Science.gov

Sample records for adult coho salmon

  1. Recurrent Die-Offs of Adult Coho Salmon Returning to Spawn in Puget Sound Lowland Urban Streams

    PubMed Central

    Scholz, Nathaniel L.; Myers, Mark S.; McCarthy, Sarah G.; Labenia, Jana S.; McIntyre, Jenifer K.; Ylitalo, Gina M.; Rhodes, Linda D.; Laetz, Cathy A.; Stehr, Carla M.; French, Barbara L.; McMillan, Bill; Wilson, Dean; Reed, Laura; Lynch, Katherine D.; Damm, Steve; Davis, Jay W.; Collier, Tracy K.

    2011-01-01

    Several Seattle-area streams in Puget Sound were the focus of habitat restoration projects in the 1990s. Post-project effectiveness monitoring surveys revealed anomalous behaviors among adult coho salmon returning to spawn in restored reaches. These included erratic surface swimming, gaping, fin splaying, and loss of orientation and equilibrium. Affected fish died within hours, and female carcasses generally showed high rates (>90%) of egg retention. Beginning in the fall of 2002, systematic spawner surveys were conducted to 1) assess the severity of the adult die-offs, 2) compare spawner mortality in urban vs. non-urban streams, and 3) identify water quality and spawner condition factors that might be associated with the recurrent fish kills. The forensic investigation focused on conventional water quality parameters (e.g., dissolved oxygen, temperature, ammonia), fish condition, pathogen exposure and disease status, and exposures to metals, polycyclic aromatic hydrocarbons, and current use pesticides. Daily surveys of a representative urban stream (Longfellow Creek) from 2002–2009 revealed premature spawner mortality rates that ranged from 60–100% of each fall run. The comparable rate in a non-urban stream was <1% (Fortson Creek, surveyed in 2002). Conventional water quality, pesticide exposure, disease, and spawner condition showed no relationship to the syndrome. Coho salmon did show evidence of exposure to metals and petroleum hydrocarbons, both of which commonly originate from motor vehicles in urban landscapes. The weight of evidence suggests that freshwater-transitional coho are particularly vulnerable to an as-yet unidentified toxic contaminant (or contaminant mixture) in urban runoff. Stormwater may therefore place important constraints on efforts to conserve and recover coho populations in urban and urbanizing watersheds throughout the western United States. PMID:22194802

  2. Recurrent die-offs of adult coho salmon returning to spawn in Puget Sound lowland urban streams.

    PubMed

    Scholz, Nathaniel L; Myers, Mark S; McCarthy, Sarah G; Labenia, Jana S; McIntyre, Jenifer K; Ylitalo, Gina M; Rhodes, Linda D; Laetz, Cathy A; Stehr, Carla M; French, Barbara L; McMillan, Bill; Wilson, Dean; Reed, Laura; Lynch, Katherine D; Damm, Steve; Davis, Jay W; Collier, Tracy K

    2011-01-01

    Several Seattle-area streams in Puget Sound were the focus of habitat restoration projects in the 1990s. Post-project effectiveness monitoring surveys revealed anomalous behaviors among adult coho salmon returning to spawn in restored reaches. These included erratic surface swimming, gaping, fin splaying, and loss of orientation and equilibrium. Affected fish died within hours, and female carcasses generally showed high rates (>90%) of egg retention. Beginning in the fall of 2002, systematic spawner surveys were conducted to 1) assess the severity of the adult die-offs, 2) compare spawner mortality in urban vs. non-urban streams, and 3) identify water quality and spawner condition factors that might be associated with the recurrent fish kills. The forensic investigation focused on conventional water quality parameters (e.g., dissolved oxygen, temperature, ammonia), fish condition, pathogen exposure and disease status, and exposures to metals, polycyclic aromatic hydrocarbons, and current use pesticides. Daily surveys of a representative urban stream (Longfellow Creek) from 2002-2009 revealed premature spawner mortality rates that ranged from 60-100% of each fall run. The comparable rate in a non-urban stream was <1% (Fortson Creek, surveyed in 2002). Conventional water quality, pesticide exposure, disease, and spawner condition showed no relationship to the syndrome. Coho salmon did show evidence of exposure to metals and petroleum hydrocarbons, both of which commonly originate from motor vehicles in urban landscapes. The weight of evidence suggests that freshwater-transitional coho are particularly vulnerable to an as-yet unidentified toxic contaminant (or contaminant mixture) in urban runoff. Stormwater may therefore place important constraints on efforts to conserve and recover coho populations in urban and urbanizing watersheds throughout the western United States. PMID:22194802

  3. Comparison of five techniques for the detection of Renibacterium salmoninarum in adult coho salmon.

    USGS Publications Warehouse

    Pascho, R.J.; Elliott, D.G.; Mallett, R.W.; Mulcahy, D.

    1987-01-01

    Samples of kidney, spleen, coelomic fluid, and blood from 56 sexually mature coho salmon Oncorhynchus kisutch were examined for infection by Renibacterium salmoninarum by five methods. The overall prevalence (all sample types combined) of R. salmoninarum in the fish was 100% by the enzyme-linked immunosorbent assay, 86% by the combined results of the direct fluorescent antibody and the direct filtration-fluorescent antibody techniques, 39% by culture, 11% by counterimmunoelectrophoresis, and 5% by agarose gel immunodiffusion. There was a significant positive correlation (P < 0.001) between the enzyme-linked immunosorbent assay absorbance levels and the counts by fluorescent antibody techniques for kidney, spleen, and coelomic fluid, and significant positive correlations (P < 0.001) in enzyme-linked immunosorbent assay absorbance levels for all four of the sample types.

  4. Behavior patterns and fates of adult steelhead, Chinook salmon, and coho salmon released into the upper Cowlitz River Basin, 2005–09 and 2012, Washington

    USGS Publications Warehouse

    Kock, Tobias J.; Ekstrom, Brian K.; Liedtke, Theresa L.; Serl, John D.; Kohn, Mike

    2016-01-01

    A multiyear radiotelemetry evaluation was conducted to monitor adult steelhead (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha), and coho salmon (O. kisutch) behavior and movement patterns in the upper Cowlitz River Basin. Volitional passage to this area was eliminated by dam construction in the mid-1960s, and a reintroduction program began in the mid-1990s. Fish are transported around the dams using a trap-and-haul program, and adult release sites are located in Lake Scanewa, the uppermost reservoir in the system, and in the Cowlitz and Cispus Rivers. Our goal was to estimate the proportion of tagged fish that fell back downstream of Cowlitz Falls Dam before the spawning period and to determine the proportion that were present in the Cowlitz and Cispus Rivers during the spawning period. Fallback is important because Cowlitz Falls Dam does not have upstream fish passage, so fish that pass the dam are unable to move back upstream and spawn. A total of 2,051 steelhead and salmon were tagged for the study, which was conducted during 2005–09 and 2012, and 173 (8.4 percent) of these regurgitated their transmitter prior to, or shortly after release. Once these fish were removed from the dataset, the final number of fish that was monitored totaled 1,878 fish, including 647 steelhead, 770 Chinook salmon, and 461 coho salmon.Hatchery-origin (HOR) and natural-origin (NOR) steelhead, Chinook salmon, and coho salmon behaved differently following release into Lake Scanewa. Detection records showed that the percentage of HOR fish that moved upstream and entered the Cowlitz River or Cispus River after release was relatively low (steelhead = 38 percent; Chinook salmon = 67 percent; coho salmon = 41 percent) compared to NOR fish (steelhead = 84 percent; Chinook salmon = 82 percent; coho salmon = 76 percent). The elapsed time from release to river entry was significantly lower for NOR fish than for HOR fish for all three species. Tagged fish entered the Cowlitz River in

  5. A top-down survival mechanism during early marine residency explains coho salmon year-class strength in southeast Alaska

    NASA Astrophysics Data System (ADS)

    LaCroix, Jacob J.; Wertheimer, Alex C.; Orsi, Joseph A.; Sturdevant, Molly V.; Fergusson, Emily A.; Bond, Nicholas A.

    2009-12-01

    Coho salmon ( Oncorhynchus kisutch) are a vital component in the southeast Alaska marine ecosystem and are an important regional fishery resource; consequently, understanding mechanisms affecting their year-class strength is necessary from both scientific and management perspectives. We examined correlations among juvenile coho salmon indices, associated biophysical variables, and adult coho salmon harvest data from southeast Alaska over the years 1997-2006. We found no relationship between summer indices of juvenile coho salmon growth, condition, or abundance with subsequent harvest of adult coho salmon in the region. However, using stepwise regression, we found that variation in adult coho salmon harvest was largely explained by indices of juvenile pink salmon ( Oncorhynchus gorbuscha) abundance (67%) and zooplankton abundance (24%). To determine if high juvenile pink salmon abundance indicates favorable "bottom-up" lower trophic level environmental conditions for juvenile coho salmon, we plotted abundance of juvenile pink salmon against growth and condition of juvenile coho salmon. No change in growth or condition of juvenile coho salmon was observed in relation to the abundance index for juvenile pink salmon. Therefore, we hypothesize that coho salmon year-class strength in southeast Alaska is influenced by a "top-down" predator control mechanism that results from more abundant juvenile pink salmon, which serve as a predator buffer during early marine residency.

  6. Sexual difference in PCB concentrations of coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Madenjian, Charles P.; Schrank, Candy S.; Begnoche, Linda J.; Elliott, Robert F.; Quintal, Richard T.

    2010-01-01

    We determined polychlorinated biphenyl (PCB) concentrations in 35 female coho salmon (Oncorhynchus kisutch) and 60 male coho salmon caught in Lake Michigan (Michigan and Wisconsin, United States) during the fall of 1994 and 1995. In addition, we determined PCB concentrations in the skin-on fillets of 26 female and 19 male Lake Michigan coho salmon caught during the fall of 2004 and 2006. All coho salmon were age-2 fish. These fish were caught prior to spawning, and therefore release of eggs could not account for sexual differences in PCB concentrations because female coho salmon spawn only once during their lifetime. To investigate whether gross growth efficiency (GGE) differed between the sexes, we applied bioenergetics modeling. Results showed that, on average, males were 19% higher in PCB concentration than females, based on the 1994–1995 dataset. Similarly, males averaged a 20% higher PCB concentration in their skin-on fillets compared with females. According to the bioenergetics modeling results, GGE of adult females was less than 1% higher than adult male GGE. Thus, bioenergetics modeling could not explain the 20% higher PCB concentration exhibited by the males. Nonetheless, a sexual difference in GGE remained a plausible explanation for the sexual difference in PCB concentrations.

  7. Comparison of electronarcosis and carbon dioxide sedation effects on travel time in adult Chinook and Coho Salmon

    USGS Publications Warehouse

    Keep, Shane G; Allen, M. Brady; Zendt, Joseph S

    2015-01-01

    The immobilization of fish during handling is crucial in avoiding injury to fish and is thought to reduce handling stress. Chemical sedatives have been a primary choice for fish immobilization. However, most chemical sedatives accumulate in tissues, and often food fishes must be held until accumulations degrade to levels safe for human consumption. Historically, there have been few options for nonchemical sedation. Carbon dioxide (CO2) has been widely used for decades as a sedative, and while it does not require a degradation period, it does have drawbacks. The use of electronarcosis is another nonchemical option that does not require degradation time. However, little is known about the latent and delayed effects on migration rates of adult salmonids that have been immobilized with electricity. We compared the travel times of adult Chinook Salmon Oncorhynchus tshawytscha and Coho Salmon O. kisutch through a fishway at river kilometer (rkm) 4, and to rkm 16 and rkm 32 after being immobilized with either CO2 or electronarcosis. Travel times of fish treated with either CO2 or electronarcosis were similar within species. Because of the nearly instantaneous induction of and recovery from electronarcosis, we recommend it as an alternative to CO2 for handling large adult salmonids.

  8. Coho Salmon Master Plan, Clearwater River Basin.

    SciTech Connect

    Nez Perce Tribe; FishPro

    2004-10-01

    The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these

  9. Landscape ecotoxicology of coho salmon spawner mortality in urban streams.

    PubMed

    Feist, Blake E; Buhle, Eric R; Arnold, Paul; Davis, Jay W; Scholz, Nathaniel L

    2011-01-01

    In the Pacific Northwest of the United States, adult coho salmon (Oncorhynchus kisutch) returning from the ocean to spawn in urban basins of the Puget Sound region have been prematurely dying at high rates (up to 90% of the total runs) for more than a decade. The current weight of evidence indicates that coho deaths are caused by toxic chemical contaminants in land-based runoff to urban streams during the fall spawning season. Non-point source pollution in urban landscapes typically originates from discrete urban and residential land use activities. In the present study we conducted a series of spatial analyses to identify correlations between land use and land cover (roadways, impervious surfaces, forests, etc.) and the magnitude of coho mortality in six streams with different drainage basin characteristics. We found that spawner mortality was most closely and positively correlated with the relative proportion of local roads, impervious surfaces, and commercial property within a basin. These and other correlated variables were used to identify unmonitored basins in the greater Seattle metropolitan area where recurrent coho spawner die-offs may be likely. This predictive map indicates a substantial geographic area of vulnerability for the Puget Sound coho population segment, a species of concern under the U.S. Endangered Species Act. Our spatial risk representation has numerous applications for urban growth management, coho conservation, and basin restoration (e.g., avoiding the unintentional creation of ecological traps). Moreover, the approach and tools are transferable to areas supporting coho throughout western North America. PMID:21858112

  10. Landscape Ecotoxicology of Coho Salmon Spawner Mortality in Urban Streams

    PubMed Central

    Feist, Blake E.; Buhle, Eric R.; Arnold, Paul; Davis, Jay W.; Scholz, Nathaniel L.

    2011-01-01

    In the Pacific Northwest of the United States, adult coho salmon (Oncorhynchus kisutch) returning from the ocean to spawn in urban basins of the Puget Sound region have been prematurely dying at high rates (up to 90% of the total runs) for more than a decade. The current weight of evidence indicates that coho deaths are caused by toxic chemical contaminants in land-based runoff to urban streams during the fall spawning season. Non-point source pollution in urban landscapes typically originates from discrete urban and residential land use activities. In the present study we conducted a series of spatial analyses to identify correlations between land use and land cover (roadways, impervious surfaces, forests, etc.) and the magnitude of coho mortality in six streams with different drainage basin characteristics. We found that spawner mortality was most closely and positively correlated with the relative proportion of local roads, impervious surfaces, and commercial property within a basin. These and other correlated variables were used to identify unmonitored basins in the greater Seattle metropolitan area where recurrent coho spawner die-offs may be likely. This predictive map indicates a substantial geographic area of vulnerability for the Puget Sound coho population segment, a species of concern under the U.S. Endangered Species Act. Our spatial risk representation has numerous applications for urban growth management, coho conservation, and basin restoration (e.g., avoiding the unintentional creation of ecological traps). Moreover, the approach and tools are transferable to areas supporting coho throughout western North America. PMID:21858112

  11. ADULT COHO SALMON AND STEELHEAD USE OF BOULDER WEIRS IN SOUTHWEST OREGON STREAMS

    EPA Science Inventory

    The placement of log and boulder structures in streams is a common and often effective technique for improving juvenile salmonid rearing habitat and increasing fish densities. Less frequently examined has been the use of these structures by adult salmonids. In 2004, spawner densi...

  12. Chronic oral DDT toxicity in juvenile coho and chinook salmon

    USGS Publications Warehouse

    Buhler, Donald R.; Rasmusson, Mary E.; Shanks, W.E.

    1969-01-01

    Technical and p,p′-DDT was incorporated into test diets and fed to juvenile chinook and coho salmon for periods as long as 95 days. Pure p,p′-DDT was slightly more toxic to young salmon than was the technical DDT mixture. Chinook salmon appeared to be 2–3 times more sensitive to a given concentration of DDT in the diet than were coho salmon. The size of the fish greatly influenced toxicity, smaller younger fish being more susceptible to a given diet than larger older fish. The dose of DDT accumulated within the median survival time ranged from 27–73 mg/kg for chinook salmon and from 56–72 mg/kg for coho salmon. The extrapolated 90-dose LD50 (Hayes, 1967) for young chinook and coho salmon were 0.0275 and 0.064 mg/kg/day, respectively. Liver size decreased on prolonged feeding with DDT, and carcass lipid content was increased. A severe surface ulceration of the nose region appeared in coho salmon fed DDT over long periods. In addition, an interesting localized degeneration of the distal convoluted tubule was observed in the kidney of coho salmon receiving DDT.

  13. Parasite burdens in experimental families of coho salmon.

    USGS Publications Warehouse

    Yasutake, W.T.; McIntyre, J.D.; Hemmingsen, A.R.

    1986-01-01

    We examined the possibility that parasites affect survival rates of anadromous hatchery coho salmon Oncorhynchus kisutch during their period in the wild. Survival was estimated from the rates at which adults returned to the hatchery. The frequency of infection of heart tissue by metacercariae of Nanophyetus sp. was higher in individuals from families with relatively high survival. Various degrees of parasitic and bacterial infection were observed in all groups. We frequently saw extensive infection and tissue reaction to trophozoites of Ceratomyxa sp. (probably C. shasta) in the apparent absence of spores, suggesting that the clinical method now used to determine the presence of Ceratomyxa infection needs to be reassessed.

  14. UNUSUAL EOSINOPHILIC GRANULE CELL PROLIFERATION IN COHO SALMON (ONCHORHYNCHUS KISUTCH)

    EPA Science Inventory

    Proliferative lesions comprised of eosinophilic granule cells (EGCs) extended throughout the gastrointestinal tract of several mature, spawning coho salmon Oncorhynchus kisutch (Walbaum). istological examination of the tumour showed extensive proliferation and infiltration of EGC...

  15. SURVIVAL AND IMMUNE RESPONSE OF COHO SALMON EXPOSED TO COPPER

    EPA Science Inventory

    Vaccination with Vibrio anguillarum by oral administration during copper exposure and intraperitoneal injection prior to copper exposure was employed to investigate the effects of copper upon survival and the immune response of juvenile coho salmon (Oncorhynchus kisutch). Followi...

  16. Excess post-exercise oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon following critical speed swimming.

    PubMed

    Lee, C G; Farrell, A P; Lotto, A; Hinch, S G; Healey, M C

    2003-09-01

    The present study measured the excess post-exercise oxygen cost (EPOC) following tests at critical swimming speed (Ucrit) in three stocks of adult, wild, Pacific salmon (Oncorhynchus sp.) and used EPOC to estimate the time required to return to their routine level of oxygen consumption (recovery time) and the total oxygen cost of swimming to Ucrit. Following exhaustion at Ucrit, recovery time was 42-78 min, depending upon the fish stock. The recovery times are several-fold shorter than previously reported for juvenile, hatchery-raised salmonids. EPOC varied fivefold among the fish stocks, being greatest for Gates Creek sockeye salmon (O. nerka), which was the salmon stock that had the longest in-river migration, experienced the warmest temperature and achieved the highest maximum oxygen consumption compared with the other salmon stocks that were studied. EPOC was related to Ucrit, which in turn was directly influenced by ambient test temperature. The non-aerobic cost of swimming to Ucrit was estimated to add an additional 21.4-50.5% to the oxygen consumption measured at Ucrit. While these non-aerobic contributions to swimming did not affect the minimum cost of transport, they were up to three times higher than the value used previously for an energetic model of salmon migration in the Fraser River, BC, Canada. As such, the underestimate of non-aerobic swimming costs may require a reevaluation of the importance of how in-river barriers like rapids and bypass facilities at dams, and year-to-year changes in river flows and temperatures, affect energy use and hence migration success. PMID:12909706

  17. Net trophic transfer efficiency of PCBs to Lake Michigan coho salmon from their prey

    USGS Publications Warehouse

    Madenjian, Charles P.; Elliott, Robert F.; Schmidt, Larry J.; DeSorcie, Timothy J.; Hesselberg, Robert J.; Quintal, Richard T.; Begnoche, Linda J.; Bouchard, Patrick M.; Holey, Mark E.

    1998-01-01

    Most of the polychlorinated biphenyl (PCB) body burden accumulated by coho salmon (Oncorhynchus kisutch) from the Laurentian Great Lakes is from their food. We used diet information, PCB determinations in both coho salmon and their prey, and bioenergetics modeling to estimate the efficiency with which Lake Michigan coho salmon retain PCBs from their food. Our estimate was the most reliable estimate to date because (a) the coho salmon and prey fish sampled during our study were sampled in spring, summer, and fall from various locations throughout the lake, (b) detailed measurements were made on the PCB concentrations of both coho salmon and prey fish over wide ranges in fish size, and (c) coho salmon diet was analyzed in detail from April through November over a wide range of salmon size from numerous locations throughout the lake. We estimated that coho salmon from Lake Michigan retain 50% of the PCBs that are contained within their food.

  18. Developmental changes in the pyruvate kinase isozymes of coho salmon.

    PubMed

    Guderley, H E; Cardenas, J M

    1979-04-01

    Pyruvate kinase exists as two major isozymes in coho salmon. As in mammals and birds, one form is present in the early embryo and maintains a wide tissue distribution in adults. This salmonid type K shows anodal migration during electrophoresis at pH 7.5. The appearence of functional musculature in the developing embryos. In adult animals this second form is the only pyruvate kinase in muscle. Brain, kidney, liver and gill contain primarily the type K pyruvate kinase while heart contains both major forms along with three intermediate forms which presumably constitute a hybrid set. Since there is no additional isozyme restricted to gluconeogenic tissues, we conclude that a type L isozyme has not developed in these animals. The two major isozymes are immunologically distincy. Both forms are dubject to fructose 1,6-bisphosphate activation of phosphoenolpyruvate binding, but the magnitude of the effect is small. The affinities for phosphoenolpyruvate are similar, but salmon type K has hyperbolic saturation curves with this substrate and type M has sigmoidal saturation curves. While the immunological data indicates considerable divergence in structure, the kinetic parameters of the two forms have remained relatively similar. PMID:469475

  19. Chlorinated hydrocarbons in the young of Lake Michigan coho salmon

    USGS Publications Warehouse

    Willford, W.A.; Sills, J.B.; Whealdon, E.W.

    1969-01-01

    Three thousand eyed coho salmon (Oncorhynchus kisutch) eggs from Lake Michigan stock were sent by the Department of Natural Resources to the Fish Control Laboratory, La Crosse, Wis., on January 15, 1969, for use in evaluating candidate fish-cnotrol chemicals.

  20. EFFECTS OF SEVERAL METALS ON SMOLTING OF COHO SALMON

    EPA Science Inventory

    Exposure to sublethal levels of copper in freshwater reduces Na,K-activated gill ATP'ase in coho salmon and results in latent effects such as poor migration and poor survival in seawater (EPA-660/3-75-009). Similar tests with cadmium, chromium, mercury nickle and zinc indicated t...

  1. Preservation Methods for Retaining n-3 Polyunsaturated Fatty Acids in Alaska Coho Salmon (Oncorhynchus kisutch) Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coho salmon (Oncorhynchus kisutch) fillets were processed using five different methods (smoking, canning, freezing, acidifying, and salting) to evaluate the effect of preservation choice on the quality of polyunsaturated fatty acids (PUFA). Salmon preserved by smoking, canning, or freezing retained ...

  2. Mid-Columbia Coho Salmon Reintroduction Feasibility Project : Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration; Washington Department of Fish and Wildlife; Confederated Tribes and Bands of the Yakama Nation

    1999-01-01

    Before the Bonneville Power Administration (BPA) decides whether to fund a program to reintroduce coho salmon to mid-Columbia River basin tributaries, research is needed to determine the ecological risks and biological feasibility of such an effort. Since the early 1900s, the native stock of coho has been decimated in the tributaries of the middle reach of the Columbia River. The four Columbia River Treaty Tribes identified coho reintroduction in the mid-Columbia as a priority in the Tribal Restoration Plan. It is a comprehensive plan put forward by the Tribes to restore the Columbia River fisheries. In 1996, the Northwest Power Planning Council (NPPC) recommended the tribal mid-Columbia reintroduction project for funding by BPA. It was identified as one of fifteen high-priority supplementation projects for the Columbia River basin, and was incorporated into the NPPC`s Fish and Wildlife Program. The release of coho from lower Columbia hatcheries into mid-Columbia tributaries is also recognized in the Columbia River Fish Management Plan.

  3. Comparative diets of subyearling Atlantic salmon and subyearling coho salmon in Lake Ontario tributaries

    USGS Publications Warehouse

    Johnson, James H.; Ringler, Neil H.

    2016-01-01

    Restoration of Atlantic salmon (Salmo salar) in Lake Ontario could potentially be negatively affected by the presence of non-native salmonids that are naturalized in the basin. Coho salmon (Oncorhynchus kisutch) have been spawning successfully in Lake Ontario tributaries for over 40 years and their juveniles will reside in streams with juvenile Atlantic salmon for one year. This study sought to examine interspecific diet associations between these species, and to compare diets to the composition of the benthos and drift in three Lake Ontario tributaries. Aquatic insects, mainly ephemeropterans and chironomids were the major prey consumed by subyearling Atlantic salmon whereas terrestrial invertebrates made up only 3.7% of the diet. Ephemeropterans and chironomids were the primary aquatic taxa consumed by subyearling coho salmon but, as a group, terrestrial invertebrates (41.8%) were the major prey. In sympatry, Atlantic salmon fed more actively from the benthos whereas the diet of coho salmon was more similar to the drift. The different feeding pattern of each species resulted in low interspecific diet similarity. There is likely little competition between these species for food in Lake Ontario tributaries as juveniles.

  4. Embryotoxic action of methyl mercury on coho salmon embryos

    SciTech Connect

    Devlin, E.W. ); Mottet, N.K. )

    1992-09-01

    Environmental levels of heavy metals like mercury have increased significantly over the last 100 years in response to anthropogenic activities. More recently the increase in acid precipitation may make the situation worse in that it appears to increase the production of methyl mercury (MeHg) in the surface waters and benthic regions. Concentrations of mercury in surface waters are normally relatively low in the ng/L range, yet levels of mercury in fish tissue in the mg/L range are not uncommon. There have been several well-publicized accounts of acute mercury poisoning from consuming highly contaminated fish. Less is known about the health risks associated with consumption of fish with low levels of mercury contamination. Human embryos are especially sensitive to MeHg's teratogenic effects. For example, psychomotor retardation is a common outcome of fetal MeHg exposure. Such neural effects may be the result of abnormal migration of neurons during development. A number of different species have been utilized to investigate the effects of mercury on teleost development. Coho salmon, like all teleostean embryos possess mitotic cells that provide a useful model for the study of MeHg teratogenesis. Due to their large size, coho salmon embryos are easily observed and maintained in the laboratory. In addition large numbers of eggs are available from one female thus minimizing effects of variability among individuals. The objective of the present study is to characterize the toxic levels of MeHg and study their uptake. In addition some of the teratogenic effects of MeHg on coho salmon embryos will be described. 16 refs., 3 figs., 1 tab.

  5. Dietary calcein marking of brook trout, Atlantic salmon, yellow perch, and coho salmon scales

    USGS Publications Warehouse

    Honeyfield, D.C.; Ostrowski, C.S.; Fletcher, J.W.; Mohler, J.W.

    2006-01-01

    Brook trout Salvelinus fontinalis, Atlantic salmon Salmo salar, coho salmon Oncorhynchus kisutch, and yellow perch Perca flavescens fed calcein for 5 d showed characteristic calcein scale marks 7-10 d postmarking. In fish fed 0.75 or 1.25 g of calcein per kilogram of feed, the percentage of fish that exhibited a calcein mark was 100% in brook trout, 93-98% in Atlantic salmon, 60% in yellow perch, and 0% in coho salmon. However, when coho salmon were fed 5.25 g calcein/kg feed, 100% marking was observed 7-10 d postmarking. Brook trout were successfully marked twice with distinct bands when fed calcein 5 months apart. Brook trout scale pixel luminosity increased as dietary calcein increased in experiment 2. For the second calcein mark, scale pixel luminosity from brook trout fed 1.25 g calcein/kg feed was numerically higher (P < 0.08) than scales from fish fed 0.75 g calcein/kg feed. Mean pixel luminosity of calcein-marked Atlantic salmon scales was 57.7 for fish fed 0.75 g calcein/kg feed and 55.2 for fish fed 1.25 g calcein/kg feed. Although feed acceptance presented a problem in yellow perch, these experiments provide evidence that dietary calcein is a viable tool for marking fish for stock identification. ?? Copyright by the American Fisheries Society 2006.

  6. Susceptibility of progeny from crosses among three stocks of coho salmon to infection by Ceratomyxa shasta

    USGS Publications Warehouse

    Hemmingsen, A.R.; McIntyre, J.D.; Fryer, J.L.

    1986-01-01

    Crossbred coho salmon Oncorhynchus kisutch were produced from all possible crosses among three stocks. The relative susceptibility of the progeny to infection by the myxosporean parasite Ceratomyxa shasta was determined by exposure of juvenile fish to Willamette River water that contained the infective stage of the parasite. Susceptibility of coho salmon native to the Columbia River basin to the disease ceratomyxosis was relatively low whereas that of coho salmon from remote locations was relatively high. Susceptibility of crossbred progeny nearly always was intermediate between the susceptibilities of fish from the parental stocks.

  7. Identification of marine-derived lipids in juvenile coho salmon and aquatic insects through fatty acid analysis

    USGS Publications Warehouse

    Heintz, Ron A.; Wipfli, Mark S.; Hudson, John P.

    2010-01-01

    The energetic benefits enjoyed by consumers in streams with salmon runs depend on how those benefits are accrued. Adult Pacific salmon Oncorhynchus spp. deliver significant amounts of nutrients (i.e., nitrogen and phosphorus) and carbon to streams when they spawn and die; these nutrient additions can have demonstrable effects on primary production in streams. Consumption of carcass tissues or eggs provides for direct energy subsidies to consumers and may have significant effects on their condition. In this study, comparisons of juvenile coho salmon O. kisutch and aquatic insects exposed to terrestrial and marine energy sources demonstrated that direct consumption of marine-derived lipids had a significant effect on the lipid reserves of consumers. Direct consumption of marine-derived tissues was verified through fatty acid analysis. Selected aquatic insects and juvenile coho salmon were reared for 6 weeks in experimental streams supplied with terrestrial or marine energy sources. Chironomid midges, nemourid stoneflies, and juvenile coho salmon exposed to the marine energy source altered their fatty acid compositions by incorporating the long-chain polyunsaturated fatty acids that are characteristic of marine fish. The fatty acid composition of baetid mayflies was unaffected. The direct movement of specific fatty markers indicated that direct consumption of marine-derived tissues led to increased energy reserves (triacylglycerols) in consumers. Similar results were obtained for juvenile coho salmon sampled from natural streams before and after the arrival of adult salmon runs. These data indicate that marine-derived lipids from anadromous fish runs are an important source of reserve lipids for consumers that overwinter in streams.

  8. The influence of fall-spawning coho salmon (Oncorhynchus kisutch) on growth and production of juvenile coho salmon rearing in beaver ponds on the Copper River Delta, Alaska

    USGS Publications Warehouse

    Lang, D.W.; Reeves, G.H.; Hall, J.D.; Wipfli, M.S.

    2006-01-01

    This study examined the influence of fall-spawning coho salmon (Oncorhynchus kisutch) on the density, growth rate, body condition, and survival to outmigration of juvenile coho salmon on the Copper River Delta, Alaska, USA. During the fall of 1999 and 2000, fish rearing in beaver ponds that received spawning salmon were compared with fish from ponds that did not receive spawners and also with fish from ponds that were artificially enriched with salmon carcasses and eggs. The response to spawning salmon was variable. In some ponds, fall-spawning salmon increased growth rates and improved the condition of juvenile coho salmon. The enrichment with salmon carcasses and eggs significantly increased growth rates of fish in nonspawning ponds. However, there was little evidence that the short-term growth benefits observed in the fall led to greater overwinter growth or survival to outmigration when compared with fish from the nonspawning ponds. One potential reason for this result may be that nutrients from spawning salmon are widely distributed across the delta because of hydrologic connectivity and hyporheic flows. The relationship among spawning salmon, overwinter growth, and smolt production on the Copper River Delta does not appear to be limited entirely to a simple positive feedback loop. ?? 2006 NRC.

  9. OVER-WINTER JUVENILE COHO SALMON GROWTH AND SURVIVAL IN A COASTAL OREGON STREAM NETWORK

    EPA Science Inventory

    Winter habitat has the potential to be a limiting factor for the production and condition of coho salmon (Oncorhynchus kisutch) smolts, but little is known about how the variation of habitat throughout whole stream networks influences coho smolts. Over a four year period (2002 - ...

  10. VARIATION IN JUVENILE COHO SALMON SUMMER ABUNDANCE: HIERARCHICAL ANALYSIS OF HABITAT EFFECTS

    EPA Science Inventory

    Varying habitat conditions found across a stream network during the summer months may limit the abundance of salmonids such as coho (Oncorhynchus kisutch). We examined the abundance of juvenile coho salmon across a stream network in an Oregon coast range basin from 2002 through ...

  11. Reproductive success in wild and hatchery male coho salmon

    PubMed Central

    Neff, Bryan D.; Garner, Shawn R.; Fleming, Ian A.; Gross, Mart R.

    2015-01-01

    Salmon produced by hatcheries have lower fitness in the wild than naturally produced salmon, but the factors underlying this difference remain an active area of research. We used genetic parentage analysis of alevins produced by experimentally mixed groups of wild and hatchery coho salmon (Oncorhynchus kisutch) to quantify male paternity in spawning hierarchies. We identify factors influencing paternity and revise previously published behavioural estimates of reproductive success for wild and hatchery males. We observed a strong effect of hierarchy size and hierarchy position on paternity: in two-male hierarchies, the first male sired 63% (±29%; s.d.) of the alevins and the second male 37% (±29%); in three-male hierarchies, the first male sired 64% (±26%), the second male 24% (±20%) and the third male 12% (±10%). As previously documented, hatchery males hold inferior positions in spawning hierarchies, but we also discovered that hatchery males had only 55–84% the paternity of wild males when occupying the same position within a spawning hierarchy. This paternity difference may result from inferior performance of hatchery males during sperm competition, female mate choice for wild males, or differential offspring survival. Regardless of its cause, the combination of inferior hierarchical position and inferior success at a position resulted in hatchery males having only half (51%) the reproductive success of wild males. PMID:26361548

  12. Genetic Variation in DNA of Coho Salmon from the Lower Columbia River : Final Report 1993.

    SciTech Connect

    Fobes, Stephen; Knudsen, Kathy; Allendorf, Fred

    1993-04-01

    The goal of this project was to develop techniques to provide the information needed to determine if Lower Columbia River coho salmon represent a 'species' under the Endangered Species Act. Our report features two new nuclear DNA approaches to the improved detection of genetic variation: (1) Studies of DNA-level genetic variation for two nuclear growth hormone genes; (2) Use of arbitrary DNA primers (randomly amplified polymorphic DNA, or 'RAPD' primers) to detect variation at large numbers of nuclear genes. We used the polymerase chain reaction (PCR) to amplify variable sections (introns) of two growth hormone genes (GH-I and G/f-Z) in several salmonid species. Coho salmon had three DNA length variants for G/-I intron C. Restriction analysis and sequencing provided valuable information about the mode of evolution of these DNA sequences. We tested segregation of the variants in captive broods of coho salmon, and demonstrated that they are alleles at a single Mendelian locus. Population studies using the GH-1 alleles showed highly significant frequency differences between Lower Columbia River and Oregon Coast coho salmon, and marginal differences among stocks within these regions. These new markers are adequately defined and tested to use in coho salmon population studies of any size. The nature of the variation at GH-1 (Variable Number Tandem Repeats, or 'VNTRs') suggests that more genetic variants will be found in coho salmon from other areas. GH-2 intron C also showed length variation in coho salmon, and this variation was found to be sex-linked. Because PCR methods require minute amounts of tissue, this discovery provides a technique to determine the gender of immature coho salmon without killing them. Chinook salmon had restriction patterns and sequence divergences similar to coho salmon. Thus, we expect that sex linkage of GH-2 alleles predates the evolutionary divergence of Pacific salmon species, and that gender testing with this system will work on the

  13. Behavior and movement of formerly landlocked juvenile coho salmon after release into the free-flowing Cowlitz River, Washington

    USGS Publications Warehouse

    Kock, Tobias J.; Henning, Julie A.; Liedtke, Theresa L.; Royer, Ida M.; Ekstrom, Brian K.; Rondorf, Dennis W.

    2011-01-01

    Formerly landlocked Coho Salmon (Oncorhynchus kisutch) juveniles (age 2) were monitored following release into the free-flowing Cowlitz River to determine if they remained in the river or resumed seaward migration. Juvenile Coho Salmon were tagged with a radio transmitter (30 fish) or Floy tag (1050 fish) and their behavior was monitored in the lower Cowlitz River. We found that 97% of the radio-tagged fish remained in the Cowlitz River beyond the juvenile outmigration period, and the number of fish dispersing downstream decreased with increasing distance from the release site. None of the tagged fish returned as spawning adults in the 2 y following release. We suspect that fish in our study failed to migrate because they exceeded a threshold in size, age, or physiological status. Tagged fish in our study primarily remained in the Cowlitz River, thus it is possible that these fish presented challenges to juvenile salmon migrating through the system either directly by predation or indirectly by competition for food or habitat. Given these findings, returning formerly landlocked Coho Salmon juveniles to the free-flowing river apparently provided no benefit to the anadromous population. These findings have management implications in locations where landlocked salmon have the potential to interact with anadromous species of concern.

  14. 76 FR 62375 - Endangered and Threatened Species; 90-Day Finding on Petitions To Delist Coho Salmon Under the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... California Coast (SONCC) coho salmon ESU, which is listed as threatened (70 FR 37160; June 28, 2005), and... June 28, 2005 (70 FR 37160). In that final rule, we concluded that the SONCC coho salmon ESU includes... Endangered Species Act Listing Determinations for Pacific Salmon and Steelhead'' (70 FR 37204; June 28,...

  15. Residues of DDT in lake trout (Salvelinus namaycush) and coho salmon (Oncorhynchus kisutch) from the Great Lakes

    USGS Publications Warehouse

    Reinert, Robert E.; Bergman, Harold L.

    1974-01-01

    Concentrations of DDT residues were higher in lake trout (Salvelinus namaycush) from southern Lake Michigan in 1966–70 (average 18.1 ppm in fish 558–684 mm long) than in lake trout of the same size-class from Lake Superior in 1968–69 (4.4 ppm), and higher in adult coho salmon (Oncorhynchus kisutch) from Lake Michigan in 1968–71 (averages for different year-classes, 9.9–14.0 ppm) than in those from Lake Erie in 1969 (2.2 ppm). Residues were significantly higher in lake trout from southern Lake Michigan than in those from the northern part of the lake. In lakes Michigan and Superior, the levels increased with length of fish and percentage oil. In Lake Michigan coho salmon, the residues remained nearly stable (2–4 ppm) from September of the 1st yr of lake residence through May or early June of the 2nd yr, but increased three to four times in the next 3 mo. Residues in Lake Erie coho salmon did not increase during this period, which preceded the spawning season. Although the concentrations of total residues in whole, maturing Lake Michigan coho salmon remained unchanged from August 1968 until near the end of the spawning season in January 1969, the residues were redistributed in the tissues of the spawning-run fish; concentrations in the loin and brain were markedly higher in January than in August. This relocation of DDT residues accompanied a marked decrease in the percentage of oil in the fish, from 13.2 in August to 2.8 in January. Concentrations of residues were relatively high in eggs of both lake trout (4.6 ppm) and coho salmon (7.4–10.2 ppm) from Lake Michigan. The percentage composition of the residues (p,p′DDE, o,p′/DDT, p,p′DDT, and p,p′DDT) did not differ significantly with life stage, size, age, or locality, or date of collection of lake trout or coho salmon.

  16. Estuarine environments as rearing habitats for juvenile Coho Salmon in contrasting south-central Alaska watersheds

    USGS Publications Warehouse

    Hoem Neher, Tammy D.; Rosenberger, Amanda E.; Zimmerman, Christian E.; Walker, Coowe M.; Baird, Steven J.

    2013-01-01

    For Pacific salmon, estuaries are typically considered transitional staging areas between freshwater and marine environments, but their potential as rearing habitat has only recently been recognized. The objectives of this study were two-fold: (1) to determine if Coho Salmon Oncorhynchus kisutch were rearing in estuarine habitats, and (2) to characterize and compare the body length, age, condition, and duration and timing of estuarine occupancy of juvenile Coho Salmon between the two contrasting estuaries. We examined use of estuary habitats with analysis of microchemistry and microstructure of sagittal otoliths in two watersheds of south-central Alaska. Juvenile Coho Salmon were classified as estuary residents or nonresidents (recent estuary immigrants) based on otolith Sr : Ca ratios and counts of daily growth increments on otoliths. The estuaries differed in water source (glacial versus snowmelt hydrographs) and in relative estuarine and watershed area. Juvenile Coho Salmon with evidence of estuary rearing were greater in body length and condition than individuals lacking evidence of estuarine rearing. Coho Salmon captured in the glacial estuary had greater variability in body length and condition, and younger age-classes predominated the catch compared with the nearby snowmelt-fed, smaller estuary. Estuary-rearing fish in the glacial estuary arrived later and remained longer (39 versus 24 d of summer growth) during the summer than did fish using the snowmelt estuary. Finally, we observed definitive patterns of overwintering in estuarine and near shore environments in both estuaries. Evidence of estuary rearing and overwintering with differences in fish traits among contrasting estuary types refute the notion that estuaries function as only staging or transitional habitats in the early life history of Coho Salmon.

  17. Post-release behavior and movement patterns of Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) after capture using alternative commercial fish gear, lower Columbia River, Washington and Oregon, 2013

    USGS Publications Warehouse

    Liedtke, Theresa L.; Kock, Tobias J.; Evans, Scott D.; Hansen, Gabriel S.; Rondorf, Dennis W.

    2014-01-01

    In 2011 and 2012, WDFW conducted post-release mortality studies of steelhead (Oncorhynchus mykiss), Chinook salmon (Oncorhynchus tshawytscha), and coho salmon (Oncorhynchus kisutch) that were captured using beach or purse seines. These studies were comprised of two groups of fish tagged with passive integrated transponder tags (PIT tags): (1) treatment fish that were captured by one of the gear types 9–25 river kilometers (rkm) downstream of Bonneville Dam (rkm 234); and (2) control fish that were captured at the Adult Fish Facility near the Washington shore fish ladder at Bonneville Dam, and then transported and released 8 rkm downstream of the Bonneville Dam. Fish were confirmed to have survived if they moved upstream and were detected on PIT-tag antennas at or upstream of Bonneville Dam, were recovered at hatcheries or at the dam, or were captured by commercial or sport fishers. Post-release survival estimates were higher for steelhead (89–98 percent) than for Chinook salmon and coho salmon (50–90 percent; Washington Department of Fish and Wildlife, unpub. data, 2014). However, some Chinook salmon and coho salmon return to hatcheries, or spawn in the mainstem Columbia River and in tributaries downstream of Bonneville Dam. The proportion of Chinook salmon and coho salmon in the treatment group that were destined for areas downstream of Bonneville Dam likely was higher than in the control group because the control fish were collected as they were attempting to pass the dam. If this assertion was true, mortality would have been overestimated in these studies, so WDFW developed a study plan to determine the post-release movements and intended location of Chinook salmon and coho salmon collected with beach and purse seines in the lower Columbia River.

  18. Hormonal regulation of lipid metabolism in developing coho salmon, Oncorhynchus kisutch

    SciTech Connect

    Sheridan, M.A.

    1985-01-01

    Lipid metabolism in juvenile coho salmon is characterized, and adaptive changes in lipid mobilization are described in relation to development and hormonal influences. The rates of lipogenesis and lipolysis were determined in selected tissues of juvenile salmon during the period of seawater preadaptive development (smoltification). Neutral lipid (sterol) and fatty acid synthesis in the liver and mesenteric fat was measured by tritium incorporation. Fatty acid synthesis in the liver and mesenteric fat decreased by 88% and 81%, respectively, between late February (parr) and early June (smolt). To assess the role of hormones in smoltification-associated lipid depletion, growth hormone, prolactin, thyroxin and cortisol were administered in vivo early in development (parr) to determine if any of these factors could initiate the metabolic responses normally seen later in development (smolt). Growth hormone stimulated lipid mobilization from coho salmon parr. Prolactin strongly stimulated lipid mobilization in coho parr. Thyroxin and cortisol also stimulated lipid mobilization for coho salmon parr. The direct effect of hormones was studied by in vitro pH-stat incubation of liver slices. These data suggest that norepinephrine stimulates fatty acid release via ..beta..-adrenergic pathways. Somatostatin and its partial analogue from the fish caudal neurosecretory system, urotensin II, also affect lipid mobilization. These results establish the presence of hormone-sensitive lipase in salmon liver and suggest that the regulation of lipid metabolism in salmon involves both long-acting and short-acting hormonal agents.

  19. Spatio-temporal covariability in coho salmon ( Oncorhynchus kisutch) survival, from California to southeast Alaska

    NASA Astrophysics Data System (ADS)

    Teo, Steven L. H.; Botsford, Louis W.; Hastings, Alan

    2009-12-01

    One of the motivations of the GLOBEC Northeast Pacific program is to understand the apparent inverse relationship between the increase in salmon catches in the Gulf of Alaska and concurrent declines in the California Current System (CCS). We therefore used coded wire tag (CWT) data to examine the spatial and temporal patterns of covariability in the survival of hatchery coho salmon along the coast from California to southeast Alaska between release years 1980 and 2004. There is substantial covariability in coho salmon survival between neighboring regions along the coast, and there is clear evidence for increased covariability within two main groups - a northern and southern group. The dividing line between the groups lies approximately at the north end of Vancouver Island. However, CWT survivals do not support inverse covariability in hatchery coho salmon survival between southeast Alaska and the CCS over this 25 year time span. Instead, the hatchery coho survival in southeast Alaska is relatively uncorrelated with coho survival in the California Current System on inter-annual time scales. The 50% correlation and e-folding scales (distances at which magnitude of correlations decreases to 50% and e -1 (32.8%), respectively) of pairwise correlations between individual hatcheries were 150 and 217 km, which are smaller than that reported for sockeye, pink, and chum salmon. The 50% correlation scale of coho salmon is also substantially smaller than those reported for upwelling indices and sea surface temperature. There are also periods of 5-10 years with high covariability between adjacent regions on the scale of hundreds of km, which may be of biological and physical significance.

  20. Family size and effective population size in a hatchery stock of coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Simon, R.C.; McIntyre, J.D.; Hemmingsen, A.R.

    1986-01-01

    Means and variances of family size measured in five year-classes of wire-tagged coho salmon (Oncorhynchus kisutch) were linearly related. Population effective size was calculated by using estimated means and variances of family size in a 25-yr data set. Although numbers of age 3 adults returning to the hatchery appeared to be large enough to avoid inbreeding problems (the 25-yr mean exceeded 4500), the numbers actually contributing to the hatchery production may be too low. Several strategies are proposed to correct the problem perceived. Argument is given to support the contention that the problem of effective size is fairly general and is not confined to the present study population.

  1. Influence of species, size and relative abundance on the outcomes of competitive interactions between brook trout and juvenile coho salmon

    USGS Publications Warehouse

    Thornton, Emily J; Duda, Jeff; Quinn, Thomas P

    2016-01-01

    Resource competition between animals is influenced by a number of factors including the species, size and relative abundance of competing individuals. Stream-dwelling animals often experience variably available food resources, and some employ territorial behaviors to increase their access to food. We investigated the factors that affect dominance between resident, non-native brook trout and recolonizing juvenile coho salmon in the Elwha River, WA, USA, to see if brook trout are likely to disrupt coho salmon recolonization via interference competition. During dyadic laboratory feeding trials, we hypothesized that fish size, not species, would determine which individuals consumed the most food items, and that species would have no effect. We found that species, not size, played a significant role in dominance; coho salmon won 95% of trials, even when only 52% the length of their brook trout competitors. As the pairs of competing fish spent more time together during a trial sequence, coho salmon began to consume more food, and brook trout began to lose more, suggesting that the results of early trials influenced fish performance later. In group trials, we hypothesized that group composition and species would not influence fish foraging success. In single species groups, coho salmon consumed more than brook trout, but the ranges overlapped. Brook trout consumption remained constant through all treatments, but coho salmon consumed more food in treatments with fewer coho salmon, suggesting that coho salmon experienced more intra- than inter-specific competition and that brook trout do not pose a substantial challenge. Based on our results, we think it is unlikely that competition from brook trout will disrupt Elwha River recolonization by coho salmon.

  2. 76 FR 35755 - Listing Endangered and Threatened Species: Threatened Status for the Oregon Coast Coho Salmon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... INFORMATION: We first proposed to list the OC coho salmon ESU as threatened under the ESA in 1995 (60 FR 38011... threatened listing for this ESU (75 FR 29489). As part of a legal settlement agreement in 2008, we committed... FR 29489). We solicited comments and suggestions from all interested parties including the...

  3. INFLUENCE OF SUMMER TEMPERATURE SPATIAL VARIABILITY ON DISTRIBUTION AND CONDITION OF JUVENILE COHO SALMON

    EPA Science Inventory

    abstract

    Temperature during the summer months can influence the distribution, abundance and physiology of stream salmonids such as coho salmon (Oncorhynchus kisutch). Effects can be direct, via physiological responses, as well as indirect, via limited food resources, alter...

  4. Modeling stream network-scale variation in coho salmon overwinter survival and smolt size

    EPA Science Inventory

    We used multiple regression and hierarchical mixed-effects models to examine spatial patterns of overwinter survival and size at smolting in juvenile coho salmon Oncorhynchus kisutch in relation to habitat attributes across an extensive stream network in southwestern Oregon over ...

  5. LIMITED EPIZOOTIC OF NEUROBLASTOMA IN COHO SALMON REARED IN CHLORINATED-DECHLORINATED WATER

    EPA Science Inventory

    During the 1976-77 brood year, approximately 12 cases of neuroblastoma were observed in a captive group of 100,000 fingerling coho salmon (Oncorhynchus kisutch) reared in a commercial hatchery. The tumors were large, occurring in the skeletal muscle near the dorsal fin causing co...

  6. Enzymatic Digestion of Eye and Brain Tissues of Sockeye and Coho Salmon, and Dusky Rockfish Commercially Harvested in Alaska

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potential feed ingredients with high lipid content were made by enzymatic digestion followed by centrifugation of eye tissue from dusky rockfish (Sebastes ciliatos), coho salmon (Oncorhynchus kisutch), and sockeye salmon (Oncorhynchus nerka) and brain tissue from sockeye salmon. Materials with high ...

  7. Patterns of co-variability among California Current chinook salmon, coho salmon, Dungeness crab, and physical oceanographic conditions

    NASA Astrophysics Data System (ADS)

    Botsford, L. W.; Lawrence, C. A.

    One of the primary motivations for the GLOBEC NEP program was the apparent inverse relationship between the increase in salmon populations in the Gulf of Alaska since the mid-1970s and concurrent declines in salmon populations in the California Current. The increase in abundance of some salmon species in the Gulf of Alaska can be plausibly explained based on mechanisms involving changes in physical structure, biological productivity, and salmon survival. To assess concurrent changes in salmon populations in the California Current and their possible physical and biological bases we examined temporal and spatial patterns of co-variability between biological variables and physical descriptors along the coasts of Washington, Oregon and California, from 1950 to 1990. The biological variables were catch records of coho salmon, chinook salmon and an ecologically related species, Dungeness crab. The physical variables were sea surface temperature, sea surface height (SSH) and the upwelling index (UWI). We found that while California Current coho salmon declined uniformly in the mid-1970s, consistent with the proposed inverse relationship, chinook salmon did not. All three species appear to be driven by the dominant mode of co-variability in the three physical variables, an indicator of warm/cool water conditions, but in different ways. In general, warm conditions have a negative effect on salmon at the age of ocean entry and spawning return, and Dungeness crab during the larval stage, while cool conditions have a positive effect. Differences in spatio-temporal variability between the two salmon species suggest they may respond to ocean conditions differently: coho salmon vary synchronously along the coast on annual time scales, while chinook salmon vary on slightly longer time scales in a specific spatial pattern. Dungeness crab vary on 10-year time scales, synchronously along the coast, except for the most southern areas (central California) where populations collapsed in

  8. Survey of parasites in threatened stocks of coho salmon (Oncorhynchus kisutch) in Oregon by examination of wet tissues and histology.

    PubMed

    Ferguson, Jayde A; St-Hilaire, Sophie; Peterson, Tracy S; Rodnick, Kenneth J; Kent, Michael L

    2011-12-01

    We are conducting studies on the impacts of parasites on Oregon coastal coho salmon (Oncorhynchus kistuch). An essential first step is documenting the geographic distribution of infections, which may be accomplished by using different methods for parasite detection. Thus, the objectives of the current study were to (1) identify parasite species infecting these stocks of coho salmon and document their prevalence, density, and geographic distribution; (2) assess the pathology of these infections; and (3) for the first time, determine the sensitivity and specificity of histology for detecting parasites compared with examining wet preparations for muscle and gill infections. We examined 576 fry, parr, and smolt coho salmon in total by histology. The muscle and gills of 219 of these fish also were examined by wet preparation. Fish were collected from 10 different locations in 2006-2007. We identified 21 different species of parasites in these fish. Some parasites, such as Nanophyetus salmincola and Myxobolus insidiosus, were common across all fish life stages from most basins. Other parasites, such as Apophallus sp., were more common in underyearling fish than smolts and had a more restricted geographic distribution. Additional parasites commonly observed were as follows: Sanguinicola sp., Trichodina truttae , Epistylis sp., Capriniana piscium, and unidentified metacercariae in gills; Myxobolus sp. in brain; Myxidium salvelini and Chloromyxum majori in kidney; Pseudocapillaria salvelini and adult digenean spp. in the intestine. Only a few parasites, such as the unidentified gill metacercariae, elicted overt pathologic changes. Histology had generally poor sensitivity for detecting parasites; however, it had relatively good specificity. We recommend using both methods for studies or monitoring programs requiring a comprehensive assessment of parasite identification, enumeration, and parasite-related pathology. PMID:21668345

  9. Aflatoxin B1 induced hepatic neoplasia in Great Lakes coho salmon

    SciTech Connect

    Black, J.J.; Maccubbin, A.E.; Myers, H.K.; Zeigel, R.F.

    1988-11-01

    There is considerable interest in the development of fish models for carcinogen bioassays and the study of chemically induced cancer in wild fish species. Among salmonid species, rainbow trout have mainly been used for carcinogenesis research, in part due to the role played by this species in the discovery of the carcinogenic action of aflatoxin B1 (AFB1). Recently, apparatus and methodology for microinjection of salmonid fish embryos with chemical carcinogens has been described. Because eggs produced by Pacific salmon are relatively much larger than those of rainbow trout, they would provide an attractive subject for embryo microinjection. The Great Lakes are annually stocked with large numbers of coho salmon. It has been recommended to use coho salmon as an indicator for monitoring ecosystem health in the Great Lakes, because stockings throughout health in the Great Lakes, because stockings throughout the Great Lakes are from a common genetic strain and in the lake environment they have a defined food source and life cycle. These considerations led the authors to test coho salmon for their sensitivity to the potent hepatocarcinogen, AFB1. The present report describes in preliminary form, the results of these experiments.

  10. Effects of chrysotile asbestos on coho salmon and green sunfish: evidence of behavioral and pathological stress

    SciTech Connect

    Belanger, S.E.; Schurr, K.; Allen, D.J.; Gohara, A.F.

    1986-02-01

    The effects of chrysotile asbestos on larval coho salmon (Oncorhynchus kisutch) and juvenile green sunfish (Lepomis cyanellus) were investigated at levels approximating those reported in the Great Lakes basin (10(6) fibers/liter). Behavioral stress effects, such as loss of rheotaxic position and balance, were observed in salmon exposed at 3.0 X 10(6) fibers/liter and in sunfish exposed at 1.5 and 3.0 X 10(6) fibers/liter. Coho larvae at 1.5 X 10(6) fibers/liter were significantly more susceptible to an anesthetic stress test, becoming ataxic and losing equilibrium faster than control cohorts (P less than 0.001). Two of 106 larvae exposed at 3.0 X 10(6) fibers/liter developed tumorous swellings and three additional fish developed coelomic distentions. Cytological examination of ventral epidermal tissue revealed cellular histolysis, and evidence by transmission electron microscopy confirmed the presence of asbestos in the salmon larvae. Distortion of the lateral line region in asbestos-treated coho salmon was linked to behavioral and orientational aberrations. Differential mortality was not observed between control and treated groups of either test species.

  11. Estimating the future decline of wild coho salmon populations resulting from early spawner die-offs in urbanizing watersheds of the Pacific Northwest, USA.

    PubMed

    Spromberg, Julann A; Scholz, Nathaniel L

    2011-10-01

    Since the late 1990 s, monitoring efforts evaluating the effectiveness of urban stream restoration projects in the greater metropolitan area of Seattle, Washington, USA, have detected high rates of premature mortality among adult coho salmon (Oncorhynchus kisutch) in restored spawning habitats. Affected animals display a consistent suite of symptoms (e.g., disorientation, lethargy, loss of equilibrium, gaping, fin splaying) that ultimately progresses to death on a timescale of a few hours. Annual rates of prespawn mortality observed over multiple years, across several drainages, have ranged from approximately 20% to 90% of the total fall run within a given watershed. Current weight-of-evidence suggests that coho prespawn mortality is caused by toxic urban stormwater runoff. To evaluate the potential consequences of current and future urbanization on wild coho salmon, we constructed life-history models to estimate the impacts of prespawn mortality on coho populations and metapopulations. At the low (20%) and high (90%) ends of the range of observed mortality, model results indicated the mean time to extinction of localized coho populations in 115 and 8 y, respectively. The presence of productive source populations (i.e., unaffected by prespawn mortality) within a metapopulation reduced local extinction risk. However, as more populations within a metapopulation become affected by spawner die-offs prior to spawning, the source population's productivity declined. These simple models demonstrate the potential for rapid losses from coho populations in urbanizing watersheds. Because the models do not account for possible impacts of toxic runoff to other coho life stages, they likely underestimate the cumulative impacts of nonpoint source pollution on wild populations. PMID:21786416

  12. Glochidiosis of salmonid fishes. IV. Humoral and tissue responses of coho and chinook salmon to experimental infection with Margaritefera Margaritifera (L. ) (Pelecypoda: Margaritanidae)

    SciTech Connect

    Meyers, T.R.; Millemann, R.E.; Fustish, C.A.

    1980-01-01

    Coho salmon (Oncorhynchus kisutch) are more resistant than chinook salmon (O. tshawytscha) to experimental infection with the glochidia of the freshwater mussel Margaritifera margaritifera. Histological sections of gills from coho salmon 16 hr postinfection (p.i.) showed that parasite encystment either did not occur or had progressed incompletely, which accounted for the loss of many glochidia from the gills. The remaining encysted glochidia were sloughed within 2 days (p.i.) by a well-developed hyperplasia. On chinook salmon, the parasites developed normally with no sloughing or hyperplasia. Analysis of blood samples taken from coho salmon at intervals during the infection showed significant increases in hematocrit, hemoglobin, the mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and leukocyte numbers when compared with control fish. In infected chinook salmon only the hematocrit, erythrocyte numbers, and MCV increased while the MCHC decreased. Total plasma protein increased in coho salmon but decreased in chinook salmon during infection. Glochidial antibodies were demonstrated in the blood plasma of coho and chinook salmon 8 to 12 wk p.i. Fewer glochidia attached to the excised gills of coho salmon than to the gills of chinook salmon. Also, the in vitro survival time of parasites in mucus and plasma from coho salmon was less than in the same chinook salmon fluids.

  13. Experimental hexamitiasis in juvenile coho salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdner)

    USGS Publications Warehouse

    1965-01-01

    An exogenous strain of cultured Hexamita salmonis (Moore) was employed to induce trophic hexamitiasis in otherwise disease-free juveniles of coho salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdneri). Mortality and growth were the parameters used to detect the effects of hexamitiasis on the two species. Two levels of each of the three experimental factors under study, Hexamita infection, species of fish, and density of fish, were arranged in a three-way factorial design. Replicate lots involved a total of 1,440 fish held under controlled laboratory conditions.Comparisons of growth and mortality indicate that infection with H. salmonis over a period of 8 weeks is innocuous to coho salmon. Steelhead trout suffered a low, but statistically significant mortality which subsided after the sixth week; growth rate was not affected.

  14. Modeling population responses of Chinook and coho salmon to suspended sediment using a life history approach.

    PubMed

    Araujo, H Andres; Cooper, Andrew B; MacIsaac, Erland A; Knowler, Duncan; Velez-Espino, Antonio

    2015-08-01

    This study develops a quantitative framework for estimating the effects of extreme suspended-sediment events (SSC>25 mg L(-1)) on virtual populations of Chinook (Oncorhynchus tshawytscha) and coho (O. kisutch) salmon in a coastal watershed of British Columbia, Canada. We used a life history model coupled with a dose-response model to evaluate the populations' responses to a set of simulated suspended sediments scenarios. Our results indicate that a linear increase in SSC produces non-linear declining trajectories in both Chinook and coho populations, but this decline was more evident for Chinook salmon despite their shorter fresh-water residence. The model presented here can provide insights into SSC impacts on population responses of salmonids and potentially assist resource managers when planning conservation or remediation strategies. PMID:25963631

  15. Linking climate change projections for an Alaskan watershed to future coho salmon production.

    PubMed

    Leppi, Jason C; Rinella, Daniel J; Wilson, Ryan R; Loya, Wendy M

    2014-06-01

    Climate change is predicted to dramatically change hydrologic processes across Alaska, but estimates of how these impacts will influence specific watersheds and aquatic species are lacking. Here, we linked climate, hydrology, and habitat models within a coho salmon (Oncorhynchus kisutch) population model to assess how projected climate change could affect survival at each freshwater life stage and, in turn, production of coho salmon smolts in three subwatersheds of the Chuitna (Chuit) River watershed, Alaska. Based on future climate scenarios and projections from a three-dimensional hydrology model, we simulated coho smolt production over a 20-year span at the end of the century (2080-2100). The direction (i.e., positive vs. negative) and magnitude of changes in smolt production varied substantially by climate scenario and subwatershed. Projected smolt production decreased in all three subwatersheds under the minimum air temperature and maximum precipitation scenario due to elevated peak flows and a resulting 98% reduction in egg-to-fry survival. In contrast, the maximum air temperature and minimum precipitation scenario led to an increase in smolt production in all three subwatersheds through an increase in fry survival. Other climate change scenarios led to mixed responses, with projected smolt production increasing and decreasing in different subwatersheds. Our analysis highlights the complexity inherent in predicting climate-change-related impacts to salmon populations and demonstrates that population effects may depend on interactions between the relative magnitude of hydrologic and thermal changes and their interactions with features of the local habitat. PMID:24323577

  16. An isolate of Piscirickettsia salmonis from white seabass is fully virulent for coho salmon

    USGS Publications Warehouse

    House, M.L.; Hedrick, R.P.; Winton, J.R.; Fryer, J.L.

    2006-01-01

    The virulence of the WSB-98 isolate of Piscirickettsia salmonis from white seabass Atractoscion nobilis was compared with that of the American Type Culture Collection type strain LF-89, which was originally isolated from coho salmon Oncorhynchus kisutch in Chile. In controlled laboratory challenges of juvenile coho salmon, the isolate from white seabass exhibited virulence that was equal to or greater than that of LF-89. The cumulative percent mortality (CPM) was similar between groups of coho salmon receiving an intraperitoneal injection of WSB-98 at 104.5 tissue culture infectious dose with 50% endpoint (TCID50)/fish (CPM = 98%) or an injection of LF-89 at 104.8 TCID50/fish (CPM = 95%). The mean day to death of 9.3 d for WSB-98 and 18.6 d for LF-89, however, differed significantly (P < 0.0001) between the two isolates. The virulence of an isolate of P. salmonis from white seabass for a salmonid species is consistent with the hypothesis that nonsalmonids can serve as natural marine hosts for the bacterium and potential sources for infection of salmonids. ?? Copyright by the American Fisheries Society 2006.

  17. Impacts of multispecies parasitism on juvenile coho salmon (Oncorhynchus kisutch) in Oregon

    USGS Publications Warehouse

    Ferguson, Jayde A.; Romer, Jeremy; Sifneos, Jean C.; Madsen, Lisa; Schreck, Carl B.; Glynn, Michael; Kent, Michael L.

    2011-01-01

    We are studying the impacts of parasites on threatened stocks of Oregon coastal coho salmon (Oncorhynchus kisutch). In our previous studies, we have found high infections of digeneans and myxozoans in coho salmon parr from the lower main stem of West Fork Smith River (WFSR), Oregon. In contrast parr from tributaries of this river, and outmigrating smolts, harbor considerably less parasites. Thus, we have hypothesized that heavy parasite burdens in parr from this river are associated with poor overwintering survival. The objective of the current study was to ascertain the possible effects these parasites have on smolt fitness. We captured parr from the lower main stem and tributaries of WFSR and held them in the laboratory to evaluate performance endpoints of smolts with varying degrees of infection by three digeneans (Nanophyetus salmincola, Apophallus sp., and neascus) and one myxozoan (Myxobolus insidiosus). The parameters we assessed were weight, fork length, growth, swimming stamina, and gill Na+,K+-ATPase activity. We repeated our study on the subsequent year class and with hatchery reared coho salmon experimentally infected with N. salmincola. The most significant associations between parasites and these performance or fitness endpoints were observed in the heavily infected groups from both years. We found that all parasite species, except neascus, were negatively associated with fish fitness. This was corroborated for N. salmincola causing reduced growth with our experimental infection study. Parasites were most negatively associated with growth and size, and these parameters likely influenced the secondary findings with swimming stamina and ATPase activity levels.

  18. Coastal fog frequency and watershed recharge metrics for coho salmon conservation recovery

    NASA Astrophysics Data System (ADS)

    Torregrosa, A.; Flint, L. E.; Flint, A. L.

    2015-12-01

    Endangered Central California Coast coho salmon benefit from summertime occurrences of fog and low cloud cover (FLCC). Watershed hydrology is a critical factor affecting population dynamics of coho and FLCC affects this in three ways. First, streams remain cooler in late summer when shaded by FLCC—high temperatures are lethal to coho. Second, more water reaches the stream when FLCC shades riparian vegetation thereby reducing evapotranspiration. Third, fog drip adds water directly into streams. The increased stream flow can be a critical resource in late summer when coastal watersheds are at their lowest subsurface discharge rate. Associated low stream flows can trap juvenile coho in pools, resulting in high rates of mortality due to higher predation exposure, overheating and, if the pool dries up, lack of habitat. The 2012 National Marine Fisheries Service Final Recovery Plan identified 75 watersheds that historically supported coho salmon. The recovery team used biological and environmental metrics to identify subwatersheds where recovery action implementation had the highest probability of improving coho salmon population survival. These subwatersheds were classified into three categories: Core (n=89), Phase I (n=93), or Phase II (N=157) (CPP). Differences among the CPP-rated subwatersheds were explored using FLCC frequency data, derived from a decade of hourly weather satellites, combined with groundwater recharge metrics from the Basin Characterization Model (BCM) to provide additional environmental dimensions. Average summertime (June, July, August, and September) FLCC in the subwatersheds ranged from 2.2 -11.3 hrs/day and cumulative groundwater recharge ranged from 6 mm -894 mm. A two dimensional scatterplot (x = FLCC; y = recharge) of subwatersheds divided into 4 quadrants , (low FLCC - low recharge, low - high, high - low, high - high, ) shows 11 Core, 6 Phase I, and 5 Phase II areas in the high - high quadrant. The majority of Phase I and II areas are in

  19. Genetic variation in chinook, Oncorhynchus tshawytscha, and coho, O. Kisutchsalmon from the north coast of Washington

    USGS Publications Warehouse

    Reisenbichler, R.R.; Phelps, S.R.

    1987-01-01

    We used starch-gel electrophoresis to genetically characterize the populations of chinook salmon, Oncorhynchus tshawytscha, and coho salmon, O. kisutch, in the major drainages of the north coast of Washington (the Quillayute, Uoh, Queets, and Quinault Rivers). Of 55 loci examined for electrophoretically detectable variation. 6 were polymorphic (frequency of the common allele was less than 0.95) in chinook salmon and 3 in coho salmon. Statistical tests of interdrainage and intradrainage variation for coho salmon were tenuous because most of the fish examined were from a single year class so that we could not account for variation among year classes. Nevertheless, these tests suggested that distinct stocks ofcoho salmon exist within drainages. and that variation was not significantly greater among drainages than within drainages. Interdrainage variation for wild chinook salmon was not significant. The data suggested that summer chinook salmon were electrophoretically different from fall chinook salmon, and the hatchery populations of chinook salmon were distinct from wild fish. A hatchery population developed primarily from north coast fish was electrophoretically more similar to wild chinook salmon than were the others.

  20. 75 FR 16745 - Endangered and Threatened Species; 90-Day Finding on a Petition to Delist Coho Salmon South of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... salmon ESU. The CCC coho salmon ESU was listed as a threatened species on October 31, 1996 (61 FR 56138), and subsequently reclassified as an endangered species on June 28, 2005 (70 FR 37160). For more... FR 33102; June 14, 2004) or ``Final Rule Endangered and Threatened Species; Threatened Status...

  1. Differential incorporation of natural spawners vs. artificially planted salmon carcasses in a stream food web: Evidence from delta 15N of juvenile coho salmon

    EPA Science Inventory

    Placement of salmon carcasses is a common restoration technique in Oregon and Washington streams, with the goal of improving food resources and productivity of juvenile salmon. To explore the effectiveness of this restoration technique, we measured the δ15N of juvenile coho salmo...

  2. Use of glacier river-fed estuary channels by juvenile coho salmon: transitional or rearing habitats?

    USGS Publications Warehouse

    Hoem Neher, Tammy D.; Rosenberger, Amanda E.; Zimmerman, Christian E.; Walker, Coowe M.; Baird, Steven J.

    2014-01-01

    Estuaries are among the most productive ecosystems in the world and provide important rearing environments for a variety of fish species. Though generally considered important transitional habitats for smolting salmon, little is known about the role that estuaries serve for rearing and the environmental conditions important for salmon. We illustrate how juvenile coho salmonOncorhynchus kisutch use a glacial river-fed estuary based on examination of spatial and seasonal variability in patterns of abundance, fish size, age structure, condition, and local habitat use. Fish abundance was greater in deeper channels with cooler and less variable temperatures, and these habitats were consistently occupied throughout the season. Variability in channel depth and water temperature was negatively associated with fish abundance. Fish size was negatively related to site distance from the upper extent of the tidal influence, while fish condition did not relate to channel location within the estuary ecotone. Our work demonstrates the potential this glacially-fed estuary serves as both transitional and rearing habitat for juvenile coho salmon during smolt emigration to the ocean, and patterns of fish distribution within the estuary correspond to environmental conditions.

  3. Some physiological aspects of sublethal heat stress in the juvenile steelhead trout (Salmo gairdneri) and coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Wedemeyer, Gary

    1973-01-01

    A rapid (3 min) but sublethal temperature increase from 10 to 20 imposed a greater stress on juvenile coho salmon (Oncorhynchus kisutch) than on juvenile steelhead trout (Salmo gairdneri). Both species suffered hyperglycemia, hypocholesterolemia, increased blood hemoglobin, and decreased blood sugar regulatory precision, but the steelhead recovered more quickly. Acid–base equilibrium was essentially unaffected, and only the coho suffered any significant interrenal vitamin C depletion. Vitamin C normalization required about 24 hr.

  4. 2003 Evaluation of Chum, Chinook and Coho Salmon Entrapment near Ives Island in the Columbia River; 2003 Annual Report.

    SciTech Connect

    Duston, Reed A.; Wilson, Jeremy

    2004-09-01

    From January to July of 2003, 42 entrapments and 25 stranding sites were examined on the Columbia River near Ives Island, downstream of Bonneville Dam. A total of 6,122 salmonids, consisting of three different species, were collected at these sites (Table 1). The fish sampled during this time were chinook salmon (69%), chum salmon (7%), and coho salmon (24%). The following analysis of the relationship between environmental factors and salmon placed at risk by river level fluctuations focuses on each of these three salmon species.

  5. 2004 Evaluation of Chum, Chinook and Coho Salmon Entrapment near Ives Island in the Columbia River; 2004 Annual Report.

    SciTech Connect

    Duston, Reed A.; Wilson, Jeremy

    2005-08-01

    From January to July of 2004, 33 entrapments and 56 stranding sites were examined on the Columbia River near Ives Island, downstream of Bonneville Dam. A total of 7,834 salmonids, made up of three species, were collected (Table 1). The fish sampled during this time were chinook salmon (85%), chum salmon (8%), and coho salmon (7%). The following analysis of the relationship between environmental factors and salmon placed at risk by river level fluctuations focuses on each of these three species of salmon.

  6. 2002 Evaluation of Chum, Chinook and Coho Salmon Entrapment near Ives Island in the Columbia River; 2002 Annual Report.

    SciTech Connect

    Duston, Reed A.; Wilson, Jeremy

    2003-10-01

    From January to July of 2002, 79 entrapments and 22 stranding sites were examined on the Columbia River near Ives Island, downstream of Bonneville Dam. A total of 2,272 salmonids, consisting of three different species, were collected at these sites (Table 1). The fish sampled during this time were chinook salmon (49%), chum salmon (29%), and coho salmon (22%). The following analysis of the relationship between environmental factors and salmon placed at risk by river level fluctuations focuses on each of these three salmon species.

  7. Growth and survival of pacific coho salmon smolts exposed as juveniles to pesticides within urban streams in western Washington, USA.

    PubMed

    King, Kerensa A; Grue, Christian E; Grassley, James M; Fisk, Robert J; Conquest, Loveday L

    2014-07-01

    Pesticides are frequently detected in urban streams, with concentrations often exceeding those reported in surface waters within agricultural areas. The authors studied growth, survival, and return rates of coho salmon (Oncorhynchus kisutch) smolts exposed to a pesticide mixture ("cocktail") representative of the pesticides most frequently reported within urban streams in western Washington State, USA, in fall through early spring. Exposure concentrations were selected to represent a reasonable worst-case scenario based on field monitoring data. Smolts were continuously exposed to pulses of the cocktail either from fertilization through swim-up (2007-2008) or from fertilization through smoltification (2007-2008 and 2008-2009), coded wire tagged, and released in 2008 and 2009. Pre-release endpoints (growth, survival, sex ratio, brain acetylcholinesterase activity, and gonado- and hepatosomatic indices) were not affected. However, the number of returning adults exposed to the cocktail to swim-up (0.90%, n = 42) was more than double that of unexposed controls (0.38%, n = 26) in 2008, whereas in 2009, fish exposed through smoltification returned in lower numbers (0.15%, n = 18) than controls (0.37%, n = 30). Variability in return rates among treatments between years was comparable to that observed in previous whole life cycle studies with Pacific salmon and other contaminants. Results suggest that exposure to pesticides in urban streams does not directly impair early life stages of coho salmon, and that additional studies incorporating releases of larger numbers of smolts across several years are necessary to adequately quantify effects on return rates. PMID:24687230

  8. Coho Salmon Habitat in a Changing Environment-Green Valley Creek, Graton, California

    NASA Astrophysics Data System (ADS)

    O'Connor, M. D.; Kobor, J. S.; Sherwood, M. N.

    2013-12-01

    Green Valley Creek (GVC) is a small (101 sq km) aquatic habitat refugium in the Russian River watershed (3,840 sq km) in coastal northern California. Coho salmon (Onchorhynchus kisutch) is endangered per the Federal Endangered Species Act, and GVC is one stream where coho have persisted. Fish surveys in GVC have found high species diversity, growth rates, and over-summer survival. The upper portion of GVC comprises a principal tributary (20 sq km) that provides spawning and rearing habitat for coho. The second principal tributary, Atascadero Creek, is comparable in size, but has few fish. Atascadero Creek and lower GVC have broad, densely vegetated floodplains. A Recovery Plan for the Central Coastal California coho Evolutionarily Significant Unit has been developed by the National Marine Fisheries Service (NMFS), which applies to the Russian River and its tributaries. Cooperative research regarding fish populations and habitat, a captive breeding and release program for native coho salmon, and efforts to plan for and restore habitat are ongoing. These regional efforts are particularly active in GVC, and participants include NMFS, the California Department of Fish and Wildlife, the Gold Ridge Resource Conservation District, the California Coastal Conservancy, the University of California Cooperative Extension, and the National Fish and Wildlife Foundation, among others. Our research focuses on hydrologic, geomorphic and hydrogeologic characteristics of the watershed in relation to aquatic habitat. Natural watershed factors contributing to habitat for coho include proximity to the coastal summer fog belt with cool temperatures, the Wilson Grove Formation aquifer that maintains dry season stream flow, and structural geology favorable for active floodplain morphology. Human impacts include water use and agriculture and rural residential development. Historic human impacts include stream clearing and draining of wetlands and floodplain for agriculture, which likely

  9. Mortality of experimentally descaled smolts of coho salmon (Oncorhynchus kisutch) in fresh and salt water

    USGS Publications Warehouse

    Bouck, Gerald R.; Smith, Stanley D.

    1979-01-01

    Removal of slime from 25% of the body caused no deaths among smolts of coho salmon in fresh water or in seawater (28‰). Removal of slime and scales from the same percentage of body area caused no deaths in fresh water, but 75% mortality within 10 days in seawater. The 10-day median tolerance limit was 10% scale removal immediately before the smolts entered seawater. Mortality was highest when the scales were removed from the area of the rib cage. Recovery of smolts in fresh water from a loss of scales that would be lethal in seawater occurred rapidly; 90% of the fish regained tolerance to seawater within 1 day.

  10. Breeding site selection by coho salmon (Oncorhynchus kisutch) in relation to large wood additions and factors that influence reproductive success

    USGS Publications Warehouse

    Clark, Steven M.; Dunham, Jason B.; McEnroe, Jeffery R.; Lightcap, Scott W.

    2014-01-01

    The fitness of female Pacific salmon (Oncorhynchus spp.) with respect to breeding behavior can be partitioned into at least four fitness components: survival to reproduction, competition for breeding sites, success of egg incubation, and suitability of the local environment near breeding sites for early rearing of juveniles. We evaluated the relative influences of habitat features linked to these fitness components with respect to selection of breeding sites by coho salmon (Oncorhynchus kisutch). We also evaluated associations between breeding site selection and additions of large wood, as the latter were introduced into the study system as a means of restoring habitat conditions to benefit coho salmon. We used a model selection approach to organize specific habitat features into groupings reflecting fitness components and influences of large wood. Results of this work suggest that female coho salmon likely select breeding sites based on a wide range of habitat features linked to all four hypothesized fitness components. More specifically, model parameter estimates indicated that breeding site selection was most strongly influenced by proximity to pool-tail crests and deeper water (mean and maximum depths). Linkages between large wood and breeding site selection were less clear. Overall, our findings suggest that breeding site selection by coho salmon is influenced by a suite of fitness components in addition to the egg incubation environment, which has been the emphasis of much work in the past.

  11. Comparative mapping reveals quantitative trait loci that affect spawning time in coho salmon (Oncorhynchus kisutch)

    PubMed Central

    Araneda, Cristian; Díaz, Nelson F.; Gomez, Gilda; López, María Eugenia; Iturra, Patricia

    2012-01-01

    Spawning time in salmonids is a sex-limited quantitative trait that can be modified by selection. In rainbow trout (Oncorhynchus mykiss), various quantitative trait loci (QTL) that affect the expression of this trait have been discovered. In this study, we describe four microsatellite loci associated with two possible spawning time QTL regions in coho salmon (Oncorhynchus kisutch). The four loci were identified in females from two populations (early and late spawners) produced by divergent selection from the same base population. Three of the loci (OmyFGT34TUF, One2ASC and One19ASC) that were strongly associated with spawning time in coho salmon (p < 0.0002) were previously associated with QTL for the same trait in rainbow trout; a fourth loci (Oki10) with a suggestive association (p = 0.00035) mapped 10 cM from locus OmyFGT34TUF in rainbow trout. The changes in allelic frequency observed after three generations of selection were greater than expected because of genetic drift. This work shows that comparing information from closely-related species is a valid strategy for identifying QTLs for marker-assisted selection in species whose genomes are poorly characterized or lack a saturated genetic map. PMID:22888302

  12. Epizootiology and histopathology of Parvicapsula sp. in coho salmon Oncorhynchus kisutch

    USGS Publications Warehouse

    Yasutake, William T.; Elliott, Diane G.

    2003-01-01

    The epizootiology and histopathology of the myxosporean Parvicapsula sp. was studied during monthly health surveys of 4 groups of coho salmon Oncorhynchus kisutch at a commercial farm in Puget Sound, Washington, USA, from 1984 to 1986. No Parvicapsula sp. was detected in histological samples taken from juvenile fish in fresh water, but the parasite was detected in fish from all groups 2 to 8 mo after transfer to seawater net pens. Groups placed in seawater net pens in November and December had a higher prevalence of infection, and a longer period of continuous detected infection, than those introduced into net pens in May. For the groups transferred to seawater in November and December, the highest infection prevalence (45 to 90%) was detected during the following March and April. Among 13 tissues examined histologically, only the pseudobranch and kidney were positive for Parvicapsula sp., with 26 (62%) of 42 positive fish showing infections only in the pseudobranch, 5 (12%) showing infections only in the kidney, and 11 (26%) showing infections in both organs. Both the pseudobranch and kidney were apparent primary infection sites, but pseudobranch infections appeared to persist longer in a population. Pseudobranch infections were frequently heavy and associated with extensive inflammation and necrosis of filament and lamellar tissues. The kidney had been the only infection site reported for Parvicapsula sp. in previous studies of coho salmon.

  13. VARIATION IN JUVENILE COHO SALMON END-OF-SUMMER SIZE AND ABUNDANCE: HIERARCHICAL ANALYSIS OF HABITAT EFFECTS

    EPA Science Inventory

    The size of coho salmon juveniles entering the winter has been shown to influence overwinter survival, and hence may be a useful indicator of linkages between summer habitat conditions and subsequent smolt production. We are investigating habitat-specific demographics of juvenile...

  14. 76 FR 6383 - Endangered and Threatened Species; 12-Month Finding on a Petition To Delist Coho Salmon South of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ...) was listed as a threatened species on October 31, 1996 (61 FR 56138), and subsequently reclassified as an endangered species on June 28, 2005 (70 FR 37160). Coho salmon in coastal streams of Santa Cruz... ESUs; Final Rule'' (70 FR 37160; June 28, 2005) and ``Final Rule Endangered and Threatened...

  15. Detection of Renibacterium salmoninarum antigen in migrating adult chum salmon (Oncorhynchus keta) in Japan.

    PubMed

    Sakai, M; Atsuta, S; Kobayashi, M

    1992-01-01

    Renibacterium salmoninarum antigen was detected in the kidney of migrating chum salmon (Oncorhynchus keta) using the indirect dot blot assay and indirect fluorescent antibody test. The adult chum salmon had migrated into a bay in which cultured coho salmon infected with R. salmoninarum were present. Antigen was detected in 5% of the chum salmon although they did not have clinical signs of bacterial kidney disease (BKD). This report describes the first case of R. salmoninarum antigen detection among wild chum salmon populations in eastern Asia. PMID:1548789

  16. Effects of exogenous thyroid hormones on visual pigment composition in coho salmon (Oncorhynchus kisutch).

    PubMed

    Temple, Shelby E; Ramsden, Samuel D; Haimberger, Theodore J; Veldhoen, Kathy M; Veldhoen, Nik J; Carter, Nicolette L; Roth, Wolff-Michael; Hawryshyn, Craig W

    2008-07-01

    The role of exogenous thyroid hormone on visual pigment content of rod and cone photoreceptors was investigated in coho salmon (Oncorhynchus kisutch). Coho vary the ratio of vitamin A1- and A2-based visual pigments in their eyes. This variability potentially alters spectral sensitivity and thermal stability of the visual pigments. We tested whether the direction of shift in the vitamin A1/A2 ratio, resulting from application of exogenous thyroid hormone, varied in fish of different ages and held under different environmental conditions. Changes in the vitamin A1/A2 visual pigment ratio were estimated by measuring the change in maximum absorbance (lambda max) of rods using microspectrophotometry (MSP). Exogenous thyroid hormone resulted in a long-wavelength shift in rod, middle-wavelength-sensitive (MWS) and long-wavelength-sensitive (LWS) cone photoreceptors. Rod and LWS cone lambda max values increased, consistent with an increase in vitamin A2. MWS cone lambda max values increased more than predicted for a change in the vitamin A1/A2 ratio. To account for this shift, we tested for the expression of multiple RH2 opsin subtypes. We isolated and sequenced a novel RH2 opsin subtype, which had 48 amino acid differences from the previously sequenced coho RH2 opsin. A substitution of glutamate for glutamine at position 122 could partially account for the greater than predicted shift in MWS cone lambda max values. Our findings fit the hypothesis that a variable vitamin A1/A2 ratio provides seasonality in spectral tuning and/or improved thermal stability of visual pigments in the face of seasonal environmental changes, and that multiple RH2 opsin subtypes can provide flexibility in spectral tuning associated with migration-metamorphic events. PMID:18552303

  17. Nutritional factors in the biochemical pathology of Corynebacterial kidney disease in the coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Wedemeyer, Gary A.; Ross, A.J.

    1973-01-01

    The influence of diet ingredient on the morbidity and biochemical pathogenesis of corynebacterial kidney disease was investigated using juvenile coho salmon (Oncorhynchus kisutch) fed the Abernathy dry ration made up with either corn gluten or cottonseed meal (isoprotein, isocaloric substitution). Evaluation of incidence of infection, pituitary activation and aspects of carbohydrate metabolism, acid-base balance, renal function, and hematopoietic activity showed that the actual disease incidence was about the same for both diets but the nonspecific stress of infection was more severe in fish fed the corn gluten.Discriminant function calculations combining four physiological parameters gave a probability of 0.86 for successfully diagnosing infected fish on the basis of these blood chemistry tests.

  18. Limited epizootic of neuroblastoma in coho salmon reared in chlorinated-dechlorinated water

    SciTech Connect

    Meyers, T.R.; Hendricks, J.D.

    1984-02-01

    During the 1976-77 brood year, approximately 12 cases of neuroblastoma were observed in a captive group of 100,000 fingerling coho salmon (Oncorhynchus kisutch) reared in a commercial hatchery. The tumors were large, occurring in the skeletal muscle near the dorsal fin causing conspicuous bulging of the overlying integument. Tumors examined from 3 fish each consisted of neuroblasts in trabecular patterns interspersed by glial fibrillar material and linear cavities resembling central neural canals lined by ependyma-like cells. Ganglion-like cells also were apparent morphologically and by special stain. Cancer of the tumor was characterized by an abundance of mitotic figures with occasional abnormal divisions, local invasion of normal tissues, and potentially metastatic tumor cell aggregates in organ vasculature. The etiology of this tumor may have been related to mutagenic-carcinogenic halogenated compounds possibly formed in the hatchery water supply during continuous chlorination of incoming river water.

  19. Acute metal toxicology of olfaction in coho salmon: behavior, receptors, and odor-metal complexation

    SciTech Connect

    Rehnberg, B.C.; Schreck, C.B.

    1986-04-01

    The objective of this research was to determine the acute toxicities of mercury (Hg), copper (Cu), and zinc (Zn) to coho salmon olfaction. The authors used a behavioral assay of olfaction based on an avoidance reaction to L-serine in a two-choice Y-trough. A second objective was to gain some understanding of the mechanism of metal-induced olfactory inhibition by observing how metals affect the binding of L-serine to its olfactory cell membrane receptor. They have also taken the novel approach of addressing olfactory toxicology from the perspective of the odor molecule by considering metal speciation and metal-serpine complexation chemistry on the basis of chemical equilibrium computations.

  20. Amoebic gill infection in coho salmon Oncorhynchus kisutch farmed in Korea.

    PubMed

    Kim, Wi-Sik; Kong, Kyoung-Hui; Kim, Jong-Oh; Oh, Myung-Joo

    2016-08-31

    About 70% mortality occurred in cultured coho salmon Oncorhynchus kisutch at a marine farm in the South Sea of Korea in 2014. Diseased fish showed greyish or pale patches on the gills, with no internal signs of disease. No bacteria or viruses were isolated from diseased fish, but numerous amoebae were found on the gills. Histopathological examinations revealed extensive hyperplastic epithelium and lamellar fusion in the gills. Numerous amoebae were seen between gill filaments. The amoebae had a 630 bp partial 18S rRNA gene fragment specific to Neoparamoeba perurans. Phylogenetic analysis based on partial 18S rRNA gene nucleotide sequences revealed that this Korean amoeba belonged to the N. perurans group. This is the first report of N. perurans infection in Korea. PMID:27596862

  1. Accuracy of nonmolecular identification of growth-hormone- transgenic coho salmon after simulated escape.

    PubMed

    SundströM, L F; Lõhmus, M; Devlin, R H

    2015-09-01

    Concerns with transgenic animals include the potential ecological risks associated with release or escape to the natural environment, and a critical requirement for assessment of ecological effects is the ability to distinguish transgenic animals from wild type. Here, we explore geometric morphometrics (GeoM) and human expertise to distinguish growth-hormone-transgenic coho salmon (Oncorhynchus kisutch) specimens from wild type. First, we simulated an escape of 3-month-old hatchery-reared wild-type and transgenic fish to an artificial stream, and recaptured them at the time of seaward migration at an age of 13 months. Second, we reared fish in the stream from first-feeding fry until an age of 13 months, thereby simulating fish arising from a successful spawn in the wild of an escaped hatchery-reared transgenic fish. All fish were then assessed from 'photographs by visual identification (VID) by local staff and by GeoM based on 13 morphological landmarks. A leave-one-out discriminant analysis of GeoM data had on average 86% (72-100% for individual groups) accuracy in assigning the correct genotypes, whereas the human experts were correct, on average, in only 49% of cases (range of 18-100% for individual fish groups). However, serious errors (i.e., classifying transgenic specimens as wild type) occurred for 7% (GeoM) and 67% (VID) of transgenic fish, and all of these incorrect assignments arose with fish reared in the stream from the first-feeding stage. The results show that we presently lack the skills of visually distinguishing transgenic coho salmon from wild type with a high level of accuracy, but that further development-of GeoM methods could be useful in identifying second-generation,fish from nature as a nonmolecular approach. PMID:26552269

  2. Detection of Renibacterium salmoninarum, the Causative Agent of Bacterial Kidney Disease in Salmonid Fish, from Pen-Cultured Coho Salmon.

    PubMed

    Sakai, M; Kobayashi, M

    1992-03-01

    The detection of Renibacterium salmoninarum antigen from pen-cultured coho salmon was attempted. Flounder (Limanda herzensteini) (n = 24), greenling (Hexagrammos otakii) (n = 5), Japanese sculpin (Cottus japonicus) (n = 1), and flathead (Platycephalus indicus) (n = 22) captured by fishing around coho salmon net pens were examined for the presence of R. salmoninarum antigen by an indirect dot blot assay and by an indirect fluorescent-antibody technique using polyclonal and monoclonal antibodies. R. salmoninarum antigen was detected from kidney samples of one greenling and six flathead. Moreover, 86 scallops (Patinopecten yessoensis) were hung from the edge of the net pen for 50 days, and R. salmoninarum antigen was demonstrated in 31 samples by the indirect dot blot assay and the indirect fluorescent-antibody technique. PMID:16348666

  3. Detection of Renibacterium salmoninarum, the Causative Agent of Bacterial Kidney Disease in Salmonid Fish, from Pen-Cultured Coho Salmon

    PubMed Central

    Sakai, Masahiro; Kobayashi, Masanori

    1992-01-01

    The detection of Renibacterium salmoninarum antigen from pen-cultured coho salmon was attempted. Flounder (Limanda herzensteini) (n = 24), greenling (Hexagrammos otakii) (n = 5), Japanese sculpin (Cottus japonicus) (n = 1), and flathead (Platycephalus indicus) (n = 22) captured by fishing around coho salmon net pens were examined for the presence of R. salmoninarum antigen by an indirect dot blot assay and by an indirect fluorescent-antibody technique using polyclonal and monoclonal antibodies. R. salmoninarum antigen was detected from kidney samples of one greenling and six flathead. Moreover, 86 scallops (Patinopecten yessoensis) were hung from the edge of the net pen for 50 days, and R. salmoninarum antigen was demonstrated in 31 samples by the indirect dot blot assay and the indirect fluorescent-antibody technique. PMID:16348666

  4. Coho Salmon (Oncorhynchus kisutch) Prefer and Are Less Aggressive in Darker Environments

    PubMed Central

    Gaffney, Leigh P.; Franks, Becca; Weary, Daniel M.; von Keyserlingk, Marina A. G.

    2016-01-01

    Fish are capable of excellent vision and can be profoundly influenced by the visual properties of their environment. Ambient colours have been found to affect growth, survival, aggression and reproduction, but the effect of background darkness (i.e., the darkness vs. lightness of the background) on preference and aggression has not been evaluated systematically. One-hundred Coho salmon (Oncorhynchus kisutch), a species that is increasing in popularity in aquaculture, were randomly assigned to 10 tanks. Using a Latin-square design, every tank was bisected to allow fish in each tank to choose between all the following colour choices (8 choices in total): black vs. white, light grey, dark grey, and a mixed dark grey/black pattern, as well as industry-standard blue vs. white, light grey, dark grey, and black. Fish showed a strong preference for black backgrounds over all other options (p < 0.01). Across tests, preference strength increased with background darkness (p < 0.0001). Moreover, having darker backgrounds in the environment resulted in less aggressive behaviour throughout the tank (p < 0.0001). These results provide the first evidence that darker tanks are preferred by and decrease aggression in salmonids, which points to the welfare benefits of housing farmed salmon in enclosures containing dark backgrounds. PMID:27028731

  5. Coho Salmon (Oncorhynchus kisutch) Prefer and Are Less Aggressive in Darker Environments.

    PubMed

    Gaffney, Leigh P; Franks, Becca; Weary, Daniel M; von Keyserlingk, Marina A G

    2016-01-01

    Fish are capable of excellent vision and can be profoundly influenced by the visual properties of their environment. Ambient colours have been found to affect growth, survival, aggression and reproduction, but the effect of background darkness (i.e., the darkness vs. lightness of the background) on preference and aggression has not been evaluated systematically. One-hundred Coho salmon (Oncorhynchus kisutch), a species that is increasing in popularity in aquaculture, were randomly assigned to 10 tanks. Using a Latin-square design, every tank was bisected to allow fish in each tank to choose between all the following colour choices (8 choices in total): black vs. white, light grey, dark grey, and a mixed dark grey/black pattern, as well as industry-standard blue vs. white, light grey, dark grey, and black. Fish showed a strong preference for black backgrounds over all other options (p < 0.01). Across tests, preference strength increased with background darkness (p < 0.0001). Moreover, having darker backgrounds in the environment resulted in less aggressive behaviour throughout the tank (p < 0.0001). These results provide the first evidence that darker tanks are preferred by and decrease aggression in salmonids, which points to the welfare benefits of housing farmed salmon in enclosures containing dark backgrounds. PMID:27028731

  6. A Multi-Proxy Approach to Examining Land-Use Change Effects on Steelhead Trout and Coho Salmon in NW California

    NASA Astrophysics Data System (ADS)

    Constantine, J. A.; Pasternack, G. B.; Viers, J. H.; Feliciano, J. B.

    2001-05-01

    Historically, juvenile and spawning adult steelhead trout and coho salmon were found in abundance in the Navarro Basin of NW California. However, the numbers of juvenile steelhead and spawning adults have declined greatly over the past 100 years, while coho salmon rearing and spawning is now limited to only one sub-drainage. Steelhead and coho population data taken by the DFG along with GIS images of recent land-use change are being used in conjunction with sediment core data to determine specific land-use effects on watershed geomorphology and in-stream habitat quality. The study uses historical information on land use, fish populations, and river flow along with a multi-proxy analysis of cores taken from the Navarro floodplain to reconstruct geomorphic effects of land-use change and includes geochemical, palynological, grain size, LOI, and radiocarbon analyses. An historical analysis of logging operations within the watershed indicates three periods of increased mill operations peaking in 1952 with 32 mills. Digitized aerials from 1936 show the distribution of land-uses, including large swaths of clear-cut land. When these data are combined with a 100-yr record of fish distribution and a 50 yr record of discharge, a timeline of cumulative impacts is available for comparing against the multi-proxy record. For example, results from geochemical analyses may indicate anthropogenic effects on watershed sediment transport. A spike in Hg concentration at a depth of ~5 m occurs in all cores and an increase in concentrations of Hg, Cu, Co, Ba, Cr, and Ni begins at 3 m in most. Geochemical ternary diagrams of different core locations and depths show that sediment depositing in the floodplain of sub-drainages differ from main stem sediment, indicating spatio-temporal changes in sediment source areas. A palynological investigation is being conducted which will provide data of changes in ecosystem structure through time and will aid estimates of recent sedimentation rates.

  7. Variation in the population structure of Yukon River chum and coho salmon: Evaluating the potential impact of localized habitat degradation

    USGS Publications Warehouse

    Olsen, J.B.; Spearman, W.J.; Sage, G.K.; Miller, S.J.; Flannery, B.G.; Wenburg, J.K.

    2004-01-01

    We used microsatellite and mitochondrial DNA-restriction fragment length polymorphism (mtDNA-RFLP) analyses to test the hypothesis that chum salmon Oncorhynchus keta and coho salmon O. kisutch in the Yukon River, Alaska, exhibit population structure at differing spatial scales. If the hypothesis is true, then the risk of losing genetic diversity because of habitat degradation from a gold mine near a Yukon River tributary could differ between the two species. For each species, collections were made from two tributaries in both the Innoko and Tanana rivers, which are tributaries to the lower and middle Yukon River. The results revealed a large difference in the degree and spatial distribution of population structure between the two species. For chum salmon, the microsatellite loci (F-statistic [FST] = 0.021) and mtDNA (F ST = -0.008) revealed a low degree of interpopulation genetic diversity on a relatively large geographic scale. This large-scale population structure should minimize, although not eliminate, the risk of genetic diversity loss due to localized habitat degradation. For coho salmon, the microsatellites (FST = 0.091) and mtDNA (FST = 0.586) revealed a high degree of interpopulation genetic diversity on a relatively small geographic scale. This small-scale population structure suggests that coho salmon are at a relatively high risk of losing genetic diversity due to lo-calized habitat degradation. Our study underscores the importance of a multispecies approach for evaluating the potential impact of land-use activities on the genetic diversity of Pacific salmon.

  8. Virulence and persistence of rough and smooth forms of Aeromonas salmonicida inoculated into coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Anderson, Douglas P.

    1972-01-01

    Virulent isolates of Aeromonas salmonicida showed a majority of smooth colonies, while the attenuated isolates displayed mostly rough colonies. A lesion occurred at the site of inoculation when one of the rough forms was inoculated into yearling coho salmon, but few mortalities were recorded even though the rough forms were readily recovered from both the lesion and the kidney. The fish inoculated with the same dosage of smooth forms all died within 96 hr of inoculation.

  9. Elevated streamflows increase dam passage by juvenile coho salmon during winter: Implications of climate change in the Pacific Northwest

    USGS Publications Warehouse

    Kock, Tobias J.; Liedtke, Theresa L.; Rondorf, Dennis W.; Serl, John D.; Kohn, Mike; Bumbaco, Karin A.

    2012-01-01

    A 4-year evaluation was conducted to determine the proportion of juvenile coho salmon Oncorhynchus kisutch passing Cowlitz Falls Dam, on the Cowlitz River, Washington, during winter. River and reservoir populations of coho salmon parr were monitored using radiotelemetry to determine if streamflow increases resulted in increased downstream movement and dam passage. This was of interest because fish that pass downstream of Cowlitz Falls Dam become landlocked in Riffe Lake and are lost to the anadromous population. Higher proportions of reservoir-released fish (0.391-0.480) passed Cowlitz Falls Dam than did river-released fish (0.037-0.119). Event-time analyses demonstrated that streamflow increases were important predictors of dam passage rates during the study. The estimated effect of increasing streamflows on the risk of dam passage varied annually and ranged from 9% to 75% for every 28.3 m3/s increase in streamflow. These results have current management implications because they demonstrate the significance of dam passage by juvenile coho salmon during winter months when juvenile fish collection facilities are typically not operating. The results also have future management implications because climate change predictions suggest that peak streamflow timing for many watersheds in the Pacific Northwest will shift from late spring and early summer to winter. Increased occurrence of intense winter flood events is also expected. Our results demonstrate that juvenile coho salmon respond readily to streamflow increases and initiate downstream movements during winter months, which could result in increased passage at dams during these periods if climate change predictions are realized in the coming decades.

  10. Sublethal and acute toxicity of the ethylene glycol butyl ether ester formulation of triclopyr to juvenile coho salmon (Oncorhynchus kisutch).

    PubMed

    Johansen, J A; Geen, G H

    1990-01-01

    The toxicity of Garlon4, the ethylene glycol butyl ether ester formulation of the herbicide tryclopyr, to juvenile coho salmon (Oncorhynchus kisutch) was investigated at several lethal and sublethal concentrations. Fish behavior, random activity and oxygen uptake were monitored. Coho salmon exhibited three distinct responses related to concentration and duration of exposure: (1) at concentrations greater than 0.56 mg/L fish were initially lethargic, then regressed to a highly distressed condition characterized by elevated oxygen uptake and finally death, (2) at 0.32-0.43 mg/L fish were lethargic throughout the exposure period with reduced oxygen uptake, and (3) at concentrations less than or equal to 0.10 mg/L fish were hypersensitive to stimuli, exhibiting elevated activity and oxygen uptake levels during photoperiod transitions. Whole body residue analysis showed that uptake of the ester and subsequent hydrolysis to the acid form in the fish was rapid, with significant accumulation of the acid in the tissues. This suggests that some threshold tissue concentrations were associated with the observed results. For juvenile coho salmon the 96-hr LC50 of Garlon4 was 0.84 mg/L. PMID:2386416

  11. Cloning, expression and analysis of the olfactory glutathione S-transferases in coho salmon

    PubMed Central

    Espinoza, Herbert M.; Shireman, Laura M.; McClain, Valerie; Atkins, William; Gallagher, Evan P.

    2013-01-01

    The glutathione S-transferases (GSTs) provide cellular protection by detoxifying xenobiotics, maintaining redox status, and modulating secondary messengers, all of which are critical to maintaining olfaction in salmonids. Here, we characterized the major coho salmon olfactory GSTs (OlfGSTs), namely omega, pi, and rho subclasses. OlfGST omega contained an open reading frame of 720 bp and encoded a protein of 239 amino acids. OlfGST pi and OlfGST rho contained open reading frames of 727 and 681 bp, respectively, and encoded proteins of 208 and 226 amino acids. Whole-protein mass spectrometry yielded molecular weights of 29,950, 23,354, and 26,655 Da, respectively, for the GST omega, pi, and rho subunits. Homology modeling using four protein-structure prediction algorithms suggest that the active sites in all three OlfGST isoforms resembled counterparts in other species. The olfactory GSTs conjugated prototypical GST substrates, but only OlfGST rho catalyzed the demethylation of the pesticide methyl parathion. OlfGST pi and rho exhibited thiol oxidoreductase activity towards 2-hydroxyethyl disulfide (2-HEDS) and conjugated 4-hydroxynonenal (HNE), a toxic aldehyde with neurodegenerative properties. The kinetic parameters for OlfGST pi conjugation of HNE were KM = 0.16 ± 0.06 mM and Vmax = 0.5 ± 0.1 μmol min−1 mg−1 for OlfGST pi, whereas OlfGST rho was more efficient at catalyzing HNE conjugation (KM = 0.022 ± 0.008 mM and Vmax = 0.47 ± 0.05 μmol min−1 mg−1). Our findings indicate that the peripheral olfactory system of coho expresses GST isoforms that detoxify certain electrophiles and pesticides and that help maintain redox statusand signal transduction. PMID:23261526

  12. Cloning, expression and analysis of the olfactory glutathione S-transferases in coho salmon.

    PubMed

    Espinoza, Herbert M; Shireman, Laura M; McClain, Valerie; Atkins, William; Gallagher, Evan P

    2013-03-15

    The glutathione S-transferases (GSTs) provide cellular protection by detoxifying xenobiotics, maintaining redox status, and modulating secondary messengers, all of which are critical to maintaining olfaction in salmonids. Here, we characterized the major coho salmon olfactory GSTs (OlfGSTs), namely omega, pi, and rho subclasses. OlfGST omega contained an open reading frame of 720bp and encoded a protein of 239 amino acids. OlfGST pi and OlfGST rho contained open reading frames of 627 and 681nt, respectively, and encoded proteins of 208 and 226 amino acids. Whole-protein mass spectrometry yielded molecular weights of 29,950, 23,354, and 26,655Da, respectively, for the GST omega, pi, and rho subunits. Homology modeling using four protein-structure prediction algorithms suggest that the active sites in all three OlfGST isoforms resembled counterparts in other species. The olfactory GSTs conjugated prototypical GST substrates, but only OlfGST rho catalyzed the demethylation of the pesticide methyl parathion. OlfGST pi and rho exhibited thiol oxidoreductase activity toward 2-hydroxyethyl disulfide (2-HEDS) and conjugated 4-hydroxynonenal (HNE), a toxic aldehyde with neurodegenerative properties. The kinetic parameters for OlfGST pi conjugation of HNE were K(M)=0.16 ± 0.06mM and V(max)=0.5 ± 0.1μmolmin⁻¹mg⁻¹, whereas OlfGST rho was more efficient at catalyzing HNE conjugation (K(M)=0.022 ± 0.008 mM and V(max)=0.47 ± 0.05μmolmin⁻¹mg⁻¹). Our findings indicate that the peripheral olfactory system of coho expresses GST isoforms that detoxify certain electrophiles and pesticides and that help maintain redox status and signal transduction. PMID:23261526

  13. The effect of thiamine injection on upstream migration, survival, and thiamine status of putative thiamine-deficient coho salmon

    USGS Publications Warehouse

    Fitzsimons, J.D.; Williston, B.; Amcoff, P.; Balk, L.; Pecor, C.; Ketola, H.G.; Hinterkopf, J.P.; Honeyfield, D.C.

    2005-01-01

    A diet containing a high proportion of alewives Alosa pseudoharengus results in a thiamine deficiency that has been associated with high larval salmonid mortality, known as early mortality syndrome (EMS), but relatively little is known about the effects of the deficiency on adults. Using thiamine injection (50 mg thiamine/kg body weight) of ascending adult female coho salmon Oncorhynchus kisutch on the Platte River, Michigan, we investigated the effects of thiamine supplementation on migration, adult survival, and thiamine status. The thiamine concentrations of eggs, muscle (red and white), spleen, kidney (head and trunk), and liver and the transketolase activity of the liver, head kidney, and trunk kidney of fish injected with thiamine dissolved in physiological saline (PST) or physiological saline only (PS) were compared with those of uninjected fish. The injection did not affect the number of fish making the 15-km upstream migration to a collection weir but did affect survival once fish reached the upstream weir, where survival of PST-injected fish was almost twice that of controls. The egg and liver thiamine concentrations in PS fish sampled after their upstream migration were significantly lower than those of uninjected fish collected at the downstream weir, but the white muscle thiamine concentration did not differ between the two groups. At the upper weir, thiamine levels in the liver, spleen, head kidney, and trunk kidney of PS fish were indistinguishable from those of uninjected fish (called "wigglers") suffering from a severe deficiency and exhibiting reduced equilibrium, a stage that precedes total loss of equilibrium and death. For PST fish collected at the upstream weir, total thiamine levels in all tissues were significantly elevated over those of PS fish. Based on the limited number of tissues examined, thiamine status was indicated better by tissue thiamine concentration than by transketolase activity. The adult injection method we used appears to

  14. Wastewater treatment plant effluent alters pituitary gland gonadotropin mRNA levels in juvenile coho salmon (Oncorhynchus kisutch).

    PubMed

    Harding, Louisa B; Schultz, Irvin R; da Silva, Denis A M; Ylitalo, Gina M; Ragsdale, Dave; Harris, Stephanie I; Bailey, Stephanie; Pepich, Barry V; Swanson, Penny

    2016-09-01

    It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17β-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to

  15. Interaction of growth hormone overexpression and nutritional status on pituitary gland clock gene expression in coho salmon, Oncorhynchus kisutch.

    PubMed

    Kim, Jin-Hyoung; White, Samantha L; Devlin, Robert H

    2015-02-01

    Clock genes are involved in generating a circadian rhythm that is integrated with the metabolic state of an organism and information from the environment. Growth hormone (GH) transgenic coho salmon, Oncorhynchus kisutch, show a large increase in growth rate, but also attenuated seasonal growth modulations, modified timing of physiological transformations (e.g. smoltification) and disruptions in pituitary gene expression compared with wild-type salmon. In several fishes, circadian rhythm gene expression has been found to oscillate in the suprachiasmatic nucleus of the hypothalamus, as well as in multiple peripheral tissues, but this control system has not been examined in the pituitary gland nor has the effect of transgenic growth modification been examined. Thus, the daily expression of 10 core clock genes has been examined in pituitary glands of GH transgenic (T) and wild-type coho salmon (NT) entrained on a regular photocycle (12L: 12D) and provided either with scheduled feeding or had food withheld for 60 h. Most clock genes in both genotypes showed oscillating patterns of mRNA levels with light and dark cycles. However, T showed different amplitudes and patterns of expression compared with wild salmon, both in fed and starved conditions. The results from this study indicate that constitutive expression of GH is associated with changes in clock gene regulation, which may play a role in the disrupted behavioural and physiological phenotypes observed in growth-modified transgenic strains. PMID:25222344

  16. Effects of fluctuating temperature on mortality, stress, and energy reserves of juvenile coho salmon

    SciTech Connect

    Thomas, R.E.; Gharrett, J.A.; Carls, M.G.; Rice, S.D.; Moles, A.; Korn, S.

    1986-01-01

    The effects of fluctuating diel temperature cycles on survival, growth, plasma cortisol and glucose concentrations, liver weight, and liver glycogen of juvenile coho salmon Oncorhynchus kisutch were determined. Temperature cycles (10-13/sup 0/, 9-15/sup 0/, 8-17/sup 0/, and 6.5-20/sup 0/C) were selected to stimulate observed temperatures in clear-cuts of southeastern Alaska. Different levels of feeding, including starvation, were used in each of the tests. LT50s (peak temperature within a cycle producing 50% mortality) were 28/sup 0/C for age-0 fish (350 mg) and 26/sup 0/ for age-II fish (22-g presmolts). Cyclic temperatures for 40 d, averaging 11/sup 0/C daily, did not influence growth of age-0 fish on any food ration as compared to controls held at a constant 11/sup 0/C. Plasma cortisol and glucose concentrations were significantly greater in fish maintained for 20 d in the 6.5-20/sup 0/C cycle but not different in fish in 10-13/sup 0/ and 9-15/sup 0/ cycles or a constant 11/sup 0/C. These elevated concentrations may be indicators of long-term stress. Plasma cortisol concentrations were lower in starved fish than in fed fish at all temperature regimes; however, fluctuating temperature did not enhance starvation effects on cortisol levels. Diel temperature cycles did not affect liver weights or liver glycogen concentrations.

  17. Loma salmonae (Protozoa: Microspora) infections in seawater reared coho salmon Oncorhynchus kisutch

    USGS Publications Warehouse

    Kent, M.L.; Elliott, D.G.; Groff, J.M.; Hedrick, R.P.

    1989-01-01

    Loma salmonae (Putz et al., 1965) infections were observed in five groups of coho salmon, Oncorhynchus kisutch, reared in seawater net-pens in Washington State, U.S.A. in 1984–1986. Ultrastructural characteristics, size of spores, tissues and host infected, and geographical location identified the microsporidium as Loma salmonae. Preserved spores measured 4.4×2.3 (4–5.6×2–2.4) μm and exhibited 14–17 turns of the polar filament. Infections were evident in the gills of some fish before seawater entry, but few parasites were observed and they caused little tissue damage. Infections observed in fish after transfer to seawater were associated with significant pathological changes in the gills. A mixed inflammatory infiltrate was associated with ruptured microsporidian xenomas within the vessels and interstitium of the primary lamellae. Microsporidian spores were dispersed throughout the lesions and were often seen inside phagocytes. The parasite was also observed in the heart, spleen, kidney and pseudobranchs; however, the inflammatory lesions were common only in the heart.Monthly examination of fish after transfer to seawater showed peak prevalences (33–65%) of gill infections during the summer. Although moribund fish were often infected with other pathogens, the high prevalence of L. salmonae infections and the severity of the lesions it caused, suggested that this parasite significantly contributed to the recurrent summer mortalities observed at this net-pen site.

  18. Some blood chemistry values for the juvenile coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Wedemeyer, Gary; Chatterton, K.

    1971-01-01

    Overlapping Gaussian distribution curves were resolved into normal ranges for 1800 clinical test values obtained from caudal arterial blood or plasma of more than 1000 juvenile coho salmon (Oncorhynchus kisutch) held under defined conditions of diet and temperature. Estimated normal blood chemistry ranges were bicarbonate, 9.5–12.6 mEq/liter; blood urea nitrogen (BUN), 0.9–3.4 mg/100 ml; chloride, 122–136 mEq/liter; cholesterol, 88–262 mg/100 ml;pCO2, 2.6–6.1 mm Hg (10 C); glucose, 41–135 mg/100 ml; hematocrit, 32.5–52.5%; hemoglobin, 6.5–9.9 g/100 ml; total protein, 1.4–4.3 g/100 ml; blood pH (10 C), 7.51–7.83. The calculated range of normal acid–base balance vs. water temperature is also presented.

  19. Microsomal biotransformation of chlorpyrifos, parathion and fenthion in rainbow trout (Oncorhynchus mykiss) and coho salmon (Oncorhynchus kisutch): mechanistic insights into interspecific differences in toxicity.

    PubMed

    Lavado, Ramon; Schlenk, Daniel

    2011-01-17

    Rainbow trout often serve as a surrogate species evaluating xenobiotic toxicity in cold-water species including other salmonids of the same genus, which are listed as threatened or endangered. Biotransformation tends to show species-specific patterns that influence susceptibility to xenobiotic toxicity, particularly organophosphate insecticides (OPs). To evaluate the contribution of biotransformation in the mechanism of toxicity of three organophosphate (phosphorothionate) insecticides, (chlorpyrifos, parathion and fenthion), microsomal bioactivation and detoxification pathways were measured in gills, liver and olfactory tissues in juvenile rainbow trout (Oncorhynchus mykiss) and compared to juvenile coho salmon (Oncorhynchus kisutch). Consistent with species differences in acute toxicity, significantly higher chlorpyrifos bioactivation was found in liver microsomes of rainbow trout (up to 2-fold) when compared with coho salmon. Although bioactivation to the oxon was observed, the catalytic efficiency towards chlorpyrifos dearylation (detoxification) was significantly higher in liver for both species (1.82 and 0.79 for trout and salmon, respectively) when compared to desulfuration (bioactivation). Bioactivation of parathion to paraoxon was significantly higher (up to 2.2-fold) than detoxification to p-nitrophenol in all tissues of both species with rates of conversion in rainbow trout, again significantly higher than coho salmon. Production of fenoxon and fenthion sulfoxides from fenthion was detected only in liver and gills of both species with activities in rainbow trout significantly higher than coho salmon. NADPH-dependent cleavage of fenthion was observed in all tissues, and was the only activity detected in olfactory tissues. These results indicate rainbow trout are more sensitive than coho salmon to the acute toxicity of OP pesticides because trout have higher catalytic rates of oxon formation. Thus, rainbow trout may serve as a conservative surrogate

  20. Assessment of juvenile coho salmon movement and behavior in relation to rehabilitation efforts in the Trinity River, California, using PIT tags and radiotelemetry

    USGS Publications Warehouse

    Chase, Robert; Hemphill, Nina; Beeman, John; Juhnke, Steve; Hannon, John; Jenkins, Amy M.

    2013-01-01

    Coho salmon (Oncorhynchus kisutch) of the Southern Oregon/Northern California Coast (SONCC) Evolutionarily Significant Unit (ESU) is federally listed as a threatened species. The Trinity River Restoration Program (TRRP) is rehabilitating the Trinity River to restore coho salmon (coho) and other salmonid populations. In order to evaluate the program’s actions, several studies of movements and behavior of coho in the Trinity River were conducted from 2006 to 2009, including snorkel surveys and mark-recapture techniques based on Passive Integrated Transponder (PIT) tags, elastomer tags, and radio transmitters. Catch, recapture, and condition of natural sub-yearlings, along with site fidelity and emigration of hatchery-reared yearlings in rehabilitated and reference habitats, were studied. Location was important because coho were absent from the lower controlled and rehabilitated sites most of the time. However, rehabilitation did not have a significant effect on natural coho salmon at the site level. Apparent survival of radio-tagged, hatchery-reared yearling coho released downstream from Lewiston Dam was much lower in the first 10 km downstream from the release site than in other areas between Lewiston Dam and the Klamath River estuary. Estimated survival of yearling hatchery coho salmon per 100 km down to Blake’s Riffle was estimated at 64 % over the distance of the 239 km study area. Migration primarily occurred at night in the upper Trinity River; however, as yearlings moved through the lower Trinity River towards the Klamath River, estuary nocturnal migration became less. Apparent survival was generally lowest in areas upstream from the North Fork of the Trinity River.

  1. Mucous lysozyme levels in hatchery coho salmon (Oncorhynchus kisutch) and spring chinook salmon (O. tshawytscha) early in the parr-smolt transformation

    USGS Publications Warehouse

    Schrock, R.M.; Smith, S.D.; Maule, A.G.; Doulos, S.K.; Rockowski, J.J.

    2001-01-01

    Mucous lysozyme concentrations were determined in juvenile coho salmon (Oncorhynchus kisutch) and spring chinook salmon (O. tshawytscha) to establish reference levels during the time associated with the parr-smolt transformation. The first reported naris and vent mucous lysozyme levels are provided for spring chinook salmon and coho salmon. Naris mucous lysozyme levels ranged between 300 and 700 ??g ml-1, vent mucous lysozyme from 100 to 300 ??g ml-1, and skin mucous lysozyme levels were below 130 ??g ml-1. Lysozyme levels in the two species showed the same relationship with the highest levels in naris mucous, and the lowest in skin mucous. A seasonal decrease occurred in both species with a significant decrease in naris mucous lysozyme between February and March. Gill ATPase levels used to monitor smolt development during the same period did not reach ranges reported for smolts for either species during emigration. Identification of seasonal levels of lysozyme activity in mucous provides an alternative determination of developmental status prior to release of fish from the hatchery when salmonids are still undergoing the parr-smolt transformation. ?? 2001 Elsevier Science B.V.

  2. Apophallus microsoma N. SP. from chicks infected with metacercariae from coho salmon (Oncorhynchus kisutch) and review of the taxonomy and pathology of the genus Apophallus (Heterophyidae).

    PubMed

    Ferguson, Jayde A; Locke, Sean A; Font, William F; Steinauer, Michelle L; Marcogliese, David J; Cojocaru, Calin D; Kent, Michael L

    2012-12-01

    Metacercariae of an unidentified species of Apophallus Lühe, 1909 are associated with overwinter mortality in coho salmon, Oncorhynchus kisutch (Walbaum, 1792), in the West Fork Smith River, Oregon. We infected chicks with these metacercariae in order to identify the species. The average size of adult worms was 197 × 57 μm, which was 2 to 11 times smaller than other described Apophallus species. Eggs were also smaller, but larger in proportion to body size, than in other species of Apophallus. Based on these morphological differences, we describe Apophallus microsoma n. sp. In addition, sequences from the cytochrome c oxidase 1 gene from Apophallus sp. cercariae collected in the study area, which are likely conspecific with experimentally cultivated A. microsoma, differ by >12% from those we obtained from Apophallus donicus ( Skrjabin and Lindtrop, 1919 ) and from Apophallus brevis Ransom, 1920 . The taxonomy and pathology of Apophallus species is reviewed. PMID:22680776

  3. Summary of Migration and Survival Data from Radio-Tagged Juvenile Coho Salmon in the Trinity River, Northern California, 2008

    USGS Publications Warehouse

    Beeman, John W.; Hansel, Hal; Juhnke, Steve; Stutzer, Greg

    2009-01-01

    The survival of hatchery-origin juvenile coho salmon from the Trinity River Hatchery was estimated as they migrated seaward through the Trinity and Klamath Rivers. The purpose of the study was to collect data for comparison to a similar study in the Klamath River and provide data to the Trinity River Restoration Program. A total of 200 fish fitted with radio transmitters were released into the Trinity River near the hatchery (river kilometer 252 from the mouth of the Klamath River) biweekly from March 19 to May 28, 2008. Fish from the earliest release groups took longer to pass the first detection site 10 kilometers downstream of the hatchery than fish from the later release groups, but travel times between subsequent sites were often similar among the release groups. The travel times of individuals through the 239 kilometer study area ranged from 15.5 to 84.6 days with a median of 43.3 days. The data and models did not support differences in survival among release groups, but did support differences among river reaches. The probability of survival in the first 53 kilometers was lower than in the reaches farther downstream, which is similar to trends in juvenile coho salmon in the Klamath River. The lowest estimated survival in this study was in the first 10 kilometers from release in the Trinity River (0.676 SE 0.036) and the highest estimated survival was in the final 20 kilometer reach in the Klamath River (0.987 SE 0.013). Estimated survivals of radio-tagged juvenile coho salmon from release to Klamath River kilometer 33 were 0.639 per 100 kilometers for Trinity River fish and 0.721 per 100 kilometers for Klamath River fish.

  4. Effects of freshwater exposure to arsenic trioxide on the parr-smolt transformation of coho salmon (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Nichols, J.W.; Wedemeyer, G.A.; Mayer, F.L.; Dickhoff, Walton W.; Gregory, S.V.; Yasutake, W.T.; Smith, S.D.

    1984-01-01

    The effects of chronic (6 months) exposure to arsenic trioxide in fresh water on the Parr-smolt transformation of coho salmon (Oncorhynchus kisutch) were evaluated. Exposure to 300 μg As/L (as As2O3) appeared to delay the onset of the normal increase in plasma thyroxine concentration and cause a transient reduction of gill Na+,K+-ATPase activity. Fish exposed to 300 μg As/L also migrated to the sea less successfully than did nonexposed smolts, but there were no effects on the survival and growth of smolts held in 28‰ salt water for 6 months.

  5. Mortality of coho salmon (Oncorhynchus kisutch) associated with burdens of multiple parasite species.

    PubMed

    Ferguson, Jayde A; Koketsu, Wataru; Ninomiya, Ikuo; Rossignol, Philippe A; Jacobson, Kym C; Kent, Michael L

    2011-09-01

    Multiple analytical techniques were used to evaluate the impact of multiple parasite species on the mortality of threatened juvenile coho salmon (Oncorhynchus kisutch) from the West Fork Smith River, Oregon, USA. We also proposed a novel parsimonious mathematical representation of macroparasite distribution, congestion rate, which (i) is easier to use than traditional models, and (ii) is based on Malthusian parameters rather than probability theory. Heavy infections of Myxobolus insidiosus (Myxozoa) and metacercariae of Nanophyetus salmincola and Apophallus sp. occurred in parr (subyearlings) from the lower mainstem of this river collected in 2007 and 2008. Smolts (yearlings) collected in 2007-2010 always harboured fewer Apophallus sp. with host mortality recognised as a function of intensity for this parasite. Mean intensity of Apophallus sp. in lower mainstem parr was 753 per fish in 2007 and 856 per fish in 2008, while parr from the tributaries had a mean of only 37 or 13 parasites per fish, respectively. Mean intensity of this parasite in smolts ranged between 47 and 251 parasites per fish. Over-dispersion (variance to mean ratios) of Apophallus sp. was always lower in smolts compared with all parr combined or lower mainstem parr. Retrospective analysis based on smolt data using both the traditional negative binomial truncation technique and our proposed congestion rate model showed identical results. The estimated threshold level for mortality involving Apophallus sp. was at 400-500 parasites per fish using both analytical methods. Unique to this study, we documented the actual existence of these heavy infections prior to the predicted mortality. Most of the lower mainstem parr (approximately 75%) had infections above this level. Heavy infections of Apophallus sp. metacercariae may be an important contributing factor to the high over-wintering mortality previously reported for these fish that grow and develop in this section of the river. Analyses using the

  6. Immunoresponse of Coho salmon immunized with a gene expression library from Piscirickettsia salmonis.

    PubMed

    Miquel, Alvaro; Müller, Ilse; Ferrer, Pablo; Valenzuela, Pablo D; Burzio, Luis O

    2003-01-01

    We have used the expression library immunization technology to study the protection of Coho salmon Oncorhynchus kisutch to the infection with Piscirickettsia salmonis. Purified DNA from this bacterium was sonicated and the fragments were cloned in the expression vector pCMV-Bios. Two libraries were obtained containing 22,000 and 28,000 colonies and corresponding to approximately 8 and 10 times the genome of the pathogen, respectively. On average, the size of the inserts ranged between 300 and 1,000 bp. The plasmid DNA isolated from one of these libraries was purified and 20 micrograms were injected intramuscularly into 60 fish followed by a second dose of 10 micrograms applied 40 days later. As control, fish were injected with the same amount of DNA of the vector pCMV-Bios without insert. The titer of IgM anti-P. salmonis of vaccinated fish, evaluated 60 days post-injection, was significantly higher than that of the control group injected with the vector alone. Moreover, this response was specific against P. salmonis antigens, since no cross reaction was detected with Renibacterium salmoninarum and Yersinia ruckeri. The vaccinated and control fish were challenged 60 days after the second dose of DNA with 2.5 x 10(7) P. salmonis corresponding to 7.5 times the LD50. At 30 days post-challenge, 100% mortality was obtained with the control fish while 20% of the vaccinated animals survived. All surviving fish exhibited a lower bacterial load in the kidney than control fish. The expression library was also tested in Balb/c mice and it was found that the humoral immune response was specific to P. salmonis and it was dependent on the amount of DNA injected. PMID:14631865

  7. Reduced reproductive success of hatchery coho salmon in the wild: insights into most likely mechanisms.

    PubMed

    Thériault, Véronique; Moyer, Gregory R; Jackson, Laura S; Blouin, Michael S; Banks, Michael A

    2011-05-01

    Supplementation of wild salmonids with captive-bred fish is a common practice for both commercial and conservation purposes. However, evidence for lower fitness of captive-reared fish relative to wild fish has accumulated in recent years, diminishing the apparent effectiveness of supplementation as a management tool. To date, the mechanism(s) responsible for these fitness declines remain unknown. In this study, we showed with molecular parentage analysis that hatchery coho salmon (Oncorhynchus kisutch) had lower reproductive success than wild fish once they reproduced in the wild. This effect was more pronounced in males than in same-aged females. Hatchery spawned fish that were released as unfed fry (age 0), as well as hatchery fish raised for one year in the hatchery (released as smolts, age 1), both experienced lower lifetime reproductive success (RS) than wild fish. However, the subset of hatchery males that returned as 2-year olds (jacks) did not exhibit the same fitness decrease as males that returned as 3-year olds. Thus, we report three lines of evidence pointing to the absence of sexual selection in the hatchery as a contributing mechanism for fitness declines of hatchery fish in the wild: (i) hatchery fish released as unfed fry that survived to adulthood still had low RS relative to wild fish, (ii) age-3 male hatchery fish consistently showed a lower relative RS than female hatchery fish (suggesting a role for sexual selection), and (iii) age-2 jacks, which use a sneaker mating strategy, did not show the same declines as 3-year olds, which compete differently for females (again, implicating sexual selection). PMID:21438931

  8. Effects of chronic growth hormone overexpression on appetite-regulating brain gene expression in coho salmon.

    PubMed

    Kim, Jin-Hyoung; Leggatt, Rosalind A; Chan, Michelle; Volkoff, Hélène; Devlin, Robert H

    2015-09-15

    Organisms must carefully regulate energy intake and expenditure to balance growth and trade-offs with other physiological processes. This regulation is influenced by key pathways controlling appetite, feeding behaviour and energy homeostasis. Growth hormone (GH) transgenesis provides a model where food intake can be elevated, and is associated with dramatic modifications of growth, metabolism, and feeding behaviour, particularly in fish. RNA-Seq and qPCR analyses were used to compare the expression of multiple genes important in appetite regulation within brain regions and the pituitary gland (PIT) of GH transgenic (fed fully to satiation or restricted to a wild-type ration throughout their lifetime) and wild-type coho salmon (Oncorhynchus kisutch). RNA-Seq results showed that differences in both genotype and ration levels resulted in differentially expressed genes associated with appetite regulation in transgenic fish, including elevated Agrp1 in hypothalamus (HYP) and reduced Mch in PIT. Altered mRNA levels for Agrp1, Npy, Gh, Ghr, Igf1, Mch and Pomc were also assessed using qPCR analysis. Levels of mRNA for Agrp1, Gh, and Ghr were higher in transgenic than wild-type fish in HYP and in the preoptic area (POA), with Agrp1 more than 7-fold higher in POA and 12-fold higher in HYP of transgenic salmon compared to wild-type fish. These data are consistent with the known roles of orexigenic factors on foraging behaviour acting via GH and through MC4R receptor-mediated signalling. Igf1 mRNA was elevated in fully-fed transgenic fish in HYP and POA, but not in ration-restricted fish, yet both of these types of transgenic animals have very pronounced feeding behaviour relative to wild-type fish, suggesting IGF1 is not playing a direct role in appetite stimulation acting via paracrine or autocrine mechanisms. The present findings provide new insights on mechanisms ruling altered appetite regulation in response to chronically elevated GH, and on potential pathways by which

  9. Effects of selenium dietary enhancement on hatchery-reared coho salmon, Oncorhynchus kisutch (Walbaum), when compared with wild coho: hepatic enzymes and seawater adaptation evaluated.

    USGS Publications Warehouse

    Felton, S.P.; Landolt, M.L.; Grace, R.; Palmisano, A.N.

    1996-01-01

    Hatchery-reared coho salmon, Oncorhynchus kisutch (Walbaum), were fed elevated levels of selenium (as Na2SeO3) to raise eviscerated body burdens to the level measured in wild counterparts. The goal was to find a dietary concentration that would achieve the desired effect without causing damage to growth and normal development. To measure some indices of health, the detoxifying enzymes chosen were hepatic glutathione peroxidase (GSH-Px) and hepatic superoxide dismutase (SOD). Eviscerated body selenium (Se) concentration, GSH-Px and SOD levels were measured during and at the end of the 9 month freshwater feeding trial. Selenium retention and enzyme activity were also measured during 6 months’residence in sea water (SW). Selenium supplements were added to a commercial ration to give final concentrations of 1.1, 8.6, 11.1, 13.6 μg g-1 Se in the four respective diets. The results indicated that a dietary concentration of 8.6 μg g-1selenium was capable of inducing eviscerated body burdens similar to those found in wild fish. The elevated selenium levels persisted throughout the freshwater (FW) rearing phase, but declined when the fish were fed an unsupplemented ration upon SW entry. Superoxide dismutase levels did not increase above control levels. Glutathione peroxidase levels increased in fish fed the supplemented diets. GSH-Px activity declined in the higher supplemented dietary groups when all groups were reduced to the control group level of 1.1 μg g-1. Cumulative mortality in SW was 20% in fish fed either the 1.1 or the 8.6 μg g-1 Se diets. The 8.6 μg g-1 Se supplemented diets did produce healthy coho, comparable to their wild counterparts.

  10. Changes in Habitat and Populations of Steelhead Trout, Coho Salmon, and Chinook Salmon in Fish Creek, Oregon; Habitat Improvement, 1983-1987 Final Report.

    SciTech Connect

    Everest, Fred H.; Hohler, David B.; Cain, Thomas C.

    1988-03-01

    Construction and evaluation of salmonid habitat improvements on Fish Creek, a tributary of the upper Clackamas River, began in 1982 as a cooperative venture between the Estacada Ranger District, Mt. Hood National Forest, and the Anadromous Fish Habitat Research Unit of the Pacific Northwest Research Station (PNW), USDA Forest Service. The project was initially conceived as a 5-year effort (1982-1987) to be financed with Forest Service funds. The habitat improvement program and the evaluation of improvements were both expanded in mid-1983 when the Bonneville Power Administration (BPA) entered into an agreement with the Mt. Hood National Forest to cooperatively fund work on Fish Creek. Habitat improvement work in the basin is guided by the Fish Creek Habitat Rehabilitation-Enhancement Framework developed cooperatively by the Estacada Ranger District, the Oregon Department of Fish and Wildlife, and the Pacific Northwest Research Station. The framework examines potential factors limiting production of salmonids in the basin, and the appropriate habitat improvement measures needed to address the limiting factors. Habitat improvement work in the basin has been designed to: (1) improve quantity, quality, and distribution of spawning habitat for coho and spring chinook salmon and steelhead trout, (2) increase low flow rearing habitat for steelhead trout and coho salmon, (3) improve overwintering habitat for coho salmon and steelhead trout, (4) rehabilitate riparian vegetation to improve stream shading to benefit all species, and (5) evaluate improvement projects from a drainage wide perspective. The objectives of the evaluation include: (1) Drainage-wide evaluation and quantification of changes in salmonid spawning and rearing habitat resulting from a variety of habitat improvements. (2) Evaluation and quantification of changes in fish populations and biomass resulting from habitat improvements. (3) Benefit-cost analysis of habitat improvements.

  11. Effects of hypophysectomy and subsequent hormonal replacement therapy on hormonal and osmoregulatory status of coho salmon, Oncorhynchus kisutch.

    PubMed

    Björnsson, B T; Yamauchi, K; Nishioka, R S; Deftos, L J; Bern, H A

    1987-12-01

    This study investigates the effects of hypophysectomy and subsequent hormone replacement therapy upon the hormonal and osmoregulatory status of coho salmon, Oncorhynchus kisutch, in 7% seawater (SW) and SW. Following hypophysectomy, coho salmon were injected every 2 days for 8 days with thyroxine, growth hormone, and cortisol, alone or in combinations, and sampled 2 days after the final injection. Increased environmental salinity raises plasma sodium, calcium, and magnesium levels, as well as plasma osmolality. Cortisol is hypercalcemic and thyroxine is hypocalcemic in hypophysectomized salmon, but it is unclear whether these effects are due directly to calcium regulation or are the consequence of general effects on the plasma osmotic/ionic balance. Growth hormone and thyroxine together, but not separately, decrease and increase magnesium levels, at low and high environmental salinities, respectively, indicating a complex endocrine control of plasma magnesium. Gill Na+, K+-ATPase activity in hypophysectomized salmon is stimulated by growth hormone and cortisol, but inhibited by thyroxine and raised environmental salinity. This implies a complex endocrine control and indicates that hormonal support is needed to sustain or raise gill Na+, K+-ATPase activity in seawater. Increased environmental salinity induces elevation of plasma cortisol levels in apparent absence of pituitary control, indicating that the interrenals may respond to changes in external and/or internal environment, either directly or indirectly through extrapituitary hormonal or nervous control. Cortisol is a potent inhibitor of calcitonin secretion, as seen by the large decrease in plasma calcitonin levels in cortisol-treated hypophysectomized fish. The study was carried out at a time when thyroxine plasma levels were low. These basal levels were not affected by hypophysectomy, possibly indicating a basal release of thyroxine from the thyroid without stimulatory support of the pituitary gland. PMID

  12. Gene expression in caged juvenile Coho Salmon (Oncorhynchys kisutch) exposed to the waters of Prince William Sound, Alaska.

    PubMed

    Roberts, A P; Oris, J T; Stubblefield, W A

    2006-11-01

    The 1989 Exxon Valdez oil spill (EVOS) resulted in the release of 258,000 barrels of crude oil into the waters of Prince William Sound (PWS), Alaska. The current study, conducted in 2004, sought to use juvenile Coho salmon (Oncorhynchus kisutch) caged in situ to determine whether biomarker induction differed at sites where the adjacent shoreline contained buried residues from the 1989 oil spill compared to sites that were never oiled. Juvenile Coho salmon were caged at five sites; three oiled during the 1989 EVOS and two that were not oiled. Tissue samples were collected from organisms caged at each site as well as a control group housed onboard the research vessel. Analysis of CYP1A, superoxide dismutase (SOD), and glutathione peroxidase (GPO) gene expression was conducted using real time reverse transcriptase polymerase chain reaction (rtRT-PCR). Statistically significant levels of CYP1A expression were observed at some sites indicating increased hydrocarbon exposure. No patterns were observed regarding sites that were originally oiled or not oiled by the 1989 EVOS, indicating that sources of PAHs other than EVOS oil occur in PWS. PMID:16854435

  13. STABLE ISOTOPE STUDIES ON THE USE OF MARINE-DERIVED NUTRIENTS BY COHO SALMON JUVENILES IN AN OREGON COAST RANGE STREAM

    EPA Science Inventory

    We are using stable isotopes (13C, 15N, 34S) to study the use of salmon carcasses, eggs and fry by over-wintering coho juveniles in two streams of the Oregon Coast Range. Our work is paired with detailed data gathering on stream habitat condition, temperature, chemistry and PIT-t...

  14. Habitat selection influences sex distribution, morphology, tissue biochemistry, and parasite load of juvenile coho salmon in the West Fork Smith River, Oregon

    EPA Science Inventory

    Given the strong influence of water temperature on salmonid physiology and behavior, in the summers of 2004 and 2005 we studied juvenile male and female coho salmon Oncorhynchus kisutch in two reaches of Oregon’s West Fork Smith River with different thermal profiles. Our goals we...

  15. Upper thermal tolerance of wild-type, domesticated and growth hormone-transgenic coho salmon Oncorhynchus kisutch.

    PubMed

    Chen, Z; Devlin, R H; Farrell, A P

    2015-09-01

    In coho salmon Oncorhynchus kisutch, no significant differences in critical thermal maximum (c. 26·9° C, CTmax ) were observed among size-matched wild-type, domesticated, growth hormone (GH)-transgenic fish fed to satiation, and GH-transgenic fish on a ration-restricted diet. Instead, GH-transgenic fish fed to satiation had significantly higher maximum heart rate and Arrhenius breakpoint temperature (mean ± s.e. = 17·3 ± 0·1° C, TAB ). These results provide insight into effects of modified growth rate on temperature tolerance in salmonids, and can be used to assess the potential ecological consequences of GH-transgenic fishes should they enter natural environments with temperatures near their thermal tolerance limits. PMID:26201502

  16. Some physiological consequences of handling stress in the juvenile coho salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdneri)

    USGS Publications Warehouse

    Wedemeyer, Gary

    1972-01-01

    The stress of handling juvenile coho salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdneri) in soft water and in water with added salts was evaluated using blood and tissue chemistry fluctuations as indices of metabolic and endocrine function. Changes in plasma glucose, chloride, calcium, and cholesterol levels indicated that significant osmoregulatory and metabolic dysfunctions can occur and persist for about 24 hr after handling in soft water. Pituitary activation, as judged by lack of interrenal ascorbate depletion, did not occur. Increasing the ambient NaCl and Ca++ levels to about 100 milliosmols and 75–120 ppm, respectively, partially or completely alleviated the hyperglycemia and hypochloremia indicating that the stress of handling had been reduced.

  17. Coho salmon Oncorhynchus kisutch strain differences in disease resistance and non-specific immunity, following immersion challenges with Vibrio anguillarum

    USGS Publications Warehouse

    Balfry, Shannon K.; Maule, Alec G.; Iwama, George K.

    2001-01-01

    Two strains of freshwater-reared coho salmon Oncorhynchus kisutch were compared for differences in the activity of selected non-specific immune factors before and after lethal and non-lethal immersion challenges with the marine bacterial pathogen Vibrio anguillarum (Vang). Two disease challenge experiments were performed. The first experimental challenge resulted in no mortality; however, significant strain and challenge treatment effects were detected at Day 16 post-challenge. Strain differences in plasma lysozyme activity were found in pre-challenge samples. The second challenge experiment compared the same strains of coho salmon following immersion challenges in different doses of Vang. The fish were sampled at Days 0, 2, 7, and 18 post-challenge and mortality, plasma lysozyme, and anterior kidney phagocyte respiratory burst activity were compared. There were significant strain differences in mortality in the high dose group. The more disease-resistant strain was found to have higher levels of plasma lysozyme and anterior kidney phagocyte respiratory burst activity. These strain differences were detected at various times in the lethal (high dose) and non-lethal challenge groups. There was a clear relationship between the enhanced survival of the more disease-resistant strain and a more sustained, elevated non-specific immune response following the experimental disease challenges. The results of this study suggest that the basis for strain differences in innate disease resistance is related to the ability of the fish to respond quickly to the initial infection and to maintain the response until the infection is quelled.

  18. Effect of cadmium on glutathione S-transferase and metallothionein gene expression in coho salmon liver, gill and olfactory tissues

    PubMed Central

    Espinoza, Herbert M.; Williams, Chase R.; Gallagher, Evan P.

    2012-01-01

    The glutathione S-transferases (GSTs) are a multifunctional family of phase II enzymes that detoxify a variety of environmental chemicals, reactive intermediates, and secondary products of oxidative damage. GST mRNA expression and catalytic activity have been used as biomarkers of exposure to environmental chemicals. However, factors such as species differences in induction, partial analyses of multiple GST isoforms, and lack of understanding of fish GST gene regulation, have confounded the use of GST as markers of pollutant exposure. In the present study, we examined the effect of exposure to cadmium (Cd), a prototypical environmental contaminant and inducer of mammalian GST, on GST mRNA expression in coho salmon (Oncorhynchus kisutch) liver, gill, and olfactory tissues. GST expression data were compared to those for metallothionein (MT), a prototypical biomarker of metal exposure. Data mining of genomic databases led to the development of quantitative real-time PCR (qPCR) assays for salmon GST isoforms encompassing 9 subfamilies, including alpha, mu, pi, theta, omega, kappa, rho, zeta and microsomal GST. In vivo acute (8-48 hr) exposures to low (3.7 ppb) and high (347 ppb) levels of Cd relevant to environmental scenarios elicited a variety of transient, albeit minor changes (<2.5-fold) in tissue GST profiles, including some reductions in GST mRNA expression. In general, olfactory GSTs were the earliest to respond to cadmium, whereas, more pronounced effects in olfactory and gill GST expression were observed at 48 hr relative to earlier time points. Although evaluation of GSTs reflected a cadmium-associated oxidative stress response, there was no clear GST isoform in any tissue that could serve as a reliable biomarker of acute cadmium exposure. By contrast, metallothionein (MT) mRNA was consistently and markedly induced in all three tissues by cadmium, and among the tissues examined, olfactory MT was the most sensitive marker of cadmium exposures. In summary, coho

  19. Growth and condition of juvenile coho salmon Oncorhynchus kisutch relate positively to species richness of trophically transmitted parasites.

    PubMed

    Losee, J P; Fisher, J; Teel, D J; Baldwin, R E; Marcogliese, D J; Jacobson, K C

    2014-11-01

    The aims of this study were first, to test the hypothesis that metrics of fish growth and condition relate positively to parasite species richness (S(R)) in a salmonid host; second, to identify whether S(R) differs as a function of host origin; third, to identify whether acquisition of parasites through marine v. freshwater trophic interactions was related to growth and condition of juvenile salmonids. To evaluate these questions, species diversity of trophically transmitted parasites in juvenile coho salmon Oncorhynchus kisutch collected off the coast of the Oregon and Washington states, U.S.A. in June 2002 and 2004 were analysed. Fish infected with three or more parasite species scored highest in metrics of growth and condition. Fish originating from the Columbia River basin had lower S(R) than those from the Oregon coast, Washington coast and Puget Sound, WA. Parasites obtained through freshwater or marine trophic interactions were equally important in the relationship between S(R) and ocean growth and condition of juvenile O. kisutch salmon. PMID:25271907

  20. BLACK SPOT INFESTATION IN JUVENILE COHO SALMON AND THE INFLUENCE OF OREGON COASTAL STREAM SUMMER TEMPERATURES

    EPA Science Inventory

    Freshwater survival and growth of juvenile salmon are affected by many factors, including high summer temperatures and other stressors such as parasitism. Delayed or suppressed growth related to stress can influence subsequent survival of juvenile salmonids in freshwater and mar...

  1. Users' guide to system dynamics model describing Coho salmon survival in Olema Creek, Point Reyes National Seashore, Marin County, California

    USGS Publications Warehouse

    Woodward, Andrea; Torregrosa, Alicia; Madej, Mary Ann; Reichmuth, Michael; Fong, Darren

    2014-01-01

    The system dynamics model described in this report is the result of a collaboration between U.S. Geological Survey (USGS) scientists and National Park Service (NPS) San Francisco Bay Area Network (SFAN) staff, whose goal was to develop a methodology to integrate inventory and monitoring data to better understand ecosystem dynamics and trends using salmon in Olema Creek, Marin County, California, as an example case. The SFAN began monitoring multiple life stages of coho salmon (Oncorhynchus kisutch) in Olema Creek during 2003 (Carlisle and others, 2013), building on previous monitoring of spawning fish and redds. They initiated water-quality and habitat monitoring, and had access to flow and weather data from other sources. This system dynamics model of the freshwater portion of the coho salmon life cycle in Olema Creek integrated 8 years of existing monitoring data, literature values, and expert opinion to investigate potential factors limiting survival and production, identify data gaps, and improve monitoring and restoration prescriptions. A system dynamics model is particularly effective when (1) data are insufficient in time series length and/or measured parameters for a statistical or mechanistic model, and (2) the model must be easily accessible by users who are not modelers. These characteristics helped us meet the following overarching goals for this model: Summarize and synthesize NPS monitoring data with data and information from other sources to describe factors and processes affecting freshwater survival of coho salmon in Olema Creek. Provide a model that can be easily manipulated to experiment with alternative values of model parameters and novel scenarios of environmental drivers. Although the model describes the ecological dynamics of Olema Creek, these dynamics are structurally similar to numerous other coastal streams along the California coast that also contain anadromous fish populations. The model developed for Olema can be used, at least as a

  2. Sensitization of olfactory guanylyl cyclase to a specific imprinted odorant in coho salmon.

    PubMed

    Dittman, A H; Quinn, T P; Nevitt, G A; Hacker, B; Storm, D R

    1997-08-01

    The role of cGMP in olfactory signaling is not fully understood, but it is believed to play a modulatory role in intracellular signaling in vertebrate olfactory receptor neurons (ORNs). Here, we present evidence that cGMP in ORNs may play an important role in recognition of biologically relevant odors and olfactory learning. Specifically, we investigated the cellular mechanisms underlying olfactory imprinting in salmon. Salmon learn odors associated with their natal site as juveniles and later use these odors to guide their homing migration. This imprinting is believed to involve sensitization of the peripheral olfactory system to specific homestream odorants. We imprinted juvenile salmon to the odorant beta-phenylethyl alcohol (PEA) and examined the sensitivity of olfactory adenylyl and guanylyl cyclases to PEA during development. Stimulation of guanylyl cyclase activity by PEA was significantly greater in olfactory cilia isolated from PEA-imprinted salmon compared with PEA-naive fish only at the time of the homing migration, 2 years after PEA exposure. These results suggest that sensitization of olfactory guanylyl cyclase may play an important role in olfactory imprinting by salmon. PMID:9292727

  3. Alternate Directed Anthropogenic Shifts in Genotype Result in Different Ecological Outcomes in Coho Salmon Oncorhynchus kisutch Fry

    PubMed Central

    Leggatt, Rosalind A.; Sundström, L. Fredrik; Vandersteen, Wendy E.; Devlin, Robert H.

    2016-01-01

    Domesticated and growth hormone (GH) transgenic salmon provide an interesting model to compare effects of selected versus engineered phenotypic change on relative fitness in an ecological context. Phenotype in domestication is altered via polygenic selection of traits over multiple generations, whereas in transgenesis is altered by a single locus in one generation. These established and emerging technologies both result in elevated growth rates in culture, and are associated with similar secondary effects such as increased foraging, decreased predator avoidance, and similar endocrine and gene expression profiles. As such, there is concern regarding ecological consequences should fish that have been genetically altered escape to natural ecosystems. To determine if the type of genetic change influences fitness components associated with ecological success outside of the culture environments they were produced for, we examined growth and survival of domesticated, transgenic, and wild-type coho salmon fry under different environmental conditions. In simple conditions (i.e. culture) with unlimited food, transgenic fish had the greatest growth, while in naturalized stream tanks (limited natural food, with or without predators) domesticated fish had greatest growth and survival of the three fish groups. As such, the largest growth in culture conditions may not translate to the greatest ecological effects in natural conditions, and shifts in phenotype over multiple rather than one loci may result in greater success in a wider range of conditions. These differences may arise from very different historical opportunities of transgenic and domesticated strains to select for multiple growth pathways or counter-select against negative secondary changes arising from elevated capacity for growth, with domesticated fish potentially obtaining or retaining adaptive responses to multiple environmental conditions not yet acquired in recently generated transgenic strains. PMID:26848575

  4. Alternate Directed Anthropogenic Shifts in Genotype Result in Different Ecological Outcomes in Coho Salmon Oncorhynchus kisutch Fry.

    PubMed

    Leggatt, Rosalind A; Sundström, L Fredrik; Vandersteen, Wendy E; Devlin, Robert H

    2016-01-01

    Domesticated and growth hormone (GH) transgenic salmon provide an interesting model to compare effects of selected versus engineered phenotypic change on relative fitness in an ecological context. Phenotype in domestication is altered via polygenic selection of traits over multiple generations, whereas in transgenesis is altered by a single locus in one generation. These established and emerging technologies both result in elevated growth rates in culture, and are associated with similar secondary effects such as increased foraging, decreased predator avoidance, and similar endocrine and gene expression profiles. As such, there is concern regarding ecological consequences should fish that have been genetically altered escape to natural ecosystems. To determine if the type of genetic change influences fitness components associated with ecological success outside of the culture environments they were produced for, we examined growth and survival of domesticated, transgenic, and wild-type coho salmon fry under different environmental conditions. In simple conditions (i.e. culture) with unlimited food, transgenic fish had the greatest growth, while in naturalized stream tanks (limited natural food, with or without predators) domesticated fish had greatest growth and survival of the three fish groups. As such, the largest growth in culture conditions may not translate to the greatest ecological effects in natural conditions, and shifts in phenotype over multiple rather than one loci may result in greater success in a wider range of conditions. These differences may arise from very different historical opportunities of transgenic and domesticated strains to select for multiple growth pathways or counter-select against negative secondary changes arising from elevated capacity for growth, with domesticated fish potentially obtaining or retaining adaptive responses to multiple environmental conditions not yet acquired in recently generated transgenic strains. PMID:26848575

  5. Comparison and evaluation of Renibacterium salmoninarum quantitative PCR diagnostic assays using field samples of Chinook and coho salmon.

    PubMed

    Sandell, Todd A; Jacobson, Kym C

    2011-01-21

    Renibacterium salmoninarum is a Gram-positive bacterium causing bacterial kidney disease (BKD) in susceptible salmonid fishes. Several quantitative PCR (qPCR) assays to measure R. salmoninarum infection intensity have been reported, but comparison and evaluation of these assays has been limited. Here, we compared 3 qPCR primer/probe sets for detection of R. salmoninarum in field samples of naturally exposed Chinook and coho salmon first identified as positive by nested PCR (nPCR). Additional samples from a hatchery population of Chinook salmon with BKD were included to serve as strong positive controls. The 3 qPCR assays targeted either the multiple copy major soluble antigen (msa) genes or the single copy abc gene. The msa/non-fluorescent quencher (NFQ) assay amplified R. salmoninarum DNA in 53.2% of the nPCR positive samples, whereas the abc/NFQ assay amplified 21.8% of the samples and the abc/TAMRA assay 18.2%. The enzyme-linked immunosorbent assay (ELISA) successfully quantified only 16.4% of the nPCR positive samples. Although the msa/NFQ assay amplified a greater proportion of nPCR positive samples, the abc/NFQ assay better amplified those samples with medium and high ELISA values. A comparison of the geometric mean quantity ratios highlighted limitations of the assays, and the abc/NFQ assay strongly amplified some samples that were negative in other tests, in contrast to its performance among the sample group as a whole. These data demonstrate that both the msa/NFQ and abc/NFQ qPCR assays are specific and effective at higher infection levels and outperform the ELISA. However, most pathogen studies will continue to require multiple assays to both detect and quantify R. salmoninarum infection. PMID:21381519

  6. Differential Gene Expression in Liver, Gill, and Olfactory Rosettes of Coho Salmon (Oncorhynchus kisutch) After Acclimation to Salinity

    PubMed Central

    Lavado, Ramon; Bammler, Theo K.; Gallagher, Evan P.; Stapleton, Patricia L.; Beyer, Richard P.; Farin, Federico M.; Hardiman, Gary; Schlenk, Daniel

    2015-01-01

    Most Pacific salmonids undergo smoltification and transition from freshwater to saltwater, making various adjustments in metabolism, catabolism, osmotic, and ion regulation. The molecular mechanisms underlying this transition are largely unknown. In the present study, we acclimated coho salmon (Oncorhynchus kisutch) to four different salinities and assessed gene expression through microarray analysis of gills, liver, and olfactory rosettes. Gills are involved in osmotic regulation, liver plays a role in energetics, and olfactory rosettes are involved in behavior. Between all salinity treatments, liver had the highest number of differentially expressed genes at 1616, gills had 1074, and olfactory rosettes had 924, using a 1.5-fold cutoff and a false discovery rate of 0.5. Higher responsiveness of liver to metabolic changes after salinity acclimation to provide energy for other osmoregulatory tissues such as the gills may explain the differences in number of differentially expressed genes. Differentially expressed genes were tissue- and salinity-dependent. There were no known genes differentially expressed that were common to all salinity treatments and all tissues. Gene ontology term analysis revealed biological processes, molecular functions, and cellular components that were significantly affected by salinity, a majority of which were tissue-dependent. For liver, oxygen binding and transport terms were highlighted. For gills, muscle, and cytoskeleton-related terms predominated and for olfactory rosettes, immune response-related genes were accentuated. Interaction networks were examined in combination with GO terms and determined similarities between tissues for potential osmosensors, signal transduction cascades, and transcription factors. PMID:26260986

  7. Differential Gene Expression in Liver, Gill, and Olfactory Rosettes of Coho Salmon (Oncorhynchus kisutch) After Acclimation to Salinity.

    PubMed

    Maryoung, Lindley A; Lavado, Ramon; Bammler, Theo K; Gallagher, Evan P; Stapleton, Patricia L; Beyer, Richard P; Farin, Federico M; Hardiman, Gary; Schlenk, Daniel

    2015-12-01

    Most Pacific salmonids undergo smoltification and transition from freshwater to saltwater, making various adjustments in metabolism, catabolism, osmotic, and ion regulation. The molecular mechanisms underlying this transition are largely unknown. In the present study, we acclimated coho salmon (Oncorhynchus kisutch) to four different salinities and assessed gene expression through microarray analysis of gills, liver, and olfactory rosettes. Gills are involved in osmotic regulation, liver plays a role in energetics, and olfactory rosettes are involved in behavior. Between all salinity treatments, liver had the highest number of differentially expressed genes at 1616, gills had 1074, and olfactory rosettes had 924, using a 1.5-fold cutoff and a false discovery rate of 0.5. Higher responsiveness of liver to metabolic changes after salinity acclimation to provide energy for other osmoregulatory tissues such as the gills may explain the differences in number of differentially expressed genes. Differentially expressed genes were tissue- and salinity-dependent. There were no known genes differentially expressed that were common to all salinity treatments and all tissues. Gene ontology term analysis revealed biological processes, molecular functions, and cellular components that were significantly affected by salinity, a majority of which were tissue-dependent. For liver, oxygen binding and transport terms were highlighted. For gills, muscle, and cytoskeleton-related terms predominated and for olfactory rosettes, immune response-related genes were accentuated. Interaction networks were examined in combination with GO terms and determined similarities between tissues for potential osmosensors, signal transduction cascades, and transcription factors. PMID:26260986

  8. Regulation of feeding behavior and food intake by appetite-regulating peptides in wild-type and growth hormone-transgenic coho salmon.

    PubMed

    White, Samantha L; Volkoff, Helene; Devlin, Robert H

    2016-08-01

    Survival, competition, growth and reproductive success in fishes are highly dependent on food intake, food availability and feeding behavior and are all influenced by a complex set of metabolic and neuroendocrine mechanisms. Overexpression of growth hormone (GH) in transgenic fish can result in greatly enhanced growth rates, feed conversion, feeding motivation and food intake. The objectives of this study were to compare seasonal feeding behavior of non-transgenic wild-type (NT) and GH-transgenic (T) coho salmon (Oncorhynchus kisutch), and to examine the effects of intraperitoneal injections of the appetite-regulating peptides cholecystokinin (CCK-8), bombesin (BBS), glucagon-like peptide-1 (GLP-1), and alpha-melanocyte-stimulating hormone (α-MSH) on feeding behavior. T salmon fed consistently across all seasons, whereas NT dramatically reduced their food intake in winter, indicating the seasonal regulation of appetite can be altered by overexpression of GH in T fish. Intraperitoneal injections of CCK-8 and BBS caused a significant and rapid decrease in food intake for both genotypes. Treatment with either GLP-1 or α-MSH resulted in a significant suppression of food intake for NT but had no effect in T coho salmon. The differential response of T and NT fish to α-MSH is consistent with the melanocortin-4 receptor system being a significant pathway by which GH acts to stimulate appetite. Taken together, these results suggest that chronically increased levels of GH alter feeding regulatory pathways to different extents for individual peptides, and that altered feeding behavior in transgenic coho salmon may arise, in part, from changes in sensitivity to peripheral appetite-regulating signals. PMID:27149948

  9. Stock identification of chum, sockeye, chinook, and coho salmon in Prince William Sound. Restoration projects 93068 and 94137. Exxon Valdez oil spill restoration project final report

    SciTech Connect

    Sharr, S.; Peckham, C.J.; Sharp, D.G.; Smith, J.L.; Willette, T.M.

    1996-08-01

    Coded wire tags were applied to sockeye, chum, coho, and chinook salmon at three hatcheries in Prince William Sound, and also to three populations of wild sockeye salmon. Two of these populations were situated in contaminated areas of the Sound, while the other was located in an area distant from the trajectory of the oil plume. Contributions of different hatchery and wild release groups to specific harvest-district-week strata were estimated from recoveries of tags in the commercial fishery, and in the escapements of the wild sockeye populations. Tag-specific survival rates were also estimated where possible. As expected, the proportion of fish from wild populations in the commercial catches decreased with increasing releases of hatchery fish. Significant relationships between release size and survival rates were detected for sockeye salmon.

  10. Multivariate models of adult Pacific salmon returns.

    PubMed

    Burke, Brian J; Peterson, William T; Beckman, Brian R; Morgan, Cheryl; Daly, Elizabeth A; Litz, Marisa

    2013-01-01

    Most modeling and statistical approaches encourage simplicity, yet ecological processes are often complex, as they are influenced by numerous dynamic environmental and biological factors. Pacific salmon abundance has been highly variable over the last few decades and most forecasting models have proven inadequate, primarily because of a lack of understanding of the processes affecting variability in survival. Better methods and data for predicting the abundance of returning adults are therefore required to effectively manage the species. We combined 31 distinct indicators of the marine environment collected over an 11-year period into a multivariate analysis to summarize and predict adult spring Chinook salmon returns to the Columbia River in 2012. In addition to forecasts, this tool quantifies the strength of the relationship between various ecological indicators and salmon returns, allowing interpretation of ecosystem processes. The relative importance of indicators varied, but a few trends emerged. Adult returns of spring Chinook salmon were best described using indicators of bottom-up ecological processes such as composition and abundance of zooplankton and fish prey as well as measures of individual fish, such as growth and condition. Local indicators of temperature or coastal upwelling did not contribute as much as large-scale indicators of temperature variability, matching the spatial scale over which salmon spend the majority of their ocean residence. Results suggest that effective management of Pacific salmon requires multiple types of data and that no single indicator can represent the complex early-ocean ecology of salmon. PMID:23326586

  11. Multivariate Models of Adult Pacific Salmon Returns

    PubMed Central

    Burke, Brian J.; Peterson, William T.; Beckman, Brian R.; Morgan, Cheryl; Daly, Elizabeth A.; Litz, Marisa

    2013-01-01

    Most modeling and statistical approaches encourage simplicity, yet ecological processes are often complex, as they are influenced by numerous dynamic environmental and biological factors. Pacific salmon abundance has been highly variable over the last few decades and most forecasting models have proven inadequate, primarily because of a lack of understanding of the processes affecting variability in survival. Better methods and data for predicting the abundance of returning adults are therefore required to effectively manage the species. We combined 31 distinct indicators of the marine environment collected over an 11-year period into a multivariate analysis to summarize and predict adult spring Chinook salmon returns to the Columbia River in 2012. In addition to forecasts, this tool quantifies the strength of the relationship between various ecological indicators and salmon returns, allowing interpretation of ecosystem processes. The relative importance of indicators varied, but a few trends emerged. Adult returns of spring Chinook salmon were best described using indicators of bottom-up ecological processes such as composition and abundance of zooplankton and fish prey as well as measures of individual fish, such as growth and condition. Local indicators of temperature or coastal upwelling did not contribute as much as large-scale indicators of temperature variability, matching the spatial scale over which salmon spend the majority of their ocean residence. Results suggest that effective management of Pacific salmon requires multiple types of data and that no single indicator can represent the complex early-ocean ecology of salmon. PMID:23326586

  12. Building an ecosystem model using mismatched and fragmented data: A probabilistic network of early marine survival for coho salmon Oncorhynchus kisutch in the Strait of Georgia

    NASA Astrophysics Data System (ADS)

    Andres Araujo, H.; Holt, Carrie; Curtis, Janelle M. R.; Perry, R. I.; Irvine, James R.; Michielsens, Catherine G. J.

    2013-08-01

    We evaluated the effects of biophysical conditions and hatchery production on the early marine survival of coho salmon Oncorhynchus kisutch in the Strait of Georgia, British Columbia, Canada. Due to a paucity of balanced multivariate ecosystem data, we developed a probabilistic network that integrated physical and ecological data and information from literature, expert opinion, oceanographic models, and in situ observations. This approach allowed us to evaluate alternate hypotheses about drivers of early marine survival while accounting for uncertainties in relationships among variables. Probabilistic networks allow users to explore multiple environmental settings and evaluate the consequences of management decisions under current and projected future states. We found that the zooplankton biomass anomaly, calanoid copepod biomass, and herring biomass were the best indicators of early marine survival. It also appears that concentrating hatchery supplementation during periods of negative PDO and ENSO (Pacific Decadal and El Niño Southern Oscillation respectively), indicative of generally favorable ocean conditions for salmon, tends to increase survival of hatchery coho salmon while minimizing negative impacts on the survival of wild juveniles. Scientists and managers can benefit from the approach presented here by exploring multiple scenarios, providing a basis for open and repeatable ecosystem-based risk assessments when data are limited.

  13. 2005 Evaluation of Chum, Chinook and Coho Salmon Entrapment near Ives Island in the Columbia River; 2004-2005 Annual Report.

    SciTech Connect

    Wilson, Jeremy; Duston, Reed A.

    2006-01-01

    During mid-1990s, Pacific States Marine Fisheries Commission (PSMFC) and Washington Department of Fish and Wildlife (WDFW) identified several populations of salmon spawning approximately three miles downstream of Bonneville Dam on the Columbia River. These populations are exposed to rapidly changing flow regimes associated with Bonneville Dam's operation. This study investigated the relationship between changing water levels and stranding or entrapment of juvenile salmon in the Ives Island area. Walking surveys of the Ives Island and Pierce Island shorelines were conducted every one to three days throughout the juvenile emigration period. The nearby shorelines of the Washington and Oregon mainland were also surveyed. Between January and June of 2005, surveyors examined 21 substantial entrapments and 20 stranding sites. A total of 14,337 salmonids, made up of three species, were found either entrapped or stranded. Nearly 92% of the salmonids were chinook salmon (Oncorhynchus tshawytscha), 4.5% were federally listed chum salmon (Oncorhynchus keta), and 3.8% were coho salmon (Oncorhynchus kisutch). When compared to the 2004 study year, 2005 showed an 83% increase in the overall number of observed entrapped or stranded juvenile salmon. Much of this increase can be attributed to one entrapment found along the north shore of Pierce Island (identified as E501). E501 has historically been known to contain relatively large numbers of entrapped salmon. Even so, the number of entrapped salmon observed during 2005 was a 732% increase (5926) over any prior study years. Over 83% of all chum, 63.1% of all chinook, and 63.2% of all coho sampled during 2005 were retrieved from entrapments that were likely to have formed when Bonneville Dam tailwater levels dropped to elevations between 11.5 and 12.9 feet. Peak numbers of chum and chinook were sampled in mid-April when tailwater levels ranged between 11.6ft and 15.6ft. Peak numbers of coho were sampled during the last week of

  14. Gene--environment interactions influence feeding and anti-predator behavior in wild and transgenic coho salmon.

    PubMed

    Sundström, L F; Löhmus, M; Devlin, R H

    2016-01-01

    Environmental conditions are known to affect phenotypic development in many organisms, making the characteristics of an animal reared under one set of conditions not always representative of animals reared under a different set of conditions. Previous results show that such plasticity can also affect the phenotypes and ecological interactions of different genotypes, including animals anthropogenically generated by genetic modification. To understand how plastic development can affect behavior in animals of different genotypes, we examined the feeding and risk-taking behavior in growth-enhanced transgenic coho salmon (with two- to threefold enhanced daily growth rates compared to wild type) under a range of conditions. When compared to wild-type siblings, we found clear effects of the rearing environment on feeding and risk-taking in transgenic animals and noted that in some cases, this environmental effect was stronger than the effects of the genetic modification. Generally, transgenic fish, regardless of rearing conditions, behaved similar to wild-type fish reared under natural-like conditions. Instead, the more unusual phenotype was associated with wild-type fish reared under hatchery conditions, which possessed an extreme risk averse phenotype compared to the same strain reared in naturalized conditions. Thus, the relative performance of genotypes from one environment (e.g., laboratory) may not always accurately reflect ecological interactions as would occur in a different environment (e.g., nature). Further, when assessing risks of genetically modified organisms, it is important to understand how the environment affects phenotypic development, which in turn may variably influence consequences to ecosystem components across different conditions found in the complexity of nature. PMID:27039510

  15. The effect of temperature and ration size on the growth, body composition, and energy content of juvenile coho salmon

    USGS Publications Warehouse

    Edsall, Thomas A.; Frank, Anthony M.; Rottiers, Donald V.; Adams, Jean V.

    1999-01-01

    Juvenile (postsmolt) coho salmon (Oncorhynchus kitsuch) were held in fresh water in the laboratory at 5, 10, 15, and 18A?C for 8 weeks and fed freshly thawed, juvenile alewives (Alosa pseudoharengus) at rates equal to 1 and 2 % of their wet body weight/day, and also at the ad libitum or unrestricted ration rate. Most rapid growth in weight (1.2% wet body weight/day) occurred among fish fed the ad libitum ration at 15A?C; growth was most rapid at about 10A?C for fish fed the 2% ration (0.7%/day), and the 1% ration (0.1%/day). Gross conversion efficiency was highest at 10A?C for all three ration levels. Gross body constituents and energy content of the test fish changed with temperature and ration during the study. Growth rate was positively related to lipid, energy content, and ration; lipid and energy content were positively related to water temperature; lipid, energy content, growth rate, ration, and water temperature were negatively related to water content; and protein was not related to any of the test variables. At the end of the study, water (68.7 to 76.4%) and lipid (3.5 to 10.4%) content were more variable than ash (1.8 to 3.1%), carbohydrate (0.1 to 1.9%), and protein (16.9 to 19.4%) content. Energy content of the fish increased with ration and was highest for each ration level at 15A?C.

  16. Facing the River Gauntlet: Understanding the Effects of Fisheries Capture and Water Temperature on the Physiology of Coho Salmon

    PubMed Central

    Raby, Graham D.; Clark, Timothy D.; Farrell, Anthony P.; Patterson, David A.; Bett, Nolan N.; Wilson, Samantha M.; Willmore, William G.; Suski, Cory D.; Hinch, Scott G.; Cooke, Steven J.

    2015-01-01

    An improved understanding of bycatch mortality can be achieved by complementing field studies with laboratory experiments that use physiological assessments. This study examined the effects of water temperature and the duration of net entanglement on physiological disturbance and recovery in coho salmon (Oncorhynchus kisutch) after release from a simulated beach seine capture. Heart rate was monitored using implanted electrocardiogram biologgers that allowed fish to swim freely before and after release. A subset of fish was recovered in respirometers to monitor metabolic recovery, and separate groups of fish were sacrificed at different times to assess blood and white muscle biochemistry. One hour after release, fish had elevated lactate in muscle and blood plasma, depleted tissue energy stores, and altered osmoregulatory status, particularly in warmer (15 vs. 10°C) and longer (15 vs. 2 min) capture treatments. A significant effect of entanglement duration on blood and muscle metabolites remained after 4 h. Oxygen consumption rate recovered to baseline within 7–10 h. However, recovery of heart rate to routine levels was longer and more variable, with most fish taking over 10 h, and 33% of fish failing to recover within 24 h. There were no significant treatment effects on either oxygen consumption or heart rate recovery. Our results indicate that fishers should minimize handling time for bycatch and maximize oxygen supply during crowding, especially when temperatures are elevated. Physiological data, such as those presented here, can be used to understand mechanisms that underlie bycatch impairment and mortality, and thus inform best practices that ensure the welfare and conservation of affected species. PMID:25901952

  17. Assessing possible thermal rearing restrictions for juvenile coho salmon (Oncorhynchus kisutch) through thermal infrared imaging and in-stream monitoring, Redwood Creek, California

    USGS Publications Warehouse

    Madej, M.A.; Currens, C.; Ozaki, V.; Yee, J.; Anderson, D.G.

    2006-01-01

    We quantified patterns in stream temperature in a northern coastal California river using thermal infrared (TIR) imaging and in-stream monitoring and related temperature patterns to the historical and present distributions of juvenile coho salmon (Oncorhynchus kisutch). In Redwood Creek, California, water temperature increased from the headwaters to about 60 km downstream, then gradually decreased over the next 40 km as the river approaches the Pacific Ocean. Despite the lack of fish migration barriers, juvenile coho are currently only observed in the downstream-most 20 km, whereas historically they were found in 90 km of river channel. Maximum daily temperatures and duration of elevated stream temperatures were not significantly different in the headwater and downstream reaches but were significantly higher in the 50 km long intervening reach, where maximum weekly maximum temperatures ranged from 23 to 27??C. An increase in stream temperatures in the middle basin during the last three decades as a result of channel aggradation, widening, and the removal of large riparian conifers may play an important role in restricting juvenile coho to one-fifth of their historical range. ?? 2006 NRC.

  18. 16S rDNA-based analysis of dominant bacterial populations associated with early life stages of coho salmon (Oncorhynchus kisutch).

    PubMed

    Romero, Jaime; Navarrete, Paola

    2006-05-01

    In this study, we used a 16S rDNA-based approach to determine bacterial populations associated with coho salmon (Oncorhynchus kisutch) in its early life stages, highlighting dominant bacteria in the gastrointestinal tract during growth in freshwater. The present article is the first molecular analysis of bacterial communities of coho salmon. Cultivability of the salmon gastrointestinal microbiota was estimated by comparison of direct microscopic counts (using acridine orange) with colony counts (in tryptone soy agar). In general, a low fraction (about 1%) of the microbiota could be recovered as cultivable bacteria. Using DNA extracted directly from individuals belonging to the same lot, bacterial communities present in eggs and gastrointestinal tract of first-feeding fries and juveniles were monitored by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The DGGE profiles revealed simple communities in all stages and exposed changes in bacterial community during growth. Sequencing and phylogenetic analysis of excised DGGE bands revealed the nature of the main bacteria found in each stage. In eggs, the dominant bacteria belonged to beta-Proteobacteria (Janthinobacterium and Rhodoferax). During the first feeding stage, the most abundant bacteria in the gastrointestinal tract clustered with gamma-Proteobacteria (Shewanella and Aeromonas). In juveniles ranging from 2 to 15 g, prevailing bacteria were Pseudomonas and Aeromonas. To determine the putative origin of dominant Pseudomonas and Aeromonas found in juvenile gastrointestinal tracts, primers for these groups were designed based on sequences retrieved from DGGE gel. Subsequently, samples of the water influent, pelletized feed, and eggs were analyzed by PCR amplification. Only those amplicons obtained from samples of eggs and the water influent presented identical sequences to the dominant bands of DGGE. Overall, our results suggest that a stable microbiota is established after the first

  19. Effects of salinity acclimation on the expression and activity of Phase I enzymes (CYP450 and FMOs) in coho salmon (Oncorhynchus kisutch)

    PubMed Central

    Lavado, Ramon; Aparicio-Fabre, Rosaura; Schlenk, Daniel

    2013-01-01

    Phase I biotransformation enzymes are critically important in the disposition of xenobiotics within biota and are regulated by multiple environmental cues, particularly in anadromous fish species. Given the importance of these enzyme systems in xenobiotic/endogenous chemical bioactivation and detoxification, the current study was designed to better characterize the expression of Phase I biotransformation enzymes in coho salmon (Oncorhynchus kisutch) and the effects of salinity acclimation on those enzymes. Livers, gills and olfactory tissues were collected from coho salmon (Oncorhynchus kisutch) after they had undergone acclimation from freshwater to various salinity regimes of seawater (8, 16 and 32 g/L). Using immunoblot techniques coupled with testosterone hydroxylase catalytic activities, 4 orthologs of cytochrome P450 (CYP1A, CYP2K1, CYP2M1 and CYP3A27) were measured in each tissue. Also the expression of 2 transcripts of flavin-containing monooxygenases (FMO A and B) and associated activities were measured. With the exception of CYP1A, which was down-regulated in liver, protein expression of the other 3 enzymes was induced at higher salinity, with the greatest increase observed in CYP2M1 from olfactory tissues. In liver and gills, 6 - and 16 -hydroxylation of testosterone was also significantly increased after hypersaline acclimation. Similarly, FMO A was up-regulated in all 3 tissues in a salinity-dependent pattern, whereas FMO B mRNA was down-regulated. FMO-catalyzed benzydamine N-oxygenase and methyl p-tolyl sulfoxidation were significantly induced in liver and gills by hypersalinity, but was either unchanged or not detected in olfactory tissues. These data demonstrate thatenvironmental conditions may significantly alter the toxicity of environmental chemicals in salmon during freshwater/saltwater acclimation. PMID:23925894

  20. Effects of Habitat Enhancement on Steelhead Trout and Coho Salmon Smolt Production, Habitat Utilization, and Habitat Availability in Fish Creek, Oregon, 1986 Annual Report.

    SciTech Connect

    Everest, Fred H.; Reeves, Gordon H.; Hohler, David B.

    1987-06-01

    Construction and evaluation of salmonid habitat improvements on Fish Creek, a tributary of the upper Clackamas River, was continued in fiscal year 1986 by the Estacada Ranger District, Mt. Hood National Forest, and the Anadromous Fish Habitat Research Unit of the Pacific Northwest Research Station (PNW), USDA Forest Service. The study began in 1982 when PNW entered into an agreement with the Mt. Hood National Forest to evaluate fish habitat improvements in the Fish Creek basin on the Estacada Ranger District. The project was initially conceived as a 5-year effort (1982-1986) to be financed with Forest Service funds. The habitat improvement program and the evaluation of improvements were both expanded in mid-1983 when the Bonneville Power Administration (BPA) entered into an agreement with the Mt. Hood National Forest to cooperatively fund work on Fish Creek. Habitat improvement work in the basin is guided by the Fish Creek Habitat Rehabilitation-Enhancement Framework developed cooperatively by the Estacada Ranger District, the Oregon Department of Fish and Wildlife, and the Pacific Northwest Research Station (see Appendix 2). The framework examines potential factors limiting production of salmonids in the basin, and the appropriate habitat improvement measures needed to address the limiting factors. Habitat improvement work in the basin has been designed to: (1) improve quantity, quality, and distribution of spawning habitat for coho and spring chinook salmon and steelhead trout, (2) increase low flow rearing habitat for steelhead trout and coho salmon, (3) improve overwintering habitat for coho salmon and steelhead trout, (4) rehabilitate riparian vegetation to improve stream shading to benefit all species, and (5) evaluate improvement projects from a drainage wide perspective. The objectives of the evaluation include: (1) Drainage-wide evaluation and quantification of changes in salmonid spawning and rearing habitat resulting from a variety of habitat

  1. Physiological benefits of being small in a changing world: responses of Coho salmon (Oncorhynchus kisutch) to an acute thermal challenge and a simulated capture event.

    PubMed

    Clark, Timothy D; Donaldson, Michael R; Pieperhoff, Sebastian; Drenner, S Matthew; Lotto, Andrew; Cooke, Steven J; Hinch, Scott G; Patterson, David A; Farrell, Anthony P

    2012-01-01

    Evidence is building to suggest that both chronic and acute warm temperature exposure, as well as other anthropogenic perturbations, may select for small adult fish within a species. To shed light on this phenomenon, we investigated physiological and anatomical attributes associated with size-specific responses to an acute thermal challenge and a fisheries capture simulation (exercise+air exposure) in maturing male coho salmon (Oncorhynchus kisutch). Full-size females were included for a sex-specific comparison. A size-specific response in haematology to an acute thermal challenge (from 7 to 20 °C at 3 °C h(-1)) was apparent only for plasma potassium, whereby full-size males exhibited a significant increase in comparison with smaller males ('jacks'). Full-size females exhibited an elevated blood stress response in comparison with full-size males. Metabolic recovery following exhaustive exercise at 7 °C was size-specific, with jacks regaining resting levels of metabolism at 9.3 ± 0.5 h post-exercise in comparison with 12.3 ± 0.4 h for full-size fish of both sexes. Excess post-exercise oxygen consumption scaled with body mass in male fish with an exponent of b = 1.20 ± 0.08. Jacks appeared to regain osmoregulatory homeostasis faster than full-size males, and they had higher ventilation rates at 1 h post-exercise. Peak metabolic rate during post-exercise recovery scaled with body mass with an exponent of b~1, suggesting that the slower metabolic recovery in large fish was not due to limitations in diffusive or convective oxygen transport, but that large fish simply accumulated a greater 'oxygen debt' that took longer to pay back at the size-independent peak metabolic rate of ~6 mg min(-1) kg(-1). Post-exercise recovery of plasma testosterone was faster in jacks compared with full-size males, suggesting less impairment of the maturation trajectory of smaller fish. Supporting previous studies, these findings suggest that environmental change and non

  2. Discovering Alaska's Salmon: A Children's Activity Book.

    ERIC Educational Resources Information Center

    Devaney, Laurel

    This children's activity book helps students discover Alaska's salmon. Information is provided about salmon and where they live. The salmon life cycle and food chains are also discussed. Different kinds of salmon such as Chum Salmon, Chinook Salmon, Coho Salmon, Sockeye Salmon, and Pink Salmon are introduced, and various activities on salmon are…

  3. Survival and Migration Behavior of Juvenile Coho Salmon in the Klamath River Relative to Discharge at Iron Gate Dam, Northern California, 2007

    USGS Publications Warehouse

    Beeman, John W.; Juhnke, Steve; Stutzer, Greg; Hetrick, Nicholas

    2008-01-01

    This report describes a study of survival and migration behavior of radio-tagged juvenile coho salmon (Oncorhynchus kisutch) in the Klamath River, northern California, in 2007. This was the third year of a multi-year study with the goal of determining the effects of discharge at Iron Gate Dam (IGD) on survival of juvenile coho salmon downstream. Survival and factors affecting survival were estimated in 2006 and 2007 after work in 2005 showed radio telemetry could be used effectively. The study has included collaborative efforts among U.S. Geological Survey (USGS), U.S. Fish and Wildlife Service (USFWS), the Karuk and Yurok Tribal Fisheries Departments, and the U.S. Bureau of Reclamation. The objectives of the study included: (1) estimating the survival of wild and hatchery juvenile coho salmon in the Klamath River downstream of Iron Gate Dam, determining the effects of discharge and other covariates on juvenile coho salmon survival (2) and migration (3), and (4) determining if fish from Iron Gate Hatchery (IGH) could be used as surrogates for the limited source of wild fish. We have been able to meet the first objective by estimating the survivals of hatchery and wild fish (when available) downstream of IGD. We have not yet met the second or third objectives, because we have been unable to separate effects of discharge from other environmental variables as they pertain to the survival or migration of juvenile coho salmon. This was foreseen when the study began, as it was known there would likely be no experimental discharges. A multi-year analysis will be conducted after the data for the third planned year are available. The fourth objective was initiated in 2006, but wild fish were not available in 2007. The next year wild fish may be available is in 2009, based on their 3-year cycle of abundance. River discharges during the 2007 study period (April 10 through July 28, 2007) were below average compared to the period of record beginning in 1962. Average daily

  4. Oxytetracycline depletion from skin-on fillet tissue of coho salmon fed oxytetracycline medicated feed in freshwater at temperatures less than 9°C

    USGS Publications Warehouse

    Meinertz, Jeffery R.; Gaikowski, Mark P.; Stehly, Guy R.; Gingerich, William H.; Evered, Joy A.

    2001-01-01

    Oxytetracycline (OTC) is a broad spectrum antibacterial agent approved in the USA for treating certain bacterial diseases in salmonids cultured in freshwater at temperatures greater than or equal to 9°C. This study was conducted to provide the information necessary to expand the OTC label to include treatment of diseased salmonids cultured in freshwater at temperatures below 9°C. The study was designed to treat juvenile coho salmon (Oncorhynchus kisutch) with OTC-medicated feed and determine the depletion of OTC from the skin-on fillet tissue. Oxytetracycline depletion was evaluated in juvenile coho salmon (weight range, 13–62 g) fed OTC-medicated feed at a rate of 88.2 mg OTC/kg body weight/day for 10 days. Pairs of skin-on fillets were taken from individual fish on days 4 and 10 during the treatment phase and on days 1, 4, 8, 14, and 19 during the depletion phase. Water temperatures during the study period ranged from 4.1°C to 8.5°C. The OTC concentrations in medicated feed and skin-on fillets were determined with high-performance liquid chromatography methods. The maximum mean OTC concentration in fillet tissue was 932 ng/g, 1 day after the last treatment and decreased to 32 ng/g 19 days after the last treatment. The log-linear loss of OTC from the fillet tissue was biphasic with a terminal phase half-life of 4.9 days.

  5. STABLE ISOTOPE STUDIES ON THE USE OF MARINE-DERIVED NUTRIENTS BY COHO SALMON JUVENILES IN THE OREGON COAST RANGE

    EPA Science Inventory

    Greatly reduced spawning runs of anadromous salmon in streams of the Pacific Northwest (USA) have led to concerns about the effects of reduced marine derived nutrients (MDN's) on sustaining over-wintering juvenile salmon in those streams. In response to these concerns, state a...

  6. Temporal patterns in adult salmon migration timing across southeast Alaska

    USGS Publications Warehouse

    Kovach, Ryan P.; Ellison, Stephen; Pyare, Sanjay; Tallmon, David

    2015-01-01

    Pacific salmon migration timing can drive population productivity, ecosystem dynamics, and human harvest. Nevertheless, little is known about long-term variation in salmon migration timing for multiple species across broad regions. We used long-term data for five Pacific salmon species throughout rapidly warming southeast Alaska to describe long-term changes in salmon migration timing, interannual phenological synchrony, relationships between climatic variation and migratory timing, and to test whether long-term changes in migration timing are related to glaciation in headwater streams. Temporal changes in the median date of salmon migration timing varied widely across species. Most sockeye populations are migrating later over time (11 of 14), but pink, chum, and especially coho populations are migrating earlier than they did historically (16 of 19 combined). Temporal trends in duration and interannual variation in migration timing were highly variable across species and populations. The greatest temporal shifts in the median date of migration timing were correlated with decreases in the duration of migration timing, suggestive of a loss of phenotypic variation due to natural selection. Pairwise interannual correlations in migration timing varied widely but were generally positive, providing evidence for weak region-wide phenological synchrony. This synchrony is likely a function of climatic variation, as interannual variation in migration timing was related to climatic phenomenon operating at large- (Pacific decadal oscillation), moderate- (sea surface temperature), and local-scales (precipitation). Surprisingly, the presence or the absence of glaciers within a watershed was unrelated to long-term shifts in phenology. Overall, there was extensive heterogeneity in long-term patterns of migration timing throughout this climatically and geographically complex region, highlighting that future climatic change will likely have widely divergent impacts on salmon

  7. Temporal patterns in adult salmon migration timing across southeast Alaska.

    PubMed

    Kovach, Ryan P; Ellison, Stephen C; Pyare, Sanjay; Tallmon, David A

    2015-05-01

    Pacific salmon migration timing can drive population productivity, ecosystem dynamics, and human harvest. Nevertheless, little is known about long-term variation in salmon migration timing for multiple species across broad regions. We used long-term data for five Pacific salmon species throughout rapidly warming southeast Alaska to describe long-term changes in salmon migration timing, interannual phenological synchrony, relationships between climatic variation and migratory timing, and to test whether long-term changes in migration timing are related to glaciation in headwater streams. Temporal changes in the median date of salmon migration timing varied widely across species. Most sockeye populations are migrating later over time (11 of 14), but pink, chum, and especially coho populations are migrating earlier than they did historically (16 of 19 combined). Temporal trends in duration and interannual variation in migration timing were highly variable across species and populations. The greatest temporal shifts in the median date of migration timing were correlated with decreases in the duration of migration timing, suggestive of a loss of phenotypic variation due to natural selection. Pairwise interannual correlations in migration timing varied widely but were generally positive, providing evidence for weak region-wide phenological synchrony. This synchrony is likely a function of climatic variation, as interannual variation in migration timing was related to climatic phenomenon operating at large- (Pacific decadal oscillation), moderate- (sea surface temperature), and local-scales (precipitation). Surprisingly, the presence or the absence of glaciers within a watershed was unrelated to long-term shifts in phenology. Overall, there was extensive heterogeneity in long-term patterns of migration timing throughout this climatically and geographically complex region, highlighting that future climatic change will likely have widely divergent impacts on salmon

  8. Abundance, Behavior, and Habitat Utilization by Coho Salmon and Steelhead Trout in Fish Creek, Oregon, as Influenced by Habitat Enhancement, 1985 Annual Report.

    SciTech Connect

    Wolfe, John; Everest, Fred H.; Heller, David A.

    1986-09-01

    Construction and evaluation of salmonid habitat improvements on Fish Creek, a tributary of the upper Clackamas River, was continued in fiscal year 1985 by the Estacada Ranger District, Mt. Hood National Forest, and the Anadromous Fish Habitat Research Unit of the Pacific Northwest Forest and Range Experiment Station (PNW), USDA Forest Service. The study began in 1982 when PNW entered into an agreement with the Mt. Hood National Forest to evaluate fish habitat improvements in the Fish Creek basin on the Estacada Ranger District. The project was initially conceived as a 5-year effort (19824986) to be financed by Forest Service funds. Several factors limiting production of salmonids in the basin were identified during the first year of the study, and the scope of the habitat improvement effort was subsequently enlarged. The habitat improvement program and the evaluation of improvements were both expanded in mid-1983 when the Bonneville Power Administration entered into an agreement with the Mt. Hood National Forest to provide additional funding for work on Fish Creek. Habitat improvement work in the basin is designed to increase the annual number of chinook and coho salmon, and steelhead trout smolt outmigrants. The primary objectives of the evaluation include the: (1) Evaluation and quantification of changes in salmonid spawning and rearing habitat resulting from a variety of habitat Improvements. (2) Evaluation and quantification of changes in fish populations and biomass resulting from habitat improvements. (3) Evaluation of the cost-effectiveness of habitat improvements developed with BPA and Forest Service funds on Fish Creek. Several prototype enhancement projects were constructed and tested during the first three years of the study. The Intention was to identify successful techniques that could then be broadly applied within the bash. This stepwise procedure has been largely successful in identifying the most promising enhancement techniques for the Fish Creek

  9. Effects of various feed supplements containing fish protein hydrolysate or fish processing by-products on the innate immune functions of juvenile coho salmon (oncorhynchus kisutch)

    USGS Publications Warehouse

    Murray, A.L.; Pascho, R.J.; Alcorn, S.W.; Fairgrieve, W.T.; Shearer, K.D.; Roley, D.

    2003-01-01

    Immunomodulators administered to fish in the diet have been shown in some cases to enhance innate immune defense mechanisms. Recent studies have suggested that polypeptide fractions found in fish protein hydrolysates may stimulate factors in fish important for disease resistance. For the current study, groups of coho salmon were reared on practical feeds that contained either fish meal (Control diet), fish meal supplemented with cooked fish by-products, or fish meal supplemented with hydrolyzed fish protein alone, or with hydrolyzed fish protein and processed fish bones. For each diet group, three replicate tanks of fish were fed the experimental diets for 6 weeks. Morphometric measurements, and serologic and cellular assays were used to evaluate the general health and immunocompetence of fish in the various feed groups. Whereas the experimental diets had no effect on the morphometric and cellular measurements, fish fed cooked by-products had increased leucocrit levels and lower hematocrit levels than fish from the other feed groups. Innate cellular responses were increased in all feed groups after feeding the four experimental diets compared with pre-feed results. Subgroups of fish from each diet group were also challenged with Vibrio anguillarum (ca. 7.71 ?? 105 bacteria ml-1) at 15??C by immersion. No differences were found in survival among the various feed groups.

  10. Rearing in natural and recovering tidal wetlands enhances growth and life-history diversity of Columbia Estuary tributary coho salmon Oncorhynchus kisutch population.

    PubMed

    Craig, B E; Simenstad, C A; Bottom, D L

    2014-07-01

    This study provides evidence of the importance of tributary tidal wetlands to local coho salmon Oncorhynchus kisutch populations and life-history diversity. Subyearling and, to a lesser extent, yearling O. kisutch life histories utilized various estuary habitats within the Grays River, a tidal freshwater tributary of the Columbia River estuary, including restoring emergent wetlands and natural forested wetlands. Migration timing data, size distributions, estuary residence and scale patterns suggest a predominance of subyearling migrant life histories, including several that involve extended periods of estuary rearing. Estuarine-rearing subyearling O. kisutch exhibited the greatest overall growth rates; the highest growth rates were seen in fish that utilized restoring emergent wetlands. These results contrast with studies conducted in the main-stem Columbia River estuary, which captured few O. kisutch, of which nearly all were hatchery-origin yearling smolts. Restoration and preservation of peripheral and tributary wetland habitats, such as those in the Grays River, could play an important role in the recovery of natural O. kisutch populations in the Columbia River and elsewhere. PMID:24890886

  11. Effects of Iron Gate Dam discharge and other factors on the survival and migration of juvenile coho salmon in the lower Klamath River, northern California, 2006-09

    USGS Publications Warehouse

    Beeman, John; Juhnke, Steven; Stutzer, Greg; Wright, Katrina

    2012-01-01

    Current management of the Klamath River includes prescribed minimum discharges intended partly to increase survival of juvenile coho salmon during their seaward migration in the spring. To determine if fish survival was related to river discharge, we estimated apparent survival and migration rates of yearling coho salmon in the Klamath River downstream of Iron Gate Dam. The primary goals were to determine if discharge at Iron Gate Dam affected coho salmon survival and if results from hatchery fish could be used as a surrogate for the limited supply of wild fish. Fish from hatchery and wild origins that had been surgically implanted with radio transmitters were released into the Klamath River slightly downstream of Iron Gate Dam at river kilometer 309. Tagged fish were used to estimate apparent survival between, and passage rates at, a series of detection sites as far downstream as river kilometer 33. Conclusions were based primarily on data from hatchery fish, because wild fish were only available in 2 of the 4 years of study. Based on an information-theoretic approach, apparent survival of hatchery and wild fish was similar, despite differences in passage rates and timing, and was lowest in the 54 kilometer (km) reach between release and the Scott River. Models representing the hypothesis that a short-term tagging- or handling-related mortality occurred following release were moderately supported by data from wild fish and weakly supported by data from hatchery fish. Estimates of apparent survival of hatchery fish through the 276 km study area ranged from 0.412 (standard error [SE] 0.048) to 0.648 (SE 0.070), depending on the year, and represented an average of 0.790 per 100 km traveled. Estimates of apparent survival of wild fish through the study area were 0.645 (SE 0.058) in 2006 and 0.630 (SE 0.059) in 2009 and were nearly identical to the results from hatchery fish released on the same dates. The data and models examined supported positive effects of water

  12. Stock Assessment of Columbia River Anadromous Salmonids : Final Report, Volume I, Chinook, Coho, Chum and Sockeye Salmon Summaries.

    SciTech Connect

    Howell, Philip J.

    1986-07-01

    The purpose was to identify and characterize the wild and hatchery stocks of salmon and steelhead in the Columbia River Basin on the basis of currently available information. This report provides a comprehensive compilation of data on the status and life histories of Columbia Basin salmonid stocks.

  13. Time-Delayed Subsidies: Interspecies Population Effects in Salmon

    PubMed Central

    Nelson, Michelle C.; Reynolds, John D.

    2014-01-01

    Cross-boundary nutrient inputs can enhance and sustain populations of organisms in nutrient-poor recipient ecosystems. For example, Pacific salmon (Oncorhynchus spp.) can deliver large amounts of marine-derived nutrients to freshwater ecosystems through their eggs, excretion, or carcasses. This has led to the question of whether nutrients from one generation of salmon can benefit juvenile salmon from subsequent generations. In a study of 12 streams on the central coast of British Columbia, we found that the abundance of juvenile coho salmon was most closely correlated with the abundance of adult pink salmon from previous years. There was a secondary role for adult chum salmon and watershed size, followed by other physical characteristics of streams. Most of the coho sampled emerged in the spring, and had little to no direct contact with spawning salmon nutrients at the time of sampling in the summer and fall. A combination of techniques suggest that subsidies from spawning salmon can have a strong, positive, time-delayed influence on the productivity of salmon-bearing streams through indirect effects from previous spawning events. This is the first study on the impacts of nutrients from naturally-occurring spawning salmon on juvenile population abundance of other salmon species. PMID:24911974

  14. Effects of hypophysectomy on coho salmon interrenal: maintenance of steroidogenic pathway and restoration of in vitro responsiveness to adrenocorticotropin after handling.

    PubMed

    Young, G

    1993-12-01

    The role of the pituitary in regulating interrenal activity in coho salmon (Oncorhynchus kisutch) was examined using short- (1 week) or long- (10 week) term hypophysectomized (Hx) animals. In experiments in which Hx animals were injected with ovine growth hormone (oGH), triiodothyronine, or vehicle, plasma cortisol was significantly lower (close to non-detectable, 1 ng/ml) in vehicle-injected or hormone-treated short- and long-term Hx animals compared to vehicle-treated sham-operated (SO animals). Treatment of long-term Hx animals with oGH led to a significant increase in plasma cortisol, in comparison to other Hx groups. Interrenal responsiveness to ACTH or cAMP was not consistently affected by hypophysectomy or hormone treatment. Pregnenolone-supported cortisol production by tissue from Hx groups was at least as great as that by tissue from SO animals; production by tissue from GH-treated, long-term Hx animals was significantly greater than that by tissue from Hx or SO animals. Similar experiments utilizing handling stress (handling and anesthesia) instead of hormone injection as a variable revealed that the response of tissue from Hx animals to ACTH or cAMP was significantly reduced in the absence of handling in comparison with SO animals. However, utilization of pregnenolone as a substrate by tissue from Hx animals was no different from that by tissue from SO animals and was independent of handling. These results indicate that the maintenance of the steroid-biosynthetic pathway is pituitary independent. The decrease in tissue responsiveness to ACTH or cAMP in undisturbed Hx animals may be partially attributable to: (1) the absence of nonpituitary/nonpituitary-mediated factors that are stimulated by handling and which probably upregulate ACTH receptors and mediating systems; and/or (2) to the presence of inhibitory factors which are decreased after handling. PMID:7908000

  15. Species and life-history affects the utility of otolith chemical composition to determine natal stream-of-origin in Pacific salmon

    USGS Publications Warehouse

    Zimmerman, Christian E.; Swanson, Heidi K.; Volk, Eric C.; Kent, Adam J.R.

    2013-01-01

    To test the utility of otolith chemical composition as a tool for determining the natal stream of origin for salmon, we examined water chemistry and otoliths of juvenile and adult Chum Salmon Oncorhynchus keta and Coho Salmon O. kisutch from three watersheds (five rivers) in the Norton Sound region of Alaska. The two species are characterized by different life histories: Coho Salmon rear in freshwater for up to 3 years, whereas Chum Salmon emigrate from freshwater shortly after emergence. We used laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) to quantify element: Ca ratios for Mg, Mn, Zn, Sr, and Ba, and we used multicollector LA-ICP-MS to determine 87Sr:86Sr ratios in otolith regions corresponding to the period of freshwater residence. Significant differences existed in both water and otolith elemental composition, suggesting that otolith composition could be used to discriminate the natal origin of Coho Salmon and Chum Salmon but only when 87Sr:86Sr ratios were included in the discriminant function analyses. The best discriminant model included 87Sr:86Sr ratios, and without 87Sr:86Sr ratios it was difficult to discriminate among watersheds and rivers. Classification accuracy was 80% for Coho Salmon and 68% for Chum Salmon, indicating that this method does not provide sufficient sensitivity to estimate straying rates of Pacific salmon at the scale we studied.

  16. The administration of sulfonamide drugs to adult salmon

    USGS Publications Warehouse

    Amend, D.F.; Fryer, J.L.

    1968-01-01

    Mass treatment is the most convenient way to combat fish diseases. For example, drugs can be administered per os in diets, or chemicals can be added to the water. These methods are mostly ineffective in treating systemic infections of adult salmon because mature salmon do not feed, and many fish diseases cannot be controlled by chemical baths. Thus, effective treatment would require administering drugs to each individual.

  17. Trapping and Transportation of Adult and Juvenile Salmon in the Lower Umatilla River in Northeast Oregon: Umatilla River Basin Trap and Haul Program, October 1994-September 1995.

    SciTech Connect

    Zimmerman, Brian C.; Duke, Bill B.

    1995-09-01

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were collected at Threemile Dam from August 26, 1994 to June 27, 1995. A total of 1,531 summer steelhead (Oncorhynchus mykiss); 688 adult, 236 jack, and 368 subjack fall chinook (O. tshawvtscha); 984 adult and 62 jack coho (O. kisutch) ; and 388 adult and 108 jack spring chinook (O. tshawvtscha) were collected. All fish were trapped at the east bank facility. Of the fish collected, 971 summer steelhead; 581 adult and 27 jack fall chinook; 500 adult and 22 jack coho; and 363 adult and 61 jack spring chinook were hauled upstream from Threemile Dam. There were also 373 summer steelhead; 12 adult, 186 jack and 317 subjack fall chinook; 379 adult and 32 jack coho; and 15 adult and one jack spring chinook released at Threemile Dam. In addition, 154 summer steelhead were hauled to Bonifer and Minthorn for brood. The Westland Canal facility, located near the town of Echo, is the major collection point for outmigrating juvenile salmonids and steelhead kelts. The facility operated for a total of 179 days between December 2, 1994 and July 19, 1995. During that period, fish were bypassed back to the river 137 days and were trapped 42 days. Three steelhead kelts and an estimated 1,560 pounds of juvenile fish were transported from the Westland Canal trap to the Umatilla River boat ramp at rivermile 0.5. Approximately 98% of the fish transported this year were salmonids. The Threemile Dam west bank juvenile bypass began operating March 25, 1995 and was closed on June 16, 1995. The juvenile trap was operated by Oregon Department of Fish and Wildlife research personnel from April 1, 1995 through the summer to monitor juvenile outmigration.

  18. Development of Rations for the Enhanced Survival of Salmon, 1985-1986 Progress (Annual) Report.

    SciTech Connect

    Bradford, C. Samuel

    1987-04-01

    This investigation tests the hypothesis that ration protein quality can influence the survival of smolts and the ultimate return of adults. The general approach being used involves a comparison of coho and chinook salmon reared on rations containing very high quality protein derived from vacuum dried meals and commercial rations relying on commercial fish meal as a source of protein. Survival and return of replicate brood-years of coded wire tagged test and control fish are being used to determine the influence of ration on survival. Project rearing and release of tagged fish to date include 1982, 1983, and 1984-brood replicates of coho salmon; the 1983 and 1984-brood replicates of fall chinook (tule stock salmon; and the 1985-brood of fall chinook (up-river-bright stock) salmon. The 1985-brood year replicate of coho salmon is presently being reared and has been tagged for release in April 1987. The rearing of the 1986-brood replicate of fall chinook (up-river-bright stock) salmon has been initiated. This report covers the rearing and release of the 1984-brood coho and the 1985-brood fall chinook (up-river-bright stock) salmon. Plasma cortisol and thyroxine (T/sub 4/) level, gill Na/sup +//K/sup +/-ATPase, osmoregulatory performance, immunocompetency and total hepatic/gill microsomal lipid content were monitored from early June to mid-October 1986 to assess the physiological condition of fall chinook salmon. Results indicated that on several sampling dates early in the 1986 rearing period fish supplied the control ration were physiologically different than fish receiving the salmon meal ration. Incomplete recovery of coded wire tags from 1982 and 1983-broods of coho salmon (Sandy stock) revealed an improved (P greater than or equal to .05) survival for fish supplied test rations.

  19. 77 FR 19552 - Endangered and Threatened Species; Range Extension for Endangered Central California Coast Coho...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ...We, the National Marine Fisheries Service (NMFS), are issuing a final rule under the Endangered Species Act (ESA) of 1973, as amended, that redefines the geographic range of the endangered Central California Coast (CCC) coho salmon (Oncorhynchus kisutch) Evolutionarily Significant Unit (ESU) to include all naturally spawned populations of coho salmon that occur in Soquel and Aptos creeks.......

  20. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Russian River Chinook and coho salmon Coyote Valley Dam (E. Fork Russian R.)Warm Springs Dam (Dry Cr.../a 18050002 CA San Pablo Bay Chinook and coho salmon San Pablo Dam (San Pablo Cr.) 18050003 CA...

  1. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Russian River Chinook and coho salmon Coyote Valley Dam (E. Fork Russian R.)Warm Springs Dam (Dry Cr.../a 18050002 CA San Pablo Bay Chinook and coho salmon San Pablo Dam (San Pablo Cr.) 18050003 CA...

  2. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Russian River Chinook and coho salmon Coyote Valley Dam (E. Fork Russian R.)Warm Springs Dam (Dry Cr.../a 18050002 CA San Pablo Bay Chinook and coho salmon San Pablo Dam (San Pablo Cr.) 18050003 CA...

  3. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Russian River Chinook and coho salmon Coyote Valley Dam (E. Fork Russian R.)Warm Springs Dam (Dry Cr.../a 18050002 CA San Pablo Bay Chinook and coho salmon San Pablo Dam (San Pablo Cr.) 18050003 CA...

  4. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Russian River Chinook and coho salmon Coyote Valley Dam (E. Fork Russian R.)Warm Springs Dam (Dry Cr.../a 18050002 CA San Pablo Bay Chinook and coho salmon San Pablo Dam (San Pablo Cr.) 18050003 CA...

  5. Trapping and Transportation of Adult and Juvenile Salmon in the Lower Umatilla River in Northeast Oregon, 1996-1997 : Umatilla River Basin Trap and Haul Program : Annual Progress Report, October 1996-September 1997.

    SciTech Connect

    Zimmerman, Brian C.; Duke, Bill B.

    1997-12-01

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were collected at Threemile Dam from August 30, 1996 to August 26, 1997. A total of 2,477 summer steelhead (Oncorhynchus mykiss); 646 adult, 80 jack, and 606 subjack fall chinook (O. tshawytscha); 618 adult and 24 jack coho (O. kisutch); and 2,194 adult and four jack spring chinook (O. tshawytscha) were collected. All fish were trapped at the east bank facility. Of the fish collected, 22 summer steelhead; 18 adult and two jack fall chinook; five adult coho; and 407 adult and three jack spring chinook were hauled upstream from Threemile Dam. There were 2,245 summer steelhead; 70 adult, 51 jack and 520 subjack fall chinook; 593 adult and 24 jack coho; and 1,130 adult spring chinook released at Threemile Dam I In addition, 110 summer steelhead; 551 adult and 25 jack fall chinook; and 600 adult spring chinook were collected for broodstock. The Westland Canal juvenile facility (Westland), located near the town of Echo at rivermile (RM) 27, is the major collection point for outmigrating juvenile salmonids and steelhead kelts, The canal was open for a total of 210 days between December 16, 1996 and July 30, 1997. During that period, fish were bypassed back to the river 175 days and were trapped on 35 days, An estimated 1,675 pounds of juvenile fish were transported from Westland to the Umatilla River boat ramp (RM 0.5), Approximately 80% of the juveniles transported were salmonids, No steelhead kelts were hauled from Westland this year. The Threemile Dam west bank juvenile bypass was operated from October 4 to November 1, 1996 and from March 26 to July 7, 1997. The juvenile trap was not operated this year. 6 refs., 6 figs., 6 tabs.

  6. Development of Rations for the Enhanced Survival of Salmon, 1986-1987 Progress (Annual) Report.

    SciTech Connect

    Bradford, C. Samuel

    1987-12-01

    The nutritional quality of feed plays an important role in determining the health and fitness of smolts. Commercial fish meal, the major source of protein in salmon rations, is subject to heat damage during drying and chemical interaction of fat oxidation products with proteins. Protein bioavailability is reduced and dietary stress may be introduced into hatchery feeds. This investigation tests the hypothesis that ration protein quality can influence the survival of smolts and the ultimate return of adults. Improved survival production would be better able to reestablish natural runs of salmon in the Columbia River system and maintain and improve the genetic integrity of specific stocks. The general approach being used involves a comparison of coho and chinook salmon reared on rations containing very high quality protein derived from vacuum dried meals and commercial rations relying on commercial fish meal as a source of protein. Survival and return of replicate brood-years of coded wire tagged test and control fish are being used to determine the influence of ration on survival. Project rearing and release of tagged fish to date include 1982, 1983, 1984 and 1985-broods of coho salmon; the 1983 and 1984-broods of fall chinook (tule stock) salmon; and the 1985 and 1986-broods of fall chinook (up-river-bright stock) salmon. This report covers the rearing and release of the 1985-brood coho and the 1986-brood fall chinook (up-river-bright stock) salmon.

  7. Relationships between metabolic rate, muscle electromyograms, and swim performance of adult chinook salmon

    SciTech Connect

    Geist, David R. ); Brown, Richard S. ); Cullinan, Valerie I. ); Mesa, Matthew G.; VanderKooi, S P.; McKinstry, Craig A. )

    2003-10-01

    We measured oxygen consumption rates of adult spring Chinook salmon and compared these values to other species of Pacific salmon. Our results indicated that adult salmon achieve their maximum level of oxygen consumption at about their upper critical swim speed. It is also at this speed that the majority of the energy supplied to the swimming fish switches from red muscle (powered by aerobic metabolism) to white muscle (powered by anaerobic metabolism). Determining the swimming performance of adult salmon will assist managers in developing fishways and other means to safely pass fish over hydroelectric dams and other man-made structures.

  8. RESTORATION OF STREAM PHYSICAL HABITAT AND FOOD RESOURCES: INFLUENCE ON JUVENILE COHO GROWTH AND SALMON DERIVED NUTRIENT INCORPORATION IN COASTAL OREGON STREAMS

    EPA Science Inventory

    ABSTRACT - Stream restoration in Western Oregon and Washington includes physical habitat improvement and salmon carcass additions. However, few studies examine the effects of carcass placement on juvenile fish in western Oregon, and in particular the interaction with physical hab...

  9. Cardiorespiratory collapse at high temperature in swimming adult sockeye salmon

    PubMed Central

    Eliason, Erika J.; Clark, Timothy D.; Hinch, Scott G.; Farrell, Anthony P.

    2013-01-01

    Elevated summer river temperatures are associated with high in-river mortality in adult sockeye salmon (Oncorhynchus nerka) during their once-in-a-lifetime spawning migration up the Fraser River (British Columbia, Canada). However, the mechanisms underlying the decrease in whole-animal performance and cardiorespiratory collapse above optimal temperatures for aerobic scope (Topt) remain elusive for aquatic ectotherms. This is in part because all the relevant cardiorespiratory variables have rarely been measured directly and simultaneously during exercise at supra-optimal temperatures. Using the oxygen- and capacity-limited thermal tolerance hypothesis as a framework, this study simultaneously and directly measured oxygen consumption rate (MO2), cardiac output , heart rate (fH), and cardiac stroke volume (Vs), as well as arterial and venous blood oxygen status in adult sockeye salmon swimming at temperatures that bracketed Topt to elucidate possible limitations in oxygen uptake into the blood or internal delivery through the oxygen cascade. Above Topt, the decline in MO2max and aerobic scope was best explained by a cardiac limitation, triggered by reduced scope for fH. The highest test temperatures were characterized by a negative scope for fH, dramatic decreases in maximal and maximal Vs, and cardiac dysrhythmias. In contrast, arterial blood oxygen content and partial pressure were almost insensitive to supra-optimal temperature, suggesting that oxygen delivery to and uptake by the gill were not a limiting factor. We propose that the high-temperature-induced en route mortality in migrating sockeye salmon may be at least partly attributed to physiological limitations in aerobic performance due to cardiac collapse via insufficient scope for fH. Furthermore, this improved mechanistic understanding of cardiorespiratory collapse at high temperature is likely to have broader application to other salmonids and perhaps other aquatic ectotherms. PMID:27293592

  10. Linking physical monitoring to coho and Chinook salmon populations in the Redwood Creek Watershed, California—Summary of May 3–4, 2012 Workshop

    USGS Publications Warehouse

    Madej, Mary Ann; Torregrosa, Alicia; Woodward, Andrea

    2012-01-01

    On Thursday, May 3, 2012, a science workshop was held at the Redwood National and State Parks (RNSP) office in Arcata, California, with researchers and resource managers working in RNSP to share data and expert opinions concerning salmon populations and habitat in the Redwood Creek watershed. The focus of the workshop was to discuss how best to synthesize physical and biological data related to the freshwater and estuarine phases of salmon life cycles in order to increase the understanding of constraints on salmon populations. The workshop was hosted by the U.S. Geological Survey (USGS) Status and Trends (S&T) Program National Park Monitoring Project (http://www.fort.usgs.gov/brdscience/ParkMonitoring.htm), which supports USGS research on priority topics (themes) identified by the National Park Service (NPS) Inventory and Monitoring Program (I&M) and S&T. The NPS has organized more than 270 parks with significant natural resources into 32 Inventory and Monitoring (I&M) Networks (http://science.nature.nps.gov/im/networks.cfm) that share funding and core professional staff to monitor the status and long-term trends of selected natural resources (http://science.nature.nps.gov/im/monitor). All 32 networks have completed vital signs monitoring plans (available at http://science.nature.nps.gov/im/monitor/MonitoringPlans.cfm), containing background information on the important resources of each park, conceptual models behind the selection of vital signs for monitoring the condition of natural resources, and the selection of high priority vital signs for monitoring. Vital signs are particular physical, chemical, and biological elements and processes of park ecosystems that represent the overall health or condition of the park, known or hypothesized effects of stressors, or elements that have important human values (Fancy and others, 2009). Beginning in 2009, the I&M program funded projects to analyze and synthesize the biotic and abiotic data generated by vital signs

  11. Feasibility and Risks of Coho Reintroduction in Mid-Columbia [Tributaries] Monitoring and Evaluation, 1999 Annual Report.

    SciTech Connect

    Dunnigan, James L.

    1999-10-01

    The long-term vision for the coho re-introduction project is to reestablish naturally reproducing coho salmon populations in mid-Columbia river basins, with numbers at or near carrying capacity that provide opportunities for significant harvest for Tribal and non-Tribal fishers.

  12. Adult Chinook Salmon Abundance Monitoring in the Secesh River and Lake Creek, Idaho, 2000 Annual Report.

    SciTech Connect

    Faurot, Dave; Kucera, Paul A.

    2001-05-01

    Underwater time-lapse video technology has been used to monitor adult spring and summer chinook salmon (Oncorhynchus tshawytscha) escapement into the Secesh River and Lake Creek, Idaho, since 1998. Underwater time-lapse videography is a passive methodology that does not trap or handle this Endangered Species Act listed species. Secesh River chinook salmon represent a wild spawning aggregate that has not been directly supplemented with hatchery fish. The Secesh River is also a control population under the Idaho Salmon Supplementation study. This project has demonstrated the successful application of underwater video adult salmon abundance monitoring technology in Lake Creek in 1998 and 1999. Emphasis of the project in 2000 was to determine if the temporary fish counting station could be installed early enough to successfully estimate adult spring and summer chinook salmon abundance in the Secesh River (a larger stream). Snow pack in the drainage was 93% of the average during the winter of 1999/2000, providing an opportunity to test the temporary count station structure. The temporary fish counting station was not the appropriate technology to determine adult salmon spawner abundance in the Secesh River. Due to its temporary nature it could not be installed early enough, due to high stream discharge, to capture the first upstream migrating salmon. A more permanent structure used with underwater video, or other technology needs to be utilized for accurate salmon escapement monitoring in the Secesh River. A minimum of 813 adult chinook salmon spawners migrated upstream past the Secesh River fish counting station to spawning areas in the Secesh River drainage. Of these fish, more than 324 migrated upstream into Lake Creek. The first upstream migrating adult chinook salmon passed the Secesh River and Lake Creek sites prior to operation of the fish counting stations on June 22. This was 17 and 19 days earlier than the first fish arrival at Lake Creek in 1998 and 1999

  13. Classroom-Community Salmon Enhancement Project.

    ERIC Educational Resources Information Center

    Hubbard-Gray, Sarah

    1988-01-01

    Describes a program in the Bellevue (Washington) public schools in which elementary and middle school teachers and students raise coho and Chinook salmon in the classroom and later release them into a nearby stream. (TW)

  14. Post-mortem sporulation of Ceratomyxa shasta (Myxozoa) after death in adult Chinook salmon.

    PubMed

    Kent, M L; Soderlund, K; Thomann, Estela; Schreck, C B; Sharpton, T J

    2014-10-01

    Ceratomyxa shasta (Myxozoa) is a common gastrointestinal pathogen of salmonid fishes in the Pacific Northwest of the United States. We have been investigating this parasite in adult Chinook salmon ( Oncorhynchus tshawytscha ) in the Willamette River, Oregon. In prior work, we observed differences in the pattern of development of C. shasta in adult salmon compared to juvenile salmon. Adult salmon consistently had large numbers of prespore stages in many of the fish that survived to spawn in the fall. However, myxospores were rarely observed, even though they were exposed and presumably infected for months before spawning. We evaluated the ability of C. shasta to sporulate following fish death because it is reported that myxosores are common in carcasses of Chinook salmon. We collected the intestine from 30 adult salmon immediately after artificial spawning and death (T0). A total of 23 fish were infected with C. shasta based on histology, but only a few myxospores were observed in 1 fish by histology. Intestines of these fish were examined at T0 and T7 (latter held at 17 C for 7 days) using quantified wet mount preparations. An increase in myxospore concentrations was seen in 39% of these fish, ranging between a 1.5- to a 14.5-fold increase. The most heavily infected fish exhibited a 4.6-fold increase from 27,841 to 129,352 myxospores/cm. This indicates, supported by various statistical analyses, that under certain conditions presporogonic forms are viable and continue to sporulate after death in adult salmon. Considering the life cycle of C. shasta and anadromous salmon, the parasite may have evolved 2, non-mutually exclusive developmental strategies. In young fish (parr and smolts), the parasite sporulates shortly after infection and is released into freshwater from either live or dead fish before their migration to seawater, where the alternate host is absent. The second strategy occurs in adult salmon, particularly spring Chinook salmon, which become infected

  15. HEALTHY STOCKS OF NW SALMON FOR CA, ID, OR, AND WA

    EPA Science Inventory

    Geographic distribution of eight species/races of Pacific salmon and steelhead (spring/summer chinook, fall chinook, sockeye salmon, chum salmon, coho salmon, pink salmon, summer steelhead and winter steelhead. The data are based upon the Oregon Trout report Healthy Native Stock...

  16. Imprinting Salmon and Steelhead Trout for Homing, 1981 Annual Report of Research.

    SciTech Connect

    Slatick, Emil

    1982-09-01

    The National Marine Fisheries Service, under contract to the Bonneville Power Administration, began conducting research on imprinting Pacific salmon and steelhead for homing in 1978. The juvenile marking phase was completed in 1980; over 4 million juvenile salmon and steelhead were marked and released in 23 experiments. The primary objectives were to determine: (1) a triggering mechanism to activate the homing imprint, (2) if a single imprint or a sequential imprint is necessary to assure homing, and (3) the relationship between the physiological condition of fish and their ability to imprint. Research in 1981 concentrated on: (1) recovering returning adults from previous experiments, (2) analyzing completed 1978 steelhead and 1980 coho salmon experiments, and (3) preliminary analyzing 1979 and 1980 fall chinook salmon experiments. Seven experimental groups are discussed: four steelhead, two fall chinook salmon, and one coho salmon. In four groups, survival was enhanced by the imprinting-transportation procedures. Homing back to the hatchery area was successful in two groups, and generally, unless there were extenuating circumstances (eruption of Mount St. Helens, disease problem, etc.), greater returns to user groups were evident.

  17. Adaptive strategies and life history characteristics in a warming climate: salmon in the Arctic?

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Ruggerone, Gregory T.; Zimmerman, Christian E.

    2013-01-01

    In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.

  18. Interspecific habitat associations of juvenile salmonids in Lake Ontario tributaries: implications for Atlantic salmon restoration

    USGS Publications Warehouse

    Johnson, James H.; Chalupnicki, Marc

    2014-01-01

    Diel variation in habitat use of subyearling Chinook salmon (Oncorhynchus tshawytscha), subyearling coho salmon (O. kisutch), yearling steelhead (O. mykiss), and yearling Atlantic salmon (Salmo salar) was examined during the spring in two tributaries of Lake Ontario. A total of 1318 habitat observations were made on juvenile salmonids including 367 on steelhead, 351 on Chinook salmon, 333 on Atlantic salmon, and 261 on coho salmon. Steelhead exhibited the most diel variation in habitat use and Chinook the least. Juvenile salmonids were generally associated with more cover and larger substrate during the day in both streams. Interspecific differences in habitat use in both streams occurred with Atlantic salmon (fast velocities) and coho salmon (pools) using the least similar habitat. Chinook salmon and Atlantic salmon used similar habitat in both streams. These findings should help guide future management actions specific to habitat protection and restoration of Atlantic salmon in Lake Ontario tributaries.

  19. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Dolan, Brian P.; Fisher, Kathleen M.; Colvin, Michael E.; Benda, Susan E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning.

  20. Innate and adaptive immune responses in migrating spring-run adult chinook salmon, Oncorhynchus tshawytscha.

    PubMed

    Dolan, Brian P; Fisher, Kathleen M; Colvin, Michael E; Benda, Susan E; Peterson, James T; Kent, Michael L; Schreck, Carl B

    2016-01-01

    Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning. PMID:26581919

  1. Adult Chinook Salmon Abundance Monitoring in Lake Creek, Idaho, Annual Report 2001.

    SciTech Connect

    Faurot, Dave

    2002-12-01

    Underwater time-lapse video technology has been used to monitor adult spring and summer chinook salmon (Oncorhynchus tshawytscha) escapement into the Secesh River and Lake Creek, Idaho, since 1998. Underwater time- lapse videography is a passive methodology that does not trap or handle this Endangered Species Act listed species. Secesh River chinook salmon represent a wild spawning aggregate that has not been directly supplemented with hatchery fish. The Secesh River is also a control stream under the Idaho Salmon Supplementation study. This project has successfully demonstrated the application of underwater video monitoring to accurately quantify chinook salmon abundance in Lake Creek in 1998, 1999 and 2001. The adult salmon spawner escapement estimate into Lake Creek in 2001 was 697 fish, the largest escapement since the project began. Jack salmon comprised 10% of the spring migration. Snow pack in the drainage was 38% of the average during the winter of 2000/2001. The first fish passage on Lake Creek was recorded on June 9, 19 days after installation of the fish counting station and two weeks earlier than previously reported. Peak net upstream movement of 52 adults occurred on June 22. Peak of total movement activity was July 3. The last fish passed through the Lake Creek fish counting station on September 6. Redd count expansion methods were compared to underwater video determined salmon spawner abundance in Lake Creek in 2001. Expanded index area redd count point estimates and intensive area redd counts in 2001, estimated from 1.3 percent fewer to 56 percent greater number of spawners than underwater video determined spawner abundance. Redd count expansion values had unknown variation associated with the point estimates. Fish per redd numbers in Lake Creek have varied widely. In 2001 there were 2.07 fish per redd. In 1999, there were 3.58 fish per redd, and in 1998, with no jacks returning to spawn, there were 1.02 fish per redd. Migrating salmon in Lake Creek

  2. Evidence for a Peripheral Olfactory Memory in Imprinted Salmon

    NASA Astrophysics Data System (ADS)

    Nevitt, Gabrielle A.; Dittman, Andrew H.; Quinn, Thomas P.; Moody, William J., Jr.

    1994-05-01

    The remarkable homing ability of salmon relies on olfactory cues, but its cellular basis is unknown. To test the role of peripheral olfactory receptors in odorant memory retention, we imprinted coho salmon (Oncorhynchus kisutch) to micromolar concentrations of phenyl ethyl alcohol during parr-smolt transformation. The following year, we measured phenyl ethyl alcohol responses in the peripheral receptor cells using patch clamp. Cells from imprinted fish showed increased sensitivity to phenyl ethyl alcohol compared either to cells from naive fish or to sensitivity to another behaviorally important odorant (L-serine). Field experiments verified an increased behavioral preference for phenyl ethyl alcohol by imprinted salmon as adults. Thus, some component of the imprinted olfactory homestream memory appears to be retained peripherally.

  3. Chinook Salmon Adult Abundance Monitoring; Hydroacoustic Assessment of Chinook Salmon Escapement to the Secesh River, Idaho, 2002-2004 Final Report.

    SciTech Connect

    Johnson, R.; McKinstry, C.; Mueller, R.

    2004-01-01

    Accurate determination of adult salmon spawner abundance is key to the assessment of recovery actions for wild Snake River spring/summer Chinook salmon (Onchorynchus tshawytscha), a species listed as 'threatened' under the Endangered Species Act (ESA). As part of the Bonneville Power Administration Fish and Wildlife Program, the Nez Perce Tribe operates an experimental project in the South Fork of the Salmon River subbasin. The project has involved noninvasive monitoring of Chinook salmon escapement on the Secesh River between 1997 and 2000 and on Lake Creek since 1998. The overall goal of this project is to accurately estimate adult Chinook salmon spawning escapement numbers to the Secesh River and Lake Creek. Using time-lapse underwater video technology in conjunction with their fish counting stations, Nez Perce researchers have successfully collected information on adult Chinook salmon spawner abundance, run timing, and fish-per-redd numbers on Lake Creek since 1998. However, the larger stream environment in the Secesh River prevented successful implementation of the underwater video technique to enumerate adult Chinook salmon abundance. High stream discharge and debris loads in the Secesh caused failure of the temporary fish counting station, preventing coverage of the early migrating portion of the spawning run. Accurate adult abundance information could not be obtained on the Secesh with the underwater video method. Consequently, the Nez Perce Tribe now is evaluating advanced technologies and methodologies for measuring adult Chinook salmon abundance in the Secesh River. In 2003, the use of an acoustic camera for assessing spawner escapement was examined. Pacific Northwest National Laboratory, in a collaborative arrangement with the Nez Perce Tribe, provided the technical expertise to implement the acoustic camera component of the counting station on the Secesh River. This report documents the first year of a proposed three-year study to determine the

  4. Thermal exposure of adult Chinook salmon in the Willamette River basin.

    PubMed

    Keefer, Matthew L; Clabough, Tami S; Jepson, Michael A; Naughton, George P; Blubaugh, Timothy J; Joosten, Daniel C; Caudill, Christopher C

    2015-02-01

    Radiotelemetry and archival temperature loggers were used to reconstruct the thermal experience of adult spring Chinook salmon (Oncorhynchus tshawytscha) in the highly regulated Willamette River system in Oregon. The study population is threatened and recovery efforts have been hampered by episodically high prespawn mortality that is likely temperature mediated. Over three years, 310 salmon were released with thermal loggers and 68 were recovered in spawning tributaries, primarily at hatchery trapping facilities downstream from high-head dams. More than 190,000 internal body temperature records were collected (mean ~2800 per fish) and associated with 14 main stem and tributary reaches. Most salmon experienced a wide temperature range (minima ~8-10 °C; maxima ~13-22 °C) and 65% encountered potentially stressful conditions (≥18 °C). The warmest salmon temperatures were in lower Willamette River reaches, where some fish exhibited short-duration behavioral thermoregulation. Cumulative temperature exposure, measured by degree days (DD) above 0 °C, varied more than seven-fold among individuals (range=208-1498 DDs) and more than two-fold among sub-basin populations, on average. Overall, ~72% of DDs accrued in tributaries and ~28% were in the Willamette River main stem. DD differences among individuals and populations were related to migration distance, migration duration, and salmon trapping protocols (i.e., extended pre-collection holding in tributaries versus hatchery collection shortly after tributary entry). The combined data provide spatially- and temporally-referenced information on both short-duration stressful temperature exposure and the biologically important total exposure. Thermal exposure in this population complex proximately influences adult salmon physiology, maturation, and disease processes and ultimately affects prespawn mortality and fitness. The results should help managers develop more effective salmon recovery plans in basins with marginal

  5. EFFECTS OF AIR-SUPERSATURATED WATER ON ADULT SOCKEYE SALMON (ONCORHYNCHUS NERKA)

    EPA Science Inventory

    Adult sockeye salmon (Oncorhynchus nerka) were exposed to air supersaturated water in the laboratory from July 8 to August 13, 1974, approximately the same time period that they are exposed to supersaturated water during their movement through the lower and middle sections of the...

  6. Chinook Salmon Adult Abundance Monitoring in Lake Creek, Idaho, 2002 Annual Report.

    SciTech Connect

    Faurot, Dave; Kucera, Paul

    2003-11-01

    Underwater time- lapse video technology has been used to monitor adult spring and summer chinook salmon (Oncorhynchus tshawytscha) escapement into the Secesh River and Lake Creek, Idaho, since 1998. Underwater time-lapse videography is a passive methodology that does not trap or handle this Endangered Species Act listed species. Secesh River chinook salmon represent a wild spawning aggregate that has not been directly supplemented with hatchery fish. The Secesh River is also a control stream under the Idaho Salmon Supplementation study. This project has successfully demonstrated the application of underwater video monitoring to accurately quantify chinook salmon abundance in Lake Creek in 1998, 1999, 2001 and 2002. The adult salmon spawner escapement into Lake Creek in 2002 was 410 fish. Jack salmon comprised 7.1 percent of the run. Estimated hatchery composition was 6.1 percent of the spawning run. The first fish passage on Lake Creek was recorded on June 26, 15 days after installation of the fish counting station. Peak net upstream movement of 41 adults occurred on July 8. Peak of total movement activity was August 18. The last fish passed through the Lake Creek fish counting station on September 2. Snow pack in the drainage was 91% of the average during the winter of 2001/2002. Video determined salmon spawner abundance was compared to redd count expansion method point estimates in Lake Creek in 2002. Expanded index area redd count and extensive area redd count point estimates in 2002, estimated from one percent fewer to 56 percent greater number of spawners than underwater video determined spawner abundance. Redd count expansion methods varied from two percent fewer to 55 percent greater in 2001, 11 to 46 percent fewer in 1999 and 104 to 214 percent greater in 1998. Redd count expansion values had unknown variation associated with the point estimates. Fish per redd numbers determined by video abundance and multiple pass redd counts of the larger extensive survey

  7. Development of Rations for the Enhanced Survival of Salmon, 1988-1989 Progress (Annual) Report.

    SciTech Connect

    Ewing, Richard D.

    1990-03-01

    The nutritional quality of feed plays an important role in determining the health and fitness'' of smolts. Commercial fish meal, the major source of protein in salmon rations, may be reduced in quality from poor drying techniques during manufacture. Dietary stress in the hatchery may result. This investigation test the hypothesis that protein quality of fish rations can influence the survival of smolts and the ultimate return of adults. The test involves a comparison between performances of coho (Oncorhynchus kisutch) and chinook salmon (O. tshawytscha) reared on rations containing very high quality protein derived from vacuum dried meals and those of fish reared on commercial rations, with commercial fish meal as a source of protein. Survival and return of several brood years of test and control fish are used to measure the influence of ration on survival. Rearing and release of tagged fish to date include 1982, 1983, 1984 and 1985 broods of coho salmon (Sandy stock); the 1983 and 1984 broods of fall chinook (tule stock) salmon; and the 1985 and 1986 broods of fall chinook (upriver bright stock) salmon. This report includes recovery data from these marked fish collected through September 1989. 2 tabs.

  8. Development of Rations for the Enhanced Survival of Salmon, 1987-1988 Progress (Annual) Report.

    SciTech Connect

    Ewing, Richard D.

    1988-12-01

    The nutritional quality of feed plays an important role in determining the health and fitness of smolts. Commercial fish meal, the major source of protein in salmon rations, may be reduced in quality from poor drying techniques during manufacture. Dietary stress in the hatchery may result. This investigation tests the hypothesis that protein quality of fish rations can influence the survival of smolts and the ultimate return of adults. The test involves a comparison between performances of coho and chinook salmon reared on rations containing very high quality protein derived from vacuum dried meals and those of fish reared on commercial rations, with commercial fish meal as a source of protein. Survival and return of several brood years of test and control fish are used to measure the influence of ration on survival. Rearing and release of tagged fish to date include 1982, 1983, 1984 and 1985 broods of coho salmon; the 1983 and 1984 broods of fall chinook (tule stock) salmon; and the 1985 and 1986 broods of fall chinook (upriver bright stock) salmon. This report includes recovery data from these marked fish collected through September 1988.

  9. Cryopreservation of Adult Male Spring and Summer Chinook Salmon Gametes in the Snake River Basin, 1997 Annual Report.

    SciTech Connect

    Faurot, Dave; Kucera, Paul A.; Armstrong, Robyn D.

    1998-06-01

    Chinook salmon populations in the Northwest are decreasing in number. The Nez Perce Tribe was funded in 1997 by the Bonneville Power Administration to coordinate and initiate gene banking of adult male gametes from Endangered Species Act (ESA) listed spring and summer chinook salmon in the Snake River basin.

  10. COHO SALMON DEPENDENCE ON INTERMITTENT STREAMS

    EPA Science Inventory

    In February 2006, the US Supreme Court heard cases that may affect whether intermittent streams are jurisdictional waters under the Clean Water Act. In June 2006, however, the cases were remanded to the circuit court, leaving the status of intermittent streams uncertain once agai...

  11. Development of Rations for the Enhanced Survival of Salmon, 1984-1985 Progress (Annual) Report.

    SciTech Connect

    Crawford, David L.

    1986-04-01

    It is believed that hatchery feed nutritional quality plays an important role in determining the health and fitness of smolts. Commercial fish meal, the major source of protein in salmon rations, is subject to heat damage during drying and chemical interaction of fat oxidation products with meal proteins. Protein bioavailability is reduced and dietary stress may be introduced into hatchery feeds. The basic hypothesis of this investigation is that ration protein quality can influence the survival of smolts and the ultimate return of adults. Improved hatchery production would be better able to reestablish natural runs of salmon in the Columbia River and its tributaries and maintain and improve the genetic integrity of specific stocks. The general approach being used to prove this hypothesis involves a comparison of the hatchery growth response, survival and return of coho and chinook salmon reared on nutrient dense rations containing a very high quality fish protein complement and commercial ration relying on commercial fish meals as a source of protein. Coded wire tagging experiments are being conducted on replicate brood years of test and control fish to determine the influence of ration protein on survival. Project rearing and release of tagged fish to date include 1982 and 1983-brood replicates of coho salmon and 1983 and 1984-brood replicates of fall chinook (tule stock) salmon. The 1984-brood year replicate of coho salmon is presently being reared and has been tagged for release in April 1986. Planning was completed for rearing a 1985-brood replicate of fall chinook (upriver bright stock) salmon. This report covers the rearing and release of the 1983-brood coho and the 1984-brood fall chinook (tule stock) replicates. Duplicate lots of coho salmon were reared on two test rations containing vacuum dried salmon and hake meals and a control ration composed of the Sandy hatchery supply of Oregon pellet feed system rations from 1 June 1984 to release on 30 April 1985

  12. Relationships Between Metabolic Rate, Muscle Electromyograms and Swim Performance of Adult Chinook Salmon

    SciTech Connect

    Geist, David R.; Brown, Richard S.; Cullinan, Valerie I.; Mesa, Matthew G.; VanderKooi, S P.; McKinstry, Craig A.

    2003-10-01

    In 2000 Pacific Northwest National Laboratory initiated a two-year study to investigate the metabolic rate and swimming performance and to estimate the total energy used (i.e., aerobic and anaerobic) by adult spring Chinook salmon migrating upstream through a large hydropower dam on the Columbia River. The investigation involved one year of laboratory study and one year of field study at Bonneville Dam. The objectives of the laboratory study, reported here, were to (1) measure active rates of oxygen consumption of adult spring chinook salmon at three water temperatures over a range of swimming speeds; (2) estimate the Ucrit of adult spring chinook salmon; and (3) monitor EMGs of red and white muscle in the salmon over a range of swimming speeds. Future papers will report on the results of the field study. Our results indicated that the rate of oxygen consumption and red and white muscle activity in adult spring chinook salmon were strongly correlated with swimming speed over a range of fish sizes and at three different temperatures. Active oxygen consumption increased linearly with swim speed before leveling off at speeds at or above Ucrit. This pattern was similar at each water temperature and indicated that fish were approaching their maximal aerobic oxygen consumption at higher swim speeds. Modeling showed that temperature, but not size or sex, influenced the relation between V02 and swim speed, thus a V02-swim speed model based on temperature (but independent of sex and size) should be a biologically relevant way of estimating the energy use of fish in the wild.

  13. WILDERNESS SOCIETY'S SALMON STATUS DATA FOR CA, ID, OR, AND WA

    EPA Science Inventory

    The fish status layers show the historic distribution of freshwater habitat and current status of ten different species of anadromous fish: spring/summer chinook, fall chinook, winter chinook, sockeye salmon, chum salmon, coho salmon, pink salmon, sea-run cutthroat, summer steel...

  14. Snake River Sockeye Salmon, Sawtooth Valley Project : 1992 Juvenile and Adult Trapping Program : Final Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-04-01

    Sockeye salmon (Oncorhynchus nerka) runs in the Snake River Basin have severely declined. Redfish Lake near Stanley, Idaho is the only lake in the drainage known to still support a run. In 1989, two adults were observed returning to this lake and in 1990, none returned. In the summer of 1991, only four adults returned. If no action is taken, the Snake River sockeye salmon will probably cease to exist. On November 20, 1991, the National Marine Fisheries Service (NMFS) declared the Snake River sockeye salmon ``endangered`` (effective December 20, 1991), pursuant to the Endangered Species Act (ESA) of 1973. In 1991, in response to a request from the Idaho Department of Fish and Game and the Shoshone-Bannock Tribes, the Bonneville Power Administration (BPA) funded efforts to conserve and begin rebuilding the Snake River sockeye salmon run. The initial efforts were focused on Redfish Lake in the Sawtooth Valley of southcentral Idaho. The 1991 measures involved: trapping some of the juvenile outmigrants (O. nerka) from Redfish Lake and rearing them in the Eagle Fish Health Facility (Idaho Department of Fish and Game) near Boise, Idaho; Upgrading of the Eagle Facility where the outmigrants are being reared; and trapping adult Snake River sockeye salmon returning to Redfish Lake and holding and spawning them at the Sawtooth Hatchery near Stanley, Idaho. This Environmental Assessment (EA) evaluates the potential environmental effects of the proposed actions for 1992. It has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) of 1969 and section 7 of the ESA of 1973.

  15. Trapping and Transportation of Adult and Juvenile Salmon in the Lower Umatilla River in Northeast Oregon, 1995-1996 : Umatilla River Basin Trap and Haul Program : Annual Progress Report, October 1995-September 1996.

    SciTech Connect

    Zimmerman, Brian C.; Duke, Bill B.

    1996-09-01

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were collected at Threemile Dam from September 5, 1995 to July 1, 1996. A total of 2,081 summer steelhead (Oncorhynchus mykiss); 603 adult, 288 jack, and 338 subjack fall chinook (O. tshawytscha); 946 adult and 53 jack coho (O. kisutch); and 2,152 adult and 121 jack spring chinook (O. tshawytscha) were collected. All fish were trapped at the east bank facility. The Westland Canal juvenile facility (Westland), located near the town of Echo at rivermile (RM) 27, is the major collection point for outmigrating juvenile salmonids and steelhead kelts. The Threemile Dam west bank juvenile bypass was operated from September 8 to October 13, 1995 and from March 18 to June 30, 1996. The juvenile trap was operated from July 1 to July 11. Daily operations at the facility were conducted by the ODFW Fish Passage Research project to monitor juvenile outmigration.

  16. Escapement Monitoring of Adult Chinook Salmon in the Secesh River and Lake Creek, Idaho, 1999 Annual Report.

    SciTech Connect

    Faurot, Dave; Kucera, Paul A.

    2001-04-01

    Underwater time-lapse video technology was used to monitor adult spring and summer chinook salmon abundance in spawning areas in Lake Creek and the Secesh River, Idaho, in 1999. This technique is a passive methodology that does not trap or handle this Endangered Species Act listed species. This was the third year of testing the remote application of this methodology in the Secesh River drainage. Secesh River chinook salmon represent a wild salmon spawning aggregate that has not been directly supplemented with hatchery fish. Adult chinook salmon spawner abundance was estimated in Lake Creek with the remote time-lapse video application. Adult spawner escapement into Lake Creek in 1999 was 67 salmon. Significant upstream and downstream spawner movement affected the ability to determine the number of fish that contributed to the spawning population. The first passage on Lake Creek was recorded on July 11, two days after installation of the fish counting station. Peak net upstream adult movement occurred at the Lake Creek site on July 20, peak of total movement activity was August 19 with the last fish observed on August 26. A minimum of 133 adult chinook salmon migrated upstream past the Secesh River fish counting station to spawning areas in the Secesh River drainage. The first upstream migrating adult chinook salmon passed the Secesh River site prior to the July 15 installation of the fish counting station. Peak net upstream adult movement at the Secesh River site occurred July 19, peak of total movement was August 15, 17 and 18 and the last fish passed on September 10. Migrating salmon in the Secesh River and Lake Creek exhibited two behaviorally distinct segments of fish movement. Mainly upstream only, movement characterized the first segment. The second segment consisted of upstream and downstream movement with very little net upstream movement. Estimated abundance was compared to single and multiple-pass redd count surveys within the drainage. There were

  17. 77 FR 476 - Endangered and Threatened Species; Recovery Plan Southern Oregon/Northern California Coast Coho...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ...NMFS announces the availability for public review of the draft Recovery Plan (Plan) for the Southern Oregon/Northern California Coast (SONCC) Coho Salmon (Oncorhynchus kisutch) Evolutionarily Significant Unit (ESU). NMFS is soliciting review and comment from the public and all interested parties on the Plan, and will consider all substantive comments received during the review period before......

  18. Minthorn Springs Creek Summer Juvenile Release and Adult Collection Facility; 1994 Annual Report.

    SciTech Connect

    Rowan, Gerald D.

    1995-05-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to enhance steelhead and re-establish salmon runs in the Umatilla River Basin. Bonifer Pond, Minthorn Springs and Imeques C-mem-ini-kem acclimation facilities are operated for acclimation and release of juvenile summer steelhead (Oncorhynchus mykiss), fall and spring chinook salmon (O. tshawytscha) and coho salmon (O, kisutch). Minthorn is also used for holding and spawning summer steelhead, fall chinook and coho salmon. In the spring of 1994, juvenile summer steelhead were acclimated at Bonifer and Minthorn. At Imeques C-mem-ini-kem, juvenile spring chinook were acclimated in the spring and fall. A total of 92 unmarked and 42 marked summer steelhead were collected for broodstock at Three Mile Dam from October 1, 1993 through May 2, 1994 and held at Minthorn. An estimated 234,432 green eggs were taken from 48 females. The eggs were transferred to Irrigon Hatchery for incubation and early rearing. Fingerlings were transferred to Umatilla Hatchery for final rearing and release into the Umatilla River in 1995. Fall chinook and coho salmon broodstock were not collected in 1994. Coded-wire tag recovery information was accessed to determine the contribution of Umatilla River releases to ocean, Columbia River and Umatilla River fisheries. Total estimated juvenile adult survival rates are detailed in this document.

  19. Early life history study of Grande Ronde River Basin chinook salmon. Annual progress report, September 1, 1994--August 31, 1995

    SciTech Connect

    Keefe, M.; Anderson, D.J.; Carmichasel, R.W.; Jonasson, B.C.

    1996-06-01

    The Grande Ronde River originates in the Blue Mountains in northeast Oregon and flows 334 kilometers to its confluence with the Snake River near Rogersburg, Washington. Historically, the Grande Ronde River produced an abundance of salmonids including stocks of spring, summer and fall chinook salmon, sockeye salmon, coho salmon, and summer steelhead. During the past century, numerous factors have caused the reduction of salmon stocks such that only stocks of spring chinook salmon and summer steelhead remain. The sizes of spring chinook salmon populations in the Grande Ronde basin also have been declining steadily and are substantially depressed from estimates of historic levels. It is estimated that prior to the construction of the Columbia and Snake River dams, more than 20,000 adult spring chinook salmon returned to spawn in the Grande Ronde River basin. A spawning escapement of 12,200 adults was estimated for the Grande Ronde River basin in 1957. Recent population estimates have been variable year to year, yet remain a degree of magnitude lower than historic estimates. In 1992, the escapement estimate for the basin was 1,022 adults (2.4 {times} number of redds observed). In addition to a decline in population abundance, a constriction of spring chinook salmon spawning distribution is evident in the Grande Ronde basin. Historically, 21 streams supported spawning chinook salmon, yet today the majority of production is limited to eight tributary streams and the mainstem upper Grande Ronde River. Numerous factors are thought to contribute to the decline of spring chinook salmon in the Snake River and its tributaries. These factors include passage problems and increased mortality of juvenile and adult migrants at mainstem Columbia and Snake river dams, overharvest, and habitat degradation associated with timber, agricultural, and land development practices. More than 80% of anadromous fish habitat in the upper Grande Ronde River is considered to be degraded.

  20. Spawning Success of Hatchery Spring Chinook Salmon Outplanted as Adults in the Clearwater River Basin, Idaho, 2001.

    SciTech Connect

    Cramer, Steven P.; Ackerman, Nichlaus; Witty, Kenneth L.

    2002-04-16

    The study described in this report evaluated spawning distribution, overlap with naturally-arriving spawners, and pre-spawning mortality of spring chinook salmon, Oncorhynchus tshawytscha, outplanted as adults in the Clearwater River Subbasin in 2001. Returns of spring chinook salmon to Snake River Basin hatcheries and acclimation facilities in 2001 exceeded needs for hatchery production goals in Idaho. Consequently, management agencies including the U.S. Fish and Wildlife Service (FWS), Idaho Department of Fish and Game (IDFG) and Nez Perce Tribe (NPT) agreed to outplant chinook salmon adults as an adaptive management strategy for using hatchery adults. Adult outplants were made in streams or stream sections that have been typically underseeded with spawners. This strategy anticipated that outplanted hatchery chinook salmon would spawn successfully near the areas where they were planted, and would increase natural production. Outplanting of adult spring chinook salmon from hatcheries is likely to be proposed in years when run sizes are similar to those of the 2001 run. Careful monitoring of results from this year's outplanting can be used to guide decisions and methods for future adult outplanting. Numbers of spring chinook salmon outplanted was based on hatchery run size, hatchery needs, and available spawning habitat. Hatcheries involved in outplanting in the Clearwater Basin included Dworshak National Fish Hatchery, Kooskia National Fish Hatchery, Clearwater Anadromous Fish Hatchery, and Rapid River Fish Hatchery. The NPT, IDFG, FWS, and the National Marine Fisheries Service (NMFS) agreed upon outplant locations and a range of numbers of spring chinook salmon to be outplanted (Table 1). Outplanting occurred mainly in the Selway River Subbasin, but additional outplants were made in tributaries to the South Fork Clearwater River and the Lochsa River (Table 1). Actual outplanting activities were carried out primarily by the NPT with supplemental outplanting done

  1. Migratory Behavior of Adult Spring Chinook Salmon in the Willamette River and its Tributaries: Completion report

    SciTech Connect

    Schreck, Carl B.

    1994-01-01

    Migration patterns of adult spring chinook salmon above Willamette Falls differed depending on when the fish passed the Falls, with considerable among-fish variability. Early-run fish often terminated their migration for extended periods of time, in association with increased flows and decreased temperatures. Mid-run fish tended to migrate steadily upstream at a rate of 30-40 km/day. Late-run fish frequently ceased migrating or fell back downstream after migrating 10-200 km up the Willamette River or its tributaries; this appeared to be associated with warming water during summer and resulted in considerable mortality. Up to 40% of the adult salmon entering the Willamette River System above Willamette Falls (i.e. counted at the ladder) may die before reaching upriver spawning areas. Up to 10% of the fish passing up over Willamette Falls may fall-back below the Falls; some migrate to the Columbia River or lower Willamette River tributaries. If rearing conditions at hatcheries affect timing of adult returns because of different juvenile development rates and improper timing of smolt releases, then differential mortality in the freshwater segment of the adult migrations may confound interpretation of studies evaluating rearing practices.

  2. History of salmon in the Great Lakes, 1850-1970

    USGS Publications Warehouse

    Parsons, John W.

    1973-01-01

    This history of the salmon in the Great Lakes describes the decline and extinction of the Atlantic salmon (Salmo salar) in Lake Ontario in the 1800's; the failure to establish, by salmon culture, permanent or sizable populations of Atlantic or Pacific salmon in any of the Great Lakes in 1867-1965; and the success of the plantings of coho (Oncorhynchus kisutch) and chinook salmon (O. tshawytsha) in the Great Lakes, in 1966-70 -- particularly in Lake Michigan. Despite plantings of 5 million fry and fingerlings from Lake Ontario stocks in 1866-84, the native Atlantic salmon in Lake Ontario became extinct in the late 1800's primarily because tributaries in which they spawned were blocked by mill dams. Plantings of 13 million chinook salmon and landlocked and anadromous forms of Atlantic salmon in Lake Ontario and the other Great Lakes in 1873-1947 failed completely. The first species to develop a self-sustaining population was the pink salmon (O. gorbuscha), which was planted in Lake Superior in 1956; however, it has not become abundant. A salmon fishery finally was established when 15 million coho salmon and 6 million chinook salmon were planted as smolt in the Great Lakes in 1966-70. In 1970, for example, 576,000 coho salmon (12% of those planted in 1969) were caught by anglers in Lake Michigan. Most weighed 5 to 10 pounds (2.3-4.5 kg). Sport fishing for salmon was fair in Lakes Superior and Huron, and poor in Lakes Erie and Ontario. By 1970, natural reproduction of coho, chinook, pink, and kokanee (O. nerka) salmon had occurred in some tributaries of one or more of the upper three Great Lakes. It is expected, however, that the sport fishery will continue to be supported almost entirely by planted fish.

  3. Salmon returns and consumer fitness: growth and energy storage in stream-dwelling salmonids increases with spawning salmon abundance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined how biomass of marine-derived nutrients (MDN), in the form of spawning Pacific salmon, influenced the nutritional status and nitrogen stable isotope ratios (d15N) of stream-dwelling fishes. We sampled coho salmon (Oncorhynchus kisutch) parr and juvenile Dolly Varden (Salvelinus malma) d...

  4. Results from a sixteen year study on the effects of oiling from the Exxon Valdez on adult pink salmon returns.

    PubMed

    Brannon, Ernest L; Maki, Alan W; Moulton, Lawrence L; Parker, Keith R

    2006-08-01

    For sixteen years following the 1989 Exxon Valdez oil spill adult returns of pink salmon in Prince William Sound, Alaska were monitored to assess spill effects on survival. No evidence of spill effects was detected for either intertidal or whole-stream spawning fish. From 1989 through 2004 mean densities for oiled and reference streams tracked each other, illustrating similar responses of oiled and reference stream adult populations to naturally changing oceanographic and climactic conditions. Hatchery fish strayed into the study streams, but similar incursions occurred in oiled and reference streams, and their presence was compensated for to eliminate their influence on determining the success of the returning natural populations. These results, showing no detectable effects of oiling on pink salmon spawning populations, are supported by published field studies on pink salmon incubation success in oiled streams. PMID:16487548

  5. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2003 Smolt Acclimation and Adult Return Report.

    SciTech Connect

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the seventh season (1997-2003) of adult Chinook salmon broodstock collection in the Lostine River and the fifth season (1999-2003) of acclimating the resultant progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2003, acclimation of

  6. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2004 Smolt Acclimation and Adult Return Report.

    SciTech Connect

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eighth season (1997-2004) of adult Chinook salmon broodstock collection in the Lostine River and the sixth season (1999-2004) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progency for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2004

  7. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2006 Smolt Acclimation and Adult Return Report.

    SciTech Connect

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the tenth season (1997-2006) of adult Chinook salmon broodstock collection in the Lostine River and the eighth season (1999-2006) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2006

  8. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2007 Smolt Acclimation and Adult Return Report.

    SciTech Connect

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eleventh season (1997-2007) of adult Chinook salmon broodstock collection in the Lostine River and the ninth season (1999-2007) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2007

  9. Burst swimming in areas of high flow: delayed consequences of anaerobiosis in wild adult sockeye salmon.

    PubMed

    Burnett, Nicholas J; Hinch, Scott G; Braun, Douglas C; Casselman, Matthew T; Middleton, Collin T; Wilson, Samantha M; Cooke, Steven J

    2014-01-01

    Wild riverine fishes are known to rely on burst swimming to traverse hydraulically challenging reaches, and yet there has been little investigation as to whether swimming anaerobically in areas of high flow can lead to delayed mortality. Using acoustic accelerometer transmitters, we estimated the anaerobic activity of anadromous adult sockeye salmon (Oncorhynchus nerka) in the tailrace of a diversion dam in British Columbia, Canada, and its effects on the remaining 50 km of their freshwater spawning migration. Consistent with our hypothesis, migrants that elicited burst swimming behaviors in high flows were more likely to succumb to mortality following dam passage. Females swam with more anaerobic effort compared to males, providing a mechanism for the female-biased migration mortality observed in this watershed. Alterations to dam operations prevented the release of hypolimnetic water from an upstream lake, exposing some migrants to supraoptimal, near-lethal water temperatures (i.e., 24°C) that inhibited their ability to locate, enter, and ascend a vertical-slot fishway. Findings from this study have shown delayed post-dam passage survival consequences of high-flow-induced burst swimming in sockeye salmon. We highlight the need for studies to investigate whether dams can impose other carryover effects on wild aquatic animals. PMID:25244372

  10. Mycobacterial infections in adult salmon and steelhead trout returning to the Columbia River Basin and other areas in 1957

    USGS Publications Warehouse

    1959-01-01

    The degree of incidence of acid -fast bacillus infections in adult salmonid fishes was determined. The disease was shown to be widely distributed in the area examined. It is believed the primary source of infection is derived from the hatchery practice of feeding infected salmon products to juvenile fish. One group of marked adults that had been hatchery reared for 370 days showed a 62 percent incidence of infection. A statistical analysis indicated that length of fish is independent of infection

  11. Pacific salmon (Oncorhynchus spp.) runs and consumer fitness: growth and energy storage in stream-dwelling salmonids increase with salmon spawner density

    USGS Publications Warehouse

    Rinella, Daniel J.; Wipfli, Mark S.; Stricker, Craig A.; Heintz, Ron A.; Rinella, Matthew J.

    2012-01-01

    We examined how marine-derived nutrients (MDN), in the form of spawning Pacific salmon, influenced the nutritional status and δ15N of stream-dwelling fishes. We sampled juvenile coho salmon (Oncorhynchus kisutch) and Dolly Varden (Salvelinus malma) during spring and fall from 11 south-central Alaskan streams that ranged widely in spawning salmon biomass (0.1–4.7 kg·m–2). Growth rate (as indexed by RNA–DNA ratios), energy density, and δ15N enrichment in spring-sampled fishes increased with spawner biomass, indicating the persistence of spawner effects more than 6 months after salmon spawning. Point estimates suggest that spawner effects on nutrition were substantially greater for coho salmon than Dolly Varden (268% and 175% greater for growth and energy, respectively), indicating that both species benefitted physiologically, but that juvenile coho salmon accrued more benefits than Dolly Varden. Although the data were less conclusive for fall- than spring-sampled fish, they do suggest spawner effects were also generally positive during fall, soon after salmon spawned. In a follow-up analysis where growth rate and energy density were modeled as a function of δ15N enrichment, results suggested that both increased with MDN assimilation, especially in juvenile coho salmon. Our results support the importance of salmon runs to the nutritional ecology of stream-dwelling fishes.

  12. Pacific salmon (Oncorhynchus spp.) runs and consumer fitness: growth and energy storage in stream-dwelling salmonids increase with salmon spawner density

    USGS Publications Warehouse

    Rinella, D.J.; Wipfli, M.S.; Stricker, C.A.; Heintz, R.A.; Rinella, M.J.

    2012-01-01

    We examined how marine-derived nutrients (MDN), in the form of spawning Pacific salmon, influenced the nutritional status and δ15N of stream-dwelling fishes. We sampled juvenile coho salmon (Oncorhynchus kisutch) and Dolly Varden (Salvelinus malma) during spring and fall from 11 south-central Alaskan streams that ranged widely in spawning salmon biomass (0.1–4.7 kg·m–2). Growth rate (as indexed by RNA–DNA ratios), energy density, and δ15N enrichment in spring-sampled fishes increased with spawner biomass, indicating the persistence of spawner effects more than 6 months after salmon spawning. Point estimates suggest that spawner effects on nutrition were substantially greater for coho salmon than Dolly Varden (268% and 175% greater for growth and energy, respectively), indicating that both species benefitted physiologically, but that juvenile coho salmon accrued more benefits than Dolly Varden. Although the data were less conclusive for fall- than spring-sampled fish, they do suggest spawner effects were also generally positive during fall, soon after salmon spawned. In a follow-up analysis where growth rate and energy density were modeled as a function of δ15N enrichment, results suggested that both increased with MDN assimilation, especially in juvenile coho salmon. Our results support the importance of salmon runs to the nutritional ecology of stream-dwelling fishes.

  13. Development of Rations for the Enhanced Survival of Salmon, 1981-1990 Progress (Annual) Report.

    SciTech Connect

    Ewing, Richard D.

    1990-12-01

    The nutritional quality of feed plays an important role in determining the health and ``fitness`` of smolts. Commercial fish meal, the major source of protein in salmon rations, may be reduced in quality from poor drying techniques during manufacture. Dietary stress in the hatchery may result. This investigation tests the hypothesis that protein quality of fish rations can influence the survival of smolts and the ultimate return of adults. The test involves a comparison between performances of coho (Oncorhynchus kisutch) and chinook salmon (O. tshawytscha) reared on rations containing very high quality protein derived from vacuum dried meals and those of fish reared on commercial rations, with commercial fish meal as a source of protein. Survival and return of several brood years of test and control fish are used to measure the influence of ration on survival. This report includes recovery data from these marked fish collected 1982 through September 1990.

  14. Evaluation of Juvenile Fish Bypass and Adult Fish Passage Facilities at Water Diversions in the Umatilla River; 1993 Annual Report.

    SciTech Connect

    Knapp, Suzanne M.

    1994-03-01

    This report presents progress from October 1992 through September 1993 in evaluating juvenile fish bypass facilities at Three Mile Falls, Maxwell, Westland, and Feed Canal dams on the Umatilla River, and in evaluating adult fish passage in the lower Umatilla River. Also reported is an effort to evaluate delayed mortality and stress responses of juvenile salmonids resulting from trapping and transport at high temperatures. These studies are part of a program to rehabilitate anadromous fish stocks in the matilla River Basin, including restoration of coho salmon and chinook salmon, as well as enhancement of summer steelhead.

  15. Relationships between metabolic rate, muscle electromyograms and swim performance of adult chinook salmon

    USGS Publications Warehouse

    Geist, D.R.; Brown, R.S.; Cullinan, V.I.; Mesa, M.G.; VanderKooi, S.P.; McKinstry, C.A.

    2003-01-01

    Oxygen consumption rates of adult spring chinook salmon Oncorhynchus tshawytscha increased with swim speed and, depending on temperature and fish mass, ranged from 609 mg O2 h-1 at 30 cm s-1 (c. 0.5 BLs-1) to 3347 mg O2 h-1 at 170 cm s -1 (c. 2.3 BLs-1). Corrected for fish mass, these values ranged from 122 to 670 mg O2 kg-1 h-1, and were similar to other Oncorhynchus species. At all temperatures (8, 12.5 and 17??C), maximum oxygen consumption values levelled off and slightly declined with increasing swim speed >170 cm s-1, and a third-order polynomial regression model fitted the data best. The upper critical swim speed (Ucrit) of fish tested at two laboratories averaged 155 cm s -1 (2.1 BLs-1), but Ucrit of fish tested at the Pacific Northwest National Laboratory were significantly higher (mean 165 cm s-1) than those from fish tested at the Columbia River Research Laboratory (mean 140 cm s-1). Swim trials using fish that had electromyogram (EMG) transmitters implanted in them suggested that at a swim speed of c. 135 cm s-1, red muscle EMG pulse rates slowed and white muscle EMG pulse rates increased. Although there was significant variation between individual fish, this swim speed was c. 80% of the Ucrit for the fish used in the EMG trials (mean Ucrit 168.2 cm s-1). Bioenergetic modelling of the upstream migration of adult chinook salmon should consider incorporating an anaerobic fraction of the energy budget when swim speeds are ???80% of the Ucrit. ?? 2003 The Fisheries Society of the British Isles.

  16. Transportation of chinook salmon, Oncorhynchus tshawytscha, and steelhead, Salmo gairdneri, smolts in the Columbia River and effects on adult returns

    SciTech Connect

    Ebel, W.J.

    1980-04-01

    Chinook salmon, Oncorhynchus tshawytscha, and steelhead, Salmo gairdneri, were captured at Little Goose Dam in the Snake River during their seaward migration and transported 400 km downstream to the lower Columbia River below Bonneville Dam. Their survival was increased from 1.1 to 15 times as compared with control fish which passed by seven mainstem low-level dams and reservoirs. Variations in survival were mainly dependent on species and environmental conditions in the river during the period fish were transported. The homing ability of the adult fish was not significantly diminished; less than 0.2% of strays occurred among adult returns from groups transported. Transportation did not affect ocean age or size of returning adult steelhead, but ocean age of returning adult chinook salmon may have been affected. Steelhead returned to Little Goose Dam at a substantially higher rate (1.4 to 2.7%) than chinook salmon (0.1 to 0.8%) from groups transported. The timing of adult returns of both species to Little Goose Dam was not related to the time of capture and downstream release of smolts.

  17. Research on Captive Broodstock Programs for Pacific Salmon, 2001-2002 Annual Report.

    SciTech Connect

    Berejikian, Barry; Tezak, E.; Endicott, Rick

    2002-08-01

    The efficacy of captive broodstock programs depends on high in-culture survival and the fitness of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. The following summarizes some of the work performed and results from the FY 2001 performance period: (1) The incidence of male maturation of age-1 chinook salmon was significantly reduced by reducing growth in the first year of rearing. (2) Experimentally manipulated growth rates of captively-reared coho salmon had significant effects on female maturation rate, egg size, and fecundity, and the effects were stage-specific (i.e., pre-smolt vs. post-smolt). (3) A combination of Renogen and MT239 vaccination of yearling chinook salmon given an acute R. salmoninarum challenge had a significantly longer survival time than the mock-vaccinated group. The survival time was marginally higher than was seen in acutely challenged fish vaccinated with either Renogen or MT239 alone and suggests that a combination vaccine of Renogen and MT239 may be useful as both a prophylactic and therapeutic agent against BKD. (4) Full-sib (inbred) groups of chinook salmon have thus far exhibited lower ocean survival than half-sib and non-related groups. Effects of inbreeding on fluctuating asymmetry did not follow expected patterns. (5) Sockeye salmon were exposed to specific odorants at either the alevin/emergent fry stage or the smolt stage to determine the relative importance of odorant exposure during key developmental periods and the importance of exposure duration. (6) Experimental studies to determine the effects of exercise conditioning on steelhead reproductive behavior and the effects of male body size on chinook salmon fertilization success during natural spawning were completed.

  18. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde Riiver Basin : Fish Research Project Oregon : Annual Progress Report 1 September 1995 to 1 August 1996.

    SciTech Connect

    Jonasson, Brian C.; Carmichael, Richard W.; Keefe, MaryLouise

    1997-09-01

    Historically, the Grande Ronde River produced an abundance of salmonids including stocks of spring, summer and fall chinook salmon, sockeye salmon, coho salmon, and summer steelhead. During the past century, numerous factors have caused the reduction of salmon stocks such that only sustainable stocks of spring chinook salmon and summer steelhead remain. The sizes of spring chinook salmon populations in the Grande Ronde River basin also have been declining steadily and are substantially depressed from estimates of historic levels. In addition to a decline in population abundance, a reduction of spring chinook salmon spawning distribution is evident in the Grande Ronde River basin. Numerous factors are thought to contribute to the decline of spring chinook salmon in the Snake River and its tributaries. These factors include passage problems and increased mortality of juvenile and adult migrants at mainstem Columbia and Snake river dams, overharvest, and habitat degradation associated with timber, agricultural, and land development practices. This study was designed to describe aspects of the life history strategies exhibited by spring chinook salmon in the Grande Ronde River basin. During the past year the focus was on rearing and migration patterns of juveniles in the upper Grande Ronde River and Catherine Creek. The study design included three objectives: (1) document the annual in-basin migration patterns for spring chinook salmon juveniles in the upper Grande Ronde River and Catherine Creek, including the abundance of migrants, migration timing and duration; (2) estimate and compare smolt survival indices to mainstem Columbia and Snake river dams for fall and spring migrating spring chinook salmon; and (3) determine summer and winter habitat utilization and preference of juvenile spring chinook salmon in the upper Grande Ronde River and Catherine Creek.

  19. Consequences of high temperatures and premature mortality on the transcriptome and blood physiology of wild adult sockeye salmon (Oncorhynchus nerka).

    PubMed

    Jeffries, Ken M; Hinch, Scott G; Sierocinski, Thomas; Clark, Timothy D; Eliason, Erika J; Donaldson, Michael R; Li, Shaorong; Pavlidis, Paul; Miller, Kristi M

    2012-07-01

    Elevated river water temperature in the Fraser River, British Columbia, Canada, has been associated with enhanced mortality of adult sockeye salmon (Oncorhynchus nerka) during their upriver migration to spawning grounds. We undertook a study to assess the effects of elevated water temperatures on the gill transcriptome and blood plasma variables in wild-caught sockeye salmon. Naturally migrating sockeye salmon returning to the Fraser River were collected and held at ecologically relevant temperatures of 14°C and 19°C for seven days, a period representing a significant portion of their upstream migration. After seven days, sockeye salmon held at 19°C stimulated heat shock response genes as well as many genes associated with an immune response when compared with fish held at 14°C. Additionally, fish at 19°C had elevated plasma chloride and lactate, suggestive of a disturbance in osmoregulatory homeostasis and a stress response detectable in the blood plasma. Fish that died prematurely over the course of the holding study were compared with time-matched surviving fish; the former fish were characterized by an upregulation of several transcription factors associated with apoptosis and downregulation of genes involved in immune function and antioxidant activity. Ornithine decarboxylase (ODC1) was the most significantly upregulated gene in dying salmon, which suggests an association with cellular apoptosis. We hypothesize that the observed decrease in plasma ions and increases in plasma cortisol that occur in dying fish may be linked to the increase in ODC1. By highlighting these underlying physiological mechanisms, this study enhances our understanding of the processes involved in premature mortality and temperature stress in Pacific salmon during migration to spawning grounds. PMID:22957178

  20. Relative resistance of Pacific salmon to infectious salmon anaemia virus

    USGS Publications Warehouse

    Rolland, J.B.; Winton, J.R.

    2003-01-01

    Infectious salmon anaemia (ISA) is a major disease of Atlantic salmon, Salmo salar, caused by an orthomyxovirus (ISAV). Increases in global aqua culture and the international movement of fish made it important to determine if Pacific salmon are at risk. Steelhead trout, Oncorhynchus mykiss, and chum, O. keta, Chinook, O. tshawytscha, coho, O. kisutch, and Atlantic salmon were injected intraperitoneally with a high, medium, or low dose of a Norwegian strain of ISAV. In a second challenge, the same species, except chum salmon, were injected with a high dose of either a Canadian or the Norwegian strain. Average cumulative mortality of Atlantic salmon in trial 1 was 12% in the high dose group, 20% in the medium dose group and 16% in the low dose group. The average cumulative mortality of Atlantic salmon in trial 2 was 98%. No signs typical of ISA and no ISAV-related mortality occurred among any of the groups of Oncorhynchus spp. in either experiment, although ISAV was reisolated from some fish sampled at intervals post-challenge. The results indicate that while Oncorhynchus spp. are quite resistant to ISAV relative to Atlantic salmon, the potential for ISAV to adapt to Oncorhynchus spp. should not be ignored.

  1. Acute exposure to gas-supersaturated water does not affect reproductive success of female adult chinook salmon late in maturation

    USGS Publications Warehouse

    Gale, William L.; Maule, A.G.; Postera, A.; Peters, M.H.

    2004-01-01

    At times, total dissolved gas concentrations in the Columbia and Snake rivers have been elevated due to involuntary spill from high spring runoff and voluntary spill used as a method to pass juvenile salmonids over dams. The goal of this project was to determine if acute exposure to total dissolved gas supersaturation (TDGS) affects the reproductive performance of female chinook salmon late in their maturation. During this study, adult female spring chinook salmon were exposed to mean TDGS levels of 114.1 % to 125.5%. We ended exposures at first mortality, or at the appearance of impending death. Based on this criterion, exposures lasted from 10 to 68 h and were inversely related to TDGS. There was no effect of TDGS on pre-spawning mortality or fecundity when comparing treatment fish to experimental controls or the general hatchery population four to six weeks after exposures. Egg quality, based on egg weight and egg diameter, did not differ between treatment and control fish. Fertilization rate and survival to eyed-stage was high (>94%) for all groups. With the exception of Renibacterium salmoninarum (the causative agent of bacterial kidney disease; BKD), no viral or bacterial fish pathogens were isolated from experimental fish. The prevalence (about 45%) and severity of R. salmoninarum did not differ among the groups or the general hatchery population. We conclude that these acute exposures to moderate levels of gas-supersaturated water-perhaps similar to that experienced by immigrating adult salmon as they approach and pass a hydropower dam on the Columbia River-did not affect reproductive success of female chinook salmon late in their maturation. These results are most applicable to summer and fall chinook salmon, which migrate in the summer/fall and spawn shortly after reaching their natal streams. Published in 2004 by John Wiley and Sons, Ltd.

  2. Unraveling the estrogen receptor (er) genes in Atlantic salmon (Salmo salar) reveals expression differences between the two adult life stages but little impact from polychlorinated biphenyl (PCB) load.

    PubMed

    Nikoleris, Lina; Hansson, Maria C

    2015-01-15

    Estrogen receptors (ers) not only are activated by hormones but also interact with many human-derived environmental contaminants. Here, we present evidence for four expressed er genes in Atlantic salmon cDNA - two more ers (erα2 and erβ2) than previously published. To determine if er gene expression differs between two adult life-stages we sampled 20 adult salmon from the feeding phase in the Baltic Sea and during migration in the River Mörrum, Sweden. Results show that all four er genes are present in the investigated tissues, except for erα2 not appearing in the spleen. Overall, a profile analysis reveals the erα1 gene to be the most highly expressed er gene in both female and male Baltic Sea salmon tissues, and also in female River Mörrum salmon. In contrast, this gene has the lowest gene expression level of the four er genes in male salmon from the River Mörrum. The erα2 gene is expressed at the lowest levels in both female/male Baltic Sea salmon and in female River Mörrum salmon. Statistical analyses indicate a significant and complex interaction where both sex and adult life stage can impact er gene expression. Regression analyses did not demonstrate any significant relationship between polychlorinated biphenyl (PCB) body burden and er gene expression level, suggesting that accumulated pollutants from the Baltic Sea may be deactivated inside the salmon's lipid tissues and have limited impact on er activity. This study is the first comprehensive analysis of four er gene expression levels in two wild salmon populations from two different adult life stages where information about PCB load is also available. PMID:25451980

  3. Estimating Adult Chinook Salmon Exposure to Dissolved Gas Supersaturation Downstream of Hydroelectric Dams Using Telemetry and Hydrodynamic Models

    SciTech Connect

    Johnson, Eric L.; Clabough, Tami S.; Peery, Christopher A.; Bennett, David H.; bjornn, Theodore C.; Caudill, Christopher C.; Richmond, Marshall C.

    2007-11-01

    Gas bubble disease (GBD) has been recognized for years as a potential problem for fishes in the Columbia River basin. GBD results from exposure to gas supersaturated water created by discharge over dam spillways. Spill typically creates a downstream plume of water with high total dissolved gas supersaturation (TDGS) that may be positioned along either shore or mid-channel, depending on dam operations. We obtained spatial data on fish migration paths and migration depths for 228 adult spring and summer Chinook salmon, Oncorhynchus tshawytscha, during 2000. Migration paths were compared to output from a two-dimensional hydrodynamic and dissolved gas model to estimate the potential for GBD expression and to test for behavioral avoidance of the high TDGS plume in unrestrained fish migrating under field conditions. Consistent with our previous estimates using single-location estimates of TDGS, we observed salmon swam sufficiently deep in the water column to receive complete hydrostatic compensation 95.9% of time spent in the Bonneville tailrace and 88.1% of the time in the Ice Harbor tailrace. The majority of depth uncompensated exposure occurred at TDGS levels > 115%. Adult spring and summer Chinook salmon tended to migrate near the shoreline. Adults moved into the high dissolved gas plume as often as they moved out of it downstream of Bonneville Dam, providing no evidence that adults moved laterally to avoid areas with elevated dissolved gas levels. The strong influence of dam operations on the position of the high-TDGS plume and shoreline-orientation behaviors of adults suggest that exposure of adult salmonids to high-TDGS conditions may be minimized using operational conditions that direct the plume mid-channel, particularly during periods of high discharge and spill. More generally, our approach illustrates the potential for combined field and modeling efforts to estimate the fine-scale environmental conditions encountered by fishes in natural and regulated rivers.

  4. Salmon redd identification using environmental DNA (eDNA)

    USGS Publications Warehouse

    Pilliod, David S.; Laramie, Matthew B.

    2016-01-01

    IntroductionThe purpose of this project was to develop a technique to use environmental DNA (eDNA) to distinguish between redds made by Chinook salmon (Oncorhynchus tshawytscha) and redds made by Coho salmon (O. kisutch) and to distinguish utilized redds from test/abandoned redds or scours that have the appearance of redds. The project had two phases:Phase 1. Develop, test, and optimize a molecular assay for detecting and identifying Coho salmon DNA and differentiating it from Chinook salmon DNA.Phase 2. Demonstrate the efficacy of the technique.Collect and preserve water samples from the interstitial spaces of 10 known redds (as identified by expert observers) of each species and 10 gravel patches that do not include a redd of either species.Collect control samples from the water column adjacent to each redd to establish background eDNA levels.Analyze the samples using the developed molecular assays for Coho salmon (phase I) and Chinook salmon (Laramie and others, 2015).Evaluate whether samples collected from Chinook and Coho redds have significantly higher levels of eDNA of the respective species than background levels (that is, from gravel, water column).Evaluate whether samples collected from the interstitial spaces of gravel patches that are not redds are similar to background eDNA levels.The Sandy River is a large tributary of the Columbia River. The Sandy River meets the Columbia River approximately 23 km upstream of Portland, Oregon. The Sandy River Basin provides overlapping spawning habitat for both Chinook and Coho salmon.Samples provided by Portland Water Bureau for analysis were collected from the Bull Run River, Sixes Creek, Still Creek, Arrah Wanna Side Channel, and Side Channel 18.

  5. Compendium of Low-Cost Pacific Salmon and Steelhead Trout Production Facilities and Practices in the Pacific Northwest.

    SciTech Connect

    Senn, Harry G.

    1984-09-01

    The purpose was to research low capital cost salmon and steelhead trout production facilities and identify those that conform with management goals for the Columbia Basin. The species considered were chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and steelhead trout (Salmo gairdneri). This report provides a comprehensive listing of the facilities, techniques, and equipment used in artificial production in the Pacific Northwest. (ACR)

  6. Survival and behavioral effects of exposure to a hydrokinetic turbine on juvenile Atlantic salmon and adult American shad

    USGS Publications Warehouse

    Castro-Santos, Theodore R.; Haro, Alex

    2015-01-01

    This paper describes a series of experiments designed to measure the effect of exposure to a full-scale, vertical axis hydrokinetic turbine on downstream migrating juvenile Atlantic salmon (N=75) and upstream migrating adult American shad (N=208). Controlled studies were performed in a large-scale, open-channel flume, and all individuals approached the turbine under volitional control. No injuries were observed, and there was no measurable increase in mortality associated with turbine passage. Exposure to the turbine elicited behavioral responses from both species, however, with salmon passing primarily over the downrunning blades. Shad movement was impeded by the device, as indicated by fewer attempts of shorter duration and reduced distance of ascent up the flume. More work should be performed in both laboratory and field conditions to determine to what extent these effects are likely to influence free-swimming fish.

  7. Differences in dynamic response of California Current salmon species to changes in ocean conditions

    NASA Astrophysics Data System (ADS)

    Botsford, Louis W.; Lawrence, Cathryn A.; Forrest Hill, M.

    2005-01-01

    While changes in the northeast Pacific Ocean in the mid-1970s apparently caused changes in salmon population growth in the Gulf of Alaska and the California Current, the responses of California Current salmon species, coho salmon ( Oncorhynchus kisutch) and chinook salmon ( O. tshawytscha) differed. Coho salmon catches declined dramatically along the coasts of California, Oregon and Washington, while chinook salmon catches did not. This provides an opportunity for comparative analysis, a rarity in the study of long-term changes in the ocean. Here we test one possible explanation for that difference, that chinook salmon populations are inherently more persistent because chinook salmon populations spawn over a range of ages, while coho salmon spawn predominantly at age 3 yr. We extended a previous theoretical approach that had been used to assess the long-term response of salmon populations with various spawning age structures to different means and variances in environmental variability. New results indicate that populations with environmental variability at the age of return to freshwater have the same characteristic identified earlier for populations with variability in the age of entry: populations spawning at multiple ages are more persistent, but that increased persistence is gained in the first few percent of departure from all spawning at a single age. Thus, in both cases the results are too sensitive to values of uncertain parameters to depend on as an explanation of the differences in response. We also approached this question by subjecting model populations with coho and chinook salmon spawning age structures to an empirical estimate of actual marine survival of coho salmon over the years 1970-2002, asking the question, if chinook salmon had been subjected to the same ocean survivals would they have experienced the same decline. The differences in spawning age structure made little difference in population responses. The dominant factor influencing the

  8. Nutrient fluxes and the recent collapse of coastal California salmon populations

    USGS Publications Warehouse

    Moore, Jonathan W.; Hayes, Sean A.; Duffy, Walter; Gallagher, Sean; Michel, Cyril J.; Wright, David

    2011-01-01

    Migratory salmon move nutrients both in and out of fresh waters during the different parts of their life cycle. We used a mass-balance approach to quantify recent changes in phosphorus (P) fluxes in six coastal California, USA, watersheds that have recently experienced dramatic decreases in salmon populations. As adults, semelparous Chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon imported 8.3 and 10.4 times more P from the ocean, respectively, than they exported as smolts, while iteroparous steelhead (i.e., sea-run rainbow trout, Oncorhynchus mykiss) imported only 1.6 times more than they exported as kelts and smolts. Semelparous species whose life histories led them to import more nutrients were also the species whose populations decreased the most dramatically in California in recent years. In addition, the relationship between import and export was nonlinear, with export being proportionally more important at lower levels of import. This pattern was driven by two density-dependent processes — smolts were larger and disproportionately more abundant at lower spawner abundances. In fact, in four of our six streams we found evidence that salmon can drive net export of P at low abundance, evidence for the reversal of the "conveyor belt" of nutrients.

  9. Cardiorespiratory performance and blood chemistry during swimming and recovery in three populations of elite swimmers: Adult sockeye salmon.

    PubMed

    Eliason, Erika J; Clark, Timothy D; Hinch, Scott G; Farrell, Anthony P

    2013-10-01

    Every year, millions of adult sockeye salmon (Oncorhynchus nerka) perform an arduous, once-in-a-lifetime migration up the Fraser River (BC, Canada) to return to their natal stream to spawn. The changes in heart rate, stroke volume, and arterio-venous oxygen extraction (i.e., factors determining rates of oxygen delivery to the tissues by the cardiovascular system) have never been directly and simultaneously measured along with whole animal oxygen uptake in a maximally swimming fish. Here, such measurements were made using three sockeye salmon populations (Early Stuart, Chilko and Quesnel), which each performed two consecutive critical swimming speed (Ucrit) challenges to provide a comprehensive quantification of cardiovascular physiology, oxygen status and blood chemistry associated with swimming and recovery. Swim performance, oxygen uptake, cardiac output, heart rate and stroke volume did not significantly vary at rest, during swimming or during recovery between populations or sexes. Despite incomplete metabolic recovery between swim challenges, all fish repeated their swim performance and similar quantitative changes in the cardiorespiratory variables were observed for each swim challenge. The high maximum cardiorespiratory performance and excellent repeat swim performance are clearly beneficial in allowing the salmon to maintain steady ground speeds and reach the distant spawning grounds in a timely manner. PMID:23880060

  10. Use of Dual Frequency Identification Sonar to Determine Adult Chinook Salmon (Oncorhynchus tshawytscha) Escapement in the Secesh River, Idaho ; Annual Report, January 2008 – December 2008.

    SciTech Connect

    Kucera, Paul A.

    2009-06-26

    Chinook salmon in the Snake River basin were listed as threatened under the Endangered Species Act in 1992 (NMFS 1992). The Secesh River represents the only stream in the Snake River basin where natural origin (wild) salmon escapement monitoring occurs at the population level, absent a supplementation program. As such the Secesh River has been identified as a long term salmon escapement and productivity monitoring site by the Nez Perce Tribe Department of Fisheries Resources Management. Salmon managers will use this data for effective population management and evaluation of the effect of conservation actions on a natural origin salmon population. The Secesh River also acts as a reference stream for supplementation program comparison. Dual frequency identification sonar (DIDSON) was used to determine adult spring and summer Chinook salmon escapement in the Secesh River in 2008. DIDSON technology was selected because it provided a non-invasive method for escapement monitoring that avoided listed species trapping and handling incidental mortality, and fish impedance related concerns. The DIDSON monitoring site was operated continuously from June 13 to September 14. The first salmon passage was observed on July 3. DIDSON site total estimated salmon escapement, natural and hatchery fish, was 888 fish {+-} 65 fish (95% confidence interval). Coefficient of variation associated with the escapement estimate was 3.7%. The DIDSON unit was operational 98.1% of the salmon migration period. Adult salmon migration timing in the Secesh River occurred over 74 days from July 3 to September 14, with 5,262 total fish passages observed. The spawning migration had 10%, median, and 90% passage dates of July 8, July 16, and August 12, respectively. The maximum number of net upstream migrating salmon was above the DIDSON monitoring site on August 27. Validation monitoring of DIDSON target counts with underwater optical cameras occurred for species identification. A total of 860 optical

  11. Spawning salmon and the fitness of stream-dwelling fishes: Marine-derived nutrients show saturating effects on growth and energy storage in juvenile salmonids

    USGS Publications Warehouse

    Rinella, D.J.; Wipfli, M.S.; Stricker, C.A.; Heintz, R.

    2012-01-01

    We examined how marine-derived nutrients (MDN), in the form of spawning Pacific salmon, influenced the nutritional status and d15N of stream-dwelling fishes. We sampled juvenile coho salmon (Oncorhynchus kisutch) and Dolly Varden (Salvelinus malma) during spring and fall from 11 south-central Alaskan streams that ranged widely in spawning salmon biomass (0.1–4.7 kg•m–2). Growth rate (as indexed by RNA–DNA ratios), energy density, and d15N enrichment in spring-sampled fishes increased with spawner biomass, indicating the persistence of spawner effects more than 6 months after salmon spawning. Point estimates suggest that spawner effects on nutrition were substantially greater for coho salmon than Dolly Varden (268% and 175% greater for growth and energy, respectively), indicating that both species benefitted physiologically, but that juvenile coho salmon accrued more benefits than Dolly Varden. Although the data were less conclusive for fall- than spring-sampled fish, they do suggest spawner effects were also generally positive during fall, soon after salmon spawned. In a follow-up analysis where growth rate and energy density were modeled as a function of d15N enrichment, results suggested that both increased with MDN assimilation, especially in juvenile coho salmon. Our results support the importance of salmon runs to the nutritional ecology of stream-dwelling fishes.

  12. Migrational Characteristics of Columbia Basin Salmon and Steelhead Trout, Part II, Smolt Monitoring Program, 1984 Annual Report.

    SciTech Connect

    McConnaha, Willis E.

    1985-07-01

    The report describes the travel time of marked yearling and sub-yearling chinook salmon (Oncorhynchus tshawytscha), sockeye salmon (O. nerka), and steelhead trout (Salmo gairdneri) between points within the system, and reports the arrival timing and duration of the migrations for these species as well as coho salmon (O. kisutch). A final listing of 1984 hatchery releases is also included. 8 refs., 26 figs., 20 tabs.

  13. Stock-specific migration timing of adult spring-summer Chinook salmon in the Columbia River basin

    USGS Publications Warehouse

    Keefer, M.L.; Peery, C.A.; Jepson, M.A.; Tolotti, K.R.; Bjornn, T.C.; Stuehrenberg, L.C.

    2004-01-01

    An understanding of the migration timing patterns of Pacific salmon Oncorhynchus spp. and steelhead O. mykiss is important for managing complex mixed-stock fisheries and preserving genetic and life history diversity. We examined adult return timing for 3,317 radio-tagged fish from 38 stocks of Columbia River basin spring-summer Chinook salmon O. tshawytscha over 5 years. Stock composition varied widely within and between years depending on the strength of influential populations. Most individual stocks migrated at similar times each year relative to overall runs, supporting the hypotheses that run timing is predictable, is at least partially due to genetic adaptation, and can be used to differentiate between some conspecific populations. Arrival timing of both aggregated radio-tagged stocks and annual runs was strongly correlated with river discharge; stocks arrived earlier at Bonneville Dam and at upstream dams in years with low discharge. Migration timing analyses identified many between-stock and between-year differences in anadromous salmonid return behavior and should and managers interested in protection and recovery of evolutionary significant populations.

  14. Clove oil as an anaesthetic for adult sockeye salmon: Field trials

    USGS Publications Warehouse

    Woody, C.A.; Nelson, Jack L.; Ramstad, K.

    2002-01-01

    Wild migrating sockeye salmon Oncorhynchus nerka exposed to 20, 50 and 80 mg 1-1 of clove oil could be handled within 3 min, recovered within 10 min, and survived 15 min exposure trials. Fish tested at 110 mg 1-1 did not recover from 15 min exposure trials. Response curves developed for induction and recovery time considered the following predictors: clove oil concentration, sex, fish length and depth. A significant positive dependence was observed between induction time and fish length for 20, 50 and 80 mg 1-1 test concentrations; no dependence was observed between induction time and length at 110 and 140 mg 1-1. Recovery time differed as a function of clove oil concentration, but not fish size. A concentration of 50 mg 1-1 is recommended for anaesthetizing sockeye salmon ranging in length from 400 to 550 mm at water temperatures averaging 9-10??C.

  15. Features of adult neurogenesis and neurochemical signaling in the Cherry salmon Oncorhynchus masou brain☆

    PubMed Central

    Pushchina, Evgeniya V.; Obukhov, Dmitry K.; Varaksin, Anatoly A.

    2013-01-01

    We investigated the distribution of gamma aminobutyric acid, tyrosine hydroxylase and nitric oxide-producing elements in a cherry salmon Oncorhynchus masou brain at various stages of postnatal ontogenesis by immunohistochemical staining and histochemical staining. The periventricular region cells exhibited the morphology of neurons and glia including radial glia-like cells and contained several neurochemical substances. Heterogeneous populations of tyrosine hydroxylase-, gamma aminobutyric acid-immunoreactive, as well as nicotinamide adenine dinucleotide phosphate diaphorase-positive cells were observed in proliferating cell nuclear antigen-immunoreactive proliferative zones in periventricular area of diencephalon, central grey layer of dorsomedial tegmentum, medulla and spinal cord. Immunolocalization of Pax6 in the cherry salmon brain revealed a neuromeric construction of the brain at various stages of postnatal ontogenesis, and this was confirmed by tyrosine hydroxylase and gamma aminobutyric acid labeling. PMID:25206367

  16. Hepatic reference gene selection in adult and juvenile female Atlantic salmon at normal and elevated temperatures

    PubMed Central

    2012-01-01

    Background The use of quantitative real-time polymerase chain reaction (qPCR) has become widespread due to its specificity, sensitivity and apparent ease of use. However, experimental error can be introduced at many stages during sample processing and analysis, and for this reason qPCR data are often normalised to an internal reference gene. The present study used three freely available algorithms (GeNorm, NormFinder and BestKeeper) to assess the stability of hepatically expressed candidate reference genes (Hprt1, Tbp, Ef1α and β-tubulin) in two experiments. In the first, female Atlantic salmon (Salmo salar) broodstock of different ages were reared at either 14 or 22°C for an entire reproductive season, therefore a reference gene that does not respond to thermal challenge or reproductive condition was sought. In the second, estrogen treated juvenile salmon were maintained at the same temperatures for 14 days and a reference gene that does not respond to temperature or estrogen was required. Additionally, we performed independent statistic analysis to validate the outputs obtained from the program based analysis. Results Based on the independent statistical analysis performed the stability of the genes tested was Tbp > Ef1α > Hprt1 > β-tubulin for the temperature/reproductive development experiment and Ef1α > Hprt1 > Tbp for the estrogen administration experiment (β-tubulin was not analysed). Results from the algorithms tested were quite ambiguous for both experiments; however all programs consistently identified the least stable candidate gene. BestKeeper provided rankings that were consistent with the independent analysis for both experiments. When an inappropriate candidate reference gene was used to normalise the expression of a hepatically expressed target gene, the ability to detect treatment-dependent changes in target gene expression was lost for multiple groups in both experiments. Conclusions We have highlighted the need to independently validate

  17. Infectious diseases of Pacific salmon

    USGS Publications Warehouse

    1954-01-01

    A variety of bacteria has been found responsible for outbreaks of disease in salmon in sea water. The most important of these is a species of Vibrio. Tuberculosis has been found in adult chinook salmon and the evidence indicates that the disease was contracted at sea.

  18. EFFECTS OF AIR-SUPERSATURATED WATER ON SURVIVAL OF PACIFIC SALMON AND STEELHEAD SMOLTS

    EPA Science Inventory

    Coho (Oncorhynchus kisutch) and sockeye (O. nerka) salmon smolts and steelhead trout (Salmo gairdneri) smolts were exposed to several concentrations of air-supersaturated water in the laboratory from March through June, 1974, the normal fish migration period in the Columbia River...

  19. Salmon Patch

    MedlinePlus

    ... the head. Salmon patches are different from port-wine stains (discussed as a separate topic) in that ... difference between a salmon patch and a port-wine stain. In the past, port-wine stains and ...

  20. Evaluation of Juvenile Fish Bypass and Adult Fish Passage Facilities at Three-Mile Falls Dam; Umatilla River, Oregon, 1989 Annual Report.

    SciTech Connect

    Nigro, Anthony A.

    1990-09-01

    We report on our progress from October 1989 through September 1990 on evaluating juvenile fish bypass and adult fish passage facilities at Three Mile Falls Dam on the Umatilla River. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW) and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). Study objectives addressed by ODFW and CTUIR are: (1) ODFW (Report A): Operate and evaluate the juvenile fish bypass system in the West Extension Irrigation District canal at Three Mile Falls Dam; and (2) CTUIR (Report 8): Examine the passage of adult salmonids at Three Mile Falls Dam. The study is part of a program to rehabilitate anadromous fish stocks in the Umatilla River Basin that includes restorations of coho salmon Oncorhynchus Wsutch and chinook salmon 0. tshawytscha and enhancement of summer steelhead 0. mytiss.

  1. Persistent infections of fish cell lines by paramyxovirus isolates from Chinook salmon (Oncorhynchus tschawytscha)

    USGS Publications Warehouse

    Lannan, C.N.

    1989-01-01

    We have reported the isolation of a paramyxovirus from stocks of adult chinook salmon (Oncorhynchus tshawytscha) returning to coastal rivers of Oregon, USA (Winton et al 1985). The isolates were obtained from kidney and spleen tissues using the chinook salmon embryo cell line, CHSE-214. Initial cytopathic effect (CPE) was slow to develop, requiring 28 days incubation at 18°C. The virus replicated in CHSE-214, chum heart (CHH-1), kokanee ovary (K0-6), coho salmon embryo (CSE-119), and fathead minnow (FHM) cell lines where it produced a lytic type of CPE.The virus was stable at pH 3-11 and iodo-deoxyuridine did not inhibit wiral replication. Infectivity was lost after treatment with chloroform indicating the presence of essential lipids. The density of virions in CsCl was 1.2 g/ml. The virus hemagglutinated cells of 11 of 14 species of birds, mammals, and fish tested. Electron microscopy of infected cells revealed enveloped particles 125-250 nm in dia. containing coiled nucleocapsids and examination of freon-treated virions showed the nucleocapsid was a helix approximately 18 nm in dia. and > 1000 nm in length (Winton et al 1985).In addition to causing hemagglutination, members of the Paramyxoviridae are known for the ability to establish persistent infections of cell lines (Choppin and Compans 1975). The purpose of this study was to determine if the paramyxovirus isolates from salmon were able to establish persistent infections in fish cell lines and to study the nature of the infection.

  2. An assessment of oil-spill effects on pink salmon populations following the Exxon Valdez oil spill. Part 2: Adults and escapement

    SciTech Connect

    Maki, A.W.; Brannon, E.J.; Gilbertson, L.G.; Moulton, L.L.; Skalski, J.R.

    1995-12-31

    This paper presents results of a field program designed to monitor the status of wildstock pink salmon populations in Prince William Sound following the Exxon Valdez oil spill. Field counts of spawning salmon were conducted each year from 1989 through 1992 to test for spill effects o the distribution nd abundance of pink salmon adults spawning in selected streams in the southwestern portion of Prince William Sound, including streams from the most heavily oiled areas. Counts of whole-stream and intertidal escapement density were statistically compared for 40 study streams in 1989 and for a subset of those streams in successive years. Measurements of residual hydrocarbons were made from stream-bed sediments to test for correlations with spawning behavior. Adult pink salmon in the postspill years of 1990 and 1991, progeny of the year classes considered most vulnerable to the oil spill, returned in high numbers, with the wildstock spawners exceeding their parent year returns. In 1989, adult returns reflected the relatively weak run for that year with a mean spawner density of 0.68 fish/m{sup 2} in reference streams and 0.69 fish/m{sup 2} in oiled streams. In 1990, mean escapement density for reference streams was 1.40 fish/m{sup 2} and 1.55 fish/m{sup 2} for oiled streams, indicating the strongest run of the four study years. Trends in polycyclic aromatic hydrocarbon (PAH) concentrations for the majority of oiled streams show a general decline from 1989 to background levels by 1990. 45 refs., 14 figs., 5 tabs.

  3. FDA Approved Registration of Erythromycin for Treatment of Bacterial Kidney Disease (BKD) in Juvenile and Adult Chinook Salmon : Annual Report, Reporting Period March 10, 1989 to March 9, 1990.

    SciTech Connect

    Moffitt, Christine A.

    1991-04-01

    Erythromycin is a therapeutic substance useful against bacterial kidney disease in salmon. In 1989 we began a multi year project to learn more about erythromycin applied to juvenile and adult salmon, with the goal of achieving registration of erythromycin with the US Food and Drug Administration. To begin the study, we studied the pharmacokinetics of erythromycin administered to both adult and juvenile chinook salmon. We monitored blood plasmas time curves from individual adult fish injected with two forms of injectable erythromycin using one of three routes of administration. In addition, we began experiments to evaluate hatchery applications of erythromycin to individually marked adult salmon, and we recovered blood tissues from these fish at the time of spawning. To determine how to use erythromycin in juvenile salmon, we evaluated the adsorption and elimination of erythromycin applied arterially and orally to individual juvenile fish. In feeding trials we determined the palatability to juvenile chinook salmon of feed made with one of two different carriers for erythromycin thiocyanate. 35 refs., 4 figs. , 3 tabs.

  4. A global assessment of salmon aquaculture impacts on wild salmonids.

    PubMed

    Ford, Jennifer S; Myers, Ransom A

    2008-02-01

    Since the late 1980s, wild salmon catch and abundance have declined dramatically in the North Atlantic and in much of the northeastern Pacific south of Alaska. In these areas, there has been a concomitant increase in the production of farmed salmon. Previous studies have shown negative impacts on wild salmonids, but these results have been difficult to translate into predictions of change in wild population survival and abundance. We compared marine survival of salmonids in areas with salmon farming to adjacent areas without farms in Scotland, Ireland, Atlantic Canada, and Pacific Canada to estimate changes in marine survival concurrent with the growth of salmon aquaculture. Through a meta-analysis of existing data, we show a reduction in survival or abundance of Atlantic salmon; sea trout; and pink, chum, and coho salmon in association with increased production of farmed salmon. In many cases, these reductions in survival or abundance are greater than 50%. Meta-analytic estimates of the mean effect are significant and negative, suggesting that salmon farming has reduced survival of wild salmon and trout in many populations and countries. PMID:18271629

  5. Immune and endocrine responses of adult spring Chinook salmon during freshwater migration and sexual maturation

    USGS Publications Warehouse

    Maule, A.G.; Schrock, R.M.; Slater, C.; Fitzpatrick, M.S.; Schreck, C. B.

    1996-01-01

    The immune –endocrine responses in spring chinook salmon (Oncorhynchus tshawytscha) were examined during their freshwater migration and final maturation. In 1990, migrating fish had high plasma cortisol titres (means 200 ng ml−1) and generated relatively few antibody-producing cells (APC) from peripheral blood leukocytes (PBL) (100 –200 per culture). After three weeks acclimation in constant environmental conditions, plasma cortisol was reduced and APC increased. There were no changes in number or affinity of glucocorticoid receptors. Concentrations of several sex steroids correlated with APC in females, but there were no such correlations in males. In 1993, fish in a hatchery had significantly greater cortisol concentrations in primary circulation than in secondary circulation, but sex steroid concentrations did not differ between circulations. Mean lysozyme activity in the primary and secondary circulation did not differ in June. In August, activity in the primary circulation was significantly less than that of the secondary, perhaps the result of acute stress associated with sampling. While some sex steroids correlated with lysozyme activity, the fact that in both years all endocrine and immune variables that correlated with each other also correlated with the date of sample, raises the question as to whether or not these are cause-and-effect relations.

  6. Growth, smoltification, and smolt-to-adult return of spring chinook salmon from hatcheries on the Deschutes river, Oregon

    USGS Publications Warehouse

    Beckman, B.R.; Dickhoff, Walton W.; Zaugg, W.S.; Sharpe, C.; Hirtzel, S.; Schrock, R.; Larsen, D.A.; Ewing, R.D.; Palmisano, A.; Schreck, C.B.; Mahnken, C.V.W.

    1999-01-01

    The relationship between smoltification and smolt-to-adult return (SAR) of spring chinook salmon Oncorhynchus tshawytscha from the Deschutes River, Oregon, was examined for four release groups in each of three successive years. Fish were reared, marked with coded wire tags, and released from Round Butte Hatchery, Pelton Ladder rearing facility, and Warm Springs National Fish Hatchery. Smolt releases occurred in nearly the same place at similar times, allowing a direct comparison of SAR to several characters representing smolt quality. Return rates varied significantly among facilities, varying over an order of magnitude each year. The highest average SAR was from Pelton Ladder, the lowest was from Warm Springs. Each of the characters used as metrics of smoltification - fish size, spring growth rate (February-April), condition factor, plasma hormone concentration (thyroxine, cortisol, and insulin-like growth factor-I [IGF-I]), stress challenge, gill Na+,K+-ATPase activity, and liver glycogen concentration - varied significantly among facilities and seasonally within hatchery groups. However, only spring growth rate, gill ATPase activity, and plasma IGF-I concentration showed significant relationships to SAR. These characters and SAR itself were consistently lower for fish released from Warm Springs Hatchery than for fish from Round Butte Hatchery and Pelton Ladder. This demonstrates that differences in the quality of fish released by facilities may have profound effects on subsequent survival and suggests that manipulations of spring growth rate may be used to influence the quality of smolts released from facilities.

  7. Factors Affecting the Survival of Upstream Migrant Adult Salmonids in the Columbia River Basin : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 9 of 11.

    SciTech Connect

    Dauble, Dennis D.; Mueller, Robert P.

    1993-06-01

    The Bonneville Power Administration (BPA) is developing conservation planning documentation to support the National Marine Fisheries Service`s (NMFS) recovery plan for Columbia Basin salmonid stocks that are currently listed under the Endangered Species Act (ESA). Information from the conservation planning documentation will be used as a partial scientific basis for identifying alternative conservation strategies and to make recommendations toward conserving, rebuilding, and ultimately removing these salmon stocks from the list of endangered species. This report describes the adult upstream survival study, a synthesis of biological analyses related to conditions affecting the survival of adult upstream migrant salmonids in the Columbia River system. The objective of the adult upstream survival study was to analyze existing data related to increasing the survival of adult migrant salmonids returning to the Snake River system. The fate and accountability of each stock during its upstream migration period and the uncertainties associated with measurements of escapement and survival were evaluated. Operational measures that affected the survival of adult salmon were evaluated including existing conditions, augmented flows from upstream storage release, and drawdown of mainstem reservoirs. The potential impacts and benefits of these measures to each ESA stock were, also described based on considerations of species behavior and run timing.

  8. Juvenile salmon usage of the Skeena River estuary.

    PubMed

    Carr-Harris, Charmaine; Gottesfeld, Allen S; Moore, Jonathan W

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2-8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations that

  9. Juvenile Salmon Usage of the Skeena River Estuary

    PubMed Central

    Carr-Harris, Charmaine; Gottesfeld, Allen S.; Moore, Jonathan W.

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2–8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations

  10. ELISA-Based Segregation of Adult Spring Chinook Salmon for Control of Bacterial Kidney Disease: Annual Report 1991.

    SciTech Connect

    Kaattari, Stephen L.

    1993-02-01

    Bacterial kidney disease (BKD), caused by Renibacterium salmoninarum (RS), a serious disease of salmonid fish worldwide. The disease has a major impact on spring chinook salmon populations in the Columbia River system. There is strong evidence that RS can be transmitted from parent to progeny, and segregation of progeny based on levels of antigen detected in adult fish may obviate this mode of transmission. Results are presented from the third year of a four year study to investigate segregation of broodstock as a tool for controlling BKD. Segregation of adult fish infected with RS has been achieved using enzyme-linked immunosorbent assays (ELlSAs) optimized in the first and second year of this project. Gametes from both 1990 and 1991 broodstock, either injected with erythromycin or receiving no antibiotic injection were successfully segregated into groups having either high or low levels of the RS soluble antigen. Offspring have been monitored every three months from the 1990 broodstock and are being monitored from the 1991 broodstock. Antigen levels in the offspring from the 1990 segregation experiment at Marion Forks Hatchery were low and clinical BKD was not observed in any of the juvenile fish. At Carson National Fish Hatchery, antigen levels were also low in fish which were sampled December 1990 through July 1991. Total mortality was low throughout these sampling periods. An increase in mortality was observed in November-December 1991, and preliminary evidence suggests that motality may have been due BKD. The epizootic appears to have equally effected both offspring from high and low RS antigen level parents. Antigen levels in moribund fish are being examined to confirm the prevalence of RS infection.

  11. Evaluation of 1991-1992 Brood Overwinter-Reared Coho Released from Net Pens in Youngs Bay, Oregon : Final Completion Report Youngs Bay Terminal Fishery Project.

    SciTech Connect

    Hirose, Paul S.

    1997-01-01

    Funding from Bonneville Power Administration was provided to the Oregon Department of Fish and Wildlife and the Clatsop County Economic Development Council`s Fisheries Project to identify and develop terminal fishing opportunities. The 1991 and 1992 brood fingerling coho from Oregon Department of Fish and Wildlife hatcheries were successfully reared during the winter period to smolt stage in Youngs Bay utilizing floating net pens. Based on coded-wire-tag recoveries during 1991--93 from 2-week net-pen acclimation releases, total accountability of coho adults averaged 40,540 fish, with the Youngs Bay commercial harvest accounting for 39%. With reduced ocean harvest impacts during 1994 and 1995, 92% of 51,640 coho in 1994 and 68% of 23,599 coho in 1995 (based on coded-wire-tag recoveries) were accounted for in the Youngs Bay commercial fishery for combined 2-week and overwinter acclimation net-pen releases. Overwinter net-pen acclimation coho accounted for 35,063 and 15,775 coho adults in 1994 and 1995 with 93% and 68% accountable in the Youngs Bay commercial harvest. Based on coded-wire-tag recoveries, less than 1% of the adults resulting from releases at Youngs Bay net pens strayed to hatcheries, while none were recovered on spawning ground surveys during 1991--95. The highest survival rates were observed for 1991 and 1992 brood overwinter coho released in early May. Time of release, not rearing strategy, appears to be the determining factor affecting survival in Youngs Bay.

  12. Distribution of salmon-habitat potential relative to landscape characteristics and implications for conservation.

    PubMed

    Burnett, Kelly M; Reeves, Gordon H; Miller, Daniel J; Clarke, Sharon; Vance-Borland, Ken; Christiansen, Kelly

    2007-01-01

    The geographic distribution of stream reaches with potential to support high-quality habitat for salmonids has bearing on the actual status of habitats and populations over broad spatial extents. As part of the Coastal Landscape Analysis and Modeling Study (CLAMS), we examined how salmon-habitat potential was distributed relative to current and future (+100 years) landscape characteristics in the Coastal Province of Oregon, USA. The intrinsic potential to provide high-quality rearing habitat was modeled for juvenile coho salmon (Oncorhynchus kisutch) and juvenile steelhead (O. mykiss) based on stream flow, valley constraint, and stream gradient. Land ownership, use, and cover were summarized for 100-m analysis buffers on either side of stream reaches with high intrinsic potential and in the overall area encompassing the buffers. Past management seems to have concentrated nonindustrial private ownership, agriculture, and developed uses adjacent to reaches with high intrinsic potential for coho salmon. Thus, of the area in coho salmon buffers, 45% is either nonforested or recently logged, but only 10% is in larger-diameter forests. For the area in steelhead buffers, 21% is either non-forested or recently logged while 20% is in larger-diameter forests. Older forests are most extensive on federal lands but are rare on private lands, highlighting the critical role for public lands in near-term salmon conservation. Agriculture and development are projected to remain focused near high-intrinsic-potential reaches for coho salmon, increasing the importance of effectively addressing nonpoint source pollution from these uses. Percentages of larger-diameter forests are expected to increase throughout the province, but the increase will be only half as much in coho salmon buffers as in steelhead buffers. Most of the increase is projected for public lands, where policies emphasize biodiversity protection. Results suggest that widespread recovery of coho salmon is unlikely unless

  13. Early marine life history of juvenile Pacific salmon in two regions of Puget Sound

    USGS Publications Warehouse

    Duffy, E.J.; Beauchamp, D.A.; Buckley, R.M.

    2005-01-01

    Puget Sound could differentially represent either a simple migration corridor or an important rearing environment during the potentially critical early marine residence period for different species of Pacific salmon. Recent declines in various stocks of Puget Sound salmon could reflect degraded rearing conditions or changes in temporal-spatial utilization patterns by juvenile salmon in Puget Sound, and these patterns could vary between habitats and regions of Puget Sound in response to different environmental conditions or hatchery practices. In April-September 2001 and 2002, we evaluated spatial and temporal differences in distribution and size structure among juvenile chum, pink, coho, and chinook salmon at delta and nearshore habitats in a northern and southern region of Puget Sound, Washington. Water was consistently warmer (8-18.8??C) and less saline (0.0-27.7) in the northern (N) than in the southern region (S: 9.5-14.6??C, 13.0-30.4). Salinities were lower and water temperatures more variable in delta sites than exposed nearshore marine sites. Peak densities of juvenile salmon coincided at delta and nearshore sites within sampling regions but differed between regions. Nearshore densities were highest during April-June with pink and chum salmon generally preceding chinook and coho salmon, and peak catch rates of most species occurred in May. A second, late pulse of chinook salmon also occurred during July at northern sites. Juvenile chinook salmon were predominantly of hatchery origin in the southern region (98%), and of mixed origin in the northern region (44% marked hatchery fish) during 2002. The lengths of chinook and chum salmon in nearshore regions increased steadily through time, whereas pink and coho salmon varied inconsistently. Mean sizes of juvenile salmon were slightly but consistently smaller at delta than nearshore sites and at northern versus southern sites. Hatchery chinook salmon were slightly larger than their unmarked counterparts. Extended

  14. Mid-Columbia Coho Reintroduction Feasibility Project : Final Environmental Assessment and Finding of No Significant Impact.

    SciTech Connect

    United States. Bonneville Power Administration; Confederated Tribes and Bands of the Yakama Nation; Washington State Department of Fish and Wildlife

    1999-04-01

    Bonneville Power Administration (BPA) is proposing to fund research for 2 to 3 years on the feasibility of reintroducing coho salmon into mid-Columbia River basin tributaries. The research would take place in the Methow and Wenatchee river basins in Chelan and Okanogan Counties, Washington. BPA has prepared an Environmental Assessment (EA) (DOE/EA-1282) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and BPA is issuing this Finding of No Significant Impact.

  15. Predictability of multispecies competitive interactions in three populations of Atlantic salmon Salmo salar.

    PubMed

    Houde, A L S; Wilson, C C; Neff, B D

    2015-04-01

    Juvenile Atlantic salmon Salmo salar from three allopatric populations (LaHave, Sebago and Saint-Jean) were placed into artificial streams with combinations of four non-native salmonids: brown trout Salmo trutta, rainbow trout Oncorhynchus mykiss, Chinook salmon Oncorhynchus tshawytscha and coho salmon Oncorhynchus kisutch. Non-additive effects, as evidenced by lower performance than predicted from weighted summed two-species competition trials, were detected for S. salar fork length (LF ) and mass, but not for survival, condition factor or riffle use. These data support emerging theory on niche overlap and species richness as factors that can lead to non-additive competition effects. PMID:25753912

  16. Basis of acoustic discrimination of Chinook salmon from other salmons by echolocating Orcinus orca.

    PubMed

    Au, Whitlow W L; Horne, John K; Jones, Christopher

    2010-10-01

    The "resident" ecotype of killer whales (Orcinus orca) in the waters of British Columbia and Washington State have a strong preference for Chinook salmon even in months when Chinook comprise less than about 10% of the salmon population. The foraging behavior of killer whales suggests that they depend on echolocation to detect and recognize their prey. In order to determine possible cues in echoes from salmon species, a series of backscatter measurements were made at the Applied Physics Laboratory (Univ. of Wash.) Facility on Lake Union, on three different salmon species using simulated killer whale echolocation signals. The fish were attached to a monofilament net panel and rotated while echoes were collected, digitized and stored on a laptop computer. Three transducer depths were used; same depth, 22° and 45° above the horizontal plane of the fish. Echoes were collected from five Chinook, three coho and one sockeye salmon. Radiograph images of all specimens were obtained to examine the swimbladder shape and orientation. The results show that echo structure from similar length but different species of salmon were different and probably recognizable by foraging killer whales. PMID:20968392

  17. Estuarine Ecology of Juvenile Salmon in Western Alaska: a Review

    USGS Publications Warehouse

    Zimmerman, Christian E.; Hillgruber, Nicola

    2009-01-01

    In the late 1990s and early 2000s, large declines in numbers of chum salmon Oncorhynchus keta and Chinook salmon O. tshawytscha returning to the Arctic-YukonKuskokwim (AYK) region (Alaska, USA) illuminated the need for an improved understanding of the variables controlling salmon abundance at all life stages. In addressing questions about salmon abundance, large gaps in our knowledge of basic salmon life history and the critical early marine life stage were revealed. In this paper, results from studies conducted on the estuarine ecology of juvenile salmon in western Alaska are summarized and compared, emphasizing timing and distribution during outmigration, environmental conditions, age and growth, feeding, and energy content of salmon smolts. In western Alaska, water temperature dramatically changes with season, ranging from 0°C after ice melt in late spring/early summer to 19°C in July. Juvenile salmon were found in AYK estuaries from early May until August or September, but to date no information is available on their residence duration or survival probability. Chum salmon were the most abundant juvenile salmon reported, ranging in percent catch from <0.1% to 4.7% and most research effort has focused on this species. Abundances of Chinook salmon, sockeye salmon O. nerka, and pink salmon O. gorbuscha varied among estuaries, while coho salmon O. kisutch juveniles were consistently rare, never amounting to more than 0.8% of the catch. Dietary composition of juvenile salmon was highly variable and a shift was commonly reported from epibenthic and neustonic prey in lower salinity water to pelagic prey in higher salinity water. Gaps in the knowledge of AYK salmon estuarine ecology are still evident. For example, data on outmigration patterns and residence timing and duration, rearing conditions and their effect on diet, growth, and survival are often completely lacking or available only for few selected years and sites. Filling gaps in knowledge concerning salmon

  18. Indirect effects of impoundment on migrating fish: temperature gradients in fish ladders slow dam passage by adult Chinook salmon and steelhead.

    PubMed

    Caudill, Christopher C; Keefer, Matthew L; Clabough, Tami S; Naughton, George P; Burke, Brian J; Peery, Christopher A

    2013-01-01

    Thermal layering in reservoirs upstream from hydroelectric dams can create temperature gradients in fishways used by upstream migrating adults. In the Snake River, Washington, federally-protected adult salmonids (Oncorhynchus spp.) often encounter relatively cool water in dam tailraces and lower ladder sections and warmer water in the upstream portions of ladders. Using radiotelemetry, we examined relationships between fish passage behavior and the temperature difference between the top and bottom of ladders (∆T) at four dams over four years. Some spring Chinook salmon (O. tshawytscha) experienced ∆T ≥ 0.5 °C. Many summer and fall Chinook salmon and summer steelhead (O. mykiss) experienced ∆T ≥ 1.0 °C, and some individuals encountered ΔT > 4.0°C. As ΔT increased, migrants were consistently more likely to move down fish ladders and exit into dam tailraces, resulting in upstream passage delays that ranged from hours to days. Fish body temperatures equilibrated to ladder temperatures and often exceeded 20°C, indicating potential negative physiological and fitness effects. Collectively, the results suggest that gradients in fishway water temperatures present a migration obstacle to many anadromous migrants. Unfavorable temperature gradients may be common at reservoir-fed fish passage facilities, especially those with seasonal thermal layering or stratification. Understanding and managing thermal heterogeneity at such sites may be important for ensuring efficient upstream passage and minimizing stress for migratory, temperature-sensitive species. PMID:24392020

  19. Indirect Effects of Impoundment on Migrating Fish: Temperature Gradients in Fish Ladders Slow Dam Passage by Adult Chinook Salmon and Steelhead

    PubMed Central

    Caudill, Christopher C.; Keefer, Matthew L.; Clabough, Tami S.; Naughton, George P.; Burke, Brian J.; Peery, Christopher A.

    2013-01-01

    Thermal layering in reservoirs upstream from hydroelectric dams can create temperature gradients in fishways used by upstream migrating adults. In the Snake River, Washington, federally-protected adult salmonids (Oncorhynchus spp.) often encounter relatively cool water in dam tailraces and lower ladder sections and warmer water in the upstream portions of ladders. Using radiotelemetry, we examined relationships between fish passage behavior and the temperature difference between the top and bottom of ladders (∆T) at four dams over four years. Some spring Chinook salmon (O. tshawytscha) experienced ∆T ≥ 0.5 °C. Many summer and fall Chinook salmon and summer steelhead (O. mykiss) experienced ∆T ≥ 1.0 °C, and some individuals encountered ΔT > 4.0°C. As ΔT increased, migrants were consistently more likely to move down fish ladders and exit into dam tailraces, resulting in upstream passage delays that ranged from hours to days. Fish body temperatures equilibrated to ladder temperatures and often exceeded 20°C, indicating potential negative physiological and fitness effects. Collectively, the results suggest that gradients in fishway water temperatures present a migration obstacle to many anadromous migrants. Unfavorable temperature gradients may be common at reservoir-fed fish passage facilities, especially those with seasonal thermal layering or stratification. Understanding and managing thermal heterogeneity at such sites may be important for ensuring efficient upstream passage and minimizing stress for migratory, temperature-sensitive species. PMID:24392020

  20. Evidence for competition at sea between Norton Sound chum salmon and Asian hatchery chum salmon

    USGS Publications Warehouse

    Ruggerone, Gregory T.; Agler, B.A.; Nielsen, Jennifer L.

    2012-01-01

    Increasing production of hatchery salmon over the past four decades has led to concerns about possible density-dependent effects on wild Pacific salmon populations in the North Pacific Ocean. The concern arises because salmon from distant regions overlap in the ocean, and wild salmon populations having low productivity may compete for food with abundant hatchery populations. We tested the hypothesis that adult length-at-age, age-at-maturation, productivity, and abundance of a Norton Sound, Alaska, chum salmon population were influenced by Asian hatchery chum salmon, which have become exceptionally abundant and surpassed the abundance of wild chum salmon in the North Pacific beginning in the early 1980s. We found that smaller adult length-at-age, delayed age-at-maturation, and reduced productivity and abundance of the Norton Sound salmon population were associated with greater production of Asian hatchery chum salmon since 1965. Modeling of the density-dependent relationship, while controlling for other influential variables, indicated that an increase in adult hatchery chum salmon abundance from 10 million to 80 million adult fish led to a 72% reduction in the abundance of the wild chum salmon population. These findings indicate that competition with hatchery chum salmon contributed to the low productivity and abundance of Norton Sound chum salmon, which includes several stocks that are classified as Stocks of Concern by the State of Alaska. This study provides new evidence indicating that large-scale hatchery production may influence body size, age-at-maturation, productivity and abundance of a distant wild salmon population.

  1. Immunization of pacific salmon: comparison of intraperitoneal injection and hyperosmotic infiltration of Vibrio anguillarum and Aeromonas salmonicida bacterins

    USGS Publications Warehouse

    Antipa, Ross; Amend, Donald F.

    1977-01-01

    Two methods of immunizing fish, intraperitoneal (i.p.) injection and hyperosmotic infiltration, were compared for control of vibriosis and furunculosis in pen-reared coho salmon (Oncorhynchus kisutch) and chinook salmon (O. tshawytscha). Both methods provided significant protection against vibriosis under field test conditions. In coho salmon, hyperosmotic infiltration provided the best protection and fastest rise in antibody titer of seven treatments tested. In chinook salmon, hyperosmotic infiltration of Vibrio anguillarum and Aeromonas salmonicida vaccines resulted in 83.3% survival in comparison with 28.7% survival in controls. Both i.p. injection and hyperosmotic infiltration of V. anguillarum and A. salmonicida bacterins resulted in production of serum antibodies specific for each respective pathogen. Vaccination with bivalent V. anguillarum–A.salmonicida vaccines produced antibodies to both pathogens, and provided protection against vibriosis. Growth rates of vaccinated coho salmon were not significantly different from controls.

  2. Sensitivity and specificity of histology for diagnoses of four common pathogens and detection of nontarget pathogens in adult Chinook salmon (Oncorhynchus tshawytscha) in fresh water.

    PubMed

    Kent, Michael L; Benda, Susan; St-Hilaire, Sophie; Schreck, Carl B

    2013-05-01

    Histology is often underutilized in aquatic animal disease screening and diagnostics. The agreement between histological classifications of infection and results using diagnostic testing from the American Fisheries Society's Blue Book was conducted with 4 common salmon pathogens: Aeromonas salmonicida, Renibacterium salmoninarum, Ceratomyxa shasta, and Nanophyetus salmincola. Adult Chinook salmon (Oncorhynchus tshawytscha) in Oregon were evaluated, and agreement between tests was calculated. Live and dead (both pre- and postspawning) salmon were collected from the Willamette River, Oregon, its tributaries, the Willamette Hatchery, and after holding in cool, pathogen-free water during maturation at Oregon State University. Sensitivity and specificity of histology compared to Blue Book methods for all fish, live fish only, and dead (pre- and postspawned combined) fish only were, respectively, as follows: A. salmonicida (n = 105): specificity 87.5%, 87.5%, 87.5% and sensitivity 38.6%, 14.8%, 60.0%; R. salmoninarum (n = 111): specificity 91.9%, 85.7%, 97.7% and sensitivity 16.0%, 7.1%, 27.2%; C. shasta (n = 136): specificity 56.0%, 63.3%, 28.6% and sensitivity 83.3%, 86.2%, 71.4%; N. salmincola (n = 228): specificity 68.2%, 66.7%, not possible to calculate for dead fish and sensitivity 83.5%, 80.5%, 87.3%. The specificity was good for bacterial pathogens. This was not the case for C. shasta, likely due to detection of presporogenic forms only by histology. Sensitivity of histology for bacterial pathogens was low with the exception of dead fish with A. salmonicida. Kappa analysis for agreement between Blue Book and histology methods was poor to moderate. However, histological observations revealed the presence of other pathogens that would not be detected by other methods. PMID:23536613

  3. Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.

    SciTech Connect

    Hillson, Todd D.

    2009-06-12

    Bonneville Dam and those spawning in Hamilton and Hardy creeks. Response to the federal ESA listing has been primarily through direct-recovery actions: reducing harvest, hatchery supplementation using local broodstock for populations at catastrophic risk, habitat restoration (including construction of spawning channels) and flow agreements to protect spawning and rearing areas. Both state and federal agencies have built controlled spawning areas. In 1998, the Washington Department of Fish and Wildlife (WDFW) began a chum salmon supplementation program using native stock on the Grays River. This program was expanded during 1999 - 2001 to include reintroduction into the Chinook River using eggs from the Grays River Supplementation Program. These eggs are incubated at the Grays River Hatchery, reared to release size at the Sea Resources Hatchery on the Chinook River, and the fry are released at the mouth of the Chinook River. Native steelhead, chum, and coho salmon are present in Duncan Creek, and are recognized as subpopulations of the Lower Gorge population, and are focal species in the Lower Columbia Fish Recovery Board (LCFRB) plan. Steelhead, chum and coho salmon that spawn in Duncan Creek are listed as Threatened under the ESA. Duncan Creek is classified by the LCFRB plan as a watershed for intensive monitoring (LCFRB 2004). This project was identified in the 2004 Federal Columbia River Power System (FCRPS) revised Biological Opinion (revised BiOp) to increase survival of chum salmon, 'BPA will continue to fund the program to re-introduce Columbia River chum salmon into Duncan Creek as long as NOAA Fisheries determines it to be an essential and effective contribution to reducing the risk of extinction for this ESU'. (USACE et al. 2004, page 85-86). The Governors Forum on Monitoring and Salmon Recovery and Watershed Health recommends one major population from each ESU have adult and juvenile monitoring. Duncan Creek chum salmon are identified in this plan to be intensively

  4. Use of electromyogram telemetry to assess swimming activity of adult spring Chinook salmon migrating past a Columbia River dam

    USGS Publications Warehouse

    Brown, R.S.; Geist, D.R.; Mesa, M.G.

    2006-01-01

    Electromyogram (EMG) radiotelemetry was used to estimate the swim speeds of spring Chinook salmon Oncorhynchus tshawytscha migrating upstream past a Columbia River dam. Electrodes from EMG transmitters were surgically implanted in the red muscle of fish captured at Bonneville Dam, and output from the tags was calibrated to defined swim speeds for each fish in a tunnel respirometer. The fish were then released below Bonneville Dam and radio-tracked as they migrated through the tailraces, fishways, and forebays of the dam. On average, swim speed was significantly higher when tagged salmon were moving through tailraces than when they were moving through other parts of the dam. Specifically, swim speeds for fish in tailraces (106.4 cm/s) were 23% higher than those of fish in fishways (84.9 cm/s) and 32% higher than those of fish in forebays (80.2 cm/s). Swim speeds were higher in fishways during the day than during the night, but there were no diel differences in swim speeds in tailraces and forebays. During dam passage, Chinook salmon spent the most time in tailraces, followed by fishways and forebays. ?? Copyright by the American Fisheries Society 2006.

  5. Competition between Asian pink salmon (Oncorhynchus gorbuscha) and Alaskan sockeye salmon (O. nerka) in the North Pacific Ocean

    USGS Publications Warehouse

    Ruggerone, G.T.; Zimmermann, M.; Myers, K.W.; Nielsen, J.L.; Rogers, D.E.

    2003-01-01

    The importance of interspecific competition as a mechanism regulating population abundance in offshore marine communities is largely unknown. We evaluated offshore competition between Asian pink salmon and Bristol Bay (Alaska) sockeye salmon, which intermingle in the North Pacific Ocean and Bering Sea, using the unique biennial abundance cycle of Asian pink salmon from 1955 to 2000. Sockeye salmon growth during the second and third growing seasons at sea, as determined by scale measurements, declined significantly in odd-numbered years, corresponding to years when Asian pink salmon are most abundant. Bristol Bay sockeye salmon do not interact with Asian pink salmon during their first summer and fall seasons and no difference in first year scale growth was detected. The interaction with odd-year pink salmon led to significantly smaller size at age of adult sockeye salmon, especially among younger female salmon. Examination of sockeye salmon smolt to adult survival rates during 1977-97 indicated that smolts entering the ocean during even-numbered years and interacting with abundant odd-year pink salmon during the following year experienced 26% (age-2 smolt) to 45% (age-1 smolt) lower survival compared with smolts migrating during odd-numbered years. Adult sockeye salmon returning to Bristol Bay from even-year smolt migrations were 22% less abundant (reduced by 5.9 million fish per year) compared with returns from odd-year migrations. The greatest reduction in adult returns occurred among adults spending 2 compared with 3 years at sea. Our new evidence for interspecific competition highlights the need for multispecies, international management of salmon production, including salmon released from hatcheries into the ocean.

  6. Abundance, Timing of Migration, and Egg-to-Smolt Survival of Juvenile Chum Salmon, Kwethluk River, Alaska, 2007 and 2008

    USGS Publications Warehouse

    Burril, Sean E.; Zimmerman, Christian E.; Finn, James E.; U.S. Geological Survey; Gillikin, Daniel; U.S. Fish and Wildlife Service

    2010-01-01

    To better understand and partition mortality among life stages of chum salmon (Oncorhynchus keta), we used inclined-plane traps to monitor the migration of juveniles in the Kwethluk River, Alaska in 2007 and 2008. The migration of juvenile chum salmon peaked in mid-May and catch rates were greatest when water levels were rising. Movement of chum salmon was diurnal with highest catch rates occurring during the hours of low light (that is, 22:00 to 10:00). Trap efficiency ranged from 0.37 to 4.04 percent (overall efficiency = 1.94 percent). Total abundance of juvenile chum salmon was estimated to be 2.0 million fish in 2007 and 2.9 million fish in 2008. On the basis of the estimate of chum salmon females passing the Kwethluk River weir and age-specific fecundity, we estimated the potential egg deposition (PED) upstream of the weir and trapping site. Egg-to-smolt survival, calculated by dividing the estimate of juvenile chum salmon emigrating past the weir site by the estimate of PED, was 4.6 percent in 2007 and 5.2 percent in 2008. In addition to chum salmon, Chinook salmon O. tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and pink salmon (O. gorbuscha), as well as ten other fish species, were captured in the traps. As with chum salmon, catch of these species increased during periods of increasing discharge and peaked during hours of low light. This study successfully determined the characteristics of juvenile salmon migrations and estimated egg-to-smolt survival for chum salmon. This is the first estimate of survival for any juvenile salmon in the Arctic-Yukon-Kuskokwim region of Alaska and demonstrates an approach that can help to partition mortality between freshwater and marine life stages, information critical to understanding the dynamics of salmon in this region.

  7. Flesh residue concentrations of organochlorine pesticides in farmed and wild salmon from British Columbia, Canada.

    PubMed

    Kelly, Barry C; Ikonomou, Michael G; Higgs, David A; Oakes, Janice; Dubetz, Cory

    2011-11-01

    The present study reports measured levels of organochlorine pesticides (OCPs) in commercial salmon feed (n = 8) and farmed Atlantic, coho, and chinook salmon (n = 110), as well as wild coho, chinook, chum, sockeye, and pink salmon (n = 91). Flesh residue concentrations (ng/g wet weight) of dichlorodiphenyltrichloroethanes (DDTs), hexachlorocyclohexanes (HCHs), chlordanes, chlorobenzenes (CBz) and cyclodiene pesticides (e.g., dieldrin, mirex) were 2 to 11 times higher (p < 0.05) in farmed salmon compared with wild salmon. Concentrations were positively correlated with flesh lipid levels. Farmed Atlantic salmon (12-15% lipid) typically exhibited the greatest OCP burdens compared with other salmon species. However, when expressed on a lipid weight basis, concentrations of OCPs (ng/g lipid weight) in wild salmon, in many cases, exceeded those levels in farmed salmon. Observed interspecies and site-specific variations of OCP concentrations in farmed and wild salmon may be attributed to divergent life history, prey/feed characteristics and composition, bioenergetics, or ambient environmental concentrations. Calculated biomagnification factors (BMF = C(F)/C(D), lipid wt) of OCPs in farmed salmon typically ranged between two and five. Biomagnification of chemicals such as DDTs, chlordanes, and mirex was anticipated, because those compounds tend to exhibit high dietary uptake and slow depuration rates in fish because of relatively high octanol-water partition coefficients (K(OW)s > 10⁵). Surprisingly, less hydrophobic pesticides such as hexachlorocyclohexanes and endosulfans (K(OW) s < 10⁵) consistently exhibited a high degree of biomagnification in farmed salmon species (BMFs > 5). This is contrary to previous laboratory and field observations demonstrating fish BMFs less than 1 for low K(OW) chemicals, because of efficient respiratory elimination of those compounds via gills. The results suggest that ambient seawater concentrations and

  8. Use of Electromyogram Telemetry to Assess Swimmng Activity of Adult Spring Chinook Salmon Migrating Past a Columbia River Dam

    SciTech Connect

    Brown, Richard S.; Geist, David R.; Mesa, Matthew G.

    2006-02-28

    Electromyogram (EMG) radiotelemetry was used to examine the amount of energy expended by spring Chinook salmon Oncorhynchus tshawytscha migrating upstream past a Columbia River dam. Electrodes from EMG transmitters were surgically implanted in the red muscle of fish captured at Bonneville Dam and output from the tags was calibrated to defined swim speeds for each fish in a tunnel respirometer. The fish were then released below Bonneville Dam and radio-tracked as they migrated through the tailraces, fishways, and forebays of the dam. On average, the rate of aerobic energy used by spring Chinook salmon was significantly higher when they were moving through tailraces (1.27 kcal•kg-1•h-1) than when they were moving through other parts of the dam. Specifically, the rate of aerobic energy use for fish in tailraces was 14% higher than that used by fish in fishways (1.11 kcal•kg-1•h-1) and 27% higher than the rate used by fish in forebays (1.00 kcal•kg-1•h-1). Most (80%) of the aerobic energy used by fish to pass this dam was expended in the tailrace (25.5 kcal/kg), while only 18% (5.6 kcal/kg) and 2% (0.6 kcal/kg) were used in the fishways and forebays.

  9. Effect of salinity changes on olfactory memory-related genes and hormones in adult chum salmon Oncorhynchus keta.

    PubMed

    Kim, Na Na; Choi, Young Jae; Lim, Sang-Gu; Jeong, Minhwan; Jin, Deuk-Hee; Choi, Cheol Young

    2015-09-01

    Studies of memory formation have recently concentrated on the possible role of N-methyl-d-aspartate receptors (NRs). We examined changes in the expression of three NRs (NR1, NR2B, and NR2C), olfactory receptor (OR), and adrenocorticotropic hormone (ACTH) in chum salmon Oncorhynchus keta using quantitative polymerase chain reaction (QPCR) during salinity change (seawater→50% seawater→freshwater). NRs were significantly detected in the diencephalon and telencephalon and OR was significantly detected in the olfactory epithelium. The expression of NRs, OR, and ACTH increased after the transition to freshwater. We also determined that treatment with MK-801, an antagonist of NRs, decreased NRs in telencephalon cells. In addition, a reduction in salinity was associated with increased levels of dopamine, ACTH, and cortisol (in vivo). Reductions in salinity evidently caused NRs and OR to increase the expression of cortisol and dopamine. We concluded that memory capacity and olfactory imprinting of salmon is related to the salinity of the environment during the migration to spawning sites. Furthermore, salinity affects the memory/imprinting and olfactory abilities, and cortisol and dopamine is also related with olfactory-related memories during migration. PMID:25933936

  10. Etiology of sockeye salmon "virus" disease

    USGS Publications Warehouse

    1959-01-01

    Violent epizootics among hatchery reared sockeye salmon fingerLings ( Oncorhynchus nerka) caused by a filterable agent have occurred. In 1954, one source of this infectious, filterable agent was found to be adult sockeye viscera used in the diet for the fingerlings. The results of observations on an epizootic in 1958 indicate that the infection may be transmitted to fingerlings from a water supply to which adult sockeye salmon have access.

  11. Research on Captive Broodstock Programs for Pacific Salmon, 2002-2003 Annual Report.

    SciTech Connect

    Berejikian, Barry A.

    2004-01-01

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. Current velocity in rearing vessels had little if any effect on reproductive behavior of captively reared steelhead. However, males and females reared in high velocity vessels participated a greater number of spawning events than siblings reared in low velocity tanks. Observations of nesting females and associated males in a natural stream (Hamma Hamma River) were consistent with those observed in a controlled spawning channel. DNA pedigree analyses did not reveal significant differences in the numbers of fry produced by steelhead reared in high and low velocity vessels. To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon are being exposed to known odorants at key developmental stages. Subsequently they will be tested for development of long-term memories of these odorants. In 2002-2003, the efficacy of EOG analysis for assessing imprinting was demonstrated and will be applied in these and other behavioral and molecular tools in the current work plan. Results of these experiments will be important to determine the critical periods for imprinting for the offspring of captively-reared fish destined for release into natal rivers or lakes. By early August, the oocytes of all of Rapid River Hatchery chinook salmon females returning from the ocean had advanced to the tertiary yolk globule stage; whereas, only some of the captively reared Lemhi River females sampled had advanced to this stage, and the degree of advancement was not dependent on rearing temperature. The mean spawning time of captive Lemhi River females was 3-4 weeks after that of the Rapid River fish

  12. Coastal coho salmon research in the West Fork Smith River: Patterns of coho salmon size and survival within a complex watershed

    EPA Science Inventory

    Effective habitat restoration planning requires the ability to anticipate fish population responses to altered habitats. The EPA has conducted network-scale research to document habitat-specific growth and survival of juvenile salmonids in a complex watershed. These findings ha...

  13. Salmon's Laws.

    ERIC Educational Resources Information Center

    Shannon, Thomas A.

    1994-01-01

    Presents Paul Salmon's old-fashioned, common-sense guidelines for success in practical school administration. The maxims advise on problem ownership; the value of selective neglect; the importance of empowerment, enthusiasm, and effective communication; and the need for positive reinforcement, cultivation of support, and good relations with media,…

  14. Ocean Carrying Capacity : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 6 of 11.

    SciTech Connect

    Lichatowich, Jim

    1993-06-01

    The northeast Pacific is comprised of four fishery production domains: The gulf of Alaska, a coastal downwelling zone, a coastal upwelling zone and a transition zone. Salmon from the Columbia River enter the sea in the upwelling zone. Marine survival of coho salmon in the Oregon Production Index area has been the subject of extensive study. Variability in marine survival of coho salmon appears to be determined in the first month at sea while the fish are still in local marine areas in the upwelling zone. There is stronger evidence that upwelling might influence vulnerability to predation. A broader ecosystem view which considers salmon as a member of a complex marine community offers additional insight and raises new questions regarding the marine mortality of salmon. The pelagic fish community in the upwelling zone has undergone dramatic change in the last 50 years. That change is consistent with the historical record, however, the system has not completed a full cycle of change (as it has in the past) since the stocks have been subjected to intense commercial and sport exploitation. Salmon seem to be responding to shifts in productivity in the coastal upwelling zone.

  15. First detection, isolation and molecular characterization of infectious salmon anaemia virus associated with clinical disease in farmed Atlantic salmon (Salmo salar) in Chile

    PubMed Central

    Godoy, Marcos G; Aedo, Alejandra; Kibenge, Molly JT; Groman, David B; Yason, Carmencita V; Grothusen, Horts; Lisperguer, Angelica; Calbucura, Marlene; Avendaño, Fernando; Imilán, Marcelo; Jarpa, Miguel; Kibenge, Frederick SB

    2008-01-01

    Background Infectious salmon anaemia (ISA) is a viral disease of marine-farmed Atlantic salmon (Salmo salar) caused by ISA virus (ISAV), which belongs to the genus Isavirus, family Orthomyxoviridae. The virus is considered to be carried by marine wild fish and for over 25 years has caused major disease outbreaks in marine-farmed Atlantic salmon in the Northern hemisphere. In the Southern hemisphere, ISAV was first detected in Chile in 1999 in marine-farmed Coho salmon (Oncorhynchus kisutch). In contrast to the classical presentation of ISA in Atlantic salmon, the presence of ISAV in Chile until now has only been associated with a clinical condition called Icterus Syndrome in Coho salmon and virus isolation has not always been possible. During the winter of 2007, unexplained mortalities were registered in market-size Atlantic salmon in a grow-out site located in Chiloé in Region X of Chile. We report here the diagnostic findings of the first significant clinical outbreak of ISA in marine-farmed Atlantic salmon in Chile and the first characterization of the ISAV isolated from the affected fish. Results In mid-June 2007, an Atlantic salmon marine farm site located in central Chiloé Island in Region X of Chile registered a sudden increase in mortality following recovery from an outbreak of Pisciricketsiosis, which rose to a cumulative mortality of 13.6% by harvest time. Based on the clinical signs and lesions in the affected fish, and laboratory tests performed on the fish tissues, a confirmatory diagnosis of ISA was made; the first time ISA in its classical presentation and for the first time affecting farmed Atlantic salmon in Chile. Rapid sequencing of the virus-specific RT-PCR products amplified from the fish tissues identified the virus to belong to the European genotype (Genotype I) of the highly polymorphic region (HPR) group HPR 7b, but with an 11-amino acid insert in the fusion glycoprotein, and ability to cause cytopathic effects (CPE) in CHSE-214 cell line

  16. AAVshRNA-Mediated Suppression of PTEN in Adult Rats in Combination with Salmon Fibrin Administration Enables Regenerative Growth of Corticospinal Axons and Enhances Recovery of Voluntary Motor Function after Cervical Spinal Cord Injury

    PubMed Central

    2014-01-01

    Conditional genetic deletion of phosphatase and tensin homolog (PTEN) in the sensorimotor cortex of neonatal mice enables regeneration of corticospinal tract (CST) axons after spinal cord injury (SCI). The present study addresses three questions: (1) whether PTEN knockdown in adult rats by nongenetic techniques enables CST regeneration, (2) whether interventions to enable CST regeneration enhance recovery of voluntary motor function, and (3) whether delivery of salmon fibrin into the injury site further enhances CST regeneration and motor recovery. Adult rats were trained in a staircase-reaching task and then received either intracortical injections of AAVshPTEN to delete PTEN or a control vector expressing shRNA for luciferase (AAVshLuc). Rats then received cervical dorsal hemisection injuries and salmon fibrin was injected into the injury site in half the rats, yielding four groups (AAVshPTEN, AAVshLuc, AAVshPTEN + fibrin, and AAVshLuc + fibrin). Forepaw function was assessed for 10 weeks after injury and CST axons were traced by injecting biotin-conjugated dextran amine into the sensorimotor cortex. Rats that received AAVshPTEN alone did not exhibit improved motor function, whereas rats that received AAVshPTEN and salmon fibrin had significantly higher forelimb-reaching scores. Tract tracing revealed that CST axons extended farther caudally in the group that received AAVshPTEN and salmon fibrin versus other groups. There were no significant differences in lesion size between the groups. Together, these data suggest that the combination of PTEN deletion and salmon fibrin injection into the lesion can significantly improve voluntary motor function after SCI by enabling regenerative growth of CST axons. PMID:25057197

  17. Physiological, energetic and behavioural correlates of successful fishway passage of adult sockeye salmon Oncorhynchus nerka in the Seton River, British Columbia.

    PubMed

    Pon, L B; Hinch, S G; Cooke, S J; Patterson, D A; Farrell, A P

    2009-04-01

    Electromyogram (EMG) radio telemetry was used in conjunction with physiological biopsy to relate prior physiological condition and subsequent swimming energetics and behaviours to passage success of 13 wild adult sockeye salmon Oncorhynchus nerka at a vertical-slot fishway on the Seton River, British Columbia. At the time of capture, plasma lactate, glucose and cortisol levels indicated that fish were not exhibiting unusually high levels of physiological stress. Very few differences existed between successful and unsuccessful fish in body size, initial plasma physiology and energy state and mean swim speed and energy use during passage. Generally, fish did not employ burst swimming during successful or failed attempts at passage, indicating that failure was probably not related to metabolic acidosis. Plasma Na(+) concentration was significantly lower in unsuccessful fish (P < 0.05), which is suggestive of a depressed ionic state or a possible stress component, although values in all fish were within an expected range for migrant adult O. nerka. Nevertheless, six of 13 fish failed to reascend the fishway and remained in the tailrace of the dam for more than a day on average before moving downstream and away from the dam. During this time, fish were observed actively seeking a means of passage, suggesting that there may have been other, undetermined causes of passage failure. PMID:20735634

  18. Preferred stream discharges for salmon spawning and rearing in Washington

    USGS Publications Warehouse

    Swift, C.H.

    1977-01-01

    Stream discharges preferred by salmon for spawning were determined from relationships between discharge and spawnable area at 84 study reaches on 28 streams in Washington. Preferred discharges for spawning were found statistically equivalent for chinook, pink, and chum salmon. Regression equations developed for estimating discharges preferred by these species for spawning at other stream sites had standard errors of estimate of 40 percent where a relationship with toe-of-bank channel width was used, and 55 percent where basin drainage area was used. Similarly, equations for estimating the preferred discharge for spawning by sockeye and coho salmon (also statistically equivalent) had standard errors of 48 percent using channel width and 61 percent using drainage area. In general, the discharges preferred for spawning by salmon ranged in magnitude from about 0.3 to 11 times the median monthly mean discharges for September and October and about 0.1 to 6 times the median monthly means for November and December--the four months when spawning is greatest. Stream discharges preferred by salmon for rearing were determined from relationships between discharge and wetted perimeter at the study reaches. Those discharges ranged from about 0.7 to 4 times the median monthly mean discharge for September, when low flows are usually most limiting on the rearing capacity of streams. Equations developed for estimating preferred rearing discharges at other stream sites had standard errors of 57 percent using channel width and 81 percent using drainage area. (Woodard-USGS).

  19. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program : Facility Operation and Maintenance Facilities, Annual Report 2003.

    SciTech Connect

    McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie

    2004-01-01

    Anadromous salmonid stocks have declined in both the Grande Ronde River Basin (Lower Snake River Compensation Plan (LSRCP) Status Review Symposium 1998) and in the entire Snake River Basin (Nehlsen et al. 1991), many to the point of extinction. The Grande Ronde River Basin historically supported large populations of fall and spring chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho (O. kisutch) salmon and steelhead trout (O. mykiss) (Nehlsen et al. 1991). The decline of chinook salmon and steelhead populations and extirpation of coho and sockeye salmon in the Grande Ronde River Basin was, in part, a result of construction and operation of hydroelectric facilities, over fishing, and loss and degradation of critical spawning and rearing habitat in the Columbia and Snake River basins (Nehlsen et al. 1991). Hatcheries were built in Oregon, Washington and Idaho under the Lower Snake River Compensation Plan (LSRCP) to compensate for losses of anadromous salmonids due to the construction and operation of the lower four Snake River dams. Lookingglass Hatchery (LGH) on Lookingglass Creek, a tributary of the Grande Ronde River, was completed under LSRCP in 1982 and has served as the main incubation and rearing site for chinook salmon programs for Grande Ronde and Imnaha rivers in Oregon. Despite these hatchery programs, natural spring chinook populations continued to decline resulting in the National Marine Fisheries Service (NMFS) listing Snake River spring/summer chinook salmon as ''threatened'' under the federal Endangered Species Act (1973) on 22 April 1992. Continuing poor escapement levels and declining population trends indicated that Grande Ronde River basin spring chinook salmon were in imminent danger of extinction. These continuing trends led fisheries co-managers in the basin to initiate the Grande Ronde Endemic Spring Chinook Salmon Supplementation Program (GRESCSSP) in order to prevent extinction and preserve options for use of endemic fish stocks

  20. Assessment of harbor seal predation on adult salmonids in a Pacific Northwest estuary.

    PubMed

    Wright, Bryan E; Riemer, Susan D; Brown, Robin F; Ougzin, Aicha M; Bucklin, Katherine A

    2007-03-01

    The populations of many native species have increased or expanded in distribution in recent decades, sometimes with negative consequences to sympatric native species that are rarer or less adaptable to anthropogenic changes to the environment. An example of this phenomenon from the Pacific Northwest is predation by locally abundant pinnipeds (seals and sea lions) on threatened, endangered, or otherwise depleted salmonid (Oncorhynchus spp.) populations. We used survey sampling methodology, acoustic telemetry, and molecular genetics to quantify the amount of harbor seal (Phoca vitulina) predation on a depressed run of coho salmon (O. kisutch) and to determine whether some seals consumed a disproportionately higher number of salmonids than others. Based on a probability sample totaling 759.5 h of observation, we estimated that seals consumed 1161 adult salmonids (95% CI = 503-1818 salmonids) during daylight hours over an 18.9-km estuarine study area in Oregon during an 84-d period in fall 2002. Simultaneous tracking of 56 seals via an acoustic telemetry array indicated that a small proportion of marked seals (12.5%) exhibited behavior that was consistent with specialization on salmonids. These seals spent the majority of their time in the riverine portion of the study area and did so disproportionately more at night than day. Genetic analysis of 116 salmonid structures recovered from 11 seal fecal samples suggested that coho salmon accounted for approximately one-half of total salmonid consumption. Though subject to considerable uncertainty, the combined results lead us to infer that seals consumed 21% (range = 3-63%) of the estimated prespawning population of coho salmon. We speculate that the majority of the predation occurred upriver, at night, and was done by a relatively small proportion of the local seal population. Understanding the extent and nature of pinniped predation can provide important inputs into risk assessments and other modeling efforts designed to

  1. Evaluation of Juvenile Fish Bypass and Adult Fish Facilities at Water Diversions in the Umatilla River; 1992 Annual Report.

    SciTech Connect

    Knapp, Suzanne M.

    1993-03-01

    We report on our progress from October 1991 through September 1992 in evaluating juvenile fish bypass facilities at Three Mile Falls and Westland dams on the Umatilla River. We also report on our progress from October 1991 through June 1992 in evaluating adult fish passage in the lower Umatilla River and adult fish passage facilities at Three Mile Falls Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW) and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). These are the study objectives addressed by ODFW and CTUIR: (1) Report A (ODFW): To evaluate the juvenile fish bypass facility in the West Extension Irrigation District Canal at Three Mile Falls Dam and document juvenile salmonid passage through the juvenile fish bypass facility and east-bank adult fish ladder. To measure velocity and develop trap designs at Westland Dam. (2) Report B (CTUIR): To examine the passage of adult salmonids at Three Mile Falls Dam. The study is part of a program to rehabilitate anadromous fish stocks in the Umatilla River Basin, including restoration of coho salmon (Oncorhynchus kisutch) and chinook salmon (Oncorhynchus tshawytscha), as well as enhancement of summer steelhead (Oncorhynchus mykiss).

  2. Composition and Relative Abundance of Fish Species in the Lower White Salmon River, Washington, Prior to the Removal of Condit Dam

    USGS Publications Warehouse

    Allen, M. Brady; Connolly, Patrick J.

    2011-01-01

    Information about the composition and relative abundance of fish species was collected by a rotary screw trap and backpack electrofishing in the lower White Salmon River, Washington. The information was collected downstream of Condit Dam, which is at river kilometer (rkm) 5.2, and is proposed for removal in October 2011. A rotary screw trap was installed in the White Salmon River at rkm 1.5 and operated from March through June during 2006-09. All captured fish were identified to species and enumerated. Daily subsets of fish were weighed, measured, and fin clipped for a genetic analysis by the U.S. Fish and Wildlife Service. *Fall Chinook salmon (Oncorhynchus tshawytscha) were captured in the highest numbers (n=18, 640), and were composed of two stocks: tule and upriver bright. Almost all captured fall Chinook salmon were age-0, with only 16 (0.09 percent) being age-1 or older. *Tule fall Chinook salmon, the native stock, generally out-migrated from mid-March through early April. The tule stock was the more abundant fall Chinook salmon subspecies, comprising 85 percent of those captured in the trap. *Upriver bright fall Chinook salmon comprised 15 percent of the Chinook salmon catch and generally out-migrated from late May to early June. *Coho salmon (O. kisutch) and steelhead trout (O. mykiss) were captured by the rotary screw trap in all years. Coho salmon were caught in low numbers (n=661) and 69 percent were age-0 fish. Steelhead were slightly more abundant (n=679) than coho salmon and 84 percent were age-1 or older fish. Trap efficiency estimates varied widely (range, 0-10 percent) by species, fish size, and time of year. However, if we use only the estimates from efficiency tests where more than 300 wild age-0 Chinook salmon were released, there was a mean trapping efficiency of 1.4 percent (n=4, median, 1.3 percent, range, 0.3-2.4 percent) during the tule out-migration period, and a mean trapping efficiency of 0.8 percent (n=2, range, 0.3-1.2 percent) during

  3. Testing the synergistic effects of GnRH and testosterone on the reproductive physiology of pre-adult pink salmon Oncorhynchus gorbuscha.

    PubMed

    Crossin, G T; Hinch, S G; Cooke, S J; Patterson, D A; Lotto, A G; Van Der Kraak, G; Zohar, Y; Klenke, U; Farrell, A P

    2010-01-01

    To test the hypothesis that the hypothalmic gonadotropin-releasing hormone (GnRH) and testosterone (T) co-treatment stimulates both the hypothalmo-pituitary-gonadal (HPG) and hypothalmo-pituitary-interrenal axes, the reproductive and osmoregulatory responses of pre-adult pink salmon Oncorhynchus gorbuscha were compared after GnRH and T administration either alone or in combination. Relative to controls, neither GnRH nor T treatment resulted in significantly greater ovarian or testicular growth, but co-treatment significantly increased ovarian growth after 5 months. Interestingly, the stimulation was undetectable after 3 months. However, once daily photoperiod began shortening after the summer solstice, c. 2 months before the natural spawning date, GnRH+T-treated females were stimulated to produce larger ovaries. Final fish body length and the size of individual eggs did not differ among treatment groups. GnRH+T eggs, however, showed signs of advanced vitellogenesis relative to GnRH-treated and control eggs, whereas T-treated eggs became atretic. Testis size increased significantly from initial values and most males were spermiating, but this growth and development were independent of hormone treatments. Final plasma ion, metabolite and cortisol concentrations did not differ among treatment groups. It is concluded that GnRH+T co-treatment was effective in stimulating female but not male maturation. GnRH and T treatment, however, presumably had little effect on the hypothalmo-pituitary-interrenal axis as observed by ionoregulatory status. PMID:20738702

  4. Radio-Tracking Studies of Adult Chinook Salmon and Steelhead to Determine the Effect of ''Zero'' River Flow During Water Storage at Little Goose Dam on the Lower Snake River, Final Report of Research.

    SciTech Connect

    Liscom, Kenneth

    1985-09-01

    Allowable instantaneous minimum river flows are established in the Columbia and Snake Rivers to ensure safe passage of anadromous fish during their migration to the spawning grounds. However, water storage during periods of low power demands (at night and on weekends) would be beneficial to the power producers. This storage procedure is called ''zero'' river flow and is now permitted on a limited basis when there are few if any actively migrating anadromous fish present in the river system. Requests were made to extend ''zero'' river flow into periods when anadromous fish were actively migrating and a study was initiated. Radio-tracking studies were conducted on the Snake River between Lower Monumental and Little Goose Dams to determine the effect of ''zero'' river flow on the migration of adult chinook salmon, Oncorhynchus tshawytscha, and steelhead, Salmo gairdneri. From July through September, 1981, a total of 258 steelhead and 32 chinook salmon were radio-tagged. The rate of migration was used to determine differences between test and control fish and a gamma distribution model was used to describe the migration rate for radio-tagged fish. Estimates of the parameters of the model were used to statistically compare ''zero'' flow and normal river flow conditions for the radio-tagged fish. The results show that the ''zero'' flow condition delays the migration of adult chinook salmon and steelhead; therefore, extended periods of ''zero'' flow to store water are not recommended when fish are actively migrating in the river system. 16 refs., 5 figs., 9 tabs.

  5. Do beaver dams reduce habitat connectivity and salmon productivity in expansive river floodplains?

    PubMed Central

    Kuzishchin, Kirill V.; Stanford, Jack A.

    2016-01-01

    Beaver have expanded in their native habitats throughout the northern hemisphere in recent decades following reductions in trapping and reintroduction efforts. Beaver have the potential to strongly influence salmon populations in the side channels of large alluvial rivers by building dams that create pond complexes. Pond habitat may improve salmon productivity or the presence of dams may reduce productivity if dams limit habitat connectivity and inhibit fish passage. Our intent in this paper is to contrast the habitat use and production of juvenile salmon on expansive floodplains of two geomorphically similar salmon rivers: the Kol River in Kamchatka, Russia (no beavers) and the Kwethluk River in Alaska (abundant beavers), and thereby provide a case study on how beavers may influence salmonids in large floodplain rivers. We examined important rearing habitats in each floodplain, including springbrooks, beaver ponds, beaver-influenced springbrooks, and shallow shorelines of the river channel. Juvenile coho salmon dominated fish assemblages in all habitats in both rivers but other species were present. Salmon density was similar in all habitat types in the Kol, but in the Kwethluk coho and Chinook densities were 3–12× lower in mid- and late-successional beaver ponds than in springbrook and main channel habitats. In the Kol, coho condition (length: weight ratios) was similar among habitats, but Chinook condition was highest in orthofluvial springbrooks. In the Kwethluk, Chinook condition was similar among habitats, but coho condition was lowest in main channel versus other habitats (0.89 vs. 0.99–1.10). Densities of juvenile salmon were extremely low in beaver ponds located behind numerous dams in the orthofluvial zone of the Kwethluk River floodplain, whereas juvenile salmon were abundant in habitats throughout the entire floodplain in the Kol River. If beavers were not present on the Kwethluk, floodplain habitats would be fully interconnected and theoretically

  6. Changing central Pacific El Niños reduce stability of North American salmon survival rates

    PubMed Central

    Kilduff, D. Patrick; Di Lorenzo, Emanuele; Botsford, Louis W.; Teo, Steven L. H.

    2015-01-01

    Pacific salmon are a dominant component of the northeast Pacific ecosystem. Their status is of concern because salmon abundance is highly variable—including protected stocks, a recently closed fishery, and actively managed fisheries that provide substantial ecosystem services. Variable ocean conditions, such as the Pacific Decadal Oscillation (PDO), have influenced these fisheries, while diminished diversity of freshwater habitats have increased variability via the portfolio effect. We address the question of how recent changes in ocean conditions will affect populations of two salmon species. Since the 1980s, El Niño Southern Oscillation (ENSO) events have been more frequently associated with central tropical Pacific warming (CPW) rather than the canonical eastern Pacific warming ENSO (EPW). CPW is linked to the North Pacific Gyre Oscillation (NPGO), whereas EPW is linked to the PDO, different indicators of northeast Pacific Ocean ecosystem productivity. Here we show that both coho and Chinook salmon survival rates along western North America indicate that the NPGO, rather than the PDO, explains salmon survival since the 1980s. The observed increase in NPGO variance in recent decades was accompanied by an increase in coherence of local survival rates of these two species, increasing salmon variability via the portfolio effect. Such increases in coherence among salmon stocks are usually attributed to controllable freshwater influences such as hatcheries and habitat degradation, but the unknown mechanism underlying the ocean climate effect identified here is not directly subject to management actions. PMID:26240365

  7. Changing central Pacific El Niños reduce stability of North American salmon survival rates.

    PubMed

    Kilduff, D Patrick; Di Lorenzo, Emanuele; Botsford, Louis W; Teo, Steven L H

    2015-09-01

    Pacific salmon are a dominant component of the northeast Pacific ecosystem. Their status is of concern because salmon abundance is highly variable--including protected stocks, a recently closed fishery, and actively managed fisheries that provide substantial ecosystem services. Variable ocean conditions, such as the Pacific Decadal Oscillation (PDO), have influenced these fisheries, while diminished diversity of freshwater habitats have increased variability via the portfolio effect. We address the question of how recent changes in ocean conditions will affect populations of two salmon species. Since the 1980s, El Niño Southern Oscillation (ENSO) events have been more frequently associated with central tropical Pacific warming (CPW) rather than the canonical eastern Pacific warming ENSO (EPW). CPW is linked to the North Pacific Gyre Oscillation (NPGO), whereas EPW is linked to the PDO, different indicators of northeast Pacific Ocean ecosystem productivity. Here we show that both coho and Chinook salmon survival rates along western North America indicate that the NPGO, rather than the PDO, explains salmon survival since the 1980s. The observed increase in NPGO variance in recent decades was accompanied by an increase in coherence of local survival rates of these two species, increasing salmon variability via the portfolio effect. Such increases in coherence among salmon stocks are usually attributed to controllable freshwater influences such as hatcheries and habitat degradation, but the unknown mechanism underlying the ocean climate effect identified here is not directly subject to management actions. PMID:26240365

  8. Evaluation of energy expenditure in adult spring Chinook salmon migrating upstream in the Columbia River Basin: an assessment based on sequential proximate analysis

    USGS Publications Warehouse

    Mesa, M.G.; Magie, C.D.

    2006-01-01

    The upstream migration of adult anadromous salmonids in the Columbia River Basin (CRB) has been dramatically altered and fish may be experiencing energetically costly delays at dams. To explore this notion, we estimated the energetic costs of migration and reproduction of Yakima River-bound spring Chinook salmon Oncorhynchus tshawytscha using a sequential analysis of their proximate composition (i.e., percent water, fat, protein, and ash). Tissues (muscle, viscera, and gonad) were sampled from fish near the start of their migration (Bonneville Dam), at a mid point (Roza Dam, 510 km upstream from Bonneville Dam) and from fresh carcasses on the spawning grounds (about 100 km above Roza Dam). At Bonneville Dam, the energy reserves of these fish were remarkably high, primarily due to the high percentage of fat in the muscle (18-20%; energy content over 11 kJ g-1). The median travel time for fish from Bonneville to Roza Dam was 27 d and ranged from 18 to 42 d. Fish lost from 6 to 17% of their energy density in muscle, depending on travel time. On average, fish taking a relatively long time for migration between dams used from 5 to 8% more energy from the muscle than faster fish. From the time they passed Bonneville Dam to death, these fish, depending on gender, used 95-99% of their muscle and 73-86% of their viscera lipid stores. Also, both sexes used about 32% of their muscular and very little of their visceral protein stores. However, we were unable to relate energy use and reproductive success to migration history. Our results suggest a possible influence of the CRB hydroelectric system on adult salmonid energetics.

  9. 2,3,7,8-TCDD toxic equivalents in Great Lakes salmon derived using mammalian, bird, and fish cell bioassays

    SciTech Connect

    Heuvel, M.R. van den; Clemons, J.H.; Bols, N.C.; Dixon, D.G.; Kennedy, S.W.; Metcalfe, T.L.; Smith, I.R.

    1994-12-31

    Chinook salmon from lakes Ontario and Huron, and Coho salmon from lakes Ontario and Erie were captured during their fall spawning migration. Subsamples of extracted pooled muscle, liver and egg tissue were used to measure congener specific PCBs, chlorinated dioxins and furans as well as bioassay derived 2,3,7,8-TCDD toxic equivalent concentration (TEC). The cell culture bioassays used to measure TECs were rat hepatoma (H411E) and rainbow trout hepatocyte (RTL-W1) continuous cell lines as well as chicken embryo hepatocyte primary culture (CEH). Although excellent correlations were found between all 3 cell culture bioassays, CEH was found to be 10 times and 30 times more sensitive than H411E and RTL-W1 respectively. Lake Ontario TECs were found to be higher than either Lake Huron or Lake Erie samples for both species of Salmon, and Chinook salmon was elevated over Coho Salmon. Chemical data indicates that the more toxic coplanar PCBs are selectively concentrated in eggs as compared to liver and muscle. Bioassay derived TECs are discussed with regard to chemical contribution of the PCB and dioxin/furan congeners based on an additive model.

  10. Development and validation of protocols to differentiate PCB patterns between farmed and wild salmon.

    PubMed

    Yunker, Mark B; Ikonomou, Michael G; Sather, Paula J; Friesen, Erin N; Higgs, Dave A; Dubetz, Cory

    2011-03-15

    Polychlorinated biphenyl (PCB) congener patterns based on full congener PCB analyses of three farmed and five wild species of salmon from coastal British Columbia, Canada are compared using principal components analysis (PCA) and the best fit linear decomposition of the observed PCB composition in terms of Aroclor 1242, 1254, and 1260 end-members. The two complementary analysis methods are used to investigate congener composition pattern differences between species, trophic levels, feeding preferences, and farmed or wild feeding regimes, with the intent of better understanding PCB processes in both salmon and salmon consumers. PCA supports classification of PCB congeners into nine groups based on a) structure activity groups (SAG) related to the bioaccumulation potential in fish-eating mammals, b) Cl number, and c) the numbers of vicinal meta- and para-H. All three factors are needed to interpret congener distributions since SAGs by themselves do not fully explain PCB distributions. Farmed salmon exhibit very similar congener patterns that overlap the PCA and Aroclor composition of their food, while wild salmon separate into two distinct groups, with chinook and "coastal" coho having higher proportions of the higher chlorinated, Aroclor 1260 type, nonmetabolizable congeners, and chum, pink, sockeye, and "remote" coho having higher proportions of the lower chlorinated, more volatile and metabolizable Aroclor 1242 type, congeners. Wild chinook have the highest PCB and toxic equivalent (TEQ) concentrations, and the highest proportions of A1254 A1260, and PCB congeners in the most refractory SAG. Because both "coastal" and "remote" coho groups are likely to be consuming prey of similar size and trophic level, the PCB delivery mechanism (e.g., atmosphere vs runoff) apparently has more influence on the salmon PCB profile than biotransformation, suggesting that the wild chinook PCB profile is determined by feeding preference. Overall, wild salmon distributions primarily

  11. Research on Captive Broodstock Programs for Pacific Salmon; Assessment of Captive Broodstock Technologies, Annual Report 2002-2003.

    SciTech Connect

    Berejikian, Barry

    2004-01-01

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. Current velocity in rearing vessels had little if any effect on reproductive behavior of captively reared steelhead. However, males and females reared in high velocity vessels participated a greater number of spawning events than siblings reared in low velocity tanks. Observations of nesting females and associated males in a natural stream (Hamma Hamma River) were consistent with those observed in a controlled spawning channel. DNA pedigree analyses did not reveal significant differences in the numbers of fry produced by steelhead reared in high and low velocity vessels. To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon are being exposed to known odorants at key developmental stages. Subsequently they will be tested for development of long-term memories of these odorants. In 2002-2003, the efficacy of EOG analysis for assessing imprinting was demonstrated and will be applied in these and other behavioral and molecular tools in the current work plan. Results of these experiments will be important to determine the critical periods for imprinting for the offspring of captively-reared fish destined for release into natal rivers or lakes. By early August, the oocytes of all of Rapid River Hatchery chinook salmon females returning from the ocean had advanced to the tertiary yolk globule stage; whereas, only some of the captively reared Lemhi River females sampled had advanced to this stage, and the degree of advancement was not dependent on rearing temperature. The mean spawning time of captive Lemhi River females was 3-4 weeks after that of the Rapid River fish

  12. ELISA-Based Segregation of Adult Spring Chinook Salmon for Control of Bacterial Kidney Disease, Annual Report FY 1989.

    SciTech Connect

    Kaattari, Stephen L.; Winton, James R.

    1989-12-01

    Bacterial kidney disease (BKD), caused by Renibacterium salmoninarum, is a serious disease of salmonid fish worldwide. The disease has a major impact on spring chinook salmon populations in the Columbia River system. There is strong evidence that R. safmoninarum can be transmitted from parent to progeny, and therefore culling of gametes from infected parents should obviate this mode of transmission. This report presents the results from the first year of our four year study to investigate segregation of broodstock as a tool for controlling BKD. The segregations will use Enzyme-Linked Immunosorbent Assays (ELISAs) as detection systems to identify, in tissues of infected fish, proteins produced by R. salmoninarum. A first step in the development of the described detection systems was the optimization of the production of important antigenic proteins from R. salmoninarum. Different culture media were qualitatively and quantitatively evaluated for their ability to support production of cellular and soluble proteins. The major factor affecting antigen quality was the presence and absence of calf serum. Media components and R. salmoninarum growth products could not be separated during harvest of proteins from the cultures containing serum. This caused problems with the quantitation of actual bacterial proteins in the preparation. Thus media without serum is currently employed. Two independent ELISA techniques for the identification of infected parents were examined. One technique is based on polyclonal antisera produced in rabbits and the second is based on mouse monoclonal antibodies (Mabs). To develop the latter system, several Mabs against a major R. salmoninarum antigenic protein were produced. These Mabs were used for the detection of R. salmoninarum antigens in infected fish and also to characterize proteins produced by the bacterium. Both ELISAs were deemed suitable for the segregation of parents into the high and low BKD groups required for this study. An

  13. Evaluation of Fall Chinook and Chum Salmon Spawning below Bonneville Dam; 2004-2005 Annual Report.

    SciTech Connect

    van der Naald, Wayne; Duff, Cameron; Friesen, Thomas A.

    2006-02-01

    Pacific salmon Oncorhynchus spp. populations have declined over the last century due to a variety of human impacts. Chum salmon O. keta populations in the Columbia River have remained severely depressed for the past several decades, while upriver bright (URB) fall Chinook salmon O. tschawytscha populations have maintained relatively healthy levels. For the past seven years we have collected data on adult spawning and juvenile emergence and outmigration of URB fall Chinook and chum salmon populations in the Ives and Pierce islands complex below Bonneville Dam. In 2004, we estimated 1,733 fall Chinook salmon and 336 chum salmon spawned in our study area. Fall Chinook salmon spawning peaked 19 November with 337 redds and chum salmon spawning peaked 3 December with 148 redds. Biological characteristics continue to suggest chum salmon in our study area are similar to nearby stocks in Hardy and Hamilton creeks, and Chinook salmon we observe are similar to upriver bright stocks. Temperature data indicated that 2004 brood URB fall Chinook salmon emergence began on 6 January and ended 27 May 2005, with peak emergence occurring 12 March. Chum salmon emergence began 4 February and continued through 2 May 2005, with peak emergence occurring on 21 March. Between 13 January and 28 June, we sampled 28,984 juvenile Chinook salmon and 1,909 juvenile chum salmon. We also released 32,642 fin-marked and coded-wire tagged juvenile fall Chinook salmon to assess survival. The peak catch of juvenile fall Chinook salmon occurred on 18 April. Our results suggested that the majority of fall Chinook salmon outmigrate during late May and early June, at 70-80 mm fork length (FL). The peak catch of juvenile chum salmon occurred 25 March. Juvenile chum salmon appeared to outmigrate at 40-55 mm FL. Outmigration of chum salmon peaked in March but extended into April and May.

  14. A critical size and period hypothesis to explain natural regulation of salmon abundance and the linkage to climate and climate change

    NASA Astrophysics Data System (ADS)

    Beamish, R. J.; Mahnken, Conrad

    We hypothesise that salmon year class strength is determined in two stages during the first year in the ocean. There is an early natural mortality that is mostly related to predation, which is followed by a physiologically-based mortality. Juvenile salmon that fail to reach a critical size by the end of their first marine summer do not survive the following winter. In this study we describe our initial tests of this critical size and critical period hypothesis using data from ocean surveys of juvenile salmon and from experimental feeding studies on coho. Conservative swept volume abundance estimates for juvenile coho, and possibly chinook, indicate that there is high mortality in fall and winter during their first year in the sea. Studies of otolith weight show that the length and otolith-weight relationship for young coho changes in the early fall of their first ocean year. Studies of growth and associated hormone levels in feeding studies show that slow growing juvenile coho are stunted and deficient in an insulin-like growth factor-I (IGF-I). Juvenile coho sampled in September had low IGF-I values, indicative of poor growth. The results of these studies provide evidence for the general hypothesis that growth-related mortality occurs late in the first marine year and may be important in determining the strength of the year class (brood year). The link between total mortality and climate could be operating via the availability of nutrients regulating the food supply and hence competition for food (i.e. bottom-up regulation).

  15. Airborne lidar imaging of salmon.

    PubMed

    Churnside, James H; Wilson, James J

    2004-02-20

    Lidar images of adult salmon are presented. The lidar system is built around a pulsed green laser and a gated intensified CCD camera. The camera gating is timed to collect light scattered from the turbid water below the fish to produce shadows in the images. Image processing increases the estimated contrast-to-noise ratio from 3.4 in the original image to 16.4 by means of a matched filter. PMID:15008549

  16. Patterns of coho salmon size and survival within a stream network

    EPA Science Inventory

    Effective habitat restoration planning requires correctly anticipating demographic responses to altered habitats. Network-scale investigations of habitat-specific growth and survival of juvenile salmonids have provided critical insights that can now better inform and help priori...

  17. Isolation of a reovirus from coho salmon (Oncorhynchus kisutch) in Oregon, USA

    USGS Publications Warehouse

    Winton, J.R.; Arakawa, C.N.; Lannan, C.N.; Fryer, J.L.

    1989-01-01

    Reoviruses isolated from aquatic animals share certain common characteristics: (1) a typical reovirus-like morphology which shows an icosahedral particle with a double capsid that is approximately 75 nm in diameter; (2) a genome with eleven segments of double-stranded RNA (dsRNA) distributed as three large, three medium and five small segments with a total molecular weight of approximately 15 x 106; (3) a virion composed of five major and several minor structural proteins that range in molecular weight from 32,000 to 137,000; and (4) form plaque-like syncytia in monolayer cultures of fish cells. Intact virus particles have buoyant densities in CsCl of 1.34 to 1.36 g/ml. The viruses have been isolated from fish and shellfish collected in both the marine and freshwater environments and will replicate in several fish cell lines (Plumb et al., 1979; Meyers and Hirai, 1980; Winton et al., 1981; Nagabayashi and Mori, 1983; Hedrick et al., 1984; Chen and Jiang, 1984). The original four aquatic reovirus isolates have been compared by Winton et al., 1987.

  18. MODELING THE EFFECT OF STREAM NETWORK CHARACTERISTICS AND JUVENILE MOVEMENT ON COHO SALMON

    EPA Science Inventory

    Simulation modeling can be a valuable tool for improving our scientific understanding of the mechanisms that affect fish abundance and sustainability. Spatially explicit models, in particular, can be used to study interactions between fish biology and spatiotemporal habitat patt...

  19. JUVENILE COHO SALMON GROWTH AND SURVIVAL ACROSS STREAM NETWORK SEASONAL HABITATS

    EPA Science Inventory

    Understanding watershed-scale variation in juvenile salmonid survival and growth can provide insights into factors influencing demographics and can help target restoration and mitigation efforts for imperiled fish populations. We assessed growth, movement, and apparent overwinte...

  20. Calcitonin Salmon Injection

    MedlinePlus

    Calcitonin salmon injection is used to treat osteoporosis in postmenopausal women. Osteoporosis is a disease that causes bones to weaken and break more easily. Calcitonin salmon injection is also used to treat Paget's disease ...

  1. Pyruvate kinases of salmon: purification and comparison with the isozymes from birds and mammals.

    PubMed

    Guderley, H; Cardenas, J M

    1980-02-01

    Pyruvate kinase occurs as two major forms in coho salmon; the type M isozyme occurs primarily in muscle and heart, but type K has a more generalized tissue distribution, in parallel with the type K isozyme in other vertebrate systems. In order to assess the evolutionary relationships among the fish, avian, and mammalian isozymes of pyruvate kinase, we have purified the two isozymes from fish, have examined some of their physical properties, and have studied their immunological relationships to the avian and mammalian isozymes. Salmon type K is at least partially inactivated by antibody to bivine type L pyruvate kinase as well as by antibodies produced against chicken, bovine, and salmon type M isozymes. Salmon type M pyruvate kinase, on the other hand, is not significantly corss-reactive with the bovine type L isozyme, but is at least partially inactivated by antibodies produced against bovine or chicken type M isozymes. Mammalian type L pyruvate kinase is immunologically distinct from either mammalian type K or type M, but salmon type K has some structural features in common with all three mammalian isozymes. Thus, salmon fish type K pyruvate kinase could be similar to a primordial form that was antecedent to the three major differentiated isozymes of higher vertebrates. PMID:7373271

  2. Evaluation of Juvenile Fish Bypass and Adult Fish Passage Facilities at Water Diversions on the Umatilla River; 1994 Annual Report.

    SciTech Connect

    Knapp, Suzanne M.

    1995-01-01

    We report on our progress from October 1993 through September 1994 in evaluating juvenile salmonid bypass facilities and juvenile salmonid passage through ladder facilities, and investigating passage conditions for juvenile fish at diversion dam facilities on the lower Umatilla River in northeastern Oregon. We also report on our progress in evaluating adult salmonid passage at and between dams on the lower Umatilla River and upriver migration using radio telemetry. Two principal studies are also included. Report A (ODFW): To evaluate the juvenile salmonid bypass facilities a Feed and Furnish canals, juvenile salmonid passage through fish ladders at Stanfield, Feed Canal, Westland, and Three Mile Falls dams, and the juvenile salmonid trap and haul procedures at Westland Canal. To investigate passage conditions at all passage facilities. Report B (CTUIR): To examine the passage of adult salmonids past diversions in the lower Umatilla River and their movement in the upper river after transport, using radio telemetry, and to assess factors for successful homing. These studies are part of a program to rehabilitate anadromous fish stocks in the Umatilla River Basin, including restoration of coho salmon (Oncorhynchus kisutch) and chinook salmon (Oncorhynchus tshawytscha), as well as enhancement of summer steelhead (Oncorhynchus mykiss).

  3. It's a Salmon's Life!

    ERIC Educational Resources Information Center

    French, M. Jenice; Skochdopole, Laura Downey

    1998-01-01

    Describes an integrated science unit to help preservice teachers gain confidence in their abilities to learn and teach science. The teachers role played being salmon as they learned about the salmon's life cycle and the difficulties salmon encounter. The unit introduced the use of investigative activities that begin with questions and end with…

  4. 77 FR 21084 - Endangered and Threatened Species; Take of Anadromous Fish

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-09

    ... to federally threatened Central California Coast steelhead (Oncorhynchus mykiss), endangered Central..., smolts and adult Central California Coast (CCC) steelhead, juvenile, smolts and adult CCC coho salmon... through June. A subset of CCC coho salmon, CC steelhead, and CC Chinook smolts, parr, and...

  5. Olfactory Transcriptional Analysis of Salmon Exposed to Mixtures of Chlorpyrifos and Malathion Reveal Novel Molecular Pathways of Neurobehavioral Injury.

    PubMed

    Wang, Lu; Espinoza, Herbert M; MacDonald, James W; Bammler, Theo K; Williams, Chase R; Yeh, Andrew; Louie, Ke'ale W; Marcinek, David J; Gallagher, Evan P

    2016-01-01

    Pacific salmon exposed to sublethal concentrations of organophosphate pesticides (OP) have impaired olfactory function that can lead to loss of behaviors that are essential for survival. These exposures often involve mixtures and can occur at levels below those which inhibit acetylcholinesterase (AChE). In this study, juvenile Coho salmon were exposed for 24 h to either 0.1, 0.5, or 2.5 ppb chlorpyrifos (CPF), 2, 10, or 50 ppb malathion (MAL), or binary mixtures of 0.1 CPF:2 ppb MAL, 0.5 CPF:10 ppb MAL, or 2.5 CPF:10 ppb MAL to mimic single and binary environmental exposures. Microarray analysis of olfactory rosettes from pesticide-exposed salmon revealed differentially expressed genes involved in nervous system function and signaling, aryl hydrocarbon receptor signaling, xenobiotic metabolism, and mitochondrial dysfunction. Coho exposed to OP mixtures exhibited a more pronounced loss in detection of a predatory olfactory cue relative to those exposed to single compounds, whereas respirometry experiments demonstrated that exposure to OPs, individually and in mixtures, reduced maximum respiratory capacity of olfactory rosette mitochondria. The observed molecular, biochemical, and behavioral effects occurred largely in the absence of effects on brain AChE. In summary, our results provide new insights associated with the sublethal neurotoxic effects of OP mixtures relevant to environmental exposures involving molecular and cellular pathways of injury to the salmon olfactory system that underlie neurobehavioral injury. PMID:26494550

  6. Polybrominated diphenyl ether levels in wild and farmed Chilean salmon and preliminary flow data for commercial transport.

    PubMed

    Montory, Monica; Habit, Evelyn; Fernandez, Pilar; Grimalt, Joan O; Barra, Ricardo

    2012-01-01

    This pilot study documented the occurrence and levels of brominated flame retardants in the tissues of farmed and wild salmon in southern Chile. Samples of Coho salmon and rainbow trout were obtained from fish farms, rivers and lakes in the Patagonia in Aysen Region, Chile. The samples were analyzed by Gas Chromatography Negative Chemical Ionization Mass Spectrometry for the different polybrominated diphenyl ether (PBDE) congeners. Contaminants were observed in all the samples, and the congeners BDE 17, 28, 47 and 66 were observed in all both farmed and wild samples. The concentrations were higher in the farmed Coho salmon, presenting significant differences with wild salmon. The levels reached 182 pg/g wet weight (ww) vs. 120 ww. In the case of the rainbow trout, the concentrations were lower, although the congener profile was quite similar. The levels reached an average of 100 pg/g ww in the farmed fish versus 110 pg/g ww in wild fish, and no significant difference was observed between the species. In both species, the congener with the highest concentration was BDE 47. Based on this information, the BDE flow was estimated for commerce, which is a form of pollutant transport not usually considered in POP pollution studies. A preliminary estimation indicated that the quantity of PBDEs mobilized by commerce was in the order of kg, and in the case of Chile might reach almost 1 kg. PMID:22655380

  7. Are inland wolf-ungulate systems influenced by marine subsidies of Pacific salmon?

    USGS Publications Warehouse

    Adams, L.G.; Farley, Sean D.; Stricker, C.A.; Demma, D.J.; Roffler, G.H.; Miller, D.C.; Rye, R.O.

    2010-01-01

    Wolves (Canis lupus) in North America are considered obligate predators of ungulates with other food resources playing little role in wolf population dynamics or wolf-prey relations. However, spawning Pacific salmon (Oncorhyncus spp.) are common throughout wolf range in northwestern North America and may provide a marine subsidy affecting inland wolf-ungulate food webs far from the coast. We conducted stable-isotope analyses for nitrogen and carbon to evaluate the contribution of salmon to diets of wolves in Denali National Park and Preserve, 1200 river-km from tidewater in interior Alaska, USA. We analyzed bone collagen from 73 wolves equipped with radio collars during 1986-2002 and evaluated estimates of salmon in their diets relative to the availability of salmon and ungulates within their home ranges. We compared wolf densities and ungulate : wolf ratios among regions with differing salmon and ungulate availability to assess subsidizing effects of salmon on these wolf-ungulate systems. Wolves in the northwestern flats of the study area had access to spawning salmon but low ungulate availability and consumed more salmon (17% ?? 7% [mean ?? SD]) than in upland regions, where ungulates were sixfold more abundant and wolves did or did not have salmon spawning areas within their home ranges (8% ?? 6% and 3% ?? 3%, respectively). Wolves were only 17% less abundant on the northwestern flats compared to the remainder of the study area, even though ungulate densities were 78% lower. We estimated that biomass from fall runs of chum (O. keta) and coho (O. kisutch) salmon on the northwestern flats was comparable to the ungulate biomass there, and the contribution of salmon to wolf diets was similar to estimates reported for coastal wolves in southeast Alaska. Given the ubiquitous consumption of salmon by wolves on the northwestern flats and the abundance of salmon there, we conclude that wolf numbers in this region were enhanced by the allochthonous subsidy provided by

  8. Minthorn Springs Creek Summer Juvenile Release and Adult Collection Facility; Operation, Maintenance and Evaluation; 1991 Annual Report.

    SciTech Connect

    Rowan, Gerald D.

    1992-06-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to supplement steelhead and re-establish salmon runs in the Umatilla River Basin. As part of this program, Bonifer and Minthorn Acclimation Facilities are operated for holding and spawning adult steelhead and fall chinook salmon and acclimation and release of juvenile salmon and steelhead. Regularly-scheduled maintenance of pumps, equipment and facilities was performed in 1991. Major repairs to one Minthorn pump were required and flood damage at Minthorn necessitated the replacement of rock and gravel around the pump house and steelhead brood holding area. Several modifications to the steelhead brood holding pond were also made to help reduce mortality. These changes appeared to be successful as evidenced by the reduced number of mortalities. Total prespawn mortality in 1990-91 was 10.4%. This compares to 20.0 to 39.0% for the previous three years at Minthorn. A total of 202 adult steelhead were collected for broodstock at Threemile Dam from November, 1990 through April, 1991 and held at Minthorn. Utilizing a 3 x 3 spawning matrix, a total of 410,356 eggs were taken from 64 females. The eggs were transferred to Irrigon Hatchery for incubation and initial rearing. The fish were then transferred to Umatilla Hatchery for further rearing and later release into the Umatilla River. A total of 347 fall chinook salmon were also collected for broodstock at Threemile Dam and held at Minthorn. Using a 1:l spawning ratio, a total of 601,548 eggs were taken from 159 females. They were transferred to Umatilla Hatchery for incubation, rearing and later release into the Umatilla River. Acclimation of 100,505 spring chinook salmon and 42,610 summer steelhead was completed at Bonifer in the spring of 1991. At Minthorn, 152,974 coho and 79,672 fall chinook salmon were acclimated and released. In the fall, 81,144 spring chinook salmon

  9. Salmon carcasses increase stream productivity more than inorganic fertilizer pellets: A test on multiple trophic levels in streamside experimental channels

    USGS Publications Warehouse

    Wipfli, Mark S.; Hudson, John P.; Caouette, John P.; Mitchell, N.L.; Lessard, Joanna L.; Heintz, Ron A.; Chaloner, D.T.

    2010-01-01

    Inorganic nutrient amendments to streams are viewed as possible restoration strategies for re-establishing nutrients and stream productivity throughout the western coast of North America, where salmon runs and associated marine-derived nutrient subsidies have declined. In a mesocosm experiment, we examined the short-term (6 weeks) comparative effects of artificial nutrient pellets and salmon carcasses, alone (low and high amounts) and in combination, on stream food webs. Response variables included dissolved nutrient concentrations, biofilm ash-free dry mass (AFDM) and chlorophyll-alevels, macroinvertebrate density, growth and body condition of juvenile coho salmon Oncorhynchus kisutch, and whole-body lipid content of invertebrates and juvenile coho salmon. Most of the response variables were significantly influenced by carcass treatment; the only response variable significantly influenced by fertilizer pellet treatment was soluble reactive phosphorus (SRP) concentration. Ammonium-nitrogen concentration was the only response variable affected by both (low and high) levels of carcass treatment; all others showed no significant response to the two carcass treatment levels. Significant treatment × time interactions were observed for all responses except nitrate; for most responses, significant treatment effects were detected at certain time periods and not others. For example, significantly higher SRP concentrations were recorded earlier in the experiment, whereas significant fish responses were observed later. These results provide evidence that inorganic nutrient additions do not have the same ecological effects in streams as do salmon carcasses, potentially because inorganic nutrient additions lack carbon-based biochemicals and macromolecules that are sequestered directly or indirectly by consumers. Salmon carcasses, preferably deposited naturally during spawning migrations, appear to be far superior to inorganic nutrient amendments for sustaining and restoring

  10. The importance of genetic verification for determination of Atlantic salmon in north Pacific waters

    USGS Publications Warehouse

    Nielsen, J.L.; Williams, I.; Sage, G.K.; Zimmerman, C.E.

    2003-01-01

    Genetic analyses of two unknown but putative Atlantic salmon Salmo salar captured in the Copper River drainage, Alaska, demonstrated the need for validation of morphologically unusual fishes. Mitochondrial DNA sequences (control region and cytochrome b) and data from two nuclear genes [first internal transcribed spacer (ITS-1) sequence and growth hormone (GH1) amplification product] indicated that the fish caught in fresh water on the Martin River was a coho salmon Oncorhynchus kisutch, while the other fish caught in the intertidal zone of the Copper River delta near Grass Island was an Atlantic salmon. Determination of unusual or cryptic fish based on limited physical characteristics and expected seasonal spawning run timing will add to the controversy over farmed Atlantic salmon and their potential effects on native Pacific species. It is clear that determination of all putative collections of Atlantic salmon found in Pacific waters requires validation. Due to uncertainty of fish identification in the field using plastic morphometric characters, it is recommended that genetic analyses be part of the validation process. ?? 2003 The Fisheries Society of the British Isles.

  11. Modeling the Effect of Geomorphic Change Triggered by Large Wood Addition on Salmon Habitat in a Forested Coastal Watershed

    NASA Astrophysics Data System (ADS)

    Bair, R.; Segura, C.; Lorion, C.

    2015-12-01

    Large wood (LW) additions are often part of fish habitat restorations in the PNW where historic forest clear-cutting limited natural wood recruitment. These efforts' relative successes are rarely reported in terms of ecological significance to different life stages of fish. Understanding the effectiveness of LW additions will contribute to successfully managing forest land. In this study we quantify the geomorphic change of a restoration project involving LW additions to three alluvial reaches in Mill Creek, OR. The reaches are 110-130m in plane-bed morphology and drain 2-16km2. We quantify the change in available habitat to different life stages of coho salmon in terms of velocity (v), shear stress (t), flow depth, and grain size distributions (GSD) considering existing thresholds in the literature for acceptable habitat. Flow conditions before and after LW additions are assessed using a 2D hydrodynamic model (FaSTMECH). Model inputs include detailed channel topography, discharge, and surface GSD. The spatial-temporal variability of sediment transport was also quantified based the modeled t distributions and the GSD to document changes in the overall geomorphic regime. Initial modeling results for pre wood conditions show mean t and v values ranging between 0 and 26N/m2 and between 0 and 2.4m/s, respectively for up to bankfull flow (Qbf). The distributions of both t and v become progressively wider and peak at higher values as flow increases with the notable exception at Qbf for which the area of low velocity increases noticeably. The spatial distributions of velocity results indicates that the extent of suitable habitat for adult coho decreased by 18% between flows 30 and 55% of BF. However the area of suitable habitat increased by 15% between 0.55Qbf and Qbf as the flow spreads from the channel into the floodplain. We expect the LW will enhance floodplain connectivity and thus available habitat by creating additional areas of low v during winter flows.

  12. Food Shortage Causes Differential Effects on Body Composition and Tissue-Specific Gene Expression in Salmon Modified for Increased Growth Hormone Production.

    PubMed

    Abernathy, Jason; Panserat, Stéphane; Welker, Thomas; Plagne-Juan, Elisabeth; Sakhrani, Dionne; Higgs, David A; Audouin, Florence; Devlin, Robert H; Overturf, Ken

    2015-12-01

    Growth hormone (GH) transgenic salmon possesses markedly increased metabolic rate, appetite, and feed conversion efficiency, as well as an increased ability to compete for food resources. Thus, the ability of GH-transgenic fish to withstand periods of food deprivation as occurs in nature is potentially different than that of nontransgenic fish. However, the physiological and genetic effects of transgenic GH production over long periods of food deprivation remain largely unknown. Here, GH-transgenic coho salmon (Oncorhynchus kisutch) and nontransgenic, wild-type coho salmon were subjected to a 3-month food deprivation trial, during which time performance characteristics related to growth were measured along with proximate compositions. To examine potential genetic effects of GH-transgenesis on long-term food deprivation, a group of genes related to muscle development and liver metabolism was selected for quantitative PCR analysis. Results showed that GH-transgenic fish lose weight at an increased rate compared to wild-type even though proximate compositions remained relatively similar between the groups. A total of nine genes related to muscle physiology (cathepsin, cee, insulin-like growth factor, myostatin, murf-1, myosin, myogenin, proteasome delta, tumor necrosis factor) and five genes related to liver metabolism (carnitine palmitoyltransferase, fatty acid synthase, glucose-6-phosphatase, glucose-6-phosphate dehydrogenase, glucokinase) were shown to be differentially regulated between GH-transgenic and wild-type coho salmon over time. These genetic and physiological responses assist in identifying differences between GH-transgenic and wild-type salmon in relation to fitness effects arising from elevated growth hormone during periods of long-term food shortage. PMID:26265485

  13. 2004 AND 2006 COHO SMOLT MOVEMENT IN THE YAQUINA RIVER AND ESTUARY

    EPA Science Inventory

    Migratory fish passage is an important designated use for many Oregon estuaries. Acoustic transmitters were implanted in coho smolts in 2004 and 2006 to evaluate how estuarine habitat, and habitat loss, might affect population health. Acoustic receivers that identified individu...

  14. Captive Rearing Initiative for Salmon River Chinook Salmon, 1999 Progress Report.

    SciTech Connect

    Hassemer, Peter F.

    2001-04-01

    During 1999, the Idaho Department of Fish and Game (IDFG) continued developing techniques for the captive rearing of chinook salmon Oncorhynchus tshawytscha. Techniques under development included protocols for rearing juveniles in freshwater and saltwater hatchery environments, and fieldwork to collect brood year 1998 and 1999 juveniles and eggs and to investigate the ability of these fish to spawn naturally. Fish collected as juveniles were held for a short time at the Sawtooth Fish Hatchery and later transferred to the Eagle Fish Hatchery for rearing. Eyed-eggs were transferred immediately to the Eagle Fish Hatchery where they were disinfected and reared by family groups. When fish from either collection method reached approximately 60 mm, they were PIT tagged and reared separately by brood year and source stream. Sixteen different groups were in culture at IDFG facilities in 1999. Hatchery spawning activities of captive-reared chinook salmon produced eyed-eggs for outplanting in streamside incubation chambers in the West Fork Yankee Fork Salmon River (N=2,297) and the East Fork Salmon River (N=1,038). Additionally, a number of these eggs were maintained at the Eagle Fish Hatchery to ensure adequate brood year 1999 representation from these systems, and produced 279 and 87 juveniles from the West Fork Yankee Fork and East Fork Salmon River, respectively. Eyed-eggs were not collected from the West Fork Yankee Fork due to low adult escapement. Brood year 1998 juveniles were collected from the Lemhi River (N=191), West Fork Yankee Fork Salmon River (N=229), and East Fork Salmon River (N=185). Additionally, brood year 1999 eyed-eggs were collected from the Lemhi River (N=264) and East Fork Salmon River (N=143). Sixty-two and seven maturing adults were released into Bear Valley Creek (Lemhi River system) and the East Fork Salmon River, respectively, for spawning evaluation in 1999. Nine female carcasses from Bear Valley Creek were examined for egg retention, and of

  15. Captive Rearing Initiative for Salmon River Chinook Salmon, 1998-1999 Progress Report.

    SciTech Connect

    Hassemer, Peter F.

    2001-04-01

    During 1999, the Idaho Department of Fish and Game (IDFG) continued developing techniques for the captive rearing of chinook salmon Oncorhynchus tshawytscha. Techniques under development included protocols for rearing juveniles in freshwater and saltwater hatchery environments, and fieldwork to collect brood year 1998 and 1999 juveniles and eggs and to investigate the ability of these fish to spawn naturally. Fish collected as juveniles were held for a short time at the Sawtooth Fish Hatchery and later transferred to the Eagle Fish Hatchery for rearing. Eyed-eggs were transferred immediately to the Eagle Fish Hatchery where they were disinfected and reared by family groups. When fish from either collection method reached approximately 60 mm, they were PIT tagged and reared separately by brood year and source stream. Sixteen different groups were in culture at IDFG facilities in 1999. Hatchery spawning activities of captive-reared chinook salmon produced eyed-eggs for outplanting in streamside incubation chambers in the West Fork Yankee Fork Salmon River (N=2,297) and the East Fork Salmon River (N=1,038). Additionally, a number of these eggs were maintained at the Eagle Fish Hatchery to ensure adequate brood year 1999 representation from these systems, and produced 279 and 87 juveniles from the West Fork Yankee Fork and East Fork Salmon River, respectively. Eyed-eggs were not collected from the West Fork Yankee Fork due to low adult escapement. Brood year 1998 juveniles were collected from the Lemhi River (N=191), West Fork Yankee Fork Salmon River (N=229), and East Fork Salmon River (N=185). Additionally, brood year 1999 eyed-eggs were collected from the Lemhi River (N=264) and East Fork Salmon River (N=143). Sixty-two and seven maturing adults were released into Bear Valley Creek (Lemhi River system) and the East Fork Salmon River, respectively, for spawning evaluation in 1999. Nine female carcasses from Bear Valley Creek were examined for egg retention, and of

  16. Canada-USA Salmon Shelf Survival Study, 2007-2008 Annual Report.

    SciTech Connect

    Trudel, Marc; Tucker, Strahan; Morris, John

    2009-03-09

    nutrient concentration that year. This suggests nutrients were more effectively by phytoplankton in FY08. In addition, the abundance of lipid-rich northern copepods increased from FY05 to FY08, whereas lipid-poor southern copepods showed the opposite pattern, suggesting that growth conditions were more favorable to juvenile salmon in FY08 than in previous years. However, growth indices for juvenile coho salmon were near the 1998-2008 average, both off the west coast of Vancouver Island and Southeast Alaska, indicating that additional factors beside prey quality affect juvenile salmon growth in the marine environment. Catches of juvenile Chinook, sockeye and chum salmon off the west coast of Vancouver Island in June-July 2008 were the highest on record during summer since 1998, suggesting that early marine survival for the 2008 smolt year was high. Interestingly, the proportion of hatchery fish was high (80-100%) among the juvenile Columbia River Chinook salmon caught off the British Columbia coast during summer, suggest that relatively few wild Chinook salmon are produced in the Columbia River Chinook. In addition, we also recovered two coded-wire tagged juvenile Redfish Lake sockeye salmon in June 2008 off the west coast of British Columbia. As relatively few Redfish Lake sockeye smolts are tagged each year, this also suggests that early marine survival was high for these fish, and may result in a high return in 2009 if they mature at age three, or in 2010 if they mature at age four. To date, our research shows that different populations of Columbia River salmon move to different locations along the coastal zone where they establish their ocean feeding grounds and overwinter. We further show that ocean conditions experienced by juvenile Columbia River salmon vary among regions of the coast, with higher plankton productivity and temperatures off the west coast of Vancouver Island than in Southeast Alaska. Hence, different stocks of juvenile salmon originating from the

  17. Analyzing variations in life-history traits of Pacific salmon in the context of Dynamic Energy Budget (DEB) theory

    NASA Astrophysics Data System (ADS)

    Pecquerie, Laure; Johnson, Leah R.; Kooijman, Sebastiaan A. L. M.; Nisbet, Roger M.

    2011-11-01

    To determine the response of Pacific salmon ( Oncorhynchus spp.) populations to environmental change, we need to understand impacts on all life stages. However, an integrative and mechanistic approach is particularly challenging for Pacific salmon as they use multiple habitats (river, estuarine and marine) during their life cycle. Here we develop a bioenergetic model that predicts development, growth and reproduction of a Pacific salmon in a dynamic environment, from an egg to a reproducing female, and that links female state to egg traits. This model uses Dynamic Energy Budget (DEB) theory to predict how life history traits vary among five species of Pacific salmon: Pink, Sockeye, Coho, Chum and Chinook. Supplemented with a limited number of assumptions on anadromy and semelparity and external signals for migrations, the model reproduces the qualitative patterns in egg size, fry size and fecundity both at the inter- and intra-species levels. Our results highlight how modeling all life stages within a single framework enables us to better understand complex life-history patterns. Additionally we show that body size scaling relationships implied by DEB theory provide a simple way to transfer model parameters among Pacific salmon species, thus providing a generic approach to study the impact of environmental conditions on the life cycle of Pacific salmon.

  18. Saving the Salmon

    ERIC Educational Resources Information Center

    Sprangers, Donald

    2004-01-01

    In November 2000, wild Atlantic salmon were placed under the protection of the Endangered Species Act of 1973. Washington Academy (WA) in Maine has played an integral role in the education and restoration of this species. Efforts to restore the salmon's dwindling population, enhance critical habitat areas, and educate and inform the public require…

  19. Evaluation of emamectin benzoate and substance EX against salmon lice in sea-ranched Atlantic salmon smolts.

    PubMed

    Skilbrei, Ove Tommy; Espedal, Per Gunnar; Nilsen, Frank; Garcia, Enrique Perez; Glover, Kevin A

    2015-04-01

    Experimental releases of Atlantic salmon smolts treated with emamectin benzoate (EB) against salmon lice have previously been used to estimate the significance of salmon lice on the survival of migrating smolts. In recent years, the salmon louse has developed reduced sensitivity to EB, which may influence the results of such release experiments. We therefore tested the use of 2 anti-lice drugs: EB was administered to salmon smolts in high doses by intra-peritoneal injection and the prophylactic substance EX (SubEX) was administered by bathing. A third, untreated control group was also established. Salmon were challenged with copepodids of 2 strains of salmon lice (1 EB-sensitive strain and 1 with reduced EB-sensitivity) in mixed-group experimental tanks. At 31 d post-challenge, the numbers of pre-adult lice on treated fish were around 20% compared with the control fish, with minor or no differences between the 2 treatments and lice strains. Both treatments therefore appeared to give the smolts a high degree of protection against infestation of copepodids of salmon lice. However, significantly lower growth of the EB-treatment group indicates that bathing the fish in SubEX is less stressful for smolts than intra-peritoneal injection of EB. PMID:25850396

  20. Marine-derived nitrogen and carbon in freshwater-riparian food webs of the Copper River Delta, southcentral Alaska.

    PubMed

    Hicks, Brendan J; Wipfli, Mark S; Lang, Dirk W; Lang, Maria E

    2005-08-01

    After rearing to adulthood at sea, coho salmon (Oncorhynchus kisutch) return to freshwater to spawn once and then die on or near their spawning grounds. We tested the hypothesis that spawning coho salmon return marine N and C to beaver (Castor canadensis) ponds of the Copper River Delta (CRD), Cordova, southcentral Alaska, thereby enhancing productivity of the aquatic food webs that support juvenile coho salmon. We sampled three types of pond treatment: (1) natural enrichment by spawning salmon, (2) artificial enrichment via addition of salmon carcasses and eggs, and (3) ponds with no salmon enrichment. All ponds supported juvenile coho salmon. Seasonal samples of stable isotopes revealed that juvenile coho salmon, threespine sticklebacks (Gasterosteus aculeatus), caddisfly larvae, leeches, and chironomid midge larvae were enriched with marine N and C. The aquatic vascular plants bur reed (Sparganium hyperboreum), pondweed (Potamogeton gramineus), and mare's tail (Hippuris vulgaris) were enriched with marine N only. Riparian vegetation (Sitka alder Alnus viridis ssp. sinuata and willow Salix spp.) did not show enrichment. Artificial additions of adult carcasses and eggs of coho salmon increased the delta15N and delta13C values of juvenile coho salmon. In this dynamic and hydrologically complex coastal environment, spawning coho salmon contributed marine N and C comprising 10-50% of the dietary needs of juvenile coho salmon through direct consumption of eggs and carcass material. Invertebrates that have assimilated marine N and C yield a further indirect contribution. This perennial subsidy maintains the productivity of the ecosystem of the coho salmon on the CRD. PMID:15891853

  1. Modeling the brain-pituitary-gonad axis in salmon

    SciTech Connect

    Kim, Jonghan; Hayton, William L.; Schultz, Irv R.

    2006-08-24

    To better understand the complexity of the brain-pituitary-gonad axis (BPG) in fish, we developed a biologically based pharmacodynamic model capable of accurately predicting the normal functioning of the BPG axis in salmon. This first-generation model consisted of a set of 13 equations whose formulation was guided by published values for plasma concentrations of pituitary- (FSH, LH) and ovary- (estradiol, 17a,20b-dihydroxy-4-pregnene-3-one) derived hormones measured in Coho salmon over an annual spawning period. In addition, the model incorporated pertinent features of previously published mammalian models and indirect response pharmacodynamic models. Model-based equations include a description of gonadotropin releasing hormone (GnRH) synthesis and release from the hypothalamus, which is controlled by environmental variables such as photoperiod and water temperature. GnRH stimulated the biosynthesis of mRNA for FSH and LH, which were also influenced by estradiol concentration in plasma. The level of estradiol in the plasma was regulated by the oocytes, which moved along a maturation progression. Estradiol was synthesized at a basal rate and as oocytes matured, stimulation of its biosynthesis occurred. The BPG model can be integrated with toxico-genomic, -proteomic data, allowing linkage between molecular based biomarkers and reproduction in fish.

  2. Minthorn Springs Creek Summer Juvenile Release and Adult Collection Facility; Operation, Maintenance and Evaluation of the Bonifer and Minthorn Springs Juvenile Release and Adult Collection Facilities, 1989 Annual Report.

    SciTech Connect

    Lofy, Peter T.; Rowan, Gerald D.

    1990-03-01

    ,274 steelhead was completed at Bonifer in spring of 1989. At Minthorn, 157,299 coho salmon and 29,852 summer steelhead were acclimated and released. Acclimation of 78,825 fall chinook salmon at Minthorn and 80,750 spring chinook salmon completed in the fall. at Bonifer was successfully Control groups were released instream concurrent with the acclimated releases to evaluate the effects of acclimation on adult returns to the Umatilla River. Test and control groups were tagged by ODFW for acclimation studies to be performed at the Bonifer and Minthorn facilities in 1989 and 1990. Each group received three separate coded-wire tag codes. One experiment for fall chinook salmon, two experiments for spring chinook salmon (spring and fall releases) and one experiment for summer steelhead were tagged. The progress of outmigration for acclimated releases was monitored at the juvenile salmonid trap located at Westland Diversion. Because the fish in each release were not uniquely fish size and migration timing were used to discern general trends. Data suggested that juvenile salmonids started showing up at the trap 4 days after release until July 14, when sampling was discontinued. Personnel from the ODFW Eastern Oregon Fish Pathology Laboratory in La Grande took samples of tissues and reproductive fluids to test summer steelhead broodstock from the Umatilla River for monitoring purposes and to certify eggs as pathogen-free.

  3. Imprinting Hatchery Reared Salmon and Steelhead Trout for Homing, Volume I of III; Narrative, 1978-1983 Final Report.

    SciTech Connect

    Slatick, Emil; Gilbreath, Lyle G.; Harmon, Jerrel R.

    1988-02-01

    The National Marine Fisheries Service began conducting homing research on Pacific salmon and steelhead. Over 4 million juvenile salmon and steelhead were marked and released, and 23 individual experiments were conducted. The research had the following objectives: (1) develop the techniques for imprinting homing cues while increasing survival of hatchery reared salmonids and (2) provide fishery managers with the information necessary to increase the returns of salmon and steelhead to the Columbia River system and to effectively distribute these fish to the various user groups. Our imprint methods were grouped into three general categories: (1) natural migration imprint from a hatchery of origin or an alternate homing site (by allowing fish to volitionally travel downstream through the river on their seaward journey), (2) single exposure imprinting (cueing fish to a single unique water supply with or without mechanical stimuli prior to transport and release), and (3) sequential exposure imprinting (cueing fish to two or more water sources in a step-by-step process to establish a series of signposts for the route ''home''). With variations, all three techniques were used with all salmonid groups tested: coho salmon, spring and fall chinook salmon, and steelhead. For the single and sequential imprint, fish were transported around a portion of their normal migration route before releasing them into the Columbia River.

  4. Calcitonin Salmon Nasal Spray

    MedlinePlus

    ... steps: Keep your head up and place the nozzle in one nostril. Press down on the pump ... position. Replace the plastic cover to keep the nozzle clean. Opened calcitonin salmon stored at room temperature ...

  5. Smolt Monitoring Program, Volume I, Migrational Characteristics of Columbia Basin Salmon and Steelhead Trout, 1986 Annual Report.

    SciTech Connect

    Fish Passage Center

    1987-02-01

    This report presents the results of post-seasonal analyses including timing and relative magnitude of the outmigration, travel time for marked hatchery releases, and survival in mid-Columbia and lower Snake River index reaches. Travel time of marked yearling and sub-yearling chinook salmon (Oncorhynchus tsawytscha), sockeye salmon (Oncorhynchus nerka), and steelhead trout (Salmo gairdneri) is measured between specific sampling points in the system. Marked groups usually represent major hatchery production stocks. Survival estimates are computed for specific spring chinook and steelhead marked groups. Arrival time and duration of outmigration of the chinook, sockeye, coho (Oncorhynchus kisutch) and steelhead runs are reported at key sampling points. Hatchery and brand release information for 1986 is also listed.

  6. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS.

    SciTech Connect

    Not Available

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.

  7. PACIFIC SALMON: LESSONS LEARNED FOR RECOVERING ATLANTIC SALMON

    EPA Science Inventory

    n evaluation of the history of efforts to reverse the long-term decline of Pacific Salmon provides instructive policy lessons for recovering Atlantic Salmon. From California to southern British Columbia, wild runs of Pacific salmon have universally declined and many have disappe...

  8. Salmon lice – impact on wild salmonids and salmon aquaculture

    PubMed Central

    Torrissen, O; Jones, S; Asche, F; Guttormsen, A; Skilbrei, O T; Nilsen, F; Horsberg, T E; Jackson, D

    2013-01-01

    Salmon lice, Lepeophtheirus salmonis, are naturally occurring parasites of salmon in sea water. Intensive salmon farming provides better conditions for parasite growth and transmission compared with natural conditions, creating problems for both the salmon farming industry and, under certain conditions, wild salmonids. Salmon lice originating from farms negatively impact wild stocks of salmonids, although the extent of the impact is a matter of debate. Estimates from Ireland and Norway indicate an odds ratio of 1.1:1-1.2:1 for sea lice treated Atlantic salmon smolt to survive sea migration compared to untreated smolts. This is considered to have a moderate population regulatory effect. The development of resistance against drugs most commonly used to treat salmon lice is a serious concern for both wild and farmed fish. Several large initiatives have been taken to encourage the development of new strategies, such as vaccines and novel drugs, for the treatment or removal of salmon lice from farmed fish. The newly sequenced salmon louse genome will be an important tool in this work. The use of cleaner fish has emerged as a robust method for controlling salmon lice, and aquaculture production of wrasse is important towards this aim. Salmon lice have large economic consequences for the salmon industry, both as direct costs for the prevention and treatment, but also indirectly through negative public opinion. PMID:23311858

  9. Effects of Marine Mammals on Columbia River Salmon Listed under the Endangered Species Act : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 3 of 11.

    SciTech Connect

    Park, Donn L.

    1993-06-01

    Most research on the Columbia and Snake Rivers in recent years has been directed to downstream migrant salmon (Oncorhynchus spp.) losses at dams. Comparatively little attentions has been given to adult losses. Recently an estimated 378,4000 adult salmon and steelhead (O. mykiss) were unaccounted-for from Bonneville Dam to terminal areas upstream. It is now apparent that some of this loss was due to delayed mortality from wounded by marine mammals. This report reviews the recent literature to define predatory effects of marine mammals on Columbia River salmon.

  10. Microbial ecology of the salmon necrobiome: evidence salmon carrion decomposition influences aquatic and terrestrial insect microbiomes.

    PubMed

    Pechal, Jennifer L; Benbow, M Eric

    2016-05-01

    Carrion decomposition is driven by complex relationships that affect necrobiome community (i.e. all organisms and their genes associated with a dead animal) interactions, such as insect species arrival time to carrion and microbial succession. Little is understood about how microbial communities interact with invertebrates at the aquatic-terrestrial habitat interface. The first objective of the study was to characterize internal microbial communities using high-throughput sequencing of 16S rRNA gene amplicons for aquatic insects (three mayfly species) in streams with salmon carcasses compared with those in streams without salmon carcasses. The second objective was to assess the epinecrotic microbial communities of decomposing salmon carcasses (Oncorhynchus keta) compared with those of terrestrial necrophagous insects (Calliphora terraenovae larvae and adults) associated with the carcasses. There was a significant difference in the internal microbiomes of mayflies collected in salmon carcass-bearing streams and in non-carcass streams, while the developmental stage of blow flies was the governing factor in structuring necrophagous insect internal microbiota. Furthermore, the necrophagous internal microbiome was influenced by the resource on which the larvae developed, and changes in the adult microbiome varied temporally. Overall, these carrion subsidy-driven networks respond to resource pulses with bottom-up effects on consumer microbial structure, as revealed by shifting communities over space and time. PMID:26690563

  11. 78 FR 2725 - Endangered and Threatened Species; Designation of Critical Habitat for Lower Columbia River Coho...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-14

    ... component in the evolutionary legacy of the biological species (56 FR 58612, November 20, 1991). We... significant to its taxon (61 FR 4722, February 7, 1996; 71 FR 834, January 5, 2006). In previous rulemaking we determined that lower Columbia River coho (70 FR 37160, June 28, 2005) and Puget Sound steelhead (72 FR...

  12. Wild Steelhead Studies, Salmon and Clearwater Rivers, 1994 Annual Report.

    SciTech Connect

    Holubetz, Terry B; Leth, Brian D.

    1997-05-01

    To enumerate chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss adult escapements, weirs were operated in Marsh, Chamberlain, West Fork Chamberlain, and Running creeks. Beginning in late July 1994, a juvenile trap was installed in Running Creek to estimate juvenile outmigrants. Plans have been completed to install a weir in Rush Creek to enumerate steelhead adult escapement beginning in spring 1995. Design and agreements are being developed for Johnson Creek and Captain John Creek. Data collected in 1993 and 1994 indicate that spring chinook salmon and group-B steelhead populations and truly nearing extinction levels. For example, no adult salmon or steelhead were passed above the West Fork Chamberlain Creek weir in 1984, and only 6 steelhead and 16 chinook salmon were passed into the important spawning area on upper Marsh Creek. Group-A steelhead are considerably below desirable production levels, but in much better status than group-B stocks. Production of both group-A and group-B steelhead is being limited by low spawning escapements. Studies have not been initiated on wild summer chinook salmon stocks.

  13. Serological evidence of infectious salmon anaemia virus (ISAV) infection in farmed fishes, using an indirect enzyme-linked immunosorbent assay (ELISA).

    PubMed

    Kibenge, Molly T; Opazo, Beatriz; Rojas, Alejandro H; Kibenge, Frederick S B

    2002-08-15

    Antibody detection tests are rarely used for diagnostic purposes in fish diseases. Infectious salmon anaemia (ISA) caused by ISA virus (ISAV) is an emerging disease of Atlantic salmon Salmo salar L. The virus has also been isolated from diseased coho salmon Oncorhynchus kisutch in Chile. An indirect enzyme-linked immunosorbent assay (ELISA) that should facilitate serodiagnosis of ISAV infection, the study of epidemiology, and the control of ISA in farmed fishes has been developed using purified ISAV as the coating antigen, and monoclonal antibodies that detect fish immunoglobulins bound to the antigen on the plate. Application of the test to a random sample of farmed Atlantic salmon from the Bay of Fundy, New Brunswick, Canada, positively identified 5 of the 7 ISAV RT-PCR-positive fish, and all 10 RT-PCR-negative fish were also negative in the ELISA. Some RT-PCR-negative fish had an elevated non-specific antibody reactivity suggestive of chronic infection or resistance to ISAV. This test was also able to detect 11 of the 14 coho salmon pooled serum samples from a clinically affected farm in Chile that were positive by the virus neutralization (VN) test, and 2 of the 4 VN-negative samples. We conclude that this ELISA would be suitable as a routine test for ISAV infection or for assessing ISAV vaccine efficacy before placing smolts in sea cages, and for testing fishes in sea cages to detect level of resistance to ISA. The assay enables vaccination in combination with depopulation control methods. PMID:12240966

  14. Development of a Vaccine for Bacterial Kidney Disease in Salmon, 1987 Annual Report.

    SciTech Connect

    Kaattari, Stephen

    1988-06-01

    Bacterial kidney disease (BKD) has been and remains a chronic contributory problem limiting the productivity of salmon in the Columbia River Basin. Control of this disease will not come easily, but it would lead to a tremendous increase in the health and numbers of salmon populations. Vaccination of salmon to Renibacterium salmoninarum (KDB) is a potentially successful method of controlling this disease. To date, however, no successful vaccine has been developed for general use. A possible solution to this problem, and thus the goal of this research, is to isolate the antigenic components of KDB and enhance their ability to activate the host defenses. This will be accomplished by the chemical modification of these antigens with potent immunomodulatory substances. These modified antigens will then be tested for their effectiveness in inducing immunity to BKD and thereby preventing the disease. The goal of the project's fourth year was to test the immunogenicity and prophylactic value in coho salmon (Oncorhynchus kisutch) of various--chemical conjugates of Renibacterium salmoninarum cell and major antigens. This was accomplished by assessing the serum antibody response, the cellular immune response (chemiluminescence), and the kinetics of mortality after lethal injections of the bacteria. The studies completed this year have: (1) identified immunization procedures which enhance the induction of high levels of antibody; (2) identified functionally distinct serum antibodies which may possess different abilities to protect salmon against BKD; (3) begun the isolation and characterization of anti-R. salmoninarum antibodies which may correlate with varying degrees of protection; (4) identified chemiluminescence as a potential method for assessing cellular immunity to bacterial kidney disease; and (5) characterized two monoclonal antibodies to R. salmoninarum which will be of benefit in the diagnosis of this disease.

  15. Bypass system modification at Bonneville Dam on the Columbia River improved the survival of juvenile salmon

    USGS Publications Warehouse

    Ferguson, J.W.; Sandford, B.P.; Reagan, R.E.; Gilbreath, L.G.; Meyer, E.B.; Ledgerwood, R.D.; Adams, N.S.

    2007-01-01

    From 1987 to 1992, we evaluated a fish bypass system at Bonneville Dam Powerhouse 2 on the Columbia River. The survival of subyearling Chinook salmon Oncorhynchus tshawytscha released into the system ranged from 0.774 to 0.911 and was significantly lower than the survival of test fish released into turbines and the area immediately below the powerhouse where bypass system flow reentered the river. Yearling and subyearling Chinook salmon and yearling coho salmon O. kisutch released into the bypass system were injured or descaled. Also, levels of blood plasma cortisol and lactate were significantly higher in yearling and subyearling Chinook salmon that passed through the bypass system than in fish released directly into a net located over the bypass exit. This original system was then extensively modified using updated design criteria, and the site where juvenile fish reentered the river was relocated 2.8 km further downstream to reduce predation on bypassed fish by northern pikeminnow Ptychocheilus oregonensis. Based on studies conducted from 1999 to 2001, the new bypass system resulted in high fish survival, virtually no injuries to fish, fish passage times that were generally similar to water travel times, and mild stress responses from which fish recovered quickly. The mean estimated survival of subyearling Chinook salmon passing through the new bypass system was 0.946 in 2001, which was an usually low-flow year. Survival, physical condition, passage timing, and blood physiological indicators of stress were all useful metrics for assessing the performance of both bypass systems and are discussed. The engineering and hydraulic criteria used to design the new bypass system that resulted in improved fish passage conditions are described.

  16. Application of restoration scenarios to basin-scale demographics of coho salmon inferred from pit-tags

    EPA Science Inventory

    Effective habitat restoration planning requires correctly anticipating demographic responses to altered habitats. New applications of Passive Integrated Transponder (PIT) tag technology to fish-habitat research have provided critical insights into fish movement, growth, and surv...

  17. INFLUENCE OF SUMMER STREAM TEMPERATURES ON BLACK SPOT INFESTATION OF JUVENILE COHO SALMON IN THE OREGON COAST RANGE

    EPA Science Inventory

    High summer water temperatures can adversely affect stream salmonids in numerous ways. The direct effects of temperature associated with increased metabolic demand can be exacerbated by other factors, including decreased resistance to disease and increased susceptibility to para...

  18. 50 CFR 226.210 - Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the USGS publication and... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.210 Central California... (Oncorhynchus kisutch). Critical habitat is designated to include all river reaches accessible to listed...

  19. 50 CFR 226.210 - Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the USGS publication and... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.210 Central California... (Oncorhynchus kisutch). Critical habitat is designated to include all river reaches accessible to listed...

  20. 50 CFR 226.210 - Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the USGS publication and... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.210 Central California... (Oncorhynchus kisutch). Critical habitat is designated to include all river reaches accessible to listed...

  1. 50 CFR 226.210 - Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the USGS publication and... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.210 Central California... (Oncorhynchus kisutch). Critical habitat is designated to include all river reaches accessible to listed...

  2. 50 CFR 226.210 - Central California Coast Coho Salmon (Oncorhynchus kisutch), Southern Oregon/Northern California...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the USGS publication and... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.210 Central California... (Oncorhynchus kisutch). Critical habitat is designated to include all river reaches accessible to listed...

  3. Linkages between Alaskan sockeye salmon abundance, growth at sea, and climate, 1955-2002

    USGS Publications Warehouse

    Ruggerone, G.T.; Nielsen, J.L.; Bumgarner, J.

    2007-01-01

    We tested the hypothesis that increased growth of salmon during early marine life contributed to greater survival and abundance of salmon following the 1976/1977 climate regime shift and that this, in turn, led to density-dependent reductions in growth during late marine stages. Annual measurements of Bristol Bay (Bering Sea) and Chignik (Gulf of Alaska) sockeye salmon scale growth from 1955 to 2002 were used as indices of body growth. During the first and second years at sea, growth of both stocks tended to be higher after the 1976-1977 climate shift, whereas growth during the third year and homeward migration was often below average. Multiple regression models indicated that return per spawner of Bristol Bay sockeye salmon and adult abundance of western and central Alaska sockeye salmon were positively correlated with growth during the first 2 years at sea and negatively correlated with growth during later life stages. After accounting for competition between Bristol Bay sockeye and Asian pink salmon, age-specific adult length of Bristol Bay salmon increased after the 1976-1977 regime shift, then decreased after the 1989 climate shift. Late marine growth and age-specific adult length of Bristol Bay salmon was exceptionally low after 1989, possibly reducing their reproductive potential. These findings support the hypothesis that greater marine growth during the first 2 years at sea contributed to greater salmon survival and abundance, which in turn led to density-dependent growth during later life stages when size-related mortality was likely lower. Our findings provide new evidence supporting the importance of bottom-up control in marine ecosystems and highlight the complex dynamics of species interactions that continually change as salmon grow and mature in the ocean. ?? 2007 Elsevier Ltd. All rights reserved.

  4. Linkages between Alaskan sockeye salmon abundance, growth at sea, and climate, 1955 2002

    NASA Astrophysics Data System (ADS)

    Ruggerone, G. T.; Nielsen, J. L.; Bumgarner, J.

    2007-11-01

    We tested the hypothesis that increased growth of salmon during early marine life contributed to greater survival and abundance of salmon following the 1976/1977 climate regime shift and that this, in turn, led to density-dependent reductions in growth during late marine stages. Annual measurements of Bristol Bay (Bering Sea) and Chignik (Gulf of Alaska) sockeye salmon scale growth from 1955 to 2002 were used as indices of body growth. During the first and second years at sea, growth of both stocks tended to be higher after the 1976-1977 climate shift, whereas growth during the third year and homeward migration was often below average. Multiple regression models indicated that return per spawner of Bristol Bay sockeye salmon and adult abundance of western and central Alaska sockeye salmon were positively correlated with growth during the first 2 years at sea and negatively correlated with growth during later life stages. After accounting for competition between Bristol Bay sockeye and Asian pink salmon, age-specific adult length of Bristol Bay salmon increased after the 1976-1977 regime shift, then decreased after the 1989 climate shift. Late marine growth and age-specific adult length of Bristol Bay salmon was exceptionally low after 1989, possibly reducing their reproductive potential. These findings support the hypothesis that greater marine growth during the first 2 years at sea contributed to greater salmon survival and abundance, which in turn led to density-dependent growth during later life stages when size-related mortality was likely lower. Our findings provide new evidence supporting the importance of bottom-up control in marine ecosystems and highlight the complex dynamics of species interactions that continually change as salmon grow and mature in the ocean.

  5. Spatio-Temporal Migration Patterns of Pacific Salmon Smolts in Rivers and Coastal Marine Waters

    PubMed Central

    Melnychuk, Michael C.; Welch, David W.; Walters, Carl J.

    2010-01-01

    Background Migrations allow animals to find food resources, rearing habitats, or mates, but often impose considerable predation risk. Several behavioural strategies may reduce this risk, including faster travel speed and taking routes with shorter total distance. Descriptions of the natural range of variation in migration strategies among individuals and populations is necessary before the ecological consequences of such variation can be established. Methodology/Principal Findings Movements of tagged juvenile coho, steelhead, sockeye, and Chinook salmon were quantified using a large-scale acoustic tracking array in southern British Columbia, Canada. Smolts from 13 watersheds (49 watershed/species/year combinations) were tagged between 2004–2008 and combined into a mixed-effects model analysis of travel speed. During the downstream migration, steelhead were slower on average than other species, possibly related to freshwater residualization. During the migration through the Strait of Georgia, coho were slower than steelhead and sockeye, likely related to some degree of inshore summer residency. Hatchery-reared smolts were slower than wild smolts during the downstream migration, but after ocean entry, average speeds were similar. In small rivers, downstream travel speed increased with body length, but in the larger Fraser River and during the coastal migration, average speed was independent of body length. Smolts leaving rivers located towards the northern end of the Strait of Georgia ecosystem migrated strictly northwards after ocean entry, but those from rivers towards the southern end displayed split-route migration patterns within populations, with some moving southward. Conclusions/Significance Our results reveal a tremendous diversity of behavioural migration strategies used by juvenile salmon, across species, rearing histories, and habitats, as well as within individual populations. During the downstream migration, factors that had strong effects on travel

  6. Salmon Supplementation Studies in Idaho Rivers, 1999-2000 Progress Report.

    SciTech Connect

    Kohler, Andy; Taki, Doug; Teton, Angelo

    2001-11-01

    As part of the Idaho Supplementation Studies, fisheries crews from the Shoshone-Bannock Tribes have been snorkeling tributaries of the Salmon River to estimate chinook salmon (Oncorhynchus tshawytscha) parr abundance; conducting surveys of spawning adult chinook salmon to determine the number of redds constructed and collect carcass information; operating a rotary screw trap on the East Fork Salmon River and West Fork Yankee Fork Salmon River to enumerate and PIT-tag emigrating juvenile chinook salmon; and collecting and PIT-tagging juvenile chinook salmon on tributaries of the Salmon River. The Tribes work in the following six tributaries of the Salmon River: Bear Valley Creek, East Fork Salmon River, Herd Creek, South Fork Salmon River, Valley Creek, and West Fork Yankee Fork Salmon River. Snorkeling was used to obtain parr population estimates for ISS streams from 1992 to 1997. However, using the relatively vigorous methods described in the ISS experimental design to estimate summer chinook parr populations, results on a project-wide basis showed extraordinarily large confidence intervals and coefficients of variation. ISS cooperators modified their sampling design over a few years to reduce the variation around parr population estimates without success. Consequently, in 1998 snorkeling to obtain parr population estimates was discontinued and only General Parr Monitoring (GPM) sites are snorkeled. The number of redds observed in SBT-ISS streams has continued to decline as determined by five year cycles. Relatively weak strongholds continue to occur in the South Fork Salmon River and Bear Valley Creek. A rotary screw trap was operated on the West Fork Yankee Fork during the spring and fall of 1999 and the spring of 2000 to monitor juvenile chinook migration. A screw trap was also operated on the East Fork of the Salmon River during the spring and fall from 1993 to 1997 and 1999 (fall only) to 2000. Significant supplementation treatments have occurred in the South

  7. Gene expression in five salmon louse (Lepeophtheirus salmonis, Krøyer 1837) tissues.

    PubMed

    Edvardsen, Rolf Brudvik; Dalvin, Sussie; Furmanek, Tomasz; Malde, Ketil; Mæhle, Stig; Kvamme, Bjørn Olav; Skern-Mauritzen, Rasmus

    2014-12-01

    The Atlantic salmon, Salmo salar L, is an important species both for traditional fishery and fish farming. Many Atlantic salmon stocks have been declining and a suspected main contributor to this decline is the salmon louse (Lepeophtheirus salmonis); a parasitic copepod living off the salmonid hosts epidermal tissues and blood. Contributing to the growing body of knowledge on the molecular biology of the salmon louse we have utilized a microarray containing 11,100 salmon louse genes to study the gene expression patterns in selected tissues. This approach has yielded information about potential functions of the transcripts and tissues. Microarray analyses were preformed on subcuticular and frontal (neuronal and gland enriched tissue) tissues, as well as gut, ovary and testes of adult lice. Tissue specific transcriptomes were evident, allowing us to address main traits of functional partitioning between tissues and providing valuable insight into the biology of the louse. The results furthermore represent an important tool and resource for further experiments. PMID:24999079

  8. Aniakchak sockeye salmon investigations

    USGS Publications Warehouse

    Hamon, Troy R.; Pavey, Scott A.; Miller, Joe L.; Nielsen, Jennifer L.

    2005-01-01

    Aniakchak National Monument and Preserve provides unusual and dramatic landscapes shaped by numerous volcanic eruptions, a massive flood, enormous landslides, and ongoing geological change. The focal point of the monument is Aniakchak Caldera, a restless volcano that embodies the instability of the Alaska Peninsula. This geological instability creates a dynamic and challenging environment for the biological occupants of Aniakchak and unparalleled opportunities for scientists to measure the adaptability of organisms and ecosystems to change. The sockeye salmon (Oncorhynchus nerka) is one member of the Aniakchak ecosystem that has managed to adapt to geologic upheaval and is now thriving in the park. Aside from just surviving in the harsh environment, these salmon are also noteworthy for providing essential marinederived nutrients to plants and animals and as a source of food for historic and present day people in the region.

  9. Biodiveristy and Stability of Aboriginal Salmon Fisheries in the Fraser River Watershed

    NASA Astrophysics Data System (ADS)

    Nesbitt, H. K.; Moore, J.

    2015-12-01

    Natural watersheds are hierarchical networks that may confer stability to ecosystem functions through integration of upstream biodiversity, whereby upstream asset diversification stabilizes the aggregate downstream through the portfolio effect. Here we show that riverine structure and its associated diversity confer stability of salmon catch and lengthened fishing seasons for Aboriginal fisheries on the Fraser River (1370km) in BC, Canada, the second longest dam-free salmon migration route in North America. In Canada, Aboriginal people have rights to fish for food, social, and ceremonial (FSC) purposes. FSC fisheries are located throughout the Fraser watershed and have access to varying levels of salmon diversity based on their location. For instance, fisheries at the mouth of the river have access to all of the salmon that spawn throughout the entire watershed, thus integrating across the complete diversity profile of the entire river. In contrast, fisheries in the headwaters have access to fewer salmon species and populations and thus fish from a much less diverse portfolio. These spatial gradients of diversity within watersheds provide a natural contrast for quantifying the effects of different types of diversity on interannual resource stability and seasonal availability. We acquired weekly and yearly catch totals from 1983 to 2012 (30 years) for Chinook, chum, coho, pink, and sockeye salmon for 21 FSC fishing sites throughout the Fraser River watershed from Fisheries and Oceans Canada. We examined how both population- and species-level diversity affects catch stability and season length at each site by quantifying year-to-year variability and within-year season length respectively. Salmon species diversity made fisheries up to 28% more stable in their catch than predicted with 3.7 more weeks to fish on average. Fisheries with access to high population diversity had up to 3.8 times more stable catch and 3 times longer seasons than less diverse fisheries. We

  10. SALMON 2100 PROJECT: LIKELY SCENARIOS FOR WILD SALMON

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and British Columbia. The Project does not support o...

  11. Development of a Vaccine for Bacterial Kidney Disease in Salmon, 1985 Annual Report.

    SciTech Connect

    Kaattari, Stephen L.

    1986-06-01

    Bacterial kidney disease (BRD) has been and remains a chronic contributory problem limiting the productivity of salmon in the Columbia River Basin. Control of this disease will not come easily, but it would lead to a tremendous increase in the health and numbers of salmon populations. Vaccination of salmon to Renibacterium salmoninarum (KDB) is a potentially successful method of controlling this disease. To date, however, no successful vaccine has been developed for general use. A possible solution to this problem, and thus the goal of this research, is to isolate the antigenic components of KDB and enhance their ability to activate the host defenses. This will be accomplished by the chemical modification of these antigens with potent immunomodulatory substances. These modified antigens will then be tested for their effectiveness in inducing immunity to BKD and thereby preventing the disease. The goal of the project's second year was to chemically modify the major antigens of Renibacteirium salmoninarum, immunize coho salmon (Oncorhynchus kisutch), and to test the immunogenicity of the preparations used. Immunogenicity of the antigenic material was tested by (1) admixture experiments, using whole KD cells with muramyl dipepetide, Vibrio anguillarum extract, E. coli lipopolysaccharide, or Mycobacterium tuberculosis in Freund's complete adjuvant. In addition to these goals a number of important techniques have been developed in order to facilitate the production of the vaccine. These procedures include: (1) the use of the soluble antigen for diagnosis in the ELISA and Western blot analysis, (2) detection of salmonid anti-KD antibodies by an ELISA technique, (3) detection of cellular immune responses to the soluble antigen, and (4) development of immersion challenge procedures for bacterial kidney disease (BKD).

  12. Development of a Vaccine for Bacterial Kidney Disease in Salmon, 1986 Annual Report.

    SciTech Connect

    Kaattari, Stephen L.

    1987-06-01

    Bacterial kidney disease (BRD) has been and remains a chronic contributory problem limiting the productivity of salmon of the Columbia River Basin. Control of this disease will not come easily, but it would lead to a tremendous increase in the health and numbers of salmon populations. Vaccination of salmon of Renibacterium salmoninarum (KDB) is a potentially successful method of controlling this disease. To date, however, no successful vaccine has been developed for general use. A possible solution to this problem,and thus the goal of this research, is to isolate the antigenic components of KDB and enhance their ability to activate the host defenses. This will be accomplished by the chemical modification of these antigens with potent immunomodulatory substances. These modified antigens will then be tested for their effectiveness in inducing immunity to BKD and thereby preventing the disease. The goal of the project's third year was to test the immunogenicity and prophylactic value in coho salmon (Oncorhynchus kisutch) of various chemical conjugates of Renibacterium salmoninarum cells and major antigens. This was accomplished by assessing the serum antibody response, the cellular immune response (cellular proliferation), and the kinetics of mortality after Lethal injections of the bacterium. An important facet of this research is the identification and isolation of virulence factors. These studies are not only important to the dissection of the mechanism of pathogenesis of bacterial kidney disease, but the purification of such a factor(s) will insure the production of a more potent vaccine. The studies completed this year have: (1) identified antigenic material which protect; (2) identified antigenic material which can exacerbate the disease; (3) identified a possibly major mechanism of pathogenesis via the interference with antibody; (4) the general ability to produce delineated a western blot technique for identification of infected fish; (5) described the use of

  13. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (Pacific Northwest): Pink salmon

    SciTech Connect

    Bonar, S.A.; Pauley, G.B.; Thomas, G.L.

    1989-01-01

    Species profiles are literature summaries of the taxonomy, morphology, range, life history, and environmental requirements of coastal aquatic species. They are designed to assist in environmental impact assessment. The pink salmon, often called humpback salmon or humpy, is easily identified by its extremely small scales (150 to 205) on the lateral line. They are the most abundant of the Pacific salmon species and spawn in North American and Asian streams bordering the Pacific and Arctic Oceans. They have a very simple two-year life cycle, which is so invariable that fish running in odd-numbered years are isolated from fish running in even-numbered years so that no gene flow occurs between them. Adults spawn in the fall and the young fry emerge in the spring. The pink salmon is less desirable in commercial and sport catches than most other salmon because of its small size and its soft pale flesh. The Puget Sound region of Washington State is the southern geographic limit of streams supporting major pink salmon runs in the eastern North Pacific. Pink salmon runs are presently only in odd-numbered years in this region. Optimum water temperatures for spawning range from 7.2 to 12.8/degree/C. Productive pink salmon streams have less than 5.0% by volume of fine sediments (less than or equal to0.8 mm). 87 refs., 5 figs., 1 tab.

  14. Identification of a Sex-Linked SNP Marker in the Salmon Louse (Lepeophtheirus salmonis) Using RAD Sequencing

    PubMed Central

    Taggart, John B.; Christie, Hayden R. L.; Bassett, David I.; Bron, James E.; Skuce, Philip J.; Gharbi, Karim; Skern-Mauritzen, Rasmus; Sturm, Armin

    2013-01-01

    The salmon louse (Lepeophtheirus salmonis (Krøyer, 1837)) is a parasitic copepod that can, if untreated, cause considerable damage to Atlantic salmon (Salmo salar Linnaeus, 1758) and incurs significant costs to the Atlantic salmon mariculture industry. Salmon lice are gonochoristic and normally show sex ratios close to 1:1. While this observation suggests that sex determination in salmon lice is genetic, with only minor environmental influences, the mechanism of sex determination in the salmon louse is unknown. This paper describes the identification of a sex-linked Single Nucleotide Polymorphism (SNP) marker, providing the first evidence for a genetic mechanism of sex determination in the salmon louse. Restriction site-associated DNA sequencing (RAD-seq) was used to isolate SNP markers in a laboratory-maintained salmon louse strain. A total of 85 million raw Illumina 100 base paired-end reads produced 281,838 unique RAD-tags across 24 unrelated individuals. RAD marker Lsa101901 showed complete association with phenotypic sex for all individuals analysed, being heterozygous in females and homozygous in males. Using an allele-specific PCR assay for genotyping, this SNP association pattern was further confirmed for three unrelated salmon louse strains, displaying complete association with phenotypic sex in a total of 96 genotyped individuals. The marker Lsa101901 was located in the coding region of the prohibitin-2 gene, which showed a sex-dependent differential expression, with mRNA levels determined by RT-qPCR about 1.8-fold higher in adult female than adult male salmon lice. This study’s observations of a novel sex-linked SNP marker are consistent with sex determination in the salmon louse being genetic and following a female heterozygous system. Marker Lsa101901 provides a tool to determine the genetic sex of salmon lice, and could be useful in the development of control strategies. PMID:24147087

  15. MAINE ATLANTIC SALMON HABITAT - GENERAL

    EPA Science Inventory

    ASDENN00 describes, at 1:24,000 scale, important Atlantic salmon habitat of the Dennys River in Maine. The coverage was developed from field surveys conducted on the Dennys River in Maine by staff of the Atlantic Salmon Authority and U.S. Fish and Wildlife Service. This survey wa...

  16. Biodiesel from Waste Salmon Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmon oils separated from salmon processing waste and hydrolysate and their derived methyl esters were analyzed and compared with corn oil and its methyl ester. These materials were characterized for their fatty acid profiles, viscosity, volatility, thermal properties, low temperature properties, o...

  17. WILD SALMON RESTORATION: IS IT WORTH IT?

    EPA Science Inventory

    Salmon are categorized biologically into two groups: Pacific salmon and Atlantic salmon. Atlantic salmon are found on both sides of the North Atlantic Ocean, but have declined precipitously compared to the size of runs prior to the 1700s. The largest (though small by historic ...

  18. Interactions between brown bears and chum salmon at McNeil River, Alaska

    USGS Publications Warehouse

    Peirce, Joshua M.; Otis, Edward O.; Wipfli, Mark S.; Follmann, Erich H.

    2013-01-01

    Predation on returning runs of adult salmon (Oncorhynchus spp.) can have a large influence on their spawning success. At McNeil River State Game Sanctuary (MRSGS), Alaska, brown bears (Ursus arctos) congregate in high numbers annually along the lower McNeil River to prey upon returning adult chum salmon (O. keta). Low chum salmon escapements into McNeil River since the late 1990s have been proposed as a potential factor contributing to concurrent declines in bear numbers. The objective of this study was to determine the extent of bear predation on chum salmon in McNeil River, especially on pre-spawning fish, and use those data to adjust the escapement goal for the river. In 2005 and 2006, 105 chum salmon were radiotagged at the river mouth and tracked to determine cause and location of death. Below the falls, predators consumed 99% of tagged fish, killing 59% of them before they spawned. Subsequently, the escapement goal was nearly doubled to account for this pre-spawning mortality and to ensure enough salmon to sustain both predators and prey. This approach to integrated fish and wildlife management at MRSGS can serve as a model for other systems where current salmon escapement goals may not account for pre-spawning mortality.

  19. Recovery and management options for spring/summer chinook salmon in the Columbia River basin.

    PubMed

    Kareiva, P; Marvier, M; McClure, M

    2000-11-01

    Construction of four dams on the lower Snake River (in northwestern United States) between 1961 and 1975 altered salmon spawning habitat, elevated smolt and adult migration mortality, and contributed to severe declines of Snake River salmon populations. By applying a matrix model to long-term population data, we found that (i) dam passage improvements have dramatically mitigated direct mortality associated with dams; (ii) even if main stem survival were elevated to 100%, Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) would probably continue to decline toward extinction; and (iii) modest reductions in first-year mortality or estuarine mortality would reverse current population declines. PMID:11062128

  20. Journey of the Oncorhynchus: A Story of the Pacific Northwest Salmon.

    SciTech Connect

    United States. Bonneville Power Administration.

    1994-06-01

    This report tells the story of the Pacific Northwest salmon in words that children can understand. The life cycle of chinook salmon is depicted through pictures and elementary language from the egg to juvenile fish in fresh water, to maturing fish in the ocean, and the adults migrating back up to spawning grounds in the Columbia River. This can be very useful in the education of children.

  1. Intensive Evaluation and Monitoring of Chinook Salmon and Steelhead Trout Production, Crooked River and Upper Salmon River Sites, 1995 Annual Report.

    SciTech Connect

    Kiefer, Russell B.; Lockhart, Jerald N.

    1999-10-01

    The purpose of this intensive monitoring project is to determine the number of returning chinook salmon and steelhead trout adults necessary to achieve optimal smolt production and develop habitat enhancement mitigation accounting based on increases in wild/natural smolt production. Two locations in Idaho are being intensively studied to meet these objectives. Information from this research will be applied to parr monitoring streams statewide to develop escapement objectives and determine success of habitat enhancement projects. The project to date has developed good information on the relationship between chinook salmon adult escapement and smolt production at low to medium seeding levels. Adult chinook salmon escapements have been too low for us to test carrying capacity. For steelhead trout, they have developed a relationship between parr populations and smolt production at low to high seeding levels, with limited information on carrying capacity.

  2. Historical growth of Bristol Bay and Yukon River, Alaska chum salmon (Oncorhynchus keta) in relation to climate and inter- and intraspecific competition

    NASA Astrophysics Data System (ADS)

    Agler, Beverly A.; Ruggerone, Gregory T.; Wilson, Lorna I.; Mueter, Franz J.

    2013-10-01

    We examined Bristol Bay and Yukon River adult chum salmon scales to determine whether climate variability, such as changes in sea surface temperature and climate indices, and high pink and Asian chum salmon abundance reduced chum salmon growth. Annual marine growth increments for 1965-2006 were estimated from scale growth measurements and were modeled as a function of potential explanatory variables using a generalized least squares regression approach. First-year growth of salmon originating from Bristol Bay and the Yukon River showed increased growth in association with higher regional ocean temperatures and was negatively affected by wind mixing and ice cover. Third-year growth was lower when Asian chum salmon were more abundant. Contrary to our hypothesis, warmer large-scale sea surface temperatures in the Gulf of Alaska were also associated with reduced third-year growth. Negative effects of high abundances of Russian pink salmon on third-year growth provided some evidence for interspecific interactions, but the effects were smaller than the effects of Asian chum salmon abundance and Gulf of Alaska sea surface temperature. Although the relative effects of Asian chum salmon and sea surface temperature on the growth of Yukon and Bristol Bay chum salmon were difficult to untangle, we found consistent evidence that high abundances of Asian chum salmon contributed to a reduction in the growth of western Alaska chum salmon.

  3. Reconstruction of Pacific salmon abundance from riparian tree-ring growth.

    PubMed

    Drake, D C; Naiman, Robert J

    2007-07-01

    We use relationships between modern Pacific salmon (Oncorhynchus spp.) escapement (migrating adults counted at weirs or dams) and riparian tree-ring growth to reconstruct the abundance of stream-spawning salmon over 150-350 years. After examining nine sites, we produced reconstructions for five mid-order rivers and four salmon species over a large geographic range in the Pacific Northwest: chinook (O. tschwatcha) in the Umpqua River, Oregon, USA; sockeye (O. nerka) in Drinkwater Creek, British Columbia, Canada; pink (O. gorbuscha) in Sashin Creek, southeastern Alaska, USA; chum (O. keta) in Disappearance Creek, southeastern Alaska, USA; and pink and chum in the Kadashan River, southeastern Alaska, USA. We first derived stand-level, non-climatic growth chronologies from riparian trees using standard dendroecology methods and differencing. When the chronologies were compared to 18-55 years of adult salmon escapement we detected positive, significant correlations at five of the nine sites. Regression models relating escapement to tree-ring growth at the five sites were applied to the differenced chronologies to reconstruct salmon abundance. Each reconstruction contains unique patterns characteristic of the site and salmon species. Reconstructions were validated by comparison to local histories (e.g., construction of dams and salmon canneries) and regional fisheries data such as salmon landings and aerial surveys and the Pacific Decadal Oscillation climate index. The reconstructions capture lower-frequency cycles better than extremes and are most useful for determination and comparison of relative abundance, cycles, and the effects of interventions. Reconstructions show lower population cycle maxima in both Umpqua River chinook and Sashin Creek pink salmon in recent decades. The Drinkwater Creek reconstruction suggests that sockeye abundance since the mid-1990s has been 15-25% higher than at any time since 1850, while no long-term deviations from natural cycles are

  4. Evaluate Factors Limiting Columbia River Gorge Chum Salmon Populations; FY 2002 Annual Report.

    SciTech Connect

    Uusitalo, Nancy M.

    2003-01-30

    Adult and juvenile chum salmon were monitored from October 2001 through September 2002 to evaluate factors limiting production. In 2001, 6 and 69 adult chum salmon were captured in the Hardy Creek and Hamilton Springs weirs, respectively. In 2001, 285 and 328 chum salmon carcasses were recovered during spawning ground surveys in Hardy Creek and Hamilton Springs, respectively. Twenty-eight fish captured in the mainstem Columbia River, Hamilton Springs, and Hardy Creek were implanted with radio tags and tracked via an array of fixed aerial, underwater antennas and a mobile tracking unit. Using the Area-Under-the-Curve program population estimates of adult chum salmon were 835 in Hardy Creek and 617 in Hamilton Springs. Juvenile chum salmon migration was monitored from March-June 2002. Total catches for Hardy Creek and Hamilton Springs were 103,315 and 140,220, respectively. Estimates of juvenile chum salmon emigration were 450,195 ({+-}21,793) in Hardy Creek and 561,462 ({+-}21,423) in Hamilton Springs.

  5. Minthorn Springs Creek Summer Juvenile Release and Adult Collection Facility; 1992 Annual Report.

    SciTech Connect

    Rowan, Gerald D.

    1993-08-01

    The Confederated Tribes of the Umatilla Indian Reservation (CT'UIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to supplement steelhead and re-establish salmon runs in the Umatilla River Basin. As an integral part of this program, Bonifer and Minthorn Acclimation Facilities are operated for holding and spawning adult steelhead and fall chinook salmon and acclimation and release of juvenile salmon and steelhead. Acclimation of 109,101 spring chinook salmon and 19,977 summer steelhead was completed at Bonifer in the spring of 1992. At Minthorn, 47,458 summer steelhead were acclimated and released. Control groups of spring chinook salmon were released instream concurrent with the acclimated releases to evaluate the effects of acclimation on adult returns to the Umatilla River. Acclimation studies with summer steelhead were not conducted in 1992. A total of 237 unmarked adult steelhead were collected for broodstock at Three Mile Dam from October 18, 1991 through April 24, 1992 and held at Minthorn. Utilizing a 3 x 3 spawning matrix, a total of 476,871 green eggs were taken from 86 females. The eggs were transferred to Umatilla Hatchery for incubation, rearing, and later release into the Umatilla River. A total of 211 fall chinook salmon were also collected for broodstock at Three Mile Dam and held at Minthorn. Using a 1:1 spawning ratio, a total of 195,637 green eggs were taken from 58 females. They were also transferred to Umatilla Hatchery for incubation, rearing, and later release into the Umatilla River. Personnel from the ODFW Eastern Oregon Fish Pathology Laboratory in La Grande took samples of tissues and reproductive fluids from Umatilla River summer steelhead and fall chinook salmon broodstock for monitoring and evaluation purposes. Cell culture assays for replicating agents, including IHNV virus, on all spawned fish were negative. One of 60 summer steelhead tested positive for EIBS virus, while all fall chinook tested

  6. Salmon, Mississippi Fact Sheet

    SciTech Connect

    2010-01-04

    The Salmon, Mississippi, Site, also called the Tatum Dome Test Site, is a 1,470-acre tract of land in Lamar County, Mississippi, 21 miles southwest of Hattiesburg. The nearest town is Purvis, about 10 miles east of the site. The site is in a forested region known as the long-leaf pine belt of the Gulf Coastal Plain. Elevations in the area range from about 240 to 350 feet above sea level. The site overlies a salt formation called the Tatum Salt Dome. Land around the Salmon site has residential, industrial, and commercial use, although no one lives within the boundary of the site itself. The U.S. Atomic Energy Commission, a predecessor agency of the U.S. Department of Energy (DOE), and the U.S. Department of Defense conducted two underground nuclear tests at the site under the designation of Project Dribble, part of a larger program known as the Vela Uniform program. Two gas explosive tests, designated Project Miracle Play, were also conducted at the site.

  7. SALMON 2100: THE FUTURE OF WILD PACIFIC SALMON

    EPA Science Inventory

    Many experts have concluded that wild salmon recovery efforts in western North America (especially California, Oregon, Washington, Idaho, and southern British Columbia), as earnest, expensive, and socially disruptive as they currently are, do not appear likely to sustain biologic...

  8. Stream flow, salmon and beaver dams: roles in the structuring of stream fish communities within an anadromous salmon dominated stream.

    PubMed

    Mitchell, Sean C; Cunjak, Richard A

    2007-11-01

    The current paradigm of fish community distribution is one of a downstream increase in species richness by addition, but this concept is based on a small number of streams from the mid-west and southern United States, which are dominated by cyprinids. Further, the measure of species richness traditionally used, without including evenness, may not be providing an accurate reflection of the fish community. We hypothesize that in streams dominated by anadromous salmonids, fish community diversity will be affected by the presence of the anadromous species, and therefore be influenced by those factors affecting the salmonid population. Catamaran Brook, New Brunswick, Canada, provides a long-term data set to evaluate fish community diversity upstream and downstream of an obstruction (North American beaver Castor canadensis dam complex), which affects distribution of Atlantic salmon Salmo salar. The Shannon Weiner diversity index and community evenness were calculated for sample sites distributed throughout the brook and over 15 years. Fish community diversity was greatest upstream of the beaver dams and in the absence of Atlantic salmon. The salmon appear to depress the evenness of the community but do not affect species richness. The community upstream of the beaver dams changes due to replacement of slimy sculpin Cottus cognatus by salmon, rather than addition, when access is provided. Within Catamaran Brook, location of beaver dams and autumn streamflow interact to govern adult Atlantic salmon spawner distribution, which then dictates juvenile production and effects on fish community. These communities in an anadromous Atlantic salmon dominated stream do not follow the species richness gradient pattern shown in cyprinid-dominated streams and an alternative model for stream fish community distribution in streams dominated by anadromous salmonids is presented. This alternative model suggests that community distribution may be a function of semipermeable obstructions

  9. Snake River Sockeye Salmon (Oncorhynchus Nerka) Habitat/Limnologic Research : Annual Report 1992.

    SciTech Connect

    Spaulding, Scott

    1993-05-01

    This report outlines long-term planning and monitoring activities that occurred in 1991 and 1992 in the Stanley Basin Lakes of the upper Salmon River, Idaho for the purpose of sockeye salmon nerka) recovery. Limnological monitoring and experimental sampling protocol, designed to establish a limnological baseline and to evaluate sockeye salmon production capability of the lakes, are presented. Also presented are recommended passage improvements for current fish passage barriers/impediments on migratory routes to the lakes. We initiated O. nerka population evaluations for Redfish and Alturas lakes; this included population estimates of emerging kokanee fry entering each lake in the spring and adult kokanee spawning surveys in tributary streams during the fall. Gill net evaluations of Alturas, Pettit, and Stanley lakes were done in September, 1992 to assess the relative abundance of fish species among the Stanley Basin lakes. Fish population data will be used to predict sockeye salmon production potential within a lake, as well as a baseline to monitor long-term fish community changes as a result of sockeye salmon recovery activities. Also included is a paper that reviews sockeye salmon enhancement activities in British Columbia and Alaska and recommends strategies for the release of age-0 sockeye salmon that will be produced from the current captive broodstock.

  10. Spawning sockeye salmon fossils in Pleistocene lake beds of Skokomish Valley, Washington

    NASA Astrophysics Data System (ADS)

    Smith, Gerald R.; Montgomery, David R.; Peterson, N. Phil; Crowley, Bruce

    2007-09-01

    An assemblage of fossil sockeye salmon was discovered in Pleistocene lake sediments along the South Fork Skokomish River, Olympic Peninsula, Washington. The fossils were abundant near the head of a former glacial lake at 115 m elevation. Large adult salmon are concentrated in a sequence of death assemblages that include individuals with enlarged breeding teeth and worn caudal fins indicating migration, nest digging, and spawning prior to death. The specimens were 4 yr old and 45-70 cm in total length, similar in size to modern sockeye salmon, not landlocked kokanee. The fossils possess most of the characteristics of sockeye salmon, Oncorhynchus nerka, but with several minor traits suggestive of pink salmon, O. gorbuscha. This suggests the degree of divergence of these species at about 1 million yr ago, when geological evidence indicates the salmon were deposited at the head of a proglacial lake impounded by the Salmon Springs advance of the Puget lobe ice sheet. Surficial geology and topography record a complicated history of glacial damming and river diversion that implies incision of the modern gorge of the South Fork Skokomish River after deposition of the fossil-bearing sediments.

  11. Sockeye salmon evolution, ecology, and management

    USGS Publications Warehouse

    Woody, Carol Ann

    2007-01-01

    This collection of articles and photographs gives managers a good idea of recent research into what the sockeye salmon is and does, covering such topics as the vulnerability and value of sockeye salmon ecotypes, their homing ability, using new technologies to monitor reproduction, DNA and a founder event in the Lake Clark sockeye salmon, marine-derived nutrients, the exploitation of large prey, dynamic lake spawning migrations by females, variability of sockeye salmon residence, expression profiling using cDNA microarray technology, learning from stable isotropic records of native otolith hatcheries, the amount of data needed to manage sockeye salmon and estimating salmon "escapement." 

  12. Sustainable Fisheries Management: Pacific Salmon

    USGS Publications Warehouse

    Knudsen, E. Eric; Steward, C.R.; MacDonald, Donald; Williams, J.E.

    2000-01-01

    What has happened to the salmon resource in the Pacific Northwest? Who is responsible and what can be done to reverse the decline in salmon populations? The responsibly falls on everyone involved - fishermen, resource managers and concerned citizens alike - to take the steps necessary to ensure that salmon populations make a full recovery. This collection of papers examines the state of the salmon fisheries in the Pacific Northwest. They cover existing methods and supply model approaches for alternative solutions. The editors stress the importance of input from and cooperation with all parties involved to create a viable solution. Grass roots education and participation is the key to public support - and ultimately the success - of whatever management solutions are developed. A unique and valuable scientific publication, Sustainable Fisheries Management: Pacific Salmon clearly articulates the current state of the Pacific salmon resource, describes the key features of its management, and provides important guidance on how we can make the transition towards sustainable fisheries. The solutions presented in this book provide the basis of a strategy for sustainable fisheries, requiring society and governmental agencies to establish a shared vision, common policies, and a process for collaborative management.

  13. Measurement of circulating salmon IGF binding protein-1: assay development, response to feeding ration and temperature, and relation to growth parameters.

    PubMed

    Shimizu, Munetaka; Beckman, Brian R; Hara, Akihiko; Dickhoff, Walton W

    2006-01-01

    Fish plasma/serum contains multiple IGF binding proteins (IGFBPs), although their identity and physiological regulation are poorly understood. In salmon plasma, at least three IGFBPs with molecular masses of 22, 28 and 41 kDa are detected by Western ligand blotting. The 22 kDa IGFBP has recently been identified as a homolog of mammalian IGFBP-1. In the present study, an RIA for salmon IGFBP-1 was established and regulation of IGFBP-1 by food intake and temperature, and changes in IGFBP-1 during smoltification, were examined. Purified IGFBP-1 from serum was used for as a standard, for tracer preparation and for antiserum production. Cross-linking (125)I-labelled IGFBP-1 with salmon IGF-I eliminated interference by IGFs. The RIA had little cross-reactivity with salmon 28 and 41 kDa IGFBPs (< 0.5%) and measured IGFBP-1 levels as low as 0.1 ng/ml. Fasted fish had significantly higher IGFBP-1 levels than fed fish (21.6 +/- 4.6 vs 3.0 +/- 2.2 ng/ml). Plasma IGFBP-1 was measured in individually tagged 1-year-old coho salmon reared for 10 weeks under four different feeding regimes as follows: high constant (2% body weight/day), medium constant (1% body weight/day), high variable (2% to 0.5% body weight/day) and medium variable (1% to 0.5% body weight/day). Fish fed with the high ration had lower IGFBP-1 levels than those fed with the medium ration. Circulating IGFBP-1 increased following a drop in feeding ration to 0.5% and returned to the basal levels when feeding ration was increased. Another group of coho salmon were reared for 9 weeks under different water temperatures (11 or 7 degrees C) and feeding rations (1.75, 1 or 0.5% body weight/day). Circulating IGFBP-1 levels were separated by temperature during the first 4 weeks; a combined effect of temperature and feeding ration was seen in week 7; only feeding ration influenced IGFBP-1 level thereafter. These results indicate that IGFBP-1 is responsive to moderate nutritional and temperature changes. There was a clear

  14. In stream habitat and stock restoration for salmon otter creek barrier bypass subproject. Restoration project 94139-b1. Exxon Valdez oil spill restoration project final report

    SciTech Connect

    Wedemeyer, K.; Gillikin, D.

    1995-05-01

    In 1994, two barrier falls on Otter Creek, Bay of Isles, Knight Island, Prince William Sound were modified to provide upstream passage to adult pink salmon (Onchorhynchus gorbuscha). The falls were modified by using wire basket gabions, rock drills and wooden weir structures. In addition, an existing set of Alaska steeppasses were maintained and slightly modified for efficient passage of salmon.

  15. Involvement of hormones in olfactory imprinting and homing in chum salmon

    PubMed Central

    Ueda, Hiroshi; Nakamura, Shingo; Nakamura, Taro; Inada, Kaoru; Okubo, Takashi; Furukawa, Naohiro; Murakami, Reiichi; Tsuchida, Shigeo; Zohar, Yonathan; Konno, Kotaro; Watanabe, Masahiko

    2016-01-01

    The olfactory hypothesis for salmon imprinting and homing to their natal stream is well known, but the endocrine hormonal control mechanisms of olfactory memory formation in juveniles and retrieval in adults remain unclear. In brains of hatchery-reared underyearling juvenile chum salmon (Oncorhynchus keta), thyrotropin-releasing hormone gene expression increased immediately after release from a hatchery into the natal stream, and the expression of the essential NR1 subunit of the N-methyl-D-aspartate receptor increased during downstream migration. Gene expression of salmon gonadotropin-releasing hormone (sGnRH) and NR1 increased in the adult chum salmon brain during homing from the Bering Sea to the natal hatchery. Thyroid hormone treatment in juveniles enhanced NR1 gene activation, and GnRHa treatment in adults improved stream odour discrimination. Olfactory memory formation during juvenile downstream migration and retrieval during adult homing migration of chum salmon might be controlled by endocrine hormones and could be clarified using NR1 as a molecular marker. PMID:26879952

  16. Involvement of hormones in olfactory imprinting and homing in chum salmon.

    PubMed

    Ueda, Hiroshi; Nakamura, Shingo; Nakamura, Taro; Inada, Kaoru; Okubo, Takashi; Furukawa, Naohiro; Murakami, Reiichi; Tsuchida, Shigeo; Zohar, Yonathan; Konno, Kotaro; Watanabe, Masahiko

    2016-01-01

    The olfactory hypothesis for salmon imprinting and homing to their natal stream is well known, but the endocrine hormonal control mechanisms of olfactory memory formation in juveniles and retrieval in adults remain unclear. In brains of hatchery-reared underyearling juvenile chum salmon (Oncorhynchus keta), thyrotropin-releasing hormone gene expression increased immediately after release from a hatchery into the natal stream, and the expression of the essential NR1 subunit of the N-methyl-D-aspartate receptor increased during downstream migration. Gene expression of salmon gonadotropin-releasing hormone (sGnRH) and NR1 increased in the adult chum salmon brain during homing from the Bering Sea to the natal hatchery. Thyroid hormone treatment in juveniles enhanced NR1 gene activation, and GnRHa treatment in adults improved stream odour discrimination. Olfactory memory formation during juvenile downstream migration and retrieval during adult homing migration of chum salmon might be controlled by endocrine hormones and could be clarified using NR1 as a molecular marker. PMID:26879952

  17. Yakima River Radio-Telemetry Study: Spring Chinook Salmon, 1991-1992 Annual Report.

    SciTech Connect

    Hockersmith, Eric

    1994-09-01

    As part of the presupplementation planning, baseline data on the productivity of spring chinook salmon (Oncorhynchus tshawytscha) in the Yakima River have been collected. However, for adult salmonids, data on habitat use, delays in passage at irrigation diversions, migration rates, and substock separation had not been previously collected. In 1991, the National Marine Fisheries Service began a 2-year radio-telemetry study of adult spring chinook salmon in the Yakima River Basin. Specific objectives addressed in this study were: to determine spawning populations` run timing, passage patterns at irrigation diversion dams, and morphometric characteristics to determine where and when substocks become separated; to evaluate fish passage at Yakima River Basin diversion dams including Prosser, Sunnyside, Wapato, Roza, Town Diversion, Easton, Cowiche, and Wapatox Dams; to determine spring chinook salmon migration rates between Yakima River Basin dams, prespawning behavior, temporal distribution, and habitat utilization; to identify spawning distribution and timing of spring chinook salmon; to determine the amount and cause of prespawning mortality of spring chinook salmon; and to evaluate adult fish-handling procedures for the right-bank, adult-trapping facility at Prosser Dam.

  18. 78 FR 62616 - Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... Energy Regulatory Commission Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer of Exemption 1. By letter filed September 23, 2013, Salmon Creek Hydroelectric Company informed the Commission that they have changed its name to Salmon Creek Hydroelectric Company, LLC for...

  19. 77 FR 14734 - Incidental Take Permit and Habitat Conservation Plan for PacifiCorp Klamath Hydroelectric Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ... dam by enhancing the viability of the Upper Klamath coho salmon population, (2) Enhance coho salmon spawning habitat downstream of Iron Gate dam, (3) Improve instream flow conditions for coho salmon downstream of Iron Gate dam, (4) Improve water quality for coho salmon downstream of Iron Gate dam,...

  20. Fuzzy modelling of Atlantic salmon physical habitat

    NASA Astrophysics Data System (ADS)

    St-Hilaire, André; Mocq, Julien; Cunjak, Richard

    2015-04-01

    Fish habitat models typically attempt to quantify the amount of available river habitat for a given fish species for various flow and hydraulic conditions. To achieve this, information on the preferred range of values of key physical habitat variables (e.g. water level, velocity, substrate diameter) for the targeted fishs pecies need to be modelled. In this context, we developed several habitat suitability indices sets for three Atlantic salmon life stages (young-of-the-year (YOY), parr, spawning adults) with the help of fuzzy logic modeling. Using the knowledge of twenty-seven experts, from both sides of the Atlantic Ocean, we defined fuzzy sets of four variables (depth, substrate size, velocity and Habitat Suitability Index, or HSI) and associated fuzzy rules. When applied to the Romaine River (Canada), median curves of standardized Weighted Usable Area (WUA) were calculated and a confidence interval was obtained by bootstrap resampling. Despite the large range of WUA covered by the expert WUA curves, confidence intervals were relatively narrow: an average width of 0.095 (on a scale of 0 to 1) for spawning habitat, 0.155 for parr rearing habitat and 0.160 for YOY rearing habitat. When considering an environmental flow value corresponding to 90% of the maximum reached by WUA curve, results seem acceptable for the Romaine River. Generally, this proposed fuzzy logic method seems suitable to model habitat availability for the three life stages, while also providing an estimate of uncertainty in salmon preferences.

  1. Warming Ocean Conditions Relate to Increased Trophic Requirements of Threatened and Endangered Salmon

    PubMed Central

    Daly, Elizabeth A.; Brodeur, Richard D.

    2015-01-01

    The trophic habits, size and condition of yearling Chinook salmon (Oncorhynchus tshawytscha) caught early in their marine residence were examined during 19 survey years (1981–1985; 1998–2011). Juvenile salmon consumed distinct highly piscivorous diets in cold and warm ocean regimes with major differences between ocean regimes driven by changes in consumption of juvenile rockfishes, followed by several other fish prey, adult euphausiids and decapod larvae. Notable, Chinook salmon consumed 30% more food in the warm versus cold ocean regime in both May and June. Additionally, there were about 30% fewer empty stomachs in the warm ocean regime in May, and 10% fewer in warm June periods. The total prey energy density consumed during the warmer ocean regime was also significantly higher than in cold. Chinook salmon had lower condition factor and were smaller in fork length during the warm ocean regime, and were longer and heavier for their size during the cold ocean regime. The significant increase in foraging during the warm ocean regime occurred concurrently with lower available prey biomass. Adult return rates of juvenile Chinook salmon that entered the ocean during a warm ocean regime were lower. Notably, our long term data set contradicts the long held assertion that juvenile salmon eat less in a warm ocean regime when low growth and survival is observed, and when available prey are reduced. Comparing diet changes between decades under variable ocean conditions may assist us in understanding the effects of projected warming ocean regimes on juvenile Chinook salmon and their survival in the ocean environment. Bioenergetically, the salmon appear to require more food resources during warm ocean regimes. PMID:26675673

  2. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XV : Evaluation of the 2007 Predictions of the Run-Timing of Wild and Hatchery-Reared Salmon and Steelhead Smolts to Rock Island, Lower Granite, McNary, John Day, and Bonneville Dams using Program RealTime.

    SciTech Connect

    Griswold, Jim; Townsend, Richard L.; Skalski, John R.

    2008-12-01

    Program RealTime provided monitoring and forecasting of the 2007 inseason outmigrations via the internet for 26 PIT-tagged stocks of wild ESU Chinook salmon and steelhead to Lower Granite and/or McNary dams, one PIT-tagged hatchery-reared ESU of sockeye salmon to Lower Granite Dam, one PIT-tagged wild stock of sockeye salmon to McNary Dam, and 20 passage-indexed runs-at-large, five each to Rock Island, McNary, John Day, and Bonneville dams. Nineteen stocks are of wild yearling Chinook salmon which were captured, PIT-tagged, and released at sites above Lower Granite Dam in 2007 and have at least one year's historical migration data previous to the 2007 migration. These stocks originate in 19 tributaries of the Salmon, Grande Ronde and Clearwater Rivers, all tributaries to the Snake River, and are subsequently detected through tag identification and monitored at Lower Granite Dam. Seven wild PIT-tagged runs-at-large of Snake or Upper Columbia River ESU salmon and steelhead were monitored at McNary Dam. Three wild PIT-tagged runs-at-large were monitored at Lower Granite Dam, consisting of the yearling and subyearling Chinook salmon and the steelhead runs. The hatchery-reared PIT-tagged sockeye salmon stock from Redfish Lake was monitored outmigrating through Lower Granite Dam. Passage-indexed stocks (stocks monitored by FPC passage indices) included combined wild and hatchery runs-at-large of subyearling and yearling Chinook, coho, and sockeye salmon, and steelhead forecasted to Rock Island, McNary, John Day, and Bonneville dams.

  3. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2002 Annual Report.

    SciTech Connect

    Willard, Catherine; Hebdon, J. Lance; Castillo, Jason

    2004-06-01

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes and Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. Restoration efforts are focusing on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced juvenile sockeye salmon from the captive broodstock program occurred in 1994. The first anadromous adult returns from the captive broodstock program were recorded in 1999 when six jacks and one jill were captured at IDFG's Sawtooth Fish Hatchery. In 2002, progeny from the captive broodstock program were released using four strategies: age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in August and to Pettit and Redfish lakes in October, age-1 smolts were released to Redfish Lake Creek in May, eyed-eggs were planted in Pettit Lake in December, and hatchery-produced and anadromous adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2002. Age-0, age-1, and age-2 O. nerka were captured in Redfish Lake, and population abundance was estimated at 50,204 fish. Age-0, age-1, age-2, and age-3 kokanee were captured in Alturas Lake, and population abundance was estimated at 24,374 fish. Age-2 and age-3 O. nerka were captured in Pettit Lake, and population abundance was estimated at 18,328 fish. The ultimate goal of the Idaho Department of Fish and Game (IDFG) captive broodstock development and evaluation efforts is to recover sockeye salmon runs in Idaho waters. Recovery is defined as reestablishing sockeye salmon runs and providing for utilization of sockeye salmon and kokanee resources by anglers. The

  4. The origins of Atlantic salmon (Salmo salar L.) recolonizing the River Mersey in northwest England.

    PubMed

    Ikediashi, Charles; Billington, Sam; Stevens, Jamie R

    2012-10-01

    By the 1950s, pollution had extirpated Atlantic salmon in the river Mersey in northwest England. During the 1970s, an extensive restoration program began and in 2001, an adult salmon was caught ascending the river. Subsequently, a fish trap was installed and additional adults are now routinely sampled. In this study, we have genotyped 138 adults and one juvenile salmon at 14 microsatellite loci from across this time period (2001-2011). We have used assignment analysis with a recently compiled pan-European microsatellite baseline to identify their most probable region of origin. Fish entering the Mersey appear to originate from multiple sources, with the greatest proportion (45-60%, dependent on methodology) assigning to rivers in the geographical region just north of the Mersey, which includes Northwest England and the Solway Firth. Substantial numbers also appear to originate from rivers in western Scotland, and from rivers in Wales and Southwest England; nonetheless, the number of fish originating from proximal rivers to the west of the Mersey was lower than expected. Our results suggest that the majority of salmon sampled in the Mersey are straying in a southerly direction, in accordance with the predominantly clockwise gyre present in the eastern Irish Sea. Our findings highlight the complementary roles of improving water quality and in-river navigability in restoring salmon to a river and underlines further the potential benefits of restoration over stocking as a long-term solution to declining fish stocks. PMID:23145338

  5. Redfish Lake Sockeye Salmon Captive Broodstock Rearing and Research, 1995-2000 Annual Report.

    SciTech Connect

    Flagg, Thomas A.

    2001-01-01

    The National Marine Fisheries Service (NMFS) Northwest Fisheries Science Center, in cooperation with the Idaho Department of Fish and Game and the Bonneville Power Administration, has established captive broodstocks to aid recovery of Snake River sockeye salmon (Oncorhynchus nerka) listed as endangered under the US Endangered Species Act (ESA). Captive broodstock programs are a form of artificial propagation and are emerging as an important component of restoration efforts for ESA-listed salmon populations. However, they differ from standard hatchery techniques in one important respect: fish are cultured in captivity for the entire life cycle. The high fecundity of Pacific salmon, coupled with their potentially high survival in protective culture, affords an opportunity for captive broodstocks to produce large numbers of juveniles in a single generation for supplementation of natural populations. The captive broodstocks discussed in this report were intended to protect the last known remnants of this stock: sockeye salmon that return to Redfish Lake in the Sawtooth Basin of Idaho at the headwaters of the Salmon River. This report addresses NMFS research from January 1995 to August 2000 on the Redfish Lake sockeye salmon captive broodstock program and summarizes results since the beginning of the study in 1991. Since initiating captive brood culture in 1991, NMFS has returned 742,000 eyed eggs, 181 pre-spawning adults, and over 90,000 smolts to Idaho for recovery efforts. The first adult returns to the Stanley Basin from the captive brood program began with 7 in 1999, and increased to about 250 in 2000. NMFS currently has broodstock in culture from year classes 1996, 1997, 1998, and 1999 in both the captive broodstock program, and an adult release program. Spawn from NMFS Redfish Lake sockeye salmon captive broodstocks is being returned to Idaho to aid recovery efforts for the species.

  6. Understanding the Effects of Multiscale Groundwater-Surface Water Interactions on Scott River Baseflow and Stream Temperature in Support of Beneficial Salmon Habitat

    NASA Astrophysics Data System (ADS)

    Hines, R.; Harter, T.

    2009-12-01

    The Scott River watershed is one of only a handful of major watersheds in California that include a zone of adjudicated groundwater and that is not managed by a major reservoir. The Scott River is a major tributary in the Klamath River basin, providing habitat for cold water salmon fishery, including the migration, spawning, reproduction, and early development of cold water fish such as coho salmon, Chinook salmon, and steelhead trout. The Scott Valley entertains extensive alfalfa and hay productions that provide the economic base for the agricultural valley. Due to the Mediterranean climate in the area, discharge rates in the river are highly seasonal. Almost all annual discharge occurs during the winter precipitation season and spring snowmelt. During the summer months (July through September), the main-stem river becomes disconnected from its tributaries throughout much of Scott Valley and relies primarily on baseflow from the Scott Valley aquifer. Summer baseflow in the Scott supports juvenile coho salmon that remain in the Valley until the following winter. Stream temperatures in the Scott River have increased to levels that are not considered sustainable for the native salmon population. Concurrently, late summer/early fall baseflow has decreased, possibly leading to substantial deterioration of habitat conditions. Increased temperature and decreased baseflow are thought to be due in part to groundwater pumping for irrigation and to increased solar radiation from lack of shade by riparian vegetation. Scott Valley agriculture relies on a combination of surface water and groundwater supplies for crop irrigation during April through September. Regional scale surface water - groundwater modeling is employed to investigate the benefits to mid-and late summer baseflow in the Scott River of various conjunctive use management alternatives, including increased spring irrigation recharge and deficit irrigation. Field measurements of stream temperature indicate that

  7. Long-Term Studies of the Effects of Salmon Spawners on Stream Ecosystems

    NASA Astrophysics Data System (ADS)

    Chaloner, D. T.; Lamberti, G. A.; Cak, A. D.; Edwards, R. T.

    2005-05-01

    To determine the ecological effects of salmon-derived nutrients (SDN) transported into fresh waters by spawning adult Pacific salmon (Oncorhynchus spp.), we monitored several ecological parameters in Fish Creek, Southeast Alaska from 2000 to 2004. Pink and chum salmon spawn in the lower reach of Fish Creek, but cannot move further upstream because of a waterfall, 4 km from saltwater. We estimated spawner densities and measured dissolved nutrient concentrations and epilithon abundance before, during, and after the salmon run, in reaches above and below the waterfall barrier. Salmon spawners increased streamwater concentrations of ammonium (2.3 - 148x) and soluble reactive phosphorus (0.4 - 17x), and epilithon chlorophyll a (14 - 29x) and ash-free dry mass (1.4 - 4x) in lower reaches. However, the duration and magnitude of these effects varied widely among years, and did not appear to vary solely with spawner densities. Our results suggest that although SDN can stimulate primary production through increased nutrient concentrations, other environmental factors, such as temperature, irradiance, and discharge, can modulate the influence of salmon spawners on stream ecosystems. To better assess the ecological influence of SDN, future studies should consider the influence of key environmental factors and their temporal and spatial dynamics.

  8. Imprinting Salmon and Steelhead Trout for Homing, 1982 Annual Report of Research.

    SciTech Connect

    Slatick, Emil

    1983-11-01

    The National Marine Fisheries Service, under contract to the Bonneville Power Administration, began conducting research on imprinting Pacific salmon and steelhead for homing in 1978. The juvenile marking phase was completed in 1980; over 4 million juvenile salmon and steelhead were marked and released in 23 experiments. The primary objectives were to determine; (1) a triggering mechanism to activate the homing imprint, (2) if a single imprint or a sequential imprint is necessary to assure homing, and (3) the relationship between the physiological condition of fish and their ability to imprint. Research in 1982 concentrated on: (1) recovering returning adults from previous experiments, (2) analyzing completed 1979 steelhead and chinook salmon experiments, and (3) preliminarily analyzing 1980 fall chinook salmon experiments. Six experimental groups are discussed: two steelhead, two spring chinook salmon, and two fall chinook salmon. In four test groups, survival was enhanced by the imprinting-transportation procedures. Homing back to the hatchery area was partly successful in two test groups, and generally, unless there were extenuating circumstances (eruption of Mount St. Helens, disease problem, etc.), greater returns to user groups were evident.

  9. Papers on the Use of Supplemental Oxygen to Increase Hatchery Rearing Capacity in the Pacific Northwest : a Special Session at the Pacific Northwest Fish Culture Conference, December 2-4, 1986, Springfield, Oregon / Sponsored by the Bioengineeing Section of the American Fisheries Society and Gerald R. Bouck.

    SciTech Connect

    Bouck, Gerald R.

    1987-03-01

    The report contains papers on the following topics: (1) water quality management in intensive aquaculture; (2) Michigan's use of supplemental oxygen; (3) engineering considerations in supplemental oxygen; (4) use of oxygen to commercially rear coho salmon; (5) use of oxygen to commercially rear spring chinook salmon; and (6) interaction of oxygen and rearing density on adult returns. (ACR)

  10. Infectious salmon anaemia virus (ISAV) mucosal infection in Atlantic salmon.

    PubMed

    Aamelfot, Maria; McBeath, Alastair; Christiansen, Debes H; Matejusova, Iveta; Falk, Knut

    2015-01-01

    All viruses infecting fish must cross the surface mucosal barrier to successfully enter a host. Infectious salmon anaemia virus (ISAV), the causative agent of the economically important infectious salmon anaemia (ISA) in Atlantic salmon, Salmo salar L., has been shown to use the gills as its entry point. However, other entry ports have not been investigated despite the expression of virus receptors on the surface of epithelial cells in the skin, the gastrointestinal (GI) tract and the conjunctiva. Here we investigate the ISAV mucosal infection in Atlantic salmon after experimental immersion (bath) challenge and in farmed fish collected from a confirmed outbreak of ISA in Norway. We show for the first time evidence of early replication in several mucosal surfaces in addition to the gills, including the pectoral fin, skin and GI tract suggesting several potential entry points for the virus. Initially, the infection is localized and primarily infecting epithelial cells, however at later stages it becomes systemic, infecting the endothelial cells lining the circulatory system. Viruses of low and high virulence used in the challenge revealed possible variation in virus progression during infection at the mucosal surfaces. PMID:26490835

  11. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2001 Annual Report.

    SciTech Connect

    Kline, Paul A.; Willard, Catherine; Baker, Dan J.

    2003-08-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Marine Fisheries Service at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Marine Fisheries Service are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2001 and December 31, 2001 for the hatchery element of the program are presented in this report. In 2001, 26 anadromous sockeye salmon returned to the Sawtooth Basin. Twenty-three of these adults were captured at adult weirs located on the upper Salmon River and on Redfish Lake Creek. Three of the anadromous sockeye salmon that returned were observed below the Sawtooth Fish Hatchery weir and allowed to migrate upstream volitionally (following the dismantling of the weir on October 12, 2001). Nine anadromous adults were incorporated into the captive broodstock program spawning design in 2001. The remaining adults were released to Redfish Lake for natural spawning. Based on their marks, returning adult sockeye salmon originated from a variety of release options. Two sockeye salmon females from the anadromous group and 152 females from the brood year 1998 captive

  12. Migration of precocious male hatchery chinook salmon in the Umatilla River, Oregon

    USGS Publications Warehouse

    Zimmerman, C.E.; Stonecypher, R.W., Jr.; Hayes, M.C.

    2003-01-01

    Between 1993 and 2000, precocious yearling males of hatchery-produced fall and spring chinook salmon Oncorhynchus tshawytscha composed 3.6-82.1% of chinook salmon runs to the Umatilla River, Oregon. These yearling males are smaller than typical jack salmon, which spend a full winter in the ocean, and are commonly referred to as "mini jacks." Minijack fall chinook salmon are characterized by enlarged testes and an increased gonadosomatic index. Our goal was to determine if minijacks migrated to saltwater between the time they are released from the hatchery and the time they return to the Umatilla River, a period of 4-6 months. During 1999-2000, we collected otoliths from an adult male fall chinook salmon, 12 spring chinook salmon minijacks, and 10 fall chinook salmon minijacks. We measured strontium:calcium (Sr:Ca) ratios from the age-1 annulus to the edge of the otolith to determine whether these fish had migrated to the ocean. The Sr:Ca ratios increased from low values near the age-1 annulus, similar to ratios expected from freshwaters, to higher values near the edge of the otolith. The Sr:Ca ratios increased to levels similar to ratios expected in saltwater, indicating that these fish had migrated to saltwater before returning to the Umatilla River. Analysis of published water chemistry data from the Columbia and Snake rivers and rearing experiments in the main-stem Columbia River confirmed that high Sr:Ca ratios measured in otoliths were not the result of high strontium levels encountered in the freshwater environment. Previously assumed to remain within freshwater and near the point of release, our results suggest these minijack salmon migrated at least 800 km and past three hydroelectric dams to reach saltwater and return to the Umatilla River.

  13. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the USGS publication and maps may be... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer...

  14. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the USGS publication and maps may be... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer...

  15. Disentangling the roles of air exposure, gill net injury, and facilitated recovery on the postcapture and release mortality and behavior of adult migratory sockeye salmon (Oncorhynchus nerka) in freshwater.

    PubMed

    Nguyen, Vivian M; Martins, Eduardo G; Robichaud, Dave; Raby, Graham D; Donaldson, Michael R; Lotto, Andrew G; Willmore, William G; Patterson, David A; Farrell, Anthony P; Hinch, Scott G; Cooke, Steven J

    2014-01-01

    We sought to improve the understanding of delayed mortality in migrating sockeye salmon (Oncorhynchus nerka) captured and released in freshwater fisheries. Using biotelemetry, blood physiology, and reflex assessments, we evaluated the relative roles of gill net injury and air exposure and investigated whether using a recovery box improved survival. Fish (n=238), captured by beach seine, were allocated to four treatment groups: captured only, air exposed, injured, and injured and air exposed. Only half of the fish in each group were provided with a 15-min facilitated recovery. After treatment, fish were radio-tagged and released to resume their migration. Blood status was assessed in 36 additional untagged fish sampled after the four treatments. Compared with fish sampled immediately on capture, all treatments resulted in elevated plasma lactate and cortisol concentrations. After air exposure, plasma osmolality was elevated and reflexes were significantly impaired relative to the control and injured treatments. Injured fish exhibited reduced short-term migration speed by 3.2 km/d and had a 14.5% reduced survival to subnatal watersheds compared to controls. The 15-min facilitated recovery improved reflex assessment relative to fish released immediately but did not affect survival. We suggest that in sockeye salmon migrating in cool water temperatures (∼13°-16°C), delayed mortality can result from injury and air exposure, perhaps through sublethal stress, and that injury created additive delayed mortality likely via secondary infections. PMID:24457927

  16. Umatilla Hatchery Satellite Facilities Operation and Maintenance; 1995 Annual Report.

    SciTech Connect

    Rowan, Gerald D.

    1996-05-01

    The Confederated Tribes of the Umatilla Indian Reservoir (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to enhance steelhead and re-establish salmon runs in the Umatilla River Basin. As an integral part of this program, Bonifer Pond, Minthorn Springs, Imeques C-mem-ini-kem and Thornhollow facilities are operated for acclimation and release of juvenile summer steelhead (Oncorhynchus mykiss), fall and spring chinook salmon (O. tshawytscha) and coho salmon (O. kisutch). Minthorn is also used for holding and spawning adult summer steelhead, fall chinook and coho salmon. Personnel from the ODFW Eastern Oregon Fish Pathology Laboratory in La Grande took samples of tissues and reproductive fluids from Umatilla River summer steelhead and coho salmon broodstock for monitoring and evaluation purposes. Coded-wire tag recovery information was accessed to determine the contribution of Umatilla river releases to ocean, Columbia River and Umatilla River fisheries.

  17. Smallmouth bass and largemouth bass predation on juvenile Chinook salmon and other salmonids in the Lake Washington basin

    USGS Publications Warehouse

    Tabor, R.A.; Footen, B.A.; Fresh, K.L.; Celedonia, M.T.; Mejia, F.; Low, D.L.; Park, L.

    2007-01-01

    We assessed the impact of predation by smallmouth bass Micropterus dolomieu and largemouth bass M. salmoides on juveniles of federally listed Chinook salmon Oncorhynchus tshawytscha and other anadromous salmonid populations in the Lake Washington system. Bass were collected with boat electrofishing equipment in the south end of Lake Washington (February-June) and the Lake Washington Ship Canal (LWSC; April-July), a narrow waterway that smolts must migrate through to reach the marine environment. Genetic analysis was used to identify ingested salmonids to obtain a more precise species-specific consumption estimate. Overall, we examined the stomachs of 783 smallmouth bass and 310 largemouth bass greater than 100 mm fork length (FL). Rates of predation on salmonids in the south end of Lake Washington were generally low for both black bass species. In the LWSC, juvenile salmonids made up a substantial part of bass diets; consumption of salmonids was lower for largemouth bass than for smallmouth bass. Smallmouth bass predation on juvenile salmonids was greatest in June, when salmonids made up approximately 50% of their diet. In the LWSC, overall black bass consumption of salmonids was approximately 36,000 (bioenergetics model) to 46,000 (meal turnover consumption model) juveniles, of which about one-third was juvenile Chinook salmon, one-third was coho salmon O. kisutch, and one-third was sockeye salmon O. nerka. We estimated that about 2,460,000 juvenile Chinook salmon (hatchery and wild sources combined) were produced in the Lake Washington basin in 1999; thus, the mortality estimates in the LWSC range from 0.5% (bioenergetics) to 0.6% (meal turnover). Black bass prey mostly on subyearlings of each salmonid species. The vulnerability of subyearlings to predation can be attributed to their relatively small size; their tendency to migrate when water temperatures exceed 15??C, coinciding with greater black bass activity; and their use of nearshore areas, where overlap

  18. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operation and Maintenance and Monitoring and Evaluation, 2001 Annual Report.

    SciTech Connect

    Boe, Stephen J.; Ogburn, Parker N.

    2003-03-01

    This is the second annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to restore fisheries in these streams. Statement of Work Objectives for 2001: (1) Participate in implementation of the comprehensive multiyear operations plan for the Grande Ronde Endemic Spring chinook Supplementation Program (GRESCP). (2) Plan detailed GRESCP Monitoring and Evaluation for future years. (3) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2001. (4) Plan for data collection needs for bull trout. (5) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2001. (6) Collect summer steelhead. (7) Monitor adult endemic spring chinook salmon populations and collect broodstock. (8) Acclimate juvenile spring chinook salmon prior to release into the upper Grande Ronde River and Catherine Creek. (9) Monitor adult population abundance and characteristics of Grande Ronde River spring chinook salmon populations. (10) Monitor condition, movement, and mortality of spring chinook salmon acclimated at remote facilities. (11) Participate in Monitoring & Evaluation of the captive brood component of the Program to document contribution to the Program. (12) Monitor water quality at facilities. (13) Document accomplishments and needs to permitters, comanagers, and funding agencies. (14) Communicate Project results to the scientific community.

  19. Research on Captive Broodstock Programs for Pacific Salmon, 2004-2005 Annual Report.

    SciTech Connect

    Berejikian, Barry A.

    2005-11-01

    The success of captive broodstock programs depends on high in-culture survival, appropriate development of the reproductive system, and the behavior and survival of cultured salmon after release, either as adults or juveniles. Continuing captive broodstock research designed to improve technology is being conducted to cover all major life history stages of Pacific salmon. Accomplishments detailed in this report and those since the last project review period (FY 2003) are listed below by major objective. Objective 1: (i) Developed tools for monitoring the spawning success of captively reared Chinook salmon that can now be used for evaluating the reintroduction success of ESA-listed captive broodstocks in their natal habitats. (ii) Developed an automated temperature controlled rearing system to test the effects of seawater rearing temperature on reproductive success of Chinook salmon. Objective 2: (i) Determined that Columbia River sockeye salmon imprint at multiple developmental stages and the length of exposure to home water is important for successful imprinting. These results can be utilized for developing successful reintroduction strategies to minimize straying by ESA-listed sockeye salmon. (ii) Developed behavioral and physiological assays for imprinting in sockeye salmon. Objective 3: (i) Developed growth regime to reduce age-two male maturation in spring Chinook salmon, (ii) described reproductive cycle of returning hatchery Snake River spring Chinook salmon relative to captive broodstock, and (iii) found delays in egg development in captive broodstock prior to entry to fresh water. (iv) Determined that loss of Redfish Lake sockeye embryos prior to hatch is largely due to lack of egg fertilization rather than embryonic mortality. Objective 4 : (i) Demonstrated safety and efficacy limits against bacterial kidney disease (BKD) in fall Chinook of attenuated R. salmoninarum vaccine and commercial vaccine Renogen, (ii) improved prophylactic and therapeutic

  20. Pink salmon ( Oncorhynchus gorbuscha) marine survival rates reflect early marine carbon source dependency

    NASA Astrophysics Data System (ADS)

    Kline, Thomas C., Jr.; Boldt, Jennifer L.; Farley, Edward V., Jr.; Haldorson, Lewis J.; Helle, John H.

    2008-05-01

    Marine survival rate (the number of adult salmon returning divided by the number of salmon fry released) of pink salmon runs propagated by Prince William Sound, Alaska (PWS) salmon hatcheries is highly variable resulting in large year-to-year run size variation, which ranged from ∼20 to ∼50 million during 1998-2004. Marine survival rate was hypothesized to be determined during their early marine life stage, a time period corresponding to the first growing season after entering the marine environment while they are still in coastal waters. Based on the predictable relationships of 13C/ 12C ratios in food webs and the existence of regional 13C/ 12C gradients in organic carbon, 13C/ 12C ratios of early marine pink salmon were measured to test whether marine survival rate was related to food web processes. Year-to-year variation in marine survival rate was inversely correlated to 13C/ 12C ratios of early marine pink salmon, but with differences among hatcheries. The weakest relationship was for pink salmon from the hatchery without historic co-variation of marine survival rate with other PWS hatcheries or wild stocks. Year-to-year variation in 13C/ 12C ratio of early marine stage pink salmon in combination with regional spatial gradients of 13C/ 12C ratio measured in zooplankton suggested that marine survival was driven by carbon subsidies of oceanic origin (i.e., oceanic zooplankton). The 2001 pink salmon cohort had 13C/ 12C ratios that were very similar to those found for PWS carbon, i.e., when oceanic subsidies were inferred to be nil, and had the lowest marine survival rate (2.6%). Conversely, the 2002 cohort had the highest marine survival (9.7%) and the lowest mean 13C/ 12C ratio. These isotope patterns are consistent with hypotheses that oceanic zooplankton subsidies benefit salmon as food subsidies, or as alternate prey for salmon predators. Oceanic subsidies are manifestations of significant exchange of material between PWS and the Gulf of Alaska. Given

  1. Cle Elum Lake Sockeye Salmon Restoration Feasibility Study, 1987-1989 Progress Report.

    SciTech Connect

    Flagg, Thomas A.

    1990-02-01

    This report summarizes research activities conducted by the National Marine Fisheries Service (NMFS) from July 1988 through March 1989 relating to the Cle Elum Lake sockeye salmon restoration feasibility study. During this period, efforts focused on collection and spawning of adult sockeye salmon from the Wenatchee River, incubation of eggs from the 1988-brood, and the rearing of juveniles from the 1987-brood. In late July and early August 1988, 520 adult sockeye salmon were captured at fishways on the Wenatchee River and transferred to net-pens in Lake Wenatchee. Fish were held to maturity in late September and early October, spawned, and eggs incubated at a quarantine hatchery in Seattle, WA. The 336 sockeye salmon successfully spawned from the net-pens at Lake Wenatchee were surveyed for the presence of infectious hematopoietic necrosis (IHN) and other replicating viruses. In addition, 13 and 5 sockeye salmon spawners were surveyed from spawning grounds on the White and Little Wenatchee Rivers, respectively, from within the Lake Wenatchee system. 12 refs., 4 figs., 6 tabs.

  2. Captive Rearing Program for Salmon River Chinook Salmon, 2000 Project Progress Report.

    SciTech Connect

    Venditti, David A.

    2002-04-01

    During 2000, the Idaho Department of Fish and Game (IDFG) continued to develop techniques to rear chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were collected to establish captive cohorts from three study streams and included 503 eyed-eggs from East Fork Salmon River (EFSR), 250 from the Yankee Fork Salmon River, and 304 from the West Fork Yankee Fork Salmon River (WFYF). After collection, the eyed-eggs were immediately transferred to the Eagle Fish Hatchery, where they were incubated and reared by family group. Juveniles collected the previous summer were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidney disease before the majority (approximately 75%) were transferred to the National Marine Fisheries Service, Manchester Marine Experimental Station for saltwater rearing through sexual maturity. Smolt transfers included 158 individuals from the Lemhi River (LEM), 193 from the WFYF, and 372 from the EFSR. Maturing fish transfers from the Manchester facility to the Eagle Fish Hatchery included 77 individuals from the LEM, 45 from the WFYF, and 11 from the EFSR. Two mature females from the WFYF were spawned in captivity with four males in 2000. Only one of the females produced viable eggs (N = 1,266), which were placed in in-stream incubators by personnel from the Shoshone-Bannock Tribe. Mature adults (N = 70) from the Lemhi River were released into Big Springs Creek to evaluate their reproductive performance. After release, fish distributed themselves throughout the study section and displayed a progression of habitat associations and behavior consistent with progressing maturation and the onset of spawning. Fifteen of the 17 suspected redds spawned by captive-reared parents in Big Springs Creek were hydraulically sampled to assess survival to the eyed stage of development. Eyed-eggs were collected from 13 of these, and

  3. Monitoring and Evaluation of Smolt Migration in the Columbia Basin, Volume XIV; Evaluation of 2006 Prediction of the Run-Timing of Wild and Hatchery-Reared Salmon and Steelhead at Rock Island, Lower Granite, McNary, John Day and Bonneville Dams using Program Real Time, Technical Report 2006.

    SciTech Connect

    Griswold, Jim

    2007-01-01

    Program RealTime provided monitoring and forecasting of the 2006 inseason outmigrations via the internet for 32 PIT-tagged stocks of wild ESU chinook salmon and steelhead to Lower Granite and/or McNary dams, one PIT-tagged hatchery-reared ESU of sockeye salmon to Lower Granite Dam, and 20 passage-indexed runs-at-large, five each to Rock Island, McNary, John Day, and Bonneville Dams. Twenty-four stocks are of wild yearling chinook salmon which were captured, PIT-tagged, and released at sites above Lower Granite Dam in 2006, and have at least one year's historical migration data previous to the 2006 migration. These stocks originate in drainages of the Salmon, Grande Ronde and Clearwater Rivers, all tributaries to the Snake River, and are subsequently detected through the tag identification and monitored at Lower Granite Dam. In addition, seven wild PIT-tagged runs-at-large of Snake or Upper Columbia River ESU salmon and steelhead were monitored at McNary Dam. Three wild PIT-tagged runs-at-large were monitored at Lower Granite Dam, consisting of the yearling and subyearling chinook salmon and the steelhead trout runs. The hatchery-reared PIT-tagged sockeye salmon stock from Redfish Lake was monitored outmigrating through Lower Granite Dam. Passage-indexed stocks (stocks monitored by FPC passage indices) included combined wild and hatchery runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead trout forecasted to Rock Island, McNary, John Day, and Bonneville Dams.

  4. 1. Salmon Creek Diversion Dam, weir (to left), sand and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Salmon Creek Diversion Dam, weir (to left), sand and silt sluice gate (center), main canal headworks (to right), view to northwest - Salmon Creek Diversion Dam, Salmon Creek, Okanogan, Okanogan County, WA

  5. 2. Salmon Creek Diversion Dam, overview, diversion weir center foreground, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Salmon Creek Diversion Dam, overview, diversion weir center foreground, headworks overflow weir to center left, view to east - Salmon Creek Diversion Dam, Salmon Creek, Okanogan, Okanogan County, WA

  6. Salmon Supplementation Studies in Idaho Rivers, 1996-1998 Progress Report.

    SciTech Connect

    Reighn, Christopher A.; Lewis, Bert; Taki, Doug

    1999-06-01

    Information contained in this report summarizes the work that has been done by the Shoshone-Bannock Tribes Fisheries Department under BPA Project No. 89-098-3, Contract Number 92-BI-49450. Relevant data generated by the Shoshone-Bannock Tribe will be collated with other ISS cooperator data collected from the Salmon and Clearwater rivers and tributary streams. A summary of data presented in this report and an initial project-wide level supplementation evaluation will be available in the ISS 5 year report that is currently in progress. The Shoshone-Bannock Tribal Fisheries Department is responsible for monitoring a variety of chinook salmon (Oncorhynchus tshawytscha) production parameters as part of the Idaho Supplementation Studies (BPA Project No. 89-098-3, Contract Number 92-BI-49450). Parameters include parr abundance in tributaries to the upper Salmon River; adult chinook salmon spawner abundance, redd counts, and carcass collection. A rotary screw trap is operated on the East Fork Salmon River and West Fork Yankee Fork Salmon River to enumerate and PIT-tag chinook smolts. These traps are also used to monitor parr movement, and collect individuals for the State and Tribal chinook salmon captive rearing program. The SBT monitors fisheries parameters in the following six tributaries of the Salmon River: Bear Valley Creek, East Fork Salmon River, Herd Creek, South Fork Salmon River, Valley Creek, and West Fork Yankee Fork. Chinook populations in all SBT-ISS monitored streams continue to decline. The South Fork Salmon River and Bear Valley Creek have the strongest remaining populations. Snorkel survey methodology was used to obtain parr population estimates for ISS streams from 1992 to 1997. Confidence intervals for the parr population estimates were large, especially when the populations were low. In 1998, based on ISS cooperator agreement, snorkeling to obtain parr population estimates was ceased due to the large confidence intervals. A rotary screw trap was

  7. PNW WILD SALMON IN 2100: AN ALTERNATIVE FUTURES PERSPECTIVE ON SALMON RECOVERY

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and southern British Columbia. The Project does not...

  8. WILD SALMON IN 2100: AN ALTERNATIVE FUTURES PERSPECTIVE ON SALMON RECOVERY - MAY 2006

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in California, Oregon, Washington, Idaho, and southern British Columbia. The Project does not...

  9. Maternal consumption of Lake Ontario salmon in rats produces behavioral changes in the offspring.

    PubMed

    Daly, H B; Stewart, P W; Lunkenheimer, L; Sargent, D

    1998-01-01

    The current study assessed the effects of maternal, paternal, or combined parental consumption of Lake Ontario salmon in rats on the behavior of their offspring. Adult female Sprague-Dawley rats were put on a 30 day diet of either ground rat chow containing 30% Lake Ontario salmon (LAKE) or 30% Pacific Ocean salmon (OCEAN). These females were then mated with adult male rats similarly exposed (LAKE or OCEAN). An additional control group of males and females who were fed ground rat chow (MASH) only were also mated. These pairing combinations resulted in five offspring groups: LAKE-LAKE, LAKE-OCEAN, OCEAN-LAKE, OCEAN-OCEAN, MASH-MASH. When the offspring reached 80 days of age, they were tested for reactivity to frustrative nonreward using runway successive negative contrast, which has been repeatedly shown to be increased in adult rats fed Ontario salmon. Consistent with previous work, results showed that the behavior of the OCEAN-OCEAN rats did not differ from the MASH-MASH group, indicating that a salmon diet per se does not cause behavioral change. However, the offspring of dams who consumed Lake Ontario salmon (LAKE-LAKE and OCEAN-LAKE) showed an increased depression effect relative to controls. There was little evidence of a paternal effect. A follow-up experiment employed cross-fostering to determine the relative contribution of pre- and/or postnatal exposure to Lake Ontario salmon consumption on offspring behavior. Rat pups were cross-fostered to or from dams who consumed Lake Ontario salmon during gestation and parturition. Results from two separate replications indicated that prenatal (LAKE to OCEAN) exposure alone or postnatal (OCEAN to LAKE) exposure alone produced a large increase in successive negative contrast relative to controls (OCEAN to OCEAN). These data are strong evidence of behavioral changes produced by maternal consumption of Lake Ontario salmon in the offspring rat. Further, they indicate that either prenatal or postnatal exposure alone is

  10. Exxon Valdez oil spill: State/federal natural resource damage assessment final report. Effects of pink salmon (oncorhynchus gorbuscha) escapement level on egg retention, preemergent fry, and adult returns to the kodiak and chignik management areas caused by the Exxon Valdez oil spill. Fish/shellfish study numbers 7b and 8b. Final report

    SciTech Connect

    1993-12-01

    As a result of the 1989 Exxon Valdez oil spill, commercial salmon fishing in and around the Kodiak and Chignik areas was severely restricted throughout the 1989 season. Consequently, pink salmon escapements for these areas greatly exceeded targeted escapement objectives. Investigations were conducted within the Kodiak and Chignik Management Areas during 1989 and 1990 to determine if negative impacts on future odd-year brood line pink salmon production occurred as a result of overescapement in 1989.

  11. Increased susceptibility to infectious salmon anemia virus (ISAv) in Lepeophtheirus salmonis – infected Atlantic salmon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The salmon louse and infectious salmon anemia virus (ISAv) are the two most significant pathogens of concern to the Atlantic salmon (Salmo salar) aquaculture industry. However, the interactions between sea lice and ISAv, as well as the impact of a prior sea lice infection on the susceptibility of th...

  12. THE SALMON 2100 PROJECT -- AN ALTERNATIVES FUTURES PERSPECTIVE ON PACIFIC NORTHWEST SALMON RECOVERY

    EPA Science Inventory

    The primary goal of the Salmon 2100 Project is to identify practical options that have a high probability of maintaining biologically significant, sustainable populations of wild salmon in the Pacific Northwest and California. Wild salmon recovery efforts in western North Americ...

  13. Dam breaching and Chinook salmon recovery

    USGS Publications Warehouse

    Dambacher, Jeffrey M.; Rossignol, Philippe A.; Li, Hiram W.; Emlen, John M.; Kareiva, Peter; Marvier, Michelle; Michelle M. McClure

    2001-01-01

    The Report by Kareiva et al. on recovery and management options for spring/summer chinook salmon (1) has the potential to have a major impact in deciding whether to breach dams on the Snake River. Based on interpretation of their model results, they argue that dam breaching would be insufficient to reverse the decline of salmon. An examination of the specifics of their model, however, suggests that, despire their argument, dam breaching remains a viable recovery option for chinook salmon.

  14. Analysis of Salmon and Steelhead Supplementation, 1990 Final Report.

    SciTech Connect

    Miller, William H.; Coley, Travis C.; Burge, Howard L.

    1990-09-01

    Supplementation or planting salmon and steelhead into various locations in the Columbia River drainage has occurred for over 100 years. All life stages, from eggs to adults, have been used by fishery managers in attempts to establish, rebuild, or maintain anadromous runs. This report summarizes and evaluates results of past and current supplementation of salmon and steelhead. Conclusions and recommendations are made concerning supplementation. Hatchery rearing conditions and stocking methods can affect post released survival of hatchery fish. Stress was considered by many biologists to be a key factor in survival of stocked anadromous fish. Smolts were the most common life stage released and size of smolts correlated positively with survival. Success of hatchery stockings of eggs and presmolts was found to be better if they are put into productive, underseeded habitats. Stocking time, method, species stocked, and environmental conditions of the receiving waters, including other fish species present, are factors to consider in supplementation programs. The unpublished supplementation literature was reviewed primarily by the authors of this report. Direct contact was made in person or by telephone and data compiled on a computer database. Areas covered included Oregon, Washington, Idaho, Alaska, California, British Columbia, and the New England states working with Atlantic salmon. Over 300 projects were reviewed and entered into a computer database. The database information is contained in Appendix A of this report. 6 refs., 9 figs., 21 tabs.

  15. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operation and Maintenance and Monitoring and Evaluation, 2000 Annual Report.

    SciTech Connect

    Boe, Stephen J.; Lofy, Peter T.

    2003-03-01

    This is the third annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to restore fisheries in these streams. Statement of Work Objectives for 2000: (1) Participate in implementation of the comprehensive multiyear operations plan for the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCP). (2) Plan for recovery of endemic summer steelhead populations in Catherine Creek and the upper Grande Ronde River. (3) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2000. (4) Collect summer steelhead. (5) Collect adult endemic spring chinook salmon broodstock. (6) Acclimate juvenile spring chinook salmon prior to release into the upper Grande Ronde River and Catherine Creek. (7) Document accomplishments and needs to permitters, comanagers, and funding agency. (8) Communicate project results to the scientific community. (9) Plan detailed GRESCP Monitoring and Evaluation for future years. (10) Monitor adult population abundance and characteristics of Grande Ronde River spring chinook salmon populations and incidentally-caught summer steelhead and bull trout. (11) Monitor condition, movement, and mortality of spring chinook salmon acclimated at remote facilities. (12) Monitor water quality at facilities. (13) Participate in Monitoring & Evaluation of the captive brood component of the Program to document contribution to the Program.

  16. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 2001 Annual Report.

    SciTech Connect

    Carmichael, Richard W.

    2003-03-01

    Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2001.

  17. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Program, 2000 Annual Report.

    SciTech Connect

    Carmichael, Richard W.

    2003-03-01

    Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2000.

  18. Captive Rearing Program for Salmon River Chinook Salmon : Project Progress Report, 2001 Annual Report.

    SciTech Connect

    Venditti, David A.

    2003-10-01

    During 2001, the Idaho Department of Fish and Game continued to develop techniques to rear chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were hydraulically collected from redds in the East Fork Salmon River (EFSR; N = 311) and the West Fork Yankee Fork Salmon River (WFYF; N = 272) to establish brood year 2001 culture cohorts. The eyed-eggs were incubated and reared by family group at the Eagle Fish Hatchery (Eagle). Juveniles collected the previous summer were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidney disease prior to the majority of them being transferred to the National Marine Fisheries Service, Manchester Marine Experimental Station for saltwater rearing through maturity. Smolt transfers included 210 individuals from the Lemhi River (LEM), 242 from the WFYF, and 178 from the EFSR. Maturing fish transfers from Manchester to Eagle included 62 individuals from the LEM, 72 from the WFYF, and 27 from the EFSR. Additional water chilling capacity was added at Eagle in 2001 to test if spawn timing could be advanced by temperature manipulations, and adults from the LEM and WFYF were divided into chilled ({approx} 9 C) and ambient ({approx} 13.5 C) water temperature groups while at Eagle. Twenty-five mature females from the LEM (11 chilled, 14 ambient) were spawned in captivity with 23 males with the same temperature history in 2001. Water temperature group was not shown to affect the spawn timing of these females, but males did mature earlier. Egg survival to the eyed stage of development averaged 37.9% and did not differ significantly between the two temperature groups. A total of 8,154 eyed-eggs from these crosses were placed in in-stream incubators by personnel from the Shoshone-Bannock Tribe. Mature adults (N = 89) were released into the WFYF to evaluate their reproductive performance. After release, fish

  19. Content and chemical form of mercury and selenium in Lake Ontario salmon and trout

    SciTech Connect

    Cappon, C.J.

    1984-01-01

    The content and chemical form of mercury and selenium were determined in the edible tissue of salmon (coho, chinook) and trout (lake, brown) taken offshore from Lake Ontario near Rochester, New York. For all species, total mercury content ranged from 0.3 to 0.8 micro g/g (fresh-weight), which is similar to concentrations commonly found in canned tuna. Most of the total mercury (63 to 79%) was present as methylmercury, the remainder being divalent inorganic mercury. For all species, 6 to 45% of the total selenium content was present as selenate (SeVI), the remainder being selenite (SeIV) and selenide (SEII). On a molar basis, total selenium content usually exceeded that of total mercury. Samples of smoked and unsmoked brown trout fillets were also examined. Based on the results of this study there is no immediate human health hazard from mercury and selenium. However, there is a need to report specific forms of these metals in Lake Ontario salmonid fish so that elevated concentrations can be better evaluated. 42 references, 1 figure, 4 tables.

  20. Acoustic tracking of migrating salmon.

    PubMed

    Kupilik, Matthew J; Petersen, Todd

    2014-10-01

    Annual salmon migrations vary significantly in annual return numbers from year to year. In order to determine when a species' sustainable return size has been met, a method for counting and sizing the spawning animals is required. This project implements a probability hypothesis density tracker on data from a dual frequency identification sonar to automate the process of counting and sizing the fish crossing an insonified area. Data processing on the sonar data creates intensity images from which possible fish locations can be extracted using image processing. These locations become the input to the tracker. The probability hypothesis density tracker then solves the multiple target tracking problem and creates fish tracks from which length information is calculated using image segmentation. The algorithm is tested on data from the 2010 salmon run on the Kenai river in Alaska and compares favorably with statistical models from sub-sampling and manual measurements. PMID:25324076

  1. Smolt Quality Assessment of Spring Chinook Salmon : Annual Report.

    SciTech Connect

    Zaugg, Waldo S.

    1991-04-01

    The physiological development and physiological condition of spring chinook salmon are being studied at several hatcheries in the Columbia River Basin. The purpose of the study is to determine whether any or several smolt indices can be related to adult recovery and be used to improve hatchery effectiveness. The tests conducted in 1989 on juvenile chinook salmon at Dworshak, Leavenworth, and Warm Springs National Fish Hatcheries, and the Oregon State Willamette Hatchery assessed saltwater tolerance, gill ATPase, cortisol, insulin, thyroid hormones, secondary stress, fish morphology, metabolic energy stores, immune response, blood cell numbers, and plasma ion concentrations. The study showed that smolt development may have occurred before the fish were released from the Willamette Hatchery, but not from the Dworshak, Leavenworth, or Warm Springs Hatcheries. These results will be compared to adult recovery data when they become available, to determine which smolt quality indices may be used to predict adult recovery. The relative rankings of smolt quality at the different hatcheries do not necessarily reflect the competency of the hatchery managers and staff, who have shown a high degree of professionalism and expertise in fish rearing. We believe that the differences in smolt quality are due to the interaction of genetic and environmental factors. One aim of this research is to identify factors that influence smolt development and that may be controlled through fish husbandry to regulate smolt development. 35 refs., 27 figs., 5 tabs.

  2. Studies of transmission of mycobacterial infections in Chinook salmon

    USGS Publications Warehouse

    Ross, A.J.; Johnson, H.E.

    1962-01-01

    THE INCLUSION OF VISCERA AND CARCASSES OF TUBERCULOUS ADULT SALMON IN THE DIET OF JUVENILE SALMONIDS is considered to be the major source of mycobacterial infections in hatchery-reared fish (Wood and Ordal, 1958; Ross, Earp, and Wood, 1959). In considering additional modes of infection, we speculated about transovarian transmission or a mechanical process arising from contamination of the ova at the egg-taking stage with subsequent entry of the bacteria into the egg at the time of fertilization. This paper is a report on observations made during an experiment designed to test the latter theories.

  3. Migratory Characteristics of Juvenile Spring Chinook Salmon in the Willamette River : Completion Report 1994.

    SciTech Connect

    Schreck, Carl B.; Snelling, J.C.; Ewing, R.E.; Bradford, C.S.; Davis, L.E.; Slater, C.H.

    1994-01-01

    The objective of this research was to examine in detail the migration of juvenile spring chinook salmon (Oncorhynchus tshawytscha) in the Willamette River, Oregon. The authors wanted to determine characteristics of seaward migration of spring chinook smolts in relation to the oxygen supplementation practices at the Oregon Department of Fish and Wildlife (ODFW) Willamette Hatchery and use this information to strengthen the design of the oxygen supplementation project. There is little information available on the effects of oxygen supplementation at hatcheries on the migratory characteristics of juvenile salmon. Such information is required to assess the use of oxygen supplementation as a means of improving hatchery production, its effect on imprinting of juveniles, and finally the return of adults. In the event that oxygen supplementation provides for improved production and survival of juvenile chinook salmon at Willamette Hatchery, background information on the migration characteristics of these fish will be required to effectively utilize the increased production within the goals of the Willamette Fish Management Plan. Furthermore this technology may be instrumental in the goal of doubling the runs of spring Chinook salmon in the Columbia River. While evaluation of success is dependent on evaluation of the return of adults with coded wire tags, examination of the migratory characteristics of hatchery smolts may prove to be equally informative. Through this research it is possible to determine the rate at which individuals from various oxygenation treatment groups leave the Willamette River system, a factor which may be strongly related to adult return rate.

  4. Cost-effective management alternatives for Snake river chinook salmon: A biological-economic synthesis

    USGS Publications Warehouse

    Halsing, D.L.; Moore, M.R.

    2008-01-01

    The mandate to increase endangered salmon populations in the Columbia River Basin of North America has created a complex, controversial resource-management issue. We constructed an integrated assessment model as a tool for analyzing biological-economic trade-offs in recovery of Snake River spring- and summer-run chinook salmon (Oncorhynchus tshawytscha). We merged 3 frameworks: a salmon-passage model to predict migration and survival of smolts; an age-structured matrix model to predict long-term population growth rates of salmon stocks; and a cost-effectiveness analysis to determine a set of least-cost management alternatives for achieving particular population growth rates. We assessed 6 individual salmon-management measures and 76 management alternatives composed of one or more measures. To reflect uncertainty, results were derived for different assumptions of effectiveness of smolt transport around dams. Removal of an estuarine predator, the Caspian Tern (Sterna caspia), was cost-effective and generally increased long-term population growth rates regardless of transport effectiveness. Elimination of adult salmon harvest had a similar effect over a range of its cost estimates. The specific management alternatives in the cost-effective set depended on assumptions about transport effectiveness. On the basis of recent estimates of smolt transport effectiveness, alternatives that discontinued transportation or breached dams were prevalent in the cost-effective set, whereas alternatives that maximized transportation dominated if transport effectiveness was relatively high. More generally, the analysis eliminated 80-90% of management alternatives from the cost-effective set. Application of our results to salmon management is limited by data availability and model assumptions, but these limitations can help guide research that addresses critical uncertainties and information. Our results thus demonstrate that linking biology and economics through integrated models can

  5. Evaluate the Restoration Potential of Snake River Fall Chinook Salmon Spawning Habitat, Status Report 2006.

    SciTech Connect

    Hanrahan, T.P.

    2009-01-08

    estimates for fall of 2000 indicate more than 9000 adult fall Chinook salmon returned to this area, accounting for more than 2100 redds within a 5 km section of river.

  6. Cost-effective management alternatives for Snake River Chinook salmon: a biological-economic synthesis.

    PubMed

    Halsing, David L; Moore, Michael R

    2008-04-01

    The mandate to increase endangered salmon populations in the Columbia River Basin of North America has created a complex, controversial resource-management issue. We constructed an integrated assessment model as a tool for analyzing biological-economic trade-offs in recovery of Snake River spring- and summer-run chinook salmon (Oncorhynchus tshawytscha). We merged 3 frameworks: a salmon-passage model to predict migration and survival of smolts; an age-structured matrix model to predict long-term population growth rates of salmon stocks; and a cost-effectiveness analysis to determine a set of least-cost management alternatives for achieving particular population growth rates. We assessed 6 individual salmon-management measures and 76 management alternatives composed of one or more measures. To reflect uncertainty, results were derived for different assumptions of effectiveness of smolt transport around dams. Removal of an estuarine predator, the Caspian Tern (Sterna caspia), was cost-effective and generally increased long-term population growth rates regardless of transport effectiveness. Elimination of adult salmon harvest had a similar effect over a range of its cost estimates. The specific management alternatives in the cost-effective set depended on assumptions about transport effectiveness. On the basis of recent estimates of smolt transport effectiveness, alternatives that discontinued transportation or breached dams were prevalent in the cost-effective set, whereas alternatives that maximized transportation dominated if transport effectiveness was relatively high. More generally, the analysis eliminated 80-90% of management alternatives from the cost-effective set. Application of our results to salmon management is limited by data availability and model assumptions, but these limitations can help guide research that addresses critical uncertainties and information. Our results thus demonstrate that linking biology and economics through integrated models can

  7. Stable isotope analysis of Pacific salmon: insight into trophic status and oceanographic conditions over the last 30 years

    NASA Astrophysics Data System (ADS)

    Satterfield, Franklin R.; Finney, Bruce P.

    Food web interactions and the response of Pacific salmon to physical processes in the North Pacific Ocean over interannual and interdecadal timescales are explored using naturally occurring stable isotope ratios of carbon ( 13C/ 12C) and nitrogen ( 15N/ 14N). Stable isotope analyses of five species of sexually mature North Pacific salmon from Alaska ( Oncorhynchus spp.) cluster into three groups: chinook salmon ( O. tshawytscha) have the highest values, followed by coho ( O. kisutch), with chum ( O. keta), sockeye ( O. nerka), and pink ( O. gorbuscha) together having the lowest values. Although detailed isotopic data on salmon prey are lacking, there are limited data on relevant prey items from areas in which they are found in high abundance. These data suggest that the characteristics of the sockeye, pink and chum we have analyzed are compatible with their diets including open ocean squid and zooplankton, which are in general agreement with stomach content analyses. Isotope relationships between muscle and scale show consistent relationships for both δ13C ( R2=0.98) and δ 15N ( R2=0.90). Thus, scales, which have been routinely archived for many systems, can be used for retrospective analyses. Archived sockeye salmon scales spanning 1966-1999 from Red Lake, Kodiak Island, Alaska were analyzed for their stable isotope ratios of carbon and nitrogen. The δ15N record displays a decreasing trend of ~3‰ from 1969-1982 and an increasing trend of ~3‰ from 1982-1992, while the variations in δ13C are relatively minor. These trends may result from factors such as shifts in trophic level of feeding and/or feeding location, or may originate at the base of the food web via changes in processes such as nutrient cycling or primary productivity. Detailed studies on prey isotopic variability and its controls are needed to distinguish between these factors, and thus to improve the use of stable isotope analysis as a tool to learn more about present and past ecosystem change

  8. Asymmetric hybridization and introgression between pink salmon and chinook salmon in the Laurentian Great Lakes

    USGS Publications Warehouse

    Rosenfield, Jonathan A.; Todd, Thomas; Greil, Roger

    2000-01-01

    Among Pacific salmon collected in the St. Marys River, five natural hybrids of pink salmon Oncorhynchus gorbuscha and chinook salmon Oncorhynchus tshawytscha and one suspected backcross have been detected using morphologic, meristic, and color evidence. One allozyme (LDH, l-lactate dehydrogenase from muscle) and one nuclear DNA locus (growth hormone) for which species-specific fixed differences exist were analyzed to detect additional hybrids and to determine if introgression had occurred. Restriction fragment length polymorphism of mitochondrial DNA (mtDNA) was used to identify the maternal parent of each hybrid. Evidence of introgression was found among the five previously identified hybrids. All hybrid specimens had chinook salmon mtDNA, indicating that hybridization between chinook salmon and pink salmon in the St. Marys River is asymmetric and perhaps unidirectional. Ecological, physiological, and sexual selection forces may contribute to this asymmetric hybridization. Introgression between these highly differentiated species has implications for management, systematics, and conservation of Pacific salmon.

  9. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (Pacific Northwest): Sockeye salmon

    SciTech Connect

    Pauley, G.B.; Risher, R.; Thomas, G.L. . Cooperative Fishery Research Unit)

    1989-12-01

    Species profiles are literature summaries of the taxonomy, morphology, range, life history, and environmental requirements of coastal aquatic species. They are designed to assist in environmental impact assessment. Sockeye salmon always spawn in a lake associated with a river or in the outlet river. The young fish use the lakes for rearing. The brilliant red flesh is highly prized by commercial and sport fishermen. Washington State and the Columbia River are the southern limit of reproducing populations of sockeye salmon. Sockeye salmon are primarily plankton feeders. They appear to thrive best at temperatures of 10--15{degree}C. Ocean distribution does not appear to be limited by salinity. Adults require gravel with adequate water circulation for successful spawning and egg hatching. 100 refs., 6 figs., 3 tabs.

  10. Use of a portable electric barrier to estimate Chinook salmon escapement in a turbid Alaskan river

    USGS Publications Warehouse

    Palmisano, A.; Burger, C.V.

    1988-01-01

    We developed a portable electric barrier to aid in the capture of adult chinook salmon Oncorhynchus tshawytscha undergoing spawning migrations up a turbid stream in south-central Alaska. In 1981, we tagged and released 157 chinook salmon after diverting them from the main-stem Killey River into a conventional trap with the aid of the electric barrier. On the basis of returns of tagged salmon to Benjamin Creek, a clear-water tributary of the upper Killey River, we estimated spawners in the drainage to number 8,000 fish. Two different statistical approaches to the mark–recapture data yielded similar estimates. Through several modifications of the electric barrier, we were able to reduce mortality associated with the barrier's use.

  11. Using Landsat and a Bayesian hard classifier to study forest change in the Salmon Creek Watershed area from 1972-2013

    NASA Astrophysics Data System (ADS)

    Mullis, David Stone

    The Salmon Creek Watershed in Sonoma County, California, USA, is home to a variety of wildlife, and many of its residents are mindful of their place in its ecology. In the past half century, several of its native and rare species have become threatened, endangered, or extinct, most notably the once common Coho salmon and Chinook salmon. The cause of this decline is believed to be a combination of global climate change, local land use, and land cover change. More specifically, the clearing of forested land to create vineyards, as well as other agricultural and residential uses, has led to a decline in biodiversity and habitat structure. I studied sub-scenes of Landsat data from 1972 to 2013 for the Salmon Creek Watershed area to estimate forest cover over this period. I used a maximum likelihood hard classifier to determine forest area, a Mahalanobis distance soft classifier to show the software's uncertainty in classification, and manually digitized forest cover to test and compare results for the 2013 30 m image. Because the earliest images were lower spatial resolution, I also tested the effects of resolution on these statistics. The images before 1985 are at 60 m spatial resolution while the later images are at 30 m resolution. Each image was processed individually and the training data were based on knowledge of the area and a mosaic of aerial photography. Each sub-scene was classified into five categories: water, forest, pasture, vineyard/orchard, and developed/barren. The research shows a decline in forest area from 1972 to around the mid-1990s, then an increase in forest area from the mid-1990s to present. The forest statistics can be helpful for conservation and restoration purposes, while the study on resolution can be helpful for landscape analysis on many levels.

  12. An Assessment of the Status of Captive Broodstock Technology of Pacific Salmon, 1995 Final Report.

    SciTech Connect

    Flagg, Thomas A.; Mahnaken, Conrad V.W.; Hard, Jeffrey J.

    1995-06-01

    This report provides guidance for the refinement and use of captive broodstock technology for Pacific salmon (Oncorhynchus spp.) by bringing together information on the husbandry techniques, genetic risks, physiology, nutrition, and pathology affecting captive broodstocks. Captive broodstock rearing of Pacific salmon is an evolving technology, as yet without well defined standards. At present, we regard captive rearing of Pacific salmon as problematic: high mortality rates and low egg viability were common in the programs we reviewed for this report. One of the most important elements in fish husbandry is the culture environment itself. Many captive broodstock programs for Pacific salmon have reared fish from smolt-to-adult in seawater net-pens, and most have shown success in providing gametes for recovery efforts. However, some programs have lost entire brood years to diseases that transmitted rapidly in this medium. Current programs for endangered species of Pacific salmon rear most fish full-term to maturity in fresh well-water, since ground water is low in pathogens and thus helps ensure survival to adulthood. Our review suggested that captive rearing of fish in either freshwater, well-water, or filtered and sterilized seawater supplied to land-based tanks should produce higher survival than culture in seawater net-pens.

  13. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 1999 Annual Report.

    SciTech Connect

    Baker, Dan J,; Heindel, Jeff A.; Kline, Paul A.

    2005-08-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Marine Fisheries Service at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Marine Fisheries Service are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases are also reported under separate cover. Captive broodstock program activities conducted between January 1, 1999 and December 31, 1999 are presented in this report. In 1999, seven anadromous sockeye salmon returned to the Sawtooth Valley and were captured at the adult weir located on the upper Salmon River. Four anadromous adults were incorporated in the captive broodstock program spawning design for year 1999. The remaining three adults were released to Redfish Lake for natural spawning. All seven adults were adipose and left ventral fin-clipped, indicating hatchery origin. One sockeye salmon female from the anadromous group and 81 females from the captive broodstock group were spawned at the Eagle Fish Hatchery in 1999. Spawn pairings produced approximately 63,147 eyed-eggs with egg survival to eyed-stage of development averaging 38.97%. Eyed-eggs (20,311), presmolts (40,271), smolts (9,718), and adults (21) were planted or released into Sawtooth Valley waters in 1999. Supplementation strategies involved releases to Redfish Lake, Redfish Lake Creek

  14. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2002 Annual Report.

    SciTech Connect

    Willard, Catherine; Baker, Dan J.; Heindel, Jeff A.

    2003-12-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Oceanic and Atmospheric Administration at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Oceanic and Atmospheric Administration are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2002 and December 31, 2002 for the hatchery element of the program are presented in this report. n 2002, 22 anadromous sockeye salmon returned to the Sawtooth Valley. Fifteen of these adults were captured at adult weirs located on the upper Salmon River and on Redfish Lake Creek. Seven of the anadromous sockeye salmon that returned were observed below the Sawtooth Fish Hatchery weir and allowed to migrate upstream volitionally (following the dismantling of the weir on September 30, 2002). All adult returns were released to Redfish Lake for natural spawning. Based on their marks, returning adult sockeye salmon originated from a variety of release options. Sixty-six females from brood year 1999 and 28 females from brood year 2000 captive broodstock groups were spawned at the Eagle Hatchery in 2002. Spawn pairings produced approximately 65

  15. SALMON RECOVERY: LEARNING FROM SUCCESSES AND FAILURES

    EPA Science Inventory

    Billions of dollars have been spent in a so-far failed attempt to reverse the long-term decline of wild Pacific salmon. Of the Earth's four regions (i.e., Asian Far East, Atlantic Europe, eastern North America, and western North America) where salmon runs occurred originally, it...

  16. SALMON: A WORLD AND HISTORICAL PERSPECTIVE

    EPA Science Inventory

    The four nations of Salmon World have existed for 10,000 years. Since the end of the last Ice Age, salmon established naturally substantial populations and prospered in four large regions of the earth: (1) the European side of the North Atlantic; (2) the North American side of...

  17. SALMON RECOVERY: LEARNING FROM SUCCESSES AND MISTAKES

    EPA Science Inventory

    Billions of dollars have been spent in a so-far failed attempt to reverse the long-term decline of wild Pacific salmon. Of the Earth's four regions (i.e., Asian Far East, Atlantic Europe, eastern North America, and western North America) where salmon runs occurred originally, it...

  18. 150 YEARS OF SALMON RESTORATION: ASSORTED TRUTHS

    EPA Science Inventory

    Billions of dollars have been spent in a so-far failed attempt to reverse the long-term decline of wild Pacific salmon. Of the Earth's four regions (i.e., Asian Far East, Atlantic Europe, eastern North America, and western North America) where salmon runs originally occurred, it...

  19. THE FOUR NATIONS OF SALMON WORLD

    EPA Science Inventory

    The four nations of Salmon World have existed for 10,000 years. Since the end of the last Ice Age, salmon established naturally substantial populations and prospered in four large regions of the earth: (1) the European side of the North Atlantic; (2) the North American side of...

  20. 21 CFR 161.170 - Canned Pacific salmon.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Canned Pacific salmon. 161.170 Section 161.170... § 161.170 Canned Pacific salmon. (a) Identity. (1) Canned Pacific salmon is the food prepared from one... forms of canned Pacific salmon are processed from fish prepared by removing the head, gills, and...

  1. 21 CFR 161.170 - Canned Pacific salmon.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Canned Pacific salmon. 161.170 Section 161.170... § 161.170 Canned Pacific salmon. (a) Identity. (1) Canned Pacific salmon is the food prepared from one... forms of canned Pacific salmon are processed from fish prepared by removing the head, gills, and...

  2. THE FUTURE OF PACIFIC NORTHWEST SALMON: ANATOMY OF A CRISIS

    EPA Science Inventory

    Salmon are categorized biologically into two groups: Pacific salmon or Atlantic salmon. All seven species of Pacific salmon on both sides of the North Pacific Ocean have declined substantially from historic levels, but large runs still occur in northern British Columbia, Yukon,...

  3. Snake River Sockeye Salmon Captive Broodstock Program, Research Element : Project Progress Report, 2000 Annual Report.

    SciTech Connect

    Hebdon, J. Lance; Castillo, Jason; Kline, Paul A.

    2002-08-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes and Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. Restoration efforts are focusing on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced juvenile sockeye salmon from the captive broodstock program occurred in 1994. The first anadromous adult returns from the captive broodstock program were recorded in 1999 when six jacks and one jill were captured at Idaho Department of Fish and Game's Sawtooth Fish Hatchery. In 2000, progeny from the captive broodstock program were released using four strategies: eyed-eggs were placed in Pettit Lake; age-0 presmolts were released to all three lakes in October; age-1 smolts were released to Redfish Lake Creek, and hatchery-produced adult sockeye salmon were released to Redfish and Alturas lakes for volitional spawning in September. Anadromous adult sockeye salmon were released to all three lakes. Total kokanee abundance in Redfish Lake was estimated at 10,268, which was the lowest abundance since 1991. Abundance of kokanee in Alturas Lake was estimated at 125,462, which was one of the highest values recorded since 1991. Abundance of kokanee in Pettit Lake was estimated at 40,599, which is the third highest value recorded since 1991. Upon the recommendation of the Stanley Basin Sockeye Technical Oversight Committee, the National Marine Fisheries Service reopened the kokanee fishery on Redfish Lake in 1995 in an attempt to reduce kokanee numbers. Anglers fished an estimated 3,063 hours and harvested approximately 67 kokanee during the 2000 season. Angler effort and harvest were also monitored on Alturas Lake during 2000. Effort on Alturas Lake was 5,190 hours, and harvest of kokanee

  4. Exposure to a mixture of zinc and copper decreases survival and fecundity of Discocotyle sagittata (Leuckart) parasitizing juvenile Atlantic salmon, Salmo salar L.

    PubMed

    Blanar, Christopher A; MacLatchy, Deborah L; Kieffer, Jim D; Munkittrick, Kelly R

    2010-06-01

    We assessed the effects of zinc and copper on freshwater monogenean ectoparasites (Discocotyle sagittata Leuckart) infecting juvenile Atlantic salmon (Salmo salar L.). Exposure to 47 microg/L zinc and 3 microg/L copper reduced survival and fecundity of adult D. sagittata, while egg hatching success was only reduced at high exposure concentrations (2704 microg/L zinc and 164 microg/L copper). Parasitized salmon had decreased plasma chloride, but this was negated in infected fish exposed to metals. No other effects on Atlantic salmon survival and physiology (plasma osmolality, hematocrit) were noted, suggesting that D. sagittata may be more susceptible to metal toxicity than its host fish. PMID:20473654

  5. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2004 Annual Report.

    SciTech Connect

    Baker, Dan J.; Heindel, Jeff A.; Redding, Jeremy

    2006-05-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Oceanic and Atmospheric Administration at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Oceanic and Atmospheric Administration are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2004 and December 31, 2004 for the hatchery element of the program are presented in this report. In 2004, twenty-seven anadromous sockeye salmon returned to the Sawtooth Valley. Traps on Redfish Lake Creek and the upper Salmon River at the Sawtooth Fish Hatchery intercepted one and four adults, respectively. Additionally, one adult sockeye salmon was collected at the East Fork Salmon River weir, 18 were seined from below the Sawtooth Fish Hatchery weir, one adult sockeye salmon was observed below the Sawtooth Fish Hatchery weir but not captured, and two adult sockeye salmon were observed in Little Redfish Lake but not captured. Fish were captured/collected between July 24 and September 14, 2004. The captured/collected adult sockeye salmon (12 females and 12 males) originated from a variety of release strategies and were transferred to

  6. Intensive Evaluation and Monitoring of Chinook Salmon and Steelhead Trout Production, Crooked River and Upper Salmon River Sites, 1992 Annual Report.

    SciTech Connect

    Kiefer, Russell B.; Lockhart, Jerald N.

    1994-12-01

    The purpose of this intensive monitoring project is to determine the number of returning chinook salmon Oncorhynchus tshawytscha and steelhead trout 0. mykiss adults necessary to achieve optimal smolt production, and develop mitigation accounting based on increases in smolt production. Two locations in Idaho are being intensively studied to meet these objectives. Information from this research will be applied to parr monitoring streams statewide to develop escapement objectives and determine success of habitat enhancement projects.

  7. 50 CFR Table 5 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Central California Coast Coho...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 18010110 Sonoma (CA), Mendocino (CA)—Cloverdale Rancheria; Coyote Valley Rancheria; Dry Creek Rancheria... Warm Springs Dam (Lake Sonoma); Coyote Dam (Lake Mendocino). Gualala-Salmon 18010109 Sonoma...

  8. 50 CFR Table 5 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Central California Coast Coho...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 18010110 Sonoma (CA), Mendocino (CA)—Cloverdale Rancheria; Coyote Valley Rancheria; Dry Creek Rancheria... Warm Springs Dam (Lake Sonoma); Coyote Dam (Lake Mendocino). Gualala-Salmon 18010109 Sonoma...

  9. 50 CFR Table 5 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Central California Coast Coho...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 18010110 Sonoma (CA), Mendocino (CA)—Cloverdale Rancheria; Coyote Valley Rancheria; Dry Creek Rancheria... Warm Springs Dam (Lake Sonoma); Coyote Dam (Lake Mendocino). Gualala-Salmon 18010109 Sonoma...

  10. 50 CFR Table 5 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Central California Coast Coho...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 18010110 Sonoma (CA), Mendocino (CA)—Cloverdale Rancheria; Coyote Valley Rancheria; Dry Creek Rancheria... Warm Springs Dam (Lake Sonoma); Coyote Dam (Lake Mendocino). Gualala-Salmon 18010109 Sonoma...

  11. 50 CFR Table 5 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Central California Coast Coho...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 18010110 Sonoma (CA), Mendocino (CA)—Cloverdale Rancheria; Coyote Valley Rancheria; Dry Creek Rancheria... Warm Springs Dam (Lake Sonoma); Coyote Dam (Lake Mendocino). Gualala-Salmon 18010109 Sonoma...

  12. Basin-Scale Variation in the Spatial Pattern of Fall Movement of Juvenile Coho Salmon in the West Fork Smith River, Oregon

    EPA Science Inventory

    For several species of salmonids (Oncorhynchus and Salvelinus spp.) inhabiting Pacific coastal temperate streams, juvenile fish have been recorded moving between mainstem and tributary habitats during the transition from the summer dry season to the winter wet season. Movement co...

  13. USE OF SLACK-WATER ENVIRONMENTS BY COHO SALMON JUVENILES IN A COASTAL OREGON STREAM AS INDICATED BY 34S STABLE ISOTOPE ANALYSIS

    EPA Science Inventory

    Stable isotopes of sulfur are rarely used in studies of elemental cycling, trophic position or use of marine-derived nutrients by salmonids. The main reason for this probably is the reluctance on the part of isotope labs to expose their instruments to SO2 (because of its corrosi...

  14. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin, 1998 Annual Report.

    SciTech Connect

    James, Brenda B.; Pearsons, Todd N.; McMichael, Geoffrey A.

    1999-12-01

    degree of microhabitat overlap with spring chinook salmon. Abundance of naturally occurring spring chinook salmon residuals (age 1+ during the summer) was low (< 0.007/m), representing less than 2% of the naturally produced spring chinook salmon (age 0+ and age 1+ during the summer). Abundance of naturally occurring spring chinook salmon that complete their life cycle in freshwater was high relative to anadromous adults. The authors observed an average of 9.5 precocially mature spring chinook salmon on redds with anadromous adults. In addition, 87% of the redds with anadromous adults present also had precocial males attending. All findings in this report should be considered preliminary and subject to further revision as more data and analytical results become available.

  15. Influence of multiple dam passage on survival of juvenile Chinook salmon in the Columbia River estuary and coastal ocean.

    PubMed

    Rechisky, Erin L; Welch, David W; Porter, Aswea D; Jacobs-Scott, Melinda C; Winchell, Paul M

    2013-04-23

    Multiple dam passage during seaward migration is thought to reduce the subsequent survival of Snake River Chinook salmon. This hypothesis developed because juvenile Chinook salmon from the Snake River, the Columbia River's largest tributary, migrate >700 km through eight hydropower dams and have lower adult return rates than downstream populations that migrate through only 3 or 4 dams. Using a large-scale telemetry array, we tested whether survival of hatchery-reared juvenile Snake River spring Chinook salmon is reduced in the estuary and coastal ocean relative to a downstream, hatchery-reared population from the Yakima River. During the initial 750-km, 1-mo-long migration through the estuary and coastal ocean, we found no evidence of differential survival; therefore, poorer adult returns of Snake River Chinook may develop far from the Columbia River. Thus, hydrosystem mitigation efforts may be ineffective if differential mortality rates develop in the North Pacific Ocean for reasons unrelated to dam passage. PMID:23576733

  16. Captive Rearing Program for Salmon River Chinook Salmon, 2002 Annual Report.

    SciTech Connect

    Venditti, David; Willard, Catherine; James, Chris

    2003-11-01

    During 2002, the Idaho Department of Fish and Game continued to develop techniques to rear Chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were hydraulically collected from redds in the East Fork Salmon River (EFSR; N = 328) and the West Fork Yankee Fork Salmon River (WFYF; N = 308) to establish brood year 2002 culture cohorts. The eyed-eggs were incubated and reared at the Eagle Fish Hatchery, Eagle, Idaho (Eagle). Juveniles collected in 2000 were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidney disease prior to being transferred to the NOAA Fisheries, Manchester Marine Experimental Station, Manchester, Washington (Manchester) for saltwater rearing through maturity. Smolt transfers included 203 individuals from the WFYF and 379 from the EFSR. Maturing fish transfers from Manchester to Eagle included 107 individuals from the LEM, 167 from the WFYF, and 82 from the EFSR. This was the second year maturing adults were held on chilled water at Eagle to test if water temperature manipulations could advance spawn timing. Adults from the LEM and WFYF were divided into chilled ({approx} 9 C) and ambient ({approx} 13.5 C) temperature groups while at Eagle. Forty-seven mature females from the LEM (19 chilled, 16 ambient, and 12 ambient not included in the temperature study) were spawned at Eagle with 42 males in 2002. Water temperature group was not shown to affect the spawn timing of these females, but males did mature earlier. Egg survival to the eyed stage averaged 66.5% and did not differ significantly between the temperature groups. Personnel from the Shoshone-Bannock Tribe placed a total of 47,977 eyed-eggs from these crosses in in-stream incubators. Mature adults (N = 215 including 56 precocial males) were released into the WFYF to evaluate their reproductive performance. After release, fish distributed themselves throughout

  17. Study of Wild Spring Chinook Salmon in the John Day River System, 1985 Final Report.

    SciTech Connect

    Lindsay, Robert B.

    1986-02-01

    A study of wild spring chinook salmon was conducted in the John Day River, Oregon: (1) recommend harvest regulations to achieve escapement goals in the John Day River; (2) recommend adtustments in timing of fish passage operations at Columbia River dams that will increase survival of John Day migrants; (3) recommend habitat or environmental improvements that will increase production of spring chinook salmon; (4) determine escapement goals for wild spring chinook salmon in the John Day River; and (5) recommend procedures for hatchery supplementation in the John Day River in the event it becomes necessary to artificially maintain the run of spring chinook salmon. Juveniles were captured as smolts during migration and as fingerlings during summer rearing. Juveniles were coded-wire tagged, and recoveries of tagged adults were used to assess contribution to ocean and Columbia River fisheries, timing of adult migrations through the Columbia River in relation to fishing seasons, and age and size of fish in fisheries. Scoop traps and seines were used to determine timing of smolt migrations through the John Day River. In addition, recoveries of tagged smolts at John Day Dam, The Dalles Dam, and Jones Beach were used to determine migration timing through the Columbia River. We examined freshwater life history of spring chinook salmon in the John Day River and related it to environmental factors. We looked at adult holding areas, spawning, incubation and emergence, fingerling rearing distribution, size and growth of juveniles and scales. Escapement goals fo the John Day River as well as reasons for declines in John Day stocks were determiend by using stock-recruitment analyses. Recommendations for hatchery supplementation in the John Day were based on results from other study objectives.

  18. Ecology. Can science rescue salmon?

    PubMed

    Mann, C C; Plummer, M L

    2000-08-01

    At a press conference on 27 July, the National Marine Fisheries Service (NMFS) released a long-awaited plan to save the Columbia River's endangered salmon by restoring fish habitat, overhauling hatcheries, limiting harvest, and improving river flow. What the plan did not do, however, was call for immediate breaching of four dams on the Snake River, the Columbia's major tributary--an option that has been the subject of a nationwide environmental crusade. The NMFS will hold that option in abeyance while it sees whether the less drastic measures will do the trick. Responses from both sides were immediate and outraged. PMID:10950712

  19. Production of Ceratonova shasta Myxospores from Salmon Carcasses: Carcass Removal Is Not a Viable Management Option.

    PubMed

    Foott, J S; Stone, R; Fogerty, R; True, K; Bolick, A; Bartholomew, J L; Hallett, S L; Buckles, G R; Alexander, J D

    2016-06-01

    Severe infection by the endemic myxozoan parasite, Ceratonova (synonym, Ceratomyxa) shasta, has been associated with declines in and impaired recovery efforts of populations of fall-run Chinook Salmon Oncorhynchus tshawytscha in the Klamath River, California. The parasite has a complex life cycle involving a polychaete worm host as well as a salmon host. Myxospore transmission of this parasite, from salmon to polychaete, is a life cycle step during which there is a potential for applied disease management. A 3-year data set on prevalence, intensity, and spore characteristics of C. shasta myxospores was obtained from adult Chinook Salmon carcasses surveyed in the main stem of the Klamath River and three of its tributaries, Bogus Creek and the Shasta and Trinity rivers. Annual prevalence of myxospore detection in salmon intestines ranged from 22% to 52%, and spore concentration values per intestinal scraping ranged from 3.94 × 10(2) to 1.47 × 10(7) spores. A prevalence of 7.3% of all carcasses examined produced >5.0 × 10(5) spores, and these carcasses with "high" spore counts accounted for 76-95% of the total spores in a given spawning season. Molecular analysis of visually negative carcasses showed that 45-87% of these samples had parasite DNA, indicating they contained either low spore numbers or presporogonic stages of the parasite. Myxospores were rarely found in carcasses of freshly spawned adults but were common in decomposed carcasses of both sexes. The date of collection or age (based indirectly on FL) did not influence detection. The longer prespawn residence time for spring-run Chinook Salmon compared with that for fall-run Chinook Salmon in the Trinity River was associated with higher spore loads. The dye exclusion method for assessing spore viability in fresh smears indicated an inverse relationship in spore integrity and initial spore concentration. A carcass-removal pilot project in Bogus Creek for 6 weeks in the fall of 2008 (907 carcasses removed

  20. Assessing risks of invasion through gamete performance: farm Atlantic salmon sperm and eggs show equivalence in function, fertility, compatibility and competitiveness to wild Atlantic salmon.

    PubMed

    Yeates, Sarah E; Einum, Sigurd; Fleming, Ian A; Holt, William V; Gage, Matthew Jg

    2014-04-01

    Adaptations at the gamete level (a) evolve quickly, (b) appear sensitive to inbreeding and outbreeding and (c) have important influences on potential to reproduce. We apply this understanding to problems posed by escaped farm salmon and measure their potential to reproduce in the wild. Farm Atlantic salmon (Salmo salar) are a threat to biodiversity, because they escape in large numbers and can introgress, dilute or disrupt locally adapted wild gene pools. Experiments at the whole fish level have found farm reproductive potential to be significant, but inferior compared to wild adults, especially for males. Here, we assess reproductive performance at the gamete level through detailed in vitro comparisons of the form, function, fertility, compatibility and competitiveness of farm versus wild Atlantic salmon sperm and eggs, in conditions mimicking the natural gametic microenvironment, using fish raised under similar environmental conditions. Despite selective domestication and reduced genetic diversity, we find functional equivalence in all farm fish gamete traits compared with their wild ancestral strain. Our results identify a clear threat of farm salmon reproduction with wild fish and therefore encourage further consideration of using triploid farm strains with optimized traits for aquaculture and fish welfare, as triploid fish remain reproductively sterile following escape. PMID:24822083

  1. Harvest Management and Recovery of Snake River Salmon Stocks : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 7 of 11.

    SciTech Connect

    Lestelle, Lawrence C.; Gilbertson, Larry G.

    1993-06-01

    Management measures to regulate salmon fishing harvest have grown increasingly complex over the past decade in response to the needs for improved protection for some salmon runs and to alter harvest sharing between fisheries. The development of management plans that adequately address both needs is an immensely complicated task, one that involves a multitude of stocks, each with its own migration patterns and capacity to sustain exploitation. The fishing industry that relies on these fish populations is also highly diverse. The management task is made especially difficult because the stocks are often intermingled on the fishing grounds, creating highly mixed aggregates of stocks and species on which the fisheries operate. This situation is the one confronting harvest managers attempting to protect Snake River salmon. This report provides an overview of some of the factors that will need to be addressed in assessing the potential for using harvest management measures in the recovery of Snake River salmon stocks. The major sections of the report include the following: perspectives on harvest impacts; ocean distribution and in-river adult migration timing; description of management processes and associated fisheries of interest; and altemative harvest strategies.

  2. Sex and proximity to reproductive maturity influence the survival, final maturation, and blood physiology of Pacific salmon when exposed to high temperature during a simulated migration.

    PubMed

    Jeffries, Ken M; Hinch, Scott G; Martins, Eduardo G; Clark, Timothy D; Lotto, Andrew G; Patterson, David A; Cooke, Steven J; Farrell, Anthony P; Miller, Kristina M

    2012-01-01

    Some Pacific salmon populations have been experiencing increasingly warmer river temperatures during their once-in-a-lifetime spawning migration, which has been associated with en route and prespawn mortality. The mechanisms underlying such temperature-mediated mortality are poorly understood. Wild adult pink (Oncorhynchus gorbuscha) and sockeye (Oncorhynchus nerka) salmon were used in this study. The objectives were to investigate the effects of elevated water temperature on mortality, final maturation, and blood properties under controlled conditions that simulated a "cool" (13°C) and "warm" (19°C) freshwater spawning migration. After 10 d at 13°C, observed mortality was 50%-80% in all groups, which suggested that there was likely some mortality associated with handling and confinement. Observed mortality after 10 d at 19°C was higher, reaching ≥98% in male pink salmon and female pink and sockeye salmon. Thus, male sockeye salmon were the most thermally tolerant (54% observed mortality). Model selection supported the temperature- and sex-specific mortality patterns. The pink salmon were closer to reproductive maturation and farther along the senescence trajectory than sockeye salmon, which likely influenced their survival and physiological responses throughout the experiment. Females of both species held at 19°C had reduced plasma sex steroids compared with those held at 13°C, and female pink salmon were less likely to become fully mature at 19° than at 13°C. Male and female sockeye salmon held at 19°C had higher plasma chloride and osmolality than those held at 13°C, indicative of a thermally related stress response. These findings suggest that sex differences and proximity to reproductive maturity must be considered when predicting thermal tolerance and the magnitude of en route and prespawn mortality for Pacific salmon. PMID:22237290

  3. Mercury and water-quality data from Rink Creek, Salmon River, and Good River, Glacier Bay National Park and Preserve, Alaska, November 2009-October 2011

    USGS Publications Warehouse

    Nagorski, Sonia A.; Neal, Edward G.; Brabets, Timothy P.

    2013-01-01

    Glacier Bay National Park and Preserve (GBNPP), Alaska, like many pristine high latitude areas, is exposed to atmospherically deposited contaminants such as mercury (Hg). Although the harmful effects of Hg are well established, information on this contaminant in southeast Alaska is scarce. Here, we assess the level of this contaminant in several aquatic components (water, sediments, and biological tissue) in three adjacent, small streams in GBNPP that drain contrasting landscapes but receive similar atmospheric inputs: Rink Creek, Salmon River, and Good River. Twenty water samples were collected from 2009 to 2011 and processed and analyzed for total mercury and methylmercury (filtered and particulate), and dissolved organic carbon quantity and quality. Ancillary stream water parameters (discharge, pH, dissolved oxygen, specific conductance, and temperature) were measured at the time of sampling. Major cations, anions, and nutrients were measured four times. In addition, total mercury was analyzed in streambed sediment in 2010 and in juvenile coho salmon and several taxa of benthic macroinvertebrates in the early summer of 2010 and 2011.

  4. Monitoring and Evaluation of Smolt Migration in the Columbia River Basin : Volume VI : Evaluation of the 2000 Predictions of the Run-Timing of Wild Migrant Chinook Salmon and Steelhead Trout, and Hatchery Sockeye Salmon in the Snake River Basin, and Combined Wild Hatchery Salminids Migrating to Rock Island and McNary Dams using Program RealTime.

    SciTech Connect

    Burgess, Caitlin

    1998-07-01

    Program RealTime provided tracking and forecasting of the 2000 in season outmigration via the internet for stocks of wild PIT-tagged spring/summer chinook salmon. These stocks were ESUs from nineteen release sites above Lower Granite dam, including Bear Valley Creek, Big Creek, Camas Creek (new), Cape Horn Creek, Catherine Creek, Elk Creek, Herd Creek, Imnaha River, Johnson Creek (new), Lake Creek, Loon Creek, Lostine River, Marsh Creek, Minam River, East Fork Salmon River (new), South Fork Salmon River, Secesh River, Sulfur Creek and Valley Creek. Forecasts were also provided for two stocks of hatchery-reared PIT-tagged summer-run sockeye salmon, from Redfish Lake and Alturas Lake (new); for a subpopulation of the PIT-tagged wild Snake River fall subyearling chinook salmon; for all wild Snake River PIT-tagged spring/summer yearling chinook salmon (new) and steelhead trout (new)detected at Lower Granite Dam during the 2000 outmigration. The 2000 RealTime project began making forecasts for combined wild- and hatchery-reared runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead trout migrating to Rock Island and McNary Dams on the mid-Columbia River and the mainstem Columbia River. Due to the new (in 1999-2000) Snake River basin hatchery protocol of releasing unmarked hatchery-reared fish, the RealTime forecasting project no longer makes run-timing forecasts for wild Snake River runs-at-large using FPC passage indices, as it has done for the previous three years (1997-1999). The season-wide measure of Program RealTime performance, the mean absolute difference (MAD) between in-season predictions and true (observed) passage percentiles, improved relative to previous years for nearly all stocks. The average season-wide MAD of all (nineteen) spring/summer yearling chinook salmon ESUs dropped from 5.7% in 1999 to 4.5% in 2000. The 2000 MAD for the hatchery-reared Redfish Lake sockeye salmon ESU was the lowest recorded, at 6.0%, down

  5. Migratory Characteristics of Spring Chinook Salmon in the Willamette River : Annual Report 1991.

    SciTech Connect

    Snelling, John C.

    1993-05-01

    This report documents our research to examine in detail the migration of juvenile and adult spring chinook salmon in the Willamette River. We seek to determine characteristics of seaward migration of spring chinook smolts in relation to oxygen supplementation practices at Willamette Hatchery, and to identify potential sources of adult spring chinook mortality in the Willamette River above Willamette Falls and use this information towards analysis of the study on efficiency of oxygen supplementation. The majority of juvenile spring chinook salmon released from Willamette hatchery in 1991 begin downstream movement immediately upon liberation. They travel at a rate of 1.25 to 3.5 miles per hour during the first 48 hours post-release. Considerably slower than the water velocities available to them. Juveniles feed actively during migration, primarily on aquatic insects. Na{sup +}/K{sup +} gill ATPase and cortisol are significantly reduced in juveniles reared in the third pass of the Michigan series with triple density and oxygen supplementation, suggesting that these fish were not as well developed as those reared under other treatments. Returning adult spring chinook salmon migrate upstream at an average rate of about 10 to 20 miles per day, but there is considerable between fish variation. Returning adults exhibit a high incidence of wandering in and out of the Willamette River system above and below Willamette Falls.

  6. Distribution, size, and interannual, seasonal and diel food habits of northern Gulf of Alaska juvenile pink salmon, Oncorhynchus gorbuscha

    NASA Astrophysics Data System (ADS)

    Armstrong, Janet L.; Boldt, Jennifer L.; Cross, Alison D.; Moss, Jamal H.; Davis, Nancy D.; Myers, Katherine W.; Walker, Robert V.; Beauchamp, David A.; Haldorson, Lewis J.

    2005-01-01

    An integral part of assessing the northern Gulf of Alaska (GOA) ecosystem is the analysis of the food habits and feeding patterns of abundant zooplanktivorous fish. Juvenile pink salmon Oncorhynchus gorbuscha are highly abundant zooplanktivores, and support valuable commercial fisheries as adults. We document variability in pink salmon distribution and size from summer to early fall, and present major trends in their food habits by summarizing interannual (August 1999-2001), seasonal (July-October 2001) and diel (August 2000, and July-September 2001) feeding patterns based on analysis of stomach contents of juvenile pink salmon collected along the Seward Line (GOA) and in Prince William Sound (PWS), Alaska. Diets of juvenile pink salmon were more diverse in 2001 compared to either 1999 or 2000. Small pteropods ( Limacina helicina) composed the majority (>60%) of prey consumed in 1999 and 2000; whereas large copepods, euphausiids, and small pteropods composed the majority of prey in 2001. As juvenile pink salmon increased in size, they consumed increasingly larger prey from August to October 2001 in the GOA. The diet of GOA juvenile pink salmon was different and more diverse than the diet of fish caught in PWS. The dominant prey in PWS during July-October was hyperiid amphipods, whereas the primary prey in the GOA were larvaceans and euphausiids in July, then copepods plus small pteropods, amphipods, euphausiids, larval crabs, and shrimp in August. In September and October, diets in both PWS and GOA included high percentages of larger prey items, including fish, euphausiids, and large pteropods ( Clio pyramidata). Diel comparisons of stomach contents showed pink salmon fed during daylight hours with stomach fullness increasing from dawn to a maximum fullness 8-12 h after sunrise, and declining thereafter. We hypothesize that juvenile pink salmon in the northern GOA consumed distinct and varied prey from the suite of zooplankton available during summer months, July

  7. Salmon Life Histories, Habitat, and Food Webs in the Columbia River Estuary: An Overview of Research Results, 2002-2006.

    SciTech Connect

    Bottom, Daniel L.; Anderson, Greer; Baptisa, Antonio

    2008-08-01

    From 2002 through 2006 we investigated historical and contemporary variations in juvenile Chinook salmon Oncorhynchus tshawytscha life histories, habitat associations, and food webs in the lower Columbia River estuary (mouth to rkm 101). At near-shore beach-seining sites in the estuary, Chinook salmon occurred during all months of the year, increasing in abundance from January through late spring or early summer and declining rapidly after July. Recently emerged fry dispersed throughout the estuary in early spring, and fry migrants were abundant in the estuary until April or May each year. Each spring, mean salmon size increased from the tidal freshwater zone to the estuary mouth; this trend may reflect estuarine growth and continued entry of smaller individuals from upriver. Most juvenile Chinook salmon in the mainstem estuary fed actively on adult insects and epibenthic amphipods Americorophium spp. Estimated growth rates of juvenile Chinook salmon derived from otolith analysis averaged 0.5 mm d-1, comparable to rates reported for juvenile salmon Oncorhynchus spp. in other Northwest estuaries. Estuarine salmon collections were composed of representatives from a diversity of evolutionarily significant units (ESUs) from the lower and upper Columbia Basin. Genetic stock groups in the estuary exhibited distinct seasonal and temporal abundance patterns, including a consistent peak in the Spring Creek Fall Chinook group in May, followed by a peak in the Western Cascades Fall Chinook group in July. The structure of acanthocephalan parasite assemblages in juvenile Chinook salmon from the tidal freshwater zone exhibited a consistent transition in June. This may have reflected changes in stock composition and associated habitat use and feeding histories. From March through July, subyearling Chinook salmon were among the most abundant species in all wetland habitat types (emergent, forested, and scrub/shrub) surveyed in the lower 100 km of the estuary. Salmon densities

  8. Pesticides and PCBs in Pacific salmon (Oncorhynchus tshawytscha and O. kisutch) from Puget Sound, Washington

    SciTech Connect

    O`Neill, S.M.; West, J.E.

    1995-12-31

    The Washington Department of Fish and Wildlife initiated a long-term study to monitor levels of contaminants in two species of Pacific salmon (Oncorhynchus tshawytscha and O. kisutch) and other marine fishes of Puget Sound. The study is one component of the Puget Sound Ambient Monitoring Program (PSAMP), a multi-agency effort to assess the environmental health of Puget Sound. Here the authors summarize results from their ongoing study of O. tshawytscha and O. kisutch. Samples of muscle tissue were collected for chemical analyses from adult salmon that were purchased from licensed fish buyers or treaty tribal fisherman. From 1992 through 1994, both salmon species were sampled at seven fishing areas in marine waters and river mouths of Puget Sound. 4,4-DDE and 4,4-DDD, metabolites of the pesticide DDT, and polychlorinated biphenyls (PCBS) were consistently detected in both species and were consistently higher in O. tshawytscha. Low to moderate concentrations of DDT metabolites (3 to 59 ug/kg wet weight) were detected in the salmon samples but were seldom detected in other fish species sampled by PSAMP. Total PCBs concentrations (Arochlor 1254 + 1260) ranged from 10 to 211 ug/kg wet weight in 0. tshawytscha, with many samples containing PCBs concentrations similar to those detected in benthic flatfish, (Pleuronectes vetulus), sampled from urbanized embayments. A stepwise linear regression model was used to identify parameters correlated with accumulation of PCBs and DDT metabolites in salmon. In addition to species differences, factors such as fish age, percent lipids and sampling location may affect the accumulation of these contaminants. Results of this study are contrasted with contaminant levels previously reported for Canadian and Alaskan Pacific salmon. Possible sources of contaminants are outlined.

  9. Predator avoidance during reproduction: diel movements by spawning sockeye salmon between stream and lake habitats.

    PubMed

    Bentley, Kale T; Schindler, Daniel E; Cline, Timothy J; Armstrong, Jonathan B; Macias, Daniel; Ciepiela, Lindsy R; Hilborn, Ray

    2014-11-01

    Daily movements of mobile organisms between habitats in response to changing trade-offs between predation risk and foraging gains are well established; however, less in known about whether similar tactics are used during reproduction, a time period when many organisms are particularly vulnerable to predators. We investigated the reproductive behaviour of adult sockeye salmon (Oncorhynchus nerka) and the activity of their principal predator, brown bears (Ursus arctos), on streams in south-western Alaska. Specifically, we continuously monitored movements of salmon between lake habitat, where salmon are invulnerable to bears, and three small streams, where salmon spawn and are highly vulnerable to bears. We conducted our study across 2 years that offered a distinct contrast in bear activity and predation rates. Diel movements by adult sockeye salmon between stream and lake habitat were observed in 51.3% ± 17.7% (mean ± SD) of individuals among years and sites. Fish that moved tended to hold in the lake for most of the day and then migrated into spawning streams during the night, coincident with when bear activity on streams tended to be lowest. Additionally, cyclic movements between lakes and spawning streams were concentrated earlier in the spawning season. Individuals that exhibited diel movements had longer average reproductive life spans than those who made only one directed movement into a stream. However, the relative effect was dependent on the timing of bear predation, which varied between years. When predation pressure primarily occurred early in the spawning run (i.e., during the height of the diel movements), movers lived 120-310% longer than non-movers. If predation pressure was concentrated later in the spawning run (i.e. when most movements had ceased), movers only lived 10-60% longer. Our results suggest a dynamic trade-off in reproductive strategies of sockeye salmon; adults must be in the stream to reproduce, but must also avoid predation long

  10. Systemic granuloma observed in Atlantic salmon Salmo salar raised to market size in a freshwater recirculation aquaculture system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Systemic granuloma was observed in sampled adult Atlantic salmon Salmo salar raised to harvest size in a freshwater recirculation aquaculture system. The prevalence of this condition was estimated at 10-20% of the population, with affected individuals grossly demonstrating pathology in varying degre...

  11. Cardiac responses to elevated seawater temperature in Atlantic salmon

    PubMed Central

    2014-01-01

    Background Atlantic salmon aquaculture operations in the Northern hemisphere experience large seasonal fluctuations in seawater temperature. With summer temperatures often peaking around 18-20°C there is growing concern about the effects on fish health and performance. Since the heart has a major role in the physiological plasticity and acclimation to different thermal conditions in fish, we wanted to investigate how three and eight weeks exposure of adult Atlantic salmon to 19°C, previously shown to significantly reduce growth performance, affected expression of relevant genes and proteins in cardiac tissues under experimental conditions. Results Transcriptional responses in cardiac tissues after three and eight weeks exposure to 19°C (compared to thermal preference, 14°C) were analyzed with cDNA microarrays and validated by expression analysis of selected genes and proteins using real-time qPCR and immunofluorescence microscopy. Up-regulation of heat shock proteins and cell signaling genes may indicate involvement of the unfolded protein response in long-term acclimation to elevated temperature. Increased immunofluorescence staining of inducible nitric oxide synthase in spongy and compact myocardium as well as increased staining of vascular endothelial growth factor in epicardium could reflect induced vascularization and vasodilation, possibly related to increased oxygen demand. Increased staining of collagen I in the compact myocardium of 19°C fish may be indicative of a remodeling of connective tissue with long-term warm acclimation. Finally, higher abundance of transcripts for genes involved in innate cellular immunity and lower abundance of transcripts for humoral immune components implied altered immune competence in response to elevated temperature. Conclusions Long-term exposure of Atlantic salmon to 19°C resulted in cardiac gene and protein expression changes indicating that the unfolded protein response, vascularization, remodeling of connective

  12. A "virus" disease of chinook salmon

    USGS Publications Warehouse

    Ross, A.J.; Rucker, R.R.

    1960-01-01

    Epizootics among chinook salmon fingerlings at the Coleman National Fish Hatchery have occurred periodically since 1941. A virus or virus-like filterable agent has been demonstrated to be the causative agent of this disease.

  13. THE CHALLENGE OF RESTORING WILD SALMON

    EPA Science Inventory

    Many experts have concluded that wild salmon recovery efforts in western North America (especially California, Oregon, Washington, Idaho, and southern British Columbia), as earnest, expensive, and socially disruptive as they currently are, do not appear likely to sustain biologic...

  14. Bona Fide Evidence for Natural Vertical Transmission of Infectious Salmon Anemia Virus in Freshwater Brood Stocks of Farmed Atlantic Salmon (Salmo salar) in Southern Chile

    PubMed Central

    Ramírez, Ramón; Labra, Alvaro; Carmona, Marisela; Muñoz, Cristián

    2014-01-01

    ABSTRACT Infectious salmon anemia (ISA) is a severe disease that affects farmed Atlantic salmon (Salmo salar), causing outbreaks in seawater in most salmon-producing countries worldwide, with particular aggressiveness in southern Chile. The etiological agent of this disease is a virus belonging to the Orthomyxoviridae family, named infectious salmon anemia virus (ISAV). Although it has been suggested that this virus can be vertically transmitted, even in freshwater, there is a lack of compelling experimental evidence to confirm this. Here we demonstrate significant putative viral loads in the ovarian fluid as well as in the eggs of two brood stock female adult specimens that harbored the virus systemically but without clinical signs. The target virus corresponded to a highly polymorphic region 3 (HPR-3) variant, which is known to be virulent in seawater and responsible for recent and past outbreaks of this disease in Chile. Additionally, the virus recovered from the fluid as well as from the interior of the eggs was fully infective to a susceptible fish cell line. To our knowledge, this is the first robust evidence demonstrating mother-to-offspring vertical transmission of the infective virus on the one hand and the asymptomatic transmission of a virulent form of the virus in freshwater fish on the other hand. IMPORTANCE The robustness of the data presented here will contribute to a better understanding of the biology of the virus but most importantly will constitute a key management tool in the control of an aggressive agent constantly threatening the sustainability of the global salmon industry. PMID:24623436

  15. Evaluate Factors Limiting Columbia River Gorge Chum Salmon Populations : FY2001 Annual Report.

    SciTech Connect

    Hoffman, Thomas A.

    2001-12-01

    Juvenile and adult chum salmon were monitored in fiscal year 2001 to continue evaluating factors limiting production. Total adult salmon caught (in weirs or by carcass surveys) in Hardy Creek and Hamilton Springs in 2000 was 25 and 130 fish, respectively. Fifty-two fish captured in the main stem Columbia River, Hamilton Springs, Hardy Creek, or Bonneville Dam were implanted with radio tags and tracked with an array of fixed aerials and underwater antennae. Males tended to move greater distances than females. Population estimates in Hardy Creek and Hamilton Springs were 37{+-}2 and 157{+-}5, respectively. Chum smolt emigration began in Hamilton Springs 25 February 2001 and 2 March 2001 in Hardy Creek. Total catches in Hardy Creek and Hamilton Springs were 2,955 and 14,967, respectively. Population abundance estimates were 11,586{+-}1,836 in Hardy Creek and 84,520{+-}9,283 in Hamilton Springs.

  16. Historical analysis of sockeye salmon growth among populations affected by the Exxon Valdez oil spill and large spawning escapements. Exxon Valdez oil spill restoration project 86048-BAA: Final report

    SciTech Connect

    Ruggerone, G.T.; Rogers, D.E.

    1998-12-01

    Adult sockeye salmon scales, which provide an index of annual salmon growth in fresh and marine waters during 1965--1997, were measured to examine the effects on growth and adult returns of large spawning escapements influenced by the Exxon Valdez oil spill. Scale growth in freshwater was significantly reduced by the large 1989 spawning escapements in the Kenai River system, Red Lake, and Akalura Lake, but not in Chignik Lake. These data suggest that sockeye growth in freshwater may be less stable following the large escapement. Furthermore, the observations of large escapement adversely affecting growth of adjacent brood years of salmon has important implications for stock-recruitment modeling. In Prince William Sound, Coghill Lake sockeye salmon that migrated through oil-contaminated waters did not exhibit noticeably reduced marine growth, but a model was developed that might explain low adult returns in recent years.

  17. Salmon River Habitat Enhancement. 1990 Annual Report

    SciTech Connect

    Rowe, Mike

    1991-12-01

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  18. Quantifying Temperature Effects on Fall Chinook Salmon

    SciTech Connect

    Jager, Yetta

    2011-11-01

    The motivation for this study was to recommend relationships for use in a model of San Joaquin fall Chinook salmon. This report reviews literature pertaining to relationships between water temperature and fall Chinook salmon. The report is organized into three sections that deal with temperature effects on development and timing of freshwater life stages, temperature effects on incubation survival for eggs and alevin, and temperature effects on juvenile survival. Recommendations are made for modeling temperature influences for all three life stages.

  19. Salmon River Habitat Enhancement, 1989 Annual Report.

    SciTech Connect

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook