo J.; Anderson, Tatiana M.; Twede, Vernon D.; Curtice, Kigen J.; Chase, Kevin; Ramirez, Jan-Marino; Olivera, Baldomero M.; Teichert, Russell W.

    2014-01-01

    Previously we defined neuronal subclasses within the mouse peripheral nervous system using an experimental strategy called “constellation pharmacology.” Here we demonstrate the broad applicability of constellation pharmacology by extending it to the CNS and specifically to the ventral respiratory column (VRC) of mouse brainstem, a region containing the neuronal network controlling respiratory rhythm. Analysis of dissociated cells from this locus revealed three major cell classes, each encompassing multiple subclasses. We broadly analyzed the combinations (constellations) of receptors and ion channels expressed within VRC cell classes and subclasses. These were strikingly different from the constellations of receptors and ion channels found in subclasses of peripheral neurons from mouse dorsal root ganglia. Within the VRC cell population, a subset of dissociated neurons responded to substance P, putatively corresponding to inspiratory pre-Bötzinger complex (preBötC) neurons. Using constellation pharmacology, we found that these substance P-responsive neurons also responded to histamine, and about half responded to bradykinin. Electrophysiological studies conducted in brainstem slices confirmed that preBötC neurons responsive to substance P exhibited similar responsiveness to bradykinin and histamine. The results demonstrate the predictive utility of constellation pharmacology for defining modulatory inputs into specific neuronal subclasses within central neuronal networks. PMID:24733934

  4. Cell type-dependent trafficking of neuropeptide Y-containing dense core granules in CNS neurons.

    PubMed

    Ramamoorthy, Prabhu; Wang, Qian; Whim, Matthew D

    2011-10-12

    Neuropeptide transmitters are synthesized throughout the CNS and play important modulatory roles. After synthesis in the neuronal cell body, it is generally assumed that peptides are transported to nonspecialized sites of release. However, apart from a few cases, this scenario has not been thoroughly examined. Using wild-type and NPY(GFP) transgenic mice, we have studied the subcellular distribution of neuropeptide Y (NPY), a prototypical and broadly expressed neuropeptide. NPY puncta were found in the dendrites and axons of hippocampal GABAergic interneurons in situ. In contrast in hypothalamic GABAergic interneurons, NPY was restricted to the axon. Surprisingly this differential trafficking was preserved when the neurons were maintained in vitro. When hippocampal and hypothalamic neurons were transfected with NPY-Venus, the distribution of the fluorescent puncta replicated the cell type-specific distribution of endogenous neuropeptide Y. The NPY puncta in the axons of hippocampal and hypothalamic neurons colocalized with the sites of classical transmitter release (identified by staining for synapsin and the vesicular GABAergic transporter, VGAT). In hippocampal neurons, most of the postsynaptic NPY puncta were clustered opposite synapsin-containing varicosities. When neurons were stained for a second neuropeptide, agouti-related protein, immunoreactivity was found in the axon and dendrites of hippocampal neurons but only in the axons of hypothalamic neurons, thus mimicking the polarized distribution of NPY. These results indicate that the trafficking of neuropeptide-containing dense core granules is markedly cell type specific and is not determined entirely by the characteristics of the particular peptide per se.

  5. Roles of AEG-1 in CNS neurons and astrocytes during noncancerous processes.

    PubMed

    Yin, Xiang; Feng, Honglin

    2017-03-30

    Since its initial identification, Astrocyte Elevated Gene-1 (AEG-1) has been recognized as a "star" gene detected in most of the analyzed cancers; AEG-1 can interact with signaling transduction molecules, such as PI3K/Akt and MAPK, to affect the function and viability of cells. Furthermore, its multiple other functions are also gradually being recognized. AEG-1 participates in several biological processes, including embryonic development, glutamate excitotoxicity, inflammation, and endoplasmic reticulum stress. Most of the noncancerous roles of the AEG-1 were identified in studies of the neurological disorders of the CNS. As an oncogene that promotes aberrant cellular processes within the CNS, AEG-1 may also represent an important therapeutic target for the treatment of neurological disease. However, the exact role of the AEG-1 in CNS under normal conditions is still unknown. This review will focus on the literature describing the role of this molecule in CNS neurons and astrocytes during noncancerous processes. © 2017 Wiley Periodicals, Inc.

  6. Differential roles of NF-Y transcription factor in ER chaperone expression and neuronal maintenance in the CNS

    PubMed Central

    Yamanaka, Tomoyuki; Tosaki, Asako; Miyazaki, Haruko; Kurosawa, Masaru; Koike, Masato; Uchiyama, Yasuo; Maity, Sankar N.; Misawa, Hidemi; Takahashi, Ryosuke; Shimogori, Tomomi; Hattori, Nobutaka; Nukina, Nobuyuki

    2016-01-01

    The mammalian central nervous system (CNS) contains various types of neurons with different neuronal functions. In contrast to established roles of cell type-specific transcription factors on neuronal specification and maintenance, whether ubiquitous transcription factors have conserved or differential neuronal function remains uncertain. Here, we revealed that inactivation of a ubiquitous factor NF-Y in different sets of neurons resulted in cell type-specific neuropathologies and gene downregulation in mouse CNS. In striatal and cerebellar neurons, NF-Y inactivation led to ubiquitin/p62 pathologies with downregulation of an endoplasmic reticulum (ER) chaperone Grp94, as we previously observed by NF-Y deletion in cortical neurons. In contrast, NF-Y inactivation in motor neurons induced neuronal loss without obvious protein deposition. Detailed analysis clarified downregulation of another ER chaperone Grp78 in addition to Grp94 in motor neurons, and knockdown of both ER chaperones in motor neurons recapitulated the pathology observed after NF-Y inactivation. Finally, additional downregulation of Grp78 in striatal neurons suppressed ubiquitin accumulation induced by NF-Y inactivation, implying that selective ER chaperone downregulation mediates different neuropathologies. Our data suggest distinct roles of NF-Y in protein homeostasis and neuronal maintenance in the CNS by differential regulation of ER chaperone expression. PMID:27687130

  7. MASH1/Ascl1a leads to GAP43 expression and axon regeneration in the adult CNS.

    PubMed

    Williams, Ryan R; Venkatesh, Ishwariya; Pearse, Damien D; Udvadia, Ava J; Bunge, Mary Bartlett

    2015-01-01

    Unlike CNS neurons in adult mammals, neurons in fish and embryonic mammals can regenerate their axons after injury. These divergent regenerative responses are in part mediated by the growth-associated expression of select transcription factors. The basic helix-loop-helix (bHLH) transcription factor, MASH1/Ascl1a, is transiently expressed during the development of many neuronal subtypes and regulates the expression of genes that mediate cell fate determination and differentiation. In the adult zebrafish (Danio rerio), Ascl1a is also transiently expressed in retinal ganglion cells (RGCs) that regenerate axons after optic nerve crush. Utilizing transgenic zebrafish with a 3.6 kb GAP43 promoter that drives expression of an enhanced green fluorescent protein (EGFP), we observed that knock-down of Ascl1a expression reduces both regenerative gap43 gene expression and axonal growth after injury compared to controls. In mammals, the development of noradrenergic brainstem neurons requires MASH1 expression. In contrast to zebrafish RGCs, however, MASH1 is not expressed in the mammalian brainstem after spinal cord injury (SCI). Therefore, we utilized adeno-associated viral (AAV) vectors to overexpress MASH1 in four month old rat (Rattus norvegicus) brainstem neurons in an attempt to promote axon regeneration after SCI. We discovered that after complete transection of the thoracic spinal cord and implantation of a Schwann cell bridge, animals that express MASH1 exhibit increased noradrenergic axon regeneration and improvement in hindlimb joint movements compared to controls. Together these data demonstrate that MASH1/Ascl1a is a fundamental regulator of axonal growth across vertebrates and can induce modifications to the intrinsic state of neurons to promote functional regeneration in response to CNS injury.

  8. MASH1/Ascl1a Leads to GAP43 Expression and Axon Regeneration in the Adult CNS

    PubMed Central

    Pearse, Damien D.; Udvadia, Ava J.; Bunge, Mary Bartlett

    2015-01-01

    Unlike CNS neurons in adult mammals, neurons in fish and embryonic mammals can regenerate their axons after injury. These divergent regenerative responses are in part mediated by the growth-associated expression of select transcription factors. The basic helix-loop-helix (bHLH) transcription factor, MASH1/Ascl1a, is transiently expressed during the development of many neuronal subtypes and regulates the expression of genes that mediate cell fate determination and differentiation. In the adult zebrafish (Danio rerio), Ascl1a is also transiently expressed in retinal ganglion cells (RGCs) that regenerate axons after optic nerve crush. Utilizing transgenic zebrafish with a 3.6 kb GAP43 promoter that drives expression of an enhanced green fluorescent protein (EGFP), we observed that knock-down of Ascl1a expression reduces both regenerative gap43 gene expression and axonal growth after injury compared to controls. In mammals, the development of noradrenergic brainstem neurons requires MASH1 expression. In contrast to zebrafish RGCs, however, MASH1 is not expressed in the mammalian brainstem after spinal cord injury (SCI). Therefore, we utilized adeno-associated viral (AAV) vectors to overexpress MASH1 in four month old rat (Rattus norvegicus) brainstem neurons in an attempt to promote axon regeneration after SCI. We discovered that after complete transection of the thoracic spinal cord and implantation of a Schwann cell bridge, animals that express MASH1 exhibit increased noradrenergic axon regeneration and improvement in hindlimb joint movements compared to controls. Together these data demonstrate that MASH1/Ascl1a is a fundamental regulator of axonal growth across vertebrates and can induce modifications to the intrinsic state of neurons to promote functional regeneration in response to CNS injury. PMID:25751153

  9. NFκB-inducing kinase inhibits NFκB activity specifically in neurons of the CNS.

    PubMed

    Mao, Xianrong; Phanavanh, Bounleut; Hamdan, Hamdan; Moerman-Herzog, Andréa M; Barger, Steven W

    2016-04-01

    The control of NFκB in CNS neurons appears to differ from that in other cell types. Studies have reported induction of NFκB in neuronal cultures and immunostaining in vivo, but others have consistently detected little or no transcriptional activation by NFκB in brain neurons. To test if neurons lack some component of the signal transduction system for NFκB activation, we transfected cortical neurons with several members of this signaling system along with a luciferase-based NFκB-reporter plasmid; RelA was cotransfected in some conditions. No component of the NFκB pathway was permissive for endogenous NFκB activity, and none stimulated the activity of exogenous RelA. Surprisingly, however, the latter was inhibited by cotransfection of NFκB-inducing kinase (NIK). Fluorescence imaging of RelA indicated that co-expression of NIK sequestered RelA in the cytoplasm, similar to the effect of IκBα. NIK-knockout mice showed elevated expression of an NFκB-reporter construct in neurons in vivo. Cortical neurons cultured from NIK-knockout mice showed elevated expression of an NFκB-reporter transgene. Consistent with data from other cell types, a C-terminal fragment of NIK suppressed RelA activity in astrocytes as well as neurons. Therefore, the inhibitory ability of the NIK C-terminus was unbiased with regard to cell type. However, inhibition of NFκB by full-length NIK is a novel outcome that appears to be specific to CNS neurons. This has implications for unique aspects of transcription in the CNS, perhaps relevant to aspects of development, neuroplasticity, and neuroinflammation. Full-length NIK was found to inhibit (down arrow) transcriptional activation of NFκB in neurons, while it elevated (up arrow) activity in astrocytes. Deletion constructs corresponding to the N-terminus or C-terminus also inhibited NFκB in neurons, while only the C-terminus did so in astrocytes. One possible explanation is that the inhibition in neurons occurs via two different

  10. Control of CNS Neuronal Excitability by Estrogens via Membrane Initiated Signaling

    PubMed Central

    Kelly, Martin J.; Rønnekleiv, Oline K.

    2009-01-01

    It is well known that many of the actions of 17β-estradiol (E2) in the central nervous system (CNS) are mediated via intracellular receptor/transcription factors that interact with steroid response elements on target genes. However, there is compelling evidence for membrane-associated steroid receptors for E2 in hypothalamic and other brain neurons. Indeed, we are just beginning to understand how E2 signals via membrane receptors, and how these signals impact not only membrane excitability but also gene transcription in neurons. We know that E2 can rapidly alter neuronal activity within seconds, indicating that some cellular effects can occur via membrane delimited events. In addition, E2 can affect second messenger systems including calcium mobilization and a plethora of kinases to alter cell signaling. This review will concentrate on rapid membrane-initiated and intracellular signaling by E2 in the hypothalamus and hippocampus, the nature of receptors involved and how they contribute to CNS functions. PMID:19549588

  11. Neuronal sources of hedgehog modulate neurogenesis in the adult planarian brain.

    PubMed

    Currie, Ko W; Molinaro, Alyssa M; Pearson, Bret J

    2016-11-19

    The asexual freshwater planarian is a constitutive adult, whose central nervous system (CNS) is in a state of constant homeostatic neurogenesis. However, very little is known about the extrinsic signals that act on planarian stem cells to modulate rates of neurogenesis. We have identified two planarian homeobox transcription factors, Smed-nkx2.1 and Smed-arx, which are required for the maintenance of cholinergic, GABAergic, and octopaminergic neurons in the planarian CNS. These very same neurons also produce the planarian hedgehog ligand (Smed-hh), which appears to communicate with brain-adjacent stem cells to promote normal levels of neurogenesis. Planarian stem cells nearby the brain express core hh signal transduction genes, and consistent hh signaling levels are required to maintain normal production of neural progenitor cells and new mature cholinergic neurons, revealing an important mitogenic role for the planarian hh signaling molecule in the adult CNS.

  12. Clinical features, outcomes, and cerebrospinal fluid findings in adult patients with central nervous system (CNS) infections caused by varicella-zoster virus: comparison with enterovirus CNS infections.

    PubMed

    Hong, Hyo-Lim; Lee, Eun Mi; Sung, Heungsup; Kang, Joong Koo; Lee, Sang-Ahm; Choi, Sang-Ho

    2014-12-01

    Varicella-zoster virus (VZV) is known to be associated with central nervous system (CNS) infections in adults. However, the clinical characteristics of VZV CNS infections are not well characterized. The aim of this study was to compare the clinical manifestations, outcomes, and cerebrospinal fluid (CSF) findings in patients with VZV CNS infections with those in patients with enterovirus (EV) CNS infections. This retrospective cohort study was performed at a 2,700-bed tertiary care hospital. Using a clinical microbiology computerized database, all adults with CSF PCR results positive for VZV or EV that were treated between January 1999 and February 2013 were identified. Thirty-eight patients with VZV CNS infection and 68 patients with EV CNS infection were included in the study. Compared with the EV group, the median age in the VZV group was higher (VZV, 35 years vs. EV, 31 years; P = 0.02), and showed a bimodal age distribution with peaks in the third and seventh decade. Encephalitis was more commonly encountered in the VZV group (VZV, 23.7% vs. EV, 4.4%; P = 0.01). The median lymphocyte percentage in the CSF (VZV, 81% vs. EV, 36%; P < 0.001) and the CSF protein level (VZV, 100 mg/dl vs. EV, 46 mg/dl; P < 0.001) were higher in the VZV group. Compared with patients with EV CNS infection, patients with VZV CNS infection developed encephalitis more often and exhibited more intense inflammatory reaction. Nevertheless, both VZV and EV CNS infections were associated with excellent long-term prognosis.

  13. Enhancing Psychosocial Outcomes for Young Adult Childhood CNS Cancer Survivors: Importance of Addressing Vocational Identity and Community Integration

    ERIC Educational Resources Information Center

    Strauser, David R.; Wagner, Stacia; Wong, Alex W. K.

    2012-01-01

    The purpose of this study was to examine the relationship between vocational identity, community integration, positive and negative affect, and satisfaction with life in a group of young adult central nervous system (CNS) cancer survivors. Participants in this study included 45 young adult CNS cancer survivors who ranged in age from 18 to 30 years…

  14. Single Cell Electroporation Method for Mammalian CNS Neurons in Organotypic Slice Cultures

    NASA Astrophysics Data System (ADS)

    Uesaka, Naofumi; Hayano, Yasufumi; Yamada, Akito; Yamamoto, Nobuhiko

    Axon tracing is an essential technique to study the projection pattern of neurons in the CNS. Horse radish peroxidase and lectins have contributed to revealing many neural connection patterns in the CNS (Itaya and van Hoesen, 1982; Fabian and Coulter, 1985; Yoshihara, 2002). Moreover, a tracing method with fluorescent dye has enabled the observation of growing axons in living conditions, and demon strated a lot of developmental aspects in axon growth and guidance (Harris et al., 1987; O'Rourke and Fraser, 1990; Kaethner and Stuermer, 1992; Halloran and Kalil, 1994; Yamamoto et al., 1997). More recently, genetically encoded fluores cent proteins can be used as a powerful tool to observe various biological events. Several gene transfer techniques such as microinjection, biolistic gene gun, viral infection, lipofection and transgenic technology have been developed (Feng et al., 2000; Ehrengruber et al., 2001; O'Brien et al., 2001; Ma et al., 2002; Sahly et al., 2003). In particular, the electroporation technique was proved as a valuable tool, since it can be applied to a wide range of tissues and cell types with little toxicity and can be performed with relative technical easiness. Most methods, including a stand ard electroporation technique, are suitable for gene transfer to a large number of cells. However, this is not ideal for axonal tracing, because observation of individ ual axons is occasionally required. To overcome this problem, we have developed an electroporation method using glass micropipettes containing plasmid solutions and small current injection. Here we introduce the method in detail and exemplified results with some example applications and discuss its usefulness.

  15. A Novel CNS-Restricted Isoform of the IL-1R Accessory Protein Modulates Neuronal Responses to IL-1

    PubMed Central

    Smith, Dirk E.; Lipsky, Brian P.; Russell, Chris; Ketchem, Randal R.; Kirchner, Jacqueline; Hensley, Kelly; Boissonneault, Vincent; Plante, Marie-Michèle; Rivest, Serge; Huang, Yangyang; Friedman, Wilma; Sims, John E.

    2014-01-01

    SUMMARY IL-1 has multiple functions in both the periphery and the central nervous system (CNS) and is regulated at many levels. We identified a novel isoform of the IL-1R Accessory Protein (termed AcPb) that is expressed exclusively in the CNS. AcPb interacted with IL-1 and the IL-1 receptor but was unable to mediate canonical IL-1 responses. AcPb expression, however, modulated neuronal gene expression in response to IL-1 treatment in vitro. Animals lacking AcPb demonstrated an intact peripheral IL-1 response and developed experimental autoimmune encephalomyelitis (EAE) similarly to wild type mice. AcPb-deficient mice were instead more vulnerable to local inflammatory challenge in the CNS and suffered enhanced neuronal degeneration as compared to AcP-deficient or wild type mice. These findings implicate AcPb as an additional component of the highly regulated IL-1 system and suggest it may play a role in modulating CNS responses to IL-1 and the interplay between inflammation and neuronal survival. PMID:19481478

  16. Organotypic Cultures as a Model to Study Adult Neurogenesis in CNS Disorders

    PubMed Central

    Cavaliere, Fabio; Benito-Muñoz, Monica; Matute, Carlos

    2016-01-01

    Neural regeneration resides in certain specific regions of adult CNS. Adult neurogenesis occurs throughout life, especially from the subgranular zone of hippocampus and the subventricular zone, and can be modulated in physiological and pathological conditions. Numerous techniques and animal models have been developed to demonstrate and observe neural regeneration but, in order to study the molecular and cellular mechanisms and to characterize multiple types of cell populations involved in the activation of neurogenesis and gliogenesis, investigators have to turn to in vitro models. Organotypic cultures best recapitulate the 3D organization of the CNS and can be explored taking advantage of many techniques. Here, we review the use of organotypic cultures as a reliable and well defined method to study the mechanisms of neurogenesis under normal and pathological conditions. As an example, we will focus on the possibilities these cultures offer to study the pathophysiology of diseases like Alzheimer disease, Parkinson's disease, and cerebral ischemia. PMID:27127518

  17. Activity-Dependent Plasticity and Gene Expression Modifications in the Adult CNS

    PubMed Central

    Carulli, Daniela; Foscarin, Simona; Rossi, Ferdinando

    2011-01-01

    Information processing, memory formation, or functional recovery after nervous system damage depend on the ability of neurons to modify their functional properties or their connections. At the cellular/molecular level, structural modifications of neural circuits are finely regulated by intrinsic neuronal properties and growth-regulatory cues in the extracellular milieu. Recently, it has become clear that stimuli coming from the external world, which comprise sensory inflow, motor activity, cognitive elaboration, or social interaction, not only provide the involved neurons with instructive information needed to shape connection patterns to sustain adaptive function, but also exert a powerful influence on intrinsic and extrinsic growth-related mechanisms, so to create permissive conditions for neuritic remodeling. Here, we present an overview of recent findings concerning the effects of experience on molecular mechanisms underlying CNS structural plasticity, both in physiological conditions and after damage, with particular focus on activity-dependent modulation of growth-regulatory genes and epigenetic modifications. PMID:22144945

  18. CNS depressive role of aqueous extract of Spinacia oleracea L. leaves in adult male albino rats.

    PubMed

    Das, Sutapa; Guha, Debjani

    2008-03-01

    Treatment with Spinacia oleracea extract (SO; 400 mg/kg body weight) decreased the locomotor activity, grip strength, increased pentobarbitone induced sleeping time and also markedly altered pentylenetetrazole induced seizure status in Holtzman strain adult male albino rats. SO increased serotonin level and decreased both norepinephrine and dopamine levels in cerebral cortex, cerebellum, caudate nucleus, midbrain and pons and medulla. Result suggests that SO exerts its CNS depressive effect in PTZ induced seizure by modulating the monoamines in different brain areas.

  19. Electrical Stimulation Therapies for CNS Disorders and Pain are Mediated by Competition Between Different Neuronal Networks in the Brain

    PubMed Central

    Faingold, Carl L.

    2008-01-01

    Summary CNS neuronal networks are known to control normal physiological functions, including locomotion and respiration. Neuronal networks also mediate the pathophysiology of many CNS disorders. Stimulation therapies, including localized brain and vagus nerve stimulation, electroshock, and acupuncture, are proposed to activate “therapeutic” neuronal networks. These therapeutic networks are dormant prior to stimulatory treatments, but when the dormant networks are activated they compete with pathophysiological neuronal networks, disrupting their function. This competition diminishes the disease symptoms, providing effective therapy for otherwise intractable CNS disorders, including epilepsy, Parkinsons disease, chronic pain, and depression. Competition between stimulation-activated therapeutic networks and pathophysiological networks is a major mechanism mediating the therapeutic effects of stimulation. This network interaction is hypothesized to involve competition for “control” of brain regions that contain high proportions of conditional multireceptive (CMR) neurons. CMR regions, including brainstem reticular formation, amygdala, and cerebral cortex, have extensive connections to numerous brain areas, allowing these regions to participate potentially in many networks. The participation of CMR regions in any network is often variable, depending on the conditions affecting the organism, including vigilance states, drug treatment, and learning. This response variability of CMR neurons is due to the high incidence of excitatory postsynaptic potentials that are below threshold for triggering action potentials. These subthreshold responses can be brought to threshold by blocking inhibition or enhancing excitation via the paradigms used in stimulation therapies. Participation of CMR regions in a network is also strongly affected by pharmacological treatments (convulsant or anesthetic drugs) and stimulus parameters (strength and repetition rate). Many studies

  20. Electrical stimulation therapies for CNS disorders and pain are mediated by competition between different neuronal networks in the brain.

    PubMed

    Faingold, Carl L

    2008-11-01

    CNS neuronal networks are known to control normal physiological functions, including locomotion and respiration. Neuronal networks also mediate the pathophysiology of many CNS disorders. Stimulation therapies, including localized brain and vagus nerve stimulation, electroshock, and acupuncture, are proposed to activate "therapeutic" neuronal networks. These therapeutic networks are dormant prior to stimulatory treatments, but when the dormant networks are activated they compete with pathophysiological neuronal networks, disrupting their function. This competition diminishes the disease symptoms, providing effective therapy for otherwise intractable CNS disorders, including epilepsy, Parkinson's disease, chronic pain, and depression. Competition between stimulation-activated therapeutic networks and pathophysiological networks is a major mechanism mediating the therapeutic effects of stimulation. This network interaction is hypothesized to involve competition for "control" of brain regions that contain high proportions of conditional multireceptive (CMR) neurons. CMR regions, including brainstem reticular formation, amygdala, and cerebral cortex, have extensive connections to numerous brain areas, allowing these regions to participate potentially in many networks. The participation of CMR regions in any network is often variable, depending on the conditions affecting the organism, including vigilance states, drug treatment, and learning. This response variability of CMR neurons is due to the high incidence of excitatory postsynaptic potentials that are below threshold for triggering action potentials. These subthreshold responses can be brought to threshold by blocking inhibition or enhancing excitation via the paradigms used in stimulation therapies. Participation of CMR regions in a network is also strongly affected by pharmacological treatments (convulsant or anesthetic drugs) and stimulus parameters (strength and repetition rate). Many studies indicate that

  1. DmSAS is required for sialic acid biosynthesis in cultured Drosophila third instar larvae CNS neurons.

    PubMed

    Granell, Annelise E von Bergen; Palter, Karen B; Akan, Ihan; Aich, Udayanath; Yarema, Kevin J; Betenbaugh, Michael J; Thornhill, William B; Recio-Pinto, Esperanza

    2011-11-18

    Sialylation is an important carbohydrate modification of glycoconjugates that has been shown to modulate many cellular/molecular interactions in vertebrates. In Drosophila melanogaster (Dm), using sequence homology, several enzymes of the sialylation pathway have been cloned and their function tested in expression systems. Here we investigated whether sialic acid incorporation in cultured Dm central nervous system (CNS) neurons required endogenously expressed Dm sialic acid synthase (DmSAS). We compared neurons derived from wild type Dm larvae with those containing a DmSAS mutation (148 bp deletion). The ability of these cells to produce Sia5NAz (sialic acid form) from Ac(4)ManNAz (azide-derivatized N-acetylmannosamine) and incorporate it into their glycoconjugates was measured by tagging the azide group of Sia5NAz with fluorescent agents via Click-iT chemistry. We found that most of the wild type Dm CNS neurons incorporated Sia5NAz into their glycoconjugates. Sialic acid incorporation was higher at the soma than at the neurite and could also be detected at perinuclear regions and the plasma membrane. In contrast, neurons from the DmSAS mutant did not incorporate Sia5NAz unless DmSAS was reintroduced (rescue mutant). Most of the neurons expressed α2,6-sialyltransferase. These results confirm that the mutation was a null mutation and that no redundant sialic acid biosynthetic activity exists in Dm cells, i.e., there is only one DmSAS. They also provide the strongest proof to date that DmSAS is a key enzyme in the biosynthesis of sialic acids in Dm CNS neurons, and the observed subcellular distribution of the newly synthesized sialic acids offers insights into their biological function.

  2. Conditional Disruption of Calpain in the CNS Alters Dendrite Morphology, Impairs LTP, and Promotes Neuronal Survival following Injury

    PubMed Central

    Amini, Mandana; Ma, Chun-lei; Farazifard, Rasoul; Zhu, Guoqi; Zhang, Yi; Vanderluit, Jacqueline; Zoltewicz, Joanna Susie; Hage, Fadi; Savitt, Joseph M.; Lagace, Diane C.; Slack, Ruth S.; Beique, Jean-Claude; Baudry, Michel; Greer, Peter A.; Bergeron, Richard; Park, David S.

    2014-01-01

    Ubiquitous classical (typical) calpains, calpain-1 and calpain-2, are Ca+2-dependent cysteine proteases, which have been associated with numerous physiological and pathological cellular functions. However, a clear understanding of the role of calpains in the CNS has been hampered by the lack of appropriate deletion paradigms in the brain. In this study, we describe a unique model of conditional deletion of both calpain-1 and calpain-2 activities in mouse brain, which more definitively assesses the role of these ubiquitous proteases in brain development/function and pathology. Surprisingly, we show that these calpains are not critical for gross CNS development. However, calpain-1/calpain-2 loss leads to reduced dendritic branching complexity and spine density deficits associated with major deterioration in hippocampal long-term potentiation and spatial memory. Moreover, calpain-1/calpain-2-deficient neurons were significantly resistant to injury induced by excitotoxic stress or mitochondrial toxicity. Examination of downstream target showed that the conversion of the Cdk5 activator, p35, to pathogenic p25 form, occurred only in the presence of calpain and that it played a major role in calpain-mediated neuronal death. These findings unequivocally establish two central roles of calpain-1/calpain-2 in CNS function in plasticity and neuronal death. PMID:23536090

  3. Promoting axon regeneration in the adult CNS by modulation of the melanopsin/GPCR signaling

    PubMed Central

    Li, Songshan; Yang, Chao; Zhang, Li; Gao, Xin; Wang, Xuejie; Liu, Wen; Wang, Yuqi; Jiang, Songshan; Wong, Yung Hou; Zhang, Yifeng; Liu, Kai

    2016-01-01

    Cell-type–specific G protein-coupled receptor (GPCR) signaling regulates distinct neuronal responses to various stimuli and is essential for axon guidance and targeting during development. However, its function in axonal regeneration in the mature CNS remains elusive. We found that subtypes of intrinsically photosensitive retinal ganglion cells (ipRGCs) in mice maintained high mammalian target of rapamycin (mTOR) levels after axotomy and that the light-sensitive GPCR melanopsin mediated this sustained expression. Melanopsin overexpression in the RGCs stimulated axonal regeneration after optic nerve crush by up-regulating mTOR complex 1 (mTORC1). The extent of the regeneration was comparable to that observed after phosphatase and tensin homolog (Pten) knockdown. Both the axon regeneration and mTOR activity that were enhanced by melanopsin required light stimulation and Gq/11 signaling. Specifically, activating Gq in RGCs elevated mTOR activation and promoted axonal regeneration. Melanopsin overexpression in RGCs enhanced the amplitude and duration of their light response, and silencing them with Kir2.1 significantly suppressed the increased mTOR signaling and axon regeneration that were induced by melanopsin. Thus, our results provide a strategy to promote axon regeneration after CNS injury by modulating neuronal activity through GPCR signaling. PMID:26831088

  4. Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP(+) exposure.

    PubMed

    Dukes, April A; Bai, Qing; Van Laar, Victor S; Zhou, Yangzhong; Ilin, Vladimir; David, Christopher N; Agim, Zeynep S; Bonkowsky, Joshua L; Cannon, Jason R; Watkins, Simon C; Croix, Claudette M St; Burton, Edward A; Berman, Sarah B

    2016-11-01

    Extensive convergent evidence collectively suggests that mitochondrial dysfunction is central to the pathogenesis of Parkinson's disease (PD). Recently, changes in the dynamic properties of mitochondria have been increasingly implicated as a key proximate mechanism underlying neurodegeneration. However, studies have been limited by the lack of a model in which mitochondria can be imaged directly and dynamically in dopaminergic neurons of the intact vertebrate CNS. We generated transgenic zebrafish in which mitochondria of dopaminergic neurons are labeled with a fluorescent reporter, and optimized methods allowing direct intravital imaging of CNS dopaminergic axons and measurement of mitochondrial transport in vivo. The proportion of mitochondria undergoing axonal transport in dopaminergic neurons decreased overall during development between 2days post-fertilization (dpf) and 5dpf, at which point the major period of growth and synaptogenesis of the relevant axonal projections is complete. Exposure to 0.5-1.0mM MPP(+) between 4 and 5dpf did not compromise zebrafish viability or cause detectable changes in the number or morphology of dopaminergic neurons, motor function or monoaminergic neurochemistry. However, 0.5mM MPP(+) caused a 300% increase in retrograde mitochondrial transport and a 30% decrease in anterograde transport. In contrast, exposure to higher concentrations of MPP(+) caused an overall reduction in mitochondrial transport. This is the first time mitochondrial transport has been observed directly in CNS dopaminergic neurons of a living vertebrate and quantified in a PD model in vivo. Our findings are compatible with a model in which damage at presynaptic dopaminergic terminals causes an early compensatory increase in retrograde transport of compromised mitochondria for degradation in the cell body. These data are important because manipulation of early pathogenic mechanisms might be a valid therapeutic approach to PD. The novel transgenic lines and

  5. Morphological alterations of central nervous system (CNS) myelin in vanadium (V)-exposed adult rats.

    PubMed

    García, Graciela B; Quiroga, Ariel D; Stürtz, Nelson; Martinez, Alejandra I; Biancardi, María E

    2004-08-01

    In the present work we show morphological data of the in vivo susceptibility of CNS myelin to sodium metavanadate [V(+5)] in adult rats. The possible role of vanadium in behavioral alterations and in brain lipid peroxidation was also investigated. Animals were injected intraperitoneally (i.p.) with 3 mg/kg body weight (bw) of sodium metavanadate [1.25 V/kg bw/day] for 5 consecutive days. Open field and rotarod tests were performed the day after the last dose had been administered and then animals were sacrificed by different methods for histological and lipid peroxidation studies. The present results show that intraperitoneal administration of V(+5) to adult rats resulted in changes in locomotor activity, specific myelin stainings and lipid peroxidation in some brain areas. They support the notion that CNS myelin could be a preferential target of V(+5)-mediated lipid peroxidation in adult rats. The mechanisms underlying this action could affect the myelin sheath leading to behavioral perturbations.

  6. Interaction of neurons at the level of cell bodies in the snail CNS. Heterogeneity of the neuroactive environment.

    PubMed

    Chistopol'skii, I A

    2005-09-01

    Experiments on the CNS of snail Lymnaea stagnalis in which a cell isolated from the serotonin cluster PeA was used as a mobile sensor neuron demonstrated the presence of neuroactive factors at the surface of the cellular "cortex" of the pedal ganglion. Apart from the previously known factor serotonin, effective concentrations of a factor suppressing the electrical activity of PeA were found at this site, along with a depolarizing factor which, unlike serotonin, narrowed PeA action potentials. The ability of these factors to control the electrical activity of the sensor neuron demonstrates the possible involvement of chemical agents in the intercellular space of the "cortex" in neuronal signaling.

  7. ERK1/2 Activation in Preexisting Oligodendrocytes of Adult Mice Drives New Myelin Synthesis and Enhanced CNS Function

    PubMed Central

    Jeffries, Marisa A.; Urbanek, Kelly; Torres, Lester; Wendell, Stacy Gelhaus; Rubio, Maria E.

    2016-01-01

    Growing evidence shows that mechanisms controlling CNS plasticity extend beyond the synapse and that alterations in myelin can modify conduction velocity, leading to changes in neural circuitry. Although it is widely accepted that newly generated oligodendrocytes (OLs) produce myelin in the adult CNS, the contribution of preexisting OLs to functional myelin remodeling is not known. Here, we show that sustained activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in preexisting OLs of adult mice is sufficient to drive increased myelin thickness, faster conduction speeds, and enhanced hippocampal-dependent emotional learning. Although preexisting OLs do not normally contribute to remyelination, we show that sustained activation of ERK1/2 renders them able to do so. These data suggest that strategies designed to push mature OLs to reinitiate myelination may be beneficial both for enhancing remyelination in demyelinating diseases and for increasing neural plasticity in the adult CNS. SIGNIFICANCE STATEMENT Myelin is a crucial regulator of CNS plasticity, function, and repair. Although it is generally accepted that new myelin production in the adult CNS is initiated by newly generated oligodendrocytes (OLs), great interest remains in additionally driving mature preexisting OLs to make myelin. The ability to induce myelination by the larger population of preexisting OLs carries the potential for enhanced remyelination in demyelinating diseases and increased neural plasticity in the adult CNS. Here, we show that sustained activation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling pathway is sufficient to drive mature OLs in the adult mouse CNS to reinitiate myelination, leading to new myelin wraps and functional changes. PMID:27581459

  8. Auto-catalytic Ceria Nanoparticles Offer Neuroprotection to Adult Rat Spinal Cord Neurons

    PubMed Central

    Das, Mainak; Patil, Swanand; Bhargava, Neelima; Kang, Jung-Fong; Riedel, Lisa M.; Seal, Sudipta; Hickman, James J.

    2007-01-01

    This paper describes the evaluation of the auto-catalytic anti-oxidant behavior and biocompatibility of Cerium oxide nanoparticles for applications in spinal cord repair and other diseases of the CNS. The application of a single dose of nano-Ceria at a nano-molar concentration is biocompatible, regenerative and provides a significant neuroprotective effect on adult rat spinal cord neurons. Retention of neuronal function is demonstrated from electrophysiological recordings and the possibility of its application to prevent ischemic insult is suggested from an oxidative injury assay. A mechanism is proposed to explain the auto-catalytic properties of these nanoparticles. PMID:17222903

  9. GLT-1-Dependent Disruption of CNS Glutamate Homeostasis and Neuronal Function by the Protozoan Parasite Toxoplasma gondii

    PubMed Central

    David, Clément N.; Frias, Elma S.; Szu, Jenny I.; Vieira, Philip A.; Hubbard, Jacqueline A.; Lovelace, Jonathan; Michael, Marena; Worth, Danielle; McGovern, Kathryn E.; Ethell, Iryna M.; Stanley, B. Glenn; Korzus, Edward; Fiacco, Todd A.; Binder, Devin K.; Wilson, Emma H.

    2016-01-01

    The immune privileged nature of the CNS can make it vulnerable to chronic and latent infections. Little is known about the effects of lifelong brain infections, and thus inflammation, on the neurological health of the host. Toxoplasma gondii is a parasite that can infect any mammalian nucleated cell with average worldwide seroprevalence rates of 30%. Infection by Toxoplasma is characterized by the lifelong presence of parasitic cysts within neurons in the brain, requiring a competent immune system to prevent parasite reactivation and encephalitis. In the immunocompetent individual, Toxoplasma infection is largely asymptomatic, however many recent studies suggest a strong correlation with certain neurodegenerative and psychiatric disorders. Here, we demonstrate a significant reduction in the primary astrocytic glutamate transporter, GLT-1, following infection with Toxoplasma. Using microdialysis of the murine frontal cortex over the course of infection, a significant increase in extracellular concentrations of glutamate is observed. Consistent with glutamate dysregulation, analysis of neurons reveal changes in morphology including a reduction in dendritic spines, VGlut1 and NeuN immunoreactivity. Furthermore, behavioral testing and EEG recordings point to significant changes in neuronal output. Finally, these changes in neuronal connectivity are dependent on infection-induced downregulation of GLT-1 as treatment with the ß-lactam antibiotic ceftriaxone, rescues extracellular glutamate concentrations, neuronal pathology and function. Altogether, these data demonstrate that following an infection with T. gondii, the delicate regulation of glutamate by astrocytes is disrupted and accounts for a range of deficits observed in chronic infection. PMID:27281462

  10. Neuronal sources of hedgehog modulate neurogenesis in the adult planarian brain

    PubMed Central

    Currie, Ko W; Molinaro, Alyssa M; Pearson, Bret J

    2016-01-01

    The asexual freshwater planarian is a constitutive adult, whose central nervous system (CNS) is in a state of constant homeostatic neurogenesis. However, very little is known about the extrinsic signals that act on planarian stem cells to modulate rates of neurogenesis. We have identified two planarian homeobox transcription factors, Smed-nkx2.1 and Smed-arx, which are required for the maintenance of cholinergic, GABAergic, and octopaminergic neurons in the planarian CNS. These very same neurons also produce the planarian hedgehog ligand (Smed-hh), which appears to communicate with brain-adjacent stem cells to promote normal levels of neurogenesis. Planarian stem cells nearby the brain express core hh signal transduction genes, and consistent hh signaling levels are required to maintain normal production of neural progenitor cells and new mature cholinergic neurons, revealing an important mitogenic role for the planarian hh signaling molecule in the adult CNS. DOI: http://dx.doi.org/10.7554/eLife.19735.001 PMID:27864883

  11. Transplanted embryonic neurons integrate into adult neocortical circuits.

    PubMed

    Falkner, Susanne; Grade, Sofia; Dimou, Leda; Conzelmann, Karl-Klaus; Bonhoeffer, Tobias; Götz, Magdalena; Hübener, Mark

    2016-11-10

    The ability of the adult mammalian brain to compensate for neuronal loss caused by injury or disease is very limited. Transplantation aims to replace lost neurons, but the extent to which new neurons can integrate into existing circuits is unknown. Here, using chronic in vivo two-photon imaging, we show that embryonic neurons transplanted into the visual cortex of adult mice mature into bona fide pyramidal cells with selective pruning of basal dendrites, achieving adult-like densities of dendritic spines and axonal boutons within 4-8 weeks. Monosynaptic tracing experiments reveal that grafted neurons receive area-specific, afferent inputs matching those of pyramidal neurons in the normal visual cortex, including topographically organized geniculo-cortical connections. Furthermore, stimulus-selective responses refine over the course of many weeks and finally become indistinguishable from those of host neurons. Thus, grafted neurons can integrate with great specificity into neocortical circuits that normally never incorporate new neurons in the adult brain.

  12. CNS development under altered gravity: cerebellar glial and neuronal protein expression in rat neonates exposed to hypergravity

    NASA Astrophysics Data System (ADS)

    Nguon, K.; Li, G.-H.; Sajdel-Sulkowska, E. M.

    2004-01-01

    The future of space exploration depends on a solid understanding of the developmental process under microgravity, specifically in relation to the central nervous system (CNS). We have previously employed a hypergravity paradigm to assess the impact of altered gravity on the developing rat cerebellum [Exp. Biol. Med. 226 (2000) 790]. The present study addresses the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of selected glial and neuronal cerebellar proteins in rat neonates exposed to hypergravity (1.5 G) from embryonic day (E)11 to postnatal day (P)6 or P9 (the time of maximal cerebellar changes) comparing them against their expression in rat neonates developing under normal gravity. Proteins were analyzed by quantitative Western blots of cerebellar homogenates; RNA analysis was performed in the same samples using quantitative PCR. Densitometric analysis of Western blots suggested a reduction in glial (glial acidic protein, GFAP) and neuronal (neuronal cell adhesion moiecule, NCAM-L1, synaptophysin) proteins, but the changes in individual cerebellar proteins in hypergravity-exposed neonates appeared both age- and gender-specific. RNA analysis suggested a reduction in GFAP and synaptophysin mRNAs on P6. These data suggest that exposure to hypergravity may interfere with the expression of selected cerebellar proteins. These changes in protein expression may be involved in mediating the effect of hypergravity on the developing rat cerebellum.

  13. CNS development under altered gravity: cerebellar glial and neuronal protein expression in rat neonates exposed to hypergravity

    NASA Technical Reports Server (NTRS)

    Nguon, K.; Li, G-H; Sajdel-Sulkowska, E. M.

    2004-01-01

    The future of space exploration depends on a solid understanding of the developmental process under microgravity, specifically in relation to the central nervous system (CNS). We have previously employed a hypergravity paradigm to assess the impact of altered gravity on the developing rat cerebellum. The present study addresses the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of selected glial and neuronal cerebellar proteins in rat neonates exposed to hypergravity (1.5 G) from embryonic day (E)11 to postnatal day (P)6 or P9 (the time of maximal cerebellar changes) comparing them against their expression in rat neonates developing under normal gravity. Proteins were analyzed by quantitative Western blots of cerebellar homogenates; RNA analysis was performed in the same samples using quantitative PCR. Densitometric analysis of Western blots suggested a reduction in glial (glial acidic protein, GFAP) and neuronal (neuronal cell adhesion molecule, NCAM-L1, synaptophysin) proteins, but the changes in individual cerebellar proteins in hypergravity-exposed neonates appeared both age- and gender-specific. RNA analysis suggested a reduction in GFAP and synaptophysin mRNAs on P6. These data suggest that exposure to hypergravity may interfere with the expression of selected cerebellar proteins. These changes in protein expression may be involved in mediating the effect of hypergravity on the developing rat cerebellum. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  14. Differential properties of type I and type II benzodiazepine receptors in mammalian CNS neurones.

    PubMed Central

    Yakushiji, T.; Shirasaki, T.; Munakata, M.; Hirata, A.; Akaike, N.

    1993-01-01

    1. The effects of benzodiazepine receptor (BZR) partial agonists, Y-23684 and CL218,872, were compared with its full agonist, diazepam, on gamma-aminobutyric acid (GABA)-induced Cl- current (ICl) in acutely dissociated rat cerebral cortex (CTX), cerebellar Purkinje (CPJ) and spinal ventral horn (SVH) neurones, by the whole-cell mode patch-clamp technique. 2. The GABA-induced responses were essentially the same in both SVH and CPJ neurones, but the KD value of the GABA response in CTX neurone was lower than those in the other two brain regions. 3. Enhancement of the GABA response by the two partial agonists was about one-third of that by diazepam in the SVH neurones (where type II subtype of BZR, BZ2, is predominant), whereas these partial agonists potentiated the GABA response as much as diazepam in CPJ neurones (where the type I subtype of BZR, BZ1, is predominant). In CTX neurones where both type I and II variants are expressed, the augmentation ratio of the GABA response by diazepam was between the values in CPJ and SVH neurones. 4. In concentration-response relationships of BZR partial agonists, the threshold concentrations, KD values and maximal augmentation ratio of the GABA response were similar in all CTX, CPJ and SVH neurones. Also, in all preparations, the threshold concentration and KD values of diazepam action were 10 fold less than those induced by partial agonists. 5. All BZR agonists shifted the concentration-response relationship for GABA to the left without changing the maximum current amplitude, indicating that activation of both BZ1 and BZ2 increase the affinity of the GABAA receptor for GABA.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8395299

  15. Differential properties of type I and type II benzodiazepine receptors in mammalian CNS neurones.

    PubMed

    Yakushiji, T; Shirasaki, T; Munakata, M; Hirata, A; Akaike, N

    1993-07-01

    1. The effects of benzodiazepine receptor (BZR) partial agonists, Y-23684 and CL218,872, were compared with its full agonist, diazepam, on gamma-aminobutyric acid (GABA)-induced Cl- current (ICl) in acutely dissociated rat cerebral cortex (CTX), cerebellar Purkinje (CPJ) and spinal ventral horn (SVH) neurones, by the whole-cell mode patch-clamp technique. 2. The GABA-induced responses were essentially the same in both SVH and CPJ neurones, but the KD value of the GABA response in CTX neurone was lower than those in the other two brain regions. 3. Enhancement of the GABA response by the two partial agonists was about one-third of that by diazepam in the SVH neurones (where type II subtype of BZR, BZ2, is predominant), whereas these partial agonists potentiated the GABA response as much as diazepam in CPJ neurones (where the type I subtype of BZR, BZ1, is predominant). In CTX neurones where both type I and II variants are expressed, the augmentation ratio of the GABA response by diazepam was between the values in CPJ and SVH neurones. 4. In concentration-response relationships of BZR partial agonists, the threshold concentrations, KD values and maximal augmentation ratio of the GABA response were similar in all CTX, CPJ and SVH neurones. Also, in all preparations, the threshold concentration and KD values of diazepam action were 10 fold less than those induced by partial agonists. 5. All BZR agonists shifted the concentration-response relationship for GABA to the left without changing the maximum current amplitude, indicating that activation of both BZ1 and BZ2 increase the affinity of the GABAA receptor for GABA. 6. The results are important in clarifying the mechanism of anxiety and might explain the anxioselectivity of BZR partial agonists.

  16. Antibodies to MOG in adults with inflammatory demyelinating disease of the CNS

    PubMed Central

    Woodhall, Mark R.; Kim, Ji-Sun; Kim, Seong-Joon; Park, Kyung Seok; Vincent, Angela; Lee, Kwang-Woo

    2015-01-01

    Objective: To evaluate the clinical relevance of myelin oligodendrocyte glycoprotein antibody (MOG-Ab) in a cohort of adults with inflammatory demyelinating disease (IDD) of the CNS. Methods: Live cell-based assays for MOG-Ab (IgG1 subset) and antibody to aquaporin-4 (AQP4-Ab) were performed in a cohort of 270 adult patients with IDD and 72 controls. Patients were first grouped by positive antibody result as MOG-Ab or AQP4-Ab, and the remainder were grouped by published diagnostic criteria. Results: Seventeen patients with IDD (6.3%) had MOG-Abs and 49 patients (18.1%) had AQP4-Abs; none had both antibodies. The MOG-Ab patients predominantly manifested with isolated symptoms of optic neuritis (83%). One-third of these patients experienced relapses, which involved only the optic nerve, and all relapsed within 1 year of disease onset. At onset, MRI in the MOG-Ab group uniquely demonstrated perineural enhancement, extending to the soft tissues around the optic nerves (33%). Although about 30% of MOG-Ab patients had brain MRI lesions, they had fewer periventricular lesions than the 26 patients with relapsing-remitting multiple sclerosis (MS); none of these lesions were ovoid or perpendicular to the ventricle. Moreover, MOG-Ab patients did not meet the diagnostic criteria for definite neuromyelitis optica (NMO) and had less spinal cord involvement than the AQP4-Ab group. Four patients (23.5%) had poor visual outcomes (<0.2) or paraplegia. Conclusions: MOG-Abs may be a disease-specific biomarker in adult patients with IDD who have a disease distinct from NMO or MS. The radiologic as well as clinical manifestations of MOG-Ab patients can be useful in their differential diagnosis. PMID:26516628

  17. The microtubule destabilizing protein stathmin controls the transition from dividing neuronal precursors to postmitotic neurons during adult hippocampal neurogenesis.

    PubMed

    Boekhoorn, Karin; van Dis, Vera; Goedknegt, Erika; Sobel, André; Lucassen, Paul J; Hoogenraad, Casper C

    2014-12-01

    The hippocampus is one of the two areas in the mammalian brain where adult neurogenesis occurs. Adult neurogenesis is well known to be involved in hippocampal physiological functions as well as pathophysiological conditions. Microtubules (MTs), providing intracellular transport, stability, and transmitting force, are indispensable for neurogenesis by facilitating cell division, migration, growth, and differentiation. Although there are several examples of MT-stabilizing proteins regulating different aspects of adult neurogenesis, relatively little is known about the function of MT-destabilizing proteins. Stathmin is such a MT-destabilizing protein largely restricted to the CNS, and in contrast to its developmental family members, stathmin is also expressed at significant levels in the adult brain, notably in areas involved in adult neurogenesis. Here, we show an important role for stathmin during adult neurogenesis in the subgranular zone of the mouse hippocampus. After carefully mapping stathmin expression in the adult dentate gyrus (DG), we investigated its role in hippocampal neurogenesis making use of stathmin knockout mice. Although hippocampus development appears normal in these animals, different aspects of adult neurogenesis are affected. First, the number of proliferating Ki-67+ cells is decreased in stathmin knockout mice, as well as the expression of the immature markers Nestin and PSA-NCAM. However, newborn cells that do survive express more frequently the adult marker NeuN and have a more mature morphology. Furthermore, our data suggest that migration in the DG might be affected. We propose a model in which stathmin controls the transition from neuronal precursors to early postmitotic neurons.

  18. Insight on the fate of CNS-targeted nanoparticles. Part II: Intercellular neuronal cell-to-cell transport.

    PubMed

    Tosi, Giovanni; Vilella, Antonietta; Chhabra, Resham; Schmeisser, Michael J; Boeckers, Tobias M; Ruozi, Barbara; Vandelli, Maria Angela; Forni, Flavio; Zoli, Michele; Grabrucker, Andreas M

    2014-03-10

    The application of polymeric nanoparticles (NPs) has a promising future for targeting and delivering drugs into the central nervous system (CNS). However, the fate of NPs once entered in the brain after crossing the blood-brain barrier (BBB) and taken up into neuronal cells is a neglected area of study. Thus, here, we investigate the possible mechanisms of a cell-to-cell transport of poly-lactide-co-glycolide (PLGA) NPs modified with a glycopeptide (g7-NPs), already demonstrated to be able to cross the BBB after in vivo administration in rodents. We also tested antibody (Ab) -modified g7-NPs both in vitro and in vivo to investigate the possibility of specific targeting. Our results show that g7-NPs can be transported intra- and inter-cellularly within vesicles after vesicular internalization. Moreover, cell-to-cell transport is mediated by tunneling-nanotube (TNT)-like structures in cell lines and most interestingly in glial as well as neuronal cells in vitro. The transport is dependent on F-actin and can be increased by induction of TNT-like structures overexpressing M-Sec, a central factor and inducer of TNT formation. Moreover, cell-to-cell transport occurs independently from NP surface modification with antibodies. These in vitro findings were in part confirmed by in vivo evidence after i.p. administration of NPs in mice.

  19. Metabotropic glutamate receptor agonists potentiate a slow afterdepolarization in CNS neurons

    NASA Technical Reports Server (NTRS)

    Zheng, F.; Gallagher, J. P.

    1992-01-01

    We have previously reported that, in the rat dorsolateral septal nucleus (DLSN), metabotropic glutamate receptor (met-GluR) agonists evoked a slow depolarization accompanied by an increase in membrane conductance and burst firing. We have speculated that the burst firing elicited by met-GluR agonists may be due to activation or enhancement of a non-specific cation current, which exists in some DLSN neurons. Now we report that a slow afterdepolarization (sADP) mediated by a non-specific cation current was potentiated by both 1S,3R-ACPD and quisqualate. In addition, met-GluR agonists unmask a sADP in DLSN neurons which did not show a sADP under control conditions. Our data suggest that a non-specific cation current can be potentiated by activation of the met-GluR.

  20. Mitochondrial dysfunction induced by heat stress in cultured rat CNS neurons.

    PubMed

    White, Michael G; Saleh, Osama; Nonner, Doris; Barrett, Ellen F; Moraes, Carlos T; Barrett, John N

    2012-10-01

    Previous work demonstrated that hyperthermia (43°C for 2 h) results in delayed, apoptotic-like death in striatal neuronal cultures. We investigated early changes in mitochondrial function induced by this heat stress. Partial depolarization of the mitochondrial membrane potential (ΔΨ(m)) began about 1 h after the onset of hyperthermia and increased as the stress continued. When the heat stress ended, there was a partial recovery of ΔΨ(m), followed hours later by a progressive, irreversible depolarization of ΔΨ(m). During the heat stress, O(2) consumption initially increased but after 20-30 min began a progressive, irreversible decline to about one-half the initial rate by the end of the stress. The percentage of oligomycin-insensitive respiration increased during the heat stress, suggesting an increased mitochondrial leak conductance. Analysis using inhibitors and substrates for specific respiratory chain complexes indicated hyperthermia-induced dysfunction at or upstream of complex I. ATP levels remained near normal for ∼4 h after the heat stress. Mitochondrial movement along neurites was markedly slowed during and just after the heat stress. The early, persisting mitochondrial dysfunction described here likely contributes to the later (>10 h) caspase activation and neuronal death produced by this heat stress. Consistent with this idea, proton carrier-induced ΔΨ(m) depolarizations comparable in duration to those produced by the heat stress also reduced neuronal viability. Post-stress ΔΨ(m) depolarization and/or delayed neuronal death were modestly reduced/postponed by nicotinamide adenine dinucleotide, a calpain inhibitor, and increased expression of Bcl-xL.

  1. An Engulfment Assay: A Protocol to Assess Interactions Between CNS Phagocytes and Neurons

    PubMed Central

    Schafer, Dorothy P.; Lehrman, Emily K.; Heller, Christopher T.; Stevens, Beth

    2014-01-01

    Phagocytosis is a process in which a cell engulfs material (entire cell, parts of a cell, debris, etc.) in its surrounding extracellular environment and subsequently digests this material, commonly through lysosomal degradation. Microglia are the resident immune cells of the central nervous system (CNS) whose phagocytic function has been described in a broad range of conditions from neurodegenerative disease (e.g., beta-amyloid clearance in Alzheimer’s disease) to development of the healthy brain (e.g., synaptic pruning)1-6. The following protocol is an engulfment assay developed to visualize and quantify microglia-mediated engulfment of presynaptic inputs in the developing mouse retinogeniculate system7. While this assay was used to assess microglia function in this particular context, a similar approach may be used to assess other phagocytes throughout the brain (e.g., astrocytes) and the rest of the body (e.g., peripheral macrophages) as well as other contexts in which synaptic remodeling occurs (e.g. ,brain injury/disease). PMID:24962472

  2. Neuronal K+/Cl- co-transporter (KCC2) transgenes lacking neurone restrictive silencer element recapitulate CNS neurone-specific expression and developmental up-regulation of endogenous KCC2 gene.

    PubMed

    Uvarov, Pavel; Pruunsild, Priit; Timmusk, Tõnis; Airaksinen, Matti S

    2005-11-01

    The K+/Cl- co-transporter KCC2 maintains the low intracellular chloride concentration required for fast synaptic inhibition and is exclusively expressed in neurones of the CNS. Here, we show that the KCC2 gene (alias SLC12a5) has multiple transcription start sites and characterize the activity of 6.8 kb of mouse KCC2 gene regulatory sequence (spanning 1.4 kb upstream from exon 1 to exon 2) using luciferase reporters. Overexpression of neurone-restrictive silencer factor repressed the reporter activity in vitro, apparently via a neurone restrictive silencer element (NRSE(KCC2)) within intron 1 of the mouse KCC2 gene. In transgenic mice, however, KCC2 reporters with or without deletion of the NRSE(KCC2) were expressed exclusively in neurones and predominantly in the CNS with a similar pattern and developmental up-regulation as endogenous KCC2. Moreover, a third transgene with just a 1.4-kb KCC2 promoter region lacking the NRSE(KCC2)-bearing intron 1 was still expressed predominantly in neural tissues. Thus, developmental up-regulation of the KCC2 gene does not require NRSE(KCC2) and the 1.4-kb KCC2 promoter is largely sufficient for neurone-specific expression of KCC2.

  3. Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective.

    PubMed

    Llinás, Rodolfo R

    2014-01-01

    This brief review summarizes work done in mammalian neuroscience concerning the intrinsic electrophysiological properties of four neuronal types; Cerebellar Purkinje cells, inferior olivary cells, thalamic cells, and some cortical interneurons. It is a personal perspective addressing an interesting time in neuroscience when the reflex view of brain function, as the paradigm to understand global neuroscience, began to be modified toward one in which sensory input modulates rather than dictates brain function. The perspective of the paper is not a comprehensive description of the intrinsic electrical properties of all nerve cells but rather addresses a set of cell types that provide indicative examples of mechanisms that modulate brain function.

  4. Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective

    PubMed Central

    Llinás, Rodolfo R.

    2014-01-01

    This brief review summarizes work done in mammalian neuroscience concerning the intrinsic electrophysiological properties of four neuronal types; Cerebellar Purkinje cells, inferior olivary cells, thalamic cells, and some cortical interneurons. It is a personal perspective addressing an interesting time in neuroscience when the reflex view of brain function, as the paradigm to understand global neuroscience, began to be modified toward one in which sensory input modulates rather than dictates brain function. The perspective of the paper is not a comprehensive description of the intrinsic electrical properties of all nerve cells but rather addresses a set of cell types that provide indicative examples of mechanisms that modulate brain function. PMID:25408634

  5. Alpha-Synuclein affects neurite morphology, autophagy, vesicle transport and axonal degeneration in CNS neurons

    PubMed Central

    Koch, J C; Bitow, F; Haack, J; d'Hedouville, Z; Zhang, J-N; Tönges, L; Michel, U; Oliveira, L M A; Jovin, T M; Liman, J; Tatenhorst, L; Bähr, M; Lingor, P

    2015-01-01

    Many neuropathological and experimental studies suggest that the degeneration of dopaminergic terminals and axons precedes the demise of dopaminergic neurons in the substantia nigra, which finally results in the clinical symptoms of Parkinson disease (PD). The mechanisms underlying this early axonal degeneration are, however, still poorly understood. Here, we examined the effects of overexpression of human wildtype alpha-synuclein (αSyn-WT), a protein associated with PD, and its mutant variants αSyn-A30P and -A53T on neurite morphology and functional parameters in rat primary midbrain neurons (PMN). Moreover, axonal degeneration after overexpression of αSyn-WT and -A30P was analyzed by live imaging in the rat optic nerve in vivo. We found that overexpression of αSyn-WT and of its mutants A30P and A53T impaired neurite outgrowth of PMN and affected neurite branching assessed by Sholl analysis in a variant-dependent manner. Surprisingly, the number of primary neurites per neuron was increased in neurons transfected with αSyn. Axonal vesicle transport was examined by live imaging of PMN co-transfected with EGFP-labeled synaptophysin. Overexpression of all αSyn variants significantly decreased the number of motile vesicles and decelerated vesicle transport compared with control. Macroautophagic flux in PMN was enhanced by αSyn-WT and -A53T but not by αSyn-A30P. Correspondingly, colocalization of αSyn and the autophagy marker LC3 was reduced for αSyn-A30P compared with the other αSyn variants. The number of mitochondria colocalizing with LC3 as a marker for mitophagy did not differ among the groups. In the rat optic nerve, both αSyn-WT and -A30P accelerated kinetics of acute axonal degeneration following crush lesion as analyzed by in vivo live imaging. We conclude that αSyn overexpression impairs neurite outgrowth and augments axonal degeneration, whereas axonal vesicle transport and autophagy are severely altered. PMID:26158517

  6. Neural Stem Cell Transplantation and CNS Diseases.

    PubMed

    Gonzalez, Rodolfo; Hamblin, Milton H; Lee, Jean-Pyo

    2016-01-01

    In neurological disorders, pathological lesions in the central nervous system (CNS) may be globally dispersed throughout the brain or localized to specific regions. Although native neural stem cells (NSCs) are present in the adult mammalian brain, intrinsic self-repair of injured adult CNS tissue is inadequate or ineffective. The brain's poor regenerative ability may be due to the fact that NSCs are restricted to discrete locations, are few in number, or are surrounded by a microenvironment that does not support neuronal differentiation. Therapeutic potential of NSC transplantation in CNS diseases characterized by global degeneration requires that gene products and/or replaced cells be widely distributed. Global degenerative CNS diseases include inherited pediatric neurodegenerative diseases (inborn errors of metabolism, including lysosomal storage disorders (LSDs), such as Tay-Sachs-related Sandhoff disease), hypoxic or ischemic encephalopathy, and some adult CNS diseases (such as multiple sclerosis). Both mouse and human NSCs express many chemokines and chemokine receptors (including CXCR4 and adhesion molecules, such as integrins, selectins, and immunoglobulins) that mediate homing to sources of inflammatory chemokines, such as SDF-1α. In mammalian brains of all ages, NSCs may be attracted even at a great distance to regions of neurodegeneration. Consequently, NSC transplantation presents a promising strategy for treating many CNS diseases.

  7. Receptor Tyrosine Kinases: Molecular Switches Regulating CNS Axon Regeneration

    PubMed Central

    Vigneswara, Vasanthy; Kundi, Sarina; Ahmed, Zubair

    2012-01-01

    The poor or lack of injured adult central nervous system (CNS) axon regeneration results in devastating consequences and poor functional recovery. The interplay between the intrinsic and extrinsic factors contributes to robust inhibition of axon regeneration of injured CNS neurons. The insufficient or lack of trophic support for injured neurons is considered as one of the major obstacles contributing to their failure to survive and regrow their axons after injury. In the CNS, many of the signalling pathways associated with neuronal survival and axon regeneration are regulated by several classes of receptor tyrosine kinases (RTK) that respond to a variety of ligands. This paper highlights and summarises the most relevant recent findings pertinent to different classes of the RTK family of molecules, with a particular focus on elucidating their role in CNS axon regeneration. PMID:22848811

  8. Seamless Reconstruction of Intact Adult-Born Neurons by Serial End-Block Imaging Reveals Complex Axonal Guidance and Development in the Adult Hippocampus

    PubMed Central

    Sun, Gerald J.; Sailor, Kurt A.; Mahmood, Qasim A.; Chavali, Nikhil; Christian, Kimberly M.; Song, Hongjun

    2013-01-01

    In the adult mammalian hippocampus, newborn dentate granule cells are continuously integrated into the existing circuitry and contribute to specific brain functions. Little is known about the axonal development of these newborn neurons in the adult brain due to technological challenges that have prohibited large-scale reconstruction of long, thin, and complex axonal processes within the mature nervous system. Here, using a new serial end-block imaging (SEBI) technique, we seamlessly reconstructed axonal and dendritic processes of intact individual retrovirus-labeled newborn granule cells at different developmental stages in the young adult mouse hippocampus. We found that adult-born dentate granule cells exhibit tortuous, yet highly stereotyped, axonal projections to CA3 hippocampal subregions. Primary axonal projections of cohorts of new neurons born around the same time organize into laminar patterns with staggered terminations that stack along the septo-temporal hippocampal axis. Analysis of individual newborn neuron development further defined an initial phase of rapid axonal and dendritic growth within 21 d after newborn neuron birth, followed by minimal growth of primary axonal and whole dendritic processes through the last time point examined at 77 d. Our results suggest that axonal development and targeting is a highly orchestrated, precise process in the adult brain. These findings demonstrate a striking regenerative capacity of the mature CNS to support long-distance growth and guidance of neuronal axons. Our SEBI approach can be broadly applied for analysis of intact, complex neuronal projections in limitless tissue volume. PMID:23843512

  9. Seamless reconstruction of intact adult-born neurons by serial end-block imaging reveals complex axonal guidance and development in the adult hippocampus.

    PubMed

    Sun, Gerald J; Sailor, Kurt A; Mahmood, Qasim A; Chavali, Nikhil; Christian, Kimberly M; Song, Hongjun; Ming, Guo-li

    2013-07-10

    In the adult mammalian hippocampus, newborn dentate granule cells are continuously integrated into the existing circuitry and contribute to specific brain functions. Little is known about the axonal development of these newborn neurons in the adult brain due to technological challenges that have prohibited large-scale reconstruction of long, thin, and complex axonal processes within the mature nervous system. Here, using a new serial end-block imaging (SEBI) technique, we seamlessly reconstructed axonal and dendritic processes of intact individual retrovirus-labeled newborn granule cells at different developmental stages in the young adult mouse hippocampus. We found that adult-born dentate granule cells exhibit tortuous, yet highly stereotyped, axonal projections to CA3 hippocampal subregions. Primary axonal projections of cohorts of new neurons born around the same time organize into laminar patterns with staggered terminations that stack along the septo-temporal hippocampal axis. Analysis of individual newborn neuron development further defined an initial phase of rapid axonal and dendritic growth within 21 d after newborn neuron birth, followed by minimal growth of primary axonal and whole dendritic processes through the last time point examined at 77 d. Our results suggest that axonal development and targeting is a highly orchestrated, precise process in the adult brain. These findings demonstrate a striking regenerative capacity of the mature CNS to support long-distance growth and guidance of neuronal axons. Our SEBI approach can be broadly applied for analysis of intact, complex neuronal projections in limitless tissue volume.

  10. Neuron-specific expression of p48 Ebp1 during murine brain development and its contribution to CNS axon regeneration.

    PubMed

    Ko, Hyo Rim; Hwang, Inwoo; Ahn, So Yoon; Chang, Yun Sil; Park, Won Soon; Ahn, Jee-Yin

    2017-03-01

    P48 Ebp1 is expressed in rapidly proliferating cells such as cancer cells and accelerates cell growth and survival. However, its expression pattern and role in central nervous system development have not been studied. Here, we demonstrated the spatiotemporal expression pattern of p48 Ebp1 during embryonic development and the postnatal period. During embryonic development, p48 Ebp1 was highly expressed in the brain. Expression gradually decreased after birth but was still more abundant than p42 expression after birth. Strikingly, we found that p48 Ebp1 was expressed in a cell type specific manner in neurons but not astrocytes. Moreover, p48 Ebp1 physically interacted with beta tubulin but not alpha tubulin. This fits with its accumulation in distal microtubule growth cone regions. Furthermore, in injured hippocampal slices, p48 Ebp1 introduction promoted axon regeneration. Thus, we speculate that p48 Ebp1 might contribute to microtubule dynamics acting as an MAP and promotes CNS axon regeneration. [BMB Reports 2017; 50(3): 126-131].

  11. Hereditary leukoencephalopathy with axonal spheroids: a spectrum of phenotypes from CNS vasculitis to parkinsonism in an adult onset leukodystrophy series

    PubMed Central

    Jaunmuktane, Zane; Sheerin, Una-Marie; Phadke, Rahul; Brandner, Sebastian; Milonas, Ionnis; Dean, Andrew; Bajaj, Nin; McNicholas, Nuala; Costello, Daniel; Cronin, Simon; McGuigan, Chris; Rossor, Martin; Fox, Nick; Murphy, Elaine; Chataway, Jeremy; Houlden, Henry

    2016-01-01

    Background Hereditary diffuse leukoencephalopathy with neuroaxonal spheroids (HDLS) is a hereditary, adult onset leukodystrophy which is characterised by the presence of axonal loss, axonal spheroids and variably present pigmented macrophages on pathological examination. It most frequently presents in adulthood with dementia and personality change. HDLS has recently been found to be caused by mutations in the colony stimulating factor-1 receptor (CSF1R) gene. Methods In this study, we sequenced the CSF1R gene in a cohort of 48 patients from the UK, Greece and Ireland with adult onset leukodystrophy of unknown cause. Results Five pathogenic mutations were found, including three novel mutations. The presentations ranged from suspected central nervous system (CNS) vasculitis to extrapyramidal to cognitive phenotypes. The case histories and imaging are presented here, in addition to neuropathological findings from two cases with novel mutations. Conclusion We estimate that CSF1R mutations account for 10% of idiopathic adult onset leukodystrophies and that genetic testing for CSF1R mutations is essential in adult patients presenting with undefined CNS vasculitis or a leukodystrophy with prominent neuropsychiatric signs or dementia. PMID:25935893

  12. Partial correction of the CNS lysosomal storage defect in a mouse model of juvenile neuronal ceroid lipofuscinosis by neonatal CNS administration of an adeno-associated virus serotype rh.10 vector expressing the human CLN3 gene.

    PubMed

    Sondhi, Dolan; Scott, Emma C; Chen, Alvin; Hackett, Neil R; Wong, Andrew M S; Kubiak, Agnieszka; Nelvagal, Hemanth R; Pearse, Yewande; Cotman, Susan L; Cooper, Jonathan D; Crystal, Ronald G

    2014-03-01

    Juvenile neuronal ceroid lipofuscinosis (JNCL or CLN3 disease) is an autosomal recessive lysosomal storage disease resulting from mutations in the CLN3 gene that encodes a lysosomal membrane protein. The disease primarily affects the brain with widespread intralysosomal accumulation of autofluorescent material and fibrillary gliosis, as well as the loss of specific neuronal populations. As an experimental treatment for the CNS manifestations of JNCL, we have developed a serotype rh.10 adeno-associated virus vector expressing the human CLN3 cDNA (AAVrh.10hCLN3). We hypothesized that administration of AAVrh.10hCLN3 to the Cln3(Δex7/8) knock-in mouse model of JNCL would reverse the lysosomal storage defect, as well as have a therapeutic effect on gliosis and neuron loss. Newborn Cln3(Δex7/8) mice were administered 3 × 10(10) genome copies of AAVrh.10hCLN3 to the brain, with control groups including untreated Cln3(Δex7/8) mice and wild-type littermate mice. After 18 months, CLN3 transgene expression was detected in various locations throughout the brain, particularly in the hippocampus and deep anterior cortical regions. Changes in the CNS neuronal lysosomal accumulation of storage material were assessed by immunodetection of subunit C of ATP synthase, luxol fast blue staining, and periodic acid-Schiff staining. For all parameters, Cln3(Δex7/8) mice exhibited abnormal lysosomal accumulation, but AAVrh.10hCLN3 administration resulted in significant reductions in storage material burden. There was also a significant decrease in gliosis in AAVrh.10hCLN3-treated Cln3(Δex7/8) mice, and a trend toward improved neuron counts, compared with their untreated counterparts. These data demonstrate that AAVrh.10 delivery of a wild-type cDNA to the CNS is not harmful and instead provides a partial correction of the neurological lysosomal storage defect of a disease caused by a lysosomal membrane protein, indicating that this may be an effective therapeutic strategy for JNCL and

  13. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan

    PubMed Central

    Weismann, Cara M.; Ferreira, Jennifer; Keeler, Allison M.; Su, Qin; Qui, Linghua; Shaffer, Scott A.; Xu, Zuoshang; Gao, Guangping; Sena-Esteves, Miguel

    2015-01-01

    GM1 gangliosidosis (GM1) is an autosomal recessive lysosomal storage disease where GLB1 gene mutations result in a reduction or absence of lysosomal acid β-galactosidase (βgal) activity. βgal deficiency leads to accumulation of GM1-ganglioside in the central nervous system (CNS). GM1 is characterized by progressive neurological decline resulting in generalized paralysis, extreme emaciation and death. In this study, we assessed the therapeutic efficacy of an adeno-associated virus (AAV) 9-mβgal vector infused systemically in adult GM1 mice (βGal−/−) at 1 × 1011 or 3 × 1011 vector genomes (vg). Biochemical analysis of AAV9-treated GM1 mice showed high βGal activity in liver and serum. Moderate βGal levels throughout CNS resulted in a 36–76% reduction in GM1-ganglioside content in the brain and 75–86% in the spinal cord. Histological analyses of the CNS of animals treated with 3 × 1011 vg dose revealed increased presence of βgal and clearance of lysosomal storage throughout cortex, hippocampus, brainstem and spinal cord. Storage reduction in these regions was accompanied by a marked decrease in astrogliosis. AAV9 treatment resulted in improved performance in multiple tests of motor function and behavior. Also the majority of GM1 mice in the 3 × 1011 vg cohort retained ambulation and rearing despite reaching the humane endpoint due to weight loss. Importantly, the median survival of AAV9 treatment groups (316–576 days) was significantly increased over controls (250–264 days). This study shows that moderate widespread expression of βgal in the CNS of GM1 gangliosidosis mice is sufficient to achieve significant biochemical impact with phenotypic amelioration and extension in lifespan. PMID:25964428

  14. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan.

    PubMed

    Weismann, Cara M; Ferreira, Jennifer; Keeler, Allison M; Su, Qin; Qui, Linghua; Shaffer, Scott A; Xu, Zuoshang; Gao, Guangping; Sena-Esteves, Miguel

    2015-08-01

    GM1 gangliosidosis (GM1) is an autosomal recessive lysosomal storage disease where GLB1 gene mutations result in a reduction or absence of lysosomal acid β-galactosidase (βgal) activity. βgal deficiency leads to accumulation of GM1-ganglioside in the central nervous system (CNS). GM1 is characterized by progressive neurological decline resulting in generalized paralysis, extreme emaciation and death. In this study, we assessed the therapeutic efficacy of an adeno-associated virus (AAV) 9-mβgal vector infused systemically in adult GM1 mice (βGal(-/-)) at 1 × 10(11) or 3 × 10(11) vector genomes (vg). Biochemical analysis of AAV9-treated GM1 mice showed high βGal activity in liver and serum. Moderate βGal levels throughout CNS resulted in a 36-76% reduction in GM1-ganglioside content in the brain and 75-86% in the spinal cord. Histological analyses of the CNS of animals treated with 3 × 10(11) vg dose revealed increased presence of βgal and clearance of lysosomal storage throughout cortex, hippocampus, brainstem and spinal cord. Storage reduction in these regions was accompanied by a marked decrease in astrogliosis. AAV9 treatment resulted in improved performance in multiple tests of motor function and behavior. Also the majority of GM1 mice in the 3 × 10(11) vg cohort retained ambulation and rearing despite reaching the humane endpoint due to weight loss. Importantly, the median survival of AAV9 treatment groups (316-576 days) was significantly increased over controls (250-264 days). This study shows that moderate widespread expression of βgal in the CNS of GM1 gangliosidosis mice is sufficient to achieve significant biochemical impact with phenotypic amelioration and extension in lifespan.

  15. Adults with CNS primitive neuroectodermal tumors/pineoblastomas: results of multimodal treatment according to the pediatric HIT 2000 protocol.

    PubMed

    Friedrich, Carsten; Müller, Klaus; von Hoff, Katja; Kwiecien, Robert; Pietsch, Torsten; Warmuth-Metz, Monika; Gerber, Nicolas U; Hau, Peter; Kuehl, Joachim; Kortmann, Rolf D; von Bueren, André O; Rutkowski, Stefan

    2014-02-01

    Central nervous system primitive neuroectodermal tumors (CNS-PNET) and pineoblastomas (PBL) are rare in adulthood. Knowledge on clinical outcome and the efficacy and toxicities of chemotherapy in addition to radiotherapy is limited. Patients older than 21 years at diagnosis were followed in the observational arm of the prospective pediatric multicenter trial HIT 2000. After surgery, craniospinal irradiation and maintenance or sandwich chemotherapy were recommended. Radiotherapy was normo- (35.2 Gy; tumor region, 55.0 Gy; metastasis, 49.6 Gy) or hyperfractionated (40.0 Gy; tumor bed, 68.0 Gy; metastasis, 50-60 Gy). Maintenance chemotherapy consisted of eight courses (vincristine, lomustine, cisplatin). Sandwich chemotherapy included two cycles of postoperative chemotherapy followed by radiotherapy, and four courses of maintenance chemotherapy. Seventeen patients (CNS-PNET, n = 7; PBL, n = 10), median age 30 years, were included. Eight patients had a postoperative residual tumor and four patients metastatic disease. The median follow-up of ten surviving patients was 41 months. The estimated rates for 3-year progression-free survival (PFS) and overall survival were 68 ± 12 and 66 ± 13%, respectively. PBL compared to CNS-PNET tended towards a better PFS, although the difference was not clear (p = 0.101). Both chemotherapeutic (maintenance, n = 6; sandwich, n = 8) protocols did not differ in their PFS and were feasible with acceptable toxicities. Intensified regimens of combined chemo- and radiotherapy are generally feasible in adults with CNS-PNET/PBL. The impact of intensified chemotherapy on survival should be further assessed.

  16. Phase and frequency coordination between neuron firing as an integrative mechanism of human CNS self-organization.

    PubMed

    Schalow, Giselher

    2005-01-01

    It was shown by surface electromyography (sEMG) from spinal cord injury and Parkinson's disease patients that FF-type motor units fire repeatedly at a rate of 10 Hz and FR-type motor units with approximately 3 action potentials per impulse train at 4 to 5 Hz. Such oscillatory firing was compared with the firing of alpha1, alpha2, and alpha3-motoneurons, innervating FF FR, and S-type muscle fibres, which fire oscillatory approximately at 10 Hz, 4 to 7 Hz and 1 Hz, as measured earlier with the single nerve-fibre action potential recording method from motoneuron axons. Repeated firings with impulse trains consisted of 1, 2-5, and 20-50 action potentials per impulse train respectively. Oscillatory firing of motoneurons has now been demonstrated in humans with two methods. In spinal cord injury patients it was observed that the FF-type motor units, firing normally at 10 Hz, fired for higher activations also at approximately 20 Hz. A motor program burst was generated by recruiting for the burst time motor units to fire oscillatory. It was further shown that FF-type motor units fired with relative phase and frequency coordination but non-synchronously. The coordination was between motor units firing of the same muscle and between muscles of the right and left arm. With the single-nerve fibre action potential recording method it was found earlier that alpha and gamma-motoneurons and muscle spindle afferents fired in relative coordination. There is indication that relative phase and frequency coordination is an integrative mechanism for the self-organization of the neuronal networks of the human central nervous system (CNS).

  17. Intraganglionic interactions between satellite cells and adult sensory neurons.

    PubMed

    Christie, Kimberly; Koshy, Dilip; Cheng, Chu; Guo, GuiFang; Martinez, Jose A; Duraikannu, Arul; Zochodne, Douglas W

    2015-07-01

    Perineuronal satellite cells have an intimate anatomical relationship with sensory neurons that suggests close functional collaboration and mutual support. We examined several facets of this relationship in adult sensory dorsal root ganglia (DRG). Collaboration included the support of process outgrowth by clustering of satellite cells, induction of distal branching behavior by soma signaling, the capacity of satellite cells to respond to distal axon injury of its neighboring neurons, and evidence of direct neuron-satellite cell exchange. In vitro, closely adherent coharvested satellite cells routinely clustered around new outgrowing processes and groups of satellite cells attracted neurite processes. Similar clustering was encountered in the pseudounipolar processes of intact sensory neurons within intact DRG in vivo. While short term exposure of distal growth cones of unselected adult sensory neurons to transient gradients of a PTEN inhibitor had negligible impacts on their behavior, exposure of the soma induced early and substantial growth of their distant neurites and branches, an example of local soma signaling. In turn, satellite cells sensed when distal neuronal axons were injured by enlarging and proliferating. We also observed that satellite cells were capable of internalizing and expressing a neuron fluorochrome label, diamidino yellow, applied remotely to distal injured axons of the neuron and retrogradely transported to dorsal root ganglia sensory neurons. The findings illustrate a robust interaction between intranganglionic neurons and glial cells that involve two way signals, features that may be critical for both regenerative responses and ongoing maintenance.

  18. Inhibition of Poly-ADP-Ribosylation Fails to Increase Axonal Regeneration or Improve Functional Recovery after Adult Mammalian CNS Injury

    PubMed Central

    Wang, Xingxing; Byrne, Alexandra B.

    2016-01-01

    Abstract After traumatic damage of the brain or spinal cord, many surviving neurons are disconnected, and recovery of function is limited by poor axon regeneration. Recent data have suggested that poly ADP-ribosylation plays a role in limiting axonal regrowth such that inhibition of poly (ADP-ribose) polymerase (PARP) may have therapeutic efficacy for neurological recovery after trauma. Here, we tested systemic administration of the PARP inhibitor, veliparib, and showed effective suppression of PARylation in the mouse CNS. After optic nerve crush injury or dorsal hemisection of the thoracic spinal cord in mice, treatment with veliparib at doses with pharmacodynamic action had no benefit for axonal regeneration or functional recovery. We considered whether PARP gene family specificity might play a role. In vitro mouse cerebral cortex axon regeneration experiments revealed that short hairpin RNA (shRNA)-mediated suppression of PARP1 promoted axonal regeneration, whereas suppression of other PARP isoforms either had no effect or decreased regeneration. Therefore, we examined recovery from neurological trauma in mice lacking PARP1. No increase of axonal regeneration was observed in Parp1–/– mice after optic nerve crush injury or dorsal hemisection of the thoracic spinal cord, and there was no improvement in motor function recovery. Thus, comprehensive in vivo analysis reveals no indication that clinical PARP inhibitors will on their own provide benefit for recovery from CNS trauma. PMID:28032120

  19. Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains

    PubMed Central

    Weimann, James M.; Charlton, Carol A.; Brazelton, Timothy R.; Hackman, Robert C.; Blau, Helen M.

    2003-01-01

    We show here that cells within human adult bone marrow can contribute to cells in the adult human brain. Cerebellar tissues from female patients with hematologic malignancies, who had received chemotherapy, radiation, and a bone marrow transplant, were analyzed. Brain samples were obtained at autopsy from female patients who received male (sex-mismatched) or female (sex-matched, control) bone marrow transplants. Cerebella were evaluated in 10-μm-thick, formaldehyde-fixed, paraffin-embedded sections that encompassed up to ≈50% of a human Purkinje nucleus. A total of 5,860 Purkinje cells from sex-mismatched females and 3,202 Purkinje cells from sex-matched females were screened for Y chromosomes by epifluorescence. Confocal laser scanning microscopy allowed definitive identification of the sex chromosomes within the morphologically distinct Purkinje cells. In the brains of females who received male bone marrow, four Purkinje neurons were found that contained an X and a Y chromosome and two other Purkinje neurons contained more than a diploid number of sex chromosomes. No Y chromosomes were detected in the brains of sex-matched controls. The total frequency of male bone marrow contribution to female Purkinje cells approximated 0.1%. This study demonstrates that although during human development Purkinje neurons are no longer generated after birth, cells within the bone marrow can contribute to these CNS neurons even in adulthood. The underlying mechanism may be caused either by generation de novo of Purkinje neurons from bone marrow-derived cells or by fusion of marrow-derived cells with existing recipient Purkinje neurons. PMID:12576546

  20. Mechanisms of neuronal migration in the adult brain.

    PubMed

    Kaneko, Naoko; Sawada, Masato; Sawamoto, Kazunobu

    2017-03-02

    Adult neurogenesis was first observed nearly 60 years ago, and it has since grown into an important neurochemistry research field. Much recent research has focused on the treatment of brain diseases through neuronal regeneration with endogenously generated neurons. In the adult brain, immature neurons called neuroblasts are continuously generated in the ventricular-subventricular zone (V-SVZ). These neuroblasts migrate rapidly through the rostral migratory stream to the olfactory bulb, where they mature and are integrated into the neuronal circuitry. After brain insult, some of the neuroblasts in the V-SVZ migrate toward the lesion to repopulate the injured tissue. This notable migratory capacity of V-SVZ-derived neuroblasts is important for efficiently regenerating neurons in remote areas of the brain. As these neurons migrate for long distances through adult brain tissue, they are supported by various guidance cues and structures that act as scaffolds. Some of these mechanisms are unique to neuroblast migration in the adult brain, and are not involved in migration in the developing brain. Here, we review the latest findings on the mechanisms of neuroblast migration in the adult brain under physiological and pathological conditions, and discuss various issues that still need to be resolved. This article is protected by copyright. All rights reserved.

  1. Potassium currents in adult rat intracardiac neurones.

    PubMed Central

    Xi-Moy, S X; Dun, N J

    1995-01-01

    1. Properties of K+ currents were studied in isolated adult rat parasympathetic intracardiac neurones with the use of single-electrode voltage-clamp techniques. 2. A hyperpolarization-activated inward rectifier current was revealed when the membrane was clamped close to the resting level (-60 mV). The slowly developing inward relaxation had a mean amplitude of 450 pA at -150 mV, an activation threshold of -60 to -70 mV and a relaxation time constant of 41 ms at -120 mV. The current was reversibly blocked by Cs+ (1 mM) and became smaller with reduced [K+]o and [Na+]o, indicating that this inward rectifier current probably is a time- and voltage-dependent Na(+)-K+ current. 3. Step depolarizations from the holding potential of -80 mV evoked a transient (< 100 ms at -40 mV) outward K+ current (IA) which was blocked by 4-aminopyridine (4-AP, 1 mM). The time constants for IA inactivation were 20 ms at -50 mV and 16 ms at -20 mV. The steady-state activation and (removal of) inactivation curve showed a small overlap between -70 and -40 mV; the reversal potential of IA was close to EK. 4. Step hyperpolarizations from the depolarized potentials, i.e. -30 mV, revealed a slow inward relaxation associated with the deactivation of a time- and voltage-dependent current. The inward relaxation became faster at more hyperpolarized potentials and reversed at -85 and -53 mV in 4.7 and 15 mM [K+]o. This current was blocked by muscarine (20 microM) and Ba2+ (1 mM) but not affected by Cs+ (1 mM); this current may correspond to the M-current (IM). 5. Depolarization-activated outward K+ currents were evoked by holding the membrane close to the resting potential in the presence of tetrodotoxin (TTX, 3 microM), 4-AP (1 mM) and Ba2+ (1 mM). The amplitude of the outward relaxation and the tail current became smaller as the [K+]o was elevated. The outward tail current was reduced in a Ca(2+)-free solution and the residual current was eliminated by the addition of tetraethylammonium (TEA, 10 m

  2. CNS development: an overview

    NASA Technical Reports Server (NTRS)

    Nowakowski, R. S.; Hayes, N. L.

    1999-01-01

    The basic principles of the development of the central nervous system (CNS) are reviewed, and their implications for both normal and abnormal development of the brain are discussed. The goals of this review are (a) to provide a set of concepts to aid in understanding the variety of complex processes that occur during CNS development, (b) to illustrate how these concepts contribute to our knowledge of the normal anatomy of the adult brain, and (c) to provide a basis for understanding how modifications of normal developmental processes by traumatic injury, by environmental or experiential influences, or by genetic variations may lead to modifications in the resultant structure and function of the adult CNS.

  3. The insulin-like growth factor 1 receptor is essential for axonal regeneration in adult central nervous system neurons.

    PubMed

    Dupraz, Sebastián; Grassi, Diego; Karnas, Diana; Nieto Guil, Alvaro F; Hicks, David; Quiroga, Santiago

    2013-01-01

    Axonal regeneration is an essential condition to re-establish functional neuronal connections in the injured adult central nervous system (CNS), but efficient regrowth of severed axons has proven to be very difficult to achieve. Although significant progress has been made in identifying the intrinsic and extrinsic mechanisms involved, many aspects remain unresolved. Axonal development in embryonic CNS (hippocampus) requires the obligate activation of the insulin-like growth factor 1 receptor (IGF-1R). Based on known similarities between axonal growth in fetal compared to mature CNS, we decided to examine the expression of the IGF-1R, using an antibody to the βgc subunit or a polyclonal anti-peptide antibody directed to the IGF-R (C20), in an in vitro model of adult CNS axonal regeneration, namely retinal ganglion cells (RGC) derived from adult rat retinas. Expression of both βgc and the β subunit recognized by C20 antibody were low in freshly isolated adult RGC, but increased significantly after 4 days in vitro. As in embryonic axons, βgc was localised to distal regions and leading growth cones in RGC. IGF-1R-βgc co-localised with activated p85 involved in the phosphatidylinositol-3 kinase (PI3K) signaling pathway, upon stimulation with IGF-1. Blocking experiments using either an antibody which neutralises IGF-1R activation, shRNA designed against the IGF-1R sequence, or the PI3K pathway inhibitor LY294002, all significantly reduced axon regeneration from adult RGC in vitro (∼40% RGC possessed axons in controls vs 2-8% in the different blocking studies). Finally, co-transfection of RGC with shRNA to silence IGF-1R together with a vector containing a constitutively active form of downstream PI3K (p110), fully restored axonal outgrowth in vitro. Hence these data demonstrate that axonal regeneration in adult CNS neurons requires re-expression and activation of IGF-1R, and targeting this system may offer new therapeutic approaches to enhancing axonal

  4. Phosphorylated retinoblastoma protein (p-Rb) is involved in neuronal apoptosis after traumatic brain injury in adult rats.

    PubMed

    Liu, Wei; Liu, Xiaojuan; Yang, Huilin; Zhu, Xinhui; Yi, Hong; Zhu, Xuesong; Zhang, Jie

    2013-04-01

    Phosphorylated retinoblastoma protein (p-Rb), a well identified cell cycle related protein, is involved in regulating the biological functions of various cell types including neurons. One attractive biological function of p-Rb is releasing E2F transcription factor to induce S-phase entry and cellular proliferation of mitotic cells. However, some studies point out that the role of p-Rb in post-mitotic cells such as mature neurons is unique; it may induce cellular apoptosis rather than proliferation via regulating cell cycle reactivation. Up to now, the knowledge of p-Rb function in CNS is still limited. To investigate whether p-Rb is involved in CNS injury and repair, we performed a traumatic brain injury model in adult rats. Up-regulation of p-Rb was observed in the injured brain cortex by western blot analysis and immunohistochemistry staining. Terminal deoxynucleotidyl transferase deoxy-UTP-nick end labeling (TUNEL) and 4',6-diamidino-2-phenylindole (DAPI) staining suggested that p-Rb was relevant to neuronal apoptosis after brain injury. In addition, glutamate excitotoxic model of primary cortex neurons was introduced to further investigate the role of p-Rb in neuronal apoptosis; the result implied p-Rb was associated with cell cycle activation in the apoptotic neurons. Based on our data, we suggested that p-Rb might play an important role in neuronal apoptosis after traumatic brain injury in rat; which might also provide a basis for the further study on its role in regulating cell cycle re-entry in apoptotic neurons, and might gain a novel strategy for the clinical therapy for traumatic brain injury.

  5. Self-regulation of adult thalamocortical neurons

    PubMed Central

    Kasten, Michael R.

    2015-01-01

    The thalamus acts as a conduit for sensory and other information traveling to the cortex. In response to continuous sensory stimulation in vivo, the firing rate of thalamocortical neurons initially increases, but then within a minute firing rate decreases and T-type Ca2+ channel-dependent action potential burst firing emerges. While neuromodulatory systems could play a role in this inhibitory response, we instead report a novel and cell-autonomous inhibitory mechanism intrinsic to the thalamic relay neuron. Direct intracellular stimulation of thalamocortical neuron firing initially triggered a continuous and high rate of action potential discharge, but within a minute membrane potential (Vm) was hyperpolarized and firing rate to the same stimulus was decreased. This self-inhibition was observed across a wide variety of thalamic nuclei, and in a subset firing mode switched from tonic to bursting. The self-inhibition resisted blockers of intracellular Ca2+ signaling, Na+-K+-ATPases, and G protein-regulated inward rectifier (GIRK) channels as implicated in other neuron subtypes, but instead was in part inhibited by an ATP-sensitive K+ channel blocker. The results identify a new homeostatic mechanism within the thalamus capable of gating excitatory signals at the single-cell level. PMID:25948871

  6. Patient fibroblasts-derived induced neurons demonstrate autonomous neuronal defects in adult-onset Krabbe disease

    PubMed Central

    Choi, Won Jun; Oh, Ki-Wook; Nahm, Minyeop; Xue, Yuanchao; Choi, Jae Hyeok; Choi, Ji Young; Kim, Young-Eun; Chung, Ki Wha; Fu, Xiang-Dong; Ki, Chang-Seok; Kim, Seung Hyun

    2016-01-01

    Krabbe disease (KD) is an autosomal recessive neurodegenerative disorder caused by defective β-galactosylceramidase (GALC), a lysosomal enzyme responsible for cleavage of several key substrates including psychosine. Accumulation of psychosine to the cytotoxic levels in KD patients is thought to cause dysfunctions in myelinating glial cells based on a comprehensive study of demyelination in KD. However, recent evidence suggests myelin-independent neuronal death in the murine model of KD, thus indicating defective GALC in neurons as an autonomous mechanism for neuronal cell death in KD. These observations prompted us to generate induced neurons (iNeurons) from two adult-onset KD patients carrying compound heterozygous mutations (p.[K563*];[L634S]) and (p.[N228_S232delinsTP];[G286D]) to determine the direct contribution of autonomous neuronal toxicity to KD. Here we report that directly converted KD iNeurons showed not only diminished GALC activity and increased psychosine levels, as expected, but also neurite fragmentation and abnormal neuritic branching. The lysosomal-associated membrane proteins 1 (LAMP1) was expressed at higher levels than controls, LAMP1-positive vesicles were significantly enlarged and fragmented, and mitochondrial morphology and its function were altered in KD iNeurons. Strikingly, we demonstrated that psychosine was sufficient to induce neurite defects, mitochondrial fragmentation, and lysosomal alterations in iNeurons derived in healthy individuals, thus establishing the causal effect of the cytotoxic GALC substrate in KD and the autonomous neuronal toxicity in KD pathology. PMID:27780934

  7. HB-GAM (pleiotrophin) reverses inhibition of neural regeneration by the CNS extracellular matrix

    PubMed Central

    Paveliev, Mikhail; Fenrich, Keith K.; Kislin, Mikhail; Kuja-Panula, Juha; Kulesskiy, Evgeny; Varjosalo, Markku; Kajander, Tommi; Mugantseva, Ekaterina; Ahonen-Bishopp, Anni; Khiroug, Leonard; Kulesskaya, Natalia; Rougon, Geneviève; Rauvala, Heikki

    2016-01-01

    Chondroitin sulfate (CS) glycosaminoglycans inhibit regeneration in the adult central nervous system (CNS). We report here that HB-GAM (heparin-binding growth-associated molecule; also known as pleiotrophin), a CS-binding protein expressed at high levels in the developing CNS, reverses the role of the CS chains in neurite growth of CNS neurons in vitro from inhibition to activation. The CS-bound HB-GAM promotes neurite growth through binding to the cell surface proteoglycan glypican-2; furthermore, HB-GAM abrogates the CS ligand binding to the inhibitory receptor PTPσ (protein tyrosine phosphatase sigma). Our in vivo studies using two-photon imaging of CNS injuries support the in vitro studies and show that HB-GAM increases dendrite regeneration in the adult cerebral cortex and axonal regeneration in the adult spinal cord. Our findings may enable the development of novel therapies for CNS injuries. PMID:27671118

  8. Effects of estradiol on glycemic and CNS neuronal activational responses to recurrent insulin-induced hypoglycemia in the ovariectomized female rat.

    PubMed

    Nedungadi, T P; Goleman, W L; Paranjape, S A; Kale, A Y; Briski, K P

    2006-01-01

    Recurrent insulin-induced hypoglycemia (RIIH) results in glucose counterregulatory dysfunction in men and male rodents. Intensified hypoglycemia in the latter coincides with diminished neuronal Fos expression in central metabolic regulatory structures, evidence that supports habituation of CNS-mediated compensatory motor outflow during re-exposure to this metabolic stress. In light of the evidence for counterregulatory resistance to precedent hypoglycemia in women, we utilized estradiol-treated ovariectomized (OVX) female rats to examine the hypothesis that this hormone regulates neural adaptability to recurring hypoglycemia. Groups of OVX rats were implanted with subcutaneous silastic capsules containing estradiol benzoate (E) or oil alone, and injected subcutaneously with one or four doses of the intermediate-acting insulin, Humulin NPH, one dose daily, or with diluent alone. Blood glucose levels were not altered by RIIH in E-implanted OVX animals, but were significantly decreased after four versus one insulin injection in the OVX+oil group. Mean numbers of Fos-immunoreactive (ir) neurons in the paraventricular nucleus hypothalamus (PVH), dorsomedial nucleus hypothalamus (DMH), and lateral hypothalamic area (LHA) were higher in both E- versus oil-implanted OVX rats injected with diluent only. Acute hypoglycemia significantly increased mean counts of Fos-ir-positive neurons in the PVH, DMH, and LHA, as well as the nucleus of the solitary tract (NTS) and area postrema (AP) in E- and oil-treated animals to an equivalent extent. OVX+E rats exhibited comparable numbers of Fos-positive neurons in the PVH, DMH, and LHA after one versus four insulin injections, whereas the numbers of labeled neurons in NTS and AP were increased or decreased, respectively, by RIIH. Oil-implanted OVX rats showed significantly diminished numbers of Fos-ir-positive neurons in each neural structure after repeated hypoglycemia. The present data demonstrate that estradiol sustains or enhances

  9. Adult-born neurons modify excitatory synaptic transmission to existing neurons

    PubMed Central

    Adlaf, Elena W; Vaden, Ryan J; Niver, Anastasia J; Manuel, Allison F; Onyilo, Vincent C; Araujo, Matheus T; Dieni, Cristina V; Vo, Hai T; King, Gwendalyn D; Wadiche, Jacques I; Overstreet-Wadiche, Linda

    2017-01-01

    Adult-born neurons are continually produced in the dentate gyrus but it is unclear whether synaptic integration of new neurons affects the pre-existing circuit. Here we investigated how manipulating neurogenesis in adult mice alters excitatory synaptic transmission to mature dentate neurons. Enhancing neurogenesis by conditional deletion of the pro-apoptotic gene Bax in stem cells reduced excitatory postsynaptic currents (EPSCs) and spine density in mature neurons, whereas genetic ablation of neurogenesis increased EPSCs in mature neurons. Unexpectedly, we found that Bax deletion in developing and mature dentate neurons increased EPSCs and prevented neurogenesis-induced synaptic suppression. Together these results show that neurogenesis modifies synaptic transmission to mature neurons in a manner consistent with a redistribution of pre-existing synapses to newly integrating neurons and that a non-apoptotic function of the Bax signaling pathway contributes to ongoing synaptic refinement within the dentate circuit. DOI: http://dx.doi.org/10.7554/eLife.19886.001 PMID:28135190

  10. Tangential migration of neuronal precursors of glutamatergic neurons in the adult mammalian brain

    PubMed Central

    Sun, Gerald J.; Zhou, Yi; Stadel, Ryan P.; Moss, Jonathan; Yong, Jing Hui A.; Ito, Shiori; Kawasaki, Nicholas K.; Phan, Alexander T.; Oh, Justin H.; Modak, Nikhil; Reed, Randall R.; Toni, Nicolas; Song, Hongjun; Ming, Guo-li

    2015-01-01

    In a classic model of mammalian brain formation, precursors of principal glutamatergic neurons migrate radially along radial glia fibers whereas GABAergic interneuron precursors migrate tangentially. These migration modes have significant implications for brain function. Here we used clonal lineage tracing of active radial glia-like neural stem cells in the adult mouse dentate gyrus and made the surprising discovery that proliferating neuronal precursors of glutamatergic granule neurons exhibit significant tangential migration along blood vessels, followed by limited radial migration. Genetic birthdating and morphological and molecular analyses pinpointed the neuroblast stage as the main developmental window when tangential migration occurs. We also developed a partial “whole-mount” dentate gyrus preparation and observed a dense plexus of capillaries, with which only neuroblasts, among the entire population of progenitors, are directly associated. Together, these results provide insight into neuronal migration in the adult mammalian nervous system. PMID:26170290

  11. Immunogold evidence that neuronal gap junctions in adult rat brain and spinal cord contain connexin-36 but not connexin-32 or connexin-43

    PubMed Central

    Rash, J. E.; Staines, W. A.; Yasumura, T.; Patel, D.; Furman, C. S.; Stelmack, G. L.; Nagy, J. I.

    2000-01-01

    Physiological and ultrastructural evidence indicates that gap junctions link many classes of neurons in mammalian central nervous system (CNS), allowing direct electrical and metabolic communication. Among at least six gap junction-forming connexin proteins in adult rat brain, connexin- (Cx) 32, Cx36, and Cx43 have been reported to occur in neurons. However, no connexin has been documented at ultrastructurally defined neuronal gap junctions. To address this question directly, freeze-fracture replica immunogold labeling (FRIL) and immunofluorescence (IF) were used to visualize the subcellular and regional localization of Cx36 in rat brain and spinal cord. Three antibodies were generated against different sequences in Cx36. By Western blotting, these antibodies detected protein at 36 and 66 kDa, corresponding to Cx36 monomer and dimer forms, respectively. After double-labeling for Cx36 and Cx43 by FRIL, neuronal gap junctions in inferior olive, spinal cord, and retina were consistently immunogold-labeled for Cx36, but none were labeled for Cx43. Conversely, Cx43 but not Cx36 was detected in astrocyte and ependymocyte gap junctions. In >250 Cx32/Cx43 single- and double-labeled replicas from 10 CNS regions, no neuronal gap junctions were labeled for either Cx32 or Cx43. Instead, Cx32 and Cx43 were restricted to glial gap junctions. By IF, Cx36 labeling was widely distributed in neuropil, including along dendritic processes and within neuronal somata. On the basis of FRIL identification of Cx36 in neuronal gap junctions and IF imaging of Cx36 throughout rat brain and spinal cord, neuronal gap junctions containing Cx36 appear to occur in sufficient density to provide widespread electrical and metabolic coupling in adult CNS. PMID:10861019

  12. The C. elegans adult neuronal IIS/FOXO transcriptome reveals adult phenotype regulators.

    PubMed

    Kaletsky, Rachel; Lakhina, Vanisha; Arey, Rachel; Williams, April; Landis, Jessica; Ashraf, Jasmine; Murphy, Coleen T

    2016-01-07

    Insulin/insulin-like growth factor signalling (IIS) is a critical regulator of an organism's most important biological decisions from growth, development, and metabolism to reproduction and longevity. It primarily does so through the activity of the DAF-16 transcription factor (forkhead box O (FOXO) homologue), whose global targets were identified in Caenorhabditis elegans using whole-worm transcriptional analyses more than a decade ago. IIS and FOXO also regulate important neuronal and adult behavioural phenotypes, such as the maintenance of memory and axon regeneration with age, in both mammals and C. elegans, but the neuron-specific IIS/FOXO targets that regulate these functions are still unknown. By isolating adult C. elegans neurons for transcriptional profiling, we identified both the wild-type and IIS/FOXO mutant adult neuronal transcriptomes for the first time. IIS/FOXO neuron-specific targets are distinct from canonical IIS/FOXO-regulated longevity and metabolism targets, and are required for extended memory in IIS daf-2 mutants. The activity of the forkhead transcription factor FKH-9 in neurons is required for the ability of daf-2 mutants to regenerate axons with age, and its activity in non-neuronal tissues is required for the long lifespan of daf-2 mutants. Together, neuron-specific and canonical IIS/FOXO-regulated targets enable the coordinated extension of neuronal activities, metabolism, and longevity under low-insulin signalling conditions.

  13. Strength of ERK1/2 MAPK Activation Determines Its Effect on Myelin and Axonal Integrity in the Adult CNS

    PubMed Central

    Ishii, Akihiro; Furusho, Miki; Dupree, Jeffrey L

    2016-01-01

    Myelin growth is a tightly regulated process driven by multiple signals. ERK1/2-MAPK signaling is an important regulator of myelin thickness. Because, in demyelinating diseases, the myelin formed during remyelination fails to achieve normal thickness, increasing ERK1/2 activity in oligodendrocytes is of obvious therapeutic potential for promoting efficient remyelination. However, other studies have suggested that increased levels of ERK1/2 activity could, in fact, have detrimental effects on myelinating cells. Because the strength, duration, or timing of ERK1/2 activation may alter the biological outcomes of cellular responses markedly, here, we investigated the effect of modulating ERK1/2 activity in myelinating cells using transgenic mouse lines in which ERK1/2 activation was upregulated conditionally in a graded manner. We found enhanced myelin gene expression and myelin growth in the adult CNS at both moderate and hyperactivated levels of ERK1/2 when upregulation commenced during developmental myelination or was induced later during adulthood in quiescent preexisting oligodendrocytes, after active myelination is largely terminated. However, a late onset of demyelination and axonal degeneration occurred at hyperelevated, but not moderately elevated, levels regardless of the timing of the upregulation. Similarly, myelin and axonal pathology occurred with elevated ERK1/2 activity in Schwann cells. We conclude that a fine tuning of ERK1/2 signaling strength is critically important for normal oligodendrocyte and Schwann cell function and that disturbance of this balance has negative consequences for myelin and axonal integrity in the long term. Therefore, therapeutic modulation of ERK1/2 activity in demyelinating disease or peripheral neuropathies must be approached with caution. SIGNIFICANCE STATEMENT ERK1/2-MAPK activation in oligodendrocytes and Schwann cells is an important signal for promoting myelin growth during developmental myelination. Here, we show that

  14. Spatio-temporal regulations and functions of neuronal alternative RNA splicing in developing and adult brains.

    PubMed

    Iijima, Takatoshi; Hidaka, Chiharu; Iijima, Yoko

    2016-08-01

    Alternative pre-mRNA splicing is a fundamental mechanism that generates molecular diversity from a single gene. In the central nervous system (CNS), key neural developmental steps are thought to be controlled by alternative splicing decisions, including the molecular diversity underlying synaptic wiring, plasticity, and remodeling. Significant progress has been made in understanding the molecular mechanisms and functions of alternative pre-mRNA splicing in neurons through studies in invertebrate systems; however, recent studies have begun to uncover the potential role of neuronal alternative splicing in the mammalian CNS. This article provides an overview of recent findings regarding the regulation and function of neuronal alternative splicing. In particular, we focus on the spatio-temporal regulation of neurexin, a synaptic adhesion molecule, by neuronal cell type-specific factors and neuronal activity, which are thought to be especially important for characterizing neural development and function within the mammalian CNS. Notably, there is increasing evidence that implicates the dysregulation of neuronal splicing events in several neurological disorders. Therefore, understanding the detailed mechanisms of neuronal alternative splicing in the mammalian CNS may provide plausible treatment strategies for these diseases.

  15. Connexin36 expression in major centers of the auditory system in the CNS of mouse and rat: Evidence for neurons forming purely electrical synapses and morphologically mixed synapses

    PubMed Central

    Rubio, M.E.; Nagy, J.I.

    2015-01-01

    Electrical synapses formed by gap junctions composed of connexin36 (Cx36) are widely distributed in the mammalian central nervous system (CNS). Here, we used immunofluorescence methods to document the expression of Cx36 in the cochlear nucleus and in various structures of the auditory pathway of rat and mouse. Labelling of Cx36 visualized exclusively as Cx36-puncta was densely distributed primarily on the somata and initial dendrites of neuronal populations in the ventral cochlear nucleus, and was abundant in superficial layers of the dorsal cochlear nucleus. Other auditory centers displaying Cx36-puncta included the medial nucleus of the trapezoid body (MNTB), regions surrounding the lateral superior olivary nucleus, the dorsal nucleus of the medial lemniscus, the nucleus sagulum, all subnuclei of the inferior colliculus, and the auditory cerebral cortex. In EGFP-Cx36 transgenic mice, EGFP reporter was detected in neurons located in each of auditory centers that harboured Cx36-puncta. In the ventral cochlear nuclei and the MNTB, many neuronal somata were heavily innervated by nerve terminals containing vesicular glutamate transporter-1 (vglut1) and Cx36 was frequently localized at these terminals. Cochlear ablation caused a near total depletion of vglut1-positive terminals in the ventral cochlear nuclei, with a commensurate loss of labelling for Cx36 around most neuronal somata, but preserved Cx36-puncta at somatic neuronal appositions. The results suggest that electrical synapses formed by Cx36-containing gap junctions occur in most of the widely distributed centers of the auditory system. Further, it appears that morphologically mixed chemical/electrical synapses formed by nerve terminals are abundant in the ventral cochlear nucleus, including those at endbulbs of Held formed by cochlear primary afferent fibers, and those at calyx of Held synapses on MNTB neurons. PMID:26188286

  16. Genetic Pharmacotherapy as an Early CNS Drug Development Strategy: Testing Glutaminase Inhibition for Schizophrenia Treatment in Adult Mice

    PubMed Central

    Mingote, Susana; Masson, Justine; Gellman, Celia; Thomsen, Gretchen M.; Lin, Chyuan-Sheng; Merker, Robert J.; Gaisler-Salomon, Inna; Wang, Yvonne; Ernst, Rachel; Hen, René; Rayport, Stephen

    2016-01-01

    Genetic pharmacotherapy is an early drug development strategy for the identification of novel CNS targets in mouse models prior to the development of specific ligands. Here for the first time, we have implemented this strategy to address the potential therapeutic value of a glutamate-based pharmacotherapy for schizophrenia involving inhibition of the glutamate recycling enzyme phosphate-activated glutaminase. Mice constitutively heterozygous for GLS1, the gene encoding glutaminase, manifest a schizophrenia resilience phenotype, a key dimension of which is an attenuated locomotor response to propsychotic amphetamine challenge. If resilience is due to glutaminase deficiency in adulthood, then glutaminase inhibitors should have therapeutic potential. However, this has been difficult to test given the dearth of neuroactive glutaminase inhibitors. So, we used genetic pharmacotherapy to ask whether adult induction of GLS1 heterozygosity would attenuate amphetamine responsiveness. We generated conditional floxGLS1 mice and crossed them with global CAGERT2cre∕+ mice to produce GLS1 iHET mice, susceptible to tamoxifen induction of GLS1 heterozygosity. One month after tamoxifen treatment of adult GLS1 iHET mice, we found a 50% reduction in GLS1 allelic abundance and glutaminase mRNA levels in the brain. While GLS1 iHET mice showed some recombination prior to tamoxifen, there was no impact on mRNA levels. We then asked whether induction of GLS heterozygosity would attenuate the locomotor response to propsychotic amphetamine challenge. Before tamoxifen, control and GLS1 iHET mice did not differ in their response to amphetamine. One month after tamoxifen treatment, amphetamine-induced hyperlocomotion was blocked in GLS1 iHET mice. The block was largely maintained after 5 months. Thus, a genetically induced glutaminase reduction—mimicking pharmacological inhibition—strongly attenuated the response to a propsychotic challenge, suggesting that glutaminase may be a novel

  17. Genetic Pharmacotherapy as an Early CNS Drug Development Strategy: Testing Glutaminase Inhibition for Schizophrenia Treatment in Adult Mice.

    PubMed

    Mingote, Susana; Masson, Justine; Gellman, Celia; Thomsen, Gretchen M; Lin, Chyuan-Sheng; Merker, Robert J; Gaisler-Salomon, Inna; Wang, Yvonne; Ernst, Rachel; Hen, René; Rayport, Stephen

    2015-01-01

    Genetic pharmacotherapy is an early drug development strategy for the identification of novel CNS targets in mouse models prior to the development of specific ligands. Here for the first time, we have implemented this strategy to address the potential therapeutic value of a glutamate-based pharmacotherapy for schizophrenia involving inhibition of the glutamate recycling enzyme phosphate-activated glutaminase. Mice constitutively heterozygous for GLS1, the gene encoding glutaminase, manifest a schizophrenia resilience phenotype, a key dimension of which is an attenuated locomotor response to propsychotic amphetamine challenge. If resilience is due to glutaminase deficiency in adulthood, then glutaminase inhibitors should have therapeutic potential. However, this has been difficult to test given the dearth of neuroactive glutaminase inhibitors. So, we used genetic pharmacotherapy to ask whether adult induction of GLS1 heterozygosity would attenuate amphetamine responsiveness. We generated conditional floxGLS1 mice and crossed them with global CAG(ERT2cre∕+) mice to produce GLS1 iHET mice, susceptible to tamoxifen induction of GLS1 heterozygosity. One month after tamoxifen treatment of adult GLS1 iHET mice, we found a 50% reduction in GLS1 allelic abundance and glutaminase mRNA levels in the brain. While GLS1 iHET mice showed some recombination prior to tamoxifen, there was no impact on mRNA levels. We then asked whether induction of GLS heterozygosity would attenuate the locomotor response to propsychotic amphetamine challenge. Before tamoxifen, control and GLS1 iHET mice did not differ in their response to amphetamine. One month after tamoxifen treatment, amphetamine-induced hyperlocomotion was blocked in GLS1 iHET mice. The block was largely maintained after 5 months. Thus, a genetically induced glutaminase reduction-mimicking pharmacological inhibition-strongly attenuated the response to a propsychotic challenge, suggesting that glutaminase may be a novel target

  18. Region- and age-dependent alterations of glial-neuronal metabolic interactions correlate with CNS pathology in a mouse model of globoid cell leukodystrophy.

    PubMed

    Meisingset, Tore Wergeland; Ricca, Alessandra; Neri, Margherita; Sonnewald, Ursula; Gritti, Angela

    2013-07-01

    Globoid cell leukodystrophy (GLD) or Krabbe disease is a lysosomal storage disorder caused by genetic defects in the expression and activity of galactosylceramidase, a key enzyme in the catabolism of myelin-enriched sphingolipids. While there are several histologic, biochemical, and functional studies on GLD, correlations between morphologic and biochemical alterations in central nervous system (CNS) tissues during disease progression are lacking. Here, we combined immunohistochemistry and metabolic analysis using (1)H and (13)C magnetic resonance (MR) spectra of spinal cord, cerebellum, and forebrain to investigate glial-neuronal metabolic interactions and dysfunction in a GLD murine model that recapitulates the human pathology. In order to assess the temporal- and region-dependent disease progression and the potential metabolic correlates, we investigated CNS tissues at mildly symptomatic and fully symptomatic stages of the disease. When compared with age-matched controls, GLD mice showed glucose hypometabolism, alterations in neurotransmitter content, N-acetylaspartate, N-acetylaspartylglutamate, and osmolytes levels. Notably, age- and region-dependent patterns of metabolic disturbances were in close agreement with the progression of astrogliosis, microglia activation, apoptosis, and neurodegeneration. We suggest that MR spectroscopy could be used in vivo to monitor disease progression, as well as ex vivo and in vivo to provide criteria for the outcome of experimental therapies.

  19. Years of potential life lost for brain and CNS tumors relative to other cancers in adults in the United States, 2010

    PubMed Central

    Rouse, Chaturia; Gittleman, Haley; Ostrom, Quinn T.; Kruchko, Carol; Barnholtz-Sloan, Jill S.

    2016-01-01

    Background Years of potential life lost (YPLL) complement incidence and survival rates by measuring how much a patient's life is likely to be shortened by his or her cancer. In this study, we examine the impact of death due to brain and other central nervous system (CNS) tumors compared to other common cancers in adults by investigating the YPLL of adults in the United States. Methods Mortality and life table data were obtained from the Centers for Disease Control and Prevention's National Center for Health Statistics Vital Statistics Data for 2010. The study population included individuals aged 20 years or older at death who died from one of the selected cancers. YPLL was calculated by taking an individual's age at death and finding the corresponding expected remaining years of life using life table data. Results The cancers with the greatest mean YPLL were other malignant CNS tumors (20.65), malignant brain tumors (19.93), and pancreatic cancer (15.13) for males and malignant brain tumors (20.31), breast cancer (18.78), and other malignant CNS tumors (18.36) for females. For both sexes, non-Hispanic whites had the lowest YPLL, followed by non-Hispanic blacks, and Hispanics. Conclusion Malignant brain and other CNS tumors have the greatest mean YPLL, thereby reflecting their short survival time post diagnosis. These findings will hopefully motivate more research into mitigating the impact of these debilitating tumors. PMID:26459813

  20. Genome-wide analysis of the bHLH gene family in planarians identifies factors required for adult neurogenesis and neuronal regeneration.

    PubMed

    Cowles, Martis W; Brown, David D R; Nisperos, Sean V; Stanley, Brianna N; Pearson, Bret J; Zayas, Ricardo M

    2013-12-01

    In contrast to most well-studied model organisms, planarians have a remarkable ability to completely regenerate a functional nervous system from a pluripotent stem cell population. Thus, planarians provide a powerful model to identify genes required for adult neurogenesis in vivo. We analyzed the basic helix-loop-helix (bHLH) family of transcription factors, many of which are crucial for nervous system development and have been implicated in human diseases. However, their potential roles in adult neurogenesis or central nervous system (CNS) function are not well understood. We identified 44 planarian bHLH homologs, determined their patterns of expression in the animal and assessed their functions using RNAi. We found nine bHLHs expressed in stem cells and neurons that are required for CNS regeneration. Our analyses revealed that homologs of coe, hes (hesl-3) and sim label progenitors in intact planarians, and following amputation we observed an enrichment of coe(+) and sim(+) progenitors near the wound site. RNAi knockdown of coe, hesl-3 or sim led to defects in CNS regeneration, including failure of the cephalic ganglia to properly pattern and a loss of expression of distinct neuronal subtype markers. Together, these data indicate that coe, hesl-3 and sim label neural progenitor cells, which serve to generate new neurons in uninjured or regenerating animals. Our study demonstrates that this model will be useful to investigate how stem cells interpret and respond to genetic and environmental cues in the CNS and to examine the role of bHLH transcription factors in adult tissue regeneration.

  1. Molecular and immunocytochemical characterization of primary neuronal cultures from adult rat brain: Differential expression of neuronal and glial protein markers.

    PubMed

    Ray, Balmiki; Bailey, Jason A; Sarkar, Sumit; Lahiri, Debomoy K

    2009-11-15

    Neurobiological studies using primary neuronal cultures commonly employ fetal-derived neurons, but much less often adult brain-derived neurons. Our goal is to perform morphological and molecular characterization of primary neuronal cultures from adult rat brain, including the relative expression of neuronal and glial cell markers at different time points. We tested the hypothesis that long-term neuronal viability is compatible with glial proliferation in adult neuron culture. We examined neuron culture from adult rat brain, which was maintained at steady state up to 24 days, and characterized them on the basis of cellular, molecular and biochemical properties at different time points of the culture. We identified neuronal and glial cells by both immunocytochemical and western immunoblotting techniques using NSE and Tau as neuronal markers and GFAP as glial protein marker, which revealed the presence of predominantly neuronal cells in the initial phase of the culture and a rise in glial cells from day 12 onwards. Notably, neuronal cells were preserved in the culture along with the glial cells even at day 24. Transfection of the cultured cells with a GFP expression vector and plasmids containing a luciferase reporter gene under the control of two different gene promoters demonstrated DNA transfectability. Taken together, these results suggest a differential expression of neuronal and glial cells at different time points and long-term neuronal viability in the presence of glial proliferation. Such adult neurons serve as a suitable system for the application of neurodegeneration models and for drug target discovery in various brain disorders including Alzheimer's disease.

  2. OCT intensity and phase fluctuations correlated with activity-dependent neuronal calcium dynamics in the Drosophila CNS [Invited

    PubMed Central

    Tong, Minh Q.; Hasan, Md. Monirul; Lee, Sang Soo; Haque, Md. Rezuanul; Kim, Do-Hyoung; Islam, Md. Shahidul; Adams, Michael E.; Park, B. Hyle

    2017-01-01

    Phase-resolved OCT and fluorescence microscopy were used simultaneously to examine stereotypic patterns of neural activity in the isolated Drosophila central nervous system. Both imaging modalities were focused on individually identified bursicon neurons known to be involved in a fixed action pattern initiated by ecdysis-triggering hormone. We observed clear correspondence of OCT intensity, phase fluctuations, and activity-dependent calcium-induced fluorescence. PMID:28270979

  3. Dual role for Drosophila lethal of scute in CNS midline precursor formation and dopaminergic neuron and motoneuron cell fate.

    PubMed

    Stagg, Stephanie B; Guardiola, Amaris R; Crews, Stephen T

    2011-06-01

    Dopaminergic neurons play important behavioral roles in locomotion, reward and aggression. The Drosophila H-cell is a dopaminergic neuron that resides at the midline of the ventral nerve cord. Both the H-cell and the glutamatergic H-cell sib are the asymmetric progeny of the MP3 midline precursor cell. H-cell sib cell fate is dependent on Notch signaling, whereas H-cell fate is Notch independent. Genetic analysis of genes that could potentially regulate H-cell fate revealed that the lethal of scute [l(1)sc], tailup and SoxNeuro transcription factor genes act together to control H-cell gene expression. The l(1)sc bHLH gene is required for all H-cell-specific gene transcription, whereas tailup acts in parallel to l(1)sc and controls genes involved in dopamine metabolism. SoxNeuro functions downstream of l(1)sc and controls expression of a peptide neurotransmitter receptor gene. The role of l(1)sc may be more widespread, as a l(1)sc mutant shows reductions in gene expression in non-midline dopaminergic neurons. In addition, l(1)sc mutant embryos possess defects in the formation of MP4-6 midline precursor and the median neuroblast stem cell, revealing a proneural role for l(1)sc in midline cells. The Notch-dependent progeny of MP4-6 are the mVUM motoneurons, and these cells also require l(1)sc for mVUM-specific gene expression. Thus, l(1)sc plays an important regulatory role in both neurogenesis and specifying dopaminergic neuron and motoneuron identities.

  4. Electrophysiological Profiles of Induced Neurons Converted Directly from Adult Human Fibroblasts Indicate Incomplete Neuronal Conversion

    PubMed Central

    Koppensteiner, Peter; Boehm, Stefan

    2014-01-01

    Abstract The direct conversion of human fibroblasts to neuronal cells, termed human induced neuronal (hiN) cells, has great potential for future clinical advances. However, previous studies have not provided an in-depth analysis of electrophysiological properties of adult fibroblast-derived hiN cultures. We have examined the electrophysiological profile of hiN cells by measuring passive and active membrane properties, as well as spontaneous and evoked neurotransmission. We found that hiN cells exhibited passive membrane properties equivalent to perinatal rodent neurons. In addition, 30% of hiN cells were incapable of action potential (AP) generation and did not exhibit rectifying membrane currents, and none of the cells displayed firing patterns of typical glutamatergic pyramidal neurons. Finally, hiN cells exhibited neither spontaneous nor evoked neurotransmission. Our results suggest that current methods used to produce hiN cells provide preparations in which cells do not achieve the cellular properties of fully mature neurons, rendering these cells inadequate to investigate pathophysiological mechanisms. PMID:25437871

  5. Subcellular localization of the K+ channel subunit Kv3.1b in selected rat CNS neurons.

    PubMed

    Sekirnjak, C; Martone, M E; Weiser, M; Deerinck, T; Bueno, E; Rudy, B; Ellisman, M

    1997-08-22

    Voltage-gated potassium channels constitute the largest group of heteromeric ion channels discovered to date. Over 20 genes have been isolated, encoding different channel subunit proteins which form functional tetrameric K+ channels. We have analyzed the subcellular localization of subunit Kv3.1b, a member of the Kv3 (Shaw-like) subfamily, in rat brain at the light and electron microscopic level, using immunocytochemical detection. Detailed localization was carried out in specific neurons of the neocortex, hippocampus and cerebellum. The identity of Kv3.1b-positive neurons was established using double labeling with markers for specific neuronal populations. In the neocortex, the Kv3.1b subunit was expressed in most parvalbumin-containing bipolar, basket or chandelier cells, and in some bipolar or double bouquet neurons containing calbindin. In the hippocampus, Kv3.1b was expressed in many parvalbumin-containing basket cells, as well as in calbindin-positive neurons in the stratum oriens, and in a small number of interneurons that did not stain for either parvalbumin or calbindin. Kv3.1b protein was not present in pyramidal cells in the neocortex and the hippocampus, but these cells were outlined by labeled presynaptic terminals from interneuron axons that surround the postsynaptic cell. In the cerebellar cortex, granule cells were the only population expressing the channel protein. Careful examination of individual granule cells revealed a non-uniform distribution of Kv3.1 staining on the somata: circular bands of labeling were present in the vicinity of the axon hillock. In cortical and hippocampal interneurons, as well as in cerebellar granule cells, the Kv3.1b subunit was present in somatic and unmyelinated axonal membranes and adjacent cytoplasm, as well as in the most proximal portion of dendritic processes, but not throughout most of the dendrite. Labeling was also seen in the terminals of labeled axons, but not at a higher concentration than in other parts

  6. Neural Progenitor Cells Promote Axonal Growth and Alter Axonal mRNA Localization in Adult Neurons

    PubMed Central

    Merianda, Tanuja T.; Jin, Ying

    2017-01-01

    Abstract The inhibitory environment of the spinal cord and the intrinsic properties of neurons prevent regeneration of axons following CNS injury. However, both ascending and descending axons of the injured spinal cord have been shown to regenerate into grafts of embryonic neural progenitor cells (NPCs). Previous studies have shown that grafts composed of glial-restricted progenitors (GRPs) and neural-restricted progenitors (NRPs) can provide a permissive microenvironment for axon growth. We have used cocultures of adult rat dorsal root ganglion (DRG) neurons together with NPCs, which have shown significant enhancement of axon growth by embryonic rat GRP and GRPs/NRPs, both in coculture conditions and when DRGs are exposed to conditioned medium from the NPC cultures. This growth-promoting effect of NPC-conditioned medium was also seen in injury-conditioned neurons. DRGs cocultured with GRPs/NRPs showed altered expression of regeneration-associated genes at transcriptional and post-transcriptional levels. We found that levels of GAP-43 mRNA increased in DRG cell bodies and axons. However, hepcidin antimicrobial peptide (HAMP) mRNA decreased in the cell bodies of DRGs cocultured with GRPs/NRPs, which is distinct from the increase in cell body HAMP mRNA levels seen in DRGs after injury conditioning. Endogenous GAP-43 and β-actin mRNAs as well as reporter RNAs carrying axonally localizing 3'UTRs of these transcripts showed significantly increased levels in distal axons in the DRGs cocultured with GRPs/NRPs. These results indicate that axon growth promoted by NPCs is associated not only with enhanced transcription of growth-associated genes but also can increase localization of some mRNAs into growing axons. PMID:28197547

  7. White Matter Neurons in Young Adult and Aged Rhesus Monkey

    PubMed Central

    Mortazavi, Farzad; Wang, Xiyue; Rosene, Douglas L.; Rockland, Kathleen S.

    2016-01-01

    In humans and non-human primates (NHP), white matter neurons (WMNs) persist beyond early development. Their functional importance is largely unknown, but they have both corticothalamic and corticocortical connectivity and at least one subpopulation has been implicated in vascular regulation and sleep. Several other studies have reported that the density of WMNs in humans is altered in neuropathological or psychiatric conditions. The present investigation evaluates and compares the density of superficial and deep WMNs in frontal (FR), temporal (TE), and parietal (Par) association regions of four young adult and four aged male rhesus monkeys. A major aim was to determine whether there was age-related neuronal loss, as might be expected given the substantial age-related changes known to occur in the surrounding white matter environment. Neurons were visualized by immunocytochemistry for Neu-N in coronal tissue sections (30 μm thickness), and neuronal density was assessed by systematic random sampling. Per 0.16 mm2 sampling box, this yielded about 40 neurons in the superficial WM and 10 in the deep WM. Consistent with multiple studies of cell density in the cortical gray matter of normal brains, neither the superficial nor deep WM populations showed statistically significant age-related neuronal loss, although we observed a moderate decrease with age for the deep WMNs in the frontal region. Morphometric analyses, in contrast, showed significant age effects in soma size and circularity. In specific, superficial WMNs were larger in FR and Par WM regions of the young monkeys; but in the TE, these were larger in the older monkeys. An age effect was also observed for soma circularity: superficial WMNs were more circular in FR and Par of the older monkeys. This second, morphometric result raises the question of whether other age-related morphological, connectivity, or molecular changes occur in the WMNs. These could have multiple impacts, given the wide range of putative

  8. Histone Acetylation Inhibitors Promote Axon Growth in Adult DRG neurons

    PubMed Central

    Lin, Shen; Nazif, Kutaiba; Smith, Alexander; Baas, Peter W; Smith, George M

    2015-01-01

    Intrinsic mechanisms that guide damaged axons to regenerate following spinal cord injury remain poorly understood. Manipulation of posttranslational modifications of key proteins in mature neurons could re-invigorate growth machinery after injury. One such modification is acetylation, a reversible process controlled by two enzyme families acting in opposition, the Histone Deacetylases (HDACs) and the Histone Acetyl Transferases (HATs). While acetylated histones in the nucleus is associated with upregulation of growth promoting genes, de-acetylated tubulin in the axoplasm is associated with more labile microtubules, conducive to axon growth. In this study we investigated the effects of HAT inhibitors and HDAC inhibitors on cultured adult dorsal root ganglia (DRG) neurons. We found that inhibition of HATs, using Anacardic Acid or CPTH2, improved axon outgrowth, while inhibition of HDACs using TSA or Tubacin, inhibited axon growth. Furthermore, Anacardic Acid increased the number of axons able to cross an inhibitory chondroitin sulfate proteoglycan (CSPG) border. Histone acetylation, but not tubulin acetylation levels, was affected by HAT inhibitors, whereas tubulin acetylation levels were increased in the presence of HDAC inhibitor Tubacin. Although microtubule stabilizing drug taxol did not have an effect on the lengths of DRG axons, nocodazole decreased axon lengths. While the mechanistic basis will require future studies, our data show that inhibitors of HAT can augment axon growth in adult DRG neurons, with the potential of aiding axon growth over inhibitory substrates produced by the glial scar. PMID:25702820

  9. Inflammation regulates functional integration of neurons born in adult brain.

    PubMed

    Jakubs, Katherine; Bonde, Sara; Iosif, Robert E; Ekdahl, Christine T; Kokaia, Zaal; Kokaia, Merab; Lindvall, Olle

    2008-11-19

    Inflammation influences several steps of adult neurogenesis, but whether it regulates the functional integration of the new neurons is unknown. Here, we explored, using confocal microscopy and whole-cell patch-clamp recordings, whether a chronic inflammatory environment affects the morphological and electrophysiological properties of new dentate gyrus granule cells, labeled with a retroviral vector encoding green fluorescent protein. Rats were exposed to intrahippocampal injection of lipopolysaccharide, which gave rise to long-lasting microglia activation. Inflammation caused no changes in intrinsic membrane properties, location, dendritic arborization, or spine density and morphology of the new cells. Excitatory synaptic drive increased to the same extent in new and mature cells in the inflammatory environment, suggesting increased network activity in hippocampal neural circuitries of lipopolysaccharide-treated animals. In contrast, inhibitory synaptic drive was more enhanced by inflammation in the new cells. Also, larger clusters of the postsynaptic GABA(A) receptor scaffolding protein gephyrin were found on dendrites of new cells born in the inflammatory environment. We demonstrate for the first time that inflammation influences the functional integration of adult-born hippocampal neurons. Our data indicate a high degree of synaptic plasticity of the new neurons in the inflammatory environment, which enables them to respond to the increase in excitatory input with a compensatory upregulation of activity and efficacy at their afferent inhibitory synapses.

  10. Scrg1, a novel protein of the CNS is targeted to the large dense-core vesicles in neuronal cells.

    PubMed

    Dandoy-Dron, Françoise; Griffond, Bernadette; Mishal, Zohar; Tovey, Michael G; Dron, Michel

    2003-11-01

    Scrapie responsive gene one (Scrg1) is a novel transcript discovered through identification of the genes associated with or responsible for the neurodegenerative changes observed in transmissible spongiform encephalopathies. Scrg1 mRNA is distributed principally in the central nervous system and the cDNA sequence predicts a small cysteine-rich protein 98 amino acids in length, with a N-terminal signal peptide. In this study, we have generated antibodies against the predicted protein and revealed expression of a predominant immunoreactive protein of 10 kDa in mouse brain by Western blot analysis. We have established CAD neuronal cell lines stably expressing Scrg1 to determine its subcellular localization. Several lines of evidence show that the protein is targeted to dense-core vesicles in these cells. (i) Scrg1 is detected by immunocytochemistry as very punctate signals especially in the Golgi apparatus and tips of neurites, suggesting a vesicular localization for the protein. Moreover, Scrg1 exhibits a high degree of colocalization with secretogranin II, a dense-core vesicle marker and a very limited colocalization with markers for small synaptic vesicles. (ii) Scrg1 immunoreactivity is associated with large secretory granules/dense-core vesicles, as indicated by immuno-electron microscopy. (iii) Scrg1 is enriched in fractions of sucrose density gradient where synaptotagmin V, a dense-core vesicle-associated protein, is also enriched. The characteristic punctate immunostaining of Scrg1 is observed in N2A cells transfected with Scrg1 and for the endogenous protein in cultured primary neurons, attesting to the generality of the observations. Our findings strongly suggest that Scrg1 is associated with the secretory pathway of neuronal cells.

  11. Disability, body image and sports/physical activity in adult survivors of childhood CNS tumors: population-based outcomes from a cohort study.

    PubMed

    Boman, Krister K; Hörnquist, Lina; De Graaff, Lisanne; Rickardsson, Jenny; Lannering, Birgitta; Gustafsson, Göran

    2013-03-01

    Childhood CNS tumor survivors risk health and functional impairments that threaten normal psychological development and self-perception. This study investigated the extent to which health and functional ability predict adult survivors' body image (BI) and self-confidence regarding sports and physical activity. The study cohort covered 708 eligible ≥ 18 year old CNS tumor survivors, and data from 528 (75 %) were analyzed. Disability was estimated using the Health Utilities Index™ Mark2/3, a multidimensional self-report instrument. Physical self-confidence in terms of BI and sports/physical activity-related self-confidence (SPAS) were assessed using the BI and the Sports/Athletics modules of a standardized self-report assessment scale. In adjusted regression models, global health and functional status (GHFS) predicted BI (B = 0.94, 95 % CI 0.69-1.19) and SPAS (B = 0.79, 95 % CI 0.55-1.04). Emotion and pain, and to a lesser degree cognition, speech and vision disability, were associated with poorer BI and SPAS. Gender, sub-diagnosis, and time since diagnosis influenced the relationship between health status and physical self-confidence outcomes. Females had poorer GHFS, BI and SPAS than males. Decreased health and functional ability following childhood CNS cancer intrudes on physical self-confidence, with females being at heightened risk for both disability and negative self-confidence. Identified disability and gender-related risk calls for a follow-up plan that integrates treatment of psychological sequelae in lifetime monitoring of childhood CNS tumor survivors to restore and protect self-image and self-confidence, essential mental health correlates. An expanded plan should recognize the need for such services, optimizing life-long quality of survival for CNS tumor survivors.

  12. Ependymal cells of chordate larvae are stem-like cells that form the adult nervous system.

    PubMed

    Horie, Takeo; Shinki, Ryoko; Ogura, Yosuke; Kusakabe, Takehiro G; Satoh, Nori; Sasakura, Yasunori

    2011-01-27

    In ascidian tunicates, the metamorphic transition from larva to adult is accompanied by dynamic changes in the body plan. For instance, the central nervous system (CNS) is subjected to extensive rearrangement because its regulating larval organs are lost and new adult organs are created. To understand how the adult CNS is reconstructed, we traced the fate of larval CNS cells during ascidian metamorphosis by using transgenic animals and imaging technologies with photoconvertible fluorescent proteins. Here we show that most parts of the ascidian larval CNS, except for the tail nerve cord, are maintained during metamorphosis and recruited to form the adult CNS. We also show that most of the larval neurons disappear and only a subset of cholinergic motor neurons and glutamatergic neurons are retained. Finally, we demonstrate that ependymal cells of the larval CNS contribute to the construction of the adult CNS and that some differentiate into neurons in the adult CNS. An unexpected role of ependymal cells highlighted by this study is that they serve as neural stem-like cells to reconstruct the adult nervous network during chordate metamorphosis. Consequently, the plasticity of non-neuronal ependymal cells and neuronal cells in chordates should be re-examined by future studies.

  13. Role of neurons and glia in the CNS actions of the renin-angiotensin system in cardiovascular control.

    PubMed

    de Kloet, Annette D; Liu, Meng; Rodríguez, Vermalí; Krause, Eric G; Sumners, Colin

    2015-09-01

    Despite tremendous research efforts, hypertension remains an epidemic health concern, leading often to the development of cardiovascular disease. It is well established that in many instances, the brain plays an important role in the onset and progression of hypertension via activation of the sympathetic nervous system. Further, the activity of the renin-angiotensin system (RAS) and of glial cell-mediated proinflammatory processes have independently been linked to this neural control and are, as a consequence, both attractive targets for the development of antihypertensive therapeutics. Although it is clear that the predominant effector peptide of the RAS, ANG II, activates its type-1 receptor on neurons to mediate some of its hypertensive actions, additional nuances of this brain RAS control of blood pressure are constantly being uncovered. One of these complexities is that the RAS is now thought to impact cardiovascular control, in part, via facilitating a glial cell-dependent proinflammatory milieu within cardiovascular control centers. Another complexity is that the newly characterized antihypertensive limbs of the RAS are now recognized to, in many cases, antagonize the prohypertensive ANG II type 1 receptor (AT1R)-mediated effects. That being said, the mechanism by which the RAS, glia, and neurons interact to regulate blood pressure is an active area of ongoing research. Here, we review the current understanding of these interactions and present a hypothetical model of how these exchanges may ultimately regulate cardiovascular function.

  14. New neurons clear the path of astrocytic processes for their rapid migration in the adult brain.

    PubMed

    Kaneko, Naoko; Marín, Oscar; Koike, Masato; Hirota, Yuki; Uchiyama, Yasuo; Wu, Jane Y; Lu, Qiang; Tessier-Lavigne, Marc; Alvarez-Buylla, Arturo; Okano, Hideyuki; Rubenstein, John L R; Sawamoto, Kazunobu

    2010-07-29

    In the long-range neuronal migration of adult mammals, young neurons travel from the subventricular zone to the olfactory bulb, a long journey (millimeters to centimeters, depending on the species). How can these neurons migrate through the dense meshwork of neuronal and glial processes of the adult brain parenchyma? Previous studies indicate that young neurons achieve this by migrating in chains through astrocytic tunnels. Here, we report that young migrating neurons actively control the formation and maintenance of their own migration route. New neurons secrete the diffusible protein Slit1, whose receptor, Robo, is expressed on astrocytes. We show that the Slit-Robo pathway is required for morphologic and organizational changes in astrocytes that result in the formation and maintenance of the astrocytic tunnels. Through this neuron-glia interaction, the new neurons regulate the formation of the astrocytic meshwork that is needed to enable their rapid and directional migration in adult brain.

  15. SynCAM 1 improves survival of adult-born neurons by accelerating synapse maturation.

    PubMed

    Doengi, Michael; Krupp, Alexander J; Körber, Nils; Stein, Valentin

    2016-03-01

    The survival of adult-born dentate gyrus granule cells critically depends on their synaptic integration into the existing neuronal network. Excitatory inputs are thought to increase the survival rate of adult born neurons. Therefore, whether enhancing the stability of newly formed excitatory synapses by overexpressing the synaptic cell adhesion molecule SynCAM 1 improves the survival of adult-born neurons was tested. Here it is shown that overexpression of SynCAM 1 improves survival of adult-born neurons, but has no effect on the proliferation rate of precursor cells. As expected, overexpression of SynCAM 1 increased the synapse density in adult-born granule neurons. While adult-born granule neurons have very few functional synapses 15 days after birth, it was found that at this age adult-born neurons in SynCAM 1 overexpressing mice exhibited around three times more excitatory synapses, which were stronger than synapses of adult-born neurons of control littermates. In summary, the data indicated that additional SynCAM 1 accelerated synapse maturation, which improved the stability of newly formed synapses and in turn increased the likelihood of survival of adult-born neurons.

  16. GABA regulates synaptic integration of newly generated neurons in the adult brain

    NASA Astrophysics Data System (ADS)

    Ge, Shaoyu; Goh, Eyleen L. K.; Sailor, Kurt A.; Kitabatake, Yasuji; Ming, Guo-Li; Song, Hongjun

    2006-02-01

    Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (γ-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.

  17. CNS Metastases from Bone and Soft Tissue Sarcomas in Children, Adolescents, and Young Adults: Are They Really So Rare?

    PubMed Central

    Duczkowska, Agnieszka; Duczkowski, Marek; Bragoszewska, Hanna; Romaniuk-Doroszewska, Anna; Iwanowska, Beata; Szkudlinska-Pawlak, Sylwia; Madzik, Jaroslaw; Bilska, Katarzyna; Raciborska, Anna

    2017-01-01

    Purpose. To check whether primary involvement of brain/spinal cord by bone/soft tissue sarcomas' metastases in children is as rare as described and to present various morphological forms of bone/soft tissue sarcomas' CNS metastases. Methods. Patients with first diagnosis in 1999–2014 treated at single center were included with whole course of disease evaluation. Brain/spinal canal magnetic resonance imaging (MRI)/computed tomography were performed in cases suspicious for CNS metastases. Extension from skull/vertebral column metastases was excluded. Results. 550 patients were included. MRI revealed CNS metastases in 19 patients (incidence 3.45%), 14 boys, aged 5–22 years. There were 12/250 osteosarcoma cases, 2/200 Ewing's sarcoma, 1/50 chondrosarcoma, 3/49 rhabdomyosarcoma (RMS), and 1/1 malignant mesenchymoma. There were 10 single metastases and 7 cases of multiple ones; in 2 RMS cases only leptomeningeal spread in brain and spinal cord was found. Calcified metastases were found in 3 patients and hemorrhagic in 4. In one RMS patient there were numerous solid, cystic, hemorrhagic lesions and leptomeningeal spread. Conclusions. CNS metastases are rare and late in children with bone/soft tissue sarcomas, although in our material more frequent (3.45%) than in other reports (0.7%). Hematogenous spread to brain and hemorrhagic and calcified lesions dominated in osteosarcoma. Ewing sarcoma tended to metastasize to skull bones. Soft tissue sarcomas presented various morphological forms. PMID:28243595

  18. CNS activation and regional connectivity during pantomime observation: no engagement of the mirror neuron system for deaf signers.

    PubMed

    Emmorey, Karen; Xu, Jiang; Gannon, Patrick; Goldin-Meadow, Susan; Braun, Allen

    2010-01-01

    Deaf signers have extensive experience using their hands to communicate. Using fMRI, we examined the neural systems engaged during the perception of manual communication in 14 deaf signers and 14 hearing non-signers. Participants passively viewed blocked video clips of pantomimes (e.g., peeling an imaginary banana) and action verbs in American Sign Language (ASL) that were rated as meaningless by non-signers (e.g., TO-DANCE). In contrast to visual fixation, pantomimes strongly activated fronto-parietal regions (the mirror neuron system, MNS) in hearing non-signers, but only bilateral middle temporal regions in deaf signers. When contrasted with ASL verbs, pantomimes selectively engaged inferior and superior parietal regions in hearing non-signers, but right superior temporal cortex in deaf signers. The perception of ASL verbs recruited similar regions as pantomimes for deaf signers, with some evidence of greater involvement of left inferior frontal gyrus for ASL verbs. Functional connectivity analyses with left hemisphere seed voxels (ventral premotor, inferior parietal lobule, fusiform gyrus) revealed robust connectivity with the MNS for the hearing non-signers. Deaf signers exhibited functional connectivity with the right hemisphere that was not observed for the hearing group for the fusiform gyrus seed voxel. We suggest that life-long experience with manual communication, and/or auditory deprivation, may alter regional connectivity and brain activation when viewing pantomimes. We conclude that the lack of activation within the MNS for deaf signers does not support an account of human communication that depends upon automatic sensorimotor resonance between perception and action.

  19. Membrane potential dye imaging of ventromedial hypothalamus neurons from adult mice to study glucose sensing.

    PubMed

    Vazirani, Reema P; Fioramonti, Xavier; Routh, Vanessa H

    2013-11-27

    Studies of neuronal activity are often performed using neurons from rodents less than 2 months of age due to the technical difficulties associated with increasing connective tissue and decreased neuronal viability that occur with age. Here, we describe a methodology for the dissociation of healthy hypothalamic neurons from adult-aged mice. The ability to study neurons from adult-aged mice allows the use of disease models that manifest at a later age and might be more developmentally accurate for certain studies. Fluorescence imaging of dissociated neurons can be used to study the activity of a population of neurons, as opposed to using electrophysiology to study a single neuron. This is particularly useful when studying a heterogeneous neuronal population in which the desired neuronal type is rare such as for hypothalamic glucose sensing neurons. We utilized membrane potential dye imaging of adult ventromedial hypothalamic neurons to study their responses to changes in extracellular glucose. Glucose sensing neurons are believed to play a role in central regulation of energy balance. The ability to study glucose sensing in adult rodents is particularly useful since the predominance of diseases related to dysfunctional energy balance (e.g. obesity) increase with age.

  20. N-Acetylaspartate in the CNS: From Neurodiagnostics to Neurobiology

    PubMed Central

    Moffett, John R.; Ross, Brian; Arun, Peethambaran; Madhavarao, Chikkathur N.; Namboodiri, M. A. A.

    2007-01-01

    The brain is unique among organs in many respects, including its mechanisms of lipid synthesis and energy production. The nervous system-specific metabolite N-acetylaspartate (NAA), which is synthesized from aspartate and acetyl-coenzyme A in neurons, appears to be a key link in these distinct biochemical features of CNS metabolism. During early postnatal CNS development, the expression of lipogenic enzymes in oligodendrocytes, including the NAA-degrading enzyme aspartoacylase (ASPA), is increased along with increased NAA production in neurons. NAA is transported from neurons to the cytoplasm of oligodendrocytes, where ASPA cleaves the acetate moiety for use in fatty acid and steroid synthesis. The fatty acids and steroids produced then go on to be used as building blocks for myelin lipid synthesis. Mutations in the gene for ASPA result in the fatal leukodystrophy Canavan disease, for which there is currently no effective treatment. Once postnatal myelination is completed, NAA may continue to be involved in myelin lipid turnover in adults, but it also appears to adopt other roles, including a bioenergetic role in neuronal mitochondria. NAA and ATP metabolism appear to be linked indirectly, whereby acetylation of aspartate may facilitate its removal from neuronal mitochondria, thus favoring conversion of glutamate to alpha ketoglutarate which can enter the tricarboxylic acid cycle for energy production. In its role as a mechanism for enhancing mitochondrial energy production from glutamate, NAA is in a key position to act as a magnetic resonance spectroscopy marker for neuronal health, viability and number. Evidence suggests that NAA is a direct precursor for the enzymatic synthesis of the neuron specific dipeptide N-acetylaspartylglutamate, the most concentrated neuropeptide in the human brain. Other proposed roles for NAA include neuronal osmoregulation and axon-glial signaling. We propose that NAA may also be involved in brain nitrogen balance. Further research

  1. The Involvement of the Myelin-Associated Inhibitors and Their Receptors in CNS Plasticity and Injury.

    PubMed

    Boghdadi, Anthony G; Teo, Leon; Bourne, James A

    2017-02-22

    The limited capacity for the central nervous system (CNS) to repair itself was first described over 100 years ago by Spanish neuroscientist Ramon Y. Cajal. However, the exact mechanisms underlying this failure in neuronal regeneration remain unclear and, as such, no effective therapeutics yet exist. Numerous studies have attempted to elucidate the biochemical and molecular mechanisms that inhibit neuronal repair with increasing evidence suggesting that several inhibitory factors and repulsive guidance cues active during development actually persist into adulthood and may be contributing to the inhibition of repair. For example, in the injured adult CNS, there are various inhibitory factors that impede the outgrowth of neurites from damaged neurons. One of the most potent of these neurite outgrowth inhibitors is the group of proteins known as the myelin-associated inhibitors (MAIs), present mainly on the membranes of oligodendroglia. Several studies have shown that interfering with these proteins can have positive outcomes in CNS injury models by promoting neurite outgrowth and improving functional recovery. As such, the MAIs, their receptors, and downstream effectors are valid drug targets for the treatment of CNS injury. This review will discuss the current literature on MAIs in the context of CNS development, plasticity, and injury. Molecules that interfere with the MAIs and their receptors as potential candidates for the treatment of CNS injury will additionally be introduced in the context of preclinical and clinical trials.

  2. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons

    SciTech Connect

    Park, Kyoung Ho; Yeo, Sang Won; Troy, Frederic A.

    2014-10-17

    Highlights: • PolySia expressed on neurons primarily during early stages of neuronal development. • PolySia–NCAM is expressed on neural stem cells from adult guinea pig spiral ganglion. • PolySia is a biomarker that modulates neuronal differentiation in inner ear stem cells. - Abstract: During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC with epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders.

  3. Insulin-like growth factor-I is a differentiation factor for postmitotic CNS stem cell-derived neuronal precursors: distinct actions from those of brain-derived neurotrophic factor.

    PubMed

    Arsenijevic, Y; Weiss, S

    1998-03-15

    Insulin-like growth factor-I (IGF-I) has been reported previously to promote the proliferation, survival, and maturation of sympathetic neuroblasts, the genesis of retinal neurons, and the survival of CNS projection and motor neurons. Here we asked whether IGF-I could promote the in vitro differentiation of postmitotic mammalian CNS neuronal precursors derived from multipotent epidermal growth factor (EGF)-responsive stem cells. In the absence of IGF-I, virtually no neurons were present in cultured stem cell progeny, whereas IGF-I increased neuron number by eight- to 40-fold. Brief exposures (2 hr) to IGF-I were sufficient to allow for neuronal differentiation without affecting proliferation or survival. IGF-I actions could be mimicked by insulin and IGF-II at concentrations that correspond to the pharmacology of the IGF-I receptor, the latter for which the mRNA was detected in undifferentiated stem cell progeny. Although ineffectual alone at low concentrations (10 nM) that would activate its own receptor, insulin was able to potentiate the actions of IGF-I by acting on mitotically active neural precursors. When neuronal precursor differentiation by IGF-I was examined in relation to brain-derived neurotrophic factor (BDNF), two important observations were made: (1) BDNF could potentiate the differentiating actions of IGF-I plus insulin, and (2) BDNF could act on a separate population of precursors that did not require IGF-I plus insulin for differentiation. Taken together, these results suggest that IGF-I and BDNF may act together or sequentially to promote neuronal precursor differentiation.

  4. Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: complexity of steroid hormone-growth factor interactions in the adult CNS.

    PubMed

    Scharfman, Helen E; MacLusky, Neil J

    2006-12-01

    In the CNS, there are widespread and diverse interactions between growth factors and estrogen. Here we examine the interactions of estrogen and brain-derived neurotrophic factor (BDNF), two molecules that have historically been studied separately, despite the fact that they seem to share common targets, effects, and mechanisms of action. The demonstration of an estrogen-sensitive response element on the BDNF gene provided an impetus to explore a direct relationship between estrogen and BDNF, and predicted that the effects of estrogen, at least in part, might be due to the induction of BDNF. This hypothesis is discussed with respect to the hippocampus, where substantial evidence has accumulated in favor of it, but alternate hypotheses are also raised. It is suggested that some of the interactions between estrogen and BDNF, as well as the controversies and implications associated with their respective actions, may be best appreciated in light of the ability of BDNF to induce neuropeptide Y (NPY) synthesis in hippocampal neurons. Taken together, this tri-molecular cascade, estrogen-BDNF-NPY, may be important in understanding the hormonal regulation of hippocampal function. It may also be relevant to other regions of the CNS where estrogen is known to exert profound effects, such as amygdala and hypothalamus; and may provide greater insight into neurological disorders and psychiatric illness, including Alzheimer's disease, depression and epilepsy.

  5. The complete genome sequences, unique mutational spectra and developmental potency of adult neurons revealed by cloning

    PubMed Central

    Rodriguez, Alberto R.; Ferguson, William C.; Shumilina, Svetlana; Clark, Royden A.; Boland, Michael J.; Martin, Greg; Chubukov, Pavel; Tsunemoto, Rachel K.; Torkamani, Ali; Kupriyanov, Sergey; Hall, Ira M.; Baldwin, Kristin K.

    2016-01-01

    Somatic mutation in neurons is linked to neurologic disease and implicated in cell type diversification. However, the origin, extent and patterns of genomic mutation in neurons remain unknown. We established a nuclear transfer method to clonally amplify the genomes of neurons from adult mice for whole genome sequencing. Comprehensive mutation detection and independent validation revealed that individual neurons harbor ~100 unique mutations from all classes, but lack recurrent rearrangements. Most neurons contain at least one gene disrupting mutation and rare (0-2) mobile element insertions. The frequency and gene bias of neuronal mutations differs from other lineages, potentially due to novel mechanisms governing post-mitotic mutation. Fertile mice were cloned from several neurons, establishing the compatibility of mutated adult neuronal genomes with reprogramming to pluripotency and development. PMID:26948891

  6. The Complete Genome Sequences, Unique Mutational Spectra, and Developmental Potency of Adult Neurons Revealed by Cloning.

    PubMed

    Hazen, Jennifer L; Faust, Gregory G; Rodriguez, Alberto R; Ferguson, William C; Shumilina, Svetlana; Clark, Royden A; Boland, Michael J; Martin, Greg; Chubukov, Pavel; Tsunemoto, Rachel K; Torkamani, Ali; Kupriyanov, Sergey; Hall, Ira M; Baldwin, Kristin K

    2016-03-16

    Somatic mutation in neurons is linked to neurologic disease and implicated in cell-type diversification. However, the origin, extent, and patterns of genomic mutation in neurons remain unknown. We established a nuclear transfer method to clonally amplify the genomes of neurons from adult mice for whole-genome sequencing. Comprehensive mutation detection and independent validation revealed that individual neurons harbor ∼100 unique mutations from all classes but lack recurrent rearrangements. Most neurons contain at least one gene-disrupting mutation and rare (0-2) mobile element insertions. The frequency and gene bias of neuronal mutations differ from other lineages, potentially due to novel mechanisms governing postmitotic mutation. Fertile mice were cloned from several neurons, establishing the compatibility of mutated adult neuronal genomes with reprogramming to pluripotency and development.

  7. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons.

    PubMed

    Park, Kyoung Ho; Yeo, Sang Won; Troy, Frederic A

    2014-10-17

    During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia-NCAMs) modulate cell-cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia-NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC with epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb's to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell-cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders.

  8. Late effects of adjuvant chemotherapy for adult onset non-CNS cancer; cognitive impairment, brain structure and risk of dementia.

    PubMed

    Koppelmans, Vincent; Breteler, Monique M B; Boogerd, Willem; Seynaeve, Caroline; Schagen, Sanne B

    2013-10-01

    Few studies have investigated the late (i.e. ≥ 5 years post-treatment) effects of chemotherapy for non-central nervous system (non-CNS) cancer on the brain. Here we discuss the studies that have investigated the late effects of adjuvant chemotherapy for non-CNS cancer on cognitive function (n=6); brain structure and function (n=5); and incidence of dementia (n=4). The neuropsychological studies showed long-term adverse cognitive problems in chemotherapy-exposed breast cancer survivors. This is in line with results from neuroimaging studies that report long-term brain structural alterations after chemotherapy. The studies exploring the association between chemotherapy and the incidence of dementia were contradictive and showed no clear relationship between the two phenomena. Although several methodological issues limit the validity and interpretation of some of the results of these studies, they suggest that chemotherapy is associated with subtle, yet long-lasting cognitive deficits, possibly related to brain structural and functional differences, but as yet not with an increased risk of dementia.

  9. The Role of Adult-Born Neurons in the Constantly Changing Olfactory Bulb Network

    PubMed Central

    Malvaut, Sarah; Saghatelyan, Armen

    2016-01-01

    The adult mammalian brain is remarkably plastic and constantly undergoes structurofunctional modifications in response to environmental stimuli. In many regions plasticity is manifested by modifications in the efficacy of existing synaptic connections or synapse formation and elimination. In a few regions, however, plasticity is brought by the addition of new neurons that integrate into established neuronal networks. This type of neuronal plasticity is particularly prominent in the olfactory bulb (OB) where thousands of neuronal progenitors are produced on a daily basis in the subventricular zone (SVZ) and migrate along the rostral migratory stream (RMS) towards the OB. In the OB, these neuronal precursors differentiate into local interneurons, mature, and functionally integrate into the bulbar network by establishing output synapses with principal neurons. Despite continuous progress, it is still not well understood how normal functioning of the OB is preserved in the constantly remodelling bulbar network and what role adult-born neurons play in odor behaviour. In this review we will discuss different levels of morphofunctional plasticity effected by adult-born neurons and their functional role in the adult OB and also highlight the possibility that different subpopulations of adult-born cells may fulfill distinct functions in the OB neuronal network and odor behaviour. PMID:26839709

  10. The Role of Adult-Born Neurons in the Constantly Changing Olfactory Bulb Network.

    PubMed

    Malvaut, Sarah; Saghatelyan, Armen

    2016-01-01

    The adult mammalian brain is remarkably plastic and constantly undergoes structurofunctional modifications in response to environmental stimuli. In many regions plasticity is manifested by modifications in the efficacy of existing synaptic connections or synapse formation and elimination. In a few regions, however, plasticity is brought by the addition of new neurons that integrate into established neuronal networks. This type of neuronal plasticity is particularly prominent in the olfactory bulb (OB) where thousands of neuronal progenitors are produced on a daily basis in the subventricular zone (SVZ) and migrate along the rostral migratory stream (RMS) towards the OB. In the OB, these neuronal precursors differentiate into local interneurons, mature, and functionally integrate into the bulbar network by establishing output synapses with principal neurons. Despite continuous progress, it is still not well understood how normal functioning of the OB is preserved in the constantly remodelling bulbar network and what role adult-born neurons play in odor behaviour. In this review we will discuss different levels of morphofunctional plasticity effected by adult-born neurons and their functional role in the adult OB and also highlight the possibility that different subpopulations of adult-born cells may fulfill distinct functions in the OB neuronal network and odor behaviour.

  11. A critical period for experience-dependent remodeling of adult-born neuron connectivity.

    PubMed

    Bergami, Matteo; Masserdotti, Giacomo; Temprana, Silvio G; Motori, Elisa; Eriksson, Therese M; Göbel, Jana; Yang, Sung Min; Conzelmann, Karl-Klaus; Schinder, Alejandro F; Götz, Magdalena; Berninger, Benedikt

    2015-02-18

    Neurogenesis in the dentate gyrus (DG) of the adult hippocampus is a process regulated by experience. To understand whether experience also modifies the connectivity of new neurons, we systematically investigated changes in their innervation following environmental enrichment (EE). We found that EE exposure between 2-6 weeks following neuron birth, rather than merely increasing the number of new neurons, profoundly affected their pattern of monosynaptic inputs. Both local innervation by interneurons and to even greater degree long-distance innervation by cortical neurons were markedly enhanced. Furthermore, following EE, new neurons received inputs from CA3 and CA1 inhibitory neurons that were rarely observed under control conditions. While EE-induced changes in inhibitory innervation were largely transient, cortical innervation remained increased after returning animals to control conditions. Our findings demonstrate an unprecedented experience-dependent reorganization of connections impinging onto adult-born neurons, which is likely to have important impact on their contribution to hippocampal information processing.

  12. Cathepsin B-dependent motor neuron death after nerve injury in the adult mouse

    SciTech Connect

    Sun, Li; Wu, Zhou; Baba, Masashi; Peters, Christoph; Uchiyama, Yasuo; Nakanishi, Hiroshi

    2010-08-27

    Research highlights: {yields} Cathepsin B (CB), a lysosomal cysteine protease, is expressed in neuron and glia. {yields} CB increased in hypogrossal nucleus neurons after nerve injury in adult mice. {yields} CB-deficiency significantly increased the mean survival ratio of injured neurons. {yields} Thus, CB plays a critical role in axotomy-induced neuronal death in adult mice. -- Abstract: There are significant differences in the rate of neuronal death after peripheral nerve injury between species. The rate of neuronal death of motor neurons after nerve injury in the adult rats is very low, whereas that in adult mice is relatively high. However, the understanding of the mechanism underlying axotomy-induced motor neuron death in adult mice is limited. Cathepsin B (CB), a typical cysteine lysosomal protease, has been implicated in three major morphologically distinct pathways of cell death; apoptosis, necrosis and autophagic cell death. The possible involvement of CB in the neuronal death of hypogrossal nucleus (HGN) neurons after nerve injury in adult mice was thus examined. Quantitative analyses showed the mean survival ratio of HGN neurons in CB-deficient (CB-/-) adult mice after nerve injury was significantly greater than that in the wild-type mice. At the same time, proliferation of microglia in the injured side of the HGN of CB-/- adult mice was markedly reduced compared with that in the wild-type mice. On the injured side of the HGN in the wild-type adult mice, both pro- and mature forms of CB markedly increased in accordance with the increase in the membrane-bound form of LC3 (LC3-II), a marker protein of autophagy. Furthermore, the increase in CB preceded an increase in the expression of Noxa, a major executor for axotomy-induced motor neuron death in the adult mouse. Conversely, expression of neither Noxa or LC3-II was observed in the HGN of adult CB-/- mice after nerve injury. These observations strongly suggest that CB plays a critical role in axotomy

  13. Immunohistological localization of serotonin in the CNS and feeding system of the stable fly stomoxys calcitrans L. (Diptera: muscidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serotonin, or 5-hydroxytryptamine (5-HT), plays critical roles as a neurotransmitter and neuromodulator that control or modulate many behaviors in insects, such as feeding. Neurons immunoreactive (IR)to 5-HT were detected in the central nervous system (CNS) of the larval and adult stages of the stab...

  14. Clinicopathological features of adult-onset neuronal intranuclear inclusion disease

    PubMed Central

    Sone, Jun; Mori, Keiko; Inagaki, Tomonori; Katsumata, Ryu; Takagi, Shinnosuke; Yokoi, Satoshi; Araki, Kunihiko; Kato, Toshiyasu; Nakamura, Tomohiko; Koike, Haruki; Takashima, Hiroshi; Hashiguchi, Akihiro; Kohno, Yutaka; Kurashige, Takashi; Kuriyama, Masaru; Takiyama, Yoshihisa; Tsuchiya, Mai; Kitagawa, Naoyuki; Kawamoto, Michi; Yoshimura, Hajime; Suto, Yutaka; Nakayasu, Hiroyuki; Uehara, Naoko; Sugiyama, Hiroshi; Takahashi, Makoto; Kokubun, Norito; Konno, Takuya; Katsuno, Masahisa; Tanaka, Fumiaki; Iwasaki, Yasushi; Yoshida, Mari

    2016-01-01

    Neuronal intranuclear inclusion disease (NIID) is a slowly progressive neurodegenerative disease characterized by eosinophilic hyaline intranuclear inclusions in the central and peripheral nervous system, and also in the visceral organs. NIID has been considered to be a heterogeneous disease because of the highly variable clinical manifestations, and ante-mortem diagnosis has been difficult. However, since we reported the usefulness of skin biopsy for the diagnosis of NIID, the number of NIID diagnoses has increased, in particular adult-onset NIID. In this study, we studied 57 cases of adult-onset NIID and described their clinical and pathological features. We analysed both NIID cases diagnosed by post-mortem dissection and by ante-mortem skin biopsy based on the presence of characteristic eosinophilic, hyaline and ubiquitin-positive intanuclear inclusion: 38 sporadic cases and 19 familial cases, from six families. In the sporadic NIID cases with onset age from 51 to 76, dementia was the most prominent initial symptom (94.7%) as designated ‘dementia dominant group’, followed by miosis, ataxia and unconsciousness. Muscle weakness and sensory disturbance were also observed. It was observed that, in familial NIID cases with onset age less than 40 years, muscle weakness was seen most frequently (100%), as designated ‘limb weakness group’, followed by sensory disturbance, miosis, bladder dysfunction, and dementia. In familial cases with more than 40 years of onset age, dementia was most prominent (100%). Elevated cerebrospinal fluid protein and abnormal nerve conduction were frequently observed in both sporadic and familial NIID cases. Head magnetic resonance imaging showed high intensity signal in corticomedullary junction in diffusion-weighted image in both sporadic and familial NIID cases, a strong clue to the diagnosis. All of the dementia dominant cases presented with this type of leukoencephalopathy on head magnetic resonance imaging. Both sporadic and

  15. Expression of fragile X mental retardation protein in neurons and glia of the developing and adult mouse brain.

    PubMed

    Gholizadeh, Shervin; Halder, Sebok Kumar; Hampson, David R

    2015-01-30

    Fragile X syndrome is the most common inherited form of mental retardation and autism. It is caused by a reduction or elimination of the expression of fragile X mental retardation protein (FMRP). Because fragile X syndrome is a neurodevelopmental disorder, it is important to fully document the cell type expression in the developing CNS to provide a better understanding of the molecular function of FMRP, and the pathogenesis of the syndrome. We investigated FMRP expression in the brain using double-labeling immunocytochemistry and cell type markers for neurons (NeuN), astrocytes (S100β), microglia (Iba-1), and oligodendrocyte precursor cells (NG2). The hippocampus, striatum, cingulate cortex, retrosplenial cortex, corpus callosum and cerebellum were assessed in wild-type C57/BL6 mice at postnatal days 0, 10, 20, and adult. Our results demonstrate that FMRP is ubiquitously expressed in neurons at all times and brain regions studied, except for corpus callosum where FMRP was predominantly present in astrocytes at all ages. FMRP expression in Iba-1 and NG2-positive cells was detected at postnatal day 0 and 10 and gradually decreased to very low or undetectable levels in postnatal day 20 and adult mice. Our results reveal that in addition to continuous and extensive expression in neurons in the immature and mature brain, FMRP is also present in astrocytes, oligodendrocyte precursor cells, and microglia during the early and mid-postnatal developmental stages of brain maturation. Prominent expression of FMRP in glia during these crucial stages of brain development suggests an important contribution to normal brain function, and in its absence, to the fragile X phenotype.

  16. Outside the brain: an inside view on transgenic animal and stem cell-based models to examine neuronal serotonin-dependent regulation of HPA axis-controlled events during development and adult stages

    PubMed Central

    Waider, Jonas; Ziegler, Janina

    2016-01-01

    Recently, Trista North and colleagues showed that neuronal synthesis of serotonin is an essential key process for embryonic hematopoietic stem (HPS) cell production in zebrafish. Using their experimental design, they were able to show that neuronal serotonin activates the stress-responsive hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid receptor activity which in turn induces HPS cell formation. In our perspective, we give a short overview on established experimental approaches for serotonergic neurotransmission in vivo and in vitro and their potential to address putative contributions of serotonergic neurotransmission to physiological processes beyond the central nervous systems (CNS). We briefly introduce common features of brain serotonin-depleted, tryptophan hydroxylase-2 knockout mice, which can be applied to investigate the contribution of brain-derived serotonin to developmental and adult physiological processes outside the CNS. These models allow to analyzing gender-specific, HPA axis-dependent processes in female and male knockout mice during developmental and adult stages. We also highlight the application of human and mouse stem cell-derived serotonergic neurons as an independent research model as well as complementary experimental approach to transgenic animal models. In case of human serotonergic neurotransmission, human in vitro-generated neurons present a very promising and highly valuable experimental approach to address characteristics of human neuronal serotonin signaling on a molecular and cellular level. The combination of transgenic animal models and newly established stem cell technologies will provide powerful research platforms, which will help to answer yet unsolved mysteries of serotonergic neurotransmission. PMID:28078274

  17. Outside the brain: an inside view on transgenic animal and stem cell-based models to examine neuronal serotonin-dependent regulation of HPA axis-controlled events during development and adult stages.

    PubMed

    Waider, Jonas; Ziegler, Janina; Lau, Thorsten

    2016-01-01

    Recently, Trista North and colleagues showed that neuronal synthesis of serotonin is an essential key process for embryonic hematopoietic stem (HPS) cell production in zebrafish. Using their experimental design, they were able to show that neuronal serotonin activates the stress-responsive hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid receptor activity which in turn induces HPS cell formation. In our perspective, we give a short overview on established experimental approaches for serotonergic neurotransmission in vivo and in vitro and their potential to address putative contributions of serotonergic neurotransmission to physiological processes beyond the central nervous systems (CNS). We briefly introduce common features of brain serotonin-depleted, tryptophan hydroxylase-2 knockout mice, which can be applied to investigate the contribution of brain-derived serotonin to developmental and adult physiological processes outside the CNS. These models allow to analyzing gender-specific, HPA axis-dependent processes in female and male knockout mice during developmental and adult stages. We also highlight the application of human and mouse stem cell-derived serotonergic neurons as an independent research model as well as complementary experimental approach to transgenic animal models. In case of human serotonergic neurotransmission, human in vitro-generated neurons present a very promising and highly valuable experimental approach to address characteristics of human neuronal serotonin signaling on a molecular and cellular level. The combination of transgenic animal models and newly established stem cell technologies will provide powerful research platforms, which will help to answer yet unsolved mysteries of serotonergic neurotransmission.

  18. Diagnosis and misdiagnosis of adult neuronal ceroid lipofuscinosis (Kufs disease)

    PubMed Central

    Staropoli, John F.; Carpenter, Stirling; Oliver, Karen L.; Kmoch, Stanislav; Anderson, Glenn W.; Damiano, John A.; Hildebrand, Michael S.; Sims, Katherine B.; Cotman, Susan L.; Bahlo, Melanie; Smith, Katherine R.; Cadieux-Dion, Maxime; Cossette, Patrick; Jedličková, Ivana; Přistoupilová, Anna; Mole, Sara E.

    2016-01-01

    Objective: To critically re-evaluate cases diagnosed as adult neuronal ceroid lipofuscinosis (ANCL) in order to aid clinicopathologic diagnosis as a route to further gene discovery. Methods: Through establishment of an international consortium we pooled 47 unsolved cases regarded by referring centers as ANCL. Clinical and neuropathologic experts within the Consortium established diagnostic criteria for ANCL based on the literature to assess each case. A panel of 3 neuropathologists independently reviewed source pathologic data. Cases were given a final clinicopathologic classification of definite ANCL, probable ANCL, possible ANCL, or not ANCL. Results: Of the 47 cases, only 16 fulfilled the Consortium's criteria of ANCL (5 definite, 2 probable, 9 possible). Definitive alternate diagnoses were made in 10, including Huntington disease, early-onset Alzheimer disease, Niemann-Pick disease, neuroserpinopathy, prion disease, and neurodegeneration with brain iron accumulation. Six cases had features suggesting an alternate diagnosis, but no specific condition was identified; in 15, the data were inadequate for classification. Misinterpretation of normal lipofuscin as abnormal storage material was the commonest cause of misdiagnosis. Conclusions: Diagnosis of ANCL remains challenging; expert pathologic analysis and recent molecular genetic advances revealed misdiagnoses in >1/3 of cases. We now have a refined group of cases that will facilitate identification of new causative genes. PMID:27412140

  19. Neonatal Tissue Damage Promotes Spike Timing-Dependent Synaptic Long-Term Potentiation in Adult Spinal Projection Neurons

    PubMed Central

    Li, Jie

    2016-01-01

    Mounting evidence from both humans and rodents suggests that tissue damage during the neonatal period can “prime” developing nociceptive pathways such that a subsequent injury during adulthood causes an exacerbated degree of pain hypersensitivity. However, the cellular and molecular mechanisms that underlie this priming effect remain poorly understood. Here, we demonstrate that neonatal surgical injury relaxes the timing rules governing long-term potentiation (LTP) at mouse primary afferent synapses onto mature lamina I projection neurons, which serve as a major output of the spinal nociceptive network and are essential for pain perception. In addition, whereas LTP in naive mice was only observed if the presynaptic input preceded postsynaptic firing, early tissue injury removed this temporal requirement and LTP was observed regardless of the order in which the inputs were activated. Neonatal tissue damage also reduced the dependence of spike-timing-dependent LTP on NMDAR activation and unmasked a novel contribution of Ca2+-permeable AMPARs. These results suggest for the first time that transient tissue damage during early life creates a more permissive environment for the production of LTP within adult spinal nociceptive circuits. This persistent metaplasticity may promote the excessive amplification of ascending nociceptive transmission to the mature brain and thereby facilitate the generation of chronic pain after injury, thus representing a novel potential mechanism by which early trauma can prime adult pain pathways in the CNS. SIGNIFICANCE STATEMENT Tissue damage during early life can “prime” developing nociceptive pathways in the CNS, leading to greater pain severity after repeat injury via mechanisms that remain poorly understood. Here, we demonstrate that neonatal surgical injury widens the timing window during which correlated presynaptic and postsynaptic activity can evoke long-term potentiation (LTP) at sensory synapses onto adult lamina I

  20. Long-Term Neurocognitive Functioning and Social Attainment in Adult Survivors of Pediatric CNS Tumors: Results From the St Jude Lifetime Cohort Study

    PubMed Central

    Krasin, Matthew J.; Liu, Wei; Armstrong, Gregory T.; Ojha, Rohit P.; Sadighi, Zsila S.; Gupta, Pankaj; Kimberg, Cara; Srivastava, Deokumar; Merchant, Thomas E.; Gajjar, Amar; Robison, Leslie L.; Hudson, Melissa M.; Krull, Kevin R.

    2016-01-01

    Purpose To assess the prevalence and severity of neurocognitive impairment in adult survivors of pediatric CNS tumors and to examine associated treatment exposures. Patients and Methods Participants included 224 survivors of CNS tumors who were treated at St Jude Children's Research Hospital (current median age [range], 26 years [19 to 53 years]; time from diagnosis, 18 years [11 to 42 years]) and completed neurocognitive testing. Information on cranial radiation therapy (CRT) doses and parameters of delivery were abstracted from medical records. The prevalence of severe impairment (ie, at least two standard deviations below normative mean) was compared across radiation treatment groups (no CRT, focal irradiation, craniospinal irradiation) using the χ2 test. Log-binomial models were used to estimate risk ratios (RRs) and corresponding 95% CIs for severe impairment. Results In multivariable models, craniospinal irradiation was associated with a 1.5- to threefold increased risk of severe impairment compared with no CRT (eg, intelligence: RR = 2.70; 95% CI, 1.37 to 5.34; memory: RR = 2.93; 95% CI, 1.69 to 5.08; executive function: RR = 1.74; 95% CI, 1.24 to 2.45). Seizures were associated with impaired academic performance (RR = 1.48; 95% CI, 1.02 to 2.14), attention (RR = 1.54; 95% CI, 1.12 to 2.13), and memory (RR = 1.44; 95% CI, 1.04 to 1.99). Hydrocephalus with shunt placement was associated with impaired intelligence (RR = 1.78; 95% CI, 1.12 to 2.82) and memory (RR = 1.42; 95% CI, 1.03 to 1.95). Differential follow-up time contributed to variability in prevalence estimates between survivors treated with older nonconformal and those treated with more contemporary conformal radiation therapy methods. Neurocognitive impairment was significantly associated with lower educational attainment, unemployment, and nonindependent living. Conclusion Survivors of pediatric CNS tumors are at risk of severe neurocognitive impairment in adulthood. The prevalence of severe

  1. Sensory deprivation increases phagocytosis of adult-born neurons by activated microglia in the olfactory bulb.

    PubMed

    Denizet, Marie; Cotter, Laurent; Lledo, Pierre-Marie; Lazarini, Françoise

    2017-02-01

    The olfactory bulb (OB) is a highly plastic structure that can change organizational networks depending on environmental inputs in adult mammals. Particularly, in rodents, adult neurogenesis underlies plastic changes in the OB circuitry by continuously adding new interneurons to the network. We addressed the question of whether microglia, the immune cells of the brain, were involved in pruning OB neurons. Using lentiviral labeling of neurons in neonatal or adult mice and confocal analysis, we showed that microglia engulfed parts of neonatal-born and adult-born neurons in the healthy OB. We demonstrated that OB deafferentation by Dichlobenil administration induced sensory deprivation. It also increased phagocytosis of adult-born, but not neonatal-born neurons, by activated microglia. Conversely, intranasal lipopolysaccharide administration induced activation of microglia but changed neither adult neurogenesis nor olfaction. Our data reveal that steady-state microglia eliminate adult-born neurons and their synapses in both healthy and sensory deprived OBs, thereby adapting neuronal connections to the sensory experience.

  2. Mitochondria modify exercise-induced development of stem cell-derived neurons in the adult brain.

    PubMed

    Steib, Kathrin; Schäffner, Iris; Jagasia, Ravi; Ebert, Birgit; Lie, D Chichung

    2014-05-07

    Neural stem cells in the adult mammalian hippocampus continuously generate new functional neurons, which modify the hippocampal network and significantly contribute to cognitive processes and mood regulation. Here, we show that the development of new neurons from stem cells in adult mice is paralleled by extensive changes to mitochondrial mass, distribution, and shape. Moreover, exercise-a strong modifier of adult hippocampal neurogenesis-accelerates neuronal maturation and induces a profound increase in mitochondrial content and the presence of mitochondria in dendritic segments. Genetic inhibition of the activity of the mitochondrial fission factor dynamin-related protein 1 (Drp1) inhibits neurogenesis under basal and exercise conditions. Conversely, enhanced Drp1 activity furthers exercise-induced acceleration of neuronal maturation. Collectively, these results indicate that adult hippocampal neurogenesis requires adaptation of the mitochondrial compartment and suggest that mitochondria are targets for enhancing neurogenesis-dependent hippocampal plasticity.

  3. The MMP-1/PAR-1 Axis Enhances Proliferation and Neuronal Differentiation of Adult Hippocampal Neural Progenitor Cells

    PubMed Central

    Valente, Maria Maddalena; Allen, Megan; Bortolotto, Valeria; Lim, Seung T.; Conant, Katherine; Grilli, Mariagrazia

    2015-01-01

    Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that play a role in varied forms of developmental and postnatal neuroplasticity. MMP substrates include protease-activated receptor-1 (PAR-1), a G-protein coupled receptor expressed in hippocampus. We examined proliferation and differentiation of adult neural progenitor cells (aNPCs) from hippocampi of mice that overexpress the potent PAR-1 agonist MMP-1. We found that, as compared to aNPCs from littermate controls, MMP-1 tg aNPCs display enhanced proliferation. Under differentiating conditions, these cells give rise to a higher percentage of MAP-2+ neurons and a reduced number of oligodendrocyte precursors, and no change in the number of astrocytes. The fact that these results are MMP and PAR-1 dependent is supported by studies with distinct antagonists. Moreover, JSH-23, an inhibitor of NF-κB p65 nuclear translocation, counteracted both the proliferation and differentiation changes seen in MMP-1 tg-derived NPCs. In complementary studies, we found that the percentage of Sox2+ undifferentiated progenitor cells is increased in hippocampi of MMP-1 tg animals, compared to wt mice. Together, these results add to a growing body of data suggesting that MMPs are effectors of hippocampal neuroplasticity in the adult CNS and that the MMP-1/PAR-1 axis may play a role in neurogenesis following physiological and/or pathological stimuli. PMID:26783471

  4. Production and survival of projection neurons in a forebrain vocal center of adult male canaries

    SciTech Connect

    Kirn, J.R.; Alvarez-Buylla, A.; Nottebohm, F. )

    1991-06-01

    Neurons are produced in the adult canary telencephalon. Many of these cells are incorporated into the high vocal center (nucleus HVC), which participates in the control of learned song. In the present work, 3H-thymidine and fluorogold were employed to follow the differentiation and survival of HVC neurons born in adulthood. We found that many HVC neurons born in September grow long axons to the robust nucleus of the archistriatum (nucleus RA) and thus become part of the efferent pathway for song control. Many of these new neurons have already established their connections with RA by 30 d after their birth. By 240 d, 75-80% of the September-born HVC neurons project to RA. Most of these new projection neurons survive at least 8 months. The longevity of HVC neurons born in September suggests that these cells remain part of the vocal control circuit long enough to participate in the yearly renewal of the song repertoire.

  5. Basic Concepts of CNS Development.

    ERIC Educational Resources Information Center

    Nowakowski, R. S.

    1987-01-01

    The goals of this review are to: (1) provide a set of concepts to aid in the understanding of complex processes which occur during central nervous system (CNS) development; (2) illustrate how they contribute to our knowlege of adult brain anatomy; and (3) delineate how modifications of normal developmental processes may affect the structure and…

  6. Generation of New Neurons in Dorsal Root Ganglia in Adult Rats after Peripheral Nerve Crush Injury

    PubMed Central

    2015-01-01

    The evidence of neurons generated ex novo in sensory ganglia of adult animals is still debated. In the present study, we investigated, using high resolution light microscopy and stereological analysis, the changes in the number of neurons in dorsal root ganglia after 30 days from a crush lesion of the rat brachial plexus terminal branches. Results showed, as expected, a relevant hypertrophy of dorsal root ganglion neurons. In addition, we reported, for the first time in the literature, that neuronal hypertrophy was accompanied by massive neuronal hyperplasia leading to a 42% increase of the number of primary sensory neurons. Moreover, ultrastructural analyses on sensory neurons showed that there was not a relevant neuronal loss as a consequence of the nerve injury. The evidence of BrdU-immunopositive neurons and neural progenitors labeled with Ki67, nanog, nestin, and sox-2 confirmed the stereological evidence of posttraumatic neurogenesis in dorsal root ganglia. Analysis of morphological changes following axonal damage in addition to immunofluorescence characterization of cell phenotype suggested that the neuronal precursors which give rise to the newly generated neurons could be represented by satellite glial cells that actively proliferate after the lesion and are able to differentiate toward the neuronal lineage. PMID:25722894

  7. Viral Vector Reprogramming of Adult Resident Striatal Oligodendrocytes into Functional Neurons.

    PubMed

    Weinberg, Marc S; Criswell, Hugh E; Powell, Sara K; Bhatt, Aadra P; McCown, Thomas J

    2017-04-05

    Recent advances suggest that in vivo reprogramming of endogenous cell populations provides a viable alternative for neuron replacement. Astrocytes and oligodendrocyte precursor cells can be induced to transdifferentiate into neurons in the CNS, but, in these instances, reprogramming requires either transgenic mice or retroviral-mediated gene expression. We developed a microRNA (miRNA)-GFP construct that in vitro significantly reduced the expression of polypyrimidine tract-binding protein, and, subsequently, we packaged this construct in a novel oligodendrocyte preferring adeno-associated virus vector. Ten days after rat striatal transduction, the vast majority of the GFP-positive cells were oligodendrocytes, but 6 weeks to 6 months later, the majority of GFP-positive cells exhibited neuronal morphology and co-localized with the neuronal marker NeuN. Patch-clamp studies on striatal slices established that the GFP-positive cells exhibited electrophysiological properties indicative of mature neurons, such as spontaneous action potentials and spontaneous inhibitory postsynaptic currents. Also, 3 months after striatal vector administration, GFP-positive terminals in the ipsilateral globus pallidus or substantia nigra retrogradely transported fluorescent beads back to GFP-positive striatal cell bodies, indicating the presence of functional presynaptic terminals. Thus, this viral vector approach provides a potential means to harness resident oligodendrocytes as an endogenous source for in vivo neuronal replacement.

  8. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory?

    PubMed Central

    Deng, Wei; Aimone, James B.; Gage, Fred H.

    2010-01-01

    The integration of adult-born neurons into the circuitry of the adult hippocampus suggests an important role for adult hippocampal neurogenesis in learning and memory, but its specific function in these processes has remained elusive. In this article, we summarize recent progress in this area, including advances based on behavioural studies and insights provided by computational modelling. Increasingly, evidence suggests that newborn neurons might be involved in hippocampal functions that are particularly dependent on the dentate gyrus, such as pattern separation. Furthermore, newborn neurons at different maturation stages may make distinct contributions to learning and memory. In particular, computational studies suggest that, before newborn neurons are fully mature, they might function as a pattern integrator by introducing a degree of similarity to the encoding of events that occur closely in time. PMID:20354534

  9. A Subset of Serotonergic Neurons Evokes Hunger in Adult Drosophila.

    PubMed

    Albin, Stephanie D; Kaun, Karla R; Knapp, Jon-Michael; Chung, Phuong; Heberlein, Ulrike; Simpson, Julie H

    2015-09-21

    Hunger is a complex motivational state that drives multiple behaviors. The sensation of hunger is caused by an imbalance between energy intake and expenditure. One immediate response to hunger is increased food consumption. Hunger also modulates behaviors related to food seeking such as increased locomotion and enhanced sensory sensitivity in both insects and vertebrates. In addition, hunger can promote the expression of food-associated memory. Although progress is being made, how hunger is represented in the brain and how it coordinates these behavioral responses is not fully understood in any system. Here, we use Drosophila melanogaster to identify neurons encoding hunger. We found a small group of neurons that, when activated, induced a fed fly to eat as though it were starved, suggesting that these neurons are downstream of the metabolic regulation of hunger. Artificially activating these neurons also promotes appetitive memory performance in sated flies, indicating that these neurons are not simply feeding command neurons but likely play a more general role in encoding hunger. We determined that the neurons relevant for the feeding effect are serotonergic and project broadly within the brain, suggesting a possible mechanism for how various responses to hunger are coordinated. These findings extend our understanding of the neural circuitry that drives feeding and enable future exploration of how state influences neural activity within this circuit.

  10. Region-specific vulnerability to lipid peroxidation and evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the healthy adult human central nervous system.

    PubMed

    Naudí, Alba; Cabré, Rosanna; Dominguez-Gonzalez, Mayelin; Ayala, Victoria; Jové, Mariona; Mota-Martorell, Natalia; Piñol-Ripoll, Gerard; Gil-Villar, Maria Pilar; Rué, Montserrat; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2017-02-07

    Lipids played a determinant role in the evolution of the brain. It is postulated that the morphological and functional diversity among neural cells of the human central nervous system (CNS) is projected and achieved through the expression of particular lipid profiles. The present study was designed to evaluate the differential vulnerability to oxidative stress mediated by lipids through a cross-regional comparative approach. To this end, we compared 12 different regions of CNS of healthy adult subjects, and the fatty acid profile and vulnerability to lipid peroxidation, were determined by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS), respectively. In addition, different components involved in PUFA biosynthesis, as well as adaptive defense mechanisms against lipid peroxidation, were also measured by western blot and immunohistochemistry, respectively. We found that: i) four fatty acids (18.1n-9, 22:6n-3, 20:1n-9, and 18:0) are significant discriminators among CNS regions; ii) these differential fatty acid profiles generate a differential selective neural vulnerability (expressed by the peroxidizability index); iii) the cross-regional differences for the fatty acid profiles follow a caudal-cranial gradient which is directly related to changes in the biosynthesis pathways which can be ascribed to neuronal cells; and iv) the higher the peroxidizability index for a given human brain region, the lower concentration of the protein damage markers, likely supported by the presence of adaptive antioxidant mechanisms. In conclusion, our results suggest that there is a region-specific vulnerability to lipid peroxidation and offer evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the human central nervous system.

  11. Cortical neurogenesis in adult rats after ischemic brain injury: most new neurons fail to mature.

    PubMed

    Li, Qing-Quan; Qiao, Guan-Qun; Ma, Jun; Fan, Hong-Wei; Li, Ying-Bin

    2015-02-01

    The present study examines the hypothesis that endogenous neural progenitor cells isolated from the neocortex of ischemic brain can differentiate into neurons or glial cells and contribute to neural regeneration. We performed middle cerebral artery occlusion to establish a model of cerebral ischemia/reperfusion injury in adult rats. Immunohistochemical staining of the cortex 1, 3, 7, 14 or 28 days after injury revealed that neural progenitor cells double-positive for nestin and sox-2 appeared in the injured cortex 1 and 3 days post-injury, and were also positive for glial fibrillary acidic protein. New neurons were labeled using bromodeoxyuridine and different stages of maturity were identified using doublecortin, microtubule-associated protein 2 and neuronal nuclei antigen immunohistochemistry. Immature new neurons coexpressing doublecortin and bromodeoxyuridine were observed in the cortex at 3 and 7 days post-injury, and semi-mature and mature new neurons double-positive for microtubule-associated protein 2 and bromodeoxyuridine were found at 14 days post-injury. A few mature new neurons coexpressing neuronal nuclei antigen and bromodeoxyuridine were observed in the injured cortex 28 days post-injury. Glial fibrillary acidic protein/bromodeoxyuridine double-positive astrocytes were also found in the injured cortex. Our findings suggest that neural progenitor cells are present in the damaged cortex of adult rats with cerebral ischemic brain injury, and that they differentiate into astrocytes and immature neurons, but most neurons fail to reach the mature stage.

  12. Young adult born neurons enhance hippocampal dependent performance via influences on bilateral networks

    PubMed Central

    Zhuo, Jia-Min; Tseng, Hua-an; Desai, Mitul; Bucklin, Mark E; Mohammed, Ali I; Robinson, Nick TM; Boyden, Edward S; Rangel, Lara M; Jasanoff, Alan P; Gritton, Howard J; Han, Xue

    2016-01-01

    Adult neurogenesis supports performance in many hippocampal dependent tasks. Considering the small number of adult-born neurons generated at any given time, it is surprising that this sparse population of cells can substantially influence behavior. Recent studies have demonstrated that heightened excitability and plasticity may be critical for the contribution of young adult-born cells for certain tasks. What is not well understood is how these unique biophysical and synaptic properties may translate to networks that support behavioral function. Here we employed a location discrimination task in mice while using optogenetics to transiently silence adult-born neurons at different ages. We discovered that adult-born neurons promote location discrimination during early stages of development but only if they undergo maturation during task acquisition. Silencing of young adult-born neurons also produced changes extending to the contralateral hippocampus, detectable by both electrophysiology and fMRI measurements, suggesting young neurons may modulate location discrimination through influences on bilateral hippocampal networks. DOI: http://dx.doi.org/10.7554/eLife.22429.001 PMID:27914197

  13. Zebrafish adult-derived hypothalamic neurospheres generate gonadotropin-releasing hormone (GnRH) neurons

    PubMed Central

    Cortés-Campos, Christian; Letelier, Joaquín; Ceriani, Ricardo; Whitlock, Kathleen E.

    2015-01-01

    ABSTRACT Gonadotropin-releasing hormone (GnRH) is a hypothalamic decapeptide essential for fertility in vertebrates. Human male patients lacking GnRH and treated with hormone therapy can remain fertile after cessation of treatment suggesting that new GnRH neurons can be generated during adult life. We used zebrafish to investigate the neurogenic potential of the adult hypothalamus. Previously we have characterized the development of GnRH cells in the zebrafish linking genetic pathways to the differentiation of neuromodulatory and endocrine GnRH cells in specific regions of the brain. Here, we developed a new method to obtain neural progenitors from the adult hypothalamus in vitro. Using this system, we show that neurospheres derived from the adult hypothalamus can be maintained in culture and subsequently differentiate glia and neurons. Importantly, the adult derived progenitors differentiate into neurons containing GnRH and the number of cells is increased through exposure to either testosterone or GnRH, hormones used in therapeutic treatment in humans. Finally, we show in vivo that a neurogenic niche in the hypothalamus contains GnRH positive neurons. Thus, we demonstrated for the first time that neurospheres can be derived from the hypothalamus of the adult zebrafish and that these neural progenitors are capable of producing GnRH containing neurons. PMID:26209533

  14. Connexin36 identified at morphologically mixed chemical/electrical synapses on trigeminal motoneurons and at primary afferent terminals on spinal cord neurons in adult mouse and rat.

    PubMed

    Bautista, W; McCrea, D A; Nagy, J I

    2014-03-28

    Morphologically mixed chemical/electrical synapses at axon terminals, with the electrical component formed by gap junctions, is common in the CNS of lower vertebrates. In mammalian CNS, evidence for morphologically mixed synapses has been obtained in only a few locations. Here, we used immunofluorescence approaches to examine the localization of the neuronally expressed gap junction forming protein connexin36 (Cx36) in relation to the axon terminal marker vesicular glutamate transporter-1 (vglut1) in the spinal cord and the trigeminal motor nucleus (Mo5) of rat and mouse. In adult rodents, immunolabeling for Cx36 appeared exclusively as Cx36-puncta, and was widely distributed at all rostro-caudal levels in most spinal cord laminae and in the Mo5. A high proportion of Cx36-puncta was co-localized with vglut1, forming morphologically mixed synapses on motoneurons, in intermediate spinal cord lamina, and in regions of medial lamina VII, where vglut1-containing terminals associated with Cx36 converged on neurons adjacent to the central canal. Unilateral transection of lumbar dorsal roots reduced immunolabeling of both vglut1 and Cx36 in intermediate laminae and lamina IX. Further, vglut1-terminals displaying Cx36-puncta were contacted by terminals labeled for glutamic acid decarboxylase65, which is known to be contained in presynaptic terminals on large-diameter primary afferents. Developmentally, mixed synapses begin to emerge in the spinal cord only after the second to third postnatal week and thereafter increase to adult levels. Our findings demonstrate that axon terminals of primary afferent origin form morphologically mixed synapses containing Cx36 in broadly distributed areas of adult rodent spinal cord and Mo5.

  15. Transplants of cells genetically modified to express neurotrophin-3 rescue axotomized Clarke's nucleus neurons after spinal cord hemisection in adult rats.

    PubMed

    Himes, B T; Liu, Y; Solowska, J M; Snyder, E Y; Fischer, I; Tessler, A

    2001-09-15

    To test the idea that genetically engineered cells can rescue axotomized neurons, we transplanted fibroblasts and immortalized neural stem cells (NSCs) modified to express neurotrophic factors into the injured spinal cord. The neurotrophin-3 (NT-3) or nerve growth factor (NGF) transgene was introduced into these cells using recombinant retroviral vectors containing an internal ribosome entry site (IRES) sequence and the beta-galactosidase or alkaline phosphatase reporter gene. Bioassay confirmed biological activity of the secreted neurotrophic factors. Clarke's nucleus (CN) axons, which project to the rostral spinal cord and cerebellum, were cut unilaterally in adult rats by T8 hemisection. Rats received transplants of fibroblasts or NSCs genetically modified to express NT-3 or NGF and a reporter gene, only a reporter gene, or no transplant. Two months postoperatively, grafted cells survived at the hemisection site. Grafted fibroblasts and NSCs expressed a reporter gene and immunoreactivity for the NGF or NT-3 transgene. Rats receiving no transplant or a transplant expressing only a reporter gene showed a 30% loss of CN neurons in the L1 segment on the lesioned side. NGF-expressing transplants produced partial rescue compared with hemisection alone. There was no significant neuron loss in rats receiving grafts of either fibroblasts or NSCs engineered to express NT-3. We postulate that NT-3 mediates survival of CN neurons through interaction with trkC receptors, which are expressed on CN neurons. These results support the idea that NT-3 contributes to long-term survival of axotomized CN neurons and show that genetically modified cells rescue axotomized neurons as efficiently as fetal CNS transplants.

  16. Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons.

    PubMed

    Habib, Naomi; Li, Yinqing; Heidenreich, Matthias; Swiech, Lukasz; Avraham-Davidi, Inbal; Trombetta, John J; Hession, Cynthia; Zhang, Feng; Regev, Aviv

    2016-08-26

    Single-cell RNA sequencing (RNA-Seq) provides rich information about cell types and states. However, it is difficult to capture rare dynamic processes, such as adult neurogenesis, because isolation of rare neurons from adult tissue is challenging and markers for each phase are limited. Here, we develop Div-Seq, which combines scalable single-nucleus RNA-Seq (sNuc-Seq) with pulse labeling of proliferating cells by 5-ethynyl-2'-deoxyuridine (EdU) to profile individual dividing cells. sNuc-Seq and Div-Seq can sensitively identify closely related hippocampal cell types and track transcriptional dynamics of newborn neurons within the adult hippocampal neurogenic niche, respectively. We also apply Div-Seq to identify and profile rare newborn neurons in the adult spinal cord, a noncanonical neurogenic region. sNuc-Seq and Div-Seq open the way for unbiased analysis of diverse complex tissues.

  17. Activating neurons by light in free-moving adult flies

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chin; Hsiao, Po-Yen; Chu, Li-An; Lin, Yen-Yin; Fu, Chien-Chung; Chiang, Ann-Shyn

    2015-01-01

    In this presentation, we show our preliminary results which is related to neurons activation in vivo by laser. A laser scanning system was adopted to guide laser beam to an assigned fly and an assigned position. A 473-nm laser can be a heat punishment source to restrain a wild-type fly's moving area. Furthermore, neurons in optogenetics transgene flies can be triggered by the blue laser in this system.

  18. Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus.

    PubMed

    Song, Juan; Sun, Jiaqi; Moss, Jonathan; Wen, Zhexing; Sun, Gerald J; Hsu, Derek; Zhong, Chun; Davoudi, Heydar; Christian, Kimberly M; Toni, Nicolas; Ming, Guo-Li; Song, Hongjun

    2013-12-01

    Using immunohistology, electron microscopy, electrophysiology and optogenetics, we found that proliferating adult mouse hippocampal neural precursors received immature GABAergic synaptic inputs from parvalbumin-expressing interneurons. Recently shown to suppress adult quiescent neural stem cell activation, parvalbumin interneuron activation promoted newborn neuronal progeny survival and development. Our results suggest a niche mechanism involving parvalbumin interneurons that couples local circuit activity to the diametric regulation of two critical early phases of adult hippocampal neurogenesis.

  19. NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration

    PubMed Central

    Kang, Shin H.; Fukaya, Masahiro; Yang, Jason K.; Rothstein, Jeffrey D.; Bergles, Dwight E.

    2010-01-01

    SUMMARY The mammalian CNS contains a ubiquitous population of glial progenitors known as NG2+ cells that have the ability to develop into oligodendrocytes and undergo dramatic changes in response to injury and demyelination. Although it has been reported that NG2+ cells are multipotent, their fate in health and disease remains controversial. Here, we generated PDGFαR-CreER transgenic mice and followed their fate in vivo in the developing and adult CNS. These studies revealed that NG2+ cells in the postnatal CNS generate myelinating oligodendrocytes, but not astrocytes or neurons. In regions of neurodegeneration in the spinal cord of ALS mice, NG2+ cells exhibited enhanced proliferation and accelerated differentiation into oligodendrocytes, but remained committed to the oligodendrocyte lineage. These results indicate that NG2+ cells in the normal CNS are oligodendrocyte precursors with restricted lineage potential, and that cell loss and gliosis are not sufficient to alter the lineage potential of these progenitors in ALS mice. PMID:21092857

  20. Neurones in the adult rat anterior medullary velum.

    PubMed

    Ibrahim, M; Menoud, P A; Celio, M R

    2000-03-27

    The presence of neurones in the rat anterior medullary velum (AMV) has been investigated by using antibodies to the calcium-binding proteins, parvalbumin (PV), calretinin (CR), and calbindin-D28k (CB). Disparate populations of mainly GABAergic neurones were located in the rostral and caudal regions of the AMV. The rostral region of the AMV was characterised by GABAergic CR-labelled or PV-labelled neurones. CR-labelled neurones were bipolar or multipolar with round to ovoid somata (diameters between 8 and 12 microm), and rostrocaudally running dendrites forming a network. PV-labelled neurones had round somata (diameters between 6 and 10 microm) and were bi-tufted, with beaded dendrites. Both CR-labelled and PV-labelled dendrites formed punctate pericellular associations with unlabelled somatic profiles. In the caudal region of the AMV, PV-labelled neurones were GABAergic, multipolar cells, having round somata (diameters between 9 and 12 microm), with either beaded or nonbeaded dendrites forming a network of interconnecting dendrites. PV-labelled pericellular associations were made around both PV-labelled and unlabelled somatic profiles. CR labelled unipolar brush cells (UBCs) were not GABAergic. UBCs were characterised by a round to oval somata (10-15 microm in diameter) from which a single primary dendrite emerged to form a distal expansion having small terminal dendrites. From the distal expansion, there also appeared to be CR-labelled processes emanating and extending for up to 250 microm. CB occasionally labelled "Purkinje-like cells" (PLCs). The rat AMV is a more complex structure than first envisaged with the presence of predominantly inhibitory neurones expressing different calcium-binding proteins. Functional and anatomic aspects of this circuitry are further discussed.

  1. Neurochemical phenotypes of endomorphin-2-containing neurons in vagal nodose neurons of the adult rat.

    PubMed

    Niu, Le; Chen, Tao; Wang, Ya-Yun; Li, Yun-Qing

    2009-12-01

    It has been shown that endomorphin-2-like immunoreactive (EM2-LI) neurons in dorsal root ganglion play important roles in regulating somatic information transmission. Although EM2-ergic neurons have been found in nodose ganglion (NG) which is mainly involved in transmitting visceral information into the nucleus tractus solitarii (NTS), the neurochemical phenotypes of EM2-ergic neurons have not yet been investigated. In the present study, immunofluorescent histochemical staining showed that 43.5% of the NG neurons contained EM2 and these neurons were small to medium in size. 15.2%, 27.8%, 74.4% and 25.2% of the EM2-LI NG neurons expressed substance P (SP), calcitonin gene-related peptide (CGRP), nitric oxide synthase (NOS) and vasoactive intestinal peptide (VIP), respectively. In addition, about 90.8% of EM2-LI NG neurons also contained mu-opioid receptor (MOR). EM2/MOR and EM2/SP double-labeled peripheral axons were observed in the vagal trunk. Anterograde tracing combined with immunofluorescent staining showed EM2/MOR and EM2/SP double-labeled vagal afferents in the NTS. EM2/MOR/SP and EM2/MOR/CGRP triple-labeled neurons and axons were observed in the NG. Importantly, at the ultrastructrual level, post-embedding electron microscopy revealed that EM2-LI and SP-LI gold particles coexisted in the same large dense-cored synaptic vesicles in the pre-synaptic button, while MOR-LI gold particles existed on both pre- and post-synaptic membranes in the NTS. These results suggest that EM2 in axon terminals of NG neurons might be involved in visceral information transmission and homeostatic control through modulating the release of other neurotransmitters (such as SP, CGRP, NO, VIP) via pre-synaptic MOR and through post-synaptic mechanisms in the NTS.

  2. Patterns of diagnostic marker assessment in adult diffuse glioma: a survey of the European Confederation of Neuropathological Societies (Euro-CNS).

    PubMed

    Woehrer, Adelheid; Kristensen, Bjarne W; Vital, Anne; Hainfellner, Johannes A

    The 2016 update of the WHO classification has introduced an integrated diagnostic approach that incorporates both tumor morphology and molecular information. This conceptual change has far-reaching implications, especially for neuropathologists who are in the forefront of translating molecular markers to routine diagnostic use. Adult diffuse glioma is a prototypic example for a group of tumors that underwent substantial regrouping, and it represents a major workload for surgical neuropathologists. Hence, we conducted a survey among members of the European Confederation of Neuropathological Societies (Euro-CNS) in order to assess 1) the extent to which molecular markers have already been incorporated in glioma diagnoses, 2) which molecular techniques are in daily use, and 3) to set a baseline for future surveys in this field. Based on 130 responses from participants across 40 nations neuropathologists uniformly rate molecular marker testing as highly relevant and already incorporate molecular information in their diagnostic assessments. At the same time however, the survey documents substantial differences in access to crucial biomarkers and molecular techniques across geographic regions and within individual countries. Concerns are raised concerning the validity of test assays with MGMT, 1p19q, and ATRX; being perceived as most problematic. Neuropathologists advocate the need for international harmonization of standards and consensus guidelines, and the majority is willing to actively engage in interlaboratory trials aiming at quality control (Figure 1).
.

  3. Patterns of diagnostic marker assessment in adult diffuse glioma: a survey of the European Confederation of Neuropathological Societies (Euro-CNS)

    PubMed Central

    Woehrer, Adelheid; Kristensen, Bjarne W.; Vital, Anne; Hainfellner, Johannes A.

    2017-01-01

    The 2016 update of the WHO classification has introduced an integrated diagnostic approach that incorporates both tumor morphology and molecular information. This conceptual change has far-reaching implications, especially for neuropathologists who are in the forefront of translating molecular markers to routine diagnostic use. Adult diffuse glioma is a prototypic example for a group of tumors that underwent substantial regrouping, and it represents a major workload for surgical neuropathologists. Hence, we conducted a survey among members of the European Confederation of Neuropathological Societies (Euro-CNS) in order to assess 1) the extent to which molecular markers have already been incorporated in glioma diagnoses, 2) which molecular techniques are in daily use, and 3) to set a baseline for future surveys in this field. Based on 130 responses from participants across 40 nations neuropathologists uniformly rate molecular marker testing as highly relevant and already incorporate molecular information in their diagnostic assessments. At the same time however, the survey documents substantial differences in access to crucial biomarkers and molecular techniques across geographic regions and within individual countries. Concerns are raised concerning the validity of test assays with MGMT, 1p19q, and ATRX; being perceived as most problematic. Neuropathologists advocate the need for international harmonization of standards and consensus guidelines, and the majority is willing to actively engage in interlaboratory trials aiming at quality control (Figure 1). PMID:27966427

  4. Expression of gonadotropin-releasing hormone receptor in cerebral cortical neurons of embryos and adult rats.

    PubMed

    Quintanar, J Luis; Salinas, Eva; González, Rodolfo

    2007-01-03

    Mammalian gonadotropin-releasing hormone (GnRH) was initially isolated from hypothalamus and its receptor from anterior pituitary, although extrapituitary GnRH receptors have been reported. The aim of the present study was to investigate whether GnRH receptor and its mRNA are expressed in cerebral cortical neurons of rat embryos and adult rats using immunohistochemical and reverse transcriptase polymerase chain reaction (RT-PCR) techniques. The immunohistochemistry and RT-PCR analysis showed expression of GnRH receptor and presence of its mRNA, in both cerebral cortical neurons of rat embryos and cerebral cortical tissues of adult rats. Additional experiments showed a decrease in the receptor mRNA expression when cultured neurons of rat embryos were treated with GnRH. It is possible that the presence of GnRH receptors in cortical neurons of rat may be involved in other physiological roles such as neurohormone or neuromodulator.

  5. Thalamocortical Projections onto Behaviorally Relevant Neurons Exhibit Plasticity during Adult Motor Learning.

    PubMed

    Biane, Jeremy S; Takashima, Yoshio; Scanziani, Massimo; Conner, James M; Tuszynski, Mark H

    2016-03-16

    Layer 5 neurons of the neocortex receive direct and relatively strong input from the thalamus. However, the intralaminar distribution of these inputs and their capacity for plasticity in adult animals are largely unknown. In slices of the primary motor cortex (M1), we simultaneously recorded from pairs of corticospinal neurons associated with control of distinct motor outputs: distal forelimb versus proximal forelimb. Activation of ChR2-expressing thalamocortical afferents in M1 before motor learning produced equivalent responses in monosynaptic excitation of neurons controlling the distal and proximal forelimb, suggesting balanced thalamic input at baseline. Following skilled grasp training, however, thalamocortical input shifted to bias activation of corticospinal neurons associated with control of the distal forelimb. This increase was associated with a cell-specific increase in mEPSC amplitude but not presynaptic release probability. These findings demonstrate distinct and highly segregated plasticity of thalamocortical projections during adult learning.

  6. Specification of individual adult motor neuron morphologies by combinatorial transcription factor codes.

    PubMed

    Enriquez, Jonathan; Venkatasubramanian, Lalanti; Baek, Myungin; Peterson, Meredith; Aghayeva, Ulkar; Mann, Richard S

    2015-05-20

    How the highly stereotyped morphologies of individual neurons are genetically specified is not well understood. We identify six transcription factors (TFs) expressed in a combinatorial manner in seven post-mitotic adult leg motor neurons (MNs) that are derived from a single neuroblast in Drosophila. Unlike TFs expressed in mitotically active neuroblasts, these TFs do not regulate each other's expression. Removing the activity of a single TF resulted in specific morphological defects, including muscle targeting and dendritic arborization, and in a highly specific walking defect in adult flies. In contrast, when the expression of multiple TFs was modified, nearly complete transformations in MN morphologies were generated. These results show that the morphological characteristics of a single neuron are dictated by a combinatorial code of morphology TFs (mTFs). mTFs function at a previously unidentified regulatory tier downstream of factors acting in the NB but independently of factors that act in terminally differentiated neurons.

  7. Adult-generated hippocampal and neocortical neurons in macaques have a transient existence

    PubMed Central

    Gould, E.; Vail, N.; Wagers, M.; Gross, C. G.

    2001-01-01

    Previously we reported that new neurons are added to the hippocampus and neocortex of adult macaque monkeys. Here we compare the production and survival of adult-generated neurons and glia in the dentate gyrus, prefrontal cortex, and inferior temporal cortex. Twelve adult macaques were injected with the thymidine analogue BrdUrd, and the phenotypes of labeled cells were examined after 2 h, 24 h, 2 wk, 5 wk, 9 wk, and 12 wk by using the following immunocytochemical markers: for immature and mature neurons, class III β-tubulin (TuJ1); for mature neurons, neuronal nuclei; for astrocytes, glial fibrillary acidic protein; and for oligodendrocytes, 2′,3′-cyclic nucleotide 3′ phosphodiesterase. We found that the dentate gyrus had many more BrdUrd-labeled cells than either neocortical area. Furthermore, a greater percentage of BrdUrd-labeled cells expressed a neuronal marker in the dentate gyrus than in either neocortical area. The number of new cells in all three areas declined by 9 wk after BrdUrd labeling, suggesting that some of the new cells have a transient existence. BrdUrd-labeled cells also were found in the subventricular zone and in the white matter between the lateral ventricle and neocortex; some of the latter cells were double-labeled for BrdUrd and TuJ1. Adult neocortical neurogenesis is not restricted to primates. Five adult rats were injected with BrdUrd, and after a 3-wk survival time, there were cells double-labeled for BrdUrd and either TuJ1 or neuronal nuclei in the anterior neocortex as well as the dentate gyrus. PMID:11526209

  8. Properties of doublecortin expressing neurons in the adult mouse dentate gyrus.

    PubMed

    Spampanato, Jay; Sullivan, Robert K; Turpin, Fabrice R; Bartlett, Perry F; Sah, Pankaj

    2012-01-01

    The dentate gyrus is a neurogenic zone where neurons continue to be born throughout life, mature and integrate into the local circuitry. In adults, this generation of new neurons is thought to contribute to learning and memory formation. As newborn neurons mature, they undergo a developmental sequence in which different stages of development are marked by expression of different proteins. Doublecortin (DCX) is an early marker that is expressed in immature granule cells that are beginning migration and dendritic growth but is turned off before neurons reach maturity. In the present study, we use a mouse strain in which enhanced green fluorescent protein (EGFP) is expressed under the control of the DCX promoter. We show that these neurons have high input resistances and some cells can discharge trains of action potentials. In mature granule cells, action potentials are followed by a slow afterhyperpolarization that is absent in EGFP-positive neurons. EGFP-positive neurons had a lower spine density than mature neurons and stimulation of either the medial or lateral perforant pathway activated dual component glutamatergic synapses that had both AMPA and NMDA receptors. NMDA receptors present at these synapses had slow kinetics and were blocked by ifenprodil, indicative of high GluN2B subunit content. These results show that EGFP-positive neurons in the DCX-EGFP mice are functionally immature both in their firing properties and excitatory synapses.

  9. The immunophilin ligand FK506, but not the P38 kinase inhibitor SB203580, improves function of adult rat muscle reinnervated from transplants of embryonic neurons.

    PubMed

    Grumbles, R M; Casella, G T B; Rudinsky, M J; Godfrey, S; Wood, P M; Thomas, C K

    2005-01-01

    Injury to the adult CNS often involves death of motoneurons, resulting in the paralysis and progressive atrophy of muscle. There is no effective therapy to replace motoneurons in the CNS. Our strategy to replace neurons and to rescue denervated muscles is to transplant dissociated embryonic day 14-15 (E14-15) ventral spinal cord cells into the distal stump of a peripheral nerve near the denervated muscles. Here, we test whether long-term delivery of two pharmacological inhibitors to denervated muscle, FK506 or SB203580, enhances reinnervation of muscle from embryonic cells transplanted in the tibial nerve of adult Fischer rats. FK506, SB203580 (2.5 mg/kg) or saline was delivered under the fascia of the medial gastrocnemius muscle for 4 weeks, beginning when muscles were denervated by section of the sciatic nerve. After 1 week of nerve degeneration, one million E14-15 ventral spinal cord cells were transplanted into the distal tibial nerve stump of each rat in the three treatment groups. Ten weeks later, all cell transplants had neuron-specific nuclear protein (NeuN) positive neurons. Neuron survival and axon regeneration were similar across treatments. An average (+/-S.E.) of 210+/-66, 100+/-36 and 176+/-58 myelinated axons grew distally from the cell transplants of rats with muscles treated with FK506, SB203580 or saline, respectively. Regenerating axons in muscles of all three treatments groups were detected with antibodies against phosphorylated neurofilaments and synaptophysin, and motor end plates were labeled with alpha-bungarotoxin. Muscles of rats that received transplants of media only had no axon growth, indicating that the muscles were denervated. The mean muscle fiber areas of rats that received cell transplants and had long-term delivery of FK506, SB203580 or saline to muscles were significantly larger than those of denervated muscle fibers. Thus, cell transplantation reduced muscle atrophy. Transplantation of embryonic cells also resulted in

  10. Schwann Cell Expressed Nogo-B Modulates Axonal Branching of Adult Sensory Neurons Through the Nogo-B Receptor NgBR

    PubMed Central

    Eckharter, Christoph; Junker, Nina; Winter, Lilli; Fischer, Irmgard; Fogli, Barbara; Kistner, Steffen; Pfaller, Kristian; Zheng, Binhai; Wiche, Gerhard; Klimaschewski, Lars; Schweigreiter, Rüdiger

    2015-01-01

    In contrast to the central nervous system (CNS) nerve fibers do regenerate in the peripheral nervous system (PNS) although in a clinically unsatisfying manner. A major problem is excessive sprouting of regenerating axons which results in aberrant reinnervation of target tissue and impaired functional recovery. In the CNS, the reticulon protein Nogo-A has been identified as a prominent oligodendrocyte expressed inhibitor of long-distance growth of regenerating axons. We show here that the related isoform Nogo-B is abundantly expressed in Schwann cells in the PNS. Other than Nogo-A in oligodendrocytes, Nogo-B does not localize to the myelin sheath but is detected in the ER and the plasma membrane of Schwann cells. Adult sensory neurons that are cultured on nogo-a/b deficient Schwann cells form significantly fewer axonal branches vs. those on wildtype Schwann cells, while their maximal axonal extension is unaffected. We demonstrate that this effect of Nogo-B on neuronal morphology is restricted to undifferentiated Schwann cells and is mediated by direct physical contact between these two cell types. Moreover, we show that blocking the Nogo-B specific receptor NgBR, which we find expressed on sensory neurons and to interact with Schwann cell expressed Nogo-B, produces the same branching phenotype as observed after deletion of Nogo-B. These data provide evidence for a novel function of the nogo gene that is implemented by the Nogo-B isoform. The remarkably specific effects of Nogo-B/NgBR on axonal branching, while leaving axonal extension unaffected, are of potential clinical relevance in the context of excessive axonal sprouting after peripheral nerve injury. Main Points Nogo-B is prominently expressed in Schwann cells and localizes to the ER and plasma membrane. It distributes to the external cytoplasmic compartment of Schwann cells in vivo, but is absent from the myelin sheath. Genetic deletion of Nogo-B in Schwann cells reduces axonal branching, but not long

  11. Organization of the histaminergic system in adult zebrafish (Danio rerio) brain: neuron number, location, and cotransmitters.

    PubMed

    Sundvik, Maria; Panula, Pertti

    2012-12-01

    Histamine is an essential factor in the ascending arousal system (AAS) during motivated behaviors. Histamine and hypocretin/orexin (hcrt) are proposed to be responsible for different aspects of arousal and wakefulness, histamine mainly for cognitive and motivated behaviors. In this study we visualized the entire histaminergic neuron population in adult male and female zebrafish brain and quantified the histaminergic neuron numbers. There were 40-45 histaminergic neurons in both male and female zebrafish brain. Further, we identified cotransmitters of histaminergic neurons in the ventrocaudal hypothalamus, i.e., around the posterior recess (PR) in adult zebrafish. Galanin, γ-aminobutyric acid (GABA), and thyrotropin-releasing hormone (TRH) were colocalized with histamine in some but not all neurons, a result that was verified by intracerebroventricular injections of colchicine into adult zebrafish. Fibers immunoreactive (ir) for galanin, GABA, TRH, or methionine-enkephalin (mENK) were dense in the ventrocaudal hypothalamus around the histaminergic neurons. In histamine-ir fibers TRH and galanin immunoreactivities were also detected in the ventral telencephalon. All these neurotransmitters are involved in maintaining the equilibrium of the sleep-wake state. Our results are in accordance with results from rats, further supporting the use of zebrafish as a tool to study molecular mechanisms underlying complex behaviors.

  12. Basolateral amygdala regulation of adult hippocampal neurogenesis and fear-related activation of newborn neurons

    PubMed Central

    Kirby, Elizabeth D.; Friedman, Aaron R.; Covarrubias, David; Ying, Carl; Sun, Wayne G.; Goosens, Ki A.; Sapolsky, Robert M.; Kaufer, Daniela

    2014-01-01

    Impaired regulation of emotional memory is a feature of several affective disorders, including depression, anxiety and post-traumatic stress disorder. Such regulation occurs, in part, by interactions between the hippocampus and the basolateral amygdala (BLA). Recent studies have indicated that within the adult hippocampus, newborn neurons may contribute to support of emotional memory, and that regulation of hippocampal neurogenesis is implicated in depressive disorders. How emotional information impacts newborn neurons in adults is not clear. Given the role of the BLA in hippocampus-dependent emotional memory, we investigated whether hippocampal neurogenesis was sensitive to emotional stimuli from the BLA. We show that BLA lesions suppress adult neurogenesis, while lesions of the central nucleus of the amygdala do not. Similarly, we show that reducing BLA activity through viral vector-mediated overexpression of an outwardly rectifying potassium channel suppresses neurogenesis. We also show that BLA lesions prevent selective activation of immature newborn neurons in response to a fear conditioning task. These results demonstrate that BLA activity regulates adult hippocampal neurogenesis and the fear context-specific activation of newborn neurons. Together, these findings denote functional implications for proliferation and recruitment of new neurons into emotional memory circuits. PMID:21670733

  13. The equine enteric nervous system--neuron characterization and distribution in adults and juveniles.

    PubMed

    Doxey, D L; Pearson, G T; Milne, E M; Gilmour, J S; Chisholm, H K

    1995-01-01

    A study of myenteric and submucosal plexuses was undertaken in the jejunum and ileum of horses and ponies in which no clinical or pathological evidence of intestinal abnormality was apparent. Complete transverse sections of the intestine, stained by a modified haematoxylin and eosin method, were examined using up to 20 sequential sections per animal. Information was gathered from adult, juvenile and fetal equidae. In adults, the longitudinal muscle layers were thinner than the circular muscle layers and the ileum had thicker layers compared to the jejunum. In adults, the submucosal plexus had more neurons per section than the myenteric plexus by mean ratios of 1:3 in the jejunum and 1:1.9 in the ileum. In juveniles, the ratios were respectively 1:1.8 and 1:1.5 and in the fetus 1:2.5 and 1:1.3. The three-dimensional distribution of neurons in both plexuses varied from animal to animal and no consistent pattern was observed. Groups of neurons contained between one and 42 cells per section examined and their length in a cranio-caudal direction varied from 10 to over 100 microns. There were few statistical differences observed between the cranial, middle and caudal portions of either the jejunum or the ileum when neuron groups or neuron numbers per section were examined in 10 adult animals.

  14. The Transcription Repressor REST in Adult Neurons: Physiology, Pathology, and Diseases1,2,3

    PubMed Central

    Baldelli, Pietro

    2015-01-01

    Abstract REST [RE1-silencing transcription factor (also called neuron-restrictive silencer factor)] is known to repress thousands of possible target genes, many of which are neuron specific. To date, REST repression has been investigated mostly in stem cells and differentiating neurons. Current evidence demonstrates its importance in adult neurons as well. Low levels of REST, which are acquired during differentiation, govern the expression of specific neuronal phenotypes. REST-dependent genes encode important targets, including transcription factors, transmitter release proteins, voltage-dependent and receptor channels, and signaling proteins. Additional neuronal properties depend on miRNAs expressed reciprocally to REST and on specific splicing factors. In adult neurons, REST levels are not always low. Increases occur during aging in healthy humans. Moreover, extensive evidence demonstrates that prolonged stimulation with various agents induces REST increases, which are associated with the repression of neuron-specific genes with appropriate, intermediate REST binding affinity. Whether neuronal increases in REST are protective or detrimental remains a subject of debate. Examples of CA1 hippocampal neuron protection upon depolarization, and of neurodegeneration upon glutamate treatment and hypoxia have been reported. REST participation in psychiatric and neurological diseases has been shown, especially in Alzheimer’s disease and Huntington’s disease, as well as epilepsy. Distinct, complex roles of the repressor in these different diseases have emerged. In conclusion, REST is certainly very important in a large number of conditions. We suggest that the conflicting results reported for the role of REST in physiology, pathology, and disease depend on its complex, direct, and indirect actions on many gene targets and on the diverse approaches used during the investigations. PMID:26465007

  15. Adolescent but not adult-born neurons are critical for susceptibility to chronic social defeat

    PubMed Central

    Kirshenbaum, Greer S.; Lieberman, Sophie R.; Briner, Tamara J.; Leonardo, E. David; Dranovsky, Alex

    2014-01-01

    Recent evidence implicates adult hippocampal neurogenesis in regulating behavioral and physiologic responses to stress. Hippocampal neurogenesis occurs across the lifespan, however the rate of cell birth is up to 300% higher in adolescent mice compared to adults. Adolescence is a sensitive period in development where emotional circuitry and stress reactivity undergo plasticity establishing life-long set points. Therefore neurogenesis occurring during adolescence may be particularly important for emotional behavior. However, little is known about the function of hippocampal neurons born during adolescence. In order to assess the contribution of neurons born in adolescence to the adult stress response and depression-related behavior, we transiently reduced cell proliferation either during adolescence, or during adulthood in GFAP-Tk mice. We found that the intervention in adolescence did not change adult baseline behavioral response in the forced swim test, sucrose preference test or social affiliation test, and did not change adult corticosterone responses to an acute stressor. However following chronic social defeat, adult mice with reduced adolescent neurogenesis showed a resilient phenotype. A similar transient reduction in adult neurogenesis did not affect depression-like behaviors or stress induced corticosterone. Our study demonstrates that hippocampal neurons born during adolescence, but not in adulthood are important to confer susceptibility to chronic social defeat. PMID:25221485

  16. [Regulation of neurogenesis: factors affecting of new neurons formation in adult mammals brain].

    PubMed

    Respondek, Michalina; Buszman, Ewa

    2015-12-31

    Neurogenesis is a complex and multi-step process of generating completely functional neurons. This process in adult brain is based on pluripotentional neuronal stem cells (NSC), which are able to proliferation and differentiation into mature neurons or glial cells. NSC are located in subgranular zone inside hippocampus and in subventricular zone. The new neurons formation depends on many endo- and exogenous factors which modulate each step of neurogenesis. This article describes the most important regulators of adult neurogenesis, mainly: neurotrophins, growth factors, hormones, neurotransmitters and microenvironment of NSC. Some drugs, especially antipsychotics, antidepressants and normothymics may affect the neurogenic properties of adult brain. Moreover pathological processes such as neuroinflammation, stroke or epilepsy are able to induce proliferation of NSC. The proneurogenic effects of psychotropic drugs and pathological processes are associated with their ability to increase some hormones and neurotrophins level, as well as with rising the expression of antiapoptotic Bcl-2 protein and metalloproteinase MMP-2. Additionaly, some drugs, for example haloperidol, are able to block prolactin and dopaminergic neuroblasts receptors. Down-regulation of adult neurogenesis is associated with alcohol abuse and high stress level. Negative effect of many drugs, such as cytostatics, COX-2 inhibitors and opioides was also observed. The proneurogenic effect of described factors suggest their broad therapeutic potential and gives a new perspective on an effective and modern treatment of many neuropsychiatric disorders. This effect can also help to clarify the pathogenesis of disorders associated with proliferation and degeneration of adult brain cells.

  17. Neuronal development in larval chiton Ischnochiton hakodadensis (Mollusca: Polyplacophora).

    PubMed

    Voronezhskaya, Elena E; Tyurin, Sergei A; Nezlin, Leonid P

    2002-02-25

    Chitons are the most primitive molluscs and, thus, a matter of considerable interest for understanding both basic principles of molluscan neurogenesis and phylogeny. The development of the nervous system in trochophores of the chiton Ischnochiton hakodadensis from hatching to metamorphosis is described in detail by using confocal laser scanning microscopy and antibodies raised against serotonin, FMRFamide, and acetylated alpha tubulin. The earliest nervous elements detected were peripheral neurons located in the frontal hemisphere of posthatching trochophores and projecting into the apical organ. Among them, two pairs of unique large lateral cells appear to pioneer the pathways of developing adult nervous system. Chitons possess an apical organ that contains the largest number of neurons among all molluscan larvae investigated so far. Besides, many pretrochal neurons are situated outside the apical organ. The prototroch is not innervated by larval neurons. The first neurons of the developing adult central nervous system (CNS) appear later in the cerebral ganglion and pedal cords. None of the neurons of the larval nervous system are retained in the adult CNS. They cease to express their transmitter content and disintegrate after settlement. Although the adult CNS of chitons resembles that of polychaetes, their general scenario of neuronal development resembles that of advanced molluscs and differs from annelids. Thus, our data demonstrate the conservative pattern of molluscan neurogenesis and suggest independent origin of molluscan and annelid trochophores.

  18. Substratum preferences of motor and sensory neurons in postnatal and adult rats.

    PubMed

    Gonzalez-Perez, Francisco; Alé, Albert; Santos, Daniel; Barwig, Christina; Freier, Thomas; Navarro, Xavier; Udina, Esther

    2016-02-01

    After peripheral nerve injuries, damaged axons can regenerate but functional recovery is limited by the specific reinnervation of targets. In this study we evaluated if motor and sensory neurites have a substrate preference for laminin and fibronectin in postnatal and adult stages. In postnatal dorsal root ganglia (DRG) explants, sensory neurons extended longer neurites on collagen matrices enriched with laminin (~50%) or fibronectin (~35%), whereas motoneurons extended longer neurites (~100%) in organotypic spinal cord slices embedded in fibronectin-enriched matrix. An increased percentage of parvalbumin-positive neurites (presumptive proprioceptive) vs. neurofilament-positive neurites was also found in DRG in fibronectin-enriched matrix. To test if the different preference of neurons for extracellular matrix components was maintained in vivo, these matrices were used to fill a chitosan guide to repair a 6-mm gap in the sciatic nerve of adult rats. However, the number of regenerating motor and sensory neurons after 1 month was similar between groups. Moreover, none of the retrotraced sensory neurons in DRG was positive for parvalbumin, suggesting that presumptive proprioceptive neurons had poor regenerative capabilities compared with other peripheral neurons. Using real-time PCR we evaluated the expression of α5β1 (receptor for fibronectin) and α7β1 integrin (receptor for laminin) in spinal cord and DRG 2 days after injury. Postnatal animals showed a higher increase of α5β1 integrin, whereas both integrins were similarly expressed in adult neurons. Therefore, we conclude that motor and sensory axons have a different substrate preference at early postnatal stages but this difference is lost in the adult.

  19. 82-kDa choline acetyltransferase is in nuclei of cholinergic neurons in human CNS and altered in aging and Alzheimer disease.

    PubMed

    Gill, Sandeep K; Ishak, Margaret; Dobransky, Tomas; Haroutunian, Vahram; Davis, Kenneth L; Rylett, R Jane

    2007-07-01

    Cholinergic neurons express choline acetyltransferase (ChAT) which synthesizes acetylcholine. We show here for the first time that primate-specific 82-kDa ChAT is expressed in nuclei of cholinergic neurons in human brain and spinal cord; isoform-specific antibodies were used to compare localization patterns and temporal expression of the more abundant 69-kDa ChAT and primate-specific 82-kDa ChAT in necropsy tissues. The 82-kDa ChAT co-localizes with 69-kDa ChAT in well-characterized cholinergic areas, but is also found in the claustrum which does not contain 69-kDa ChAT. Cholinergic neuron function changes with increasing age and are targeted in neurodegenerative diseases such as AD, thus we compared expression and subcellular localization of 69- and 82-kDa ChAT in necropsy brain samples from control subjects of varying ages and from Alzheimer disease (AD) subjects. The 82-kDa ChAT protein was expressed in cholinergic neurons in brain from birth until the eighth decade of life and in AD, but the subcellular staining pattern and proportion of neurons that were immunopositive changed with increasing age and in AD.

  20. Thrombin modulates persistent sodium current in CA1 pyramidal neurons of young and adult rat hippocampus.

    PubMed

    Lunko, O O; Isaev, D S; Krishtal, O O; Isaeva, E V

    2015-01-01

    Serine protease thrombin, a key factor of blood coagulation, participates in many neuronal processes important for normal brain functioning and during pathological conditions involving abnormal neuronal synchronization, neurodegeneration and inflammation. Our previous study on CA3 pyramidal neurons showed that application ofthrombin through the activation of specific protease-activated receptor 1 (PAR1) produces a significant hyperpolarizing shift of the activation of the TTX-sensitive persistent voltage-gated Na+ current (I(Nap)) thereby affecting membrane potential and seizure threshold at the network level. It was shown that PAR1 is also expressed in CA1 area of hippocampus and can be implicated in neuronal damage in this area after status epilepticus. The aim of the present study was to evaluate the effect of thrombin on I(NaP) in CA1 pyramidal neurons from adult and young rats. Using whole cell patch-clamp technique we demonstrate that thrombin application results in the hyperpolarization shift of I(NaP) activation as well as increase in the I(NaP) amplitude in both age groups. We have found that I(NaP) in pyramidal neurons of hippocampal CA 1 region is more vulnerable to the thrombin action than I(NaP) in pyramidal neurons of hippocampal CA3 region. We have also found that the immature hippocampus is more sensitive to thrombin action which emphasizes the contribution of thrombin-dependent pathway to the regulation of neuronal activity in immature brain.

  1. Development and Maturation of Embryonic Cortical Neurons Grafted into the Damaged Adult Motor Cortex

    PubMed Central

    Ballout, Nissrine; Frappé, Isabelle; Péron, Sophie; Jaber, Mohamed; Zibara, Kazem; Gaillard, Afsaneh

    2016-01-01

    Injury to the human central nervous system can lead to devastating consequences due to its poor ability to self-repair. Neural transplantation aimed at replacing lost neurons and restore functional circuitry has proven to be a promising therapeutical avenue. We previously reported in adult rodent animal models with cortical lesions that grafted fetal cortical neurons could effectively re-establish specific patterns of projections and synapses. The current study was designed to provide a detailed characterization of the spatio-temporal in vivo development of fetal cortical transplanted cells within the lesioned adult motor cortex and their corresponding axonal projections. We show here that as early as 2 weeks after grafting, cortical neuroblasts transplanted into damaged adult motor cortex developed appropriate projections to cortical and subcortical targets. Grafted cells initially exhibited characteristics of immature neurons, which then differentiated into mature neurons with appropriate cortical phenotypes where most were glutamatergic and few were GABAergic. All cortical subtypes identified with the specific markers CTIP2, Cux1, FOXP2, and Tbr1 were generated after grafting as evidenced with BrdU co-labeling. The set of data provided here is of interest as it sets biological standards for future studies aimed at replacing fetal cells with embryonic stem cells as a source of cortical neurons. PMID:27536221

  2. LINGO-1 and its role in CNS repair.

    PubMed

    Mi, Sha; Sandrock, Alfred; Miller, Robert H

    2008-01-01

    LINGO-1 is selectively expressed in the CNS on both oligodendrocyte precursor cells (OPCs) and neurons. Its expression is developmentally regulated in the normal CNS, as well as up-regulated in human or rat models of neuropathologies. LINGO-1 functions as a negative regulator of oligodendrocyte differentiation and myelination, neuronal survival and axonal regeneration. Across diverse animal CNS disease models, targeted LINGO-1 inhibition was found to promote neuron and oligodendrocyte survival, axon regeneration, oligodendrocyte differentiation, remyelination and improved functional recovery. The targeted inhibition of LINGO-1 therefore presents a novel therapeutic approach for the treatment of neurological diseases.

  3. Arginine vasotocin neuronal development and its projection in the adult brain of the medaka.

    PubMed

    Kagawa, Nao; Honda, Akira; Zenno, Akiko; Omoto, Ryosuke; Imanaka, Saya; Takehana, Yusuke; Naruse, Kiyoshi

    2016-02-02

    The neurohypophysial peptide arginine vasotocin (AVT) and its mammalian ortholog arginine vasopressin function in a wide range of physiological and behavioral events. Here, we generated a new line of transgenic medaka (Oryzias latipes), which allowed us to monitor AVT neurons by enhanced green fluorescent protein (EGFP) and demonstrate AVT neuronal development in the embryo and the projection of AVT neurons in the adult brain of avt-egfp transgenic medaka. The onset of AVT expression manifested at 2 days postfertilization (dpf) as a pair of signals in the telencephalon of the brain. The telencephalic AVT neurons migrated and converged on the preoptic area (POA) by 4dpf. At the same stage, another onset of AVT expression manifested in the central optic tectum (OT), and they migrated to the ventral part of the hypothalamus (VH) by 6dpf. In the adult brain, the AVT somata with EGFP signals existed in the gigantocellular POA (gPOA), magnocellular POA (mPOA), and parvocellular POA (pPOA) and in the VH. Whereas the major projection of AVT fibers was found from the pPOA and VH to the posterior pituitary, it was also found that AVT neurons in the three POAs send their fibers into wide regions of the brain such as the telencephalon, mesencephalon and diencephalon. This study suggests that the avt-egfp transgenic medaka is a useful model to explore AVT neuronal development and function.

  4. Dissecting the role of Engrailed in adult dopaminergic neurons--Insights into Parkinson disease pathogenesis.

    PubMed

    Rekaik, Hocine; Blaudin de Thé, François-Xavier; Prochiantz, Alain; Fuchs, Julia; Joshi, Rajiv L

    2015-12-21

    The homeoprotein Engrailed (Engrailed-1/Engrailed-2, collectively En1/2) is not only a survival factor for mesencephalic dopaminergic (mDA) neurons during development, but continues to exert neuroprotective and physiological functions in adult mDA neurons. Loss of one En1 allele in the mouse leads to progressive demise of mDA neurons in the ventral midbrain starting from 6 weeks of age. These mice also develop Parkinson disease-like motor and non-motor symptoms. The characterization of En1 heterozygous mice have revealed striking parallels to central mechanisms of Parkinson disease pathogenesis, mainly related to mitochondrial dysfunction and retrograde degeneration. Thanks to the ability of homeoproteins to transduce cells, En1/2 proteins have also been used to protect mDA neurons in various experimental models of Parkinson disease. This neuroprotection is partly linked to the ability of En1/2 to regulate the translation of certain nuclear-encoded mitochondrial mRNAs for complex I subunits. Other transcription factors that govern mDA neuron development (e.g. Foxa1/2, Lmx1a/b, Nurr1, Otx2, Pitx3) also continue to function for the survival and maintenance of mDA neurons in the adult and act through partially overlapping but also diverse mechanisms.

  5. Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality.

    PubMed

    Chae, T; Kwon, Y T; Bronson, R; Dikkes, P; Li, E; Tsai, L H

    1997-01-01

    The adult mammalian cortex is characterized by a distinct laminar structure generated through a well-defined pattern of neuronal migration. Successively generated neurons are layered in an "inside-out" manner to produce six cortical laminae. We demonstrate here that p35, the neuronal-specific activator of cyclin-dependent kinase 5, plays a key role in proper neuronal migration. Mice lacking p35, and thus p35/cdk5 kinase activity, display severe cortical lamination defects and suffer from sporadic adult lethality and seizures. Histological examination reveals that the mutant mice lack the characteristic laminated structure of the cortex. Neuronal birth-dating experiments indicate a reversed packing order of cortical neurons such that earlier born neurons reside in superficial layers and later generated neurons occupy deep layers. The phenotype of p35 mutant mice thus demonstrates that the formation of cortical laminar structure depends on the action of the p35/cdk5 kinase.

  6. Receptor protein tyrosine phosphatase σ binds to neurons in the adult mouse brain

    PubMed Central

    Yi, Jae-Hyuk; Katagiri, Yasuhiro; Yu, Panpan; Lourie, Jacob; Bangayan, Nathanael J.; Symes, Aviva J.; Geller, Herbert M.

    2014-01-01

    The role of type IIA receptor protein tyrosine phosphatases (RPTPs), which includes LAR, RPTPσ and RPTPδ, in the nervous system is becoming increasingly recognized. Evidence supports a significant role for these RPTPs during the development of the nervous system as well as after injury, and mutations in RPTPs are associated with human disease. However, a major open question is the nature of the ligands that interact with type IIA RPTPs in the adult brain. Candidates include several different proteins as well as the glycosaminoglycan chains of proteoglycans. In order to investigate this problem, we used a receptor affinity probe assay with RPTPσ-AP fusion proteins on sections of adult mouse brain and to cultured neurons. Our results demonstrate that the major binding sites for RPTPσ in adult mouse brain are on neurons and are not proteoglycan GAG chains, as RPTPσ binding overlaps with the neuronal marker NeuN and was not significantly altered by treatments which eliminate chondroitin sulfate, heparan sulfate, or both. We also demonstrate no overlap of binding of RPTPσ with perineuronal nets, and a unique modulation of RPTPσ binding to brain by divalent cations. Our data therefore point to neuronal proteins, rather than CSPGs, as being the ligands for RPTPσ in the adult, uninjured brain. PMID:24530640

  7. Active dentate granule cells encode experience to promote the addition of adult-born hippocampal neurons.

    PubMed

    Kirschen, Gregory W; Shen, Jia; Tian, Mu; Schroeder, Bryce; Wang, Jia; Man, Guoming; Wu, Song; Ge, Shaoyu

    2017-04-03

    The continuous addition of new dentate granule cells, exquisitely regulated by brain activity, renders the hippocampus plastic. However, how neural circuits encode experiences to impact the addition of adult-born neurons remains unknown. Here, we used endoscopic Ca(2+) imaging to track the real-time activity of individual dentate granule cells in freely-behaving mice. For the first time, we found that active dentate granule cells responded to a novel experience by preferentially increasing their Ca(2+) event frequency. This elevated activity, which we found to be associated with object exploration, returned to baseline by one hour in the same environment, but could be dishabituated via introduction to a novel environment. To seamlessly transition between environments, we next established a freely-controllable virtual reality system for unrestrained mice. We again observed increased firing of active neurons in a virtual enriched environment. Interestingly, multiple novel virtual experiences accumulatively increased the number of newborn neurons when compared to a single experience. Finally, optogenetic silencing of existing dentate granule cells during novel environmental exploration perturbed experience-induced neuronal addition. Together, our study shows that the adult brain conveys novel, enriched experiences to increase the addition of adult-born hippocampal neurons by increasing the firing of active dentate granule cells.SIGNIFICANCE STATEMENTAdult brains are constantly reshaping themselves from synapses to circuits as we encounter novel experiences from moment to moment. Importantly, this reshaping includes the addition of newborn hippocampal neurons. However, it remains largely unknown how our circuits encode experience-induced brain activity to govern the addition of new hippocampal neurons. By coupling in vivo Ca(2+) imaging of dentate granule neurons with a novel unrestrained virtual reality system for rodents, we discovered that a new experience rapidly

  8. ABC transporters in the CNS - an inventory.

    PubMed

    Hartz, A M S; Bauer, B

    2011-04-01

    In the present review we provide a summary of ATP-binding cassette (ABC) transporters in the central nervous system (CNS). Our review is focused on transporters of the ABC A, B, C, D, and G families that have been detected in the cells of the neurovascular unit/blood-brain barrier including brain capillary endothelial cells, pericytes, astrocytes, and neurons, as well as in other brain cells, such as microglia, oligodendrocytes, and choroid plexus epithelial cells. In this review, we provide an overview, organized by ABC family, of transporter expression, localization, and function. We summarize recent findings on ABC transporter regulation in the CNS and address the role of ABC transporters in CNS diseases including brain cancer, seizures/epilepsy, and Alzheimer's disease. Finally, we discuss new therapeutic strategies focused on ABC transporters in CNS disease.

  9. Cilia in the CNS: the Quiet Organelle Claims Center Stage

    PubMed Central

    Louvi, Angeliki; Grove, Elizabeth A.

    2011-01-01

    Summary The primary cilium is a cellular organelle that is almost ubiquitous in eukaryotes, yet its functions in vertebrates have been slow to emerge. The last fifteen years have been marked by accelerating insight into the biology of primary cilia, arising from the synergy of three major lines of research. These research programs describe a specialized mode of protein trafficking in cilia, reveal that genetic disruptions of primary cilia cause complex human disease syndromes, and establish that Sonic hedgehog (Shh) signal transduction requires the primary cilium. New lines of research have branched off to investigate the role of primary cilia in neuronal signaling, adult neurogenesis, and brain tumor formation. We review a fast expanding literature to determine what we now know about the primary cilium in the developing and adult CNS, and what new directions should lead to further clarity. PMID:21435552

  10. Functional Integration of Adult-Born Hippocampal Neurons after Traumatic Brain Injury

    PubMed Central

    Villasana, Laura E.; Kim, Kristine N.

    2015-01-01

    Abstract Traumatic brain injury (TBI) increases hippocampal neurogenesis, which may contribute to cognitive recovery after injury. However, it is unknown whether TBI-induced adult-born neurons mature normally and functionally integrate into the hippocampal network. We assessed the generation, morphology, and synaptic integration of new hippocampal neurons after a controlled cortical impact (CCI) injury model of TBI. To label TBI-induced newborn neurons, we used 2-month-old POMC-EGFP mice, which transiently and specifically express EGFP in immature hippocampal neurons, and doublecortin-CreERT2 transgenic mice crossed with Rosa26-CAG-tdTomato reporter mice, to permanently pulse-label a cohort of adult-born hippocampal neurons. TBI increased the generation, outward migration, and dendritic complexity of neurons born during post-traumatic neurogenesis. Cells born after TBI had profound alterations in their dendritic structure, with increased dendritic branching proximal to the soma and widely splayed dendritic branches. These changes were apparent during early dendritic outgrowth and persisted as these cells matured. Whole-cell recordings from neurons generated during post-traumatic neurogenesis demonstrate that they are excitable and functionally integrate into the hippocampal circuit. However, despite their dramatic morphologic abnormalities, we found no differences in the rate of their electrophysiological maturation, or their overall degree of synaptic integration when compared to age-matched adult-born cells from sham mice. Our results suggest that cells born after TBI participate in information processing, and receive an apparently normal balance of excitatory and inhibitory inputs. However, TBI-induced changes in their anatomic localization and dendritic projection patterns could result in maladaptive network properties. PMID:26478908

  11. Expression of cyclin E in postmitotic neurons during development and in the adult mouse brain.

    PubMed

    Ikeda, Yayoi; Matsunaga, Yuko; Takiguchi, Masahito; Ikeda, Masa-Aki

    2011-01-01

    Cyclin E, a member of the G1 cyclins, is essential for the G1/S transition of the cell cycle in cultured cells, but its roles in vivo are not fully defined. The present study characterized the spatiotemporal expression profile of cyclin E in two representative brain regions in the mouse, the cerebral and cerebellar cortices. Western blotting showed that the levels of cyclin E increased towards adulthood. In situ hybridization and immunohistochemistry showed the distributions of cyclin E mRNA and protein were comparable in the cerebral cortex and the cerebellum. Immunohistochemistry for the proliferating cell marker, proliferating cell nuclear antigen (PCNA) revealed that cyclin E was expressed by both proliferating and non-proliferating cells in the cerebral cortex at embryonic day 12.5 (E12.5) and in the cerebellum at postnatal day 1 (P1). Subcellular localization in neurons was examined using immunofluorescence and western blotting. Cyclin E expression was nuclear in proliferating neuronal precursor cells but cytoplasmic in postmitotic neurons during embryonic development. Nuclear cyclin E expression in neurons remained faint in newborns, increased during postnatal development and was markedly decreased in adults. In various adult brain regions, cyclin E staining was more intense in the cytoplasm than in the nucleus in most neurons. These data suggest a role for cyclin E in the development and function of the mammalian central nervous system and that its subcellular localization in neurons is important. Our report presents the first detailed analysis of cyclin E expression in postmitotic neurons during development and in the adult mouse brain.

  12. Special function of nestin(+) neurons in the medial septum-diagonal band of Broca in adult rats.

    PubMed

    Zhao, Yuhong; Guo, Kaihua; Li, Dongpei; Yuan, Qunfang; Yao, Zhibin

    2014-02-01

    Nestin(+) neurons have been shown to express choline acetyltransferase (ChAT) in the medial septum-diagonal band of Broca in adult rats. This study explored the projection of nestin(+) neurons to the olfactory bulb and the time course of nestin(+) neurons in the medial septum-diagonal band of Broca in adult rats during injury recovery after olfactory nerve transection. This study observed that all nestin(+) neurons were double-labeled with ChAT in the medial septum-diagonal band of Broca. Approximately 53.6% of nestin(+) neurons were projected to the olfactory bulb and co-labeled with fast blue. A large number of nestin(+) neurons were not present in each region of the medial septum-diagonal band of Broca. Nestin(+) neurons in the medial septum and vertical limb of the diagonal band of Broca showed obvious compensatory function. The number of nestin(+) neurons decreased to a minimum later than nestin(-)/ChAT(+) neurons in the medial septum-diagonal band of Broca. The results suggest that nestin(+) cholinergic neurons may have a closer connection to olfactory bulb neurons. Nestin(+) cholinergic neurons may have a stronger tolerance to injury than Nestin(-)/ChAT(+) neurons. The difference between nestin(+) and nestin(-)/ChAT(+) neurons during the recovery process requires further investigations.

  13. Dopamine from the brain promotes spinal motor neuron generation during development and adult regeneration.

    PubMed

    Reimer, Michell M; Norris, Anneliese; Ohnmacht, Jochen; Patani, Rickie; Zhong, Zhen; Dias, Tatyana B; Kuscha, Veronika; Scott, Angela L; Chen, Yu-Chia; Rozov, Stanislav; Frazer, Sarah L; Wyatt, Cameron; Higashijima, Shin-ichi; Patton, E Elizabeth; Panula, Pertti; Chandran, Siddharthan; Becker, Thomas; Becker, Catherina G

    2013-06-10

    Coordinated development of brain stem and spinal target neurons is pivotal for the emergence of a precisely functioning locomotor system. Signals that match the development of these far-apart regions of the central nervous system may be redeployed during spinal cord regeneration. Here we show that descending dopaminergic projections from the brain promote motor neuron generation at the expense of V2 interneurons in the developing zebrafish spinal cord by activating the D4a receptor, which acts on the hedgehog pathway. Inhibiting this essential signal during early neurogenesis leads to a long-lasting reduction of motor neuron numbers and impaired motor responses of free-swimming larvae. Importantly, during successful spinal cord regeneration in adult zebrafish, endogenous dopamine promotes generation of spinal motor neurons, and dopamine agonists augment this process. Hence, we describe a supraspinal control mechanism for the development and regeneration of specific spinal cell types that uses dopamine as a signal.

  14. Restoring axonal localization and transport of transmembrane receptors to promote repair within the injured CNS: a critical step in CNS regeneration

    PubMed Central

    Forbes, Lindsey H.; Andrews, Melissa R.

    2017-01-01

    Each neuronal subtype is distinct in how it develops, responds to environmental cues, and whether it is capable of mounting a regenerative response following injury. Although the adult central nervous system (CNS) does not regenerate, several experimental interventions have been trialled with successful albeit limited instances of axonal repair. We highlight here some of these approaches including extracellular matrix (ECM) modification, cellular grafting, gene therapy-induced replacement of proteins, as well as application of biomaterials. We also review the recent report demonstrating the failure of axonal localization and transport of growth-promoting receptors within certain classes of mature neurons. More specifically, we discuss an inability of integrin receptors to localize within the axonal compartment of mature motor neurons such as in the corticospinal and rubrospinal tracts, whereas in immature neurons of those pathways and in mature sensory tracts such as in the optic nerve and dorsal column pathways these receptors readily localize within axons. Furthermore we assert that this failure of axonal localization contributes to the intrinsic inability of axonal regeneration. We conclude by highlighting the necessity for both combined therapies as well as a targeted approach specific to both age and neuronal subtype will be required to induce substantial CNS repair. PMID:28250734

  15. Alternative generation of CNS neural stem cells and PNS derivatives from neural crest-derived peripheral stem cells.

    PubMed

    Weber, Marlen; Apostolova, Galina; Widera, Darius; Mittelbronn, Michel; Dechant, Georg; Kaltschmidt, Barbara; Rohrer, Hermann

    2015-02-01

    Neural crest-derived stem cells (NCSCs) from the embryonic peripheral nervous system (PNS) can be reprogrammed in neurosphere (NS) culture to rNCSCs that produce central nervous system (CNS) progeny, including myelinating oligodendrocytes. Using global gene expression analysis we now demonstrate that rNCSCs completely lose their previous PNS characteristics and acquire the identity of neural stem cells derived from embryonic spinal cord. Reprogramming proceeds rapidly and results in a homogenous population of Olig2-, Sox3-, and Lex-positive CNS stem cells. Low-level expression of pluripotency inducing genes Oct4, Nanog, and Klf4 argues against a transient pluripotent state during reprogramming. The acquisition of CNS properties is prevented in the presence of BMP4 (BMP NCSCs) as shown by marker gene expression and the potential to produce PNS neurons and glia. In addition, genes characteristic for mesenchymal and perivascular progenitors are expressed, which suggests that BMP NCSCs are directed toward a pericyte progenitor/mesenchymal stem cell (MSC) fate. Adult NCSCs from mouse palate, an easily accessible source of adult NCSCs, display strikingly similar properties. They do not generate cells with CNS characteristics but lose the neural crest markers Sox10 and p75 and produce MSC-like cells. These findings show that embryonic NCSCs acquire a full CNS identity in NS culture. In contrast, MSC-like cells are generated from BMP NCSCs and pNCSCs, which reveals that postmigratory NCSCs are a source for MSC-like cells up to the adult stage.

  16. Potential for Cell-Transplant Therapy with Human Neuronal Precursors to Treat Neuropathic Pain in Models of PNS and CNS Injury: Comparison of hNT2.17 and hNT2.19 Cell Lines

    PubMed Central

    Eaton, Mary J.; Berrocal, Yerko; Wolfe, Stacey Q.

    2012-01-01

    Effective treatment of sensory neuropathies in peripheral neuropathies and spinal cord injury (SCI) is one of the most difficult problems in modern clinical practice. Cell therapy to release antinociceptive agents near the injured spinal cord is a logical next step in the development of treatment modalities. But few clinical trials, especially for chronic pain, have tested the potential of transplant of cells to treat chronic pain. Cell lines derived from the human neuronal NT2 cell line parentage, the hNT2.17 and hNT2.19 lines, which synthesize and release the neurotransmitters gamma-aminobutyric acid (GABA) and serotonin (5HT), respectively, have been used to evaluate the potential of cell-based release of antinociceptive agents near the lumbar dorsal (horn) spinal sensory cell centers to relieve neuropathic pain after PNS (partial nerve and diabetes-related injury) and CNS (spinal cord injury) damage in rat models. Both cell lines transplants potently and permanently reverse behavioral hypersensitivity without inducing tumors or other complications after grafting. Functioning as cellular minipumps for antinociception, human neuronal precursors, like these NT2-derived cell lines, would likely provide a useful adjuvant or replacement for current pharmacological treatments for neuropathic pain. PMID:22619713

  17. Revisiting adult neurogenesis and the role of erythropoietin for neuronal and oligodendroglial differentiation in the hippocampus.

    PubMed

    Hassouna, I; Ott, C; Wüstefeld, L; Offen, N; Neher, R A; Mitkovski, M; Winkler, D; Sperling, S; Fries, L; Goebbels, S; Vreja, I C; Hagemeyer, N; Dittrich, M; Rossetti, M F; Kröhnert, K; Hannke, K; Boretius, S; Zeug, A; Höschen, C; Dandekar, T; Dere, E; Neher, E; Rizzoli, S O; Nave, K-A; Sirén, A-L; Ehrenreich, H

    2016-12-01

    Recombinant human erythropoietin (EPO) improves cognitive performance in neuropsychiatric diseases ranging from schizophrenia and multiple sclerosis to major depression and bipolar disease. This consistent EPO effect on cognition is independent of its role in hematopoiesis. The cellular mechanisms of action in brain, however, have remained unclear. Here we studied healthy young mice and observed that 3-week EPO administration was associated with an increased number of pyramidal neurons and oligodendrocytes in the hippocampus of ~20%. Under constant cognitive challenge, neuron numbers remained elevated until >6 months of age. Surprisingly, this increase occurred in absence of altered cell proliferation or apoptosis. After feeding a (15)N-leucine diet, we used nanoscopic secondary ion mass spectrometry, and found that in EPO-treated mice, an equivalent number of neurons was defined by elevated (15)N-leucine incorporation. In EPO-treated NG2-Cre-ERT2 mice, we confirmed enhanced differentiation of preexisting oligodendrocyte precursors in the absence of elevated DNA synthesis. A corresponding analysis of the neuronal lineage awaits the identification of suitable neuronal markers. In cultured neurospheres, EPO reduced Sox9 and stimulated miR124, associated with advanced neuronal differentiation. We are discussing a resulting working model in which EPO drives the differentiation of non-dividing precursors in both (NG2+) oligodendroglial and neuronal lineages. As endogenous EPO expression is induced by brain injury, such a mechanism of adult neurogenesis may be relevant for central nervous system regeneration.

  18. Revisiting adult neurogenesis and the role of erythropoietin for neuronal and oligodendroglial differentiation in the hippocampus

    PubMed Central

    Hassouna, I; Ott, C; Wüstefeld, L; Offen, N; Neher, R A; Mitkovski, M; Winkler, D; Sperling, S; Fries, L; Goebbels, S; Vreja, I C; Hagemeyer, N; Dittrich, M; Rossetti, M F; Kröhnert, K; Hannke, K; Boretius, S; Zeug, A; Höschen, C; Dandekar, T; Dere, E; Neher, E; Rizzoli, S O; Nave, K-A; Sirén, A-L; Ehrenreich, H

    2016-01-01

    Recombinant human erythropoietin (EPO) improves cognitive performance in neuropsychiatric diseases ranging from schizophrenia and multiple sclerosis to major depression and bipolar disease. This consistent EPO effect on cognition is independent of its role in hematopoiesis. The cellular mechanisms of action in brain, however, have remained unclear. Here we studied healthy young mice and observed that 3-week EPO administration was associated with an increased number of pyramidal neurons and oligodendrocytes in the hippocampus of ~20%. Under constant cognitive challenge, neuron numbers remained elevated until >6 months of age. Surprisingly, this increase occurred in absence of altered cell proliferation or apoptosis. After feeding a 15N-leucine diet, we used nanoscopic secondary ion mass spectrometry, and found that in EPO-treated mice, an equivalent number of neurons was defined by elevated 15N-leucine incorporation. In EPO-treated NG2-Cre-ERT2 mice, we confirmed enhanced differentiation of preexisting oligodendrocyte precursors in the absence of elevated DNA synthesis. A corresponding analysis of the neuronal lineage awaits the identification of suitable neuronal markers. In cultured neurospheres, EPO reduced Sox9 and stimulated miR124, associated with advanced neuronal differentiation. We are discussing a resulting working model in which EPO drives the differentiation of non-dividing precursors in both (NG2+) oligodendroglial and neuronal lineages. As endogenous EPO expression is induced by brain injury, such a mechanism of adult neurogenesis may be relevant for central nervous system regeneration. PMID:26809838

  19. Adult c-Kit(+) progenitor cells are necessary for maintenance and regeneration of olfactory neurons.

    PubMed

    Goldstein, Bradley J; Goss, Garrett M; Hatzistergos, Konstantinos E; Rangel, Erika B; Seidler, Barbara; Saur, Dieter; Hare, Joshua M

    2015-01-01

    The olfactory epithelium houses chemosensory neurons, which transmit odor information from the nose to the brain. In adult mammals, the olfactory epithelium is a uniquely robust neuroproliferative zone, with the ability to replenish its neuronal and non-neuronal populations due to the presence of germinal basal cells. The stem and progenitor cells of these germinal layers, and their regulatory mechanisms, remain incompletely defined. Here we show that progenitor cells expressing c-Kit, a receptor tyrosine kinase marking stem cells in a variety of embryonic tissues, are required for maintenance of the adult neuroepithelium. Mouse genetic fate-mapping analyses show that embryonically, a c-Kit(+) population contributes to olfactory neurogenesis. In adults under conditions of normal turnover, there is relatively sparse c-Kit(+) progenitor cell (ckPC) activity. However, after experimentally induced neuroepithelial injury, ckPCs are activated such that they reconstitute the neuronal population. There are also occasional non-neuronal cells found to arise from ckPCs. Moreover, the selective depletion of the ckPC population, utilizing temporally controlled targeted diphtheria toxin A expression, results in failure of neurogenesis after experimental injury. Analysis of this model indicates that most ckPCs reside among the globose basal cell populations and act downstream of horizontal basal cells, which can serve as stem cells. Identification of the requirement for olfactory c-Kit-expressing progenitors in olfactory maintenance provides new insight into the mechanisms involved in adult olfactory neurogenesis. Additionally, we define an important and previously unrecognized site of adult c-Kit activity.

  20. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    SciTech Connect

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun; Fu, Yinghui

    2014-07-18

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1{sup +} or nestin{sup +} stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU{sup +} cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU{sup +} cells, very few are mash1{sup +} or nestin{sup +} stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1{sup +} microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition.

  1. Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults.

    PubMed

    Berghuis, K M M; Veldman, M P; Solnik, S; Koch, G; Zijdewind, I; Hortobágyi, T

    2015-06-01

    It is controversial whether or not old adults are capable of learning new motor skills and consolidate the performance gains into motor memory in the offline period. The underlying neuronal mechanisms are equally unclear. We determined the magnitude of motor learning and motor memory consolidation in healthy old adults and examined if specific metrics of neuronal excitability measured by magnetic brain stimulation mediate the practice and retention effects. Eleven healthy old adults practiced a wrist extension-flexion visuomotor skill for 20 min (MP, 71.3 years), while a second group only watched the templates without movements (attentional control, AC, n = 11, 70.5 years). There was 40 % motor learning in MP but none in AC (interaction, p < 0.001) with the skill retained 24 h later in MP and a 16 % improvement in AC. Corticospinal excitability at rest and during task did not change, but when measured during contraction at 20 % of maximal force, it strongly increased in MP and decreased in AC (interaction, p = 0.002). Intracortical inhibition at rest and during the task decreased and facilitation at rest increased in MP, but these metrics changed in the opposite direction in AC. These neuronal changes were especially profound at retention. Healthy old adults can learn a new motor skill and consolidate the learned skill into motor memory, processes that are most likely mediated by disinhibitory mechanisms. These results are relevant for the increasing number of old adults who need to learn and relearn movements during motor rehabilitation.

  2. Recruitment and replacement of hippocampal neurons in young and adult chickadees: an addition to the theory of hippocampal learning.

    PubMed Central

    Barnea, A; Nottebohm, F

    1996-01-01

    We used [3H]thymidine to document the birth of neurons and their recruitment into the hippocampal complex (HC) of juvenile (4.5 months old) and adult blackcapped chickadees (Parus atricapillus) living in their natural surroundings. Birds received a single dose of [3H]thymidine in August and were recaptured and killed 6 weeks later, in early October. All brains were stained with Cresyl violet, a Nissl stain. The boundaries of the HC were defined by reference to the ventricular wall, the brain surface, or differences in neuronal packing density. The HC of juveniles was as large as or larger than that of adults and packing density of HC neurons was 31% higher in juveniles than in adults. Almost all of the 3H-labeled HC neurons were found in a 350-m-wide layer of tissue adjacent to the lateral ventricle. Within this layer the fraction of 3H-labeled neurons was 50% higher in juveniles than in adults. We conclude that the HC of juvenile chickadees recruits more neurons and has more neurons than that of adults. We speculate that juveniles encounter greater environmental novelty than adults and that the greater number of HC neurons found in juveniles allows them to learn more than adults. At a more general level, we suggest that (i) long-term learning alters HC neurons irreversibly; (ii) sustained hippocampal learning requires the periodic replacement of HC neurons; (iii) memories coded by hippocampal neurons are transferred elsewhere before the neurons are replaced. Images Fig. 1 Fig. 2 PMID:11607626

  3. Autocrine action of BDNF on dendrite development of adult-born hippocampal neurons.

    PubMed

    Wang, Liang; Chang, Xingya; She, Liang; Xu, Duo; Huang, Wei; Poo, Mu-ming

    2015-06-03

    Dendrite development of newborn granule cells (GCs) in the dentate gyrus of adult hippocampus is critical for their incorporation into existing hippocampal circuits, but the cellular mechanisms regulating their dendrite development remains largely unclear. In this study, we examined the function of brain-derived neurotrophic factor (BDNF), which is expressed in adult-born GCs, in regulating their dendrite morphogenesis. Using retrovirus-mediated gene transfection, we found that deletion and overexpression of BDNF in adult-born GCs resulted in the reduction and elevation of dendrite growth, respectively. This effect was mainly due to the autocrine rather than paracrine action of BDNF, because deletion of BDNF only in the newborn GCs resulted in dendrite abnormality of these neurons to a similar extent as that observed in conditional knockout (cKO) mice with BDNF deleted in the entire forebrain. Furthermore, selective expression of BDNF in adult-born GCs in BDNF cKO mice fully restored normal dendrite development. The BDNF autocrine action was also required for the development of normal density of spines and normal percentage of spines containing the postsynaptic marker PSD-95, suggesting autocrine BDNF regulation of synaptogenesis. Furthermore, increased dendrite growth of adult-born GCs caused by voluntary exercise was abolished by BDNF deletion specifically in these neurons and elevated dendrite growth due to BDNF overexpression in these neurons was prevented by reducing neuronal activity with coexpression of inward rectifier potassium channels, consistent with activity-dependent autocrine BDNF secretion. Therefore, BDNF expressed in adult-born GCs plays a critical role in dendrite development by acting as an autocrine factor.

  4. Aberrant Synaptic Integration in Adult Lamina I Projection Neurons Following Neonatal Tissue Damage

    PubMed Central

    Li, Jie; Kritzer, Elizabeth; Craig, Paige E.

    2015-01-01

    Mounting evidence suggests that neonatal tissue damage evokes alterations in spinal pain reflexes which persist into adulthood. However, less is known about potential concomitant effects on the transmission of nociceptive information to the brain, as the degree to which early injury modulates synaptic integration and membrane excitability in mature spinal projection neurons remains unclear. Here we demonstrate that neonatal surgical injury leads to a significant shift in the balance between synaptic excitation and inhibition onto identified lamina I projection neurons of the adult mouse spinal cord. The strength of direct primary afferent input to mature spino-parabrachial neurons was enhanced following neonatal tissue damage, whereas the efficacy of both GABAergic and glycinergic inhibition onto the same population was compromised. This was accompanied by reorganization in the pattern of sensory input to adult projection neurons, which included a greater prevalence of monosynaptic input from low-threshold A-fibers when preceded by early tissue damage. In addition, neonatal incision resulted in greater primary afferent-evoked action potential discharge in mature projection neurons. Overall, these results demonstrate that tissue damage during early life causes a long-term increase in the gain of spinal nociceptive circuits, and suggest that the prolonged consequences of neonatal trauma may not be restricted to the spinal cord but rather include excessive ascending signaling to supraspinal pain centers. PMID:25673839

  5. Reducing Lissencephaly-1 levels augments mitochondrial transport and has a protective effect in adult Drosophila neurons

    PubMed Central

    Vagnoni, Alessio; Hoffmann, Patrick C.; Bullock, Simon L.

    2016-01-01

    ABSTRACT Defective transport of mitochondria in axons is implicated in the pathogenesis of several age-associated neurodegenerative diseases. However, the regulation and function of axonal mitochondrial motility during normal ageing is poorly understood. Here, we use novel imaging procedures to characterise axonal transport of these organelles in the adult Drosophila wing nerve. During early adult life there is a boost and progressive decline in the proportion of mitochondria that are motile, which is not due to general changes in cargo transport. Experimental inhibition of the mitochondrial transport machinery specifically in adulthood accelerates the appearance of focal protein accumulations in ageing axons, which is suggestive of defects in protein homeostasis. Unexpectedly, lowering levels of Lissencephaly-1 (Lis1), a dynein motor co-factor, augments axonal mitochondrial transport in ageing wing neurons. Lis1 mutations suppress focal protein accumulations in ageing neurons, including those caused by interfering with the mitochondrial transport machinery. Our data provide new insights into the dynamics of mitochondrial motility in adult neurons in vivo, identify Lis1 as a negative regulator of transport of these organelles, and provide evidence of a link between mitochondrial movement and neuronal protein homeostasis. PMID:26598558

  6. Olfactory experience modulates immature neuron development in postnatal and adult guinea pig piriform cortex.

    PubMed

    He, X; Zhang, X-M; Wu, J; Fu, J; Mou, L; Lu, D-H; Cai, Y; Luo, X-G; Pan, A; Yan, X-X

    2014-02-14

    Immature neurons expressing doublecortin (DCX+) are present around cortical layer II in various mammals including guinea pigs and humans, especially enriched in the paleocortex. However, little is known whether and how functional experience affects the development of this population of neurons. We attempted to explore a modulation by experience to layer II DCX+ cells in the primary olfactory cortex in postnatal and adult guinea pigs. Neonatal and 1-year-old guinea pigs were subjected to unilateral naris-occlusion, followed 1 and 2months later by morphometry of DCX+ cells in the piriform cortex. DCX+ somata and processes were reduced in the deprived relative to the non-deprived piriform cortex in both age groups at the two surviving time points. The number of DCX+ cells was decreased in the deprived side relative to internal control at 1 and 2months in the youths and at 2months in the adults post-occlusion. The mean somal area of DCX+ cells showed a trend of decrease in the deprived side relative to the internal control in the youths. In addition, DCX+ cells in the deprived side exhibited a lower frequency of colocalization with the neuron-specific nuclear antigen (NeuN) relative to counterparts. These results suggest that normal olfactory experience is required for the maintenance and development of DCX+ immature neurons in postnatal and adult guinea pig piriform cortex.

  7. Class 3 semaphorin mediates dendrite growth in adult newborn neurons through Cdk5/FAK pathway.

    PubMed

    Ng, Teclise; Ryu, Jae Ryun; Sohn, Jae Ho; Tan, Terence; Song, Hongjun; Ming, Guo-Li; Goh, Eyleen L K

    2013-01-01

    Class 3 semaphorins are well-known axonal guidance cues during the embryonic development of mammalian nervous system. However, their activity on postnatally differentiated neurons in neurogenic regions of adult brains has not been characterized. We found that silencing of semaphorin receptors neuropilins (NRP) 1 or 2 in neural progenitors at the adult mouse dentate gyrus resulted in newly differentiated neurons with shorter dendrites and simpler branching in vivo. Tyrosine phosphorylation (Tyr 397) and serine phosphorylation (Ser 732) of FAK were essential for these effects. Semaphorin 3A and 3F mediate serine phosphorylation of FAK through the activation of Cdk5. Silencing of either Cdk5 or FAK in newborn neurons phenocopied the defects in dendritic development seen upon silencing of NRP1 or NRP2. Furthermore, in vivo overexpression of Cdk5 or FAK rescued the dendritic phenotypes seen in NRP1 and NRP2 deficient neurons. These results point to a novel role for class 3 semaphorins in promoting dendritic growth and branching during adult hippocampal neurogenesis through the activation of Cdk5-FAK signaling pathway.

  8. Gonadotropin-releasing hormone receptor in spinal cord neurons of embryos and adult rats.

    PubMed

    Quintanar, J Luis; Salinas, Eva; González, Rodolfo

    2009-09-11

    Mammalian gonadotropin-releasing hormone (GnRH) and its receptor have been found in the neuroendocrine reproductive axis. However, they can be localized in other extra-pituitary tissues as well including the central nervous system. The present study reports the expression of GnRH receptor and its mRNA in spinal cord neurons of rat embryos and adult rats, using immunohistochemistry and reverse transcriptase polymerase chain reaction (RT-PCR). Immunohistochemistry showed that the spinal cord neurons of rat embryos and adult rats expressed the GnRH receptor. The study of GnRH receptor mRNAs revealed that both cultured spinal cord neurons of rat embryos and adult rats expressed the GnRH receptor mRNA. Additional in vitro experiments showed that the expression of GnRH receptor mRNA was less in the spinal cord neurons exposed to GnRH compared to unexposed ones. These results raise the possibility that GnRH may play other roles independently from its participation in reproductive function.

  9. Adult retinal pigment epithelium cells express neural progenitor properties and the neuronal precursor protein doublecortin.

    PubMed

    Engelhardt, Maren; Bogdahn, Ulrich; Aigner, Ludwig

    2005-04-08

    The adult mammalian retina is devoid of any detectable neurogenesis. However, different cell types have been suggested to potentially act as neural progenitors in the adult mammalian retina in vitro, such as ciliary body (CB), Muller glia, and retinal pigment epithelium (RPE) cells. In rodents and humans, strong evidence for neural stem or progenitor properties exists only for CB-derived cells, but not for other retinal cell types. Here, we provide a comparative analysis of adult rat CB- and RPE-derived cells suggesting that the two cell types share certain neural progenitor properties in vitro. CB and RPE cells expressed neural progenitor markers such as Nestin, Flk-1, Hes1, and Musashi. They proliferated under adherent and neurosphere conditions and showed limited self-renewal. Moreover, they differentiated into neuronal and glial cells based on the expression of differentiation markers such as the young neuronal marker beta-III tubulin and the glial and progenitor markers GFAP and NG2. Expression of beta-III tubulin was found in cells with neuronal and non-neuronal morphology. A subpopulation of RPE- and CB-derived progenitor cells expressed the neurogenesis-specific protein doublecortin (DCX). Interestingly, DCX expression defined a beta-III tubulin-positive CB and RPE fraction with a distinct neuronal morphology. In summary, the data suggest that RPE cells share with CB cells the potential to de-differentiate into a cell type with neural progenitor-like identity. In addition, DCX expression might define the neuronal-differentiating RPE- and CB-derived progenitor population.

  10. Cells from the adult corneal stroma can be reprogrammed to a neuron-like cell using exogenous growth factors

    SciTech Connect

    Greene, Carol Ann Chang, Chuan-Yuan; Fraser, Cameron J.; Nelidova, Dasha E.; Chen, Jing A.; Lim, Angela; Brebner, Alex; McGhee, Jennifer; Sherwin, Trevor; Green, Colin R.

    2014-03-10

    Cells thought to be stem cells isolated from the cornea of the eye have been shown to exhibit neurogenic potential. We set out to uncover the identity and location of these cells within the cornea and to elucidate their neuronal protein and gene expression profile during the process of switching to a neuron-like cell. Here we report that every cell of the adult human and rat corneal stroma is capable of differentiating into a neuron-like cell when treated with neurogenic differentiation specifying growth factors. Furthermore, the expression of genes regulating neurogenesis and mature neuronal structure and function was increased. The switch from a corneal stromal cell to a neuron-like cell was also shown to occur in vivo in intact corneas of living rats. Our results clearly indicate that lineage specifying growth factors can affect changes in the protein and gene expression profiles of adult cells, suggesting that possibly many adult cell populations can be made to switch into another type of mature cell by simply modifying the growth factor environment. - Highlights: • Adult corneal stromal cells can differentiated into neuron-like cells. • Neuronal specification of the adult stromal cell population is stochastic. • Neuronal specification in an adult cell population can be brought about by growth factors.

  11. Adult axolotls can regenerate original neuronal diversity in response to brain injury

    PubMed Central

    Amamoto, Ryoji; Huerta, Violeta Gisselle Lopez; Takahashi, Emi; Dai, Guangping; Grant, Aaron K; Fu, Zhanyan; Arlotta, Paola

    2016-01-01

    The axolotl can regenerate multiple organs, including the brain. It remains, however, unclear whether neuronal diversity, intricate tissue architecture, and axonal connectivity can be regenerated; yet, this is critical for recovery of function and a central aim of cell replacement strategies in the mammalian central nervous system. Here, we demonstrate that, upon mechanical injury to the adult pallium, axolotls can regenerate several of the populations of neurons present before injury. Notably, regenerated neurons acquire functional electrophysiological traits and respond appropriately to afferent inputs. Despite the ability to regenerate specific, molecularly-defined neuronal subtypes, we also uncovered previously unappreciated limitations by showing that newborn neurons organize within altered tissue architecture and fail to re-establish the long-distance axonal tracts and circuit physiology present before injury. The data provide a direct demonstration that diverse, electrophysiologically functional neurons can be regenerated in axolotls, but challenge prior assumptions of functional brain repair in regenerative species. DOI: http://dx.doi.org/10.7554/eLife.13998.001 PMID:27156560

  12. A simple method for imaging axonal transport in ageing neurons using the adult Drosophila wing

    PubMed Central

    Vagnoni, Alessio; Bullock, Simon L.

    2016-01-01

    There is growing interest in the link between axonal cargo transport and age-associated neuronal dysfunction. Studying axonal transport in neurons of adult animals requires intravital or ex vivo imaging approaches, which are laborious and expensive in vertebrate models. We describe simple, non-invasive procedures for imaging cargo motility within axons using sensory neurons of the translucent Drosophila wing. A key aspect is a method for mounting the intact fly that allows detailed imaging of transport in wing neurons. Coupled with existing genetic tools in Drosophila, this is a tractable system for studying axonal transport over the lifespan of an animal and thus for characterising the relationship between cargo dynamics, neuronal ageing and disease. Preparation of a sample for imaging takes approximately 5 minutes, with transport typically filmed for 2–3 minutes per wing. We also document procedures for quantifying transport parameters from the acquired images and describe how the protocol can be adapted to study other cell biological processes in ageing neurons. PMID:27560175

  13. A simple method for imaging axonal transport in aging neurons using the adult Drosophila wing.

    PubMed

    Vagnoni, Alessio; Bullock, Simon L

    2016-09-01

    There is growing interest in the link between axonal cargo transport and age-associated neuronal dysfunction. The study of axonal transport in neurons of adult animals requires intravital or ex vivo imaging approaches, which are laborious and expensive in vertebrate models. We describe simple, noninvasive procedures for imaging cargo motility within axons using sensory neurons of the translucent Drosophila wing. A key aspect is a method for mounting the intact fly that allows detailed imaging of transport in wing neurons. Coupled with existing genetic tools in Drosophila, this is a tractable system for studying axonal transport over the life span of an animal and thus for characterization of the relationship between cargo dynamics, neuronal aging and disease. Preparation of a sample for imaging takes ∼5 min, with transport typically filmed for 2-3 min per wing. We also document procedures for the quantification of transport parameters from the acquired images and describe how the protocol can be adapted to study other cell biological processes in aging neurons.

  14. Transplanted neurons integrate into adult retinas and respond to light.

    PubMed

    Venugopalan, Praseeda; Wang, Yan; Nguyen, Tu; Huang, Abigail; Muller, Kenneth J; Goldberg, Jeffrey L

    2016-02-04

    Retinal ganglion cells (RGCs) degenerate in diseases like glaucoma and are not replaced in adult mammals. Here we investigate whether transplanted RGCs can integrate into the mature retina. We have transplanted GFP-labelled RGCs into uninjured rat retinas in vivo by intravitreal injection. Transplanted RGCs acquire the general morphology of endogenous RGCs, with axons orienting towards the optic nerve head of the host retina and dendrites growing into the inner plexiform layer. Preliminary data show in some cases GFP(+) axons extending within the host optic nerves and optic tract, reaching usual synaptic targets in the brain, including the lateral geniculate nucleus and superior colliculus. Electrophysiological recordings from transplanted RGCs demonstrate the cells' electrical excitability and light responses similar to host ON, ON-OFF and OFF RGCs, although less rapid and with greater adaptation. These data present a promising approach to develop cell replacement strategies in diseased retinas with degenerating RGCs.

  15. Doublecortin (DCX) is not Essential for Survival and Differentiation of Newborn Neurons in the Adult Mouse Dentate Gyrus

    PubMed Central

    Dhaliwal, Jagroop; Xi, Yanwei; Bruel-Jungerman, Elodie; Germain, Johanne; Francis, Fiona; Lagace, Diane C.

    2016-01-01

    In the adult brain, expression of the microtubule-associated protein Doublecortin (DCX) is associated with neural progenitor cells (NPCs) that give rise to new neurons in the dentate gyrus. Many studies quantify the number of DCX-expressing cells as a proxy for the level of adult neurogenesis, yet no study has determined the effect of removing DCX from adult hippocampal NPCs. Here, we use a retroviral and inducible mouse transgenic approach to either knockdown or knockout DCX from adult NPCs in the dentate gyrus and examine how this affects cell survival and neuronal maturation. Our results demonstrate that shRNA-mediated knockdown of DCX or Cre-mediated recombination in floxed DCX mice does not alter hippocampal neurogenesis and does not change the neuronal fate of the NPCs. Together these findings show that the survival and maturation of adult-generated hippocampal neurons does not require DCX. PMID:26793044

  16. Sustaining intrinsic growth capacity of adult neurons promotes spinal cord regeneration

    NASA Astrophysics Data System (ADS)

    Neumann, Simona; Skinner, Kate; Basbaum, Allan I.

    2005-11-01

    The peripheral axonal branch of primary sensory neurons readily regenerates after peripheral nerve injury, but the central branch, which courses in the dorsal columns of the spinal cord, does not. However, if a peripheral nerve is transected before a spinal cord injury, sensory neurons that course in the dorsal columns will regenerate, presumably because their intrinsic growth capacity is enhanced by the priming peripheral nerve lesion. As the effective priming lesion is made before the spinal cord injury it would clearly have no clinical utility, and unfortunately, a priming lesion made after a spinal cord injury results in an abortive regenerative response. Here, we show that two priming lesions, one made at the time of a spinal cord injury and a second 1 week after a spinal cord injury, in fact, promote dramatic regeneration, within and beyond the lesion. The first lesion, we hypothesize, enhances intrinsic growth capacity, and the second one sustains it, providing a paradigm for promoting CNS regeneration after injury. primary afferents | dorsal columns | neurite outgrowth | sprouting | priming

  17. Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth.

    PubMed

    Rauskolb, Stefanie; Zagrebelsky, Marta; Dreznjak, Anita; Deogracias, Rubén; Matsumoto, Tomoya; Wiese, Stefan; Erne, Beat; Sendtner, Michael; Schaeren-Wiemers, Nicole; Korte, Martin; Barde, Yves-Alain

    2010-02-03

    Although brain-derived neurotrophic factor (BDNF) is linked with an increasing number of conditions causing brain dysfunction, its role in the postnatal CNS has remained difficult to assess. This is because the bdnf-null mutation causes the death of the animals before BDNF levels have reached adult levels. In addition, the anterograde axonal transport of BDNF complicates the interpretation of area-specific gene deletion. The present study describes the generation of a new conditional mouse mutant essentially lacking BDNF throughout the CNS. It shows that BDNF is not essential for prolonged postnatal survival, but that the behavior of such mutant animals is markedly altered. It also reveals that BDNF is not a major survival factor for most CNS neurons and for myelination of their axons. However, it is required for the postnatal growth of the striatum, and single-cell analyses revealed a marked decreased in dendritic complexity and spine density. In contrast, BDNF is dispensable for the growth of the hippocampus and only minimal changes were observed in the dendrites of CA1 pyramidal neurons in mutant animals. Spine density remained unchanged, whereas the proportion of the mushroom-type spine was moderately decreased. In line with these in vivo observations, we found that BDNF markedly promotes the growth of cultured striatal neurons and of their dendrites, but not of those of hippocampal neurons, suggesting that the differential responsiveness to BDNF is part of a neuron-intrinsic program.

  18. Trigeminothalamic barrelette neurons: natural structural side asymmetries and sensory input-dependent plasticity in adult rats.

    PubMed

    Negredo, P; Martin, Y B; Lagares, A; Castro, J; Villacorta, J A; Avendaño, C

    2009-11-10

    In the rodent trigeminal principal nucleus (Pr5) the barrelette thalamic-projecting neurons relay information from individual whiskers to corresponding contralateral thalamic barreloids. Here we investigated the presence of lateral asymmetries in the dendritic trees of these neurons, and the morphometric changes resulting from input-dependent plasticity in young adult rats. After retrograde labeling with dextran amines from the thalamus, neurons were digitally reconstructed with Neurolucida, and metrically and topologically analyzed with NeuroExplorer. The most unexpected and remarkable result was the observation of side-to-side asymmetries in the barrelette neurons of control rats. These asymmetries more significantly involved the number of low-grade trees and the total dendritic length, which were greater on the left side. Chronic global input loss resulting from infraorbital nerve (IoN) transection, or loss of active touch resulting from whisker clipping in the right neutralized, or even reversed, the observed lateral differences. While results after IoN transection have to be interpreted in the context of partial neuron death in this model, profound bilateral changes were found after haptic loss, which is achieved without inflicting any nerve damage. After whisker trimming, neurons on the left side closely resembled neurons on the right in controls, the natural dendritic length asymmetry being reversed mainly by a shortening of the left trees and a more moderate elongation of the right trees. These results demonstrate that dendritic morphometry is both side- and input-dependent, and that unilateral manipulation of the sensory periphery leads to bilateral morphometric changes in second order neurons of the whisker-barrel system. The presence of anatomical asymmetries in neural structures involved in early stages of somatosensory processing could help explain the expression of sensory input-dependent behavioral asymmetries.

  19. Adult Bone Marrow Neural Crest Stem Cells and Mesenchymal Stem Cells Are Not Able to Replace Lost Neurons in Acute MPTP-Lesioned Mice

    PubMed Central

    Neirinckx, Virginie; Marquet, Alice; Coste, Cécile

    2013-01-01

    Adult bone marrow stroma contains multipotent stem cells (BMSC) that are a mixed population of mesenchymal and neural-crest derived stem cells. Both cells are endowed with in vitro multi-lineage differentiation abilities, then constituting an attractive and easy-available source of material for cell therapy in neurological disorders. Whereas the in vivo integration and differentiation of BMSC in neurons into the central nervous system is currently matter of debate, we report here that once injected into the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, pure populations of either bone marrow neural crest stem cells (NCSC) or mesenchymal stem cells (MSC) survived only transiently into the lesioned brain. Moreover, they do not migrate through the brain tissue, neither modify their initial phenotype, while no recovery of the dopaminergic system integrity was observed. Consequently, we tend to conclude that MSC/NCSC are not able to replace lost neurons in acute MPTP-lesioned dopaminergic system through a suitable integration and/or differentiation process. Altogether with recent data, it appears that neuroprotective, neurotrophic and anti-inflammatory features characterizing BMSC are of greater interest as regards CNS lesions management. PMID:23741377

  20. Trim9 Deletion Alters the Morphogenesis of Developing and Adult-Born Hippocampal Neurons and Impairs Spatial Learning and Memory

    PubMed Central

    Winkle, Cortney C.; Olsen, Reid H. J.; Kim, Hyojin; Moy, Sheryl S.

    2016-01-01

    During hippocampal development, newly born neurons migrate to appropriate destinations, extend axons, and ramify dendritic arbors to establish functional circuitry. These developmental stages are recapitulated in the dentate gyrus of the adult hippocampus, where neurons are continuously generated and subsequently incorporate into existing, local circuitry. Here we demonstrate that the E3 ubiquitin ligase TRIM9 regulates these developmental stages in embryonic and adult-born mouse hippocampal neurons in vitro and in vivo. Embryonic hippocampal and adult-born dentate granule neurons lacking Trim9 exhibit several morphological defects, including excessive dendritic arborization. Although gross anatomy of the hippocampus was not detectably altered by Trim9 deletion, a significant number of Trim9−/− adult-born dentate neurons localized inappropriately. These morphological and localization defects of hippocampal neurons in Trim9−/− mice were associated with extreme deficits in spatial learning and memory, suggesting that TRIM9-directed neuronal morphogenesis may be involved in hippocampal-dependent behaviors. SIGNIFICANCE STATEMENT Appropriate generation and incorporation of adult-born neurons in the dentate gyrus are critical for spatial learning and memory and other hippocampal functions. Here we identify the brain-enriched E3 ubiquitin ligase TRIM9 as a novel regulator of embryonic and adult hippocampal neuron shape acquisition and hippocampal-dependent behaviors. Genetic deletion of Trim9 elevated dendritic arborization of hippocampal neurons in vitro and in vivo. Adult-born dentate granule cells lacking Trim9 similarly exhibited excessive dendritic arborization and mislocalization of cell bodies in vivo. These cellular defects were associated with severe deficits in spatial learning and memory. PMID:27147649

  1. Multidendritic sensory neurons in the adult Drosophila abdomen: origins, dendritic morphology, and segment- and age-dependent programmed cell death

    PubMed Central

    Shimono, Kohei; Fujimoto, Azusa; Tsuyama, Taiichi; Yamamoto-Kochi, Misato; Sato, Motohiko; Hattori, Yukako; Sugimura, Kaoru; Usui, Tadao; Kimura, Ken-ichi; Uemura, Tadashi

    2009-01-01

    Background For the establishment of functional neural circuits that support a wide range of animal behaviors, initial circuits formed in early development have to be reorganized. One way to achieve this is local remodeling of the circuitry hardwiring. To genetically investigate the underlying mechanisms of this remodeling, one model system employs a major group of Drosophila multidendritic sensory neurons - the dendritic arborization (da) neurons - which exhibit dramatic dendritic pruning and subsequent growth during metamorphosis. The 15 da neurons are identified in each larval abdominal hemisegment and are classified into four categories - classes I to IV - in order of increasing size of their receptive fields and/or arbor complexity at the mature larval stage. Our knowledge regarding the anatomy and developmental basis of adult da neurons is still fragmentary. Results We identified multidendritic neurons in the adult Drosophila abdomen, visualized the dendritic arbors of the individual neurons, and traced the origins of those cells back to the larval stage. There were six da neurons in abdominal hemisegment 3 or 4 (A3/4) of the pharate adult and the adult just after eclosion, five of which were persistent larval da neurons. We quantitatively analyzed dendritic arbors of three of the six adult neurons and examined expression in the pharate adult of key transcription factors that result in the larval class-selective dendritic morphologies. The 'baseline design' of A3/4 in the adult was further modified in a segment-dependent and age-dependent manner. One of our notable findings is that a larval class I neuron, ddaE, completed dendritic remodeling in A2 to A4 and then underwent caspase-dependent cell death within 1 week after eclosion, while homologous neurons in A5 and in more posterior segments degenerated at pupal stages. Another finding is that the dendritic arbor of a class IV neuron, v'ada, was immediately reshaped during post-eclosion growth. It exhibited

  2. Eszopiclone and fluoxetine enhance the survival of newborn neurons in the adult rat hippocampus.

    PubMed

    Su, Xiaowei W; Li, Xiao-Yuan; Banasr, Mounira; Duman, Ronald S

    2009-11-01

    Clinical research has shown that co-administration of eszopiclone, a sedative-hypnotic sleeping agent, and fluoxetine, a serotonin uptake inhibitor, exerts an additive antidepressant action in treating patients with both depression and insomnia. Preclinical studies demonstrate that the behavioural actions of antidepressants are linked to neurogenesis in the adult hippocampus. To test the hypothesis that the additive effects of eszopiclone and fluoxetine could act via such a mechanism, the influence of combined administration of these agents on the proliferation and survival of bromodeoxyuridine (BrdU)-labelled newborn cells in the hippocampus of adult rats was determined. Chronic eszopiclone+fluoxetine co-administration significantly increased the survival, but not proliferation, of newborn neurons in dorsal hippocampus by approximately 50%, an effect greater than either drug alone. These findings are consistent with the hypothesis that eszopiclone enhances the antidepressant action of fluoxetine, in part via a novel mechanism that increases the survival of newborn neurons.

  3. Adaptation-induced modification of motion selectivity tuning in visual tectal neurons of adult zebrafish

    PubMed Central

    Lucks, Valerie; Kurtz, Rafael; Engelmann, Jacob

    2015-01-01

    In the developing brain, training-induced emergence of direction selectivity and plasticity of orientation tuning appear to be widespread phenomena. These are found in the visual pathway across different classes of vertebrates. Moreover, short-term plasticity of orientation tuning in the adult brain has been demonstrated in several species of mammals. However, it is unclear whether neuronal orientation and direction selectivity in nonmammalian species remains modifiable through short-term plasticity in the fully developed brain. To address this question, we analyzed motion tuning of neurons in the optic tectum of adult zebrafish by calcium imaging. In total, orientation and direction selectivity was enhanced by adaptation, responses of previously orientation-selective neurons were sharpened, and even adaptation-induced emergence of selectivity in previously nonselective neurons was observed in some cases. The different observed effects are mainly based on the relative distance between the previously preferred and the adaptation direction. In those neurons in which a shift of the preferred orientation or direction was induced by adaptation, repulsive shifts (i.e., away from the adapter) were more prevalent than attractive shifts. A further novel finding for visually induced adaptation that emerged from our study was that repulsive and attractive shifts can occur within one brain area, even with uniform stimuli. The type of shift being induced also depends on the difference between the adapting and the initially preferred stimulus direction. Our data indicate that, even within the fully developed optic tectum, short-term plasticity might have an important role in adjusting neuronal tuning functions to current stimulus conditions. PMID:26378206

  4. Cellular and molecular characterization of Ca2+ currents in acutely isolated, adult rat neostriatal neurons.

    PubMed

    Bargas, J; Howe, A; Eberwine, J; Cao, Y; Surmeier, D J

    1994-11-01

    Ca2+ currents in acutely isolated, adult rat neostriatal neurons were studied with whole-cell voltage-clamp techniques. In the vast majority of neurons (approximately 90%, n > 250), currents were exclusively of the high-voltage-activated (HVA) type. HVA currents activated near -40 mV and reached their maximum amplitude near 0 mV. Quasi-steady-state inactivation curves in many neurons were well fitted only with a sum of Boltzmann functions, suggesting that the HVA currents were heterogeneous. Although the block of whole-cell current by Cd2+ was well fitted with a single isotherm having an IC50 of near 1 microM, experiments with organic channel antagonists suggested that at least four types of HVA channels were expressed by most cells. On average, the L-channel antagonist nifedipine (5-10 microM) blocked 31 +/- 10% of the whole-cell current (n = 20), the N-channel antagonist omega-conotoxin GVIA (omega-CgTx) (2-5 microM) blocked 27 +/- 11% (n = 20), and the P-channel antagonist omega-agatoxin IVA (100-500 nM) blocked 21 +/- 10% (n = 18). In many neurons, the block by omega-CgTx was partially or completely reversible. In cells tested with a combination of these antagonists, 34 +/- 17% of the peak Ca2+ current remained unblocked (n = 13). Single-cell expression profiling of medium-sized neurons revealed the presence of rbA and rbB Ca2+ channel alpha 1 subunit mRNAs but low or undetectable levels of rbC mRNA (n = 12). These findings suggest that although adult neostriatal projection neurons do not express significant levels of LVA Ca2+ current, they do express a pharmacologically and structurally heterogeneous population of HVA currents.

  5. Variability in the distribution of callosal projection neurons in the adult rat parietal cortex.

    PubMed

    Ivy, G O; Gould, H J; Killackey, H P

    1984-07-23

    Previous reports have shown that the barrel field area of the parietal cortex of the adult rat contains relatively few callosal projection neurons, even though callosal projection neurons are abundant in this cortical region in the neonatal rat. Furthermore, it has been shown that many of the callosal neurons which seem to disappear as the animal matures do not die, but project to ipsilateral cortical areas. These findings rely on the ability of retrograde transport techniques which utilize injections of horseradish peroxidase (HRP) or of fluorescent dyes into one hemisphere. We now show that several technical modifications of the HRP technique yield a wider distribution of HRP-containing neurons in the contralateral barrel field area of the adult rat than previously reported. These include implants of HRP pellets into transected axons of the corpus callosum, the addition of DMSO and nonidet P40 to Sigma VI HRP, wheat germ agglutinin HRP and the use of tetramethyl benzidine as the chromogen in the reaction procedure. Our findings have implications for transport studies in general and for the development of the cortical barrel field in particular.

  6. Adult rat bone marrow stromal cells express genes associated with dopamine neurons

    SciTech Connect

    Kramer, Brian C.; Woodbury, Dale . E-mail: WOODBURYDL@AOL.COM; Black, Ira B.

    2006-05-19

    An intensive search is underway to identify candidates to replace the cells that degenerate in Parkinson's disease (PD). To date, no suitable substitute has been found. We have recently found that adult rat bone marrow stromal cells (MSCs) can be induced to assume a neuronal phenotype in vitro. These findings may have particular relevance to the treatment of PD. We now report that adult MSCs express multiple dopaminergic genes, suggesting that they are potential candidates for cell therapy. Using RT-PCR, we have examined families of genes that are associated with the development and/or survival of dopaminergic neurons. MSCs transcribe a variety of dopaminergic genes including patched and smoothened (components of the Shh receptor), Gli-1 (downstream mediator of Shh), and Otx-1, a gene associated with formation of the mesencephalon during development. Furthermore, Shh treatment elicits a 1.5-fold increase in DNA synthesis in cultured MSCs, suggesting the presence of a functional Shh receptor complex. We have also found that MSCs transcribe and translate Nurr-1, a nuclear receptor essential for the development of dopamine neurons. In addition, MSCs express a variety of growth factor receptors including the glycosyl-phosphatidylinositol-anchored ligand-binding subunit of the GDNF receptor, GFR{alpha}1, as well as fibroblast growth factor receptors one and four. The expression of genes that are associated with the development and survival of dopamine neurons suggests a potential role for these cells in the treatment of Parkinson's disease.

  7. Biomaterial microenvironments to support the generation of new neurons in the adult brain.

    PubMed

    Conway, Anthony; Schaffer, David V

    2014-05-01

    Neural stem cells (NSC) in two regions of the adult mammalian brain--the subventricular zone (SVZ) and hippocampus--continuously generate new neurons, enabled by a complex repertoire of factors that precisely regulate the activation, proliferation, differentiation, and integration of the newborn cells. A growing number of studies also report low-level neurogenesis in regions of the adult brain outside these established neurogenic niches--potentially via NSC recruitment or activation of local, quiescent NSCs--under perturbations such as ischemia, cell death, or viral gene delivery of proneural growth factors. We have explored whether implantation of engineered biomaterials can stimulate neurogenesis in normally quiescent regions of the brain. Specifically, recombinant versions of factors found within the NSC microenvironment, Sonic hedgehog, and ephrin-B2 were conjugated to long polymers, thereby creating highly bioactive, multivalent ligands that begin to emulate components of the neurogenic niche. In this engineered biomaterial microenvironment, new neuron formation was observed in normally non-neurogenic regions of the brain, the striatum, and the cortex, and combining these multivalent biomaterials with stromal cell-derived factor-1α increased neuronal commitment of newly divided cells seven- to eightfold in these regions. Additionally, the decreased hippocampal neurogenesis of geriatric rodents was partially rescued toward levels of young animals. We thus demonstrate for the first time de novo neurogenesis in both the cortex and striatum of adult rodents stimulated solely by delivery of synthetic biomaterial forms of proteins naturally found within adult neurogenic niches, offering the potential to replace neurons lost in neurodegenerative disease or injury as an alternative to cell implantation.

  8. Axon-glial interactions at the Drosophila CNS midline.

    PubMed

    Crews, Stephen T

    2010-01-01

    The glia that reside at the midline of the Drosophila CNS are an important embryonic signaling center and also wrap the axons that cross the CNS. The development of the midline glia (MG) is characterized by migration, ensheathment, subdivision of axon commissures, apoptosis, and the extension of glial processes. All of these events are characterized by cell-cell contact between MG and adjacent neurons. Cell adhesion and signaling proteins that mediate different aspects of MG development and MG-neuron interactions have been identified. This provides a foundation for ultimately obtaining an integrated picture of how the MG assemble into a characteristic axonal support structure in the CNS.

  9. CNS and spinal tumors.

    PubMed

    Furtado, Andre D; Panigrahy, Ashok; Fitz, Charles R

    2016-01-01

    Primary CNS tumors consist of a diverse group of neoplasms originating from various cell types in the CNS. Brain tumors are the most common solid malignancy in children under the age of 15 years and the second leading cause of cancer death after leukemia. The most common brain neoplasms in children differ consistently from those in older age groups. Pediatric brain tumors demonstrate distinct patterns of occurrence and biologic behavior according to sex, age, and race. This chapter highlights the imaging features of the most common tumors that affect the child's CNS (brain and spinal cord).

  10. Skin incision induces expression of axonal regeneration-related genes in adult rat spinal sensory neurons

    PubMed Central

    Hill, Caitlin E.; Harrison, Benjamin J.; Rau, Kris K.; Hougland, M. Tyler; Bunge, Mary Bartlett; Mendell, Lorne M.; Petruska, Jeffrey C.

    2010-01-01

    Skin incision and nerve injury both induce painful conditions. Incisional and post-surgical pain is believed to arise primarily from inflammation of tissue and the subsequent sensitization of peripheral and central neurons. The role of axonal regeneration-related processes in development of pain has only been considered when there has been injury to the peripheral nerve itself, even though tissue damage likely induces injury of resident axons. We sought to determine if skin incision would affect expression of regeneration-related genes such as activating transcription factor 3 (ATF3) in dorsal root ganglion (DRG) neurons. ATF3 is absent from DRG neurons of the normal adult rodent, but is induced by injury of peripheral nerves and modulates the regenerative capacity of axons. Image analysis of immunolabeled DRG sections revealed that skin incision led to an increase in the number of DRG neurons expressing ATF3. RT-PCR indicated that other regeneration-associated genes (galanin, GAP-43, Gadd45a) were also increased, further suggesting an injury-like response in DRG neurons. Our finding that injury of skin can induce expression of neuronal injury/regeneration-associated genes may impact how clinical post-surgical pain is investigated and treated. Perspective Tissue injury, even without direct nerve injury, may induce a state of enhanced growth capacity in sensory neurons. Axonal regeneration-associated processes should be considered alongside nerve signal conduction and inflammatory/sensitization processes as possible mechanisms contributing to pain, particularly the transition from acute to chronic pain. PMID:20627820

  11. Ionic mechanism underlying recovery of rhythmic activity in adult isolated neurons

    PubMed Central

    Haedo, Rodolfo J.; Golowasch, Jorge

    2013-01-01

    Neurons exhibit long-term excitability changes necessary for maintaining proper cell and network activity in response to various inputs and perturbations. For instance, the adult crustacean pyloric network can spontaneously recover rhythmic activity after complete shutdown resulting from permanent removal of neuromodulatory inputs. Dissociated lobster stomatogastric ganglion (STG) neurons have been shown to spontaneously develop oscillatory activity via excitability changes. Rhythmic electrical stimulation can eliminate these oscillatory patterns in some cells. The ionic mechanisms underlying these changes are only partially understood. We used dissociated crab STG neurons to study the ionic mechanisms underlying spontaneous recovery of rhythmic activity and stimulation-induced activity changes. Similar to lobster neurons, rhythmic activity spontaneously develops in crab STG neurons. Rhythmic hyperpolarizing stimulation can eliminate, but more commonly accelerate the emergence of stable oscillatory activity depending on Ca++ influx at hyperpolarized voltages. Our main finding is that up-regulation of a Ca++-current and down-regulation of a high-threshold K+-current underlies the spontaneous homeostatic development of oscillatory activity. However, because of a non-linear dependence on stimulus frequency, hyperpolarization-induced oscillations appear to be inconsistent with a homeostatic regulation of activity. We find no difference in the activity patterns or the underlying ionic currents involved between neurons of the fast pyloric and the slow gastric mill networks during the first ten days in isolation. Dynamic-clamp experiments confirm that these conductance modifications can explain the observed activity changes. We conclude that spontaneous and stimulation-induced excitability changes in STG neurons can both result in intrinsic oscillatory activity via regulation of the same two conductances. PMID:16807346

  12. Nuclear configuration and neuronal types of the nucleus niger in the brain of the human adult.

    PubMed

    Braak, H; Braak, E

    1986-01-01

    The pigmentoarchitectonic analysis of the human nucleus niger reveals three main territories: Pars compacta, pars diffusa and pars reticulata. Seven subnuclei are recognized within the pars compacta. The nerve cell types forming the nucleus niger were investigated using a Golgi de-impregnation technique in combination with counterstaining of intraneuronally deposited pigment granules. Three principal types of neurons were defined: Type I was a medium-sized to large neuron, mainly encountered in the pars compacta, giving off a few thick and sparsely branching dendrites. These cells were richly endowed with elongated patches of Nissl material that were mainly found in the peripheral portions of the dendrites. One pole of the cell body contained tightly packed neuromelanin granules. Type II neurons were mainly found in the pars reticulata. They were variable in size and shape and generated, similar to type I neurons, extended and sparsely branching dendrites. Type II neurons were devoid of neuromelanin. A considerable number of these cells were lacking in lipofuscin deposits as well. Type III neurons occurred in all portions of the nuclear complex. The small cell body gave rise to a few thin and spineless dendrites. The axon and filiform processes of the dendrites showed small varicosities irregularly spaced apart. The pale cytoplasm contained small and intensely stained lipofuscin granules, which did not tend to agglomerate. Intraneuronally deposited neuromelanin and lipofuscin pigment can be considered a natural marker of the neuronal type in the nucleus niger of the human adult. The technique and the data provide a basis for investigations of the aged and the diseased human brain.

  13. Methamphetamine-induced neuronal protein NAT8L is the NAA biosynthetic enzyme: implications for specialized acetyl coenzyme A metabolism in the CNS.

    PubMed

    Ariyannur, Prasanth S; Moffett, John R; Manickam, Pachiappan; Pattabiraman, Nagarajan; Arun, Peethambaran; Nitta, Atsumi; Nabeshima, Toshitaka; Madhavarao, Chikkathur N; Namboodiri, Aryan M A

    2010-06-04

    N-acetylaspartate (NAA) is a concentrated, neuron-specific brain metabolite routinely used as a magnetic resonance spectroscopy marker for brain injury and disease. Despite decades of research, the functional roles of NAA remain unclear. Biochemical investigations over several decades have associated NAA with myelin lipid synthesis and energy metabolism. However, studies have been hampered by an inability to identify the gene for the NAA biosynthetic enzyme aspartate N-acetyltransferase (Asp-NAT). A very recent report has identified Nat8l as the gene encoding Asp-NAT and confirmed that the only child diagnosed with a lack of NAA on brain magnetic resonance spectrograms has a 19-bp deletion in this gene. Based on in vitro Nat8l expression studies the researchers concluded that many previous biochemical investigations have been technically flawed and that NAA may not be associated with brain energy or lipid metabolism. In studies done concurrently in our laboratory we have demonstrated via cloning, expression, specificity for acetylation of aspartate, responsiveness to methamphetamine treatment, molecular modeling and comparative immunolocalization that NAT8L is the NAA biosynthetic enzyme Asp-NAT. We conclude that NAA is a major storage and transport form of acetyl coenzyme A specific to the nervous system, thus linking it to both lipid synthesis and energy metabolism.

  14. A novel calmodulin-binding protein, belonging to the WD-repeat family, is localized in dendrites of a subset of CNS neurons

    PubMed Central

    1996-01-01

    A rat brain synaptosomal protein of 110,000 M(r) present in a fraction highly enriched in adenylyl cyclase activity was microsequenced (Castets, F., G. Baillat, S. Mirzoeva, K. Mabrouk, J. Garin, J. d'Alayer, and A. Monneron. 1994. Biochemistry. 33:5063-5069). Peptide sequences were used to clone a cDNA encoding a novel, 780-amino acid protein named striatin. Striatin is a member of the WD-repeat family (Neer, E.J., C.J. Schmidt, R. Nambudripad, and T.F. Smith. 1994. Nature (Lond.). 371:297-300), the first one known to bind calmodulin (CaM) in the presence of Ca++. Subcellular fractionation shows that striatin is a membrane-associated, Lubrol-soluble protein. As analyzed by Northern blots, in situ hybridization, and immunocytochemistry, striatin is localized in the central nervous system, where it is confined to a subset of neurons, many of which are associated with the motor system. In particular, striatin is conspicuous in the dorsal part of the striatum, as well as in motoneurons. Furthermore, striatin is essentially found in dendrites, but not in axons, and is most abundant in dendritic spines. We propose that striatin interacts, through its WD- repeat domain and in a CaM/Ca(++)-dependent manner, with one or several members of a surrounding cluster of molecules engaged in a Ca(++)- signaling pathway specific to excitatory synapses. PMID:8769426

  15. Altered neuronal architecture and plasticity in the visual cortex of adult MMP-3-deficient mice.

    PubMed

    Aerts, Jeroen; Nys, Julie; Moons, Lieve; Hu, Tjing-Tjing; Arckens, Lutgarde

    2015-09-01

    Matrix metalloproteinases (MMPs) are Zn(2+)-dependent endopeptidases considered to be essential for normal brain development and neuroplasticity by modulating extracellular matrix proteins, receptors, adhesion molecules, growth factors and cytoskeletal proteins. Specifically, MMP-3 has recently been implicated in synaptic plasticity, hippocampus-dependent learning and neuronal development and migration in the cerebellum. However, the function(s) of this enzyme in the neocortex is understudied. Therefore, we explored the phenotypical characteristics of the neuronal architecture and the capacity for experience-dependent cortical plasticity in the visual cortex of adult MMP-3-deficient (MMP-3(-/-)) mice. Golgi-Cox stainings revealed a significant reduction in apical dendritic length and an increased number of apical obliques for layer V pyramidal neurons in the visual cortex of adult MMP-3(-/-) mice compared to wild-type (WT) animals. In addition, a significant upregulation of both phosphorylated and non-phosphorylated neurofilament protein (NF)-high, phosphorylated NF-medium, NF-low and α-internexin was detected in the visual cortex of MMP-3(-/-) mice. To assess the effect of MMP-3 deficiency on cortical plasticity, we monocularly enucleated adult MMP-3(-/-) mice and analyzed the reactivation of the contralateral visual cortex 7 weeks post-enucleation. In contrast to previous results in C57Bl/6J adult mice, activity remained confined to the binocular zone and did not expand into the monocular regions indicative for an aberrant open-eye potentiation. Permanent hypoactivity in the monocular cortex lateral and medial to V1 also indicated a lack of cross-modal plasticity. These observations demonstrate that genetic inactivation of MMP-3 has profound effects on the structural integrity and plasticity response of the visual cortex of adult mice.

  16. Conditional Reduction of Adult Born Doublecortin-Positive Neurons Reversibly Impairs Selective Behaviors

    PubMed Central

    Garrett, Lillian; Zhang, Jingzhong; Zimprich, Annemarie; Niedermeier, Kristina M.; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabě de Angelis, Martin; Vogt Weisenhorn, Daniela; Wurst, Wolfgang; Hölter, Sabine M.

    2015-01-01

    Adult neurogenesis occurs in the adult mammalian subventricular zone (SVZ) along the walls of the lateral ventricles and the subgranular zone (SGZ) of the hippocampal dentate gyrus. While a burgeoning body of research implicates adult neurogenesis in olfactory bulb (OB)- and hippocampal-related behaviors, the precise function continues to elude. To further assess the behavioral importance of adult neurogenesis, we herein generated a novel inducible transgenic mouse model of adult neurogenesis reduction where mice with CreERT2 under doublecortin (DCX) promoter control were crossed with mice where diphtheria toxin A (DTA) was driven by the Rosa26 promoter. Activation of DTA, through the administration of tamoxifen (TAM), results in a specific reduction of DCX+ immature neurons in both the hippocampal dentate gyrus and OB. We show that the decrease of DCX+ cells causes impaired social discrimination ability in both young adult (from 3 months) and middle aged (from 10 months) mice. Furthermore, these animals showed an age-independent altered coping behavior in the Forced Swim Test without clear changes in anxiety-related behavior. Notably, these behavior changes were reversible on repopulating the neurogenic zones with DCX+ cells on cessation of the TAM treatment, demonstrating the specificity of this effect. Overall, these results support the notion that adult neurogenesis plays a role in social memory and in stress coping but not necessarily in anxiety-related behavior. PMID:26617501

  17. Conditional Reduction of Adult Born Doublecortin-Positive Neurons Reversibly Impairs Selective Behaviors.

    PubMed

    Garrett, Lillian; Zhang, Jingzhong; Zimprich, Annemarie; Niedermeier, Kristina M; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabě de Angelis, Martin; Vogt Weisenhorn, Daniela; Wurst, Wolfgang; Hölter, Sabine M

    2015-01-01

    Adult neurogenesis occurs in the adult mammalian subventricular zone (SVZ) along the walls of the lateral ventricles and the subgranular zone (SGZ) of the hippocampal dentate gyrus. While a burgeoning body of research implicates adult neurogenesis in olfactory bulb (OB)- and hippocampal-related behaviors, the precise function continues to elude. To further assess the behavioral importance of adult neurogenesis, we herein generated a novel inducible transgenic mouse model of adult neurogenesis reduction where mice with CreER(T2) under doublecortin (DCX) promoter control were crossed with mice where diphtheria toxin A (DTA) was driven by the Rosa26 promoter. Activation of DTA, through the administration of tamoxifen (TAM), results in a specific reduction of DCX+ immature neurons in both the hippocampal dentate gyrus and OB. We show that the decrease of DCX+ cells causes impaired social discrimination ability in both young adult (from 3 months) and middle aged (from 10 months) mice. Furthermore, these animals showed an age-independent altered coping behavior in the Forced Swim Test without clear changes in anxiety-related behavior. Notably, these behavior changes were reversible on repopulating the neurogenic zones with DCX+ cells on cessation of the TAM treatment, demonstrating the specificity of this effect. Overall, these results support the notion that adult neurogenesis plays a role in social memory and in stress coping but not necessarily in anxiety-related behavior.

  18. Age-Related Phasic Patterns of Mitochondrial Maintenance in Adult Caenorhabditis elegans Neurons

    PubMed Central

    Morsci, Natalia S.; Hall, David H.

    2016-01-01

    Aging is associated with cognitive decline and increasing risk of neurodegeneration. Perturbation of mitochondrial function, dynamics, and trafficking are implicated in the pathogenesis of several age-associated neurodegenerative diseases. Despite this fundamental importance, the critical understanding of how organismal aging affects lifetime neuronal mitochondrial maintenance remains unknown, particularly in a physiologically relevant context. To address this issue, we performed a comprehensive in vivo analysis of age-associated changes in mitochondrial morphology, density, trafficking, and stress resistance in individual Caenorhabditis elegans neurons throughout adult life. Adult neurons display three distinct stages of increase, maintenance, and decrease in mitochondrial size and density during adulthood. Mitochondrial trafficking in the distal neuronal processes declines progressively with age starting from early adulthood. In contrast, long-lived daf-2 mutants exhibit delayed age-associated changes in mitochondrial morphology, constant mitochondrial density, and maintained trafficking rates during adulthood. Reduced mitochondrial load at late adulthood correlates with decreased mitochondrial resistance to oxidative stress. Revealing aging-associated changes in neuronal mitochondria in vivo is an essential precedent that will allow future elucidation of the mechanistic causes of mitochondrial aging. Thus, our study establishes the critical foundation for the future analysis of cellular pathways and genetic and pharmacological factors regulating mitochondrial maintenance in aging- and disease-relevant conditions. SIGNIFICANCE STATEMENT Using Caenorhabditis elegans as a model, we address long-standing questions: How does aging affect neuronal mitochondrial morphology, density, trafficking, and oxidative stress resistance? Are these age-related changes amenable to genetic manipulations that slow down the aging process? Our study illustrates that mitochondrial

  19. Immune cell trafficking from the brain maintains CNS immune tolerance.

    PubMed

    Mohammad, Mohammad G; Tsai, Vicky W W; Ruitenberg, Marc J; Hassanpour, Masoud; Li, Hui; Hart, Prue H; Breit, Samuel N; Sawchenko, Paul E; Brown, David A

    2014-03-01

    In the CNS, no pathway dedicated to immune surveillance has been characterized for preventing the anti-CNS immune responses that develop in autoimmune neuroinflammatory disease. Here, we identified a pathway for immune cells to traffic from the brain that is associated with the rostral migratory stream (RMS), which is a forebrain source of newly generated neurons. Evaluation of fluorescently labeled leukocyte migration in mice revealed that DCs travel via the RMS from the CNS to the cervical LNs (CxLNs), where they present antigen to T cells. Pharmacologic interruption of immune cell traffic with the mononuclear cell-sequestering drug fingolimod influenced anti-CNS T cell responses in the CxLNs and modulated experimental autoimmune encephalomyelitis (EAE) severity in a mouse model of multiple sclerosis (MS). Fingolimod treatment also induced EAE in a disease-resistant transgenic mouse strain by altering DC-mediated Treg functions in CxLNs and disrupting CNS immune tolerance. These data describe an immune cell pathway that originates in the CNS and is capable of dampening anti-CNS immune responses in the periphery. Furthermore, these data provide insight into how fingolimod treatment might exacerbate CNS neuroinflammation in some cases and suggest that focal therapeutic interventions, outside the CNS have the potential to selectively modify anti-CNS immunity.

  20. Central artery stiffness, baroreflex sensitivity, and brain white matter neuronal fiber integrity in older adults.

    PubMed

    Tarumi, Takashi; de Jong, Daan L K; Zhu, David C; Tseng, Benjamin Y; Liu, Jie; Hill, Candace; Riley, Jonathan; Womack, Kyle B; Kerwin, Diana R; Lu, Hanzhang; Munro Cullum, C; Zhang, Rong

    2015-04-15

    Cerebral hypoperfusion elevates the risk of brain white matter (WM) lesions and cognitive impairment. Central artery stiffness impairs baroreflex, which controls systemic arterial perfusion, and may deteriorate neuronal fiber integrity of brain WM. The purpose of this study was to examine the associations among brain WM neuronal fiber integrity, baroreflex sensitivity (BRS), and central artery stiffness in older adults. Fifty-four adults (65 ± 6 years) with normal cognitive function or mild cognitive impairment (MCI) were tested. The neuronal fiber integrity of brain WM was assessed from diffusion metrics acquired by diffusion tensor imaging. BRS was measured in response to acute changes in blood pressure induced by bolus injections of vasoactive drugs. Central artery stiffness was measured by carotid-femoral pulse wave velocity (cfPWV). The WM diffusion metrics including fractional anisotropy (FA) and radial (RD) and axial (AD) diffusivities, BRS, and cfPWV were not different between the control and MCI groups. Thus, the data from both groups were combined for subsequent analyses. Across WM, fiber tracts with decreased FA and increased RD were associated with lower BRS and higher cfPWV, with many of the areas presenting spatial overlap. In particular, the BRS assessed during hypotension was strongly correlated with FA and RD when compared with hypertension. Executive function performance was associated with FA and RD in the areas that correlated with cfPWV and BRS. These findings suggest that baroreflex-mediated control of systemic arterial perfusion, especially during hypotension, may play a crucial role in maintaining neuronal fiber integrity of brain WM in older adults.

  1. Inducible targeting of CNS astrocytes in Aldh1l1-CreERT2 BAC transgenic mice

    PubMed Central

    Winchenbach, Jan; Düking, Tim; Berghoff, Stefan A.; Stumpf, Sina K.; Hülsmann, Swen; Nave, Klaus-Armin; Saher, Gesine

    2016-01-01

    Background: Studying astrocytes in higher brain functions has been hampered by the lack of genetic tools for the efficient expression of inducible Cre recombinase throughout the CNS, including the neocortex. Methods: Therefore, we generated BAC transgenic mice, in which CreERT2 is expressed under control of the Aldh1l1 regulatory region. Results: When crossbred to Cre reporter mice, adult Aldh1l1-CreERT2 mice show efficient gene targeting in astrocytes. No such Cre-mediated recombination was detectable in CNS neurons, oligodendrocytes, and microglia. As expected, Aldh1l1-CreERT2 expression was evident in several peripheral organs, including liver and kidney. Conclusions: Taken together, Aldh1l1-CreERT2 mice are a useful tool for studying astrocytes in neurovascular coupling, brain metabolism, synaptic plasticity and other aspects of neuron-glia interactions. PMID:28149504

  2. Knockout of Atg5 delays the maturation and reduces the survival of adult-generated neurons in the hippocampus

    PubMed Central

    Xi, Y; Dhaliwal, J S; Ceizar, M; Vaculik, M; Kumar, K L; Lagace, D C

    2016-01-01

    Autophagy is an evolutionarily conserved lysosomal degradation pathway that plays important roles in cell maintenance, expansion and differentiation. Removal of genes essential for autophagy from embryonic neural stem and precursor cells reduces the survival and inhibits neuronal differentiation of adult-generated neurons. No study has modified autophagy within the adult precursor cells, leaving the cell-autonomous role of autophagy in adult neurogenesis unknown. Here we demonstrate that autophagic flux exists in the adult dividing progenitor cells and their progeny in the dentate gyrus. To investigate the role of autophagy in adult hippocampal neurogenesis, we genetically deleted Autophagy-related gene 5 (Atg5) that reduced autophagic flux and the survival of the progeny of dividing progenitor cells. This significant reduction in survival of adult-generated neurons is accompanied by a delay in neuronal maturation, including a transient reduction in spine density in the absence of a change in differentiation. The delay in cell maturation and loss of progeny of the Atg5-null cells was not present in mice that lacked the essential pro-apoptotic protein Bax (Bcl-2-associated X protein), suggesting that Atg5-deficient cells die through a Bax-dependent mechanism. In addition, there was a loss of Atg5-null cells following exposure to running, suggesting that Atg5 is required for running-induced increases in neurogenesis. These findings highlight the cell-autonomous requirement of Atg5 in the survival of adult-generated neurons. PMID:26938300

  3. Characterization and isolation of immature neurons of the adult mouse piriform cortex.

    PubMed

    Rubio, A; Belles, M; Belenguer, G; Vidueira, S; Fariñas, I; Nacher, J

    2016-07-01

    Physiological studies indicate that the piriform or primary olfactory cortex of adult mammals exhibits a high degree of synaptic plasticity. Interestingly, a subpopulation of cells in the layer II of the adult piriform cortex expresses neurodevelopmental markers, such as the polysialylated form of neural cell adhesion molecule (PSA-NCAM) or doublecortin (DCX). This study analyzes the nature, origin, and potential function of these poorly understood cells in mice. As previously described in rats, most of the PSA-NCAM expressing cells in layer II could be morphologically classified as tangled cells and only a small proportion of larger cells could be considered semilunar-pyramidal transitional neurons. Most were also immunoreactive for DCX, confirming their immature nature. In agreement with this, detection of PSA-NCAM combined with that of different cell lineage-specific antigens revealed that most PSA-NCAM positive cells did not co-express markers of glial cells or mature neurons. Their time of origin was evaluated by birthdating experiments with halogenated nucleosides performed at different developmental stages and in adulthood. We found that virtually all cells in this paleocortical region, including PSA-NCAM-positive cells, are born during fetal development. In addition, proliferation analyses in adult mice revealed that very few cells were cycling in layer II of the piriform cortex and that none of them was PSA-NCAM-positive. Moreover, we have established conditions to isolate and culture these immature neurons in the adult piriform cortex layer II. We find that although they can survive under certain conditions, they do not proliferate in vitro either. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 748-763, 2016.

  4. Kv3.1 channels stimulate adult neural precursor cell proliferation and neuronal differentiation.

    PubMed

    Yasuda, Takahiro; Cuny, Hartmut; Adams, David J

    2013-05-15

    Adult neural stem/precursor cells (NPCs) play a pivotal role in neuronal plasticity throughout life. Among ion channels identified in adult NPCs, voltage-gated delayed rectifier K(+) (KDR) channels are dominantly expressed. However, the KDR channel subtype and its physiological role are still undefined. We used real-time quantitative RT-PCR and gene knockdown techniques to identify a major functional KDR channel subtype in adult NPCs. Dominant mRNA expression of Kv3.1, a high voltage-gated KDR channel, was quantitatively confirmed. Kv3.1 gene knockdown with specific small interfering RNAs (siRNA) for Kv3.1 significantly inhibited Kv3.1 mRNA expression by 63.9% (P < 0.001) and KDR channel currents by 52.2% (P < 0.001). This indicates that Kv3.1 is the subtype responsible for producing KDR channel outward currents. Resting membrane properties, such as resting membrane potential, of NPCs were not affected by Kv3.1 expression. Kv3.1 knockdown with 300 nm siRNA inhibited NPC growth (increase in cell numbers) by 52.9% (P < 0.01). This inhibition was attributed to decreased cell proliferation, not increased cell apoptosis. We also established a convenient in vitro imaging assay system to evaluate NPC differentiation using NPCs from doublecortin-green fluorescent protein transgenic mice. Kv3.1 knockdown also significantly reduced neuronal differentiation by 31.4% (P < 0.01). We have demonstrated that Kv3.1 is a dominant functional KDR channel subtype expressed in adult NPCs and plays key roles in NPC proliferation and neuronal lineage commitment during differentiation.

  5. Neural injury alters proliferation and integration of adult-generated neurons in the dentate gyrus

    PubMed Central

    Perederiy, Julia V.; Luikart, Bryan W.; Washburn, Eric K.; Schnell, Eric; Westbrook, Gary L.

    2013-01-01

    Neural plasticity following brain injury illustrates the potential for regeneration in the central nervous system. Lesioning of the perforant path, which innervates the outer 2/3rds of the molecular layer of the dentate gyrus, was one of the first models to demonstrate structural plasticity of mature granule cells (Parnavelas, 1974; Caceres and Steward, 1983; Diekmann et al., 1996). The dentate gyrus also harbors a continuously proliferating population of neuronal precursors that can integrate into functional circuits and show enhanced short-term plasticity (Schmidt-Hieber et al., 2004; Abrous et al., 2005). To examine the response of adult-generated granule cells to unilateral complete transection of the perforant path in vivo, we tracked these cells using transgenic POMC-EGFP mice or by retroviral expression of GFP. Lesioning triggered a marked proliferation of newborn neurons. Subsequently, the dendrites of newborn neurons showed reduced complexity within the denervated zone, but dendritic spines still formed in the absence of glutamatergic nerve terminals. Electron micrographs confirmed the lack of intact presynaptic terminals apposing spines on mature cells and on newborn neurons. Newborn neurons, but not mature granule cells, had a higher density of dendritic spines in the inner molecular layer post-lesion, accompanied by an increase in miniature EPSC amplitudes and rise times. Our results indicate that injury causes an increase in newborn neurons and lamina-specific synaptic reorganization, indicative of enhanced plasticity. The presence of de novo dendritic spines in the denervated zone suggests that the post-lesion environment provides the necessary signals for spine formation. PMID:23486947

  6. New neurons in the adult brain: The role of sleep and consequences of sleep loss

    PubMed Central

    Meerlo, Peter; Mistlberger, Ralph E.; Jacobs, Barry L.; Heller, H. Craig; McGinty, Dennis

    2009-01-01

    Research over the last few decades has firmly established that new neurons are generated in selected areas of the adult mammalian brain, particularly the dentate gyrus of the hippocampal formation and the subventricular zone of the lateral ventricles. The function of adult-born neurons is still a matter of debate. In the case of the hippocampus, integration of new cells in to the existing neuronal circuitry may be involved in memory processes and the regulation of emotionality. In recent years, various studies have examined how the production of new cells and their development into neurons is affected by sleep and sleep loss. While disruption of sleep for a period shorter than one day appears to have little effect on the basal rate of cell proliferation, prolonged restriction or disruption of sleep may have cumulative effects leading to a major decrease in hippocampal cell proliferation, cell survival and neurogenesis. Importantly, while short sleep deprivation may not affect the basal rate of cell proliferation, one study in rats shows that even mild sleep restriction may interfere with the increase in neurogenesis that normally occurs with hippocampus-dependent learning. Since sleep deprivation also disturbs memory formation, these data suggest that promoting survival, maturation and integration of new cells may be an unexplored mechanism by which sleep supports learning and memory processes. Most methods of sleep deprivation that have been employed affect both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Available data favor the hypothesis that decreases in cell proliferation are related to a reduction in REM sleep, whereas decreases in the number of cells that subsequently develop into adult neurons may be related to reductions in both NREM and REM sleep. The mechanisms by which sleep loss affects different aspects of adult neurogenesis are unknown. It has been proposed that adverse effects of sleep disruption may be mediated by stress and

  7. Altered adult hippocampal neuronal maturation in a rat model of fetal alcohol syndrome.

    PubMed

    Gil-Mohapel, Joana; Boehme, Fanny; Patten, Anna; Cox, Adrian; Kainer, Leah; Giles, Erica; Brocardo, Patricia S; Christie, Brian R

    2011-04-12

    Exposure to ethanol during pregnancy can be devastating to the developing nervous system, leading to significant central nervous system dysfunction. The hippocampus, one of the two brain regions where neurogenesis persists into adulthood, is particularly sensitive to the teratogenic effects of ethanol. In the present study, we tested a rat model of fetal alcohol syndrome (FAS) with ethanol administered via gavage throughout all three trimester equivalents. Subsequently, we assessed cell proliferation, as well as neuronal survival, and differentiation in the dentate gyrus of the hippocampus of adolescent (35 days old), young adult (60 days old) and adult (90 days old) Sprague-Dawley rats. Using both extrinsic (bromodeoxyuridine) and intrinsic (Ki-67) markers, we observed no significant alterations in cell proliferation and survival in ethanol-exposed animals when compared with their pair-fed and ad libitum controls. However, we detected a significant increase in the number of new immature neurons in animals that were exposed to ethanol throughout all three trimester equivalents. This result might reflect a compensatory mechanism to counteract the deleterious effects of prenatal ethanol exposure or an ethanol-induced arrest of the neurogenic process at the early neuronal maturation stages. Taken together these results indicate that exposure to ethanol during the period of brain development causes a long-lasting dysregulation of the neurogenic process, a mechanism that might contribute, at least in part, to the hippocampal deficits that have been reported in rodent models of FAS.

  8. Cacna1c: Protecting young hippocampal neurons in the adult brain.

    PubMed

    De Jesús-Cortés, Héctor; Rajadhyaksha, Anjali M; Pieper, Andrew A

    2016-01-01

    Neuropsychiatric disease is the leading cause of disability in the United States, and fourth worldwide.(1,2) Not surprisingly, human genetic studies have revealed a common genetic predisposition for many forms of neuropsychiatric disease, potentially explaining why overlapping symptoms are commonly observed across multiple diagnostic categories. For example, the CACNA1C gene was recently identified in the largest human genome-wide association study to date as a risk loci held in common across 5 major forms of neuropsychiatric disease: bipolar disorder, schizophrenia, major depressive disorder (MDD), autism spectrum disorder and attention deficit-hyperactivity disorder.(3) This gene encodes for the Cav1.2 subunit of the L-type voltage-gated calcium channel (LTCC), accounting for 85% of LTCCs in the brain, while the Cav1.3 subunit comprises the remainder.(4) In neurons, LTCCs mediate calcium influx in response to membrane depolarization,(5) thereby regulating neurotransmission and gene expression. Here, we describe our recent finding that Cav1.2 also controls survival of young hippocampal neurons in the adult brain, which has been linked to the etiology and treatment of neuropsychiatric disease. We also describe the effective restoration of young hippocampal neuron survival in adult Cav1.2 forebrain-specific conditional knockout mice using the neuroprotective compound P7C3-A20.

  9. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging

    PubMed Central

    Bell, Robert D.; Winkler, Ethan A.; Sagare, Abhay P.; Singh, Itender; LaRue, Barb; Deane, Rashid; Zlokovic, Berislav V.

    2010-01-01

    SUMMARY Pericytes play a key role in the development of cerebral microcirculation. The exact role of pericytes in the neurovascular unit in the adult brain and during brain aging remains, however, elusive. Using adult viable pericyte-deficient mice, we show that pericyte loss leads to brain vascular damage by two parallel pathways: (1) reduction in brain microcirculation causing diminished brain capillary perfusion, cerebral blood flow and cerebral blood flow responses to brain activation which ultimately mediates chronic perfusion stress and hypoxia, and (2) blood-brain barrier breakdown associated with brain accumulation of serum proteins and several vasculotoxic and/or neurotoxic macromolecules ultimately leading to secondary neuronal degenerative changes. We show that age-dependent vascular damage in pericyte-deficient mice precedes neuronal degenerative changes, learning and memory impairment and the neuroinflammatory response. Thus, pericytes control key neurovascular functions that are necessary for proper neuronal structure and function, and pericytes loss results in a progressive age-dependent vascular-mediated neurodegeneration. PMID:21040844

  10. Contrasting roles for parvalbumin-expressing inhibitory neurons in two forms of adult visual cortical plasticity

    PubMed Central

    Kaplan, Eitan S; Cooke, Sam F; Komorowski, Robert W; Chubykin, Alexander A; Thomazeau, Aurore; Khibnik, Lena A; Gavornik, Jeffrey P; Bear, Mark F

    2016-01-01

    The roles played by cortical inhibitory neurons in experience-dependent plasticity are not well understood. Here we evaluate the participation of parvalbumin-expressing (PV+) GABAergic neurons in two forms of experience-dependent modification of primary visual cortex (V1) in adult mice: ocular dominance (OD) plasticity resulting from monocular deprivation and stimulus-selective response potentiation (SRP) resulting from enriched visual experience. These two forms of plasticity are triggered by different events but lead to a similar increase in visual cortical response. Both also require the NMDA class of glutamate receptor (NMDAR). However, we find that PV+ inhibitory neurons in V1 play a critical role in the expression of SRP and its behavioral correlate of familiarity recognition, but not in the expression of OD plasticity. Furthermore, NMDARs expressed within PV+ cells, reversibly inhibited by the psychotomimetic drug ketamine, play a critical role in SRP, but not in the induction or expression of adult OD plasticity. DOI: http://dx.doi.org/10.7554/eLife.11450.001 PMID:26943618

  11. Parallel changes in cortical neuron biochemistry and motor function in protein-energy malnourished adult rats.

    PubMed

    Alaverdashvili, Mariam; Hackett, Mark J; Caine, Sally; Paterson, Phyllis G

    2017-04-01

    While protein-energy malnutrition in the adult has been reported to induce motor abnormalities and exaggerate motor deficits caused by stroke, it is not known if alterations in mature cortical neurons contribute to the functional deficits. Therefore, we explored if PEM in adult rats provoked changes in the biochemical profile of neurons in the forelimb and hindlimb regions of the motor cortex. Fourier transform infrared spectroscopic imaging using a synchrotron generated light source revealed for the first time altered lipid composition in neurons and subcellular domains (cytosol and nuclei) in a cortical layer and region-specific manner. This change measured by the area under the curve of the δ(CH2) band may indicate modifications in membrane fluidity. These PEM-induced biochemical changes were associated with the development of abnormalities in forelimb use and posture. The findings of this study provide a mechanism by which PEM, if not treated, could exacerbate the course of various neurological disorders and diminish treatment efficacy.

  12. Transcription factors FOXA1 and FOXA2 maintain dopaminergic neuronal properties and control feeding behavior in adult mice

    PubMed Central

    Pristerà, Alessandro; Lin, Wei; Kaufmann, Anna-Kristin; Brimblecombe, Katherine R.; Threlfell, Sarah; Dodson, Paul D.; Magill, Peter J.; Fernandes, Cathy; Cragg, Stephanie J.; Ang, Siew-Lan

    2015-01-01

    Midbrain dopaminergic (mDA) neurons are implicated in cognitive functions, neuropsychiatric disorders, and pathological conditions; hence understanding genes regulating their homeostasis has medical relevance. Transcription factors FOXA1 and FOXA2 (FOXA1/2) are key determinants of mDA neuronal identity during development, but their roles in adult mDA neurons are unknown. We used a conditional knockout strategy to specifically ablate FOXA1/2 in mDA neurons of adult mice. We show that deletion of Foxa1/2 results in down-regulation of tyrosine hydroxylase, the rate-limiting enzyme of dopamine (DA) biosynthesis, specifically in dopaminergic neurons of the substantia nigra pars compacta (SNc). In addition, DA synthesis and striatal DA transmission were reduced after Foxa1/2 deletion. Furthermore, the burst-firing activity characteristic of SNc mDA neurons was drastically reduced in the absence of FOXA1/2. These molecular and functional alterations lead to a severe feeding deficit in adult Foxa1/2 mutant mice, independently of motor control, which could be rescued by l-DOPA treatment. FOXA1/2 therefore control the maintenance of molecular and physiological properties of SNc mDA neurons and impact on feeding behavior in adult mice. PMID:26283356

  13. Regulation of Müller Glial Dependent Neuronal Regeneration in the Damaged Adult Zebrafish Retina

    PubMed Central

    Gorsuch, Ryne A.; Hyde, David R.

    2013-01-01

    This article examines our current knowledge underlying the mechanisms involved in neuronal regeneration in the adult zebrafish retina. Zebrafish, which has the capacity to regenerate a wide variety of tissues and organs (including the fins, kidney, heart, brain, and spinal cord), has become the premier model system to study retinal regeneration due to the robustness and speed of the response and the variety of genetic tools that can be applied to study this question. It is now well documented that retinal damage induces the resident Müller glia to dedifferentiate and reenter the cell cycle to produce neuronal progenitor cells that continue to proliferate, migrate to the damaged retinal layer and differentiate into the missing neuronal cell types. Increasing our understanding of how these cellular events are regulated and occur in response to neuronal damage may provide critical information that can be applied to stimulating a regeneration response in the mammalian retina. In this review, we will focus on the genes/proteins that regulate zebrafish retinal regeneration and will attempt to critically evaluate how these factors may interact to correctly orchestrate the definitive cellular events that occur during regeneration. PMID:23880528

  14. Regulation of Müller glial dependent neuronal regeneration in the damaged adult zebrafish retina.

    PubMed

    Gorsuch, Ryne A; Hyde, David R

    2014-06-01

    This article examines our current knowledge underlying the mechanisms involved in neuronal regeneration in the adult zebrafish retina. Zebrafish, which has the capacity to regenerate a wide variety of tissues and organs (including the fins, kidney, heart, brain, and spinal cord), has become the premier model system to study retinal regeneration due to the robustness and speed of the response and the variety of genetic tools that can be applied to study this question. It is now well documented that retinal damage induces the resident Müller glia to dedifferentiate and reenter the cell cycle to produce neuronal progenitor cells that continue to proliferate, migrate to the damaged retinal layer and differentiate into the missing neuronal cell types. Increasing our understanding of how these cellular events are regulated and occur in response to neuronal damage may provide critical information that can be applied to stimulating a regeneration response in the mammalian retina. In this review, we will focus on the genes/proteins that regulate zebrafish retinal regeneration and will attempt to critically evaluate how these factors may interact to correctly orchestrate the definitive cellular events that occur during regeneration.

  15. Adult Conditional Knockout of PGC-1α Leads to Loss of Dopamine Neurons

    PubMed Central

    Jiang, Haisong; Zhang, Shuran; Karuppagounder, Senthilkumar; Xu, Jinchong; Pletnikova, Olga; Troncoso, Juan C.; Pirooznia, Shelia; Andrabi, Shaida A.

    2016-01-01

    Parkinson’s disease (PD) is a chronic progressive neurodegenerative disorder. Recent studies have implicated a role for peroxisome proliferator-activated receptor γ coactivator protein-1α (PGC-1α) in PD and in animal or cellular models of PD. The role of PGC-1α in the function and survival of substantia nigra pars compacta (SNpc) dopamine neurons is not clear. Here we find that there are four different PGC-1α isoforms expressed in SH-SY5Y cells, and these four isoforms are expressed across subregions of mouse brain. Adult conditional PGC-1α knock-out mice show a significant loss of dopaminergic neurons that is accompanied by a reduction of dopamine in the striatum. In human PD postmortem tissue from the SNpc, there is a reduction of PGC-1α isoforms and mitochondria markers. Our findings suggest that all four isoforms of PGC-1α are required for the proper expression of mitochondrial proteins in SNpc DA neurons and that PGC-1α is essential for SNpc DA neuronal survival, possibly through the maintenance of mitochondrial function. PMID:27622213

  16. Carbachol-Induced Reduction in the Activity of Adult Male Zebra Finch RA Projection Neurons

    PubMed Central

    Meng, Wei; Wang, Song-Hua; Li, Dong-Feng

    2016-01-01

    Cholinergic mechanism is involved in motor behavior. In songbirds, the robust nucleus of the arcopallium (RA) is a song premotor nucleus in the pallium and receives cholinergic inputs from the basal forebrain. The activity of projection neurons in RA determines song motor behavior. Although many evidences suggest that cholinergic system is implicated in song production, the cholinergic modulation of RA is not clear until now. In the present study, the electrophysiological effects of carbachol, a nonselective cholinergic receptor agonist, were investigated on the RA projection neurons of adult male zebra finches through whole-cell patch-clamp techniques in vitro. Our results show that carbachol produced a significant decrease in the spontaneous and evoked action potential (AP) firing frequency of RA projection neurons, accompanying a hyperpolarization of the membrane potential, an increase in the evoked AP latency, afterhyperpolarization (AHP) peak amplitude, and AHP time to peak, and a decrease in the membrane input resistance, membrane time constant, and membrane capacitance. These results indicate that carbachol reduces the activity of RA projection neurons by hyperpolarizing the resting membrane potential and increasing the AHP and the membrane conductance, suggesting that the cholinergic modulation of RA may play an important role in song production. PMID:26904300

  17. The beginning of intracellular recording in spinal neurons: Facts, reflections, and speculations☆, ☆☆

    PubMed Central

    Stuart, Douglas G.; Brownstone, Robert M.

    2016-01-01

    Intracellular (IC) recording of action potentials in neurons of the vertebrate central nervous system (CNS) was first reported by John Eccles and two colleagues, Walter Brock and John Coombs, in Dunedin, NZL in 1951/1952 and by Walter Woodbury and Harry Patton in Seattle, WA, USA in 1952. Both groups studied spinal cord neurons of the adult cat. In this review, we discuss the precedents to their notable achievement and reflect and speculate on some of the scientific and personal nuances of their work and its immediate and later impact. We then briefly discuss early achievements in IC recording in the study of CNS neurobiology in other laboratories around the world, and some of the methods that led to enhancement of CNS IC-recording techniques. Our modern understanding of CNS neurophysiology directly emanates from the pioneering endeavors of the five who wrote the seminal 1951/1952 articles. PMID:21782158

  18. IL-6 regulation of synaptic function in the CNS.

    PubMed

    Gruol, Donna L

    2015-09-01

    A growing body of evidence supports a role for glial-produced neuroimmune factors, including the cytokine IL-6, in CNS physiology and pathology. CNS expression of IL-6 has been documented in the normal CNS at low levels and at elevated levels in several neurodegenerative or psychiatric disease states as well as in CNS infection and injury. The altered CNS function associated with these conditions raises the possibility that IL-6 has neuronal or synaptic actions. Studies in in vitro and in vivo models confirmed this possibility and showed that IL-6 can regulate a number of important neuronal and synaptic functions including synaptic transmission and synaptic plasticity, an important cellular mechanism of memory and learning. Behavioral studies in animal models provided further evidence of an important role for IL-6 as a regulator of CNS pathways that are critical to cognitive function. This review summarizes studies that have lead to our current state of knowledge. In spite of the progress that has been made, there is a need for a greater understanding of the physiological and pathophysiological actions of IL-6 in the CNS, the mechanisms underlying these actions, conditions that induce production of IL-6 in the CNS and therapeutic strategies that could ameliorate or promote IL-6 actions. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.

  19. Inducible neuronal inactivation of Sim1 in adult mice causes hyperphagic obesity.

    PubMed

    Tolson, Kristen P; Gemelli, Terry; Meyer, Donna; Yazdani, Umar; Kozlitina, Julia; Zinn, Andrew R

    2014-07-01

    Germline haploinsufficiency of human or mouse Sim1 is associated with hyperphagic obesity. Sim1 encodes a transcription factor required for proper formation of the paraventricular (PVN), supraoptic, and anterior periventricular hypothalamic nuclei. Sim1 expression persists in these neurons in adult mice, raising the question of whether it plays a physiologic role in regulation of energy balance. We previously showed that Sim1 heterozygous mice had normal numbers of PVN neurons that were hyporesponsive to melanocortin 4 receptor agonism and showed reduced oxytocin expression. Furthermore, conditional postnatal neuronal inactivation of Sim1 also caused hyperphagic obesity and decreased hypothalamic oxytocin expression. PVN projections to the hindbrain, where oxytocin is thought to act to modulate satiety, were anatomically intact in both Sim1 heterozygous and conditional knockout mice. These experiments provided evidence that Sim1 functions in energy balance apart from its role in hypothalamic development but did not rule out effects of Sim1 deficiency on postnatal hypothalamic maturation. To address this possibility, we used a tamoxifen-inducible, neural-specific Cre transgene to conditionally inactivate Sim1 in adult mice with mature hypothalamic circuitry. Induced Sim1 inactivation caused increased food and water intake and decreased expression of PVN neuropeptides, especially oxytocin and vasopressin, with no change in energy expenditure. Sim1 expression was not required for survival of PVN neurons. The results corroborate previous evidence that Sim1 acts physiologically as well as developmentally to regulate body weight. Inducible knockout mice provide a system for studying Sim1's physiologic function in energy balance and identifying its relevant transcriptional targets in the hypothalamus.

  20. Fragile X Mental Retardation Protein Regulates New Neuron Differentiation in the Adult Olfactory Bulb

    PubMed Central

    Scotto-Lomassese, Sophie; Nissant, Antoine; Mota, Tatiana; Néant-Féry, Marie; Oostra, Ben A.; Greer, Charles A.; Lledo, Pierre-Marie; Trembleau, Alain; Caillé, Isabelle

    2013-01-01

    The fragile X mental retardation protein (FMRP) is an RNA-binding protein essential for multiple aspects of neuronal mRNA metabolism. Its absence leads to the fragile X syndrome, the most prevalent genetic form of mental retardation. The anatomical landmark of the disease, also present in the Fmr1 knock-out (KO) mice, is the hyperabundance of immature-looking lengthened dendritic spines. We used the well known continuous production of adult-born granule cells (GCs) in the mouse olfactory bulb (OB) to analyze the consequences of Fmrp loss on the differentiation of GCs. Morphological analysis of GCs in the Fmr1 KO mice showed an increase in spine density without a change in spine length. We developed an RNA interference strategy to cell-autonomously mutate Fmr1 in a wild-type OB network. Mutated GCs displayed an increase in spine density and spine length. Detailed analysis of the spines through immunohistochemistry, electron microscopy, and electrophysiology surprisingly showed that, despite these abnormalities, spines receive normal glutamatergic synapses, and thus that mutated adult-born neurons are synaptically integrated into the OB circuitry. Time-course analysis of the spine defects showed that Fmrp cell-autonomously downregulates the level and rate of spine production and limits their overgrowth. Finally, we report that Fmrp does not regulate dendritogenesis in standard conditions but is necessary for activity-dependent dendritic remodeling. Overall, our study of Fmrp in the context of adult neurogenesis has enabled us to carry out a precise dissection of the role of Fmrp in neuronal differentiation and underscores its pleiotropic involvement in both spinogenesis and dendritogenesis. PMID:21307257

  1. Fragile X mental retardation protein regulates new neuron differentiation in the adult olfactory bulb.

    PubMed

    Scotto-Lomassese, Sophie; Nissant, Antoine; Mota, Tatiana; Néant-Féry, Marie; Oostra, Ben A; Greer, Charles A; Lledo, Pierre-Marie; Trembleau, Alain; Caillé, Isabelle

    2011-02-09

    The fragile X mental retardation protein (FMRP) is an RNA-binding protein essential for multiple aspects of neuronal mRNA metabolism. Its absence leads to the fragile X syndrome, the most prevalent genetic form of mental retardation. The anatomical landmark of the disease, also present in the Fmr1 knock-out (KO) mice, is the hyperabundance of immature-looking lengthened dendritic spines. We used the well known continuous production of adult-born granule cells (GCs) in the mouse olfactory bulb (OB) to analyze the consequences of Fmrp loss on the differentiation of GCs. Morphological analysis of GCs in the Fmr1 KO mice showed an increase in spine density without a change in spine length. We developed an RNA interference strategy to cell-autonomously mutate Fmr1 in a wild-type OB network. Mutated GCs displayed an increase in spine density and spine length. Detailed analysis of the spines through immunohistochemistry, electron microscopy, and electrophysiology surprisingly showed that, despite these abnormalities, spines receive normal glutamatergic synapses, and thus that mutated adult-born neurons are synaptically integrated into the OB circuitry. Time-course analysis of the spine defects showed that Fmrp cell-autonomously downregulates the level and rate of spine production and limits their overgrowth. Finally, we report that Fmrp does not regulate dendritogenesis in standard conditions but is necessary for activity-dependent dendritic remodeling. Overall, our study of Fmrp in the context of adult neurogenesis has enabled us to carry out a precise dissection of the role of Fmrp in neuronal differentiation and underscores its pleiotropic involvement in both spinogenesis and dendritogenesis.

  2. Sex and Laterality Differences in Medial Amygdala Neurons and Astrocytes of Adult Mice

    PubMed Central

    Pfau, Daniel R.; Hobbs, Nicholas J.; Breedlove, S. Marc; Jordan, Cynthia L.

    2016-01-01

    The posterodorsal aspect of the medial amygdala (MePD) in rats is sexually dimorphic, being larger and containing more and larger neurons in males than in females. It is also highly lateralized, with the right MePD larger than the left in both sexes, but with the smaller left MePD actually containing more and larger neurons than the larger right. Astrocytes are also strikingly sexually differentiated, with male-biased numbers and lateralized favoring the right in the rat MePD. However, comparable information is scant for mice where genetic tools offer greater experimental power. Hence, we examined the MePD from adult male and female C57Bl/6J mice. We now report that the MePD is larger in males than in females, with the MePD in males containing more astrocytes and neurons than in females. However, we did not find sex differences in astrocyte complexity or overall glial number nor effects of laterality in either measure. While the mouse MePD is generally less lateralized than in rats, we did find that the sex difference in astrocyte number is only on the right because of a significant lateralization in females, with significantly fewer astrocytes on the right than the left but only in females. A sex difference in neuronal soma size favoring males was also evident, but only on the left. Sex differences in the number of neurons and astrocytes common to both rodent species may represent core morphological features that critically underlie the expression of sex-specific behaviors that depend on the MePD. PMID:26780286

  3. Olfactory and cortical projections to bulbar and hippocampal adult-born neurons

    PubMed Central

    De La Rosa-Prieto, Carlos; De Moya-Pinilla, Miguel; Saiz-Sanchez, Daniel; Ubeda-banon, Isabel; Arzate, Dulce M.; Flores-Cuadrado, Alicia; Liberia, Teresa; Crespo, Carlos; Martinez-Marcos, Alino

    2015-01-01

    New neurons are continually generated in the subependymal layer of the lateral ventricles and the subgranular zone of dentate gyrus during adulthood. In the subventricular zone, neuroblasts migrate a long distance to the olfactory bulb where they differentiate into granule or periglomerular interneurons. In the hippocampus, neuroblasts migrate a short distance from the subgranular zone to the granule cell layer of the dentate gyrus to become granule neurons. In addition to the short-distance inputs, bulbar interneurons receive long-distance centrifugal afferents from olfactory-recipient structures. Similarly, dentate granule cells receive differential inputs from the medial and lateral entorhinal cortices through the perforant pathway. Little is known concerning these new inputs on the adult-born cells. In this work, we have characterized afferent inputs to 21-day old newly-born neurons. Mice were intraperitoneally injected with bromodeoxyuridine. Two weeks later, rhodamine-labeled dextran-amine was injected into the anterior olfactory nucleus, olfactory tubercle, piriform cortex and lateral and medial entorhinal cortices. One week later, animals were perfused and immunofluorescences were carried out. The data show that projection neurons from the mentioned structures, establish putative synaptic contacts onto 21-day-old neurons in the olfactory bulb and dentate gyrus, in some cases even before they start to express specific subpopulation proteins. Long-distance afferents reach middle and outer one-third portions of the molecular layer of the dentate gyrus and granule and, interestingly, periglomerular layers of the olfactory bulb. In the olfactory bulb, these fibers appear to establish presumptive axo-somatic contacts onto newly-born granule and periglomerular cells. PMID:25698936

  4. Adult-generated hippocampal neurons allow the flexible use of spatially precise learning strategies.

    PubMed

    Garthe, Alexander; Behr, Joachim; Kempermann, Gerd

    2009-01-01

    Despite enormous progress in the past few years the specific contribution of newly born granule cells to the function of the adult hippocampus is still not clear. We hypothesized that in order to solve this question particular attention has to be paid to the specific design, the analysis, and the interpretation of the learning test to be used. We thus designed a behavioral experiment along hypotheses derived from a computational model predicting that new neurons might be particularly relevant for learning conditions, in which novel aspects arise in familiar situations, thus putting high demands on the qualitative aspects of (re-)learning.In the reference memory version of the water maze task suppression of adult neurogenesis with temozolomide (TMZ) caused a highly specific learning deficit. Mice were tested in the hidden platform version of the Morris water maze (6 trials per day for 5 days with a reversal of the platform location on day 4). Testing was done at 4 weeks after the end of four cycles of treatment to minimize the number of potentially recruitable new neurons at the time of testing. The reduction of neurogenesis did not alter longterm potentiation in CA3 and the dentate gyrus but abolished the part of dentate gyrus LTP that is attributed to the new neurons. TMZ did not have any overt side effects at the time of testing, and both treated mice and controls learned to find the hidden platform. Qualitative analysis of search strategies, however, revealed that treated mice did not advance to spatially precise search strategies, in particular when learning a changed goal position (reversal). New neurons in the dentate gyrus thus seem to be necessary for adding flexibility to some hippocampus-dependent qualitative parameters of learning.Our finding that a lack of adult-generated granule cells specifically results in the animal's inability to precisely locate a hidden goal is also in accordance with a specialized role of the dentate gyrus in generating a metric

  5. Primary Central Nervous System (CNS) Lymphoma B Cell Receptors Recognize CNS Proteins.

    PubMed

    Montesinos-Rongen, Manuel; Purschke, Frauke G; Brunn, Anna; May, Caroline; Nordhoff, Eckhard; Marcus, Katrin; Deckert, Martina

    2015-08-01

    Primary lymphoma of the CNS (PCNSL) is a diffuse large B cell lymphoma confined to the CNS. To elucidate its peculiar organ tropism, we generated recombinant Abs (recAbs) identical to the BCR of 23 PCNSLs from immunocompetent patients. Although none of the recAbs showed self-reactivity upon testing with common autoantigens, they recognized 1547 proteins present on a large-scale protein microarray, indicating polyreactivity. Interestingly, proteins (GRINL1A, centaurin-α, BAIAP2) recognized by the recAbs are physiologically expressed by CNS neurons. Furthermore, 87% (20/23) of the recAbs, including all Abs derived from IGHV4-34 using PCNSL, recognized galectin-3, which was upregulated on microglia/macrophages, astrocytes, and cerebral endothelial cells upon CNS invasion by PCNSL. Thus, PCNSL Ig may recognize CNS proteins as self-Ags. Their interaction may contribute to BCR signaling with sustained NF-κB activation and, ultimately, may foster tumor cell proliferation and survival. These data may also explain, at least in part, the affinity of PCNSL cells for the CNS.

  6. cJun promotes CNS axon growth

    PubMed Central

    Lerch, Jessica K; Martinez, Yania; Bixby, John L; Lemmon, Vance P

    2014-01-01

    A number of genes regulate regeneration of peripheral axons, but their ability to drive axon growth and regeneration in the central nervous system (CNS) remains largely untested. To address this question we overexpressed eight transcription factors and one small GTPase alone and in pairwise combinations to test whether combinatorial overexpression would have a synergistic impact on CNS neuron neurite growth. The Jun oncogene/signal transducer and activator of transcription 6 (JUN/STAT6) combination increased neurite growth in dissociated cortical neurons and in injured cortical slices. In injured cortical slices, JUN overexpression increased axon growth to a similar extent as JUN and STAT6 together. Interestingly, JUN overexpression was not associated with increased growth associated protein 43 (GAP43) or integrin alpha 7 (ITGA7) expression, though these are predicted transcriptional targets. This study demonstrates that JUN overexpression in cortical neurons stimulates axon growth, but does so independently of changes in expression of genes thought to be critical for JUN’s effects on axon growth. We conclude that JUN activity underlies this CNS axonal growth response, and that it is mechanistically distinct from peripheral regeneration responses, in which increases in JUN expression coincide with increases in GAP43 expression. PMID:24521823

  7. The tumor suppressor HHEX inhibits axon growth when prematurely expressed in developing central nervous system neurons

    PubMed Central

    Simpson, Matthew T; Venkatesh, Ishwariya; Callif, Ben L; Thiel, Laura K; Coley, Denise M; Winsor, Kristen N; Wang, Zimei; Kramer, Audra A; Lerch, Jessica K; Blackmore, Murray G

    2015-01-01

    Neurons in the embryonic and peripheral nervous system respond to injury by activating transcriptional programs supportive of axon growth, ultimately resulting in functional recovery. In contrast, neurons in the adult central nervous system (CNS) possess a limited capacity to regenerate axons after injury, fundamentally constraining repair. Activating pro-regenerative gene expression in CNS neurons is a promising therapeutic approach, but progress is hampered by incomplete knowledge of the relevant transcription factors. An emerging hypothesis is that factors implicated in cellular growth and motility outside the nervous system may also control axon growth in neurons. We therefore tested sixty-nine transcription factors, previously identified as possessing tumor suppressive or oncogenic properties in non-neuronal cells, in assays of neurite outgrowth. This screen identified YAP1 and E2F1 as enhancers of neurite outgrowth, and PITX1, RBM14, ZBTB16, and HHEX as inhibitors. Follow-up experiments focused on the tumor suppressor HHEX, one of the strongest growth inhibitors. HHEX is widely expressed in adult CNS neurons, including corticospinal tract neurons after spinal injury, but is present in only trace amounts in immature cortical neurons and adult peripheral neurons. HHEX overexpression in early postnatal cortical neurons reduced both initial axonogenesis and the rate of axon elongation, and domain deletion analysis strongly implicated transcriptional repression as the underlying mechanism. These findings suggest a role for HHEX in restricting axon growth in the developing CNS, and substantiate the hypothesis that previously identified oncogenes and tumor suppressors can play conserved roles in axon extension. PMID:26306672

  8. Adult rat motor neurons do not re-establish electrical coupling during axonal regeneration and muscle reinnervation.

    PubMed

    Favero, Morgana; Cangiano, Alberto; Busetto, Giuseppe

    2015-01-01

    Gap junctions (GJs) between neurons are present in both the newborn and the adult nervous system, and although important roles have been suggested or demonstrated in a number of instances, in many other cases a full understanding of their physiological role is still missing. GJs are expressed in the rodent lumbar cord at birth and mediate both dye and electrical coupling between motor neurons. This expression has been proposed to mediate: (i) fast synchronization of motoneuronal spike activity, in turn linked to the process of refinement of neuromuscular connections, and (ii) slow synchronization of locomotor-like oscillatory activity. Soon after birth this coupling disappears. Since in the adult rat regeneration of motor fibers after peripheral nerve injury leads to a recapitulation of synaptic refinement at the target muscles, we tested whether GJs between motor neurons are transiently re-expressed. We found that in conditions of maximal responsiveness of lumbar motor neurons (such as no depression by anesthetics, decerebrate release of activity of subsets of motor neurons, use of temporal and spatial summation by antidromic and orthodromic stimulations, testing of large ensembles of motor neurons) no firing is observed in ventral root axons in response to antidromic spike invasion of nearby counterparts. We conclude that junctional coupling between motor neurons is not required for the refinement of neuromuscular innervation in the adult.

  9. Apoptosis in the mammalian CNS: Lessons from animal models.

    PubMed

    Lossi, L; Cantile, C; Tamagno, I; Merighi, A

    2005-07-01

    It is generally assumed that about half of the neurons produced during neurogenesis die before completion of maturation of the central nervous system (CNS). Neural cell death is also relevant in aging and several neurodegenerative diseases. Among the modalities by which neurons die, apoptosis has very much attracted the interest of investigators because in this type of cell death neurons are actively responsible for their own demise by switching on a number of genes and activating a series of specific intracellular pathways. This review focuses on the cellular and molecular mechanisms of apoptosis in normal and transgenic animal models related to naturally occurring neuronal death within the CNS. We will also consider some examples of apoptotic cell death in canine neuropathologies. A thorough analysis of naturally occurring neuronal death in vivo will offer a basis for parallel and future studies involving secondary neuronal loss such as those in neurodegenerative disorders, trauma or ischaemia.

  10. Sensory deprivation disrupts homeostatic regeneration of newly generated olfactory sensory neurons after injury in adult mice.

    PubMed

    Kikuta, Shu; Sakamoto, Takashi; Nagayama, Shin; Kanaya, Kaori; Kinoshita, Makoto; Kondo, Kenji; Tsunoda, Koichi; Mori, Kensaku; Yamasoba, Tatsuya

    2015-02-11

    Although it is well known that injury induces the generation of a substantial number of new olfactory sensory neurons (OSNs) in the adult olfactory epithelium (OE), it is not well understood whether olfactory sensory input influences the survival and maturation of these injury-induced OSNs in adults. Here, we investigated whether olfactory sensory deprivation affected the dynamic incorporation of newly generated OSNs 3, 7, 14, and 28 d after injury in adult mice. Mice were unilaterally deprived of olfactory sensory input by inserting a silicone tube into their nostrils. Methimazole, an olfactotoxic drug, was also injected intraperitoneally to bilaterally ablate OSNs. The OE was restored to its preinjury condition with new OSNs by day 28. No significant differences in the numbers of olfactory marker protein-positive mature OSNs or apoptotic OSNs were observed between the deprived and nondeprived sides 0-7 d after injury. However, between days 7 and 28, the sensory-deprived side showed markedly fewer OSNs and mature OSNs, but more apoptotic OSNs, than the nondeprived side. Intrinsic functional imaging of the dorsal surface of the olfactory bulb at day 28 revealed that responses to odor stimulation were weaker in the deprived side compared with those in the nondeprived side. Furthermore, prevention of cell death in new neurons 7-14 d after injury promoted the recovery of the OE. These results indicate that, in the adult OE, sensory deprivation disrupts compensatory OSN regeneration after injury and that newly generated OSNs have a critical time window for sensory-input-dependent survival 7-14 d after injury.

  11. Zif268/egr1 gene controls the selection, maturation and functional integration of adult hippocampal newborn neurons by learning.

    PubMed

    Veyrac, Alexandra; Gros, Alexandra; Bruel-Jungerman, Elodie; Rochefort, Christelle; Kleine Borgmann, Felix B; Jessberger, Sebastian; Laroche, Serge

    2013-04-23

    New neurons are continuously added to the dentate gyrus of the adult mammalian brain. During the critical period of a few weeks after birth when newborn neurons progressively mature, a restricted fraction is competitively selected to survive in an experience-dependent manner, a condition for their contribution to memory processes. The mechanisms that control critical stages of experience-dependent functional incorporation of adult newborn neurons remain largely unknown. Here, we identify a unique transcriptional regulator of the functional integration of newborn neurons, the inducible immediate early gene zif268/egr1. We show that newborn neurons in zif268-KO mice undergo accelerated death during the critical period of 2-3 wk around their birth and exhibit deficient neurochemical and morphological maturation, including reduced GluR1 expression, increased NKCC1/KCC2b chloride cotransporter ratio, altered dendritic development, and marked spine growth defect. Investigating responsiveness of newborn neurons to activity-dependent expression of zif268 in learning, we demonstrate that in the absence of zif268, training in a spatial learning task during this critical period fails to recruit newborn neurons and promote their survival, leading to impaired long-term memory. This study reveals a previously unknown mechanism for the control of the selection, functional maturation, and experience-dependent recruitment of dentate gyrus newborn neurons that depends on the inducible immediate early gene zif268, processes that are critical for their contribution to hippocampal-dependent long-term memory.

  12. Characterization of intrinsic properties of cingulate pyramidal neurons in adult mice after nerve injury

    PubMed Central

    2009-01-01

    The anterior cingulate cortex (ACC) is important for cognitive and sensory functions including memory and chronic pain. Glutamatergic excitatory synaptic transmission undergo long-term potentiation in ACC pyramidal cells after peripheral injury. Less information is available for the possible long-term changes in neuronal action potentials or intrinsic properties. In the present study, we characterized cingulate pyramidal cells in the layer II/III of the ACC in adult mice. We then examined possible long-term changes in intrinsic properties of the ACC pyramidal cells after peripheral nerve injury. In the control mice, we found that there are three major types of pyramidal cells according to their action potential firing pattern: (i) regular spiking (RS) cells (24.7%), intrinsic bursting (IB) cells (30.9%), and intermediate (IM) cells (44.4%). In a state of neuropathic pain, the population distribution (RS: 21.3%; IB: 31.2%; IM: 47.5%) and the single action potential properties of these three groups were indistinguishable from those in control mice. However, for repetitive action potentials, IM cells from neuropathic pain animals showed higher initial firing frequency with no change for the properties of RS and IB neurons from neuropathic pain mice. The present results provide the first evidence that, in addition to synaptic potentiation reported previously, peripheral nerve injury produces long-term plastic changes in the action potentials of cingulate pyramidal neurons in a cell type-specific manner. PMID:20015370

  13. Exposure to Zinc Sulfate Results in Differential Effects on Olfactory Sensory Neuron Subtypes in Adult Zebrafish

    PubMed Central

    Hentig, James T.; Byrd-Jacobs, Christine A.

    2016-01-01

    Zinc sulfate is a known olfactory toxicant, although its specific effects on the olfactory epithelium of zebrafish are unknown. Olfactory organs of adult zebrafish were exposed to zinc sulfate and, after 2, 3, 5, 7, 10 or 14 days, fish were processed for histological, immunohistochemical, ultrastructural, and behavioral analyses. Severe morphological disruption of the olfactory organ was observed two days following zinc sulfate exposure, including fusion of lamellae, epithelial inflammation, and significant loss of anti-calretinin labeling. Scanning electron microscopy revealed the apical surface of the sensory region was absent of ciliated structures, but microvilli were still present. Behavioral analysis showed significant loss of the ability to perceive bile salts and some fish also had no response to amino acids. Over the next several days, olfactory organ morphology, epithelial structure, and anti-calretinin labeling returned to control-like conditions, although the ability to perceive bile salts remained lost until day 14. Thus, exposure to zinc sulfate results in rapid degeneration of the olfactory organ, followed by restoration of morphology and function within two weeks. Zinc sulfate appears to have a greater effect on ciliated olfactory sensory neurons than on microvillous olfactory sensory neurons, suggesting differential effects on sensory neuron subtypes. PMID:27589738

  14. Repeated administration of a synthetic cannabinoid receptor agonist differentially affects cortical and accumbal neuronal morphology in adolescent and adult rats

    PubMed Central

    Carvalho, A. F.; Reyes, B. A. S.; Ramalhosa, F.; Sousa, N.

    2014-01-01

    Recent studies demonstrate a differential trajectory for cannabinoid receptor expression in cortical and sub-cortical brain areas across postnatal development. In the present study, we sought to investigate whether chronic systemic exposure to a synthetic cannabinoid receptor agonist causes morphological changes in the structure of dendrites and dendritic spines in adolescent and adult pyramidal neurons in the medial prefrontal cortex (mPFC) and medium spiny neurons (MSN) in the nucleus accumbens (Acb). Following systemic administration of WIN 55,212-2 in adolescent (PN 37–40) and adult (P55–60) male rats, the neuronal architecture of pyramidal neurons and MSN was assessed using Golgi–Cox staining. While no structural changes were observed in WIN 55,212-2-treated adolescent subjects compared to control, exposure to WIN 55,212-2 significantly increased dendritic length, spine density and the number of dendritic branches in pyramidal neurons in the mPFC of adult subjects when compared to control and adolescent subjects. In the Acb, WIN 55,212-2 exposure significantly decreased dendritic length and number of branches in adult rat subjects while no changes were observed in the adolescent groups. In contrast, spine density was significantly decreased in both the adult and adolescent groups in the Acb. To determine whether regional developmental morphological changes translated into behavioral differences, WIN 55,212-2-induced aversion was evaluated in both groups using a conditioned place preference paradigm. In adult rats, WIN 55,212-2 administration readily induced conditioned place aversion as previously described. In contrast, adolescent rats did not exhibit aversion following WIN 55,212-2 exposure in the behavioral paradigm. The present results show that synthetic cannabinoid administration differentially impacts cortical and sub-cortical neuronal morphology in adult compared to adolescent subjects. Such differences may underlie the disparate development

  15. BDNF promotes differentiation and maturation of adult-born neurons through GABAergic transmission.

    PubMed

    Waterhouse, Emily G; An, Juan Ji; Orefice, Lauren L; Baydyuk, Maryna; Liao, Guey-Ying; Zheng, Kang; Lu, Bai; Xu, Baoji

    2012-10-10

    Brain-derived neurotrophic factor (BDNF) has been implicated in regulating adult neurogenesis in the subgranular zone (SGZ) of the dentate gyrus; however, the mechanism underlying this regulation remains unclear. In this study, we found that Bdnf mRNA localized to distal dendrites of dentate gyrus granule cells isolated from wild-type (WT) mice, but not from Bdnf(klox/klox) mice where the long 3' untranslated region (UTR) of Bdnf mRNA is truncated. KCl-induced membrane depolarization stimulated release of dendritic BDNF translated from long 3' UTR Bdnf mRNA in cultured hippocampal neurons, but not from short 3' UTR Bdnf mRNA. Bdnf(klox/klox) mice exhibited reduced expression of glutamic acid decarboxylase 65 (a GABA synthase), increased proliferation of progenitor cells, and impaired differentiation and maturation of newborn neurons in the SGZ. These deficits in adult neurogenesis were rescued with administration of phenobarbital, an enhancer of GABA(A) receptor activity. Furthermore, we observed similar neurogenesis deficits in mice where the receptor for BDNF, TrkB, was selectively abolished in parvalbumin (PV)-expressing GABAergic interneurons. Thus, our data suggest that locally synthesized BDNF in dendrites of granule cells promotes differentiation and maturation of progenitor cells in the SGZ by enhancing GABA release, at least in part, from PV-expressing GABAergic interneurons.

  16. Origin, migration and fate of newly generated neurons in the adult rodent piriform cortex.

    PubMed

    Shapiro, Lee A; Ng, Kwan L; Kinyamu, Richard; Whitaker-Azmitia, Patricia; Geisert, Eldon E; Blurton-Jones, Mathew; Zhou, Qun-Yong; Ribak, Charles E

    2007-09-01

    Newly generated neurons are continuously added to the olfactory epithelium and olfactory bulbs of adult mammals. Studies also report newly generated neurons in the piriform cortex, the primary cortical projection site of the olfactory bulbs. The current study used BrdU-injection paradigms, and in vivo and in vitro DiI tracing methods to address three fundamental issues of these cells: their origin, migratory route and fate. The results show that 1 day after a BrdU-injection, BrdU/DCX double-labeled cells appear deep to the ventricular subependyma, within the white matter. Such cells appear further ventral and caudal in the ensuing days, first appearing in the rostral piriform cortex of mice at 2 days after the BrdU-injection, and at 4 days in the rat. In the caudal piriform cortex, BrdU/DCX labeled cells first appear at 4 days after the injection in mice and 7 days in rats. The time it takes for these cells to appear in the piriform cortex and the temporal distribution pattern suggest that they migrate from outside this region. DiI tracing methods confirmed a migratory route to the piriform cortex from the ventricular subependyma. The presence of BrdU/NeuN labeled cells as early as 7 days after a BrdU injection in mice and 10 days in the rat and lasting as long as 41 days indicates that some of these cells have extended survival durations in the adult piriform cortex.

  17. Characterization of strychnine-sensitive glycine receptors in acutely isolated adult rat basolateral amygdala neurons.

    PubMed

    McCool, B A; Botting, S K

    2000-03-24

    Large concentrations of the beta-amino acid, taurine, can be found in many forebrain areas such as the basolateral amygdala, a portion of the limbic forebrain intimately associated with the regulation of fear/anxiety-like behaviors. In addition to its cytoprotective and osmoregulatory roles, taurine may also serve as an agonist at GABA(A)- and strychnine-sensitive glycine receptors. In this latter context, the present study demonstrates that application of taurine to acutely isolated neurons from the basolateral amygdala of adult rats causes significant alterations in resting membrane current, as measured by whole-cell patch clamp electrophysiology. Using standard pharmacological approaches, we find that currents gated by concentrations of taurine neurons, these two chloride channels are functionally expressed at comparable levels. Given that a number of clinically relevant compounds are associated with the regulation of GABA(A) receptors in this brain region, the presence of both strychnine-sensitive glycine receptors and their agonist, taurine, in the basolateral amygdala may suggest an important role for these receptors in the limbic forebrain of adult rats.

  18. Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons.

    PubMed

    Serrano-Velez, Jose L; Rodriguez-Alvarado, Melanie; Torres-Vazquez, Irma I; Fraser, Scott E; Yasumura, Thomas; Vanderpool, Kimberly G; Rash, John E; Rosa-Molinar, Eduardo

    2014-01-01

    "Dye-coupling", whole-mount immunohistochemistry for gap junction channel protein connexin 35 (Cx35), and freeze-fracture replica immunogold labeling (FRIL) reveal an abundance of electrical synapses/gap junctions at glutamatergic mixed synapses in the 14th spinal segment that innervates the adult male gonopodium of Western Mosquitofish, Gambusia affinis (Mosquitofish). To study gap junctions' role in fast motor behavior, we used a minimally-invasive neural-tract-tracing technique to introduce gap junction-permeant or -impermeant dyes into deep muscles controlling the gonopodium of the adult male Mosquitofish, a teleost fish that rapidly transfers (complete in <20 mS) spermatozeugmata into the female reproductive tract. Dye-coupling in the 14th spinal segment controlling the gonopodium reveals coupling between motor neurons and a commissural primary ascending interneuron (CoPA IN) and shows that the 14th segment has an extensive and elaborate dendritic arbor and more gap junctions than do other segments. Whole-mount immunohistochemistry for Cx35 results confirm dye-coupling and show it occurs via gap junctions. Finally, FRIL shows that gap junctions are at mixed synapses and reveals that >50 of the 62 gap junctions at mixed synapses are in the 14th spinal segment. Our results support and extend studies showing gap junctions at mixed synapses in spinal cord segments involved in control of genital reflexes in rodents, and they suggest a link between mixed synapses and fast motor behavior. The findings provide a basis for studies of specific roles of spinal neurons in the generation/regulation of sex-specific behavior and for studies of gap junctions' role in regulating fast motor behavior. Finally, the CoPA IN provides a novel candidate neuron for future studies of gap junctions and neural control of fast motor behaviors.

  19. Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons

    PubMed Central

    Serrano-Velez, Jose L.; Rodriguez-Alvarado, Melanie; Torres-Vazquez, Irma I.; Fraser, Scott E.; Yasumura, Thomas; Vanderpool, Kimberly G.; Rash, John E.; Rosa-Molinar, Eduardo

    2014-01-01

    “Dye-coupling”, whole-mount immunohistochemistry for gap junction channel protein connexin 35 (Cx35), and freeze-fracture replica immunogold labeling (FRIL) reveal an abundance of electrical synapses/gap junctions at glutamatergic mixed synapses in the 14th spinal segment that innervates the adult male gonopodium of Western Mosquitofish, Gambusia affinis (Mosquitofish). To study gap junctions’ role in fast motor behavior, we used a minimally-invasive neural-tract-tracing technique to introduce gap junction-permeant or -impermeant dyes into deep muscles controlling the gonopodium of the adult male Mosquitofish, a teleost fish that rapidly transfers (complete in <20 mS) spermatozeugmata into the female reproductive tract. Dye-coupling in the 14th spinal segment controlling the gonopodium reveals coupling between motor neurons and a commissural primary ascending interneuron (CoPA IN) and shows that the 14th segment has an extensive and elaborate dendritic arbor and more gap junctions than do other segments. Whole-mount immunohistochemistry for Cx35 results confirm dye-coupling and show it occurs via gap junctions. Finally, FRIL shows that gap junctions are at mixed synapses and reveals that >50 of the 62 gap junctions at mixed synapses are in the 14th spinal segment. Our results support and extend studies showing gap junctions at mixed synapses in spinal cord segments involved in control of genital reflexes in rodents, and they suggest a link between mixed synapses and fast motor behavior. The findings provide a basis for studies of specific roles of spinal neurons in the generation/regulation of sex-specific behavior and for studies of gap junctions’ role in regulating fast motor behavior. Finally, the CoPA IN provides a novel candidate neuron for future studies of gap junctions and neural control of fast motor behaviors. PMID:25018700

  20. Habitat-specific shaping of proliferation and neuronal differentiation in adult hippocampal neurogenesis of wild rodents.

    PubMed

    Cavegn, Nicole; van Dijk, R Maarten; Menges, Dominik; Brettschneider, Helene; Phalanndwa, Mashudu; Chimimba, Christian T; Isler, Karin; Lipp, Hans-Peter; Slomianka, Lutz; Amrein, Irmgard

    2013-01-01

    Daily life of wild mammals is characterized by a multitude of attractive and aversive stimuli. The hippocampus processes complex polymodal information associated with such stimuli and mediates adequate behavioral responses. How newly generated hippocampal neurons in wild animals contribute to hippocampal function is still a subject of debate. Here, we test the relationship between adult hippocampal neurogenesis (AHN) and habitat types. To this end, we compare wild Muridae species of southern Africa [Namaqua rock mouse (Micaelamys namaquensis), red veld rat (Aethomys chrysophilus), highveld gerbil (Tatera brantsii), and spiny mouse (Acomys spinosissimus)] with data from wild European Muridae [long-tailed wood mice (Apodemus sylvaticus), pygmy field mice (Apodemus microps), yellow-necked wood mice (Apodemus flavicollis), and house mice (Mus musculus domesticus)] from previous studies. The pattern of neurogenesis, expressed in normalized numbers of Ki67- and Doublecortin(DCX)-positive cells to total granule cells (GCs), is similar for the species from a southern African habitat. However, we found low proliferation, but high neuronal differentiation in rodents from the southern African habitat compared to rodents from the European environment. Within the African rodents, we observe additional regulatory and morphological traits in the hippocampus. Namaqua rock mice with previous pregnancies showed lower AHN compared to males and nulliparous females. The phylogenetically closely related species (Namaqua rock mouse and red veld rat) show a CA4, which is not usually observed in murine rodents. The specific features of the southern environment that may be associated with the high number of young neurons in African rodents still remain to be elucidated. This study provides the first evidence that a habitat can shape adult neurogenesis in rodents across phylogenetic groups.

  1. Habitat-specific shaping of proliferation and neuronal differentiation in adult hippocampal neurogenesis of wild rodents

    PubMed Central

    Cavegn, Nicole; van Dijk, R. Maarten; Menges, Dominik; Brettschneider, Helene; Phalanndwa, Mashudu; Chimimba, Christian T.; Isler, Karin; Lipp, Hans-Peter; Slomianka, Lutz; Amrein, Irmgard

    2013-01-01

    Daily life of wild mammals is characterized by a multitude of attractive and aversive stimuli. The hippocampus processes complex polymodal information associated with such stimuli and mediates adequate behavioral responses. How newly generated hippocampal neurons in wild animals contribute to hippocampal function is still a subject of debate. Here, we test the relationship between adult hippocampal neurogenesis (AHN) and habitat types. To this end, we compare wild Muridae species of southern Africa [Namaqua rock mouse (Micaelamys namaquensis), red veld rat (Aethomys chrysophilus), highveld gerbil (Tatera brantsii), and spiny mouse (Acomys spinosissimus)] with data from wild European Muridae [long-tailed wood mice (Apodemus sylvaticus), pygmy field mice (Apodemus microps), yellow-necked wood mice (Apodemus flavicollis), and house mice (Mus musculus domesticus)] from previous studies. The pattern of neurogenesis, expressed in normalized numbers of Ki67- and Doublecortin(DCX)-positive cells to total granule cells (GCs), is similar for the species from a southern African habitat. However, we found low proliferation, but high neuronal differentiation in rodents from the southern African habitat compared to rodents from the European environment. Within the African rodents, we observe additional regulatory and morphological traits in the hippocampus. Namaqua rock mice with previous pregnancies showed lower AHN compared to males and nulliparous females. The phylogenetically closely related species (Namaqua rock mouse and red veld rat) show a CA4, which is not usually observed in murine rodents. The specific features of the southern environment that may be associated with the high number of young neurons in African rodents still remain to be elucidated. This study provides the first evidence that a habitat can shape adult neurogenesis in rodents across phylogenetic groups. PMID:23616743

  2. Mouse embryonic stem cell-derived cells reveal niches that support neuronal differentiation in the adult rat brain.

    PubMed

    Maya-Espinosa, Guadalupe; Collazo-Navarrete, Omar; Millán-Aldaco, Diana; Palomero-Rivero, Marcela; Guerrero-Flores, Gilda; Drucker-Colín, René; Covarrubias, Luis; Guerra-Crespo, Magdalena

    2015-02-01

    A neurogenic niche can be identified by the proliferation and differentiation of its naturally residing neural stem cells. However, it remains unclear whether "silent" neurogenic niches or regions suitable for neural differentiation, other than the areas of active neurogenesis, exist in the adult brain. Embryoid body (EB) cells derived from embryonic stem cells (ESCs) are endowed with a high potential to respond to specification and neuralization signals of the embryo. Hence, to identify microenvironments in the postnatal and adult rat brain with the capacity to support neuronal differentiation, we transplanted dissociated EB cells to conventional neurogenic and non-neurogenic regions. Our results show a neuronal differentiation pattern of EB cells that was dependent on the host region. Efficient neuronal differentiation of EB cells occurred within an adjacent region to the rostral migratory stream. EB cell differentiation was initially patchy and progressed toward an even distribution along the graft by 15-21 days post-transplantation, giving rise mostly to GABAergic neurons. EB cells in the striatum displayed a lower level of neuronal differentiation and derived into a significant number of astrocytes. Remarkably, when EB cells were transplanted to the striatum of adult rats after a local ischemic stroke, increased number of neuroblasts and neurons were observed. Unexpectedly, we determined that the adult substantia nigra pars compacta, considered a non-neurogenic area, harbors a robust neurogenic environment. Therefore, neurally uncommitted cells derived from ESCs can detect regions that support neuronal differentiation within the adult brain, a fundamental step for the development of stem cell-based replacement therapies.

  3. High yield extraction of pure spinal motor neurons, astrocytes and microglia from single embryo and adult mouse spinal cord

    PubMed Central

    Beaudet, Marie-Josée; Yang, Qiurui; Cadau, Sébastien; Blais, Mathieu; Bellenfant, Sabrina; Gros-Louis, François; Berthod, François

    2015-01-01

    Extraction of mouse spinal motor neurons from transgenic mouse embryos recapitulating some aspects of neurodegenerative diseases like amyotrophic lateral sclerosis has met with limited success. Furthermore, extraction and long-term culture of adult mouse spinal motor neurons and glia remain also challenging. We present here a protocol designed to extract and purify high yields of motor neurons and glia from individual spinal cords collected on embryos and adult (5-month-old) normal or transgenic mice. This method is based on mild digestion of tissue followed by gradient density separation allowing to obtain two millions motor neurons over 92% pure from one E14.5 single embryo and more than 30,000 from an adult mouse. These cells can be cultured more than 14 days in vitro at a density of 100,000 cells/cm2 to maintain optimal viability. Functional astrocytes and microglia and small gamma motor neurons can be purified at the same time. This protocol will be a powerful and reliable method to obtain motor neurons and glia to better understand mechanisms underlying spinal cord diseases. PMID:26577180

  4. Adult-like action potential properties and abundant GABAergic synaptic responses in amygdala neurons from newborn marmosets

    PubMed Central

    Yamada, Daisuke; Miyajima, Moeko; Ishibashi, Hidetoshi; Wada, Keiji; Seki, Kazuhiko; Sekiguchi, Masayuki

    2012-01-01

    The amygdala plays an important role in the processing of emotional events. This information processing is altered by development, but little is known about the development of electrophysiological properties of neurons in the amygdala. We studied the postnatal development of electrophysiological properties of neurons in the basolateral amygdala (BLA) of the common marmoset (Callithrix jacchus). Whole-cell patch-clamp recordings were obtained from BLA pyramidal neurons in brain slices prepared from developing and adult marmosets, and electrophysiological properties known to change during development in rats were analysed. Two passive electrical properties of the neuronal membrane – the input resistance (Rin) and the membrane time constant (τ) – significantly decreased with postnatal development. In contrast, the action potential only showed a slight decrease in duration during the first month of life, whereas the amplitude did not change after birth. Passive electrical properties and action potentials in neurons of 4-week-old marmosets were similar to those in neurons of 4-year-old marmosets. The development of the action potential duration was not correlated with the development of Rin or τ, whereas the development of Rin and τ was correlated with each other. Abundant spontaneous and noradrenaline-induced GABAergic currents were present immediately after birth and did not change during postnatal development. These results suggest that newborn infant marmoset BLA pyramidal neurons possess relatively mature action potentials and receive vigorous GABAergic synaptic inputs, and that they acquire adult-like electrophysiological properties by the fourth week of life. PMID:22966158

  5. Adult AMPA GLUA1 receptor subunit loss in 5-HT neurons results in a specific anxiety-phenotype with evidence for dysregulation of 5-HT neuronal activity.

    PubMed

    Weber, Tillmann; Vogt, Miriam A; Gartside, Sarah E; Berger, Stefan M; Lujan, Rafael; Lau, Thorsten; Herrmann, Elke; Sprengel, Rolf; Bartsch, Dusan; Gass, Peter

    2015-05-01

    Both the glutamatergic and serotonergic (5-HT) systems are implicated in the modulation of mood and anxiety. Descending cortical glutamatergic neurons regulate 5-HT neuronal activity in the midbrain raphe nuclei through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors. To analyze the functional role of GLUA1-containing AMPA receptors in serotonergic neurons, we used the Cre-ERT2/loxP-system for the conditional inactivation of the GLUA1-encoding Gria1 gene selectively in 5-HT neurons of adult mice. These Gria1(5-HT-/-) mice exhibited a distinct anxiety phenotype but showed no alterations in locomotion, depression-like behavior, or learning and memory. Increased anxiety-related behavior was associated with significant decreases in tryptophan hydroxylase 2 (TPH2) expression and activity, and subsequent reductions in tissue levels of 5-HT, its metabolite 5-hydroxyindoleacetic acid (5-HIAA), and norepinephrine in the raphe nuclei. However, TPH2 expression and activity as well as monoamine levels were unchanged in the projection areas of 5-HT neurons. Extracellular electrophysiological recordings of 5-HT neurons revealed that, while α1-adrenoceptor-mediated excitation was unchanged, excitatory responses to AMPA were enhanced and the 5-HT1A autoreceptor-mediated inhibitory response to 5-HT was attenuated in Gria1(5-HT-/-) mice. Our data show that a loss of GLUA1 protein in 5-HT neurons enhances AMPA receptor function and leads to multiple local molecular and neurochemical changes in the raphe nuclei that dysregulate 5-HT neuronal activity and induce anxiety-like behavior.

  6. Intravenous Administration of Self-complementary AAV9 Enables Transgene Delivery to Adult Motor Neurons

    PubMed Central

    Duque, Sandra; Joussemet, Béatrice; Riviere, Christel; Marais, Thibaut; Dubreil, Laurence; Douar, Anne-Marie; Fyfe, John; Moullier, Philippe; Colle, Marie-Anne; Barkats, Martine

    2009-01-01

    Therapeutic gene delivery to the whole spinal cord is a major challenge for the treatment of motor neuron (MN) diseases. Systemic administration of viral gene vectors would provide an optimal means for the long-term delivery of therapeutic molecules from blood to the spinal cord but this approach is hindered by the presence of the blood–brain barrier (BBB). Here, we describe the first successful study of MN transduction in adult animals following intravenous (i.v.) delivery of self-complementary (sc) AAV9 vectors (up to 28% in mice). Intravenous MN transduction was achieved in adults without pharmacological disruption of the BBB and transgene expression lasted at least 5 months. Importantly, this finding was successfully translated to large animals, with the demonstration of an efficient systemic scAAV9 gene delivery to the neonate and adult cat spinal cord. This new and noninvasive procedure raises the hope of whole spinal cord correction of MN diseases and may lead to the development of new gene therapy protocols in patients. PMID:19367261

  7. Histamine and Immune Biomarkers in CNS Disorders

    PubMed Central

    Cacabelos, Ramón; Torrellas, Clara; Fernández-Novoa, Lucía; López-Muñoz, Francisco

    2016-01-01

    Neuroimmune dysregulation is a common phenomenon in different forms of central nervous system (CNS) disorders. Cross-links between central and peripheral immune mechanisms appear to be disrupted as reflected by a series of immune markers (CD3, CD4, CD7, HLA-DR, CD25, CD28, and CD56) which show variability in brain disorders such as anxiety, depression, psychosis, stroke, Alzheimer's disease, Parkinson's disease, attention-deficit hyperactivity disorder, migraine, epilepsy, vascular dementia, mental retardation, cerebrovascular encephalopathy, multiple sclerosis, brain tumors, cranial nerve neuropathies, mental retardation, and posttraumatic brain injury. Histamine (HA) is a pleiotropic monoamine involved in several neurophysiological functions, neuroimmune regulation, and CNS pathogenesis. Changes in brain HA show an age- and sex-related pattern, and alterations in brain HA levels are present in different CNS regions of patients with Alzheimer's disease (AD). Brain HA in neuronal and nonneuronal compartments plays a dual role (neurotrophic versus neurotoxic) in a tissue-specific manner. Pathogenic mechanisms associated with neuroimmune dysregulation in AD involve HA, interleukin-1β, and TNF-α, whose aberrant expression contributes to neuroinflammation as an aggravating factor for neurodegeneration and premature neuronal death. PMID:27190492

  8. Regulation of differentiation flux by Notch signalling influences the number of dopaminergic neurons in the adult brain.

    PubMed

    Trujillo-Paredes, Niurka; Valencia, Concepción; Guerrero-Flores, Gilda; Arzate, Dulce-María; Baizabal, José-Manuel; Guerra-Crespo, Magdalena; Fuentes-Hernández, Ayari; Zea-Armenta, Iván; Covarrubias, Luis

    2016-02-24

    Notch signalling is a well-established pathway that regulates neurogenesis. However, little is known about the role of Notch signalling in specific neuronal differentiation. Using Dll1 null mice, we found that Notch signalling has no function in the specification of mesencephalic dopaminergic neural precursor cells (NPCs), but plays an important role in regulating their expansion and differentiation into neurons. Premature neuronal differentiation was observed in mesencephalons of Dll1-deficient mice or after treatment with a Notch signalling inhibitor. Coupling between neurogenesis and dopaminergic differentiation was indicated from the coincident emergence of neuronal and dopaminergic markers. Early in differentiation, decreasing Notch signalling caused a reduction in NPCs and an increase in dopaminergic neurons in association with dynamic changes in the proportion of sequentially-linked dopaminergic NPCs (Msx1/2+, Ngn2+, Nurr1+). These effects in differentiation caused a significant reduction in the number of dopaminergic neurons produced. Accordingly, Dll1 haploinsufficient adult mice, in comparison with their wild-type littermates, have a consistent reduction in neuronal density that was particularly evident in the substantia nigra pars compacta. Our results are in agreement with a mathematical model based on a Dll1-mediated regulatory feedback loop between early progenitors and their dividing precursors that controls the emergence and number of dopaminergic neurons.

  9. Regulation of differentiation flux by Notch signalling influences the number of dopaminergic neurons in the adult brain

    PubMed Central

    Trujillo-Paredes, Niurka; Valencia, Concepción; Guerrero-Flores, Gilda; Arzate, Dulce-María; Baizabal, José-Manuel; Guerra-Crespo, Magdalena; Fuentes-Hernández, Ayari; Zea-Armenta, Iván; Covarrubias, Luis

    2016-01-01

    ABSTRACT Notch signalling is a well-established pathway that regulates neurogenesis. However, little is known about the role of Notch signalling in specific neuronal differentiation. Using Dll1 null mice, we found that Notch signalling has no function in the specification of mesencephalic dopaminergic neural precursor cells (NPCs), but plays an important role in regulating their expansion and differentiation into neurons. Premature neuronal differentiation was observed in mesencephalons of Dll1-deficient mice or after treatment with a Notch signalling inhibitor. Coupling between neurogenesis and dopaminergic differentiation was indicated from the coincident emergence of neuronal and dopaminergic markers. Early in differentiation, decreasing Notch signalling caused a reduction in NPCs and an increase in dopaminergic neurons in association with dynamic changes in the proportion of sequentially-linked dopaminergic NPCs (Msx1/2+, Ngn2+, Nurr1+). These effects in differentiation caused a significant reduction in the number of dopaminergic neurons produced. Accordingly, Dll1 haploinsufficient adult mice, in comparison with their wild-type littermates, have a consistent reduction in neuronal density that was particularly evident in the substantia nigra pars compacta. Our results are in agreement with a mathematical model based on a Dll1-mediated regulatory feedback loop between early progenitors and their dividing precursors that controls the emergence and number of dopaminergic neurons. PMID:26912775

  10. Risk and survival outcomes of radiation-induced CNS tumors.

    PubMed

    Lee, Jessica W; Wernicke, A Gabriella

    2016-08-01

    Patients treated with cranial radiation are at risk of developing secondary CNS tumors. Understanding the incidence, treatment, and long-term outcomes of radiation-induced CNS tumors plays a role in clinical decision-making and patient education. Additionally, as meningiomas and pituitary tumors have been detected at increasing rates across all ages and may potentially be treated with radiation, it is important to know and communicate the risk of secondary tumors in children and adults. After conducting an extensive literature search, we identified publications that report incidence and long-term outcomes of radiation-induced CNS tumors. We reviewed 14 studies in children, which reported that radiation confers a 7- to 10-fold increase in subsequent CNS tumors, with a 20-year cumulative incidence ranging from 1.03 to 28.9 %. The latency period for secondary tumors ranged from 5.5 to 30 years, with gliomas developing in 5-10 years and meningiomas developing around 15 years after radiation. We also reviewed seven studies in adults, where the two strongest studies showed no increased risk while the remaining studies found a higher risk compared to the general population. The latency period for secondary CNS tumors in adults ranged from 5 to 34 years. Treatment and long-term outcomes of radiation-induced CNS tumors have been documented in four case series, which did not conclusively demonstrate that secondary CNS tumors fared worse than primary CNS tumors. Radiation-induced CNS tumors remain a rare occurrence that should not by itself impede radiation treatment. Additional investigation is needed on the risk of radiation-induced tumors in adults and the long-term outcomes of these tumors.

  11. Neurotrophic Factors NGF, GDNF and NTN Selectively Modulate HSV1 and HSV2 Lytic Infection and Reactivation in Primary Adult Sensory and Autonomic Neurons.

    PubMed

    Yanez, Andy A; Harrell, Telvin; Sriranganathan, Heather J; Ives, Angela M; Bertke, Andrea S

    2017-02-07

    Herpes simplex viruses (HSV1 and HSV2) establish latency in peripheral ganglia after ocular or genital infection, and can reactivate to produce different patterns and frequencies of recurrent disease. Previous studies showed that nerve growth factor (NGF) maintains HSV1 latency in embryonic sympathetic and sensory neurons. However, adult sensory neurons are no longer dependent on NGF for survival, some populations cease expression of NGF receptors postnatally, and the viruses preferentially establish latency in different populations of sensory neurons responsive to other neurotrophic factors (NTFs). Thus, NGF may not maintain latency in adult sensory neurons. To identify NTFs important for maintaining HSV1 and HSV2 latency in adult neurons, we investigated acute and latently-infected primary adult sensory trigeminal (TG) and sympathetic superior cervical ganglia (SCG) after NTF removal. NGF and glial cell line-derived neurotrophic factor (GDNF) deprivation induced HSV1 reactivation in adult sympathetic neurons. In adult sensory neurons, however, neurturin (NTN) and GDNF deprivation induced HSV1 and HSV2 reactivation, respectively, while NGF deprivation had no effects. Furthermore, HSV1 and HSV2 preferentially reactivated from neurons expressing GFRα2 and GFRα1, the high affinity receptors for NTN and GDNF, respectively. Thus, NTN and GDNF play a critical role in selective maintenance of HSV1 and HSV2 latency in primary adult sensory neurons.

  12. Neurotrophic Factors NGF, GDNF and NTN Selectively Modulate HSV1 and HSV2 Lytic Infection and Reactivation in Primary Adult Sensory and Autonomic Neurons

    PubMed Central

    Yanez, Andy A.; Harrell, Telvin; Sriranganathan, Heather J.; Ives, Angela M.; Bertke, Andrea S.

    2017-01-01

    Herpes simplex viruses (HSV1 and HSV2) establish latency in peripheral ganglia after ocular or genital infection, and can reactivate to produce different patterns and frequencies of recurrent disease. Previous studies showed that nerve growth factor (NGF) maintains HSV1 latency in embryonic sympathetic and sensory neurons. However, adult sensory neurons are no longer dependent on NGF for survival, some populations cease expression of NGF receptors postnatally, and the viruses preferentially establish latency in different populations of sensory neurons responsive to other neurotrophic factors (NTFs). Thus, NGF may not maintain latency in adult sensory neurons. To identify NTFs important for maintaining HSV1 and HSV2 latency in adult neurons, we investigated acute and latently-infected primary adult sensory trigeminal (TG) and sympathetic superior cervical ganglia (SCG) after NTF removal. NGF and glial cell line-derived neurotrophic factor (GDNF) deprivation induced HSV1 reactivation in adult sympathetic neurons. In adult sensory neurons, however, neurturin (NTN) and GDNF deprivation induced HSV1 and HSV2 reactivation, respectively, while NGF deprivation had no effects. Furthermore, HSV1 and HSV2 preferentially reactivated from neurons expressing GFRα2 and GFRα1, the high affinity receptors for NTN and GDNF, respectively. Thus, NTN and GDNF play a critical role in selective maintenance of HSV1 and HSV2 latency in primary adult sensory neurons. PMID:28178213

  13. Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population

    SciTech Connect

    Chun, J.J.; Shatz, C.J.

    1989-04-22

    The postnatal fate of the first-generated neurons of the cat cerebral cortex was examined. These neurons can be identified uniquely by 3H-thymidine exposure during the week preceding the neurogenesis of cortical layer 6. Previous studies in which 3H-thymidine birthdating at embryonic day 27 (E27) was combined with immunohistochemistry have shown that these neurons are present in large numbers during fetal and early postnatal life within the subplate (future white matter), that they are immunoreactive for the neuron-specific protein MAP2 and for the putative neurotransmitters GABA, NPY, SRIF, and CCK. Here, the same techniques were used to follow the postnatal location and disappearance of the early generated subplate neuron population. At birth (P0), subplate neurons showing immunoreactivity for GABA, NPY, SRIF, or CCK are present in large numbers and at high density within the white matter throughout the neocortex, and the entire population can be observed as a dense MAP2-immunoreactive band situated beneath cortical layer 6. Between P0 and P401 (adulthood), the MAP2-immunostained band disappears so that comparatively few MAP2-immunoreactive neurons remain within the white matter. There is a corresponding decrease in the number and density of neurons stained with antibodies against neurotransmitters. In each instance, these neurons could be double-labeled by the administration of 3H-thymidine at E27, indicating that they are the remnants of the early generated subplate neuron population. The major period of decrease occurs during the first 4 postnatal weeks, and adult values are attained by 5 months. Within the white matter of the lateral gyrus (visual cortex), the density of immunostained neurons decreases dramatically: MAP2, 82%, SRIF, 81%, and NPY, 96%.

  14. Projection neurons in the cortex and hippocampus: differential effects of chronic khat and ethanol exposure in adult male rats

    PubMed Central

    Alele, Paul E; Matovu, Daniel; Imanirampa, Lawrence; Ajayi, Abayomi M; Kasule, Gyaviira T

    2016-01-01

    Background Recent evidence suggests that many individuals who chew khat recreationally also drink ethanol to offset the stimulating effect of khat. The objective of this study was to describe the separate and interactive effects of chronic ethanol and khat exposure on key projection neurons in the cortex and hippocampus of young adult male rats. Methods Young adult male Sprague Dawley rats were divided into six treatment groups: 2 g/kg khat, 4 g/kg khat, 4 g/kg ethanol, combined khat and ethanol (4 g/kg each), a normal saline control, and an untreated group. Treatments were administered orally for 28 continuous days; brains were then harvested, sectioned, and routine hematoxylin–eosin staining was done. Following photomicrography, ImageJ® software captured data regarding neuron number and size. Results No differences occurred in counts of both granular and pyramidal projection neurons in the motor cortex and all four subfields of the hippocampal formation. Khat dose-dependently increased pyramidal neuron size in the motor cortex and the CA3 region, but had different effects on granular neuron size in the dentate gyrus and the motor cortex. Mean pyramidal neuron size for the ethanol-only treatment was larger than that for the 2 g/kg khat group, and the saline control group, in CA3 and in the motor cortex. Concomitant khat and ethanol increased granular neuron size in the motor cortex, compared to the 2 g/kg khat group, the 4 g/kg khat group, and the 4 g/kg ethanol group. In the CA3 region, the 4 g/kg ethanol group showed a larger mean pyramidal neuron size than the combined khat and ethanol group. Conclusion These results suggest that concomitant khat and ethanol exposure changes granular and pyramidal projection neuron sizes differentially in the motor cortex and hippocampus, compared to the effects of chronic exposure to these two drugs separately. PMID:27785113

  15. Forebrain GABAergic neuron precursors integrate into adult spinal cord and reduce injury-induced neuropathic pain

    PubMed Central

    Bráz, JM; Sharif-Naeini, R; Vogt, D; Kriegstein, A; Alvarez-Buylla, A; Rubenstein, JL; Basbaum, AI

    2012-01-01

    Neuropathic pain is a chronic debilitating disease characterized by mechanical allodynia and spontaneous pain. Because symptoms are often unresponsive to conventional methods of pain treatment, new therapeutic approaches are essential. Here, we describe a strategy that not only ameliorates symptoms of neuropathic pain, but is also potentially disease modifying. We show that transplantation of immature telencephalic GABAergic interneurons from the mouse medial ganglionic eminence (MGE) into the adult mouse spinal cord completely reverses the mechanical hypersensitivity produced by peripheral nerve injury. Underlying this improvement is a remarkable integration of the MGE transplants into the host spinal cord circuitry, in which the transplanted cells make functional connections with both primary afferent and spinal cord neurons. By contrast, MGE transplants were not effective against inflammatory pain. Our findings suggest that MGE-derived GABAergic interneurons overcome the spinal cord hyperexcitability that is a hallmark of nerve-injury induced neuropathic pain. PMID:22632725

  16. Leptin signaling in GFAP-expressing adult glia cells regulates hypothalamic neuronal circuits and feeding

    PubMed Central

    Kim1, Jae Geun; Suyama, Shigetomo; Koch, Marco; Jin, Sungho; Argente-Arizon, Pilar; Argente, Jesus; Liu, Zhong-Wu; Zimmer, Marcelo R.; Jeong, Jin Kwon; Szigeti-Buck, Klara; Gao, Yuanqing; Garcia-Caceres, Cristina; Yi, Chun-Xia; Salmaso, Natalina; Vaccarino, Flora M.; Chowen, Julie; Diano, Sabrina; Dietrich, Marcelo O; Tschöp, Matthias H.; Horvath, Tamas L.

    2014-01-01

    We have shown that synaptic re-organization of hypothalamic feeding circuits in response to metabolic shifts involves astrocytes, cells that can directly respond to the metabolic hormone, leptin, in vitro. It is not known whether the role of glia cells in hypothalamic synaptic adaptions is active or passive. Here we show that leptin receptors are expressed in hypothalamic astrocytes and that conditional, adult deletion of leptin receptors in astrocytes leads to altered glial morphology, decreased glial coverage and elevated synaptic inputs onto pro-opiomelanocortin (POMC)- and Agouti-related protein (AgRP)-producing neurons. Leptin-induced suppression of feeding was diminished, while rebound feeding after fasting or ghrelin administration was elevated in mice with astrocyte-specific leptin receptor deficiency. These data unmask an active role of glial cells in the initiation of hypothalamic synaptic plasticity and neuroendocrine control of feeding by leptin. PMID:24880214

  17. New Hippocampal Neurons Are Not Obligatory for Memory Formation; Cyclin D2 Knockout Mice with No Adult Brain Neurogenesis Show Learning

    ERIC Educational Resources Information Center

    Jaholkowski, Piotr; Kiryk, Anna; Jedynak, Paulina; Abdallah, Nada M. Ben; Knapska, Ewelina; Kowalczyk, Anna; Piechal, Agnieszka; Blecharz-Klin, Kamilla; Figiel, Izabela; Lioudyno, Victoria; Widy-Tyszkiewicz, Ewa; Wilczynski, Grzegorz M.; Lipp, Hans-Peter; Kaczmarek, Leszek; Filipkowski, Robert K.

    2009-01-01

    The role of adult brain neurogenesis (generating new neurons) in learning and memory appears to be quite firmly established in spite of some criticism and lack of understanding of what the new neurons serve the brain for. Also, the few experiments showing that blocking adult neurogenesis causes learning deficits used irradiation and various drugs…

  18. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs.

    PubMed

    Sturm, Dominik; Orr, Brent A; Toprak, Umut H; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J; Balasubramanian, Gnanaprakash; Worst, Barbara C; Pajtler, Kristian W; Brabetz, Sebastian; Johann, Pascal D; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M; Remke, Marc; Phillips, Joanna J; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C; Schniederjan, Matthew J; Santi, Mariarita; Buccoliero, Anna M; Dahiya, Sonika; Kramm, Christof M; von Bueren, André O; von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U; Shalaby, Tarek; Grotzer, Michael; van Meter, Timothy; Monoranu, Camelia-Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S; Taylor, Michael D; Jones, Chris; Jabado, Nada; Karajannis, Matthias A; Eils, Roland; Schlesner, Matthias; Lichter, Peter; von Deimling, Andreas; Pfister, Stefan M; Ellison, David W; Korshunov, Andrey; Kool, Marcel

    2016-02-25

    Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors.

  19. Tenascin-C and its functions in neuronal plasticity.

    PubMed

    Šekeljić, Vera; Andjus, Pavle R

    2012-06-01

    The extracellular matrix glycoprotein tenascin-C (TN-C), a molecule highly conserved in vertebrates, is widely expressed in neural and non-neural tissue during development, repair processes in the adult organism, and tumorigenesis. In the developing central nervous system (CNS), in different brain regions TN-C is expressed in specific spatial and temporal patterns. In the adult CNS, its expression remains in areas of active neurogenesis and areas that exhibit neuronal plasticity. Understanding of the contribution of this extracellular matrix constituent to the major developmental processes such as cell proliferation and migration, axonal guidance, as well as synaptic plasticity, is derived from studies on TN-C deficient mice. Studies on these mice demonstrated that TN-C plays an important role in neuronal plasticity in the cerebral cortex, hippocampus and cerebellum, possibly by modulating the activity of L-type voltage-dependent Ca(2+) channels.

  20. Immunopathophysiology of pediatric CNS inflammatory demyelinating diseases.

    PubMed

    Bar-Or, Amit; Hintzen, Rogier Q; Dale, Russell C; Rostasy, Kevin; Brück, Wolfgang; Chitnis, Tanuja

    2016-08-30

    Elucidating pathophysiologic mechanisms underlying the spectrum of pediatric-onset CNS demyelinating diseases, particularly those that may distinguish multiple sclerosis (MS) from other entities, promises to both improve diagnostics and guide more-informed therapeutic decisions. Observations that pediatric- and adult-onset MS share the same genetic and environmental risk factors support the view that these conditions represent essentially the same illness manifesting at different ages. Nonetheless, special consideration must be given when CNS inflammation manifests in early life, at a time when multiple organs (including immune and nervous systems) are actively maturing. CSF analysis in pediatric-onset MS points to chronic CNS inflammation, supported by observations from limited pathologic material available for study. Emerging results implicate abnormalities in both effector and regulatory T cell subsets, and potentially immune senescence, in children with MS. Although CNS-directed antibodies (including antibodies recognizing myelin antigens; Kir4.1) can be documented in pediatric-onset MS, their pathophysiologic significance (as in adults) remains unclear. This is in contrast to the presence of serum and/or CSF antibodies recognizing aquaporin-4, which, when measured using validated cell-based assays, supports the diagnosis of a neuromyelitis optica spectrum disorder, distinct from MS. Presence of anti-myelin oligodendrocyte glycoprotein antibodies documented with similar cell-based assays may also be associated with pathophysiologically distinct disease phenotypes in children. The substantial impact of pediatric-onset MS on normal brain development and function underscores the importance of elucidating both the immunobiology and neurobiology of disease. Ongoing efforts are aimed at developing and validating biological measures that define pathophysiologically distinct monophasic and chronic forms of pediatric CNS demyelination.

  1. Evaluation of amygdaloid neuronal dendritic arborization enhancing effect of Centella asiatica (Linn) fresh leaf extract in adult rats.

    PubMed

    Mohandas Rao, K G; Rao, Muddanna S; Rao, Gurumadhva S

    2012-12-03

    OBJECTIVE: Centella asiatica (CeA), a creeper, growing in moist places in India and other Asian countries. Leaves of CeA are used for memory enhancement in Ayurvedic system of medicine, an alternative system of medicine originated from India. In the present study, we have investigated the role of CeA fresh leaf extract treatment on adult rats on dendritic morphology of amygdaloid neurons, one of the regions concerned with learning and memory. METHODS: Adult rats (2.5-month old) were fed with 2, 4 and 6 mL/(day kg) of fresh leaf extract of CeA for 2, 4 and 6 weeks. After the treatment period the rats were killed, brains were removed and amygdaloid neurons were impregnated with silver nitrate (Golgi staining). Such silver impregnated amygdaloid neurons were traced using camera lucida and dendritic branching points (a measure of dendritic arborization) and intersections (a measure of dendritic length) were quantified. These data were compared with those of age matched control rats. RESULTS: The results showed a significant increase in the dendritic length (intersections) and dendritic branching points in amygdaloid neurons of the rats treated with higher dose [6 mL/(day·kg)] of CeA for longer period of time (i.e. 6 weeks). CONCLUSIONS: Constituents/active principles present CeA fresh leaf extract has neuronal dendritic growth stimulating property; hence it can be used for enhancing neuronal dendrites in stress and other neurodegenerative and memory disorders.

  2. Neuronal Organization of the Brain in the Adult Amphioxus (Branchiostoma lanceolatum): A Study With Acetylated Tubulin Immunohistochemistry.

    PubMed

    Castro, Antonio; Becerra, Manuela; Manso, María Jesús; Anadón, Ramón

    2015-10-15

    Amphioxus (Cephalochordata) belongs to the most basal extant chordates, and knowledge of their brain organization appears to be key to deciphering the early stages of evolution of vertebrate brains. Most comprehensive studies of the organization of the central nervous system of adult amphioxus have investigated the spinal cord. Some brain populations have been characterized via neurochemistry and electron microscopy, and the overall cytoarchitecture of the brain was studied by Ekhart et al. (2003; J. Comp. Neurol. 466:319-330) with general staining methods and retrograde transport from the spinal cord. Here, the cytoarchitecture of the brain of adult amphioxus Branchiostoma lanceolatum was reinvestigated by using acetylated tubulin immunohistochemistry, which specifically stains neurons and fibers, in combination with some ancillary methods. This method allowed reproducible staining and mapping of types of neuron, mostly in brain regions caudal to the entrance level of nerve 2, and its comparison with spinal cord populations. The brain populations studied and discussed in detail were the Retzius bipolar cells, lamellate cells, Joseph cells, various types of translumenal cells, somatic motoneurons, Rohde nucleus cells, small ventral multipolar neurons, and Edinger cells. These observations expand our knowledge of the distribution of cell types and provide additional data on the number of cells and the axonal tracts and commissural regions of the adult amphioxus brain. The results of this comprehensive study provide a framework for comparison of complex adult populations with the early brain neuronal populations revealed in developmental studies of the amphioxus.

  3. Paradox of pattern separation and adult neurogenesis: A dual role for new neurons balancing memory resolution and robustness.

    PubMed

    Johnston, Stephen T; Shtrahman, Matthew; Parylak, Sarah; Gonçalves, J Tiago; Gage, Fred H

    2016-03-01

    Hippocampal adult neurogenesis is thought to subserve pattern separation, the process by which similar patterns of neuronal inputs are transformed into distinct neuronal representations, permitting the discrimination of highly similar stimuli in hippocampus-dependent tasks. However, the mechanism by which immature adult-born dentate granule neurons cells (abDGCs) perform this function remains unknown. Two theories of abDGC function, one by which abDGCs modulate and sparsify activity in the dentate gyrus and one by which abDGCs act as autonomous coding units, are generally suggested to be mutually exclusive. This review suggests that these two mechanisms work in tandem to dynamically regulate memory resolution while avoiding memory interference and maintaining memory robustness.

  4. Behavioural Effects of Adult Vitamin D Deficiency in BALB/c Mice Are not Associated with Proliferation or Survival of Neurons in the Adult Hippocampus

    PubMed Central

    Groves, Natalie J.; Bradford, DanaKai; Sullivan, Robert K. P.; Conn, Kyna-Anne; Aljelaify, Rasha Fahad; McGrath, John J.; Burne, Thomas H. J.

    2016-01-01

    Epidemiological studies have shown that up to one third of adults have insufficient levels of vitamin D and there is an association between low vitamin D concentrations and adverse brain outcomes, such as depression. Vitamin D has been shown to be involved in processes associated with neurogenesis during development. Therefore, the aim of this study was to test the hypothesis that adult vitamin D (AVD) deficiency in BALB/c mice was associated with (a) adult hippocampal neurogenesis at baseline, b) following 6 weeks of voluntary wheel running and (c) a depressive-like phenotype on the forced swim test (FST), which may be linked to alterations in hippocampal neurogenesis. We assessed proliferation and survival of adult born hippocampal neurons by counting the number of cells positive for Ki67 and doublecortin (DCX), and incorporation of 5-Bromo-2’-Deoxyuridine (BrdU) within newly born mature neurons using immunohistochemistry. There were no significant effects of diet on number of Ki67+, DCX+ or BrdU+ cells in the dentate gyrus. All mice showed significantly increased number of Ki67+ cells and BrdU incorporation, and decreased immobility time in the FST, after voluntary wheel running. A significant correlation was found in control mice between immobility time in the FST and level of hippocampal neurogenesis, however, no such correlation was found for AVD-deficient mice. We conclude that AVD deficiency was not associated with impaired proliferation or survival of adult born neurons in BALB/c mice and that the impact on rodent behaviour may not be due to altered neurogenesis per se, but to altered function of new hippocampal neurons or processes independent of adult neurogenesis. PMID:27043014

  5. Behavioural Effects of Adult Vitamin D Deficiency in BALB/c Mice Are not Associated with Proliferation or Survival of Neurons in the Adult Hippocampus.

    PubMed

    Groves, Natalie J; Bradford, DanaKai; Sullivan, Robert K P; Conn, Kyna-Anne; Aljelaify, Rasha Fahad; McGrath, John J; Burne, Thomas H J

    2016-01-01

    Epidemiological studies have shown that up to one third of adults have insufficient levels of vitamin D and there is an association between low vitamin D concentrations and adverse brain outcomes, such as depression. Vitamin D has been shown to be involved in processes associated with neurogenesis during development. Therefore, the aim of this study was to test the hypothesis that adult vitamin D (AVD) deficiency in BALB/c mice was associated with (a) adult hippocampal neurogenesis at baseline, b) following 6 weeks of voluntary wheel running and (c) a depressive-like phenotype on the forced swim test (FST), which may be linked to alterations in hippocampal neurogenesis. We assessed proliferation and survival of adult born hippocampal neurons by counting the number of cells positive for Ki67 and doublecortin (DCX), and incorporation of 5-Bromo-2'-Deoxyuridine (BrdU) within newly born mature neurons using immunohistochemistry. There were no significant effects of diet on number of Ki67+, DCX+ or BrdU+ cells in the dentate gyrus. All mice showed significantly increased number of Ki67+ cells and BrdU incorporation, and decreased immobility time in the FST, after voluntary wheel running. A significant correlation was found in control mice between immobility time in the FST and level of hippocampal neurogenesis, however, no such correlation was found for AVD-deficient mice. We conclude that AVD deficiency was not associated with impaired proliferation or survival of adult born neurons in BALB/c mice and that the impact on rodent behaviour may not be due to altered neurogenesis per se, but to altered function of new hippocampal neurons or processes independent of adult neurogenesis.

  6. Sensitization of capsaicin and icilin responses in oxaliplatin treated adult rat DRG neurons

    PubMed Central

    2010-01-01

    Background Oxaliplatin chemotherapy induced neuropathy is a dose related cumulative toxicity that manifests as tingling, numbness, and chronic pain, compromising the quality of life and leading to discontinued chemotherapy. Patients report marked hypersensitivity to cold stimuli at early stages of treatment, when sensory testing reveals cold and heat hyperalgesia. This study examined the morphological and functional effects of oxaliplatin treatment in cultured adult rat DRG neurons. Results 48 hour exposure to oxaliplatin resulted in dose related reduction in neurite length, density, and number of neurons compared to vehicle treated controls, using Gap43 immunostaining. Neurons treated acutely with 20 μg/ml oxaliplatin showed significantly higher signal intensity for cyclic AMP immunofluorescence (160.5 ± 13 a.u., n = 3, P < 0.05), compared to controls (120.3 ± 4 a.u.). Calcium imaging showed significantly enhanced capsaicin (TRPV1 agonist), responses after acute 20 μg/ml oxaliplatin treatment where the second of paired capsaicin responses increased from 80.7 ± 0.6% without oxaliplatin, to 171.26 ± 29% with oxaliplatin, (n = 6 paired t test, P < 0.05); this was reduced to 81.42 ± 8.1% (P < 0.05), by pretretreatment with the cannabinoid CB2 receptor agonist GW 833972. Chronic oxaliplatin treatment also resulted in dose related increases in capsaicin responses. Similarly, second responses to icilin (TRPA1/TRPM8 agonist), were enhanced after acute (143.85 ± 7%, P = 0.004, unpaired t test, n = 3), and chronic (119.7 ± 11.8%, P < 0.05, n = 3) oxaliplatin treatment, compared to control (85.3 ± 1.7%). Responses to the selective TRPM8 agonist WS-12 were not affected. Conclusions Oxaliplatin treatment induces TRP sensitization mediated by increased intracellular cAMP, which may cause neuronal damage. These effects may be mitigated by co-treatment with adenylyl cyclase inhibitors, like CB2 agonists, to alleviate the neurotoxic effects of oxaliplatin. PMID:21106058

  7. CNS Diseases and Uveitis

    PubMed Central

    Allegri, Pia; Rissotto, Roberto; Herbort, Carl P.; Murialdo, Ugo

    2011-01-01

    A number of inflammatory, infectious, neoplastic and idiopathic disorders affect the eye and the central nervous system (CNS) concurrently or at different time frames. These conditions pose a diagnostic challenge to the clinician since they may present with similar ocular and neurological manifestations. The purpose of this review is to describe major neurological syndromes including multiple sclerosis, Vogt-Koyanagi-Harada disease, other autoimmune syndromes, and several infectious diseases which may affect the eye. This article may serve as a guide for the diagnosis and treatment of such disorders. It should be noted that these conditions have been viewed from a neurologist’s perspective thereby neurologic involvement is stressed. PMID:22454751

  8. Mirror Neurons System Engagement in Late Adolescents and Adults While Viewing Emotional Gestures

    PubMed Central

    Salvia, Emilie; Süß, Moritz; Tivadar, Ruxandra; Harkness, Sarah; Grosbras, Marie-Hélène

    2016-01-01

    Observing others’ actions enhances muscle-specific cortico-spinal excitability, reflecting putative mirror neurons activity. The exposure to emotional stimuli also modulates cortico-spinal excitability. We investigated how those two phenomena might interact when they are combined, i.e., while observing a gesture performed with an emotion, and whether they change during the transition between adolescence and adulthood, a period of social and brain maturation. We delivered single-pulse transcranial magnetic stimulation (TMS) over the hand area of the left primary motor cortex of 27 healthy adults and adolescents and recorded their right first dorsal interossus (FDI) muscle activity (i.e., motor evoked potential – MEP), while they viewed either videos of neutral or angry hand actions and facial expressions, or neutral objects as a control condition. We reproduced the motor resonance and the emotion effects – hand-actions and emotional stimuli induced greater cortico-spinal excitability than the faces/control condition and neutral videos, respectively. Moreover, the influence of emotion was present for faces but not for hand actions, indicating that the motor resonance and the emotion effects might be non-additive. While motor resonance was observed in both groups, the emotion effect was present only in adults and not in adolescents. We discuss the possible neural bases of these findings. PMID:27489547

  9. Regeneration of axotomized olfactory neurons in young and adult locusts quantified by fasciclin I immunofluorescence.

    PubMed

    Wasser, Hannah; Biller, Alexandra; Antonopoulos, Georgios; Meyer, Heiko; Bicker, Gerd; Stern, Michael

    2017-04-01

    The olfactory pathway of the locust Locusta migratoria is characterized by a multiglomerular innervation of the antennal lobe (AL) by olfactory receptor neurons (ORNs). After crushing the antenna and thereby severing ORN axons, changes in the AL were monitored. First, volume changes were measured at different times post-crush with scanning laser optical tomography in 5th instar nymphs. AL volume decreased significantly to a minimum volume at 4 days post-crush, followed by an increase. Second, anterograde labeling was used to visualize details in the AL and antennal nerve (AN) during de- and regeneration. Within 24 h post-crush (hpc) the ORN fragments distal to the lesion degenerated. After 48 hpc, regenerating fibers grew through the crush site. In the AL, labeled ORN projections disappeared completely and reappeared after a few days. A weak topographic match between ORN origin on the antenna and the position of innervated glomeruli that was present in untreated controls did not reappear after regeneration. Third, the cell surface marker fasciclin I that is expressed in ORNs was used for quantifying purposes. Immunofluorescence was measured in the AL during de- and regeneration in adults and 5th instar nymphs: after a rapid but transient, decrease, it reappeared. Both processes happen faster in 5th instar nymphs than in adults.

  10. Antenatal Glucocorticoid Treatment Induces Adaptations in Adult Midbrain Dopamine Neurons, which Underpin Sexually Dimorphic Behavioral Resilience

    PubMed Central

    Virdee, Kanwar; McArthur, Simon; Brischoux, Frédéric; Caprioli, Daniele; Ungless, Mark A; Robbins, Trevor W; Dalley, Jeffrey W; Gillies, Glenda E

    2014-01-01

    We demonstrated previously that antenatal glucocorticoid treatment (AGT, gestational days 16–19) altered the size and organization of the adult rat midbrain dopaminergic (DA) populations. Here we investigated the consequences of these AGT-induced cytoarchitectural disturbances on indices of DA function in adult rats. We show that in adulthood, enrichment of striatal DA fiber density paralleled AGT-induced increases in the numbers of midbrain DA neurons, which retained normal basal electrophysiological properties. This was co-incident with changes in (i) striatal D2-type receptor levels (increased, both sexes); (ii) D1-type receptor levels (males decreased; females increased); (iii) DA transporter levels (males increased; females decreased) in striatal regions; and (iv) amphetamine-induced mesolimbic DA release (males increased; females decreased). However, despite these profound, sexually dimorphic changes in markers of DA neurotransmission, in-utero glucocorticoid overexposure had a modest or no effect on a range of conditioned and unconditioned appetitive behaviors known to depend on mesolimbic DA activity. These findings provide empirical evidence for enduring AGT-induced adaptive mechanisms within the midbrain DA circuitry, which preserve some, but not all, functions, thereby casting further light on the vulnerability of these systems to environmental perturbations. Furthermore, they demonstrate these effects are achieved by different, often opponent, adaptive mechanisms in males and females, with translational implications for sex biases commonly found in midbrain DA-associated disorders. PMID:23929547

  11. High neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids

    PubMed Central

    Peirouvi, T.; Yekani, F.; Azarnia, M.; Massumi, M.

    2015-01-01

    Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic cerebrospinal fluid (E-CSF) including E13.5, E17-CSF and the adult cerebrospinal fluid (A-CSF), all extracted from rats. CSF samples were selected based on their effects on cell behavioral parameters. Primary cell culture was performed in the presence of either normal or high levels of KCL in a culture medium. High levels of KCL cause cell depolarization, and thus the activation of quiescent NSCs. Results from immunocytochemistry (ICC) and semi-quantitative RT-PCR (sRT-PCR) techniques showed that in E-CSF-treated groups, neuronal differentiation increased (E17>E13.5). In contrast, A-CSF decreased and increased neuronal and astroglial differentiations, respectively. Cell survivability and/or proliferation (S/P), evaluated by an MTT assay, increased by E13.5 CSF, but decreased by both E17 CSF and A-CSF. Based on the results, it is finally concluded that adult rat hippocampal proliferative cells are not restricted progenitors but rather show high plasticity in neuronal/astroglial differentiation according to the effects of CSF samples. In addition, using high concentrations of KCL in the primary cell culture led to an increase in the number of NSCs, which in turn resulted in the increase in neuronal or astroglial differentiations after CSF treatment. PMID:27175157

  12. Contribution of CNS cells in NeuroAIDS

    PubMed Central

    Verma, Ashish Swarup; Singh, Udai Pratap; Dwivedi, Premendra Dhar; Singh, Anchal

    2010-01-01

    NeuroAIDS is becoming a major health problem among AIDS patients and long-term HIV survivors. As per 2009 estimates of UNAIDS report, more than 34 million people have been infected with HIV out of which ≥ 50% show signs and symptoms of neuropsychiatric disorders. These disorders affect central nervous system (CNS) and peripheral nervous systems (PNS). CNS is one of the most protected organ systems in body which is protected by blood-brain barrier (BBB). Not only this, most of the cells of CNS are negative for receptors and co-receptors for HIV infections. Neurons have been found to be completely nonpermissive for HIV infection. These facts suggest that neurotoxicity could be an indirect mechanism responsible for neuropsychiatric complications. In this review, we will discuss the importance of different cell types of CNS and their contribution toward neurotoxicity. PMID:21180461

  13. Biologic scaffold for CNS repair.

    PubMed

    Meng, Fanwei; Modo, Michel; Badylak, Stephen F

    2014-05-01

    Injury to the CNS typically results in significant morbidity and endogenous repair mechanisms are limited in their ability to restore fully functional CNS tissue. Biologic scaffolds composed of individual purified components have been shown to facilitate functional tissue reconstruction following CNS injury. Extracellular matrix scaffolds derived from mammalian tissues retain a number of bioactive molecules and their ability for CNS repair has recently been recognized. In addition, novel biomaterials for dural mater repairs are of clinical interest as the dura provides barrier function and maintains homeostasis to CNS. The present article describes the application of regenerative medicine principles to the CNS tissues and dural mater repair. While many approaches have been exploring the use of cells and/or therapeutic molecules, the strategies described herein focus upon the use of extracellular matrix scaffolds derived from mammalian tissues that are free of cells and exogenous factors.

  14. Palmitoylethanolamide in CNS health and disease.

    PubMed

    Mattace Raso, Giuseppina; Russo, Roberto; Calignano, Antonio; Meli, Rosaria

    2014-08-01

    The existence of acylethanolamides (AEs) in the mammalian brain has been known for decades. Among AEs, palmitoylethanolamide (PEA) is abundant in the central nervous system (CNS) and conspicuously produced by neurons and glial cells. Antihyperalgesic and neuroprotective properties of PEA have been mainly related to the reduction of neuronal firing and to control of inflammation. Growing evidence suggest that PEA may be neuroprotective during CNS neurodegenerative diseases. Advances in the understanding of the physiology and pharmacology of PEA have potentiated its interest as useful biological tool for disease management. Several rapid non-genomic and delayed genomic mechanisms of action have been identified for PEA as peroxisome proliferator-activated receptor (PPAR)-α dependent. First, an early molecular control, through Ca(+2)-activated intermediate- and/or big-conductance K(+) channels opening, drives to rapid neuronal hyperpolarization. This is reinforced by the increase of the inward Cl(-) currents due to the modulation of the gamma aminobutyric acid A receptor and by the desensitization of the transient receptor potential channel type V1. Moreover, the gene transcription-mediated mechanism sustains the long-term anti-inflammatory effects, by reducing pro-inflammatory enzyme expression and increasing neurosteroid synthesis. Overall, the integration of these different modes of action allows PEA to exert an immediate and prolonged efficacious control in neuron signaling either on inflammatory process or neuronal excitability, maintaining cellular homeostasis. In this review, we will discuss the effect of PEA on metabolism, behavior, inflammation and pain perception, related to the control of central functions and the emerging evidence demonstrating its therapeutic efficacy in several neurodegenerative diseases.

  15. Intrinsic protective mechanisms of the neuron-glia network against glioma invasion.

    PubMed

    Iwadate, Yasuo; Fukuda, Kazumasa; Matsutani, Tomoo; Saeki, Naokatsu

    2016-04-01

    Gliomas arising in the brain parenchyma infiltrate into the surrounding brain and break down established complex neuron-glia networks. However, mounting evidence suggests that initially the network microenvironment of the adult central nervous system (CNS) is innately non-permissive to glioma cell invasion. The main players are inhibitory molecules in CNS myelin, as well as proteoglycans associated with astrocytes. Neural stem cells, and neurons themselves, possess inhibitory functions against neighboring tumor cells. These mechanisms have evolved to protect the established neuron-glia network, which is necessary for brain function. Greater insight into the interaction between glioma cells and the surrounding neuron-glia network is crucial for developing new therapies for treating these devastating tumors while preserving the important and complex neural functions of patients.

  16. Structural plasticity within highly specific neuronal populations identifies a unique parcellation of motor learning in the adult brain

    PubMed Central

    Wang, Ling; Conner, James M.; Rickert, Jessica; Tuszynski, Mark H.

    2011-01-01

    Cortical networks undergo adaptations during learning, including increases in dendritic complexity and spines. We hypothesized that structural elaborations during learning are restricted to discrete subsets of cells preferentially activated by, and relevant to, novel experience. Accordingly, we examined corticospinal motor neurons segregated on the basis of their distinct descending projection patterns, and their contribution to specific aspects of motor control during a forelimb skilled grasping task in adult rats. Learning-mediated structural adaptations, including extensive expansions of spine density and dendritic complexity, were restricted solely to neurons associated with control of distal forelimb musculature required for skilled grasping; neurons associated with control of proximal musculature were unchanged by the experience. We further found that distal forelimb-projecting and proximal forelimb-projecting neurons are intermingled within motor cortex, and that this distribution does not change as a function of skill acquisition. These findings indicate that representations of novel experience in the adult motor cortex are associated with selective structural expansion in networks of functionally related, active neurons that are distributed across a single cortical domain. These results identify a distinct parcellation of cortical resources in support of learning. PMID:21257908

  17. When are new hippocampal neurons, born in the adult brain, integrated into the network that processes spatial information?

    PubMed

    Sandoval, C Jimena; Martínez-Claros, Marisela; Bello-Medina, Paola C; Pérez, Oswaldo; Ramírez-Amaya, Víctor

    2011-03-09

    Adult-born neurons in the dentate gyrus (DG) functionally integrate into the behaviorally relevant hippocampal networks, showing a specific Arc-expression response to spatial exploration when mature. However, it is not clear when, during the 4- to 6-week interval that is critical for survival and maturation of these neurons, this specific response develops. Therefore, we characterized Arc expression after spatial exploration or cage control conditions in adult-born neurons from rats that were injected with BrdU on one day and were sacrificed 1, 7, 15, 30, and 45 days post-BrdU injection (PBI). Triple immunostaining for NeuN, Arc, and BrdU was analyzed through the different DG layers. Arc protein expression in BrdU-positive cells was observed from day 1 to day 15 PBI but was not related to behavioral stimulation. The specific Arc-expression response to spatial exploration was observed from day 30 and 45 in about 5% of the BrdU-positive cell population. Most of the BrdU-positive neurons expressing Arc in response to spatial exploration (∼90%) were located in DG layer 1, and no Arc expression was observed in cells located in the subgranular zone (SGZ). Using the current data and that obtained previously, we propose a mathematical model suggesting that new neurons are unlikely to respond to exploration by expressing Arc after they are 301 days old, and also that in a 7-month-old rat the majority (60%) of the neurons that respond to exploration must have been born during adulthood; thus, suggesting that adult neurogenesis in the DG is highly relevant for spatial information processing.

  18. When Are New Hippocampal Neurons, Born in the Adult Brain, Integrated into the Network That Processes Spatial Information?

    PubMed Central

    Sandoval, C. Jimena; Pérez, Oswaldo; Ramírez-Amaya, Víctor

    2011-01-01

    Adult-born neurons in the dentate gyrus (DG) functionally integrate into the behaviorally relevant hippocampal networks, showing a specific Arc-expression response to spatial exploration when mature. However, it is not clear when, during the 4- to 6-week interval that is critical for survival and maturation of these neurons, this specific response develops. Therefore, we characterized Arc expression after spatial exploration or cage control conditions in adult-born neurons from rats that were injected with BrdU on one day and were sacrificed 1, 7, 15, 30, and 45 days post-BrdU injection (PBI). Triple immunostaining for NeuN, Arc, and BrdU was analyzed through the different DG layers. Arc protein expression in BrdU-positive cells was observed from day 1 to day 15 PBI but was not related to behavioral stimulation. The specific Arc-expression response to spatial exploration was observed from day 30 and 45 in about 5% of the BrdU-positive cell population. Most of the BrdU-positive neurons expressing Arc in response to spatial exploration (∼90%) were located in DG layer 1, and no Arc expression was observed in cells located in the subgranular zone (SGZ). Using the current data and that obtained previously, we propose a mathematical model suggesting that new neurons are unlikely to respond to exploration by expressing Arc after they are 301 days old, and also that in a 7-month-old rat the majority (60%) of the neurons that respond to exploration must have been born during adulthood; thus, suggesting that adult neurogenesis in the DG is highly relevant for spatial information processing. PMID:21408012

  19. Olfactory bulbectomy, but not odor conditioned aversion, induces the differentiation of immature neurons in the adult rat piriform cortex.

    PubMed

    Gómez-Climent, M Á; Hernández-González, S; Shionoya, K; Belles, M; Alonso-Llosa, G; Datiche, F; Nacher, J

    2011-05-05

    The piriform cortex layer II of young-adult rats presents a population of prenatally generated cells, which express immature neuronal markers, such as the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) or doublecortin (DCX), and display structural characteristics of immature neurons. The number of PSA-NCAM/DCX expressing cells in this region decreases markedly as age progresses, suggesting that these cells differentiate or die. Since the piriform cortex receives a major input from the olfactory bulb and participates in olfactory information processing, it is possible that the immature neurons in layer II are affected by manipulations of the olfactory bulb or olfactory learning. It is not known whether these cells can be induced to differentiate and, if so, what would be their fate. In order to address these questions, we have performed unilateral olfactory bulbectomy (OBX) and an olfactory learning paradigm (taste-potentiated odor aversion, TPOA), in young-adult rats and have studied the expression of different mature and immature neuronal markers, as well as the presence of cell death. We have found that 14 h after OBX there was a dramatic decrease in the number of both PSA-NCAM and DCX expressing cells in piriform cortex layer II, whereas that of cells expressing NeuN, a mature neuronal marker, increased. By contrast, the number of cells expressing glutamate decarboxylase, isoform 67 (GAD67), a marker for interneurons, decreased slightly. Additionally, we have not found evidence of numbers of dying cells high enough to justify the disappearance of immature neurons. Analysis of animals subjected to TPOA revealed that this paradigm does not affect PSA-NCAM expressing cells. Our results strongly suggest that OBX can induce the maturation of immature neurons in the piriform cortex layer II and that these cells do not become interneurons. By contrast, these cells do not seem to play a crucial role in olfactory memory.

  20. CNS regulation of appetite.

    PubMed

    Harrold, Joanne A; Dovey, Terry M; Blundell, John E; Halford, Jason C G

    2012-07-01

    This article reviews the regulation of appetite from a biopsychological perspective. It considers psychological experiences and peripheral nutritional systems (both episodic and tonic) and addresses their relationship with the CNS networks that process and integrate their input. Whilst such regulatory aspects of obesity focus on homeostatic control mechanisms, in the modern environment hedonic aspects of appetite are also critical. Enhanced knowledge of the complexity of appetite regulation and the mechanisms that sustain obesity indicate the challenge presented by management of the obesity epidemic. Nonetheless, effective control of appetite expression remains a critical therapeutic target for weight management. Currently, strategies which utilise a combination of agents to target both homeostatic and hedonic control mechanisms represent the most promising approaches. This article is part of a Special Issue entitled 'Central Control of Food Intake'.

  1. Cell Therapy From Bench to Bedside Translation in CNS Neurorestoratology Era

    PubMed Central

    Huang, Hongyun; Chen, Lin; Sanberg, Paul

    2010-01-01

    Recent advances in cell biology, neural injury and repair, and the progress towards development of neurorestorative interventions are the basis for increased optimism. Based on the complexity of the processes of demyelination and remyelination, degeneration and regeneration, damage and repair, functional loss and recovery, it would be expected that effective therapeutic approaches will require a combination of strategies encompassing neuroplasticity, immunomodulation, neuroprotection, neurorepair, neuroreplacement, and neuromodulation. Cell-based restorative treatment has become a new trend, and increasing data worldwide have strongly proven that it has a pivotal therapeutic value in CNS disease. Moreover, functional neurorestoration has been achieved to a certain extent in the CNS clinically. Up to now, the cells successfully used in preclinical experiments and/or clinical trial/treatment include fetal/embryonic brain and spinal cord tissue, stem cells (embryonic stem cells, neural stem/progenitor cells, hematopoietic stem cells, adipose-derived adult stem/precursor cells, skin-derived precursor, induced pluripotent stem cells), glial cells (Schwann cells, oligodendrocyte, olfactory ensheathing cells, astrocytes, microglia, tanycytes), neuronal cells (various phenotypic neurons and Purkinje cells), mesenchymal stromal cells originating from bone marrow, umbilical cord, and umbilical cord blood, epithelial cells derived from the layer of retina and amnion, menstrual blood-derived stem cells, Sertoli cells, and active macrophages, etc. Proof-of-concept indicates that we have now entered a new era in neurorestoratology. PMID:21359168

  2. Interneuron Progenitor Transplantation to Treat CNS Dysfunction

    PubMed Central

    Chohan, Muhammad O.; Moore, Holly

    2016-01-01

    Due to the inadequacy of endogenous repair mechanisms diseases of the nervous system remain a major challenge to scientists and clinicians. Stem cell based therapy is an exciting and viable strategy that has been shown to ameliorate or even reverse symptoms of CNS dysfunction in preclinical animal models. Of particular importance has been the use of GABAergic interneuron progenitors as a therapeutic strategy. Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors retain their unique capacity to disperse, integrate and induce plasticity in adult host circuitries following transplantation. Here we discuss the potential of interneuron based transplantation strategies as it relates to CNS disease therapeutics. We also discuss mechanisms underlying their therapeutic efficacy and some of the challenges that face the field. PMID:27582692

  3. Adolescent cannabis exposure alters opiate intake and opioid limbic neuronal populations in adult rats.

    PubMed

    Ellgren, Maria; Spano, Sabrina M; Hurd, Yasmin L

    2007-03-01

    Cannabis use is a hypothesized gateway to subsequent abuse of other drugs such as heroin. We currently assessed whether Delta-9-tetrahydrocannabinol (THC) exposure during adolescence modulates opiate reinforcement and opioid neural systems in adulthood. Long-Evan male rats received THC (1.5 mg/kg intraperitoneally (i.p.)) or vehicle every third day during postnatal days (PNDs) 28-49. Heroin self-administration behavior (fixed ratio-1; 3-h sessions) was studied from young adulthood (PND 57) into full adults (PND 102). THC-pretreated rats showed an upward shift throughout the heroin self-administration acquisition (30 microg/kg/infusion) phase, whereas control animals maintained the same pattern once stable intake was obtained. Heightened opiate sensitivity in THC animals was also evidenced by higher heroin consumption during the maintenance phase (30 and 60 microg/kg/infusion) and greater responding for moderate-low heroin doses (dose-response curve: 7.5, 15, 30, 60, and 100 microg/kg/injection). Specific disturbance of the endogenous opioid system was also apparent in the brain of adults with adolescent THC exposure. Striatal preproenkephalin mRNA expression was exclusively increased in the nucleus accumbens (NAc) shell; the relative elevation of preproenkephalin mRNA in the THC rats was maintained even after heroin self-administration. Moreover, mu opioid receptor (muOR) GTP-coupling was potentiated in mesolimbic and nigrostriatal brainstem regions in THC-pretreated animals. muOR function in the NAc shell was specifically correlated to heroin intake. The current findings support the gateway hypothesis demonstrating that adolescence cannabis exposure has an enduring impact on hedonic processing resulting in enhanced opiate intake, possibly as a consequence of alterations in limbic opioid neuronal populations.

  4. Genetic evidence for p75NTR-dependent tetraploidy in cortical projection neurons from adult mice.

    PubMed

    López-Sánchez, Noelia; Frade, José M

    2013-04-24

    A subpopulation of chick retinal projection neurons becomes tetraploid during development, an event prevented by blocking antibodies against p75 neurotrophin receptor (p75(NTR)). We have used an optimized flow cytometric assay, based on the analysis of unfixed brain cell nuclei, to study whether p75(NTR)-dependent neuronal tetraploidization takes place in the cerebral cortex, giving rise to projection neurons as well. We show that 3% of neurons in both murine neocortex and chick telencephalic derivatives are tetraploid, and that in the mouse ~85% of these neurons express the immediate early genes Erg-1 and c-Fos, indicating that they are functionally active. Tetraploid cortical neurons (65-80%) express CTIP2, a transcription factor specific for subcortical projection neurons in the mouse neocortex. During the period in which these neurons are born, p75(NTR) is detected in differentiating neurons undergoing DNA replication. Accordingly, p75(NTR)-deficient mice contain a reduced proportion of both NeuN and CTIP2-positive neocortical tetraploid neurons, thus providing genetic evidence for the participation of p75(NTR) in the induction of neuronal tetraploidy in the mouse neocortex. In the striatum tetraploidy is mainly associated with long-range projection neurons as well since ~80% of tetraploid neurons in this structure express calbindin, a marker of neostriatal-matrix spiny neurons, known to establish long-range projections to the substantia nigra and globus pallidus. In contrast, only 20% of tetraploid cortical neurons express calbindin, which is mainly expressed in layers II-III, where CTIP2 is absent. We conclude that tetraploidy mainly affects long-range projection neurons, being facilitated by p75(NTR) in the neocortex.

  5. [Imaging features of CNS tuberculosis].

    PubMed

    Semlali, S; El Kharras, A; Mahi, M; Hsaini, Y; Benameur, M; Aziz, N; Chaouir, S; Akjouj, S

    2008-02-01

    CNS tuberculosis remains relatively frequent in endemic regions. Both CT and MRI are valuable for diagnosis. Even though non-specific, MRI including diffusion-weighted imaging and proton spectroscopy is more sensitive than CT for detection of some lesions. The purpose of this paper is to illustrate the imaging features of CNS tuberculosis.

  6. Sex differences of excitatory synaptic transmission in RA projection neurons of adult zebra finches.

    PubMed

    Wang, Songhua; Meng, Wei; Liu, Shaoyi; Liao, Congshu; Huang, Qingyao; Li, Dongfeng

    2014-10-17

    Zebra finches are ideal animals to investigate sex difference in songbirds. Only males can sing. The brain nuclei controlling song learning and production in males are considerably larger than in females. The robust nucleus of the arcopallium (RA) is a premotor nucleus, playing a key role in controlling singing. RA receives denser synapse inputs in males than in females. Sex differences of excitatory synaptic transmission in the RA projection neurons (PNs) have not been reported. In the present study, using whole-cell voltage-clamp recording, spontaneous EPSCs (sEPSCs) and miniature EPSCs (mEPSCs) of RA PNs in the intact males and females were recorded. The average frequency and amplitude of sEPSCs/mEPSCs in the intact males were higher than females. The half-width and decay time of sEPSCs/mEPSCs in the intact males were longer than females. In order to verify whether these sex differences related to sex steroids, males were castrated. The average frequency of sEPSCs/mEPSCs in castrated males was lower than intact males and was similar to in females; the amplitude was not changed after castrating. These results demonstrate the sexually dimorphic of the excitatory synaptic transmission in the RA PNs, the RA PNs in males receive more excitatory synaptic transmission and these sex differences were partly affected by sex hormones. These findings contribute to further illuminate the neural mechanisms under the sexually dimorphism in song production of adult zebra finches.

  7. Perinatal Exposure to Neuregulin-1 Results in Disinhibition of Adult Midbrain Dopaminergic Neurons: Implication in Schizophrenia Modeling

    PubMed Central

    Namba, Hisaaki; Okubo, Takeshi; Nawa, Hiroyuki

    2016-01-01

    Aberrant neuregulin-1 (NRG1) signals are suggested to associate with the neuropathophysiology of schizophrenia. Employing a mouse schizophrenia model established by neonatal neuregulin-1 challenge, we analysed postpubertal consequence of the NRG1 pretreatment for the electrophysiological property of nigral dopamine neurons. In vivo single unit recordings from anaesthetized NRG1-pretreated mice revealed increased spike bursting of nigral dopamine neurons. In slice preparations from NRG1-pretreated mice, spontaneous firing was elevated relative to controls. The relative increase in firing rates was abolished by a GABAA receptor antagonist. Whole-cell recording showed that perinatal NRG1 pretreatment diminished inhibitory miniature synaptic currents as well as GABAA receptor sensitivity. These results collectively suggest that perinatal exposure to neuregulin-1 results in the disinhibition of nigral dopamine neurons to influence their firing properties at the adult stage when the behavioral deficits are evident. PMID:26935991

  8. CNS Myelination Requires Cytoplasmic Dynein Function

    PubMed Central

    Yang, Michele L.; Shin, Jimann; Kearns, Christina A.; Langworthy, Melissa M.; Snell, Heather; Walker, Macie B.; Appel, Bruce

    2014-01-01

    Background Cytoplasmic dynein provides the main motor force for minus-end-directed transport of cargo on microtubules. Within the vertebrate central nervous system (CNS), proliferation, neuronal migration and retrograde axon transport are among the cellular functions known to require dynein. Accordingly, mutations of DYNC1H1, which encodes the heavy chain subunit of cytoplasmic dynein, have been linked to developmental brain malformations and axonal pathologies. Oligodendrocytes, the myelinating glial cell type of the CNS, migrate from their origins to their target axons and subsequently extend multiple long processes that ensheath axons with specialized insulating membrane. These processes are filled with microtubules, which facilitate molecular transport of myelin components. However, whether oligodendrocytes require cytoplasmic dynein to ensheath axons with myelin is not known. Results We identified a mutation of zebrafish dync1h1 in a forward genetic screen that caused a deficit of oligodendrocytes. Using in vivo imaging and gene expression analyses, we additionally found evidence that dync1h1 promotes axon ensheathment and myelin gene expression. Conclusions In addition to its well known roles in axon transport and neuronal migration, cytoplasmic dynein contributes to neural development by promoting myelination. PMID:25488883

  9. Adult neuron addition to the zebra finch song motor pathway correlates with the rate and extent of recovery from botox-induced paralysis of the vocal muscles.

    PubMed

    Pytte, Carolyn; Yu, Yi-Lo; Wildstein, Sara; George, Shanu; Kirn, John R

    2011-11-23

    In adult songbirds, neurons are continually incorporated into the telencephalic nucleus HVC (used as a proper name), a premotor region necessary for the production of learned vocalizations. Previous studies have demonstrated that neuron addition to HVC is highest when song is most variable: in juveniles during song learning, in seasonally singing adults during peaks in plasticity that precede the production of new song components, or during seasonal reestablishment of a previously learned song. These findings suggest that neuron addition provides motor flexibility for the transition from a variable song to a target song. Here we test the association between the quality of song structure and HVC neuron addition by experimentally manipulating syringeal muscle control with Botox, which produces a transient partial paralysis. We show that the quality of song structure covaries with new neuron addition to HVC. Both the magnitude of song distortion and the rate of song recovery after syringeal Botox injections were correlated with the number of new neurons incorporated into HVC. We suggest that the quality of song structure is either a cause or consequence of the number of new neurons added to HVC. Birds with naturally high rates of neuron addition may have had the greatest success in recovering song. Alternatively, or in addition, new neuron survival in the song motor pathway may be regulated by the quality of song-generated feedback as song regains its original stereotyped structure. Present results are the first to show a relationship between peripheral muscle control and adult neuron addition to cortical premotor circuits.

  10. Nuclear factor of activated T cells (NFATc4) is required for BDNF-dependent survival of adult-born neurons and spatial memory formation in the hippocampus.

    PubMed

    Quadrato, Giorgia; Benevento, Marco; Alber, Stefanie; Jacob, Carolin; Floriddia, Elisa M; Nguyen, Tuan; Elnaggar, Mohamed Y; Pedroarena, Christine M; Molkentin, Jeffrey D; Di Giovanni, Simone

    2012-06-05

    New neurons generated in the adult dentate gyrus are constantly integrated into the hippocampal circuitry and activated during encoding and recall of new memories. Despite identification of extracellular signals that regulate survival and integration of adult-born neurons such as neurotrophins and neurotransmitters, the nature of the intracellular modulators required to transduce those signals remains elusive. Here, we provide evidence of the expression and transcriptional activity of nuclear factor of activated T cell c4 (NFATc4) in hippocampal progenitor cells. We show that NFATc4 calcineurin-dependent activity is required selectively for survival of adult-born neurons in response to BDNF signaling. Indeed, cyclosporin A injection and stereotaxic delivery of the BDNF scavenger TrkB-Fc in the mouse dentate gyrus reduce the survival of hippocampal adult-born neurons in wild-type but not in NFATc4(-/-) mice and do not affect the net rate of neural precursor proliferation and their fate commitment. Furthermore, associated with the reduced survival of adult-born neurons, the absence of NFATc4 leads to selective defects in LTP and in the encoding of hippocampal-dependent spatial memories. Thus, our data demonstrate that NFATc4 is essential in the regulation of adult hippocampal neurogenesis and identify NFATc4 as a central player of BDNF-driven prosurvival signaling in hippocampal adult-born neurons.

  11. Thermally reduced graphene is a permissive material for neurons and astrocytes and de novo neurogenesis in the adult olfactory bulb in vivo.

    PubMed

    Defteralı, Çağla; Verdejo, Raquel; Peponi, Laura; Martín, Eduardo D; Martínez-Murillo, Ricardo; López-Manchado, Miguel Ángel; Vicario-Abejón, Carlos

    2016-03-01

    Graphene and graphene-based nanomaterials (GBNs) are being investigated as potential substrates for the growth of neural stem cells (NSCs), neurons and glia in cell culture models. In contrast, reports testing the effects of graphene directly with adult neural cells in vivo are missing. Here we studied the biocompatibility of thermally reduced graphene (TRG) with neurons and glia, as well as with the generation of new neurons in the adult brain in vivo. TRG injected in the brain together with a retroviral vector expressing GFP to label dividing progenitor cells in the core of the adult olfactory bulb (OB) did not alter de novo neurogenesis, neuronal and astrocyte survival nor did it produce a microglial response. These findings indicate that TRG may be a biocompatible material with neuronal and glial cells in vivo and support its use in studies of brain repair and function.

  12. Slice Culture Modeling of Central Nervous System (CNS) Viral Infection

    PubMed Central

    Dionne, Kalen R.; Tyler, Kenneth L.

    2016-01-01

    The complexity of the central nervous system (CNS) is not recapitulated in cell culture models. Thin slicing and subsequent culture of CNS tissue has become a valued means to study neuronal and glial biology within the context of the physiologically relevant tissue milieu. Modern membrane-interface slice culturing methodology allows straightforward access to both CNS tissue and feeding medium, enabling experimental manipulations and analyses that would otherwise be impossible in vivo. CNS slices can be successfully maintained in culture for up to several weeks for investigation of evolving pathology and long-term intervention in models of chronic neurologic disease. Herein, membrane-interface slice culture models for studying viral encephalitis and myelitis are detailed, with emphasis on the use of these models for investigation of pathogenesis and evaluation of novel treatment strategies. We describe techniques to (1) generate brain and spinal cord slices from rodent donors, (2) virally infect slices, (3) monitor viral replication, (4) assess virally induced injury/apoptosis, (5) characterize “CNS-specific” cytokine production, and (6) treat slices with cytokines/pharmaceuticals. Although our focus is on CNS viral infection, we anticipate that the described methods can be adapted to address a wide range of investigations within the fields of neuropathology, neuroimmunology, and neuropharmacology. PMID:23975824

  13. Properties of GABA-mediated synaptic potentials induced by zinc in adult rat hippocampal pyramidal neurones.

    PubMed Central

    Xie, X; Smart, T G

    1993-01-01

    1. Intracellular recording techniques were used to study the actions of the transition ion, zinc, on CA1 and CA3 pyramidal neurones in adult rat hippocampal slices. 2. Zinc (300 microM) hyperpolarized pyramidal neurones, increased the membrane excitability and also induced periodic, spontaneous giant depolarizing potentials associated with a conductance increase mechanism. 3. The occurrence of spontaneous giant depolarizations was dependent on the zinc concentration (10 microM-1 mM) with an apparent dissociation constant of 98 microM. The frequency of zinc-induced depolarizations was unaffected by the membrane potential from -50 to -100 mV. 4. Stimulation of the Schaffer collaterals or mossy fibre pathways evoked an excitatory and inhibitory synaptic potential complex. In the presence of zinc, nerve fibre stimulation evoked, in an all-or-none fashion, a giant depolarizing potential with an increased membrane conductance. Both spontaneous and evoked depolarizations were inhibited by 1 microM tetrodotoxin. 5. Evoked giant depolarizations were labile with too frequent stimulation resulting in a failure of generation. A minimum time of 140 s was required between stimuli to ensure successive giant depolarizations. 6. Spontaneous and evoked zinc-induced depolarizing potentials were inhibited by bicuculline (10 microM) or picrotoxin (40 microM) and enhanced by pentobarbitone (100 microM) or flurazepam (10 microM), suggesting that these potentials are mediated by activation of gamma-aminobutyric acidA (GABAA) receptors. 7. Ionophoretic application of GABA produced biphasic responses at -60 mV membrane potential. The reversal potentials for the depolarizing and hyperpolarizing GABA responses were -56 +/- 5 and -66 +/- 8 mV respectively. The giant depolarizations induced by zinc reversed at -57 +/- 4 mV. This suggests a dendritic location for the generation of these potentials. 8. Excitatory amino acid antagonists, 2-amino-5-phosphonovalerate (APV, 40 microM) or 6-cyano-7

  14. Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus.

    PubMed

    Rao, Muddanna S; Shetty, Ashok K

    2004-01-01

    Doublecortin (DCX), a microtubule-associated phosphoprotein, has been recently utilized as a marker of newly born neurons in the adult dentate gyrus (DG). Nonetheless, it is unknown whether DCX exclusively labels newly formed neurons, as certain granule cells with the phenotype of differentiated neurons express DCX. We addressed the authenticity of DCX as a marker of new neurons in the adult DG by quantifying cells that are positive for 5'-bromodeoxyuridine (BrdU), DCX and both BrdU and DCX in hippocampal tissues of adult rats treated with daily injections of BrdU for 12 consecutive days. We provide new evidence that neurons visualized with DCX immunostaining in the adult rat DG are new neurons that are predominantly born during the 12 days before euthanasia. This is confirmed by the robust expression of BrdU in 90% of DCX-positive neurons in the DG of animals injected with BrdU for 12 days. Furthermore, DCX expression is specific to newly generated healthy neurons, as virtually all DCX-positive cells express early neuronal antigens but lack antigens specific to glia, undifferentiated cells or apoptotic cells. As DCX expression is also robust in the dendrites, DCX immunocytochemistry of thicker sections facilitates quantification of the dendritic growth in newly born neurons. Thus, both absolute number and dendritic growth of new neurons that are generated in the adult DG over a 12-day period can be quantified reliably with DCX immunostaining. This could be particularly useful for analysing changes in dentate neurogenesis in human hippocampal tissues as a function of ageing or neurodegenerative diseases.

  15. Effects of neuron-specific estrogen receptor (ER) α and ERβ deletion on the acute estrogen negative feedback mechanism in adult female mice.

    PubMed

    Cheong, Rachel Y; Porteous, Robert; Chambon, Pierre; Abrahám, István; Herbison, Allan E

    2014-04-01

    The negative feedback mechanism through which 17β-estradiol (E2) acts to suppress the activity of the GnRH neurons remains unclear. Using inducible and cell-specific genetic mouse models, we examined the estrogen receptor (ER) isoforms expressed by neurons that mediate acute estrogen negative feedback. Adult female mutant mice in which ERα was deleted from all neurons in the neonatal period failed to exhibit estrous cycles or negative feedback. Adult mutant female mice with neonatal neuronal ERβ deletion exhibited normal estrous cycles, but a failure of E2 to suppress LH secretion was seen in ovariectomized mice. Mutant mice with a GnRH neuron-selective deletion of ERβ exhibited normal cycles and negative feedback, suggesting no critical role for ERβ in GnRH neurons in acute negative feedback. To examine the adult roles of neurons expressing ERα, an inducible tamoxifen-based Cre-LoxP approach was used to ablate ERα from neurons that express calmodulin kinase IIα in adults. This resulted in mice with no estrous cycles, a normal increase in LH after ovariectomy, but an inability of E2 to suppress LH secretion. Finally, acute administration of ERα- and ERβ-selective agonists to adult ovariectomized wild-type mice revealed that activation of ERα suppressed LH secretion, whereas ERβ agonists had no effect. This study highlights the differences in adult reproductive phenotypes that result from neonatal vs adult ablation of ERα in the brain. Together, these experiments expand previous global knockout studies by demonstrating that neurons expressing ERα are essential and probably sufficient for the acute estrogen negative feedback mechanism in female mice.

  16. In vivo imaging of the neurovascular unit in CNS disease

    PubMed Central

    Merlini, Mario; Davalos, Dimitrios; Akassoglou, Katerina

    2014-01-01

    The neurovascular unit—comprised of glia, pericytes, neurons and cerebrovasculature—is a dynamic interface that ensures physiological central nervous system (CNS) functioning. In disease dynamic remodeling of the neurovascular interface triggers a cascade of responses that determine the extent of CNS degeneration and repair. The dynamics of these processes can be adequately captured by imaging in vivo, which allows the study of cellular responses to environmental stimuli and cell-cell interactions in the living brain in real time. This perspective focuses on intravital imaging studies of the neurovascular unit in stroke, multiple sclerosis (MS) and Alzheimer disease (AD) models and discusses their potential for identifying novel therapeutic targets. PMID:25197615

  17. Molecular stress response in the CNS of mice after systemic exposureto interferon-alpha, ionizing radiation and ketamine

    SciTech Connect

    Lowe, Xiu R.; Marchetti, Francesco; Lu, Xiaochen; Wyrobek, Andrew J.

    2009-03-03

    We previously showed that the expression of troponin T1 (Tnnt 1) was induced in the central nervous system (CNS) of adultmice 30 min after treatment with ketamine, a glutamate N-methyl-D-aspartic acid (NMDA) receptor antagonist. We hypothesized that Tnnt 1 expression may be an early molecular biomarker of stress response in the CNS of mice. To further evaluate this hypothesis, we investigated the regional expression of Tnnt 1 in the mouse brain using RNA in situ hybridization 4 h after systemic exposure to interferon-a (IFN-a) and gamma ionizing radiation, both of which have be associated with wide ranges of neuropsychiatric complications. Adult B6C3F1 male mice were treated with either human IFN-a (a single i.p. injection at 1 x 105 IU/kg) or whole body gamma-radiation (10 cGy or 2 Gy). Patterns of Tnnt 1 transcript expression were compared in various CNS regions after IFN-a, radiation and ketamine treatments (previous study). Tnnt 1 expression was consistently induced in pyramidal neurons of cerebral cortex and hippocampus after all treatment regimens including 10 cGy of ionizing radiation. Regional expression of Tnnt 1 was induced in Purkinje cells of cerebellum after ionizing radiation and ketamine treatment; but not after IFN-a treatment. None of the three treatments induced Tnnt 1 expression in glial cells. The patterns of Tnnt 1 expression in pyramidal neurons of cerebral cortex andhippocampus, which are both known to play important roles in cognitive function, memory and emotion, suggest that the expression of Tnnt 1 may be an early molecular biomarker of induced CNS stress.

  18. Prenatal alcohol exposure alters response of kisspeptin-ir neurons to estradiol and progesterone in adult female rats

    PubMed Central

    Sliwowska, Joanna H.; Bodnar, Tamara S.; Weinberg, Joanne

    2014-01-01

    BACKGROUND Prenatal alcohol exposure (PAE) has adverse effects on reproductive function and hypothalamic-pituitary-gonadal (HPG) activity. Kisspeptin neurons play a role in mediating feedback effects of estradiol (E2) and progesterone (P4) on the HPG axis. We hypothesized that PAE will have long-term effects on the response of kisspeptin neurons to E2 and P4. METHODS Adult female rats (53–58 days) from prenatal ad libitum-fed control (C), pair-fed (PF), and alcohol-exposed (PAE) groups were subjected to Sham ovariectomy (OVX) or OVX without or with replacement with low or high physiological levels of E2 and P4, and terminated under basal conditions. E2 and P4 levels, and the response of kisspeptin-ir neurons in the arcuate (ARC) and anteroventral periventricular (AVPV) nuclei to these hormones, were measured. As the E2 signal is conveyed to kisspeptin neurons via estrogen receptor-α (ERα), we investigated PAE effects on the number of kisspetin-ir/ERα-ir neurons. To determine if PAE alters interactions between kisspeptin and gonadotropin releasing hormone (GnRH) neurons, close contacts between kisspeptin-ir fibers and GnRH-ir cell bodies were examined. RESULTS Our data present the novel finding that kisspeptin-ir neurons in the ARC of PAE females show differential responses to E2 and to the combined treatment with E2 and P4 compared to controls: 1) OVX increased the number of kisspeptin-ir neurons in C and PF, but not PAE females compared to their Sham counterparts; 2) E2 replacement restored kisspeptin-ir cell numbers to Sham levels in C and PF females but caused a robust downregulation of kisspeptin-ir neurons below Sham levels in PAE females; 3) OVX and replacement with high physiological concentrations of E2 resulted in fewer kisspeptin-ir cells in PAE than C females; 4) OVX and replacement with high levels of both E2 and P4 markedly decreased the number of kisspeptin-ir neurons, below levels observed following E2 alone, in PF and C females, but had no

  19. Novel DLK-independent neuronal regeneration in Caenorhabditis elegans shares links with activity-dependent ectopic outgrowth

    PubMed Central

    Awal, Mehraj R.; Shay, James; McLoed, Melissa M.; Mazur, Eric; Gabel, Christopher V.

    2016-01-01

    During development, a neuron transitions from a state of rapid growth to a stable morphology, and neurons within the adult mammalian CNS lose their ability to effectively regenerate in response to injury. Here, we identify a novel form of neuronal regeneration, which is remarkably independent of DLK-1/DLK, KGB-1/JNK, and other MAPK signaling factors known to mediate regeneration in Caenorhabditis elegans, Drosophila, and mammals. This DLK-independent regeneration in C. elegans has direct genetic and molecular links to a well-studied form of endogenous activity-dependent ectopic axon outgrowth in the same neuron type. Both neuron outgrowth types are triggered by physical lesion of the sensory dendrite or mutations disrupting sensory activity, calcium signaling, or genes that restrict outgrowth during neuronal maturation, such as SAX-1/NDR kinase or UNC-43/CaMKII. These connections suggest that ectopic outgrowth represents a powerful platform for gene discovery in neuronal regeneration. Moreover, we note numerous similarities between C. elegans DLK-independent regeneration and lesion conditioning, a phenomenon producing robust regeneration in the mammalian CNS. Both regeneration types are triggered by lesion of a sensory neurite via reduction of neuronal activity and enhanced by disrupting L-type calcium channels or elevating cAMP. Taken as a whole, our study unites disparate forms of neuronal outgrowth to uncover fresh molecular insights into activity-dependent control of the adult nervous system’s intrinsic regenerative capacity. PMID:27078101

  20. Mutated CTSF in adult-onset neuronal ceroid lipofuscinosis and FTD

    PubMed Central

    van der Zee, Julie; Mariën, Peter; Crols, Roeland; Van Mossevelde, Sara; Dillen, Lubina; Perrone, Federica; Engelborghs, Sebastiaan; Verhoeven, Jo; D'aes, Tine; Ceuterick-De Groote, Chantal; Sieben, Anne; Versijpt, Jan; Cras, Patrick; Martin, Jean-Jacques

    2016-01-01

    Objective: To investigate the molecular basis of a Belgian family with autosomal recessive adult-onset neuronal ceroid lipofuscinosis (ANCL or Kufs disease [KD]) with pronounced frontal lobe involvement and to expand the findings to a cohort of unrelated Belgian patients with frontotemporal dementia (FTD). Methods: Genetic screening in the ANCL family and FTD cohort (n = 461) was performed using exome sequencing and targeted massive parallel resequencing. Results: We identified a homozygous mutation (p.Ile404Thr) in the Cathepsin F (CTSF) gene cosegregating in the ANCL family. No other mutations were found that could explain the disease in this family. All 4 affected sibs developed motor symptoms and early-onset dementia with prominent frontal features. Two of them evolved to akinetic mutism. Disease presentation showed marked phenotypic variation with the onset ranging from 26 to 50 years. Myoclonic epilepsy in one of the sibs was suggestive for KD type A, while epilepsy was not present in the other sibs who presented with clinical features of KD type B. In a Belgian cohort of unrelated patients with FTD, the same heterozygous p.Arg245His mutation was identified in 2 patients who shared a common haplotype. Conclusions: A homozygous CTSF mutation was identified in a recessive ANCL pedigree. In contrast to the previous associations of CTSF with KD type B, our findings suggest that CTSF genetic testing should also be considered in patients with KD type A as well as in early-onset dementia with prominent frontal lobe and motor symptoms. PMID:27668283

  1. Neural precursors (NPCs) from adult L967Q mice display early commitment to "in vitro" neuronal differentiation and hyperexcitability.

    PubMed

    DiFebo, Francesca; Curti, Daniela; Botti, Francesca; Biella, Gerardo; Bigini, Paolo; Mennini, Tiziana; Toselli, Mauro

    2012-08-01

    The pathogenic factors leading to selective degeneration of motoneurons in ALS are not yet understood. However, altered functionality of voltage-dependent Na(+) channels may play a role since cortical hyperexcitability was described in ALS patients and riluzole, the only drug approved to treat ALS, seems to decrease glutamate release via blockade or inactivation of voltage-dependent Na(+) channels. The wobbler mouse, a murine model of motoneuron degeneration, shares some of the clinical features of human ALS. At early stages of the wobbler disease, increased cortical hyperexcitability was observed. Moreover, riluzole reduced motoneuron loss and muscular atrophy in treated wobbler mice. Here, we focussed our attention on specific electrophysiological properties, like voltage-activated Na(+) currents and underlying regenerative electrical activity, as read-outs of the neuronal maturation process of neural stem/progenitor cells (NPCs) isolated from the subventricular zone (SVZ) of adult early symptomatic wobbler mice. In self-renewal conditions, the rate of wobbler NPC proliferation "in vitro" was 30% lower than that of healthy mice. Conversely, the number of wobbler NPCs displaying early neuronal commitment and action potentials was significantly higher. Upon switching from proliferative to differentiative conditions, NPCs underwent significant changes in the key properties of voltage gated Na(+) currents. The most notable finding, in cells with neuronal morphology, was an increase in Na(+) current density that strictly correlated with an increased probability to generate action potentials. This feature was remarkably more pronounced in neurons differentiated from wobbler NPCs that upon sustained stimulation, displayed short trains of pathological facilitation. In agreement with this result, an increase in the number of c-Fos positive cells, a surrogate marker of neuronal network activation, was observed in the mesial cortex of the wobbler mice "in situ". Thus these

  2. Beneficial effect of a CNTF tetrapeptide on adult hippocampal neurogenesis, neuronal plasticity, and spatial memory in mice.

    PubMed

    Blanchard, Julie; Chohan, Muhammad Omar; Li, Bin; Liu, Fei; Iqbal, Khalid; Grundke-Iqbal, Inge

    2010-01-01

    A therapeutic strategy against cognitive disorders like Alzheimer's disease is to take advantage of the regenerative ability of the brain and the properties of neurotrophic factors to shift the balance from neurodegeneration to neurogenesis and neuronal plasticity. Although the ciliary neurotrophic factor (CNTF) has some of the required neuroprotective characteristics, its clinical use, due to its side effects, i.e., anorexia, skeletal muscle loss, hyperalgesia, cramps, and muscle pain, has not materialized. In the present study, we report that Peptide 6c (GDDL) that corresponds to CNTF amino acid residues 147-150, enhances the dentate gyrus neurogenesis and neuronal plasticity, and improves cognition without weight loss or any other apparent side effects in mice. Normal adult C57Bl6 mice received subcutaneous implants of extended release depot pellets containing vehicle or Peptide 6c for 30 days of continuous dosing. Dentate gyrus neurogenesis was assessed by stereological analysis of cells expressing neuronal markers, doublecortin and NeuN, and BrdU uptake. We found that Peptide 6c significantly increased early neuronal commitment, differentiation, and survival of newborn progenitor cells. These newborn neurons were functionally integrated into the hippocampal network, since basal expression of c-fos was enhanced and neuronal plasticity was increased, as reflected by higher expression of MAP2a,b and synaptophysin. Consequently, Peptide 6c treatment improved encoding of hippocampal-dependent information in a spatial reference memory task in mice. Overall, these findings demonstrated the therapeutic potential of Peptide 6c for regeneration of the brain and improvement of cognition.

  3. Combined 3DISCO clearing method, retrograde tracer and ultramicroscopy to map corneal neurons in a whole adult mouse trigeminal ganglion.

    PubMed

    Launay, Pierre-Serge; Godefroy, David; Khabou, Hanen; Rostene, William; Sahel, Jose-Alain; Baudouin, Christophe; Melik Parsadaniantz, Stéphane; Reaux-Le Goazigo, Annabelle

    2015-10-01

    Tissue clearing and subsequent imaging of intact transparent tissues have provided an innovative way to analyze anatomical pathways in the nervous system. In this study, we combined a recent 3-dimensional imaging of solvent cleared organ (3DISCO) procedure, light-sheet microscopy, fluorescent retrograde tracer, and Imaris software to 3D map corneal sensory neurons within a whole adult mouse trigeminal ganglion (TG). We first established the optimized steps to easily and rapidly clear a fixed TG. We found that the 3DISCO procedure gave excellent results and took less than 3 h to clear the TG. In a second set of experiments, a retrograde tracer (cholera toxin B Alexa 594-conjugated) was applied to de-epithelialized cornea to retrograde-labeled corneal sensory neurons. Two days later, TGs were cleared by the 3DISCO method and serial imaging was performed using light-sheet ultramicroscopic technology. High-resolution images of labeled neurons can be easily and rapidly obtained from a 3D reconstructed whole mouse TG. We then provided a 3D reconstruction of corneal afferent neurons and analyzed their precise localization in the TG. Thus, we showed that neurons supplying corneal sensory innervation exhibit a highly specific limited dorsomedial localization within the TG. We report that our combined method offers the possibility to perform manual (on 20 μm sections) and automated (on 3D reconstructed TG) counting of labeled cells in a cleared mouse TG. To conclude, we illustrate that the combination of the 3DISCO clearing method with light-sheet microscopy, retrograde tracer, and automatic counting represents a rapid and reliable method to analyze a subpopulation of neurons within the peripheral and central nervous system.

  4. Growth and turning properties of adult glial cell-derived neurotrophic factor coreceptor α1 nonpeptidergic sensory neurons.

    PubMed

    Guo, GuiFang; Singh, Vandana; Zochodne, Douglas W

    2014-09-01

    An overlapping population of adult primary sensory neurons that innervate the skin express the glial cell-derived neurotrophic factor coreceptor α1 (GFRα1), the lectin IB4, and the "regenerative brake" phosphatase and tensin homolog deleted on chromosome 10. Using an adapted turning and growth assay, we analyzed the growth cone behavior of adult immunoselected GFRα1 sensory neurons. These neurons had less robust baseline growth and reluctant responsiveness to individual growth factors but responded to synergistic types of input from glial cell-derived neurotrophic factor, hepatocyte growth factor, a phosphatase and tensin homolog deleted on chromosome 10 inhibitor, or a downstream Rho kinase inhibitor. Hepatocyte growth factor and the phosphatase and tensin homolog deleted on chromosome 10 inhibitor were associated with growth cone turning. A gradient of protein extracted from skin samples, a primary target of GFRα1 axons, replicated the impact of synergistic support. Within the skin, glial cell-derived neurotrophic factor was expressed within epidermal axons, indicating an autocrine role accompanying local hepatocyte growth factor synthesis. Taken together, our findings identify unique growth properties and plasticity of a distinct population of epidermal axons that are relevant to neurologic repair and skin reinnervation.

  5. Contributions of Mouse and Human Hematopoietic Cells to Remodeling of the Adult Auditory Nerve After Neuron Loss

    PubMed Central

    Lang, Hainan; Nishimoto, Eishi; Xing, Yazhi; Brown, LaShardai N; Noble, Kenyaria V; Barth, Jeremy L; LaRue, Amanda C; Ando, Kiyoshi; Schulte, Bradley A

    2016-01-01

    The peripheral auditory nerve (AN) carries sound information from sensory hair cells to the brain. The present study investigated the contribution of mouse and human hematopoietic stem cells (HSCs) to cellular diversity in the AN following the destruction of neuron cell bodies, also known as spiral ganglion neurons (SGNs). Exposure of the adult mouse cochlea to ouabain selectively killed type I SGNs and disrupted the blood-labyrinth barrier. This procedure also resulted in the upregulation of genes associated with hematopoietic cell homing and differentiation, and provided an environment conducive to the tissue engraftment of circulating stem/progenitor cells into the AN. Experiments were performed using both a mouse-mouse bone marrow transplantation model and a severely immune-incompetent mouse model transplanted with human CD34+ cord blood cells. Quantitative immunohistochemical analysis of recipient mice demonstrated that ouabain injury promoted an increase in the number of both HSC-derived macrophages and HSC-derived nonmacrophages in the AN. Although rare, a few HSC-derived cells in the injured AN exhibited glial-like qualities. These results suggest that human hematopoietic cells participate in remodeling of the AN after neuron cell body loss and that hematopoietic cells can be an important resource for promoting AN repair/regeneration in the adult inner ear. PMID:27600399

  6. Lmx1a and Lmx1b regulate mitochondrial functions and survival of adult midbrain dopaminergic neurons

    PubMed Central

    Doucet-Beaupré, Hélène; Gilbert, Catherine; Profes, Marcos Schaan; Chabrat, Audrey; Pacelli, Consiglia; Giguère, Nicolas; Rioux, Véronique; Deng, Qiaolin; Laguna, Ariadna; Ericson, Johan; Perlmann, Thomas; Ang, Siew-Lan; Cicchetti, Francesca; Parent, Martin; Trudeau, Louis-Eric; Lévesque, Martin

    2016-01-01

    The LIM-homeodomain transcription factors Lmx1a and Lmx1b play critical roles during the development of midbrain dopaminergic progenitors, but their functions in the adult brain remain poorly understood. We show here that sustained expression of Lmx1a and Lmx1b is required for the survival of adult midbrain dopaminergic neurons. Strikingly, inactivation of Lmx1a and Lmx1b recreates cellular features observed in Parkinson’s disease. We found that Lmx1a/b control the expression of key genes involved in mitochondrial functions, and their ablation results in impaired respiratory chain activity, increased oxidative stress, and mitochondrial DNA damage. Lmx1a/b deficiency caused axonal pathology characterized by α-synuclein+ inclusions, followed by a progressive loss of dopaminergic neurons. These results reveal the key role of these transcription factors beyond the early developmental stages and provide mechanistic links between mitochondrial dysfunctions, α-synuclein aggregation, and the survival of dopaminergic neurons. PMID:27407143

  7. Altered dendritic arborization of amygdala neurons in young adult rats orally intubated with Clitorea ternatea aqueous root extract.

    PubMed

    Rai, Kiranmai S; Murthy, K Dilip; Rao, Muddanna S; Karanth, K Sudhakar

    2005-07-01

    Young adult (60 day old) Wistar rats of either sex were orally intubated with 50 mg/kg body weight and 100 mg/kg body weight of aqueous root extract of Clitoria ternatea (CTR) for 30 days, along with age-matched saline controls. These rats were then subjected to passive avoidance tests and the results from these studies showed a significant increase in passive avoidance learning and retention. Subsequent to the passive avoidance tests, these rats were killed by decapitation. The amygdala was processed for Golgi staining and the stained neurons were traced using a camera lucida and analysed. The results showed a significant increase in dendritic intersections, branching points and dendritic processes arising from the soma of amygdaloid neurons in CTR treated rats especially in the 100 mg/kg group of rats, compared with age-matched saline controls. This improved dendritic arborization of amygdaloid neurons correlates with the increased passive avoidance learning and memory in the CTR treated rats as reported earlier. The results suggest that Clitoria ternatea aqueous root extract enhances memory by increasing the functional growth of neurons of the amygdala.

  8. Long-Term Two-Photon Calcium Imaging of Neuronal Populations with Subcellular Resolution in Adult Non-human Primates.

    PubMed

    Sadakane, Osamu; Masamizu, Yoshito; Watakabe, Akiya; Terada, Shin-Ichiro; Ohtsuka, Masanari; Takaji, Masafumi; Mizukami, Hiroaki; Ozawa, Keiya; Kawasaki, Hiroshi; Matsuzaki, Masanori; Yamamori, Tetsuo

    2015-12-01

    Two-photon imaging with genetically encoded calcium indicators (GECIs) enables long-term observation of neuronal activity in vivo. However, there are very few studies of GECIs in primates. Here, we report a method for long-term imaging of a GECI, GCaMP6f, expressed from adeno-associated virus vectors in cortical neurons of the adult common marmoset (Callithrix jacchus), a small New World primate. We used a tetracycline-inducible expression system to robustly amplify neuronal GCaMP6f expression and up- and downregulate it for more than 100 days. We succeeded in monitoring spontaneous activity not only from hundreds of neurons three-dimensionally distributed in layers 2 and 3 but also from single dendrites and axons in layer 1. Furthermore, we detected selective activities from somata, dendrites, and axons in the somatosensory cortex responding to specific tactile stimuli. Our results provide a way to investigate the organization and plasticity of cortical microcircuits at subcellular resolution in non-human primates.

  9. High frequency stimulation induces sonic hedgehog release from hippocampal neurons

    PubMed Central

    Su, Yujuan; Yuan, Yuan; Feng, Shengjie; Ma, Shaorong; Wang, Yizheng

    2017-01-01

    Sonic hedgehog (SHH) as a secreted protein is important for neuronal development in the central nervous system (CNS). However, the mechanism about SHH release remains largely unknown. Here, we showed that SHH was expressed mainly in the synaptic vesicles of hippocampus in both young postnatal and adult rats. High, but not low, frequency stimulation, induces SHH release from the neurons. Moreover, removal of extracellular Ca2+, application of tetrodotoxin (TTX), an inhibitor of voltage-dependent sodium channels, or downregulation of soluble n-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) proteins, all blocked SHH release from the neurons in response to HFS. Our findings suggest a novel mechanism to control SHH release from the hippocampal neurons. PMID:28262835

  10. Gastrin-releasing peptide contributes to the regulation of adult hippocampal neurogenesis and neuronal development.

    PubMed

    Walton, Noah M; de Koning, Anoek; Xie, Xiuyuan; Shin, Rick; Chen, Qian; Miyake, Shinichi; Tajinda, Katsunori; Gross, Adam K; Kogan, Jeffrey H; Heusner, Carrie L; Tamura, Kouichi; Matsumoto, Mitsuyuki

    2014-09-01

    In the postnatal hippocampus, newly generated neurons contribute to learning and memory. Disruptions in neurogenesis and neuronal development have been linked to cognitive impairment and are implicated in a broad variety of neurological and psychiatric disorders. To identify putative factors involved in this process, we examined hippocampal gene expression alterations in mice possessing a heterozygous knockout of the calcium/calmodulin-dependent protein kinase II alpha heterozygous knockout gene (CaMK2α-hKO), an established model of cognitive impairment that also displays altered neurogenesis and neuronal development. Using this approach, we identified gastrin-releasing peptide (GRP) as the most dysregulated gene. In wild-type mice, GRP labels NeuN-positive neurons, the lone exception being GRP-positive, NeuN-negative cells in the subgranular zone, suggesting GRP expression may be relevant to neurogenesis and/or neuronal development. Using a model of in vitro hippocampal neurogenesis, we determined that GRP signaling is essential for the continued survival and development of newborn neurons, both of which are blocked by transient knockdown of GRP's cognate receptor (GRPR). Furthermore, GRP appears to negatively regulate neurogenesis-associated proliferation in neural stem cells both in vitro and in vivo. Intracerebroventricular infusion of GRP resulted in a decrease in immature neuronal markers, increased cAMP response element-binding protein (CREB) phosphorylation, and decreased neurogenesis. Despite increased levels of GRP mRNA, CaMK2α-hKO mutant mice expressed reduced levels of GRP peptide. This lack of GRP may contribute to the elevated neurogenesis and impaired neuronal development, which are reversed following exogenous GRP infusion. Based on these findings, we hypothesize that GRP modulates neurogenesis and neuronal development and may contribute to hippocampus-associated cognitive impairment.

  11. Better Targeting, Better Efficiency for Wide-Scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B.

    PubMed

    Jackson, Kasey L; Dayton, Robert D; Deverman, Benjamin E; Klein, Ronald L

    2016-01-01

    Widespread genetic modification of cells in the central nervous system (CNS) with a viral vector has become possible and increasingly more efficient. We previously applied an AAV9 vector with the cytomegalovirus/chicken beta-actin (CBA) hybrid promoter and achieved wide-scale CNS transduction in neonatal and adult rats. However, this method transduces a variety of tissues in addition to the CNS. Thus we studied intravenous AAV9 gene transfer with a synapsin promoter to better target the neurons. We noted in systematic comparisons that the synapsin promoter drives lower level expression than does the CBA promoter. The engineered adeno-associated virus (AAV)-PHP.B serotype was compared with AAV9, and AAV-PHP.B did enhance the efficiency of expression. Combining the synapsin promoter with AAV-PHP.B could therefore be advantageous in terms of combining two refinements of targeting and efficiency. Wide-scale expression was used to model a disease with widespread pathology. Vectors encoding the amyotrophic lateral sclerosis (ALS)-related protein transactive response DNA-binding protein, 43 kDa (TDP-43) with the synapsin promoter and AAV-PHP.B were used for efficient CNS-targeted TDP-43 expression. Intracerebroventricular injections were also explored to limit TDP-43 expression to the CNS. The neuron-selective promoter and the AAV-PHP.B enhanced gene transfer and ALS disease modeling in adult rats.

  12. Better Targeting, Better Efficiency for Wide-Scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B

    PubMed Central

    Jackson, Kasey L.; Dayton, Robert D.; Deverman, Benjamin E.; Klein, Ronald L.

    2016-01-01

    Widespread genetic modification of cells in the central nervous system (CNS) with a viral vector has become possible and increasingly more efficient. We previously applied an AAV9 vector with the cytomegalovirus/chicken beta-actin (CBA) hybrid promoter and achieved wide-scale CNS transduction in neonatal and adult rats. However, this method transduces a variety of tissues in addition to the CNS. Thus we studied intravenous AAV9 gene transfer with a synapsin promoter to better target the neurons. We noted in systematic comparisons that the synapsin promoter drives lower level expression than does the CBA promoter. The engineered adeno-associated virus (AAV)-PHP.B serotype was compared with AAV9, and AAV-PHP.B did enhance the efficiency of expression. Combining the synapsin promoter with AAV-PHP.B could therefore be advantageous in terms of combining two refinements of targeting and efficiency. Wide-scale expression was used to model a disease with widespread pathology. Vectors encoding the amyotrophic lateral sclerosis (ALS)-related protein transactive response DNA-binding protein, 43 kDa (TDP-43) with the synapsin promoter and AAV-PHP.B were used for efficient CNS-targeted TDP-43 expression. Intracerebroventricular injections were also explored to limit TDP-43 expression to the CNS. The neuron-selective promoter and the AAV-PHP.B enhanced gene transfer and ALS disease modeling in adult rats. PMID:27867348

  13. Remodeling of Hyperpolarization-Activated Current, Ih, in Ah-Type Visceral Ganglion Neurons Following Ovariectomy in Adult Rats

    PubMed Central

    Xu, Wen-Xiao; Yan, Zhen-Yu; Liu, Yang; Zhou, Jia-Ying; Zhang, Hao-Cheng; Wang, Li-Juan; Pan, Xiao-Dong; Fu, Yili

    2013-01-01

    Hyperpolarization-activated currents (Ih) mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels modulate excitability of myelinated A− and Ah-type visceral ganglion neurons (VGN). Whether alterations in Ih underlie the previously reported reduction of excitability of myelinated Ah-type VGNs following ovariectomy (OVX) has remained unclear. Here we used the intact nodose ganglion preparation in conjunction with electrophysiological approaches to examine the role of Ih remodeling in altering Ah-type neuron excitability following ovariectomy in adult rats. Ah-type neurons were identified based on their afferent conduction velocity. Ah-type neurons in nodose ganglia from non-OVX rats exhibited a voltage ‘sag’ as well as ‘rebound’ action potentials immediately following hyperpolarizing current injections, which both were suppressed by the Ih blocker ZD7288. Repetitive spike activity induced afterhyperpolarizations lasting several hundreds of milliseconds (termed post-excitatory membrane hyperpolarizations, PEMHs), which were significantly reduced by ZD7288, suggesting that they resulted from transient deactivation of Ih during the preceding spike trains. Ovariectomy reduced whole-cell Ih density, caused a hyperpolarizing shift of the voltage-dependence of Ih activation, and slowed Ih activation. OVX-induced Ih remodeling was accompanied by a flattening of the stimulus frequency/response curve and loss of PEMHs. Also, HCN1 mRNA levels were reduced by ∼30% in nodose ganglia from OVX rats compared with their non-OVX counterparts. Acute exposure of nodose ganglia to 17beta-estradiol partly restored Ih density and accelerated Ih activation in Ah-type cells. In conclusion, Ih plays a significant role in modulating the excitability of myelinated Ah-type VGNs in adult female rats. PMID:23951107

  14. Hyperosmotic activation of CNS sympathetic drive: implications for cardiovascular disease

    PubMed Central

    Toney, Glenn M; Stocker, Sean D

    2010-01-01

    Evidence now indicates that exaggerated sympathetic nerve activity (SNA) significantly contributes to salt-sensitive cardiovascular diseases. Although CNS mechanisms that support the elevation of SNA in various cardiovascular disease models have been intensively studied, many mechanistic details remain unknown. In recent years, studies have shown that SNA can rise as a result of both acute and chronic increases of body fluid osmolality. These findings have raised the possibility that salt-sensitive cardiovascular diseases could result, at least in part, from direct osmosensory activation of CNS sympathetic drive. In this brief review we emphasize recent findings from several laboratories, including our own, which demonstrate that neurons of the forebrain organum vasculosum laminae terminalis (OVLT) play a pivotal role in triggering hyperosmotic activation of SNA by recruiting neurons in specific regions of the hypothalamus, brainstem and spinal cord. Although OVLT neurons are intrinsically osmosensitive and shrink when exposed to extracellular hypertonicity, it is not yet clear if these processes are functionally linked. Whereas acute hypertonic activation of OVLT neurons critically depends on TRPV1 channels, studies in TRPV1−/− mice suggest that acute and long-term osmoregulatory responses remain largely intact. Therefore, acute and chronic osmosensory transduction by OVLT neurons may be mediated by distinct mechanisms. We speculate that organic osmolytes such as taurine and possibly novel processes such as extracellular acidification could contribute to long-term osmosensory transduction by OVLT neurons and might therefore participate in the elevation of SNA in salt-sensitive cardiovascular diseases. PMID:20603334

  15. TAM receptor deficiency affects adult hippocampal neurogenesis

    PubMed Central

    Ji, Rui; Meng, Lingbin; Li, Qiutang; Lu, Qingxian

    2014-01-01

    The Tyro3, Axl and Mertk (TAM) subfamily of receptor protein tyrosine kinases functions in cell growth, differentiation, survival, and most recently found, in the regulation of immune responses and phagocytosis. All three receptors and their ligands, Gas6 (growth arrest-specific gene 6) and protein S, are expressed in the central nervous system (CNS). TAM receptors play pivotal roles in adult hippocampal neurogenesis. Loss of these receptors causes a comprised neurogenesis in the dentate gyrus of adult hippocampus. TAM receptors have a negative regulatory effect on microglia and peripheral antigen-presenting cells, and play a critical role in preventing overproduction of pro-inflammatory cytokines detrimental to the proliferation, differentiation, and survival of adult neuronal stem cells (NSCs). Besides, these receptors also play an intrinsic trophic function in supporting NSC survival, proliferation, and differentiation into immature neurons. All these events collectively ensure a sustained neurogenesis in adult hippocampus. PMID:25487541

  16. Long-term adrenalectomy causes loss of dentate gyrus and pyramidal neurons in the adult hippocampus.

    PubMed

    Sapolsky, R M; Stein-Behrens, B A; Armanini, M P

    1991-11-01

    A growing literature suggests that the hippocampus can be damaged by glucocorticoids, the adrenal steroids secreted during stress. Thus, considerable interest was generated by recent reports that prolonged elimination of glucocorticoids by adrenalectomy (ADX) damages hippocampal dentate gyrus neurons. To date, this phenomenon has only been observed in rats of peripubertal age or younger; moreover, reports differ considerably as to the magnitude of the damage induced. Therefore, we examined this issue in rats ADXd at 5 months of age. Three months later, there was a significant 26% loss of dentate neurons in a subset of rats. In agreement with these previous reports, this subset had attenuated weight gain and electrolyte imbalances, suggestive of complete removal of the adrenals and accessory adrenal tissue. As a novel observation, we also observed significant (19%) loss of CA4 pyramidal neurons. Thus, both severe under- or overexposure to glucocorticoids can be deleterious to a number of hippocampal neuron types.

  17. Dopamine controls neurogenesis in the adult salamander midbrain in homeostasis and during regeneration of dopamine neurons.

    PubMed

    Berg, Daniel A; Kirkham, Matthew; Wang, Heng; Frisén, Jonas; Simon, András

    2011-04-08

    Appropriate termination of regenerative processes is critical for producing the correct number of cells in tissues. Here we provide evidence for an end-product inhibition of dopamine neuron regeneration that is mediated by dopamine. Ablation of midbrain dopamine neurons leads to complete regeneration in salamanders. Regeneration involves extensive neurogenesis and requires activation of quiescent ependymoglia cells, which express dopamine receptors. Pharmacological compensation for dopamine loss by L-dopa inhibits ependymoglia proliferation and regeneration in a dopamine receptor-signaling-dependent manner, specifically after ablation of dopamine neurons. Systemic administration of the dopamine receptor antagonist haloperidol alone causes ependymoglia proliferation and the appearance of excessive number of neurons. Our data show that stem cell quiescence is under dopamine control and provide a model for termination once normal homeostasis is restored. The findings establish a role for dopamine in the reversible suppression of neurogenesis in the midbrain and have implications for regenerative strategies in Parkinson's disease.

  18. Caffeine and modafinil promote adult neuronal cell proliferation during 48 h of total sleep deprivation in rat dentate gyrus.

    PubMed

    Sahu, Surajit; Kauser, Hina; Ray, Koushik; Kishore, Krishna; Kumar, Sanjeev; Panjwani, Usha

    2013-10-01

    It has been established that sleep deprivation (SD) reduces the proliferation of neuronal precursors in the adult hippocampus. It has also been reported that psychostimulant drugs modulate adult neurogenesis. We examined the modulatory role of two psychostimulant drugs modafinil and caffeine on adult neuronal cell proliferation (NCP) during 48 h of total SD. A novel automated cage shaking stimulus was used to induce SD based on animal activity. 5-Bromo-2″-deoxyuridine (BrdU; 50mg/kg/day i.p.) was injected at the onset of the light phase for two days. Rats were successfully sleep deprived for 85-94% of total time. Stereological analysis showed that both caffeine and modafinil treatments during SD improved the number of BrdU positive cells as compared to the SD group. Caffeine treatment during SD, significantly increased early proliferative and post-mitotic stages of doublecortin (DCX) positive cells while modafinil treatment during SD, increased intermediate and post-mitotic stages of DCX positive cells compared to SD+Vehicle group. Brain-Derived Neurotrophic Factor (BDNF) expression on BrdU positive cells as well as in the dentate gyrus (DG) region was decreased significantly after sleep deprivation. Both caffeine and modafinil significantly improved BDNF expression in the DG region. Modafinil, but not caffeine, significantly decreased hippocampal adenosine level during SD in comparison to the SD+Vehicle group. It may be concluded that caffeine or modafinil treatment during 48 h of SD prevents the SD induced decline in neuronal proliferation and differentiation. Caffeine and modafinil induced alterations of NCP during SD may involve modulation of BDNF and adenosine levels.

  19. HOXA5 localization in postnatal and adult mouse brain is suggestive of regulatory roles in postmitotic neurons.

    PubMed

    Lizen, Benoit; Hutlet, Bertrand; Bissen, Diane; Sauvegarde, Deborah; Hermant, Maryse; Ahn, Marie-Thérèse; Gofflot, Françoise

    2017-04-01

    Hoxa5 is a member of the Hox gene family, which plays critical roles in successive steps of the central nervous system formation during embryonic and fetal development. Hoxa5 expression in the adult mouse brain has been reported, suggesting that this gene may be functionally required in the brain after birth. To provide further insight into the Hoxa5 expression pattern and potential functions in the brain, we have characterized its neuroanatomical profile from embryonic stages to adulthood. While most Hox mapping studies have been based solely on transcript analysis, we extended our analysis to HOXA5 protein localization in adulthood using specific antibodies. Our results show that Hoxa5 expression appears in the most caudal part of the hindbrain at fetal stages, where it is maintained until adulthood. In the medulla oblongata and pons, we detected Hoxa5 expression in many precerebellar neurons and in several nuclei implicated in the control of autonomic functions. In these territories, the HOXA5 protein is present solely in neurons, specifically in γ-aminobutyric acid (GABA)ergic, glutamatergic, and catecholaminergic neurons. Finally, we also detected Hoxa5 transcripts, but not the HOXA5 protein, in the thalamus and the cortex, from postnatal stages to adult stages, and in the cerebellum at adulthood. We provide evidence that some larger variants of Hoxa5 transcripts are present in these territories. Our mapping analysis allowed us to build hypotheses regarding HOXA5 functions in the nervous system after birth, such as a potential role in the establishment and refinement/plasticity of precerebellar circuits during postnatal and adult life. J. Comp. Neurol. 525:1155-1175, 2017. © 2016 Wiley Periodicals, Inc.

  20. Role of GFAP in CNS injuries

    PubMed Central

    Brenner, Michael

    2014-01-01

    The role of GFAP in CNS injury is reviewed as revealed by studies using GFAP null mice. In order to provide background information for these studies, the effects of absence of GFAP in the uninjured astrocyte is also described. Activities attributable to GFAP include suppressing neuronal proliferation and neurite extension in the mature brain, forming a physical barrier to isolate damaged tissue, regulating blood flow following ischemia, contributing to the blood-brain barrier, supporting myelination, and providing mechanical strength. However, findings for many of these roles have been variable among laboratories, pointing to the presence of unappreciated complexity in GFAP function. One complexity may be regional differences in GFAP activities; others are yet to be discovered. PMID:24508671

  1. Immunohistological localization of 5-HT in the CNS and feeding system of the Stable Fly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    5-HT immunoreactive neurons were detected in the CNS of the stable fly. The finding of strong innervations of the cibarial pump muscles and the foregut by 5-HT IR neurons in the feeding-related systems suggests that 5-HT may play a crucial role in the control of the feeding behavior in both the larv...

  2. Expressing Constitutively Active Rheb in Adult Dorsal Root Ganglion Neurons Enhances the Integration of Sensory Axons that Regenerate Across a Chondroitinase-Treated Dorsal Root Entry Zone Following Dorsal Root Crush

    PubMed Central

    Wu, Di; Klaw, Michelle C.; Kholodilov, Nikolai; Burke, Robert E.; Detloff, Megan R.; Côté, Marie-Pascale; Tom, Veronica J.

    2016-01-01

    While the peripheral branch of dorsal root ganglion neurons (DRG) can successfully regenerate after injury, lesioned central branch axons fail to regrow across the dorsal root entry zone (DREZ), the interface between the dorsal root and the spinal cord. This lack of regeneration is due to the limited regenerative capacity of adult sensory axons and the growth-inhibitory environment at the DREZ, which is similar to that found in the glial scar after a central nervous system (CNS) injury. We hypothesized that transduction of adult DRG neurons using adeno-associated virus (AAV) to express a constitutively-active form of the GTPase Rheb (caRheb) will increase their intrinsic growth potential after a dorsal root crush. Additionally, we posited that if we combined that approach with digestion of upregulated chondroitin sulfate proteoglycans (CSPG) at the DREZ with chondroitinase ABC (ChABC), we would promote regeneration of sensory axons across the DREZ into the spinal cord. We first assessed if this strategy promotes neuritic growth in an in vitro model of the glial scar containing CSPG. ChABC allowed for some regeneration across the once potently inhibitory substrate. Combining ChABC treatment with expression of caRheb in DRG significantly improved this growth. We then determined if this combination strategy also enhanced regeneration through the DREZ after dorsal root crush in adult rats in vivo. After unilaterally crushing C4-T1 dorsal roots, we injected AAV5-caRheb or AAV5-GFP into the ipsilateral C5-C8 DRGs. ChABC or PBS was injected into the ipsilateral dorsal horn at C5-C8 to digest CSPG, for a total of four animal groups (caRheb + ChABC, caRheb + PBS, GFP + ChABC, GFP + PBS). Regeneration was rarely observed in PBS-treated animals, whereas short-distance regrowth across the DREZ was observed in ChABC-treated animals. No difference in axon number or length between the ChABC groups was observed, which may be related to intraganglionic inflammation induced by the

  3. Histone regulation in the CNS: basic principles of epigenetic plasticity.

    PubMed

    Maze, Ian; Noh, Kyung-Min; Allis, C David

    2013-01-01

    Postmitotic neurons are subject to a vast array of environmental influences that require the nuclear integration of intracellular signaling events to promote a wide variety of neuroplastic states associated with synaptic function, circuit formation, and behavioral memory. Over the last decade, much attention has been paid to the roles of transcription and chromatin regulation in guiding fundamental aspects of neuronal function. A great deal of this work has centered on neurodevelopmental and adulthood plasticity, with increased focus in the areas of neuropharmacology and molecular psychiatry. Here, we attempt to provide a broad overview of chromatin regulation, as it relates to central nervous system (CNS) function, with specific emphasis on the modes of histone posttranslational modifications, chromatin remodeling, and histone variant exchange. Understanding the functions of chromatin in the context of the CNS will aid in the future development of pharmacological therapeutics aimed at alleviating devastating neurological disorders.

  4. Role of resident CNS cell populations in HTLV-1-associated neuroinflammatory disease.

    PubMed

    Lepoutre, Veronique; Jain, Pooja; Quann, Kevin; Wigdahl, Brian; Khan, Zafar K

    2009-01-01

    Human T cell leukemia virus type 1 (HTLV-1), the first human retrovirus discovered, is the etiologic agent for a number of disorders; the two most common pathologies include adult T cell leukemia (ATL) and a progressive demyelinating neuroinflammatory disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The neurologic dysfunction associated with HAM/TSP is a result of viral intrusion into the central nervous system (CNS) and the generation of a hyperstimulated host response within the peripheral and central nervous system that includes expanded populations of CD4+ and CD8+ T cells and proinflammatory cytokines/chemokines in the cerebrospinal fluid (CSF). This robust, yet detrimental immune response likely contributes to the death of myelin producing oligodendrocytes and degeneration of neuronal axons. The mechanisms of neurological degeneration in HAM/TSP have yet to be fully delineated in vivo and may involve the immunogenic properties of the HTLV-1 transactivator protein Tax. This comprehensive review characterizes the available knowledge to date concerning the effects of HTLV-1 on CNS resident cell populations with emphasis on both viral and host factors contributing to the genesis of HAM/TSP.

  5. The differential expression of low-threshold K+ currents generates distinct firing patterns in different subtypes of adult mouse trigeminal ganglion neurones.

    PubMed

    Catacuzzeno, Luigi; Fioretti, Bernard; Pietrobon, Daniela; Franciolini, Fabio

    2008-11-01

    In adult mouse trigeminal ganglion (TG) neurones we identified three neuronal subpopulations, defined in terms of their firing response to protracted depolarizations, namely MF neurones, characterized by a multiple tonic firing; DMF neurones, characterized by a delay before the beginning of repetitive firing; and SS neurones, characterized by a strongly adapting response. The three subpopulations also differed in several other properties important for defining their functional role in vivo, namely soma size, action potential (AP) shape and capsaicin sensitivity. MF neurones had small soma, markedly long AP and mostly responded to capsaicin, properties typical of a subgroup of C-type nociceptors. SS neurones had large soma, short AP duration and were mostly capsaicin insensitive, suggesting that most of them have functions other than nociception. DMF neurones were all capsaicin insensitive, had a small soma size and intermediate AP duration, making them functionally distinct from both MF and SS neurones. We investigated the ionic basis underlying the delay to the generation of the first AP of DMF neurones, and the strong adaptation of SS neurones. We found that the expression of a fast-inactivating, 4-AP- and CP-339,818-sensitive K+ current (I(A)) in DMF neurones plays a critical role in the generation of the delay, whereas a DTX-sensitive K+ current (I(DTX)) selectively expressed in SS neurones appeared to be determinant for their strong firing adaptation. A minimal theoretical model of TG neuronal excitability confirmed that I(A) and I(DTX) have properties congruent with their suggested role.

  6. Tumor Necrosis Factor-stimulated Gene-6 (TSG-6) Is Constitutively Expressed in Adult Central Nervous System (CNS) and Associated with Astrocyte-mediated Glial Scar Formation following Spinal Cord Injury*

    PubMed Central

    Coulson-Thomas, Vivien J.; Lauer, Mark E.; Soleman, Sara; Zhao, Chao; Hascall, Vincent C.; Day, Anthony J.; Fawcett, James W.

    2016-01-01

    Tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) binds to hyaluronan and can reorganize/stabilize its structure, also enhancing the binding of this glycosaminoglycan to its cell surface receptor, CD44. TSG-6 is rapidly up-regulated in response to inflammatory cytokines protecting tissues from the damaging effects of inflammation. Despite TSG-6 treatment having been shown to improve outcomes in an experimental model of traumatic brain injury, TSG-6 expression has not been extensively studied in the central nervous system (CNS). We hereby analyzed the expression profile of TSG-6 in the developing CNS and following injury. We show that TSG-6 is expressed in the rat CNS by GFAP+ and CD44+ astrocytes, solely in the mature brain and spinal cord, and is not present during the development of the CNS. TSG-6−/− mice present a reduced number of GFAP+ astrocytes when compared with the littermate TSG-6+/− mice. TSG-6 expression is drastically up-regulated after injury, and the TSG-6 protein is present within the glial scar, potentially coordinating and stabilizing the formation of this hyaluronan-rich matrix. This study shows that TSG-6 is expressed in the CNS, suggesting a role for TSG-6 in astrocyte activation and tissue repair. We hypothesize that within this context TSG-6 could participate in the formation of the glial scar and confer anti-inflammatory properties. Further studies are required to elucidate the therapeutic potential of targeting TSG-6 after CNS injury to promote its protective effects while reducing the inhibitory properties of the glial scar in axon regeneration. PMID:27435674

  7. Tumor Necrosis Factor-stimulated Gene-6 (TSG-6) Is Constitutively Expressed in Adult Central Nervous System (CNS) and Associated with Astrocyte-mediated Glial Scar Formation following Spinal Cord Injury.

    PubMed

    Coulson-Thomas, Vivien J; Lauer, Mark E; Soleman, Sara; Zhao, Chao; Hascall, Vincent C; Day, Anthony J; Fawcett, James W

    2016-09-16

    Tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) binds to hyaluronan and can reorganize/stabilize its structure, also enhancing the binding of this glycosaminoglycan to its cell surface receptor, CD44. TSG-6 is rapidly up-regulated in response to inflammatory cytokines protecting tissues from the damaging effects of inflammation. Despite TSG-6 treatment having been shown to improve outcomes in an experimental model of traumatic brain injury, TSG-6 expression has not been extensively studied in the central nervous system (CNS). We hereby analyzed the expression profile of TSG-6 in the developing CNS and following injury. We show that TSG-6 is expressed in the rat CNS by GFAP(+) and CD44(+) astrocytes, solely in the mature brain and spinal cord, and is not present during the development of the CNS. TSG-6(-/-) mice present a reduced number of GFAP(+) astrocytes when compared with the littermate TSG-6(+/-) mice. TSG-6 expression is drastically up-regulated after injury, and the TSG-6 protein is present within the glial scar, potentially coordinating and stabilizing the formation of this hyaluronan-rich matrix. This study shows that TSG-6 is expressed in the CNS, suggesting a role for TSG-6 in astrocyte activation and tissue repair. We hypothesize that within this context TSG-6 could participate in the formation of the glial scar and confer anti-inflammatory properties. Further studies are required to elucidate the therapeutic potential of targeting TSG-6 after CNS injury to promote its protective effects while reducing the inhibitory properties of the glial scar in axon regeneration.

  8. NG2 glial cells regulate neuroimmunological responses to maintain neuronal function and survival

    PubMed Central

    Nakano, Masayuki; Tamura, Yasuhisa; Yamato, Masanori; Kume, Satoshi; Eguchi, Asami; Takata, Kumi; Watanabe, Yasuyoshi; Kataoka, Yosky

    2017-01-01

    NG2-expressing neural progenitor cells (i.e., NG2 glial cells) maintain their proliferative and migratory activities even in the adult mammalian central nervous system (CNS) and produce myelinating oligodendrocytes and astrocytes. Although NG2 glial cells have been observed in close proximity to neuronal cell bodies in order to receive synaptic inputs, substantive non-proliferative roles of NG2 glial cells in the adult CNS remain unclear. In the present study, we generated NG2-HSVtk transgenic rats and selectively ablated NG2 glial cells in the adult CNS. Ablation of NG2 glial cells produced defects in hippocampal neurons due to excessive neuroinflammation via activation of the interleukin-1 beta (IL-1β) pro-inflammatory pathway, resulting in hippocampal atrophy. Furthermore, we revealed that the loss of NG2 glial cell-derived hepatocyte growth factor (HGF) exacerbated these abnormalities. Our findings suggest that NG2 glial cells maintain neuronal function and survival via the control of neuroimmunological function. PMID:28195192

  9. Postnatal dysregulation of Notch signal disrupts dendrite development of adult-born neurons in the hippocampus and contributes to memory impairment

    PubMed Central

    Ding, Xue-Feng; Gao, Xiang; Ding, Xin-Chun; Fan, Ming; Chen, Jinhui

    2016-01-01

    Deficits in the Notch pathway are involved in a number of neurologic diseases associated with mental retardation or/and dementia. The mechanisms by which Notch dysregulation are associated with mental retardation and dementia are poorly understood. We found that Notch1 is highly expressed in the adult-born immature neurons in the hippocampus of mice. Retrovirus mediated knockout of notch1 in single adult-born immature neurons decreases mTOR signaling and compromises their dendrite morphogenesis. In contrast, overexpression of Notch1 intracellular domain (NICD), to constitutively activate Notch signaling in single adult-born immature neurons, promotes mTOR signaling and increases their dendrite arborization. Using a unique genetic approach to conditionally and selectively knockout notch 1 in the postnatally born immature neurons in the hippocampus decreases mTOR signaling, compromises their dendrite morphogenesis, and impairs spatial learning and memory. Conditional overexpression of NICD in the postnatally born immature neurons in the hippocampus increases mTOR signaling and promotes dendrite arborization. These data indicate that Notch signaling plays a critical role in dendrite development of immature neurons in the postnatal brain, and dysregulation of Notch signaling in the postnatally born neurons disrupts their development and thus contributes to the cognitive deficits associated with neurological diseases. PMID:27173138

  10. Lead decreases cell survival, proliferation, and neuronal differentiation of primary cultured adult neural precursor cells through activation of the JNK and p38 MAP kinases

    PubMed Central

    Engstrom, Anna; Wang, Hao; Xia, Zhengui

    2015-01-01

    Adult hippocampal neurogenesis is the process whereby adult neural precursor cells (aNPCs) in the subgranular zone (SGZ) of the dentate gyrus (DG) generate adult-born, functional neurons in the hippocampus. This process is modulated by various extracellular and intracellular stimuli, and the adult-born neurons have been implicated in hippocampus-dependent learning and memory. However, studies on how neurotoxic agents affect this process and the underlying mechanisms are limited. The goal of this study was to determine whether lead, a heavy metal, directly impairs critical processes in adult neurogenesis and to characterize the underlying signaling pathways using primary cultured SGZ-aNPCs isolated from adult mice. We report here that lead significantly increases apoptosis and inhibits proliferation in SGZ-aNPCs. In addition, lead significantly impairs spontaneous neuronal differentiation and maturation. Furthermore, we found that activation of the c-Jun NH2-terminal kinase (JNK) and p38 mitogen activated protein (MAP) kinase signaling pathways are important for lead cytotoxicity. Our data suggest that lead can directly act on adult neural stem cells and impair critical processes in adult hippocampal neurogenesis, which may contribute to its neurotoxicity and adverse effects on cognition in adults. PMID:25967738

  11. Differential regulation of proliferation and neuronal differentiation in adult rat spinal cord neural stem/progenitors by ERK1/2, Akt, and PLCγ

    PubMed Central

    Chan, Wai Si; Sideris, Alexandra; Sutachan, Jhon J.; Montoya G, Jose V.; Blanck, Thomas J. J.; Recio-Pinto, Esperanza

    2013-01-01

    Proliferation of endogenous neural stem/progenitor cells (NSPCs) has been identified in both normal and injured adult mammalian spinal cord. Yet the signaling mechanisms underlying the regulation of adult spinal cord NSPCs proliferation and commitment toward a neuronal lineage remain undefined. In this study, the role of three growth factor-mediated signaling pathways in proliferation and neuronal differentiation was examined. Adult spinal cord NSPCs were enriched in the presence of fibroblast growth factor 2 (FGF2). We observed an increase in the number of cells expressing the microtubule-associated protein 2 (MAP2) over time, indicating neuronal differentiation in the culture. Inhibition of the mitogen-activated protein kinase or extracellular signal-regulated kinase (ERK) kinase 1 and 2/ERK 1 and 2 (MEK/ERK1/2) or the phosphoinositide 3-kinase (PI3K)/Akt pathways suppressed active proliferation in adult spinal cord NSPC cultures; whereas neuronal differentiation was negatively affected only when the ERK1/2 pathway was inhibited. Inhibition of the phospholipase Cγ (PLCγ) pathway did not affect proliferation or neuronal differentiation. Finally, we demonstrated that the blockade of either the ERK1/2 or PLCγ signaling pathways reduced neurite branching of MAP2+ cells derived from the NSPC cultures. Many of the MAP2+ cells expressed synaptophysin and had a glutamatergic phenotype, indicating that over time adult spinal cord NSPCs had differentiated into mostly glutamatergic neurons. Our work provides new information regarding the contribution of these pathways to the proliferation and neuronal differentiation of NSPCs derived from adult spinal cord cultures, and emphasizes that the contribution of these pathways is dependent on the origin of the NSPCs. PMID:23986655

  12. Distinct Muscle Biopsy Findings in Genetically Defined Adult-Onset Motor Neuron Disorders.

    PubMed

    Jokela, Manu; Huovinen, Sanna; Raheem, Olayinka; Lindfors, Mikaela; Palmio, Johanna; Penttilä, Sini; Udd, Bjarne

    2016-01-01

    The objective of this study was to characterize and compare muscle histopathological findings in 3 different genetic motor neuron disorders. We retrospectively re-assessed muscle biopsy findings in 23 patients with autosomal dominant lower motor neuron disease caused by p.G66V mutation in CHCHD10 (SMAJ), 10 X-linked spinal and bulbar muscular atrophy (SBMA) and 11 autosomal dominant c9orf72-mutated amyotrophic lateral sclerosis (c9ALS) patients. Distinct large fiber type grouping consisting of non-atrophic type IIA muscle fibers were 100% specific for the late-onset spinal muscular atrophies (SMAJ and SBMA) and were never observed in c9ALS. Common, but less specific findings included small groups of highly atrophic rounded type IIA fibers in SMAJ/SBMA, whereas in c9ALS, small group atrophies consisting of small-caliber angular fibers involving both fiber types were more characteristic. We also show that in the 2 slowly progressive motor neuron disorders (SMAJ and SBMA) the initial neurogenic features are often confused with considerable secondary "myopathic" changes at later disease stages, such as rimmed vacuoles, myofibrillar aggregates and numerous fibers reactive for fetal myosin heavy chain (dMyHC) antibodies. Based on our findings, muscle biopsy may be valuable in the diagnostic work-up of suspected motor neuron disorders in order to avoid a false ALS diagnosis in patients without clear findings of upper motor neuron lesions.

  13. Distinct Muscle Biopsy Findings in Genetically Defined Adult-Onset Motor Neuron Disorders

    PubMed Central

    Jokela, Manu; Huovinen, Sanna; Raheem, Olayinka; Lindfors, Mikaela; Palmio, Johanna; Penttilä, Sini; Udd, Bjarne

    2016-01-01

    The objective of this study was to characterize and compare muscle histopathological findings in 3 different genetic motor neuron disorders. We retrospectively re-assessed muscle biopsy findings in 23 patients with autosomal dominant lower motor neuron disease caused by p.G66V mutation in CHCHD10 (SMAJ), 10 X-linked spinal and bulbar muscular atrophy (SBMA) and 11 autosomal dominant c9orf72-mutated amyotrophic lateral sclerosis (c9ALS) patients. Distinct large fiber type grouping consisting of non-atrophic type IIA muscle fibers were 100% specific for the late-onset spinal muscular atrophies (SMAJ and SBMA) and were never observed in c9ALS. Common, but less specific findings included small groups of highly atrophic rounded type IIA fibers in SMAJ/SBMA, whereas in c9ALS, small group atrophies consisting of small-caliber angular fibers involving both fiber types were more characteristic. We also show that in the 2 slowly progressive motor neuron disorders (SMAJ and SBMA) the initial neurogenic features are often confused with considerable secondary “myopathic” changes at later disease stages, such as rimmed vacuoles, myofibrillar aggregates and numerous fibers reactive for fetal myosin heavy chain (dMyHC) antibodies. Based on our findings, muscle biopsy may be valuable in the diagnostic work-up of suspected motor neuron disorders in order to avoid a false ALS diagnosis in patients without clear findings of upper motor neuron lesions. PMID:26999347

  14. Altered Hippocampal Neurogenesis and Amygdalar Neuronal Activity in Adult Mice with Repeated Experience of Aggression

    PubMed Central

    Smagin, Dmitry A.; Park, June-Hee; Michurina, Tatyana V.; Peunova, Natalia; Glass, Zachary; Sayed, Kasim; Bondar, Natalya P.; Kovalenko, Irina N.; Kudryavtseva, Natalia N.; Enikolopov, Grigori

    2015-01-01

    Repeated experience of winning in a social conflict setting elevates levels of aggression and may lead to violent behavioral patterns. Here, we use a paradigm of repeated aggression and fighting deprivation to examine changes in behavior, neurogenesis, and neuronal activity in mice with positive fighting experience. We show that for males, repeated positive fighting experience induces persistent demonstration of aggression and stereotypic behaviors in daily agonistic interactions, enhances aggressive motivation, and elevates levels of anxiety. When winning males are deprived of opportunities to engage in further fights, they demonstrate increased levels of aggressiveness. Positive fighting experience results in increased levels of progenitor cell proliferation and production of young neurons in the hippocampus. This increase is not diminished after a fighting deprivation period. Furthermore, repeated winning experience decreases the number of activated (c-fos-positive) cells in the basolateral amygdala and increases the number of activated cells in the hippocampus; a subsequent no-fight period restores the number of c-fos-positive cells. Our results indicate that extended positive fighting experience in a social conflict heightens aggression, increases proliferation of neuronal progenitors and production of young neurons in the hippocampus, and decreases neuronal activity in the amygdala; these changes can be modified by depriving the winners of the opportunity for further fights. PMID:26648838

  15. Neuronal plasticity in the mushroom body calyx during adult maturation in the honeybee and possible pheromonal influences.

    PubMed

    Muenz, Thomas S; Groh, Claudia; Maisonnasse, Alban; Le Conte, Yves; Plettner, Erika; Rössler, Wolfgang

    2015-12-01

    Honeybee workers express a pronounced age-dependent polyethism switching from various indoor duties to foraging outside the hive. This transition is accompanied by tremendous changes in the sensory environment that sensory systems and higher brain centers have to cope with. Foraging and age have earlier been shown to be associated with volume changes in the mushroom bodies (MBs). Using age- and task-controlled bees this study provides a detailed framework of neuronal maturation processes in the MB calyx during the course of natural behavioral maturation. We show that the MB calyx volume already increases during the first week of adult life. This process is mainly driven by broadening of the Kenyon cell dendritic branching pattern and then followed by pruning of projection neuron axonal boutons during the actual transition from indoor to outdoor duties. To further investigate the flexible regulation of division of labor and its neuronal correlates in a honeybee colony, we studied the modulation of the nurse-forager transition via a chemical communication system, the primer pheromone ethyl oleate (EO). EO is found at high concentrations on foragers in contrast to nurse bees and was shown to delay the onset of foraging. In this study, EO effects on colony behavior were not as robust as expected, and we found no direct correlation between EO treatment and synaptic maturation in the MB calyx. In general, we assume that the primer pheromone EO rather acts in concert with other factors influencing the onset of foraging with its effect being highly adaptive.

  16. A subset of neurons controls the permeability of the peritrophic matrix and midgut structure in Drosophila adults.

    PubMed

    Kenmoku, Hiroyuki; Ishikawa, Hiroki; Ote, Manabu; Kuraishi, Takayuki; Kurata, Shoichiro

    2016-08-01

    The metazoan gut performs multiple physiological functions, including digestion and absorption of nutrients, and also serves as a physical and chemical barrier against ingested pathogens and abrasive particles. Maintenance of these functions and structures is partly controlled by the nervous system, yet the precise roles and mechanisms of the neural control of gut integrity remain to be clarified in Drosophila Here, we screened for GAL4 enhancer-trap strains and labeled a specific subsets of neurons, using Kir2.1 to inhibit their activity. We identified an NP3253 line that is susceptible to oral infection by Gram-negative bacteria. The subset of neurons driven by the NP3253 line includes some of the enteric neurons innervating the anterior midgut, and these flies have a disorganized proventricular structure with high permeability of the peritrophic matrix and epithelial barrier. The findings of the present study indicate that neural control is crucial for maintaining the barrier function of the gut, and provide a route for genetic dissection of the complex brain-gut axis in adults of the model organism Drosophila.

  17. Estrogen induces rapid decrease in dendritic thorns of CA3 pyramidal neurons in adult male rat hippocampus

    SciTech Connect

    Tsurugizawa, Tomokazu; Mukai, Hideo

    2005-12-02

    Modulation of hippocampal synaptic plasticity by estrogen has been attracting much attention. Thorns of thorny excrescences of CA3 hippocampal neurons are post-synaptic regions whose presynaptic partners are mossy fiber terminals. Here we demonstrated the rapid effect of estradiol on the density of thorns of thorny excrescences, by imaging Lucifer Yellow-injected CA3 neurons in adult male rat hippocampal slices. The application of 1 nM estradiol induced rapid decrease in the density of thorns on pyramidal neurons within 2 h. The estradiol-mediated decrease in the density of thorns was blocked by CNQX (AMPA receptor antagonist) and PD98059 (MAP kinase inhibitor), but not by MK-801 (NMDA receptor antagonist). ER{alpha} agonist PPT induced the same suppressive effect as that induced by estradiol on the density of thorns, but ER{beta} agonist DPN did not affect the density of thorns. Note that a 1 nM estradiol treatment did not affect the density of spines in the stratum radiatum and stratum oriens. A search for synaptic ER{alpha} was performed using purified RC-19 antibody. The localization of ER{alpha} (67 kDa) in the CA3 mossy fiber terminals and thorns was demonstrated using immunogold electron microscopy. These results imply that estradiol drives the signaling pathway including ER{alpha} and MAP kinase.

  18. Resveratrol suppresses calcium-mediated microglial activation and rescues hippocampal neurons of adult rats following acute bacterial meningitis.

    PubMed

    Sheu, Ji-Nan; Liao, Wen-Chieh; Wu, Un-In; Shyu, Ling-Yuh; Mai, Fu-Der; Chen, Li-You; Chen, Mei-Jung; Youn, Su-Chung; Chang, Hung-Ming

    2013-03-01

    Acute bacterial meningitis (ABM) is a serious disease with severe neurological sequelae. The intense calcium-mediated microglial activation and subsequently pro-inflammatory cytokine release plays an important role in eliciting ABM-related oxidative damage. Considering resveratrol possesses significant anti-inflammatory and anti-oxidative properties, the present study aims to determine whether resveratrol would exert beneficial effects on hippocampal neurons following ABM. ABM was induced by inoculating Klebsiella pneumoniae into adult rats intraventricularly. The time-of-flight secondary ion mass spectrometry (TOF-SIMS), Griffonia simplicifolia isolectin-B4 (GSA-IB4) and ionized calcium binding adaptor molecule 1 (Iba1) immunohistochemistry, enzyme-linked immunosorbent assay as well as malondialdehyde (MDA) measurement were used to examine the calcium expression, microglial activation, pro-inflammatory cytokine level, and extent of oxidative stress, respectively. In ABM rats, strong calcium signaling associated with enhanced microglial activation was observed in hippocampus. Increased microglial expression was coincided with intense production of pro-inflammatory cytokines and oxidative damage. However, in rats receiving resveratrol after ABM, the calcium intensity, microglial activation, pro-inflammatory cytokine and MDA levels were all significantly decreased. Quantitative data showed that much more hippocampal neurons were survived in resveratrol-treated rats following ABM. As resveratrol successfully rescues hippocampal neurons from ABM by suppressing the calcium-mediated microglial activation, therapeutic use of resveratrol may act as a promising strategy to counteract the ABM-induced neurological damage.

  19. “Subpial Fan Cell” — A Class of Calretinin Neuron in Layer 1 of Adult Monkey Prefrontal Cortex

    PubMed Central

    Gabbott, Paul L. A.

    2016-01-01

    Layer 1 of the cortex contains populations of neurochemically distinct neurons and afferent fibers which markedly affect neural activity in the apical dendritic tufts of pyramidal cells. Understanding the causal mechanisms requires knowledge of the cellular architecture and synaptic organization of layer 1. This study has identified eight morphological classes of calretinin immunopositive (CRet+) neurons (including Cajal-Retzius cells) in layer 1 of the prefrontal cortex (PFC) in adult monkey (Macaca fasicularis), with a distinct class — termed “subpial fan (SPF) cell” — described in detail. SPF cells were rare horizontal unipolar CRet+ cells located directly beneath the pia with a single thick primary dendrite that branched into a characteristic fan-like dendritic tree tangential to the pial surface. Dendrites had spines, filamentous processes and thorny branchlets. SPF cells lay millimeters apart with intralaminar axons that ramified widely in upper layer 1. Such cells were GABA immunonegative (-) and occurred in areas beyond PFC. Interspersed amidst SPF cells displaying normal structural integrity were degenerating CRet+ neurons (including SPF cells) and clumps of lipofuscin-rich cellular debris. The number of degenerating SPF cells increased during adulthood. Ultrastructural analyses indicated SPF cell somata received asymmetric (A — presumed excitatory) and symmetric (S — presumed inhibitory) synaptic contacts. Proximal dendritic shafts received mainly S-type and distal shafts mostly A-type input. All dendritic thorns and most dendritic spines received both synapse types. The tangential areal density of SPF cell axonal varicosities varied radially from parent somata — with dense clusters in more distal zones. All boutons formed A-type contacts with CRet- structures. The main post-synaptic targets were dendritic shafts (67%; mostly spine-bearing) and dendritic spines (24%). SPF-SPF cell innervation was not observed. Morphometry of SPF cells

  20. Target identification for CNS diseases by transcriptional profiling.

    PubMed

    Altar, C Anthony; Vawter, Marquis P; Ginsberg, Stephen D

    2009-01-01

    Gene expression changes in neuropsychiatric and neurodegenerative disorders, and gene responses to therapeutic drugs, provide new ways to identify central nervous system (CNS) targets for drug discovery. This review summarizes gene and pathway targets replicated in expression profiling of human postmortem brain, animal models, and cell culture studies. Analysis of isolated human neurons implicates targets for Alzheimer's disease and the cognitive decline associated with normal aging and mild cognitive impairment. In addition to tau, amyloid-beta precursor protein, and amyloid-beta peptides (Abeta), these targets include all three high-affinity neurotrophin receptors and the fibroblast growth factor (FGF) system, synapse markers, glutamate receptors (GluRs) and transporters, and dopamine (DA) receptors, particularly the D2 subtype. Gene-based candidates for Parkinson's disease (PD) include the ubiquitin-proteosome system, scavengers of reactive oxygen species, brain-derived neurotrophic factor (BDNF), its receptor, TrkB, and downstream target early growth response 1, Nurr-1, and signaling through protein kinase C and RAS pathways. Increasing variability and decreases in brain mRNA production from middle age to old age suggest that cognitive impairments during normal aging may be addressed by drugs that restore antioxidant, DNA repair, and synaptic functions including those of DA to levels of younger adults. Studies in schizophrenia identify robust decreases in genes for GABA function, including glutamic acid decarboxylase, HINT1, glutamate transport and GluRs, BDNF and TrkB, numerous 14-3-3 protein family members, and decreases in genes for CNS synaptic and metabolic functions, particularly glycolysis and ATP generation. Many of these metabolic genes are increased by insulin and muscarinic agonism, both of which are therapeutic in psychosis. Differential genomic signals are relatively sparse in bipolar disorder, but include deficiencies in the expression of 14

  1. Target Identification for CNS Diseases by Transcriptional Profiling

    PubMed Central

    Altar, C Anthony; Vawter, Marquis P; Ginsberg, Stephen D

    2008-01-01

    Gene expression changes in neuropsychiatric and neurodegenerative disorders, and gene responses to therapeutic drugs, provide new ways to identify central nervous system (CNS) targets for drug discovery. This review summarizes gene and pathway targets replicated in expression profiling of human postmortem brain, animal models, and cell culture studies. Analysis of isolated human neurons implicates targets for Alzheimer’s disease and the cognitive decline associated with normal aging and mild cognitive impairment. In addition to τ, amyloid-β precursor protein, and amyloid-β peptides (Aβ), these targets include all three high-affinity neurotrophin receptors and the fibroblast growth factor (FGF) system, synapse markers, glutamate receptors (GluRs) and transporters, and dopamine (DA) receptors, particularly the D2 subtype. Gene-based candidates for Parkinson’s disease (PD) include the ubiquitin–proteosome system, scavengers of reactive oxygen species, brain-derived neurotrophic factor (BDNF), its receptor, TrkB, and downstream target early growth response 1, Nurr-1, and signaling through protein kinase C and RAS pathways. Increasing variability and decreases in brain mRNA production from middle age to old age suggest that cognitive impairments during normal aging may be addressed by drugs that restore antioxidant, DNA repair, and synaptic functions including those of DA to levels of younger adults. Studies in schizophrenia identify robust decreases in genes for GABA function, including glutamic acid decarboxylase, HINT1, glutamate transport and GluRs, BDNF and TrkB, numerous 14-3-3 protein family members, and decreases in genes for CNS synaptic and metabolic functions, particularly glycolysis and ATP generation. Many of these metabolic genes are increased by insulin and muscarinic agonism, both of which are therapeutic in psychosis. Differential genomic signals are relatively sparse in bipolar disorder, but include deficiencies in the expression of 14

  2. Expression of Arginine Vasotocin Receptors in the Developing Zebrafish CNS

    PubMed Central

    Iwasaki, Kenichi; Taguchi, Meari; Bonkowsky, Joshua L.; Kuwada, John Y.

    2013-01-01

    Vasotocin/vasopressin is a neuropeptide that regulates social and reproductive behaviors in a variety of animals including fish. Arginine vasotocin (AVT) is expressed by cells in the ventral hypothalamic and preoptic areas in the diencephalon during embryogenesis in zebrafish suggesting that vasotocin might mediate other functions within the CNS prior to the development of social and reproductive behaviors. In order to examine potential early roles for vasotocin we cloned two zebrafish vasotocin receptors homologous to AVPR1a. The receptors are expressed primarily in the CNS in similar but generally non-overlapping patterns. Both receptors are expressed in the forebrain, midbrain and hindbrain by larval stage. Of note, AVTR1a-expressing neurons in the hindbrain appear to be contacted by the axons of preoptic neurons in the forebrain that include avt+ neurons and from sensory axons in the lateral longitudinal fasciculus (LLF). Furthermore, AVTR1a-expressing hindbrain neurons extend axons into the medial longitudinal fasciculus (MLF) that contains axons of many neurons thought to be involved in locomotor responses to sensory stimulation. One hypothesis consistent with this anatomy is that AVT signaling mediates or gates sensory input to motor circuits in the hindbrain and spinal cord. PMID:23830982

  3. Current approaches to enhance CNS delivery of drugs across the brain barriers

    PubMed Central

    Lu, Cui-Tao; Zhao, Ying-Zheng; Wong, Ho Lun; Cai, Jun; Peng, Lei; Tian, Xin-Qiao

    2014-01-01

    Although many agents have therapeutic potentials for central nervous system (CNS) diseases, few of these agents have been clinically used because of the brain barriers. As the protective barrier of the CNS, the blood–brain barrier and the blood–cerebrospinal fluid barrier maintain the brain microenvironment, neuronal activity, and proper functioning of the CNS. Different strategies for efficient CNS delivery have been studied. This article reviews the current approaches to open or facilitate penetration across these barriers for enhanced drug delivery to the CNS. These approaches are summarized into three broad categories: noninvasive, invasive, and miscellaneous techniques. The progresses made using these approaches are reviewed, and the associated mechanisms and problems are discussed. PMID:24872687

  4. The hippocampus of the eastern rock sengi: cytoarchitecture, markers of neuronal function, principal cell numbers, and adult neurogenesis

    PubMed Central

    Slomianka, Lutz; Drenth, Tanja; Cavegn, Nicole; Menges, Dominik; Lazic, Stanley E.; Phalanndwa, Mashudu; Chimimba, Christian T.; Amrein, Irmgard

    2013-01-01

    The brains of sengis (elephant shrews, order Macroscelidae) have long been known to contain a hippocampus that in terms of allometric progression indices is larger than that of most primates and equal in size to that of humans. In this report, we provide descriptions of hippocampal cytoarchitecture in the eastern rock sengi (Elephantulus myurus), of the distributions of hippocampal calretinin, calbindin, parvalbumin, and somatostatin, of principal neuron numbers, and of cell numbers related to proliferation and neuronal differentiation in adult hippocampal neurogenesis. Sengi hippocampal cytoarchitecture is an amalgamation of characters that are found in CA1 of, e.g., guinea pig and rabbits and in CA3 and dentate gyrus of primates. Correspondence analysis of total cell numbers and quantitative relations between principal cell populations relate this sengi to macaque monkeys and domestic pigs, and distinguish the sengi from distinct patterns of relations found in humans, dogs, and murine rodents. Calretinin and calbindin are present in some cell populations that also express these proteins in other species, e.g., interneurons at the stratum oriens/alveus border or temporal hilar mossy cells, but neurons expressing these markers are often scarce or absent in other layers. The distributions of parvalbumin and somatostatin resemble those in other species. Normalized numbers of PCNA+ proliferating cells and doublecortin-positive (DCX+) differentiating cells of neuronal lineage fall within the overall ranges of murid rodents, but differed from three murid species captured in the same habitat in that fewer DCX+ cells relative to PCNA+ were observed. The large and well-differentiated sengi hippocampus is not accompanied by correspondingly sized cortical and subcortical limbic areas that are the main hippocampal sources of afferents and targets of efferents. This points to intrinsic hippocampal information processing as the selective advantage of the large sengi hippocampus

  5. Activation of TRPA1 channel facilitates excitatory synaptic transmission in substantia gelatinosa neurons of the adult rat spinal cord.

    PubMed

    Kosugi, Masafumi; Nakatsuka, Terumasa; Fujita, Tsugumi; Kuroda, Yasuo; Kumamoto, Eiichi

    2007-04-18

    TRPA1 is expressed in primary sensory neurons and hair cells, and it is proposed to be activated by cold stimuli, mechanical stimuli, or pungent ingredients. However, its role in regulating synaptic transmission has never been documented yet. In the present study, we examined whether activation of the TRPA1 channels affects synaptic transmission in substantia gelatinosa (SG) neurons of adult rat spinal cord slices by using the whole-cell patch-clamp technique. A chief ingredient of mustard oil, allyl isothiocyanate (AITC), superfused for 2 min markedly increased the frequency and amplitude of spontaneous EPSCs (sEPSCs), which was accompanied by an inward current. Similar actions were produced by cinnamaldehyde and allicin. The AITC-induced increases in sEPSC frequency and amplitude were resistant to tetrodotoxin (TTX) and La3+, whereas being significantly reduced in extent in a Ca2+-free bath solution. In the presence of glutamate receptor antagonists CNQX and AP5, AITC did not generate any synaptic activities. The AITC-induced increases in sEPSC frequency and amplitude were reduced by ruthenium red, whereas being unaffected by capsazepine. AITC also increased the frequency and amplitude of spontaneous inhibitory postsynaptic currents; this AITC action was abolished in the presence of TTX or glutamate receptor antagonists. These results indicate that TRPA1 appears to be localized not only at presynaptic terminals on SG neurons to enhance glutamate release, but also in terminals of primary afferents innervating onto spinal inhibitory interneurons, which make synapses with SG neurons. This central modulation of sensory signals may be associated with physiological and pathological pain sensations.

  6. F-Spondin/spon1b Expression Patterns in Developing and Adult Zebrafish

    PubMed Central

    Akle, Veronica; Guelin, Emmanuel; Yu, Lili; Brassard-Giordano, Helena; Slack, Barbara E.; Zhdanova, Irina V.

    2012-01-01

    F-spondin, an extracellular matrix protein, is an important player in embryonic morphogenesis and CNS development, but its presence and role later in life remains largely unknown. We generated a transgenic zebrafish in which GFP is expressed under the control of the F-spondin (spon1b) promoter, and used it in combination with complementary techniques to undertake a detailed characterization of the expression patterns of F-spondin in developing and adult brain and periphery. We found that F-spondin is often associated with structures forming long neuronal tracts, including retinal ganglion cells, the olfactory bulb, the habenula, and the nucleus of the medial longitudinal fasciculus (nMLF). F-spondin expression coincides with zones of adult neurogenesis and is abundant in CSF-contacting secretory neurons, especially those in the hypothalamus. Use of this new transgenic model also revealed F-spondin expression patterns in the peripheral CNS, notably in enteric neurons, and in peripheral tissues involved in active patterning or proliferation in adults, including the endoskeleton of zebrafish fins and the continuously regenerating pharyngeal teeth. Moreover, patterning of the regenerating caudal fin following fin amputation in adult zebrafish was associated with F-spondin expression in the blastema, a proliferative region critical for tissue reconstitution. Together, these findings suggest major roles for F-spondin in the CNS and periphery of the developing and adult vertebrate. PMID:22768035

  7. Expression of doublecortin, a neuronal migration protein, in unipolar brush cells of the vestibulocerebellum and dorsal cochlear nucleus of the adult rat

    PubMed Central

    Manohar, Senthilvelan; Paolone, Nicholas A.; Bleichfeld, Marni; Hayes, Sarah; Salvi, Richard J.; Baizer, Joan S.

    2011-01-01

    Doublecortin (DCX) is a microtubule associated protein that is critical for neuronal migration and the development of the cerebral cortex. In the adult, it is expressed in newborn neurons in the subventricular and subgranular zones but not in the mature neurons of the cerebral cortex. By contrast, neurogenesis and neuronal migration of cells in the cerebellum continue into early postnatal life; migration of one class of cerebellar interneuron, unipolar brush cells (UBCs), may continue into adulthood. To explore the possibility of continued neuronal migration in the adult cerebellum, closely spaced sections through the brainstem and cerebellum of adult (3–16 months old) Sprague Dawley rats were immunolabeled for DCX. Neurons immunoreactive (ir) to DCX were present in the granular cell layer of the vestibulocerebellum, most densely in the transition zone (tz), the region between the flocculus (FL) and ventral paraflocculus (PFL), as well as in the dorsal cochlear nucleus (DCN). These DCX-ir cells had the morphological appearance of unipolar brush cells (UBCs) with oval somata and a single dendrite ending in a “brush.” There were many examples of colocalization of DCX with Eps8 or calretinin, UBC markers. We also identified DCX-ir elements along the fourth ventricle and its lateral recess that had labeled somata but lacked the dendritic structure characteristic of UBCs. Labeled UBCs were seen in nearby white matter. These results suggest that there may be continued neurogenesis and/or migration of UBCs in the adult. Another possibility is that UBCs maintain DCX expression even after migration and maturation, reflecting a role of DCX in adult neuronal plasticity in addition to a developmental role in migration. PMID:22198017

  8. Astrocyte scar formation aids CNS axon regeneration

    PubMed Central

    Anderson, Mark A.; Burda, Joshua E.; Ren, Yilong; Ao, Yan; O’Shea, Timothy M.; Kawaguchi, Riki; Coppola, Giovanni; Khakh, Baljit S.; Deming, Timothy J.; Sofroniew, Michael V.

    2017-01-01

    Summary Transected axons fail to regrow in the mature central nervous system (CNS). Astrocyte scars are widely regarded as causal in this failure. Here, using three genetically targeted loss-of-function manipulations in adult mice, we show that preventing astrocyte scar formation, attenuating scar-forming astrocytes, or deleting chronic astrocyte scars all failed to result in spontaneous regrowth of transected corticospinal, sensory or serotonergic axons through severe spinal cord injury (SCI) lesions. In striking contrast, sustained local delivery via hydrogel depots of required axon-specific growth factors not present in SCI lesions, plus growth-activating priming injuries, stimulated robust, laminin-dependent sensory axon regrowth past scar-forming astrocytes and inhibitory molecules in SCI lesions. Preventing astrocyte scar formation significantly reduced this stimulated axon regrowth. RNA sequencing revealed that astrocytes and non-astrocyte cells in SCI lesions express multiple axon-growth supporting molecules. Our findings show that contrary to prevailing dogma, astrocyte scar formation aids rather than prevents CNS axon regeneration. PMID:27027288

  9. Up-regulation of Vps4A promotes neuronal apoptosis after intracerebral hemorrhage in adult rats.

    PubMed

    Ren, Jianbing; Yuan, Debin; Xie, Lili; Tao, Xuelei; Duan, Chenwei; Bao, Yifeng; He, Yunfeng; Ge, Jianbin; Lu, Hongjian

    2017-04-01

    Vps4, vacuolar protein sorting 4, belongs to ATPases Associated with diverse cellular Activities (AAA) protein family which is made up of Vps4A and Vps4B. Previous studies demonstrated that Vps4A plays vital roles in diverse aspects such as virus budding, the efficient transport of H-Ras to the PM (plasma membrane) and the involvement in the MVB (multivesiculate bodies) pathway. Interestingly, Vps4A is also expressed in the brain. However, the distribution and function of Vps4A in ICH diseases remain unclear. In this study, we show that Vps4A may be involved in neuronal apoptosis during pathophysiological processes of intracerebral hemorrhage (ICH). Based on the results of Western blot and immunohistochemistry, we found a remarkable up-regulation of Vps4A expression surrounding the hematoma after ICH. Double labeled immunofluorescence showed that Vps4A was co-expressed with NeuN but rarely with astrocytes and microglia. Morever, we detected that neuronal apoptosis marker active caspase-3 had co-localizations with Vps4A. Additionaly, Vps4A knockdown in vitro specifically leads to decreasing neuronal apoptosis coupled with increased Akt phosphorylation. All datas suggested that Vps4A was involved in promoting neuronal apoptosis via inhibiting Akt phosphorylation after ICH.

  10. Control of Cell Survival in Adult Mammalian Neurogenesis.

    PubMed

    Kuhn, H Georg

    2015-10-28

    The fact that continuous proliferation of stem cells and progenitors, as well as the production of new neurons, occurs in the adult mammalian central nervous system (CNS) raises several basic questions concerning the number of neurons required in a particular system. Can we observe continued growth of brain regions that sustain neurogenesis? Or does an elimination mechanism exist to maintain a constant number of cells? If so, are old neurons replaced, or are the new neurons competing for limited network access among each other? What signals support their survival and integration and what factors are responsible for their elimination? This review will address these and other questions regarding regulatory mechanisms that control cell-death and cell-survival mechanisms during neurogenesis in the intact adult mammalian brain.

  11. Inactivation of fibroblast growth factor receptor signaling in myelinating glial cells results in significant loss of adult spiral ganglion neurons accompanied by age-related hearing impairment.

    PubMed

    Wang, S J; Furusho, M; D'Sa, C; Kuwada, S; Conti, L; Morest, D K; Bansal, R

    2009-11-15

    Hearing loss has been attributed to many factors, including degeneration of sensory neurons in the auditory pathway and demyelination along the cochlear nerve. Fibroblast growth factors (FGFs), which signal through four receptors (Fgfrs), are produced by auditory neurons and play a key role in embryonic development of the cochlea and in neuroprotection against sound-induced injury. However, the role of FGF signaling in the maintenance of normal auditory function in adult and aging mice remains to be elucidated. Furthermore, the contribution of glial cells, which myelinate the cochlear nerves, is poorly understood. To address these questions, we generated transgenic mice in which Fgfr1 and Fgfr2 were specifically inactivated in Schwann cells and oligodendrocytes but not in neurons. Adult mutant mice exhibited late onset of hearing impairment, which progressed markedly with age. The hearing impairment was accompanied by significant loss of myelinated spiral ganglion neurons. The pathology extended into the cochlear nucleus, without apparent loss of myelin or of the deletion-bearing glial cells themselves. This suggests that perturbation of FGF receptor-mediated glial function leads to the attenuation of glial support of neurons, leading to their loss and impairment of auditory functions. Thus, FGF/FGF receptor signaling provides a potentially novel mechanism of maintaining reciprocal interactions between neurons and glia in adult and aging animals. Dysfunction of glial cells and FGF receptor signaling may therefore be implicated in neurodegenerative hearing loss associated with normal aging.

  12. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain.

    PubMed

    Marsicano, G; Lutz, B

    1999-12-01

    Cannabinoids can modulate motor behaviour, learning and memory, cognition and pain perception. These effects correlate with the expression of the cannabinoid receptor 1 (CB1) and with the presence of endogenous cannabinoids in the brain. In trying to obtain further insights into the mechanisms underlying the modulatory effects of cannabinoids, CB1-positive neurons were determined in the murine forebrain at a single cell resolution. We performed a double in situ hybridization study to detect mRNA of CB1 in combination with mRNA of glutamic acid decarboxylase 65k, neuropeptide cholecystokinin (CCK), parvalbumin, calretinin and calbindin D28k, respectively. Our results revealed that CB1-expressing cells can be divided into distinct neuronal subpopulations. There is a clear distinction between neurons containing CB1 mRNA either at high levels or low levels. The majority of high CB1-expressing cells are GABAergic (gamma-aminobutyric acid) neurons belonging mainly to the cholecystokinin-positive and parvalbumin-negative type of interneurons (basket cells) and, to a lower extent, to the calbindin D28k-positive mid-proximal dendritic inhibitory interneurons. Only a fraction of low CB1-expressing cells is GABAergic. In the hippocampus, amygdala and entorhinal cortex area, CB1 mRNA is present at low but significant levels in many non-GABAergic cells that can be considered as projecting principal neurons. Thus, a complex mechanism appears to underlie the modulatory effects of cannabinoids. They might act on principal glutamatergic circuits as well as modulate local GABAergic inhibitory circuits. CB1 is very highly coexpressed with CCK. It is known that cannabinoids and CCK often have opposite effects on behaviour and physiology. Therefore, we suggest that a putative cross-talk between cannabinoids and CCK might exist and will be relevant to better understanding of physiology and pharmacology of the cannabinoid system.

  13. Aging, the Central Nervous System, and Mobility in Older Adults: Neural Mechanisms of Mobility Impairment

    PubMed Central

    Cruz-Almeida, Yenisel; Clark, David J.; Viswanathan, Anand; Scherzer, Clemens R.; De Jager, Philip; Csiszar, Anna; Laurienti, Paul J.; Hausdorff, Jeffery M.; Chen, Wen G.; Ferrucci, Luiggi; Rosano, Caterina; Studenski, Stephanie A.; Black, Sandra E.; Lipsitz, Lewis A.

    2015-01-01

    Background. Mobility is crucial for successful aging and is impaired in many older adults. We know very little about the subtle, subclinical age-related changes in the central nervous system (CNS) that mediate mobility impairment. Methods. A conference series focused on aging, the CNS, and mobility was launched. The second conference addressed major age-associated mechanisms of CNS-mediated mobility impairment. Speakers and conference attendees recommended key areas for future research, identified barriers to progress, and proposed strategies to overcome them. Results. Priorities identified for future research include (a) studying interactions among different mechanisms; (b) examining effects of interventions targeting these mechanisms; (c) evaluating the effect of genetic polymorphisms on risks and course of age-related mobility impairment; and (d) examining the effect of age on CNS repair processes, neuroplasticity, and neuronal compensatory mechanisms. Key strategies to promote research include (a) establish standard measures of mobility across species; (b) evaluate the effect of aging in the absence of disease on CNS and mobility; and (c) use advanced computational methods to better evaluate the interactions between CNS and other systems involved in mobility. Conclusions. CNS is a major player in the process, leading to mobility decline with aging. Future research in this area has the potential to prolong independence in older persons. Better interactions among disciplines and shared research paradigms are needed to make progress. Research priorities include the development of innovative approaches to integrate research on aging, cognition, and movement with attention to neurovascular function, neuroplasticity, and neurophysiological reserve. PMID:26386013

  14. Adult newborn neurons are involved in learning acquisition and long-term memory formation: the distinct demands on temporal neurogenesis of different cognitive tasks.

    PubMed

    Suárez-Pereira, Irene; Canals, Santiago; Carrión, Angel M

    2015-01-01

    There is evidence that adult hippocampal neurogenesis influences hippocampal function, although the role these neurons fulfill in learning and consolidation processes remains unclear. Using a novel fast X-ray ablation protocol to deplete neurogenic cells, we demonstrate that immature adult hippocampal neurons are required for hippocampal learning and long-term memory formation. Moreover, we found that long-term memory formation in the object recognition and passive avoidance tests, two paradigms that involve circuits with distinct emotional components, had different temporal demands on hippocampal neurogenesis. These results reveal new and unexpected aspects of neurogenesis in cognitive processes.

  15. Knock-out of HCN1 subunit flattens dorsal-ventral frequency gradient of medial entorhinal neurons in adult mice.

    PubMed

    Giocomo, Lisa M; Hasselmo, Michael E

    2009-06-10

    Layer II stellate cells at different locations along the dorsal to ventral axis of medial entorhinal cortex show differences in the frequency of intrinsic membrane potential oscillations and resonance (Giocomo et al., 2007). The frequency differences scale with differences in the size and spacing of grid-cell firing fields recorded in layer II of the medial entorhinal cortex in behaving animals. To determine the mechanism for this difference in intrinsic frequency, we analyzed oscillatory properties in adult control mice and adult mice with a global deletion of the HCN1 channel. Data from whole-cell patch recordings show that the oscillation frequency gradient along the dorsal-ventral axis previously shown in juvenile rats also appears in control adult mice, indicating that the dorsal-ventral gradient generalizes across age and species. Knock-out of the HCN1 channel flattens the dorsal-ventral gradient of the membrane potential oscillation frequency, the resonant frequency, the time constant of the "sag" potential and the amplitude of the sag potential. This supports a role of the HCN1 subunit in the mechanism of the frequency gradient in these neurons. These findings have important implications for models of grid cells and generate predictions for future in vivo work on entorhinal grid cells.

  16. The doublecortin-expressing population in the developing and adult brain contains multipotential precursors in addition to neuronal-lineage cells.

    PubMed

    Walker, Tara L; Yasuda, Takahiro; Adams, David J; Bartlett, Perry F

    2007-04-04

    Doublecortin (DCX) has recently been promulgated as a selective marker of cells committed to the neuronal lineage in both the developing and the adult brain. To explore the potential of DCX-positive (DCX+) cells more stringently, these cells were isolated by flow cytometry from the brains of transgenic mice expressing green fluorescent protein under the control of the DCX promoter in embryonic, early postnatal, and adult animals. It was found that virtually all of the cells (99.9%) expressing high levels of DCX (DCX(high)) in the embryonic brain coexpressed the neuronal marker betaIII-tubulin and that this population contained no stem-like cells as demonstrated by lack of neurosphere formation in vitro. However, the DCX+ population from the early postnatal brain and the adult subventricular zone and hippocampus, which expressed low levels of DCX (DCX(low)), was enriched for neurosphere-forming cells, with only a small subpopulation of these cells coexpressing the neuronal markers betaIII-tubulin or microtubule-associated protein 2. Similarly, the DCX(low) population from embryonic day 14 (E14) brain contained neurosphere-forming cells. Only the postnatal cerebellum and adult olfactory bulb contained some DCX(high) cells, which were shown to be similar to the E14 DCX(high) cells in that they had no stem cell activity. Electrophysiological studies confirmed the heterogeneous nature of DCX+ cells, with some cells displaying characteristics of immature or mature neurons, whereas others showed no neuronal characteristics whatsoever. These results indicate that DCX(high) cells, regardless of location, are restricted to the neuronal lineage or are bone fide neurons, whereas some DCX(low) cells retain their multipotentiality.

  17. Anti-NGF monoclonal antibody muMab 911 does not deplete neurons in the superior cervical ganglia of young or old adult rats.

    PubMed

    Marcek, John; Okerberg, Carlin; Liu, Chang-Ning; Potter, David; Butler, Paul; Boucher, Magalie; Zorbas, Mark; Mouton, Peter; Nyengaard, Jens R; Somps, Chris

    2016-10-01

    Nerve growth factor (NGF) blocking therapies are an emerging and effective approach to pain management. However, concerns about the potential for adverse effects on the structure and function of the peripheral nervous system have slowed their development. Early studies using NGF antisera in adult rats reported effects on the size and number of neurons in the sympathetic chain ganglia. In the work described here, both young adult (6-8 week) and fully mature (7-8 month) rats were treated with muMab 911, a selective, murine, anti-NGF monoclonal antibody, to determine if systemic exposures to pharmacologically active levels of antibody for 1 month cause loss of neurons in the sympathetic superior cervical ganglia (SCG). State-of-the-art, unbiased stereology performed by two independent laboratories was used to determine the effects of muMab 911 on SCG neuronal number and size, as well as ganglion size. Following muMab 911 treatment, non-statistically significant trends toward smaller ganglia, and smaller and fewer neurons, were seen when routine, nonspecific stains were used in stereologic assessments. However, when noradrenergic neurons were identified using tyrosine hydroxylase (TH) immunoreactivity, trends toward fewer neurons observed with routine stains were not apparent. The only statistically significant effects detected were lower SCG weights in muMab 911-treated rats, and a smaller volume of TH immunoreactivity in neurons from younger rats treated with muMab 911. These results indicate that therapeutically relevant exposures to the anti-NGF monoclonal antibody muMab 911 for 1 month have no effect on neuron numbers within the SCG from young or old adult rats.

  18. CNS Control of Glucose Metabolism: Response to Environmental Challenges

    PubMed Central

    Arble, Deanna M.; Sandoval, Darleen A.

    2013-01-01

    Over the last 15 years, considerable work has accumulated to support the role of the CNS in regulating postprandial glucose levels. As discussed in the first section of this review, the CNS receives and integrates information from afferent neurons, circulating hormones, and postprandially generated nutrients to subsequently direct changes in glucose output by the liver and glucose uptake by peripheral tissues. The second major component of this review focuses on the effects of external pressures, including high fat diet and changes to the light:dark cycle on CNS-regulating glucose homeostasis. We also discuss the interaction between these different pressures and how they contribute to the multifaceted mechanisms that we hypothesize contribute to the dysregulation of glucose in type 2 diabetes mellitus (T2DM). We argue that while current peripheral therapies serve to delay the progression of T2DM, generating combined obesity and T2DM therapies targeted at the CNS, the primary site of dysfunction for both diseases, would lead to a more profound impact on the progression of both diseases. PMID:23550218

  19. CNS control of glucose metabolism: response to environmental challenges.

    PubMed

    Arble, Deanna M; Sandoval, Darleen A

    2013-01-01

    Over the last 15 years, considerable work has accumulated to support the role of the CNS in regulating postprandial glucose levels. As discussed in the first section of this review, the CNS receives and integrates information from afferent neurons, circulating hormones, and postprandially generated nutrients to subsequently direct changes in glucose output by the liver and glucose uptake by peripheral tissues. The second major component of this review focuses on the effects of external pressures, including high fat diet and changes to the light:dark cycle on CNS-regulating glucose homeostasis. We also discuss the interaction between these different pressures and how they contribute to the multifaceted mechanisms that we hypothesize contribute to the dysregulation of glucose in type 2 diabetes mellitus (T2DM). We argue that while current peripheral therapies serve to delay the progression of T2DM, generating combined obesity and T2DM therapies targeted at the CNS, the primary site of dysfunction for both diseases, would lead to a more profound impact on the progression of both diseases.

  20. Causes of CNS inflammation and potential targets for anticonvulsants.

    PubMed

    Falip, Mercé; Salas-Puig, Xavier; Cara, Carlos

    2013-08-01

    Inflammation is one of the most important endogenous defence mechanisms in an organism. It has been suggested that inflammation plays an important role in the pathophysiology of a number of human epilepsies and convulsive disorders, and there is clinical and experimental evidence to suggest that inflammatory processes within the CNS may either contribute to or be a consequence of epileptogenesis. This review discusses evidence from human studies on the role of inflammation in epilepsy and highlights potential new targets in the inflammatory cascade for antiepileptic drugs. A number of mechanisms have been shown to be involved in CNS inflammatory reactions. These include an inflammatory response at the level of the blood-brain barrier (BBB), immune-mediated damage to the CNS, stress-induced release of inflammatory mediators and direct neuronal dysfunction or damage as a result of inflammatory reactions. Mediators of inflammation in the CNS include interleukin (IL)-1β, tumour necrosis factor-α, nuclear factor-κB and toll-like receptor-4 (TLR4). IL-1β, BBB and high-mobility group box-1-TLR4 signalling appear to be the most promising targets for anticonvulsant agents directed at inflammation. Such agents may provide effective therapy for drug-resistant epilepsies in the future.

  1. Drug Delivery to CNS: Challenges and Opportunities with Emphasis on Biomaterials Based Drug Delivery Strategies.

    PubMed

    Khambhla, Ekta; Shah, Viral; Baviskar, Kalpesh

    2016-01-01

    The current epoch has witnessed a lifestyle impregnated with stress, which is a major cause of several neurological disorders. High morbidity and mortality rate due to neurological diseases and disorders have generated a huge social impact. Despite voluminous research, patients suffering from fatal and/or debilitating CNS diseases such as brain tumors, HIV, encephalopathy, Alzheimer's, epilepsy, Parkinson's, migraine and multiple sclerosis outnumbered those suffering from systemic cancer or heart diseases. The brain being a highly sensitive neuronal organ, has evolved with vasculature barriers, which regulates the efflux and influx of substances to CNS. Treatment of CNS diseases/disorders is challenging because of physiologic, metabolic and biochemical obstacles created by these barriers which comprise mainly of BBB and BCFB. The inability of achieving therapeutically active concentration has become the bottleneck level difficulty, hampering the therapeutic efficiency of several promising drug candidates for CNS related disorders. Parallel maturation of an effective CNS drug delivery strategy with CNS drug discovery is the need of the hour. Recently, the focus of the pharmaceutical community has aggravated in the direction of developing novel and more efficient drug delivery systems, giving the potential of more effective and safer CNS therapies. The present review outlines several hurdles in drug delivery to the CNS along with ideal physicochemical properties desired in drug substance/formulation for CNS delivery. The review also focuses on different conventional and novel strategies for drug delivery to the CNS. The article also assesses and emphasizes on possible benefits of biomaterial based formulations for drug delivery to the CNS.

  2. Relapsing-remitting CNS autoimmunity mediated by GFAP-specific CD8 T cells

    PubMed Central

    Sasaki, Katsuhiro; Bean, Angela; Shah, Shivanee; Schutten, Elizabeth; Huseby, Priya G.; Peters, Bjorn; Shen, Zu T.; Vanguri, Vijay; Liggitt, Denny; Huseby, Eric S.

    2014-01-01

    Multiple Sclerosis (MS) is an inflammatory disease of the CNS that causes the demyelination of nerve cells and destroys oligodendrocytes, neurons and axons. Historically, MS has been thought to be a CD4 T cell-mediated autoimmune disease of CNS white matter. However, recent studies have identified CD8 T cell infiltrates and gray matter lesions in MS patients. These findings suggest that CD8 T cells, and CNS antigens other than myelin proteins may be involved during the MS disease process. Here we show that CD8 T cells reactive to glial fibrillary acidic protein (GFAP), a protein expressed in astrocytes, can avoid tolerance mechanisms, and depending upon the T cell triggering event, drive unique aspects of inflammatory CNS autoimmunity. In GFAP-specific CD8 T cell receptor transgenic (BG1) mice, tissue resident memory-like CD8 T cells spontaneously infiltrate the gray matter and white matter of the CNS, resulting in a relapsing-remitting CNS autoimmunity. The frequency, severity and remissions from spontaneous disease are controlled by the presence of polyclonal B cells. In contrast, a viral trigger induces GFAP-specific CD8 T effector cells to exclusively target the meninges and vascular/perivascular space of the gray and white matter of the brain, causing a rapid, acute CNS disease. These findings demonstrate that the type of CD8 T cell-triggering event can determine the presentation of distinct CNS autoimmune disease pathologies. PMID:24591371

  3. Prodrug approaches for CNS delivery.

    PubMed

    Rautio, Jarkko; Laine, Krista; Gynther, Mikko; Savolainen, Jouko

    2008-01-01

    Central nervous system (CNS) drug delivery remains a major challenge, despite extensive efforts that have been made to develop novel strategies to overcome obstacles. Prodrugs are bioreversible derivatives of drug molecules that must undergo an enzymatic and/or chemical transformation in vivo to release the active parent drug, which subsequently exerts the desired pharmacological effect. In both drug discovery and drug development, prodrugs have become an established tool for improving physicochemical, biopharmaceutical or pharmacokinetic properties of pharmacologically active agents that overcome barriers to a drug's usefulness. This review provides insight into various prodrug strategies explored to date for CNS drug delivery, including lipophilic prodrugs, carrier- and receptor-mediated prodrug delivery systems, and gene-directed enzyme prodrug therapy.

  4. Functional CB2 type cannabinoid receptors at CNS synapses.

    PubMed

    Morgan, Nicola H; Stanford, Ian M; Woodhall, Gavin L

    2009-09-01

    To date, it has been thought that cannabinoid receptors in CNS are primarily of the CB1R subtype, with CB2R expressed only in glia and peripheral tissues. However, evidence for the expression of CB2 type cannabinoid receptors at neuronal sites in the CNS is building through anatomical localization of receptors and mRNA in neurons and behavioural studies of central effects of CB2R agonists. In the medial entorhinal area of the rat, we found that blockade of CB1R did not occlude suppression of GABAergic inhibition by the non-specific endogenous cannabinoid 2-AG, suggesting that CB1R could not account fully for the effects of 2-AG. Suppression could be mimicked using the CB2R agonist JWH-133 and reversed by the CB2R inverse agonist AM-630, indicating the presence of functional CB2R. When we reversed the order of drug application AM-630 blocked the effects of the CB2R agonist JWH-133, but not the CB1R inverse agonist LY320135. JTE-907, a CB2R inverse agonist structurally unrelated to AM-630 elicited increased GABAergic neurotransmission at picomolar concentrations. Analysis of mIPSCs revealed that CB2R effects were restricted to action potential dependent, but not action potential independent GABA release. These data provide pharmacological evidence for functional CB2R at CNS synapses.

  5. Carvacrol presynaptically enhances spontaneous excitatory transmission and produces outward current in adult rat spinal substantia gelatinosa neurons.

    PubMed

    Luo, Qing-Tian; Fujita, Tsugumi; Jiang, Chang-Yu; Kumamoto, Eiichi

    2014-12-10

    Carvacrol, which is abundantly contained in oregano essential oils, has various pharmacological actions including antinociception. Although the oral administration of carvacrol results in antinociception, cellular mechanisms for this action have not been examined yet. We investigated the action of carvacrol on glutamatergic spontaneous excitatory transmission in substantia gelatinosa neurons which play a pivotal role in regulating nociceptive transmission from the periphery by using the patch-clamp technique in adult rat spinal cord slices. Carvacrol superfused for 2 min produced either spontaneous excitatory postsynaptic current frequency increase or outward current at −70 mV, or both of them in many of the neurons tested. The frequency increase and outward current had the EC(50) values of 0.69 mM and 0.55 mM, respectively. The former action was inhibited by a selective TRPA1 antagonist HC-030031 but not a selective TRPV1 antagonist capsazepine, while the latter action was unaffected by their antagonists. The current–voltage relationship for the outward current indicated an involvement in the current of a change in the membrane permeability of K(+) and its outward rectification. The outward current was inhibited in 10 mM-K((+) 0but not K(+)-channel blockers [tetraethylammonium and Ba(2+)]-containing and 11.0 mM-Cl- Krebs solution. These results indicate that carvacrol increases the spontaneous release of l-glutamate from nerve terminals by activating TRPA1 but not TRPV1 channels and produces membrane hyperpolarization, which is possibly mediated by tetraethylammonium- and Ba(2+)-insensitive K(+) channels, in substantia gelatinosa neurons. It is suggested that the hyperpolarizing effect of carvacrol could contribute to its antinociceptive action.

  6. Increased Expression of the Large Conductance, Calcium-Activated K+ (BK) Channel in Adult-Onset Neuronal Ceroid Lipofuscinosis

    PubMed Central

    Donnelier, Julien; Braun, Samuel T.; Dolzhanskaya, Natalia; Ahrendt, Eva; Braun, Andrew P.; Velinov, Milen; Braun, Janice E. A.

    2015-01-01

    Cysteine string protein (CSPα) is a presynaptic J protein co-chaperone that opposes neurodegeneration. Mutations in CSPα (i.e., Leu115 to Arg substitution or deletion (Δ) of Leu116) cause adult neuronal ceroid lipofuscinosis (ANCL), a dominantly inherited neurodegenerative disease. We have previously demonstrated that CSPα limits the expression of large conductance, calcium-activated K+ (BK) channels in neurons, which may impact synaptic excitability and neurotransmission. Here we show by western blot analysis that expression of the pore-forming BKα subunit is elevated ~2.5 fold in the post-mortem cortex of a 36-year-old patient with the Leu116∆ CSPα mutation. Moreover, we find that the increase in BKα subunit level is selective for ANCL and not a general feature of neurodegenerative conditions. While reduced levels of CSPα are found in some postmortem cortex specimens from Alzheimer’s disease patients, we find no concomitant increase in BKα subunit expression in Alzheimer’s specimens. Both CSPα monomer and oligomer expression are reduced in synaptosomes prepared from ANCL cortex compared with control. In a cultured neuronal cell model, CSPα oligomers are short lived. The results of this study indicate that the Leu116∆ mutation leads to elevated BKα subunit levels in human cortex and extend our initial work in rodent models demonstrating the modulation of BKα subunit levels by the same CSPα mutation. While the precise sequence of pathogenic events still remains to be elucidated, our findings suggest that dysregulation of BK channels may contribute to neurodegeneration in ANCL. PMID:25905915

  7. Stimulation of dendrogenesis and neural maturation in adult mammals.

    PubMed

    Soto-Vázquez, Ramón; Labastida-López, Carlos; Romero-Castello, Samuel; Benítez-King, Gloria; Parra-Cervantes, Patricia

    2016-05-01

    This work is the result of a technical research patent on dendritogenesis and neuronal maturation, in which the existence was determined of patent documents involving the use of melatonin for the treatment of anxiety, obesity and related diseases of the peripheral and CNS. In this study, an analysis of the state of the art in order to collect technical and scientific elements for the drafting of a new patent on the use of the melatonin molecule in stimulating neuronal maturation in dendritogenesis and mammals was conducted in adults. This study is based on an invention related with this novel use of melatonin.

  8. Pax6 Is Essential for the Maintenance and Multi-Lineage Differentiation of Neural Stem Cells, and for Neuronal Incorporation into the Adult Olfactory Bulb

    PubMed Central

    Curto, Gloria G.; Nieto-Estévez, Vanesa; Hurtado-Chong, Anahí; Valero, Jorge; Gómez, Carmela; Alonso, José R.; Weruaga, Eduardo

    2014-01-01

    The paired type homeobox 6 (Pax6) transcription factor (TF) regulates multiple aspects of neural stem cell (NSC) and neuron development in the embryonic central nervous system. However, less is known about the role of Pax6 in the maintenance and differentiation of adult NSCs and in adult neurogenesis. Using the +/SeyDey mouse, we have analyzed how Pax6 heterozygosis influences the self-renewal and proliferation of adult olfactory bulb stem cells (aOBSCs). In addition, we assessed its influence on neural differentiation, neuronal incorporation, and cell death in the adult OB, both in vivo and in vitro. Our results indicate that the Pax6 mutation alters Nestin+-cell proliferation in vivo, as well as self-renewal, proliferation, and survival of aOBSCs in vitro although a subpopulation of +/SeyDey progenitors is able to expand partially similar to wild-type progenitors. This mutation also impairs aOBSC differentiation into neurons and oligodendrocytes, whereas it increases cell death while preserving astrocyte survival and differentiation. Furthermore, Pax6 heterozygosis causes a reduction in the variety of neurochemical interneuron subtypes generated from aOBSCs in vitro and in the incorporation of newly generated neurons into the OB in vivo. Our findings support an important role of Pax6 in the maintenance of aOBSCs by regulating cell death, self-renewal, and cell fate, as well as in neuronal incorporation into the adult OB. They also suggest that deregulation of the cell cycle machinery and TF expression in aOBSCs which are deficient in Pax6 may be at the origin of the phenotypes observed in this adult NSC population. PMID:25117830

  9. Ionotropic Glutamate Receptors & CNS Disorders

    PubMed Central

    Bowie, Derek

    2008-01-01

    Disorders of the central nervous system (CNS) are complex disease states that represent a major challenge for modern medicine. Although etiology is often unknown, it is established that multiple factors such as defects in genetics and/or epigenetics, the environment as well as imbalance in neurotransmitter receptor systems are all at play in determining an individual’s susceptibility to disease. Gene therapy is currently not available and therefore, most conditions are treated with pharmacological agents that modify neurotransmitter receptor signaling. Here, I provide a review of ionotropic glutamate receptors (iGluRs) and the roles they fulfill in numerous CNS disorders. Specifically, I argue that our understanding of iGluRs has reached a critical turning point to permit, for the first time, a comprehensive re-evaluation of their role in the cause of disease. I illustrate this by highlighting how defects in AMPA receptor trafficking are important to Fragile X mental retardation and ectopic expression of kainate (KA) receptor synapses contributes to the pathology of temporal lobe epilepsy. Finally, I discuss how parallel advances in studies of other neurotransmitter systems may allow pharmacologists to work towards a cure for many CNS disorders rather than developing drugs to treat their symptoms. PMID:18537642

  10. Morphology and distribution of neurons in the retinal ganglion cell layer of the adult tammar wallaby--Macropus eugenii.

    PubMed

    Wong, R O; Wye-Dvorak, J; Henry, G H

    1986-11-01

    The morphology of the ganglion cell layer of the adult tammar wallaby has been examined from Nissl-stained retinal flatmounts. From this material, neurons have been classed as ganglion cells or displaced amacrine cells according to the disposition of Nissl substance. A further subdivision of ganglion cells into a separate group of alphalike cells was assisted by determining the range of soma sizes in neurofibrillar-stained flatmounts, a method which, in the cat, has revealed the presence of alpha cells. Isodensity contour maps prepared from the Nissl-stained flatmounts show a well-developed visual streak and an area centralis in the total neuronal population. A similar pattern was also found in the ganglion cells, thus confirming Tancred's (J. Comp. Neurol. 196:585-603, '81) finding, and, as well, in the alphalike ganglion cells and the displaced amacrine cells. The relative proportions of ganglion cells to displaced amacrines (GC:DA) were evaluated from isodensity profiles drawn along and vertical to the visual streak for the two cell types and also from maps showing the variation in the GC:DA ratio throughout the retina. A comparison with results published for other species shows that the visual streak development in the tammar wallaby is consistent with the expectations of the "terrain" theory and that, in its relative proportion of displaced amacrines, the tammar closely resembles the rabbit but contrasts sharply with the cat, which has half as many ganglion cells and three times as many displaced amacrines as the other two species.

  11. 4-Hydroxy-2-nonenal induces mitochondrial dysfunction and aberrant axonal outgrowth in adult sensory neurons that mimics features of diabetic neuropathy.

    PubMed

    Akude, Eli; Zherebitskaya, Elena; Roy Chowdhury, Subir K; Girling, Kimberly; Fernyhough, Paul

    2010-01-01

    Modification of proteins by 4-hydroxy-2-nonenal (4-HNE) has been proposed to cause neurotoxicity in a number of neurodegenerative diseases, including distal axonopathy in diabetic sensory neuropathy. We tested the hypothesis that exposure of cultured adult rat sensory neurons to 4-HNE would result in the formation of amino acid adducts on mitochondrial proteins and that this process would be associated with impaired mitochondrial function and axonal regeneration. In addition, we compared 4-HNE-induced axon pathology with that exhibited by neurons isolated from diabetic rats. Cultured adult rat dorsal root ganglion (DRG) sensory neurons were incubated with varying concentrations of 4-HNE. Cell survival, axonal morphology, and level of axon outgrowth were assessed. In addition, video microscopy of live cells, western blot, and immunofluorescent staining were utilized to detect protein adduct formation by 4-HNE and to localize actively respiring mitochondria. 4-HNE induced formation of protein adducts on cytoskeletal and mitochondrial proteins, and impaired axon regeneration by approximately 50% at 3 microM while having no effect on neuronal survival. 4-HNE initiated formation of aberrant axonal structures and caused the accumulation of mitochondria in these dystrophic structures. Neurons treated with 4-HNE exhibited a distal loss of active mitochondria. Finally, the distal axonopathy and the associated aberrant axonal structures generated by 4-HNE treatment mimicked axon pathology observed in DRG sensory neurons isolated from diabetic rats and replicated aspects of neurodegeneration observed in human diabetic sensory neuropathy.

  12. Voltage-Induced Ca2+ Release in Postganglionic Sympathetic Neurons in Adult Mice

    PubMed Central

    Sun, Hong-Li; Tsai, Wen-Chin; Li, Bai-Yan; Tao, Wen; Chen, Peng-Sheng; Rubart, Michael

    2016-01-01

    Recent studies have provided evidence that depolarization in the absence of extracellular Ca2+ can trigger Ca2+ release from internal stores in a variety of neuron subtypes. Here we examine whether postganglionic sympathetic neurons are able to mobilize Ca2+ from intracellular stores in response to depolarization, independent of Ca2+ influx. We measured changes in cytosolic ΔF/F0 in individual fluo-4 –loaded sympathetic ganglion neurons in response to maintained K+ depolarization in the presence (2 mM) and absence of extracellular Ca2+ ([Ca2+]e). Progressive elevations in extracellular [K+]e caused increasing membrane depolarizations that were of similar magnitude in 0 and 2 mM [Ca2+]e. Peak amplitude of ΔF/F0 transients in 2 mM [Ca2+]e increased in a linear fashion as the membrane become more depolarized. Peak elevations of ΔF/F0 in 0 mM [Ca2+]e were ~5–10% of those evoked at the same membrane potential in 2 mM [Ca2+]e and exhibited an inverse U-shaped dependence on voltage. Both the rise and decay of ΔF/F0 transients in 0 mM [Ca2+]e were slower than those of ΔF/F0 transients evoked in 2 mM [Ca2+]e. Rises in ΔF/F0 evoked by high [K+]e in the absence of extracellular Ca2+ were blocked by thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ ATPase, or the inositol 1,4,5-triphosphate (IP3) receptor antagonists 2-aminoethoxydiphenyl borate and xestospongin C, but not by extracellular Cd2+, the dihydropyridine antagonist nifedipine, or by ryanodine at concentrations that caused depletion of ryanodine-sensitive Ca2+ stores. These results support the notion that postganglionic sympathetic neurons possess the ability to release Ca2+ from IP3-sensitive internal stores in response to membrane depolarization, independent of Ca2+ influx. PMID:26859144

  13. Ghrelin in Central Neurons

    PubMed Central

    Ferrini, F; Salio, C; Lossi, L; Merighi, A

    2009-01-01

    Ghrelin, an orexigenic peptide synthesized by endocrine cells of the gastric mucosa, is released in the bloodstream in response to a negative energetic status. Since discovery, the hypothalamus was identified as the main source of ghrelin in the CNS, and effects of the peptide have been mainly observed in this area of the brain. In recent years, an increasing number of studies have reported ghrelin synthesis and effects in specific populations of neurons also outside the hypothalamus. Thus, ghrelin activity has been described in midbrain, hindbrain, hippocampus, and spinal cord. The spectrum of functions and biological effects produced by the peptide on central neurons is remarkably wide and complex. It ranges from modulation of membrane excitability, to control of neurotransmitter release, neuronal gene expression, and neuronal survival and proliferation. There is not at present a general consensus concerning the source of ghrelin acting on central neurons. Whereas it is widely accepted that the hypothalamus represents the most important endogenous source of the hormone in CNS, the existence of extra-hypothalamic ghrelin-synthesizing neurons is still controversial. In addition, circulating ghrelin can theoretically be another natural ligand for central ghrelin receptors. This paper gives an overview on the distribution of ghrelin and its receptor across the CNS and critically analyses the data available so far as regarding the effects of ghrelin on central neurotransmission. PMID:19721816

  14. Ghrelin in central neurons.

    PubMed

    Ferrini, F; Salio, C; Lossi, L; Merighi, A

    2009-03-01

    Ghrelin, an orexigenic peptide synthesized by endocrine cells of the gastric mucosa, is released in the bloodstream in response to a negative energetic status. Since discovery, the hypothalamus was identified as the main source of ghrelin in the CNS, and effects of the peptide have been mainly observed in this area of the brain. In recent years, an increasing number of studies have reported ghrelin synthesis and effects in specific populations of neurons also outside the hypothalamus. Thus, ghrelin activity has been described in midbrain, hindbrain, hippocampus, and spinal cord. The spectrum of functions and biological effects produced by the peptide on central neurons is remarkably wide and complex. It ranges from modulation of membrane excitability, to control of neurotransmitter release, neuronal gene expression, and neuronal survival and proliferation. There is not at present a general consensus concerning the source of ghrelin acting on central neurons. Whereas it is widely accepted that the hypothalamus represents the most important endogenous source of the hormone in CNS, the existence of extra-hypothalamic ghrelin-synthesizing neurons is still controversial. In addition, circulating ghrelin can theoretically be another natural ligand for central ghrelin receptors. This paper gives an overview on the distribution of ghrelin and its receptor across the CNS and critically analyses the data available so far as regarding the effects of ghrelin on central neurotransmission.

  15. Neurexin dysfunction in adult neurons results in autistic-like behavior in mice.

    PubMed

    Rabaneda, Luis G; Robles-Lanuza, Estefanía; Nieto-González, José Luis; Scholl, Francisco G

    2014-07-24

    Autism spectrum disorders (ASDs) comprise a group of clinical phenotypes characterized by repetitive behavior and social and communication deficits. Autism is generally viewed as a neurodevelopmental disorder where insults during embryonic or early postnatal periods result in aberrant wiring and function of neuronal circuits. Neurexins are synaptic proteins associated with autism. Here, we generated transgenic βNrx1ΔC mice in which neurexin function is selectively impaired during late postnatal stages. Whole-cell recordings in cortical neurons show an impairment of glutamatergic synaptic transmission in the βNrx1ΔC mice. Importantly, mutant mice exhibit autism-related symptoms, such as increased self-grooming, deficits in social interactions, and altered interaction for nonsocial olfactory cues. The autistic-like phenotype of βNrx1ΔC mice can be reversed after removing the mutant protein in aged animals. The defects resulting from disruption of neurexin function after the completion of embryonic and early postnatal development suggest that functional impairment of mature circuits can trigger autism-related phenotypes.

  16. Notch signalling in adult neurons: a potential target for microtubule stabilization.

    PubMed

    Bonini, Sara Anna; Ferrari-Toninelli, Giulia; Montinaro, Mery; Memo, Maurizio

    2013-11-01

    Cytoskeletal dysfunction has been proposed during the last decade as one of the main mechanisms involved in the aetiology of several neurodegenerative diseases. Microtubules are basic elements of the cytoskeleton and the dysregulation of microtubule stability has been demonstrated to be causative for axonal transport impairment, synaptic contact degeneration, impaired neuronal function leading finally to neuronal loss. Several pathways are implicated in the microtubule assembly/disassembly process. Emerging evidence is focusing on Notch as a microtubule dynamics regulator. We demonstrated that activation of Notch signalling results in increased microtubule stability and changes in axonal morphology and branching. By contrast, Notch inhibition leads to an increase in cytoskeleton plasticity with intense neurite remodelling. Until now, several microtubule-binding compounds have been tested and the results have provided proof of concept that microtubule-binding agents or compounds with the ability to stabilize microtubules may have therapeutic potential for the treatment of Alzheimer's disease and other neurodegenerative diseases. In this review, based on its key role in cytoskeletal dynamics modulation, we propose Notch as a new potential target for microtubule stabilization.

  17. CNS reservoirs for HIV: implications for eradication.

    PubMed

    Hellmuth, Joanna; Valcour, Victor; Spudich, Serena

    2015-04-01

    Controversy exists as to whether the central nervous system (CNS) serves as a reservoir site for HIV, in part reflecting the varying perspectives on what constitutes a 'reservoir' versus a mere site of latent viral integration. However, if the CNS proves to be a site of HIV persistence capable of replicating and reseeding the periphery, leading to failure of virological control, this privileged anatomical site would need dedicated consideration during the development of HIV cure strategies. In this review we discuss the current literature focused on the question of the CNS as a reservoir for HIV, covering the clinical evidence for continued CNS involvement despite suppressive therapy, the theorised dynamics of HIV integration into the CNS, as well as studies indicating that HIV can replicate independently and compartmentalise in the CNS. The unique cellular and anatomical sites of HIV integration in the CNS are also reviewed, as are the potential implications for HIV cure strategies.

  18. RB regulates the production and the survival of newborn neurons in the embryonic and adult dentate gyrus.

    PubMed

    Vandenbosch, Renaud; Clark, Alysen; Fong, Bensun C; Omais, Saad; Jaafar, Carine; Dugal-Tessier, Delphie; Dhaliwal, Jagroop; Lagace, Diane C; Park, David S; Ghanem, Noël; Slack, Ruth S

    2016-11-01

    In mammals, hippocampal dentate gyrus granule cells (DGCs) constitute a particular neuronal population produced both during embryogenesis and adult life, and play key roles in neural plasticity and memory. However, the molecular mechanisms regulating neurogenesis in the dentate lineage throughout development and adulthood are still not well understood. The Retinoblastoma protein (RB), a transcriptional repressor primarily involved in cell cycle control and cell death, plays crucial roles during cortical development but its function in the formation and maintenance of DGCs remains unknown. Here, we show that loss of RB during embryogenesis induces massive ectopic proliferation and delayed cell cycle exit of young DGCs specifically at late developmental stages but without affecting stem cells. This phenotype was partially counterbalanced by increased cell death. Similarly, during adulthood, loss of RB causes ectopic proliferation of newborn DGCs and dramatically impairs their survival. These results demonstrate a crucial role for RB in the generation and the survival of DGCs in the embryonic and the adult brain. © 2016 Wiley Periodicals, Inc.

  19. Wnts enhance neurotrophin-induced neuronal differentiation in adult bone-marrow-derived mesenchymal stem cells via canonical and noncanonical signaling pathways.

    PubMed

    Tsai, Hung-Li; Deng, Wing-Ping; Lai, Wen-Fu Thomas; Chiu, Wen-Ta; Yang, Charn-Bing; Tsai, Yu-Hui; Hwang, Shiaw-Min; Renshaw, Perry F

    2014-01-01

    Wnts were previously shown to regulate the neurogenesis of neural stem or progenitor cells. Here, we explored the underlying molecular mechanisms through which Wnt signaling regulates neurotrophins (NTs) in the NT-induced neuronal differentiation of human mesenchymal stem cells (hMSCs). NTs can increase the expression of Wnt1 and Wnt7a in hMSCs. However, only Wnt7a enables the expression of synapsin-1, a synaptic marker in mature neurons, to be induced and triggers the formation of cholinergic and dopaminergic neurons. Human recombinant (hr)Wnt7a and general neuron makers were positively correlated in a dose- and time-dependent manner. In addition, the expression of synaptic markers and neurites was induced by Wnt7a and lithium, a glycogen synthase kinase-3β inhibitor, in the NT-induced hMSCs via the canonical/β-catenin pathway, but was inhibited by Wnt inhibitors and frizzled-5 (Frz5) blocking antibodies. In addition, hrWnt7a triggered the formation of cholinergic and dopaminergic neurons via the non-canonical/c-jun N-terminal kinase (JNK) pathway, and the formation of these neurons was inhibited by a JNK inhibitor and Frz9 blocking antibodies. In conclusion, hrWnt7a enhances the synthesis of synapse and facilitates neuronal differentiation in hMSCS through various Frz receptors. These mechanisms may be employed widely in the transdifferentiation of other adult stem cells.

  20. Intrinsic determinants of synaptic phenotype: an experimental study of abducens internuclear neurons connecting with anomalous targets.

    PubMed

    de la Cruz, R R; Benítez-Temiño, B; Pastor, A M

    2002-01-01

    The present experiments investigate the role of postsynaptic neurons in the morphological differentiation of presynaptic terminals that are formed de novo in the adult CNS. Abducens internuclear neurons in the adult cat were chosen as the experimental model. These neurons project onto the contralateral medial rectus motoneurons of the oculomotor nucleus. Abducens internuclear axon terminals were identified by their anterograde labeling with biocytin and analyzed at the electron microscopic level. To promote the formation of new synapses, two different experimental approaches were used. First, after the selective ablation of medial rectus motoneurons with ricin, abducens internuclear neurons reinnervated the neighboring oculomotor internuclear neurons. Second, after axotomy followed by embryonic cerebellar grafting, abducens internuclear axons invaded the implanted tissue and established synaptic connections in both the molecular and granule cell layer. Boutons contacting the oculomotor internuclear neurons developed ultrastructural characteristics that resembled the control synapses on medial rectus motoneurons. In the grafted cerebellar tissue, abducens internuclear axons and terminals did not resemble climbing or mossy fibers but showed similarities with control boutons. However, labeled boutons analyzed in the granule cell layer established a higher number of synaptic contacts than controls. This could reflect a trend towards the mossy fiber phenotype, although labeled boutons significantly differed in every measured parameter with the mossy fiber rosettes found in the graft. We conclude that at least for the abducens internuclear neurons, the ultrastructural differentiation of axon terminals reinnervating novel targets in the adult brain seems to be mainly under intrinsic control, with little influence by postsynaptic cells.