Science.gov

Sample records for adult cns neurons

  1. Releasing the peri-neuronal net to patch-clamp neurons in adult CNS.

    PubMed

    Morales, Ezequiel; Fernandez, Fernando R; Sinclair, Suzanne; Molineux, Michael L; Mehaffey, W Hamish; Turner, Ray W

    2004-05-01

    The extracellular matrix of adult neural tissue contains chondroitin sulphated proteogylcans that form a dense peri-neuronal net surrounding the cell body and proximal dendrites of many neuronal classes. Development of the peri-neuronal net beyond approximately postnatal day 17 obscures visualization and often access by patch electrodes to neuronal membranes with the result that patch clamp recordings are most readily obtained from early postnatal animals. We describe a technique in which the surface tension of a sucrose-based medium promotes partial dissociation of thin tissue slices from adult tissue. Surface tension spreads the tissue and loosens the peri-neuronal net from neuronal membranes within minutes and in the absence of proteolytic enzymes. Furthermore, the extent of dissociation can be controlled so as to maintain the overall slice structure and allow identification of specific cell classes. Excellent structural preservation of neurons and dendrites can be obtained and full access by patch electrodes made possible for current- or voltage-clamp recordings in tissue well beyond the development of peri-neuronal nets. We demonstrate the feasibility of using this approach through patch recordings from neurons in the brainstem and cerebellum of adult gymnotiform fish and in deep cerebellar nuclei of rats as old as 6 months.

  2. Generation of spike trains in CNS neurons.

    PubMed

    Calvin, W H

    1975-01-24

    The membrane potential waveforms to be expected from many asynchronous inputs to CNS neurons are described, along with modes for repetitive firing through which the input waveforms are converted into spike trains. Area beneath a postsynaptic potential (PSP), rather than PSP peak height, is shown to be an important parameter susceptible to modification. Occasional crossings of threshold produce occasional spikes, but a sustained depolarizing waveform which attempts to hold the membrane potential above threshold elicits rhythmic firing. Firing rate is graded with the amount by which the synaptic depolarizing currents exceed the minimum current for rhythmic firing (approximately rheobase). A systematic sequence of alterations in the membrane potential trajectory between spikes, quite different from those of receptors and invertebrate neurons, may control the firing rate and give rise to sudden changes in the "gain" of this conversion of depolarizing current into firing rate. The different implications of synaptic location during the occasional spike mode and the rhythmic firing mode are discussed, as is the role of the antidromic invasion of the soma-dendritic region during rhythmic firing. Less frequently an"extra spike mode" is seen where depolarizing afterpotentials following a spike themselves cross threshold to elicit an extra spike, which may similarly elicit another extra spike, etc., in a regenerative cycle. The character of the underlying depolarizing afterpotentials (or "delayed depolarizations") is reviewed, along with theories for their origin from the antidromic invasion of the dendritic tree. The stereotyped burst firing patterns characteristic of the extra spike mode can also be seen in deafferented neurons and neurons studied in chronic syndromes such as epilepsy and central pain. This raises the question as to whether some disease states may augment extra spike firing, thus multiplying many-fold the response to a normal input. PMID:163121

  3. In Vivo Reprogramming for CNS Repair: Regenerating Neurons from Endogenous Glial Cells.

    PubMed

    Li, Hedong; Chen, Gong

    2016-08-17

    Neuroregeneration in the CNS has proven to be difficult despite decades of research. The old dogma that CNS neurons cannot be regenerated in the adult mammalian brain has been overturned; however, endogenous adult neurogenesis appears to be insufficient for brain repair. Stem cell therapy once held promise for generating large quantities of neurons in the CNS, but immunorejection and long-term functional integration remain major hurdles. In this Perspective, we discuss the use of in vivo reprogramming as an emerging technology to regenerate functional neurons from endogenous glial cells inside the brain and spinal cord. Besides the CNS, in vivo reprogramming has been demonstrated successfully in the pancreas, heart, and liver and may be adopted in other organs. Although challenges remain for translating this technology into clinical therapies, we anticipate that in vivo reprogramming may revolutionize regenerative medicine by using a patient's own internal cells for tissue repair. PMID:27537482

  4. The receptor protein tyrosine phosphatase HmLAR1 is up-regulated in the CNS of the adult medicinal leech following injury and is required for neuronal sprouting and regeneration.

    PubMed

    Sethi, Jasmine; Zhao, Bailey; Cuvillier-Hot, Virginie; Boidin-Wichlacz, Céline; Salzet, Michel; Macagno, Eduardo R; Baker, Michael W

    2010-12-01

    LAR-like receptor protein tyrosine phosphatases (RPTPs), which are abundantly expressed in the nervous systems of most if not all bilaterian animals thus far examined, have been implicated in regulating a variety of critical neuronal processes. These include neuronal pathfinding, adhesion and synaptogenesis during development and, in adult mammals, neuronal regeneration. Here we explored a possible role of a LAR-like RPTP (HmLAR1) in response to mechanical trauma in the adult nervous system of the medicinal leech. In situ hybridization and QPCR analyses of HmLAR1 expression in individual segmental ganglia revealed a significant up-regulation in receptor expression following CNS injury, both in situ and following a period in vitro. Furthermore, we observed up-regulation in the expression of the leech homologue of the Abelson tyrosine kinase, a putative signaling partner to LAR receptors, but not among other tyrosine kinases. The effects on neuronal regeneration were assayed by comparing growth across a nerve crush by projections of individual dorsal P neurons (P(D)) following single-cell injection of interfering RNAs against the receptor or control RNAs. Receptor RNAi led to a significant reduction in HmLAR1 expression by the injected cells and resulted in a significant decrease in sprouting and regenerative growth at the crush site relative to controls. These studies extend the role of the HmLARs from leech neuronal development to adult neuronal regeneration and provide a platform to investigate neuronal regeneration and gene regulation at the single cell level. PMID:20708686

  5. The receptor protein tyrosine phosphatase HmLAR1 is up-regulated in the CNS of the adult medicinal leech following injury and is required for neuronal sprouting and regeneration.

    PubMed

    Sethi, Jasmine; Zhao, Bailey; Cuvillier-Hot, Virginie; Boidin-Wichlacz, Céline; Salzet, Michel; Macagno, Eduardo R; Baker, Michael W

    2010-12-01

    LAR-like receptor protein tyrosine phosphatases (RPTPs), which are abundantly expressed in the nervous systems of most if not all bilaterian animals thus far examined, have been implicated in regulating a variety of critical neuronal processes. These include neuronal pathfinding, adhesion and synaptogenesis during development and, in adult mammals, neuronal regeneration. Here we explored a possible role of a LAR-like RPTP (HmLAR1) in response to mechanical trauma in the adult nervous system of the medicinal leech. In situ hybridization and QPCR analyses of HmLAR1 expression in individual segmental ganglia revealed a significant up-regulation in receptor expression following CNS injury, both in situ and following a period in vitro. Furthermore, we observed up-regulation in the expression of the leech homologue of the Abelson tyrosine kinase, a putative signaling partner to LAR receptors, but not among other tyrosine kinases. The effects on neuronal regeneration were assayed by comparing growth across a nerve crush by projections of individual dorsal P neurons (P(D)) following single-cell injection of interfering RNAs against the receptor or control RNAs. Receptor RNAi led to a significant reduction in HmLAR1 expression by the injected cells and resulted in a significant decrease in sprouting and regenerative growth at the crush site relative to controls. These studies extend the role of the HmLARs from leech neuronal development to adult neuronal regeneration and provide a platform to investigate neuronal regeneration and gene regulation at the single cell level.

  6. Regeneration of Zebrafish CNS: Adult Neurogenesis

    PubMed Central

    Ghosh, Sukla; Hui, Subhra Prakash

    2016-01-01

    Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming. PMID:27382491

  7. Regeneration of Zebrafish CNS: Adult Neurogenesis.

    PubMed

    Ghosh, Sukla; Hui, Subhra Prakash

    2016-01-01

    Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming. PMID:27382491

  8. Regeneration of Zebrafish CNS: Adult Neurogenesis.

    PubMed

    Ghosh, Sukla; Hui, Subhra Prakash

    2016-01-01

    Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming.

  9. Altered differentiation of CNS neural progenitor cells after transplantation into the injured adult rat spinal cord.

    PubMed

    Onifer, S M; Cannon, A B; Whittemore, S R

    1997-01-01

    Denervation of CNS neurons and peripheral organs is a consequence of traumatic SCI. Intraspinal transplantation of embryonic CNS neurons is a potential strategy for reinnervating these targets. Neural progenitor cell lines are being investigated as alternates to embryonic CNS neurons. RN33B is an immortalized neural progenitor cell line derived from embryonic rat raphe nuclei following infection with a retrovirus encoding the temperature-sensitive mutant of SV40 large T-antigen. Transplantation studies have shown that local epigenetic signals in intact or partially neuron-depleted adult rat hippocampal formation or striatum direct RN33B cell differentiation to complex multipolar morphologies resembling endogenous neurons. After transplantation into neuron-depleted regions of the hippocampal formation or striatum, RN33B cells were relatively undifferentiated or differentiated with bipolar morphologies. The present study examines RN33B cell differentiation after transplantation into normal spinal cord and under different lesion conditions. Adult rats underwent either unilateral lesion of lumbar spinal neurons by intraspinal injection of kainic acid or complete transection at the T10 spinal segment. Neonatal rats underwent either unilateral lesion of lumbar motoneurons by sciatic nerve crush or complete transection at the T10 segment. At 2 or 6-7 wk postinjury, lacZ-labeled RN33B cells were transplanted into the lumbar enlargement of injured and age-matched normal rats. At 2 wk posttransplantation, bipolar and some multipolar RN33B cells were found throughout normal rat gray matter. In contrast, only bipolar RN33B cells were seen in gray matter of kainic acid lesioned, sciatic nerve crush, or transection rats. These observations suggest that RN33B cell multipolar morphological differentiation in normal adult spinal cord is mediated by direct cell-cell interaction through surface molecules on endogenous neurons and may be suppressed by molecules released after SCI

  10. Axonal Localization of Integrins in the CNS Is Neuronal Type and Age Dependent.

    PubMed

    Andrews, Melissa R; Soleman, Sara; Cheah, Menghon; Tumbarello, David A; Mason, Matthew R J; Moloney, Elizabeth; Verhaagen, Joost; Bensadoun, Jean-Charles; Schneider, Bernard; Aebischer, Patrick; Fawcett, James W

    2016-01-01

    The regenerative ability of CNS axons decreases with age, however, this ability remains largely intact in PNS axons throughout adulthood. These differences are likely to correspond with age-related silencing of proteins necessary for axon growth and elongation. In previous studies, it has been shown that reintroduction of the α9 integrin subunit (tenascin-C receptor, α9) that is downregulated in adult CNS can improve neurite outgrowth and sensory axon regeneration after a dorsal rhizotomy or a dorsal column crush spinal cord lesion. In the current study, we demonstrate that virally expressed integrins (α9, α6, or β1 integrin) in the adult rat sensorimotor cortex and adult red nucleus are excluded from axons following neuronal transduction. Attempts to stimulate transport by inclusion of a cervical spinal injury and thus an upregulation of extracellular matrix molecules at the lesion site, or cotransduction with its binding partner, β1 integrin, did not induce integrin localization within axons. In contrast, virally expressed α9 integrin in developing rat cortex (postnatal day 5 or 10) demonstrated clear localization of integrins in cortical axons revealed by the presence of integrin in the axons of the corpus callosum and internal capsule, as well as in the neuronal cell body. Furthermore, examination of dorsal root ganglia neurons and retinal ganglion cells demonstrated integrin localization both within peripheral nerve as well as dorsal root axons and within optic nerve axons, respectively. Together, our results suggest a differential ability for in vivo axonal transport of transmembrane proteins dependent on neuronal age and subtype. PMID:27570822

  11. Axonal Localization of Integrins in the CNS Is Neuronal Type and Age Dependent

    PubMed Central

    Soleman, Sara; Mason, Matthew R. J.; Verhaagen, Joost; Bensadoun, Jean-Charles; Aebischer, Patrick

    2016-01-01

    The regenerative ability of CNS axons decreases with age, however, this ability remains largely intact in PNS axons throughout adulthood. These differences are likely to correspond with age-related silencing of proteins necessary for axon growth and elongation. In previous studies, it has been shown that reintroduction of the α9 integrin subunit (tenascin-C receptor, α9) that is downregulated in adult CNS can improve neurite outgrowth and sensory axon regeneration after a dorsal rhizotomy or a dorsal column crush spinal cord lesion. In the current study, we demonstrate that virally expressed integrins (α9, α6, or β1 integrin) in the adult rat sensorimotor cortex and adult red nucleus are excluded from axons following neuronal transduction. Attempts to stimulate transport by inclusion of a cervical spinal injury and thus an upregulation of extracellular matrix molecules at the lesion site, or cotransduction with its binding partner, β1 integrin, did not induce integrin localization within axons. In contrast, virally expressed α9 integrin in developing rat cortex (postnatal day 5 or 10) demonstrated clear localization of integrins in cortical axons revealed by the presence of integrin in the axons of the corpus callosum and internal capsule, as well as in the neuronal cell body. Furthermore, examination of dorsal root ganglia neurons and retinal ganglion cells demonstrated integrin localization both within peripheral nerve as well as dorsal root axons and within optic nerve axons, respectively. Together, our results suggest a differential ability for in vivo axonal transport of transmembrane proteins dependent on neuronal age and subtype. PMID:27570822

  12. Expression of α5 integrin rescues fibronectin responsiveness in NT2N CNS neuronal cells

    PubMed Central

    Meland, Marit N.; Herndon, Mary E.; Stipp, Christopher S.

    2010-01-01

    The extracellular matrix protein fibronectin is implicated in neuronal regeneration in the peripheral nervous system. In the central nervous system (CNS), fibronectin is upregulated at sites of penetrating injuries and stroke; however, CNS neurons downregulate the fibronectin receptor, α5β1 integrin, during differentiation and generally respond poorly to fibronectin. NT2N CNS neuron-like cells (derived from NT2 precursor cells) have been used in pre-clinical and clinical studies for treatment of stroke and a variety of CNS injury and disease models. Here we show that, like primary CNS neurons, NT2N cells downregulate α5β1 integrin during differentiation and respond poorly to fibronectin. The poor neurite outgrowth by NT2N cells on fibronectin can be rescued by transducing NT2 precursors with a retroviral vector expressing α5 integrin under the control of the Murine Stem Cell Virus 5′ long terminal repeat. Sustained α5 integrin expression is compatible with the CNS-like neuronal differentiation of NT2N cells and does not prevent robust neurite outgrowth on other integrin ligands. Thus, α5 integrin expression in CNS neuronal precursor cells may provide a strategy for enhancing the outgrowth and survival of implanted cells in cell replacement therapies for CNS injury and disease. PMID:19598247

  13. LIS1 Lissencephaly gene CNS expression: Relation to neuronal migration

    SciTech Connect

    Reiner, O. |; Gal-Gerber, O.; Sapir, T.

    1994-09-01

    Lis1 is the murine gene corresponding to human LIS1 gene involved in Miller-Dieker lissencephaly located on chromosome 17p13.3 as demonstrated by cDNA cloning, sequence analysis and genetic mapping. Lis1 expression was studied in developing mouse brain using in situ hybridization. At embryonic day 15, Lis1 expression was most prominently localized in the neuronal layer of the retina, the developing hippocampus, doral root ganglia, cranial ganglia and the thalamus. At postnatal day 5 a unique pattern of expression was detected in the developing cerebellum. Lis1 was expressed at high levels in the Purkinje cell layer when the granule cells were migrating through the Purkinje cell layer inwards. The expression of Lis1 in Purkinje cells in the adult is markedly reduced. Similarly, Lis1 was expressed in the ontogenetically older layers of the neocortex (layers 5 and 6) where younger neurons have to migrate through to settle in the superficial layers. Thus, at both sites a link between expression and neuronal migration was demonstrated. These studies on the expression pattern of Lis1 could be useful in understanding abnormalities in Miller-Dieker lissencephaly syndrome (MDS) patients.

  14. Survival Advantage of Neonatal CNS Gene Transfer for Late Infantile Neuronal Ceroid Lipofuscinosis

    PubMed Central

    Sondhi, Dolan; Peterson, Daniel A.; Edelstein, Andrew M.; del Fierro, Katrina; Hackett, Neil R.; Crystal, Ronald G.

    2009-01-01

    Summary Late infantile neuronal ceroid lipofuscinosis (LINCL), a fatal autosomal recessive neurodegenerative lysosomal storage disorder of childhood, is caused by mutations in the CLN2 gene, resulting in deficiency of the protein tripeptidyl peptidase I (TPP-I). We have previously shown that direct CNS administration of AAVrh.10hCLN2 to adult CLN2 knockout mice, a serotype rh.10 adeno-associated virus expressing the wild type CLN2 cDNA, will partially improve neurological function and survival. In this study, we explore the hypothesis that administration of AAVrh.10hCLN2 to the neonatal brain will significantly improve the results of AAVrh.10hCLN2 therapy. To assess this concept, AAVrh.10hCLN2 vector was administered directly to the CNS of CLN2 knockout mice at 2 days, 3 wk and 7 wk of age. While all treatment groups show a marked increase in total TPP-I activity over wild-type mice, neonatally treated mice displayed high levels of TPP-I activity in the CNS 1 yr after administration which was spread throughout the brain. Using behavioral markers, 2 day treated mice demonstrate marked improvement over 3 wk, 7 wk or untreated mice. Finally, neonatal administration of AAVrh.10hCLN2 was associated with markedly enhanced survival, with a median time of death 376 days for neonatal treated mice, 277 days for 3 wk treated mice, 168 days for 7 wk treated mice, and 121 days for untreated mice. These data suggest that neonatal treatment offers many unique advantages, and that early detection and treatment may be essential for maximal gene therapy for childhood lysosomal storage disorders affecting the CNS. PMID:18639872

  15. Neuron-specific SALM5 limits inflammation in the CNS via its interaction with HVEM

    PubMed Central

    Zhu, Yuwen; Yao, Sheng; Augustine, Mathew M.; Xu, Haiying; Wang, Jun; Sun, Jingwei; Broadwater, Megan; Ruff, William; Luo, Liqun; Zhu, Gefeng; Tamada, Koji; Chen, Lieping

    2016-01-01

    The central nervous system (CNS) is an immune-privileged organ with the capacity to prevent excessive inflammation. Aside from the blood-brain barrier, active immunosuppressive mechanisms remain largely unknown. We report that a neuron-specific molecule, synaptic adhesion-like molecule 5 (SALM5), is a crucial contributor to CNS immune privilege. We found that SALM5 suppressed lipopolysaccharide-induced inflammatory responses in the CNS and that a SALM-specific monoclonal antibody promoted inflammation in the CNS, and thereby aggravated clinical symptoms of mouse experimental autoimmune encephalomyelitis. In addition, we identified herpes virus entry mediator as a functional receptor that mediates SALM5’s suppressive function. Our findings reveal a molecular link between the neuronal system and the immune system, and provide potential therapeutic targets for the control of CNS diseases. PMID:27152329

  16. The Density of EAAC1 (EAAT3) Glutamate Transporters Expressed by Neurons in the Mammalian CNS

    PubMed Central

    Holmseth, Silvia; Dehnes, Yvette; Huang, Yanhua H.; Follin-Arbelet, Virginie V.; Grutle, Nina J.; Mylonakou, Maria N.; Plachez, Celine; Zhou, Yun; Furness, David N.; Bergles, Dwight E.

    2012-01-01

    The extracellular levels of excitatory amino acids are kept low by the action of the glutamate transporters. Glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) are the most abundant subtypes and are essential for the functioning of the mammalian CNS, but the contribution of the EAAC1 subtype in the clearance of synaptic glutamate has remained controversial, because the density of this transporter in different tissues has not been determined. We used purified EAAC1 protein as a standard during immunoblotting to measure the concentration of EAAC1 in different CNS regions. The highest EAAC1 levels were found in the young adult rat hippocampus. Here, the concentration of EAAC1 was ∼0.013 mg/g tissue (∼130 molecules μm−3), 100 times lower than that of GLT-1. Unlike GLT-1 expression, which increases in parallel with circuit formation, only minor changes in the concentration of EAAC1 were observed from E18 to adulthood. In hippocampal slices, photolysis of MNI-d-aspartate (4-methoxy-7-nitroindolinyl-d-aspartate) failed to elicit EAAC1-mediated transporter currents in CA1 pyramidal neurons, and d-aspartate uptake was not detected electron microscopically in spines. Using EAAC1 knock-out mice as negative controls to establish antibody specificity, we show that these relatively small amounts of EAAC1 protein are widely distributed in somata and dendrites of all hippocampal neurons. These findings raise new questions about how so few transporters can influence the activation of NMDA receptors at excitatory synapses. PMID:22539860

  17. Individual Neuronal Subtypes Exhibit Diversity in CNS Myelination Mediated by Synaptic Vesicle Release.

    PubMed

    Koudelka, Sigrid; Voas, Matthew G; Almeida, Rafael G; Baraban, Marion; Soetaert, Jan; Meyer, Martin P; Talbot, William S; Lyons, David A

    2016-06-01

    Regulation of myelination by oligodendrocytes in the CNS has important consequences for higher-order nervous system function (e.g., [1-4]), and there is growing consensus that neuronal activity regulates CNS myelination (e.g., [5-9]) through local axon-oligodendrocyte synaptic-vesicle-release-mediated signaling [10-12]. Recent analyses have indicated that myelination along axons of distinct neuronal subtypes can differ [13, 14], but it is not known whether regulation of myelination by activity is common to all neuronal subtypes or only some. This limits insight into how specific neurons regulate their own conduction. Here, we use a novel fluorescent fusion protein reporter to study myelination along the axons of distinct neuronal subtypes over time in zebrafish. We find that the axons of reticulospinal and commissural primary ascending (CoPA) neurons are among the first myelinated in the zebrafish CNS. To investigate how activity regulates myelination by different neuronal subtypes, we express tetanus toxin (TeNT) in individual reticulospinal or CoPA neurons to prevent synaptic vesicle release. We find that the axons of individual tetanus toxin expressing reticulospinal neurons have fewer myelin sheaths than controls and that their myelin sheaths are 50% shorter than controls. In stark contrast, myelination along tetanus-toxin-expressing CoPA neuron axons is entirely normal. These results indicate that while some neuronal subtypes modulate myelination by synaptic vesicle release to a striking degree in vivo, others do not. These data have implications for our understanding of how different neurons regulate myelination and thus their own function within specific neuronal circuits.

  18. MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4

    PubMed Central

    Walsh, James T.; Hendrix, Sven; Boato, Francesco; Smirnov, Igor; Zheng, Jingjing; Lukens, John R.; Gadani, Sachin; Hechler, Daniel; Gölz, Greta; Rosenberger, Karen; Kammertöns, Thomas; Vogt, Johannes; Vogelaar, Christina; Siffrin, Volker; Radjavi, Ali; Fernandez-Castaneda, Anthony; Gaultier, Alban; Gold, Ralf; Kanneganti, Thirumala-Devi; Nitsch, Robert; Zipp, Frauke; Kipnis, Jonathan

    2015-01-01

    A body of experimental evidence suggests that T cells mediate neuroprotection following CNS injury; however, the antigen specificity of these T cells and how they mediate neuroprotection are unknown. Here, we have provided evidence that T cell–mediated neuroprotection after CNS injury can occur independently of major histocompatibility class II (MHCII) signaling to T cell receptors (TCRs). Using two murine models of CNS injury, we determined that damage-associated molecular mediators that originate from injured CNS tissue induce a population of neuroprotective, IL-4–producing T cells in an antigen-independent fashion. Compared with wild-type mice, IL-4–deficient animals had decreased functional recovery following CNS injury; however, transfer of CD4+ T cells from wild-type mice, but not from IL-4–deficient mice, enhanced neuronal survival. Using a culture-based system, we determined that T cell–derived IL-4 protects and induces recovery of injured neurons by activation of neuronal IL-4 receptors, which potentiated neurotrophin signaling via the AKT and MAPK pathways. Together, these findings demonstrate that damage-associated molecules from the injured CNS induce a neuroprotective T cell response that is independent of MHCII/TCR interactions and is MyD88 dependent. Moreover, our results indicate that IL-4 mediates neuroprotection and recovery of the injured CNS and suggest that strategies to enhance IL-4–producing CD4+ T cells have potential to attenuate axonal damage in the course of CNS injury in trauma, inflammation, or neurodegeneration. PMID:25607842

  19. CNS-expressed cathepsin D prevents lymphopenia in a murine model of congenital neuronal ceroid lipofuscinosis.

    PubMed

    Shevtsova, Zinayida; Garrido, Manuel; Weishaupt, Jochen; Saftig, Paul; Bähr, Mathias; Lühder, Fred; Kügler, Sebastian

    2010-07-01

    Deficiency in Cathepsin D (CtsD), the major cellular lysosomal aspartic proteinase, causes the congenital form of neuronal ceroid lipofuscinoses (NCLs). CtsD-deficient mice show severe visceral lesions like lymphopenia in addition to their central nervous system (CNS) phenotype of ceroid accumulation, microglia activation, and seizures. Here we demonstrate that re-expression of CtsD within the CNS but not re-expression of CtsD in visceral organs prevented both central and visceral pathologies of CtsD(-/-) mice. Our results suggest that CtsD was substantially secreted from CNS neurons and drained from CNS to periphery via lymphatic routes. Through this drainage, CNS-expressed CtsD acts as an important modulator of immune system maintenance and peripheral tissue homeostasis. These effects depended on enzymatic activity and not on proposed functions of CtsD as an extracellular ligand. Our results furthermore demonstrate that the prominent accumulation of ceroid/lipofuscin and activation of microglia in brains of CtsD(-/-) are not lethal factors but can be tolerated by the rodent CNS. PMID:20489146

  20. Studying neuronal biomechanics and its role in CNS development

    NASA Astrophysics Data System (ADS)

    Franze, Kristian; Svoboda, Hanno; da F. Costa, Luciano; Guck, Jochen; Holt, Christine

    2013-03-01

    During the development of the nervous system, neurons migrate and grow over great distances. Currently, our understanding of nervous tissue development is, in large part, based on studies of biochemical signaling. Despite the fact that forces are involved in any kind of cell motion, mechanical aspects have so far rarely been considered. Here we used deformable cell culture substrates, traction force microscopy and calcium imaging to investigate how neurons probe and respond to their mechanical environment. While the growth rate of retinal ganglion cell axons was increased on stiffer substrates, their tendency to grow in bundles, which they show in vivo, was significantly enhanced on more compliant substrates. Moreover, if grown on substrates incorporating linear stiffness gradients, neuronal axons were repelled by stiff substrates. Mechanosensing involved the application of forces driven by the interaction of actin and myosin II, and the activation of stretch-activated ion channels leading to calcium influxes into the cells. Applying a modified atomic force microscopy techniquein vivo, we found mechanical gradients in developing brain tissue along which neurons grow. The application of chondroitin sulfate, which is a major extracellular matrix component in the developing brain, changed tissue mechanics and disrupted axonal pathfinding. Hence, our data suggest that neuronal growth is not only guided by chemical signals - as it is currently assumed - but also by the nervous tissue's mechanical properties.

  1. Selective vulnerability of mouse CNS neurons to latent infection with a neuroattenuated herpes simplex virus-1.

    PubMed

    Kesari, S; Lee, V M; Brown, S M; Trojanowski, J Q; Fraser, N W

    1996-09-15

    Herpes simplex viruses that lack ICP34.5 are neuroattenuated and are presently being considered for cancer and gene therapy in the nervous system. Previously, we documented the focal presence of the latency-associated transcripts (LATs) in the hippocampi of immunocompromised mice after intracranial (IC) inoculation of an ICP34.5-deficient virus called strain 1716. To characterize further the biological properties of strain 1716 in the CNS of immunocompetent mice, we determined the extent of viral gene expression in different cell types and regions of the CNS after stereotactic IC inoculation of this virus. At survival times of > 30 d after inoculation, we found that (1) infectious virus was not detectable by titration and immunohistochemical studies; (2) neurons harbored virus as demonstrated by the detection of the LATs by in situ hybridization (ISH); (3) transcripts expressed during the lytic cycle of infection were not detected by ISH; and (4) subsets of neurons were selectively vulnerable to latent infection, depending on the site of inoculation. These results suggest that the absence of ICP34.5 does not abrogate latent infection of the CNS by strain 1716. Additional studies of strain 1716 in the model system described here will facilitate the elucidation of the mechanisms that regulate the selective vulnerability of CNS cells to latent viral infection and lead to the development of ICP34.5 mutant viruses as therapeutic vectors for CNS diseases.

  2. Distinctions in growth cone morphology and motility between monopolar and multipolar neurons in Drosophila CNS cultures.

    PubMed

    Kim, Y T; Wu, C F

    1991-04-01

    Growth cones play a central role in determining neurite extension, pathfinding and branching, and in establishing synaptic connections. This paper describes an initial characterization of growth cone morphology and behavior in dissociated larval central nervous system (CNS) cultures of Drosophila. Contrast-enhanced video images of growth cones in monopolar and multipolar neurons were characterized by employing morphometric parameters such as the number and length of filopodia, and the area and roundness of the lamellipodia. Behavior of growth cones was analyzed by a motility index and boundary flow plots originally devised for measuring motility in other cellular systems. We found that separate CNS regions yielded cultures of different major cell types with distinct neuritic patterns that could be correlated with the morphology and motility of the associated growth cones. Monopolar neurons were the major cell type in brain cultures, whereas multipolar neurons were predominant in ventral ganglion cultures. Moreover, the growth cones of monopolar neurons, which are likely to be associated with the axonal processes, differed from those of multipolar neurons, which might be related to dendritic terminals. Growth cones in monopolar neurons had larger lamellipodia of less erratic shape accompanied by fewer and shorter filopodia, and, when active, displayed much higher motility and less directionality in motion. Alternatively, these morphological and behavioral distinctions between monopolar and multipolar neurons may result from intrinsic differences in membrane adhesion and intracellular transport properties.

  3. Non-neuronal Cells in ALS: Role of Glial, Immune cells and Blood-CNS Barriers.

    PubMed

    Puentes, Fabiola; Malaspina, Andrea; van Noort, Johannes M; Amor, Sandra

    2016-03-01

    Neurological dysfunction and motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is strongly associated with neuroinflammation reflected by activated microglia and astrocytes in the CNS. In ALS endogenous triggers in the CNS such as aggregated protein and misfolded proteins activate a pathogenic response by innate immune cells. However, there is also strong evidence for a neuroprotective immune response in ALS. Emerging evidence also reveals changes in the peripheral adaptive immune responses as well as alterations in the blood brain barrier that may aid traffic of lymphocytes and antibodies into the CNS. Understanding the triggers of neuroinflammation is key to controlling neuronal loss. Here, we review the current knowledge regarding the roles of non-neuronal cells as well as the innate and adaptive immune responses in ALS. Existing ALS animal models, in particular genetic rodent models, are very useful to study the underlying pathogenic mechanisms of motor neuron degeneration. We also discuss the approaches used to target the pathogenic immune responses and boost the neuroprotective immune pathways as novel immunotherapies for ALS.

  4. Non-neuronal Cells in ALS: Role of Glial, Immune cells and Blood-CNS Barriers.

    PubMed

    Puentes, Fabiola; Malaspina, Andrea; van Noort, Johannes M; Amor, Sandra

    2016-03-01

    Neurological dysfunction and motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is strongly associated with neuroinflammation reflected by activated microglia and astrocytes in the CNS. In ALS endogenous triggers in the CNS such as aggregated protein and misfolded proteins activate a pathogenic response by innate immune cells. However, there is also strong evidence for a neuroprotective immune response in ALS. Emerging evidence also reveals changes in the peripheral adaptive immune responses as well as alterations in the blood brain barrier that may aid traffic of lymphocytes and antibodies into the CNS. Understanding the triggers of neuroinflammation is key to controlling neuronal loss. Here, we review the current knowledge regarding the roles of non-neuronal cells as well as the innate and adaptive immune responses in ALS. Existing ALS animal models, in particular genetic rodent models, are very useful to study the underlying pathogenic mechanisms of motor neuron degeneration. We also discuss the approaches used to target the pathogenic immune responses and boost the neuroprotective immune pathways as novel immunotherapies for ALS. PMID:26780491

  5. Mesenchymal stem cells protect CNS neurons against glutamate excitotoxicity by inhibiting glutamate receptor expression and function.

    PubMed

    Voulgari-Kokota, A; Fairless, R; Karamita, M; Kyrargyri, V; Tseveleki, V; Evangelidou, M; Delorme, B; Charbord, P; Diem, R; Probert, L

    2012-07-01

    Mesenchymal stem cells (MSC) promote functional recovery in experimental models of central nervous system (CNS) pathology and are currently being tested in clinical trials for stroke, multiple sclerosis and CNS injury. Their beneficial effects are attributed to the activation of endogenous CNS protection and repair processes as well as immune regulation but their mechanisms of action are poorly understood. Here we investigated the neuroprotective effects of mouse MSC in rodent MSC-neuron co-cultures and mice using models of glutamate excitotoxicity. A 24h pre-culture of mouse primary cortical neurons with MSC protected them against glutamate (NMDA) receptor-induced death and conditioned medium from MSC (MSC CM) was sufficient for this effect. Protection by MSC CM was associated with reduced mRNA levels of genes encoding NMDA receptor subunits, and increased levels for genes associated with non-neuronal and stem cell types, as shown by RT-PCR and cDNA microarray analyses. Changes in gene expression were not associated with alterations in cell lineage representation within the cultures. Further, MSC CM-mediated neuroprotection in rat retinal ganglion cells was associated with reduced glutamate-induced calcium influx. The adoptive transfer of EGFP(+)MSC in a mouse kainic acid epilepsy model also provided neuroprotection against glutamate excitotoxicity in vivo, as shown by reduced neuron damage and glial cell activation in the hippocampus. These results show that MSC mediate direct neuroprotection by reducing neuronal sensitivity to glutamate receptor ligands and altering gene expression, and suggest a link between the therapeutic effects of MSC and the activation of cell plasticity in the damaged CNS. PMID:22561409

  6. Purification and culture of adult rat dorsal root ganglia neurons.

    PubMed

    Delree, P; Leprince, P; Schoenen, J; Moonen, G

    1989-06-01

    To study the trophic requirements of adult rat dorsal root ganglia neurons (DRG) in vitro, we developed a purification procedure that yields highly enriched neuronal cultures. Forty to fifty ganglia are dissected from the spinal column of an adult rat. After enzymatic and mechanical dissociation of the ganglia, myelin debris are eliminated by centrifugation on a Percoll gradient. The resulting cell suspension is layered onto a nylon mesh with a pore size of 10 microns. Most of the neurons, the diameter of which ranged from 17 microns to greater than 100 microns, are retained on the upper surface of the sieve; most of the non-neuronal cells with a caliber of less than 10 microns after trypsinization go through it. Recovery of neurons is achieved by reversing the mesh onto a Petri dish containing culture medium. Neurons to non-neurons ratio is 1 to 10 in the initial cell suspension and 1 to 1 after separation. When these purified neurons are seeded at a density of 3,000 neurons/cm2 in 6 mm polyornithine-laminin (PORN-LAM) coated wells, neuronal survival (assessed by the ability to extend neurites), measured after 48 hr of culture, is very low (from 0 to 16%). Addition of nerve growth factor (NGF) does not improve neuronal survival. However, when neurons are cultured in the presence of medium conditioned (CM) by astrocytes or Schwann cells, 60-80% of the seeded, dye-excluding neurons survive. So, purified adult DRG neurons require for their short-term survival and regeneration in culture, a trophic support that is present in conditioned medium from PNS or CNS glia.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Viscoelastic properties of individual glial cells and neurons in the CNS

    PubMed Central

    Lu, Yun-Bi; Franze, Kristian; Seifert, Gerald; Steinhäuser, Christian; Kirchhoff, Frank; Wolburg, Hartwig; Guck, Jochen; Janmey, Paul; Wei, Er-Qing; Käs, Josef; Reichenbach, Andreas

    2006-01-01

    One hundred fifty years ago glial cells were discovered as a second, non-neuronal, cell type in the central nervous system. To ascribe a function to these new, enigmatic cells, it was suggested that they either glue the neurons together (the Greek word “γλια” means “glue”) or provide a robust scaffold for them (“support cells”). Although both speculations are still widely accepted, they would actually require quite different mechanical cell properties, and neither one has ever been confirmed experimentally. We investigated the biomechanics of CNS tissue and acutely isolated individual neurons and glial cells from mammalian brain (hippocampus) and retina. Scanning force microscopy, bulk rheology, and optically induced deformation were used to determine their viscoelastic characteristics. We found that (i) in all CNS cells the elastic behavior dominates over the viscous behavior, (ii) in distinct cell compartments, such as soma and cell processes, the mechanical properties differ, most likely because of the unequal local distribution of cell organelles, (iii) in comparison to most other eukaryotic cells, both neurons and glial cells are very soft (“rubber elastic”), and (iv) intriguingly, glial cells are even softer than their neighboring neurons. Our results indicate that glial cells can neither serve as structural support cells (as they are too soft) nor as glue (because restoring forces are dominant) for neurons. Nevertheless, from a structural perspective they might act as soft, compliant embedding for neurons, protecting them in case of mechanical trauma, and also as a soft substrate required for neurite growth and facilitating neuronal plasticity. PMID:17093050

  8. Differential roles of NF-Y transcription factor in ER chaperone expression and neuronal maintenance in the CNS

    PubMed Central

    Yamanaka, Tomoyuki; Tosaki, Asako; Miyazaki, Haruko; Kurosawa, Masaru; Koike, Masato; Uchiyama, Yasuo; Maity, Sankar N.; Misawa, Hidemi; Takahashi, Ryosuke; Shimogori, Tomomi; Hattori, Nobutaka; Nukina, Nobuyuki

    2016-01-01

    The mammalian central nervous system (CNS) contains various types of neurons with different neuronal functions. In contrast to established roles of cell type-specific transcription factors on neuronal specification and maintenance, whether ubiquitous transcription factors have conserved or differential neuronal function remains uncertain. Here, we revealed that inactivation of a ubiquitous factor NF-Y in different sets of neurons resulted in cell type-specific neuropathologies and gene downregulation in mouse CNS. In striatal and cerebellar neurons, NF-Y inactivation led to ubiquitin/p62 pathologies with downregulation of an endoplasmic reticulum (ER) chaperone Grp94, as we previously observed by NF-Y deletion in cortical neurons. In contrast, NF-Y inactivation in motor neurons induced neuronal loss without obvious protein deposition. Detailed analysis clarified downregulation of another ER chaperone Grp78 in addition to Grp94 in motor neurons, and knockdown of both ER chaperones in motor neurons recapitulated the pathology observed after NF-Y inactivation. Finally, additional downregulation of Grp78 in striatal neurons suppressed ubiquitin accumulation induced by NF-Y inactivation, implying that selective ER chaperone downregulation mediates different neuropathologies. Our data suggest distinct roles of NF-Y in protein homeostasis and neuronal maintenance in the CNS by differential regulation of ER chaperone expression. PMID:27687130

  9. NFκB-inducing kinase inhibits NFκB activity specifically in neurons of the CNS.

    PubMed

    Mao, Xianrong; Phanavanh, Bounleut; Hamdan, Hamdan; Moerman-Herzog, Andréa M; Barger, Steven W

    2016-04-01

    The control of NFκB in CNS neurons appears to differ from that in other cell types. Studies have reported induction of NFκB in neuronal cultures and immunostaining in vivo, but others have consistently detected little or no transcriptional activation by NFκB in brain neurons. To test if neurons lack some component of the signal transduction system for NFκB activation, we transfected cortical neurons with several members of this signaling system along with a luciferase-based NFκB-reporter plasmid; RelA was cotransfected in some conditions. No component of the NFκB pathway was permissive for endogenous NFκB activity, and none stimulated the activity of exogenous RelA. Surprisingly, however, the latter was inhibited by cotransfection of NFκB-inducing kinase (NIK). Fluorescence imaging of RelA indicated that co-expression of NIK sequestered RelA in the cytoplasm, similar to the effect of IκBα. NIK-knockout mice showed elevated expression of an NFκB-reporter construct in neurons in vivo. Cortical neurons cultured from NIK-knockout mice showed elevated expression of an NFκB-reporter transgene. Consistent with data from other cell types, a C-terminal fragment of NIK suppressed RelA activity in astrocytes as well as neurons. Therefore, the inhibitory ability of the NIK C-terminus was unbiased with regard to cell type. However, inhibition of NFκB by full-length NIK is a novel outcome that appears to be specific to CNS neurons. This has implications for unique aspects of transcription in the CNS, perhaps relevant to aspects of development, neuroplasticity, and neuroinflammation. Full-length NIK was found to inhibit (down arrow) transcriptional activation of NFκB in neurons, while it elevated (up arrow) activity in astrocytes. Deletion constructs corresponding to the N-terminus or C-terminus also inhibited NFκB in neurons, while only the C-terminus did so in astrocytes. One possible explanation is that the inhibition in neurons occurs via two different

  10. Drosophila Neurexin IV stabilizes neuron-glia interactions at the CNS midline by binding to Wrapper.

    PubMed

    Stork, Tobias; Thomas, Silke; Rodrigues, Floriano; Silies, Marion; Naffin, Elke; Wenderdel, Stephanie; Klämbt, Christian

    2009-04-01

    Ensheathment of axons by glial membranes is a key feature of complex nervous systems ensuring the separation of single axons or axonal fascicles. Nevertheless, the molecules that mediate the recognition and specific adhesion of glial and axonal membranes are largely unknown. We use the Drosophila midline of the embryonic central nervous system as a model to investigate these neuron glia interactions. During development, the midline glial cells acquire close contact to commissural axons and eventually extend processes into the commissures to wrap individual axon fascicles. Here, we show that this wrapping of axons depends on the interaction of the neuronal transmembrane protein Neurexin IV with the glial Ig-domain protein Wrapper. Although Neurexin IV has been previously described to be an essential component of epithelial septate junctions (SJ), we show that its function in mediating glial wrapping at the CNS midline is independent of SJ formation. Moreover, differential splicing generates two different Neurexin IV isoforms. One mRNA is enriched in septate junction-forming tissues, whereas the other mRNA is expressed by neurons and recruited to the midline by Wrapper. Although both Neurexin IV isoforms are able to bind Wrapper, the neuronal isoform has a higher affinity for Wrapper. We conclude that Neurexin IV can mediate different adhesive cell-cell contacts depending on the isoforms expressed and the context of its interaction partners.

  11. Protooncogenes subserve memory formation in the adult CNS.

    PubMed

    Sweatt, J D

    2001-09-13

    Studies of the signal transduction mechanisms underlying learning and memory have provided many new insights into the molecular mechanisms underlying associative conditioning in mammals. In this issue of Neuron, Gean and colleagues report the discovery that the PI-3 kinase/AKT(PKB) pathway contributes to LTP and the consolidation of amygdala-dependent cued fear conditioning in rats.

  12. Clinical features, outcomes, and cerebrospinal fluid findings in adult patients with central nervous system (CNS) infections caused by varicella-zoster virus: comparison with enterovirus CNS infections.

    PubMed

    Hong, Hyo-Lim; Lee, Eun Mi; Sung, Heungsup; Kang, Joong Koo; Lee, Sang-Ahm; Choi, Sang-Ho

    2014-12-01

    Varicella-zoster virus (VZV) is known to be associated with central nervous system (CNS) infections in adults. However, the clinical characteristics of VZV CNS infections are not well characterized. The aim of this study was to compare the clinical manifestations, outcomes, and cerebrospinal fluid (CSF) findings in patients with VZV CNS infections with those in patients with enterovirus (EV) CNS infections. This retrospective cohort study was performed at a 2,700-bed tertiary care hospital. Using a clinical microbiology computerized database, all adults with CSF PCR results positive for VZV or EV that were treated between January 1999 and February 2013 were identified. Thirty-eight patients with VZV CNS infection and 68 patients with EV CNS infection were included in the study. Compared with the EV group, the median age in the VZV group was higher (VZV, 35 years vs. EV, 31 years; P = 0.02), and showed a bimodal age distribution with peaks in the third and seventh decade. Encephalitis was more commonly encountered in the VZV group (VZV, 23.7% vs. EV, 4.4%; P = 0.01). The median lymphocyte percentage in the CSF (VZV, 81% vs. EV, 36%; P < 0.001) and the CSF protein level (VZV, 100 mg/dl vs. EV, 46 mg/dl; P < 0.001) were higher in the VZV group. Compared with patients with EV CNS infection, patients with VZV CNS infection developed encephalitis more often and exhibited more intense inflammatory reaction. Nevertheless, both VZV and EV CNS infections were associated with excellent long-term prognosis.

  13. Enhancing Psychosocial Outcomes for Young Adult Childhood CNS Cancer Survivors: Importance of Addressing Vocational Identity and Community Integration

    ERIC Educational Resources Information Center

    Strauser, David R.; Wagner, Stacia; Wong, Alex W. K.

    2012-01-01

    The purpose of this study was to examine the relationship between vocational identity, community integration, positive and negative affect, and satisfaction with life in a group of young adult central nervous system (CNS) cancer survivors. Participants in this study included 45 young adult CNS cancer survivors who ranged in age from 18 to 30 years…

  14. Single Cell Electroporation Method for Mammalian CNS Neurons in Organotypic Slice Cultures

    NASA Astrophysics Data System (ADS)

    Uesaka, Naofumi; Hayano, Yasufumi; Yamada, Akito; Yamamoto, Nobuhiko

    Axon tracing is an essential technique to study the projection pattern of neurons in the CNS. Horse radish peroxidase and lectins have contributed to revealing many neural connection patterns in the CNS (Itaya and van Hoesen, 1982; Fabian and Coulter, 1985; Yoshihara, 2002). Moreover, a tracing method with fluorescent dye has enabled the observation of growing axons in living conditions, and demon strated a lot of developmental aspects in axon growth and guidance (Harris et al., 1987; O'Rourke and Fraser, 1990; Kaethner and Stuermer, 1992; Halloran and Kalil, 1994; Yamamoto et al., 1997). More recently, genetically encoded fluores cent proteins can be used as a powerful tool to observe various biological events. Several gene transfer techniques such as microinjection, biolistic gene gun, viral infection, lipofection and transgenic technology have been developed (Feng et al., 2000; Ehrengruber et al., 2001; O'Brien et al., 2001; Ma et al., 2002; Sahly et al., 2003). In particular, the electroporation technique was proved as a valuable tool, since it can be applied to a wide range of tissues and cell types with little toxicity and can be performed with relative technical easiness. Most methods, including a stand ard electroporation technique, are suitable for gene transfer to a large number of cells. However, this is not ideal for axonal tracing, because observation of individ ual axons is occasionally required. To overcome this problem, we have developed an electroporation method using glass micropipettes containing plasmid solutions and small current injection. Here we introduce the method in detail and exemplified results with some example applications and discuss its usefulness.

  15. A multi-compartment CNS neuron-glia Co-culture microfluidic platform.

    PubMed

    Park, Jaewon; Koito, Hisami; Li, Jianrong; Han, Arum

    2009-01-01

    We present a novel multi-compartment neuron co-culture microsystem platform for in vitro CNS axon-glia interaction research, capable of conducting up to six independent experiments in parallel for higher-throughput. We developed a new fabrication method to create microfluidic devices having both micro and macro scale structures within the same device through a single soft-lithography process, enabling mass fabrication with good repeatability. The multi-compartment microfluidic co-culture platform is composed of one soma compartment for neurons and six axon/glia compartments for oligodendrocytes (OLs). The soma compartment and axon/glia compartments are connected by arrays of axon-guiding microchannels that function as physical barriers to confine neuronal soma in the soma compartment, while allowing axons to grow into axon/glia compartments. OLs loaded into axon/glia compartments can interact only with axons but not with neuronal soma or dendrites, enabling localized axon-glia interaction studies. The microchannels also enabled fluidic isolation between compartments, allowing six independent experiments to be conducted on a single device for higher throughput. Soft-lithography using poly(dimethylsiloxane) (PDMS) is a commonly used technique in biomedical microdevices. Reservoirs on these devices are commonly defined by manual punching. Although simple, poor alignment and time consuming nature of the process makes this process not suitable when large numbers of reservoirs have to be repeatedly created. The newly developed method did not require manual punching of reservoirs, overcoming such limitations. First, seven reservoirs (depth: 3.5 mm) were made on a poly(methyl methacrylate) (PMMA) block using a micro-milling machine. Then, arrays of ridge microstructures, fabricated on a glass substrate, were hot-embossed against the PMMA block to define microchannels that connect the soma and axon/glia compartments. This process resulted in macro-scale reservoirs (3.5 mm

  16. Electrical stimulation therapies for CNS disorders and pain are mediated by competition between different neuronal networks in the brain.

    PubMed

    Faingold, Carl L

    2008-11-01

    CNS neuronal networks are known to control normal physiological functions, including locomotion and respiration. Neuronal networks also mediate the pathophysiology of many CNS disorders. Stimulation therapies, including localized brain and vagus nerve stimulation, electroshock, and acupuncture, are proposed to activate "therapeutic" neuronal networks. These therapeutic networks are dormant prior to stimulatory treatments, but when the dormant networks are activated they compete with pathophysiological neuronal networks, disrupting their function. This competition diminishes the disease symptoms, providing effective therapy for otherwise intractable CNS disorders, including epilepsy, Parkinson's disease, chronic pain, and depression. Competition between stimulation-activated therapeutic networks and pathophysiological networks is a major mechanism mediating the therapeutic effects of stimulation. This network interaction is hypothesized to involve competition for "control" of brain regions that contain high proportions of conditional multireceptive (CMR) neurons. CMR regions, including brainstem reticular formation, amygdala, and cerebral cortex, have extensive connections to numerous brain areas, allowing these regions to participate potentially in many networks. The participation of CMR regions in any network is often variable, depending on the conditions affecting the organism, including vigilance states, drug treatment, and learning. This response variability of CMR neurons is due to the high incidence of excitatory postsynaptic potentials that are below threshold for triggering action potentials. These subthreshold responses can be brought to threshold by blocking inhibition or enhancing excitation via the paradigms used in stimulation therapies. Participation of CMR regions in a network is also strongly affected by pharmacological treatments (convulsant or anesthetic drugs) and stimulus parameters (strength and repetition rate). Many studies indicate that

  17. A Novel Purification Method for CNS Projection Neurons Leads to the Identification of Brain Vascular Cells As a Source of Trophic Support for Corticospinal Motor Neurons

    PubMed Central

    Dugas, Jason C.; Mandemakers, Wim; Rogers, Madolyn; Ibrahim, Adil; Daneman, Richard; Barres, Ben A.

    2008-01-01

    One of the difficulties in studying cellular interactions in the CNS is the lack of effective methods to purify specific neuronal populations of interest. We report the development of a novel purification scheme, CTB immunopanning, in which a particular CNS neuron population is selectively labeled via retrograde axonal transport of the cell-surface epitope cholera toxin beta (CTB), and then purified via immobilization with anti-CTB antibody. We have demonstrated the usefulness and versatility of this method by purifying both retinal ganglion cells and corticospinal motor neurons (CSMNs). Genomic expression analyses of purified CSMNs revealed that they express significant levels of many receptors for growth factors produced by brain endothelial cells; three of these factors, CXCL12, pleiotrophin, and IGF2 significantly enhanced purified CSMN survival, similar to previously characterized CSMN trophic factors BDNF and IGF1. In addition, endothelial cell conditioned medium significantly promoted CSMN neurite outgrowth. These findings demonstrate a useful method for the purification of several different types of CNS projection neurons, which in principle should work in many mammalian species, and provide evidence that endothelial-derived factors may represent an overlooked source of trophic support for neurons in the brain. PMID:18701692

  18. Age–incidence patterns of primary CNS tumors in children, adolescents, and adults in England

    PubMed Central

    Arora, Ramandeep S.; Alston, Robert D.; Eden, Tim O.B.; Estlin, Edward J.; Moran, Anthony; Birch, Jillian M.

    2009-01-01

    Around 25% of all tumors in those 0–14 years of age and 9% in those 15–24 years of age involve the CNS. They are the most common cause of cancer-related deaths in both age groups. In adults 25–84 years of age, the proportion of CNS tumors is 2%; 5-year overall survival is 10%–15%; and survivors have considerable morbidity. Comprehensive up-to-date population-based incidence data on these tumors are lacking. We present incidence rates for primary CNS tumors based on data derived from the high-quality national cancer registration system in England. A total of 54,336 CNS tumors of malignant, benign, and uncertain behavior were registered across the whole of England from 1995 through 2003. The age-standardized rates for all ages (0–84 years) was 9.21 per 100,000 person-years. This is higher than previously reported for England because it includes nonmalignant CNS tumors and hence gives a more accurate picture of burden of disease. The age-standardized rates for those 0–14 years of age, 15–24 years of age, and 25–84 years of age were 3.56, 3.26, and 14.57 per 100,000 person-years, respectively. In this article, we describe the changing patterns in the epidemiology of primary CNS tumors in these three age groups with respect to sex, tumor behavior, and histology using the current WHO classification. This information will provide a reference for future studies nationally and internationally and make comparisons relevant and meaningful. PMID:19033157

  19. Organotypic Cultures as a Model to Study Adult Neurogenesis in CNS Disorders

    PubMed Central

    Cavaliere, Fabio; Benito-Muñoz, Monica; Matute, Carlos

    2016-01-01

    Neural regeneration resides in certain specific regions of adult CNS. Adult neurogenesis occurs throughout life, especially from the subgranular zone of hippocampus and the subventricular zone, and can be modulated in physiological and pathological conditions. Numerous techniques and animal models have been developed to demonstrate and observe neural regeneration but, in order to study the molecular and cellular mechanisms and to characterize multiple types of cell populations involved in the activation of neurogenesis and gliogenesis, investigators have to turn to in vitro models. Organotypic cultures best recapitulate the 3D organization of the CNS and can be explored taking advantage of many techniques. Here, we review the use of organotypic cultures as a reliable and well defined method to study the mechanisms of neurogenesis under normal and pathological conditions. As an example, we will focus on the possibilities these cultures offer to study the pathophysiology of diseases like Alzheimer disease, Parkinson's disease, and cerebral ischemia. PMID:27127518

  20. Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP(+) exposure.

    PubMed

    Dukes, April A; Bai, Qing; Van Laar, Victor S; Zhou, Yangzhong; Ilin, Vladimir; David, Christopher N; Agim, Zeynep S; Bonkowsky, Joshua L; Cannon, Jason R; Watkins, Simon C; Croix, Claudette M St; Burton, Edward A; Berman, Sarah B

    2016-11-01

    Extensive convergent evidence collectively suggests that mitochondrial dysfunction is central to the pathogenesis of Parkinson's disease (PD). Recently, changes in the dynamic properties of mitochondria have been increasingly implicated as a key proximate mechanism underlying neurodegeneration. However, studies have been limited by the lack of a model in which mitochondria can be imaged directly and dynamically in dopaminergic neurons of the intact vertebrate CNS. We generated transgenic zebrafish in which mitochondria of dopaminergic neurons are labeled with a fluorescent reporter, and optimized methods allowing direct intravital imaging of CNS dopaminergic axons and measurement of mitochondrial transport in vivo. The proportion of mitochondria undergoing axonal transport in dopaminergic neurons decreased overall during development between 2days post-fertilization (dpf) and 5dpf, at which point the major period of growth and synaptogenesis of the relevant axonal projections is complete. Exposure to 0.5-1.0mM MPP(+) between 4 and 5dpf did not compromise zebrafish viability or cause detectable changes in the number or morphology of dopaminergic neurons, motor function or monoaminergic neurochemistry. However, 0.5mM MPP(+) caused a 300% increase in retrograde mitochondrial transport and a 30% decrease in anterograde transport. In contrast, exposure to higher concentrations of MPP(+) caused an overall reduction in mitochondrial transport. This is the first time mitochondrial transport has been observed directly in CNS dopaminergic neurons of a living vertebrate and quantified in a PD model in vivo. Our findings are compatible with a model in which damage at presynaptic dopaminergic terminals causes an early compensatory increase in retrograde transport of compromised mitochondria for degradation in the cell body. These data are important because manipulation of early pathogenic mechanisms might be a valid therapeutic approach to PD. The novel transgenic lines and

  1. Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP(+) exposure.

    PubMed

    Dukes, April A; Bai, Qing; Van Laar, Victor S; Zhou, Yangzhong; Ilin, Vladimir; David, Christopher N; Agim, Zeynep S; Bonkowsky, Joshua L; Cannon, Jason R; Watkins, Simon C; Croix, Claudette M St; Burton, Edward A; Berman, Sarah B

    2016-11-01

    Extensive convergent evidence collectively suggests that mitochondrial dysfunction is central to the pathogenesis of Parkinson's disease (PD). Recently, changes in the dynamic properties of mitochondria have been increasingly implicated as a key proximate mechanism underlying neurodegeneration. However, studies have been limited by the lack of a model in which mitochondria can be imaged directly and dynamically in dopaminergic neurons of the intact vertebrate CNS. We generated transgenic zebrafish in which mitochondria of dopaminergic neurons are labeled with a fluorescent reporter, and optimized methods allowing direct intravital imaging of CNS dopaminergic axons and measurement of mitochondrial transport in vivo. The proportion of mitochondria undergoing axonal transport in dopaminergic neurons decreased overall during development between 2days post-fertilization (dpf) and 5dpf, at which point the major period of growth and synaptogenesis of the relevant axonal projections is complete. Exposure to 0.5-1.0mM MPP(+) between 4 and 5dpf did not compromise zebrafish viability or cause detectable changes in the number or morphology of dopaminergic neurons, motor function or monoaminergic neurochemistry. However, 0.5mM MPP(+) caused a 300% increase in retrograde mitochondrial transport and a 30% decrease in anterograde transport. In contrast, exposure to higher concentrations of MPP(+) caused an overall reduction in mitochondrial transport. This is the first time mitochondrial transport has been observed directly in CNS dopaminergic neurons of a living vertebrate and quantified in a PD model in vivo. Our findings are compatible with a model in which damage at presynaptic dopaminergic terminals causes an early compensatory increase in retrograde transport of compromised mitochondria for degradation in the cell body. These data are important because manipulation of early pathogenic mechanisms might be a valid therapeutic approach to PD. The novel transgenic lines and

  2. Abbreviated exposure to hypoxia is sufficient to induce CNS dysmyelination, modulate spinal motor neuron composition, and impair motor development in neonatal mice.

    PubMed

    Watzlawik, Jens O; Kahoud, Robert J; O'Toole, Ryan J; White, Katherine A M; Ogden, Alyssa R; Painter, Meghan M; Wootla, Bharath; Papke, Louisa M; Denic, Aleksandar; Weimer, Jill M; Carey, William A; Rodriguez, Moses

    2015-01-01

    Neonatal white matter injury (nWMI) is an increasingly common cause of cerebral palsy that results predominantly from hypoxic injury to progenitor cells including those of the oligodendrocyte lineage. Existing mouse models of nWMI utilize prolonged periods of hypoxia during the neonatal period, require complex cross-fostering and exhibit poor growth and high mortality rates. Abnormal CNS myelin composition serves as the major explanation for persistent neuro-motor deficits. Here we developed a simplified model of nWMI with low mortality rates and improved growth without cross-fostering. Neonatal mice are exposed to low oxygen from postnatal day (P) 3 to P7, which roughly corresponds to the period of human brain development between gestational weeks 32 and 36. CNS hypomyelination is detectable for 2-3 weeks post injury and strongly correlates with levels of body and brain weight loss. Immediately following hypoxia treatment, cell death was evident in multiple brain regions, most notably in superficial and deep cortical layers as well as the subventricular zone progenitor compartment. PDGFαR, Nkx2.2, and Olig2 positive oligodendrocyte progenitor cell were significantly reduced until postnatal day 27. In addition to CNS dysmyelination we identified a novel pathological marker for adult hypoxic animals that strongly correlates with life-long neuro-motor deficits. Mice reared under hypoxia reveal an abnormal spinal neuron composition with increased small and medium diameter axons and decreased large diameter axons in thoracic lateral and anterior funiculi. Differences were particularly pronounced in white matter motor tracts left and right of the anterior median fissure. Our findings suggest that 4 days of exposure to hypoxia are sufficient to induce experimental nWMI in CD1 mice, thus providing a model to test new therapeutics. Pathological hallmarks of this model include early cell death, decreased OPCs and hypomyelination in early postnatal life, followed by

  3. Abbreviated Exposure to Hypoxia Is Sufficient to Induce CNS Dysmyelination, Modulate Spinal Motor Neuron Composition, and Impair Motor Development in Neonatal Mice

    PubMed Central

    Watzlawik, Jens O.; Kahoud, Robert J.; O’Toole, Ryan J.; White, Katherine A. M.; Ogden, Alyssa R.; Painter, Meghan M.; Wootla, Bharath; Papke, Louisa M.; Denic, Aleksandar; Weimer, Jill M.; Carey, William A.; Rodriguez, Moses

    2015-01-01

    Neonatal white matter injury (nWMI) is an increasingly common cause of cerebral palsy that results predominantly from hypoxic injury to progenitor cells including those of the oligodendrocyte lineage. Existing mouse models of nWMI utilize prolonged periods of hypoxia during the neonatal period, require complex cross-fostering and exhibit poor growth and high mortality rates. Abnormal CNS myelin composition serves as the major explanation for persistent neuro-motor deficits. Here we developed a simplified model of nWMI with low mortality rates and improved growth without cross-fostering. Neonatal mice are exposed to low oxygen from postnatal day (P) 3 to P7, which roughly corresponds to the period of human brain development between gestational weeks 32 and 36. CNS hypomyelination is detectable for 2–3 weeks post injury and strongly correlates with levels of body and brain weight loss. Immediately following hypoxia treatment, cell death was evident in multiple brain regions, most notably in superficial and deep cortical layers as well as the subventricular zone progenitor compartment. PDGFαR, Nkx2.2, and Olig2 positive oligodendrocyte progenitor cell were significantly reduced until postnatal day 27. In addition to CNS dysmyelination we identified a novel pathological marker for adult hypoxic animals that strongly correlates with life-long neuro-motor deficits. Mice reared under hypoxia reveal an abnormal spinal neuron composition with increased small and medium diameter axons and decreased large diameter axons in thoracic lateral and anterior funiculi. Differences were particularly pronounced in white matter motor tracts left and right of the anterior median fissure. Our findings suggest that 4 days of exposure to hypoxia are sufficient to induce experimental nWMI in CD1 mice, thus providing a model to test new therapeutics. Pathological hallmarks of this model include early cell death, decreased OPCs and hypomyelination in early postnatal life, followed by

  4. Promoting axon regeneration in the adult CNS by modulation of the melanopsin/GPCR signaling

    PubMed Central

    Li, Songshan; Yang, Chao; Zhang, Li; Gao, Xin; Wang, Xuejie; Liu, Wen; Wang, Yuqi; Jiang, Songshan; Wong, Yung Hou; Zhang, Yifeng; Liu, Kai

    2016-01-01

    Cell-type–specific G protein-coupled receptor (GPCR) signaling regulates distinct neuronal responses to various stimuli and is essential for axon guidance and targeting during development. However, its function in axonal regeneration in the mature CNS remains elusive. We found that subtypes of intrinsically photosensitive retinal ganglion cells (ipRGCs) in mice maintained high mammalian target of rapamycin (mTOR) levels after axotomy and that the light-sensitive GPCR melanopsin mediated this sustained expression. Melanopsin overexpression in the RGCs stimulated axonal regeneration after optic nerve crush by up-regulating mTOR complex 1 (mTORC1). The extent of the regeneration was comparable to that observed after phosphatase and tensin homolog (Pten) knockdown. Both the axon regeneration and mTOR activity that were enhanced by melanopsin required light stimulation and Gq/11 signaling. Specifically, activating Gq in RGCs elevated mTOR activation and promoted axonal regeneration. Melanopsin overexpression in RGCs enhanced the amplitude and duration of their light response, and silencing them with Kir2.1 significantly suppressed the increased mTOR signaling and axon regeneration that were induced by melanopsin. Thus, our results provide a strategy to promote axon regeneration after CNS injury by modulating neuronal activity through GPCR signaling. PMID:26831088

  5. The Zebrafish Homologue of the Human DYT1 Dystonia Gene Is Widely Expressed in CNS Neurons but Non-Essential for Early Motor System Development

    PubMed Central

    Sager, Jonathan J.; Torres, Gonzalo E.; Burton, Edward A.

    2012-01-01

    DYT1 dystonia is caused by mutation of the TOR1A gene, resulting in the loss of a single glutamic acid residue near the carboxyl terminal of TorsinA. The neuronal functions perturbed by TorsinA[ΔE] are a major unresolved issue in understanding the pathophysiology of dystonia, presenting a critical roadblock to developing effective treatments. We identified and characterized the zebrafish homologue of TOR1A, as a first step towards elucidating the functions of TorsinA in neurons, in vivo, using the genetically-manipulable zebrafish model. The zebrafish genome was found to contain a single alternatively-spliced tor1 gene, derived from a common ancestral locus shared with the dual TOR1A and TOR1B paralogues found in tertrapods. tor1 was expressed ubiquitously during early embryonic development and in multiple adult tissues, including the CNS. The 2.1 kb tor1 mRNA encodes Torsin1, which is 59% identical and 78% homologous to human TorsinA. Torsin1 was expressed as major 45 kDa and minor 47 kDa glycoproteins, within the cytoplasm of neurons and neuropil throughout the CNS. Similar to previous findings relating to human TorsinA, mutations of the ATP hydrolysis domain of Torsin1 resulted in relocalization of the protein in cultured cells from the endoplasmic reticulum to the nuclear envelope. Zebrafish embryos lacking tor1 during early development did not show impaired viability, overt morphological abnormalities, alterations in motor behavior, or developmental defects in the dopaminergic system. Torsin1 is thus non-essential for early development of the motor system, suggesting that important CNS functions may occur later in development, consistent with the critical time window in late childhood when dystonia symptoms usually emerge in DYT1 patients. The similarities between Torsin1 and human TorsinA in domain organization, expression pattern, and cellular localization suggest that the zebrafish will provide a useful model to understand the neuronal functions of Torsins

  6. Neuronal precursor-restricted transduction via in utero CNS gene delivery of a novel bipartite HSV amplicon/transposase hybrid vector.

    PubMed

    Bowers, William J; Mastrangelo, Michael A; Howard, Darlene F; Southerland, Hilary A; Maguire-Zeiss, Kathleen A; Federoff, Howard J

    2006-03-01

    The ability to modify genetically in utero the precursors of neuronal lineage contributing to multiple postmitotic cell types in the adult central nervous system would provide a means to evaluate strategies to ameliorate conditions affecting cellular patterning, metabolism, or survival. The herpes simplex virus (HSV)-derived amplicon, a vector devoid of viral genes and with the largest known payload capacity, normally exists episomally within nuclei of transduced cells, thus precluding conveyance during mitosis. Herein, we modify the Tc1-like Sleeping Beauty (SB) transposon system to create an integrating amplicon vector platform wherein provision of transposase in trans effectively catalyzes integration of a transgenomic segment. Cotransduction with a Rous sarcoma virus promoter-driven beta-galactosidase-neomycin (betageo) fusion flanked by SB terminal repeats (HSVT-betageo) and a second expressing the SB transposase gene under HSV immediate-early 4/5 gene promoter control (HSVsb) resulted in integration and extension of expression duration. Most notably, in utero intraventricular application led to extensive transgene expression within neuronal precursors and their derivatives without attendant adverse consequences, suggesting this new platform could be used to evaluate prenatally the function of gene products in neuronal lineages and evaluate therapeutic strategies for correction of genetic abnormalities affecting the developing CNS. PMID:16412694

  7. GLT-1-Dependent Disruption of CNS Glutamate Homeostasis and Neuronal Function by the Protozoan Parasite Toxoplasma gondii

    PubMed Central

    David, Clément N.; Frias, Elma S.; Szu, Jenny I.; Vieira, Philip A.; Hubbard, Jacqueline A.; Lovelace, Jonathan; Michael, Marena; Worth, Danielle; McGovern, Kathryn E.; Ethell, Iryna M.; Stanley, B. Glenn; Korzus, Edward; Fiacco, Todd A.; Binder, Devin K.; Wilson, Emma H.

    2016-01-01

    The immune privileged nature of the CNS can make it vulnerable to chronic and latent infections. Little is known about the effects of lifelong brain infections, and thus inflammation, on the neurological health of the host. Toxoplasma gondii is a parasite that can infect any mammalian nucleated cell with average worldwide seroprevalence rates of 30%. Infection by Toxoplasma is characterized by the lifelong presence of parasitic cysts within neurons in the brain, requiring a competent immune system to prevent parasite reactivation and encephalitis. In the immunocompetent individual, Toxoplasma infection is largely asymptomatic, however many recent studies suggest a strong correlation with certain neurodegenerative and psychiatric disorders. Here, we demonstrate a significant reduction in the primary astrocytic glutamate transporter, GLT-1, following infection with Toxoplasma. Using microdialysis of the murine frontal cortex over the course of infection, a significant increase in extracellular concentrations of glutamate is observed. Consistent with glutamate dysregulation, analysis of neurons reveal changes in morphology including a reduction in dendritic spines, VGlut1 and NeuN immunoreactivity. Furthermore, behavioral testing and EEG recordings point to significant changes in neuronal output. Finally, these changes in neuronal connectivity are dependent on infection-induced downregulation of GLT-1 as treatment with the ß-lactam antibiotic ceftriaxone, rescues extracellular glutamate concentrations, neuronal pathology and function. Altogether, these data demonstrate that following an infection with T. gondii, the delicate regulation of glutamate by astrocytes is disrupted and accounts for a range of deficits observed in chronic infection. PMID:27281462

  8. GLT-1-Dependent Disruption of CNS Glutamate Homeostasis and Neuronal Function by the Protozoan Parasite Toxoplasma gondii.

    PubMed

    David, Clément N; Frias, Elma S; Szu, Jenny I; Vieira, Philip A; Hubbard, Jacqueline A; Lovelace, Jonathan; Michael, Marena; Worth, Danielle; McGovern, Kathryn E; Ethell, Iryna M; Stanley, B Glenn; Korzus, Edward; Fiacco, Todd A; Binder, Devin K; Wilson, Emma H

    2016-06-01

    The immune privileged nature of the CNS can make it vulnerable to chronic and latent infections. Little is known about the effects of lifelong brain infections, and thus inflammation, on the neurological health of the host. Toxoplasma gondii is a parasite that can infect any mammalian nucleated cell with average worldwide seroprevalence rates of 30%. Infection by Toxoplasma is characterized by the lifelong presence of parasitic cysts within neurons in the brain, requiring a competent immune system to prevent parasite reactivation and encephalitis. In the immunocompetent individual, Toxoplasma infection is largely asymptomatic, however many recent studies suggest a strong correlation with certain neurodegenerative and psychiatric disorders. Here, we demonstrate a significant reduction in the primary astrocytic glutamate transporter, GLT-1, following infection with Toxoplasma. Using microdialysis of the murine frontal cortex over the course of infection, a significant increase in extracellular concentrations of glutamate is observed. Consistent with glutamate dysregulation, analysis of neurons reveal changes in morphology including a reduction in dendritic spines, VGlut1 and NeuN immunoreactivity. Furthermore, behavioral testing and EEG recordings point to significant changes in neuronal output. Finally, these changes in neuronal connectivity are dependent on infection-induced downregulation of GLT-1 as treatment with the ß-lactam antibiotic ceftriaxone, rescues extracellular glutamate concentrations, neuronal pathology and function. Altogether, these data demonstrate that following an infection with T. gondii, the delicate regulation of glutamate by astrocytes is disrupted and accounts for a range of deficits observed in chronic infection. PMID:27281462

  9. Non-neuronal cardiac cholinergic system influences CNS via the vagus nerve to acquire a stress-refractory propensity.

    PubMed

    Oikawa, Shino; Kai, Yuko; Tsuda, Masayuki; Ohata, Hisayuki; Mano, Asuka; Mizoguchi, Naoko; Sugama, Shuei; Nemoto, Takahiro; Suzuki, Kenji; Kurabayashi, Atsushi; Muramoto, Kazuyo; Kaneda, Makoto; Kakinuma, Yoshihiko

    2016-11-01

    We previously developed cardiac ventricle-specific choline acetyltransferase (ChAT) gene-overexpressing transgenic mice (ChAT tgm), i.e. an in vivo model of the cardiac non-neuronal acetylcholine (NNA) system or non-neuronal cardiac cholinergic system (NNCCS). By using this murine model, we determined that this system was responsible for characteristics of resistance to ischaemia, or hypoxia, via the modulation of cellular energy metabolism and angiogenesis. In line with our previous study, neuronal ChAT-immunoreactivity in the ChAT tgm brains was not altered from that in the wild-type (WT) mice brains; in contrast, the ChAT tgm hearts were the organs with the highest expression of the ChAT transgene. ChAT tgm showed specific traits in a central nervous system (CNS) phenotype, including decreased response to restraint stress, less depressive-like and anxiety-like behaviours and anti-convulsive effects, all of which may benefit the heart. These phenotypes, induced by the activation of cardiac NNCCS, were dependent on the vagus nerve, because vagus nerve stimulation (VS) in WT mice also evoked phenotypes similar to those of ChAT tgm, which display higher vagus nerve discharge frequency; in contrast, lateral vagotomy attenuated these traits in ChAT tgm to levels observed in WT mice. Furthermore, ChAT tgm induced several biomarkers of VS responsible for anti-convulsive and anti-depressive-like effects. These results suggest that the augmentation of the NNCCS transduces an effective and beneficial signal to the afferent pathway, which mimics VS. Therefore, the present study supports our hypothesis that activation of the NNCCS modifies CNS to a more stress-resistant state through vagus nerve activity. PMID:27528769

  10. Predictors of Healthcare Utilization in Adult Survivors of Childhood Cancer Exposed to CNS-Directed Therapy

    PubMed Central

    Kimberg, Cara; Klosky, James L.; Zhang, Nan; Brinkman, Tara M.; Ness, Kirsten K.; Srivastava, Deo Kumar; Robison, Leslie L.; Hudson, Melissa M.; Krull, Kevin R.

    2014-01-01

    Background Survivors of childhood cancer treated with CNS-directed therapy may be at-risk for poor healthcare utilization due to neurocognitive deficits. This study examined associations between neurocognitive function and adherence to routine and risk-based medical evaluations in adult survivors exposed to CNS-directed therapy. Methods Neurocognitive function and healthcare utilization were assessed in 1304 adult survivors of childhood cancer enrolled in the St. Jude Lifetime Cohort Study. Adherence to recommended care was defined as meeting guidelines published by the Children's Oncology Group. Multivariable models were used to evaluate associations between neurocognitive function and health screenings. Established predictors of healthcare utilization were included as covariates. Odds ratios (OR) or prevalence ratios (PR) and 95% confidence intervals (CIs) were calculated for variables maintained in the final models. Results Adherence to recommended medical care was higher for routine (general physician care: 57.6%; dental care: 49.1%) as opposed to specialized care (survivor-focused care: 21.9%; echocardiogram: 19.9%). Higher intelligence was predictive of general physician care (OR=1.74, 95% CI=1.41 - 2.15) and survivor-focused care (OR=1.44, 95% CI=1.13 – 1.83) compared to no care, while better executive function skills were associated with reduced dental care (PR = 0.94, 95% CI = 0.91-0.98). Echocardiogram monitoring was not associated with neurocognition. Possible late-effects of cancer treatment (pain, reduced cardiorespiratory fitness) were associated with an increased likelihood of receiving specialized medical care. Conclusion Survivors with reduced global cognition are at risk for poor healthcare utilization. Education practices regarding recommended healthcare should be personalized to ensure comprehension by survivors with neurocognitive impairment. PMID:25376751

  11. CNS development under altered gravity: cerebellar glial and neuronal protein expression in rat neonates exposed to hypergravity

    NASA Astrophysics Data System (ADS)

    Nguon, K.; Li, G.-H.; Sajdel-Sulkowska, E. M.

    2004-01-01

    The future of space exploration depends on a solid understanding of the developmental process under microgravity, specifically in relation to the central nervous system (CNS). We have previously employed a hypergravity paradigm to assess the impact of altered gravity on the developing rat cerebellum [Exp. Biol. Med. 226 (2000) 790]. The present study addresses the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of selected glial and neuronal cerebellar proteins in rat neonates exposed to hypergravity (1.5 G) from embryonic day (E)11 to postnatal day (P)6 or P9 (the time of maximal cerebellar changes) comparing them against their expression in rat neonates developing under normal gravity. Proteins were analyzed by quantitative Western blots of cerebellar homogenates; RNA analysis was performed in the same samples using quantitative PCR. Densitometric analysis of Western blots suggested a reduction in glial (glial acidic protein, GFAP) and neuronal (neuronal cell adhesion moiecule, NCAM-L1, synaptophysin) proteins, but the changes in individual cerebellar proteins in hypergravity-exposed neonates appeared both age- and gender-specific. RNA analysis suggested a reduction in GFAP and synaptophysin mRNAs on P6. These data suggest that exposure to hypergravity may interfere with the expression of selected cerebellar proteins. These changes in protein expression may be involved in mediating the effect of hypergravity on the developing rat cerebellum.

  12. CNS development under altered gravity: cerebellar glial and neuronal protein expression in rat neonates exposed to hypergravity

    NASA Technical Reports Server (NTRS)

    Nguon, K.; Li, G-H; Sajdel-Sulkowska, E. M.

    2004-01-01

    The future of space exploration depends on a solid understanding of the developmental process under microgravity, specifically in relation to the central nervous system (CNS). We have previously employed a hypergravity paradigm to assess the impact of altered gravity on the developing rat cerebellum. The present study addresses the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of selected glial and neuronal cerebellar proteins in rat neonates exposed to hypergravity (1.5 G) from embryonic day (E)11 to postnatal day (P)6 or P9 (the time of maximal cerebellar changes) comparing them against their expression in rat neonates developing under normal gravity. Proteins were analyzed by quantitative Western blots of cerebellar homogenates; RNA analysis was performed in the same samples using quantitative PCR. Densitometric analysis of Western blots suggested a reduction in glial (glial acidic protein, GFAP) and neuronal (neuronal cell adhesion molecule, NCAM-L1, synaptophysin) proteins, but the changes in individual cerebellar proteins in hypergravity-exposed neonates appeared both age- and gender-specific. RNA analysis suggested a reduction in GFAP and synaptophysin mRNAs on P6. These data suggest that exposure to hypergravity may interfere with the expression of selected cerebellar proteins. These changes in protein expression may be involved in mediating the effect of hypergravity on the developing rat cerebellum. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  13. Differential properties of type I and type II benzodiazepine receptors in mammalian CNS neurones.

    PubMed Central

    Yakushiji, T.; Shirasaki, T.; Munakata, M.; Hirata, A.; Akaike, N.

    1993-01-01

    1. The effects of benzodiazepine receptor (BZR) partial agonists, Y-23684 and CL218,872, were compared with its full agonist, diazepam, on gamma-aminobutyric acid (GABA)-induced Cl- current (ICl) in acutely dissociated rat cerebral cortex (CTX), cerebellar Purkinje (CPJ) and spinal ventral horn (SVH) neurones, by the whole-cell mode patch-clamp technique. 2. The GABA-induced responses were essentially the same in both SVH and CPJ neurones, but the KD value of the GABA response in CTX neurone was lower than those in the other two brain regions. 3. Enhancement of the GABA response by the two partial agonists was about one-third of that by diazepam in the SVH neurones (where type II subtype of BZR, BZ2, is predominant), whereas these partial agonists potentiated the GABA response as much as diazepam in CPJ neurones (where the type I subtype of BZR, BZ1, is predominant). In CTX neurones where both type I and II variants are expressed, the augmentation ratio of the GABA response by diazepam was between the values in CPJ and SVH neurones. 4. In concentration-response relationships of BZR partial agonists, the threshold concentrations, KD values and maximal augmentation ratio of the GABA response were similar in all CTX, CPJ and SVH neurones. Also, in all preparations, the threshold concentration and KD values of diazepam action were 10 fold less than those induced by partial agonists. 5. All BZR agonists shifted the concentration-response relationship for GABA to the left without changing the maximum current amplitude, indicating that activation of both BZ1 and BZ2 increase the affinity of the GABAA receptor for GABA.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8395299

  14. A Novel Biopsy Method for Isolating Neural Stem Cells from the Subventricular Zone of the Adult Rat Brain for Autologous Transplantation in CNS Injuries.

    PubMed

    Aligholi, Hadi; Hassanzadeh, Gholamreza; Gorji, Ali; Azari, Hassan

    2016-01-01

    Despite all attempts the problem of regeneration in damaged central nervous system (CNS) has remained challenging due to its cellular complexity and highly organized and sophisticated connections. In this regard, stem cell therapy might serve as a viable therapeutic approach aiming either to support the damaged tissue and hence to reduce the subsequent neurological dysfunctions and impairments or to replace the lost cells and re-establish damaged circuitries. Adult neural stem/progenitor cells (NS/PCs) are one of the outstanding cell sources that can be isolated from the subventricular zone (SVZ) of the lateral ventricles. These cells can differentiate into neurons, astrocytes, and oligodendrocytes. Implanting autologous NS/PCs will greatly benefit the patients by avoiding immune rejection after implantation, better survival, and integration with the host tissue. Developing safe and efficient methods in small animal models will provide us with the opportunity to optimize procedures required to achieve successful human autologous NS/PC transplantation in near future. In this chapter, a highly controlled and safe biopsy method for harvesting stem cell containing tissue from the SVZ of adult rat brain is introduced. Then, isolation and expansion of NS/PCs from harvested specimen as well as the techniques to verify proliferation and differentiation capacity of the resulting NS/PCs are discussed. Finally, a method for assessing the biopsy lesion volume in the brain is described. This safe biopsy method in rat provides a unique tool to study autologous NS/PC transplantation in different CNS injury models. PMID:27604747

  15. The microtubule destabilizing protein stathmin controls the transition from dividing neuronal precursors to postmitotic neurons during adult hippocampal neurogenesis.

    PubMed

    Boekhoorn, Karin; van Dis, Vera; Goedknegt, Erika; Sobel, André; Lucassen, Paul J; Hoogenraad, Casper C

    2014-12-01

    The hippocampus is one of the two areas in the mammalian brain where adult neurogenesis occurs. Adult neurogenesis is well known to be involved in hippocampal physiological functions as well as pathophysiological conditions. Microtubules (MTs), providing intracellular transport, stability, and transmitting force, are indispensable for neurogenesis by facilitating cell division, migration, growth, and differentiation. Although there are several examples of MT-stabilizing proteins regulating different aspects of adult neurogenesis, relatively little is known about the function of MT-destabilizing proteins. Stathmin is such a MT-destabilizing protein largely restricted to the CNS, and in contrast to its developmental family members, stathmin is also expressed at significant levels in the adult brain, notably in areas involved in adult neurogenesis. Here, we show an important role for stathmin during adult neurogenesis in the subgranular zone of the mouse hippocampus. After carefully mapping stathmin expression in the adult dentate gyrus (DG), we investigated its role in hippocampal neurogenesis making use of stathmin knockout mice. Although hippocampus development appears normal in these animals, different aspects of adult neurogenesis are affected. First, the number of proliferating Ki-67+ cells is decreased in stathmin knockout mice, as well as the expression of the immature markers Nestin and PSA-NCAM. However, newborn cells that do survive express more frequently the adult marker NeuN and have a more mature morphology. Furthermore, our data suggest that migration in the DG might be affected. We propose a model in which stathmin controls the transition from neuronal precursors to early postmitotic neurons.

  16. The microtubule destabilizing protein stathmin controls the transition from dividing neuronal precursors to postmitotic neurons during adult hippocampal neurogenesis.

    PubMed

    Boekhoorn, Karin; van Dis, Vera; Goedknegt, Erika; Sobel, André; Lucassen, Paul J; Hoogenraad, Casper C

    2014-12-01

    The hippocampus is one of the two areas in the mammalian brain where adult neurogenesis occurs. Adult neurogenesis is well known to be involved in hippocampal physiological functions as well as pathophysiological conditions. Microtubules (MTs), providing intracellular transport, stability, and transmitting force, are indispensable for neurogenesis by facilitating cell division, migration, growth, and differentiation. Although there are several examples of MT-stabilizing proteins regulating different aspects of adult neurogenesis, relatively little is known about the function of MT-destabilizing proteins. Stathmin is such a MT-destabilizing protein largely restricted to the CNS, and in contrast to its developmental family members, stathmin is also expressed at significant levels in the adult brain, notably in areas involved in adult neurogenesis. Here, we show an important role for stathmin during adult neurogenesis in the subgranular zone of the mouse hippocampus. After carefully mapping stathmin expression in the adult dentate gyrus (DG), we investigated its role in hippocampal neurogenesis making use of stathmin knockout mice. Although hippocampus development appears normal in these animals, different aspects of adult neurogenesis are affected. First, the number of proliferating Ki-67+ cells is decreased in stathmin knockout mice, as well as the expression of the immature markers Nestin and PSA-NCAM. However, newborn cells that do survive express more frequently the adult marker NeuN and have a more mature morphology. Furthermore, our data suggest that migration in the DG might be affected. We propose a model in which stathmin controls the transition from neuronal precursors to early postmitotic neurons. PMID:24909416

  17. Metabotropic glutamate receptor agonists potentiate a slow afterdepolarization in CNS neurons

    NASA Technical Reports Server (NTRS)

    Zheng, F.; Gallagher, J. P.

    1992-01-01

    We have previously reported that, in the rat dorsolateral septal nucleus (DLSN), metabotropic glutamate receptor (met-GluR) agonists evoked a slow depolarization accompanied by an increase in membrane conductance and burst firing. We have speculated that the burst firing elicited by met-GluR agonists may be due to activation or enhancement of a non-specific cation current, which exists in some DLSN neurons. Now we report that a slow afterdepolarization (sADP) mediated by a non-specific cation current was potentiated by both 1S,3R-ACPD and quisqualate. In addition, met-GluR agonists unmask a sADP in DLSN neurons which did not show a sADP under control conditions. Our data suggest that a non-specific cation current can be potentiated by activation of the met-GluR.

  18. An Engulfment Assay: A Protocol to Assess Interactions Between CNS Phagocytes and Neurons

    PubMed Central

    Schafer, Dorothy P.; Lehrman, Emily K.; Heller, Christopher T.; Stevens, Beth

    2014-01-01

    Phagocytosis is a process in which a cell engulfs material (entire cell, parts of a cell, debris, etc.) in its surrounding extracellular environment and subsequently digests this material, commonly through lysosomal degradation. Microglia are the resident immune cells of the central nervous system (CNS) whose phagocytic function has been described in a broad range of conditions from neurodegenerative disease (e.g., beta-amyloid clearance in Alzheimer’s disease) to development of the healthy brain (e.g., synaptic pruning)1-6. The following protocol is an engulfment assay developed to visualize and quantify microglia-mediated engulfment of presynaptic inputs in the developing mouse retinogeniculate system7. While this assay was used to assess microglia function in this particular context, a similar approach may be used to assess other phagocytes throughout the brain (e.g., astrocytes) and the rest of the body (e.g., peripheral macrophages) as well as other contexts in which synaptic remodeling occurs (e.g. ,brain injury/disease). PMID:24962472

  19. Experience-dependent plasticity of mature adult-born neurons.

    PubMed

    Livneh, Yoav; Mizrahi, Adi

    2012-01-01

    The adult olfactory bulb and hippocampus are continuously supplied with newborn neurons that are thought to possess a capacity for plasticity only at a young neuronal age, mainly during the early stages of integration into the network. We find that the two main types of adult-born neurons in the mouse olfactory bulb undergo experience-dependent plasticity long after maturation and integration, as evidenced by stabilization of synaptic turnover rates. Thus, the potential time window for plasticity of adult-born neurons extends well into maturity. PMID:22081159

  20. Alpha-Synuclein affects neurite morphology, autophagy, vesicle transport and axonal degeneration in CNS neurons

    PubMed Central

    Koch, J C; Bitow, F; Haack, J; d'Hedouville, Z; Zhang, J-N; Tönges, L; Michel, U; Oliveira, L M A; Jovin, T M; Liman, J; Tatenhorst, L; Bähr, M; Lingor, P

    2015-01-01

    Many neuropathological and experimental studies suggest that the degeneration of dopaminergic terminals and axons precedes the demise of dopaminergic neurons in the substantia nigra, which finally results in the clinical symptoms of Parkinson disease (PD). The mechanisms underlying this early axonal degeneration are, however, still poorly understood. Here, we examined the effects of overexpression of human wildtype alpha-synuclein (αSyn-WT), a protein associated with PD, and its mutant variants αSyn-A30P and -A53T on neurite morphology and functional parameters in rat primary midbrain neurons (PMN). Moreover, axonal degeneration after overexpression of αSyn-WT and -A30P was analyzed by live imaging in the rat optic nerve in vivo. We found that overexpression of αSyn-WT and of its mutants A30P and A53T impaired neurite outgrowth of PMN and affected neurite branching assessed by Sholl analysis in a variant-dependent manner. Surprisingly, the number of primary neurites per neuron was increased in neurons transfected with αSyn. Axonal vesicle transport was examined by live imaging of PMN co-transfected with EGFP-labeled synaptophysin. Overexpression of all αSyn variants significantly decreased the number of motile vesicles and decelerated vesicle transport compared with control. Macroautophagic flux in PMN was enhanced by αSyn-WT and -A53T but not by αSyn-A30P. Correspondingly, colocalization of αSyn and the autophagy marker LC3 was reduced for αSyn-A30P compared with the other αSyn variants. The number of mitochondria colocalizing with LC3 as a marker for mitophagy did not differ among the groups. In the rat optic nerve, both αSyn-WT and -A30P accelerated kinetics of acute axonal degeneration following crush lesion as analyzed by in vivo live imaging. We conclude that αSyn overexpression impairs neurite outgrowth and augments axonal degeneration, whereas axonal vesicle transport and autophagy are severely altered. PMID:26158517

  1. Autonomic control of neuronal-astrocytic interactions, regulating metabolic activities, and ion fluxes in the CNS.

    PubMed

    Hertz, L

    1992-01-01

    It is generally assumed that the brain, in contrast to all other organs, is not equipped with an autonomic nervous system, regulating blood supply, and cellular activities. This may be because systemic administration of most drugs acting on monoaminergic or cholinergic receptors have little or no effect on cerebral blood flow and metabolism. However, intrathecal administration of noradrenaline does, indeed, influence both blood flow and energy metabolism in the brain. The present review focuses on effects of noradrenaline or serotonin on energy metabolism, turnover of amino acid transmitters and ion homeostasis, with special emphasis on the cellular localization. Noradrenergic agonists stimulate brain metabolism in vivo as well as many aspects of energy metabolism, Na+,K(+)-ATPase activity and uptake of transmitter amino acids in astrocytes in primary cultures, with little or no effect on corresponding preparations of neurons. Serotonin acts differently, decreasing potassium-induced release of glutamate from both neurons and astrocytes. Little is known about the effects of acetylcholine. The functional significance of these effects is discussed. PMID:1393603

  2. Receptor Tyrosine Kinases: Molecular Switches Regulating CNS Axon Regeneration

    PubMed Central

    Vigneswara, Vasanthy; Kundi, Sarina; Ahmed, Zubair

    2012-01-01

    The poor or lack of injured adult central nervous system (CNS) axon regeneration results in devastating consequences and poor functional recovery. The interplay between the intrinsic and extrinsic factors contributes to robust inhibition of axon regeneration of injured CNS neurons. The insufficient or lack of trophic support for injured neurons is considered as one of the major obstacles contributing to their failure to survive and regrow their axons after injury. In the CNS, many of the signalling pathways associated with neuronal survival and axon regeneration are regulated by several classes of receptor tyrosine kinases (RTK) that respond to a variety of ligands. This paper highlights and summarises the most relevant recent findings pertinent to different classes of the RTK family of molecules, with a particular focus on elucidating their role in CNS axon regeneration. PMID:22848811

  3. Enhancing psychosocial outcomes for young adult childhood CNS cancer survivors: importance of addressing vocational identity and community integration.

    PubMed

    Strauser, David R; Wagner, Stacia; Wong, Alex W K

    2012-12-01

    The purpose of this study was to examine the relationship between vocational identity, community integration, positive and negative affect, and satisfaction with life in a group of young adult central nervous system (CNS) cancer survivors. Participants in this study included 45 young adult CNS cancer survivors who ranged in age from 18 to 30 years (mean=22, SD=3.62), with a mean age at diagnosis of 8.8 years. Four standardized instruments were used to assess the individual's affect, satisfaction with life, vocational identity, and self-perceived level of community integration. Pearson correlation analyses were carried out to examine the relationships between the satisfaction with life and positive and negative affect, vocational identify, and community integration. A hierarchical linear regression was then performed to determine how well these variables predict satisfaction with life among CNS cancer survivors. Significant positive correlations were found between life satisfaction and positive affect (r=0.423, P<0.01), as well as life satisfaction and community integration (r=-505, P<0.001). A positive correlation between life satisfaction and vocational identity was only marginally significant (r=0.312, P<0.05). Regression results indicate that the model explained 29% of the variance with community integration making a unique contribution. The largest contribution of this study is that the findings provide initial evidence that addressing vocational identity and community integration may be important constructs in improving young adult CNS survivors' overall levels of satisfaction with life. These constructs have not been typically addressed in psychosocial cancer treatment programs.

  4. Intrinsic hydrogen ion buffering in rat CNS neurones maintained in culture.

    PubMed

    Amos, B J; Richards, C D

    1996-03-01

    The intrinsic proton buffering power (beta 1) of individual rat hippocampal and neocortical neurones maintained in culture has been investigated using the fluorescent dye 2', 7'-bis(carboxymethyl)-5, 6-(carboxyfluorescein) (BCECF). The steady-state intracellular pH (pH1) was estimated to be 7.03 +/- 0.04 (n = 22) in Hepes-buffered media and beta 1 estimated from the addition and removal of weak bases was ca 10 mM (pH unit)-1 at pH1 values near to 7. Estimates of beta 1 made from butyric acid challenges were inconsistent with estimates made at the same pH1, using NH4Cl withdrawal. However, estimating beta 1 with butyrate in the presence of the monocarboxylate ion transport inhibitor alpha-cyano-hydroxy-cinnamate (CHC) yielded beta 1 values commensurate with those measured using NH4Cl. Application of CHC alone lead to a rapid fall in pH1, suggesting a significant contribution of the monocarboxylate transporter to pH1 regulation. beta 1 was also estimated from a step increase in extracellular P(CO2). This yielded a value of 11 mM at an average pH1 of 7.1, which is similar to that of the other estimates reported here. beta 1 was found to increase with decreasing pH1: each unit drop in pH1 increased buffering power by about 60%. Blockade of pH1 regulation did not significantly affect estimates of beta 1. The change in buffering power with pH could be closely modelled from the known concentrations of free amino acids and organic phosphates. PMID:8845140

  5. Dendritic development of newly generated neurons in the adult brain.

    PubMed

    Ribak, Charles E; Shapiro, Lee A

    2007-10-01

    Ramon y Cajal described the fundamental morphology of the dendritic and axonal growth cones of neurons during development. However, technical limitations at the time prevented him from describing such growth cones from newborn neurons in the adult brain. The phenomenon of adult neurogenesis is briefly reviewed, and the structural description of dendritic and axonal outgrowth for these newly generated neurons in the adult brain is discussed. Axonal outgrowth into the hilus and CA3 region of the hippocampus occurs later than the outgrowth of dendrites into the molecular layer, and the ultrastructural analysis of axonal outgrowth has yet to be completed. In contrast, growth cones on dendrites from newborn neurons in the adult dentate gyrus have been described and this observation suggests that dendrites in adult brains grow in a similar way to those found in immature brains. However, dendrites in adult brains have to navigate through a denser neuropil and a more complex cell layer. Therefore, some aspects of dendritic outgrowth of neurons born in the adult dentate gyrus are different as compared to that found in development. These differences include the radial process of radial glial cells acting as a lattice to guide apical dendritic growth through the granule cell layer and a much thinner dendrite to grow through the neuropil of the molecular layer. Therefore, similarities and differences exist for dendritic outgrowth from newborn neurons in the developing and adult brain.

  6. Partial Correction of the CNS Lysosomal Storage Defect in a Mouse Model of Juvenile Neuronal Ceroid Lipofuscinosis by Neonatal CNS Administration of an Adeno-Associated Virus Serotype rh.10 Vector Expressing the Human CLN3 Gene

    PubMed Central

    Sondhi, Dolan; Scott, Emma C.; Chen, Alvin; Hackett, Neil R.; Wong, Andrew M.S.; Kubiak, Agnieszka; Nelvagal, Hemanth R.; Pearse, Yewande; Cotman, Susan L.; Cooper, Jonathan D.

    2014-01-01

    Abstract Juvenile neuronal ceroid lipofuscinosis (JNCL or CLN3 disease) is an autosomal recessive lysosomal storage disease resulting from mutations in the CLN3 gene that encodes a lysosomal membrane protein. The disease primarily affects the brain with widespread intralysosomal accumulation of autofluorescent material and fibrillary gliosis, as well as the loss of specific neuronal populations. As an experimental treatment for the CNS manifestations of JNCL, we have developed a serotype rh.10 adeno-associated virus vector expressing the human CLN3 cDNA (AAVrh.10hCLN3). We hypothesized that administration of AAVrh.10hCLN3 to the Cln3Δex7/8 knock-in mouse model of JNCL would reverse the lysosomal storage defect, as well as have a therapeutic effect on gliosis and neuron loss. Newborn Cln3Δex7/8 mice were administered 3×1010 genome copies of AAVrh.10hCLN3 to the brain, with control groups including untreated Cln3Δex7/8 mice and wild-type littermate mice. After 18 months, CLN3 transgene expression was detected in various locations throughout the brain, particularly in the hippocampus and deep anterior cortical regions. Changes in the CNS neuronal lysosomal accumulation of storage material were assessed by immunodetection of subunit C of ATP synthase, luxol fast blue staining, and periodic acid-Schiff staining. For all parameters, Cln3Δex7/8 mice exhibited abnormal lysosomal accumulation, but AAVrh.10hCLN3 administration resulted in significant reductions in storage material burden. There was also a significant decrease in gliosis in AAVrh.10hCLN3-treated Cln3Δex7/8 mice, and a trend toward improved neuron counts, compared with their untreated counterparts. These data demonstrate that AAVrh.10 delivery of a wild-type cDNA to the CNS is not harmful and instead provides a partial correction of the neurological lysosomal storage defect of a disease caused by a lysosomal membrane protein, indicating that this may be an effective therapeutic strategy for JNCL and

  7. Neuronal fate determinants of adult olfactory bulb neurogenesis.

    PubMed

    Hack, Michael A; Saghatelyan, Armen; de Chevigny, Antoine; Pfeifer, Alexander; Ashery-Padan, Ruth; Lledo, Pierre-Marie; Götz, Magdalena

    2005-07-01

    Adult neurogenesis in mammals is restricted to two small regions, including the olfactory bulb, where GABAergic and dopaminergic interneurons are newly generated throughout the entire lifespan. However, the mechanisms directing them towards a specific neuronal phenotype are not yet understood. Here, we demonstrate the dual role of the transcription factor Pax6 in generating neuronal progenitors and also in directing them towards a dopaminergic periglomerular phenotype in adult mice. We present further evidence that dopaminergic periglomerular neurons originate in a distinct niche, the rostral migratory stream, and are fewer derived from precursors in the zone lining the ventricle. This regionalization of the adult precursor cells is further supported by the restricted expression of the transcription factor Olig2, which specifies transit-amplifying precursor fate and opposes the neurogenic role of Pax6. Together, these data explain both extrinsic and intrinsic mechanisms controlling neuronal identity in adult neurogenesis.

  8. Activation of synaptic group II metabotropic glutamate receptors induces long-term depression at GABAergic synapses in CNS neurons.

    PubMed

    Tang, Zheng-Quan; Liu, Yu-Wei; Shi, Wei; Dinh, Emilie Hoang; Hamlet, William R; Curry, Rebecca J; Lu, Yong

    2013-10-01

    Metabotropic glutamate receptor (mGluR)-dependent homosynaptic long-term depression (LTD) has been studied extensively at glutamatergic synapses in the CNS. However, much less is known about heterosynaptic long-term plasticity induced by mGluRs at inhibitory synapses. Here we report that pharmacological or synaptic activation of group II mGluRs (mGluR II) induces LTD at GABAergic synapses without affecting the excitatory glutamatergic transmission in neurons of the chicken cochlear nucleus. Coefficient of variation and failure rate analysis suggested that the LTD was expressed presynaptically. The LTD requires presynaptic spike activity, but does not require the activation of NMDA receptors. The classic cAMP-dependent protein kinase A signaling is involved in the transduction pathway. Remarkably, blocking mGluR II increased spontaneous GABA release, indicating the presence of tonic activation of mGluR II by ambient glutamate. Furthermore, synaptically released glutamate induced by electrical stimulations that concurrently activated both the glutamatergic and GABAergic pathways resulted in significant and constant suppression of GABA release at various stimulus frequencies (3.3, 100, and 300 Hz). Strikingly, low-frequency stimulation (1 Hz, 15 min) of the glutamatergic synapses induced heterosynaptic LTD of GABAergic transmission, and the LTD was blocked by mGluR II antagonist, indicating that synaptic activation of mGluR II induced the LTD. This novel form of long-term plasticity in the avian auditory brainstem may play a role in the development as well as in temporal processing in the sound localization circuit.

  9. The use of thallium diethyldithiocarbamate for mapping CNS potassium metabolism and neuronal activity: Tl+ -redistribution, Tl+ -kinetics and Tl+ -equilibrium distribution.

    PubMed

    Wanger, Tim; Scheich, Henning; Ohl, Frank W; Goldschmidt, Jürgen

    2012-07-01

    The potassium (K(+)) analogue thallium (Tl(+)) can be used as a tracer for mapping neuronal activity. However, because of the poor blood-brain barrier (BBB) K(+) -permeability, only minute amounts of Tl(+) enter the brain after systemic injection of Tl(+) -salts like thallium acetate (TlAc). We have recently shown that it is possible to overcome this limitation by injecting animals with the lipophilic chelate complex thallium diethyldithiocarbamate (TlDDC), that crosses the BBB and releases Tl(+) prior to neuronal or glial uptake. TlDDC can thus be used for mapping CNS K(+) metabolism and neuronal activity. Here, we analyze Tl(+) -kinetics in the rodent brain both experimentally and using simple mathematical models. We systemically injected animals either with TlAc or with TlDDC. Using an autometallographic method we mapped the brain Tl(+) -distribution at various time points after injection. We show that the patterns and kinetics of Tl(+) -redistribution in the brain are essentially the same irrespective of whether animals have been injected with TlAc or TlDDC. Data from modeling and experiments indicate that transmembrane Tl(+) -fluxes in cells within the CNS in vivo equilibrate at similar rates as K(+) -fluxes in vitro. This equilibration is much faster than and largely independent of the equilibration of Tl(+) -fluxes across the BBB. The study provides further proof-of-concept for the use of TlDDC for mapping neuronal activity and CNS K(+) -metabolism. A theoretical guideline is given for the use of K(+) -analogues for imaging neuronal activity with general implications for the use of metal ions in neuroimaging.

  10. Intraganglionic interactions between satellite cells and adult sensory neurons.

    PubMed

    Christie, Kimberly; Koshy, Dilip; Cheng, Chu; Guo, GuiFang; Martinez, Jose A; Duraikannu, Arul; Zochodne, Douglas W

    2015-07-01

    Perineuronal satellite cells have an intimate anatomical relationship with sensory neurons that suggests close functional collaboration and mutual support. We examined several facets of this relationship in adult sensory dorsal root ganglia (DRG). Collaboration included the support of process outgrowth by clustering of satellite cells, induction of distal branching behavior by soma signaling, the capacity of satellite cells to respond to distal axon injury of its neighboring neurons, and evidence of direct neuron-satellite cell exchange. In vitro, closely adherent coharvested satellite cells routinely clustered around new outgrowing processes and groups of satellite cells attracted neurite processes. Similar clustering was encountered in the pseudounipolar processes of intact sensory neurons within intact DRG in vivo. While short term exposure of distal growth cones of unselected adult sensory neurons to transient gradients of a PTEN inhibitor had negligible impacts on their behavior, exposure of the soma induced early and substantial growth of their distant neurites and branches, an example of local soma signaling. In turn, satellite cells sensed when distal neuronal axons were injured by enlarging and proliferating. We also observed that satellite cells were capable of internalizing and expressing a neuron fluorochrome label, diamidino yellow, applied remotely to distal injured axons of the neuron and retrogradely transported to dorsal root ganglia sensory neurons. The findings illustrate a robust interaction between intranganglionic neurons and glial cells that involve two way signals, features that may be critical for both regenerative responses and ongoing maintenance. PMID:25979201

  11. Intraganglionic interactions between satellite cells and adult sensory neurons.

    PubMed

    Christie, Kimberly; Koshy, Dilip; Cheng, Chu; Guo, GuiFang; Martinez, Jose A; Duraikannu, Arul; Zochodne, Douglas W

    2015-07-01

    Perineuronal satellite cells have an intimate anatomical relationship with sensory neurons that suggests close functional collaboration and mutual support. We examined several facets of this relationship in adult sensory dorsal root ganglia (DRG). Collaboration included the support of process outgrowth by clustering of satellite cells, induction of distal branching behavior by soma signaling, the capacity of satellite cells to respond to distal axon injury of its neighboring neurons, and evidence of direct neuron-satellite cell exchange. In vitro, closely adherent coharvested satellite cells routinely clustered around new outgrowing processes and groups of satellite cells attracted neurite processes. Similar clustering was encountered in the pseudounipolar processes of intact sensory neurons within intact DRG in vivo. While short term exposure of distal growth cones of unselected adult sensory neurons to transient gradients of a PTEN inhibitor had negligible impacts on their behavior, exposure of the soma induced early and substantial growth of their distant neurites and branches, an example of local soma signaling. In turn, satellite cells sensed when distal neuronal axons were injured by enlarging and proliferating. We also observed that satellite cells were capable of internalizing and expressing a neuron fluorochrome label, diamidino yellow, applied remotely to distal injured axons of the neuron and retrogradely transported to dorsal root ganglia sensory neurons. The findings illustrate a robust interaction between intranganglionic neurons and glial cells that involve two way signals, features that may be critical for both regenerative responses and ongoing maintenance.

  12. Egr2-neurons control the adult respiratory response to hypercapnia

    PubMed Central

    Ray, Russell S.; Corcoran, Andrea E.; Brust, Rachael D.; Soriano, Laura P.; Nattie, Eugene E.; Dymecki, Susan M.

    2013-01-01

    ‘The early growth response 2 transcription factor, Egr2, establishes a population of brainstem neurons essential for normal breathing at birth. Egr2-null mice die perinatally of respiratory insufficiency characterized by subnormal respiratory rate and severe apneas. Here we bypass this lethality using a noninvasive pharmacogenetic approach to inducibly perturb neuron activity postnatally, and ask if Egr2-neurons control respiration in adult mice. We found that the normal ventilatory increase in response to elevated tissue CO2 was impaired, blunted by 63.1±8.7% after neuron perturbation due to deficits in both respiratory amplitude and frequency. By contrast, room-air breathing was unaffected, suggesting that the drive for baseline breathing may not require those Egr2-neurons manipulated here. Of the multiple brainstem sites proposed to affect ventilation in response to hypercapnia, only the retrotrapezoid nucleus, a portion of the serotonergic raphé, and a portion of the A5 nucleus have a history of Egr2 expression. We recently showed that acute inhibition of serotonergic neurons en masse blunts the CO2 chemoreflex in adults, causing a difference in hypercapnic response of ~50% after neuron perturbation through effects on respiratory amplitude only. The suppressed respiratory frequency upon perturbation of Egr2-neurons thus may stem from non-serotonergic neurons within the Egr2 domain. Perturbation of Egr2-neurons did not affect body temperature, even on exposure to ambient 4 °C. These findings support a model in which Egr2-neurons are a critical component of the respiratory chemoreflex into adulthood. Methodologically, these results highlight how pharmacogenetic approaches allow neuron function to be queried in unanesthetized adult animals, reaching beyond the roadblocks of developmental lethality and compensation as well as the anatomical disturbances associated with invasive methods. PMID:23261662

  13. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan.

    PubMed

    Weismann, Cara M; Ferreira, Jennifer; Keeler, Allison M; Su, Qin; Qui, Linghua; Shaffer, Scott A; Xu, Zuoshang; Gao, Guangping; Sena-Esteves, Miguel

    2015-08-01

    GM1 gangliosidosis (GM1) is an autosomal recessive lysosomal storage disease where GLB1 gene mutations result in a reduction or absence of lysosomal acid β-galactosidase (βgal) activity. βgal deficiency leads to accumulation of GM1-ganglioside in the central nervous system (CNS). GM1 is characterized by progressive neurological decline resulting in generalized paralysis, extreme emaciation and death. In this study, we assessed the therapeutic efficacy of an adeno-associated virus (AAV) 9-mβgal vector infused systemically in adult GM1 mice (βGal(-/-)) at 1 × 10(11) or 3 × 10(11) vector genomes (vg). Biochemical analysis of AAV9-treated GM1 mice showed high βGal activity in liver and serum. Moderate βGal levels throughout CNS resulted in a 36-76% reduction in GM1-ganglioside content in the brain and 75-86% in the spinal cord. Histological analyses of the CNS of animals treated with 3 × 10(11) vg dose revealed increased presence of βgal and clearance of lysosomal storage throughout cortex, hippocampus, brainstem and spinal cord. Storage reduction in these regions was accompanied by a marked decrease in astrogliosis. AAV9 treatment resulted in improved performance in multiple tests of motor function and behavior. Also the majority of GM1 mice in the 3 × 10(11) vg cohort retained ambulation and rearing despite reaching the humane endpoint due to weight loss. Importantly, the median survival of AAV9 treatment groups (316-576 days) was significantly increased over controls (250-264 days). This study shows that moderate widespread expression of βgal in the CNS of GM1 gangliosidosis mice is sufficient to achieve significant biochemical impact with phenotypic amelioration and extension in lifespan.

  14. The Contradictory Effects of Neuronal Hyperexcitation on Adult Hippocampal Neurogenesis

    PubMed Central

    Pineda, José R.; Encinas, Juan M.

    2016-01-01

    Adult hippocampal neurogenesis is a highly plastic process that responds swiftly to neuronal activity. Adult hippocampal neurogenesis can be regulated at the level of neural stem cell recruitment and activation, progenitor proliferation, as well as newborn cell survival and differentiation. An “excitation-neurogenesis” rule was proposed after the demonstration of the capability of cultured neural stem and progenitor cells to intrinsically sense neuronal excitatory activity. In vivo, this property has remained elusive although recently the direct response of neural stem cells to GABA in the hippocampus via GABAA receptors has evidenced a mechanism for a direct talk between neurons and neural stem cells. As it is pro-neurogenic, the effect of excitatory neuronal activity has been generally considered beneficial. But what happens in situations of neuronal hyperactivity in which neurogenesis can be dramatically boosted? In animal models, electroconvulsive shock markedly increases neurogenesis. On the contrary, in epilepsy rodent models, seizures induce the generation of misplaced neurons with abnormal morphological and electrophysiological properties, namely aberrant neurogenesis. We will herein discuss what is known about the mechanisms of influence of neurons on neural stem cells, as well as the severe effects of neuronal hyperexcitation on hippocampal neurogenesis. PMID:26973452

  15. CNS development: an overview

    NASA Technical Reports Server (NTRS)

    Nowakowski, R. S.; Hayes, N. L.

    1999-01-01

    The basic principles of the development of the central nervous system (CNS) are reviewed, and their implications for both normal and abnormal development of the brain are discussed. The goals of this review are (a) to provide a set of concepts to aid in understanding the variety of complex processes that occur during CNS development, (b) to illustrate how these concepts contribute to our knowledge of the normal anatomy of the adult brain, and (c) to provide a basis for understanding how modifications of normal developmental processes by traumatic injury, by environmental or experiential influences, or by genetic variations may lead to modifications in the resultant structure and function of the adult CNS.

  16. Engrailed expression in subsets of adult Drosophila sensory neurons

    PubMed Central

    Blagburn, Jonathan M.

    2008-01-01

    Engrailed (En) has an important role in neuronal development in vertebrates and invertebrates. In adult Drosophila, although En expression persists throughout adulthood, a detailed description of its expression in sensory neurons has not been made. In this study, en-GAL4 was used to drive UAS-CD8::GFP expression and the projections of sensory neurons were examined with confocal microscopy. En protein expression was confirmed using immunocytochemistry. In the antenna, En is present in subsets of Johnston’s organ neurons and of olfactory neurons. En-driven GFP is expressed in axons projecting to 18 identifed olfactory glomeruli, originating from basiconic, trichoid and coeloconic sensilla. In most cases both neurons of a sensillum express En. En expression overlaps with that of Acj6, another transcription factor. En-driven GFP is also expressed in a subset of maxillary palp olfactory neurons and in all mechanosensory and gustatory sensilla in the posterior compartment of the labial palps. In the legs and halteres, en-driven GFP is expressed in only a subset of the sensory neurons of different modalities that arise in the posterior compartment. Finally, en-driven GFP is expressed in a single multidendritic sensory neuron in each abdominal segment. PMID:18597129

  17. Neurons in the White Matter of the Adult Human Neocortex

    PubMed Central

    Suárez-Solá, M. Luisa; González-Delgado, Francisco J.; Pueyo-Morlans, Mercedes; Medina-Bolívar, O. Carolina; Hernández-Acosta, N. Carolina; González-Gómez, Miriam; Meyer, Gundela

    2009-01-01

    The white matter (WM) of the adult human neocortex contains the so-called “interstitial neurons”. They are most numerous in the superficial WM underlying the cortical gyri, and decrease in density toward the deep WM. They are morphologically heterogeneous. A subgroup of interstitial neurons display pyramidal-cell like morphologies, characterized by a polarized dendritic tree with a dominant apical dendrite, and covered with a variable number of dendritic spines. In addition, a large contingent of interstitial neurons can be classified as interneurons based on their neurochemical profile as well as on morphological criteria. WM- interneurons have multipolar or bipolar shapes and express GABA and a variety of other neuronal markers, such as calbindin and calretinin, the extracellular matrix protein reelin, or neuropeptide Y, somatostatin, and nitric oxide synthase. The heterogeneity of interstitial neurons may be relevant for the pathogenesis of Alzheimer disease and schizophrenia. Interstitial neurons are most prominent in human brain, and only rudimentary in the brain of non-primate mammals. These evolutionary differences have precluded adequate experimental work on this cell population, which is usually considered as a relict of the subplate, a transient compartment proper of development and without a known function in the adult brain. The primate-specific prominence of the subplate in late fetal stages points to an important role in the establishment of interstitial neurons. Neurons in the adult WM may be actively involved in coordinating inter-areal connectivity and regulation of blood flow. Further studies in primates will be needed to elucidate the developmental history, adult components and activities of this large neuronal system. PMID:19543540

  18. Self-regulation of adult thalamocortical neurons.

    PubMed

    Kasten, Michael R; Anderson, Matthew P

    2015-07-01

    The thalamus acts as a conduit for sensory and other information traveling to the cortex. In response to continuous sensory stimulation in vivo, the firing rate of thalamocortical neurons initially increases, but then within a minute firing rate decreases and T-type Ca(2+) channel-dependent action potential burst firing emerges. While neuromodulatory systems could play a role in this inhibitory response, we instead report a novel and cell-autonomous inhibitory mechanism intrinsic to the thalamic relay neuron. Direct intracellular stimulation of thalamocortical neuron firing initially triggered a continuous and high rate of action potential discharge, but within a minute membrane potential (Vm) was hyperpolarized and firing rate to the same stimulus was decreased. This self-inhibition was observed across a wide variety of thalamic nuclei, and in a subset firing mode switched from tonic to bursting. The self-inhibition resisted blockers of intracellular Ca(2+) signaling, Na(+)-K(+)-ATPases, and G protein-regulated inward rectifier (GIRK) channels as implicated in other neuron subtypes, but instead was in part inhibited by an ATP-sensitive K(+) channel blocker. The results identify a new homeostatic mechanism within the thalamus capable of gating excitatory signals at the single-cell level. PMID:25948871

  19. New neurons in the adult striatum: from rodents to humans

    PubMed Central

    Inta, Dragos; Cameron, Heather A.; Gass, Peter

    2015-01-01

    Most neurons are generated during development and are not replaced during adulthood, even if they are lost to injury or disease. It is firmly established, however, that new neurons are generated in the dentate gyrus of the hippocampus of virtually all adult mammals, including humans [1]. Many questions still remain, however, regarding adult neurogenesis in other brain regions and particularly in humans, where standard birthdating methods are not generally feasible. Exciting recent evidence indicates that calretinin-expressing interneurons are added to the adult human striatum at a substantial rate [2]. The role of new neurons is unknown, but studies in rodents will be able to further elucidate their identity and origin and then begin to understand their regulation and function. PMID:26298770

  20. Monoclonal antibodies to a rat nestin fusion protein recognize a 220-kDa polypeptide in subsets of fetal and adult human central nervous system neurons and in primitive neuroectodermal tumor cells.

    PubMed Central

    Tohyama, T.; Lee, V. M.; Rorke, L. B.; Marvin, M.; McKay, R. D.; Trojanowski, J. Q.

    1993-01-01

    Nestin is the major intermediate filament protein of embryonic central nervous system (CNS) progenitor cells. To identify proteins involved in early stages of lineage commitment in the developing human CNS we generated monoclonal antibodies to a TrpE-rat nestin fusion protein. This resulted in a monoclonal antibody (designated NST11) that did not recognize authentic human nestin, but did recognize a novel neuron-specific human polypeptide expressed in a subset of embryonic and adult CNS neurons as well as in medulloblastomas. NST11 immunoreactivity was abundant in developing spinal cord motor neurons, but was extinguished in these neurons by 17 weeks gestation. NST11 also labeled Purkinje cells at 17 weeks gestation, but Purkinje cells continued to express the NST11 antigen throughout gestation as well as in the adult cerebellum, and NST11 immunoreactivity was more abundant in Purkinje cells than in any other human CNS neurons. No NST11 immunoreactivity was detected in cells of the adult human peripheral nervous system or in a variety of adult non-neural human tissues. Further, NST11 almost exclusively stained cerebellar medulloblastomas. In Western blots of immature and mature human cerebral and cerebellar extracts, NST11 did not bind human nestin, but did detect an immunoband with a molecular weight of 220 kd. A similar immunoband was detected in medulloblastoma-derived cell lines with a neuron-like phenotype. These findings suggest that the NST11 monoclonal antibody recognizes a novel protein expressed by a subpopulation of immature and mature human CNS neurons, medulloblastomas, and medulloblastoma-derived cell lines. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7686344

  1. Adult neurogenesis restores dopaminergic neuronal loss in the olfactory bulb.

    PubMed

    Lazarini, Françoise; Gabellec, Marie-Madeleine; Moigneu, Carine; de Chaumont, Fabrice; Olivo-Marin, Jean-Christophe; Lledo, Pierre-Marie

    2014-10-22

    Subventricular zone (SVZ) neurogenesis continuously provides new GABA- and dopamine (DA)-containing interneurons for the olfactory bulb (OB) in most adult mammals. DAergic interneurons are located in the glomerular layer (GL) where they participate in the processing of sensory inputs. To examine whether adult neurogenesis might contribute to regeneration after circuit injury in mice, we induce DAergic neuronal loss by injecting 6-hydroxydopamine (6-OHDA) in the dorsal GL or in the right substantia nigra pars compacta. We found that a 6-OHDA treatment of the OB produces olfactory deficits and local inflammation and partially decreases the number of neurons expressing the enzyme tyrosine hydroxylase (TH) near the injected site. Blockade of inflammation by minocycline treatment immediately after the 6-OHDA administration rescued neither TH(+) interneuron number nor the olfactory deficits, suggesting that the olfactory impairments are most likely linked to TH(+) cell death and not to microglial activation. TH(+) interneuron number was restored 1 month later. This rescue resulted at least in part from enhanced recruitment of immature neurons targeting the lesioned GL area. Seven days after 6-OHDA lesion in the OB, we found that the integration of lentivirus-labeled adult-born neurons was biased: newly formed neurons were preferentially incorporated into glomerular circuits of the lesioned area. Behavioral rehabilitation occurs 2 months after lesion. This study establishes a new model into which loss of DAergic cells could be compensated by recruiting newly formed neurons. We propose that adult neurogenesis not only replenishes the population of DAergic bulbar neurons but that it also restores olfactory sensory processing. PMID:25339754

  2. HB-GAM (pleiotrophin) reverses inhibition of neural regeneration by the CNS extracellular matrix

    PubMed Central

    Paveliev, Mikhail; Fenrich, Keith K.; Kislin, Mikhail; Kuja-Panula, Juha; Kulesskiy, Evgeny; Varjosalo, Markku; Kajander, Tommi; Mugantseva, Ekaterina; Ahonen-Bishopp, Anni; Khiroug, Leonard; Kulesskaya, Natalia; Rougon, Geneviève; Rauvala, Heikki

    2016-01-01

    Chondroitin sulfate (CS) glycosaminoglycans inhibit regeneration in the adult central nervous system (CNS). We report here that HB-GAM (heparin-binding growth-associated molecule; also known as pleiotrophin), a CS-binding protein expressed at high levels in the developing CNS, reverses the role of the CS chains in neurite growth of CNS neurons in vitro from inhibition to activation. The CS-bound HB-GAM promotes neurite growth through binding to the cell surface proteoglycan glypican-2; furthermore, HB-GAM abrogates the CS ligand binding to the inhibitory receptor PTPσ (protein tyrosine phosphatase sigma). Our in vivo studies using two-photon imaging of CNS injuries support the in vitro studies and show that HB-GAM increases dendrite regeneration in the adult cerebral cortex and axonal regeneration in the adult spinal cord. Our findings may enable the development of novel therapies for CNS injuries. PMID:27671118

  3. Spatio-temporal regulations and functions of neuronal alternative RNA splicing in developing and adult brains.

    PubMed

    Iijima, Takatoshi; Hidaka, Chiharu; Iijima, Yoko

    2016-08-01

    Alternative pre-mRNA splicing is a fundamental mechanism that generates molecular diversity from a single gene. In the central nervous system (CNS), key neural developmental steps are thought to be controlled by alternative splicing decisions, including the molecular diversity underlying synaptic wiring, plasticity, and remodeling. Significant progress has been made in understanding the molecular mechanisms and functions of alternative pre-mRNA splicing in neurons through studies in invertebrate systems; however, recent studies have begun to uncover the potential role of neuronal alternative splicing in the mammalian CNS. This article provides an overview of recent findings regarding the regulation and function of neuronal alternative splicing. In particular, we focus on the spatio-temporal regulation of neurexin, a synaptic adhesion molecule, by neuronal cell type-specific factors and neuronal activity, which are thought to be especially important for characterizing neural development and function within the mammalian CNS. Notably, there is increasing evidence that implicates the dysregulation of neuronal splicing events in several neurological disorders. Therefore, understanding the detailed mechanisms of neuronal alternative splicing in the mammalian CNS may provide plausible treatment strategies for these diseases.

  4. Connexin36 expression in major centers of the auditory system in the CNS of mouse and rat: Evidence for neurons forming purely electrical synapses and morphologically mixed synapses

    PubMed Central

    Rubio, M.E.; Nagy, J.I.

    2015-01-01

    Electrical synapses formed by gap junctions composed of connexin36 (Cx36) are widely distributed in the mammalian central nervous system (CNS). Here, we used immunofluorescence methods to document the expression of Cx36 in the cochlear nucleus and in various structures of the auditory pathway of rat and mouse. Labelling of Cx36 visualized exclusively as Cx36-puncta was densely distributed primarily on the somata and initial dendrites of neuronal populations in the ventral cochlear nucleus, and was abundant in superficial layers of the dorsal cochlear nucleus. Other auditory centers displaying Cx36-puncta included the medial nucleus of the trapezoid body (MNTB), regions surrounding the lateral superior olivary nucleus, the dorsal nucleus of the medial lemniscus, the nucleus sagulum, all subnuclei of the inferior colliculus, and the auditory cerebral cortex. In EGFP-Cx36 transgenic mice, EGFP reporter was detected in neurons located in each of auditory centers that harboured Cx36-puncta. In the ventral cochlear nuclei and the MNTB, many neuronal somata were heavily innervated by nerve terminals containing vesicular glutamate transporter-1 (vglut1) and Cx36 was frequently localized at these terminals. Cochlear ablation caused a near total depletion of vglut1-positive terminals in the ventral cochlear nuclei, with a commensurate loss of labelling for Cx36 around most neuronal somata, but preserved Cx36-puncta at somatic neuronal appositions. The results suggest that electrical synapses formed by Cx36-containing gap junctions occur in most of the widely distributed centers of the auditory system. Further, it appears that morphologically mixed chemical/electrical synapses formed by nerve terminals are abundant in the ventral cochlear nucleus, including those at endbulbs of Held formed by cochlear primary afferent fibers, and those at calyx of Held synapses on MNTB neurons. PMID:26188286

  5. PTEN Deletion Enhances the Regenerative Ability of Adult Corticospinal Neurons

    PubMed Central

    Liu, Kai; Lu, Yi; Lee, Jae K.; Samara, Ramsey; Willenberg, Rafer; Sears-Kraxberger, Ilse; Tedeschi, Andrea; Park, Kevin Kyungsuk; Jin, Duo; Cai, Bin; Xu, Bengang; Connolly, Lauren; Steward, Oswald; Zheng, Binhai; He, Zhigang

    2010-01-01

    Despite the essential role of the corticospinal tract (CST) in controlling voluntary movements, successful regeneration of large numbers of injured CST axons beyond a spinal cord lesion has never been achieved. Here we demonstrate a critical involvement of PTEN/mTOR in controlling the regenerative capacity of mouse corticospinal neurons. Upon the completion of development, the regrowth potential of CST axons lost and this is accompanied by a down-regulation of mTOR activity in corticospinal neurons. Axonal injury further diminishes neuronal mTOR activity in these neurons. Forced up-regulation of mTOR activity in corticospinal neurons by conditional deletion of PTEN, a negative regulator of mTOR, enhances compensatory sprouting of uninjured CST axons and even more strikingly, enables successful regeneration of a cohort of injured CST axons past a spinal cord lesion. Furthermore, these regenerating CST axons possess the ability to reform synapses in spinal segments distal to the injury. Thus, modulating neuronal intrinsic PTEN/mTOR activity represents a potential therapeutic strategy for promoting axon regeneration and functional repair after adult spinal cord injury. PMID:20694004

  6. p73 is an essential regulator of neural stem cell maintenance in embryonal and adult CNS neurogenesis.

    PubMed

    Talos, F; Abraham, A; Vaseva, A V; Holembowski, L; Tsirka, S E; Scheel, A; Bode, D; Dobbelstein, M; Brück, W; Moll, U M

    2010-12-01

    The p53 family member p73 is essential for brain development, but its precise role and scope remain unclear. Global p73 deficiency determines an overt and highly penetrant brain phenotype marked by cortical hypoplasia with ensuing hydrocephalus and hippocampal dysgenesis. The ΔNp73 isoform is known to function as a prosurvival factor of mature postmitotic neurons. In this study, we define a novel essential role of p73 in the regulation of the neural stem cell compartment. In both embryonic and adult neurogenesis, p73 has a critical role in maintaining an adequate neurogenic pool by promoting self-renewal and proliferation and inhibiting premature senescence of neural stem and early progenitor cells. Thus, products of the p73 gene locus are essential maintenance factors in the central nervous system, whose broad action stretches across the entire differentiation arch from stem cells to mature postmitotic neurons.

  7. Chondroitin sulfate glycosaminoglycans for CNS homeostasis-implications for material design.

    PubMed

    Karumbaiah, Lohitash; Saxena, Tarun; Betancur, Martha; Bellamkonda, Ravi V

    2014-01-01

    Chondroitin sulfate proteoglycans (CSPGs) are complex biomolecules that are known to facilitate patterning of axonal direction and cell migration during the early growth and development phase of the mammalian central nervous system (CNS). In adults, they continue to control neuronal plasticity as major constituents of the "peri-neuronal nets" (PNNs) that surround adult CNS neurons. CSPGs are also barrier-forming molecules that are selectively upregulated by invading reactive astroglia after injury to the CNS, and are responsible for the active repulsion of regenerating neurons post-injury. Recent evidence however suggests that the diverse sulfated glycosaminoglycan (GAG) side chains attached to CSPGs are key components that play paradoxical roles in influencing nerve regeneration post-injury to the CNS. Sulfated GAG repeats attached to the CSPG core protein help mediate cell migration, neuritogenesis, axonal pathfinding, and axonal repulsion by directly trapping and presenting a whole host of growth factors to cells locally, or by binding to specific membrane bound proteins on the cell surface to influence cellular function. In this review, we will present the current gamut of interventional strategies used to bridge CNS deficits, and discuss the potential advantages of using sulfated GAG based biomaterials to facilitate the repair and regeneration of the injured CNS. PMID:25139544

  8. Genome-wide analysis of the bHLH gene family in planarians identifies factors required for adult neurogenesis and neuronal regeneration.

    PubMed

    Cowles, Martis W; Brown, David D R; Nisperos, Sean V; Stanley, Brianna N; Pearson, Bret J; Zayas, Ricardo M

    2013-12-01

    In contrast to most well-studied model organisms, planarians have a remarkable ability to completely regenerate a functional nervous system from a pluripotent stem cell population. Thus, planarians provide a powerful model to identify genes required for adult neurogenesis in vivo. We analyzed the basic helix-loop-helix (bHLH) family of transcription factors, many of which are crucial for nervous system development and have been implicated in human diseases. However, their potential roles in adult neurogenesis or central nervous system (CNS) function are not well understood. We identified 44 planarian bHLH homologs, determined their patterns of expression in the animal and assessed their functions using RNAi. We found nine bHLHs expressed in stem cells and neurons that are required for CNS regeneration. Our analyses revealed that homologs of coe, hes (hesl-3) and sim label progenitors in intact planarians, and following amputation we observed an enrichment of coe(+) and sim(+) progenitors near the wound site. RNAi knockdown of coe, hesl-3 or sim led to defects in CNS regeneration, including failure of the cephalic ganglia to properly pattern and a loss of expression of distinct neuronal subtype markers. Together, these data indicate that coe, hesl-3 and sim label neural progenitor cells, which serve to generate new neurons in uninjured or regenerating animals. Our study demonstrates that this model will be useful to investigate how stem cells interpret and respond to genetic and environmental cues in the CNS and to examine the role of bHLH transcription factors in adult tissue regeneration.

  9. White Matter Neurons in Young Adult and Aged Rhesus Monkey

    PubMed Central

    Mortazavi, Farzad; Wang, Xiyue; Rosene, Douglas L.; Rockland, Kathleen S.

    2016-01-01

    In humans and non-human primates (NHP), white matter neurons (WMNs) persist beyond early development. Their functional importance is largely unknown, but they have both corticothalamic and corticocortical connectivity and at least one subpopulation has been implicated in vascular regulation and sleep. Several other studies have reported that the density of WMNs in humans is altered in neuropathological or psychiatric conditions. The present investigation evaluates and compares the density of superficial and deep WMNs in frontal (FR), temporal (TE), and parietal (Par) association regions of four young adult and four aged male rhesus monkeys. A major aim was to determine whether there was age-related neuronal loss, as might be expected given the substantial age-related changes known to occur in the surrounding white matter environment. Neurons were visualized by immunocytochemistry for Neu-N in coronal tissue sections (30 μm thickness), and neuronal density was assessed by systematic random sampling. Per 0.16 mm2 sampling box, this yielded about 40 neurons in the superficial WM and 10 in the deep WM. Consistent with multiple studies of cell density in the cortical gray matter of normal brains, neither the superficial nor deep WM populations showed statistically significant age-related neuronal loss, although we observed a moderate decrease with age for the deep WMNs in the frontal region. Morphometric analyses, in contrast, showed significant age effects in soma size and circularity. In specific, superficial WMNs were larger in FR and Par WM regions of the young monkeys; but in the TE, these were larger in the older monkeys. An age effect was also observed for soma circularity: superficial WMNs were more circular in FR and Par of the older monkeys. This second, morphometric result raises the question of whether other age-related morphological, connectivity, or molecular changes occur in the WMNs. These could have multiple impacts, given the wide range of putative

  10. Modulation of adult-born neurons in the inflamed hippocampus

    PubMed Central

    Belarbi, Karim; Rosi, Susanna

    2013-01-01

    Throughout life new neurons are continuously added to the hippocampal circuitry involved with spatial learning and memory. These new cells originate from neural precursors in the subgranular zone of the dentate gyrus, migrate into the granule cell layer, and integrate into neural networks encoding spatial and contextual information. This process can be influenced by several environmental and endogenous factors and is modified in different animal models of neurological disorders. Neuroinflammation, as defined by the presence of activated microglia, is a common key factor to the progression of neurological disorders. Analysis of the literature shows that microglial activation impacts not only the production, but also the migration and the recruitment of new neurons. The impact of microglia on adult-born neurons appears much more multifaceted than ever envisioned before, combining both supportive and detrimental effects that are dependent upon the activation phenotype and the factors being released. The development of strategies aimed to change microglia toward states that promote functional neurogenesis could therefore offer novel therapeutic opportunities against neurological disorders associated with cognitive deficits and neuroinflammation. The present review summarizes the current knowledge on how production, distribution, and recruitment of new neurons into behaviorally relevant neural networks are modified in the inflamed hippocampus. PMID:24046730

  11. Minor splicing snRNAs are enriched in the developing mouse CNS and are crucial for survival of differentiating retinal neurons.

    PubMed

    Baumgartner, Marybeth; Lemoine, Christopher; Al Seesi, Sahar; Karunakaran, Devi Krishna Priya; Sturrock, Nikita; Banday, Abdul Rouf; Kilcollins, Ashley M; Mandoiu, Ion; Kanadia, Rahul N

    2015-09-01

    In eukaryotes, gene expression requires splicing, which starts with the identification of exon-intron boundaries by the small, nuclear RNA (snRNAs) of the spliceosome, aided by associated proteins. In the mammalian genome, <1% of introns lack canonical exon-intron boundary sequences and cannot be spliced by the canonical splicing machinery. These introns are spliced by the minor spliceosome, consisting of unique snRNAs (U11, U12, U4atac, and U6atac). The importance of the minor spliceosome is underscored by the disease microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1), which is caused by mutation in U4atac. Thus, it is important to understand the expression and function of the minor spliceosome and its targets in mammalian development, for which we used the mouse as our model. Here, we report enrichment of the minor snRNAs in the developing head/central nervous system (CNS) between E9.5 and E12.5, along with enrichment of these snRNAs in differentiating retinal neurons. Moreover, dynamic expression kinetics of minor intron-containing genes (MIGs) was observed across retinal development. DAVID analysis of MIGs that were cotranscriptionally upregulated embryonically revealed enrichment for RNA metabolism and cell cycle regulation. In contrast, MIGs that were cotranscriptionally upregulated postnatally revealed enrichment for protein localization/transport, vesicle-mediated transport, and calcium transport. Finally, we used U12 morpholino to inactivate the minor spliceosome in the postnatal retina, which resulted in apoptosis of differentiating retinal neurons. Taken together, our data suggest that the minor spliceosome may have distinct functions in embryonic versus postnatal development. Importantly, we show that the minor spliceosome is crucial for the survival of terminally differentiating retinal neurons.

  12. Regeneration of supraspinal projection neurons in the adult goldfish.

    PubMed

    Sharma, S C; Jadhao, A G; Rao, P D

    1993-08-27

    Regeneration of descending supraspinal projections were identified in adult goldfish following administration of HRP to different levels of the spinal cord. While in the untreated normal fish 17 nuclei were shown to project into the spinal cord, only 11 of them seem to have participated in the process of regeneration. The nuclei whose axons regenerated include the nucleus ventromedialis (NVMD), nucleus of the median longitudinal fasciculus (NMLF), nucleus reticularis superior (NRS), nucleus reticularis medialis (NRM), nucleus reticularis inferior (NRI), anterior octaval nucleus (AON), magnocellular octaval nucleus (MON), descending octaval nucleus (DON) and certain neurons of the facial lobe. The neurons of the magnocellular preoptic nucleus (NPO), raphe nucleus (NR), Mauthner cell (MC), posterior octaval nucleus (PON) and somata located adjacent to the descending trigeminal tract were not labeled. The nuclei that apparently participated in the regeneration process were significantly larger in size than the corresponding cell bodies in the untreated normal fish.

  13. Activation of adult rat CNS endothelial cells by opioid-induced toll-like receptor 4 (TLR4) signaling induces proinflammatory, biochemical, morphological, and behavioral sequelae

    PubMed Central

    Grace, Peter M.; Ramos, Khara M.; Rodgers, Krista M.; Wang, Xiaohui; Hutchinson, Mark R.; Lewis, Makenzie T.; Morgan, Kelly N.; Kroll, Juliet L.; Taylor, Frederick R.; Strand, Keith A.; Zhang, Yingning; Berkelhammer, Debra; Huey, Madeline G.; Greene, Lisa I.; Cochran, Thomas A.; Yin, Hang; Barth, Daniel S.; Johnson, Kirk W.; Rice, Kenner; Maier, Steven F.; Watkins, Linda R.

    2014-01-01

    CNS immune signaling contributes to deleterious opioid effects including hyperalgesia, tolerance, reward, and dependence/withdrawal. Such effects are mediated by opioid signaling at TLR4, presumptively of glial origin. Whether CNS endothelial cells express TLR4 is controversial. If so, they would be well positioned for activation by blood-borne opioids, contributing to opioid-induced pro-inflammatory responses. These studies examined adult primary rat CNS endothelial cell responses to (-)-morphine or its mu-opioid receptor (MOR) inactive metabolite morphine-3-glucuronide (M3G), both known TLR4 agonists. We demonstrate that adult rat CNS endothelial cells express functional TLR4. M3G activated NFκB, increased tumor necrosis factor-α (TNFα) and cyclooxygenase-2 (COX2) mRNAs, and released prostaglandin E2 from these cells. (-)-Morphine-induced upregulation of TNFα mRNA and prostaglandin E2 release were unmasked by pre-treatment with nalmefene, a MOR antagonist without TLR4 activity (unlike CTAP, shown to have both MOR- and TLR4-activity), suggestive of an interplay between MOR and TLR4 co-activation by (-)-morphine. In support, MOR-dependent Protein Kinase A (PKA) opposed TLR4 signaling, as PKA inhibition (H-89) also unmasked (-)-morphine-induced TNFα and COX2 mRNA upregulation. Intrathecal injection of CNS endothelial cells, stimulated in vitro with M3G, produced TLR4-dependent tactile allodynia. Further, cortical suffusion with M3G in vivo induced TLR4-dependent vasodilation. Finally, endothelial cell TLR4 activation by lipopolysaccharide and/or M3G was blocked by the glial inhibitors AV1013 and propentofylline, demonstrating endothelial cells as a new target of such drugs. These data indicate that (-)-morphine and M3G can activate CNS endothelial cells via TLR4, inducing proinflammatory, biochemical, morphological, and behavioral sequalae. CNS endothelial cells may have previously unanticipated roles in opioid-induced effects, in phenomena blocked by

  14. Role of neurons and glia in the CNS actions of the renin-angiotensin system in cardiovascular control

    PubMed Central

    de Kloet, Annette D.; Liu, Meng; Rodríguez, Vermalí; Krause, Eric G.

    2015-01-01

    Despite tremendous research efforts, hypertension remains an epidemic health concern, leading often to the development of cardiovascular disease. It is well established that in many instances, the brain plays an important role in the onset and progression of hypertension via activation of the sympathetic nervous system. Further, the activity of the renin-angiotensin system (RAS) and of glial cell-mediated proinflammatory processes have independently been linked to this neural control and are, as a consequence, both attractive targets for the development of antihypertensive therapeutics. Although it is clear that the predominant effector peptide of the RAS, ANG II, activates its type-1 receptor on neurons to mediate some of its hypertensive actions, additional nuances of this brain RAS control of blood pressure are constantly being uncovered. One of these complexities is that the RAS is now thought to impact cardiovascular control, in part, via facilitating a glial cell-dependent proinflammatory milieu within cardiovascular control centers. Another complexity is that the newly characterized antihypertensive limbs of the RAS are now recognized to, in many cases, antagonize the prohypertensive ANG II type 1 receptor (AT1R)-mediated effects. That being said, the mechanism by which the RAS, glia, and neurons interact to regulate blood pressure is an active area of ongoing research. Here, we review the current understanding of these interactions and present a hypothetical model of how these exchanges may ultimately regulate cardiovascular function. PMID:26084692

  15. Role of neurons and glia in the CNS actions of the renin-angiotensin system in cardiovascular control.

    PubMed

    de Kloet, Annette D; Liu, Meng; Rodríguez, Vermalí; Krause, Eric G; Sumners, Colin

    2015-09-01

    Despite tremendous research efforts, hypertension remains an epidemic health concern, leading often to the development of cardiovascular disease. It is well established that in many instances, the brain plays an important role in the onset and progression of hypertension via activation of the sympathetic nervous system. Further, the activity of the renin-angiotensin system (RAS) and of glial cell-mediated proinflammatory processes have independently been linked to this neural control and are, as a consequence, both attractive targets for the development of antihypertensive therapeutics. Although it is clear that the predominant effector peptide of the RAS, ANG II, activates its type-1 receptor on neurons to mediate some of its hypertensive actions, additional nuances of this brain RAS control of blood pressure are constantly being uncovered. One of these complexities is that the RAS is now thought to impact cardiovascular control, in part, via facilitating a glial cell-dependent proinflammatory milieu within cardiovascular control centers. Another complexity is that the newly characterized antihypertensive limbs of the RAS are now recognized to, in many cases, antagonize the prohypertensive ANG II type 1 receptor (AT1R)-mediated effects. That being said, the mechanism by which the RAS, glia, and neurons interact to regulate blood pressure is an active area of ongoing research. Here, we review the current understanding of these interactions and present a hypothetical model of how these exchanges may ultimately regulate cardiovascular function.

  16. Environmental Impact on Direct Neuronal Reprogramming In Vivo in the Adult Brain

    PubMed Central

    López-Juárez, Alejandro; Howard, Jennifer; Sakthivel, Bhuvaneswari; Aronow, Bruce; Campbell, Kenneth; Nakafuku, Masato

    2013-01-01

    Direct reprogramming of non-neuronal cells to generate new neurons is a promising approach to repair damaged brains. Impact of the in vivo environment on neuronal reprogramming, however, is poorly understood. Here we show that regional differences and injury conditions have significant influence on the efficacy of reprogramming and subsequent survival of newly generated neurons in the adult rodent brain. A combination of local exposure to growth factors and retrovirus-mediated overexpression of the neurogenic transcription factor Neurogenin2 (Neurog2) can induce new neurons from non-neuronal cells in the adult neocortex and striatum where neuronal turnover is otherwise very limited. These two regions respond to growth factors and Neurog2 differently and instruct new neurons to exhibit distinct molecular phenotypes. Moreover, ischemic insult differentially affects differentiation of new neurons in these regions. These results demonstrate strong environmental impact on direct neuronal reprogramming in vivo. PMID:23974433

  17. Environmental impact on direct neuronal reprogramming in vivo in the adult brain.

    PubMed

    Grande, Andrew; Sumiyoshi, Kyoko; López-Juárez, Alejandro; Howard, Jennifer; Sakthivel, Bhuvaneswari; Aronow, Bruce; Campbell, Kenneth; Nakafuku, Masato

    2013-01-01

    Direct reprogramming of non-neuronal cells to generate new neurons is a promising approach to repair damaged brains. Impact of the in vivo environment on neuronal reprogramming, however, is poorly understood. Here we show that regional differences and injury conditions have significant influence on the efficacy of reprogramming and subsequent survival of the newly generated neurons in the adult rodent brain. A combination of local exposure to growth factors and retrovirus-mediated overexpression of the neurogenic transcription factor Neurogenin2 can induce new neurons from non-neuronal cells in the adult neocortex and striatum where neuronal turnover is otherwise very limited. These two regions respond to growth factors and Neurogenin2 differently and instruct new neurons to exhibit distinct molecular phenotypes. Moreover, ischaemic insult differentially affects differentiation of new neurons in these regions. These results demonstrate strong environmental impact on direct neuronal reprogramming in vivo.

  18. Insights into the physiological role of CNS regeneration inhibitors

    PubMed Central

    Baldwin, Katherine T.; Giger, Roman J.

    2015-01-01

    The growth inhibitory nature of injured adult mammalian central nervous system (CNS) tissue constitutes a major barrier to robust axonal outgrowth and functional recovery following trauma or disease. Prototypic CNS regeneration inhibitors are broadly expressed in the healthy and injured brain and spinal cord and include myelin-associated glycoprotein (MAG), the reticulon family member NogoA, oligodendrocyte myelin glycoprotein (OMgp), and chondroitin sulfate proteoglycans (CSPGs). These structurally diverse molecules strongly inhibit neurite outgrowth in vitro, and have been most extensively studied in the context of nervous system injury in vivo. The physiological role of CNS regeneration inhibitors in the naïve, or uninjured, CNS remains less well understood, but has received growing attention in recent years and is the focus of this review. CNS regeneration inhibitors regulate myelin development and axon stability, consolidate neuronal structure shaped by experience, and limit activity-dependent modification of synaptic strength. Altered function of CNS regeneration inhibitors is associated with neuropsychiatric disorders, suggesting crucial roles in brain development and health. PMID:26113809

  19. ROCK2 is a major regulator of axonal degeneration, neuronal death and axonal regeneration in the CNS

    PubMed Central

    Koch, J C; Tönges, L; Barski, E; Michel, U; Bähr, M; Lingor, P

    2014-01-01

    The Rho/ROCK/LIMK pathway is central for the mediation of repulsive environmental signals in the central nervous system. Several studies using pharmacological Rho-associated protein kinase (ROCK) inhibitors have shown positive effects on neurite regeneration and suggest additional pro-survival effects in neurons. However, as none of these drugs is completely target specific, it remains unclear how these effects are mediated and whether ROCK is really the most relevant target of the pathway. To answer these questions, we generated adeno-associated viral vectors to specifically downregulate ROCK2 and LIM domain kinase (LIMK)-1 in rat retinal ganglion cells (RGCs) in vitro and in vivo. We show here that specific knockdown of ROCK2 and LIMK1 equally enhanced neurite outgrowth of RGCs on inhibitory substrates and both induced substantial neuronal regeneration over distances of more than 5 mm after rat optic nerve crush (ONC) in vivo. However, only knockdown of ROCK2 but not LIMK1 increased survival of RGCs after optic nerve axotomy. Moreover, knockdown of ROCK2 attenuated axonal degeneration of the proximal axon after ONC assessed by in vivo live imaging. Mechanistically, we demonstrate here that knockdown of ROCK2 resulted in decreased intraneuronal activity of calpain and caspase 3, whereas levels of pAkt and collapsin response mediator protein 2 and autophagic flux were increased. Taken together, our data characterize ROCK2 as a specific therapeutic target in neurodegenerative diseases and demonstrate new downstream effects of ROCK2 including axonal degeneration, apoptosis and autophagy. PMID:24832597

  20. EMA: a developmentally regulated cell-surface glycoprotein of CNS neurons that is concentrated at the leading edge of growth cones.

    PubMed

    Baumrind, N L; Parkinson, D; Wayne, D B; Heuser, J E; Pearlman, A L

    1992-08-01

    To identify cell-surface molecules that mediate interactions between neurons and their environment during neural development, we used monoclonal antibody techniques to define a developmentally regulated antigen in the central nervous system of the mouse. The antibody we produced (2A1) immunolabels cells throughout the central nervous system; we analyzed its distribution in the developing cerebral cortex, where it is expressed on cells very soon after they complete mitosis and leave the periventricular proliferative zone. Expression continues into adult life. The antibody also labels the epithelium of the choroid plexus and the renal proximal tubules, but does not label neurons of the peripheral nervous system in the dorsal root ganglia. In dissociated cell culture of embryonic cerebral cortex, 2A1 labels the surface of neurons but not glia. Immunolabeling of neurons in tissue culture is particularly prominent on the edge of growth cones, including filopodia and the leading edge of lamellipodia, when observed with either immunofluorescence or freeze-etch immunoelectron microscopy. Immunopurification with 2A1 of a CHAPS-extracted membrane preparation from brains of neonatal mice produces a broad (32-36 kD) electrophoretic band and a less prominent 70 kD band that are sensitive to N-glycosidase but not endoglycosidase H. Thus the 2A1 antibody recognizes a developmentally regulated, neuronal cell surface glycoprotein (or glycoproteins) with complex N-linked oligosaccharide side chains. We have termed the glycoprotein antigen EMA because of its prominence on the edge membrane of growth cones. EMA is similar to the M6 antigen (Lagenaur et al: J. Neurobiol. 23:71-88, 1992) in apparent molecular weight, distribution in tissue sections, and immunoreactivity on Western blots, suggesting that the two antigens are similar or identical. Expression of EMA is a very early manifestation of neuronal differentiation; its distribution on growth cones suggests a role in mediating the

  1. GABA regulates synaptic integration of newly generated neurons in the adult brain

    NASA Astrophysics Data System (ADS)

    Ge, Shaoyu; Goh, Eyleen L. K.; Sailor, Kurt A.; Kitabatake, Yasuji; Ming, Guo-Li; Song, Hongjun

    2006-02-01

    Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (γ-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.

  2. SynCAM 1 improves survival of adult-born neurons by accelerating synapse maturation.

    PubMed

    Doengi, Michael; Krupp, Alexander J; Körber, Nils; Stein, Valentin

    2016-03-01

    The survival of adult-born dentate gyrus granule cells critically depends on their synaptic integration into the existing neuronal network. Excitatory inputs are thought to increase the survival rate of adult born neurons. Therefore, whether enhancing the stability of newly formed excitatory synapses by overexpressing the synaptic cell adhesion molecule SynCAM 1 improves the survival of adult-born neurons was tested. Here it is shown that overexpression of SynCAM 1 improves survival of adult-born neurons, but has no effect on the proliferation rate of precursor cells. As expected, overexpression of SynCAM 1 increased the synapse density in adult-born granule neurons. While adult-born granule neurons have very few functional synapses 15 days after birth, it was found that at this age adult-born neurons in SynCAM 1 overexpressing mice exhibited around three times more excitatory synapses, which were stronger than synapses of adult-born neurons of control littermates. In summary, the data indicated that additional SynCAM 1 accelerated synapse maturation, which improved the stability of newly formed synapses and in turn increased the likelihood of survival of adult-born neurons.

  3. Ultrastructural characteristics of human adult and infant cerebral cortical neurons.

    PubMed Central

    Ong, W Y; Garey, L J

    1991-01-01

    Biopsy specimens of human cerebral cortex from three adults and two infants were studied by correlating their light microscopic features in semithin sections with their ultrastructural characteristics. There was good tissue preservation, due to a minimum delay between obtaining the specimens and fixation. Pyramidal cells had a prominent apical dendrite, fine heterochromatin clumps in the nucleus and generally small numbers of cytoplasmic organelles, except for numerous free ribosomes in some of the large pyramids of Layers III to VI. Non-pyramidal cells lacked an apical dendrite and were further classified, on size and ultrastructure, into small, medium and large types. Large numbers of asymmetrical and symmetrical synapses were present in the neuropil but very few axosomatic synapses were found in the human cerebral cortex compared with subhuman primates and other mammals. Some symmetrical synapses were characterised by the presence of wide pre- and postsynaptic densities. The same general features of the adult cortex were also encountered in the infant, with certain exceptions. Many of the infant neurons had less densely packed heterochromatin, but greater numbers of free ribosomes, compared with the adult, and lipofuscin was absent. There was a total absence of myelinated fibres from the infant cortex; more large diameter dendrites were present than in the adult and axosomatic synapses were commoner. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 PMID:2050578

  4. Neuronal replacement from endogenous precursors in the adult brain after stroke.

    PubMed

    Arvidsson, Andreas; Collin, Tove; Kirik, Deniz; Kokaia, Zaal; Lindvall, Olle

    2002-09-01

    In the adult brain, new neurons are continuously generated in the subventricular zone and dentate gyrus, but it is unknown whether these neurons can replace those lost following damage or disease. Here we show that stroke, caused by transient middle cerebral artery occlusion in adult rats, leads to a marked increase of cell proliferation in the subventricular zone. Stroke-generated new neurons, as well as neuroblasts probably already formed before the insult, migrate into the severely damaged area of the striatum, where they express markers of developing and mature, striatal medium-sized spiny neurons. Thus, stroke induces differentiation of new neurons into the phenotype of most of the neurons destroyed by the ischemic lesion. Here we show that the adult brain has the capacity for self-repair after insults causing extensive neuronal death. If the new neurons are functional and their formation can be stimulated, a novel therapeutic strategy might be developed for stroke in humans. PMID:12161747

  5. Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS.

    PubMed

    Fancy, Stephen P J; Zhao, Chao; Franklin, Robin J M

    2004-11-01

    Within the adult CNS, a quiescent population of oligodendrocyte progenitor cells (OPCs) become activated in response to demyelination and give rise to remyelinating oligodendrocytes. During development, OPC differentiation is controlled by several transcription factors including Olig1 and Olig2, and Nkx2.2. We hypothesized that these genes may serve similar functions in activated adult OPCs allowing them to become remyelinating oligodendrocytes and tested this hypothesis by examining their expression during the remyelination of a toxin-induced rodent model of demyelination. During the acute phase of demyelination, OPCs within the lesion increased their expression of Nkx2.2 and Olig2, two transcription factors that in combination are critical for oligodendrocyte differentiation during developmental myelination. This activation was not associated with increases in Sonic hedgehog (Shh) expression, which does not appear essential for CNS remyelination. Consistent with a role in the activation and differentiation of OPCs, these increases were delayed in old adult animals where the rate of remyelination is slowed. Our data suggest the hypothesis that increased expression of Nkx2.2 and Olig2 plays a critically important role in the differentiation of adult OPCs into remyelinating oligodendrocytes and that these genes may present novel targets for therapeutic manipulation in cases where remyelination is impaired.

  6. CNS activation and regional connectivity during pantomime observation: No engagement of the mirror neuron system for deaf signers

    PubMed Central

    Emmorey, Karen; Xu, Jiang; Gannon, Patrick; Goldin-Meadow, Susan; Braun, Allen

    2009-01-01

    Deaf signers have extensive experience using their hands to communicate. Using fMRI, we examined the neural systems engaged during the perception of manual communication in 14 deaf signers and 14 hearing non-signers. Participants passively viewed blocked video clips of pantomimes (e.g., peeling an imaginary banana) and action verbs in American Sign Language (ASL) that were rated as meaningless by non-signers (e.g., TO-DANCE). In contrast to visual fixation, pantomimes strongly activated fronto-parietal regions (the mirror neuron system, MNS) in hearing non-signers, but only bilateral middle temporal regions in deaf signers. When contrasted with ASL verbs, pantomimes selectively engaged inferior and superior parietal regions in hearing non-signers, but right superior temporal cortex in deaf signers. The perception of ASL verbs recruited similar regions as pantomimes for deaf signers, with some evidence of greater involvement of left inferior frontal gyrus for ASL verbs. Functional connectivity analyses with left hemisphere seed voxels (ventral premotor, inferior parietal lobule, fusiform gyrus) revealed robust connectivity with the MNS for the hearing non-signers. Deaf signers exhibited functional connectivity with the right hemisphere that was not observed for the hearing group for the fusiform gyrus seed voxel. We suggest that life-long experience with manual communication, and/or auditory deprivation, may alter regional connectivity and brain activation when viewing pantomimes. We conclude that the lack of activation within the MNS for deaf signers does not support an account of human communication that depends upon automatic sensorimotor resonance between perception and action. PMID:19679192

  7. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons

    SciTech Connect

    Park, Kyoung Ho; Yeo, Sang Won; Troy, Frederic A.

    2014-10-17

    Highlights: • PolySia expressed on neurons primarily during early stages of neuronal development. • PolySia–NCAM is expressed on neural stem cells from adult guinea pig spiral ganglion. • PolySia is a biomarker that modulates neuronal differentiation in inner ear stem cells. - Abstract: During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia–NCAMs) modulate cell–cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia–NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC with epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb’s to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell–cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders.

  8. N-Acetylaspartate in the CNS: From Neurodiagnostics to Neurobiology

    PubMed Central

    Moffett, John R.; Ross, Brian; Arun, Peethambaran; Madhavarao, Chikkathur N.; Namboodiri, M. A. A.

    2007-01-01

    The brain is unique among organs in many respects, including its mechanisms of lipid synthesis and energy production. The nervous system-specific metabolite N-acetylaspartate (NAA), which is synthesized from aspartate and acetyl-coenzyme A in neurons, appears to be a key link in these distinct biochemical features of CNS metabolism. During early postnatal CNS development, the expression of lipogenic enzymes in oligodendrocytes, including the NAA-degrading enzyme aspartoacylase (ASPA), is increased along with increased NAA production in neurons. NAA is transported from neurons to the cytoplasm of oligodendrocytes, where ASPA cleaves the acetate moiety for use in fatty acid and steroid synthesis. The fatty acids and steroids produced then go on to be used as building blocks for myelin lipid synthesis. Mutations in the gene for ASPA result in the fatal leukodystrophy Canavan disease, for which there is currently no effective treatment. Once postnatal myelination is completed, NAA may continue to be involved in myelin lipid turnover in adults, but it also appears to adopt other roles, including a bioenergetic role in neuronal mitochondria. NAA and ATP metabolism appear to be linked indirectly, whereby acetylation of aspartate may facilitate its removal from neuronal mitochondria, thus favoring conversion of glutamate to alpha ketoglutarate which can enter the tricarboxylic acid cycle for energy production. In its role as a mechanism for enhancing mitochondrial energy production from glutamate, NAA is in a key position to act as a magnetic resonance spectroscopy marker for neuronal health, viability and number. Evidence suggests that NAA is a direct precursor for the enzymatic synthesis of the neuron specific dipeptide N-acetylaspartylglutamate, the most concentrated neuropeptide in the human brain. Other proposed roles for NAA include neuronal osmoregulation and axon-glial signaling. We propose that NAA may also be involved in brain nitrogen balance. Further research

  9. The Complete Genome Sequences, Unique Mutational Spectra, and Developmental Potency of Adult Neurons Revealed by Cloning.

    PubMed

    Hazen, Jennifer L; Faust, Gregory G; Rodriguez, Alberto R; Ferguson, William C; Shumilina, Svetlana; Clark, Royden A; Boland, Michael J; Martin, Greg; Chubukov, Pavel; Tsunemoto, Rachel K; Torkamani, Ali; Kupriyanov, Sergey; Hall, Ira M; Baldwin, Kristin K

    2016-03-16

    Somatic mutation in neurons is linked to neurologic disease and implicated in cell-type diversification. However, the origin, extent, and patterns of genomic mutation in neurons remain unknown. We established a nuclear transfer method to clonally amplify the genomes of neurons from adult mice for whole-genome sequencing. Comprehensive mutation detection and independent validation revealed that individual neurons harbor ∼100 unique mutations from all classes but lack recurrent rearrangements. Most neurons contain at least one gene-disrupting mutation and rare (0-2) mobile element insertions. The frequency and gene bias of neuronal mutations differ from other lineages, potentially due to novel mechanisms governing postmitotic mutation. Fertile mice were cloned from several neurons, establishing the compatibility of mutated adult neuronal genomes with reprogramming to pluripotency and development. PMID:26948891

  10. The Complete Genome Sequences, Unique Mutational Spectra, and Developmental Potency of Adult Neurons Revealed by Cloning.

    PubMed

    Hazen, Jennifer L; Faust, Gregory G; Rodriguez, Alberto R; Ferguson, William C; Shumilina, Svetlana; Clark, Royden A; Boland, Michael J; Martin, Greg; Chubukov, Pavel; Tsunemoto, Rachel K; Torkamani, Ali; Kupriyanov, Sergey; Hall, Ira M; Baldwin, Kristin K

    2016-03-16

    Somatic mutation in neurons is linked to neurologic disease and implicated in cell-type diversification. However, the origin, extent, and patterns of genomic mutation in neurons remain unknown. We established a nuclear transfer method to clonally amplify the genomes of neurons from adult mice for whole-genome sequencing. Comprehensive mutation detection and independent validation revealed that individual neurons harbor ∼100 unique mutations from all classes but lack recurrent rearrangements. Most neurons contain at least one gene-disrupting mutation and rare (0-2) mobile element insertions. The frequency and gene bias of neuronal mutations differ from other lineages, potentially due to novel mechanisms governing postmitotic mutation. Fertile mice were cloned from several neurons, establishing the compatibility of mutated adult neuronal genomes with reprogramming to pluripotency and development.

  11. STARs in the CNS.

    PubMed

    Ehrmann, Ingrid; Fort, Philippe; Elliott, David J

    2016-08-15

    STAR (signal transduction and activation of RNA) proteins regulate splicing of target genes that have roles in neural connectivity, survival and myelination in the vertebrate nervous system. These regulated splicing targets include mRNAs such as the Neurexins (Nrxn), SMN2 (survival of motor neuron) and MAG (myelin-associated glycoprotein). Recent work has made it possible to identify and validate STAR protein splicing targets in vivo by using genetically modified mouse models. In this review, we will discuss the importance of STAR protein splicing targets in the CNS (central nervous system). PMID:27528753

  12. The Role of Adult-Born Neurons in the Constantly Changing Olfactory Bulb Network

    PubMed Central

    Malvaut, Sarah; Saghatelyan, Armen

    2016-01-01

    The adult mammalian brain is remarkably plastic and constantly undergoes structurofunctional modifications in response to environmental stimuli. In many regions plasticity is manifested by modifications in the efficacy of existing synaptic connections or synapse formation and elimination. In a few regions, however, plasticity is brought by the addition of new neurons that integrate into established neuronal networks. This type of neuronal plasticity is particularly prominent in the olfactory bulb (OB) where thousands of neuronal progenitors are produced on a daily basis in the subventricular zone (SVZ) and migrate along the rostral migratory stream (RMS) towards the OB. In the OB, these neuronal precursors differentiate into local interneurons, mature, and functionally integrate into the bulbar network by establishing output synapses with principal neurons. Despite continuous progress, it is still not well understood how normal functioning of the OB is preserved in the constantly remodelling bulbar network and what role adult-born neurons play in odor behaviour. In this review we will discuss different levels of morphofunctional plasticity effected by adult-born neurons and their functional role in the adult OB and also highlight the possibility that different subpopulations of adult-born cells may fulfill distinct functions in the OB neuronal network and odor behaviour. PMID:26839709

  13. A critical period for experience-dependent remodeling of adult-born neuron connectivity.

    PubMed

    Bergami, Matteo; Masserdotti, Giacomo; Temprana, Silvio G; Motori, Elisa; Eriksson, Therese M; Göbel, Jana; Yang, Sung Min; Conzelmann, Karl-Klaus; Schinder, Alejandro F; Götz, Magdalena; Berninger, Benedikt

    2015-02-18

    Neurogenesis in the dentate gyrus (DG) of the adult hippocampus is a process regulated by experience. To understand whether experience also modifies the connectivity of new neurons, we systematically investigated changes in their innervation following environmental enrichment (EE). We found that EE exposure between 2-6 weeks following neuron birth, rather than merely increasing the number of new neurons, profoundly affected their pattern of monosynaptic inputs. Both local innervation by interneurons and to even greater degree long-distance innervation by cortical neurons were markedly enhanced. Furthermore, following EE, new neurons received inputs from CA3 and CA1 inhibitory neurons that were rarely observed under control conditions. While EE-induced changes in inhibitory innervation were largely transient, cortical innervation remained increased after returning animals to control conditions. Our findings demonstrate an unprecedented experience-dependent reorganization of connections impinging onto adult-born neurons, which is likely to have important impact on their contribution to hippocampal information processing.

  14. Cathepsin B-dependent motor neuron death after nerve injury in the adult mouse

    SciTech Connect

    Sun, Li; Wu, Zhou; Baba, Masashi; Peters, Christoph; Uchiyama, Yasuo; Nakanishi, Hiroshi

    2010-08-27

    Research highlights: {yields} Cathepsin B (CB), a lysosomal cysteine protease, is expressed in neuron and glia. {yields} CB increased in hypogrossal nucleus neurons after nerve injury in adult mice. {yields} CB-deficiency significantly increased the mean survival ratio of injured neurons. {yields} Thus, CB plays a critical role in axotomy-induced neuronal death in adult mice. -- Abstract: There are significant differences in the rate of neuronal death after peripheral nerve injury between species. The rate of neuronal death of motor neurons after nerve injury in the adult rats is very low, whereas that in adult mice is relatively high. However, the understanding of the mechanism underlying axotomy-induced motor neuron death in adult mice is limited. Cathepsin B (CB), a typical cysteine lysosomal protease, has been implicated in three major morphologically distinct pathways of cell death; apoptosis, necrosis and autophagic cell death. The possible involvement of CB in the neuronal death of hypogrossal nucleus (HGN) neurons after nerve injury in adult mice was thus examined. Quantitative analyses showed the mean survival ratio of HGN neurons in CB-deficient (CB-/-) adult mice after nerve injury was significantly greater than that in the wild-type mice. At the same time, proliferation of microglia in the injured side of the HGN of CB-/- adult mice was markedly reduced compared with that in the wild-type mice. On the injured side of the HGN in the wild-type adult mice, both pro- and mature forms of CB markedly increased in accordance with the increase in the membrane-bound form of LC3 (LC3-II), a marker protein of autophagy. Furthermore, the increase in CB preceded an increase in the expression of Noxa, a major executor for axotomy-induced motor neuron death in the adult mouse. Conversely, expression of neither Noxa or LC3-II was observed in the HGN of adult CB-/- mice after nerve injury. These observations strongly suggest that CB plays a critical role in axotomy

  15. Regeneration of central cholinergic neurones in the adult rat brain.

    PubMed

    Svendgaard, N A; Björklund, A; Stenevi, U

    1976-01-30

    The regrowth of lesioned central acetylcholinesterase (AChE)-positive axons in the adult rat was studied in irides implanted to two different brain sites: in the caudal diencephalon and hippocampus, and in the hippocampal fimbria. At both implantation sites the cholinergic septo-hippocampal pathways were transected. At 2-4 weeks after lesion, newly formed, probably sprouting fibres could be followed in abundance from the lesioned proximal axon stumps into the iris transplant. Growth of newly formed AChE-positive fibres into the transplant was also observed from lesioned axons in the anterior thalamus, and to a minor extent also from the dorsal and ventral tegmental AChE-positive pathways and the habenulo-interpeduncular tract. The regrowth process of the sprouting AChE-positive, presumed cholinergic fibres into the iris target was studied in further detail in whole-mount preparations of the transplants. For this purpose the irides were removed from the brain, unfolded, spread out on microscope slides, and then stained for AChE. During the first 2-4 weeks after transplantation the sprouting central fibres grew out over large areas of the iris. The new fibres branched profusely into a terminal plexus that covered maximally about half of the iris surface, and in some areas the patterning of the regenerated central fibres mimicked closely that of the normal autonomic cholinergic innervation of the iris. In one series of experiments the AChE-staining was combined with fluorescence histochemical visualization of regenerated adrenergic fibres in the same specimens. In many areas there was a striking congruence in the distributional patterns of the regenerated central cholinergic and adrenergic fibres in the transplant. This indicates that - as in the normal iris - the sprouting cholinergic axons (primarily originating in the lesioned septo-hippocampal pathways) and adrenergic axons (primarily originating in the lesioned axons of the locus neurones) regenerate together

  16. Neuron regeneration reverses 3-acetylpyridine-induced cell loss in the cerebral cortex of adult lizards.

    PubMed

    Font, E; García-Verdugo, J M; Alcántara, S; López-García, C

    1991-06-14

    Systemic administration of the neurotoxin 3-acetylpyridine to adult lizards results in extensive loss of neurons in the medial cerebral cortex, other brain areas remaining largely unaffected. After the neurotoxic trauma, new cells are produced by mitotic division of cells in the ventricular wall. The new cells migrate along radial glial fibers and replace lost neurons in the medial cortex. Electron microscopic examination of cells labeled with [3H]thymidine confirms that the newly generated cells are neurons. Thus, neuron regeneration can occur in the cerebral cortex of adult lizards.

  17. Migration of neuronal precursors from the telencephalic ventricular zone into the olfactory bulb in adult zebrafish.

    PubMed

    Kishimoto, Norihito; Alfaro-Cervello, Clara; Shimizu, Kohei; Asakawa, Kazuhide; Urasaki, Akihiro; Nonaka, Shigenori; Kawakami, Koichi; Garcia-Verdugo, Jose Manuel; Sawamoto, Kazunobu

    2011-12-01

    In the brain of adult mammals, neuronal precursors are generated in the subventricular zone in the lateral wall of the lateral ventricles and migrate into the olfactory bulbs (OBs) through a well-studied route called the rostral migratory stream (RMS). Recent studies have revealed that a comparable neural stem cell niche is widely conserved at the ventricular wall of adult vertebrates. However, little is known about the migration route of neuronal precursors in nonmammalian adult brains. Here, we show that, in the adult zebrafish, a cluster of neuronal precursors generated in the telencephalic ventricular zone migrates into the OB via a route equivalent to the mammalian RMS. Unlike the mammalian RMS, these neuronal precursors are not surrounded by glial tubes, although radial glial cells with a single cilium lined the telencephalic ventricular wall, much as in embryonic and neonatal mammals. To observe the migrating neuronal precursors in living brain tissue, we established a brain hemisphere culture using a zebrafish line carrying a GFP transgene driven by the neurogenin1 (ngn1) promoter. In these fish, GFP was observed in the neuronal precursors migrating in the RMS, some of which were aligned with blood vessels. Numerous ngn1:gfp-positive cells were observed migrating tangentially in the RMS-like route medial to the OB. Taken together, our results suggest that the RMS in the adult zebrafish telencephalon is a functional migratory pathway. This is the first evidence for the tangential migration of neuronal precursors in a nonmammalian adult telencephalon.

  18. A hindbrain segmental scaffold specifying neuronal location in the adult goldfish, Carassius auratus.

    PubMed

    Gilland, E; Straka, H; Wong, T W; Baker, R; Zottoli, S J

    2014-07-01

    The vertebrate hindbrain develops as a series of well-defined neuroepithelial segments or rhombomeres. While rhombomeres are visible in all vertebrate embryos, generally there is not any visible segmental anatomy in the brains of adults. Teleost fish are exceptional in retaining a rhombomeric pattern of reticulospinal neurons through embryonic, larval, and adult periods. We use this feature to map more precisely the segmental imprint in the reticular and motor basal hindbrain of adult goldfish. Analysis of serial sections cut in three planes and computer reconstructions of retrogradely labeled reticulospinal neurons yielded a segmental framework compatible with previous reports and more amenable to correlation with surrounding neuronal features. Cranial nerve motoneurons and octavolateral efferent neurons were aligned to the reticulospinal scaffold by mapping neurons immunopositive for choline acetyltransferase or retrogradely labeled from cranial nerve roots. The mapping corresponded well with the known ontogeny of these neurons and helps confirm the segmental territories defined by reticulospinal anatomy. Because both the reticulospinal and the motoneuronal segmental patterns persist in the hindbrain of adult goldfish, we hypothesize that a permanent "hindbrain framework" may be a general property that is retained in adult vertebrates. The establishment of a relationship between individual segments and neuronal phenotypes provides a convenient method for future studies that combine form, physiology, and function in adult vertebrates.

  19. Persistent production of neurons from adult brain stem cells during recovery after stroke.

    PubMed

    Thored, Pär; Arvidsson, Andreas; Cacci, Emanuele; Ahlenius, Henrik; Kallur, Therése; Darsalia, Vladimer; Ekdahl, Christine T; Kokaia, Zaal; Lindvall, Olle

    2006-03-01

    Neural stem cells in the subventricular zone of adult rodents produce new striatal neurons that may replace those that have died after stroke; however, the neurogenic response has been considered acute and transient, yielding only small numbers of neurons. In contrast, we show herein that striatal neuroblasts are generated without decline at least for 4 months after stroke in adult rats. Neuroblasts formed early or late after stroke either differentiate into mature neurons, which survive for several months, or die through caspase-mediated apoptosis. The directed migration of the new neurons toward the ischemic damage is regulated by stromal cell-derived factor-1alpha and its receptor CXCR4. These results show that endogenous neural stem cells continuously supply the injured adult brain with new neurons, which suggests novel self-repair strategies to improve recovery after stroke. PMID:16210404

  20. Ontogeny and functions of CNS macrophages

    PubMed Central

    Katsumoto, Atsuko; Lu, Haiyan; Miranda, Aline S.; Ransohoff, Richard M.

    2014-01-01

    Microglia, the only non-neuroepithelial cells found in the parenchyma of the central nervous system (CNS), originate during embryogenesis from the yolk sac and enter the CNS quite early (embryonic day 9.5-10 in mice). Thereafter, microglia are maintained independently of any input from the blood and in particular do not require hematopoietic stem cells as a source of replacement for senescent cells. Monocytes are hematopoietic cells, derived from bone marrow. The ontogeny of microglia and monocytes is important for understanding CNS pathologies. Microglial functions are distinct from those of blood-derived monocytes, which invade the CNS only under pathological conditions. Recent data reveal that microglia play an important role in managing neuronal cell death, neurogenesis and synaptic interactions. Here we discuss physiology of microglia and the functions of monocytes in CNS pathology. We address the roles of microglia and monocytes in neurodegenerative diseases as an example of CNS pathology. PMID:25193935

  1. Distinct roles of hand2 in developing and adult autonomic neurons.

    PubMed

    Stanzel, Sabine; Stubbusch, Jutta; Pataskar, Abhijeet; Howard, Marthe J; Deller, Thomas; Ernsberger, Uwe; Tiwari, Vijay K; Rohrer, Hermann; Tsarovina, Konstantina

    2016-10-01

    The bHLH transcription factor Hand2 is essential for the acquisition and maintenance of noradrenergic properties of embryonic sympathetic neurons and controls neuroblast proliferation. Hand2 is also expressed in embryonic and postnatal parasympathetic ganglia and remains expressed in sympathetic neurons up to the adult stage. Here, we address its function in developing parasympathetic and adult sympathetic neurons. We conditionally deleted Hand2 in the parasympathetic sphenopalatine ganglion by crossing a line of floxed Hand2 mice with DbhiCre transgenic mice, taking advantage of the transient Dbh expression in parasympathetic ganglia. Hand2 elimination does not affect Dbh expression and sphenopalatine ganglion size at E12.5 and E16.5, in contrast to sympathetic ganglia. These findings demonstrate different functions for Hand2 in the parasympathetic and sympathetic lineage. Our previous Hand2 knockdown in postmitotic, differentiated chick sympathetic neurons resulted in decreased expression of noradrenergic marker genes but it was unclear whether Hand2 is required for maintaining noradrenergic neuron identity in adult animals. We now show that Hand2 elimination in adult Dbh-expressing sympathetic neurons does not decrease the expression of Th and Dbh, in contrast to the situation during development. However, gene expression profiling of adult sympathetic neurons identified 75 Hand2-dependent target genes. Interestingly, a notable proportion of down-regulated genes (15%) encode for proteins with synaptic and neurotransmission functions. These results demonstrate a change in Hand2 target genes during maturation of sympathetic neurons. Whereas Hand2 controls genes regulating noradrenergic differentiation during development, Hand2 seems to be involved in the regulation of genes controlling neurotransmission in adult sympathetic neurons. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1111-1124, 2016. PMID:26818017

  2. Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers

    PubMed Central

    Williams, Jessica L.; Holman, David W.; Klein, Robyn S.

    2014-01-01

    In the adult central nervous system (CNS), chemokines and their receptors are involved in developmental, physiological and pathological processes. Although most lines of investigation focus on their ability to induce the migration of cells, recent studies indicate that chemokines also promote cellular interactions and activate signaling pathways that maintain CNS homeostatic functions. Many homeostatic chemokines are expressed on the vasculature of the blood brain barrier (BBB) including CXCL12, CCL19, CCL20, and CCL21. While endothelial cell expression of these chemokines is known to regulate the entry of leukocytes into the CNS during immunosurveillance, new data indicate that CXCL12 is also involved in diverse cellular activities including adult neurogenesis and neuronal survival, having an opposing role to the homeostatic chemokine, CXCL14, which appears to regulate synaptic inputs to neural precursors. Neuronal expression of CX3CL1, yet another homeostatic chemokine that promotes neuronal survival and communication with microglia, is partly regulated by CXCL12. Regulation of CXCL12 is unique in that it may regulate its own expression levels via binding to its scavenger receptor CXCR7/ACKR3. In this review, we explore the diverse roles of these and other homeostatic chemokines expressed within the CNS, including the possible implications of their dysfunction as a cause of neurologic disease. PMID:24920943

  3. The allometry of CNS size and consequences of miniaturization in orb-weaving and cleptoparasitic spiders.

    PubMed

    Quesada, Rosannette; Triana, Emilia; Vargas, Gloria; Douglass, John K; Seid, Marc A; Niven, Jeremy E; Eberhard, William G; Wcislo, William T

    2011-11-01

    Allometric studies of the gross neuroanatomy of adults from nine species of spiders from six web-weaving families (Orbicularia), and nymphs from six of these species, show that very small spiders resemble other small animals in having disproportionately larger central nervous systems (CNSs) relative to body mass when compared with large-bodied forms. Small spiderlings and minute adult spiders have similar relative CNS volumes. The relatively large CNS of a very small spider occupies up to 78% of the cephalothorax volume. The CNSs of very small spiders extend into their coxae, occupying as much as 26% of the profile area of the coxae of an Anapisona simoni spiderling (body mass < 0.005 mg). Such modifications occur both in species with minute adults, and in tiny spiderlings of species with large-bodied adults. In at least one such species, Leucauge mariana, the CNS of the spiderling extends into a prominent ventral bulge of the sternum. Tiny spiders also have reduced neuronal cell body diameters. The adults of nearly all orbicularian spiders weave prey capture webs, as do the spiderlings, beginning with second instar nymphs. Comparable allometric relations occur in adults of both orb-weaving and cleptoparasitic species, indicating that this behavioral difference is not reflected in differences in gross CNS allometry. PMID:22036838

  4. Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain

    PubMed Central

    Duan, Xin; Chang, Jay H.; Ge, Shaoyu; Faulkner, Regina L.; Kim, Ju Young; Kitabatake, Yasuji; Liu, Xiao-bo; Yang, Chih-Hao; Jordan, J. Dedrick; Ma, Dengke K.; Liu, Cindy Y.; Ganesan, Sundar; Cheng, Hwai-Jong; Ming, Guo-li; Lu, Bai; Song, Hongjun

    2007-01-01

    Summary Adult neurogenesis occurs throughout life in discrete regions of the adult mammalian brain. Little is known about the mechanism governing the sequential developmental process that leads to integration of new neurons from adult neural stem cells into the existing circuitry. Here, we investigated roles of Disrupted-In-Schizophrenia 1 (DISC1), a schizophrenia susceptibility gene, in adult hippocampal neurogenesis. Unexpectedly, down regulation of DISC1 leads to accelerated neuronal integration, resulting in aberrant morphological development and mis-positioning of new dentate granule cells in a cell-autonomous fashion. Functionally, newborn neurons with DISC1 knockdown exhibit enhanced excitability and accelerated dendritic development and synapse formation. Furthermore, DISC1 cooperates with its binding partner Ndel1 in regulating adult neurogenesis. Taken together, our study identifies DISC1 as a key regulator that orchestrates the tempo of functional neuronal integration in the adult brain and demonstrates essential roles of a susceptibility gene for major mental illness in neuronal development, including adult neurogenesis. PMID:17825401

  5. Reactive gliosis in the pathogenesis of CNS diseases.

    PubMed

    Pekny, Milos; Pekna, Marcela

    2016-03-01

    Astrocytes maintain the homeostasis of the central nervous system (CNS) by e.g. recycling of neurotransmitters and providing nutrients to neurons. Astrocytes function also as key regulators of synaptic plasticity and adult neurogenesis. Any insult to the CNS tissue triggers a range of molecular, morphological and functional changes of astrocytes jointly called reactive (astro)gliosis. Reactive (astro)gliosis is highly heterogeneous and also context-dependent process that aims at the restoration of homeostasis and limits tissue damage. However, under some circumstances, dysfunctional (astro)gliosis can become detrimental and inhibit adaptive neural plasticity mechanisms needed for functional recovery. Understanding the multifaceted and context-specific functions of astrocytes will contribute to the development of novel therapeutic strategies that, when applied at the right time-point, will improve the outcome of diverse neurological disorders. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.

  6. A Sodium Leak Current Regulates Pacemaker Activity of Adult Central Pattern Generator Neurons in Lymnaea Stagnalis

    PubMed Central

    Lu, Tom Z.; Feng, Zhong-Ping

    2011-01-01

    The resting membrane potential of the pacemaker neurons is one of the essential mechanisms underlying rhythm generation. In this study, we described the biophysical properties of an uncharacterized channel (U-type channel) and investigated the role of the channel in the rhythmic activity of a respiratory pacemaker neuron and the respiratory behaviour in adult freshwater snail Lymnaea stagnalis. Our results show that the channel conducts an inward leak current carried by Na+ (ILeak-Na). The ILeak-Na contributed to the resting membrane potential and was required for maintaining rhythmic action potential bursting activity of the identified pacemaker RPeD1 neurons. Partial knockdown of the U-type channel suppressed the aerial respiratory behaviour of the adult snail in vivo. These findings identified the Na+ leak conductance via the U-type channel, likely a NALCN-like channel, as one of the fundamental mechanisms regulating rhythm activity of pacemaker neurons and respiratory behaviour in adult animals. PMID:21526173

  7. Id2 IS REQUIRED FOR SPECIFICATION OF DOPAMINERGIC NEURONS DURING ADULT OLFACTORY NEUROGENESIS

    PubMed Central

    Havrda, Matthew C.; Harris, Brent T.; Mantani, Akio; Ward, Nora M.; Paolella, Brenton R.; Cuzon, Verginia C.; Yeh, Hermes H.; Israel, Mark A.

    2009-01-01

    Understanding the biology of adult neural stem cells has important implications for nervous system development and may contribute to our understanding of neurodegenerative disorders and their treatment. We have characterized the process of olfactory neurogenesis in adult mice lacking Inhibitor of DNA Binding 2 (Id2). We found a diminished olfactory bulb containing reduced numbers of granular and periglomerular neurons with a distinct paucity of dopaminergic periglomerular neurons. While no deficiency of the stem cell compartment was detectable, migrating neuroblasts in Id2−/− mutant mice prematurely undergo astroglial differentiation within a disorganized rostral migratory stream. Further, when evaluated in vitro loss of Id2 results in decreased proliferation of neural progenitors and decreased expression of the Hes1 and Mash1 transcription factors, known mediators of neuronal differentiation. These data support a novel role for sustained Id2 expression in migrating neural progenitors mediating olfactory dopaminergic neuronal differentiation in adult animals. PMID:19109490

  8. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory?

    PubMed Central

    Deng, Wei; Aimone, James B.; Gage, Fred H.

    2010-01-01

    The integration of adult-born neurons into the circuitry of the adult hippocampus suggests an important role for adult hippocampal neurogenesis in learning and memory, but its specific function in these processes has remained elusive. In this article, we summarize recent progress in this area, including advances based on behavioural studies and insights provided by computational modelling. Increasingly, evidence suggests that newborn neurons might be involved in hippocampal functions that are particularly dependent on the dentate gyrus, such as pattern separation. Furthermore, newborn neurons at different maturation stages may make distinct contributions to learning and memory. In particular, computational studies suggest that, before newborn neurons are fully mature, they might function as a pattern integrator by introducing a degree of similarity to the encoding of events that occur closely in time. PMID:20354534

  9. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia.

    PubMed Central

    Lois, C; Alvarez-Buylla, A

    1993-01-01

    Subventricular zone (SVZ) cells proliferate spontaneously in vivo in the telencephalon of adult mammals. Several studies suggest that SVZ cells do not differentiate after mitosis into neurons or glia but die. In the present work, we show that SVZ cells labeled in the brains of adult mice with [3H]thymidine differentiate directly into neurons and glia in explant cultures. In vitro labeling with [3H]thymidine shows that 98% of the neurons that differentiate from the SVZ explants are derived from precursor cells that underwent their last division in vivo. This report identifies the SVZ cells as neuronal precursors in an adult mammalian brain. Images Fig. 1 Fig. 2 Fig. 3 PMID:8446631

  10. A Subset of Serotonergic Neurons Evokes Hunger in Adult Drosophila.

    PubMed

    Albin, Stephanie D; Kaun, Karla R; Knapp, Jon-Michael; Chung, Phuong; Heberlein, Ulrike; Simpson, Julie H

    2015-09-21

    Hunger is a complex motivational state that drives multiple behaviors. The sensation of hunger is caused by an imbalance between energy intake and expenditure. One immediate response to hunger is increased food consumption. Hunger also modulates behaviors related to food seeking such as increased locomotion and enhanced sensory sensitivity in both insects and vertebrates. In addition, hunger can promote the expression of food-associated memory. Although progress is being made, how hunger is represented in the brain and how it coordinates these behavioral responses is not fully understood in any system. Here, we use Drosophila melanogaster to identify neurons encoding hunger. We found a small group of neurons that, when activated, induced a fed fly to eat as though it were starved, suggesting that these neurons are downstream of the metabolic regulation of hunger. Artificially activating these neurons also promotes appetitive memory performance in sated flies, indicating that these neurons are not simply feeding command neurons but likely play a more general role in encoding hunger. We determined that the neurons relevant for the feeding effect are serotonergic and project broadly within the brain, suggesting a possible mechanism for how various responses to hunger are coordinated. These findings extend our understanding of the neural circuitry that drives feeding and enable future exploration of how state influences neural activity within this circuit.

  11. Pre-existing astrocytes form functional perisynaptic processes on neurons generated in the adult hippocampus.

    PubMed

    Krzisch, Marine; Temprana, Silvio G; Mongiat, Lucas A; Armida, Jan; Schmutz, Valentin; Virtanen, Mari A; Kocher-Braissant, Jacqueline; Kraftsik, Rudolf; Vutskits, Laszlo; Conzelmann, Karl-Klaus; Bergami, Matteo; Gage, Fred H; Schinder, Alejandro F; Toni, Nicolas

    2015-07-01

    The adult dentate gyrus produces new neurons that morphologically and functionally integrate into the hippocampal network. In the adult brain, most excitatory synapses are ensheathed by astrocytic perisynaptic processes that regulate synaptic structure and function. However, these processes are formed during embryonic or early postnatal development and it is unknown whether astrocytes can also ensheathe synapses of neurons born during adulthood and, if so, whether they play a role in their synaptic transmission. Here, we used a combination of serial-section immuno-electron microscopy, confocal microscopy, and electrophysiology to examine the formation of perisynaptic processes on adult-born neurons. We found that the afferent and efferent synapses of newborn neurons are ensheathed by astrocytic processes, irrespective of the age of the neurons or the size of their synapses. The quantification of gliogenesis and the distribution of astrocytic processes on synapses formed by adult-born neurons suggest that the majority of these processes are recruited from pre-existing astrocytes. Furthermore, the inhibition of astrocytic glutamate re-uptake significantly reduced postsynaptic currents and increased paired-pulse facilitation in adult-born neurons, suggesting that perisynaptic processes modulate synaptic transmission on these cells. Finally, some processes were found intercalated between newly formed dendritic spines and potential presynaptic partners, suggesting that they may also play a structural role in the connectivity of new spines. Together, these results indicate that pre-existing astrocytes remodel their processes to ensheathe synapses of adult-born neurons and participate to the functional and structural integration of these cells into the hippocampal network.

  12. Basic Concepts of CNS Development.

    ERIC Educational Resources Information Center

    Nowakowski, R. S.

    1987-01-01

    The goals of this review are to: (1) provide a set of concepts to aid in the understanding of complex processes which occur during central nervous system (CNS) development; (2) illustrate how they contribute to our knowlege of adult brain anatomy; and (3) delineate how modifications of normal developmental processes may affect the structure and…

  13. Populations of subplate and interstitial neurons in fetal and adult human telencephalon

    PubMed Central

    Judaš, Miloš; Sedmak, Goran; Pletikos, Mihovil; Jovanov-Milošević, Nataša

    2010-01-01

    In the adult human telencephalon, subcortical (gyral) white matter contains a special population of interstitial neurons considered to be surviving descendants of fetal subplate neurons [Kostovic & Rakic (1980) Cytology and the time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol9, 219]. We designate this population of cells as superficial (gyral) interstitial neurons and describe their morphology and distribution in the postnatal and adult human cerebrum. Human fetal subplate neurons cannot be regarded as interstitial, because the subplate zone is an essential part of the fetal cortex, the major site of synaptogenesis and the ‘waiting’ compartment for growing cortical afferents, and contains both projection neurons and interneurons with distinct input–output connectivity. However, although the subplate zone is a transient fetal structure, many subplate neurons survive postnatally as superficial (gyral) interstitial neurons. The fetal white matter is represented by the intermediate zone and well-defined deep periventricular tracts of growing axons, such as the corpus callosum, anterior commissure, internal and external capsule, and the fountainhead of the corona radiata. These tracts gradually occupy the territory of transient fetal subventricular and ventricular zones.The human fetal white matter also contains distinct populations of deep fetal interstitial neurons, which, by virtue of their location, morphology, molecular phenotypes and advanced level of dendritic maturation, remain distinct from subplate neurons and neurons in adjacent structures (e.g. basal ganglia, basal forebrain). We describe the morphological, histochemical (nicotinamide-adenine dinucleotide phosphate-diaphorase) and immunocytochemical (neuron-specific nuclear protein, microtubule-associated protein-2, calbindin, calretinin, neuropeptide Y) features of both deep fetal interstitial neurons and deep (periventricular

  14. Zebrafish adult-derived hypothalamic neurospheres generate gonadotropin-releasing hormone (GnRH) neurons

    PubMed Central

    Cortés-Campos, Christian; Letelier, Joaquín; Ceriani, Ricardo; Whitlock, Kathleen E.

    2015-01-01

    ABSTRACT Gonadotropin-releasing hormone (GnRH) is a hypothalamic decapeptide essential for fertility in vertebrates. Human male patients lacking GnRH and treated with hormone therapy can remain fertile after cessation of treatment suggesting that new GnRH neurons can be generated during adult life. We used zebrafish to investigate the neurogenic potential of the adult hypothalamus. Previously we have characterized the development of GnRH cells in the zebrafish linking genetic pathways to the differentiation of neuromodulatory and endocrine GnRH cells in specific regions of the brain. Here, we developed a new method to obtain neural progenitors from the adult hypothalamus in vitro. Using this system, we show that neurospheres derived from the adult hypothalamus can be maintained in culture and subsequently differentiate glia and neurons. Importantly, the adult derived progenitors differentiate into neurons containing GnRH and the number of cells is increased through exposure to either testosterone or GnRH, hormones used in therapeutic treatment in humans. Finally, we show in vivo that a neurogenic niche in the hypothalamus contains GnRH positive neurons. Thus, we demonstrated for the first time that neurospheres can be derived from the hypothalamus of the adult zebrafish and that these neural progenitors are capable of producing GnRH containing neurons. PMID:26209533

  15. Adult axolotls can regenerate original neuronal diversity in response to brain injury.

    PubMed

    Amamoto, Ryoji; Huerta, Violeta Gisselle Lopez; Takahashi, Emi; Dai, Guangping; Grant, Aaron K; Fu, Zhanyan; Arlotta, Paola

    2016-01-01

    The axolotl can regenerate multiple organs, including the brain. It remains, however, unclear whether neuronal diversity, intricate tissue architecture, and axonal connectivity can be regenerated; yet, this is critical for recovery of function and a central aim of cell replacement strategies in the mammalian central nervous system. Here, we demonstrate that, upon mechanical injury to the adult pallium, axolotls can regenerate several of the populations of neurons present before injury. Notably, regenerated neurons acquire functional electrophysiological traits and respond appropriately to afferent inputs. Despite the ability to regenerate specific, molecularly-defined neuronal subtypes, we also uncovered previously unappreciated limitations by showing that newborn neurons organize within altered tissue architecture and fail to re-establish the long-distance axonal tracts and circuit physiology present before injury. The data provide a direct demonstration that diverse, electrophysiologically functional neurons can be regenerated in axolotls, but challenge prior assumptions of functional brain repair in regenerative species. PMID:27156560

  16. Activating neurons by light in free-moving adult flies

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chin; Hsiao, Po-Yen; Chu, Li-An; Lin, Yen-Yin; Fu, Chien-Chung; Chiang, Ann-Shyn

    2015-01-01

    In this presentation, we show our preliminary results which is related to neurons activation in vivo by laser. A laser scanning system was adopted to guide laser beam to an assigned fly and an assigned position. A 473-nm laser can be a heat punishment source to restrain a wild-type fly's moving area. Furthermore, neurons in optogenetics transgene flies can be triggered by the blue laser in this system.

  17. Adult-born dentate neurons are recruited in both spatial memory encoding and retrieval.

    PubMed

    Tronel, Sophie; Charrier, Vanessa; Sage, Cyrille; Maitre, Marlene; Leste-Lasserre, Thierry; Abrous, Djoher N

    2015-11-01

    Adult neurogenesis occurs in the dentate gyrus (DG) of the hippocampus, which is a key structure in learning and memory. Adult-generated granule cells have been shown to play a role in spatial memory processes such as acquisition or retrieval, in particular during an immature stage when they exhibit a period of increased plasticity. Here, we demonstrate that immature and mature neurons born in the DG of adult rats are similarly activated in spatial memory processes. By imaging the activation of these two different neuron generations in the same rat and by using the immediate early gene Zif268, we show that these neurons are involved in both spatial memory acquisition and retrieval. These results demonstrate that adult-generated granule cells are involved in memory beyond their immaturity stage.

  18. Emerging restorative treatments for Parkinson's disease: manipulation and inducement of dopaminergic neurons from adult stem cells.

    PubMed

    Zhao, Junpeng; Xu, Qunyuan

    2011-06-01

    Parkinson's disease (PD) is a common neurodegenerative disease, characterized by a selective loss of midbrain Dopaminergic (DA) neurons. To address this problem, various types of stem cells that have potential to differentiate into DA neurons are being investigated as cellular therapies for PD, including cells derived from embryonic or adult donor tissue, and embryonic stem cells. These cell sources, however, have raised certain questions with regard to ethical and rejection issues. Recent progress in adult stems has further proved that the cells derived from adult tissue could be expanded and differentiated into DA precursor cells in vitro, and cell therapy with adult stem cells could produce a clear improvement for PD models. Using adult stem cells for clinic application may not only overcome the ethical problem inherent in using human fetal tissue or embryonic stem cells, but also open the possibility for autologous transplantation. The patient-specific adult stem cell is therefore a potential and prospective candidate for PD treatment.

  19. Dicer expression is essential for adult midbrain dopaminergic neuron maintenance and survival.

    PubMed

    Pang, Xueyan; Hogan, Eric M; Casserly, Alison; Gao, Guangping; Gardner, Paul D; Tapper, Andrew R

    2014-01-01

    The type III RNAse, Dicer, is responsible for the processing of microRNA (miRNA) precursors into functional miRNA molecules, non-coding RNAs that bind to and target messenger RNAs for repression. Dicer expression is essential for mouse midbrain development and dopaminergic (DAergic) neuron maintenance and survival during the early post-natal period. However, the role of Dicer in adult mouse DAergic neuron maintenance and survival is unknown. To bridge this gap in knowledge, we selectively knocked-down Dicer expression in individual DAergic midbrain areas, including the ventral tegmental area (VTA) and substantia nigra pars compacta (SNpc) via viral-mediated expression of Cre in adult floxed Dicer knock-in mice (Dicer(flox/flox)). Bilateral Dicer loss in the VTA resulted in progressive hyperactivity that was significantly reduced by the dopamine agonist, amphetamine. In contrast, decreased Dicer expression in the SNpc did not affect locomotor activity but did induce motor-learning impairment on an accelerating rotarod. Knock-down of Dicer in both midbrain regions of adult Dicer(flox/flox) mice resulted in preferential, progressive loss of DAergic neurons likely explaining motor behavior phenotypes. In addition, knock-down of Dicer in midbrain areas triggered neuronal death via apoptosis. Together, these data indicate that Dicer expression and, as a consequence, miRNA function, are essential for DAergic neuronal maintenance and survival in adult midbrain DAergic neuron brain areas.

  20. In Vitro Functional Assessment of Adult Spiral Ganglion Neurons (SGNs).

    PubMed

    Lee, Jeong Han; Sihn, Choongryoul; Wang, Wanging; Flores, Cristina Maria Perez; Yamoah, Ebenezer N

    2016-01-01

    Spiral ganglion neurons (SGNs) faithfully encode acoustic waves from hair cells to the cochlear nucleus (CN) using voltage-dependent ion channels. A sizable portion of our knowledge on SGN functions have been derived from pre-hearing neurons. In post-hearing SGNs, the mechanisms of how they encode the massive sound information without delay and precisely are largely unknown. Mature SGNs are housed in the central bony labyrinth of the cochlea, protected by a well-insulated myelin sheath, making it a technical feat to isolate viable neurons for rigorous functional electrophysiology. Recently, we have overcome the previous intractable hindrance in SGN functional analyses. We provide a step-by-step user-friendly protocol with practical applications, including patch-clamp recordings and imaging by using cultured SGNs. PMID:27259946

  1. Thalamocortical Projections onto Behaviorally Relevant Neurons Exhibit Plasticity during Adult Motor Learning.

    PubMed

    Biane, Jeremy S; Takashima, Yoshio; Scanziani, Massimo; Conner, James M; Tuszynski, Mark H

    2016-03-16

    Layer 5 neurons of the neocortex receive direct and relatively strong input from the thalamus. However, the intralaminar distribution of these inputs and their capacity for plasticity in adult animals are largely unknown. In slices of the primary motor cortex (M1), we simultaneously recorded from pairs of corticospinal neurons associated with control of distinct motor outputs: distal forelimb versus proximal forelimb. Activation of ChR2-expressing thalamocortical afferents in M1 before motor learning produced equivalent responses in monosynaptic excitation of neurons controlling the distal and proximal forelimb, suggesting balanced thalamic input at baseline. Following skilled grasp training, however, thalamocortical input shifted to bias activation of corticospinal neurons associated with control of the distal forelimb. This increase was associated with a cell-specific increase in mEPSC amplitude but not presynaptic release probability. These findings demonstrate distinct and highly segregated plasticity of thalamocortical projections during adult learning. PMID:26948893

  2. Specification of individual adult motor neuron morphologies by combinatorial transcription factor codes

    PubMed Central

    Enriquez, Jonathan; Venkatasubramanian, Lalanti; Baek, Myungin; Peterson, Meredith; Aghayeva, Ulkar; Mann, Richard S.

    2015-01-01

    Summary How the highly stereotyped morphologies of individual neurons are genetically specified is not well understood. We identify six transcription factors (TFs) expressed in a combinatorial manner in seven post-mitotic adult leg motor neurons (MNs) that are derived from a single neuroblast in Drosophila. Unlike TFs expressed in mitotically active neuroblasts, these TFs do not regulate each other's expression. Removing the activity of a single TF resulted in specific morphological defects, including muscle targeting and dendritic arborization, and in a highly specific walking defect in adult flies. In contrast, when the expression of multiple TFs was modified nearly complete transformations in MN morphologies were generated. These results show that the morphological characteristics of a single neuron are dictated by a combinatorial code of morphology TFs (mTFs). mTFs function at a previously unidentified regulatory tier downstream of factors acting in the NB, but independently of factors that act in terminally differentiated neurons. PMID:25959734

  3. [Adult neuronal ceroid lipofuscinosis (Kufs disease)--a rare cause of dementia].

    PubMed

    Kozian, R; Kiszka, T; Peter, K

    1994-11-01

    Kufs' disease is a very rare type of neuronal ceroid lipofuscinosis. A case of a 52 year old man with dementia is described. The cause for patient's dementia was the adult type (Kufs' disease) of neuronal ceroid lipofuscinosis. The diagnosis based on the histopathological post mortem-examination of the brain-tissue. A brother of our patient became ill with the same symptoms and at the same age of onset. So we conclude that there is a accumulation in the family.

  4. The Timing of Differentiation of Adult Hippocampal Neurons Is Crucial for Spatial Memory

    PubMed Central

    Cinà, Irene; Aceti, Massimiliano; Micheli, Laura; Bacci, Alberto; Cestari, Vincenzo; Tirone, Felice

    2008-01-01

    Adult neurogenesis in the dentate gyrus plays a critical role in hippocampus-dependent spatial learning. It remains unknown, however, how new neurons become functionally integrated into spatial circuits and contribute to hippocampus-mediated forms of learning and memory. To investigate these issues, we used a mouse model in which the differentiation of adult-generated dentate gyrus neurons can be anticipated by conditionally expressing the pro-differentiative gene PC3 (Tis21/BTG2) in nestin-positive progenitor cells. In contrast to previous studies that affected the number of newly generated neurons, this strategy selectively changes their timing of differentiation. New, adult-generated dentate gyrus progenitors, in which the PC3 transgene was expressed, showed accelerated differentiation and significantly reduced dendritic arborization and spine density. Functionally, this genetic manipulation specifically affected different hippocampus-dependent learning and memory tasks, including contextual fear conditioning, and selectively reduced synaptic plasticity in the dentate gyrus. Morphological and functional analyses of hippocampal neurons at different stages of differentiation, following transgene activation within defined time-windows, revealed that the new, adult-generated neurons up to 3–4 weeks of age are required not only to acquire new spatial information but also to use previously consolidated memories. Thus, the correct unwinding of these key memory functions, which can be an expression of the ability of adult-generated neurons to link subsequent events in memory circuits, is critically dependent on the correct timing of the initial stages of neuron maturation and connection to existing circuits. PMID:18842068

  5. Assigning Function to Adult-Born Neurons: A Theoretical Framework for Characterizing Neural Manipulation of Learning

    PubMed Central

    Hersman, Sarah; Rodriguez Barrera, Vanessa; Fanselow, Michael

    2016-01-01

    Neuroscientists are concerned with neural processes or computations, but these may not be directly observable. In the field of learning, a behavioral procedure is observed to lead to performance outcomes, but differing inferences on underlying internal processes can lead to difficulties in interpreting conflicting results. An example of this challenge is how many functions have been attributed to adult-born granule cells in the dentate gyrus. Some of these functions were suggested by computational models of the properties of these neurons, while others were hypothesized after manipulations of adult-born neurons resulted in changes to behavioral metrics. This review seeks to provide a framework, based in learning theory classification of behavioral procedures, of the processes that may be underlying behavioral results after manipulating procedure and observing performance. We propose that this framework can serve to clarify experimental findings on adult-born neurons as well as other classes of neural manipulations and their effects on behavior. PMID:26778981

  6. Organization of the histaminergic system in adult zebrafish (Danio rerio) brain: neuron number, location, and cotransmitters.

    PubMed

    Sundvik, Maria; Panula, Pertti

    2012-12-01

    Histamine is an essential factor in the ascending arousal system (AAS) during motivated behaviors. Histamine and hypocretin/orexin (hcrt) are proposed to be responsible for different aspects of arousal and wakefulness, histamine mainly for cognitive and motivated behaviors. In this study we visualized the entire histaminergic neuron population in adult male and female zebrafish brain and quantified the histaminergic neuron numbers. There were 40-45 histaminergic neurons in both male and female zebrafish brain. Further, we identified cotransmitters of histaminergic neurons in the ventrocaudal hypothalamus, i.e., around the posterior recess (PR) in adult zebrafish. Galanin, γ-aminobutyric acid (GABA), and thyrotropin-releasing hormone (TRH) were colocalized with histamine in some but not all neurons, a result that was verified by intracerebroventricular injections of colchicine into adult zebrafish. Fibers immunoreactive (ir) for galanin, GABA, TRH, or methionine-enkephalin (mENK) were dense in the ventrocaudal hypothalamus around the histaminergic neurons. In histamine-ir fibers TRH and galanin immunoreactivities were also detected in the ventral telencephalon. All these neurotransmitters are involved in maintaining the equilibrium of the sleep-wake state. Our results are in accordance with results from rats, further supporting the use of zebrafish as a tool to study molecular mechanisms underlying complex behaviors.

  7. Schwann Cell Expressed Nogo-B Modulates Axonal Branching of Adult Sensory Neurons Through the Nogo-B Receptor NgBR

    PubMed Central

    Eckharter, Christoph; Junker, Nina; Winter, Lilli; Fischer, Irmgard; Fogli, Barbara; Kistner, Steffen; Pfaller, Kristian; Zheng, Binhai; Wiche, Gerhard; Klimaschewski, Lars; Schweigreiter, Rüdiger

    2015-01-01

    In contrast to the central nervous system (CNS) nerve fibers do regenerate in the peripheral nervous system (PNS) although in a clinically unsatisfying manner. A major problem is excessive sprouting of regenerating axons which results in aberrant reinnervation of target tissue and impaired functional recovery. In the CNS, the reticulon protein Nogo-A has been identified as a prominent oligodendrocyte expressed inhibitor of long-distance growth of regenerating axons. We show here that the related isoform Nogo-B is abundantly expressed in Schwann cells in the PNS. Other than Nogo-A in oligodendrocytes, Nogo-B does not localize to the myelin sheath but is detected in the ER and the plasma membrane of Schwann cells. Adult sensory neurons that are cultured on nogo-a/b deficient Schwann cells form significantly fewer axonal branches vs. those on wildtype Schwann cells, while their maximal axonal extension is unaffected. We demonstrate that this effect of Nogo-B on neuronal morphology is restricted to undifferentiated Schwann cells and is mediated by direct physical contact between these two cell types. Moreover, we show that blocking the Nogo-B specific receptor NgBR, which we find expressed on sensory neurons and to interact with Schwann cell expressed Nogo-B, produces the same branching phenotype as observed after deletion of Nogo-B. These data provide evidence for a novel function of the nogo gene that is implemented by the Nogo-B isoform. The remarkably specific effects of Nogo-B/NgBR on axonal branching, while leaving axonal extension unaffected, are of potential clinical relevance in the context of excessive axonal sprouting after peripheral nerve injury. Main Points Nogo-B is prominently expressed in Schwann cells and localizes to the ER and plasma membrane. It distributes to the external cytoplasmic compartment of Schwann cells in vivo, but is absent from the myelin sheath. Genetic deletion of Nogo-B in Schwann cells reduces axonal branching, but not long

  8. The Transcription Repressor REST in Adult Neurons: Physiology, Pathology, and Diseases1,2,3

    PubMed Central

    Baldelli, Pietro

    2015-01-01

    Abstract REST [RE1-silencing transcription factor (also called neuron-restrictive silencer factor)] is known to repress thousands of possible target genes, many of which are neuron specific. To date, REST repression has been investigated mostly in stem cells and differentiating neurons. Current evidence demonstrates its importance in adult neurons as well. Low levels of REST, which are acquired during differentiation, govern the expression of specific neuronal phenotypes. REST-dependent genes encode important targets, including transcription factors, transmitter release proteins, voltage-dependent and receptor channels, and signaling proteins. Additional neuronal properties depend on miRNAs expressed reciprocally to REST and on specific splicing factors. In adult neurons, REST levels are not always low. Increases occur during aging in healthy humans. Moreover, extensive evidence demonstrates that prolonged stimulation with various agents induces REST increases, which are associated with the repression of neuron-specific genes with appropriate, intermediate REST binding affinity. Whether neuronal increases in REST are protective or detrimental remains a subject of debate. Examples of CA1 hippocampal neuron protection upon depolarization, and of neurodegeneration upon glutamate treatment and hypoxia have been reported. REST participation in psychiatric and neurological diseases has been shown, especially in Alzheimer’s disease and Huntington’s disease, as well as epilepsy. Distinct, complex roles of the repressor in these different diseases have emerged. In conclusion, REST is certainly very important in a large number of conditions. We suggest that the conflicting results reported for the role of REST in physiology, pathology, and disease depend on its complex, direct, and indirect actions on many gene targets and on the diverse approaches used during the investigations. PMID:26465007

  9. Neuronal development in larval chiton Ischnochiton hakodadensis (Mollusca: Polyplacophora).

    PubMed

    Voronezhskaya, Elena E; Tyurin, Sergei A; Nezlin, Leonid P

    2002-02-25

    Chitons are the most primitive molluscs and, thus, a matter of considerable interest for understanding both basic principles of molluscan neurogenesis and phylogeny. The development of the nervous system in trochophores of the chiton Ischnochiton hakodadensis from hatching to metamorphosis is described in detail by using confocal laser scanning microscopy and antibodies raised against serotonin, FMRFamide, and acetylated alpha tubulin. The earliest nervous elements detected were peripheral neurons located in the frontal hemisphere of posthatching trochophores and projecting into the apical organ. Among them, two pairs of unique large lateral cells appear to pioneer the pathways of developing adult nervous system. Chitons possess an apical organ that contains the largest number of neurons among all molluscan larvae investigated so far. Besides, many pretrochal neurons are situated outside the apical organ. The prototroch is not innervated by larval neurons. The first neurons of the developing adult central nervous system (CNS) appear later in the cerebral ganglion and pedal cords. None of the neurons of the larval nervous system are retained in the adult CNS. They cease to express their transmitter content and disintegrate after settlement. Although the adult CNS of chitons resembles that of polychaetes, their general scenario of neuronal development resembles that of advanced molluscs and differs from annelids. Thus, our data demonstrate the conservative pattern of molluscan neurogenesis and suggest independent origin of molluscan and annelid trochophores.

  10. [Regulation of neurogenesis: factors affecting of new neurons formation in adult mammals brain].

    PubMed

    Respondek, Michalina; Buszman, Ewa

    2015-12-31

    Neurogenesis is a complex and multi-step process of generating completely functional neurons. This process in adult brain is based on pluripotentional neuronal stem cells (NSC), which are able to proliferation and differentiation into mature neurons or glial cells. NSC are located in subgranular zone inside hippocampus and in subventricular zone. The new neurons formation depends on many endo- and exogenous factors which modulate each step of neurogenesis. This article describes the most important regulators of adult neurogenesis, mainly: neurotrophins, growth factors, hormones, neurotransmitters and microenvironment of NSC. Some drugs, especially antipsychotics, antidepressants and normothymics may affect the neurogenic properties of adult brain. Moreover pathological processes such as neuroinflammation, stroke or epilepsy are able to induce proliferation of NSC. The proneurogenic effects of psychotropic drugs and pathological processes are associated with their ability to increase some hormones and neurotrophins level, as well as with rising the expression of antiapoptotic Bcl-2 protein and metalloproteinase MMP-2. Additionaly, some drugs, for example haloperidol, are able to block prolactin and dopaminergic neuroblasts receptors. Down-regulation of adult neurogenesis is associated with alcohol abuse and high stress level. Negative effect of many drugs, such as cytostatics, COX-2 inhibitors and opioides was also observed. The proneurogenic effect of described factors suggest their broad therapeutic potential and gives a new perspective on an effective and modern treatment of many neuropsychiatric disorders. This effect can also help to clarify the pathogenesis of disorders associated with proliferation and degeneration of adult brain cells.

  11. Sublime microglia: expanding roles for the guardians of the CNS.

    PubMed

    Salter, Michael W; Beggs, Simon

    2014-07-01

    Recent findings challenge the concept that microglia solely function in disease states in the central nervous system (CNS). Rather than simply reacting to CNS injury, infection, or pathology, emerging lines of evidence indicate that microglia sculpt the structure of the CNS, refine neuronal circuitry and network connectivity, and contribute to plasticity. These physiological functions of microglia in the normal CNS begin during development and persist into maturity. Here, we develop a conceptual framework for functions of microglia beyond neuroinflammation and discuss the rich repertoire of signaling and communication motifs in microglia that are critical both in pathology and for the normal physiology of the CNS.

  12. Area-specific migration and recruitment of new neurons in the adult songbird brain.

    PubMed

    Vellema, Michiel; van der Linden, Annemie; Gahr, Manfred

    2010-05-01

    Neuron recruitment has been implicated in morphological and functional plasticity in the adult brain. Whereas mammals restrict neuron recruitment specifically to two regions of known plasticity, the hippocampus and olfactory bulb, newborn neurons are found throughout the forebrain of adult songbirds. In order to study the area-specificity of the widespread proliferation and recruitment in the songbird brain, six adult male canaries received repetitive intraperitoneal injections of the mitotic marker BrdU (5-bromo-2-deoxyuridine) and were sacrificed after 24 hours to study proliferation or after 38 days to study recruitment. Migration and incorporation of new neurons was apparent throughout many but not all parts of the canary forebrain and was quantitatively related to mitotic levels in the most closely associated proliferative zones. Surprisingly, some areas of the vocal control system sensitive to plastic changes, such as nucleus higher vocal center (HVC) and area X, recruited similar numbers of new neurons as their surrounding brain tissues, employing no specific directional mechanisms. The distribution pattern in and around HVC could best be described by a random displacement model, where cells originating from the overlying lateral ventricle can move independently in any direction. Other plastic song control areas, such as the medial magnocellular nucleus of anterior nidopallium and the robust nucleus of arcopallium, were specifically avoided by migrating neurons, while migration toward the olfactory bulb showed high specificity, similar to the mammalian rostral migratory stream. Thus, different mechanisms appear to organize area-specific neuron recruitment in different recipients of the adult songbird brain, unrelated to global plasticity of brain regions.

  13. IFN gamma regulates proliferation and neuronal differentiation by STAT1 in adult SVZ niche.

    PubMed

    Pereira, Leticia; Medina, Rebeca; Baena, Miguel; Planas, Anna M; Pozas, Esther

    2015-01-01

    The adult subventricular zone (SVZ) is the main neurogenic niche in normal adult brains of mice and rats. Interferon gamma (IFNγ) has somewhat controversially been associated with SVZ progenitor proliferation and neurogenesis. The in vivo involvement of IFNγ in the physiology of the adult SVZ niche is not fully understood and its intracellular mediators are unknown. Here we show that IFNγ, through activation of its canonical signal transducer and activator of transcription 1 (STAT1) pathway, acts specifically on Nestin+ progenitors by decreasing both progenitor proliferation and the number of cycling cells. In addition, IFNγ increases the number of neuroblasts generated without shifting glial fate determination. The final result is deficient recruitment of newborn neurons to the olfactory bulb (OB), indicating that IFNγ-induced stimulation of neuronal differentiation does not compensate for its antiproliferative effect. We conclude that IFNγ signaling via STAT1 in the SVZ acts dually as an antiproliferative and proneurogenic factor, and thereby regulates neurogenesis in normal adult brains.

  14. Desvenlafaxine may accelerate neuronal maturation in the dentate gyri of adult male rats.

    PubMed

    Asokan, Aditya; Ball, Alan R; Laird, Christina D; Hermer, Linda; Ormerod, Brandi K

    2014-01-01

    Adult hippocampal neurogenesis has been linked to the effects of anti-depressant drugs on behavior in rodent models of depression. To explore this link further, we tested whether the serotonin-norepinephrine reuptake inhibitor (SNRI) venlafaxine impacted adult hippocampal neurogenesis differently than its primary active SNRI metabolite desvenlafaxine. Adult male Long Evans rats (n = 5-6 per group) were fed vehicle, venlafaxine (0.5 or 5 mg) or desvenlafaxine (0.5 or 5 mg) twice daily for 16 days. Beginning the third day of drug treatment, the rats were given a daily bromodeoxyuridine (BrdU; 50 mg/kg) injection for 5 days to label dividing cells and then perfused 2 weeks after the first BrdU injection to confirm total new hippocampal cell numbers and their phenotypes. The high desvenlafaxine dose increased total new BrdU+ cell number and appeared to accelerate neuronal maturation because fewer BrdU+ cells expressed maturing neuronal phenotypes and more expressed mature neuronal phenotypes in the dentate gyri of these versus vehicle-treated rats. While net neurogenesis was not increased in the dentate gyri of rats treated with the high desvenlafaxine dose, significantly more mature neurons were detected. Our data expand the body of literature showing that antidepressants impact adult neurogenesis by stimulating NPC proliferation and perhaps the survival of neuronal progeny and by showing that a high dose of the SNRI antidepressant desvenlafaxine, but neither a high nor low venlafaxine dose, may also accelerate neuronal maturation in the adult rat hippocampus. These data support the hypothesis that hippocampal neurogenesis may indeed serve as a biomarker of depression and the effects of antidepressant treatment, and may be informative for developing novel fast-acting antidepressant strategies.

  15. Preparation of embryonic retinal explants to study CNS neurite growth.

    PubMed

    Hanea, Sonia T; Shanmugalingam, Ushananthini; Fournier, Alyson E; Smith, Patrice D

    2016-05-01

    This protocol outlines the preparation of embryonic mouse retinal explants, which provides an effective technique to analyze neurite outgrowth in central nervous system (CNS) neurons. This validated ex vivo system, which displays limited neuronal death, is highly reproducible and particularly amenable to manipulation. Our previously published studies involving embryonic chick or adult mouse retinal explants were instrumental in the preparation of this protocol; aspects of these previous techniques were combined, adopted and optimized. This protocol thus permits more efficient analysis of neurite growth. Briefly, the retina is dissected from the embryonic mouse eye using precise techniques that take into account the small size of the embryonic eye. The approach applied ensures that the retinal ganglion cell (RGC) layer faces the adhesion substrate on coated cover slips. Neurite growth is clear, well-delineated and readily quantifiable. These retinal explants can therefore be used to examine the neurite growth effects elicited by potential therapeutic agents. PMID:27072342

  16. Synaptic dysfunction, memory deficits and hippocampal atrophy due to ablation of mitochondrial fission in adult forebrain neurons

    PubMed Central

    Oettinghaus, B; Schulz, J M; Restelli, L M; Licci, M; Savoia, C; Schmidt, A; Schmitt, K; Grimm, A; Morè, L; Hench, J; Tolnay, M; Eckert, A; D'Adamo, P; Franken, P; Ishihara, N; Mihara, K; Bischofberger, J; Scorrano, L; Frank, S

    2016-01-01

    Well-balanced mitochondrial fission and fusion processes are essential for nervous system development. Loss of function of the main mitochondrial fission mediator, dynamin-related protein 1 (Drp1), is lethal early during embryonic development or around birth, but the role of mitochondrial fission in adult neurons remains unclear. Here we show that inducible Drp1 ablation in neurons of the adult mouse forebrain results in progressive, neuronal subtype-specific alterations of mitochondrial morphology in the hippocampus that are marginally responsive to antioxidant treatment. Furthermore, DRP1 loss affects synaptic transmission and memory function. Although these changes culminate in hippocampal atrophy, they are not sufficient to cause neuronal cell death within 10 weeks of genetic Drp1 ablation. Collectively, our in vivo observations clarify the role of mitochondrial fission in neurons, demonstrating that Drp1 ablation in adult forebrain neurons compromises critical neuronal functions without causing overt neurodegeneration. PMID:25909888

  17. Exclusion of Integrins from CNS Axons Is Regulated by Arf6 Activation and the AIS

    PubMed Central

    Franssen, Elske H. P.; Zhao, Rong-Rong; Koseki, Hiroaki; Kanamarlapudi, Venkateswarlu; Hoogenraad, Casper C.

    2015-01-01

    Integrins are adhesion and survival molecules involved in axon growth during CNS development, as well as axon regeneration after injury in the peripheral nervous system (PNS). Adult CNS axons do not regenerate after injury, partly due to a low intrinsic growth capacity. We have previously studied the role of integrins in axon growth in PNS axons; in the present study, we investigate whether integrin mechanisms involved in PNS regeneration may be altered or lacking from mature CNS axons by studying maturing CNS neurons in vitro. In rat cortical neurons, we find that integrins are present in axons during initial growth but later become restricted to the somato-dendritic domain. We investigated how this occurs and whether it can be altered to enhance axonal growth potential. We find a developmental change in integrin trafficking; transport becomes predominantly retrograde throughout axons, but not dendrites, as neurons mature. The directionality of transport is controlled through the activation state of ARF6, with developmental upregulation of the ARF6 GEF ARNO enhancing retrograde transport. Lowering ARF6 activity in mature neurons restores anterograde integrin flow, allows transport into axons, and increases axon growth. In addition, we found that the axon initial segment is partly responsible for exclusion of integrins and removal of this structure allows integrins into axons. Changing posttranslational modifications of tubulin with taxol also allows integrins into the proximal axon. The experiments suggest that the developmental loss of regenerative ability in CNS axons is due to exclusion of growth-related molecules due to changes in trafficking. PMID:26019348

  18. Development and Maturation of Embryonic Cortical Neurons Grafted into the Damaged Adult Motor Cortex

    PubMed Central

    Ballout, Nissrine; Frappé, Isabelle; Péron, Sophie; Jaber, Mohamed; Zibara, Kazem; Gaillard, Afsaneh

    2016-01-01

    Injury to the human central nervous system can lead to devastating consequences due to its poor ability to self-repair. Neural transplantation aimed at replacing lost neurons and restore functional circuitry has proven to be a promising therapeutical avenue. We previously reported in adult rodent animal models with cortical lesions that grafted fetal cortical neurons could effectively re-establish specific patterns of projections and synapses. The current study was designed to provide a detailed characterization of the spatio-temporal in vivo development of fetal cortical transplanted cells within the lesioned adult motor cortex and their corresponding axonal projections. We show here that as early as 2 weeks after grafting, cortical neuroblasts transplanted into damaged adult motor cortex developed appropriate projections to cortical and subcortical targets. Grafted cells initially exhibited characteristics of immature neurons, which then differentiated into mature neurons with appropriate cortical phenotypes where most were glutamatergic and few were GABAergic. All cortical subtypes identified with the specific markers CTIP2, Cux1, FOXP2, and Tbr1 were generated after grafting as evidenced with BrdU co-labeling. The set of data provided here is of interest as it sets biological standards for future studies aimed at replacing fetal cells with embryonic stem cells as a source of cortical neurons. PMID:27536221

  19. Neuregulin 1 as an endogenous regulator of nicotinic acetylcholine receptors in adult major pelvic ganglion neurons.

    PubMed

    Kim, Han-Gyu; Cho, Sung-Min; Lee, Choong-Ku; Jeong, Seong-Woo

    2015-08-01

    We investigated whether endogenous neuregulin 1 (NRG1) is released in a soluble form (called sNRG1) and upregulates expression of nicotinic acetylcholine receptor (nAChR) in autonomic major pelvic ganglion (MPG) neurons of adult rats. To elicit the release of sNRG1, either the hypogastric nerve or the pelvic nerve was electrically stimulated. Then, the MPG-conditioned medium (CM) was subjected to western blotting using an antibody directed against the N-terminal ectodomain of NRG1. Both sympathetic and parasympathetic nerve activation elicited the release of sNRG1 from MPG neurons in a frequency-dependent manner. The sNRG1 release was also induced by treatment of MPG neurons with either high KCl or neurotrophic factors. The biological activity of the released sNRG1 was detected by tyrosine phosphorylation (p185) of the ErbB2 receptors in MPG neurons. When MPG neurons were incubated for 6 h in the CM, the protein level of the nAChR α3 subunit and ACh-induced current (IACh) density were significantly increased. The CM-induced changes in IACh was abolished by a selective ErbB2 tyrosine kinase inhibitor. Taken together, these data suggest that NRG1 functions as an endogenous regulator of nAChR expression in adult MPG neurons.

  20. Dissecting the role of Engrailed in adult dopaminergic neurons--Insights into Parkinson disease pathogenesis.

    PubMed

    Rekaik, Hocine; Blaudin de Thé, François-Xavier; Prochiantz, Alain; Fuchs, Julia; Joshi, Rajiv L

    2015-12-21

    The homeoprotein Engrailed (Engrailed-1/Engrailed-2, collectively En1/2) is not only a survival factor for mesencephalic dopaminergic (mDA) neurons during development, but continues to exert neuroprotective and physiological functions in adult mDA neurons. Loss of one En1 allele in the mouse leads to progressive demise of mDA neurons in the ventral midbrain starting from 6 weeks of age. These mice also develop Parkinson disease-like motor and non-motor symptoms. The characterization of En1 heterozygous mice have revealed striking parallels to central mechanisms of Parkinson disease pathogenesis, mainly related to mitochondrial dysfunction and retrograde degeneration. Thanks to the ability of homeoproteins to transduce cells, En1/2 proteins have also been used to protect mDA neurons in various experimental models of Parkinson disease. This neuroprotection is partly linked to the ability of En1/2 to regulate the translation of certain nuclear-encoded mitochondrial mRNAs for complex I subunits. Other transcription factors that govern mDA neuron development (e.g. Foxa1/2, Lmx1a/b, Nurr1, Otx2, Pitx3) also continue to function for the survival and maintenance of mDA neurons in the adult and act through partially overlapping but also diverse mechanisms.

  1. Dissecting the role of Engrailed in adult dopaminergic neurons: Insights into Parkinson disease pathogenesis

    PubMed Central

    Rekaik, Hocine; Blaudin de Thé, François-Xavier; Prochiantz, Alain; Fuchs, Julia; Joshi, Rajiv L.

    2016-01-01

    The homeoprotein Engrailed (Engrailed-1/Engrailed-2, collectively En1/2) is not only a survival factor for mesencephalic dopaminergic (mDA) neurons during development, but continues to exert neuroprotective and physiological functions in adult mDA neurons. Loss of one En1 allele in the mouse leads to progressive demise of mDA neurons in the ventral midbrain starting from 6 weeks of age. These mice also develop Parkinson disease-like motor and non-motor symptoms. The characterization of En1 heterozygous mice have revealed striking parallels to central mechanisms of Parkinson disease pathogenesis, mainly related to mitochondrial dysfunction and retrograde degeneration. Thanks to the ability of homeoproteins to transduce cells, En1/2 proteins have also been used to protect mDA neurons in various experimental models of Parkinson disease. This neuroprotection is partly linked to the ability of En1/2 to regulate the translation of certain nuclear-encoded mitochondrial mRNAs for complex I subunits. Other transcription factors that govern mDA neuron development (e.g. Foxa1/2, Lmx1a/b, Nurr1, Otx2, Pitx3) also continue to function for the survival and maintenance of mDA neurons in the adult and act through partially overlapping but also diverse mechanisms. PMID:26459030

  2. Myosin II Motors and F-Actin Dynamics Drive the Coordinated Movement of the Centrosome and Soma during CNS Glial-Guided Neuronal Migration

    SciTech Connect

    Solecki, Dr. David; Trivedi, Dr. Niraj; Govek, Eve-Ellen; Kerekes, Ryan A; Gleason, Shaun Scott; Hatten, Mary E

    2009-01-01

    Lamination of cortical regions of the vertebrate brain depends on glial-guided neuronal migration. The conserved polarity protein Par6{alpha} localizes to the centrosome and coordinates forward movement of the centrosome and soma in migrating neurons. The cytoskeletal components that produce this unique form of cell polarity and their relationship to polarity signaling cascades are unknown. We show that F-actin and Myosin II motors are enriched in the neuronal leading process and that Myosin II activity is necessary for leading process actin dynamics. Inhibition of Myosin II decreased the speed of centrosome and somal movement, whereas Myosin II activation increased coordinated movement. Ectopic expression or silencing of Par6{alpha} inhibited Myosin II motors by decreasing Myosin light-chain phosphorylation. These findings suggest leading-process Myosin II may function to 'pull' the centrosome and soma forward during glial-guided migration by a mechanism involving the conserved polarity protein Par6{alpha}.

  3. Environment matters: synaptic properties of neurons born in the epileptic adult brain develop to reduce excitability.

    PubMed

    Jakubs, Katherine; Nanobashvili, Avtandil; Bonde, Sara; Ekdahl, Christine T; Kokaia, Zaal; Kokaia, Merab; Lindvall, Olle

    2006-12-21

    Neural progenitors in the adult dentate gyrus continuously produce new functional granule cells. Here we used whole-cell patch-clamp recordings to explore whether a pathological environment influences synaptic properties of new granule cells labeled with a GFP-retroviral vector. Rats were exposed to a physiological stimulus, i.e., running, or a brain insult, i.e., status epilepticus, which gave rise to neuronal death, inflammation, and chronic seizures. Granule cells formed after these stimuli exhibited similar intrinsic membrane properties. However, the new neurons born into the pathological environment differed with respect to synaptic drive and short-term plasticity of both excitatory and inhibitory afferents. The new granule cells formed in the epileptic brain exhibited functional connectivity consistent with reduced excitability. We demonstrate a high degree of plasticity in synaptic inputs to adult-born new neurons, which could act to mitigate pathological brain function.

  4. Hypoxia-ischemia induces DNA synthesis without cell proliferation in dying neurons in adult rodent brain.

    PubMed

    Kuan, Chia-Yi; Schloemer, Aryn J; Lu, Aigang; Burns, Kevin A; Weng, Wei-Lan; Williams, Michael T; Strauss, Kenneth I; Vorhees, Charles V; Flavell, Richard A; Davis, Roger J; Sharp, Frank R; Rakic, Pasko

    2004-11-24

    Recent studies suggest that postmitotic neurons can reenter the cell cycle as a prelude to apoptosis after brain injury. However, most dying neurons do not pass the G1/S-phase checkpoint to resume DNA synthesis. The specific factors that trigger abortive DNA synthesis are not characterized. Here we show that the combination of hypoxia and ischemia induces adult rodent neurons to resume DNA synthesis as indicated by incorporation of bromodeoxyuridine (BrdU) and expression of G1/S-phase cell cycle transition markers. After hypoxia-ischemia, the majority of BrdU- and neuronal nuclei (NeuN)-immunoreactive cells are also terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL)-stained, suggesting that they undergo apoptosis. BrdU+ neurons, labeled shortly after hypoxia-ischemia, persist for >5 d but eventually disappear by 28 d. Before disappearing, these BrdU+/NeuN+/TUNEL+ neurons express the proliferating cell marker Ki67, lose the G1-phase cyclin-dependent kinase (CDK) inhibitors p16INK4 and p27Kip1 and show induction of the late G1/S-phase CDK2 activity and phosphorylation of the retinoblastoma protein. This contrasts to kainic acid excitotoxicity and traumatic brain injury, which produce TUNEL-positive neurons without evidence of DNA synthesis or G1/S-phase cell cycle transition. These findings suggest that hypoxia-ischemia triggers neurons to reenter the cell cycle and resume apoptosis-associated DNA synthesis in brain. Our data also suggest that the demonstration of neurogenesis after brain injury requires not only BrdU uptake and mature neuronal markers but also evidence showing absence of apoptotic markers. Manipulating the aberrant apoptosis-associated DNA synthesis that occurs with hypoxia-ischemia and perhaps neurodegenerative diseases could promote neuronal survival and neurogenesis.

  5. Functional Integration of Adult-Born Hippocampal Neurons after Traumatic Brain Injury

    PubMed Central

    Villasana, Laura E.; Kim, Kristine N.

    2015-01-01

    Abstract Traumatic brain injury (TBI) increases hippocampal neurogenesis, which may contribute to cognitive recovery after injury. However, it is unknown whether TBI-induced adult-born neurons mature normally and functionally integrate into the hippocampal network. We assessed the generation, morphology, and synaptic integration of new hippocampal neurons after a controlled cortical impact (CCI) injury model of TBI. To label TBI-induced newborn neurons, we used 2-month-old POMC-EGFP mice, which transiently and specifically express EGFP in immature hippocampal neurons, and doublecortin-CreERT2 transgenic mice crossed with Rosa26-CAG-tdTomato reporter mice, to permanently pulse-label a cohort of adult-born hippocampal neurons. TBI increased the generation, outward migration, and dendritic complexity of neurons born during post-traumatic neurogenesis. Cells born after TBI had profound alterations in their dendritic structure, with increased dendritic branching proximal to the soma and widely splayed dendritic branches. These changes were apparent during early dendritic outgrowth and persisted as these cells matured. Whole-cell recordings from neurons generated during post-traumatic neurogenesis demonstrate that they are excitable and functionally integrate into the hippocampal circuit. However, despite their dramatic morphologic abnormalities, we found no differences in the rate of their electrophysiological maturation, or their overall degree of synaptic integration when compared to age-matched adult-born cells from sham mice. Our results suggest that cells born after TBI participate in information processing, and receive an apparently normal balance of excitatory and inhibitory inputs. However, TBI-induced changes in their anatomic localization and dendritic projection patterns could result in maladaptive network properties. PMID:26478908

  6. In Vivo Profiling Reveals a Competent Heat Shock Response in Adult Neurons: Implications for Neurodegenerative Disorders

    PubMed Central

    Carnemolla, Alisia; Lazell, Hayley; Moussaoui, Saliha; Bates, Gillian P.

    2015-01-01

    The heat shock response (HSR) is the main pathway used by cells to counteract proteotoxicity. The inability of differentiated neurons to induce an HSR has been documented in primary neuronal cultures and has been proposed to play a critical role in ageing and neurodegeneration. However, this accepted dogma has not been demonstrated in vivo. We used BAC transgenic mice generated by the Gene Expression Nervous System Atlas project to investigate the capacity of striatal medium sized spiny neurons to induce an HSR as compared to that of astrocytes and oligodendrocytes. We found that all cell populations were competent to induce an HSR upon HSP90 inhibition. We also show the presence and relative abundance of heat shock-related genes and proteins in these striatal cell populations. The identification of a competent HSR in adult neurons supports the development of therapeutics that target the HSR pathway as treatments for neurodegenerative disorders. PMID:26134141

  7. In Vivo Profiling Reveals a Competent Heat Shock Response in Adult Neurons: Implications for Neurodegenerative Disorders.

    PubMed

    Carnemolla, Alisia; Lazell, Hayley; Moussaoui, Saliha; Bates, Gillian P

    2015-01-01

    The heat shock response (HSR) is the main pathway used by cells to counteract proteotoxicity. The inability of differentiated neurons to induce an HSR has been documented in primary neuronal cultures and has been proposed to play a critical role in ageing and neurodegeneration. However, this accepted dogma has not been demonstrated in vivo. We used BAC transgenic mice generated by the Gene Expression Nervous System Atlas project to investigate the capacity of striatal medium sized spiny neurons to induce an HSR as compared to that of astrocytes and oligodendrocytes. We found that all cell populations were competent to induce an HSR upon HSP90 inhibition. We also show the presence and relative abundance of heat shock-related genes and proteins in these striatal cell populations. The identification of a competent HSR in adult neurons supports the development of therapeutics that target the HSR pathway as treatments for neurodegenerative disorders. PMID:26134141

  8. S100 protein-like immunoreactivity in the crypt olfactory neurons of the adult zebrafish.

    PubMed

    Germanà, A; Montalbano, G; Laurà, R; Ciriaco, E; del Valle, M E; Vega, José A

    2004-11-23

    The olfactory epithelium of some teleosts, including zebrafish, contains three types of olfactory sensory neurons. Because zebrafish has become an ideal model for the study of neurogenesis in the olfactory system, it is of capital importance the identification of specific markers for different neuronal populations. In this study we used immunohistochemistry to analyze the distribution of S100 protein-like in the adult zebrafish olfactory epithelium. Surprisingly, specific S100 protein-like immunostaining was detected exclusively in crypt neurons, whereas ciliated and microvillous neurons were not reactive, and the supporting glial cells as well. The pattern of immunostaining was exclusively cytoplasmic without apparent polarity within the soma, and the intensity of immunostaining was not related with the maturative stage of the neurons. The role of S100 protein in crypt olfactory neurons is unknown, although it is probably associated with the capacity of these cells to respond to chemical stimuli. In any case, it represents an excellent marker to identify crypt olfactory neurons in zebrafish.

  9. Environmental modulations of the number of midbrain dopamine neurons in adult mice.

    PubMed

    Tomas, Doris; Prijanto, Augustinus H; Burrows, Emma L; Hannan, Anthony J; Horne, Malcolm K; Aumann, Tim D

    2015-01-01

    Long-lasting changes in the brain or 'brain plasticity' underlie adaptive behavior and brain repair following disease or injury. Furthermore, interactions with our environment can induce brain plasticity. Increasingly, research is trying to identify which environments stimulate brain plasticity beneficial for treating brain and behavioral disorders. Two environmental manipulations are described which increase or decrease the number of tyrosine hydroxylase immunopositive (TH+, the rate-limiting enzyme in dopamine (DA) synthesis) neurons in the adult mouse midbrain. The first comprises pairing male and female mice together continuously for 1 week, which increases midbrain TH+ neurons by approximately 12% in males, but decreases midbrain TH+ neurons by approximately 12% in females. The second comprises housing mice continuously for 2 weeks in 'enriched environments' (EE) containing running wheels, toys, ropes, nesting material, etc., which increases midbrain TH+ neurons by approximately 14% in males. Additionally, a protocol is described for concurrently infusing drugs directly into the midbrain during these environmental manipulations to help identify mechanisms underlying environmentally-induced brain plasticity. For example, EE-induction of more midbrain TH+ neurons is abolished by concurrent blockade of synaptic input onto midbrain neurons. Together, these data indicate that information about the environment is relayed via synaptic input to midbrain neurons to switch on or off expression of 'DA' genes. Thus, appropriate environmental stimulation, or drug targeting of the underlying mechanisms, might be helpful for treating brain and behavioral disorders associated with imbalances in midbrain DA (e.g. Parkinson's disease, attention deficit and hyperactivity disorder, schizophrenia, and drug addiction).

  10. pUNISHER: a high-level expression cassette for use with recombinant viral vectors for rapid and long term in vivo neuronal expression in the CNS.

    PubMed

    Montesinos, Monica S; Chen, Zuxin; Young, Samuel M

    2011-12-01

    Fast onset and high-level neurospecific transgene expression in vivo is of importance for many areas in neuroscience, from basic to translational, and can significantly reduce the amount of vector load required to maintain transgene expression in vivo. In this study, we tested various cis elements to optimize transgene expression at transcriptional, posttranscriptional, and posttranslational levels and combined them together to create the high-level neuronal transgene expression cassette pUNISHER. Using a second-generation adenoviral vector system in combination with the pUNISHER cassette, we characterized its rate of onset of detectable expression and levels of expression compared with a neurospecific expression cassette driven by the 470-bp human synapsin promoter in vitro and in vivo. Our results demonstrate in primary neurons that the pUNISHER cassette, in a recombinant adenovirus type 5 background, led to a faster rate of onset of detectable transgene expression and higher level of transgene expression. More importantly, this cassette led to highly correlated neuronal expression in vivo and to stable transgene expression up to 30 days in the auditory brain stem with no toxicity on the characteristics of synaptic transmission and plasticity at the calyx of Held synapse. Thus the pUNISHER cassette is an ideal high-level neuronal expression cassette for use in vivo for neuroscience applications. PMID:21957229

  11. Regeneration and characterization of adult mouse hippocampal neurons in a defined in vitro system.

    PubMed

    Varghese, Kucku; Das, Mainak; Bhargava, Neelima; Stancescu, Maria; Molnar, Peter; Kindy, Mark S; Hickman, James J

    2009-02-15

    Although the majority of human illnesses occur during adulthood, most of the available in vitro disease models are based upon cells obtained from embryonic/fetal tissues because of the difficulties involved with culturing adult cells. Development of adult mouse neuronal cultures has a special significance because of the abundance of transgenic disease models that use this species. In this study a novel cell culture method has been developed that supports the long-term survival and physiological regeneration of adult mouse hippocampal cells in a serum-free defined environment. In this well-defined, controlled system, adult mouse hippocampal cells survived for up to 21 days in culture. The cultured cells exhibited typical hippocampal neuronal morphology and electrophysiological properties after recovery from the trauma of dissociation, and stained positive for the expected neuronal markers. This system has great potential as an investigative tool for in vitro studies of adult diseases, the aging brain or transgenic models of age-associated disorders. PMID:18955083

  12. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    SciTech Connect

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun; Fu, Yinghui

    2014-07-18

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1{sup +} or nestin{sup +} stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU{sup +} cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU{sup +} cells, very few are mash1{sup +} or nestin{sup +} stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1{sup +} microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition.

  13. Potential for Cell-Transplant Therapy with Human Neuronal Precursors to Treat Neuropathic Pain in Models of PNS and CNS Injury: Comparison of hNT2.17 and hNT2.19 Cell Lines

    PubMed Central

    Eaton, Mary J.; Berrocal, Yerko; Wolfe, Stacey Q.

    2012-01-01

    Effective treatment of sensory neuropathies in peripheral neuropathies and spinal cord injury (SCI) is one of the most difficult problems in modern clinical practice. Cell therapy to release antinociceptive agents near the injured spinal cord is a logical next step in the development of treatment modalities. But few clinical trials, especially for chronic pain, have tested the potential of transplant of cells to treat chronic pain. Cell lines derived from the human neuronal NT2 cell line parentage, the hNT2.17 and hNT2.19 lines, which synthesize and release the neurotransmitters gamma-aminobutyric acid (GABA) and serotonin (5HT), respectively, have been used to evaluate the potential of cell-based release of antinociceptive agents near the lumbar dorsal (horn) spinal sensory cell centers to relieve neuropathic pain after PNS (partial nerve and diabetes-related injury) and CNS (spinal cord injury) damage in rat models. Both cell lines transplants potently and permanently reverse behavioral hypersensitivity without inducing tumors or other complications after grafting. Functioning as cellular minipumps for antinociception, human neuronal precursors, like these NT2-derived cell lines, would likely provide a useful adjuvant or replacement for current pharmacological treatments for neuropathic pain. PMID:22619713

  14. Alternative generation of CNS neural stem cells and PNS derivatives from neural crest-derived peripheral stem cells.

    PubMed

    Weber, Marlen; Apostolova, Galina; Widera, Darius; Mittelbronn, Michel; Dechant, Georg; Kaltschmidt, Barbara; Rohrer, Hermann

    2015-02-01

    Neural crest-derived stem cells (NCSCs) from the embryonic peripheral nervous system (PNS) can be reprogrammed in neurosphere (NS) culture to rNCSCs that produce central nervous system (CNS) progeny, including myelinating oligodendrocytes. Using global gene expression analysis we now demonstrate that rNCSCs completely lose their previous PNS characteristics and acquire the identity of neural stem cells derived from embryonic spinal cord. Reprogramming proceeds rapidly and results in a homogenous population of Olig2-, Sox3-, and Lex-positive CNS stem cells. Low-level expression of pluripotency inducing genes Oct4, Nanog, and Klf4 argues against a transient pluripotent state during reprogramming. The acquisition of CNS properties is prevented in the presence of BMP4 (BMP NCSCs) as shown by marker gene expression and the potential to produce PNS neurons and glia. In addition, genes characteristic for mesenchymal and perivascular progenitors are expressed, which suggests that BMP NCSCs are directed toward a pericyte progenitor/mesenchymal stem cell (MSC) fate. Adult NCSCs from mouse palate, an easily accessible source of adult NCSCs, display strikingly similar properties. They do not generate cells with CNS characteristics but lose the neural crest markers Sox10 and p75 and produce MSC-like cells. These findings show that embryonic NCSCs acquire a full CNS identity in NS culture. In contrast, MSC-like cells are generated from BMP NCSCs and pNCSCs, which reveals that postmigratory NCSCs are a source for MSC-like cells up to the adult stage.

  15. Aberrant Synaptic Integration in Adult Lamina I Projection Neurons Following Neonatal Tissue Damage

    PubMed Central

    Li, Jie; Kritzer, Elizabeth; Craig, Paige E.

    2015-01-01

    Mounting evidence suggests that neonatal tissue damage evokes alterations in spinal pain reflexes which persist into adulthood. However, less is known about potential concomitant effects on the transmission of nociceptive information to the brain, as the degree to which early injury modulates synaptic integration and membrane excitability in mature spinal projection neurons remains unclear. Here we demonstrate that neonatal surgical injury leads to a significant shift in the balance between synaptic excitation and inhibition onto identified lamina I projection neurons of the adult mouse spinal cord. The strength of direct primary afferent input to mature spino-parabrachial neurons was enhanced following neonatal tissue damage, whereas the efficacy of both GABAergic and glycinergic inhibition onto the same population was compromised. This was accompanied by reorganization in the pattern of sensory input to adult projection neurons, which included a greater prevalence of monosynaptic input from low-threshold A-fibers when preceded by early tissue damage. In addition, neonatal incision resulted in greater primary afferent-evoked action potential discharge in mature projection neurons. Overall, these results demonstrate that tissue damage during early life causes a long-term increase in the gain of spinal nociceptive circuits, and suggest that the prolonged consequences of neonatal trauma may not be restricted to the spinal cord but rather include excessive ascending signaling to supraspinal pain centers. PMID:25673839

  16. Adult Human Nasal Mesenchymal-Like Stem Cells Restore Cochlear Spiral Ganglion Neurons After Experimental Lesion

    PubMed Central

    Bas, Esperanza; Van De Water, Thomas R.; Lumbreras, Vicente; Rajguru, Suhrud; Goss, Garrett; Hare, Joshua M.

    2014-01-01

    A loss of sensory hair cells or spiral ganglion neurons from the inner ear causes deafness, affecting millions of people. Currently, there is no effective therapy to repair the inner ear sensory structures in humans. Cochlear implantation can restore input, but only if auditory neurons remain intact. Efforts to develop stem cell-based treatments for deafness have demonstrated progress, most notably utilizing embryonic-derived cells. In an effort to bypass limitations of embryonic or induced pluripotent stem cells that may impede the translation to clinical applications, we sought to utilize an alternative cell source. Here, we show that adult human mesenchymal-like stem cells (MSCs) obtained from nasal tissue can repair spiral ganglion loss in experimentally lesioned cochlear cultures from neonatal rats. Stem cells engraft into gentamicin-lesioned organotypic cultures and orchestrate the restoration of the spiral ganglion neuronal population, involving both direct neuronal differentiation and secondary effects on endogenous cells. As a physiologic assay, nasal MSC-derived cells engrafted into lesioned spiral ganglia demonstrate responses to infrared laser stimulus that are consistent with those typical of excitable cells. The addition of a pharmacologic activator of the canonical Wnt/β-catenin pathway concurrent with stem cell treatment promoted robust neuronal differentiation. The availability of an effective adult autologous cell source for inner ear tissue repair should contribute to efforts to translate cell-based strategies to the clinic. PMID:24172073

  17. Reducing Lissencephaly-1 levels augments mitochondrial transport and has a protective effect in adult Drosophila neurons

    PubMed Central

    Vagnoni, Alessio; Hoffmann, Patrick C.; Bullock, Simon L.

    2016-01-01

    ABSTRACT Defective transport of mitochondria in axons is implicated in the pathogenesis of several age-associated neurodegenerative diseases. However, the regulation and function of axonal mitochondrial motility during normal ageing is poorly understood. Here, we use novel imaging procedures to characterise axonal transport of these organelles in the adult Drosophila wing nerve. During early adult life there is a boost and progressive decline in the proportion of mitochondria that are motile, which is not due to general changes in cargo transport. Experimental inhibition of the mitochondrial transport machinery specifically in adulthood accelerates the appearance of focal protein accumulations in ageing axons, which is suggestive of defects in protein homeostasis. Unexpectedly, lowering levels of Lissencephaly-1 (Lis1), a dynein motor co-factor, augments axonal mitochondrial transport in ageing wing neurons. Lis1 mutations suppress focal protein accumulations in ageing neurons, including those caused by interfering with the mitochondrial transport machinery. Our data provide new insights into the dynamics of mitochondrial motility in adult neurons in vivo, identify Lis1 as a negative regulator of transport of these organelles, and provide evidence of a link between mitochondrial movement and neuronal protein homeostasis. PMID:26598558

  18. Transport of L-glutamine, L-alanine, L-arginine and L-histidine by the neuron-specific Slc38a8 (SNAT8) in CNS.

    PubMed

    Hägglund, Maria G A; Hellsten, Sofie V; Bagchi, Sonchita; Philippot, Gaëtan; Löfqvist, Erik; Nilsson, Victor C O; Almkvist, Ingrid; Karlsson, Edvin; Sreedharan, Smitha; Tafreshiha, Atieh; Fredriksson, Robert

    2015-03-27

    Glutamine transporters are important for regulating levels of glutamate and GABA in the brain. To date, six members of the SLC38 family (SNATs) have been characterized and functionally subdivided them into System A (SNAT1, SNAT2 and SNAT4) and System N (SNAT3, SNAT5 and SNAT7). Here we present the first functional characterization of SLC38A8, one of the previous orphan transporters from the family, and we suggest that the encoded protein should be named SNAT8 to adhere with the SNAT nomenclature. We show that SLC38A8 has preference for transporting L-glutamine, L-alanine, L-arginine, L-histidine and L-aspartate using a Na+-dependent transport mechanism and that the functional characteristics of SNAT8 have highest similarity to the known System A transporters. We also provide a comprehensive central nervous system expression profile in mouse brain for the Slc38a8 gene and the SNAT8 protein. We show that Slc38a8 (SNAT8) is expressed in all neurons, both excitatory and inhibitory, in mouse brain using in situ hybridization and immunohistochemistry. Furthermore, proximity ligation assay shows highly similar subcellular expression of SNAT7 and SNAT8. In conclusion, the neuronal SLC38A8 has a broad amino acid transport profile and is the first identified neuronal System A transporter. This suggests a key role of SNAT8 in the glutamine/glutamate (GABA) cycle in the brain.

  19. Activation of local inhibitory circuits in the dentate gyrus by adult-born neurons.

    PubMed

    Drew, Liam J; Kheirbek, Mazen A; Luna, Victor M; Denny, Christine A; Cloidt, Megan A; Wu, Melody V; Jain, Swati; Scharfman, Helen E; Hen, René

    2016-06-01

    Robust incorporation of new principal cells into pre-existing circuitry in the adult mammalian brain is unique to the hippocampal dentate gyrus (DG). We asked if adult-born granule cells (GCs) might act to regulate processing within the DG by modulating the substantially more abundant mature GCs. Optogenetic stimulation of a cohort of young adult-born GCs (0 to 7 weeks post-mitosis) revealed that these cells activate local GABAergic interneurons to evoke strong inhibitory input to mature GCs. Natural manipulation of neurogenesis by aging-to decrease it-and housing in an enriched environment-to increase it-strongly affected the levels of inhibition. We also demonstrated that elevating activity in adult-born GCs in awake behaving animals reduced the overall number of mature GCs activated by exploration. These data suggest that inhibitory modulation of mature GCs may be an important function of adult-born hippocampal neurons. © 2015 Wiley Periodicals, Inc.

  20. Neonatal tissue injury reduces the intrinsic excitability of adult mouse superficial dorsal horn neurons.

    PubMed

    Li, J; Baccei, M L

    2014-01-01

    Tissue damage during the neonatal period evokes long-lasting changes in nociceptive processing within the adult spinal cord which contribute to persistent alterations in pain sensitivity. However, it remains unclear if the observed modifications in neuronal activity within the mature superficial dorsal horn (SDH) following early injury reflect shifts in the intrinsic membrane properties of these cells. Therefore, the present study was undertaken to identify the effects of neonatal surgical injury on the intrinsic excitability of both GABAergic and presumed glutamatergic neurons within lamina II of the adult SDH using in vitro patch clamp recordings from spinal cord slices prepared from glutamic acid decarboxylase-green fluorescent protein (Gad-GFP) mice. The results demonstrate that hindpaw surgical incision at postnatal day (P) 3 altered the passive membrane properties of both Gad-GFP and adjacent, non-GFP neurons in the mature SDH, as evidenced by decreased membrane resistance and more negative resting potentials in comparison to naïve littermate controls. This was accompanied by a reduction in the prevalence of spontaneous activity within the GABAergic population. Both Gad-GFP and non-GFP neurons displayed a significant elevation in rheobase and decreased instantaneous firing frequency after incision, suggesting that early tissue damage lowers the intrinsic membrane excitability of adult SDH neurons. Isolation of inward-rectifying K(+) (K(ir)) currents revealed that neonatal incision significantly increased K(ir) conductance near physiological membrane potentials in GABAergic, but not glutamatergic, lamina II neurons. Overall, these findings suggest that neonatal tissue injury causes a long-term dampening of intrinsic firing across the general population of lamina II interneurons, but the underlying ionic mechanisms may be cell-type specific.

  1. Adult retinal pigment epithelium cells express neural progenitor properties and the neuronal precursor protein doublecortin.

    PubMed

    Engelhardt, Maren; Bogdahn, Ulrich; Aigner, Ludwig

    2005-04-01

    The adult mammalian retina is devoid of any detectable neurogenesis. However, different cell types have been suggested to potentially act as neural progenitors in the adult mammalian retina in vitro, such as ciliary body (CB), Muller glia, and retinal pigment epithelium (RPE) cells. In rodents and humans, strong evidence for neural stem or progenitor properties exists only for CB-derived cells, but not for other retinal cell types. Here, we provide a comparative analysis of adult rat CB- and RPE-derived cells suggesting that the two cell types share certain neural progenitor properties in vitro. CB and RPE cells expressed neural progenitor markers such as Nestin, Flk-1, Hes1, and Musashi. They proliferated under adherent and neurosphere conditions and showed limited self-renewal. Moreover, they differentiated into neuronal and glial cells based on the expression of differentiation markers such as the young neuronal marker beta-III tubulin and the glial and progenitor markers GFAP and NG2. Expression of beta-III tubulin was found in cells with neuronal and non-neuronal morphology. A subpopulation of RPE- and CB-derived progenitor cells expressed the neurogenesis-specific protein doublecortin (DCX). Interestingly, DCX expression defined a beta-III tubulin-positive CB and RPE fraction with a distinct neuronal morphology. In summary, the data suggest that RPE cells share with CB cells the potential to de-differentiate into a cell type with neural progenitor-like identity. In addition, DCX expression might define the neuronal-differentiating RPE- and CB-derived progenitor population. PMID:15804431

  2. Cells from the adult corneal stroma can be reprogrammed to a neuron-like cell using exogenous growth factors

    SciTech Connect

    Greene, Carol Ann Chang, Chuan-Yuan; Fraser, Cameron J.; Nelidova, Dasha E.; Chen, Jing A.; Lim, Angela; Brebner, Alex; McGhee, Jennifer; Sherwin, Trevor; Green, Colin R.

    2014-03-10

    Cells thought to be stem cells isolated from the cornea of the eye have been shown to exhibit neurogenic potential. We set out to uncover the identity and location of these cells within the cornea and to elucidate their neuronal protein and gene expression profile during the process of switching to a neuron-like cell. Here we report that every cell of the adult human and rat corneal stroma is capable of differentiating into a neuron-like cell when treated with neurogenic differentiation specifying growth factors. Furthermore, the expression of genes regulating neurogenesis and mature neuronal structure and function was increased. The switch from a corneal stromal cell to a neuron-like cell was also shown to occur in vivo in intact corneas of living rats. Our results clearly indicate that lineage specifying growth factors can affect changes in the protein and gene expression profiles of adult cells, suggesting that possibly many adult cell populations can be made to switch into another type of mature cell by simply modifying the growth factor environment. - Highlights: • Adult corneal stromal cells can differentiated into neuron-like cells. • Neuronal specification of the adult stromal cell population is stochastic. • Neuronal specification in an adult cell population can be brought about by growth factors.

  3. Generation of cloned mice from adult neurons by direct nuclear transfer.

    PubMed

    Mizutani, Eiji; Oikawa, Mami; Kassai, Hidetoshi; Inoue, Kimiko; Shiura, Hirosuke; Hirasawa, Ryutaro; Kamimura, Satoshi; Matoba, Shogo; Ogonuki, Narumi; Nagatomo, Hiroaki; Abe, Kuniya; Wakayama, Teruhiko; Aiba, Atsu; Ogura, Atsuo

    2015-03-01

    Whereas cloning mammals by direct somatic cell nuclear transfer has been successful using a wide range of donor cell types, neurons from adult brain remain "unclonable" for unknown reasons. Here, using a combination of two epigenetic approaches, we examined whether neurons from adult mice could be cloned. First, we used a specific antibody to discover cell types with reduced amounts of a repressive histone mark-dimethylated histone H3 lysine 9 (H3K9me2)-and identified CA1 pyramidal cells in the hippocampus and Purkinje cells in the cerebellum as candidates. Second, reconstructed embryos were treated with trichostatin A (TSA), a potent histone deacetylase inhibitor. Using CA1 cells, cloned offspring were obtained at high rates, reaching 10.2% and 4.6% (of embryos transferred) for male and female donors, respectively. Cerebellar Purkinje cell nuclei were too large to maintain their genetic integrity during nuclear transfer, leading to developmental arrest of embryos. However, gene expression analysis using cloned blastocysts corroborated a high rate of genomic reprogrammability of CA1 pyramidal and Purkinje cells. Neurons from the hippocampal dentate gyrus and cerebral cortex, which had higher amounts of H3K9me2, could also be used for producing cloned offspring, but the efficiencies were low. A more thorough analysis revealed that TSA treatment was essential for cloning adult neuronal cells. This study demonstrates, to our knowledge for the first time, that adult neurons can be cloned by nuclear transfer. Furthermore, our data imply that reduced amounts of H3K9me2 and increased histone acetylation appear to act synergistically to improve the development of cloned embryos.

  4. CYTOPLASMIC INCLUSIONS RESEMBLING NUCLEOLI IN SYMPATHETIC NEURONS OF ADULT RATS

    PubMed Central

    Grillo, Mary A.

    1970-01-01

    A distinctive cytoplasmic inclusion consisting of a convoluted network of electron-opaque strands embedded in a less dense matrix was identified in the neurons, but not in the supporting cells, of rat sympathetic ganglia. This ball-like structure, designated "nematosome," measures ∼ 0.9 µ and lacks a limiting membrane. Its strands (diameter = 400–600 A) appear to be made of an entanglement of tightly packed filaments and particles ∼ 25–50 A thick. Cytochemical studies carried out with the light microscope suggest the presence of nonhistone proteins and some RNA. Usually only one such structure is present in a cell, and it appears to occur in most ganglion cells. Although they can be seen anywhere in the cell body, nematosomes are typically located in the perinuclear cytoplasm, where they are often associated with smooth-surfaced and coated vesicles. In fine structure and stainability, they bear a resemblance to the fibrous component of the nucleolus. Subsynaptic formations, which are a special feature of some of the synapses in sympathetic ganglia, appear similar to the threadlike elements in the nematosomes. The possibility that these three structures—nucleolus, nematosome, and subsynaptic formation—may be interrelated in origin and function is discussed. PMID:5458990

  5. A simple method for imaging axonal transport in aging neurons using the adult Drosophila wing.

    PubMed

    Vagnoni, Alessio; Bullock, Simon L

    2016-09-01

    There is growing interest in the link between axonal cargo transport and age-associated neuronal dysfunction. The study of axonal transport in neurons of adult animals requires intravital or ex vivo imaging approaches, which are laborious and expensive in vertebrate models. We describe simple, noninvasive procedures for imaging cargo motility within axons using sensory neurons of the translucent Drosophila wing. A key aspect is a method for mounting the intact fly that allows detailed imaging of transport in wing neurons. Coupled with existing genetic tools in Drosophila, this is a tractable system for studying axonal transport over the life span of an animal and thus for characterization of the relationship between cargo dynamics, neuronal aging and disease. Preparation of a sample for imaging takes ∼5 min, with transport typically filmed for 2-3 min per wing. We also document procedures for the quantification of transport parameters from the acquired images and describe how the protocol can be adapted to study other cell biological processes in aging neurons. PMID:27560175

  6. Adult axolotls can regenerate original neuronal diversity in response to brain injury

    PubMed Central

    Amamoto, Ryoji; Huerta, Violeta Gisselle Lopez; Takahashi, Emi; Dai, Guangping; Grant, Aaron K; Fu, Zhanyan; Arlotta, Paola

    2016-01-01

    The axolotl can regenerate multiple organs, including the brain. It remains, however, unclear whether neuronal diversity, intricate tissue architecture, and axonal connectivity can be regenerated; yet, this is critical for recovery of function and a central aim of cell replacement strategies in the mammalian central nervous system. Here, we demonstrate that, upon mechanical injury to the adult pallium, axolotls can regenerate several of the populations of neurons present before injury. Notably, regenerated neurons acquire functional electrophysiological traits and respond appropriately to afferent inputs. Despite the ability to regenerate specific, molecularly-defined neuronal subtypes, we also uncovered previously unappreciated limitations by showing that newborn neurons organize within altered tissue architecture and fail to re-establish the long-distance axonal tracts and circuit physiology present before injury. The data provide a direct demonstration that diverse, electrophysiologically functional neurons can be regenerated in axolotls, but challenge prior assumptions of functional brain repair in regenerative species. DOI: http://dx.doi.org/10.7554/eLife.13998.001 PMID:27156560

  7. Generation of glutamatergic neurons from postnatal and adult subventricular zone with pyramidal-like morphology.

    PubMed

    Sequerra, Eduardo B; Miyakoshi, Leo M; Fróes, Maira M; Menezes, João R L; Hedin-Pereira, Cecilia

    2010-11-01

    The mammalian subventricular zone (SVZ) contains progenitors derived from cerebral cortex radial glia cells, which give rise to glutamatergic pyramidal neurons during embryogenesis. However, during postnatal life, SVZ generates neurons that migrate and differentiate into olfactory bulb γ-aminobutyric acid (GABA)ergic interneurons. In this work, we tested if SVZ cells are able to produce glutamatergic neurons if confronted with the embryonic cortical ventricular zone environment. Different from typical SVZ chain migration, cells from P9-P11 SVZ explants migrate into embryonic cortical slices individually, many of which radially oriented. An average of 82.5% of green fluorescent protein-positive cells were immunolabeled for neuronal marker class III β-tubulin. Invading cells differentiate into multiple morphologies, including a pyramidal-like morphotype. A subset of these cells are GABAergic; however, about 28% of SVZ-derived cells are immunoreactive for glutamate. Adult SVZ explants also give rise to glutamatergic neurons in these conditions. Taken together, our results indicate that SVZ can be a source of glutamatergic cortical neurons when submitted to proper environmental cues.

  8. TOPP in the CNS

    NASA Astrophysics Data System (ADS)

    Smart, R. L.; Lattanzi, M. G.; Jahreiss, H.; Bucciarelli, B.; Massone, G.

    2006-08-01

    Introduction: We present the Torino Observatory Parallax Program (TOPP) results for 22 candidates for the Catalog of Nearby Stars (CNS). Methods: Observations were made with the Torino OTAP 1.05m telescope over the period 1996-2001. Results: For the 22 objects examined 12 are within the CNS limit. Discussion: We discuss at length the objects out side the CNS limits which are either misclassified or objects with incorrect trigonometric parallaxes.

  9. Sustaining intrinsic growth capacity of adult neurons promotes spinal cord regeneration

    NASA Astrophysics Data System (ADS)

    Neumann, Simona; Skinner, Kate; Basbaum, Allan I.

    2005-11-01

    The peripheral axonal branch of primary sensory neurons readily regenerates after peripheral nerve injury, but the central branch, which courses in the dorsal columns of the spinal cord, does not. However, if a peripheral nerve is transected before a spinal cord injury, sensory neurons that course in the dorsal columns will regenerate, presumably because their intrinsic growth capacity is enhanced by the priming peripheral nerve lesion. As the effective priming lesion is made before the spinal cord injury it would clearly have no clinical utility, and unfortunately, a priming lesion made after a spinal cord injury results in an abortive regenerative response. Here, we show that two priming lesions, one made at the time of a spinal cord injury and a second 1 week after a spinal cord injury, in fact, promote dramatic regeneration, within and beyond the lesion. The first lesion, we hypothesize, enhances intrinsic growth capacity, and the second one sustains it, providing a paradigm for promoting CNS regeneration after injury. primary afferents | dorsal columns | neurite outgrowth | sprouting | priming

  10. Transplanted neurons integrate into adult retinas and respond to light

    PubMed Central

    Venugopalan, Praseeda; Wang, Yan; Nguyen, Tu; Huang, Abigail; Muller, Kenneth J.; Goldberg, Jeffrey L.

    2016-01-01

    Retinal ganglion cells (RGCs) degenerate in diseases like glaucoma and are not replaced in adult mammals. Here we investigate whether transplanted RGCs can integrate into the mature retina. We have transplanted GFP-labelled RGCs into uninjured rat retinas in vivo by intravitreal injection. Transplanted RGCs acquire the general morphology of endogenous RGCs, with axons orienting towards the optic nerve head of the host retina and dendrites growing into the inner plexiform layer. Preliminary data show in some cases GFP+ axons extending within the host optic nerves and optic tract, reaching usual synaptic targets in the brain, including the lateral geniculate nucleus and superior colliculus. Electrophysiological recordings from transplanted RGCs demonstrate the cells' electrical excitability and light responses similar to host ON, ON–OFF and OFF RGCs, although less rapid and with greater adaptation. These data present a promising approach to develop cell replacement strategies in diseased retinas with degenerating RGCs. PMID:26843334

  11. Doublecortin (DCX) is not Essential for Survival and Differentiation of Newborn Neurons in the Adult Mouse Dentate Gyrus

    PubMed Central

    Dhaliwal, Jagroop; Xi, Yanwei; Bruel-Jungerman, Elodie; Germain, Johanne; Francis, Fiona; Lagace, Diane C.

    2016-01-01

    In the adult brain, expression of the microtubule-associated protein Doublecortin (DCX) is associated with neural progenitor cells (NPCs) that give rise to new neurons in the dentate gyrus. Many studies quantify the number of DCX-expressing cells as a proxy for the level of adult neurogenesis, yet no study has determined the effect of removing DCX from adult hippocampal NPCs. Here, we use a retroviral and inducible mouse transgenic approach to either knockdown or knockout DCX from adult NPCs in the dentate gyrus and examine how this affects cell survival and neuronal maturation. Our results demonstrate that shRNA-mediated knockdown of DCX or Cre-mediated recombination in floxed DCX mice does not alter hippocampal neurogenesis and does not change the neuronal fate of the NPCs. Together these findings show that the survival and maturation of adult-generated hippocampal neurons does not require DCX. PMID:26793044

  12. Muscarinic acetylcholine receptor modulation of mu (mu) opioid receptors in adult rat sphenopalatine ganglion neurons.

    PubMed

    Margas, Wojciech; Mahmoud, Saifeldin; Ruiz-Velasco, Victor

    2010-01-01

    The sphenopalatine ganglion (SPG) neurons represent the parasympathetic branch of the autonomic nervous system involved in controlling cerebral blood flow. In the present study, we examined the coupling mechanism between mu (mu) opioid receptors (MOR) and muscarinic acetylcholine receptors (mAChR) with Ca(2+) channels in acutely dissociated adult rat SPG neurons. Successful MOR activation was recorded in approximately 40-45% of SPG neurons employing the whole cell variant of the patch-clamp technique. In addition, immunofluorescence assays indicated that MOR are not expressed in all SPG neurons while M(2) mAChR staining was evident in all neurons. The concentration-response relationships generated with morphine and [d-Ala2-N-Me-Phe4-Glycol5]-enkephalin (DAMGO) showed IC(50) values of 15.2 and 56.1 nM and maximal Ca(2+) current inhibition of 26.0 and 38.7%, respectively. Activation of MOR or M(2) mAChR with morphine or oxotremorine-methiodide (Oxo-M), respectively, resulted in voltage-dependent inhibition of Ca(2+) currents via coupling with Galpha(i/o) protein subunits. The acute prolonged exposure (10 min) of neurons to morphine or Oxo-M led to the homologous desensitization of MOR and M(2) mAChR, respectively. The prolonged stimulation of M(2) mAChR with Oxo-M resulted in heterologous desensitization of morphine-mediated Ca(2+) current inhibition, and was sensitive to the M(2) mAChR blocker methoctramine. On the other hand, when the neurons were exposed to morphine or DAMGO for 10 min, heterologous desensitization of M(2) mAChR was not observed. These results suggest that in rat SPG neurons activation of M(2) mAChR likely modulates opioid transmission in the brain vasculature to adequately maintain cerebral blood flow. PMID:19889856

  13. Effects of urethane on the response properties of visual cortical neurons in young adult and old cats.

    PubMed

    Peng, Qing-Song; Zhou, Jun; Shi, Xia-Ming; Hua, Guo-Peng; Hua, Tian-Miao

    2011-06-01

    Previous studies have shown that visual cortical neurons in old mammals exhibit higher spontaneous activity, higher responsiveness to visual stimuli, and lower selectivity for stimulus orientations and motion directions than did neurons in young adult counterparts. However, whether the responsive difference in cortical neurons between young and old animals resulted from different effects induced by anesthetics has remained unclear. To clarify this issue, we recorded the response properties of individual neurons in the primary visual cortex of old and young adult cats while systematically varying the anesthesia level of urethane, a widely used anesthetic in physiology experiments. Our results showed that cumulatively administrating 50 mg and 100 mg of urethane upon the minimal level of urethane required to anesthetize an old or young adult cat did not significantly alter the degree of neuronal response selectivity for stimulus orientations and motion directions nor significantly change the visually-driven response and spontaneous activity of neurons in old and young adult cats. Cumulatively administrating 150 mg of urethane decreased neuronal responsiveness similarly in both age groups. Therefore, urethane appears to exert similar effects on neuronal response properties of old and young adult animals. PMID:21698802

  14. Trim9 Deletion Alters the Morphogenesis of Developing and Adult-Born Hippocampal Neurons and Impairs Spatial Learning and Memory

    PubMed Central

    Winkle, Cortney C.; Olsen, Reid H. J.; Kim, Hyojin; Moy, Sheryl S.

    2016-01-01

    During hippocampal development, newly born neurons migrate to appropriate destinations, extend axons, and ramify dendritic arbors to establish functional circuitry. These developmental stages are recapitulated in the dentate gyrus of the adult hippocampus, where neurons are continuously generated and subsequently incorporate into existing, local circuitry. Here we demonstrate that the E3 ubiquitin ligase TRIM9 regulates these developmental stages in embryonic and adult-born mouse hippocampal neurons in vitro and in vivo. Embryonic hippocampal and adult-born dentate granule neurons lacking Trim9 exhibit several morphological defects, including excessive dendritic arborization. Although gross anatomy of the hippocampus was not detectably altered by Trim9 deletion, a significant number of Trim9−/− adult-born dentate neurons localized inappropriately. These morphological and localization defects of hippocampal neurons in Trim9−/− mice were associated with extreme deficits in spatial learning and memory, suggesting that TRIM9-directed neuronal morphogenesis may be involved in hippocampal-dependent behaviors. SIGNIFICANCE STATEMENT Appropriate generation and incorporation of adult-born neurons in the dentate gyrus are critical for spatial learning and memory and other hippocampal functions. Here we identify the brain-enriched E3 ubiquitin ligase TRIM9 as a novel regulator of embryonic and adult hippocampal neuron shape acquisition and hippocampal-dependent behaviors. Genetic deletion of Trim9 elevated dendritic arborization of hippocampal neurons in vitro and in vivo. Adult-born dentate granule cells lacking Trim9 similarly exhibited excessive dendritic arborization and mislocalization of cell bodies in vivo. These cellular defects were associated with severe deficits in spatial learning and memory. PMID:27147649

  15. Neuronal gap junctions play a role in the secondary neuronal death following controlled cortical impact.

    PubMed

    Belousov, Andrei B; Wang, Yongfu; Song, Ji-Hoon; Denisova, Janna V; Berman, Nancy E; Fontes, Joseph D

    2012-08-22

    In the mammalian CNS, excessive release of glutamate and overactivation of glutamate receptors are responsible for the secondary (delayed) neuronal death following neuronal injury, including ischemia, traumatic brain injury (TBI) and epilepsy. Recent studies in mice showed a critical role for neuronal gap junctions in NMDA receptor-mediated excitotoxicity and ischemia-mediated neuronal death. Here, using controlled cortical impact (CCI) in adult mice, as a model of TBI, and Fluoro-Jade B staining for analysis of neuronal death, we set to determine whether neuronal gap junctions play a role in the CCI-mediated secondary neuronal death. We report that 24h post-CCI, substantial neuronal death is detected in a number of brain regions outside the injury core, including the striatum. The striatal neuronal death is reduced both in wild-type mice by systemic administration of mefloquine (a relatively selective blocker of neuronal gap junctions) and in knockout mice lacking connexin 36 (neuronal gap junction protein). It is also reduced by inactivation of group II metabotropic glutamate receptors (with LY341495) which, as reported previously, control the rapid increase in neuronal gap junction coupling following different types of neuronal injury. The results suggest that neuronal gap junctions play a critical role in the CCI-induced secondary neuronal death. PMID:22781494

  16. Running rewires the neuronal network of adult-born dentate granule cells.

    PubMed

    Vivar, Carmen; Peterson, Benjamin D; van Praag, Henriette

    2016-05-01

    Exercise improves cognition in humans and animals. Running increases neurogenesis in the dentate gyrus of the hippocampus, a brain area important for learning and memory. It is unclear how running modifies the circuitry of new dentate gyrus neurons to support their role in memory function. Here we combine retroviral labeling with rabies virus mediated trans-synaptic retrograde tracing to define and quantify new neuron afferent inputs in young adult male C57Bl/6 mice, housed with or without a running wheel for one month. Exercise resulted in a shift in new neuron networks that may promote sparse encoding and pattern separation. Neurogenesis increased in the dorsal, but not the ventral, dentate gyrus by three-fold, whereas afferent traced cell labeling doubled in number. Regional analysis indicated that running differentially affected specific inputs. Within the hippocampus the ratio of innervation from inhibitory interneurons and glutamatergic mossy cells to new neurons was reduced. Distal traced cells were located in sub-cortical and cortical regions, including perirhinal, entorhinal and sensory cortices. Innervation from entorhinal cortex (EC) was augmented, in proportion to the running-induced enhancement of adult neurogenesis. Within EC afferent input and short-term synaptic plasticity from lateral entorhinal cortex, considered to convey contextual information to the hippocampus was increased. Furthermore, running upregulated innervation from regions important for spatial memory and theta rhythm generation, including caudo-medial entorhinal cortex and subcortical medial septum, supra- and medial mammillary nuclei. Altogether, running may facilitate contextual, spatial and temporal information encoding by increasing adult hippocampal neurogenesis and by reorganization of new neuron circuitry. PMID:26589333

  17. Inflammatory effects of gene transfer into the CNS with defective HSV-1 vectors.

    PubMed

    Wood, M J; Byrnes, A P; Pfaff, D W; Rabkin, S D; Charlton, H M

    1994-09-01

    The use of viral vectors which infect and express genes in post-mitotic neurons is a potential strategy for the treatment of disorders affecting the central nervous system (CNS). However, the inflammatory consequences of such strategies have yet to be systematically examined. Preparations of non-replicating defective herpes simplex virus type 1 (HSV-1) amplicon vectors containing the lacZ gene were obtained by standard methods and stereotaxically injected into the adult rat dentate gyrus (DG). The consequent gene expression and inflammatory effects following microinjection were investigated. beta-Galactosidase activity was detected in neurons of the DG from 24 h to at least 12 days after vector injection. A strong inflammatory response developed within 2 days, characterized by diffuse up-regulation of major histocompatibility complex (MHC) class I antigens and the activation of microglia. After 4 days the recruitment of MHC class II+ cells, activated T lymphocytes and macrophages was detected. These features persisted for at least 31 days. Of importance was the finding of beta-galactosidase activity in a bilateral group of neurons in the supramammillary nuclei (SMN) of the posterior hypothalamus, known to send afferent projections to the DG. The onset of inflammation at this secondary site was delayed, but its cellular characteristics resembled those found at the primary site of injection. Thus, the use of preparations of defective HSV-1 vectors for gene transfer in the CNS has immunological implications both at primary and secondary sites within the CNS.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7584093

  18. Adult rat bone marrow stromal cells express genes associated with dopamine neurons

    SciTech Connect

    Kramer, Brian C.; Woodbury, Dale . E-mail: WOODBURYDL@AOL.COM; Black, Ira B.

    2006-05-19

    An intensive search is underway to identify candidates to replace the cells that degenerate in Parkinson's disease (PD). To date, no suitable substitute has been found. We have recently found that adult rat bone marrow stromal cells (MSCs) can be induced to assume a neuronal phenotype in vitro. These findings may have particular relevance to the treatment of PD. We now report that adult MSCs express multiple dopaminergic genes, suggesting that they are potential candidates for cell therapy. Using RT-PCR, we have examined families of genes that are associated with the development and/or survival of dopaminergic neurons. MSCs transcribe a variety of dopaminergic genes including patched and smoothened (components of the Shh receptor), Gli-1 (downstream mediator of Shh), and Otx-1, a gene associated with formation of the mesencephalon during development. Furthermore, Shh treatment elicits a 1.5-fold increase in DNA synthesis in cultured MSCs, suggesting the presence of a functional Shh receptor complex. We have also found that MSCs transcribe and translate Nurr-1, a nuclear receptor essential for the development of dopamine neurons. In addition, MSCs express a variety of growth factor receptors including the glycosyl-phosphatidylinositol-anchored ligand-binding subunit of the GDNF receptor, GFR{alpha}1, as well as fibroblast growth factor receptors one and four. The expression of genes that are associated with the development and survival of dopamine neurons suggests a potential role for these cells in the treatment of Parkinson's disease.

  19. Unilateral eye enucleation in adult rats causes neuronal loss in the contralateral superior colliculus

    PubMed Central

    SMITH, S. A.; BEDI, K. S.

    1997-01-01

    Several studies have reported the morphological changes induced by unilateral enucleation during early neonatal life on the developing visual system. This study has examined cellular changes in the superior colliculi by removal of a single eye in adult rats. Anaesthetised male hooded rats aged 90 d had their right eyes removed. Groups of nonenucleated control and enucleated rats were killed when aged either 150 or 390 d. The brains were removed and both the right and left superior colliculi dissected out. The volume of the stratum griseum superficiale (SGS) within these colliculi was estimated stereologically by light microscopy, as well as the numerical density and total number of neurons within this cell layer. The volume of the cell layer was reduced by about 40% on the side contralateral to the enucleated eye but not on the ipsilateral side at both survival periods examined. The numerical density of neurons within the SGS was unaffected by the enucleation so that the colliculi contralateral to the enucleated eye showed a substantial loss of neurons within this cell layer. This study demonstrates the importance of the retinal ganglion cell input, even in adult animals, for maintaining the viability of neurons in the SGS layer of the superior colliculus. PMID:9183672

  20. Neuronal Remodeling During Metamorphosis Is Regulated by the alan shepard (shep) Gene in Drosophila melanogaster

    PubMed Central

    Chen, Dahong; Qu, Chunjing; Bjorum, Sonia M.; Beckingham, Kathleen M.; Hewes, Randall S.

    2014-01-01

    Peptidergic neurons are a group of neuronal cells that synthesize and secrete peptides to regulate a variety of biological processes. To identify genes controlling the development and function of peptidergic neurons, we conducted a screen of 545 splice-trap lines and identified 28 loci that drove expression in peptidergic neurons when crossed to a GFP reporter transgene. Among these lines, an insertion in the alan shepard (shep) gene drove expression specifically in most peptidergic neurons. shep transcripts and SHEP proteins were detected primarily and broadly in the central nervous system (CNS) in embryos, and this expression continued into the adult stage. Loss of shep resulted in late pupal lethality, reduced adult life span, wing expansion defects, uncoordinated adult locomotor activities, rejection of males by virgin females, and reduced neuropil area and reduced levels of multiple presynaptic markers throughout the adult CNS. Examination of the bursicon neurons in shep mutant pharate adults revealed smaller somata and fewer axonal branches and boutons, and all of these cellular phenotypes were fully rescued by expression of the most abundant wild-type shep isoform. In contrast to shep mutant animals at the pharate adult stage, shep mutant larvae displayed normal bursicon neuron morphologies. Similarly, shep mutant adults were uncoordinated and weak, while shep mutant larvae displayed largely, although not entirely, normal locomotor behavior. Thus, shep played an important role in the metamorphic development of many neurons. PMID:24931409

  1. Developmental changes of CaMKII localization, activity and function during postembryonic CNS remodelling in Manduca sexta.

    PubMed

    Burkert, P; Duch, C

    2006-01-01

    Insect metamorphosis is a compelling example of postembryonic remodelling of neuronal structure and synaptic connectivity as larval and adult behaviours place distinct demands on the CNS. Holometabolous insects such as the moth Manduca sexta have long served as suitable models for the study of steroid effects on CNS remodelling, but activity and calcium-dependent mechanisms have been found to act in concert with hormonal signals. This study examines developmental changes in the localization and the activational state of CaMKII during postembryonic Manduca CNS remodelling. Western blotting, CaMKII purification and autophosphorylation with gamma(32)P-ATP indicate that the lepidopteran CNS may contain only one CaMKII isoform. In situ immunohistochemistry reveals developmental changes in the expression patterns of CaMKII in different types of thoracic neurons and in different neuronal compartments. Early pupal life is characterized by an increase in postsynaptic CaMKII localization, which coincides with a developmental increase in CaMKII activation. Both events correlate temporally with motoneuron dendritic filopodia collapse and rapid synaptogenesis, indicating a possible functional role for CaMKII for the postembryonic development of invertebrate motor circuitry. Substrate phosphorylation assays demonstrate that CaMKII activity in the ventral nerve cord reflects changes in calcium influx through voltage-activated channels as occurring in vivo during normal development.

  2. Nerve growth factor in the urinary bladder of the adult regulates neuronal form and function.

    PubMed Central

    Steers, W D; Kolbeck, S; Creedon, D; Tuttle, J B

    1991-01-01

    Urethral obstruction produces increased voiding frequency (0.7 +/- 0.06 to 1.1 +/- 0.08 h-1) and hypertrophy of the urinary bladder (89 +/- 1.7 to 708 +/- 40 mg) with profound increments in the dimensions of afferent (4, 6) and efferent neurons (299 +/- 4.7 to 573 +/- 8.6 microns2) supplying this organ in the rat. We discovered that hypertrophied bladders of rat and human contain significantly more nerve growth factor (NGF) per milligram wet weight, protein, and DNA than normal bladders. The temporal correlation between NGF content, neuronal hypertrophy, and bladder weight was consistent with a role for this growth factor in the neurotrophic effects associated with obstruction. Autoimmunity to NGF abolished the hypertrophy of NGF-sensitive bladder neurons in the pelvic ganglion after obstruction. Relief of urethral obstruction reduced bladder size (349 +/- 78 mg), but neuronal hypertrophy (460.2 +/- 10.2 microns2) and elevated NGF levels were only partially reversed. Bladder hypertrophy (133 +/- 4.3 mg) induced by osmotic diuresis slightly increased ganglion cell area (365.2 +/- 6.1 microns2) and only doubled NGF content of the bladder. These findings provide important new evidence that parenchymal cells in the hypertrophied bladder can synthesize NGF and possibly other molecular messengers that act to alter the size and function of neurons in adult animals and man. Images PMID:1939656

  3. P53 regulates disruption of neuronal development in the adult hippocampus after irradiation

    PubMed Central

    Li, Y-Q; Cheng, ZW-C; Liu, SK-W; Aubert, I; Wong, C S

    2016-01-01

    Inhibition of hippocampal neurogenesis is implicated in neurocognitive dysfunction after cranial irradiation for brain tumors. How irradiation results in impaired neuronal development remains poorly understood. The Trp53 (p53) gene is known to regulate cellular DNA damage response after irradiation. Whether it has a role in disruption of late neuronal development remains unknown. Here we characterized the effects of p53 on neuronal development in adult mouse hippocampus after irradiation. Different bromodeoxyuridine incorporation paradigms and a transplantation study were used for cell fate mapping. Compared with wild-type mice, we observed profound inhibition of hippocampal neurogenesis after irradiation in mice deficient in p53 despite the absence of acute apoptosis of neuroblasts. The putative neural stem cells were apoptosis resistant after irradiation regardless of p53 genotype. Cell fate mapping using different bromodeoxyuridine incorporation paradigms revealed enhanced activation of neural stem cells and their consequential exhaustion in the absence of p53 after irradiation. Both p53-knockout and wild-type mice demonstrated similar extent of microglial activation in the hippocampus after irradiation. Impairment of neuronal differentiation of neural progenitors transplanted in irradiated hippocampus was not altered by p53 genotype of the recipient mice. We conclude that by inhibiting neural progenitor activation, p53 serves to mitigate disruption of neuronal development after irradiation independent of apoptosis and perturbation of the neural stem cell niche. These findings suggest for the first time that p53 may have a key role in late effects in brain after irradiation. PMID:27752364

  4. Toxic effects of bortezomib on primary sensory neurons and Schwann cells of adult mice.

    PubMed

    Alé, Albert; Bruna, Jordi; Herrando, Mireia; Navarro, Xavier; Udina, Esther

    2015-05-01

    The proteasome inhibitor bortezomib is nowadays first line treatment for multiple myeloma. One of the most significant adverse events is peripheral neuropathy, mainly involving sensory nerve fibers that can lead to withdrawal of treatment. Here we develop an in vitro model to compare the effects of bortezomib on primary sensory neurons and Schwann cells of adult mice. We observed that sensory neurons were more susceptible to bortezomib, and their viability was reduced at a concentration of 6 nM, that only affected Schwann cell proliferation but not survival. At concentration higher than 8 nM Schwann cell viability was also compromised. Already at low concentrations, surviving neurons presented alterations in neurite outgrowth. Neurites were shorter and had dystrophic appearance, with alterations in neurofilament staining. However, neurites were able to regrow after removing bortezomib from the medium, thus indicating reversibility of the neurotoxicity. We confirmed in vivo that bortezomib produced alterations in neurofilaments at early stages of the treatment. After an accumulated dose of 2 mg/kg bortezomib, dorsal root ganglia neurons of treated animals showed accumulation of neurofilament in the soma. To evaluate if this accumulation was related with alterations in axonal transport, we tested the ability of sensory neurons to retrogradely transport a retrotracer applied at the distal nerve. Treated animals showed a lower amount of retrotracer in the soma 24 h after its application to the tibial nerve, therefore suggesting that axonal transport was affected by bortezomib.

  5. Neuronal labeling patterns in the spinal cord of adult transgenic Zebrafish.

    PubMed

    Stil, Aurélie; Drapeau, Pierre

    2016-06-01

    We describe neuronal patterns in the spinal cord of adult zebrafish. We studied the distribution of cells and processes in the three spinal regions reported in the literature: the 8th vertebra used as a transection injury site, the 15th vertebra mainly used for motor cell recordings and also for crush injury, and the 24th vertebra used to record motor nerve activity. We used well-known transgenic lines in which expression of green fluorescent protein (GFP) is driven by promoters to hb9 and isl1 in motoneurons, alx/chx10 and evx1 interneurons, ngn1 in sensory neurons and olig2 in oligodendrocytes, as well as antibodies for neurons (HuC/D, NF and SV2) and glia (GFAP). In isl1:GFP fish, GFP-positive processes are retained in the upper part of ventral horns and two subsets of cell bodies are observed. The pattern of the transgene in hb9:GFP adults is more diffuse and fibers are present broadly through the adult spinal cord. In alx/chx10 and evx1 lines we respectively observed two and three different GFP-positive populations. Finally, the ngn1:GFP transgene identifies dorsal root ganglion and some cells in dorsal horns. Interestingly some GFP positive fibers in ngn1:GFP fish are located around Mauthner axons and their density seems to be related to a rostrocaudal gradient. Many other cell types have been described in embryos and need to be studied in adults. Our findings provide a reference for further studies on spinal cytoarchitecture. Combined with physiological, histological and pathological/traumatic approaches, these studies will help clarify the operation of spinal locomotor circuits of adult zebrafish.

  6. Altered neuronal architecture and plasticity in the visual cortex of adult MMP-3-deficient mice.

    PubMed

    Aerts, Jeroen; Nys, Julie; Moons, Lieve; Hu, Tjing-Tjing; Arckens, Lutgarde

    2015-09-01

    Matrix metalloproteinases (MMPs) are Zn(2+)-dependent endopeptidases considered to be essential for normal brain development and neuroplasticity by modulating extracellular matrix proteins, receptors, adhesion molecules, growth factors and cytoskeletal proteins. Specifically, MMP-3 has recently been implicated in synaptic plasticity, hippocampus-dependent learning and neuronal development and migration in the cerebellum. However, the function(s) of this enzyme in the neocortex is understudied. Therefore, we explored the phenotypical characteristics of the neuronal architecture and the capacity for experience-dependent cortical plasticity in the visual cortex of adult MMP-3-deficient (MMP-3(-/-)) mice. Golgi-Cox stainings revealed a significant reduction in apical dendritic length and an increased number of apical obliques for layer V pyramidal neurons in the visual cortex of adult MMP-3(-/-) mice compared to wild-type (WT) animals. In addition, a significant upregulation of both phosphorylated and non-phosphorylated neurofilament protein (NF)-high, phosphorylated NF-medium, NF-low and α-internexin was detected in the visual cortex of MMP-3(-/-) mice. To assess the effect of MMP-3 deficiency on cortical plasticity, we monocularly enucleated adult MMP-3(-/-) mice and analyzed the reactivation of the contralateral visual cortex 7 weeks post-enucleation. In contrast to previous results in C57Bl/6J adult mice, activity remained confined to the binocular zone and did not expand into the monocular regions indicative for an aberrant open-eye potentiation. Permanent hypoactivity in the monocular cortex lateral and medial to V1 also indicated a lack of cross-modal plasticity. These observations demonstrate that genetic inactivation of MMP-3 has profound effects on the structural integrity and plasticity response of the visual cortex of adult mice.

  7. Age-Related Phasic Patterns of Mitochondrial Maintenance in Adult Caenorhabditis elegans Neurons

    PubMed Central

    Morsci, Natalia S.; Hall, David H.

    2016-01-01

    Aging is associated with cognitive decline and increasing risk of neurodegeneration. Perturbation of mitochondrial function, dynamics, and trafficking are implicated in the pathogenesis of several age-associated neurodegenerative diseases. Despite this fundamental importance, the critical understanding of how organismal aging affects lifetime neuronal mitochondrial maintenance remains unknown, particularly in a physiologically relevant context. To address this issue, we performed a comprehensive in vivo analysis of age-associated changes in mitochondrial morphology, density, trafficking, and stress resistance in individual Caenorhabditis elegans neurons throughout adult life. Adult neurons display three distinct stages of increase, maintenance, and decrease in mitochondrial size and density during adulthood. Mitochondrial trafficking in the distal neuronal processes declines progressively with age starting from early adulthood. In contrast, long-lived daf-2 mutants exhibit delayed age-associated changes in mitochondrial morphology, constant mitochondrial density, and maintained trafficking rates during adulthood. Reduced mitochondrial load at late adulthood correlates with decreased mitochondrial resistance to oxidative stress. Revealing aging-associated changes in neuronal mitochondria in vivo is an essential precedent that will allow future elucidation of the mechanistic causes of mitochondrial aging. Thus, our study establishes the critical foundation for the future analysis of cellular pathways and genetic and pharmacological factors regulating mitochondrial maintenance in aging- and disease-relevant conditions. SIGNIFICANCE STATEMENT Using Caenorhabditis elegans as a model, we address long-standing questions: How does aging affect neuronal mitochondrial morphology, density, trafficking, and oxidative stress resistance? Are these age-related changes amenable to genetic manipulations that slow down the aging process? Our study illustrates that mitochondrial

  8. The maintenance of specific aspects of neuronal function and behavior is dependent on programmed cell death of adult-generated neurons in the dentate gyrus.

    PubMed

    Kim, Woon Ryoung; Park, Ok-Hee; Choi, Sukwoo; Choi, Se-Young; Park, Soon Kwon; Lee, Kea Joo; Rhyu, Im Joo; Kim, Hyun; Lee, Yeon Kyung; Kim, Hyun Taek; Oppenheim, Ronald W; Sun, Woong

    2009-04-01

    A considerable number of new neurons are generated daily in the dentate gyrus (DG) of the adult hippocampus, but only a subset of these survive, as many adult-generated neurons undergo programmed cell death (PCD). However, the significance of PCD in the adult brain for the functionality of DG circuits is not known. Here, we examined the electrophysiological and behavioral characteristics of Bax-knockout (Bax-KO) mice in which PCD of post-mitotic neurons is prevented. The continuous increase in DG cell numbers in Bax-KO mice resulted in the readjustment of afferent and efferent synaptic connections, represented by age-dependent reductions in the dendritic arborization of DG neurons and in the synaptic contact ratio of mossy fibers with CA3 dendritic spines. These neuroanatomical changes were associated with reductions in synaptic transmission and reduced performance in a contextual fear memory task in 6-month-old Bax-KO mice. These results suggest that the elimination of excess DG neurons via Bax-dependent PCD in the adult brain is required for the normal organization and function of the hippocampus.

  9. The maintenance of specific aspects of neuronal function and behavior is dependent on programmed cell death of adult-generated neurons in the dentate gyrus

    PubMed Central

    Kim, Woon Ryoung; Park, Ok-hee; Choi, Sukwoo; Choi, Se-Young; Park, Soon Kwon; Lee, Kea Joo; Rhyu, Im Joo; Kim, Hyun; Lee, Yeon Kyung; Kim, Hyun Taek; Oppenheim, Ronald W; Sun, Woong

    2009-01-01

    A considerable number of new neurons are generated daily in the dentate gyrus (DG) of the adult hippocampus, but only a subset of these survive, as many adult-generated neurons undergo programmed cell death (PCD). However, the significance of PCD in the adult brain for the functionality of DG circuits is not known. Here we examined the electrophysiological and behavioral characteristics of Bax-KO mice in which PCD of post-mitotic neurons is prevented. The continuous increase in DG cell numbers in Bax-KO mice, resulted in the readjustment of afferent and efferent synaptic connections, represented by age-dependent reductions in the dendritic arborization of DG neurons and in the synaptic contact ratio of mossy fibers (MF) with CA3 dendritic spines. These neuroanatomical changes were associated with reductions in synaptic transmission and reduced performance in a contextual fear memory task in 6-month old Bax-KO mice. These results suggest that the elimination of excess DG neurons via Bax-dependent PCD in the adult brain is required for the normal organization and function of the hippocampus. PMID:19519627

  10. Conditional Reduction of Adult Born Doublecortin-Positive Neurons Reversibly Impairs Selective Behaviors

    PubMed Central

    Garrett, Lillian; Zhang, Jingzhong; Zimprich, Annemarie; Niedermeier, Kristina M.; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabě de Angelis, Martin; Vogt Weisenhorn, Daniela; Wurst, Wolfgang; Hölter, Sabine M.

    2015-01-01

    Adult neurogenesis occurs in the adult mammalian subventricular zone (SVZ) along the walls of the lateral ventricles and the subgranular zone (SGZ) of the hippocampal dentate gyrus. While a burgeoning body of research implicates adult neurogenesis in olfactory bulb (OB)- and hippocampal-related behaviors, the precise function continues to elude. To further assess the behavioral importance of adult neurogenesis, we herein generated a novel inducible transgenic mouse model of adult neurogenesis reduction where mice with CreERT2 under doublecortin (DCX) promoter control were crossed with mice where diphtheria toxin A (DTA) was driven by the Rosa26 promoter. Activation of DTA, through the administration of tamoxifen (TAM), results in a specific reduction of DCX+ immature neurons in both the hippocampal dentate gyrus and OB. We show that the decrease of DCX+ cells causes impaired social discrimination ability in both young adult (from 3 months) and middle aged (from 10 months) mice. Furthermore, these animals showed an age-independent altered coping behavior in the Forced Swim Test without clear changes in anxiety-related behavior. Notably, these behavior changes were reversible on repopulating the neurogenic zones with DCX+ cells on cessation of the TAM treatment, demonstrating the specificity of this effect. Overall, these results support the notion that adult neurogenesis plays a role in social memory and in stress coping but not necessarily in anxiety-related behavior. PMID:26617501

  11. IFN gamma regulates proliferation and neuronal differentiation by STAT1 in adult SVZ niche

    PubMed Central

    Pereira, Leticia; Medina, Rebeca; Baena, Miguel; Planas, Anna M.; Pozas, Esther

    2015-01-01

    The adult subventricular zone (SVZ) is the main neurogenic niche in normal adult brains of mice and rats. Interferon gamma (IFNγ) has somewhat controversially been associated with SVZ progenitor proliferation and neurogenesis. The in vivo involvement of IFNγ in the physiology of the adult SVZ niche is not fully understood and its intracellular mediators are unknown. Here we show that IFNγ, through activation of its canonical signal transducer and activator of transcription 1 (STAT1) pathway, acts specifically on Nestin+ progenitors by decreasing both progenitor proliferation and the number of cycling cells. In addition, IFNγ increases the number of neuroblasts generated without shifting glial fate determination. The final result is deficient recruitment of newborn neurons to the olfactory bulb (OB), indicating that IFNγ-induced stimulation of neuronal differentiation does not compensate for its antiproliferative effect. We conclude that IFNγ signaling via STAT1 in the SVZ acts dually as an antiproliferative and proneurogenic factor, and thereby regulates neurogenesis in normal adult brains. PMID:26217191

  12. Central artery stiffness, baroreflex sensitivity, and brain white matter neuronal fiber integrity in older adults.

    PubMed

    Tarumi, Takashi; de Jong, Daan L K; Zhu, David C; Tseng, Benjamin Y; Liu, Jie; Hill, Candace; Riley, Jonathan; Womack, Kyle B; Kerwin, Diana R; Lu, Hanzhang; Munro Cullum, C; Zhang, Rong

    2015-04-15

    Cerebral hypoperfusion elevates the risk of brain white matter (WM) lesions and cognitive impairment. Central artery stiffness impairs baroreflex, which controls systemic arterial perfusion, and may deteriorate neuronal fiber integrity of brain WM. The purpose of this study was to examine the associations among brain WM neuronal fiber integrity, baroreflex sensitivity (BRS), and central artery stiffness in older adults. Fifty-four adults (65 ± 6 years) with normal cognitive function or mild cognitive impairment (MCI) were tested. The neuronal fiber integrity of brain WM was assessed from diffusion metrics acquired by diffusion tensor imaging. BRS was measured in response to acute changes in blood pressure induced by bolus injections of vasoactive drugs. Central artery stiffness was measured by carotid-femoral pulse wave velocity (cfPWV). The WM diffusion metrics including fractional anisotropy (FA) and radial (RD) and axial (AD) diffusivities, BRS, and cfPWV were not different between the control and MCI groups. Thus, the data from both groups were combined for subsequent analyses. Across WM, fiber tracts with decreased FA and increased RD were associated with lower BRS and higher cfPWV, with many of the areas presenting spatial overlap. In particular, the BRS assessed during hypotension was strongly correlated with FA and RD when compared with hypertension. Executive function performance was associated with FA and RD in the areas that correlated with cfPWV and BRS. These findings suggest that baroreflex-mediated control of systemic arterial perfusion, especially during hypotension, may play a crucial role in maintaining neuronal fiber integrity of brain WM in older adults. PMID:25623500

  13. Knockout of Atg5 delays the maturation and reduces the survival of adult-generated neurons in the hippocampus

    PubMed Central

    Xi, Y; Dhaliwal, J S; Ceizar, M; Vaculik, M; Kumar, K L; Lagace, D C

    2016-01-01

    Autophagy is an evolutionarily conserved lysosomal degradation pathway that plays important roles in cell maintenance, expansion and differentiation. Removal of genes essential for autophagy from embryonic neural stem and precursor cells reduces the survival and inhibits neuronal differentiation of adult-generated neurons. No study has modified autophagy within the adult precursor cells, leaving the cell-autonomous role of autophagy in adult neurogenesis unknown. Here we demonstrate that autophagic flux exists in the adult dividing progenitor cells and their progeny in the dentate gyrus. To investigate the role of autophagy in adult hippocampal neurogenesis, we genetically deleted Autophagy-related gene 5 (Atg5) that reduced autophagic flux and the survival of the progeny of dividing progenitor cells. This significant reduction in survival of adult-generated neurons is accompanied by a delay in neuronal maturation, including a transient reduction in spine density in the absence of a change in differentiation. The delay in cell maturation and loss of progeny of the Atg5-null cells was not present in mice that lacked the essential pro-apoptotic protein Bax (Bcl-2-associated X protein), suggesting that Atg5-deficient cells die through a Bax-dependent mechanism. In addition, there was a loss of Atg5-null cells following exposure to running, suggesting that Atg5 is required for running-induced increases in neurogenesis. These findings highlight the cell-autonomous requirement of Atg5 in the survival of adult-generated neurons. PMID:26938300

  14. New neurons in the adult brain: The role of sleep and consequences of sleep loss

    PubMed Central

    Meerlo, Peter; Mistlberger, Ralph E.; Jacobs, Barry L.; Heller, H. Craig; McGinty, Dennis

    2009-01-01

    Research over the last few decades has firmly established that new neurons are generated in selected areas of the adult mammalian brain, particularly the dentate gyrus of the hippocampal formation and the subventricular zone of the lateral ventricles. The function of adult-born neurons is still a matter of debate. In the case of the hippocampus, integration of new cells in to the existing neuronal circuitry may be involved in memory processes and the regulation of emotionality. In recent years, various studies have examined how the production of new cells and their development into neurons is affected by sleep and sleep loss. While disruption of sleep for a period shorter than one day appears to have little effect on the basal rate of cell proliferation, prolonged restriction or disruption of sleep may have cumulative effects leading to a major decrease in hippocampal cell proliferation, cell survival and neurogenesis. Importantly, while short sleep deprivation may not affect the basal rate of cell proliferation, one study in rats shows that even mild sleep restriction may interfere with the increase in neurogenesis that normally occurs with hippocampus-dependent learning. Since sleep deprivation also disturbs memory formation, these data suggest that promoting survival, maturation and integration of new cells may be an unexplored mechanism by which sleep supports learning and memory processes. Most methods of sleep deprivation that have been employed affect both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Available data favor the hypothesis that decreases in cell proliferation are related to a reduction in REM sleep, whereas decreases in the number of cells that subsequently develop into adult neurons may be related to reductions in both NREM and REM sleep. The mechanisms by which sleep loss affects different aspects of adult neurogenesis are unknown. It has been proposed that adverse effects of sleep disruption may be mediated by stress and

  15. Neuropeptide Y stimulates neuronal precursor proliferation in the post-natal and adult dentate gyrus.

    PubMed

    Howell, Owain W; Doyle, Kharen; Goodman, Jeffrey H; Scharfman, Helen E; Herzog, Herbert; Pringle, Ashley; Beck-Sickinger, Annette G; Gray, William P

    2005-05-01

    Adult dentate neurogenesis is important for certain types of hippocampal-dependent learning and also appears to be important for the maintenance of normal mood and the behavioural effects of antidepressants. Neuropeptide Y (NPY), a peptide neurotransmitter released by interneurons in the dentate gyrus, has important effects on mood, anxiety-related behaviour and learning and memory. We report that adult NPY receptor knock-out mice have significantly reduced cell proliferation and significantly fewer immature doublecortin-positive neurons in the dentate gyrus. We also show that the neuroproliferative effect of NPY is dentate specific, is Y1-receptor mediated and involves extracellular signal-regulated kinase (ERK)1/2 activation. NPY did not exhibit any effect on cell survival in vitro but constitutive loss of the Y1 receptor in vivo resulted in greater survival of newly generated neurons and an unchanged total number of dentate granule cells. These results show that NPY stimulates neuronal precursor proliferation in the dentate gyrus and suggest that NPY-releasing interneurons may modulate dentate neurogenesis.

  16. Altered adult hippocampal neuronal maturation in a rat model of fetal alcohol syndrome.

    PubMed

    Gil-Mohapel, Joana; Boehme, Fanny; Patten, Anna; Cox, Adrian; Kainer, Leah; Giles, Erica; Brocardo, Patricia S; Christie, Brian R

    2011-04-12

    Exposure to ethanol during pregnancy can be devastating to the developing nervous system, leading to significant central nervous system dysfunction. The hippocampus, one of the two brain regions where neurogenesis persists into adulthood, is particularly sensitive to the teratogenic effects of ethanol. In the present study, we tested a rat model of fetal alcohol syndrome (FAS) with ethanol administered via gavage throughout all three trimester equivalents. Subsequently, we assessed cell proliferation, as well as neuronal survival, and differentiation in the dentate gyrus of the hippocampus of adolescent (35 days old), young adult (60 days old) and adult (90 days old) Sprague-Dawley rats. Using both extrinsic (bromodeoxyuridine) and intrinsic (Ki-67) markers, we observed no significant alterations in cell proliferation and survival in ethanol-exposed animals when compared with their pair-fed and ad libitum controls. However, we detected a significant increase in the number of new immature neurons in animals that were exposed to ethanol throughout all three trimester equivalents. This result might reflect a compensatory mechanism to counteract the deleterious effects of prenatal ethanol exposure or an ethanol-induced arrest of the neurogenic process at the early neuronal maturation stages. Taken together these results indicate that exposure to ethanol during the period of brain development causes a long-lasting dysregulation of the neurogenic process, a mechanism that might contribute, at least in part, to the hippocampal deficits that have been reported in rodent models of FAS.

  17. Contrasting roles for parvalbumin-expressing inhibitory neurons in two forms of adult visual cortical plasticity

    PubMed Central

    Kaplan, Eitan S; Cooke, Sam F; Komorowski, Robert W; Chubykin, Alexander A; Thomazeau, Aurore; Khibnik, Lena A; Gavornik, Jeffrey P; Bear, Mark F

    2016-01-01

    The roles played by cortical inhibitory neurons in experience-dependent plasticity are not well understood. Here we evaluate the participation of parvalbumin-expressing (PV+) GABAergic neurons in two forms of experience-dependent modification of primary visual cortex (V1) in adult mice: ocular dominance (OD) plasticity resulting from monocular deprivation and stimulus-selective response potentiation (SRP) resulting from enriched visual experience. These two forms of plasticity are triggered by different events but lead to a similar increase in visual cortical response. Both also require the NMDA class of glutamate receptor (NMDAR). However, we find that PV+ inhibitory neurons in V1 play a critical role in the expression of SRP and its behavioral correlate of familiarity recognition, but not in the expression of OD plasticity. Furthermore, NMDARs expressed within PV+ cells, reversibly inhibited by the psychotomimetic drug ketamine, play a critical role in SRP, but not in the induction or expression of adult OD plasticity. DOI: http://dx.doi.org/10.7554/eLife.11450.001 PMID:26943618

  18. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging

    PubMed Central

    Bell, Robert D.; Winkler, Ethan A.; Sagare, Abhay P.; Singh, Itender; LaRue, Barb; Deane, Rashid; Zlokovic, Berislav V.

    2010-01-01

    SUMMARY Pericytes play a key role in the development of cerebral microcirculation. The exact role of pericytes in the neurovascular unit in the adult brain and during brain aging remains, however, elusive. Using adult viable pericyte-deficient mice, we show that pericyte loss leads to brain vascular damage by two parallel pathways: (1) reduction in brain microcirculation causing diminished brain capillary perfusion, cerebral blood flow and cerebral blood flow responses to brain activation which ultimately mediates chronic perfusion stress and hypoxia, and (2) blood-brain barrier breakdown associated with brain accumulation of serum proteins and several vasculotoxic and/or neurotoxic macromolecules ultimately leading to secondary neuronal degenerative changes. We show that age-dependent vascular damage in pericyte-deficient mice precedes neuronal degenerative changes, learning and memory impairment and the neuroinflammatory response. Thus, pericytes control key neurovascular functions that are necessary for proper neuronal structure and function, and pericytes loss results in a progressive age-dependent vascular-mediated neurodegeneration. PMID:21040844

  19. Transcription factors FOXA1 and FOXA2 maintain dopaminergic neuronal properties and control feeding behavior in adult mice

    PubMed Central

    Pristerà, Alessandro; Lin, Wei; Kaufmann, Anna-Kristin; Brimblecombe, Katherine R.; Threlfell, Sarah; Dodson, Paul D.; Magill, Peter J.; Fernandes, Cathy; Cragg, Stephanie J.; Ang, Siew-Lan

    2015-01-01

    Midbrain dopaminergic (mDA) neurons are implicated in cognitive functions, neuropsychiatric disorders, and pathological conditions; hence understanding genes regulating their homeostasis has medical relevance. Transcription factors FOXA1 and FOXA2 (FOXA1/2) are key determinants of mDA neuronal identity during development, but their roles in adult mDA neurons are unknown. We used a conditional knockout strategy to specifically ablate FOXA1/2 in mDA neurons of adult mice. We show that deletion of Foxa1/2 results in down-regulation of tyrosine hydroxylase, the rate-limiting enzyme of dopamine (DA) biosynthesis, specifically in dopaminergic neurons of the substantia nigra pars compacta (SNc). In addition, DA synthesis and striatal DA transmission were reduced after Foxa1/2 deletion. Furthermore, the burst-firing activity characteristic of SNc mDA neurons was drastically reduced in the absence of FOXA1/2. These molecular and functional alterations lead to a severe feeding deficit in adult Foxa1/2 mutant mice, independently of motor control, which could be rescued by l-DOPA treatment. FOXA1/2 therefore control the maintenance of molecular and physiological properties of SNc mDA neurons and impact on feeding behavior in adult mice. PMID:26283356

  20. The beginning of intracellular recording in spinal neurons: Facts, reflections, and speculations☆, ☆☆

    PubMed Central

    Stuart, Douglas G.; Brownstone, Robert M.

    2016-01-01

    Intracellular (IC) recording of action potentials in neurons of the vertebrate central nervous system (CNS) was first reported by John Eccles and two colleagues, Walter Brock and John Coombs, in Dunedin, NZL in 1951/1952 and by Walter Woodbury and Harry Patton in Seattle, WA, USA in 1952. Both groups studied spinal cord neurons of the adult cat. In this review, we discuss the precedents to their notable achievement and reflect and speculate on some of the scientific and personal nuances of their work and its immediate and later impact. We then briefly discuss early achievements in IC recording in the study of CNS neurobiology in other laboratories around the world, and some of the methods that led to enhancement of CNS IC-recording techniques. Our modern understanding of CNS neurophysiology directly emanates from the pioneering endeavors of the five who wrote the seminal 1951/1952 articles. PMID:21782158

  1. Adult Conditional Knockout of PGC-1α Leads to Loss of Dopamine Neurons

    PubMed Central

    Jiang, Haisong; Zhang, Shuran; Karuppagounder, Senthilkumar; Xu, Jinchong; Pletnikova, Olga; Troncoso, Juan C.; Pirooznia, Shelia; Andrabi, Shaida A.

    2016-01-01

    Parkinson’s disease (PD) is a chronic progressive neurodegenerative disorder. Recent studies have implicated a role for peroxisome proliferator-activated receptor γ coactivator protein-1α (PGC-1α) in PD and in animal or cellular models of PD. The role of PGC-1α in the function and survival of substantia nigra pars compacta (SNpc) dopamine neurons is not clear. Here we find that there are four different PGC-1α isoforms expressed in SH-SY5Y cells, and these four isoforms are expressed across subregions of mouse brain. Adult conditional PGC-1α knock-out mice show a significant loss of dopaminergic neurons that is accompanied by a reduction of dopamine in the striatum. In human PD postmortem tissue from the SNpc, there is a reduction of PGC-1α isoforms and mitochondria markers. Our findings suggest that all four isoforms of PGC-1α are required for the proper expression of mitochondrial proteins in SNpc DA neurons and that PGC-1α is essential for SNpc DA neuronal survival, possibly through the maintenance of mitochondrial function. PMID:27622213

  2. Carbachol-Induced Reduction in the Activity of Adult Male Zebra Finch RA Projection Neurons.

    PubMed

    Meng, Wei; Wang, Song-Hua; Li, Dong-Feng

    2016-01-01

    Cholinergic mechanism is involved in motor behavior. In songbirds, the robust nucleus of the arcopallium (RA) is a song premotor nucleus in the pallium and receives cholinergic inputs from the basal forebrain. The activity of projection neurons in RA determines song motor behavior. Although many evidences suggest that cholinergic system is implicated in song production, the cholinergic modulation of RA is not clear until now. In the present study, the electrophysiological effects of carbachol, a nonselective cholinergic receptor agonist, were investigated on the RA projection neurons of adult male zebra finches through whole-cell patch-clamp techniques in vitro. Our results show that carbachol produced a significant decrease in the spontaneous and evoked action potential (AP) firing frequency of RA projection neurons, accompanying a hyperpolarization of the membrane potential, an increase in the evoked AP latency, afterhyperpolarization (AHP) peak amplitude, and AHP time to peak, and a decrease in the membrane input resistance, membrane time constant, and membrane capacitance. These results indicate that carbachol reduces the activity of RA projection neurons by hyperpolarizing the resting membrane potential and increasing the AHP and the membrane conductance, suggesting that the cholinergic modulation of RA may play an important role in song production. PMID:26904300

  3. Adult Conditional Knockout of PGC-1α Leads to Loss of Dopamine Neurons.

    PubMed

    Jiang, Haisong; Kang, Sung-Ung; Zhang, Shuran; Karuppagounder, Senthilkumar; Xu, Jinchong; Lee, Yong-Kyu; Kang, Bong-Gu; Lee, Yunjong; Zhang, Jianmin; Pletnikova, Olga; Troncoso, Juan C; Pirooznia, Shelia; Andrabi, Shaida A; Dawson, Valina L; Dawson, Ted M

    2016-01-01

    Parkinson's disease (PD) is a chronic progressive neurodegenerative disorder. Recent studies have implicated a role for peroxisome proliferator-activated receptor γ coactivator protein-1α (PGC-1α) in PD and in animal or cellular models of PD. The role of PGC-1α in the function and survival of substantia nigra pars compacta (SNpc) dopamine neurons is not clear. Here we find that there are four different PGC-1α isoforms expressed in SH-SY5Y cells, and these four isoforms are expressed across subregions of mouse brain. Adult conditional PGC-1α knock-out mice show a significant loss of dopaminergic neurons that is accompanied by a reduction of dopamine in the striatum. In human PD postmortem tissue from the SNpc, there is a reduction of PGC-1α isoforms and mitochondria markers. Our findings suggest that all four isoforms of PGC-1α are required for the proper expression of mitochondrial proteins in SNpc DA neurons and that PGC-1α is essential for SNpc DA neuronal survival, possibly through the maintenance of mitochondrial function. PMID:27622213

  4. Adult Conditional Knockout of PGC-1α Leads to Loss of Dopamine Neurons

    PubMed Central

    Jiang, Haisong; Zhang, Shuran; Karuppagounder, Senthilkumar; Xu, Jinchong; Pletnikova, Olga; Troncoso, Juan C.; Pirooznia, Shelia; Andrabi, Shaida A.

    2016-01-01

    Parkinson’s disease (PD) is a chronic progressive neurodegenerative disorder. Recent studies have implicated a role for peroxisome proliferator-activated receptor γ coactivator protein-1α (PGC-1α) in PD and in animal or cellular models of PD. The role of PGC-1α in the function and survival of substantia nigra pars compacta (SNpc) dopamine neurons is not clear. Here we find that there are four different PGC-1α isoforms expressed in SH-SY5Y cells, and these four isoforms are expressed across subregions of mouse brain. Adult conditional PGC-1α knock-out mice show a significant loss of dopaminergic neurons that is accompanied by a reduction of dopamine in the striatum. In human PD postmortem tissue from the SNpc, there is a reduction of PGC-1α isoforms and mitochondria markers. Our findings suggest that all four isoforms of PGC-1α are required for the proper expression of mitochondrial proteins in SNpc DA neurons and that PGC-1α is essential for SNpc DA neuronal survival, possibly through the maintenance of mitochondrial function.

  5. Role of neuronal ras activity in adult hippocampal neurogenesis and cognition.

    PubMed

    Manns, Martina; Leske, Oliver; Gottfried, Sebastian; Bichler, Zoë; Lafenêtre, Pauline; Wahle, Petra; Heumann, Rolf

    2011-01-01

    Hippocampal neurogenesis in the adult mammalian brain is modulated by various signals like growth factors, hormones, neuropeptides, and neurotransmitters. All of these factors can (but not necessarily do) converge on the activation of the G protein Ras. We used a transgenic mouse model (synRas mice) expressing constitutively activated G12V-Harvey Ras selectively in differentiated neurons to investigate the possible effects onto neurogenesis. H-Ras activation in neurons attenuates hippocampal precursor cell generation at an early stage of the proliferative cascade before neuronal lineage determination occurs. Therefore it is unlikely that the transgenically activated H-Ras in neurons mediates this effect by a direct, intracellular signaling mechanism. Voluntary exercise restores neurogenesis up to wild type level presumably mediated by brain-derived neurotrophic factor. Reduced neurogenesis is linked to impairments in spatial short-term memory and object recognition, the latter can be rescued by voluntary exercise, as well. These data support the view that new cells significantly increase complexity that can be processed by the hippocampal network when experience requires high demands to associate stimuli over time and/or space.

  6. Staging Primary CNS Lymphoma

    MedlinePlus

    ... large vein near the heart. Having a weakened immune system may increase the risk of developing primary CNS ... immunodeficiency syndrome (AIDS) or other disorders of the immune system or who have had a kidney transplant . For ...

  7. PSA-NCAM is Expressed in Immature, but not Recently Generated, Neurons in the Adult Cat Cerebral Cortex Layer II

    PubMed Central

    Varea, Emilio; Belles, Maria; Vidueira, Sandra; Blasco-Ibáñez, José M.; Crespo, Carlos; Pastor, Ángel M.; Nacher, Juan

    2011-01-01

    Neuronal production persists during adulthood in the dentate gyrus and the olfactory bulb, where substantial numbers of immature neurons can be found. These cells can also be found in the paleocortex layer II of adult rodents, but in this case most of them have been generated during embryogenesis. Recent reports have described the presence of similar cells, with a wider distribution, in the cerebral cortex of adult cats and primates and have suggested that they may develop into interneurons. The objective of this study is to verify this hypothesis and to explore the origin of these immature neurons in adult cats. We have analyzed their distribution using immunohistochemical analysis of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) and their phenotype using markers of mature neurons and different interneuronal populations. Additionally, we have explored the origin of these cells administering 5′bromodeoxyuridine (5′BrdU) during adulthood. Immature neurons were widely dispersed in the cerebral cortex layers II and upper III, being specially abundant in the piriform and entorhinal cortices, in the ventral portions of the frontal and temporoparietal lobes, but relatively scarce in dorsal regions, such as the primary visual areas. Only a small fraction of PSA-NCAM expressing cells in layer II expressed the mature neuronal marker NeuN and virtually none of them expressed calcium binding proteins or neuropeptides. By contrast, most, if not all of these cells expressed the transcription factor Tbr-1, specifically expressed by pallium-derived principal neurons, but not CAMKII, a marker of mature excitatory neurons. Absence of PSA-NCAM/5′BrdU colocalization suggests that, as in rats, these cells were not generated during adulthood. Together, these results indicate that immature neurons in the adult cat cerebral cortex layer II are not recently generated and that they may differentiate into principal neurons. PMID:21415912

  8. Inducible neuronal inactivation of Sim1 in adult mice causes hyperphagic obesity.

    PubMed

    Tolson, Kristen P; Gemelli, Terry; Meyer, Donna; Yazdani, Umar; Kozlitina, Julia; Zinn, Andrew R

    2014-07-01

    Germline haploinsufficiency of human or mouse Sim1 is associated with hyperphagic obesity. Sim1 encodes a transcription factor required for proper formation of the paraventricular (PVN), supraoptic, and anterior periventricular hypothalamic nuclei. Sim1 expression persists in these neurons in adult mice, raising the question of whether it plays a physiologic role in regulation of energy balance. We previously showed that Sim1 heterozygous mice had normal numbers of PVN neurons that were hyporesponsive to melanocortin 4 receptor agonism and showed reduced oxytocin expression. Furthermore, conditional postnatal neuronal inactivation of Sim1 also caused hyperphagic obesity and decreased hypothalamic oxytocin expression. PVN projections to the hindbrain, where oxytocin is thought to act to modulate satiety, were anatomically intact in both Sim1 heterozygous and conditional knockout mice. These experiments provided evidence that Sim1 functions in energy balance apart from its role in hypothalamic development but did not rule out effects of Sim1 deficiency on postnatal hypothalamic maturation. To address this possibility, we used a tamoxifen-inducible, neural-specific Cre transgene to conditionally inactivate Sim1 in adult mice with mature hypothalamic circuitry. Induced Sim1 inactivation caused increased food and water intake and decreased expression of PVN neuropeptides, especially oxytocin and vasopressin, with no change in energy expenditure. Sim1 expression was not required for survival of PVN neurons. The results corroborate previous evidence that Sim1 acts physiologically as well as developmentally to regulate body weight. Inducible knockout mice provide a system for studying Sim1's physiologic function in energy balance and identifying its relevant transcriptional targets in the hypothalamus. PMID:24773343

  9. Inducible neuronal inactivation of Sim1 in adult mice causes hyperphagic obesity.

    PubMed

    Tolson, Kristen P; Gemelli, Terry; Meyer, Donna; Yazdani, Umar; Kozlitina, Julia; Zinn, Andrew R

    2014-07-01

    Germline haploinsufficiency of human or mouse Sim1 is associated with hyperphagic obesity. Sim1 encodes a transcription factor required for proper formation of the paraventricular (PVN), supraoptic, and anterior periventricular hypothalamic nuclei. Sim1 expression persists in these neurons in adult mice, raising the question of whether it plays a physiologic role in regulation of energy balance. We previously showed that Sim1 heterozygous mice had normal numbers of PVN neurons that were hyporesponsive to melanocortin 4 receptor agonism and showed reduced oxytocin expression. Furthermore, conditional postnatal neuronal inactivation of Sim1 also caused hyperphagic obesity and decreased hypothalamic oxytocin expression. PVN projections to the hindbrain, where oxytocin is thought to act to modulate satiety, were anatomically intact in both Sim1 heterozygous and conditional knockout mice. These experiments provided evidence that Sim1 functions in energy balance apart from its role in hypothalamic development but did not rule out effects of Sim1 deficiency on postnatal hypothalamic maturation. To address this possibility, we used a tamoxifen-inducible, neural-specific Cre transgene to conditionally inactivate Sim1 in adult mice with mature hypothalamic circuitry. Induced Sim1 inactivation caused increased food and water intake and decreased expression of PVN neuropeptides, especially oxytocin and vasopressin, with no change in energy expenditure. Sim1 expression was not required for survival of PVN neurons. The results corroborate previous evidence that Sim1 acts physiologically as well as developmentally to regulate body weight. Inducible knockout mice provide a system for studying Sim1's physiologic function in energy balance and identifying its relevant transcriptional targets in the hypothalamus.

  10. Lithium Alters the Morphology of Neurites Regenerating from Cultured Adult Spiral Ganglion Neurons

    PubMed Central

    Shah, S. M.; Patel, C. H.; Feng, A. S.; Kollmar, R.

    2013-01-01

    The small-molecule drug lithium (as a monovalent ion) promotes neurite regeneration and functional recovery, is easy to administer, and is approved for human use to treat bipolar disorder. Lithium exerts its neuritogenic effect mainly by inhibiting glycogen synthase kinase 3, a constitutively-active serine/threonine kinase that is regulated by neurotrophin and “wingless-related MMTV integration site” (Wnt) signaling. In spiral ganglion neurons of the cochlea, the effects of lithium and the function of glycogen synthase kinase 3 have not been investigated. We, therefore, set out to test whether lithium modulates neuritogenesis from adult spiral ganglion neurons. Primary cultures of dissociated spiral ganglion neurons from adult mice were exposed to lithium at concentrations between 0 and 12.5 mM. The resulting neurite morphology and growth-cone appearance were measured in detail by using immunofluorescence microscopy and image analysis. We found that lithium altered the morphology of regenerating neurites and their growth cones in a differential, concentration-dependent fashion. Low concentrations of 0.5 to 2.5 mM (around the half-maximal inhibitory concentration for glycogen synthase kinase 3 and the recommended therapeutic serum concentration for bipolar disorder) enhanced neurite sprouting and branching. A high concentration of 12.5 mM, in contrast, slowed elongation. As the lithium concentration rose from low to high, the microtubules became increasingly disarranged and the growth cones more arborized. Our results demonstrate that lithium selectively stimulates phases of neuritogenesis that are driven by microtubule reorganization. In contrast, most other drugs that have previously been tested on spiral ganglion neurons are reported to inhibit neurite outgrowth or affect only elongation. Lithium sensitivity is a necessary, but not sufficient condition for the involvement of glycogen synthase kinase 3. Our results are, therefore, consistent with, but do not

  11. Chronic Social Stress Affects Synaptic Maturation of Newly Generated Neurons in the Adult Mouse Dentate Gyrus

    PubMed Central

    Chen, Chien-Chung; Huang, Chiung-Chun

    2016-01-01

    Background: Chronic stress has been found to suppress adult neurogenesis, but it remains unclear whether it may affect the maturation process of adult-born neurons. Here, we examined the influence of chronic social defeat stress on the morphological and electrophysiological properties of adult-born dentate granule cells at different developmental stages. Methods: Adult C57BL/6 mice were subjected to 10 days of chronic social defeat stress followed by a social interaction test 24 hours after the last defeat. Defeated mice were segregated into susceptible and unsusceptible subpopulations based on a measure of social interaction test. Combining electrophysiology with retrovirus-mediated birth-dating and labeling, we examined the impact of chronic social defeat stress on temporal regulation of synaptic plasticity of adult-born dentate granule cells along their maturation. Results: Chronic social defeat stress decreases the survival and dendritic complexity of adult-born dentate granule cells. While chronic social defeat stress doesn’t alter the intrinsic electrophysiological properties and synaptic transmission of surviving adult-born dentate granule cells, it promotes the developmental switch in synaptic N-methyl-D-aspartate receptors from predominant GluN2B- to GluN2A-containing receptors, which transform the immature synapse of adult-born dentate granule cells from one that exhibits enhanced long-term potentiation to one that has normal levels of long-term potentiation. Furthermore, chronic social defeat stress increases the level of endogenous repressor element-1 silencing transcription factor mRNA in adult-born dentate granule cells, and knockdown of the repressor element-1 silencing transcription factor in adult-born dentate granule cells rescues chronic social defeat stress-induced morphological deficits and accelerated developmental switch in synaptic N-methyl-D-aspartate receptor subunit composition. Conclusions: These results uncover a previously

  12. The challenges of long-distance axon regeneration in the injured CNS.

    PubMed

    Chew, Daniel J; Fawcett, James W; Andrews, Melissa R

    2012-01-01

    Injury to the central nervous system (CNS) that results in long-tract axonal damage typically leads to permanent functional deficits in areas innervated at, and below, the level of the lesion. The initial ischemia, inflammation, and neurodegeneration are followed by a progressive generation of scar tissue, dieback of transected axons, and demyelination, creating an area inhibitory to regrowth and recovery. Two ways to combat this inhibition is to therapeutically target the extrinsic and intrinsic properties of the axon-scar environment. Scar tissue within and surrounding the lesion site can be broken down using an enzyme known as chondroitinase. Negative regulators of adult neuronal growth, such as Nogo, can be neutralized with antibodies. Both therapies greatly improve functional recovery in animal models. Alternatively, modifying the intrinsic growth properties of CNS neurons through gene therapy or pharmacotherapy has also shown promising axonal regeneration after injury. Despite these promising therapies, the main challenge of long-distance axon regeneration still remains; achieving a level of functional and organized connectivity below the level of the lesion that mimics the intact CNS.

  13. The Role of Astrocytes in the Generation, Migration, and Integration of New Neurons in the Adult Olfactory Bulb

    PubMed Central

    Gengatharan, Archana; Bammann, Rodrigo R.; Saghatelyan, Armen

    2016-01-01

    In mammals, new neurons in the adult olfactory bulb originate from a pool of neural stem cells in the subventricular zone of the lateral ventricles. Adult-born cells play an important role in odor information processing by adjusting the neuronal network to changing environmental conditions. Olfactory bulb neurogenesis is supported by several non-neuronal cells. In this review, we focus on the role of astroglial cells in the generation, migration, integration, and survival of new neurons in the adult forebrain. In the subventricular zone, neural stem cells with astrocytic properties display regional and temporal specificity when generating different neuronal subtypes. Non-neurogenic astrocytes contribute to the establishment and maintenance of the neurogenic niche. Neuroblast chains migrate through the rostral migratory stream ensheathed by astrocytic processes. Astrocytes play an important regulatory role in neuroblast migration and also assist in the development of a vasculature scaffold in the migratory stream that is essential for neuroblast migration in the postnatal brain. In the olfactory bulb, astrocytes help to modulate the network through a complex release of cytokines, regulate blood flow, and provide metabolic support, which may promote the integration and survival of new neurons. Astrocytes thus play a pivotal role in various processes of adult olfactory bulb neurogenesis, and it is likely that many other functions of these glial cells will emerge in the near future. PMID:27092050

  14. Nanoparticle-mediated conversion of primary human astrocytes into neurons and oligodendrocytes.

    PubMed

    Li, Xiaowei; Kozielski, Kristen; Cheng, Yu-Hao; Liu, Huanhuan; Zamboni, Camila Gadens; Green, Jordan; Mao, Hai-Quan

    2016-06-21

    Central nervous system (CNS) diseases and injuries are accompanied by reactive gliosis and scarring involving the activation and proliferation of astrocytes to form hypertrophic and dense structures, which present a significant barrier to neural regeneration. Engineering astrocytes to functional neurons or oligodendrocytes may constitute a novel therapeutic strategy for CNS diseases and injuries. Such direct cellular programming has been successfully demonstrated using viral vectors via the transduction of transcriptional factors, such as Sox2, which could program resident astrocytes into neurons in the adult brain and spinal cord, albeit the efficiency was low. Here we report a non-viral nanoparticle-based transfection method to deliver Sox2 or Olig2 into primary human astrocytes and demonstrate the effective conversion of the astrocytes into neurons and oligodendrocyte progenitors following the transgene expression of Sox2 and Olig2, respectively. This approach is highly translatable for engineering astrocytes to repair injured CNS tissues. PMID:27328202

  15. Primary Central Nervous System (CNS) Lymphoma B Cell Receptors Recognize CNS Proteins.

    PubMed

    Montesinos-Rongen, Manuel; Purschke, Frauke G; Brunn, Anna; May, Caroline; Nordhoff, Eckhard; Marcus, Katrin; Deckert, Martina

    2015-08-01

    Primary lymphoma of the CNS (PCNSL) is a diffuse large B cell lymphoma confined to the CNS. To elucidate its peculiar organ tropism, we generated recombinant Abs (recAbs) identical to the BCR of 23 PCNSLs from immunocompetent patients. Although none of the recAbs showed self-reactivity upon testing with common autoantigens, they recognized 1547 proteins present on a large-scale protein microarray, indicating polyreactivity. Interestingly, proteins (GRINL1A, centaurin-α, BAIAP2) recognized by the recAbs are physiologically expressed by CNS neurons. Furthermore, 87% (20/23) of the recAbs, including all Abs derived from IGHV4-34 using PCNSL, recognized galectin-3, which was upregulated on microglia/macrophages, astrocytes, and cerebral endothelial cells upon CNS invasion by PCNSL. Thus, PCNSL Ig may recognize CNS proteins as self-Ags. Their interaction may contribute to BCR signaling with sustained NF-κB activation and, ultimately, may foster tumor cell proliferation and survival. These data may also explain, at least in part, the affinity of PCNSL cells for the CNS. PMID:26116512

  16. Exposure to Zinc Sulfate Results in Differential Effects on Olfactory Sensory Neuron Subtypes in Adult Zebrafish

    PubMed Central

    Hentig, James T.; Byrd-Jacobs, Christine A.

    2016-01-01

    Zinc sulfate is a known olfactory toxicant, although its specific effects on the olfactory epithelium of zebrafish are unknown. Olfactory organs of adult zebrafish were exposed to zinc sulfate and, after 2, 3, 5, 7, 10 or 14 days, fish were processed for histological, immunohistochemical, ultrastructural, and behavioral analyses. Severe morphological disruption of the olfactory organ was observed two days following zinc sulfate exposure, including fusion of lamellae, epithelial inflammation, and significant loss of anti-calretinin labeling. Scanning electron microscopy revealed the apical surface of the sensory region was absent of ciliated structures, but microvilli were still present. Behavioral analysis showed significant loss of the ability to perceive bile salts and some fish also had no response to amino acids. Over the next several days, olfactory organ morphology, epithelial structure, and anti-calretinin labeling returned to control-like conditions, although the ability to perceive bile salts remained lost until day 14. Thus, exposure to zinc sulfate results in rapid degeneration of the olfactory organ, followed by restoration of morphology and function within two weeks. Zinc sulfate appears to have a greater effect on ciliated olfactory sensory neurons than on microvillous olfactory sensory neurons, suggesting differential effects on sensory neuron subtypes. PMID:27589738

  17. Lower motor neuron degeneration and familial predisposition to colonic neoplasia in two adult siblings.

    PubMed

    Shaw, P J; Ince, P G; Slade, J; Burn, J; Cartlidge, N E

    1991-11-01

    A previously unreported association between a familial predisposition to colonic neoplasia and familial adult onset lower motor neuron (LMN) degeneration is reported. Two brothers presented at the ages of 53 and 44 years with multiple colonic adenomata and invasive colonic carcinoma respectively. Subsequently both developed a virtually identical pattern of motor neuron disease of progressive muscular atrophy type. At presentation both had LMN weakness affecting predominantly the upper limb and neck muscles. The disease progressed rapidly to involve the lower limb and bulbar musculature and both brothers died after a 15 month course. Necropsy was performed on one brother and showed pathological changes confined to the LMNs with no evidence of involvement of the pyramidal tracts or motor cortex. The combination of these diseases in two brothers may be of importance in the search for genes responsible for familial motor neuron disorders. It is suggested that a genomic search should be directed initially to the vicinity of known colon neoplasia genes, particularly 5q, 17q and 18q.

  18. Survival of adult generated hippocampal neurons is altered in circadian arrhythmic mice.

    PubMed

    Rakai, Brooke D; Chrusch, Michael J; Spanswick, Simon C; Dyck, Richard H; Antle, Michael C

    2014-01-01

    The subgranular zone of the hippocampal formation gives rise to new neurons that populate the dentate gyrus throughout life. Cells in the hippocampus exhibit rhythmic clock gene expression and the circadian clock is known to regulate the cycle of cell division in other areas of the body. These facts suggest that the circadian clock may regulate adult neurogenesis in the hippocampus as well. In the present study, neurogenesis in the hippocampal subgranular zone was examined in arrhythmic Bmal1 knockout (-KO) mice and their rhythmic heterozygous and wildtype littermates. Proliferation and survival of newly generated subgranular zone cells were examined using bromodeoxyuridine labelling, while pyknosis (a measure of cell death) and hippocampal volume were examined in cresyl violet stained sections. There was no significant difference in cellular proliferation between any of the groups, yet survival of proliferating cells, 6 weeks after the bromodeoxyuridine injection, was significantly greater in the BMAL1-KO animals. The number of pyknotic cells was significantly decreased in Bmal1-KO animals, yet hippocampal volume remained the same across genotypes. These findings suggest that while a functional circadian clock is not necessary for normal proliferation of neuronal precursor cells, the normal pruning of newly generated neurons in the hippocampus may require a functional circadian clock. PMID:24941219

  19. Exposure to Zinc Sulfate Results in Differential Effects on Olfactory Sensory Neuron Subtypes in Adult Zebrafish.

    PubMed

    Hentig, James T; Byrd-Jacobs, Christine A

    2016-01-01

    Zinc sulfate is a known olfactory toxicant, although its specific effects on the olfactory epithelium of zebrafish are unknown. Olfactory organs of adult zebrafish were exposed to zinc sulfate and, after 2, 3, 5, 7, 10 or 14 days, fish were processed for histological, immunohistochemical, ultrastructural, and behavioral analyses. Severe morphological disruption of the olfactory organ was observed two days following zinc sulfate exposure, including fusion of lamellae, epithelial inflammation, and significant loss of anti-calretinin labeling. Scanning electron microscopy revealed the apical surface of the sensory region was absent of ciliated structures, but microvilli were still present. Behavioral analysis showed significant loss of the ability to perceive bile salts and some fish also had no response to amino acids. Over the next several days, olfactory organ morphology, epithelial structure, and anti-calretinin labeling returned to control-like conditions, although the ability to perceive bile salts remained lost until day 14. Thus, exposure to zinc sulfate results in rapid degeneration of the olfactory organ, followed by restoration of morphology and function within two weeks. Zinc sulfate appears to have a greater effect on ciliated olfactory sensory neurons than on microvillous olfactory sensory neurons, suggesting differential effects on sensory neuron subtypes. PMID:27589738

  20. Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons

    PubMed Central

    Serrano-Velez, Jose L.; Rodriguez-Alvarado, Melanie; Torres-Vazquez, Irma I.; Fraser, Scott E.; Yasumura, Thomas; Vanderpool, Kimberly G.; Rash, John E.; Rosa-Molinar, Eduardo

    2014-01-01

    “Dye-coupling”, whole-mount immunohistochemistry for gap junction channel protein connexin 35 (Cx35), and freeze-fracture replica immunogold labeling (FRIL) reveal an abundance of electrical synapses/gap junctions at glutamatergic mixed synapses in the 14th spinal segment that innervates the adult male gonopodium of Western Mosquitofish, Gambusia affinis (Mosquitofish). To study gap junctions’ role in fast motor behavior, we used a minimally-invasive neural-tract-tracing technique to introduce gap junction-permeant or -impermeant dyes into deep muscles controlling the gonopodium of the adult male Mosquitofish, a teleost fish that rapidly transfers (complete in <20 mS) spermatozeugmata into the female reproductive tract. Dye-coupling in the 14th spinal segment controlling the gonopodium reveals coupling between motor neurons and a commissural primary ascending interneuron (CoPA IN) and shows that the 14th segment has an extensive and elaborate dendritic arbor and more gap junctions than do other segments. Whole-mount immunohistochemistry for Cx35 results confirm dye-coupling and show it occurs via gap junctions. Finally, FRIL shows that gap junctions are at mixed synapses and reveals that >50 of the 62 gap junctions at mixed synapses are in the 14th spinal segment. Our results support and extend studies showing gap junctions at mixed synapses in spinal cord segments involved in control of genital reflexes in rodents, and they suggest a link between mixed synapses and fast motor behavior. The findings provide a basis for studies of specific roles of spinal neurons in the generation/regulation of sex-specific behavior and for studies of gap junctions’ role in regulating fast motor behavior. Finally, the CoPA IN provides a novel candidate neuron for future studies of gap junctions and neural control of fast motor behaviors. PMID:25018700

  1. NEURONAL ACTION ON THE DEVELOPING BLOOD VESSEL PATTERN

    PubMed Central

    James, Jennifer M.; Mukouyama, Yoh-suke

    2011-01-01

    The nervous system relies on a highly specialized network of blood vessels for development and neuronal survival. Recent evidence suggests that both the central and peripheral nervous systems (CNS and PNS) employ multiple mechanisms to shape the vascular tree to meet its specific metabolic demands, such as promoting nerve-artery alignment in the PNS or the development the blood brain barrier in the CNS. In this article we discuss how the nervous system directly influences blood vessel patterning resulting in neuro-vascular congruence that is maintained throughout development and in the adult. PMID:21978864

  2. In vivo differential susceptibility of sensory neurons to rabies virus infection.

    PubMed

    Velandia-Romero, Myriam L; Castellanos, Jaime E; Martínez-Gutiérrez, Marlén

    2013-08-20

    There is controversy with regard to the entry pathway of the rabies virus (RABV) into the central nervous system (CNS). Some authors have suggested that the virus inoculated at the periphery is captured and transported to CNS only by motor neurons; however, it has been reported that dorsal root ganglia (DRG) sensory neurons capture and transport the virus to the spinal cord (SC) and then to the brain. It is probable that preferences for one pathway or another depend on the site of inoculation and the post-infection time. Therefore, in the present study, we evaluated different vertebral segments and post-infection times, along with the location, number, and subpopulation of sensory neurons susceptible to infection after inoculating RABV in the footpads of adult mice. It was noted that the virus inoculated in the footpad preferentially entered the CNS through the large-sized DRG sensory neurons, while infection of the motor neurons occurred later. Further, it was found that the virus was dispersed in spinal cord trans-synaptically through the interneurons, arriving at both sensory neurons and contralateral motor neurons. In conclusion, we observed that RABV inoculated in the plantar footpad is captured preferentially by large sensory neurons and is transported to the DRG, where it replicates and is spread to the SC using transynaptic jumps, infecting sensory and motor neurons at the same level before ascending to the brain.

  3. High yield extraction of pure spinal motor neurons, astrocytes and microglia from single embryo and adult mouse spinal cord

    PubMed Central

    Beaudet, Marie-Josée; Yang, Qiurui; Cadau, Sébastien; Blais, Mathieu; Bellenfant, Sabrina; Gros-Louis, François; Berthod, François

    2015-01-01

    Extraction of mouse spinal motor neurons from transgenic mouse embryos recapitulating some aspects of neurodegenerative diseases like amyotrophic lateral sclerosis has met with limited success. Furthermore, extraction and long-term culture of adult mouse spinal motor neurons and glia remain also challenging. We present here a protocol designed to extract and purify high yields of motor neurons and glia from individual spinal cords collected on embryos and adult (5-month-old) normal or transgenic mice. This method is based on mild digestion of tissue followed by gradient density separation allowing to obtain two millions motor neurons over 92% pure from one E14.5 single embryo and more than 30,000 from an adult mouse. These cells can be cultured more than 14 days in vitro at a density of 100,000 cells/cm2 to maintain optimal viability. Functional astrocytes and microglia and small gamma motor neurons can be purified at the same time. This protocol will be a powerful and reliable method to obtain motor neurons and glia to better understand mechanisms underlying spinal cord diseases. PMID:26577180

  4. Adult AMPA GLUA1 Receptor Subunit Loss in 5-HT Neurons Results in a Specific Anxiety-Phenotype with Evidence for Dysregulation of 5-HT Neuronal Activity

    PubMed Central

    Weber, Tillmann; Vogt, Miriam A; Gartside, Sarah E; Berger, Stefan M; Lujan, Rafael; Lau, Thorsten; Herrmann, Elke; Sprengel, Rolf; Bartsch, Dusan; Gass, Peter

    2015-01-01

    Both the glutamatergic and serotonergic (5-HT) systems are implicated in the modulation of mood and anxiety. Descending cortical glutamatergic neurons regulate 5-HT neuronal activity in the midbrain raphe nuclei through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors. To analyze the functional role of GLUA1-containing AMPA receptors in serotonergic neurons, we used the Cre-ERT2/loxP-system for the conditional inactivation of the GLUA1-encoding Gria1 gene selectively in 5-HT neurons of adult mice. These Gria15-HT−/− mice exhibited a distinct anxiety phenotype but showed no alterations in locomotion, depression-like behavior, or learning and memory. Increased anxiety-related behavior was associated with significant decreases in tryptophan hydroxylase 2 (TPH2) expression and activity, and subsequent reductions in tissue levels of 5-HT, its metabolite 5-hydroxyindoleacetic acid (5-HIAA), and norepinephrine in the raphe nuclei. However, TPH2 expression and activity as well as monoamine levels were unchanged in the projection areas of 5-HT neurons. Extracellular electrophysiological recordings of 5-HT neurons revealed that, while α1-adrenoceptor-mediated excitation was unchanged, excitatory responses to AMPA were enhanced and the 5-HT1A autoreceptor-mediated inhibitory response to 5-HT was attenuated in Gria15-HT−/− mice. Our data show that a loss of GLUA1 protein in 5-HT neurons enhances AMPA receptor function and leads to multiple local molecular and neurochemical changes in the raphe nuclei that dysregulate 5-HT neuronal activity and induce anxiety-like behavior. PMID:25547714

  5. Adult AMPA GLUA1 receptor subunit loss in 5-HT neurons results in a specific anxiety-phenotype with evidence for dysregulation of 5-HT neuronal activity.

    PubMed

    Weber, Tillmann; Vogt, Miriam A; Gartside, Sarah E; Berger, Stefan M; Lujan, Rafael; Lau, Thorsten; Herrmann, Elke; Sprengel, Rolf; Bartsch, Dusan; Gass, Peter

    2015-05-01

    Both the glutamatergic and serotonergic (5-HT) systems are implicated in the modulation of mood and anxiety. Descending cortical glutamatergic neurons regulate 5-HT neuronal activity in the midbrain raphe nuclei through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors. To analyze the functional role of GLUA1-containing AMPA receptors in serotonergic neurons, we used the Cre-ERT2/loxP-system for the conditional inactivation of the GLUA1-encoding Gria1 gene selectively in 5-HT neurons of adult mice. These Gria1(5-HT-/-) mice exhibited a distinct anxiety phenotype but showed no alterations in locomotion, depression-like behavior, or learning and memory. Increased anxiety-related behavior was associated with significant decreases in tryptophan hydroxylase 2 (TPH2) expression and activity, and subsequent reductions in tissue levels of 5-HT, its metabolite 5-hydroxyindoleacetic acid (5-HIAA), and norepinephrine in the raphe nuclei. However, TPH2 expression and activity as well as monoamine levels were unchanged in the projection areas of 5-HT neurons. Extracellular electrophysiological recordings of 5-HT neurons revealed that, while α1-adrenoceptor-mediated excitation was unchanged, excitatory responses to AMPA were enhanced and the 5-HT1A autoreceptor-mediated inhibitory response to 5-HT was attenuated in Gria1(5-HT-/-) mice. Our data show that a loss of GLUA1 protein in 5-HT neurons enhances AMPA receptor function and leads to multiple local molecular and neurochemical changes in the raphe nuclei that dysregulate 5-HT neuronal activity and induce anxiety-like behavior.

  6. Adult human bone marrow stromal spheres express neuronal traits in vitro and in a rat model of Parkinson's disease

    PubMed Central

    Suon, Sokreine; Yang, Ming; Iacovitti, Lorraine

    2007-01-01

    Adult human bone marrow stromal cells (hMSCs) grown in suspension culture gave rise to spheres of neural progenitor (NP) cells, capable of expressing both dopaminergic (DA) and GABAergic (GABA) traits. After transplantation into the Parkinsonian rat, human NPs and neurons were present at 2 weeks. Although no DA neurons appeared to survive transplantation, there were abundant GABA neurons present in the graft. By 4 weeks, however, all cells had died. Finding ways to prolong survival and promote the appropriate neurotransmitter phenotype is essential if hMSCs are to be clinically useful. PMID:16828720

  7. Orthodenticle is necessary for survival of a cluster of clonally related dopaminergic neurons in the Drosophila larval and adult brain

    PubMed Central

    2011-01-01

    Background The dopaminergic (DA) neurons present in the central brain of the Drosophila larva are spatially arranged in stereotyped groups that define clusters of bilaterally symmetrical neurons. These clusters have been classified according to anatomical criteria (position of the cell bodies within the cortex and/or projection pattern of the axonal tracts). However, information pertaining to the developmental biology, such as lineage relationship of clustered DA neurons and differential cell subtype-specific molecular markers and mechanisms of differentiation and/or survival, is currently not available. Results Using MARCM and twin-spot MARCM techniques together with anti-tyrosine hydroxylase immunoreactivity, we have analyzed the larval central brain DA neurons from a developmental point of view and determined their time of birth, their maturation into a DA neurotransmitter phenotype as well as their lineage relationships. In addition, we have found that the homeodomain containing transcription factor Orthodenticle (Otd) is present in a cluster of clonally related DA neurons in both the larval and adult brain. Taking advantage of the otd hypomorphic mutation ocelliless (oc) and the oc2-Gal4 reporter line, we have studied the involvement of orthodenticle (otd) in the survival and/or cell fate specification of these post-mitotic neurons. Conclusions Our findings provide evidence of the presence of seven neuroblast lineages responsible for the generation of the larval central brain DA neurons during embryogenesis. otd is expressed in a defined group of clonally related DA neurons from first instar larvae to adulthood, making it possible to establish an identity relationship between the larval DL2a and the adult PPL2 DA clusters. This poses otd as a lineage-specific and differential marker of a subset of clonally related DA neurons. Finally, we show that otd is required in those DA neurons for their survival. PMID:21999236

  8. Regional astrocyte allocation regulates CNS synaptogenesis and repair.

    PubMed

    Tsai, Hui-Hsin; Li, Huiliang; Fuentealba, Luis C; Molofsky, Anna V; Taveira-Marques, Raquel; Zhuang, Helin; Tenney, April; Murnen, Alice T; Fancy, Stephen P J; Merkle, Florian; Kessaris, Nicoletta; Alvarez-Buylla, Arturo; Richardson, William D; Rowitch, David H

    2012-07-20

    Astrocytes, the most abundant cell population in the central nervous system (CNS), are essential for normal neurological function. We show that astrocytes are allocated to spatial domains in mouse spinal cord and brain in accordance with their embryonic sites of origin in the ventricular zone. These domains remain stable throughout life without evidence of secondary tangential migration, even after acute CNS injury. Domain-specific depletion of astrocytes in ventral spinal cord resulted in abnormal motor neuron synaptogenesis, which was not rescued by immigration of astrocytes from adjoining regions. Our findings demonstrate that region-restricted astrocyte allocation is a general CNS phenomenon and reveal intrinsic limitations of the astroglial response to injury.

  9. Action of thymol on spontaneous excitatory transmission in adult rat spinal substantia gelatinosa neurons.

    PubMed

    Xu, Zhi-Hao; Wang, Chong; Fujita, Tsugumi; Jiang, Chang-Yu; Kumamoto, Eiichi

    2015-10-01

    Thymol, which is contained in thyme essential oil, has various actions including antinociception and nerve conduction inhibition. Although thymol activates transient receptor potential (TRP) channels expressed in heterologous cells, it remains to be examined whether this is so in native neurons. It has not yet been examined how thymol affects synaptic transmission. In order to know how thymol modulates excitatory transmission with a focus on TRP activation, we investigated its effect on glutamatergic spontaneous excitatory transmission in lamina II (substantia gelatinosa; SG) neurons with which nerve terminals expressing TRP channels make synaptic contacts. The experiment was performed by using the blind whole-cell patch-clamp technique in adult rat spinal cord slices. Superfusing thymol (1 mM) for 3 min reversibly increased the frequency of spontaneous excitatory postsynaptic current (sEPSC) with a minimal increase in its amplitude in all neurons examined. Seventy-seven% of the neurons produced an outward current at a holding potential of -70 mV. The sEPSC frequency increase and outward current produced by thymol were concentration-dependent with almost the same half-maximal effective concentration (EC50) values of 0.18 and 0.14 mM, respectively. These activities were repeated at a time interval of 30 min, although the sEPSC frequency increase but not outward current recovered with a slow time course. Voltage-gated Na(+)-channel blocker tetrodotoxin did not affect the thymol activities. The sEPSC frequency increase was inhibited by TRPA1 antagonist HC-030031 but not TRPV1 and TRPM8 antagonist (capsazepine and BCTC, respectively), while these antagonists had no effect on the outward current. This was so, albeit the two thymol activities had similar EC50 values. It is concluded that thymol increases the spontaneous release of L-glutamate onto SG neurons by activating TRPA1 channels while producing an outward current without TRP activation. Considering that the SG

  10. Regulation of differentiation flux by Notch signalling influences the number of dopaminergic neurons in the adult brain

    PubMed Central

    Trujillo-Paredes, Niurka; Valencia, Concepción; Guerrero-Flores, Gilda; Arzate, Dulce-María; Baizabal, José-Manuel; Guerra-Crespo, Magdalena; Fuentes-Hernández, Ayari; Zea-Armenta, Iván; Covarrubias, Luis

    2016-01-01

    ABSTRACT Notch signalling is a well-established pathway that regulates neurogenesis. However, little is known about the role of Notch signalling in specific neuronal differentiation. Using Dll1 null mice, we found that Notch signalling has no function in the specification of mesencephalic dopaminergic neural precursor cells (NPCs), but plays an important role in regulating their expansion and differentiation into neurons. Premature neuronal differentiation was observed in mesencephalons of Dll1-deficient mice or after treatment with a Notch signalling inhibitor. Coupling between neurogenesis and dopaminergic differentiation was indicated from the coincident emergence of neuronal and dopaminergic markers. Early in differentiation, decreasing Notch signalling caused a reduction in NPCs and an increase in dopaminergic neurons in association with dynamic changes in the proportion of sequentially-linked dopaminergic NPCs (Msx1/2+, Ngn2+, Nurr1+). These effects in differentiation caused a significant reduction in the number of dopaminergic neurons produced. Accordingly, Dll1 haploinsufficient adult mice, in comparison with their wild-type littermates, have a consistent reduction in neuronal density that was particularly evident in the substantia nigra pars compacta. Our results are in agreement with a mathematical model based on a Dll1-mediated regulatory feedback loop between early progenitors and their dividing precursors that controls the emergence and number of dopaminergic neurons. PMID:26912775

  11. [Quantitative analysis of the isthmo-optic nucleus and projection neurons to the retina in adult fowl (Gallus gallus domesticus)].

    PubMed

    Sugita, S; Yamada, M

    1992-08-01

    Quantitative analysis of the isthmo-optic nucleus (IO) and centrifugal projection to the retina in the fowl was made using Nissl preparation and retrograde horseradish peroxidase (HRP) methods. Seven adult fowls (Gallus gallus domesticus) were used for Nissl stain. Serial sections were cut on a freezing microtome at 60 microns and stained with cresyl violet. IO was situated just medial to the caudal part of the tectum and laterodorsal surface of the brain stem. Rostrocaudal extension of IO was about 800-1,000 microns. The average total volume and neuronal population of the IO was 280 x 10(-3) mm3 and 5,600 neurons, respectively. Eight animals were used for HRP study. One hundred microliters of 30% HRP solution in physiological saline was injected into the vitreous body of one eye of each hen. Serial transverse sections of 60 microns were treated with tetramethyl benzidine (TMB). Many labeled neurons were found in contralateral brain stem. Average total number of contralateral HRP-labeled cells in IO and peri-IO were 5,268 and 1,492, respectively. Labeled neurons peri-IO were mainly distributed ventrally and rostrally to IO. No labeled neurons in IO, and only a few labeled neurons peri-IO were found ipsilaterally. The number of HRP-labeled neurons in IO corresponded to the neuronal population of IO in Nissl preparation, which suggested that most of isthmo-optic neurons might be projecting to the contralateral retina. In contrast to the round and small IO neurons (long axis 15-20 microns, short axis 10-20 microns), peri-IO neurons were multipolar and longer (long axis 15-30 microns, short axis 10-25 microns).

  12. Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population

    SciTech Connect

    Chun, J.J.; Shatz, C.J.

    1989-04-22

    The postnatal fate of the first-generated neurons of the cat cerebral cortex was examined. These neurons can be identified uniquely by 3H-thymidine exposure during the week preceding the neurogenesis of cortical layer 6. Previous studies in which 3H-thymidine birthdating at embryonic day 27 (E27) was combined with immunohistochemistry have shown that these neurons are present in large numbers during fetal and early postnatal life within the subplate (future white matter), that they are immunoreactive for the neuron-specific protein MAP2 and for the putative neurotransmitters GABA, NPY, SRIF, and CCK. Here, the same techniques were used to follow the postnatal location and disappearance of the early generated subplate neuron population. At birth (P0), subplate neurons showing immunoreactivity for GABA, NPY, SRIF, or CCK are present in large numbers and at high density within the white matter throughout the neocortex, and the entire population can be observed as a dense MAP2-immunoreactive band situated beneath cortical layer 6. Between P0 and P401 (adulthood), the MAP2-immunostained band disappears so that comparatively few MAP2-immunoreactive neurons remain within the white matter. There is a corresponding decrease in the number and density of neurons stained with antibodies against neurotransmitters. In each instance, these neurons could be double-labeled by the administration of 3H-thymidine at E27, indicating that they are the remnants of the early generated subplate neuron population. The major period of decrease occurs during the first 4 postnatal weeks, and adult values are attained by 5 months. Within the white matter of the lateral gyrus (visual cortex), the density of immunostained neurons decreases dramatically: MAP2, 82%, SRIF, 81%, and NPY, 96%.

  13. Projection neurons in the cortex and hippocampus: differential effects of chronic khat and ethanol exposure in adult male rats

    PubMed Central

    Alele, Paul E; Matovu, Daniel; Imanirampa, Lawrence; Ajayi, Abayomi M; Kasule, Gyaviira T

    2016-01-01

    Background Recent evidence suggests that many individuals who chew khat recreationally also drink ethanol to offset the stimulating effect of khat. The objective of this study was to describe the separate and interactive effects of chronic ethanol and khat exposure on key projection neurons in the cortex and hippocampus of young adult male rats. Methods Young adult male Sprague Dawley rats were divided into six treatment groups: 2 g/kg khat, 4 g/kg khat, 4 g/kg ethanol, combined khat and ethanol (4 g/kg each), a normal saline control, and an untreated group. Treatments were administered orally for 28 continuous days; brains were then harvested, sectioned, and routine hematoxylin–eosin staining was done. Following photomicrography, ImageJ® software captured data regarding neuron number and size. Results No differences occurred in counts of both granular and pyramidal projection neurons in the motor cortex and all four subfields of the hippocampal formation. Khat dose-dependently increased pyramidal neuron size in the motor cortex and the CA3 region, but had different effects on granular neuron size in the dentate gyrus and the motor cortex. Mean pyramidal neuron size for the ethanol-only treatment was larger than that for the 2 g/kg khat group, and the saline control group, in CA3 and in the motor cortex. Concomitant khat and ethanol increased granular neuron size in the motor cortex, compared to the 2 g/kg khat group, the 4 g/kg khat group, and the 4 g/kg ethanol group. In the CA3 region, the 4 g/kg ethanol group showed a larger mean pyramidal neuron size than the combined khat and ethanol group. Conclusion These results suggest that concomitant khat and ethanol exposure changes granular and pyramidal projection neuron sizes differentially in the motor cortex and hippocampus, compared to the effects of chronic exposure to these two drugs separately. PMID:27785113

  14. CNS demyelination in fibrodysplasia ossificans progressiva.

    PubMed

    Kan, Lixin; Kitterman, Joseph A; Procissi, Daniele; Chakkalakal, Salin; Peng, Chian-Yu; McGuire, Tammy L; Goldsby, Robert E; Pignolo, Robert J; Shore, Eileen M; Kaplan, Frederick S; Kessler, John A

    2012-12-01

    Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder of progressive heterotopic ossification (HO) caused by a recurrent activating mutation of ACVR1/ALK2, a bone morphogenetic protein (BMP) type I receptor. FOP is characterized by progressive HO, which is associated with inflammation in the setting of dysregulated BMP signaling, however, a variety of atypical neurologic symptoms are also reported by FOP patients. The main objective of this study is to investigate the potential underlying mechanism that is responsible for the observed atypical neurologic symptoms. We evaluated two mouse models of dysregulated BMP signaling for potential CNS pathology through non-invasive magnetic resonance imaging (MRI) studies and histological and immunohistochemical approaches. In one model, BMP4 is over-expressed under the control of the neuron-specific enolase promoter; the second model is a knock-in of a recurrent FOP mutation of ACVR1/ALK2. We also retrospectively examined MRI scans of four FOP patients. We consistently observed demyelinated lesions and focal inflammatory changes of the CNS in both mouse models but not in wild-type controls, and also found CNS white matter lesions in each of the four FOP patients examined. These findings suggest that dysregulated BMP signaling disturbs normal homeostasis of target tissues, including CNS where focal demyelination may manifest as the neurologic symptoms frequently observed in FOP.

  15. Enhancement by citral of glutamatergic spontaneous excitatory transmission in adult rat substantia gelatinosa neurons.

    PubMed

    Zhu, Lan; Fujita, Tsugumi; Jiang, Chang-Yu; Kumamoto, Eiichi

    2016-02-10

    Although citral, which is abundantly present in lemongrass, has various actions including antinociception, how citral affects synaptic transmission has not been examined as yet. Citral activates in heterologous cells transient receptor potential vanilloid-1, ankyrin-1, and melastatin-8 (TRPV1, TRPA1, and TRPM8, respectively) channels, the activation of which in the spinal lamina II [substantia gelatinosa (SG)] increases the spontaneous release of L-glutamate from nerve terminals. It remains to be examined what types of transient receptor potential channel in native neurons are activated by citral. With a focus on transient receptor potential activation, we examined the effect of citral on glutamatergic spontaneous excitatory transmission using the whole-cell patch-clamp technique to SG neurons in adult rat spinal cord slices. Bath-applied citral for 3 min increased the frequency of spontaneous excitatory postsynaptic current in a concentration-dependent manner (half-maximal effective concentration=0.58 mM), with a small increase in its amplitude. The spontaneous excitatory postsynaptic current frequency increase produced by citral was repeated at a time interval of 30 min, albeit this action recovered with a slow time course after washout. The presynaptic effect of citral was inhibited by TRPA1 antagonist HC-030031, but not by voltage-gated Na-channel blocker tetrodotoxin, TRPV1 antagonist capsazepine, and TRPM8 antagonist BCTC. It is concluded that citral increases spontaneous L-glutamate release in SG neurons by activating TRPA1 channels. Considering that the SG plays a pivotal role in modulating nociceptive transmission from the periphery, the citral activity could contribute toward at least a part of the modulation. PMID:26720890

  16. New Hippocampal Neurons Are Not Obligatory for Memory Formation; Cyclin D2 Knockout Mice with No Adult Brain Neurogenesis Show Learning

    ERIC Educational Resources Information Center

    Jaholkowski, Piotr; Kiryk, Anna; Jedynak, Paulina; Abdallah, Nada M. Ben; Knapska, Ewelina; Kowalczyk, Anna; Piechal, Agnieszka; Blecharz-Klin, Kamilla; Figiel, Izabela; Lioudyno, Victoria; Widy-Tyszkiewicz, Ewa; Wilczynski, Grzegorz M.; Lipp, Hans-Peter; Kaczmarek, Leszek; Filipkowski, Robert K.

    2009-01-01

    The role of adult brain neurogenesis (generating new neurons) in learning and memory appears to be quite firmly established in spite of some criticism and lack of understanding of what the new neurons serve the brain for. Also, the few experiments showing that blocking adult neurogenesis causes learning deficits used irradiation and various drugs…

  17. Forebrain GABAergic neuron precursors integrate into adult spinal cord and reduce injury-induced neuropathic pain

    PubMed Central

    Bráz, JM; Sharif-Naeini, R; Vogt, D; Kriegstein, A; Alvarez-Buylla, A; Rubenstein, JL; Basbaum, AI

    2012-01-01

    Neuropathic pain is a chronic debilitating disease characterized by mechanical allodynia and spontaneous pain. Because symptoms are often unresponsive to conventional methods of pain treatment, new therapeutic approaches are essential. Here, we describe a strategy that not only ameliorates symptoms of neuropathic pain, but is also potentially disease modifying. We show that transplantation of immature telencephalic GABAergic interneurons from the mouse medial ganglionic eminence (MGE) into the adult mouse spinal cord completely reverses the mechanical hypersensitivity produced by peripheral nerve injury. Underlying this improvement is a remarkable integration of the MGE transplants into the host spinal cord circuitry, in which the transplanted cells make functional connections with both primary afferent and spinal cord neurons. By contrast, MGE transplants were not effective against inflammatory pain. Our findings suggest that MGE-derived GABAergic interneurons overcome the spinal cord hyperexcitability that is a hallmark of nerve-injury induced neuropathic pain. PMID:22632725

  18. Leptin signaling in GFAP-expressing adult glia cells regulates hypothalamic neuronal circuits and feeding

    PubMed Central

    Kim1, Jae Geun; Suyama, Shigetomo; Koch, Marco; Jin, Sungho; Argente-Arizon, Pilar; Argente, Jesus; Liu, Zhong-Wu; Zimmer, Marcelo R.; Jeong, Jin Kwon; Szigeti-Buck, Klara; Gao, Yuanqing; Garcia-Caceres, Cristina; Yi, Chun-Xia; Salmaso, Natalina; Vaccarino, Flora M.; Chowen, Julie; Diano, Sabrina; Dietrich, Marcelo O; Tschöp, Matthias H.; Horvath, Tamas L.

    2014-01-01

    We have shown that synaptic re-organization of hypothalamic feeding circuits in response to metabolic shifts involves astrocytes, cells that can directly respond to the metabolic hormone, leptin, in vitro. It is not known whether the role of glia cells in hypothalamic synaptic adaptions is active or passive. Here we show that leptin receptors are expressed in hypothalamic astrocytes and that conditional, adult deletion of leptin receptors in astrocytes leads to altered glial morphology, decreased glial coverage and elevated synaptic inputs onto pro-opiomelanocortin (POMC)- and Agouti-related protein (AgRP)-producing neurons. Leptin-induced suppression of feeding was diminished, while rebound feeding after fasting or ghrelin administration was elevated in mice with astrocyte-specific leptin receptor deficiency. These data unmask an active role of glial cells in the initiation of hypothalamic synaptic plasticity and neuroendocrine control of feeding by leptin. PMID:24880214

  19. Secreted Semaphorins from Degenerating Larval ORN Axons Direct Adult Projection Neuron Dendrite Targeting

    PubMed Central

    Sweeney, Lora B.; Chou, Ya-Hui; Wu, Zhuhao; Joo, William; Komiyama, Takaki; Potter, Christopher J.; Kolodkin, Alex L.; Garcia, K. Christopher; Luo, Liqun

    2012-01-01

    SUMMARY During assembly of the Drosophila olfactory circuit, projection neuron (PN) dendrites pre-pattern the developing antennal lobe before the arrival of axons from their presynaptic partners, the adult olfactory receptor neurons (ORNs). We previously found that levels of transmembrane Semaphorin-1a, which acts as a receptor, instruct PN dendrite targeting along the dorsolateral-ventromedial axis. Here we show that two secreted semaphorins, Sema-2a and Sema-2b, provide spatial cues for PN dendrite targeting. Sema-2a and Sema-2b proteins are distributed in gradients opposing the Sema-1a protein gradient, and Sema-1a binds to Sema-2a-expressing cells. In Sema-2a and Sema-2b double mutants, PN dendrites that normally target dorsolaterally in the antennal lobe mistarget ventromedially, phenocopying cell-autonomous Sema-1a removal from these PNs. Cell ablation, cell-specific knockdown, and rescue experiments indicate that secreted semaphorins from degenerating larval ORN axons direct dendrite targeting. Thus, a degenerating brain structure instructs the wiring of a developing circuit through the repulsive action of secreted semaphorins. PMID:22153371

  20. Histamine and Immune Biomarkers in CNS Disorders

    PubMed Central

    Cacabelos, Ramón; Torrellas, Clara; Fernández-Novoa, Lucía; López-Muñoz, Francisco

    2016-01-01

    Neuroimmune dysregulation is a common phenomenon in different forms of central nervous system (CNS) disorders. Cross-links between central and peripheral immune mechanisms appear to be disrupted as reflected by a series of immune markers (CD3, CD4, CD7, HLA-DR, CD25, CD28, and CD56) which show variability in brain disorders such as anxiety, depression, psychosis, stroke, Alzheimer's disease, Parkinson's disease, attention-deficit hyperactivity disorder, migraine, epilepsy, vascular dementia, mental retardation, cerebrovascular encephalopathy, multiple sclerosis, brain tumors, cranial nerve neuropathies, mental retardation, and posttraumatic brain injury. Histamine (HA) is a pleiotropic monoamine involved in several neurophysiological functions, neuroimmune regulation, and CNS pathogenesis. Changes in brain HA show an age- and sex-related pattern, and alterations in brain HA levels are present in different CNS regions of patients with Alzheimer's disease (AD). Brain HA in neuronal and nonneuronal compartments plays a dual role (neurotrophic versus neurotoxic) in a tissue-specific manner. Pathogenic mechanisms associated with neuroimmune dysregulation in AD involve HA, interleukin-1β, and TNF-α, whose aberrant expression contributes to neuroinflammation as an aggravating factor for neurodegeneration and premature neuronal death. PMID:27190492

  1. Adult plasticity in multisensory neurons: Short-term experience-dependent changes in the superior colliculus

    PubMed Central

    Yu, Liping; Stein, Barry E.; Rowland, Benjamin A.

    2010-01-01

    Multisensory neurons in the superior colliculus (SC) have the capability to integrate signals that belong to the same event, despite being conveyed by different senses. They develop this capability during early life as experience is gained with the statistics of cross-modal events. These adaptations prepare the SC to deal with the cross-modal events that are likely to be encountered throughout life. Here we found that neurons in the adult SC can also adapt to experience with sequentially-ordered cross-modal (visual-auditory or auditory-visual) cues, and that they do so over short periods of time (minutes), as if adapting to a particular stimulus configuration. This short-term plasticity was evident as a rapid increase in the magnitude and duration of responses to the first stimulus, and a shortening of the latency and increase in magnitude of the responses to the second stimulus when they are presented in sequence. The result was that the two responses appeared to merge. These changes were stable in the absence of experience with competing stimulus configurations, outlasted the exposure period, and could not be induced by equivalent experience with sequential within-modal (visual-visual or auditory-auditory) stimuli. A parsimonious interpretation is that the additional SC activity provided by the second stimulus became associated with, and increased the potency of, the afferents responding to the preceding stimulus. This interpretation is consistent with the principle of spike-timing dependent plasticity (STDP), which may provide the basic mechanism for short term or long term plasticity and be operative in both the adult and neonatal SC. PMID:20016107

  2. HETEROTOPICALLY TRANSPLANTED CVO NEURAL STEM CELLS GENERATE NEURONS AND MIGRATE WITH SVZ CELLS IN THE ADULT MOUSE BRAIN

    PubMed Central

    Bennett, Lori B.; Cai, Jingli; Enikolopov, Grigori; Iacovitti, Lorraine

    2010-01-01

    Production of new neurons throughout adulthood has been well characterized in two brain regions, the subventricular zone (SVZ) of the anterolateral ventricle and the subgranular zone (SGZ) of the hippocampus. The neurons produced from these regions arise from neural stem cells (NSCs) found in highly regulated stem cell niches. We recently showed that midline structures called circumventricular organs (CVOs) also contain NSCs capable of neurogenesis and/or astrogliogenesis in vitro and in situ [3]. The present study demonstrates that NSCs derived from two astrogliogenic CVOs, the median eminence and organum vasculosum of the lamina terminalis of the Nestin-GFP mouse, possess the potential to integrate into the SVZ and differentiate into cells with a neuronal phenotype. These NSCs, following expansion and BrdU-labeling in culture and heterotopic transplantation into a region proximal to the SVZ in adult mice, migrate caudally to the SVZ and express early neuronal markers (TUC-4, PSA-NCAM) as they migrate along the rostral migratory stream. CVO-derived BrdU+ cells ultimately reach the olfactory bulb where they express early (PSA-NCAM) and mature (NeuN) neuronal markers. Collectively, these data suggest that although NSCs derived from the ME and OVLT CVOs are astrogliogenic in situ, they produce cells phenotypic of neurons in vivo when placed in a neurogenic environment. These findings may have implications for neural repair in the adult brain. PMID:20298755

  3. Neuronal Organization of the Brain in the Adult Amphioxus (Branchiostoma lanceolatum): A Study With Acetylated Tubulin Immunohistochemistry.

    PubMed

    Castro, Antonio; Becerra, Manuela; Manso, María Jesús; Anadón, Ramón

    2015-10-15

    Amphioxus (Cephalochordata) belongs to the most basal extant chordates, and knowledge of their brain organization appears to be key to deciphering the early stages of evolution of vertebrate brains. Most comprehensive studies of the organization of the central nervous system of adult amphioxus have investigated the spinal cord. Some brain populations have been characterized via neurochemistry and electron microscopy, and the overall cytoarchitecture of the brain was studied by Ekhart et al. (2003; J. Comp. Neurol. 466:319-330) with general staining methods and retrograde transport from the spinal cord. Here, the cytoarchitecture of the brain of adult amphioxus Branchiostoma lanceolatum was reinvestigated by using acetylated tubulin immunohistochemistry, which specifically stains neurons and fibers, in combination with some ancillary methods. This method allowed reproducible staining and mapping of types of neuron, mostly in brain regions caudal to the entrance level of nerve 2, and its comparison with spinal cord populations. The brain populations studied and discussed in detail were the Retzius bipolar cells, lamellate cells, Joseph cells, various types of translumenal cells, somatic motoneurons, Rohde nucleus cells, small ventral multipolar neurons, and Edinger cells. These observations expand our knowledge of the distribution of cell types and provide additional data on the number of cells and the axonal tracts and commissural regions of the adult amphioxus brain. The results of this comprehensive study provide a framework for comparison of complex adult populations with the early brain neuronal populations revealed in developmental studies of the amphioxus.

  4. Functional Implications of miR-19 in the Migration of Newborn Neurons in the Adult Brain.

    PubMed

    Han, Jinju; Kim, Hyung Joon; Schafer, Simon T; Paquola, Apua; Clemenson, Gregory D; Toda, Tomohisa; Oh, Jinseo; Pankonin, Aimee R; Lee, Bo Suk; Johnston, Stephen T; Sarkar, Anindita; Denli, Ahmet M; Gage, Fred H

    2016-07-01

    Altered microRNA profiles have been implicated in human brain disorders. However, the functional contribution of individual microRNAs to neuronal development and function is largely unknown. Here, we report biological functions for miR-19 in adult neurogenesis. We determined that miR-19 is enriched in neural progenitor cells (NPCs) and downregulated during neuronal development in the adult hippocampus. By manipulating miR-19 in NPCs for gain- and loss-of-function studies, we discovered that miR-19 regulates cell migration by directly targeting Rapgef2. Concordantly, dysregulation of miR-19 in NPCs alters the positioning of newborn neurons in the adult brain. Furthermore, we found abnormal expression of miR-19 in human NPCs generated from schizophrenic patient-derived induced pluripotent stem cells (iPSCs) that have been described as displaying aberrant migration. Our study demonstrates the significance of posttranscriptional gene regulation by miR-19 in preventing the irregular migration of adult-born neurons that may contribute to the etiology of schizophrenia. PMID:27387650

  5. Neuronal Organization of the Brain in the Adult Amphioxus (Branchiostoma lanceolatum): A Study With Acetylated Tubulin Immunohistochemistry.

    PubMed

    Castro, Antonio; Becerra, Manuela; Manso, María Jesús; Anadón, Ramón

    2015-10-15

    Amphioxus (Cephalochordata) belongs to the most basal extant chordates, and knowledge of their brain organization appears to be key to deciphering the early stages of evolution of vertebrate brains. Most comprehensive studies of the organization of the central nervous system of adult amphioxus have investigated the spinal cord. Some brain populations have been characterized via neurochemistry and electron microscopy, and the overall cytoarchitecture of the brain was studied by Ekhart et al. (2003; J. Comp. Neurol. 466:319-330) with general staining methods and retrograde transport from the spinal cord. Here, the cytoarchitecture of the brain of adult amphioxus Branchiostoma lanceolatum was reinvestigated by using acetylated tubulin immunohistochemistry, which specifically stains neurons and fibers, in combination with some ancillary methods. This method allowed reproducible staining and mapping of types of neuron, mostly in brain regions caudal to the entrance level of nerve 2, and its comparison with spinal cord populations. The brain populations studied and discussed in detail were the Retzius bipolar cells, lamellate cells, Joseph cells, various types of translumenal cells, somatic motoneurons, Rohde nucleus cells, small ventral multipolar neurons, and Edinger cells. These observations expand our knowledge of the distribution of cell types and provide additional data on the number of cells and the axonal tracts and commissural regions of the adult amphioxus brain. The results of this comprehensive study provide a framework for comparison of complex adult populations with the early brain neuronal populations revealed in developmental studies of the amphioxus. PMID:25846052

  6. Risk and survival outcomes of radiation-induced CNS tumors.

    PubMed

    Lee, Jessica W; Wernicke, A Gabriella

    2016-08-01

    Patients treated with cranial radiation are at risk of developing secondary CNS tumors. Understanding the incidence, treatment, and long-term outcomes of radiation-induced CNS tumors plays a role in clinical decision-making and patient education. Additionally, as meningiomas and pituitary tumors have been detected at increasing rates across all ages and may potentially be treated with radiation, it is important to know and communicate the risk of secondary tumors in children and adults. After conducting an extensive literature search, we identified publications that report incidence and long-term outcomes of radiation-induced CNS tumors. We reviewed 14 studies in children, which reported that radiation confers a 7- to 10-fold increase in subsequent CNS tumors, with a 20-year cumulative incidence ranging from 1.03 to 28.9 %. The latency period for secondary tumors ranged from 5.5 to 30 years, with gliomas developing in 5-10 years and meningiomas developing around 15 years after radiation. We also reviewed seven studies in adults, where the two strongest studies showed no increased risk while the remaining studies found a higher risk compared to the general population. The latency period for secondary CNS tumors in adults ranged from 5 to 34 years. Treatment and long-term outcomes of radiation-induced CNS tumors have been documented in four case series, which did not conclusively demonstrate that secondary CNS tumors fared worse than primary CNS tumors. Radiation-induced CNS tumors remain a rare occurrence that should not by itself impede radiation treatment. Additional investigation is needed on the risk of radiation-induced tumors in adults and the long-term outcomes of these tumors. PMID:27209188

  7. Neuropathologic and biochemical changes during disease progression in liver X receptor beta-/- mice, a model of adult neuron disease.

    PubMed

    Bigini, Paolo; Steffensen, Knut R; Ferrario, Anna; Diomede, Luisa; Ferrara, Giovanni; Barbera, Sara; Salzano, Sonia; Fumagalli, Elena; Ghezzi, Pietro; Mennini, Tiziana; Gustafsson, Jan-Ake

    2010-06-01

    In amyotrophic lateral sclerosis (ALS), there is selective degeneration of motor neurons that leads to paralysis and death. Although the etiology of ALS is unclear, its heterogeneity suggests that a combination of factors (endogenous and/or environmental) may induce progressive motor neuron stress that results in the activation of different cell death pathways. Alterations of brain cholesterol homeostasis have recently been considered as possible cofactors in many neurodegenerative disorders, including ALS. The liver X receptor beta (LXRbeta) receptor is involved in lipogenesis and cholesterol metabolism, and we previously found that adult-onset motor neuron pathology occurs in LXRbeta mice. Here, we investigated neuromuscular alterations of LXRbeta mice from ages 3 to 24 months. Increased cholesterol levels, gliosis, and inflammation preceded motor neuron loss and clinical disease onset; the mice showed progressivemotor neuron deficits starting from age 7 months. The numbers ofmotor neurons and neuromuscular junctions were decreased in 24-month-old mice, but neither paralysis nor reduced life span was observed. Moreover, other spinal neurons were also lost in these mice. These results suggest that LXRbeta may inhibit neuroinflammation and maintain cholesterol homeostasis, and that LXRbeta mice represent a potential model for investigating the role of cholesterol in ALS and other neurodegenerative disorders.

  8. Genetic control of adult neurogenesis: interplay of differentiation, proliferation and survival modulates new neurons function, and memory circuits

    PubMed Central

    Tirone, Felice; Farioli-Vecchioli, Stefano; Micheli, Laura; Ceccarelli, Manuela; Leonardi, Luca

    2013-01-01

    Within the hippocampal circuitry, the basic function of the dentate gyrus is to transform the memory input coming from the enthorinal cortex into sparse and categorized outputs to CA3, in this way separating related memory information. New neurons generated in the dentate gyrus during adulthood appear to facilitate this process, allowing a better separation between closely spaced memories (pattern separation). The evidence underlying this model has been gathered essentially by ablating the newly adult-generated neurons. This approach, however, does not allow monitoring of the integration of new neurons into memory circuits and is likely to set in motion compensatory circuits, possibly leading to an underestimation of the role of new neurons. Here we review the background of the basic function of the hippocampus and of the known properties of new adult-generated neurons. In this context, we analyze the cognitive performance in mouse models generated by us and others, with modified expression of the genes Btg2 (PC3/Tis21), Btg1, Pten, BMP4, etc., where new neurons underwent a change in their differentiation rate or a partial decrease of their proliferation or survival rate rather than ablation. The effects of these modifications are equal or greater than full ablation, suggesting that the architecture of circuits, as it unfolds from the interaction between existing and new neurons, can have a greater functional impact than the sheer number of new neurons. We propose a model which attempts to measure and correlate the set of cellular changes in the process of neurogenesis with the memory function. PMID:23734097

  9. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs.

    PubMed

    Sturm, Dominik; Orr, Brent A; Toprak, Umut H; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J; Balasubramanian, Gnanaprakash; Worst, Barbara C; Pajtler, Kristian W; Brabetz, Sebastian; Johann, Pascal D; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M; Remke, Marc; Phillips, Joanna J; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C; Schniederjan, Matthew J; Santi, Mariarita; Buccoliero, Anna M; Dahiya, Sonika; Kramm, Christof M; von Bueren, André O; von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U; Shalaby, Tarek; Grotzer, Michael; van Meter, Timothy; Monoranu, Camelia-Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S; Taylor, Michael D; Jones, Chris; Jabado, Nada; Karajannis, Matthias A; Eils, Roland; Schlesner, Matthias; Lichter, Peter; von Deimling, Andreas; Pfister, Stefan M; Ellison, David W; Korshunov, Andrey; Kool, Marcel

    2016-02-25

    Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors. PMID:26919435

  10. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs.

    PubMed

    Sturm, Dominik; Orr, Brent A; Toprak, Umut H; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J; Balasubramanian, Gnanaprakash; Worst, Barbara C; Pajtler, Kristian W; Brabetz, Sebastian; Johann, Pascal D; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M; Remke, Marc; Phillips, Joanna J; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C; Schniederjan, Matthew J; Santi, Mariarita; Buccoliero, Anna M; Dahiya, Sonika; Kramm, Christof M; von Bueren, André O; von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U; Shalaby, Tarek; Grotzer, Michael; van Meter, Timothy; Monoranu, Camelia-Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S; Taylor, Michael D; Jones, Chris; Jabado, Nada; Karajannis, Matthias A; Eils, Roland; Schlesner, Matthias; Lichter, Peter; von Deimling, Andreas; Pfister, Stefan M; Ellison, David W; Korshunov, Andrey; Kool, Marcel

    2016-02-25

    Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors.

  11. Behavioural Effects of Adult Vitamin D Deficiency in BALB/c Mice Are not Associated with Proliferation or Survival of Neurons in the Adult Hippocampus.

    PubMed

    Groves, Natalie J; Bradford, DanaKai; Sullivan, Robert K P; Conn, Kyna-Anne; Aljelaify, Rasha Fahad; McGrath, John J; Burne, Thomas H J

    2016-01-01

    Epidemiological studies have shown that up to one third of adults have insufficient levels of vitamin D and there is an association between low vitamin D concentrations and adverse brain outcomes, such as depression. Vitamin D has been shown to be involved in processes associated with neurogenesis during development. Therefore, the aim of this study was to test the hypothesis that adult vitamin D (AVD) deficiency in BALB/c mice was associated with (a) adult hippocampal neurogenesis at baseline, b) following 6 weeks of voluntary wheel running and (c) a depressive-like phenotype on the forced swim test (FST), which may be linked to alterations in hippocampal neurogenesis. We assessed proliferation and survival of adult born hippocampal neurons by counting the number of cells positive for Ki67 and doublecortin (DCX), and incorporation of 5-Bromo-2'-Deoxyuridine (BrdU) within newly born mature neurons using immunohistochemistry. There were no significant effects of diet on number of Ki67+, DCX+ or BrdU+ cells in the dentate gyrus. All mice showed significantly increased number of Ki67+ cells and BrdU incorporation, and decreased immobility time in the FST, after voluntary wheel running. A significant correlation was found in control mice between immobility time in the FST and level of hippocampal neurogenesis, however, no such correlation was found for AVD-deficient mice. We conclude that AVD deficiency was not associated with impaired proliferation or survival of adult born neurons in BALB/c mice and that the impact on rodent behaviour may not be due to altered neurogenesis per se, but to altered function of new hippocampal neurons or processes independent of adult neurogenesis. PMID:27043014

  12. Behavioural Effects of Adult Vitamin D Deficiency in BALB/c Mice Are not Associated with Proliferation or Survival of Neurons in the Adult Hippocampus

    PubMed Central

    Groves, Natalie J.; Bradford, DanaKai; Sullivan, Robert K. P.; Conn, Kyna-Anne; Aljelaify, Rasha Fahad; McGrath, John J.; Burne, Thomas H. J.

    2016-01-01

    Epidemiological studies have shown that up to one third of adults have insufficient levels of vitamin D and there is an association between low vitamin D concentrations and adverse brain outcomes, such as depression. Vitamin D has been shown to be involved in processes associated with neurogenesis during development. Therefore, the aim of this study was to test the hypothesis that adult vitamin D (AVD) deficiency in BALB/c mice was associated with (a) adult hippocampal neurogenesis at baseline, b) following 6 weeks of voluntary wheel running and (c) a depressive-like phenotype on the forced swim test (FST), which may be linked to alterations in hippocampal neurogenesis. We assessed proliferation and survival of adult born hippocampal neurons by counting the number of cells positive for Ki67 and doublecortin (DCX), and incorporation of 5-Bromo-2’-Deoxyuridine (BrdU) within newly born mature neurons using immunohistochemistry. There were no significant effects of diet on number of Ki67+, DCX+ or BrdU+ cells in the dentate gyrus. All mice showed significantly increased number of Ki67+ cells and BrdU incorporation, and decreased immobility time in the FST, after voluntary wheel running. A significant correlation was found in control mice between immobility time in the FST and level of hippocampal neurogenesis, however, no such correlation was found for AVD-deficient mice. We conclude that AVD deficiency was not associated with impaired proliferation or survival of adult born neurons in BALB/c mice and that the impact on rodent behaviour may not be due to altered neurogenesis per se, but to altered function of new hippocampal neurons or processes independent of adult neurogenesis. PMID:27043014

  13. Mirror Neurons System Engagement in Late Adolescents and Adults While Viewing Emotional Gestures.

    PubMed

    Salvia, Emilie; Süß, Moritz; Tivadar, Ruxandra; Harkness, Sarah; Grosbras, Marie-Hélène

    2016-01-01

    Observing others' actions enhances muscle-specific cortico-spinal excitability, reflecting putative mirror neurons activity. The exposure to emotional stimuli also modulates cortico-spinal excitability. We investigated how those two phenomena might interact when they are combined, i.e., while observing a gesture performed with an emotion, and whether they change during the transition between adolescence and adulthood, a period of social and brain maturation. We delivered single-pulse transcranial magnetic stimulation (TMS) over the hand area of the left primary motor cortex of 27 healthy adults and adolescents and recorded their right first dorsal interossus (FDI) muscle activity (i.e., motor evoked potential - MEP), while they viewed either videos of neutral or angry hand actions and facial expressions, or neutral objects as a control condition. We reproduced the motor resonance and the emotion effects - hand-actions and emotional stimuli induced greater cortico-spinal excitability than the faces/control condition and neutral videos, respectively. Moreover, the influence of emotion was present for faces but not for hand actions, indicating that the motor resonance and the emotion effects might be non-additive. While motor resonance was observed in both groups, the emotion effect was present only in adults and not in adolescents. We discuss the possible neural bases of these findings. PMID:27489547

  14. Mirror Neurons System Engagement in Late Adolescents and Adults While Viewing Emotional Gestures.

    PubMed

    Salvia, Emilie; Süß, Moritz; Tivadar, Ruxandra; Harkness, Sarah; Grosbras, Marie-Hélène

    2016-01-01

    Observing others' actions enhances muscle-specific cortico-spinal excitability, reflecting putative mirror neurons activity. The exposure to emotional stimuli also modulates cortico-spinal excitability. We investigated how those two phenomena might interact when they are combined, i.e., while observing a gesture performed with an emotion, and whether they change during the transition between adolescence and adulthood, a period of social and brain maturation. We delivered single-pulse transcranial magnetic stimulation (TMS) over the hand area of the left primary motor cortex of 27 healthy adults and adolescents and recorded their right first dorsal interossus (FDI) muscle activity (i.e., motor evoked potential - MEP), while they viewed either videos of neutral or angry hand actions and facial expressions, or neutral objects as a control condition. We reproduced the motor resonance and the emotion effects - hand-actions and emotional stimuli induced greater cortico-spinal excitability than the faces/control condition and neutral videos, respectively. Moreover, the influence of emotion was present for faces but not for hand actions, indicating that the motor resonance and the emotion effects might be non-additive. While motor resonance was observed in both groups, the emotion effect was present only in adults and not in adolescents. We discuss the possible neural bases of these findings.

  15. Mirror Neurons System Engagement in Late Adolescents and Adults While Viewing Emotional Gestures

    PubMed Central

    Salvia, Emilie; Süß, Moritz; Tivadar, Ruxandra; Harkness, Sarah; Grosbras, Marie-Hélène

    2016-01-01

    Observing others’ actions enhances muscle-specific cortico-spinal excitability, reflecting putative mirror neurons activity. The exposure to emotional stimuli also modulates cortico-spinal excitability. We investigated how those two phenomena might interact when they are combined, i.e., while observing a gesture performed with an emotion, and whether they change during the transition between adolescence and adulthood, a period of social and brain maturation. We delivered single-pulse transcranial magnetic stimulation (TMS) over the hand area of the left primary motor cortex of 27 healthy adults and adolescents and recorded their right first dorsal interossus (FDI) muscle activity (i.e., motor evoked potential – MEP), while they viewed either videos of neutral or angry hand actions and facial expressions, or neutral objects as a control condition. We reproduced the motor resonance and the emotion effects – hand-actions and emotional stimuli induced greater cortico-spinal excitability than the faces/control condition and neutral videos, respectively. Moreover, the influence of emotion was present for faces but not for hand actions, indicating that the motor resonance and the emotion effects might be non-additive. While motor resonance was observed in both groups, the emotion effect was present only in adults and not in adolescents. We discuss the possible neural bases of these findings. PMID:27489547

  16. High neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids

    PubMed Central

    Peirouvi, T.; Yekani, F.; Azarnia, M.; Massumi, M.

    2015-01-01

    Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic cerebrospinal fluid (E-CSF) including E13.5, E17-CSF and the adult cerebrospinal fluid (A-CSF), all extracted from rats. CSF samples were selected based on their effects on cell behavioral parameters. Primary cell culture was performed in the presence of either normal or high levels of KCL in a culture medium. High levels of KCL cause cell depolarization, and thus the activation of quiescent NSCs. Results from immunocytochemistry (ICC) and semi-quantitative RT-PCR (sRT-PCR) techniques showed that in E-CSF-treated groups, neuronal differentiation increased (E17>E13.5). In contrast, A-CSF decreased and increased neuronal and astroglial differentiations, respectively. Cell survivability and/or proliferation (S/P), evaluated by an MTT assay, increased by E13.5 CSF, but decreased by both E17 CSF and A-CSF. Based on the results, it is finally concluded that adult rat hippocampal proliferative cells are not restricted progenitors but rather show high plasticity in neuronal/astroglial differentiation according to the effects of CSF samples. In addition, using high concentrations of KCL in the primary cell culture led to an increase in the number of NSCs, which in turn resulted in the increase in neuronal or astroglial differentiations after CSF treatment. PMID:27175157

  17. Immunopathophysiology of pediatric CNS inflammatory demyelinating diseases.

    PubMed

    Bar-Or, Amit; Hintzen, Rogier Q; Dale, Russell C; Rostasy, Kevin; Brück, Wolfgang; Chitnis, Tanuja

    2016-08-30

    Elucidating pathophysiologic mechanisms underlying the spectrum of pediatric-onset CNS demyelinating diseases, particularly those that may distinguish multiple sclerosis (MS) from other entities, promises to both improve diagnostics and guide more-informed therapeutic decisions. Observations that pediatric- and adult-onset MS share the same genetic and environmental risk factors support the view that these conditions represent essentially the same illness manifesting at different ages. Nonetheless, special consideration must be given when CNS inflammation manifests in early life, at a time when multiple organs (including immune and nervous systems) are actively maturing. CSF analysis in pediatric-onset MS points to chronic CNS inflammation, supported by observations from limited pathologic material available for study. Emerging results implicate abnormalities in both effector and regulatory T cell subsets, and potentially immune senescence, in children with MS. Although CNS-directed antibodies (including antibodies recognizing myelin antigens; Kir4.1) can be documented in pediatric-onset MS, their pathophysiologic significance (as in adults) remains unclear. This is in contrast to the presence of serum and/or CSF antibodies recognizing aquaporin-4, which, when measured using validated cell-based assays, supports the diagnosis of a neuromyelitis optica spectrum disorder, distinct from MS. Presence of anti-myelin oligodendrocyte glycoprotein antibodies documented with similar cell-based assays may also be associated with pathophysiologically distinct disease phenotypes in children. The substantial impact of pediatric-onset MS on normal brain development and function underscores the importance of elucidating both the immunobiology and neurobiology of disease. Ongoing efforts are aimed at developing and validating biological measures that define pathophysiologically distinct monophasic and chronic forms of pediatric CNS demyelination. PMID:27572856

  18. Adult-like complexity of the larval antennal lobe of D. melanogaster despite markedly low numbers of odorant receptor neurons.

    PubMed

    Python, François; Stocker, Reinhard F

    2002-04-15

    We provide a detailed analysis of the larval head chemosensory system of Drosophila melanogaster, based on confocal microscopy of cell-specific reporter gene expression in P[GAL4] enhancer trap lines. In particular, we describe the neuronal composition of three external and three pharyngeal chemosensory organs, the nerve tracts chosen by their afferents, and their central target regions. With a total of 21 olfactory and 80 gustatory neurons, the sensory level is numerically much simpler than that of the adult. Moreover, its design is different than in the adult, showing an association between smell and taste sensilla. In contrast, the first-order relay of the olfactory afferents, the larval antennal lobe (LAL), exhibits adult-like features both in terms of structure and cell number. It shows a division into approximately 30 subunits, reminiscent of glomeruli in the adult antennal lobe. Taken together, the design of the larval chemosensory system is a "hybrid," with larval-specific features in the periphery and central characteristics in common with the adult. The largely reduced numbers of afferents and the similar architecture of the LAL and the adult antennal lobe, render the larval chemosensory system of Drosophila a valuable model system, both for studying smell and taste and for examining the development of its adult organization.

  19. An old test for new neurons: refining the Morris water maze to study the functional relevance of adult hippocampal neurogenesis

    PubMed Central

    Garthe, Alexander; Kempermann, Gerd

    2013-01-01

    The Morris water maze represents the de-facto standard for testing hippocampal function in laboratory rodents. In the field of adult hippocampal neurogenesis, however, using this paradigm to assess the functional relevance of the new neurons yielded surprisingly inconsistent results. While some authors found aspects of water maze performance to be linked to adult neurogenesis, others obtained different results or could not demonstrate any effect of manipulating adult neurogenesis. In this review we discuss evidence that the large diversity of protocols and setups used is an important aspect in interpreting the differences in the results that have been obtained. Even simple parameters such as pool size, number, and configuration of visual landmarks, or number of trials can become highly relevant for getting the new neurons involved at all. Sets of parameters are often chosen with implicit or explicit concepts in mind and these might lead to different views on the function of adult-generated neurons. We propose that the classical parameters usually used to measure spatial learning performance in the water maze might not be particularly well-suited to sensitively and specifically detect the supposedly highly specific functional changes elicited by the experimental modulation of adult hippocampal neurogenesis. As adult neurogenesis is supposed to affect specific aspects of information processing only in the hippocampus, any claim for a functional relevance of the new neurons has to be based on hippocampus-specific parameters. We also placed a special emphasis on the fact that the dentate gyrus (DG) facilitates the differentiation between contexts as opposed to just differentiating places. In conclusion, while the Morris water maze has proven to be one of the most effective testing paradigms to assess hippocampus-dependent spatial learning, new and more specific questions ask for new parameters. Therefore, the full potential of the water maze task remains to be tapped

  20. Monoclonal antibody Cat-315 detects a glycoform of receptor protein tyrosine phosphatase beta/phosphacan early in CNS development that localizes to extrasynaptic sites prior to synapse formation.

    PubMed

    Dino, M R; Harroch, S; Hockfield, S; Matthews, R T

    2006-11-01

    Perineuronal nets (PNs) are lattice-like condensations of the extracellular matrix (ECM) that envelop synapses and decorate the surface of subsets of neurons in the CNS. Previous work has suggested that, despite the fact that PNs themselves are not visualized until later in development, some PN component molecules are expressed in the rodent CNS even before synaptogenesis. In the adult mammalian brain, monoclonal antibody Cat-315 recognizes a glycoform of aggrecan, a major component of PNs. In primary cortical cultures, a Cat-315-reactive chondroitin sulfate proteoglycan (CSPG) is also expressed on neuronal surfaces and is secreted into culture media as early as 24 h after plating. In this study, we show that in primary cortical cultures, the Cat-315 CSPG detected in early neural development is expressed in extrasynaptic sites prior to synapse formation. This suggests that ECM components in the CNS, as in the neuromuscular junction (NMJ), may prepattern neuronal surfaces prior to innervation. We further show that while the Cat-315-reactive carbohydrate decorates aggrecan in the adult, it decorates a different CSPG in the developing CNS. Using receptor protein tyrosine phosphatase beta (RPTPbeta/protein tyrosine phosphatase zeta) knock-out mice and immunoprecipitation techniques, we demonstrate here that in the developing rodent brain Cat-315 recognizes RPTPbeta isoforms. Our further examination of the Cat-315 epitope suggests that it is an O-mannose linked epitope in the HNK-1 family. The presence of the Cat-315 reactive carbohydrate on different PN components--RPTPbeta and aggrecan--at different stages of synapse development suggests a potential role for this neuron-specific carbohydrate motif in synaptogenesis.

  1. Activation of CB1 inhibits NGF-induced sensitization of TRPV1 in adult mouse afferent neurons.

    PubMed

    Wang, Z-Y; McDowell, T; Wang, P; Alvarez, R; Gomez, T; Bjorling, D E

    2014-09-26

    Transient receptor potential vanilloid 1 (TRPV1)-containing afferent neurons convey nociceptive signals and play an essential role in pain sensation. Exposure to nerve growth factor (NGF) rapidly increases TRPV1 activity (sensitization). In the present study, we investigated whether treatment with the selective cannabinoid receptor 1 (CB1) agonist arachidonyl-2'-chloroethylamide (ACEA) affects NGF-induced sensitization of TRPV1 in adult mouse dorsal root ganglion (DRG) afferent neurons. We found that CB1, NGF receptor tyrosine kinase A (trkA), and TRPV1 are present in cultured adult mouse small- to medium-sized afferent neurons and treatment with NGF (100ng/ml) for 30 min significantly increased the number of neurons that responded to capsaicin (as indicated by increased intracellular Ca(2 +) concentration). Pretreatment with the CB1 agonist ACEA (10nM) inhibited the NGF-induced response, and this effect of ACEA was reversed by a selective CB1 antagonist. Further, pretreatment with ACEA inhibited NGF-induced phosphorylation of AKT. Blocking PI3 kinase activity also attenuated the NGF-induced increase in the number of neurons that responded to capsaicin. Our results indicate that the analgesic effect of CB1 activation may in part be due to inhibition of NGF-induced sensitization of TRPV1 and also that the effect of CB1 activation is at least partly mediated by attenuation of NGF-induced increased PI3 signaling.

  2. When are new hippocampal neurons, born in the adult brain, integrated into the network that processes spatial information?

    PubMed

    Sandoval, C Jimena; Martínez-Claros, Marisela; Bello-Medina, Paola C; Pérez, Oswaldo; Ramírez-Amaya, Víctor

    2011-03-09

    Adult-born neurons in the dentate gyrus (DG) functionally integrate into the behaviorally relevant hippocampal networks, showing a specific Arc-expression response to spatial exploration when mature. However, it is not clear when, during the 4- to 6-week interval that is critical for survival and maturation of these neurons, this specific response develops. Therefore, we characterized Arc expression after spatial exploration or cage control conditions in adult-born neurons from rats that were injected with BrdU on one day and were sacrificed 1, 7, 15, 30, and 45 days post-BrdU injection (PBI). Triple immunostaining for NeuN, Arc, and BrdU was analyzed through the different DG layers. Arc protein expression in BrdU-positive cells was observed from day 1 to day 15 PBI but was not related to behavioral stimulation. The specific Arc-expression response to spatial exploration was observed from day 30 and 45 in about 5% of the BrdU-positive cell population. Most of the BrdU-positive neurons expressing Arc in response to spatial exploration (∼90%) were located in DG layer 1, and no Arc expression was observed in cells located in the subgranular zone (SGZ). Using the current data and that obtained previously, we propose a mathematical model suggesting that new neurons are unlikely to respond to exploration by expressing Arc after they are 301 days old, and also that in a 7-month-old rat the majority (60%) of the neurons that respond to exploration must have been born during adulthood; thus, suggesting that adult neurogenesis in the DG is highly relevant for spatial information processing.

  3. When are new hippocampal neurons, born in the adult brain, integrated into the network that processes spatial information?

    PubMed

    Sandoval, C Jimena; Martínez-Claros, Marisela; Bello-Medina, Paola C; Pérez, Oswaldo; Ramírez-Amaya, Víctor

    2011-01-01

    Adult-born neurons in the dentate gyrus (DG) functionally integrate into the behaviorally relevant hippocampal networks, showing a specific Arc-expression response to spatial exploration when mature. However, it is not clear when, during the 4- to 6-week interval that is critical for survival and maturation of these neurons, this specific response develops. Therefore, we characterized Arc expression after spatial exploration or cage control conditions in adult-born neurons from rats that were injected with BrdU on one day and were sacrificed 1, 7, 15, 30, and 45 days post-BrdU injection (PBI). Triple immunostaining for NeuN, Arc, and BrdU was analyzed through the different DG layers. Arc protein expression in BrdU-positive cells was observed from day 1 to day 15 PBI but was not related to behavioral stimulation. The specific Arc-expression response to spatial exploration was observed from day 30 and 45 in about 5% of the BrdU-positive cell population. Most of the BrdU-positive neurons expressing Arc in response to spatial exploration (∼90%) were located in DG layer 1, and no Arc expression was observed in cells located in the subgranular zone (SGZ). Using the current data and that obtained previously, we propose a mathematical model suggesting that new neurons are unlikely to respond to exploration by expressing Arc after they are 301 days old, and also that in a 7-month-old rat the majority (60%) of the neurons that respond to exploration must have been born during adulthood; thus, suggesting that adult neurogenesis in the DG is highly relevant for spatial information processing. PMID:21408012

  4. CNS development under altered gravity

    NASA Astrophysics Data System (ADS)

    Sajdel-Sulkowska, E.

    The future of space exploration depends on a solid understanding of the developmental process under microgravity. In furtherance of this goal, the present studies assessed the impact of altered gravity on the developing rat cerebellum. Specifically, the expression of selected cerebellar proteins and corresponding genes was compared in rat neonates exposed to hypergravity (1.5G) from embryonic day (E) 11 to postnatal day (P) 6 and P9 against their expression in rat neonates developing under normal gravity. Cerebellar proteins were analyzed by quantitative western blots of cerebellar homogenates; RNA analysis was performed in the same samples using ribonuclease protection assay (RPA). Densitometric analysis of western blots suggested 21% to 31% reduction in neuronal cell adhesion molecule (NCAM) and 31% to 45% reduction in glial acidic protein (GFAP). RPA results suggested a small reduction (<10%) in NCAM mRNA and a moderate reduction (<25%) in GFAP mRNA. These data indicate that the expression of selected cerebellar proteins may be affected at both the transcriptional and translational/postranslational level. Furthermore, these results suggest that changes in expression of selected genes may underlie hypergravity's effect on the developing CNS. (Supported by NASA grant NCC2-1042 and BWH Psychiatry Fund).

  5. Transgenic neuronal nitric oxide synthase expression induces axotomy-like changes in adult motoneurons.

    PubMed

    Montero, Fernando; Sunico, Carmen R; Liu, Behui; Paton, Julian F R; Kasparov, Sergey; Moreno-López, Bernardo

    2010-09-15

    Dysregulation of protein expression, function and/or aggregation is a hallmark of a number of neuropathological conditions. Among them, upregulation and/or de novo expression of the neuronal isoform of nitric oxide (NO) synthase (nNOS) commonly occurs in diverse neurodegenerative diseases and in axotomized motoneurons. We used adenoviral (AVV) and lentiviral (LVV) vectors to study the effects of de novo nNOS expression on the functional properties and synaptic array of motoneurons. AVV-nNOS injection into the genioglossus muscle retrogradely transduced neonatal hypoglossal motoneurons (HMNs). Ratiometric real-time NO imaging confirmed that transduced HMNs generated NO gradients in brain parenchyma (space constant: 12.3 μm) in response to a glutamatergic stimulus. Unilateral AVV-nNOS microinjection in the hypoglossal nucleus of adult rats induced axotomy-like changes in HMNs. Specifically, we found alterations in axonal conduction properties and the recruitment order of motor units and reductions in responsiveness to synaptic drive and in the linear density of synaptophysin-positive puncta opposed to HMN somata. Functional alterations were fully prevented by chronic treatment with nNOS or soluble guanylyl cyclase inhibitors. Synaptic and functional changes were also completely avoided by prior intranuclear injection of a neuron-specific LVV system for miRNA-mediated nNOS knock-down (LVV-miR-shRNA/nNOS). Furthermore, synaptic and several functional changes evoked by XIIth nerve injury were to a large extent prevented by intranuclear administration of LVV-miR-shRNA/nNOS. We suggest that nNOS up-regulation creates a repulsive NO gradient for synaptic boutons underlying most of the functional impairment undergone by injured motoneurons. This further strengthens the case for nNOS targeting as a plausible strategy for treatment of peripheral neuropathies and neurodegenerative disorders.

  6. Roles of mitochondria and temperature in the control of intracellular calcium in adult rat sensory neurons

    PubMed Central

    Kang, S.H.; Carl, A.; McHugh, J.M.; Goff, H.R.; Kenyon, J.L.

    2008-01-01

    SUMMARY We recorded Ca2+ current and intracellular Ca2+ ([Ca2+]i) in isolated adult rat dorsal root ganglion (DRG) neurons at 20 and 30 °C. In neurons bathed in tetraethylammonium and dialyzed with cesium, warming reduced resting average [Ca2+]i from 87 to 49 nM and the time constant of the decay of [Ca2+]i transients (τr) from 1.3 s to 0.99 s (Q10 = 1.4). The Buffer Index, the ratio between Ca2+ influx and Δ[Ca2+]i (∫ICa·dt/Δ[Ca2+]i), increased 2- to 3-fold with warming. Neither inhibition of the plasma membrane Ca2+-ATPase by intracellular sodium orthovanadate nor inhibition of Ca2+ uptake by the endoplasmic reticulum by thapsigargin plus ryanodine were necessary for the effects of warming on these parameters. In contrast, inhibition of the mitochondrial Ca2+ uniporter by intracellular ruthenium red largely reversed the effects of warming. Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (500 nM) increased resting [Ca2+]i at 30 °C. 10 mM intracellular sodium prolonged the recovery of [Ca2+]i transients to 10 – 40 s. This effect was reversed by an inhibitor of mitochondrial Na+/Ca2+-exchange (CGP 37157, 10 μM). Thus, mitochondrial Ca2+-uptake is necessary for the temperature-dependent increase in Ca2+ buffering and mitochondrial Ca2+ fluxes contribute to the control of [Ca2+]i between 50 and 150 nM at 30 °C. PMID:17716728

  7. Transgenic neuronal nitric oxide synthase expression induces axotomy-like changes in adult motoneurons

    PubMed Central

    Montero, Fernando; Sunico, Carmen R; Liu, Behui; Paton, Julian F R; Kasparov, Sergey; Moreno-López, Bernardo

    2010-01-01

    Dysregulation of protein expression, function and/or aggregation is a hallmark of a number of neuropathological conditions. Among them, upregulation and/or de novo expression of the neuronal isoform of nitric oxide (NO) synthase (nNOS) commonly occurs in diverse neurodegenerative diseases and in axotomized motoneurons. We used adenoviral (AVV) and lentiviral (LVV) vectors to study the effects of de novo nNOS expression on the functional properties and synaptic array of motoneurons. AVV-nNOS injection into the genioglossus muscle retrogradely transduced neonatal hypoglossal motoneurons (HMNs). Ratiometric real-time NO imaging confirmed that transduced HMNs generated NO gradients in brain parenchyma (space constant: ∼12.3 μm) in response to a glutamatergic stimulus. Unilateral AVV-nNOS microinjection in the hypoglossal nucleus of adult rats induced axotomy-like changes in HMNs. Specifically, we found alterations in axonal conduction properties and the recruitment order of motor units and reductions in responsiveness to synaptic drive and in the linear density of synaptophysin-positive puncta opposed to HMN somata. Functional alterations were fully prevented by chronic treatment with nNOS or soluble guanylyl cyclase inhibitors. Synaptic and functional changes were also completely avoided by prior intranuclear injection of a neuron-specific LVV system for miRNA-mediated nNOS knock-down (LVV-miR-shRNA/nNOS). Furthermore, synaptic and several functional changes evoked by XIIth nerve injury were to a large extent prevented by intranuclear administration of LVV-miR-shRNA/nNOS. We suggest that nNOS up-regulation creates a repulsive NO gradient for synaptic boutons underlying most of the functional impairment undergone by injured motoneurons. This further strengthens the case for nNOS targeting as a plausible strategy for treatment of peripheral neuropaties and neurodegenerative disorders. PMID:20660560

  8. CNS Diseases and Uveitis

    PubMed Central

    Allegri, Pia; Rissotto, Roberto; Herbort, Carl P.; Murialdo, Ugo

    2011-01-01

    A number of inflammatory, infectious, neoplastic and idiopathic disorders affect the eye and the central nervous system (CNS) concurrently or at different time frames. These conditions pose a diagnostic challenge to the clinician since they may present with similar ocular and neurological manifestations. The purpose of this review is to describe major neurological syndromes including multiple sclerosis, Vogt-Koyanagi-Harada disease, other autoimmune syndromes, and several infectious diseases which may affect the eye. This article may serve as a guide for the diagnosis and treatment of such disorders. It should be noted that these conditions have been viewed from a neurologist’s perspective thereby neurologic involvement is stressed. PMID:22454751

  9. Antiretroviral therapy CNS penetration and HIV-1–associated CNS disease

    PubMed Central

    Winston, A.; Walsh, J.; Post, F.; Porter, K.; Gazzard, B.; Fisher, M.; Leen, C.; Pillay, D.; Hill, T.; Johnson, M.; Gilson, R.; Anderson, J.; Easterbrook, P.; Bansi, L.; Orkin, C.; Ainsworth, J.; Palfreeman, A.; Gompels, M.; Phillips, A.N.; Sabin, C.A.

    2011-01-01

    Objective: The impact of different antiretroviral agents on the risk of developing or surviving CNS disease remains unknown. The aim of this study was to investigate whether using antiretroviral regimens with higher CNS penetration effectiveness (CPE) scores was associated with reduced incidence of CNS disease and improved survival in the UK Collaborative HIV Cohort (CHIC) Study. Methods: Adults without previous CNS disease, who commenced combination antiretroviral therapy (cART) between 1996 and 2008, were included (n = 22,356). Initial and most recent cART CPE scores were calculated. CNS diseases were HIV encephalopathy (HIVe), progressive multifocal leukoencephalopathy (PML), cerebral toxoplasmosis (TOXO), and cryptococcal meningitis (CRYPTO). Incidence rates and overall survival were stratified by CPE score. A multivariable Poisson regression model was used to identify independent associations. Results: The median (interquartile range) CPE score for initial cART regimen increased from 7 (5–8) in 1996–1997 to 9 (8–10) in 2000–2001 and subsequently declined to 6 (7–8) in 2006–2008. Differences in gender, HIV acquisition risk group, and ethnicity existed between CPE score strata. A total of 251 subjects were diagnosed with a CNS disease (HIVe 80; TOXO 59; CRYPTO 56; PML 54). CNS diseases occurred more frequently in subjects prescribed regimens with CPE scores ≤4, and less frequently in those with scores ≥10; however, these differences were nonsignificant. Initial and most recent cART CPE scores ≤4 were independently associated with increased risk of death. Conclusion: Clinical status at time of commencing cART influences antiretroviral selection and CPE score. This information should be considered when utilizing CPE scores for retrospective analyses. PMID:21339496

  10. Cell Therapy From Bench to Bedside Translation in CNS Neurorestoratology Era

    PubMed Central

    Huang, Hongyun; Chen, Lin; Sanberg, Paul

    2010-01-01

    Recent advances in cell biology, neural injury and repair, and the progress towards development of neurorestorative interventions are the basis for increased optimism. Based on the complexity of the processes of demyelination and remyelination, degeneration and regeneration, damage and repair, functional loss and recovery, it would be expected that effective therapeutic approaches will require a combination of strategies encompassing neuroplasticity, immunomodulation, neuroprotection, neurorepair, neuroreplacement, and neuromodulation. Cell-based restorative treatment has become a new trend, and increasing data worldwide have strongly proven that it has a pivotal therapeutic value in CNS disease. Moreover, functional neurorestoration has been achieved to a certain extent in the CNS clinically. Up to now, the cells successfully used in preclinical experiments and/or clinical trial/treatment include fetal/embryonic brain and spinal cord tissue, stem cells (embryonic stem cells, neural stem/progenitor cells, hematopoietic stem cells, adipose-derived adult stem/precursor cells, skin-derived precursor, induced pluripotent stem cells), glial cells (Schwann cells, oligodendrocyte, olfactory ensheathing cells, astrocytes, microglia, tanycytes), neuronal cells (various phenotypic neurons and Purkinje cells), mesenchymal stromal cells originating from bone marrow, umbilical cord, and umbilical cord blood, epithelial cells derived from the layer of retina and amnion, menstrual blood-derived stem cells, Sertoli cells, and active macrophages, etc. Proof-of-concept indicates that we have now entered a new era in neurorestoratology. PMID:21359168

  11. Perinatal Exposure to Neuregulin-1 Results in Disinhibition of Adult Midbrain Dopaminergic Neurons: Implication in Schizophrenia Modeling

    PubMed Central

    Namba, Hisaaki; Okubo, Takeshi; Nawa, Hiroyuki

    2016-01-01

    Aberrant neuregulin-1 (NRG1) signals are suggested to associate with the neuropathophysiology of schizophrenia. Employing a mouse schizophrenia model established by neonatal neuregulin-1 challenge, we analysed postpubertal consequence of the NRG1 pretreatment for the electrophysiological property of nigral dopamine neurons. In vivo single unit recordings from anaesthetized NRG1-pretreated mice revealed increased spike bursting of nigral dopamine neurons. In slice preparations from NRG1-pretreated mice, spontaneous firing was elevated relative to controls. The relative increase in firing rates was abolished by a GABAA receptor antagonist. Whole-cell recording showed that perinatal NRG1 pretreatment diminished inhibitory miniature synaptic currents as well as GABAA receptor sensitivity. These results collectively suggest that perinatal exposure to neuregulin-1 results in the disinhibition of nigral dopamine neurons to influence their firing properties at the adult stage when the behavioral deficits are evident. PMID:26935991

  12. Morphological analysis of activity-reduced adult-born neurons in the mouse olfactory bulb.

    PubMed

    Dahlen, Jeffrey E; Jimenez, Daniel A; Gerkin, Richard C; Urban, Nathan N

    2011-01-01

    Adult-born neurons (ABNs) are added to the olfactory bulb (OB) throughout life in rodents. While many factors have been identified as regulating the survival and integration of ABNs into existing circuitry, the understanding of how these factors affect ABN morphology and connectivity is limited. Here we compare how cell intrinsic [small interfering RNA (siRNA) knock-down of voltage gated sodium channels Na(V)1.1-1.3] and circuit level (naris occlusion) reductions in activity affect ABN morphology during integration into the OB. We found that both manipulations reduce the number of dendritic spines (and thus likely the number of reciprocal synaptic connections) formed with the surrounding circuitry and inhibited dendritic ramification of ABNs. Further, we identified regions of ABN apical dendrites where the largest and most significant decreases occur following siRNA knock-down or naris occlusion. In siRNA knock-down cells, reduction of spines is observed in proximal regions of the apical dendrite. This suggests that distal regions of the dendrite may remain active independent of Na(V)1.1-1.3 channel expression, perhaps facilitated by activation of T-type calcium channels and NMDA receptors. By contrast, circuit level reduction of activity by naris occlusion resulted in a global depression of spine number. Together, these results indicate that ABNs retain the ability to develop their typical overall morphological features regardless of experienced activity, and activity modulates the number and location of formed connections.

  13. Mutated CTSF in adult-onset neuronal ceroid lipofuscinosis and FTD

    PubMed Central

    van der Zee, Julie; Mariën, Peter; Crols, Roeland; Van Mossevelde, Sara; Dillen, Lubina; Perrone, Federica; Engelborghs, Sebastiaan; Verhoeven, Jo; D'aes, Tine; Ceuterick-De Groote, Chantal; Sieben, Anne; Versijpt, Jan; Cras, Patrick; Martin, Jean-Jacques

    2016-01-01

    Objective: To investigate the molecular basis of a Belgian family with autosomal recessive adult-onset neuronal ceroid lipofuscinosis (ANCL or Kufs disease [KD]) with pronounced frontal lobe involvement and to expand the findings to a cohort of unrelated Belgian patients with frontotemporal dementia (FTD). Methods: Genetic screening in the ANCL family and FTD cohort (n = 461) was performed using exome sequencing and targeted massive parallel resequencing. Results: We identified a homozygous mutation (p.Ile404Thr) in the Cathepsin F (CTSF) gene cosegregating in the ANCL family. No other mutations were found that could explain the disease in this family. All 4 affected sibs developed motor symptoms and early-onset dementia with prominent frontal features. Two of them evolved to akinetic mutism. Disease presentation showed marked phenotypic variation with the onset ranging from 26 to 50 years. Myoclonic epilepsy in one of the sibs was suggestive for KD type A, while epilepsy was not present in the other sibs who presented with clinical features of KD type B. In a Belgian cohort of unrelated patients with FTD, the same heterozygous p.Arg245His mutation was identified in 2 patients who shared a common haplotype. Conclusions: A homozygous CTSF mutation was identified in a recessive ANCL pedigree. In contrast to the previous associations of CTSF with KD type B, our findings suggest that CTSF genetic testing should also be considered in patients with KD type A as well as in early-onset dementia with prominent frontal lobe and motor symptoms.

  14. Dendritic and Axonal Architecture of Individual Pyramidal Neurons across Layers of Adult Human Neocortex

    PubMed Central

    Mohan, Hemanth; Verhoog, Matthijs B.; Doreswamy, Keerthi K.; Eyal, Guy; Aardse, Romy; Lodder, Brendan N.; Goriounova, Natalia A.; Asamoah, Boateng; B. Brakspear, A.B. Clementine; Groot, Colin; van der Sluis, Sophie; Testa-Silva, Guilherme; Obermayer, Joshua; Boudewijns, Zimbo S.R.M.; Narayanan, Rajeevan T.; Baayen, Johannes C.; Segev, Idan; Mansvelder, Huibert D.; de Kock, Christiaan P.J.

    2015-01-01

    The size and shape of dendrites and axons are strong determinants of neuronal information processing. Our knowledge on neuronal structure and function is primarily based on brains of laboratory animals. Whether it translates to human is not known since quantitative data on “full” human neuronal morphologies are lacking. Here, we obtained human brain tissue during resection surgery and reconstructed basal and apical dendrites and axons of individual neurons across all cortical layers in temporal cortex (Brodmann area 21). Importantly, morphologies did not correlate to etiology, disease severity, or disease duration. Next, we show that human L(ayer) 2 and L3 pyramidal neurons have 3-fold larger dendritic length and increased branch complexity with longer segments compared with temporal cortex neurons from macaque and mouse. Unsupervised cluster analysis classified 88% of human L2 and L3 neurons into human-specific clusters distinct from mouse and macaque neurons. Computational modeling of passive electrical properties to assess the functional impact of large dendrites indicates stronger signal attenuation of electrical inputs compared with mouse. We thus provide a quantitative analysis of “full” human neuron morphologies and present direct evidence that human neurons are not “scaled-up” versions of rodent or macaque neurons, but have unique structural and functional properties. PMID:26318661

  15. Loss of sensory input causes rapid structural changes of inhibitory neurons in adult mouse visual cortex.

    PubMed

    Keck, Tara; Scheuss, Volker; Jacobsen, R Irene; Wierenga, Corette J; Eysel, Ulf T; Bonhoeffer, Tobias; Hübener, Mark

    2011-09-01

    A fundamental property of neuronal circuits is the ability to adapt to altered sensory inputs. It is well established that the functional synaptic changes underlying this adaptation are reflected by structural modifications in excitatory neurons. In contrast, the degree to which structural plasticity in inhibitory neurons accompanies functional changes is less clear. Here, we use two-photon imaging to monitor the fine structure of inhibitory neurons in mouse visual cortex after deprivation induced by retinal lesions. We find that a subset of inhibitory neurons carry dendritic spines, which form glutamatergic synapses. Removal of visual input correlates with a rapid and lasting reduction in the number of inhibitory cell spines. Similar to the effects seen for dendritic spines, the number of inhibitory neuron boutons dropped sharply after retinal lesions. Together, these data suggest that structural changes in inhibitory neurons may precede structural changes in excitatory circuitry, which ultimately result in functional adaptation following sensory deprivation.

  16. Agrin-signalling is necessary for the integration of newly generated neurons in the adult olfactory bulb

    PubMed Central

    Burk, Katja; Desoeuvre, Angelique; Boutin, Camille; Smith, Martin A.; Kröger, Stephan; Bosio, Andreas; Tiveron, Marie-Catherine; Cremer, Harold

    2012-01-01

    In the adult forebrain new interneurons are continuously generated and integrated into the existing circuitry of the olfactory bulb. In an attempt to identify signals that regulate this synaptic integration process, we found strong expression of agrin in adult generated neuronal precursors that arrive in the olfactory bulb after their generation in the subventricular zone. While the agrin receptor components MuSK and Lrp4 were below detection level in neuron populations that represent synaptic targets for the new interneurons, the alternative receptor α3Na+K+ATPase was strongly expressed in mitral cells. Using a transplantation approach we demonstrate that agrin-deficient interneuron precursors migrate correctly into the OB. However, in contrast to wildtype neurons, which form synapses and survive for prolonged periods, mutant neurons do not mature and are rapidly eliminated. Using in vivo brain electroporation of the olfactory system we show that the transmembrane form of agrin alone is sufficient to mediate integration and demonstrate that excess transmembrane agrin increases the number of dendritic spines. Lastly, we provide in vivo evidence that an interaction between agrin and α3Na+K+ATPase is of functional importance in this system. PMID:22423096

  17. Thermally reduced graphene is a permissive material for neurons and astrocytes and de novo neurogenesis in the adult olfactory bulb in vivo.

    PubMed

    Defteralı, Çağla; Verdejo, Raquel; Peponi, Laura; Martín, Eduardo D; Martínez-Murillo, Ricardo; López-Manchado, Miguel Ángel; Vicario-Abejón, Carlos

    2016-03-01

    Graphene and graphene-based nanomaterials (GBNs) are being investigated as potential substrates for the growth of neural stem cells (NSCs), neurons and glia in cell culture models. In contrast, reports testing the effects of graphene directly with adult neural cells in vivo are missing. Here we studied the biocompatibility of thermally reduced graphene (TRG) with neurons and glia, as well as with the generation of new neurons in the adult brain in vivo. TRG injected in the brain together with a retroviral vector expressing GFP to label dividing progenitor cells in the core of the adult olfactory bulb (OB) did not alter de novo neurogenesis, neuronal and astrocyte survival nor did it produce a microglial response. These findings indicate that TRG may be a biocompatible material with neuronal and glial cells in vivo and support its use in studies of brain repair and function. PMID:26751821

  18. Interneuron Progenitor Transplantation to Treat CNS Dysfunction

    PubMed Central

    Chohan, Muhammad O.; Moore, Holly

    2016-01-01

    Due to the inadequacy of endogenous repair mechanisms diseases of the nervous system remain a major challenge to scientists and clinicians. Stem cell based therapy is an exciting and viable strategy that has been shown to ameliorate or even reverse symptoms of CNS dysfunction in preclinical animal models. Of particular importance has been the use of GABAergic interneuron progenitors as a therapeutic strategy. Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors retain their unique capacity to disperse, integrate and induce plasticity in adult host circuitries following transplantation. Here we discuss the potential of interneuron based transplantation strategies as it relates to CNS disease therapeutics. We also discuss mechanisms underlying their therapeutic efficacy and some of the challenges that face the field. PMID:27582692

  19. Mutations in DNAJC5, Encoding Cysteine-String Protein Alpha, Cause Autosomal-Dominant Adult-Onset Neuronal Ceroid Lipofuscinosis

    PubMed Central

    Nosková, Lenka; Stránecký, Viktor; Hartmannová, Hana; Přistoupilová, Anna; Barešová, Veronika; Ivánek, Robert; Hůlková, Helena; Jahnová, Helena; van der Zee, Julie; Staropoli, John F.; Sims, Katherine B.; Tyynelä, Jaana; Van Broeckhoven, Christine; Nijssen, Peter C.G.; Mole, Sara E.; Elleder, Milan; Kmoch, Stanislav

    2011-01-01

    Autosomal-dominant adult-onset neuronal ceroid lipofuscinosis (ANCL) is characterized by accumulation of autofluorescent storage material in neural tissues and neurodegeneration and has an age of onset in the third decade of life or later. The genetic and molecular basis of the disease has remained unknown for many years. We carried out linkage mapping, gene-expression analysis, exome sequencing, and candidate-gene sequencing in affected individuals from 20 families and/or individuals with simplex cases; we identified in five individuals one of two disease-causing mutations, c.346_348delCTC and c.344T>G, in DNAJC5 encoding cysteine-string protein alpha (CSPα). These mutations—causing a deletion, p.Leu116del, and an amino acid exchange, p.Leu115Arg, respectively—are located within the cysteine-string domain of the protein and affect both palmitoylation-dependent sorting and the amount of CSPα in neuronal cells. The resulting depletion of functional CSPα might cause in parallel the presynaptic dysfunction and the progressive neurodegeneration observed in affected individuals and lysosomal accumulation of misfolded and proteolysis-resistant proteins in the form of characteristic ceroid deposits in neurons. Our work represents an important step in the genetic dissection of a genetically heterogeneous group of ANCLs. It also confirms a neuroprotective role for CSPα in humans and demonstrates the need for detailed investigation of CSPα in the neuronal ceroid lipofuscinoses and other neurodegenerative diseases presenting with neuronal protein aggregation. PMID:21820099

  20. Effects of neuron-specific estrogen receptor (ER) α and ERβ deletion on the acute estrogen negative feedback mechanism in adult female mice.

    PubMed

    Cheong, Rachel Y; Porteous, Robert; Chambon, Pierre; Abrahám, István; Herbison, Allan E

    2014-04-01

    The negative feedback mechanism through which 17β-estradiol (E2) acts to suppress the activity of the GnRH neurons remains unclear. Using inducible and cell-specific genetic mouse models, we examined the estrogen receptor (ER) isoforms expressed by neurons that mediate acute estrogen negative feedback. Adult female mutant mice in which ERα was deleted from all neurons in the neonatal period failed to exhibit estrous cycles or negative feedback. Adult mutant female mice with neonatal neuronal ERβ deletion exhibited normal estrous cycles, but a failure of E2 to suppress LH secretion was seen in ovariectomized mice. Mutant mice with a GnRH neuron-selective deletion of ERβ exhibited normal cycles and negative feedback, suggesting no critical role for ERβ in GnRH neurons in acute negative feedback. To examine the adult roles of neurons expressing ERα, an inducible tamoxifen-based Cre-LoxP approach was used to ablate ERα from neurons that express calmodulin kinase IIα in adults. This resulted in mice with no estrous cycles, a normal increase in LH after ovariectomy, but an inability of E2 to suppress LH secretion. Finally, acute administration of ERα- and ERβ-selective agonists to adult ovariectomized wild-type mice revealed that activation of ERα suppressed LH secretion, whereas ERβ agonists had no effect. This study highlights the differences in adult reproductive phenotypes that result from neonatal vs adult ablation of ERα in the brain. Together, these experiments expand previous global knockout studies by demonstrating that neurons expressing ERα are essential and probably sufficient for the acute estrogen negative feedback mechanism in female mice. PMID:24476134

  1. Differential expression of id genes and their potential regulator znf238 in zebrafish adult neural progenitor cells and neurons suggests distinct functions in adult neurogenesis.

    PubMed

    Diotel, Nicolas; Beil, Tanja; Strähle, Uwe; Rastegar, Sepand

    2015-01-01

    Teleost fish display a remarkable ability to generate new neurons and to repair brain lesions during adulthood. They are, therefore, a very popular model to investigate the molecular mechanisms of constitutive and induced neurogenesis in adult vertebrates. In this study, we investigated the expression patterns of inhibitor of DNA binding (id) genes and of their potential transcriptional repressor, znf238, in the whole brain of adult zebrafish. We show that while id1 is exclusively expressed in ventricular cells in the whole brain, id2a, id3 and id4 genes are expressed in broader areas. Interestingly, znf238 was also detected in these regions, its expression overlapping with id2a, id3 and id4 expression. Further detailed characterization of the id-expressing cells demonstrated that (a) id1 is expressed in type 1 and type 2 neural progenitors as previously published, (b) id2a in type 1, 2 and 3 neural progenitors, (c) id3 in type 3 neural progenitors and (d) id4 in postmitotic neurons. Our data provide a detailed map of id and znf238 expression in the brain of adult zebrafish, supplying a framework for studies of id genes function during adult neurogenesis and brain regeneration in the zebrafish.

  2. Anatomical gradients of adult neurogenesis and activity: young neurons in the ventral dentate gyrus are activated by water maze training

    PubMed Central

    Snyder, Jason S.; Radik, Ruvim; Wojtowicz, J. Martin; Cameron, Heather A.

    2009-01-01

    Hippocampal function varies in a subregion-specific fashion: spatial processing is thought to rely on the dorsal hippocampus, while anxiety-related behavior relies more on the ventral hippocampus. During development, neurogenesis in the dentate gyrus proceeds along ventral to dorsal as well as suprapyramidal to infrapyramidal gradients, but it is unclear whether regional differences in neurogenesis are maintained in adulthood. Moreover, it is unknown whether young neurons in the adult exhibit subregion-specific patterns of activation. We therefore examined the magnitude of neurogenesis and the activation of young and mature granule cells in dentate gyrus subregions in adult rats that learned a spatial water maze task, swam with no platform, or were left untouched. We found that both adult neurogenesis and granule cell activation, as defined by c-fos expression in the granule cell population as a whole, were higher in the dorsal than the ventral dentate gyrus. In contrast, c-fos expression in adult-born granule cells, identified by PSA-NCAM or location in the subgranular zone, occurred at a higher rate in the opposite subregion, the ventral dentate gyrus. Interestingly, c-fos expression in the entire granule cell population was equivalent in water maze-trained rats and swim control rats, but was increased in the young granule cells only in the learning condition. These results provide new evidence that hippocampally-relevant experience activates young and mature neurons in different dentate gyrus subregions and with different experiential specificity, and suggest that adult-born neurons may play a specific role in anxiety-related behavior or other non-spatial aspects of hippocampal function. PMID:19004012

  3. Slice Culture Modeling of Central Nervous System (CNS) Viral Infection

    PubMed Central

    Dionne, Kalen R.; Tyler, Kenneth L.

    2016-01-01

    The complexity of the central nervous system (CNS) is not recapitulated in cell culture models. Thin slicing and subsequent culture of CNS tissue has become a valued means to study neuronal and glial biology within the context of the physiologically relevant tissue milieu. Modern membrane-interface slice culturing methodology allows straightforward access to both CNS tissue and feeding medium, enabling experimental manipulations and analyses that would otherwise be impossible in vivo. CNS slices can be successfully maintained in culture for up to several weeks for investigation of evolving pathology and long-term intervention in models of chronic neurologic disease. Herein, membrane-interface slice culture models for studying viral encephalitis and myelitis are detailed, with emphasis on the use of these models for investigation of pathogenesis and evaluation of novel treatment strategies. We describe techniques to (1) generate brain and spinal cord slices from rodent donors, (2) virally infect slices, (3) monitor viral replication, (4) assess virally induced injury/apoptosis, (5) characterize “CNS-specific” cytokine production, and (6) treat slices with cytokines/pharmaceuticals. Although our focus is on CNS viral infection, we anticipate that the described methods can be adapted to address a wide range of investigations within the fields of neuropathology, neuroimmunology, and neuropharmacology. PMID:23975824

  4. Mutated CTSF in adult-onset neuronal ceroid lipofuscinosis and FTD

    PubMed Central

    van der Zee, Julie; Mariën, Peter; Crols, Roeland; Van Mossevelde, Sara; Dillen, Lubina; Perrone, Federica; Engelborghs, Sebastiaan; Verhoeven, Jo; D'aes, Tine; Ceuterick-De Groote, Chantal; Sieben, Anne; Versijpt, Jan; Cras, Patrick; Martin, Jean-Jacques

    2016-01-01

    Objective: To investigate the molecular basis of a Belgian family with autosomal recessive adult-onset neuronal ceroid lipofuscinosis (ANCL or Kufs disease [KD]) with pronounced frontal lobe involvement and to expand the findings to a cohort of unrelated Belgian patients with frontotemporal dementia (FTD). Methods: Genetic screening in the ANCL family and FTD cohort (n = 461) was performed using exome sequencing and targeted massive parallel resequencing. Results: We identified a homozygous mutation (p.Ile404Thr) in the Cathepsin F (CTSF) gene cosegregating in the ANCL family. No other mutations were found that could explain the disease in this family. All 4 affected sibs developed motor symptoms and early-onset dementia with prominent frontal features. Two of them evolved to akinetic mutism. Disease presentation showed marked phenotypic variation with the onset ranging from 26 to 50 years. Myoclonic epilepsy in one of the sibs was suggestive for KD type A, while epilepsy was not present in the other sibs who presented with clinical features of KD type B. In a Belgian cohort of unrelated patients with FTD, the same heterozygous p.Arg245His mutation was identified in 2 patients who shared a common haplotype. Conclusions: A homozygous CTSF mutation was identified in a recessive ANCL pedigree. In contrast to the previous associations of CTSF with KD type B, our findings suggest that CTSF genetic testing should also be considered in patients with KD type A as well as in early-onset dementia with prominent frontal lobe and motor symptoms. PMID:27668283

  5. Odd-skipped labels a group of distinct neurons associated with the mushroom body and optic lobe in the adult Drosophila brain.

    PubMed

    Levy, Peter; Larsen, Camilla

    2013-11-01

    Olfactory processing has been intensively studied in Drosophila melanogaster. However, we still know little about the descending neural pathways from the higher order processing centers and how these connect with other neural circuits. Here we describe, in detail, the adult projections patterns that arise from a cluster of 78 neurons, defined by the expression of the Odd-skipped transcription factor. We term these neurons Odd neurons. By using expression of genetically encoded axonal and dendritic markers, we show that a subset of the Odd neurons projects dendrites into the calyx of the mushroom body (MB) and axons into the inferior protocerebrum. We exclude the possibility that the Odd neurons are part of the well-known Kenyon cells whose projections form the MB and conclude that the Odd neurons belong to a previously not described class of extrinsic MB neurons. In addition, three of the Odd neurons project into the lobula plate of the optic lobe, and two of these cells extend axons ipsi- and contralaterally in the brain. Anatomically, these cells do not resemble any previously described lobula plate tangential cells (LPTCs) in Drosophila. We show that the Odd neurons are predominantly cholinergic but also include a small number of γ-aminobutyric acid (GABA)ergic neurons. Finally, we provide evidence that the Odd neurons are a hemilineage, suggesting they are born from a defined set of neuroblasts. Our anatomical analysis hints at the possibility that subgroups of Odd neurons could be involved in olfactory and visual processing.

  6. Expression of COUP-TFII Nuclear Receptor in Restricted GABAergic Neuronal Populations in the Adult Rat Hippocampus

    PubMed Central

    Fuentealba, Pablo; Klausberger, Thomas; Karayannis, Theofanis; Suen, Wai Yee; Huck, Jojanneke; Tomioka, Ryohei; Rockland, Kathleen; Capogna, Marco; Studer, Michèle; Morales, Marisela; Somogyi, Peter

    2015-01-01

    The COUP-TFII nuclear receptor, also known as NR2F2, is expressed in the developing ventral telencephalon and modulates the tangential migration of a set of subpallial neuronal progenitors during forebrain development. Little information is available about its expression patterns in the adult brain. We have identified the cell populations expressing COUP-TFII and the contribution of some of them to network activity in vivo. Expression of COUP-TFII by hippocampal pyramidal and dentate granule cells, as well as neurons in the neocortex, formed a gradient increasing from undetectable in the dorsal to very strong in the ventral sectors. In the dorsal hippocampal CA1 area, COUP-TFII was restricted to GABAergic interneurons and expressed in several, largely nonoverlapping neuronal populations. Immunoreactivity was present in calretinin-, neuronal nitric oxide synthase-, and reelin-expressing cells, as well as in subsets of cholecystokinin- or calbindin-expressing or radiatum-retrohippocampally projecting GABAergic cells, but not in parvalbumin-and/or somatostatin-expressing interneurons. In vivo recording and juxtacellular labeling of COUP-TFII-expressing cells revealed neurogliaform cells, basket cells in stratum radiatum and tachykinin-expressing radiatum dentate innervating interneurons, identified by their axodendritic distributions. They showed cell type-selective phase-locked firing to the theta rhythm but no activation during sharp wave/ripple oscillations. These basket cells in stratum radiatum and neurogliaform cells fired at the peak of theta oscillations detected extracellularly in stratum pyramidale, unlike previously reported ivy cells, which fired at the trough. The characterization of COUP-TFII-expressing neurons suggests that this developmentally important transcription factor plays cell type-specific role(s)in the adult hippocampus. PMID:20130170

  7. Molecular stress response in the CNS of mice after systemic exposureto interferon-alpha, ionizing radiation and ketamine

    SciTech Connect

    Lowe, Xiu R.; Marchetti, Francesco; Lu, Xiaochen; Wyrobek, Andrew J.

    2009-03-03

    We previously showed that the expression of troponin T1 (Tnnt 1) was induced in the central nervous system (CNS) of adultmice 30 min after treatment with ketamine, a glutamate N-methyl-D-aspartic acid (NMDA) receptor antagonist. We hypothesized that Tnnt 1 expression may be an early molecular biomarker of stress response in the CNS of mice. To further evaluate this hypothesis, we investigated the regional expression of Tnnt 1 in the mouse brain using RNA in situ hybridization 4 h after systemic exposure to interferon-a (IFN-a) and gamma ionizing radiation, both of which have be associated with wide ranges of neuropsychiatric complications. Adult B6C3F1 male mice were treated with either human IFN-a (a single i.p. injection at 1 x 105 IU/kg) or whole body gamma-radiation (10 cGy or 2 Gy). Patterns of Tnnt 1 transcript expression were compared in various CNS regions after IFN-a, radiation and ketamine treatments (previous study). Tnnt 1 expression was consistently induced in pyramidal neurons of cerebral cortex and hippocampus after all treatment regimens including 10 cGy of ionizing radiation. Regional expression of Tnnt 1 was induced in Purkinje cells of cerebellum after ionizing radiation and ketamine treatment; but not after IFN-a treatment. None of the three treatments induced Tnnt 1 expression in glial cells. The patterns of Tnnt 1 expression in pyramidal neurons of cerebral cortex andhippocampus, which are both known to play important roles in cognitive function, memory and emotion, suggest that the expression of Tnnt 1 may be an early molecular biomarker of induced CNS stress.

  8. A vascular perspective on neuronal migration.

    PubMed

    Segarra, Marta; Kirchmaier, Bettina C; Acker-Palmer, Amparo

    2015-11-01

    During CNS development and adult neurogenesis, immature neurons travel from the germinal zones towards their final destination using cellular substrates for their migration. Classically, radial glia and neuronal axons have been shown to act as physical scaffolds to support neuroblast locomotion in processes known as gliophilic and neurophilic migration, respectively (Hatten, 1999; Marin and Rubenstein, 2003; Rakic, 2003). In adulthood, long distance neuronal migration occurs in a glial-independent manner since radial glia cells differentiate into astrocytes after birth. A series of studies highlight a novel mode of neuronal migration that uses blood vessels as scaffolds, the so-called vasophilic migration. This migration mode allows neuroblast navigation in physiological and also pathological conditions, such as neuronal precursor migration after ischemic stroke or cerebral invasion of glioma tumor cells. Here we review the current knowledge about how vessels pave the path for migrating neurons and how trophic factors derived by glio-vascular structures guide neuronal migration both during physiological as well as pathological processes.

  9. Maternal immune activation and abnormal brain development across CNS disorders.

    PubMed

    Knuesel, Irene; Chicha, Laurie; Britschgi, Markus; Schobel, Scott A; Bodmer, Michael; Hellings, Jessica A; Toovey, Stephen; Prinssen, Eric P

    2014-11-01

    Epidemiological studies have shown a clear association between maternal infection and schizophrenia or autism in the progeny. Animal models have revealed maternal immune activation (mIA) to be a profound risk factor for neurochemical and behavioural abnormalities in the offspring. Microglial priming has been proposed as a major consequence of mIA, and represents a critical link in a causal chain that leads to the wide spectrum of neuronal dysfunctions and behavioural phenotypes observed in the juvenile, adult or aged offspring. Such diversity of phenotypic outcomes in the mIA model are mirrored by recent clinical evidence suggesting that infectious exposure during pregnancy is also associated with epilepsy and, to a lesser extent, cerebral palsy in children. Preclinical research also suggests that mIA might precipitate the development of Alzheimer and Parkinson diseases. Here, we summarize and critically review the emerging evidence that mIA is a shared environmental risk factor across CNS disorders that varies as a function of interactions between genetic and additional environmental factors. We also review ongoing clinical trials targeting immune pathways affected by mIA that may play a part in disease manifestation. In addition, future directions and outstanding questions are discussed, including potential symptomatic, disease-modifying and preventive treatment strategies.

  10. Lifeguard/neuronal membrane protein 35 regulates Fas ligand-mediated apoptosis in neurons via microdomain recruitment.

    PubMed

    Fernández, Miriam; Segura, Miguel F; Solé, Carme; Colino, Alicia; Comella, Joan X; Ceña, Valentín

    2007-10-01

    Fas ligand (FasL)-receptor system plays an essential role in regulating cell death in the developing nervous system, and it has been implicated in neurodegenerative and inflammatory responses in the CNS. Lifeguard (LFG) is a protein highly expressed in the hippocampus and the cerebellum, and it shows a particularly interesting regulation by being up-regulated during postnatal development and in the adult. We show that over-expression of LFG protected cortical neurons from FasL-induced apoptosis and decreased caspase-activation. Reduction of endogenous LFG expression by small interfering RNA sensitized cerebellar granular neurons to FasL-induced cell death and caspase-8 activation, and also increased sensitivity of cortical neurons. In differentiated cerebellar granular neurons, protection from FasL-induced cell death could be attributed exclusively to LFG and appears to be independent of FLICE inhibitor protein. Thus, LFG is an endogenous inhibitor of FasL-mediated neuronal death and it mediates the FasL resistance of CNS differentiated neurons. Finally, we also demonstrate that LFG is detected in lipid rafts microdomains, where it may interact with Fas receptor and regulate FasL-activated signaling pathways.

  11. Combined 3DISCO clearing method, retrograde tracer and ultramicroscopy to map corneal neurons in a whole adult mouse trigeminal ganglion.

    PubMed

    Launay, Pierre-Serge; Godefroy, David; Khabou, Hanen; Rostene, William; Sahel, Jose-Alain; Baudouin, Christophe; Melik Parsadaniantz, Stéphane; Reaux-Le Goazigo, Annabelle

    2015-10-01

    Tissue clearing and subsequent imaging of intact transparent tissues have provided an innovative way to analyze anatomical pathways in the nervous system. In this study, we combined a recent 3-dimensional imaging of solvent cleared organ (3DISCO) procedure, light-sheet microscopy, fluorescent retrograde tracer, and Imaris software to 3D map corneal sensory neurons within a whole adult mouse trigeminal ganglion (TG). We first established the optimized steps to easily and rapidly clear a fixed TG. We found that the 3DISCO procedure gave excellent results and took less than 3 h to clear the TG. In a second set of experiments, a retrograde tracer (cholera toxin B Alexa 594-conjugated) was applied to de-epithelialized cornea to retrograde-labeled corneal sensory neurons. Two days later, TGs were cleared by the 3DISCO method and serial imaging was performed using light-sheet ultramicroscopic technology. High-resolution images of labeled neurons can be easily and rapidly obtained from a 3D reconstructed whole mouse TG. We then provided a 3D reconstruction of corneal afferent neurons and analyzed their precise localization in the TG. Thus, we showed that neurons supplying corneal sensory innervation exhibit a highly specific limited dorsomedial localization within the TG. We report that our combined method offers the possibility to perform manual (on 20 μm sections) and automated (on 3D reconstructed TG) counting of labeled cells in a cleared mouse TG. To conclude, we illustrate that the combination of the 3DISCO clearing method with light-sheet microscopy, retrograde tracer, and automatic counting represents a rapid and reliable method to analyze a subpopulation of neurons within the peripheral and central nervous system.

  12. Lmx1a and Lmx1b regulate mitochondrial functions and survival of adult midbrain dopaminergic neurons.

    PubMed

    Doucet-Beaupré, Hélène; Gilbert, Catherine; Profes, Marcos Schaan; Chabrat, Audrey; Pacelli, Consiglia; Giguère, Nicolas; Rioux, Véronique; Charest, Julien; Deng, Qiaolin; Laguna, Ariadna; Ericson, Johan; Perlmann, Thomas; Ang, Siew-Lan; Cicchetti, Francesca; Parent, Martin; Trudeau, Louis-Eric; Lévesque, Martin

    2016-07-26

    The LIM-homeodomain transcription factors Lmx1a and Lmx1b play critical roles during the development of midbrain dopaminergic progenitors, but their functions in the adult brain remain poorly understood. We show here that sustained expression of Lmx1a and Lmx1b is required for the survival of adult midbrain dopaminergic neurons. Strikingly, inactivation of Lmx1a and Lmx1b recreates cellular features observed in Parkinson's disease. We found that Lmx1a/b control the expression of key genes involved in mitochondrial functions, and their ablation results in impaired respiratory chain activity, increased oxidative stress, and mitochondrial DNA damage. Lmx1a/b deficiency caused axonal pathology characterized by α-synuclein(+) inclusions, followed by a progressive loss of dopaminergic neurons. These results reveal the key role of these transcription factors beyond the early developmental stages and provide mechanistic links between mitochondrial dysfunctions, α-synuclein aggregation, and the survival of dopaminergic neurons. PMID:27407143

  13. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting: Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4{sup +} T cells compared

    SciTech Connect

    Ford, A.L.; Goodsall, A.L.; Sedgwick, J.D.

    1995-05-01

    Ramified microglia in the adult central nervous system (CNS) are the principal glial element up-regulating MHC class I and II expression in response to inflammatory events or neuronal damage. A proportion of these cells also express MHC class II constitutively in the normal CNS. The role of microglia as APCs for CD4{sup +} cells extravasating into the CNS remains undefined. In this study, using irradiation bone marrow chimeras in CD45-congenic rats, the phenotype CD45{sup low}CD11b/c{sup +} is shown to identify microglial cells specifically within the CNS. Highly purified populations of microglia and nonmicroglial but CNS-associated macrophages (CD45{sup high}CD11b/c{sup +}) have been obtained directly from the adult CNS, by using flow cytometric sorting. Morphologically, freshly isolated microglia vs other CNS macrophages are quite distinct. Of the two populations recovered from the normal CNS, it is the minority CD45{sup high}CD11 b/c{sup +} transitional macrophage population, and not microglia, that is the effective APC for experimental autoimmune encephalomyelitis-inducing CD4{sup +} myelin basic protein (MBP)-reactive T cells. CD45{sup high}CD11b/c{sup +} CNS macrophages also stimulate MBP-reactive T cells without addition of MBP to culture suggesting presentation of endogenous Ag. This is the first study in which microglia vs other CNS macrophages have been analyzed for APC ability directly from the CNS, with substantial cross-contamination between the two populations eliminated. The heterogeneity of these populations in terms of APC function is clearly demonstrated. Evidence is still lacking that adult CNS microglia have the capacity to interact with and stimulate CD4{sup +} T cells to proliferate or secrete IL-2. 60 refs., 6 figs., 1 tab.

  14. Transient coupling of Ng-CAM expression to NgCAM-dependent calcium signaling during migration of new neurons in the adult songbird brain.

    PubMed

    Goldman, S A; Williams, S; Barami, K; Lemmon, V; Nedergaard, M

    1996-01-01

    The adult avian forebrain continues to generate neurons from subependymal zone (SZ) precursor cells, whose neuronal progeny migrate into the brain upon radial guide fibers. These neurons express the immunoglobulin-family adhesion molecule NgCAM, and their migration in culture is disrupted by anti-NgCAM Fab. Confocal imaging of adult zebra finch SZ loaded with the calcium indicator fluo-3, as well as ratio imaging with the indicator fura-2, revealed that migrating new neurons responded to microgram amounts of NgCAM with reversible increments in cytosolic calcium. The calcium response to NgCAM antigen was developmentally restricted, in that it was only manifested by neurons for roughly the 3- to 4-day period between 6 and 9 DIV, even though NgCAM expression persisted tonically thereafter. The period during which NgCAM elicited a calcium signal corresponded to the postmitotic age at which new, bipolar neurons leave the adult SZ to enter the brain parenchyma in vivo. Accordingly, the calcium response to NgCAM was largely limited to morphologically bipolar cells. Anti-NgCAM IgG also evoked a neuronal calcium signal over the same restricted period that NgCAM protein exerted its effect. These findings suggest a dynamic coupling and uncoupling of calcium-dependent signal transduction pathways to a stably expressed surface adhesion molecule, whose function in a given neuron may therefore evolve with cellular maturation.

  15. Notch Is Required in Adult Drosophila Sensory Neurons for Morphological and Functional Plasticity of the Olfactory Circuit

    PubMed Central

    Struhl, Gary

    2015-01-01

    Olfactory receptor neurons (ORNs) convey odor information to the central brain, but like other sensory neurons were thought to play a passive role in memory formation and storage. Here we show that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila ORNs for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. Specifically, we show that Notch activity in ORNs is necessary for the odor specific increase in the volume of glomeruli that occurs as a consequence of prolonged odor exposure. Calcium imaging experiments indicate that Notch in ORNs is also required for the chronic odor induced changes in the physiology of ORNs and the ensuing changes in the physiological response of their second order projection neurons (PNs). We further show that Notch in ORNs acts by both canonical cleavage-dependent and non-canonical cleavage-independent pathways. The Notch ligand Delta (Dl) in PNs switches the balance between the pathways. These data define a circuit whereby, in conjunction with odor, N activity in the periphery regulates the activity of neurons in the central brain and Dl in the central brain regulates N activity in the periphery. Our work highlights the importance of experience dependent plasticity at the first olfactory synapse. PMID:26011623

  16. Altered dendritic arborization of amygdala neurons in young adult rats orally intubated with Clitorea ternatea aqueous root extract.

    PubMed

    Rai, Kiranmai S; Murthy, K Dilip; Rao, Muddanna S; Karanth, K Sudhakar

    2005-07-01

    Young adult (60 day old) Wistar rats of either sex were orally intubated with 50 mg/kg body weight and 100 mg/kg body weight of aqueous root extract of Clitoria ternatea (CTR) for 30 days, along with age-matched saline controls. These rats were then subjected to passive avoidance tests and the results from these studies showed a significant increase in passive avoidance learning and retention. Subsequent to the passive avoidance tests, these rats were killed by decapitation. The amygdala was processed for Golgi staining and the stained neurons were traced using a camera lucida and analysed. The results showed a significant increase in dendritic intersections, branching points and dendritic processes arising from the soma of amygdaloid neurons in CTR treated rats especially in the 100 mg/kg group of rats, compared with age-matched saline controls. This improved dendritic arborization of amygdaloid neurons correlates with the increased passive avoidance learning and memory in the CTR treated rats as reported earlier. The results suggest that Clitoria ternatea aqueous root extract enhances memory by increasing the functional growth of neurons of the amygdala. PMID:16161034

  17. Double-pulse calcium channel current facilitation in adult rat sympathetic neurones.

    PubMed Central

    Ikeda, S R

    1991-01-01

    1. Double-pulse facilitation of Ca2+ channel currents in enzymatically dispersed adult rat superior cervical ganglion neurones was investigated using the whole-cell variant of the patch-clamp technique. Voltage-clamp recordings were performed at room temperature (21-24 degrees C) in solutions designed to isolate Ca2+ channel currents. 2. Ba2+ currents, elicited by a 0 mV test pulse, were increased in amplitude when preceded by a 40 ms pulse to voltages greater than 0 mV. The magnitude of facilitation was dependent on pre-pulse voltage and reached a maximum of 50% (i.e. 1.5 x the current amplitude elicited without a pre-pulse) at a pre-pulse voltage of +80 mV. Half-maximal facilitation occurred at about +25 mV. A small decrease (-6%) in test pulse amplitude was present at pre-pulse voltages between -40 and 0 mV. The magnitude of facilitation was also dependent on test pulse voltage. Facilitation was greatest between test pulse voltages of -10 and 0 mV. 3. Facilitation slowly decreased during prolonged (1 h) dialysis of the neurone even though the Ba2+ current amplitude was well maintained. 4. Increasing the pre-pulse duration over the range 0-120 ms produced an exponential increase in facilitation with a time constant of 17.3 ms. Conversely, lengthening the interpulse duration over the range 5-915 ms, while maintaining a constant pre-pulse amplitude and duration, resulted in an exponential decrease in facilitation with a time constant of 197 ms. 5. At a test potential of 0 mV, the decay of the facilitated Ba2+ current component was fitted to a double exponential function with time constants of about 25 and 150 ms. The time constants had little pre-pulse voltage dependence between +30 to +80 mV. 6. The initial rising phase of both the control and facilitated Ba2+ current were reasonably well described by a single exponential (tau rise) after a delay of 300 microseconds. The tau rise versus test pulse potential relationship was 'bell shaped' over the test pulse

  18. Compensation of depleted neuronal subsets by new neurons in a local area of the adult olfactory bulb.

    PubMed

    Murata, Koshi; Imai, Maki; Nakanishi, Shigetada; Watanabe, Dai; Pastan, Ira; Kobayashi, Kazuto; Nihira, Tomoko; Mochizuki, Hideki; Yamada, Shuichi; Mori, Kensaku; Yamaguchi, Masahiro

    2011-07-20

    In the olfactory bulb (OB), loss of preexisting granule cells (GCs) and incorporation of adult-born new GCs continues throughout life. GCs consist of distinct subsets. Here, we examined whether the loss and incorporation of GC subsets are coordinated in the OB. We classified GCs into mGluR2-expressing and -negative subsets and selectively ablated mGluR2-expressing GCs in a local area of the OB with immunotoxin-mediated cell ablation method. The density of mGluR2-expressing GCs showed considerable recovery within several weeks after the ablation. During recovery, an mGluR2-expressing new GC subset was preferentially incorporated over an mGluR2-negative new GC subset in the area of ablation, whereas the preferential incorporation was not observed in the intact area. The area-specific preferential incorporation of mGluR2-expressing new GCs occurred for BrdU analog- and retrovirus-labeled adult-born cells as well as for neonate-derived transplanted cells. The mGluR2-expressing new GCs in the ablated area were synaptically incorporated into the local bulbar circuit. The spine size of mGluR2-expressing new GCs in the ablated area was larger than that of those in the intact area. In contrast, mGluR2-negative new GCs did not show ablated area-specific spine enlargement. These results indicate that local OB areas have a mechanism to coordinate the loss and incorporation of GC subsets by compensatory incorporation of new GC subsets, which involves subset-specific cellular incorporation and subset-specific regulation of spine size.

  19. Gastrin-releasing peptide contributes to the regulation of adult hippocampal neurogenesis and neuronal development.

    PubMed

    Walton, Noah M; de Koning, Anoek; Xie, Xiuyuan; Shin, Rick; Chen, Qian; Miyake, Shinichi; Tajinda, Katsunori; Gross, Adam K; Kogan, Jeffrey H; Heusner, Carrie L; Tamura, Kouichi; Matsumoto, Mitsuyuki

    2014-09-01

    In the postnatal hippocampus, newly generated neurons contribute to learning and memory. Disruptions in neurogenesis and neuronal development have been linked to cognitive impairment and are implicated in a broad variety of neurological and psychiatric disorders. To identify putative factors involved in this process, we examined hippocampal gene expression alterations in mice possessing a heterozygous knockout of the calcium/calmodulin-dependent protein kinase II alpha heterozygous knockout gene (CaMK2α-hKO), an established model of cognitive impairment that also displays altered neurogenesis and neuronal development. Using this approach, we identified gastrin-releasing peptide (GRP) as the most dysregulated gene. In wild-type mice, GRP labels NeuN-positive neurons, the lone exception being GRP-positive, NeuN-negative cells in the subgranular zone, suggesting GRP expression may be relevant to neurogenesis and/or neuronal development. Using a model of in vitro hippocampal neurogenesis, we determined that GRP signaling is essential for the continued survival and development of newborn neurons, both of which are blocked by transient knockdown of GRP's cognate receptor (GRPR). Furthermore, GRP appears to negatively regulate neurogenesis-associated proliferation in neural stem cells both in vitro and in vivo. Intracerebroventricular infusion of GRP resulted in a decrease in immature neuronal markers, increased cAMP response element-binding protein (CREB) phosphorylation, and decreased neurogenesis. Despite increased levels of GRP mRNA, CaMK2α-hKO mutant mice expressed reduced levels of GRP peptide. This lack of GRP may contribute to the elevated neurogenesis and impaired neuronal development, which are reversed following exogenous GRP infusion. Based on these findings, we hypothesize that GRP modulates neurogenesis and neuronal development and may contribute to hippocampus-associated cognitive impairment.

  20. Postnatal maternal separation enhances tonic GABA current of cortical layer 5 pyramidal neurons in juvenile rats and promotes genesis of GABAergic neurons in neocortical molecular layer and subventricular zone in adult rats.

    PubMed

    Feng, Mei; Sheng, Guoxia; Li, Zhongxia; Wang, Jiangping; Ren, Keming; Jin, Xiaoming; Jiang, Kewen

    2014-03-01

    Postnatal maternal separation (PMS) has been shown to be associated with an increased vulnerability to psychiatric illnesses in adulthood. However, the underlying neurological mechanisms are not well understood. Here we evaluated its effects on neurogenesis and tonic GABA currents of cortical layer 5 (L5) pyramidal neurons. PMS not only increased cell proliferation in the subventricular zone, cortical layer 1 and hippocampal dentate gyrus in the adult brain, but also promoted the newly generated cells to differentiate into GABAergic neurons, and PMS adult brain maintained higher ratios of GABAergic neurons in the survival of newly generated cells within 5 days immediately post PMS. Additionally, PMS increased the tonic currents at P7-10 and P30-35 in cortical L5 pyramidal cells. Our results suggest that the newly generated GABAergic neurons and the low GABA concentration-activated tonic currents may be involved in the development of psychiatric disorders after PMS.

  1. Innexins in the lobster stomatogastric nervous system: cloning, phylogenetic analysis, developmental changes and expression within adult identified dye and electrically coupled neurons.

    PubMed

    Ducret, E; Alexopoulos, H; Le Feuvre, Y; Davies, J A; Meyrand, P; Bacon, J P; Fénelon, V S

    2006-12-01

    Gap junctions play a key role in the operation of neuronal networks by enabling direct electrical and metabolic communication between neurons. Suitable models to investigate their role in network operation and plasticity are invertebrate motor networks, which are built of comparatively few identified neurons, and can be examined throughout development; an excellent example is the lobster stomatogastric nervous system. In invertebrates, gap junctions are formed by proteins that belong to the innexin family. Here, we report the first molecular characterization of two crustacean innexins: the lobster Homarus gammarus innexin 1 (Hg-inx1) and 2 (Hg-inx2). Phylogenetic analysis reveals that innexin gene duplication occurred within the arthropod clade before the separation of insect and crustacean lineages. Using in situ hybridization, we find that each innexin is expressed within the adult and developing lobster stomatogastric nervous system and undergoes a marked down-regulation throughout development within the stomatogastric ganglion (STG). The number of innexin expressing neurons is significantly higher in the embryo than in the adult. By combining in situ hybridization, dye and electrical coupling experiments on identified neurons, we demonstrate that adult neurons that express at least one innexin are dye and electrically coupled with at least one other STG neuron. Finally, two STG neurons display no detectable amount of either innexin mRNAs but may express weak electrical coupling with other STG neurons, suggesting the existence of other forms of innexins. Altogether, we provide evidence that innexins are expressed within small neuronal networks built of dye and electrically coupled neurons and may be developmentally regulated. PMID:17156373

  2. Synaptic destabilization by neuronal Nogo-A.

    PubMed

    Aloy, Elisabeth M; Weinmann, Oliver; Pot, Caroline; Kasper, Hansjörg; Dodd, Dana A; Rülicke, Thomas; Rossi, Ferdinando; Schwab, Martin E

    2006-06-01

    Formation and maintenance of a neuronal network is based on a balance between plasticity and stability of synaptic connections. Several molecules have been found to regulate the maintenance of excitatory synapses but nothing is known about the molecular mechanisms involved in synaptic stabilization versus disassembly at inhibitory synapses. Here, we demonstrate that Nogo-A, which is well known to be present in myelin and inhibit growth in the adult CNS, is present in inhibitory presynaptic terminals in cerebellar Purkinje cells at the time of Purkinje cell-Deep Cerebellar Nuclei (DCN) inhibitory synapse formation and is then downregulated during synapse maturation. We addressed the role of neuronal Nogo-A in synapse maturation by generating several mouse lines overexpressing Nogo-A, starting at postnatal ages and throughout adult life, specifically in cerebellar Purkinje cells and their terminals. The overexpression of Nogo-A induced a progressive disassembly, retraction and loss of the inhibitory Purkinje cell terminals. This led to deficits in motor learning and coordination in the transgenic mice. Prior to synapse disassembly, the overexpression of neuronal Nogo-A led to the downregulation of the synaptic scaffold proteins spectrin, spectrin-E and beta-catenin in the postsynaptic neurons. Our data suggest that neuronal Nogo-A might play a role in the maintenance of inhibitory synapses by modulating the expression of synaptic anchoring molecules.

  3. Neurosteroid regulation of CNS development

    PubMed Central

    Mellon, Synthia H.

    2007-01-01

    Neurosteroids are a relatively new class of neuroactive compounds, brought to prominence in the past two decades. Despite knowing of their presence in the nervous system of various species for over twenty years and knowing of their functions as GABAA and NMDA ligands, new and unexpected functions of these compounds are continuously being identified. Absence or reduced concentrations of neurosteroids during development and in adults may be associated with neurodevelopmental, psychiatric, or behavioral disorders. Treatment with physiologic or pharmacologic concentrations of these compounds may also promote neurogenesis, neuronal survival, myelination, increased memory, and reduced neurotoxicity. This review highlights what is currently known about the neurodevelopmental functions and mechanisms of action of four distinct neurosteroids – pregnenolone, progesterone, allopregnanolone and dehydroepiandrosterone. PMID:17651807

  4. Caffeine and modafinil promote adult neuronal cell proliferation during 48 h of total sleep deprivation in rat dentate gyrus.

    PubMed

    Sahu, Surajit; Kauser, Hina; Ray, Koushik; Kishore, Krishna; Kumar, Sanjeev; Panjwani, Usha

    2013-10-01

    It has been established that sleep deprivation (SD) reduces the proliferation of neuronal precursors in the adult hippocampus. It has also been reported that psychostimulant drugs modulate adult neurogenesis. We examined the modulatory role of two psychostimulant drugs modafinil and caffeine on adult neuronal cell proliferation (NCP) during 48 h of total SD. A novel automated cage shaking stimulus was used to induce SD based on animal activity. 5-Bromo-2″-deoxyuridine (BrdU; 50mg/kg/day i.p.) was injected at the onset of the light phase for two days. Rats were successfully sleep deprived for 85-94% of total time. Stereological analysis showed that both caffeine and modafinil treatments during SD improved the number of BrdU positive cells as compared to the SD group. Caffeine treatment during SD, significantly increased early proliferative and post-mitotic stages of doublecortin (DCX) positive cells while modafinil treatment during SD, increased intermediate and post-mitotic stages of DCX positive cells compared to SD+Vehicle group. Brain-Derived Neurotrophic Factor (BDNF) expression on BrdU positive cells as well as in the dentate gyrus (DG) region was decreased significantly after sleep deprivation. Both caffeine and modafinil significantly improved BDNF expression in the DG region. Modafinil, but not caffeine, significantly decreased hippocampal adenosine level during SD in comparison to the SD+Vehicle group. It may be concluded that caffeine or modafinil treatment during 48 h of SD prevents the SD induced decline in neuronal proliferation and differentiation. Caffeine and modafinil induced alterations of NCP during SD may involve modulation of BDNF and adenosine levels.

  5. Astaxanthin rescues neuron loss and attenuates oxidative stress induced by amygdala kindling in adult rat hippocampus.

    PubMed

    Lu, Yan; Xie, Tao; He, Xue-Xin; Mao, Zhuo-Feng; Jia, Li-Jing; Wang, Wei-Ping; Zhen, Jun-Li; Liu, Liang-Min

    2015-06-15

    Oxidative stress plays an important role in the neuronal damage induced by epilepsy. The present study assessed the possible neuroprotective effects of astaxanthin (ATX) on neuronal damage, in hippocampal CA3 neurons following amygdala kindling. Male Sprague-Dawley rats were chronically kindled in the amygdala and ATX or equal volume of vehicle was given by intraperitoneally. Twenty-four hours after the last stimulation, the rats were sacrificed by decapitation. Histopathological changes and the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and reduced glutathione (GSH) were measured, cytosolic cytochrome c (CytC) and caspase-3 activities in the hippocampus were also recorded. We found extensive neuronal damage in the CA3 region in the kindling group, which was preceded by increases of ROS level and MDA concentration and was followed by caspase-3 activation and an increase in cytosolic CytC. Treatment with ATX markedly attenuated the neuronal damage. In addition, ATX significantly decreased ROS and MDA concentrations and increased GSH levels. Moreover, ATX suppressed the translation of CytC release and caspase-3 activation in hippocampus. Together, these results suggest that ATX protects against neuronal loss due to epilepsy in the rat hippocampus by attenuating oxidative damage, lipid peroxidation and inhibiting the mitochondrion-related apoptotic pathway.

  6. Memory Loss and Frontal Cognitive Dysfunction in a Patient with Adult-onset Neuronal Intranuclear Inclusion Disease.

    PubMed

    Araki, Kunihiko; Sone, Jun; Fujioka, Yusuke; Masuda, Michihito; Ohdake, Reiko; Tanaka, Yasuhiro; Nakamura, Tomohiko; Watanabe, Hirohisa; Sobue, Gen

    2016-01-01

    Neuronal intranuclear inclusion disease (NIID) is an uncommon progressive neurodegenerative disorder. Adult-onset NIID can result in prominent dementia. We herein describe the case of a 74-year-old man who presented with dementia, cerebellar ataxia, neuropathy, and autonomic dysfunction. Diffusion-weighted imaging showed hyperintensity of the corticomedullary junction. Fluid-attenuated inversion recovery images showed frontal-dominant white matter hyperintensity. NIID was diagnosed from the presence of intranuclear inclusions in a skin biopsy sample. Neuropsychological testing revealed memory loss and frontal cognitive dysfunction, especially in relation to language and executive functions. We were therefore able to confirm the association of NIID with cognitive dysfunction. PMID:27523009

  7. Expressing Constitutively Active Rheb in Adult Dorsal Root Ganglion Neurons Enhances the Integration of Sensory Axons that Regenerate Across a Chondroitinase-Treated Dorsal Root Entry Zone Following Dorsal Root Crush

    PubMed Central

    Wu, Di; Klaw, Michelle C.; Kholodilov, Nikolai; Burke, Robert E.; Detloff, Megan R.; Côté, Marie-Pascale; Tom, Veronica J.

    2016-01-01

    While the peripheral branch of dorsal root ganglion neurons (DRG) can successfully regenerate after injury, lesioned central branch axons fail to regrow across the dorsal root entry zone (DREZ), the interface between the dorsal root and the spinal cord. This lack of regeneration is due to the limited regenerative capacity of adult sensory axons and the growth-inhibitory environment at the DREZ, which is similar to that found in the glial scar after a central nervous system (CNS) injury. We hypothesized that transduction of adult DRG neurons using adeno-associated virus (AAV) to express a constitutively-active form of the GTPase Rheb (caRheb) will increase their intrinsic growth potential after a dorsal root crush. Additionally, we posited that if we combined that approach with digestion of upregulated chondroitin sulfate proteoglycans (CSPG) at the DREZ with chondroitinase ABC (ChABC), we would promote regeneration of sensory axons across the DREZ into the spinal cord. We first assessed if this strategy promotes neuritic growth in an in vitro model of the glial scar containing CSPG. ChABC allowed for some regeneration across the once potently inhibitory substrate. Combining ChABC treatment with expression of caRheb in DRG significantly improved this growth. We then determined if this combination strategy also enhanced regeneration through the DREZ after dorsal root crush in adult rats in vivo. After unilaterally crushing C4-T1 dorsal roots, we injected AAV5-caRheb or AAV5-GFP into the ipsilateral C5-C8 DRGs. ChABC or PBS was injected into the ipsilateral dorsal horn at C5-C8 to digest CSPG, for a total of four animal groups (caRheb + ChABC, caRheb + PBS, GFP + ChABC, GFP + PBS). Regeneration was rarely observed in PBS-treated animals, whereas short-distance regrowth across the DREZ was observed in ChABC-treated animals. No difference in axon number or length between the ChABC groups was observed, which may be related to intraganglionic inflammation induced by the

  8. Expressing Constitutively Active Rheb in Adult Dorsal Root Ganglion Neurons Enhances the Integration of Sensory Axons that Regenerate Across a Chondroitinase-Treated Dorsal Root Entry Zone Following Dorsal Root Crush.

    PubMed

    Wu, Di; Klaw, Michelle C; Kholodilov, Nikolai; Burke, Robert E; Detloff, Megan R; Côté, Marie-Pascale; Tom, Veronica J

    2016-01-01

    While the peripheral branch of dorsal root ganglion neurons (DRG) can successfully regenerate after injury, lesioned central branch axons fail to regrow across the dorsal root entry zone (DREZ), the interface between the dorsal root and the spinal cord. This lack of regeneration is due to the limited regenerative capacity of adult sensory axons and the growth-inhibitory environment at the DREZ, which is similar to that found in the glial scar after a central nervous system (CNS) injury. We hypothesized that transduction of adult DRG neurons using adeno-associated virus (AAV) to express a constitutively-active form of the GTPase Rheb (caRheb) will increase their intrinsic growth potential after a dorsal root crush. Additionally, we posited that if we combined that approach with digestion of upregulated chondroitin sulfate proteoglycans (CSPG) at the DREZ with chondroitinase ABC (ChABC), we would promote regeneration of sensory axons across the DREZ into the spinal cord. We first assessed if this strategy promotes neuritic growth in an in vitro model of the glial scar containing CSPG. ChABC allowed for some regeneration across the once potently inhibitory substrate. Combining ChABC treatment with expression of caRheb in DRG significantly improved this growth. We then determined if this combination strategy also enhanced regeneration through the DREZ after dorsal root crush in adult rats in vivo. After unilaterally crushing C4-T1 dorsal roots, we injected AAV5-caRheb or AAV5-GFP into the ipsilateral C5-C8 DRGs. ChABC or PBS was injected into the ipsilateral dorsal horn at C5-C8 to digest CSPG, for a total of four animal groups (caRheb + ChABC, caRheb + PBS, GFP + ChABC, GFP + PBS). Regeneration was rarely observed in PBS-treated animals, whereas short-distance regrowth across the DREZ was observed in ChABC-treated animals. No difference in axon number or length between the ChABC groups was observed, which may be related to intraganglionic inflammation induced by the

  9. Histamine pharmacology and new CNS drug targets.

    PubMed

    Tiligada, Ekaterini; Kyriakidis, Konstantinos; Chazot, Paul L; Passani, M Beatrice

    2011-12-01

    During the last decade, the identification of a number of novel drug targets led to the development of promising new compounds which are currently under evaluation for their therapeutic prospective in CNS related disorders. Besides the established pleiotropic regulatory functions in the periphery, the interest in the potential homeostatic role of histamine in the brain was revived following the identification of H(3) and H(4) receptors some years ago. Complementing classical CNS pharmacology, the development of selective histamine receptor agonists, antagonists, and inverse agonists provides the lead for the potential exploitation of the histaminergic system in the treatment of brain pathologies. Although no CNS disease entity has been associated directly to brain histamine dysfunction until now, the H(3) receptor is recognized as a drug target for neuropathic pain, sleep-wake disorders, including narcolepsy, and cognitive impairment associated with attention deficit hyperactivity disorder, schizophrenia, Alzheimer's, or Parkinson's disease, while the first H(3) receptor ligands have already entered phase I-III clinical trials. Interestingly, the localization of the immunomodulatory H(4) receptor in the nervous system exposes attractive perspectives for the therapeutic exploitation of this new drug target in neuroimmunopharmacology. This review focuses on a concise presentation of the current "translational research" approach that exploits the latest advances in histamine pharmacology for the development of beneficial drug targets for the treatment of neuronal disorders, such as neuropathic pain, cognitive, and sleep-wake pathologies. Furthermore, the role of the brain histaminergic system(s) in neuroprotection and neuroimmunology/inflammation remains a challenging research area that is currently under consideration.

  10. Neuron-enriched cultures of adult rat dorsal root ganglia: establishment, characterization, survival, and neuropeptide expression in response to trophic factors.

    PubMed

    Grothe, C; Unsicker, K

    1987-01-01

    It is unknown whether adult dorsal root ganglion (DRG) neurons require trophic factors for their survival and maintenance of neuropeptide phenotypes. We have established and characterized neuron-enriched cultures of adult rat DRGs and investigated their responses to nerve growth factor (NGF), ciliary neuronotrophic factor (CNTF), pig brain extract (PBE, crude fraction of brain-derived neuronotrophic factor, BDNF), and laminin (LN). DRGs were dissected from levels C1 through L6 and dissociated and freed from myelin fragments and most satellite (S-100-immunoreactive) cells by centrifugation on Percoll and preplating. The enriched neurons, characterized by their morphology and immunoreactivity for neuron-specific enolase, constituted a population representative of the in vivo situation with regard to expression of substance P (SP), somatostatin (SOM), and cholecystokinin-8 (CCK) immunoreactivities. In the absence of trophic factors and using polyornithine (PORN) as a substratum, 60-70% of the neurons present initially (0.5 days) had died after 7 days. LN as a substratum did not prevent a 30% loss of neurons up to day 4.5, but it subsequently maintained DRG neurons at a plateau. This behavior might reflect a cotrophic effect of LN and factors provided by non-neuronal cells, whose proliferation between 4.5 and 7 days could not be prevented by addition of mitotic inhibitors of gamma-irradiation. CNTF, but not NGF, slightly enhanced survival at 7 days on either PORN or LN. No neuronal losses were found in non-enriched cultures or when enriched neurons were supplemented with PBE, indicating that non-neuronal cells and PBE provide factor(s) essential for adult DRG neuron survival. Proportions of SP-, SOM-, and CCK-immunoreactive cells were unaltered under any experimental condition, with the exception of a numerical decline in SP cells in 7-day cultures with LN, but not PORN, as the substratum. Our data, considered in the context of recent in vivo and vitro studies, suggest

  11. Neuron-enriched cultures of adult rat dorsal root ganglia: establishment, characterization, survival, and neuropeptide expression in response to trophic factors.

    PubMed

    Grothe, C; Unsicker, K

    1987-01-01

    It is unknown whether adult dorsal root ganglion (DRG) neurons require trophic factors for their survival and maintenance of neuropeptide phenotypes. We have established and characterized neuron-enriched cultures of adult rat DRGs and investigated their responses to nerve growth factor (NGF), ciliary neuronotrophic factor (CNTF), pig brain extract (PBE, crude fraction of brain-derived neuronotrophic factor, BDNF), and laminin (LN). DRGs were dissected from levels C1 through L6 and dissociated and freed from myelin fragments and most satellite (S-100-immunoreactive) cells by centrifugation on Percoll and preplating. The enriched neurons, characterized by their morphology and immunoreactivity for neuron-specific enolase, constituted a population representative of the in vivo situation with regard to expression of substance P (SP), somatostatin (SOM), and cholecystokinin-8 (CCK) immunoreactivities. In the absence of trophic factors and using polyornithine (PORN) as a substratum, 60-70% of the neurons present initially (0.5 days) had died after 7 days. LN as a substratum did not prevent a 30% loss of neurons up to day 4.5, but it subsequently maintained DRG neurons at a plateau. This behavior might reflect a cotrophic effect of LN and factors provided by non-neuronal cells, whose proliferation between 4.5 and 7 days could not be prevented by addition of mitotic inhibitors of gamma-irradiation. CNTF, but not NGF, slightly enhanced survival at 7 days on either PORN or LN. No neuronal losses were found in non-enriched cultures or when enriched neurons were supplemented with PBE, indicating that non-neuronal cells and PBE provide factor(s) essential for adult DRG neuron survival. Proportions of SP-, SOM-, and CCK-immunoreactive cells were unaltered under any experimental condition, with the exception of a numerical decline in SP cells in 7-day cultures with LN, but not PORN, as the substratum. Our data, considered in the context of recent in vivo and vitro studies, suggest

  12. Immunohistological localization of 5-HT in the CNS and feeding system of the Stable Fly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    5-HT immunoreactive neurons were detected in the CNS of the stable fly. The finding of strong innervations of the cibarial pump muscles and the foregut by 5-HT IR neurons in the feeding-related systems suggests that 5-HT may play a crucial role in the control of the feeding behavior in both the larv...

  13. Lead decreases cell survival, proliferation, and neuronal differentiation of primary cultured adult neural precursor cells through activation of the JNK and p38 MAP kinases.

    PubMed

    Engstrom, Anna; Wang, Hao; Xia, Zhengui

    2015-08-01

    Adult hippocampal neurogenesis is the process whereby adult neural precursor cells (aNPCs) in the subgranular zone (SGZ) of the dentate gyrus (DG) generate adult-born, functional neurons in the hippocampus. This process is modulated by various extracellular and intracellular stimuli, and the adult-born neurons have been implicated in hippocampus-dependent learning and memory. However, studies on how neurotoxic agents affect this process and the underlying mechanisms are limited. The goal of this study was to determine whether lead, a heavy metal, directly impairs critical processes in adult neurogenesis and to characterize the underlying signaling pathways using primary cultured SGZ-aNPCs isolated from adult mice. We report here that lead significantly increases apoptosis and inhibits proliferation in SGZ-aNPCs. In addition, lead significantly impairs spontaneous neuronal differentiation and maturation. Furthermore, we found that activation of the c-Jun NH2-terminal kinase (JNK) and p38 mitogen activated protein (MAP) kinase signaling pathways are important for lead cytotoxicity. Our data suggest that lead can directly act on adult neural stem cells and impair critical processes in adult hippocampal neurogenesis, which may contribute to its neurotoxicity and adverse effects on cognition in adults.

  14. Adult-onset autosomal recessive ataxia associated with neuronal ceroid lipofuscinosis type 5 gene (CLN5) mutations.

    PubMed

    Mancini, Cecilia; Nassani, Stefano; Guo, Yiran; Chen, Yulan; Giorgio, Elisa; Brussino, Alessandro; Di Gregorio, Eleonora; Cavalieri, Simona; Lo Buono, Nicola; Funaro, Ada; Pizio, Nicola Renato; Nmezi, Bruce; Kyttala, Aija; Santorelli, Filippo Maria; Padiath, Quasar Salem; Hakonarson, Hakon; Zhang, Hao; Brusco, Alfredo

    2015-01-01

    Autosomal recessive inherited ataxias are a growing group of genetic disorders. We report two Italian siblings presenting in their mid-50s with difficulty in walking, dysarthria and progressive cognitive decline. Visual loss, ascribed to glaucoma, manifested a few years before the other symptoms. Brain MRI showed severe cerebellar atrophy, prevalent in the vermis, with marked cortical atrophy of both hemispheres. Exome sequencing identified a novel homozygous mutation (c.935G > A;p.Ser312Asn) in the ceroid neuronal lipofuscinosis type 5 gene (CLN5). Bioinformatics predictions and in vitro studies showed that the mutation was deleterious and likely affects ER-lysosome protein trafficking. Our findings support CLN5 hypomorphic mutations cause autosomal recessive cerebellar ataxia, confirming other reports showing CLN mutations are associated with adult-onset neurodegenerative disorders. We suggest CLN genes should be considered in the molecular analyses of patients presenting with adult-onset autosomal recessive cerebellar ataxia.

  15. Differential regulation of proliferation and neuronal differentiation in adult rat spinal cord neural stem/progenitors by ERK1/2, Akt, and PLCγ

    PubMed Central

    Chan, Wai Si; Sideris, Alexandra; Sutachan, Jhon J.; Montoya G, Jose V.; Blanck, Thomas J. J.; Recio-Pinto, Esperanza

    2013-01-01

    Proliferation of endogenous neural stem/progenitor cells (NSPCs) has been identified in both normal and injured adult mammalian spinal cord. Yet the signaling mechanisms underlying the regulation of adult spinal cord NSPCs proliferation and commitment toward a neuronal lineage remain undefined. In this study, the role of three growth factor-mediated signaling pathways in proliferation and neuronal differentiation was examined. Adult spinal cord NSPCs were enriched in the presence of fibroblast growth factor 2 (FGF2). We observed an increase in the number of cells expressing the microtubule-associated protein 2 (MAP2) over time, indicating neuronal differentiation in the culture. Inhibition of the mitogen-activated protein kinase or extracellular signal-regulated kinase (ERK) kinase 1 and 2/ERK 1 and 2 (MEK/ERK1/2) or the phosphoinositide 3-kinase (PI3K)/Akt pathways suppressed active proliferation in adult spinal cord NSPC cultures; whereas neuronal differentiation was negatively affected only when the ERK1/2 pathway was inhibited. Inhibition of the phospholipase Cγ (PLCγ) pathway did not affect proliferation or neuronal differentiation. Finally, we demonstrated that the blockade of either the ERK1/2 or PLCγ signaling pathways reduced neurite branching of MAP2+ cells derived from the NSPC cultures. Many of the MAP2+ cells expressed synaptophysin and had a glutamatergic phenotype, indicating that over time adult spinal cord NSPCs had differentiated into mostly glutamatergic neurons. Our work provides new information regarding the contribution of these pathways to the proliferation and neuronal differentiation of NSPCs derived from adult spinal cord cultures, and emphasizes that the contribution of these pathways is dependent on the origin of the NSPCs. PMID:23986655

  16. Altered Hippocampal Neurogenesis and Amygdalar Neuronal Activity in Adult Mice with Repeated Experience of Aggression.

    PubMed

    Smagin, Dmitry A; Park, June-Hee; Michurina, Tatyana V; Peunova, Natalia; Glass, Zachary; Sayed, Kasim; Bondar, Natalya P; Kovalenko, Irina N; Kudryavtseva, Natalia N; Enikolopov, Grigori

    2015-01-01

    Repeated experience of winning in a social conflict setting elevates levels of aggression and may lead to violent behavioral patterns. Here, we use a paradigm of repeated aggression and fighting deprivation to examine changes in behavior, neurogenesis, and neuronal activity in mice with positive fighting experience. We show that for males, repeated positive fighting experience induces persistent demonstration of aggression and stereotypic behaviors in daily agonistic interactions, enhances aggressive motivation, and elevates levels of anxiety. When winning males are deprived of opportunities to engage in further fights, they demonstrate increased levels of aggressiveness. Positive fighting experience results in increased levels of progenitor cell proliferation and production of young neurons in the hippocampus. This increase is not diminished after a fighting deprivation period. Furthermore, repeated winning experience decreases the number of activated (c-fos-positive) cells in the basolateral amygdala and increases the number of activated cells in the hippocampus; a subsequent no-fight period restores the number of c-fos-positive cells. Our results indicate that extended positive fighting experience in a social conflict heightens aggression, increases proliferation of neuronal progenitors and production of young neurons in the hippocampus, and decreases neuronal activity in the amygdala; these changes can be modified by depriving the winners of the opportunity for further fights. PMID:26648838

  17. Altered Hippocampal Neurogenesis and Amygdalar Neuronal Activity in Adult Mice with Repeated Experience of Aggression

    PubMed Central

    Smagin, Dmitry A.; Park, June-Hee; Michurina, Tatyana V.; Peunova, Natalia; Glass, Zachary; Sayed, Kasim; Bondar, Natalya P.; Kovalenko, Irina N.; Kudryavtseva, Natalia N.; Enikolopov, Grigori

    2015-01-01

    Repeated experience of winning in a social conflict setting elevates levels of aggression and may lead to violent behavioral patterns. Here, we use a paradigm of repeated aggression and fighting deprivation to examine changes in behavior, neurogenesis, and neuronal activity in mice with positive fighting experience. We show that for males, repeated positive fighting experience induces persistent demonstration of aggression and stereotypic behaviors in daily agonistic interactions, enhances aggressive motivation, and elevates levels of anxiety. When winning males are deprived of opportunities to engage in further fights, they demonstrate increased levels of aggressiveness. Positive fighting experience results in increased levels of progenitor cell proliferation and production of young neurons in the hippocampus. This increase is not diminished after a fighting deprivation period. Furthermore, repeated winning experience decreases the number of activated (c-fos-positive) cells in the basolateral amygdala and increases the number of activated cells in the hippocampus; a subsequent no-fight period restores the number of c-fos-positive cells. Our results indicate that extended positive fighting experience in a social conflict heightens aggression, increases proliferation of neuronal progenitors and production of young neurons in the hippocampus, and decreases neuronal activity in the amygdala; these changes can be modified by depriving the winners of the opportunity for further fights. PMID:26648838

  18. Distinct Muscle Biopsy Findings in Genetically Defined Adult-Onset Motor Neuron Disorders

    PubMed Central

    Jokela, Manu; Huovinen, Sanna; Raheem, Olayinka; Lindfors, Mikaela; Palmio, Johanna; Penttilä, Sini; Udd, Bjarne

    2016-01-01

    The objective of this study was to characterize and compare muscle histopathological findings in 3 different genetic motor neuron disorders. We retrospectively re-assessed muscle biopsy findings in 23 patients with autosomal dominant lower motor neuron disease caused by p.G66V mutation in CHCHD10 (SMAJ), 10 X-linked spinal and bulbar muscular atrophy (SBMA) and 11 autosomal dominant c9orf72-mutated amyotrophic lateral sclerosis (c9ALS) patients. Distinct large fiber type grouping consisting of non-atrophic type IIA muscle fibers were 100% specific for the late-onset spinal muscular atrophies (SMAJ and SBMA) and were never observed in c9ALS. Common, but less specific findings included small groups of highly atrophic rounded type IIA fibers in SMAJ/SBMA, whereas in c9ALS, small group atrophies consisting of small-caliber angular fibers involving both fiber types were more characteristic. We also show that in the 2 slowly progressive motor neuron disorders (SMAJ and SBMA) the initial neurogenic features are often confused with considerable secondary “myopathic” changes at later disease stages, such as rimmed vacuoles, myofibrillar aggregates and numerous fibers reactive for fetal myosin heavy chain (dMyHC) antibodies. Based on our findings, muscle biopsy may be valuable in the diagnostic work-up of suspected motor neuron disorders in order to avoid a false ALS diagnosis in patients without clear findings of upper motor neuron lesions. PMID:26999347

  19. Histone Regulation in the CNS: Basic Principles of Epigenetic Plasticity

    PubMed Central

    Maze, Ian; Noh, Kyung-Min; Allis, C David

    2013-01-01

    Postmitotic neurons are subject to a vast array of environmental influences that require the nuclear integration of intracellular signaling events to promote a wide variety of neuroplastic states associated with synaptic function, circuit formation, and behavioral memory. Over the last decade, much attention has been paid to the roles of transcription and chromatin regulation in guiding fundamental aspects of neuronal function. A great deal of this work has centered on neurodevelopmental and adulthood plasticity, with increased focus in the areas of neuropharmacology and molecular psychiatry. Here, we attempt to provide a broad overview of chromatin regulation, as it relates to central nervous system (CNS) function, with specific emphasis on the modes of histone posttranslational modifications, chromatin remodeling, and histone variant exchange. Understanding the functions of chromatin in the context of the CNS will aid in the future development of pharmacological therapeutics aimed at alleviating devastating neurological disorders. PMID:22828751

  20. Matrix metalloproteinases in the adult brain physiology: a link between c-Fos, AP-1 and remodeling of neuronal connections?

    PubMed

    Kaczmarek, Leszek; Lapinska-Dzwonek, Joanna; Szymczak, Sylwia

    2002-12-16

    Matrix metalloproteinases (MMPs), together with their endogenous inhibitors (TIMPs) form an enzymatic system that plays an important role in a variety of physiological and pathological conditions. These proteins are also expressed in the brain, especially under pathological conditions, in which glia as well as invading inflammatory cells provide the major source of the MMP activity. Surprisingly little is known about the MMP function(s) in adult neuronal physiology. This review describes available data on this topic, which is presented in a context of knowledge about the MMP/TIMP system in other organs as well as in brain disorders. An analysis of the MMP and TIMP expression patterns in the brain, along with a consideration of their regulatory mechanisms and substrates, leads to the proposal of possible roles of the MMP system in the brain. This analysis suggests that MMPs may play an important role in the neuronal physiology, especially in neuronal plasticity, including their direct participation in the remodeling of synaptic connections-a mechanism pivotal for learning and memory.

  1. “Subpial Fan Cell” — A Class of Calretinin Neuron in Layer 1 of Adult Monkey Prefrontal Cortex

    PubMed Central

    Gabbott, Paul L. A.

    2016-01-01

    Layer 1 of the cortex contains populations of neurochemically distinct neurons and afferent fibers which markedly affect neural activity in the apical dendritic tufts of pyramidal cells. Understanding the causal mechanisms requires knowledge of the cellular architecture and synaptic organization of layer 1. This study has identified eight morphological classes of calretinin immunopositive (CRet+) neurons (including Cajal-Retzius cells) in layer 1 of the prefrontal cortex (PFC) in adult monkey (Macaca fasicularis), with a distinct class — termed “subpial fan (SPF) cell” — described in detail. SPF cells were rare horizontal unipolar CRet+ cells located directly beneath the pia with a single thick primary dendrite that branched into a characteristic fan-like dendritic tree tangential to the pial surface. Dendrites had spines, filamentous processes and thorny branchlets. SPF cells lay millimeters apart with intralaminar axons that ramified widely in upper layer 1. Such cells were GABA immunonegative (-) and occurred in areas beyond PFC. Interspersed amidst SPF cells displaying normal structural integrity were degenerating CRet+ neurons (including SPF cells) and clumps of lipofuscin-rich cellular debris. The number of degenerating SPF cells increased during adulthood. Ultrastructural analyses indicated SPF cell somata received asymmetric (A — presumed excitatory) and symmetric (S — presumed inhibitory) synaptic contacts. Proximal dendritic shafts received mainly S-type and distal shafts mostly A-type input. All dendritic thorns and most dendritic spines received both synapse types. The tangential areal density of SPF cell axonal varicosities varied radially from parent somata — with dense clusters in more distal zones. All boutons formed A-type contacts with CRet- structures. The main post-synaptic targets were dendritic shafts (67%; mostly spine-bearing) and dendritic spines (24%). SPF-SPF cell innervation was not observed. Morphometry of SPF cells

  2. Perispinal Delivery of CNS Drugs.

    PubMed

    Tobinick, Edward Lewis

    2016-06-01

    Perispinal injection is a novel emerging method of drug delivery to the central nervous system (CNS). Physiological barriers prevent macromolecules from efficiently penetrating into the CNS after systemic administration. Perispinal injection is designed to use the cerebrospinal venous system (CSVS) to enhance delivery of drugs to the CNS. It delivers a substance into the anatomic area posterior to the ligamentum flavum, an anatomic region drained by the external vertebral venous plexus (EVVP), a division of the CSVS. Blood within the EVVP communicates with the deeper venous plexuses of the CSVS. The anatomical basis for this method originates in the detailed studies of the CSVS published in 1819 by the French anatomist Gilbert Breschet. By the turn of the century, Breschet's findings were nearly forgotten, until rediscovered by American anatomist Oscar Batson in 1940. Batson confirmed the unique, linear, bidirectional and retrograde flow of blood between the spinal and cerebral divisions of the CSVS, made possible by the absence of venous valves. Recently, additional supporting evidence was discovered in the publications of American neurologist Corning. Analysis suggests that Corning's famous first use of cocaine for spinal anesthesia in 1885 was in fact based on Breschet's anatomical findings, and accomplished by perispinal injection. The therapeutic potential of perispinal injection for CNS disorders is highlighted by the rapid neurological improvement in patients with otherwise intractable neuroinflammatory disorders that may ensue following perispinal etanercept administration. Perispinal delivery merits intense investigation as a new method of enhanced delivery of macromolecules to the CNS and related structures.

  3. Therapeutics to promote CNS repair: a natural human neuron-binding IgM regulates membrane-raft dynamics and improves motility in a mouse model of multiple sclerosis.

    PubMed

    Xu, Xiaohua; Denic, Aleksandar; Warrington, Arthur E; Bieber, Allan J; Rodriguez, Moses

    2013-01-01

    We have discovered a role for natural autoantibodies in central nervous system repair, remyelination and axon protection. These natural human antibodies are of the immunoglobulin M (IgM) isotype, and they bind to the surface of neural cells. The epitope of the antibody includes sialic acid because treatment with sialidase disrupts the binding. A fully human recombinant form of one of these IgMs, rHIgM12, has the same properties as the serum-derived IgM. rHIgM12 enhanced polarized axonal outgrowth from primary neurons when presented as a substrate in vitro and improved motor functions in chronically Theiler's virus-infected SJL mice, a model of MS. rHIgM12 bound to neuronal surfaces and induced cholesterol and ganglioside (GM1) clustering, indicating that rHIgM12 functions through a mechanism of axonal membrane stabilization. Our work demonstrates that a natural human neuron-binding IgM can regulate membrane domain dynamics. This antibody has the potential to improve neurologic disease.

  4. Tumor Necrosis Factor-stimulated Gene-6 (TSG-6) Is Constitutively Expressed in Adult Central Nervous System (CNS) and Associated with Astrocyte-mediated Glial Scar Formation following Spinal Cord Injury*

    PubMed Central

    Coulson-Thomas, Vivien J.; Lauer, Mark E.; Soleman, Sara; Zhao, Chao; Hascall, Vincent C.; Day, Anthony J.; Fawcett, James W.

    2016-01-01

    Tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) binds to hyaluronan and can reorganize/stabilize its structure, also enhancing the binding of this glycosaminoglycan to its cell surface receptor, CD44. TSG-6 is rapidly up-regulated in response to inflammatory cytokines protecting tissues from the damaging effects of inflammation. Despite TSG-6 treatment having been shown to improve outcomes in an experimental model of traumatic brain injury, TSG-6 expression has not been extensively studied in the central nervous system (CNS). We hereby analyzed the expression profile of TSG-6 in the developing CNS and following injury. We show that TSG-6 is expressed in the rat CNS by GFAP+ and CD44+ astrocytes, solely in the mature brain and spinal cord, and is not present during the development of the CNS. TSG-6−/− mice present a reduced number of GFAP+ astrocytes when compared with the littermate TSG-6+/− mice. TSG-6 expression is drastically up-regulated after injury, and the TSG-6 protein is present within the glial scar, potentially coordinating and stabilizing the formation of this hyaluronan-rich matrix. This study shows that TSG-6 is expressed in the CNS, suggesting a role for TSG-6 in astrocyte activation and tissue repair. We hypothesize that within this context TSG-6 could participate in the formation of the glial scar and confer anti-inflammatory properties. Further studies are required to elucidate the therapeutic potential of targeting TSG-6 after CNS injury to promote its protective effects while reducing the inhibitory properties of the glial scar in axon regeneration. PMID:27435674

  5. Plastic and stable electrophysiological properties of adult avian forebrain song-control neurons across changing breeding conditions.

    PubMed

    Meitzen, John; Weaver, Adam L; Brenowitz, Eliot A; Perkel, David J

    2009-05-20

    Steroid sex hormones drive changes in the nervous system and behavior in many animal taxa, but integrating the former with the latter remains challenging. One useful model system for meeting this challenge is seasonally breeding songbirds. In these species, plasma testosterone levels rise and fall across the seasons, altering song behavior and causing dramatic growth and regression of the song-control system, a discrete set of nuclei that control song behavior. Whereas the cellular mechanisms underlying changes in nucleus volume have been studied as a model for neural growth and degeneration, it is unknown whether these changes in neural structure are accompanied by changes in electrophysiological properties other than spontaneous firing rate. Here we test the hypothesis that passive and active neuronal properties in the forebrain song-control nuclei HVC and RA change across breeding conditions. We exposed adult male Gambel's white-crowned sparrows to either short-day photoperiod or long-day photoperiod and systemic testosterone to simulate nonbreeding and breeding conditions, respectively. We made whole-cell recordings from RA and HVC neurons in acute brain slices. We found that RA projection neuron membrane time constant, capacitance, and evoked and spontaneous firing rates were all increased in the breeding condition; the measured electrophysiological properties of HVC interneurons and projection neurons were stable across breeding conditions. This combination of plastic and stable intrinsic properties could directly impact the song-control system's motor control across seasons, underlying changes in song stereotypy. These results provide a valuable framework for integrating how steroid hormones modulate cellular physiology to change behavior.

  6. Plastic and stable electrophysiological properties of adult avian forebrain song-control neurons across changing breeding conditions.

    PubMed

    Meitzen, John; Weaver, Adam L; Brenowitz, Eliot A; Perkel, David J

    2009-05-20

    Steroid sex hormones drive changes in the nervous system and behavior in many animal taxa, but integrating the former with the latter remains challenging. One useful model system for meeting this challenge is seasonally breeding songbirds. In these species, plasma testosterone levels rise and fall across the seasons, altering song behavior and causing dramatic growth and regression of the song-control system, a discrete set of nuclei that control song behavior. Whereas the cellular mechanisms underlying changes in nucleus volume have been studied as a model for neural growth and degeneration, it is unknown whether these changes in neural structure are accompanied by changes in electrophysiological properties other than spontaneous firing rate. Here we test the hypothesis that passive and active neuronal properties in the forebrain song-control nuclei HVC and RA change across breeding conditions. We exposed adult male Gambel's white-crowned sparrows to either short-day photoperiod or long-day photoperiod and systemic testosterone to simulate nonbreeding and breeding conditions, respectively. We made whole-cell recordings from RA and HVC neurons in acute brain slices. We found that RA projection neuron membrane time constant, capacitance, and evoked and spontaneous firing rates were all increased in the breeding condition; the measured electrophysiological properties of HVC interneurons and projection neurons were stable across breeding conditions. This combination of plastic and stable intrinsic properties could directly impact the song-control system's motor control across seasons, underlying changes in song stereotypy. These results provide a valuable framework for integrating how steroid hormones modulate cellular physiology to change behavior. PMID:19458226

  7. Environmental enrichment enhances episodic-like memory in association with a modified neuronal activation profile in adult mice.

    PubMed

    Leger, Marianne; Quiedeville, Anne; Paizanis, Eleni; Natkunarajah, Sharuja; Freret, Thomas; Boulouard, Michel; Schumann-Bard, Pascale

    2012-01-01

    Although environmental enrichment is well known to improve learning and memory in rodents, the underlying neuronal networks' plasticity remains poorly described. Modifications of the brain activation pattern by enriched condition (EC), especially in the frontal cortex and the baso-lateral amygdala, have been reported during an aversive memory task in rodents. The aims of our study were to examine 1) whether EC modulates episodic-like memory in an object recognition task and 2) whether EC modulates the task-induced neuronal networks. To this end, adult male mice were housed either in standard condition (SC) or in EC for three weeks before behavioral experiments (n = 12/group). Memory performances were examined in an object recognition task performed in a Y-maze with a 2-hour or 24-hour delay between presentation and test (inter-session intervals, ISI). To characterize the mechanisms underlying the promnesiant effect of EC, the brain activation profile was assessed after either the presentation or the test sessions using immunohistochemical techniques with c-Fos as a neuronal activation marker. EC did not modulate memory performances after a 2 h-ISI, but extended object recognition memory to a 24 h-ISI. In contrast, SC mice did not discriminate the novel object at this ISI. Compared to SC mice, no activation related to the presentation session was found in selected brain regions of EC mice (in particular, no effect was found in the hippocampus and the perirhinal cortex and a reduced activation was found in the baso-lateral amygdala). On the other hand, an activation of the hippocampus and the infralimbic cortex was observed after the test session for EC, but not SC mice. These results suggest that the persistence of object recognition memory in EC could be related to a reorganization of neuronal networks occurring as early as the memory encoding.

  8. Copper delivery to the CNS by CuATSM effectively treats motor neuron disease in SOD(G93A) mice co-expressing the Copper-Chaperone-for-SOD.

    PubMed

    Williams, Jared R; Trias, Emiliano; Beilby, Pamela R; Lopez, Nathan I; Labut, Edwin M; Bradford, C Samuel; Roberts, Blaine R; McAllum, Erin J; Crouch, Peter J; Rhoads, Timothy W; Pereira, Cliff; Son, Marjatta; Elliott, Jeffrey L; Franco, Maria Clara; Estévez, Alvaro G; Barbeito, Luis; Beckman, Joseph S

    2016-05-01

    Over-expression of mutant copper, zinc superoxide dismutase (SOD) in mice induces ALS and has become the most widely used model of neurodegeneration. However, no pharmaceutical agent in 20 years has extended lifespan by more than a few weeks. The Copper-Chaperone-for-SOD (CCS) protein completes the maturation of SOD by inserting copper, but paradoxically human CCS causes mice co-expressing mutant SOD to die within two weeks of birth. Hypothesizing that co-expression of CCS created copper deficiency in spinal cord, we treated these pups with the PET-imaging agent CuATSM, which is known to deliver copper into the CNS within minutes. CuATSM prevented the early mortality of CCSxSOD mice, while markedly increasing Cu, Zn SOD protein in their ventral spinal cord. Remarkably, continued treatment with CuATSM extended the survival of these mice by an average of 18 months. When CuATSM treatment was stopped, these mice developed ALS-related symptoms and died within 3 months. Restoring CuATSM treatment could rescue these mice after they became symptomatic, providing a means to start and stop disease progression. All ALS patients also express human CCS, raising the hope that familial SOD ALS patients could respond to CuATSM treatment similarly to the CCSxSOD mice. PMID:26826269

  9. Characterization of neurons from adult human skin-derived precursors in serum-free medium : a PCR array and immunocytological analysis.

    PubMed

    Lebonvallet, Nicolas; Boulais, Nicholas; Le Gall, Christelle; Chéret, Jeremy; Pereira, Ulysse; Mignen, Olivier; Bardey, Vincent; Jeanmaire, Christine; Danoux, Louis; Pauly, Gilles; Misery, Laurent

    2012-03-01

    Adult stem cells could be small sources of neurons or other cellular types for regenerative medicine and tissue engineering. Recently, pluripotent stem cells have been extracted from skin tissue, which opened a new accessible source for research. To routinely obtain a high yield of functional neurons from adult human skin stem cells with defined serum-free medium, stem cells from abdominal skin were cultured in serum-free medium. To differentiate them, we used a defined medium containing growth factors. Differentiated cells were identified using the following methods: (i) Oil-red-O staining for adipocytes, immunocytochemistry with antibodies recognising (ii) neurofilaments and PGP9.5 for neural differentiation, (iii) glial fibrillary acidic protein (GFAP) for glial differentiation, (iv) Ki-67 for proliferative cells, (v) FM1-43 staining to analyse vesicle trafficking in neuronal cells and (vi) a PCR array was used. Stem cells were floating in spheres and were maintained in culture for 4 months or more. They expressed nestin and Oct 4 and were proliferative. We induced specific differentiation into adipocytes, glial and neuronal cells. The yields of differentiated neurons were high and reproducible. They were maintained for long time (1 month) in the culture medium. Furthermore, these neurons incorporated FM1-43 dye, which indicates a potent acquisition of synaptic features in neurons. Stem cells from adult human skin could be valuable and reproducible tools/source to obtain high numbers of functional specific cellular types, such as neurons, for tissue engineering. In this work, the possibility to obtain a high yield of differentiated neurons, with the ability of endocytosis and vesicle cell trafficking, was shown.

  10. Sexual dimorphism in neuronal number of the posterodorsal medial amygdala is independent of circulating androgens and regional volume in adult rats.

    PubMed

    Morris, John A; Jordan, Cynthia L; Breedlove, S Marc

    2008-02-10

    The posterodorsal medial amygdala (MePD) in rodents integrates olfactory and pheromonal information, which, coupled with the appropriate hormonal signals, may facilitate or repress reproductive behavior in adulthood. MePD volume and neuronal soma size are greater in male rats than in females, and these sexual dimorphisms are maintained by adult circulating hormone levels. Castration of adult males causes these measures to shrink to the size seen in females 4 weeks later, whereas testosterone treatment of adult females for 4 weeks enlarges these measures to the size of males. We used stereological methods to count the number of cells in the MePD and found that, in addition to the sex difference in regional volume and soma size, males also have more MePD neurons than do females, yet these numbers are unaffected by the presence or absence of androgen in adults of either sex. Males also have more glial cells than do females, but, in contrast to the effects on neuronal number, the number of glial cells is affected by androgen in the right MePD of both sexes and, therefore, may contribute to regional volume changes in adulthood in that hemisphere. Thus, regional volume, neuronal size, and glial numbers vary in the MePD of adult rats in response to circulating androgens, but neuronal number does not. These results suggest that the sex difference in neuronal number in the rat MePD may be "organized" by androgens prior to adulthood, whereas regional volume, neuronal size, and glial numbers can be altered by androgens in adulthood. PMID:18076082

  11. Nanotherapeutics of PTEN Inhibitor with Mesoporous Silica Nanocarrier Effective for Axonal Outgrowth of Adult Neurons.

    PubMed

    Kim, Min Soo; El-Fiqi, Ahmed; Kim, Jong-Wan; Ahn, Hong-Sun; Kim, Hyukmin; Son, Young-Jin; Kim, Hae-Won; Hyun, Jung Keun

    2016-07-27

    Development of therapeutic strategies such as effective drug delivery is an urgent and yet unmet need for repair of damaged nervous systems. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) regulates axonal regrowth of central and peripheral nervous systems; its inhibition, meanwhile, facilitates axonal outgrowth of injured neurons. Here we show that nanotherapeutics based on mesoporous silica nanoparticles loading PTEN-inhibitor bisperoxovanadium (BpV) are effective for delivery of drug molecules and consequent improvement of axonal outgrowth. Mesoporous nanocarriers loaded BpV drug at large amount (27 μg per 1 mg of carrier), and released sustainably over 10 d. Nanocarrier-BpV treatment of primary neurons from the dorsal root ganglions (DRGs) of rats and mice at various concentrations induced them to actively take up the nanocomplexes with an uptake efficiency as high as 85%. The nanocomplex-administered neurons exhibited significantly enhanced axonal outgrowth compared with those treated with free-BpV drug. The expression of a series of proteins involved in PTEN inhibition and downstream signaling was substantially up-/down-regulated by the nanocarrier-BpV system. Injection of the nanocarriers into neural tissues (DRG, brain cortex, and spinal cord), moreover, demonstrated successful integration into neurons, glial cells, oligodendrocytes, and macrophages, suggesting the possible nanotherapeutics applications in vivo. Together, PTEN-inhibitor delivery via mesoporous nanocarriers can be considered a promising strategy for stimulating axonal regeneration in central and peripheral nervous systems. PMID:27386893

  12. GABA-cAMP response element-binding protein signaling regulates maturation and survival of newly generated neurons in the adult hippocampus.

    PubMed

    Jagasia, Ravi; Steib, Kathrin; Englberger, Elisabeth; Herold, Sabine; Faus-Kessler, Theresa; Saxe, Michael; Gage, Fred H; Song, Hongjun; Lie, D Chichung

    2009-06-24

    Survival and integration of new neurons in the hippocampal circuit are rate-limiting steps in adult hippocampal neurogenesis. Neuronal network activity is a major regulator of these processes, yet little is known about the respective downstream signaling pathways. Here, we investigate the role of cAMP response element-binding protein (CREB) signaling in adult hippocampal neurogenesis. CREB is activated in new granule neurons during a distinct developmental period. Loss of CREB function in a cell-autonomous manner impairs dendritic development, decreases the expression of the neurogenic transcription factor NeuroD and of the neuronal microtubule-associated protein, doublecortin (DCX), and compromises the survival of newborn neurons. In addition, GABA-mediated excitation regulates CREB activation at early developmental stages. Importantly, developmental defects after loss of GABA-mediated excitation can be compensated by enhanced CREB signaling. These results indicate that CREB signaling is a central pathway in adult hippocampal neurogenesis, regulating the development and survival of new hippocampal neurons downstream of GABA-mediated excitation.

  13. Target Identification for CNS Diseases by Transcriptional Profiling

    PubMed Central

    Altar, C Anthony; Vawter, Marquis P; Ginsberg, Stephen D

    2008-01-01

    Gene expression changes in neuropsychiatric and neurodegenerative disorders, and gene responses to therapeutic drugs, provide new ways to identify central nervous system (CNS) targets for drug discovery. This review summarizes gene and pathway targets replicated in expression profiling of human postmortem brain, animal models, and cell culture studies. Analysis of isolated human neurons implicates targets for Alzheimer’s disease and the cognitive decline associated with normal aging and mild cognitive impairment. In addition to τ, amyloid-β precursor protein, and amyloid-β peptides (Aβ), these targets include all three high-affinity neurotrophin receptors and the fibroblast growth factor (FGF) system, synapse markers, glutamate receptors (GluRs) and transporters, and dopamine (DA) receptors, particularly the D2 subtype. Gene-based candidates for Parkinson’s disease (PD) include the ubiquitin–proteosome system, scavengers of reactive oxygen species, brain-derived neurotrophic factor (BDNF), its receptor, TrkB, and downstream target early growth response 1, Nurr-1, and signaling through protein kinase C and RAS pathways. Increasing variability and decreases in brain mRNA production from middle age to old age suggest that cognitive impairments during normal aging may be addressed by drugs that restore antioxidant, DNA repair, and synaptic functions including those of DA to levels of younger adults. Studies in schizophrenia identify robust decreases in genes for GABA function, including glutamic acid decarboxylase, HINT1, glutamate transport and GluRs, BDNF and TrkB, numerous 14-3-3 protein family members, and decreases in genes for CNS synaptic and metabolic functions, particularly glycolysis and ATP generation. Many of these metabolic genes are increased by insulin and muscarinic agonism, both of which are therapeutic in psychosis. Differential genomic signals are relatively sparse in bipolar disorder, but include deficiencies in the expression of 14

  14. Neuronal regeneration from ependymo-radial glial cells: cook, little pot, cook!

    PubMed

    Becker, Catherina G; Becker, Thomas

    2015-02-23

    Adult fish and salamanders regenerate specific neurons as well as entire CNS areas after injury. Recent studies shed light on how these anamniotes activate progenitor cells, generate the required cell types, and functionally integrate these into a complex environment. Some developmental signals and mechanisms are recapitulated during neuronal regeneration, whereas others are unique to the regeneration process. The use of genetic techniques, such as cell ablation and lineage-tracing, in combination with cell-type-specific expression profiling reveal factors that initiate, fine-tune, and terminate the regenerative response in anamniotes, with a view to translating findings to non-regenerating species.

  15. Current approaches to enhance CNS delivery of drugs across the brain barriers

    PubMed Central

    Lu, Cui-Tao; Zhao, Ying-Zheng; Wong, Ho Lun; Cai, Jun; Peng, Lei; Tian, Xin-Qiao

    2014-01-01

    Although many agents have therapeutic potentials for central nervous system (CNS) diseases, few of these agents have been clinically used because of the brain barriers. As the protective barrier of the CNS, the blood–brain barrier and the blood–cerebrospinal fluid barrier maintain the brain microenvironment, neuronal activity, and proper functioning of the CNS. Different strategies for efficient CNS delivery have been studied. This article reviews the current approaches to open or facilitate penetration across these barriers for enhanced drug delivery to the CNS. These approaches are summarized into three broad categories: noninvasive, invasive, and miscellaneous techniques. The progresses made using these approaches are reviewed, and the associated mechanisms and problems are discussed. PMID:24872687

  16. Adult newborn neurons are involved in learning acquisition and long-term memory formation: the distinct demands on temporal neurogenesis of different cognitive tasks.

    PubMed

    Suárez-Pereira, Irene; Canals, Santiago; Carrión, Angel M

    2015-01-01

    There is evidence that adult hippocampal neurogenesis influences hippocampal function, although the role these neurons fulfill in learning and consolidation processes remains unclear. Using a novel fast X-ray ablation protocol to deplete neurogenic cells, we demonstrate that immature adult hippocampal neurons are required for hippocampal learning and long-term memory formation. Moreover, we found that long-term memory formation in the object recognition and passive avoidance tests, two paradigms that involve circuits with distinct emotional components, had different temporal demands on hippocampal neurogenesis. These results reveal new and unexpected aspects of neurogenesis in cognitive processes.

  17. Loss of aPKCλ in Differentiated Neurons Disrupts the Polarity Complex but Does Not Induce Obvious Neuronal Loss or Disorientation in Mouse Brains

    PubMed Central

    Yamanaka, Tomoyuki; Tosaki, Asako; Kurosawa, Masaru; Akimoto, Kazunori; Hirose, Tomonori; Ohno, Shigeo; Hattori, Nobutaka; Nukina, Nobuyuki

    2013-01-01

    Cell polarity plays a critical role in neuronal differentiation during development of the central nervous system (CNS). Recent studies have established the significance of atypical protein kinase C (aPKC) and its interacting partners, which include PAR-3, PAR-6 and Lgl, in regulating cell polarization during neuronal differentiation. However, their roles in neuronal maintenance after CNS development remain unclear. Here we performed conditional deletion of aPKCλ, a major aPKC isoform in the brain, in differentiated neurons of mice by camk2a-cre or synapsinI-cre mediated gene targeting. We found significant reduction of aPKCλ and total aPKCs in the adult mouse brains. The aPKCλ deletion also reduced PAR-6β, possibly by its destabilization, whereas expression of other related proteins such as PAR-3 and Lgl-1 was unaffected. Biochemical analyses suggested that a significant fraction of aPKCλ formed a protein complex with PAR-6β and Lgl-1 in the brain lysates, which was disrupted by the aPKCλ deletion. Notably, the aPKCλ deletion mice did not show apparent cell loss/degeneration in the brain. In addition, neuronal orientation/distribution seemed to be unaffected. Thus, despite the polarity complex disruption, neuronal deletion of aPKCλ does not induce obvious cell loss or disorientation in mouse brains after cell differentiation. PMID:24391875

  18. Pathology of CNS parasitic infections.

    PubMed

    Pittella, José Eymard Homem

    2013-01-01

    Parasitic infections of the central nervous system (CNS) include two broad categories of infectious organisms: single-celled protozoa and multicellular metazoa. The protozoal infections include malaria, American trypanosomiasis, human African trypanosomiasis, toxoplasmosis, amebiasis, microsporidiasis, and leishmaniasis. The metazoal infections are grouped into flatworms, which include trematoda and cestoda, and roundworms or nematoda. Trematoda infections include schistosomiasis and paragonimiasis. Cestoda infections include cysticercosis, coenurosis, hydatidosis, and sparganosis. Nematoda infections include gnathostomiasis, angiostrongyliasis, toxocariasis, strongyloidiasis, filariasis, baylisascariasis, dracunculiasis, micronemiasis, and lagochilascariasis. The most common route of CNS invasion is through the blood. In some cases, the parasite invades the olfactory neuroepithelium in the nasal mucosa and penetrates the brain via the subarachnoid space or reaches the CNS through neural foramina of the skull base around the cranial nerves or vessels. The neuropathological changes vary greatly, depending on the type and size of the parasite, geographical strain variations in parasitic virulence, immune evasion by the parasite, and differences in host immune response. Congestion of the leptomeninges, cerebral edema, hemorrhage, thrombosis, vasculitis, necrosis, calcification, abscesses, meningeal and perivascular polymorphonuclear and mononuclear inflammatory infiltrate, microglial nodules, gliosis, granulomas, and fibrosis can be found affecting isolated or multiple regions of the CNS, or even diffusely spread. Some infections may be present as an expanding mass lesion. The parasites can be identified by conventional histology, immunohistochemistry, in situ hybridization, and PCR.

  19. Difference in transient ischemia-induced neuronal damage and glucose transporter-1 immunoreactivity in the hippocampus between adult and young gerbils

    PubMed Central

    Park, Seung Min; Lee, Jae-Chul; Chen, Bai Hui; Shin, Bich-Na; Cho, Jeong Hwi; Kim, In Hye; Park, Joon Ha; Won, Moo-Ho; Ahn, Ji Hyeon; Tae, Hyun-Jin; Shin, Myoung Cheol; Park, Chan Woo; Cho, Jun Hwi; Lee, Hui Young

    2016-01-01

    Objective(s): The alteration of glucose transporters is closely related with the pathogenesis of brain edema. We compared neuronal damage/death in the hippocampus between adult and young gerbils following transient cerebral ischemia/reperfusion and changes of glucose transporter-1(GLUT-1)-immunoreactive microvessels in their ischemic hippocampal CA1 region. Materials and Methods: Transient cerebral ischemia was developed by 5-min occlusion of both common carotid arteries. Neuronal damage was examined by cresyl violet staining, NeuN immunohistochemistry and Fluoro-Jade B histofluorescence staining and changes in GLUT-1 expression was carried out by immunohistochemistry. Results: About 90% of pyramidal neurons only in the adult CA1 region were damaged after ischemia/reperfusion; in the young, about 53 % of pyramidal neurons were damaged from 7 days after ischemia/reperfusion. The density of GLUT-1-immunoreactive microvessels was significantly higher in the young sham-group than that in the adult sham-group. In the ischemia-operated-groups, the density of GLUT-1-immunoreactive microvessels was significantly decreased in the adult and young at 1 and 4 days post-ischemia, respectively, thereafter, the density of GLUT-1-immunoreactive microvessels was gradually increased in both groups after ischemia/reperfusion. Conclusion: CA1 pyramidal neurons of the young gerbil were damaged much later than that in the adult and that GLUT-1-immunoreactive microvessels were significantly decreased later in the young. These data indicate that GLUT-1 might differently contribute to neuronal damage according to age after ischemic insults. PMID:27403259

  20. ECM Functions During Neuronal Migration and Lamination in the Mammalian Central Nervous System

    PubMed Central

    Franco, Santos J.; Müller, Ulrich

    2012-01-01

    Extracellular matrix (ECM) glycoproteins are expressed in the central nervous system (CNS) in complex and developmentally regulated patterns. The ECM provides a number of critical functions in the CNS, contributing both to the overall structural organization of the CNS and to control of individual cells. At the cellular level, the ECM effects its functions by a wide range of mechanisms, including providing structural support to cells, regulating the activity of second messenger systems, and controlling the distribution and local concentration of growth and differentiation factors. Perhaps the most well known role of the ECM is as a substrate on which motile cells can migrate. Genetic, cell biological and biochemical studies provide strong evidence that ECM glycoproteins such as laminins, tenascins and proteoglycans control neuronal migration and positioning in several regions of the developing and adult brain. Recent findings have also shed important new insights into the cellular and molecular mechanisms by which reelin regulates migration. Here we will summarize these findings, emphasizing the emerging concept that ECM glycoproteins promote different modes of neuronal migration such as radial, tangential and chain migration. We also discuss several studies demonstrating that mutations in ECM glycoproteins can alter neuronal positioning by cell non-autonomous mechanisms that secondarily affect migrating neurons. PMID:21739613

  1. Increased Expression of the Large Conductance, Calcium-Activated K+ (BK) Channel in Adult-Onset Neuronal Ceroid Lipofuscinosis

    PubMed Central

    Donnelier, Julien; Braun, Samuel T.; Dolzhanskaya, Natalia; Ahrendt, Eva; Braun, Andrew P.; Velinov, Milen; Braun, Janice E. A.

    2015-01-01

    Cysteine string protein (CSPα) is a presynaptic J protein co-chaperone that opposes neurodegeneration. Mutations in CSPα (i.e., Leu115 to Arg substitution or deletion (Δ) of Leu116) cause adult neuronal ceroid lipofuscinosis (ANCL), a dominantly inherited neurodegenerative disease. We have previously demonstrated that CSPα limits the expression of large conductance, calcium-activated K+ (BK) channels in neurons, which may impact synaptic excitability and neurotransmission. Here we show by western blot analysis that expression of the pore-forming BKα subunit is elevated ~2.5 fold in the post-mortem cortex of a 36-year-old patient with the Leu116∆ CSPα mutation. Moreover, we find that the increase in BKα subunit level is selective for ANCL and not a general feature of neurodegenerative conditions. While reduced levels of CSPα are found in some postmortem cortex specimens from Alzheimer’s disease patients, we find no concomitant increase in BKα subunit expression in Alzheimer’s specimens. Both CSPα monomer and oligomer expression are reduced in synaptosomes prepared from ANCL cortex compared with control. In a cultured neuronal cell model, CSPα oligomers are short lived. The results of this study indicate that the Leu116∆ mutation leads to elevated BKα subunit levels in human cortex and extend our initial work in rodent models demonstrating the modulation of BKα subunit levels by the same CSPα mutation. While the precise sequence of pathogenic events still remains to be elucidated, our findings suggest that dysregulation of BK channels may contribute to neurodegeneration in ANCL. PMID:25905915

  2. Sporadic adult-onset neuronal intranuclear inclusion disease with the main presentation of repeated cerebellar ataxia: a case study.

    PubMed

    Sakurai, Takeo; Harada, Seiko; Wakida, Kenji; Yoshida, Mari; Nishida, Hiroshi

    2016-06-22

    A 66-year-old woman suddenly experienced unsteadiness while walking; she had experienced the same symptom before, but it had resolved immediately. Her neurological findings showed cerebellar ataxia, absence of tendon reflex in the extremities, and orthostatic hypotension. MRI with DWI of the brain showed linear high-intensity areas at the white matter just below the cerebral cortex. Therefore, we suspected neuronal intranuclear inclusion disease (NIID). In her cutaneous skin biopsy, intranuclear inclusion bodies, which tested positive for an anti-ubiquitin antibody and anti-p62 antibody, were observed in sweat gland cells and fibroblasts; therefore, we diagnosed her with NIID. As no one in her family had similar symptoms, this was a case of sporadic NIID. Adult-onset NIID with the main presentation of cerebellar ataxia is rare; in our case, this repeated acute-onset symptom was a unique manifestation of the condition. PMID:27181748

  3. Pax6 Is Essential for the Maintenance and Multi-Lineage Differentiation of Neural Stem Cells, and for Neuronal Incorporation into the Adult Olfactory Bulb

    PubMed Central

    Curto, Gloria G.; Nieto-Estévez, Vanesa; Hurtado-Chong, Anahí; Valero, Jorge; Gómez, Carmela; Alonso, José R.; Weruaga, Eduardo

    2014-01-01

    The paired type homeobox 6 (Pax6) transcription factor (TF) regulates multiple aspects of neural stem cell (NSC) and neuron development in the embryonic central nervous system. However, less is known about the role of Pax6 in the maintenance and differentiation of adult NSCs and in adult neurogenesis. Using the +/SeyDey mouse, we have analyzed how Pax6 heterozygosis influences the self-renewal and proliferation of adult olfactory bulb stem cells (aOBSCs). In addition, we assessed its influence on neural differentiation, neuronal incorporation, and cell death in the adult OB, both in vivo and in vitro. Our results indicate that the Pax6 mutation alters Nestin+-cell proliferation in vivo, as well as self-renewal, proliferation, and survival of aOBSCs in vitro although a subpopulation of +/SeyDey progenitors is able to expand partially similar to wild-type progenitors. This mutation also impairs aOBSC differentiation into neurons and oligodendrocytes, whereas it increases cell death while preserving astrocyte survival and differentiation. Furthermore, Pax6 heterozygosis causes a reduction in the variety of neurochemical interneuron subtypes generated from aOBSCs in vitro and in the incorporation of newly generated neurons into the OB in vivo. Our findings support an important role of Pax6 in the maintenance of aOBSCs by regulating cell death, self-renewal, and cell fate, as well as in neuronal incorporation into the adult OB. They also suggest that deregulation of the cell cycle machinery and TF expression in aOBSCs which are deficient in Pax6 may be at the origin of the phenotypes observed in this adult NSC population. PMID:25117830

  4. Neuronal regeneration in the cerebellum of adult teleost fish, Apteronotus leptorhynchus: guidance of migrating young cells by radial glia.

    PubMed

    Clint, S C; Zupanc, G K

    2001-09-23

    In contrast to mammals, adult fish exhibit an enormous potential to replace injured brain neurons by newly generated ones. In the present study, the role of radial glia, identified by immunostaining against fibrillary acidic protein (GFAP), was examined in this process of neuronal regeneration. Approximately 8 days after application of a mechanical lesion to the corpus cerebelli in the teleost fish Apteronotus leptorhynchus, the areal density of radial glial fibers increased markedly in the ipsilateral dorsal molecular layer compared to shorter survival times, or to the densities found in the intact brain or in the hemisphere contralateral to the lesion. This density remained elevated throughout the time period of up to 100 days examined. The increase in fiber density was followed approximately 2 days later by a rise in the areal density of young cells, characterized by labeling with the nuclear dye DAPI, in the ipsilateral dorsal molecular layer. Based on this remarkable spatio-temporal correlation, and the frequently observed close apposition of elongated young cells to radial glial fibers, we hypothesize that radial glia play an important role in the guidance of migrating young cells from their proliferation zones to the site of lesion where regeneration takes place.

  5. Amyloid burden, neuronal function, and cognitive decline in middle-aged adults at risk for Alzheimer's disease.

    PubMed

    Okonkwo, Ozioma C; Oh, Jennifer M; Koscik, Rebecca; Jonaitis, Erin; Cleary, Caitlin A; Dowling, N Maritza; Bendlin, Barbara B; Larue, Asenath; Hermann, Bruce P; Barnhart, Todd E; Murali, Dhanabalan; Rowley, Howard A; Carlsson, Cynthia M; Gallagher, Catherine L; Asthana, Sanjay; Sager, Mark A; Christian, Brad T; Johnson, Sterling C

    2014-04-01

    The relative influence of amyloid burden, neuronal structure and function, and prior cognitive performance on prospective memory decline among asymptomatic late middle-aged individuals at risk for Alzheimer's disease (AD) is currently unknown. We investigated this using longitudinal cognitive data from 122 middle-aged adults (21 "Decliners" and 101 "Stables") enrolled in the Wisconsin Registry for Alzheimer's Prevention who underwent multimodality neuroimaging [11C-Pittsburgh Compound B (PiB), 18F-fluorodeoxyglucose (FDG), and structural/functional magnetic resonance imaging (fMRI)] 5.7 ± 1.4 years (range = 2.9-8.9) after their baseline cognitive assessment. Covariate-adjusted regression analyses revealed that the only imaging measure that significantly distinguished Decliners from Stables (p = .027) was a Neuronal Function composite derived from FDG and fMRI. In contrast, several cognitive measures, especially those that tap episodic memory, significantly distinguished the groups (p's<.05). Complementary receiver operating characteristic curve analyses identified the Brief Visuospatial Memory Test-Revised (BVMT-R) Total (.82 ± .05, p < .001), the BVMT-R Delayed Recall (.73 ± .06, p = .001), and the Reading subtest from the Wide-Range Achievement Test-III (.72 ± .06, p = .002) as the top three measures that best discriminated the groups. These findings suggest that early memory test performance might serve a more clinically pivotal role in forecasting future cognitive course than is currently presumed.

  6. Amyloid burden, neuronal function, and cognitive decline in middle-aged adults at risk for Alzheimer’s disease

    PubMed Central

    Okonkwo, Ozioma C.; Oh, Jennifer M.; Koscik, Rebecca; Jonaitis, Erin; Cleary, Caitlin A.; Dowling, N. Maritza; Bendlin, Barbara B.; LaRue, Asenath; Hermann, Bruce P.; Barnhart, Todd E.; Murali, Dhanabalan; Rowley, Howard A.; Carlsson, Cynthia M.; Gallagher, Catherine L.; Asthana, Sanjay; Sager, Mark A.; Christian, Brad T.; Johnson, Sterling C.

    2014-01-01

    The relative influence of amyloid burden, neuronal structure and function, and prior cognitive performance on prospective memory decline among asymptomatic late middle-aged individuals at risk for Alzheimer’s disease (AD) is currently unknown. We investigated this using longitudinal cognitive data from 122 middle-aged adults (21 “Decliners” and 101 “Stables”) enrolled in the Wisconsin Registry for Alzheimer’s Prevention who underwent multimodality neuroimaging (11C-Pittsburgh Compound B (PiB), 18F-fluorodeoxyglucose (FDG), and structural/functional MRI) 5.7±1.4 years (range=2.9–8.9) after their baseline cognitive assessment. Covariate-adjusted regression analyses revealed that the only imaging measure that significantly distinguished Decliners from Stables (p=.027) was a Neuronal Function composite derived from FDG and fMRI. In contrast, several cognitive measures, especially those that tap episodic memory, significantly distinguished the groups (p’s < .05). Complementary receiver operating characteristic curve analyses identified the Brief Visuospatial Memory Test-Revised (BVMT-R) Total (.82±.05, p<.001), the BVMT-R Delayed Recall (.73±.06, p=.001), and the Reading subtest from the Wide-Range Achievement Test-III (.72±.06, p=.002) as the top three measures that best discriminated the groups. These findings suggest that early memory test performance might serve a more clinically-pivotal role in forecasting future cognitive course than is currently presumed. PMID:24621494

  7. Interferon-gamma but not TNF alpha promotes neuronal differentiation and neurite outgrowth of murine adult neural stem cells.

    PubMed

    Wong, Galaxy; Goldshmit, Yona; Turnley, Ann M

    2004-05-01

    Neural trauma, such as traumatic brain injury or stroke, results in a vigorous inflammatory response at and near the site of injury, with cytokine production by endogenous glial cells and invading immune cells. Little is known of the effect that these cytokines have on neural stem cell function. Here we examine the effects of two inflammatory cytokines, interferon-gamma (IFN gamma) and tumour necrosis factor-alpha (TNFalpha), on adult neural stem cells. Neural stem cells grown in the presence of either cytokine failed to generate neurospheres. Cytotoxicity assays showed that TNF alpha but not IFN gamma was toxic to the neural stem cells under proliferative conditions. Under differentiating conditions, neither cytokine was toxic; however, IFN gamma enhanced neuronal differentiation, rapidly increasing beta III-tubulin positive cell numbers 3-4 fold and inhibiting astrocyte generation. Furthermore, neurite outgrowth and the number of neurites per neuron was enhanced in cells differentiated in the presence of IFN gamma. Therefore, both inflammatory cytokines examined have substantial, but different effects on neural stem cell function and suggests that regulation of the inflammatory environment following brain injury may influence the ability of neural stem cells to repair the damage. PMID:15081598

  8. Dynamic development of the first synapse impinging on adult-born neurons in the olfactory bulb circuit.

    PubMed

    Katagiri, Hiroyuki; Pallotto, Marta; Nissant, Antoine; Murray, Kerren; Sassoè-Pognetto, Marco; Lledo, Pierre-Marie

    2011-02-01

    The olfactory bulb (OB) receives and integrates newborn interneurons throughout life. This process is important for the proper functioning of the OB circuit and consequently, for the sense of smell. Although we know how these new interneurons are produced, the way in which they integrate into the pre-existing ongoing circuits remains poorly documented. Bearing in mind that glutamatergic inputs onto local OB interneurons are crucial for adjusting the level of bulbar inhibition, it is important to characterize when and how these inputs from excitatory synapses develop on newborn OB interneurons. We studied early synaptic events that lead to the formation and maturation of the first glutamatergic synapses on adult-born granule cells (GCs), the most abundant subtype of OB interneuron. Patch-clamp recordings and electron microscopy (EM) analysis were performed on adult-born interneurons shortly after their arrival in the adult OB circuits. We found that both the ratio of N-methyl-D-aspartate receptor (NMDAR) to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), and the number of functional release sites at proximal inputs reached a maximum during the critical period for the sensory-dependent survival of newborn cells, well before the completion of dendritic arborization. EM analysis showed an accompanying change in postsynaptic density shape during the same period of time. Interestingly, the latter morphological changes disappeared in more mature newly-formed neurons, when the NMDAR to AMPAR ratio had decreased and functional presynaptic terminals expressed only single release sites. Together, these findings show that the first glutamatergic inputs to adult-generated OB interneurons undergo a unique sequence of maturation stages.

  9. The effect of MDMA-induced anxiety on neuronal apoptosis in adult male rats' hippocampus.

    PubMed

    Karimi, S; Jahanshahi, M; Golalipour, M J

    2014-01-01

    Ecstasy or MDMA as a psychoactive drug and hallucinogen is considered one of the most commonly used drugs in the world. This psychotropic substance is discussed both as sexually stimulating and reducing fear and anxiety. Amphetamines also destroy neurons in some brain areas. The aim of this study was to investigate the effects of MDMA on anxiety and apoptosis of hippocampal neurons. Forty-two male Wistar rats of mean weight 200-220 g were used and distributed into six groups [control, control-saline, and experimental groups (1.25, 2.5, 5, 10 mg/kg)]. Rats in experimental groups received MDMA at different doses for seven days by intraperitoneal injection and the control-saline group received saline (1 ml/kg); anxiety was then investigated by plus-maze test. Forty-eight hours after behavioural testing brains were taken from animals and fixed, and after tissue processing, slices were stained with TUNEL kit for apoptotic cells. The area densities of apoptotic neurons were measured throughout the hippocampus and compared in all groups (P < 0.05). Physiological studies showed that 1.25 mg/kg and 2.5 mg/kg doses caused anti-anxiety behaviour and 5 and 10 mg/kg doses of MDMA caused anxietylike behaviour. Moreover, our histological study showed that ecstasy increased apoptotic cell numbers and the highest increase was observed with the 10 mg/kg dose of MDMA. We concluded that MDMA can cause different responses of anxiety-like behaviour in different doses. This phenomenon causes a different ratio of apoptosis in hippocampal formation. Reduction of anxiety-like behaviour induced by the 2.5 mg/kg dose of MDMA can control apoptosis. PMID:25152052

  10. Voltage-Induced Ca2+ Release in Postganglionic Sympathetic Neurons in Adult Mice

    PubMed Central

    Sun, Hong-Li; Tsai, Wen-Chin; Li, Bai-Yan; Tao, Wen; Chen, Peng-Sheng; Rubart, Michael

    2016-01-01

    Recent studies have provided evidence that depolarization in the absence of extracellular Ca2+ can trigger Ca2+ release from internal stores in a variety of neuron subtypes. Here we examine whether postganglionic sympathetic neurons are able to mobilize Ca2+ from intracellular stores in response to depolarization, independent of Ca2+ influx. We measured changes in cytosolic ΔF/F0 in individual fluo-4 –loaded sympathetic ganglion neurons in response to maintained K+ depolarization in the presence (2 mM) and absence of extracellular Ca2+ ([Ca2+]e). Progressive elevations in extracellular [K+]e caused increasing membrane depolarizations that were of similar magnitude in 0 and 2 mM [Ca2+]e. Peak amplitude of ΔF/F0 transients in 2 mM [Ca2+]e increased in a linear fashion as the membrane become more depolarized. Peak elevations of ΔF/F0 in 0 mM [Ca2+]e were ~5–10% of those evoked at the same membrane potential in 2 mM [Ca2+]e and exhibited an inverse U-shaped dependence on voltage. Both the rise and decay of ΔF/F0 transients in 0 mM [Ca2+]e were slower than those of ΔF/F0 transients evoked in 2 mM [Ca2+]e. Rises in ΔF/F0 evoked by high [K+]e in the absence of extracellular Ca2+ were blocked by thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ ATPase, or the inositol 1,4,5-triphosphate (IP3) receptor antagonists 2-aminoethoxydiphenyl borate and xestospongin C, but not by extracellular Cd2+, the dihydropyridine antagonist nifedipine, or by ryanodine at concentrations that caused depletion of ryanodine-sensitive Ca2+ stores. These results support the notion that postganglionic sympathetic neurons possess the ability to release Ca2+ from IP3-sensitive internal stores in response to membrane depolarization, independent of Ca2+ influx. PMID:26859144

  11. Nicotinic ACh receptors as therapeutic targets in CNS disorders.

    PubMed

    Dineley, Kelly T; Pandya, Anshul A; Yakel, Jerrel L

    2015-02-01

    The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor (nAChR) channels. These receptors are widely distributed throughout the central nervous system (CNS), being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however, the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer's disease, AD), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain.

  12. On the resemblance of synapse formation and CNS myelination.

    PubMed

    Almeida, R G; Lyons, D A

    2014-09-12

    The myelination of axons in the central nervous system (CNS) is essential for nervous system formation, function and health. CNS myelination continues well into adulthood, but not all axons become myelinated. Unlike the peripheral nervous system, where we know of numerous axon-glial signals required for myelination, we have a poor understanding of the nature or identity of such molecules that regulate which axons are myelinated in the CNS. Recent studies have started to elucidate cell behavior during myelination in vivo and indicate that the choice of which axons are myelinated is made prior to myelin sheath generation. Here we propose that interactions between axons and the exploratory processes of oligodendrocyte precursor cells (OPCs) lead to myelination and may be similar to those between dendrites and axons that prefigure and lead to synapse formation. Indeed axons and OPCs form synapses with striking resemblance to those of neurons, suggesting a similar mode of formation. We discuss families of molecules with specific functions at different stages of synapse formation and address studies that implicate the same factors during axon-OPC synapse formation and myelination. We also address the possibility that the function of such synapses might directly regulate the myelinating behavior of oligodendrocyte processes in vivo. In the future it may be of benefit to consider these similarities when taking a candidate-based approach to dissect mechanisms of CNS myelination.

  13. Stimulation of dendrogenesis and neural maturation in adult mammals.

    PubMed

    Soto-Vázquez, Ramón; Labastida-López, Carlos; Romero-Castello, Samuel; Benítez-King, Gloria; Parra-Cervantes, Patricia

    2016-05-01

    This work is the result of a technical research patent on dendritogenesis and neuronal maturation, in which the existence was determined of patent documents involving the use of melatonin for the treatment of anxiety, obesity and related diseases of the peripheral and CNS. In this study, an analysis of the state of the art in order to collect technical and scientific elements for the drafting of a new patent on the use of the melatonin molecule in stimulating neuronal maturation in dendritogenesis and mammals was conducted in adults. This study is based on an invention related with this novel use of melatonin. PMID:27087552

  14. The emerging role of in vitro electrophysiological methods in CNS safety pharmacology.

    PubMed

    Accardi, Michael V; Pugsley, Michael K; Forster, Roy; Troncy, Eric; Huang, Hai; Authier, Simon

    2016-01-01

    Adverse CNS effects account for a sizeable proportion of all drug attrition cases. These adverse CNS effects are mediated predominately by off-target drug activity on neuronal ion-channels, receptors, transporters and enzymes - altering neuronal function and network communication. In response to these concerns, there is growing support within the pharmaceutical industry for the requirement to perform more comprehensive CNS safety testing prior to first-in-human trials. Accordingly, CNS safety pharmacology commonly integrates several in vitro assay methods for screening neuronal targets in order to properly assess therapeutic safety. One essential assay method is the in vitro electrophysiological technique - the 'gold standard' ion channel assay. The in vitro electrophysiological method is a useful technique, amenable to a variety of different tissues and cell configurations, capable of assessing minute changes in ion channel activity from the level of a single receptor to a complex neuronal network. Recent advances in automated technology have further expanded the usefulness of in vitro electrophysiological methods into the realm of high-throughput, addressing the bottleneck imposed by the manual conduct of the technique. However, despite a large range of applications, manual and automated in vitro electrophysiological techniques have had a slow penetrance into the field of safety pharmacology. Nevertheless, developments in throughput capabilities and in vivo applicability have led to a renewed interest in in vitro electrophysiological techniques that, when complimented by more traditional safety pharmacology methods, often increase the preclinical predictability of potential CNS liabilities.

  15. Neurexin dysfunction in adult neurons results in autistic-like behavior in mice.

    PubMed

    Rabaneda, Luis G; Robles-Lanuza, Estefanía; Nieto-González, José Luis; Scholl, Francisco G

    2014-07-24

    Autism spectrum disorders (ASDs) comprise a group of clinical phenotypes characterized by repetitive behavior and social and communication deficits. Autism is generally viewed as a neurodevelopmental disorder where insults during embryonic or early postnatal periods result in aberrant wiring and function of neuronal circuits. Neurexins are synaptic proteins associated with autism. Here, we generated transgenic βNrx1ΔC mice in which neurexin function is selectively impaired during late postnatal stages. Whole-cell recordings in cortical neurons show an impairment of glutamatergic synaptic transmission in the βNrx1ΔC mice. Importantly, mutant mice exhibit autism-related symptoms, such as increased self-grooming, deficits in social interactions, and altered interaction for nonsocial olfactory cues. The autistic-like phenotype of βNrx1ΔC mice can be reversed after removing the mutant protein in aged animals. The defects resulting from disruption of neurexin function after the completion of embryonic and early postnatal development suggest that functional impairment of mature circuits can trigger autism-related phenotypes.

  16. Immunohistochemical distribution and electron microscopic subcellular localization of the proteasome in the rat CNS.

    PubMed

    Mengual, E; Arizti, P; Rodrigo, J; Giménez-Amaya, J M; Castaño, J G

    1996-10-15

    The proteasome multicatalytic proteinase (MCP) is a 20S complex that plays a major role in nonlysosomal pathways of intracellular protein degradation. A polyclonal antibody against rat liver MCP was used to investigate the distribution of MCP in the CNS of the rat and its subcellular localization within the neurons. As expected, MCP immunoreactivity (MCP-IR) was distributed ubiquitously in the rat CNS but not homogeneously. The most intensely stained neurons were the pyramidal cortical neurons of layer 5 and the motor neurons of the ventral horn in the spinal cord, which show an intense nuclear and cytoplasmatic MCP-IR and clearly stained processes. Additionally, some populations of large neurons in the mesencephalon and brainstem also displayed a moderate MCP-IR in their perikarya. The vast majority of neurons in the remaining structures did not show a strong cytoplasmatic MCP-IR, but their nuclei displayed an intense MCP-IR. The subcellular localization also was studied by immunoelectron microscopy. MCP-IR was intense in the neuronal nuclei, and significant staining also was found in the cytoplasm, dendritic, and axonic processes (including some myelinated axons) and in synaptic boutons, as illustrated in the cerebellar cortex. The distribution of MCP in the rat CNS and its subcellular localization are discussed in relation to (1) the distribution of calpain, the other major nonlysosomal cellular protease, and (2) the possible role of MCP in the degradation of regulatory proteins and key transcription factors that are essential in many neuronal responses.

  17. MAG, myelin and overcoming growth inhibition in the CNS

    PubMed Central

    McKerracher, Lisa; Rosen, Kenneth M.

    2015-01-01

    While neurons in the central nervous system (CNS) have the capacity to regenerate their axons after injury, they fail to do so, in part because regeneration is limited by growth inhibitory proteins present in CNS myelin. Myelin-associated glycoprotein (MAG) was the first myelin-derived growth inhibitory protein identified, and its inhibitory activity was initially elucidated in 1994 independently by the Filbin lab and the McKerracher lab using cell-based and biochemical techniques, respectively. Since that time we have gained a wealth of knowledge concerning the numerous growth inhibitory proteins that are present in myelin, and we also have dissected many of the neuronal signaling pathways that act as stop signs for axon regeneration. Here we give an overview of the early research efforts that led to the identification of myelin-derived growth inhibitory proteins, and the importance of this family of proteins for understanding neurotrauma and CNS diseases. We further provide an update on how this knowledge has been translated towards current clinical studies in regenerative medicine. PMID:26441514

  18. Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2.

    PubMed

    Kirby, Elizabeth D; Muroy, Sandra E; Sun, Wayne G; Covarrubias, David; Leong, Megan J; Barchas, Laurel A; Kaufer, Daniela

    2013-04-16

    Stress is a potent modulator of the mammalian brain. The highly conserved stress hormone response influences many brain regions, particularly the hippocampus, a region important for memory function. The effect of acute stress on the unique population of adult neural stem/progenitor cells (NPCs) that resides in the adult hippocampus is unclear. We found that acute stress increased hippocampal cell proliferation and astrocytic fibroblast growth factor 2 (FGF2) expression. The effect of acute stress occurred independent of basolateral amygdala neural input and was mimicked by treating isolated NPCs with conditioned media from corticosterone-treated primary astrocytes. Neutralization of FGF2 revealed that astrocyte-secreted FGF2 mediated stress-hormone-induced NPC proliferation. 2 weeks, but not 2 days, after acute stress, rats also showed enhanced fear extinction memory coincident with enhanced activation of newborn neurons. Our findings suggest a beneficial role for brief stress on the hippocampus and improve understanding of the adaptive capacity of the brain. DOI:http://dx.doi.org/10.7554/eLife.00362.001.

  19. Network Modeling of Adult Neurogenesis: Shifting Rates of Neuronal Turnover Optimally Gears Network Learning according to Novelty Gradient

    PubMed Central

    Chambers, R. Andrew; Conroy, Susan K.

    2010-01-01

    Apoptotic and neurogenic events in the adult hippocampus are hypothesized to play a role in cognitive responses to new contexts. Corticosteroid-mediated stress responses and other neural processes invoked by substantially novel contextual changes may regulate these processes. Using elementary three-layer neural networks that learn by incremental synaptic plasticity, we explored whether the cognitive effects of differential regimens of neuronal turnover depend on the environmental context in terms of the degree of novelty in the new information to be learned. In “adult” networks that had achieved mature synaptic connectivity upon prior learning of the Roman alphabet, imposition of apoptosis/neurogenesis before learning increasingly novel information (alternate Roman < Russian < Hebrew) reveals optimality of informatic cost benefits when rates of turnover are geared in proportion to the degree of novelty. These findings predict that flexible control of rates of apoptosis–neurogenesis within plastic, mature neural systems optimizes learning attributes under varying degrees of contextual change, and that failures in this regulation may define a role for adult hippocampal neurogenesis in novelty- and stress-responsive psychiatric disorders. PMID:17214558

  20. Inhibition of C5a receptor alleviates experimental CNS lupus.

    PubMed

    Jacob, Alexander; Hack, Bradley; Bai, Tao; Brorson, James R; Quigg, Richard J; Alexander, Jessy J

    2010-04-15

    To investigate the role of C5a generated on complement activation in brain, the lupus model, MRL/lpr mice were treated with C5a receptor(R) antagonist (ant). Neutrophil infiltration, ICAM, TNF-alpha and iNOS mRNA expression, neuronal apoptosis and the expression of p-JNK, pSTAT1 and p-Erk were reduced and p-Akt increased on C5aR inhibition in MRL/lpr brains. MRL/lpr serum caused increased apoptosis in neurons showing that lupus had a direct effect on these cells. C5aRant pretreatment prevented the lupus serum induced loss of neuronal cells. Our findings demonstrate for the first time that C5a/C5aR signaling plays an important role in the pathogenesis of CNS lupus.

  1. Inhibition of C5a receptor alleviates experimental CNS lupus

    PubMed Central

    Jacob, Alexander; Hack, Bradley; Bai, Tao; Brorson, James R.; Quigg, Richard J.; Alexander, Jessy J.

    2010-01-01

    To investigate the role of C5a generated on complement activation in brain, the lupus model, MRL/lpr mice were treated with C5a receptor(R) antagonist (ant). Neutrophil infiltration, ICAM, TNF-α and iNOS mRNA expression, neuronal apoptosis and the expression of p-JNK, pSTAT1 and p-Erk were reduced and p-Akt increased on C5aR inhibition in MRL/lpr brains. MRL/lpr serum caused increased apoptosis in neurons showing that lupus had a direct effect on these cells. C5aRant pretreatment prevented the lupus serum induced loss of neuronal cells. Our findings demonstrate for the first time that C5a/C5aR signaling plays an important role in the pathogenesis of CNS lupus. PMID:20207017

  2. Ionotropic Glutamate Receptors & CNS Disorders

    PubMed Central

    Bowie, Derek

    2008-01-01

    Disorders of the central nervous system (CNS) are complex disease states that represent a major challenge for modern medicine. Although etiology is often unknown, it is established that multiple factors such as defects in genetics and/or epigenetics, the environment as well as imbalance in neurotransmitter receptor systems are all at play in determining an individual’s susceptibility to disease. Gene therapy is currently not available and therefore, most conditions are treated with pharmacological agents that modify neurotransmitter receptor signaling. Here, I provide a review of ionotropic glutamate receptors (iGluRs) and the roles they fulfill in numerous CNS disorders. Specifically, I argue that our understanding of iGluRs has reached a critical turning point to permit, for the first time, a comprehensive re-evaluation of their role in the cause of disease. I illustrate this by highlighting how defects in AMPA receptor trafficking are important to Fragile X mental retardation and ectopic expression of kainate (KA) receptor synapses contributes to the pathology of temporal lobe epilepsy. Finally, I discuss how parallel advances in studies of other neurotransmitter systems may allow pharmacologists to work towards a cure for many CNS disorders rather than developing drugs to treat their symptoms. PMID:18537642

  3. Immortalized neural progenitor cells for CNS gene transfer and repair.

    PubMed

    Martínez-Serrano, A; Björklund, A

    1997-11-01

    Immortalized multipotent neural stem and progenitor cells have emerged as a highly convenient source of tissue for genetic manipulation and ex vivo gene transfer to the CNS. Recent studies show that these cells, which can be maintained and genetically transduced as cell lines in culture, can survive, integrate and differentiate into both neurons and glia after transplantation to the intact or damaged brain. Progenitors engineered to secrete trophic factors, or to produce neurotransmitter-related or metabolic enzymes can be made to repopulate diseased or injured brain areas, thus providing a new potential therapeutic tool for the blockade of neurodegenerative processes and reversal of behavioural deficits in animal models of neurodegenerative diseases. With further technical improvements, the use of immortalized neural progenitors may bring us closer to the challenging goal of targeted and effective CNS repair.

  4. Postnatal day 7 ethanol treatment causes persistent reductions in adult mouse brain volume and cortical neurons with sex specific effects on neurogenesis.

    PubMed

    Coleman, Leon G; Oguz, Ipek; Lee, Joohwi; Styner, Martin; Crews, Fulton T

    2012-09-01

    Ethanol treatment on postnatal day seven (P7) causes robust brain cell death and is a model of late gestational alcohol exposure (Ikonomidou et al., 2000). To investigate the long-term effects of P7 ethanol treatment on adult brain, mice received either two doses of saline or ethanol on P7 (2.5 g/kg, s.c., 2 h apart) and were assessed as adults (P82) for brain volume (using postmortem MRI) and cellular architecture (using immunohistochemistry). Adult mice that received P7 ethanol had reduced MRI total brain volume (4%) with multiple brain regions being reduced in both males and females. Immunohistochemistry indicated reduced frontal cortical parvalbumin immunoreactive (PV + IR) interneurons (18-33%) and reduced Cux1+IR layer II pyramidal neurons (15%) in both sexes. Interestingly, markers of adult hippocampal neurogenesis differed between sexes, with only ethanol treated males showing increased doublecortin and Ki67 expression (52 and 57% respectively) in the dentate gyrus, consistent with increased neurogenesis compared to controls. These findings suggest that P7 ethanol treatment causes persistent reductions in adult brain volume and frontal cortical neurons in both males and females. Increased adult neurogenesis in males, but not females, is consistent with differential adaptive responses to P7 ethanol toxicity between the sexes. One day of ethanol exposure, e.g. P7, causes persistent adult brain dysmorphology.

  5. Odour enrichment increases adult-born dopaminergic neurons in the mouse olfactory bulb.

    PubMed

    Bonzano, Sara; Bovetti, Serena; Fasolo, Aldo; Peretto, Paolo; De Marchis, Silvia

    2014-11-01

    The olfactory bulb (OB) is the first brain region involved in the processing of olfactory information. In adult mice, the OB is highly plastic, undergoing cellular/molecular dynamic changes that are modulated by sensory experience. Odour deprivation induces down-regulation of tyrosine hydroxylase (TH) expression in OB dopaminergic interneurons located in the glomerular layer (GL), resulting in decreased dopamine in the OB. Although the effect of sensory deprivation is well established, little is known about the influence of odour enrichment on dopaminergic cells. Here we report that prolonged odour enrichment on C57BL/6J strain mice selectively increases TH-immunopositive cells in the GL by nearly 20%. Following odour enrichment on TH-green fluorescent protein (GFP) transgenic mice, in which GFP identified both mature TH-positive cells and putative immature dopaminergic cells expressing TH mRNA but not TH protein, we found a similar 20% increase in GFP-expressing cells, with no changes in the ratio between TH-positive and TH-negative cells. These data suggest that enriched conditions induce an expansion in the whole dopaminergic lineage. Accordingly, by using 5-bromo-2-deoxyuridine injections to label adult-generated cells in the GL of TH-GFP mice, we found an increase in the percentage of 5-bromo-2-deoxyuridine-positive dopaminergic cells in enriched compared with control conditions, whereas no differences were found for calretinin- and calbindin-positive subtypes. Strikingly, the fraction of newborn cells among the dopaminergic population doubled in enriched conditions. On the whole, our results demonstrate that odour enrichment drives increased integration of adult-generated dopaminergic cells that could be critical to adapt the OB circuits to the environmental incoming information.

  6. Propofol and AZD3043 Inhibit Adult Muscle and Neuronal Nicotinic Acetylcholine Receptors Expressed in Xenopus Oocytes.

    PubMed

    Jonsson Fagerlund, Malin; Krupp, Johannes; Dabrowski, Michael A

    2016-02-06

    Propofol is a widely used general anaesthetic with muscle relaxant properties. Similarly as propofol, the new general anaesthetic AZD3043 targets the GABAA receptor for its anaesthetic effects, but the interaction with nicotinic acetylcholine receptors (nAChRs) has not been investigated. Notably, there is a gap of knowledge about the interaction between propofol and the nAChRs found in the adult neuromuscular junction. The objective was to evaluate whether propofol or AZD3043 interact with the α1β1δε, α3β2, or α7 nAChR subtypes that can be found in the neuromuscular junction and if there are any differences in affinity for those subtypes between propofol and AZD3043. Human nAChR subtypes α1β1δε, α3β2, and α7 were expressed into Xenopus oocytes and studied with an automated voltage-clamp. Propofol and AZD3043 inhibited ACh-induced currents in all of the nAChRs studied with inhibitory concentrations higher than those needed for general anaesthesia. AZD3043 was a more potent inhibitor at the adult muscle nAChR subtype compared to propofol. Propofol and AZD3043 inhibit nAChR subtypes that can be found in the adult NMJ in concentrations higher than needed for general anaesthesia. This finding needs to be evaluated in an in vitro nerve-muscle preparation and suggests one possible explanation for the muscle relaxant effect of propofol seen during higher doses.

  7. Propofol and AZD3043 Inhibit Adult Muscle and Neuronal Nicotinic Acetylcholine Receptors Expressed in Xenopus Oocytes

    PubMed Central

    Jonsson Fagerlund, Malin; Krupp, Johannes; Dabrowski, Michael A.

    2016-01-01

    Propofol is a widely used general anaesthetic with muscle relaxant properties. Similarly as propofol, the new general anaesthetic AZD3043 targets the GABAA receptor for its anaesthetic effects, but the interaction with nicotinic acetylcholine receptors (nAChRs) has not been investigated. Notably, there is a gap of knowledge about the interaction between propofol and the nAChRs found in the adult neuromuscular junction. The objective was to evaluate whether propofol or AZD3043 interact with the α1β1δε, α3β2, or α7 nAChR subtypes that can be found in the neuromuscular junction and if there are any differences in affinity for those subtypes between propofol and AZD3043. Human nAChR subtypes α1β1δε, α3β2, and α7 were expressed into Xenopus oocytes and studied with an automated voltage-clamp. Propofol and AZD3043 inhibited ACh-induced currents in all of the nAChRs studied with inhibitory concentrations higher than those needed for general anaesthesia. AZD3043 was a more potent inhibitor at the adult muscle nAChR subtype compared to propofol. Propofol and AZD3043 inhibit nAChR subtypes that can be found in the adult NMJ in concentrations higher than needed for general anaesthesia. This finding needs to be evaluated in an in vitro nerve-muscle preparation and suggests one possible explanation for the muscle relaxant effect of propofol seen during higher doses. PMID:26861354

  8. Microtubule-Targeting Agents Enter the Central Nervous System (CNS): Double-edged Swords for Treating CNS Injury and Disease

    PubMed Central

    2014-01-01

    Microtubules have been among the most successful targets in anticancer therapy and a large number of microtubule-targeting agents (MTAs) are in various stages of clinical development for the treatment of several malignancies. Given that injury and diseases in the central nervous system (CNS) are accompanied by acute or chronic disruption of the structural integrity of neurons and that microtubules provide structural support for the nervous system at cellular and intracellular levels, microtubules are emerging as potential therapeutic targets for treating CNS disorders. It has been postulated that exogenous application of MTAs might prevent the breakdown or degradation of microtubules after injury or during neurodegeneration, which will thereby aid in preserving the structural integrity and function of the nervous system. Here we review recent evidence that supports this notion and also discuss potential risks of targeting microtubules as a therapy for treating nerve injury and neurodegenerative diseases. PMID:25558415

  9. Proteinase-activated receptor-1 activation presynaptically enhances spontaneous glutamatergic excitatory transmission in adult rat substantia gelatinosa neurons.

    PubMed

    Fujita, T; Liu, T; Nakatsuka, T; Kumamoto, E

    2009-07-01

    Proteinase-activated receptors (PARs) have a unique activation mechanism in that a proteolytically exposed N-terminal region acts as a tethered ligand. A potential impact of PAR on sensory processing has not been fully examined yet. Here we report that synthetic peptides with sequences corresponding to PAR ligands enhance glutamatergic excitatory transmission in substantia gelatinosa (SG) neurons of adult rat spinal cord slices by using the whole cell patch-clamp technique. The frequency of spontaneous excitatory postsynaptic current (EPSC) was increased by PAR-1 agonist SFLLRN-NH2 (by 47% at 1 microM) with small increases by PAR-2 and -4 agonists (SLIGKV-NH2 and GYPGQV-OH, respectively; at >3 microM); there was no change in its amplitude or in holding current at -70 mV. The PAR-1 peptide action was inhibited by PAR-1 antagonist YFLLRNP-OH. TFLLR-NH2, an agonist which is more selective to PAR-1 than SFLLRN-NH2, dose-dependently increased spontaneous EPSC frequency (EC50=0.32 microM). A similar presynaptic effect was produced by PAR-1 activating proteinase thrombin in a manner sensitive to YFLLRNP-OH. The PAR-1 peptide action was resistant to tetrodotoxin and inhibited in Ca2+-free solution. Primary-afferent monosynaptically evoked EPSC amplitudes were unaffected by PAR-1 agonist. These results indicate that PAR-1 activation increases the spontaneous release of L-glutamate onto SG neurons from nerve terminals in a manner dependent on extracellular Ca2+. Considering that sensory processing within the SG plays a pivotal role in regulating nociceptive transmission to the spinal dorsal horn, the PAR-1-mediated glutamatergic transmission enhancement could be involved in a positive modulation of nociceptive transmission. PMID:19420120

  10. Spontaneous neuronal activity in insula predicts symptom severity of unmedicated obsessive compulsive disorder adults.

    PubMed

    Zhu, Y; Fan, Q; Zhang, Z; Zhang, H; Tong, S; Li, Y

    2015-01-01

    Emerging evidence has suggested that the pathophysiology of obsessive compulsive disorder (OCD) might involve widely distributed large-scale brain systems. The dysfunction within salience network, which is comprised of dorsal anterior cingulated cortex (dACC) and bilateral insular areas, has been proposed to contribute to OCD onset. The mechanism underlying salience network abnormality remains unclear and it is worthwhile to investigate its clinical relevance using functional neuroimaging approaches. In this study, we performed the spontaneous brain activity measurement using resting-state functional magnetic resonance imaging (fMRI) on unmedicated OCD patients (n=23). Specifically, the amplitude of low frequency (0.01-0.08 Hz) fluctuations (ALFF) was calculated for regions in salience network. The voxel-based Pearson's correlative analysis was conducted to explore the relationship beween ALFF measures and symptom severity for OCD patients. The results showed that the spontaneous neuronal activity in insula was significantly correlated to OCD clinical symptoms, especially compulsive behaviors. Our findings consolidated that the salience network played an important role in the pathogenesis of OCD and the intensity of intrinsic brain activity in insula provided a predictive biomarker for OCD symptom severity. PMID:26737523

  11. Adult onset motor neuron disease: worldwide mortality, incidence and distribution since 1950.

    PubMed Central

    Chancellor, A M; Warlow, C P

    1992-01-01

    This review examines the commonly held premise that, apart from the Western Pacific forms, motor neuron disease (MND), has a uniform worldwide distribution in space and time; the methodological problems in studies of MND incidence; and directions for future epidemiological research. MND is more common in men at all ages. Age-specific incidence rises steeply into the seventh decade but the incidence in the very elderly is uncertain. A rise in mortality from MND over recent decades has been demonstrated wherever this has been examined and may be real rather than due to improved case ascertainment. Comparison of incidence studies in different places is complicated by non-standardised methods of case ascertainment and diagnosis but there appear to be differences between well studied populations. In developed countries in the northern hemisphere there is a weak positive correlation between standardised, age-specific incidence and distance from the equator. There is now strong evidence for an environmental factor as the cause of the Western Pacific forms of MND. A number of clusters of sporadic MND have been reported from developed countries, but no single agent identified as responsible. Images PMID:1479386

  12. The fluorescent pentameric oligothiophene pFTAA identifies filamentous tau in live neurons cultured from adult P301S tau mice

    PubMed Central

    Brelstaff, Jack; Ossola, Bernardino; Neher, Jonas J.; Klingstedt, Therése; Nilsson, K. Peter R.; Goedert, Michel; Spillantini, Maria Grazia; Tolkovsky, Aviva M.

    2015-01-01

    Identification of fluorescent dyes that label the filamentous protein aggregates characteristic of neurodegenerative disease, such as β-amyloid and tau in Alzheimer's disease, in a live cell culture system has previously been a major hurdle. Here we show that pentameric formyl thiophene acetic acid (pFTAA) fulfills this function in living neurons cultured from adult P301S tau transgenic mice. Injection of pFTAA into 5-month-old P301S tau mice detected cortical and DRG neurons immunoreactive for AT100, an antibody that identifies solely filamentous tau, or MC1, an antibody that identifies a conformational change in tau that is commensurate with neurofibrillary tangle formation in Alzheimer's disease brains. In fixed cultures of dorsal root ganglion (DRG) neurons, pFTAA binding, which also identified AT100 or MC1+ve neurons, followed a single, saturable binding curve with a half saturation constant of 0.14 μM, the first reported measurement of a binding affinity of a beta-sheet reactive dye to primary neurons harboring filamentous tau. Treatment with formic acid, which solubilizes filamentous tau, extracted pFTAA, and prevented the re-binding of pFTAA and MC1 without perturbing expression of soluble tau, detected using an anti-human tau (HT7) antibody. In live cultures, pFTAA only identified DRG neurons that, after fixation, were AT100/MC1+ve, confirming that these forms of tau pre-exist in live neurons. The utility of pFTAA to discriminate between living neurons containing filamentous tau from other neurons is demonstrated by showing that more pFTAA+ve neurons die than pFTAA-ve neurons over 25 days. Since pFTAA identifies fibrillar tau and other misfolded proteins in living neurons in culture and in animal models of several neurodegenerative diseases, as well as in human brains, it will have considerable application in sorting out disease mechanisms and in identifying disease-modifying drugs that will ultimately help establish the mechanisms of neurodegeneration

  13. The expression pattern of Adam10 in the central nervous system of adult mice: Detection by in situ hybridization combined with immunohistochemistry staining

    PubMed Central

    Guo, Zhi-Bao; Su, Ying-Ying; Wang, Yi-Hui; Wang, Wei; Guo, Da-Zhi

    2016-01-01

    ADAM10 (a disintegrin and metalloprotease 10) is a member of the ADAMs family, which is key in the development of the nervous system, by regulating proliferation, migration, differentiation and survival of various cells, including axonal growth and myelination. Previous studies have investigated the embryonic or postnatal expression of ADAM10, however, detailed information regarding its cellular distribution in the adult stage, to the best of our knowledge, is not available. The present study investigated the expression pattern of the ADAM10 gene in the adult mouse central nervous system (CNS) using an ADAM10 complementary RNA probe for in situ hybridization (ISH). Immunohistochemical staining was used to identify the type of the ISH staining-positive cells with neuron- or astrocyte-specific antibodies. The results of the current study demonstrated that the ADAM10 gene was predominantly expressed in the neurons of the cerebral cortex, hippocampus, thalamus and cerebellar granular cells in adult mouse CNS. PMID:27431484

  14. Adult Neurogenesis in the Female Mouse Hypothalamus: Estradiol and High-Fat Diet Alter the Generation of Newborn Neurons Expressing Estrogen Receptor α

    PubMed Central

    Yang, Jane; Nettles, Sabin A.; Byrnes, Elizabeth M.

    2016-01-01

    Estrogens and leptins act in the hypothalamus to maintain reproduction and energy homeostasis. Neurogenesis in the adult mammalian hypothalamus has been implicated in the regulation of energy homeostasis. Recently, high-fat diet (HFD) and estradiol (E2) have been shown to alter cell proliferation and the number of newborn leptin-responsive neurons in the hypothalamus of adult female mice. The current study tested the hypothesis that new cells expressing estrogen receptor α (ERα) are generated in the arcuate nucleus (ARC) and the ventromedial nucleus of the hypothalamus (VMH) of the adult female mouse, hypothalamic regions that are critical in energy homeostasis. Adult mice were ovariectomized and implanted with capsules containing E2 or oil. Within each hormone group, mice were fed an HFD or standard chow for 6 weeks and treated with BrdU to label new cells. Newborn cells that respond to estrogens were identified in the ARC and VMH, of which a subpopulation was leptin sensitive, indicating that the subpopulation consists of neurons. Moreover, there was an interaction between diet and hormone with an effect on the number of these newborn ERα-expressing neurons that respond to leptin. Regardless of hormone treatment, HFD increased the number of ERα-expressing cells in the ARC and VMH. E2 decreased hypothalamic fibroblast growth factor 10 (Fgf10) gene expression in HFD mice, suggesting a role for Fgf10 in E2 effects on neurogenesis. These findings of newly created estrogen-responsive neurons in the adult brain provide a novel mechanism by which estrogens can act in the hypothalamus to regulate energy homeostasis in females. PMID:27679811

  15. Adult Neurogenesis in the Female Mouse Hypothalamus: Estradiol and High-Fat Diet Alter the Generation of Newborn Neurons Expressing Estrogen Receptor α

    PubMed Central

    Yang, Jane; Nettles, Sabin A.; Byrnes, Elizabeth M.

    2016-01-01

    Estrogens and leptins act in the hypothalamus to maintain reproduction and energy homeostasis. Neurogenesis in the adult mammalian hypothalamus has been implicated in the regulation of energy homeostasis. Recently, high-fat diet (HFD) and estradiol (E2) have been shown to alter cell proliferation and the number of newborn leptin-responsive neurons in the hypothalamus of adult female mice. The current study tested the hypothesis that new cells expressing estrogen receptor α (ERα) are generated in the arcuate nucleus (ARC) and the ventromedial nucleus of the hypothalamus (VMH) of the adult female mouse, hypothalamic regions that are critical in energy homeostasis. Adult mice were ovariectomized and implanted with capsules containing E2 or oil. Within each hormone group, mice were fed an HFD or standard chow for 6 weeks and treated with BrdU to label new cells. Newborn cells that respond to estrogens were identified in the ARC and VMH, of which a subpopulation was leptin sensitive, indicating that the subpopulation consists of neurons. Moreover, there was an interaction between diet and hormone with an effect on the number of these newborn ERα-expressing neurons that respond to leptin. Regardless of hormone treatment, HFD increased the number of ERα-expressing cells in the ARC and VMH. E2 decreased hypothalamic fibroblast growth factor 10 (Fgf10) gene expression in HFD mice, suggesting a role for Fgf10 in E2 effects on neurogenesis. These findings of newly created estrogen-responsive neurons in the adult brain provide a novel mechanism by which estrogens can act in the hypothalamus to regulate energy homeostasis in females.

  16. Exome-Sequencing Confirms DNAJC5 Mutations as Cause of Adult Neuronal Ceroid-Lipofuscinosis

    PubMed Central

    Benitez, Bruno A.; Alvarado, David; Cai, Yefei; Mayo, Kevin; Chakraverty, Sumitra; Norton, Joanne; Morris, John C.; Sands, Mark S.; Goate, Alison; Cruchaga, Carlos

    2011-01-01

    We performed whole-exome sequencing in two autopsy-confirmed cases and an elderly unaffected control from a multigenerational family with autosomal dominant neuronal ceroid lipofuscinosis (ANCL). A novel single-nucleotide variation (c.344T>G) in the DNAJC5 gene was identified. Mutational screening in an independent family with autosomal dominant ANCL found an in-frame single codon deletion (c.346_348 delCTC) resulting in a deletion of p.Leu116del. These variants fulfill all genetic criteria for disease-causing mutations: they are found in unrelated families with the same disease, exhibit complete segregation between the mutation and the disease, and are absent in healthy controls. In addition, the associated amino acid substitutions are located in evolutionarily highly conserved residues and are predicted to functionally affect the encoded protein (CSPα). The mutations are located in a cysteine-string domain, which is required for membrane targeting/binding, palmitoylation, and oligomerization of CSPα. We performed a comprehensive in silico analysis of the functional and structural impact of both mutations on CSPα. We found that these mutations dramatically decrease the affinity of CSPα for the membrane. We did not identify any significant effect on palmitoylation status of CSPα. However, a reduction of CSPα membrane affinity may change its palmitoylation and affect proper intracellular sorting. We confirm that CSPα has a strong intrinsic aggregation propensity; however, it is not modified by the mutations. A complementary disease-network analysis suggests a potential interaction with other NCLs genes/pathways. This is the first replication study of the identification of DNAJC5 as the disease-causing gene for autosomal dominant ANCL. The identification of the novel gene in ANCL will allow us to gain a better understanding of the pathological mechanism of ANCLs and constitutes a great advance toward the development of new molecular diagnostic tests and may

  17. Olfactory neuron loss in adult male CD rats following subchronic inhalation exposure to hydrogen sulfide.

    PubMed

    Brenneman, K A; James, R A; Gross, E A; Dorman, D C

    2000-01-01

    Dysosmia and anosmia are reported to occur following human exposure to hydrogen sulfide (H2S) gas. The clinical association between H2S exposure and olfactory dysfunction in humans necessitates evaluation of the nasal cavity and olfactory system in experimental animals used to study H2S toxicity. The purpose of this study was to subchronically expose 10-week-old male CD rats to relatively low concentrations of H2S and to histologically evaluate the nasal cavity for exposure-related lesions. Rats (n = 12/group) were exposed via inhalation to 0, 10, 30, or 80 ppm H2S 6 h/d and 7 d/wk for 10 weeks. Following exposure to 30 and 80 ppm H2S, a significant increase in nasal lesions limited to the olfactory mucosa was observed. The lesions, which consisted of olfactory neuron loss and basal cell hyperplasia, were multifocal, bilaterally symmetrical, and had a characteristic rostrocaudal distribution pattern. Regions of the nasal cavity affected included the dorsal medial meatus and the dorsal and medial portions of the ethmoid recess. The no observed adverse effect level for olfactory lesions in this study was 10 ppm. For perspective, the American Conference of Governmental Industrial Hygienists threshold limit value (TLV) recommendation for H2S is currently 10 ppm (proposed revision: 5 ppm), so the concentrations employed in the present study were 3 and 8 times the TLV. These findings suggest that subchronic inhalation exposure to a relatively low level of H2S (30 ppm) can result in olfactory toxicity in rats. However, because of differences in the breathing style and nasal anatomy of rats and humans, additional research is required to determine the significance of these results for human health risk assessment.

  18. Neurons under viral attack: victims or warriors?

    PubMed

    Chakraborty, Swarupa; Nazmi, Arshed; Dutta, Kallol; Basu, Anirban

    2010-01-01

    When the central nervous system (CNS) is under viral attack, defensive antiviral responses must necessarily arise from the CNS itself to rapidly and efficiently curb infections with minimal collateral damage to the sensitive, specialized and non-regenerating neural tissue. This presents a unique challenge because an intact blood-brain barrier (BBB) and lack of proper lymphatic drainage keeps the CNS virtually outside the radar of circulating immune cells that are at constant vigilance for antigens in peripheral tissues. Limited antigen presentation skills of CNS cells in comparison to peripheral tissues is because of a total lack of dendritic cells and feeble expression of major histocompatibility complex (MHC) proteins in neurons and glia. However, research over the past two decades has identified immune effector mechanisms intrinsic to the CNS for immediate tackling, attenuating and clearing of viral infections, with assistance pouring in from peripheral circulation in the form of neutralizing antibodies and cytotoxic T cells at a later stage. Specialized CNS cells, microglia and astrocytes, were regarded as sole sentinels of the brain for containing a viral onslaught but neurons held little recognition as a potential candidate for protecting itself from the proliferation and pathogenesis of neurotropic viruses. Accumulating evidence however indicates that extracellular insult causes neurons to express immune factors characteristic of lymphoid tissues. This article aims to comprehensively analyze current research on this conditional alteration in the protein expression repertoire of neurons and the role it plays in CNS innate immune response to counter viral infections.

  19. The gateway theory: bridging neural and immune interactions in the CNS

    PubMed Central

    Kamimura, Daisuke; Yamada, Moe; Harada, Masaya; Sabharwal, Lavannya; Meng, Jie; Bando, Hidenori; Ogura, Hideki; Atsumi, Toru; Arima, Yasunobu; Murakami, Masaaki

    2013-01-01

    The central nervous system (CNS) is considered an immune-privileged tissue protected by a specific vessel structure, the blood-brain barrier (BBB). Upon infection or traumatic injury in the CNS, the BBB is breached, and various immune cells are recruited to the affected area. In the case of autoimmune diseases in the CNS like multiple sclerosis (MS), autoreactive T cells against some CNS-specific antigens can theoretically attack neurons throughout the CNS. The affected CNS regions in MS patients can be detected as multiple focal plaques in the cerebrum, thoracic cord, and other regions. Vision problems are often associated with the initial phase of MS, suggesting a disturbance in the optic nerves. These observations raise the possibility that there exist specific signals that direct autoreactive T cells past the BBB and into particular sites of the CNS. Using a mouse model of MS, experimental autoimmune encephalomyelitis (EAE), we recently defined the mechanism of the pathogenesis in which regional neural stimulations modulate the status of the blood vessel endothelium to allow the invasion of autoreactive T cells into specific sites of the CNS via the fifth lumbar cord. This gate for autoreactive T cells can be artificially manipulated by removing gravity forces on the hind legs or by electric pulses to the soleus muscles, quadriceps, and triceps of mice, resulting in an accumulation of autoreactive T cells in the intended regions via the activation of regional neurons. Gating blood vessels by regional neural stimulations, a phenomenon we call the gateway theory, has potential therapeutic value not only in preventing autoimmunity, but also in augmenting the effects of cancer immunotherapies. PMID:24194696

  20. Uncoupling Neogenin association with lipid rafts promotes neuronal survival and functional recovery after stroke.

    PubMed

    Shabanzadeh, A P; Tassew, N G; Szydlowska, K; Tymianski, M; Banerjee, P; Vigouroux, R J; Eubanks, J H; Huang, L; Geraerts, M; Koeberle, P D; Mueller, B K; Monnier, P P

    2015-05-07

    The dependence receptor Neogenin and its ligand, the repulsive guidance molecule a (RGMa), regulate apoptosis and axonal growth in the developing and the adult central nervous system (CNS). Here, we show that this pathway has also a critical role in neuronal death following stroke, and that providing RGMa to neurons blocks Neogenin-induced death. Interestingly, the Neogenin pro-death function following ischemic insult depends on Neogenin association with lipid rafts. Thus, a peptide that prevents Neogenin association with lipid rafts increased neuronal survival in several in vitro stroke models. In rats, a pro-survival effect was also observed in a model of ocular ischemia, as well as after middle cerebral artery occlusion (MCAO). Treatments that prevented Neogenin association with lipid rafts improved neuronal survival and the complexity of the neuronal network following occlusion of the middle artery. Toward the development of a treatment for stroke, we developed a human anti-RGMa antibody that also prevents Neogenin association with lipid rafts. We show that this antibody also protected CNS tissue from ischemic damage and that its application resulted in a significant functional improvement even when administrated 6 h after artery occlusion. Thus, our results draw attention to the role of Neogenin and lipid rafts as potential targets following stroke.

  1. Silencing neuronal mutant androgen receptor in a mouse model of spinal and bulbar muscular atrophy.

    PubMed

    Sahashi, Kentaro; Katsuno, Masahisa; Hung, Gene; Adachi, Hiroaki; Kondo, Naohide; Nakatsuji, Hideaki; Tohnai, Genki; Iida, Madoka; Bennett, C Frank; Sobue, Gen

    2015-11-01

    Spinal and bulbar muscular atrophy (SBMA), an adult-onset neurodegenerative disease that affects males, results from a CAG triplet repeat/polyglutamine expansions in the androgen receptor (AR) gene. Patients develop progressive muscular weakness and atrophy, and no effective therapy is currently available. The tissue-specific pathogenesis, especially relative pathological contributions between degenerative motor neurons and muscles, remains inconclusive. Though peripheral pathology in skeletal muscle caused by toxic AR protein has been recently reported to play a pivotal role in the pathogenesis of SBMA using mouse models, the role of motor neuron degeneration in SBMA has not been rigorously investigated. Here, we exploited synthetic antisense oligonucleotides to inhibit the RNA levels of mutant AR in the central nervous system (CNS) and explore its therapeutic effects in our SBMA mouse model that harbors a mutant AR gene with 97 CAG expansions and characteristic SBMA-like neurogenic phenotypes. A single intracerebroventricular administration of the antisense oligonucleotides in the presymptomatic phase efficiently suppressed the mutant gene expression in the CNS, and delayed the onset and progression of motor dysfunction, improved body weight gain and survival with the amelioration of neuronal histopathology in motor units such as spinal motor neurons, neuromuscular junctions and skeletal muscle. These findings highlight the importance of the neurotoxicity of mutant AR protein in motor neurons as a therapeutic target.

  2. Trading new neurons for status: Adult hippocampal neurogenesis in eusocial Damaraland mole-rats.

    PubMed

    Oosthuizen, M K; Amrein, I

    2016-06-01

    Diversity in social structures, from solitary to eusocial, is a prominent feature of subterranean African mole-rat species. Damaraland mole-rats are eusocial, they live in colonies that are characterized by a reproductive division of labor and a subdivision into castes based on physiology and behavior. Damaraland mole-rats are exceptionally long lived and reproductive animals show delayed aging compared to non-reproductive animals. In the present study, we described the hippocampal architecture and the rate of hippocampal neurogenesis of wild-derived, adult Damaraland mole-rats in relation to sex, relative age and social status or caste. Overall, Damaraland mole-rats were found to have a small hippocampus and low rates of neurogenesis. We found no correlation between neurogenesis and sex or relative age. Social status or caste was the most prominent modulator of neurogenesis. An inverse relationship between neurogenesis and social status was apparent, with queens displaying the lowest neurogenesis while the worker mole-rats had the most. As there is no natural progression from one caste to another, social status within a colony was relatively stable and is reflected in the level of neurogenesis. Our results correspond to those found in the naked mole-rat, and may reflect an evolutionary and environmentally conserved trait within social mole-rat species. PMID:26979050

  3. Selective depression of nociceptive responses of dorsal horn neurones by SNC 80 in a perfused hindquarter preparation of adult mouse.

    PubMed

    Cao, C Q; Hong, Y G; Dray, A; Perkins, M N

    2001-01-01

    -nociceptive dorsal horn neurones were not inhibited by SNC 80 at a dose of up to 10 microM (n=5). These data demonstrate that delta-opioid receptor modulate nociceptive, but not non-nociceptive, transmission in spinal dorsal horn neurones of the adult mouse. The potentiation of neuronal activity by HS 378 may reflect an autoregulatory role of the endogenous delta-opioid in nociceptive transmission in mouse. PMID:11731107

  4. Mapping of fluorescent protein-expressing neurons and axon pathways in adult and developing Thy1-eYFP-H transgenic mice.

    PubMed

    Porrero, Cesar; Rubio-Garrido, Pablo; Avendaño, Carlos; Clascá, Francisco

    2010-07-23

    Transgenic mouse lines in which a fluorescent protein is constitutively expressed under the Thy1 gene promoter have become important models in cell biology and pathology studies of specific neuronal populations. As a result of positional insertion and/or copy number effects on the transgene, the populations expressing the fluorescent protein (eYFP+) vary markedly among the different mice lines. However, identification of the eYFP+ subpopulations has remained sketchy and fragmentary even for the most widely used lines such as Thy1-eYFP-H mice (Feng, G., Mellor, R.H., Bernstein, M., Keller-Peck, C., Nguyen, Q.T., Wallace, M., Nerbonne, J.M., Lichtman and J.W., Sanes. J.R. 2000. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41-51). Here, we provide a comprehensive mapping of labeled cell types throughout the central nervous system in adult and postnatal (P0-P30) Thy1-eYFP-H mice. Cell type identification was based on somatodendritic morphology, axon trajectories, and, for cortical cells, retrograde labeling with Fast Blue to distinguish between subpopulations with different axonal targets. In the neocortex, eYFP+ cells are layers 5 and 6 pyramidal neurons, whose abundance and sublaminar distribution varies markedly between areas. Labeling is particularly prevalent in the corticospinal cells; as a result, the pyramidal pathway axons are conspicuously labeled down to the spinal cord. Large populations of hippocampal, subicular and amygdaloid projection neurons are eYFP+ as well. Additional eYFP+ cell groups are located in specific brainstem nuclei. Present results provide a comprehensive reference dataset for adult and developmental studies using the Thy1-eYFP-H mice strain, and show that this animal model may be particularly suitable for studies on the cell biology of corticospinal neurons.

  5. Scorpion venom heat-resistant peptide (SVHRP) enhances neurogenesis and neurite outgrowth of immature neurons in adult mice by up-regulating brain-derived neurotrophic factor (BDNF).

    PubMed

    Wang, Tao; Wang, Shi-Wei; Zhang, Yue; Wu, Xue-Fei; Peng, Yan; Cao, Zhen; Ge, Bi-Ying; Wang, Xi; Wu, Qiong; Lin, Jin-Tao; Zhang, Wan-Qin; Li, Shao; Zhao, Jie

    2014-01-01

    Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Although scorpions and their venom have been used in Traditional Chinese Medicine (TCM) to treat chronic neurological disorders, the underlying mechanisms of these treatments remain unknown. We applied SVHRP in vitro and in vivo to understand its effects on the neurogenesis and maturation of adult immature neurons and explore associated molecular mechanisms. SVHRP administration increased the number of 5-bromo-2'-dexoxyuridine (BrdU)-positive cells, BrdU-positive/neuron-specific nuclear protein (NeuN)-positive neurons, and polysialylated-neural cell adhesion molecule (PSA-NCAM)-positive immature neurons in the subventricular zone (SVZ) and subgranular zone (SGZ) of hippocampus. Furthermore immature neurons incubated with SVHRP-pretreated astrocyte-conditioned medium exhibited significantly increased neurite length compared with those incubated with normal astrocyte-conditioned medium. This neurotrophic effect was further confirmed in vivo by detecting an increased average single area and whole area of immature neurons in the SGZ, SVZ and olfactory bulb (OB) in the adult mouse brain. In contrast to normal astrocyte-conditioned medium, higher concentrations of brain-derived neurotrophic factor (BDNF) but not nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF) was detected in the conditioned medium of SVHRP-pretreated astrocytes, and blocking BDNF using anti-BDNF antibodies eliminated these SVHRP-dependent neurotrophic effects. In SVHRP treated mouse brain, more glial fibrillary acidic protein (GFAP)-positive cells were detected. Furthermore, immunohistochemistry revealed increased numbers of GFAP/BDNF double-positive cells, which agrees with the observed changes in the culture system. This paper describes novel effects of scorpion venom-originated peptide on the stem cells and suggests the potential therapeutic values of SVHRP.

  6. Role of the neuronal histaminergic system in the regulation of somatotropic function: comparison between the neonatal and the adult rat.

    PubMed

    Grilli, R; Sibilia, V; Torsello, A; Pagani, F; Guidi, M; Luoni, M; Netti, C; Müller, E E

    1996-11-01

    To study possible age-related differences in the role of neuronal histaminergic pathways in the control of GH secretion, the effects of alpha-fluoromethylhistidine (alpha-FMH), an irreversible inhibitor of histamine (HA) synthesis, were examined on basal and opioid-induced GH release in neonatal and adult rats. The mechanisms involved in such effects were evaluated by measuring pituitary GH mRNA levels and hypothalamic levels of GH-releasing hormone (GHRH) and somatostatin (SRIF) mRNAs. Daily injection of alpha-FMH (20 mg/kg, s.c.) in pups of either sex, from birth until 10 days of age, caused a significant increase in baseline plasma GH and potentiated the GH response to the [Met5]-enkephalin analog FK 33-824 (1 mg/kg, s.c.) administered 3 h after the last alpha-FMH injection. GH and SRIF mRNA levels were significantly higher in alpha-FMH-treated pups than in controls, whereas no difference was observed in GHRH mRNA levels. In young adult male rats, acute administration of alpha-FMH (100 mg/kg, s.c., 3 h before) did not change significantly basal GH levels but potentiated FK 33-824 (0.3 mg/kg, intracarotid)-induced stimulation of GH secretion. Repeated administration of alpha-FMH (200 micrograms/rat, i.c.v., for 3 days) failed to modify basal and FK 33-824-induced GH secretion, caused a significant reduction in hypothalamic GHRH mRNA levels and left SRIF and GH mRNAs unchanged. These findings indicate that HA exerts an inhibitory effect on GH secretion in both neonatal and adult rats. The different effects of short-term HA depletion on hypothalamic and pituitary indices of somatotropic function observed at the two age periods may be ascribed to the immaturity of the HA system in early postnatal life and to a different functional role of GH-regulatory factors during ontogeny.

  7. PPAR agonists as therapeutics for CNS trauma and neurological diseases

    PubMed Central

    Mandrekar-Colucci, Shweta; Sauerbeck, Andrew; Popovich, Phillip G.; McTigue, Dana M.

    2013-01-01

    Traumatic injury or disease of the spinal cord and brain elicits multiple cellular and biochemical reactions that together cause or are associated with neuropathology. Specifically, injury or disease elicits acute infiltration and activation of immune cells, death of neurons and glia, mitochondrial dysfunction, and the secretion of substrates that inhibit axon regeneration. In some diseases, inflammation is chronic or non-resolving. Ligands that target PPARs (peroxisome proliferator-activated receptors), a group of ligand-activated transcription factors, are promising therapeutics for neurologic disease and CNS injury because their activation affects many, if not all, of these interrelated pathologic mechanisms. PPAR activation can simultaneously weaken or reprogram the immune response, stimulate metabolic and mitochondrial function, promote axon growth and induce progenitor cells to differentiate into myelinating oligodendrocytes. PPAR activation has beneficial effects in many pre-clinical models of neurodegenerative diseases and CNS injury; however, the mechanisms through which PPARs exert these effects have yet to be fully elucidated. In this review we discuss current literature supporting the role of PPAR activation as a therapeutic target for treating traumatic injury and degenerative diseases of the CNS. PMID:24215544

  8. Applications of Genomic Sequencing in Pediatric CNS Tumors.

    PubMed

    Bavle, Abhishek A; Lin, Frank Y; Parsons, D Williams

    2016-05-01

    Recent advances in genome-scale sequencing methods have resulted in a significant increase in our understanding of the biology of human cancers. When applied to pediatric central nervous system (CNS) tumors, these remarkable technological breakthroughs have facilitated the molecular characterization of multiple tumor types, provided new insights into the genetic basis of these cancers, and prompted innovative strategies that are changing the management paradigm in pediatric neuro-oncology. Genomic tests have begun to affect medical decision making in a number of ways, from delineating histopathologically similar tumor types into distinct molecular subgroups that correlate with clinical characteristics, to guiding the addition of novel therapeutic agents for patients with high-risk or poor-prognosis tumors, or alternatively, reducing treatment intensity for those with a favorable prognosis. Genomic sequencing has also had a significant impact on translational research strategies in pediatric CNS tumors, resulting in wide-ranging applications that have the potential to direct the rational preclinical screening of novel therapeutic agents, shed light on tumor heterogeneity and evolution, and highlight differences (or similarities) between pediatric and adult CNS tumors. Finally, in addition to allowing the identification of somatic (tumor-specific) mutations, the analysis of patient-matched constitutional (germline) DNA has facilitated the detection of pathogenic germline alterations in cancer genes in patients with CNS tumors, with critical implications for genetic counseling and tumor surveillance strategies for children with familial predisposition syndromes. As our understanding of the molecular landscape of pediatric CNS tumors continues to advance, innovative applications of genomic sequencing hold significant promise for further improving the care of children with these cancers. PMID:27188671

  9. Myelin damage and repair in pathologic CNS: challenges and prospects

    PubMed Central

    Alizadeh, Arsalan; Dyck, Scott M.; Karimi-Abdolrezaee, Soheila

    2015-01-01

    Injury to the central nervous system (CNS) results in oligodendrocyte cell death and progressive demyelination. Demyelinated axons undergo considerable physiological changes and molecular reorganizations that collectively result in axonal dysfunction, degeneration and loss of sensory and motor functions. Endogenous adult oligodendrocyte precursor cells and neural stem/progenitor cells contribute to the replacement of oligodendrocytes, however, the extent and quality of endogenous remyelination is suboptimal. Emerging evidence indicates that optimal remyelination is restricted by multiple factors including (i) low levels of factors that promote oligodendrogenesis; (ii) cell death among newly generated oligodendrocytes, (iii) inhibitory factors in the post-injury milieu that impede remyelination, and (iv) deficient expression of key growth factors essential for proper re-construction of a highly organized myelin sheath. Considering these challenges, over the past several years, a number of cell-based strategies have been developed to optimize remyelination therapeutically. Outcomes of these basic and preclinical discoveries are promising and signify the importance of remyelination as a mechanism for improving functions in CNS injuries. In this review, we provide an overview on: (1) the precise organization of myelinated axons and the reciprocal axo-myelin interactions that warrant properly balanced physiological activities within the CNS; (2) underlying cause of demyelination and the structural and functional consequences of demyelination in axons following injury and disease; (3) the endogenous mechanisms of oligodendrocyte replacement; (4) the modulatory role of reactive astrocytes and inflammatory cells in remyelination; and (5) the current status of cell-based therapies for promoting remyelination. Careful elucidation of the cellular and molecular mechanisms of demyelination in the pathologic CNS is a key to better understanding the impact of remyelination for

  10. Myelin damage and repair in pathologic CNS: challenges and prospects.

    PubMed

    Alizadeh, Arsalan; Dyck, Scott M; Karimi-Abdolrezaee, Soheila

    2015-01-01

    Injury to the central nervous system (CNS) results in oligodendrocyte cell death and progressive demyelination. Demyelinated axons undergo considerable physiological changes and molecular reorganizations that collectively result in axonal dysfunction, degeneration and loss of sensory and motor functions. Endogenous adult oligodendrocyte precursor cells and neural stem/progenitor cells contribute to the replacement of oligodendrocytes, however, the extent and quality of endogenous remyelination is suboptimal. Emerging evidence indicates that optimal remyelination is restricted by multiple factors including (i) low levels of factors that promote oligodendrogenesis; (ii) cell death among newly generated oligodendrocytes, (iii) inhibitory factors in the post-injury milieu that impede remyelination, and (iv) deficient expression of key growth factors essential for proper re-construction of a highly organized myelin sheath. Considering these challenges, over the past several years, a number of cell-based strategies have been developed to optimize remyelination therapeutically. Outcomes of these basic and preclinical discoveries are promising and signify the importance of remyelination as a mechanism for improving functions in CNS injuries. In this review, we provide an overview on: (1) the precise organization of myelinated axons and the reciprocal axo-myelin interactions that warrant properly balanced physiological activities within the CNS; (2) underlying cause of demyelination and the structural and functional consequences of demyelination in axons following injury and disease; (3) the endogenous mechanisms of oligodendrocyte replacement; (4) the modulatory role of reactive astrocytes and inflammatory cells in remyelination; and (5) the current status of cell-based therapies for promoting remyelination. Careful elucidation of the cellular and molecular mechanisms of demyelination in the pathologic CNS is a key to better understanding the impact of remyelination for

  11. Myelin damage and repair in pathologic CNS: challenges and prospects.

    PubMed

    Alizadeh, Arsalan; Dyck, Scott M; Karimi-Abdolrezaee, Soheila

    2015-01-01

    Injury to the central nervous system (CNS) results in oligodendrocyte cell death and progressive demyelination. Demyelinated axons undergo considerable physiological changes and molecular reorganizations that collectively result in axonal dysfunction, degeneration and loss of sensory and motor functions. Endogenous adult oligodendrocyte precursor cells and neural stem/progenitor cells contribute to the replacement of oligodendrocytes, however, the extent and quality of endogenous remyelination is suboptimal. Emerging evidence indicates that optimal remyelination is restricted by multiple factors including (i) low levels of factors that promote oligodendrogenesis; (ii) cell death among newly generated oligodendrocytes, (iii) inhibitory factors in the post-injury milieu that impede remyelination, and (iv) deficient expression of key growth factors essential for proper re-construction of a highly organized myelin sheath. Considering these challenges, over the past several years, a number of cell-based strategies have been developed to optimize remyelination therapeutically. Outcomes of these basic and preclinical discoveries are promising and signify the importance of remyelination as a mechanism for improving functions in CNS injuries. In this review, we provide an overview on: (1) the precise organization of myelinated axons and the reciprocal axo-myelin interactions that warrant properly balanced physiological activities within the CNS; (2) underlying cause of demyelination and the structural and functional consequences of demyelination in axons following injury and disease; (3) the endogenous mechanisms of oligodendrocyte replacement; (4) the modulatory role of reactive astrocytes and inflammatory cells in remyelination; and (5) the current status of cell-based therapies for promoting remyelination. Careful elucidation of the cellular and molecular mechanisms of demyelination in the pathologic CNS is a key to better understanding the impact of remyelination for

  12. Astrocytic TIMP-1 Promotes Oligodendrocyte Differentiation and Enhances CNS Myelination

    PubMed Central

    Moore, Craig S.; Milner, Richard; Nishiyama, Akiko; Frausto, Ricardo F.; Serwanski, David R.; Pagarigan, Roberto R.; Whitton, J. Lindsay; Miller, Robert H.; Crocker, Stephen J.

    2011-01-01

    Tissue inhibitor of metalloproteinase-1 (TIMP-1) is an extracellular protein and endogenous regulator of matrix metalloproteinases (MMPs) secreted by astrocytes in response to CNS myelin injury. We have previously reported that adult TIMP-1KO mice exhibit poor myelin repair following demyelinating injury. This observation led us to hypothesize a role for TIMP-1 in oligodendrogenesis and CNS myelination. Herein, we demonstrate that compact myelin formation is significantly delayed in TIMP-1KO mice which coincided with dramatically reduced numbers of white matter astrocytes in the developing CNS. Analysis of differentiation in CNS progenitor cells (neurosphere) cultures from TIMP-1KO mice revealed a specific deficit of NG2+ oligodendrocyte progenitor cells. Application of rmTIMP-1 to TIMP-1KO neurosphere cultures evoked a dose-dependent increase in NG2+ cell numbers, while treatment with GM6001, a potent broad spectrum MMP inhibitor did not. Similarly, administration of recombinant murine TIMP-1 (rmTIMP-1) to A2B5+ immunopanned oligodendrocyte progenitors significantly increased the number of differentiated O1+ oligodendrocytes, while antisera to TIMP-1 reduced oligodendrocyte numbers. We also determined that A2B5+ oligodendrocyte progenitors grown in conditioned media derived from TIMP-1KO primary glial cultures resulted in reduced differentiation of mature O1+ oligodendrocytes. Finally, we report that addition of rmTIMP-1 to primary glial cultures resulted in a dose-dependent proliferative response of astrocytes. Together, these findings describe a previously uncharacterized role for TIMP-1 in the regulation of oligodendrocytes and astrocytes during development and provide a novel function for TIMP-1 on myelination in the developing CNS. PMID:21508247

  13. Prenatal exposure to thalidomide, altered vasculogenesis, and CNS malformations.

    PubMed

    Hallene, K L; Oby, E; Lee, B J; Santaguida, S; Bassanini, S; Cipolla, M; Marchi, N; Hossain, M; Battaglia, G; Janigro, D

    2006-09-29

    Malformations of cortical development (MCD) result from abnormal neuronal positioning during corticogenesis. MCD are believed to be the morphological and perhaps physiological bases of several neurological diseases, spanning from mental retardation to autism and epilepsy. In view of the fact that during development, an appropriate blood supply is necessary to drive organogenesis in other organs, we hypothesized that vasculogenesis plays an important role in brain development and that E15 exposure in rats to the angiogenesis inhibitor thalidomide would cause postnatal MCD. Our results demonstrate that thalidomide inhibits angiogenesis in vitro at concentrations that result in significant morphological alterations in cortical and hippocampal regions of rats prenatally exposed to this vasculotoxin. Abnormal neuronal development was associated with vascular malformations and a leaky blood-brain barrier. Protein extravasation and uptake of fluorescent albumin by neurons, but not glia, was commonly associated with abnormal cortical development. Neuronal hyperexcitability was also a hallmark of these abnormal cortical regions. Our results suggest that prenatal vasculogenesis is required to support normal neuronal migration and maturation. Altering this process leads to failure of normal cerebrovascular development and may have a profound implication for CNS maturation.

  14. Classification of neurons by dendritic branching pattern. A categorisation based on Golgi impregnation of spinal and cranial somatic and visceral afferent and efferent cells in the adult human.

    PubMed

    Abdel-Maguid, T E; Bowsher, D

    1984-06-01

    Neurons from adult human brainstem and spinal cord, fixed by immersion in formalin, were impregnated by a Golgi method and examined in sections 100 micron thick. Objective numerical criteria were used to classify completely impregnated neurons. Only the parameters mentioned below were found to be valid. Neurons in 100 micron sections were classified on the basis of (i) the primary dendrite number, indicated by a Roman numeral and called group; (ii) the dendritic branching pattern, comprising the highest branching order seen, indicated by an Arabic numeral and called category; the lowest dendritic branching order observed in complete neurons, indicated by an upper case letter and called class; and the number of branching orders seen between the two preceding, indicated by a lower case letter and called subclass. On the basis of the above characteristics, all neurons seen in the grey matter of the spinal cord and cranial nerve nuclei could be classified into thirteen 'families'. The results of other investigations (Abdel-Maguid & Bowsher, 1979, 1984) showed that this classification has functional value. PMID:6204961

  15. Effects of neuregulin-1 administration on neurogenesis in the adult mouse hippocampus, and characterization of immature neurons along the septotemporal axis

    PubMed Central

    Mahar, Ian; MacIsaac, Angus; Kim, John Junghan; Qiang, Calvin; Davoli, Maria Antonietta; Turecki, Gustavo; Mechawar, Naguib

    2016-01-01

    Adult hippocampal neurogenesis is associated with learning and affective behavioural regulation. Its diverse functionality is segregated along the septotemporal axis from the dorsal to ventral hippocampus. However, features distinguishing immature neurons in these regions have yet to be characterized. Additionally, although we have shown that administration of the neurotrophic factor neuregulin-1 (NRG1) selectively increases proliferation and overall neurogenesis in the mouse ventral dentate gyrus (DG), likely through ErbB3, NRG1’s effects on intermediate neurogenic stages in immature neurons are unknown. We examined whether NRG1 administration increases DG ErbB3 phosphorylation. We labeled adultborn cells using BrdU, then administered NRG1 to examine in vivo neurogenic effects on immature neurons with respect to cell survival, morphology, and synaptogenesis. We also characterized features of immature neurons along the septotemporal axis. We found that neurogenic effects of NRG1 are temporally and subregionally specific to proliferation in the ventral DG. Particular morphological features differentiate immature neurons in the dorsal and ventral DG, and cytogenesis differed between these regions. Finally, we identified synaptic heterogeneity surrounding the granule cell layer. These results indicate neurogenic involvement of NRG1-induced antidepressant-like behaviour is particularly associated with increased ventral DG cell proliferation, and identify novel distinctions between dorsal and ventral hippocampal neurogenic development. PMID:27469430

  16. Blocking miRNA Biogenesis in Adult Forebrain Neurons Enhances Seizure Susceptibility, Fear Memory, and Food Intake by Increasing Neuronal Responsiveness.

    PubMed

    Fiorenza, Anna; Lopez-Atalaya, Jose P; Rovira, Victor; Scandaglia, Marilyn; Geijo-Barrientos, Emilio; Barco, Angel

    2016-04-01

    The RNase Dicer is essential for the maturation of most microRNAs, a molecular system that plays an essential role in fine-tuning gene expression. To gain molecular insight into the role of Dicer and the microRNA system in brain function, we conducted 2 complementary RNA-seq screens in the hippocampus of inducible forebrain-restricted Dicer1 mutants aimed at identifying the microRNAs primarily affected by Dicer loss and their targets, respectively. Functional genomics analyses predicted the main biological processes and phenotypes associated with impaired microRNA maturation, including categories related to microRNA biology, signal transduction, seizures, and synaptic transmission and plasticity. Consistent with these predictions, we found that, soon after recombination, Dicer-deficient mice exhibited an exaggerated seizure response, enhanced induction of immediate early genes in response to different stimuli, stronger and more stable fear memory, hyperphagia, and increased excitability of CA1 pyramidal neurons. In the long term, we also observed slow and progressive excitotoxic neurodegeneration. Overall, our results indicate that interfering with microRNA biogenesis causes an increase in neuronal responsiveness and disrupts homeostatic mechanisms that protect the neuron against overactivation, which may explain both the initial and late phenotypes associated with the loss of Dicer in excitatory neurons. PMID:25595182

  17. Rodent CNS neuron development: Timing of cell birth and death

    NASA Technical Reports Server (NTRS)

    Keefe, J. R.

    1984-01-01

    Data obtained from a staged series of single paired injections of tritiated thymidine to pregnant Wistar rats or C57B16/j mice on selected embryonic days and several postnatal times are reported. All injected specimens were allowed to come to term, each litter culled to six pups and specimens were sacrificed on PN28, with fixation and embedding for paraffin and plastic embedding. The results are derived from serial paraffin sections of PN28 animals exposed to autoradiographic processing and plotted with respect to heavily labelled cell nuclei present in the selected brain stem nuclei and sensory ganglia. Counts from each time sample/structure are totalled and the percentage of cells in the total labelled population/structure represented by each injection time interval plotted.

  18. Neuronal-glial networks as substrate for CNS integration

    PubMed Central

    Verkhratsky, A; Toescu, E C

    2006-01-01

    Astrocytes have been considered, for a long time, as the support and house-keeping cells of the nervous system. Indeed, the astrocytes play very important metabolic roles in the brain, but the catalogue of nervous system functions or activities that involve directly glial participation has extended dramatically in the last decade. In addition to the further refining of the signalling capacity of the neuroglial networks and the detailed reassessment of the interactions between glia and vascular bed in the brain, one of the important salient features of the increased glioscience activity in the last few years was the morphological and functional demonstration that protoplasmic astrocytes occupy well defined spatial territories, with only limited areas of morphological overlapping, but still able to communicate with adjacent neighbours through intercellular junctions. All these features form the basis for a possible reassessment of the nature of integration of activity in the central nervous system that could raise glia to a role of central integrator.

  19. Tcf7l2/Tcf4 Transcriptional Repressor Function Requires HDAC Activity in the Developing Vertebrate CNS

    PubMed Central

    Wang, Hui; Matise, Michael P.

    2016-01-01

    The generation of functionally distinct neuronal subtypes within the vertebrate central nervous system (CNS) requires the precise regulation of progenitor gene expression in specific neuronal territories during early embryogenesis. Accumulating evidence has implicated histone deacetylase (HDAC) proteins in cell specification, proliferation, and differentiation in diverse embryonic and adult tissues. However, although HDAC proteins have shown to be expressed in the developing vertebrate neural tube, their specific role in CNS neural progenitor fate specification remains unclear. Prior work from our lab showed that the Tcf7l2/Tcf4 transcription factor plays a key role in ventral progenitor lineage segregation by differential repression of two key specification factors, Nkx2.2 and Olig2. In this study, we found that administration of HDAC inhibitors (Valproic Acid (VPA), Trichostatin-A (TSA), or sodium butyrate) in chick embryos in ovo disrupted normal progenitor gene segregation in the developing neural tube, indicating that HDAC activity is required for this process. Further, using functional and pharmacological approaches in vivo, we found that HDAC activity is required for the differential repression of Nkx2.2 and Olig2 by Tcf7l2/Tcf4. Finally, using dominant-negative functional assays, we provide evidence that Tcf7l2/Tcf4 repression also requires Gro/TLE/Grg co-repressor factors. Together, our data support a model where the transcriptional repressor activity of Tcf7l2/Tcf4 involves functional interactions with both HDAC and Gro/TLE/Grg co-factors at specific target gene regulatory elements in the developing neural tube, and that this activity is required for the proper segregation of the Nkx2.2 (p3) and Olig2 (pMN) expressing cells from a common progenitor pool. PMID:27668865

  20. Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells

    PubMed Central

    Shivraj Sohur, U; Emsley, Jason G; Mitchell, Bartley D; Macklis, Jeffrey D

    2006-01-01

    Recent work in neuroscience has shown that the adult central nervous system (CNS) contains neural progenitors, precursors and stem cells that are capable of generating new neurons, astrocytes and oligodendrocytes. While challenging the previous dogma that no new neurons are born in the adult mammalian CNS, these findings bring with them the future possibilities for development of novel neural repair strategies. The purpose of this review is to present the current knowledge about constitutively occurring adult mammalian neurogenesis, highlight the critical differences between ‘neurogenic’ and ‘non-neurogenic’ regions in the adult brain, and describe the cardinal features of two well-described neurogenic regions—the subventricular zone/olfactory bulb system and the dentate gyrus of the hippocampus. We also provide an overview of presently used models for studying neural precursors in vitro, mention some precursor transplantation models and emphasize that, in this rapidly growing field of neuroscience, one must be cautious with respect to a variety of methodological considerations for studying neural precursor cells both in vitro and in vivo. The possibility of repairing neural circuitry by manipulating neurogenesis is an intriguing one, and, therefore, we also review recent efforts to understand the conditions under which neurogenesis can be induced in non-neurogenic regions of the adult CNS. This work aims towards molecular and cellular manipulation of endogenous neural precursors in situ, without transplantation. We conclude this review with a discussion of what might be the function of newly generated neurons in the adult brain, and provide a summary of present thinking about the consequences of disturbed adult neurogenesis and the reaction of neurogenic regions to disease. PMID:16939970

  1. Aberrant dendritic excitability: a common pathophysiology in CNS disorders affecting memory?

    PubMed Central

    Nestor, Michael W.; Hoffman, Dax A.

    2012-01-01

    Discovering the etiology of pathophysiologies and aberrant behavior in many central nervous system (CNS) disorders has proven elusive because susceptibility to these diseases can be a product of multiple factors such as genetics, epigenetics, and environment. Advances in molecular biology and wide-scale genomics have shown that a large heterogeneity of genetic mutations are potentially responsible for the neuronal pathologies and dysfunctional behaviors seen in CNS disorders. (Need to distinguish between pure genetic forms which are rare, and what most people get which is probable combination of genetic susceptibility and environmental insults). Despite this seemingly complex array of genetic and physiological factors, many disorders of the CNS converge on common dysfunctions in memory. In this review, we propose that mechanisms underlying the development of many CNS diseases may share an underlying cause involving abnormal dendritic integration of synaptic signals. Through understanding the relationship between molecular genetics and dendritic computation, future research may uncover important links between neuronal physiology at the cellular level and higher-order circuit and network abnormalities observed in CNS diseases, and their subsequent affect on memory. PMID:22528602

  2. Brain Insulin-Like Growth Factor-I Directs the Transition from Stem Cells to Mature Neurons During Postnatal/Adult Hippocampal Neurogenesis.

    PubMed

    Nieto-Estévez, Vanesa; Oueslati-Morales, Carlos O; Li, Lingling; Pickel, James; Morales, Aixa V; Vicario-Abejón, Carlos

    2016-08-01

    The specific actions of insulin-like growth factor-I (IGF-I) and the role of brain-derived IGF-I during hippocampal neurogenesis have not been fully defined. To address the influence of IGF-I on the stages of hippocampal neurogenesis, we studied a postnatal/adult global Igf-I knockout (KO) mice (Igf-I(-/-) ) and a nervous system Igf-I conditional KO (Igf-I(Δ/Δ) ). In both KO mice we found an accumulation of Tbr2(+) -intermediate neuronal progenitors, some of which were displaced in the outer granule cell layer (GCL) and the molecular layer (ML) of the dentate gyrus (DG). Similarly, more ectopic Ki67(+) - cycling cells were detected. Thus, the GCL was disorganized with significant numbers of Prox1(+) -granule neurons outside this layer and altered morphology of radial glial cells (RGCs). Dividing progenitors were also generated in greater numbers in clonal hippocampal stem cell (HPSC) cultures from the KO mice. Indeed, higher levels of Hes5 and Ngn2, transcription factors that maintain the stem and progenitor cell state, were expressed in both HPSCs and the GCL-ML from the Igf-I(Δ/Δ) mice. To determine the impact of Igf-I deletion on neuronal generation in vivo, progenitors in Igf-I(-/-) and Igf-I(+/+) mice were labeled with a GFP-expressing vector. This revealed that in the Igf-I(-/-) mice more GFP(+) -immature neurons were formed and they had less complex dendritic trees. These findings indicate that local IGF-I plays critical roles during postnatal/adult hippocampal neurogenesis, regulating the transition from HPSCs and progenitors to mature granule neurons in a cell stage-dependent manner. Stem Cells 2016;34:2194-2209. PMID:27144663

  3. Impaired recruitment of seizure-generated neurons into functional memory networks of the adult dentate gyrus following long-term amygdala kindling.

    PubMed

    Fournier, Neil M; Botterill, Justin J; Marks, Wendie N; Guskjolen, Axel J; Kalynchuk, Lisa E

    2013-06-01

    Epileptic seizures increase the birth of new neurons in the adult hippocampus. Although the consequences of aberrant neurogenesis on behavior are not fully understood, one hypothesis is that seizure-generated neurons might form faulty circuits that disrupt hippocampal functions, such as learning and memory. In the present study, we employed long-term amygdala kindling (i.e., rats receive 99-electrical stimulations) to examine the effect of repeated seizures on hippocampal neurogenesis and behavior. We labeled seizure-generated cells with the proliferation marker BrdU after 30-stimulations and continued kindling for an additional 4weeks to allow newborn neurons to mature under conditions of repeated seizures. After kindling was complete, rats were tested in a trace fear conditioning task and sacrificed 2h later to examine if 4-week old newborn cells were recruited into circuits involved in the retrieval of emotional memory. Compared to non-kindled controls, long-term kindled rats showed significant impairments in fear memory reflected in a decrease in conditioned freezing to both tone and contextual cues during testing. Moreover, long-term kindling also prevented the activation of 4-week old newborn cells in response to fear memory retrieval. These results indicate that the presence of seizure activity during cell maturation impedes the ability of new neurons to integrate properly into circuits important in memory formation. Together, our findings suggest that aberrant seizure-induced neurogenesis might contribute to the development of learning impairments in chronic epilepsy and raise the possibility that targeting the reduced activation of adult born neurons could represent a beneficial strategy to reverse cognitive deficits in some epileptic patients.

  4. CNS disease triggering Takotsubo stress cardiomyopathy.

    PubMed

    Finsterer, Josef; Wahbi, Karim

    2014-12-15

    There are a number of hereditary and non-hereditary central nervous system (CNS) disorders, which directly or indirectly affect the heart (brain-heart disorders). The most well-known of these CNS disorders are epilepsy, stroke, infectious or immunological encephalitis/meningitis, migraine, and traumatic brain injury. In addition, a number of hereditary and non-hereditary neurodegenerative disorders may impair cardiac functions. Affection of the heart may manifest not only as arrhythmias, myocardial infarction, autonomic impairment, systolic dysfunction/heart failure, arterial hypertension, or pulmonary hypertension, but also as stress cardiomyopathy (Takotsubo syndrome, TTS). CNS disease triggering TTS includes subarachnoid bleeding, epilepsy, ischemic stroke, intracerebral bleeding, migraine, encephalitis, traumatic brain injury, PRES syndrome, or ALS. Usually, TTS is acutely precipitated by stress triggered by various different events. TTS is one of the cardiac abnormalities most frequently induced by CNS disorders. Appropriate management of TTS from CNS disorders is essential to improve the outcome of affected patients. PMID:25213573

  5. Neuronal precursor-specific activity of a human doublecortin regulatory sequence.

    PubMed

    Karl, Claudia; Couillard-Despres, Sebastien; Prang, Peter; Munding, Matthias; Kilb, Werner; Brigadski, Tanja; Plötz, Sonja; Mages, Wolfgang; Luhmann, Heiko; Winkler, Jürgen; Bogdahn, Ulrich; Aigner, Ludwig

    2005-01-01

    The doublecortin (DCX) gene encodes a 40-kDa microtubule-associated protein specifically expressed in neuronal precursors of the developing and adult CNS. Due to its specific expression pattern, attention was drawn to DCX as a marker for neuronal precursors and neurogenesis, thereby underscoring the importance of its promoter identification and promoter analysis. Here, we analysed the human DCX regulatory sequence and confined it to a 3.5-kb fragment upstream of the ATG start codon. We demonstrate by transient transfection experiments that this fragment is sufficient and specific to drive expression of reporter genes in embryonic and adult neuronal precursors. The activity of this regulatory fragment overlapped with the expression of endogenous DCX and with the young neuronal markers class III beta-tubulin isotype and microtubule-associated protein Map2ab but not with glial or oligodendroglial markers. Electrophysiological data further confirmed the immature neuronal nature of these cells. Deletions within the 3.5-kb region demonstrated the relevance of specific regions containing transcription factor-binding sites. Moreover, application of neurogenesis-related growth factors in the neuronal precursor cultures suggested the lack of direct signalling of these factors on the DCX promoter construct. PMID:15663475

  6. Differential role of GDNF and NGF in the maintenance of two TTX-resistant sodium channels in adult DRG neurons.

    PubMed

    Fjell, J; Cummins, T R; Dib-Hajj, S D; Fried, K; Black, J A; Waxman, S G

    1999-04-20

    Following sciatic nerve transection, the electrophysiological properties of small dorsal root ganglion (DRG) neurons are markedly altered, with attenuation of TTX-R sodium currents and the appearance of rapidly repriming TTX-S currents. The reduction in TTX-R currents has been attributed to a down-regulation of sodium channels SNS/PN3 and NaN. While infusion of exogenous NGF to the transected nerve restores SNS/PN3 transcripts to near-normal levels in small DRG neurons, TTX-R sodium currents are only partially rescued. Binding of the isolectin IB4 distinguishes two subpopulations of small DRG neurons: IB4+ neurons, which express receptors for the GDNF family of neurotrophins, and IB4- neurons that predominantly express TrkA. We show here that SNS/PN3 is expressed in approximately one-half of both IB4+ and IB4- DRG neurons, while NaN is preferentially expressed in IB4+ neurons. Whole-cell patch-clamp studies demonstrate that TTX-R sodium currents in IB4+ neurons have a more hyperpolarized voltage-dependence of activation and inactivation than do IB4- neurons, suggesting different electrophysiological properties for SNS/PN3 and NaN. We confirm that NGF restores SNS/PN3 mRNA levels in DRG neurons in vitro and demonstrate that the trk antagonist K252a blocks this rescue. The down-regulation of NaN mRNA is, nevertheless, not rescued by NGF-treatment in either IB4+ or IB4- neurons and NGF-treatment in vitro does not significantly increase the peak amplitude of the TTX-R current in small DRG neurons. In contrast, GDNF-treatment causes a twofold increase in the peak amplitude of TTX-R sodium currents and restores both SNS/PN3 and NaN mRNA to near-normal levels in IB4+ neurons. These observations provide a mechanism for the partial restoration of TTX-R sodium currents by NGF in axotomized DRG neurons, and demonstrate that the neurotrophins NGF and GDNF differentially regulate sodium channels SNS/PN3 and NaN. PMID:10216225

  7. Krüppel-like Factor 7 engineered for transcriptional activation promotes axon regeneration in the adult corticospinal tract.

    PubMed

    Blackmore, Murray G; Wang, Zimei; Lerch, Jessica K; Motti, Dario; Zhang, Yi Ping; Shields, Christopher B; Lee, Jae K; Goldberg, Jeffrey L; Lemmon, Vance P; Bixby, John L

    2012-05-01

    Axon regeneration in the central nervous system normally fails, in part because of a developmental decline in the intrinsic ability of CNS projection neurons to extend axons. Members of the KLF family of transcription factors regulate regenerative potential in developing CNS neurons. Expression of one family member, KLF7, is down-regulated developmentally, and overexpression of KLF7 in cortical neurons in vitro promotes axonal growth. To circumvent difficulties in achieving high neuronal expression of exogenous KLF7, we created a chimera with the VP16 transactivation domain, which displayed enhanced neuronal expression compared with the native protein while maintaining transcriptional activation and growth promotion in vitro. Overexpression of VP16-KLF7 overcame the developmental loss of regenerative ability in cortical slice cultures. Adult corticospinal tract (CST) neurons failed to up-regulate KLF7 in response to axon injury, and overexpression of VP16-KLF7 in vivo promoted both sprouting and regenerative axon growth in the CST of adult mice. These findings identify a unique means of promoting CST axon regeneration in vivo by reengineering a developmentally down-regulated, growth-promoting transcription factor. PMID:22529377

  8. Immature astrocytes promote CNS axonal regeneration when combined with chondroitinase ABC

    PubMed Central

    Filous, Angela R.; Miller, Jared H.; Coulson-Thomas, Yvette M.; Horn, Kevin P.; Alilain, Warren J.; Silver, Jerry

    2010-01-01

    Regeneration of injured adult CNS axons is inhibited by formation of a glial scar. Immature astrocytes are able to support robust neurite outgrowth and reduce scarring, therefore, we tested whether these cells would have this effect if transplanted into brain injuries. Utilizing an in vitro spot gradient model that recreates the strongly inhibitory proteoglycan environment of the glial scar we found that, alone, immature, but not mature, astrocytes had a limited ability to form bridges across the most inhibitory outer rim. In turn, the astrocyte bridges could promote adult sensory axon re-growth across the gradient. The use of selective enzyme inhibitors revealed that MMP-2 enables immature astrocytes to cross the proteoglycan rim. The bridge-building process and axon regeneration across the immature glial bridges were greatly enhanced by chondroitinase ABC pre-treatment of the spots. We used microlesions in the cingulum of the adult rat brains to test the ability of matrix modification and immature astrocytes to form a bridge for axon regeneration in vivo. Injured axons were visualized via p75 immunolabeling and the extent to which these axons regenerated was quantified. Immature astrocytes co-injected with chondroitinase ABC induced axonal regeneration beyond the distal edge of the lesion. However, when used alone, neither treatment was capable of promoting axonal regeneration. Our findings indicate that when faced with a minimal lesion, neurons of the basal forebrain can regenerate in the presence of a proper bridge across the lesion and when levels of chondroitin sulfate proteoglycans (CSPGs) in the glial scar are reduced. PMID:20629049

  9. A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin.

    PubMed

    Hunt, David P J; Morris, Paul N; Sterling, Jane; Anderson, Jane A; Joannides, Alexis; Jahoda, Colin; Compston, Alastair; Chandran, Siddharthan

    2008-01-01

    Skin-derived precursor cells (SKPs) are multipotent neural crest-related stem cells that grow as self-renewing spheres and are capable of generating neurons and myelinating glial cells. SKPs are of clinical interest because they are accessible and potentially autologous. However, although spheres can be readily isolated from embryonic and neonatal skin, SKP frequency falls away sharply in adulthood, and primary sphere generation from adult human skin is more problematic. In addition, the culture-initiating cell population is undefined and heterogeneous, limiting experimental studies addressing important aspects of these cells such as the behavior of endogenous precursors in vivo and the molecular mechanisms of neural generation. Using a combined fate-mapping and microdissection approach, we identified and characterized a highly enriched niche of neural crest-derived sphere-forming cells within the dermal papilla of the hair follicle of adult skin. We demonstrated that the dermal papilla of the rodent vibrissal follicle is 1,000-fold enriched for sphere-forming neural crest-derived cells compared with whole facial skin. These "papillaspheres" share a phenotypic and developmental profile similar to that of SKPs, can be readily expanded in vitro, and are able to generate both neuronal and glial cells in response to appropriate cues. We demonstrate that papillaspheres can be efficiently generated and expanded from adult human facial skin by microdissection of a single hair follicle. This strategy of targeting a highly enriched niche of sphere-forming cells provides a novel and efficient method for generating neuronal and glial cells from an accessible adult somatic source that is both defined and minimally invasive.

  10. A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin.

    PubMed

    Hunt, David P J; Morris, Paul N; Sterling, Jane; Anderson, Jane A; Joannides, Alexis; Jahoda, Colin; Compston, Alastair; Chandran, Siddharthan

    2008-01-01

    Skin-derived precursor cells (SKPs) are multipotent neural crest-related stem cells that grow as self-renewing spheres and are capable of generating neurons and myelinating glial cells. SKPs are of clinical interest because they are accessible and potentially autologous. However, although spheres can be readily isolated from embryonic and neonatal skin, SKP frequency falls away sharply in adulthood, and primary sphere generation from adult human skin is more problematic. In addition, the culture-initiating cell population is undefined and heterogeneous, limiting experimental studies addressing important aspects of these cells such as the behavior of endogenous precursors in vivo and the molecular mechanisms of neural generation. Using a combined fate-mapping and microdissection approach, we identified and characterized a highly enriched niche of neural crest-derived sphere-forming cells within the dermal papilla of the hair follicle of adult skin. We demonstrated that the dermal papilla of the rodent vibrissal follicle is 1,000-fold enriched for sphere-forming neural crest-derived cells compared with whole facial skin. These "papillaspheres" share a phenotypic and developmental profile similar to that of SKPs, can be readily expanded in vitro, and are able to generate both neuronal and glial cells in response to appropriate cues. We demonstrate that papillaspheres can be efficiently generated and expanded from adult human facial skin by microdissection of a single hair follicle. This strategy of targeting a highly enriched niche of sphere-forming cells provides a novel and efficient method for generating neuronal and glial cells from an accessible adult somatic source that is both defined and minimally invasive. PMID:17901404

  11. From fish to man: understanding endogenous remyelination in CNS demyelinating diseases

    PubMed Central

    Dubois-Dalcq, Monique; Williams, Anna; Stadelmann, Christine; Stankoff, Bruno; Zalc, Bernard; Lubetzki, Catherine

    2008-01-01

    In the central nervous system (CNS) of man, evolutionary pressure has preserved some capability for remyelination while axonal regeneration is very limited. In contrast, two efficient programmes of regeneration exist in the adult fish CNS, neurite regrowth and remyelination. The rapidity of CNS remyelination is critical since it not only restores fast conduction of nerve impulses but also maintains axon integrity. If myelin repair fails, axons degenerate, leading to increased disability. In the human CNS demyelinating disease Multiple Sclerosis (MS), remyelination often takes place in the midst of inflammation. Here, we discuss recent studies that address the innate repair capabilities of the axon-glia unit from fish to man. We propose that expansion of this research field will help find ways to maintain or enhance spontaneous remyelination in man. PMID:18474520

  12. L-citrulline immunostaining identifies nitric oxide production sites within neurons

    NASA Technical Reports Server (NTRS)

    Martinelli, G. P. T.; Friedrich, V. L. Jr; Holstein, G. R.

    2002-01-01

    The cellular and subcellular localization of L-citrulline was analyzed in the adult rat brain and compared with that of traditional markers for the presence of nitric oxide synthase. Light, transmission electron, and confocal laser scanning microscopy were used to study tissue sections processed for immunocytochemistry employing a monoclonal antibody against L-citrulline or polyclonal anti-neuronal nitric oxide synthase sera, and double immunofluorescence to detect neuronal nitric oxide synthase and L-citrulline co-localization. The results demonstrate that the same CNS regions and cell types are labeled by neuronal nitric oxide synthase polyclonal antisera and L-citrulline monoclonal antibodies, using both immunocytochemistry and immunofluorescence. Short-term pretreatment with a nitric oxide synthase inhibitor reduces L-citrulline immunostaining, but does not affect neuronal nitric oxide synthase immunoreactivity. In the vestibular brainstem, double immunofluorescence studies show that many, but not all, neuronal nitric oxide synthase-positive cells co-express L-citrulline, and that local intracellular patches of intense L-citrulline accumulation are present in some neurons. Conversely, all L-citrulline-labeled neurons co-express neuronal nitric oxide synthase. Cells expressing neuronal nitric oxide synthase alone are interpreted as neurons with the potential to produce nitric oxide under other stimulus conditions, and the subcellular foci of enhanced L-citrulline staining are viewed as intracellular sites of nitric oxide production. This interpretation is supported by ultrastructural observations of subcellular foci with enhanced L-citrulline and/or neuronal nitric oxide synthase staining that are located primarily at postsynaptic densities and portions of the endoplasmic reticulum. We conclude that nitric oxide is produced and released at focal sites within neurons that are identifiable using L-citrulline as a marker. Copyright 2002 IBRO.

  13. Migration of bone marrow progenitor cells in the adult brain of rats and rabbits.

    PubMed

    Dennie, Donnahue; Louboutin, Jean-Pierre; Strayer, David S

    2016-04-26

    Neurogenesis takes place in the adult mammalian brain in three areas: Subgranular zone of the dentate gyrus (DG); subventricular zone of the lateral ventricle; olfactory bulb. Different molecular markers can be used to characterize the cells involved in adult neurogenesis. It has been recently suggested that a population of bone marrow (BM) progenitor cells may migrate to the brain and differentiate into neuronal lineage. To explore this hypothesis, we injected recombinant SV40-derived vectors into the BM and followed the potential migration of the transduced cells. Long-term BM-directed gene transfer using recombinant SV40-derived vectors leads to expression of the genes delivered to the BM firstly in circulating cells, then after several months in mature neurons and microglial cells, and thus without central nervous system (CNS) lesion. Most of transgene-expressing cells expressed NeuN, a marker of mature neurons. Thus, BM-derived cells may function as progenitors of CNS cells in adult animals. The mechanism by which the cells from the BM come to be neurons remains to be determined. Although the observed gradual increase in transgene-expressing neurons over 16 mo suggests that the pathway involved differentiation of BM-resident cells into neurons, cell fusion as the principal route cannot be totally ruled out. Additional studies using similar viral vectors showed that BM-derived progenitor cells migrating in the CNS express markers of neuronal precursors or immature neurons. Transgene-positive cells were found in the subgranular zone of the DG of the hippocampus 16 mo after intramarrow injection of the vector. In addition to cells expressing markers of mature neurons, transgene-positive cells were also positive for nestin and doublecortin, molecules expressed by developing neuronal cells. These cells were actively proliferating, as shown by short term BrdU incorporation studies. Inducing seizures by using kainic acid increased the number of BM progenitor cells

  14. Migration of bone marrow progenitor cells in the adult brain of rats and rabbits

    PubMed Central

    Dennie, Donnahue; Louboutin, Jean-Pierre; Strayer, David S

    2016-01-01

    Neurogenesis takes place in the adult mammalian brain in three areas: Subgranular zone of the dentate gyrus (DG); subventricular zone of the lateral ventricle; olfactory bulb. Different molecular markers can be used to characterize the cells involved in adult neurogenesis. It has been recently suggested that a population of bone marrow (BM) progenitor cells may migrate to the brain and differentiate into neuronal lineage. To explore this hypothesis, we injected recombinant SV40-derived vectors into the BM and followed the potential migration of the transduced cells. Long-term BM-directed gene transfer using recombinant SV40-derived vectors leads to expression of the genes delivered to the BM firstly in circulating cells, then after several months in mature neurons and microglial cells, and thus without central nervous system (CNS) lesion. Most of transgene-expressing cells expressed NeuN, a marker of mature neurons. Thus, BM-derived cells may function as progenitors of CNS cells in adult animals. The mechanism by which the cells from the BM come to be neurons remains to be determined. Although the observed gradual increase in transgene-expressing neurons over 16 mo suggests that the pathway involved differentiation of BM-resident cells into neurons, cell fusion as the principal route cannot be totally ruled out. Additional studies using similar viral vectors showed that BM-derived progenitor cells migrating in the CNS express markers of neuronal precursors or immature neurons. Transgene-positive cells were found in the subgranular zone of the DG of the hippocampus 16 mo after intramarrow injection of the vector. In addition to cells expressing markers of mature neurons, transgene-positive cells were also positive for nestin and doublecortin, molecules expressed by developing neuronal cells. These cells were actively proliferating, as shown by short term BrdU incorporation studies. Inducing seizures by using kainic acid increased the number of BM progenitor cells

  15. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons.

    PubMed

    Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2015-01-01

    The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3-4 and 8-9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner.

  16. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons

    PubMed Central

    Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M.; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X.; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2015-01-01

    The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3–4 and 8–9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner. PMID:26052271

  17. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons.