Science.gov

Sample records for adult digit regeneration

  1. Macrophages modulate adult zebrafish tail fin regeneration.

    PubMed

    Petrie, Timothy A; Strand, Nicholas S; Yang, Chao-Tsung; Tsung-Yang, Chao; Rabinowitz, Jeremy S; Moon, Randall T

    2014-07-01

    Neutrophils and macrophages, as key mediators of inflammation, have defined functionally important roles in mammalian tissue repair. Although recent evidence suggests that similar cells exist in zebrafish and also migrate to sites of injury in larvae, whether these cells are functionally important for wound healing or regeneration in adult zebrafish is unknown. To begin to address these questions, we first tracked neutrophils (lyzC(+), mpo(+)) and macrophages (mpeg1(+)) in adult zebrafish following amputation of the tail fin, and detailed a migratory timecourse that revealed conserved elements of the inflammatory cell response with mammals. Next, we used transgenic zebrafish in which we could selectively ablate macrophages, which allowed us to investigate whether macrophages were required for tail fin regeneration. We identified stage-dependent functional roles of macrophages in mediating fin tissue outgrowth and bony ray patterning, in part through modulating levels of blastema proliferation. Moreover, we also sought to detail molecular regulators of inflammation in adult zebrafish and identified Wnt/β-catenin as a signaling pathway that regulates the injury microenvironment, inflammatory cell migration and macrophage phenotype. These results provide a cellular and molecular link between components of the inflammation response and regeneration in adult zebrafish. PMID:24961798

  2. Hyperbaric Oxygen Promotes Proximal Bone Regeneration and Organized Collagen Composition during Digit Regeneration

    PubMed Central

    Sammarco, Mimi C.; Simkin, Jennifer; Cammack, Alexander J.; Fassler, Danielle; Gossmann, Alexej; Marrero, Luis; Lacey, Michelle; Van Meter, Keith; Muneoka, Ken

    2015-01-01

    Oxygen is critical for optimal bone regeneration. While axolotls and salamanders have retained the ability to regenerate whole limbs, mammalian regeneration is restricted to the distal tip of the digit (P3) in mice, primates, and humans. Our previous study revealed the oxygen microenvironment during regeneration is dynamic and temporally influential in building and degrading bone. Given that regeneration is dependent on a dynamic and changing oxygen environment, a better understanding of the effects of oxygen during wounding, scarring, and regeneration, and better ways to artificially generate both hypoxic and oxygen replete microenvironments are essential to promote regeneration beyond wounding or scarring. To explore the influence of increased oxygen on digit regeneration in vivo daily treatments of hyperbaric oxygen were administered to mice during all phases of the entire regenerative process. Micro-Computed Tomography (μCT) and histological analysis showed that the daily application of hyperbaric oxygen elicited the same enhanced bone degradation response as two individual pulses of oxygen applied during the blastema phase. We expand past these findings to show histologically that the continuous application of hyperbaric oxygen during digit regeneration results in delayed blastema formation at a much more proximal location after amputation, and the deposition of better organized collagen fibers during bone formation. The application of sustained hyperbaric oxygen also delays wound closure and enhances bone degradation after digit amputation. Thus, hyperbaric oxygen shows the potential for positive influential control on the various phases of an epimorphic regenerative response. PMID:26452224

  3. Hyperbaric Oxygen Promotes Proximal Bone Regeneration and Organized Collagen Composition during Digit Regeneration.

    PubMed

    Sammarco, Mimi C; Simkin, Jennifer; Cammack, Alexander J; Fassler, Danielle; Gossmann, Alexej; Marrero, Luis; Lacey, Michelle; Van Meter, Keith; Muneoka, Ken

    2015-01-01

    Oxygen is critical for optimal bone regeneration. While axolotls and salamanders have retained the ability to regenerate whole limbs, mammalian regeneration is restricted to the distal tip of the digit (P3) in mice, primates, and humans. Our previous study revealed the oxygen microenvironment during regeneration is dynamic and temporally influential in building and degrading bone. Given that regeneration is dependent on a dynamic and changing oxygen environment, a better understanding of the effects of oxygen during wounding, scarring, and regeneration, and better ways to artificially generate both hypoxic and oxygen replete microenvironments are essential to promote regeneration beyond wounding or scarring. To explore the influence of increased oxygen on digit regeneration in vivo daily treatments of hyperbaric oxygen were administered to mice during all phases of the entire regenerative process. Micro-Computed Tomography (μCT) and histological analysis showed that the daily application of hyperbaric oxygen elicited the same enhanced bone degradation response as two individual pulses of oxygen applied during the blastema phase. We expand past these findings to show histologically that the continuous application of hyperbaric oxygen during digit regeneration results in delayed blastema formation at a much more proximal location after amputation, and the deposition of better organized collagen fibers during bone formation. The application of sustained hyperbaric oxygen also delays wound closure and enhances bone degradation after digit amputation. Thus, hyperbaric oxygen shows the potential for positive influential control on the various phases of an epimorphic regenerative response.

  4. Epimorphic regeneration approach to tissue replacement in adult mammals

    PubMed Central

    Agrawal, Vineet; Johnson, Scott A.; Reing, Janet; Zhang, Li; Tottey, Stephen; Wang, Gang; Hirschi, Karen K.; Braunhut, Susan; Gudas, Lorraine J.; Badylak, Stephen F.

    2009-01-01

    Urodeles and fetal mammals are capable of impressive epimorphic regeneration in a variety of tissues, whereas the typical default response to injury in adult mammals consists of inflammation and scar tissue formation. One component of epimorphic regeneration is the recruitment of resident progenitor and stem cells to a site of injury. Bioactive molecules resulting from degradation of extracellular matrix (ECM) have been shown to recruit a variety of progenitor and stem cells in vitro in adult mammals. The ability to recruit multipotential cells to the site of injury by in vivo administration of chemotactic ECM degradation products in a mammalian model of digit amputation was investigated in the present study. Adult, 6- to 8-week-old C57/BL6 mice were subjected to midsecond phalanx amputation of the third digit of the right hind foot and either treated with chemotactic ECM degradation products or left untreated. At 14 days after amputation, mice treated with ECM degradation products showed an accumulation of heterogeneous cells that expressed markers of multipotency, including Sox2, Sca1, and Rex1 (Zfp42). Cells isolated from the site of amputation were capable of differentiation along neuroectodermal and mesodermal lineages, whereas cells isolated from control mice were capable of differentiation along only mesodermal lineages. The present findings demonstrate the recruitment of endogenous stem cells to a site of injury, and/or their generation/proliferation therein, in response to ECM degradation products. PMID:19966310

  5. Regeneration of Zebrafish CNS: Adult Neurogenesis

    PubMed Central

    Ghosh, Sukla; Hui, Subhra Prakash

    2016-01-01

    Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming. PMID:27382491

  6. Regeneration of Zebrafish CNS: Adult Neurogenesis.

    PubMed

    Ghosh, Sukla; Hui, Subhra Prakash

    2016-01-01

    Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming. PMID:27382491

  7. Regeneration of Zebrafish CNS: Adult Neurogenesis.

    PubMed

    Ghosh, Sukla; Hui, Subhra Prakash

    2016-01-01

    Regeneration in the animal kingdom is one of the most fascinating problems that have allowed scientists to address many issues of fundamental importance in basic biology. However, we came to know that the regenerative capability may vary across different species. Among vertebrates, fish and amphibians are capable of regenerating a variety of complex organs through epimorphosis. Zebrafish is an excellent animal model, which can repair several organs like damaged retina, severed spinal cord, injured brain and heart, and amputated fins. The focus of the present paper is on spinal cord regeneration in adult zebrafish. We intend to discuss our current understanding of the cellular and molecular mechanism(s) that allows formation of proliferating progenitors and controls neurogenesis, which involve changes in epigenetic and transcription programs. Unlike mammals, zebrafish retains radial glia, a nonneuronal cell type in their adult central nervous system. Injury induced proliferation involves radial glia which proliferate, transcribe embryonic genes, and can give rise to new neurons. Recent technological development of exquisite molecular tools in zebrafish, such as cell ablation, lineage analysis, and novel and substantial microarray, together with advancement in stem cell biology, allowed us to investigate how progenitor cells contribute to the generation of appropriate structures and various underlying mechanisms like reprogramming.

  8. Drug-induced regeneration in adult mice

    PubMed Central

    Zhang, Yong; Strehin, Iossif; Bedelbaeva, Khamilia; Gourevitch, Dmitri; Clark, Lise; Leferovich, John; Messersmith, Phillip B.; Heber-Katz, Ellen

    2015-01-01

    Whereas amphibians regenerate lost appendages spontaneously, mammals generally form scars over the injury site through the process of wound repair. The MRL mouse strain is an exception among mammals because it shows a spontaneous regenerative healing trait and so can be used to investigate proregenerative interventions in mammals. We report that hypoxia-inducible factor 1α (HIF-1α) is a central molecule in the process of regeneration in adult MRL mice. The degradation of HIF-1α protein, which occurs under normoxic conditions, is mediated by prolyl hydroxylases (PHDs). We used the drug 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (1,4-DPCA), a PHD inhibitor, to stabilize constitutive expression of HIF-1α protein. A locally injectable hydrogel containing 1,4-DPCA was designed to achieve controlled delivery of the drug over 4 to 10 days. Subcutaneous injection of the 1,4-DPCA/hydrogel into Swiss Webster mice that do not show a regenerative phenotype increased stable expression of HIF-1α protein over 5 days, providing a functional measure of drug release in vivo. Multiple peripheral subcutaneous injections of the 1,4-DPCA/hydrogel over a 10-day period led to regenerative wound healing in Swiss Webster mice after ear hole punch injury. Increased expression of the HIF-1α protein may provide a starting point for future studies on regeneration in mammals. PMID:26041709

  9. Epidermal closure regulates histolysis during mammalian (Mus) digit regeneration.

    PubMed

    Simkin, Jennifer; Sammarco, Mimi C; Dawson, Lindsay A; Tucker, Catherine; Taylor, Louis J; Van Meter, Keith; Muneoka, Ken

    2015-06-01

    Mammalian digit regeneration progresses through consistent stages: histolysis, inflammation, epidermal closure, blastema formation, and finally redifferentiation. What we do not yet know is how each stage can affect others. Questions of stage timing, tissue interactions, and microenvironmental states are becoming increasingly important as we look toward solutions for whole limb regeneration. This study focuses on the timing of epidermal closure which, in mammals, is delayed compared to more regenerative animals like the axolotl. We use a standard wound closure device, Dermabond (2-octyl cyanoacrylate), to induce earlier epidermal closure, and we evaluate the effect of fast epidermal closure on histolysis, blastema formation, and redifferentiation. We find that fast epidermal closure is reliant upon a hypoxic microenvironment. Additionally, early epidermal closure eliminates the histolysis stage and results in a regenerate that more closely replicates the amputated structure. We show that tools like Dermabond and oxygen are able to independently influence the various stages of regeneration enabling us to uncouple histolysis, wound closure, and other regenerative events. With this study, we start to understand how each stage of mammalian digit regeneration is controlled. PMID:27499872

  10. Epidermal closure regulates histolysis during mammalian (Mus) digit regeneration

    PubMed Central

    Simkin, Jennifer; Sammarco, Mimi C.; Dawson, Lindsay A.; Tucker, Catherine; Taylor, Louis J.; Van Meter, Keith

    2015-01-01

    Abstract Mammalian digit regeneration progresses through consistent stages: histolysis, inflammation, epidermal closure, blastema formation, and finally redifferentiation. What we do not yet know is how each stage can affect others. Questions of stage timing, tissue interactions, and microenvironmental states are becoming increasingly important as we look toward solutions for whole limb regeneration. This study focuses on the timing of epidermal closure which, in mammals, is delayed compared to more regenerative animals like the axolotl. We use a standard wound closure device, Dermabond (2‐octyl cyanoacrylate), to induce earlier epidermal closure, and we evaluate the effect of fast epidermal closure on histolysis, blastema formation, and redifferentiation. We find that fast epidermal closure is reliant upon a hypoxic microenvironment. Additionally, early epidermal closure eliminates the histolysis stage and results in a regenerate that more closely replicates the amputated structure. We show that tools like Dermabond and oxygen are able to independently influence the various stages of regeneration enabling us to uncouple histolysis, wound closure, and other regenerative events. With this study, we start to understand how each stage of mammalian digit regeneration is controlled. PMID:27499872

  11. Epimorphic regeneration approach to tissue replacement in adult mammals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Urodeles and fetal mammals are capable of impressive epimorphic regeneration in a variety of tissues, whereas the typical default response to injury in adult mammals consists of inflammation and scar tissue formation. One component of epimorphic regeneration is the recruitment of resident progenitor...

  12. Myocyte Dedifferentiation Drives Extraocular Muscle Regeneration in Adult Zebrafish

    PubMed Central

    Saera-Vila, Alfonso; Kasprick, Daniel S.; Junttila, Tyler L.; Grzegorski, Steven J.; Louie, Ke'ale W.; Chiari, Estelle F.; Kish, Phillip E.; Kahana, Alon

    2015-01-01

    Purpose The purpose of this study was to characterize the injury response of extraocular muscles (EOMs) in adult zebrafish. Methods Adult zebrafish underwent lateral rectus (LR) muscle myectomy surgery to remove 50% of the muscle, followed by molecular and cellular characterization of the tissue response to the injury. Results Following myectomy, the LR muscle regenerated an anatomically correct and functional muscle within 7 to 10 days post injury (DPI). Following injury, the residual muscle stump was replaced by a mesenchymal cell population that lost cell polarity and expressed mesenchymal markers. Next, a robust proliferative burst repopulated the area of the regenerating muscle. Regenerating cells expressed myod, identifying them as myoblasts. However, both immunofluorescence and electron microscopy failed to identify classic Pax7-positive satellite cells in control or injured EOMs. Instead, some proliferating nuclei were noted to express mef2c at the very earliest point in the proliferative burst, suggesting myonuclear reprogramming and dedifferentiation. Bromodeoxyuridine (BrdU) labeling of regenerating cells followed by a second myectomy without repeat labeling resulted in a twice-regenerated muscle broadly populated by BrdU-labeled nuclei with minimal apparent dilution of the BrdU signal. A double-pulse experiment using BrdU and 5-ethynyl-2′-deoxyuridine (EdU) identified double-labeled nuclei, confirming the shared progenitor lineage. Rapid regeneration occurred despite a cell cycle length of 19.1 hours, whereas 72% of the regenerating muscle nuclei entered the cell cycle by 48 hours post injury (HPI). Dextran lineage tracing revealed that residual myocytes were responsible for muscle regeneration. Conclusions EOM regeneration in adult zebrafish occurs by dedifferentiation of residual myocytes involving a muscle-to-mesenchyme transition. A mechanistic understanding of myocyte reprogramming may facilitate novel approaches to the development of molecular

  13. Reprogramming adult cells during organ regeneration in forest species

    PubMed Central

    Abarca, Dolores

    2009-01-01

    The possibility of regenerating whole plants from somatic differentiated cells emphasizes the plasticity of plant development. Cell-type respecification during regeneration can be induced in adult tissues as a consequence of injuries, changes in external or internal stimuli or changes in positional information. However, in many plant species, switching the developmental program of adult cells prior to organ regeneration is difficult, especially in forest species. Besides its impact on forest productivity, basic information on the flexibility of cell differentiation is necessary for a comprehensive understanding of the epigenetic control of cell differentiation and plant development. Studies of reprogramming adult cells in terms of regulative expression changes of selected genes will be of great interest to unveil basic mechanisms regulating cellular plasticity. PMID:19820297

  14. BMP2 induces segment-specific skeletal regeneration from digit and limb amputations by establishing a new endochondral ossification center

    PubMed Central

    Yu, Ling; Han, Manjong; Yan, Mingquan; Lee, Jangwoo; Muneoka, Ken

    2012-01-01

    Bone morphogenetic proteins (BMPs) are required for bone development, the repair of damage skeletal tissue, and the regeneration of the mouse digit tip. Previously we showed that BMP treatment can induce a regeneration response in mouse digits amputated at a proximal level of the terminal phalangeal element (P3) (Yu et al., 2010). In this study, we show that the regeneration-inductive ability of BMP2 extends to amputations at the level of the second phalangeal element (P2) of neonatal digits, and the hindlimb of adult limbs. In these models the induced regenerative response is restricted in a segment-specific manner, thus amputated skeletal elements regenerate distally patterned skeletal structures but does not form joints or more distal skeletal elements. Studies on P2 amputations indicate that BMP2-induced regeneration is associated with a localized proliferative response and the transient expression of established digit blastema marker genes. This is followed by the formation of a new endochondral ossification center at the distal end of the bone stump. The endochondral ossification center contains proliferating chondrocytes that establish a distal proliferative zone and differentiate proximally into hypertrophic chondrocytes. Skeletal regeneration occurs from proximal to distal with the appearance of osteoblasts that differentiate in continuity with the amputated stump. Using the polarity of the endochondral ossification centers induced by BMP2 at two different amputation levels, we show that BMP2 activates a level-dependent regenerative response indicative of a positional information network. In summary, our studies provide evidence that BMP2 induces the regeneration of mammalian limb structures by stimulating a new endochondral ossification center that utilizes an existing network of positional information to regulate patterning during skeletal regeneration. PMID:23041115

  15. Stem Cell-Mediated Regeneration of the Adult Brain

    PubMed Central

    Jessberger, Sebastian

    2016-01-01

    Acute or chronic injury of the adult mammalian brain is often associated with persistent functional deficits as its potential for regeneration and capacity to rebuild lost neural structures is limited. However, the discovery that neural stem cells (NSCs) persist throughout life in discrete regions of the brain, novel approaches to induce the formation of neuronal and glial cells, and recently developed strategies to generate tissue for exogenous cell replacement strategies opened novel perspectives how to regenerate the adult brain. Here, we will review recently developed approaches for brain repair and discuss future perspectives that may eventually allow for developing novel treatment strategies in acute and chronic brain injury. PMID:27781019

  16. Regeneration of supraspinal projection neurons in the adult goldfish.

    PubMed

    Sharma, S C; Jadhao, A G; Rao, P D

    1993-08-27

    Regeneration of descending supraspinal projections were identified in adult goldfish following administration of HRP to different levels of the spinal cord. While in the untreated normal fish 17 nuclei were shown to project into the spinal cord, only 11 of them seem to have participated in the process of regeneration. The nuclei whose axons regenerated include the nucleus ventromedialis (NVMD), nucleus of the median longitudinal fasciculus (NMLF), nucleus reticularis superior (NRS), nucleus reticularis medialis (NRM), nucleus reticularis inferior (NRI), anterior octaval nucleus (AON), magnocellular octaval nucleus (MON), descending octaval nucleus (DON) and certain neurons of the facial lobe. The neurons of the magnocellular preoptic nucleus (NPO), raphe nucleus (NR), Mauthner cell (MC), posterior octaval nucleus (PON) and somata located adjacent to the descending trigeminal tract were not labeled. The nuclei that apparently participated in the regeneration process were significantly larger in size than the corresponding cell bodies in the untreated normal fish.

  17. ENHANCING ADULT NERVE REGENERATION THROUGH THE KNOCKDOWN OF RETINOBLASTOMA PROTEIN

    PubMed Central

    Christie, Kimberly J.; Krishnan, Anand; Martinez, Jose A.; Purdy, Kaylynn; Singh, Bhagat; Eaton, Shane; Zochodne, Douglas

    2016-01-01

    Tumour suppressor pathways may offer novel targets capable of altering the plasticity of post-mitotic adult neurons. Here we describe a role for retinoblastoma (Rb) protein, widely expressed in adult sensory neurons and their axons, during regeneration. In adult sensory neurons, Rb siRNA knockdown or Rb1 deletion in vitro enhances neurite outgrowth and branching. Plasticity is achieved in part through upregulation of neuronal PPARγ; its antagonism inhibits Rb siRNA plasticity whereas a PPARγ agonist increases growth. In an in vivo regenerative paradigm following complete peripheral nerve trunk transection, direct delivery of Rb siRNA prompts increased outgrowth of axons from proximal stumps and entrains Schwann cells to accompany them for greater distances. Similarly Rb siRNA delivery following a nerve crush improves behavioural indices of motor and sensory recovery in mice. The overall findings indicate that inhibition of tumour suppressor molecules has a role to play in promoting adult neuron regeneration. PMID:24752312

  18. EMPOWERING ADULT STEM CELLS FOR MYOCARDIAL REGENERATION

    PubMed Central

    Mohsin, Sadia; Siddiqi, Sailay; Collins, Brett; Sussman, Mark A.

    2012-01-01

    Treatment strategies for heart failure remain a high priority for ongoing research due to the profound unmet need in clinical disease coupled with lack of significant translational progress. The underlying issue is the same whether the cause is acute damage, chronic stress from disease, or aging: progressive loss of functional cardiomyocytes and diminished hemodynamic output. To stave off cardiomyocyte losses, a number of strategic approaches have been embraced in recent years involving both molecular and cellular approaches to augment myocardial structure and performance. Resultant excitement surrounding regenerative medicine in the heart has been tempered by realizations that reparative processes in the heart are insufficient to restore damaged myocardium to normal functional capacity and that cellular cardiomyoplasty is hampered by poor survival, proliferation, engraftment and differentiation of the donated population. To overcome these limitations, a combination of molecular and cellular approaches needs to be adopted involving use of genetic engineering to enhance resistance to cell death and increase regenerative capacity. This review will highlight biological properties of approached to potentiate stem cell-mediated regeneration to promote enhanced myocardial regeneration, persistence of donated cells, and long lasting tissue repair. Optimizing cell delivery and harnessing the power of survival signaling cascades for ex vivo genetic modification of stem cells prior to reintroduction into the patient will be critical to enhance the efficacy of cellular cardiomyoplasty. Once this goal is achieved, then cell-based therapy has great promise for treatment of heart failure to combat the loss of cardiac structure and function associated with acute damage, chronic disease or aging. PMID:22158649

  19. Heart regeneration in adult MRL mice

    NASA Astrophysics Data System (ADS)

    Leferovich, John M.; Bedelbaeva, Khamilia; Samulewicz, Stefan; Zhang, Xiang-Ming; Zwas, Donna; Lankford, Edward B.; Heber-Katz, Ellen

    2001-08-01

    The reaction of cardiac tissue to acute injury involves interacting cascades of cellular and molecular responses that encompass inflammation, hormonal signaling, extracellular matrix remodeling, and compensatory adaptation of myocytes. Myocardial regeneration is observed in amphibians, whereas scar formation characterizes cardiac ventricular wound healing in a variety of mammalian injury models. We have previously shown that the MRL mouse strain has an extraordinary capacity to heal surgical wounds, a complex trait that maps to at least seven genetic loci. Here, we extend these studies to cardiac wounds and demonstrate that a severe transmural, cryogenically induced infarction of the right ventricle heals extensively within 60 days, with the restoration of normal myocardium and function. Scarring is markedly reduced in MRL mice compared with C57BL/6 mice, consistent with both the reduced hydroxyproline levels seen after injury and an elevated cardiomyocyte mitotic index of 10-20% for the MRL compared with 1-3% for the C57BL/6. The myocardial response to injury observed in these mice resembles the regenerative process seen in amphibians.

  20. Recent advances in bone regeneration using adult stem cells.

    PubMed

    Zigdon-Giladi, Hadar; Rudich, Utai; Michaeli Geller, Gal; Evron, Ayelet

    2015-04-26

    Bone is a highly vascularized tissue reliant on the close spatial and temporal association between blood vessels and bone cells. Therefore, cells that participate in vasculogenesis and osteogenesis play a pivotal role in bone formation during prenatal and postnatal periods. Nevertheless, spontaneous healing of bone fracture is occasionally impaired due to insufficient blood and cellular supply to the site of injury. In these cases, bone regeneration process is interrupted, which might result in delayed union or even nonunion of the fracture. Nonunion fracture is difficult to treat and have a high financial impact. In the last decade, numerous technological advancements in bone tissue engineering and cell-therapy opened new horizon in the field of bone regeneration. This review starts with presentation of the biological processes involved in bone development, bone remodeling, fracture healing process and the microenvironment at bone healing sites. Then, we discuss the rationale for using adult stem cells and listed the characteristics of the available cells for bone regeneration. The mechanism of action and epigenetic regulations for osteogenic differentiation are also described. Finally, we review the literature for translational and clinical trials that investigated the use of adult stem cells (mesenchymal stem cells, endothelial progenitor cells and CD34(+) blood progenitors) for bone regeneration.

  1. Atlas of Cellular Dynamics during Zebrafish Adult Kidney Regeneration

    PubMed Central

    McCampbell, Kristen K.; Springer, Kristin N.; Wingert, Rebecca A.

    2015-01-01

    The zebrafish is a useful animal model to study the signaling pathways that orchestrate kidney regeneration, as its renal nephrons are simple, yet they maintain the biological complexity inherent to that of higher vertebrate organisms including mammals. Recent studies have suggested that administration of the aminoglycoside antibiotic gentamicin in zebrafish mimics human acute kidney injury (AKI) through the induction of nephron damage, but the timing and details of critical phenotypic events associated with the regeneration process, particularly in existing nephrons, have not been characterized. Here, we mapped the temporal progression of cellular and molecular changes that occur during renal epithelial regeneration of the proximal tubule in the adult zebrafish using a platform of histological and expression analysis techniques. This work establishes the timing of renal cell death after gentamicin injury, identifies proliferative compartments within the kidney, and documents gene expression changes associated with the regenerative response of proliferating cells. These data provide an important descriptive atlas that documents the series of events that ensue after damage in the zebrafish kidney, thus availing a valuable resource for the scientific community that can facilitate the implementation of zebrafish research to delineate the mechanisms that control renal regeneration. PMID:26089919

  2. Regeneration and repair of human digits and limbs: fact and fiction.

    PubMed

    Shieh, Shyh-Jou; Cheng, Tsun-Chih

    2015-08-01

    A variety of digit and limb repair and reconstruction methods have been used in different clinical settings, but regeneration remains an item on every plastic surgeon's "wish list." Although surgical salvage techniques are continually being improved, unreplantable digits and limbs are still abundant. We comprehensively review the structural and functional salvage methods in clinical practice, from the peeling injuries of small distal fingertips to multisegmented amputated limbs, and the developmental and tissue engineering approaches for regenerating human digits and limbs in the laboratory. Although surgical techniques have forged ahead, there are still situations in which digits and limbs are unreplantable. Advances in the field are delineated, and the regeneration processes of salamander limbs, lizard tails, and mouse digits and each component of tissue engineering approaches for digit- and limb-building are discussed. Although the current technology is promising, there are many challenges in human digit and limb regeneration. We hope this review inspires research on the critical gap between clinical and basic science, and leads to more sophisticated digit and limb loss rescue and regeneration innovations. PMID:27499873

  3. Regeneration and repair of human digits and limbs: fact and fiction.

    PubMed

    Shieh, Shyh-Jou; Cheng, Tsun-Chih

    2015-08-01

    A variety of digit and limb repair and reconstruction methods have been used in different clinical settings, but regeneration remains an item on every plastic surgeon's "wish list." Although surgical salvage techniques are continually being improved, unreplantable digits and limbs are still abundant. We comprehensively review the structural and functional salvage methods in clinical practice, from the peeling injuries of small distal fingertips to multisegmented amputated limbs, and the developmental and tissue engineering approaches for regenerating human digits and limbs in the laboratory. Although surgical techniques have forged ahead, there are still situations in which digits and limbs are unreplantable. Advances in the field are delineated, and the regeneration processes of salamander limbs, lizard tails, and mouse digits and each component of tissue engineering approaches for digit- and limb-building are discussed. Although the current technology is promising, there are many challenges in human digit and limb regeneration. We hope this review inspires research on the critical gap between clinical and basic science, and leads to more sophisticated digit and limb loss rescue and regeneration innovations.

  4. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart

    PubMed Central

    Wei, Ke; Serpooshan, Vahid; Hurtado, Cecilia; Diez-Cuñado, Marta; Zhao, Mingming; Maruyama, Sonomi; Zhu, Wenhong; Fajardo, Giovanni; Noseda, Michela; Nakamura, Kazuto; Tian, Xueying; Liu, Qiaozhen; Wang, Andrew; Matsuura, Yuka; Bushway, Paul; Cai, Wenqing; Savchenko, Alex; Mahmoudi, Morteza; Schneider, Michael D.; van den Hoff, Maurice J. B.; Butte, Manish J.; Yang, Phillip C.; Walsh, Kenneth; Zhou, Bin; Bernstein, Daniel; Mercola, Mark; Ruiz-Lozano, Pilar

    2016-01-01

    The elucidation of factors that activate the regeneration of the adult mammalian heart is of major scientific and therapeutic importance. Here we found that epicardial cells contain a potent cardiogenic activity identified as follistatin-like 1 (Fstl1). Epicardial Fstl1 declines following myocardial infarction and is replaced by myocardial expression. Myocardial Fstl1 does not promote regeneration, either basally or upon transgenic overexpression. Application of the human Fstl1 protein (FSTL1) via an epicardial patch stimulates cell cycle entry and division of pre-existing cardiomyocytes, improving cardiac function and survival in mouse and swine models of myocardial infarction. The data suggest that the loss of epicardial FSTL1 is a maladaptive response to injury, and that its restoration would be an effective way to reverse myocardial death and remodelling following myocardial infarction in humans. PMID:26375005

  5. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart.

    PubMed

    Wei, Ke; Serpooshan, Vahid; Hurtado, Cecilia; Diez-Cuñado, Marta; Zhao, Mingming; Maruyama, Sonomi; Zhu, Wenhong; Fajardo, Giovanni; Noseda, Michela; Nakamura, Kazuto; Tian, Xueying; Liu, Qiaozhen; Wang, Andrew; Matsuura, Yuka; Bushway, Paul; Cai, Wenqing; Savchenko, Alex; Mahmoudi, Morteza; Schneider, Michael D; van den Hoff, Maurice J B; Butte, Manish J; Yang, Phillip C; Walsh, Kenneth; Zhou, Bin; Bernstein, Daniel; Mercola, Mark; Ruiz-Lozano, Pilar

    2015-09-24

    The elucidation of factors that activate the regeneration of the adult mammalian heart is of major scientific and therapeutic importance. Here we found that epicardial cells contain a potent cardiogenic activity identified as follistatin-like 1 (Fstl1). Epicardial Fstl1 declines following myocardial infarction and is replaced by myocardial expression. Myocardial Fstl1 does not promote regeneration, either basally or upon transgenic overexpression. Application of the human Fstl1 protein (FSTL1) via an epicardial patch stimulates cell cycle entry and division of pre-existing cardiomyocytes, improving cardiac function and survival in mouse and swine models of myocardial infarction. The data suggest that the loss of epicardial FSTL1 is a maladaptive response to injury, and that its restoration would be an effective way to reverse myocardial death and remodelling following myocardial infarction in humans.

  6. Regeneration and repair of human digits and limbs: fact and fiction

    PubMed Central

    Cheng, Tsun‐Chih

    2015-01-01

    Abstract A variety of digit and limb repair and reconstruction methods have been used in different clinical settings, but regeneration remains an item on every plastic surgeon's “wish list.” Although surgical salvage techniques are continually being improved, unreplantable digits and limbs are still abundant. We comprehensively review the structural and functional salvage methods in clinical practice, from the peeling injuries of small distal fingertips to multisegmented amputated limbs, and the developmental and tissue engineering approaches for regenerating human digits and limbs in the laboratory. Although surgical techniques have forged ahead, there are still situations in which digits and limbs are unreplantable. Advances in the field are delineated, and the regeneration processes of salamander limbs, lizard tails, and mouse digits and each component of tissue engineering approaches for digit‐ and limb‐building are discussed. Although the current technology is promising, there are many challenges in human digit and limb regeneration. We hope this review inspires research on the critical gap between clinical and basic science, and leads to more sophisticated digit and limb loss rescue and regeneration innovations. PMID:27499873

  7. Wnt/β-catenin signaling promotes regeneration after adult zebrafish spinal cord injury.

    PubMed

    Strand, Nicholas S; Hoi, Kimberly K; Phan, Tien M T; Ray, Catherine A; Berndt, Jason D; Moon, Randall T

    2016-09-01

    Unlike mammals, zebrafish can regenerate their injured spinal cord and regain control of caudal tissues. It was recently shown that Wnt/β-catenin signaling is necessary for spinal cord regeneration in the larval zebrafish. However, the molecular mechanisms of regeneration may or may not be conserved between larval and adult zebrafish. To test this, we assessed the role of Wnt/β-catenin signaling after spinal cord injury in the adult zebrafish. We show that Wnt/β-catenin signaling is increased after spinal cord injury in the adult zebrafish. Moreover, overexpression of Dkk1b inhibited Wnt/β-catenin signaling in the regenerating spinal cord of adult zebrafish. Dkk1b overexpression also inhibited locomotor recovery, axon regeneration, and glial bridge formation in the injured spinal cord. Thus, our data illustrate a conserved role for Wnt/β-catenin signaling in adult and larval zebrafish spinal cord regeneration.

  8. Lgr6 marks nail stem cells and is required for digit tip regeneration

    PubMed Central

    Lehoczky, Jessica A.; Tabin, Clifford J.

    2015-01-01

    The tips of the digits of some mammals, including human infants and mice, are capable of complete regeneration after injury. This process is reliant on the presence of the overlaying nail organ and is mediated by a proliferative blastema. Epithelial Wnt/β-catenin signaling has been shown to be necessary for mouse digit tip regeneration. Here, we report on Lgr5 and Lgr6 (leucine-rich repeat-containing G protein-coupled receptor 5 and 6), two important agonists of the Wnt pathway that are known to be markers of several epithelial stem cell populations. We find that Lgr5 is expressed in a dermal population of cells adjacent to the specialized epithelia surrounding the keratinized nail plate. Moreover, Lgr5-expressing cells contribute to this dermis, but not the blastema, during digit tip regeneration. In contrast, we find that Lgr6 is expressed within cells of the nail matrix portion of the nail epithelium, as well as in a subset of cells in the bone and eccrine sweat glands. Genetic lineage analysis reveals that Lgr6-expressing cells give rise to the nail during homeostatic growth, demonstrating that Lgr6 is a marker of nail stem cells. Moreover, Lgr6-expressing cells contribute to the blastema, suggesting a potential direct role for Lgr6-expressing cells during digit tip regeneration. This role is confirmed by analysis of Lgr6-deficient mice, which have both a nail and bone regeneration defect. PMID:26460010

  9. Regeneration of central cholinergic neurones in the adult rat brain.

    PubMed

    Svendgaard, N A; Björklund, A; Stenevi, U

    1976-01-30

    The regrowth of lesioned central acetylcholinesterase (AChE)-positive axons in the adult rat was studied in irides implanted to two different brain sites: in the caudal diencephalon and hippocampus, and in the hippocampal fimbria. At both implantation sites the cholinergic septo-hippocampal pathways were transected. At 2-4 weeks after lesion, newly formed, probably sprouting fibres could be followed in abundance from the lesioned proximal axon stumps into the iris transplant. Growth of newly formed AChE-positive fibres into the transplant was also observed from lesioned axons in the anterior thalamus, and to a minor extent also from the dorsal and ventral tegmental AChE-positive pathways and the habenulo-interpeduncular tract. The regrowth process of the sprouting AChE-positive, presumed cholinergic fibres into the iris target was studied in further detail in whole-mount preparations of the transplants. For this purpose the irides were removed from the brain, unfolded, spread out on microscope slides, and then stained for AChE. During the first 2-4 weeks after transplantation the sprouting central fibres grew out over large areas of the iris. The new fibres branched profusely into a terminal plexus that covered maximally about half of the iris surface, and in some areas the patterning of the regenerated central fibres mimicked closely that of the normal autonomic cholinergic innervation of the iris. In one series of experiments the AChE-staining was combined with fluorescence histochemical visualization of regenerated adrenergic fibres in the same specimens. In many areas there was a striking congruence in the distributional patterns of the regenerated central cholinergic and adrenergic fibres in the transplant. This indicates that - as in the normal iris - the sprouting cholinergic axons (primarily originating in the lesioned septo-hippocampal pathways) and adrenergic axons (primarily originating in the lesioned axons of the locus neurones) regenerate together

  10. Different Requirement for Wnt/β-Catenin Signaling in Limb Regeneration of Larval and Adult Xenopus

    PubMed Central

    Yokoyama, Hitoshi; Maruoka, Tamae; Ochi, Haruki; Aruga, Akio; Ohgo, Shiro; Ogino, Hajime; Tamura, Koji

    2011-01-01

    Background In limb regeneration of amphibians, the early steps leading to blastema formation are critical for the success of regeneration, and the initiation of regeneration in an adult limb requires the presence of nerves. Xenopus laevis tadpoles can completely regenerate an amputated limb at the early limb bud stage, and the metamorphosed young adult also regenerates a limb by a nerve-dependent process that results in a spike-like structure. Blockage of Wnt/β-catenin signaling inhibits the initiation of tadpole limb regeneration, but it remains unclear whether limb regeneration in young adults also requires Wnt/β-catenin signaling. Methodology/Principal Findings We expressed heat-shock-inducible (hs) Dkk1, a Wnt antagonist, in transgenic Xenopus to block Wnt/β-catenin signaling during forelimb regeneration in young adults. hsDkk1 did not inhibit limb regeneration in any of the young adult frogs, though it suppressed Wnt-dependent expression of genes (fgf-8 and cyclin D1). When nerve supply to the limbs was partially removed, however, hsDkk1 expression blocked limb regeneration in young adult frogs. Conversely, activation of Wnt/β-catenin signaling by a GSK-3 inhibitor rescued failure of limb-spike regeneration in young adult frogs after total removal of nerve supply. Conclusions/Significance In contrast to its essential role in tadpole limb regeneration, our results suggest that Wnt/β-catenin signaling is not absolutely essential for limb regeneration in young adults. The different requirement for Wnt/β-catenin signaling in tadpoles and young adults appears to be due to the projection of nerve axons into the limb field. Our observations suggest that nerve-derived signals and Wnt/β-catenin signaling have redundant roles in the initiation of limb regeneration. Our results demonstrate for the first time the different mechanisms of limb regeneration initiation in limb buds (tadpoles) and developed limbs (young adults) with reference to nerve-derived signals

  11. Kidney Regeneration: Common Themes From the Embryo to the Adult

    PubMed Central

    Cirio, M. Cecilia; de Groh, Eric D.; de Caestecker, Mark P.; Davidson, Alan J.; Hukriede, Neil A.

    2013-01-01

    The vertebrate kidney has an inherent ability to regenerate following acute damage. Successful regeneration of the injured kidney requires the rapid replacement of damaged tubular epithelial cells and reconstitution of normal tubular function. Identifying the cells that participate in the regeneration process as well as the molecular mechanisms involved may reveal therapeutic targets for the treatment of kidney disease. Renal regeneration is associated with the expression of genetic pathways that are necessary for kidney organogenesis, suggesting that the regenerating tubular epithelium may be ‘reprogrammed’ to a less-differentiated, progenitor state. This review will highlight data from various vertebrate models supporting the hypothesis that nephrogenic genes are reactivated as part of the process of kidney regeneration following acute kidney injury (AKI). Emphasis will be placed on the reactivation of developmental pathways and how our understanding of the resulting regeneration process may be enhanced by lessons learned in the embryonic kidney. PMID:24005792

  12. Partial Characterization of the Sox2+ Cell Population in an Adult Murine Model of Digit Amputation

    PubMed Central

    Agrawal, Vineet; Siu, Bernard F.; Chao, Hsu; Hirschi, Karen K.; Raborn, Eric; Johnson, Scott A.; Tottey, Stephen; Hurley, Katherine B.; Medberry, Chris J.

    2012-01-01

    Tissue regeneration in response to injury in adult mammals is generally limited to select tissues. Nonmammalian species such as newts and axolotls undergo regeneration of complex tissues such as limbs and digits via recruitment and accumulation of local and circulating multipotent progenitors preprogrammed to recapitulate the missing tissue. Directed recruitment and activation of progenitor cells at a site of injury in adult mammals may alter the default wound-healing response from scar tissue toward regeneration. Bioactive molecules derived from proteolytic degradation of extracellular matrix (ECM) proteins have been shown to recruit a variety of progenitor cells in vitro and in vivo to the site of injury. The present study further characterized the population of cells accumulating at the site of injury after treatment with ECM degradation products in a well-established model of murine digit amputation. After a mid-second phalanx digit amputation in 6–8-week-old adult mice, treatment with ECM degradation products resulted in the accumulation of a heterogeneous population of cells, a subset of which expressed the transcription factor Sox2, a marker of pluripotent and adult progenitor cells. Sox2+ cells were localized lateral to the amputated P2 bone and coexpressed progenitor cell markers CD90 and Sca1. Transgenic Sox2 eGFP/+ and bone marrow chimeric mice showed that the bone marrow and blood circulation did not contribute to the Sox2+ cell population. The present study showed that, in addition to circulating progenitor cells, resident tissue-derived cells also populate at the site of injury after treatment with ECM degradation products. Although future work is necessary to determine the contribution of Sox2+ cells to functional tissue at the site of injury, recruitment and/or activation of local tissue-derived cells may be a viable approach to tissue engineering of more complex tissues in adult mammals. PMID:22530556

  13. Re-regeneration of lower jaws and the dental lamina in adult urodeles.

    PubMed

    Graver, H T

    1978-09-01

    Transverse amputations were carried out through one-third fully regenerated jaw segments and through normal tissue of the mandible on the same and opposite sides of the jaw in adults of Notophthalmus viridescens. Collectively the results suggest that, in adult urodeles, the mandible and the dental lamina can be replaced in an identical manner more than one time. Although the major histological events are the same in jaw regeneration and re-regeneration, regrowth is more rapid in re-regeneration. It appears that recently differentiated tissues of the regenerate have a higher capacity for regeneration than normal tissues amputated for the first time. Re-regeneration of the jaw occurs by growth of the original regenerate cartilage which has undergone reorganization. In re-regeneration, the skeletal elements exhibit no polarity and regrowth occurs in both directions, while the dental lamina possesses an anterior-posterior polarity and can regrow in an anterior direction only. Information concerning the mechanisms involved in the regenerative events remain to be determined.

  14. Adult axolotls can regenerate original neuronal diversity in response to brain injury.

    PubMed

    Amamoto, Ryoji; Huerta, Violeta Gisselle Lopez; Takahashi, Emi; Dai, Guangping; Grant, Aaron K; Fu, Zhanyan; Arlotta, Paola

    2016-01-01

    The axolotl can regenerate multiple organs, including the brain. It remains, however, unclear whether neuronal diversity, intricate tissue architecture, and axonal connectivity can be regenerated; yet, this is critical for recovery of function and a central aim of cell replacement strategies in the mammalian central nervous system. Here, we demonstrate that, upon mechanical injury to the adult pallium, axolotls can regenerate several of the populations of neurons present before injury. Notably, regenerated neurons acquire functional electrophysiological traits and respond appropriately to afferent inputs. Despite the ability to regenerate specific, molecularly-defined neuronal subtypes, we also uncovered previously unappreciated limitations by showing that newborn neurons organize within altered tissue architecture and fail to re-establish the long-distance axonal tracts and circuit physiology present before injury. The data provide a direct demonstration that diverse, electrophysiologically functional neurons can be regenerated in axolotls, but challenge prior assumptions of functional brain repair in regenerative species. PMID:27156560

  15. Myogenic regulatory factors during regeneration of skeletal muscle in young, adult, and old rats

    NASA Technical Reports Server (NTRS)

    Marsh, D. R.; Criswell, D. S.; Carson, J. A.; Booth, F. W.

    1997-01-01

    Myogenic factor mRNA expression was examined during muscle regeneration after bupivacaine injection in Fischer 344/Brown Norway F1 rats aged 3, 18, and 31 mo of age (young, adult, and old, respectively). Mass of the tibialis anterior muscle in the young rats had recovered to control values by 21 days postbupivacaine injection but in adult and old rats remained 40% less than that of contralateral controls at 21 and 28 days of recovery. During muscle regeneration, myogenin mRNA was significantly increased in muscles of young, adult, and old rats 5 days after bupivacaine injection. Subsequently, myogenin mRNA levels in young rat muscle decreased to postinjection control values by day 21 but did not return to control values in 28-day regenerating muscles of adult and old rats. The expression of MyoD mRNA was also increased in muscles at day 5 of regeneration in young, adult, and old rats, decreased to control levels by day 14 in young and adult rats, and remained elevated in the old rats for 28 days. In summary, either a diminished ability to downregulate myogenin and MyoD mRNAs in regenerating muscle occurs in old rat muscles, or the continuing myogenic effort includes elevated expression of these mRNAs.

  16. V-ATPase Proton Pumping Activity Is Required for Adult Zebrafish Appendage Regeneration

    PubMed Central

    Monteiro, Joana; Aires, Rita; Becker, Jörg D.; Jacinto, António; Certal, Ana C.; Rodríguez-León, Joaquín

    2014-01-01

    The activity of ion channels and transporters generates ion-specific fluxes that encode electrical and/or chemical signals with biological significance. Even though it is long known that some of those signals are crucial for regeneration, only in recent years the corresponding molecular sources started to be identified using mainly invertebrate or larval vertebrate models. We used adult zebrafish caudal fin as a model to investigate which and how ion transporters affect regeneration in an adult vertebrate model. Through the combined use of biophysical and molecular approaches, we show that V-ATPase activity contributes to a regeneration-specific H+ ef`flux. The onset and intensity of both V-ATPase expression and H+ efflux correlate with the different regeneration rate along the proximal-distal axis. Moreover, we show that V-ATPase inhibition impairs regeneration in adult vertebrate. Notably, the activity of this H+ pump is necessary for aldh1a2 and mkp3 expression, blastema cell proliferation and fin innervation. To the best of our knowledge, this is the first report on the role of V-ATPase during adult vertebrate regeneration. PMID:24671205

  17. V-ATPase proton pumping activity is required for adult zebrafish appendage regeneration.

    PubMed

    Monteiro, Joana; Aires, Rita; Becker, Jörg D; Jacinto, António; Certal, Ana C; Rodríguez-León, Joaquín

    2014-01-01

    The activity of ion channels and transporters generates ion-specific fluxes that encode electrical and/or chemical signals with biological significance. Even though it is long known that some of those signals are crucial for regeneration, only in recent years the corresponding molecular sources started to be identified using mainly invertebrate or larval vertebrate models. We used adult zebrafish caudal fin as a model to investigate which and how ion transporters affect regeneration in an adult vertebrate model. Through the combined use of biophysical and molecular approaches, we show that V-ATPase activity contributes to a regeneration-specific H+ ef`flux. The onset and intensity of both V-ATPase expression and H+ efflux correlate with the different regeneration rate along the proximal-distal axis. Moreover, we show that V-ATPase inhibition impairs regeneration in adult vertebrate. Notably, the activity of this H+ pump is necessary for aldh1a2 and mkp3 expression, blastema cell proliferation and fin innervation. To the best of our knowledge, this is the first report on the role of V-ATPase during adult vertebrate regeneration.

  18. Concise Review: Quiescence in Adult Stem Cells: Biological Significance and Relevance to Tissue Regeneration.

    PubMed

    Rumman, Mohammad; Dhawan, Jyotsna; Kassem, Moustapha

    2015-10-01

    Adult stem cells (ASCs) are tissue resident stem cells responsible for tissue homeostasis and regeneration following injury. In uninjured tissues, ASCs exist in a nonproliferating, reversibly cell cycle-arrested state known as quiescence or G0. A key function of the quiescent state is to preserve stemness in ASCs by preventing precocious differentiation, and thus maintaining a pool of undifferentiated ASCs. Recent evidences suggest that quiescence is an actively maintained state and that excessive or defective quiescence may lead to compromised tissue regeneration or tumorigenesis. The aim of this review is to provide an update regarding the biological mechanisms of ASC quiescence and their role in tissue regeneration.

  19. Robust regeneration of adult zebrafish lateral line hair cells reflects continued precursor pool maintenance.

    PubMed

    Cruz, Ivan A; Kappedal, Ryan; Mackenzie, Scott M; Hailey, Dale W; Hoffman, Trevor L; Schilling, Thomas F; Raible, David W

    2015-06-15

    We have examined lateral line hair cell and support cell maintenance in adult zebrafish when growth is largely complete. We demonstrate that adult zebrafish not only replenish hair cells after a single instance of hair cell damage, but also maintain hair cells and support cells after multiple rounds of damage and regeneration. We find that hair cells undergo continuous turnover in adult zebrafish in the absence of damage. We identify mitotically-distinct support cell populations and show that hair cells regenerate from underlying support cells in a region-specific manner. Our results demonstrate that there are two distinct support cell populations in the lateral line, which may help explain why zebrafish hair cell regeneration is extremely robust, retained throughout life, and potentially unlimited in regenerative capacity.

  20. Robust regeneration of adult zebrafish lateral line hair cells reflects continued precursor pool maintenance

    PubMed Central

    Cruz, Ivan A.; Kappedal, Ryan; Mackenzie, Scott M.; Hailey, Dale W.; Hoffman, Trevor L.; Schilling, Thomas F.; Raible, David W.

    2015-01-01

    We have examined lateral line hair cell and support cell maintenance in adult zebrafish when growth is largely complete. We demonstrate that adult zebrafish not only replenish hair cells after a single instance of hair cell damage, but also maintain hair cells and support cells after multiple rounds of damage and regeneration. We find that hair cells undergo continuous turnover in adult zebrafish in the absence of damage. We identify mitotically-distinct support cell populations and show that hair cells regenerate from underlying support cells in a region-specific manner. Our results demonstrate that there are two distinct support cell populations in the lateral line, which may help explain why zebrafish hair cell regeneration is extremely robust, retained throughout life, and potentially unlimited in regenerative capacity. PMID:25869855

  1. Quality Assurance Model for Digital Adult Education Materials

    ERIC Educational Resources Information Center

    Dimou, Helen; Kameas, Achilles

    2016-01-01

    Purpose: This paper aims to present a model for the quality assurance of digital educational material that is appropriate for adult education. The proposed model adopts the software quality standard ISO/IEC 9126 and takes into account adult learning theories, Bloom's taxonomy of learning objectives and two instructional design models: Kolb's model…

  2. Liver graft regeneration in right lobe adult living donor liver transplantation.

    PubMed

    Cheng, Y-F; Huang, T-L; Chen, T-Y; Tsang, L L-C; Ou, H-Y; Yu, C-Y; Concejero, A; Wang, C-C; Wang, S-H; Lin, T-S; Liu, Y-W; Yang, C-H; Yong, C-C; Chiu, K-W; Jawan, B; Eng, H-L; Chen, C-L

    2009-06-01

    Optimal portal flow is one of the essentials in adequate liver function, graft regeneration and outcome of the graft after right lobe adult living donor liver transplantation (ALDLT). The relations among factors that cause sufficient liver graft regeneration are still unclear. The aim of this study is to evaluate the potential predisposing factors that encourage liver graft regeneration after ALDLT. The study population consisted of right lobe ALDLT recipients from Chang Gung Memorial Hospital-Kaohsiung Medical Center, Taiwan. The records, preoperative images, postoperative Doppler ultrasound evaluation and computed tomography studies performed 6 months after transplant were reviewed. The volume of the graft 6 months after transplant divided by the standard liver volume was calculated as the regeneration ratio. The predisposing risk factors were compiled from statistical analyses and included age, recipient body weight, native liver disease, spleen size before transplant, patency of the hepatic venous graft, graft weight-to-recipient weight ratio (GRWR), posttransplant portal flow, vascular and biliary complications and rejection. One hundred forty-five recipients were enrolled in this study. The liver graft regeneration ratio was 91.2 +/- 12.6% (range, 58-151). The size of the spleen (p = 0.00015), total portal flow and GRWR (p = 0.005) were linearly correlated with the regeneration rate. Patency of the hepatic venous tributary reconstructed was positively correlated to graft regeneration and was statistically significant (p = 0.017). Splenic artery ligation was advantageous to promote liver regeneration in specific cases but splenectomy did not show any positive advantage. Spleen size is a major factor contributing to portal flow and may directly trigger regeneration after transplant. Control of sufficient portal flow and adequate hepatic outflow are important factors in graft regeneration.

  3. Patterns and cellular mechanisms of arm regeneration in adult starfish Asterias rollestoni bell

    NASA Astrophysics Data System (ADS)

    Fan, Tingjun; Fan, Xianyuan; Du, Yutang; Sun, Wenjie; Zhang, Shaofeng; Li, Jiaxin

    2011-09-01

    To understand the mechanisms of starfish regeneration, the arms of adult starfish Asterias rollestoni Bell were amputated and their regeneration patterns and cellular mechanisms were studied. It was found that cells in the outer epidermis and inner parietal peritoneum near the end of the stump began to dedifferentiate 4 d after amputation. The dedifferentiated cells in the outer epidermis proliferated, migrated to the wound site and formed a thickened pre-epidermis which would then re-differentiate gradually into mature epidermis. The new parietal peritoneum formed on the coelomic side of wound might be from the curvely elongated parietal peritoneum, resulting from the dedifferentiated and proliferated cells by extension. Afterwards, the proliferated cells made the outer epidermis and inner parietal peritoneum invaginate into the interior dermis and formed blastema-like structures together with induced dedifferentiated dermal cells. Most interestingly, the arm regeneration in A. rollestoni was achieved synchronously by de novo arm-bud formation and growth, and arm-stump elongation. The crucial aspects of arm-bud formation included cell dedifferentiation, proliferation and migration, while those of arm-stump elongation included cell dedifferentiation, proliferation, invagination, and arm-wall-across blastema-like structure formation. The unique pattern and cellular mechanisms of amputated arm regeneration make it easier to understand the rapid regeneration process of adult starfish. This study may lay solid foundations for the research into molecular mechanisms of echinoderm regeneration.

  4. Limb Regeneration is Impaired in an Adult Zebrafish Model of Diabetes Mellitus

    PubMed Central

    Olsen, Ansgar S.; Sarras, Michael P.; Intine, Robert V.

    2010-01-01

    The zebrafish (Danio Rerio) is an established model organism for the study of developmental processes, human disease and tissue regeneration. We report that limb regeneration is severely impaired in our newly developed adult zebrafish model of type I diabetes. Intraperitoneal streptozocin injection of adult, wild type zebrafish results in a sustained hyperglycemic state as determined by elevated fasting blood glucose values and increased glycation of serum protein. Serum insulin levels are also decreased and pancreas immunohistochemisty revealed a lesser amount of insulin signal in hyperglycemic fish. Additionally, the diabetic complications of retinal thinning and glomerular basement membrane thickening (early signs of retinopathy and nephropathy) resulting from the hyperglycemic state were evident in streptozocin injected fish at three weeks. Most significantly, limb regeneration, following caudal fin amputation, is severely impaired in diabetic zebrafish. Nonspecific toxic effects outside the pancreas were not found to contribute to impaired limb regeneration. This experimental system using adult zebrafish facilitates a broad spectrum of genetic and molecular approaches to study regeneration in the diabetic background. PMID:20840523

  5. Lens regeneration in juvenile and adult rabbits measured by image analysis.

    PubMed

    Gwon, A E; Jones, R L; Gruber, L J; Mantras, C

    1992-06-01

    Secondary cataract growth commonly occurs after extracapsular cataract extraction. The proliferation of this regrowth occurs at rates related to many factors. In this study, the authors analyzed the amount of lens regeneration after endocapsular lens extraction that leaves the anterior and posterior capsules relatively intact. The analysis was performed in New Zealand albino rabbits with the aid of image analysis measurements in young and adult animals. The effect of low vacuum suction of the anterior capsule on the growth was determined. Lens regeneration was used as a measure of the growth potential of the leftover epithelial cells in the capsule bag. The results showed that lens regeneration was significantly faster in younger rabbits. However, low vacuum suction had no effect on the growth rate. Potential therapeutic agents for preventing secondary cataracts may be better analyzed with image analysis processing of lens regeneration, a precise and rapid measurement technique.

  6. Molecular Basis for the Nerve Dependence of Limb Regeneration in an Adult Vertebrate

    PubMed Central

    Kumar, Anoop; Godwin, James W.; Gates, Phillip B.; Garza-Garcia, A. Acely; Brockes, Jeremy P.

    2009-01-01

    The limb blastemal cells of an adult salamander regenerate the structures distal to the level of amputation, and the surface protein Prod 1 is a critical determinant of their proximodistal identity. The Anterior Gradient protein family member nAG is a secreted ligand for Prod 1, and a growth factor for cultured newt blastemal cells. nAG is sequentially expressed after amputation in the regenerating nerve and the wound epidermis, the key tissues of the stem cell niche, and its expression in both locations is abrogated by denervation. The local expression of nAG after electroporation is sufficient to rescue a denervated blastema and regenerate the distal structures. Our analysis brings together the positional identity of the blastema and the classical nerve dependence of limb regeneration. PMID:17975060

  7. Adult axolotls can regenerate original neuronal diversity in response to brain injury

    PubMed Central

    Amamoto, Ryoji; Huerta, Violeta Gisselle Lopez; Takahashi, Emi; Dai, Guangping; Grant, Aaron K; Fu, Zhanyan; Arlotta, Paola

    2016-01-01

    The axolotl can regenerate multiple organs, including the brain. It remains, however, unclear whether neuronal diversity, intricate tissue architecture, and axonal connectivity can be regenerated; yet, this is critical for recovery of function and a central aim of cell replacement strategies in the mammalian central nervous system. Here, we demonstrate that, upon mechanical injury to the adult pallium, axolotls can regenerate several of the populations of neurons present before injury. Notably, regenerated neurons acquire functional electrophysiological traits and respond appropriately to afferent inputs. Despite the ability to regenerate specific, molecularly-defined neuronal subtypes, we also uncovered previously unappreciated limitations by showing that newborn neurons organize within altered tissue architecture and fail to re-establish the long-distance axonal tracts and circuit physiology present before injury. The data provide a direct demonstration that diverse, electrophysiologically functional neurons can be regenerated in axolotls, but challenge prior assumptions of functional brain repair in regenerative species. DOI: http://dx.doi.org/10.7554/eLife.13998.001 PMID:27156560

  8. Peripheral Axons of the Adult Zebrafish Maxillary Barbel Extensively Remyelinate During Sensory Appendage Regeneration

    PubMed Central

    Moore, Alex C.; Mark, Tiffany E.; Hogan, Ann K.; Topczewski, Jacek; LeClair, Elizabeth E.

    2013-01-01

    Myelination is a cellular adaptation allowing rapid conduction along axons. We have investigated peripheral axons of the zebrafish maxillary barbel (ZMB), an optically clear sensory appendage. Each barbel carries taste buds, solitary chemosensory cells, and epithelial nerve endings, all of which regenerate after amputation (LeClair and Topczewski [2010] PLoS One 5:e8737). The ZMB contains axons from the facial nerve; however, myelination within the barbel itself has not been established. Transcripts of myelin basic protein (mbp) are expressed in normal and regenerating adult barbels, indicating activity in both maintenance and repair. Myelin was confirmed in situ by using toluidine blue, an anti-MBP antibody, and transmission electron microscopy (TEM). The adult ZMB contains ~180 small-diameter axons (<2 μm), approximately 60% of which are myelinated. Developmental myelination was observed via whole-mount immunohistochemistry 4-6 weeks postfertilization, showing myelin sheaths lagging behind growing axons. Early-regenerating axons (10 days postsurgery), having no or few myelin layers, were disorganized within a fibroblast-rich collagenous scar. Twenty-eight days postsurgery, barbel axons had grown out several millimeters and were organized with compact myelin sheaths. Fiber types and axon areas were similar between normal and regenerated tissue; within 4 weeks, regenerating axons restored ~85% of normal myelin thickness. Regenerating barbels express multiple promyelinating transcription factors (sox10, oct6 = pou3f1; krox20a/b = egr2a/b) typical of Schwann cells. These observations extend our understanding of the zebrafish peripheral nervous system within a little-studied sensory appendage. The accessible ZMB provides a novel context for studying axon regeneration, Schwann cell migration, and remyelination in a model vertebrate. PMID:22592645

  9. The neonate versus adult mammalian immune system in cardiac repair and regeneration.

    PubMed

    Sattler, Susanne; Rosenthal, Nadia

    2016-07-01

    The immune system is a crucial player in tissue homeostasis and wound healing. A sophisticated cascade of events triggered upon injury ensures protection from infection and initiates and orchestrates healing. While the neonatal mammal can readily regenerate damaged tissues, adult regenerative capacity is limited to specific tissue types, and in organs such as the heart, adult wound healing results in fibrotic repair and loss of function. Growing evidence suggests that the immune system greatly influences the balance between regeneration and fibrotic repair. The neonate mammalian immune system has impaired pro-inflammatory function, is prone to T-helper type 2 responses and has an immature adaptive immune system skewed towards regulatory T cells. While these characteristics make infants susceptible to infection and prone to allergies, it may also provide an immunological environment permissive of regeneration. In this review we will give a comprehensive overview of the immune cells involved in healing and regeneration of the heart and explore differences between the adult and neonate immune system that may explain differences in regenerative ability. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  10. Digital Distinction: Badges Add a New Dimension to Adult Learning

    ERIC Educational Resources Information Center

    Ady, Kellie; Kinsella, Keli; Paynter, Amber

    2015-01-01

    As a part of a professional learning team, educators are constantly looking for new approaches and designs that promote deeper adult learning. This article describes how educators at Cherry Creek School District in Colorado developed a digital badge system that recognizes the work teachers are doing, supports a culture and climate of celebration,…

  11. Digital Skills Acquisition: Future Trends among Older Adults

    ERIC Educational Resources Information Center

    Gilliam, Brian K.

    2011-01-01

    Purpose: The purpose of this study was to identify future trends and barriers that will either facilitate or impede the narrowing of the digital skills divide among older adults during the next 10 years. Methodology: To address the research questions, this study used a modified version of the Delphi process using a panel of experts who…

  12. A new type of Schwann cell graft transplantation to promote optic nerve regeneration in adult rats.

    PubMed

    Fang, Yuan; Mo, Xiaofen; Guo, Wenyi; Zhang, Meng; Zhang, Peihua; Wang, Yan; Rong, Xianfang; Tian, Jie; Sun, Xinghuai

    2010-12-01

    Like other parts of the central nervous system, the adult mammalian optic nerve is difficult to regenerate after injury. Transplantation of the peripheral nerve or a Schwann cell (SC) graft can promote injured axonal regrowth. We tried to develop a new type of tissue-engineered SC graft that consisted of SCs seeded onto a poly(lactic-co-glycolic acid)/chitosan conduit. Meanwhile, SCs were transfected along the ciliary neurotrophic factor (CNTF) gene in vitro by electroporation to increase their neurotrophic effect. Four weeks after transplantation, GAP-43 labelled regenerating axons were found in the SC grafts, and axons in the CNTF-SC graft were longer than those in the SC graft. Tissue-engineered SC grafts can provide a feasible environment for optic nerve regeneration and may become an alternative for bridging damaged nerves and repairing nerve defects in the future.

  13. Abnormal limb regeneration in adult newts exposed to the fungicide Maneb 80. A histological study.

    PubMed

    Zavanella, T; Zaffaroni, N P; Arias, E

    1984-01-01

    The effects of the fungicide Maneb 80 (manganese ethylenebisdithiocarbamate, 80% active ingredient) on the regenerating limb of the adult crested newt, Triturus cristatus carnifex, was studied. Female newts were exposed percutaneously to 5 ppm Maneb 80. One group of control newts was exposed to the inert ingredients of Maneb 80 (sodium lignin sulfonate and n-butylnaphthalene sulfonate), and another control group was kept in tap water. The limbs were examined histologically at weekly intervals throughout the regeneration period and at the end of the experiment (10-12 wk postamputation). The regenerating limbs of all the animals exposed to Maneb 80 showed growth retardation and skeletal abnormalities. Histological examination provided evidence that vascular disturbances are important for the genesis of the developmental abnormalities induced by Maneb 80. The inert ingredients had a promoting effect on limb growth and had no teratogenic effects under our experimental conditions. There were no histological differences between the two control groups.

  14. From ontogenesis to regeneration: learning how to instruct adult cardiac progenitor cells.

    PubMed

    Chimenti, Isotta; Forte, Elvira; Angelini, Francesco; Giacomello, Alessandro; Messina, Elisa

    2012-01-01

    Since the first observations over two centuries ago by Lazzaro Spallanzani on the extraordinary regenerative capacity of urodeles, many attempts have been made to understand the reasons why such ability has been largely lost in metazoa and whether or how it can be restored, even partially. In this context, important clues can be derived from the systematic analysis of the relevant distinctions among species and of the pathways involved in embryonic development, which might be induced and/or recapitulated in adult tissues. This chapter provides an overview on regeneration and its mechanisms, starting with the lesson learned from lower vertebrates, and will then focus on recent advancements and novel insights concerning regeneration in the adult mammalian heart, including the discovery of resident cardiac progenitor cells (CPCs). Subsequently, it explores all the important pathways involved in regulating differentiation during development and embryogenesis, and that might potentially provide important clues on how to activate and/or modulate regenerative processes in the adult myocardium, including the potential activation of endogenous CPCs. Furthermore the importance of the stem cell niche is discussed, and how it is possible to create in vitro a microenvironment and culture system to provide adult CPCs with the ideal conditions promoting their regenerative ability. Finally, the state of clinical translation of cardiac cell therapy is presented. Overall, this chapter provides a new perspective on how to approach cardiac regeneration, taking advantage of important lessons from development and optimizing biotechnological tools to obtain the ideal conditions for cell-based cardiac regenerative therapy.

  15. RINSE: A digitally implemented flywheel sync regenerator for improved video synchroniser performance

    NASA Astrophysics Data System (ADS)

    Evans, Richard H.

    Microwave links are widely used at live outside broadcast events for carrying video signals from mobile cameras such as those carried on the shoulder or fitted to vehicles. A digital frame store synchronizer is required when using a remote radio-camera and this has caused additional problems with variable quality signals. During moments of weak signal strength when threshold noise appears in the picture, a video synchronizer may lose synchronization and produce an unnatural freeze-frame effect. A new device called RINSE (Regeneration and Insertion of New Sync Equipment) is described which replaces the old variable quality syncs with 'flywheel' regenerated syncs. When connected between the microwave receiver and the synchronizer, it cleans up the syncs and allows the synchronizer to pass the video without the freeze frame artifacts which would further degrade the picture. By operating the synchronizer with an external sync input from RINSE it will carry any video signal transparently for a short time irrespective of the noise level.

  16. Multipotent (adult) and pluripotent stem cells for heart regeneration: what are the pros and cons?

    PubMed

    Liao, Song-Yan; Tse, Hung-Fat

    2013-12-24

    Heart failure after myocardial infarction is the leading cause of mortality and morbidity worldwide. Existing medical and interventional therapies can only reduce the loss of cardiomyocytes during myocardial infarction but are unable to replenish the permanent loss of cardiomyocytes after the insult, which contributes to progressive pathological left ventricular remodeling and progressive heart failure. As a result, cell-based therapies using multipotent (adult) stem cells and pluripotent stem cells (embryonic stem cells or induced pluripotent stem cells) have been explored as potential therapeutic approaches to restore cardiac function in heart failure. Nevertheless, the optimal cell type with the best therapeutic efficacy and safety for heart regeneration is still unknown. In this review, the potential pros and cons of different types of multipotent (adult) stem cells and pluripotent stem cells that have been investigated in preclinical and clinical studies are reviewed, and the future perspective of stem cell-based therapy for heart regeneration is discussed.

  17. Regeneration of plantlets from the callus of stem segments of adult plants of Ficus religiosa L.

    PubMed

    Jaiswal, V S; Narayan, P

    1985-10-01

    Stem segments of adult plants of Ficus religiosa L. cultured on MS medium containing 1.0 mg/l 2,4-D produced callus. Shoots were regenerated when the induced calli were transferred to medium supplemented with 0.05 to 2.0 mg/l BAP. Callus derived shoots produced roots and developed into plantlets when transferred to medium supplemented with 1.0 mg/l NAA. PMID:24253982

  18. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration

    PubMed Central

    Liu, Shan; Zhou, Jingli; Zhang, Xuan; Liu, Yang; Chen, Jin; Hu, Bo; Song, Jinlin; Zhang, Yuanyuan

    2016-01-01

    Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications. PMID:27338364

  19. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration.

    PubMed

    Liu, Shan; Zhou, Jingli; Zhang, Xuan; Liu, Yang; Chen, Jin; Hu, Bo; Song, Jinlin; Zhang, Yuanyuan

    2016-06-21

    Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.

  20. Myogenin Regulates Exercise Capacity but Is Dispensable for Skeletal Muscle Regeneration in Adult mdx Mice

    PubMed Central

    Klein, William H.

    2011-01-01

    Duchenne muscular dystrophy (DMD) is the most prevalent inherited childhood muscle disorder in humans. mdx mice exhibit a similar pathophysiology to the human disorder allowing for an in-depth investigation of DMD. Myogenin, a myogenic regulatory factor, is best known for its role in embryonic myogenesis, but its role in adult muscle maintenance and regeneration is still poorly understood. Here, we generated an mdx:Myogflox/flox mouse harboring a tamoxifen-inducible Cre recombinase transgene, which was used to conditionally delete Myog during adult life. After tamoxifen treatment, three groups of mice were created to study the effects of Myog deletion: mdx:Myogflox/flox mice (mdx), Myogflox/flox mice (wild-type), and mdx:MyogfloxΔ/floxΔ:Cre-ER mice (mdx:Myog-deleted). mdx:Myog-deleted mice exhibited no adverse phenotype and behaved normally. When run to exhaustion, mdx:Myog-deleted mice demonstrated an enhanced capacity for exercise compared to mdx mice, running nearly as far as wild-type mice. Moreover, these mice showed the same signature characteristics of muscle regeneration as mdx mice. Unexpectedly, we found that myogenin was dispensable for muscle regeneration. Factors associated with muscle fatigue, metabolism, and proteolysis were significantly altered in mdx:Myog-deleted mice, and this might contribute to their increased exercise capacity. Our results reveal novel functions for myogenin in adult muscle and suggest that reducing Myog expression in other muscle disease models may partially restore muscle function. PMID:21264243

  1. Digital Adults: Beyond the Myth of the Digital Native Generation Gap

    ERIC Educational Resources Information Center

    Tufts, Debra Roben

    2010-01-01

    The digital native has been the darling of market research and a major focus of education consternation throughout the first decade of the 2000s. These are the children and young adults the literature describes as those born after 1980 and who exhibit high technical savvy, particularly as it pertains to information and communication technology…

  2. Neuron regeneration reverses 3-acetylpyridine-induced cell loss in the cerebral cortex of adult lizards.

    PubMed

    Font, E; García-Verdugo, J M; Alcántara, S; López-García, C

    1991-06-14

    Systemic administration of the neurotoxin 3-acetylpyridine to adult lizards results in extensive loss of neurons in the medial cerebral cortex, other brain areas remaining largely unaffected. After the neurotoxic trauma, new cells are produced by mitotic division of cells in the ventricular wall. The new cells migrate along radial glial fibers and replace lost neurons in the medial cortex. Electron microscopic examination of cells labeled with [3H]thymidine confirms that the newly generated cells are neurons. Thus, neuron regeneration can occur in the cerebral cortex of adult lizards.

  3. Serotonin promotes acinar dedifferentiation following pancreatitis-induced regeneration in the adult pancreas.

    PubMed

    Saponara, Enrica; Grabliauskaite, Kamile; Bombardo, Marta; Buzzi, Raphael; Silva, Alberto B; Malagola, Ermanno; Tian, Yinghua; Hehl, Adrian B; Schraner, Elisabeth M; Seleznik, Gitta M; Zabel, Anja; Reding, Theresia; Sonda, Sabrina; Graf, Rolf

    2015-12-01

    The exocrine pancreas exhibits a distinctive capacity for tissue regeneration and renewal following injury. This regenerative ability has important implications for a variety of disorders, including pancreatitis and pancreatic cancer, diseases associated with high morbidity and mortality. Thus, understanding its underlying mechanisms may help in developing therapeutic interventions. Serotonin has been recognized as a potent mitogen for a variety of cells and tissues. Here we investigated whether serotonin exerts a mitogenic effect in pancreatic acinar cells in three regenerative models, inflammatory tissue injury following pancreatitis, tissue loss following partial pancreatectomy, and thyroid hormone-stimulated acinar proliferation. Genetic and pharmacological techniques were used to modulate serotonin levels in vivo. Acinar dedifferentiation and cell cycle progression during the regenerative phase were investigated over the course of 2 weeks. By comparing acinar proliferation in the different murine models of regeneration, we found that serotonin did not affect the clonal regeneration of mature acinar cells. Serotonin was, however, required for acinar dedifferentiation following inflammation-mediated tissue injury. Specifically, lack of serotonin resulted in delayed up-regulation of progenitor genes and delayed the formation of acinar-to-ductal metaplasia and defective acinar cell proliferation. We identified serotonin-dependent acinar secretion as a key step in progenitor-based regeneration, as it promoted acinar cell dedifferentiation and the recruitment of type 2 macrophages. Finally, we identified a regulatory Hes1-Ptfa axis in the uninjured adult pancreas, activated by zymogen secretion. Our findings indicated that serotonin plays a critical role in the regeneration of the adult pancreas following pancreatitis by promoting the dedifferentiation of acinar cells.

  4. Serotonin promotes acinar dedifferentiation following pancreatitis-induced regeneration in the adult pancreas.

    PubMed

    Saponara, Enrica; Grabliauskaite, Kamile; Bombardo, Marta; Buzzi, Raphael; Silva, Alberto B; Malagola, Ermanno; Tian, Yinghua; Hehl, Adrian B; Schraner, Elisabeth M; Seleznik, Gitta M; Zabel, Anja; Reding, Theresia; Sonda, Sabrina; Graf, Rolf

    2015-12-01

    The exocrine pancreas exhibits a distinctive capacity for tissue regeneration and renewal following injury. This regenerative ability has important implications for a variety of disorders, including pancreatitis and pancreatic cancer, diseases associated with high morbidity and mortality. Thus, understanding its underlying mechanisms may help in developing therapeutic interventions. Serotonin has been recognized as a potent mitogen for a variety of cells and tissues. Here we investigated whether serotonin exerts a mitogenic effect in pancreatic acinar cells in three regenerative models, inflammatory tissue injury following pancreatitis, tissue loss following partial pancreatectomy, and thyroid hormone-stimulated acinar proliferation. Genetic and pharmacological techniques were used to modulate serotonin levels in vivo. Acinar dedifferentiation and cell cycle progression during the regenerative phase were investigated over the course of 2 weeks. By comparing acinar proliferation in the different murine models of regeneration, we found that serotonin did not affect the clonal regeneration of mature acinar cells. Serotonin was, however, required for acinar dedifferentiation following inflammation-mediated tissue injury. Specifically, lack of serotonin resulted in delayed up-regulation of progenitor genes and delayed the formation of acinar-to-ductal metaplasia and defective acinar cell proliferation. We identified serotonin-dependent acinar secretion as a key step in progenitor-based regeneration, as it promoted acinar cell dedifferentiation and the recruitment of type 2 macrophages. Finally, we identified a regulatory Hes1-Ptfa axis in the uninjured adult pancreas, activated by zymogen secretion. Our findings indicated that serotonin plays a critical role in the regeneration of the adult pancreas following pancreatitis by promoting the dedifferentiation of acinar cells. PMID:26235267

  5. A Tunable Silk Hydrogel Device for Studying Limb Regeneration in Adult Xenopus Laevis.

    PubMed

    Golding, Anne; Guay, Justin A; Herrera-Rincon, Celia; Levin, Michael; Kaplan, David L

    2016-01-01

    In certain amphibian models limb regeneration can be promoted or inhibited by the local wound bed environment. This research introduces a device that can be utilized as an experimental tool to characterize the conditions that promotes limb regeneration in the adult frog (Xenopus laevis) model. In particular, this device was designed to manipulate the local wound environment via a hydrogel insert. Initial characterization of the hydrogel insert revealed that this interaction had a significant influence on mechanical forces to the animal, due to the contraction of the hydrogel. The material and mechanical properties of the hydrogel insert were a factor in the device design in relation to the comfort of the animal and the ability to effectively manipulate the amputation site. The tunable features of the hydrogel were important in determining the pro-regenerative effects in limb regeneration, which was measured by cartilage spike formation and quantified by micro-computed tomography. The hydrogel insert was a factor in the observed morphological outcomes following amputation. Future work will focus on characterizing and optimizing the device's observed capability to manipulate biological pathways that are essential for limb regeneration. However, the present work provides a framework for the role of a hydrogel in the device and a path forward for more systematic studies. PMID:27257960

  6. A Tunable Silk Hydrogel Device for Studying Limb Regeneration in Adult Xenopus Laevis

    PubMed Central

    Golding, Anne; Levin, Michael; Kaplan, David L.

    2016-01-01

    In certain amphibian models limb regeneration can be promoted or inhibited by the local wound bed environment. This research introduces a device that can be utilized as an experimental tool to characterize the conditions that promotes limb regeneration in the adult frog (Xenopus laevis) model. In particular, this device was designed to manipulate the local wound environment via a hydrogel insert. Initial characterization of the hydrogel insert revealed that this interaction had a significant influence on mechanical forces to the animal, due to the contraction of the hydrogel. The material and mechanical properties of the hydrogel insert were a factor in the device design in relation to the comfort of the animal and the ability to effectively manipulate the amputation site. The tunable features of the hydrogel were important in determining the pro-regenerative effects in limb regeneration, which was measured by cartilage spike formation and quantified by micro-computed tomography. The hydrogel insert was a factor in the observed morphological outcomes following amputation. Future work will focus on characterizing and optimizing the device’s observed capability to manipulate biological pathways that are essential for limb regeneration. However, the present work provides a framework for the role of a hydrogel in the device and a path forward for more systematic studies. PMID:27257960

  7. Empowering Adult Stem Cells for Myocardial Regeneration V2.0: Success in Small Steps.

    PubMed

    Broughton, Kathleen M; Sussman, Mark A

    2016-03-01

    Much has changed since our survey of the landscape for myocardial regeneration powered by adult stem cells 4 years ago.(1) The intervening years since that first review has witnessed an explosive expansion of studies that advance both understanding and implementation of adult stem cells in promoting myocardial repair. Painstaking research from innumerable laboratories throughout the world is prying open doors that may lead to restoration of myocardial structure and function in the wake of pathological injury. This global effort has produced deeper mechanistic comprehension coupled with an evolving appreciation for the complexity of myocardial regeneration in the adult context. Undaunted by both known and (as yet) unknown challenges, pursuit of myocardial regenerative medicine mediated by adult stem cell therapy has gathered momentum fueled by tantalizing clues and visionary goals. This concise review takes a somewhat different perspective than our initial treatise, taking stock of the business sector that has become an integral part of the field while concurrently updating state of affairs in cutting edge research. Looking retrospectively at advancement over the years as all reviews eventually must, the fundamental lesson to be learned is best explained by Jonatan Mårtensson: "Success will never be a big step in the future. Success is a small step taken just now."

  8. Recent advancements in understanding endogenous heart regeneration-insights from adult zebrafish and neonatal mice.

    PubMed

    Rubin, Nicole; Harrison, Michael R; Krainock, Michael; Kim, Richard; Lien, Ching-Ling

    2016-10-01

    Enhancing the endogenous regenerative capacity of the mammalian heart is a promising strategy that can lead to potential treatment of injured cardiac tissues. Studies on heart regeneration in zebrafish and neonatal mice have shown that cardiomyocyte proliferation is essential for replenishing myocardium. We will review recent advancements that have demonstrated the importance of Neuregulin 1/ErbB2 and innervation in regulating cardiomyocyte proliferation using both adult zebrafish and neonatal mouse heart regeneration models. Emerging findings suggest that different populations of macrophages and inflammation might contribute to regenerative versus fibrotic responses. Finally, we will discuss variation in the severity of the cardiac injury and size of the wound, which may explain the range of outcomes observed in different injury models.

  9. EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila

    PubMed Central

    Jiang, Huaqi; Grenley, Marc O.; Bravo, Maria-Jose; Blumhagen, Rachel Z.; Edgar, Bruce A.

    2010-01-01

    Many tissues in higher animals undergo dynamic homeostatic growth, wherein damaged or aged cells are replaced by the progeny of resident stem cells. To maintain homeostasis, stem cells must respond to tissue needs. Here we show that in response to damage or stress in the intestinal (midgut) epithelium of adult Drosophila, multiple EGFR ligands and rhomboids (intramembrane proteases that activate some EGFR ligands) are induced, leading to the activation of EGFR signaling in intestinal stem cells (ISCs). Activation of EGFR signaling promotes ISC division and midgut epithelium regeneration, thus maintaining tissue homeostasis. ISCs defective in EGFR signaling cannot grow or divide, are poorly maintained, and cannot support midgut epithelium regeneration following enteric infection by the bacterium, Pseudomonas entomophila. Furthermore, ISC proliferation induced by Jak/Stat signaling is dependent upon EGFR signaling. Thus the EGFR/Ras/MAPK signaling pathway plays central, essential roles in ISC maintenance and the feedback system that mediates intestinal homeostasis. PMID:21167805

  10. Dpp signaling determines regional stem cell identity in the regenerating adult Drosophila gastrointestinal tract.

    PubMed

    Li, Hongjie; Qi, Yanyan; Jasper, Heinrich

    2013-07-11

    The gastrointestinal tract is lined by a series of epithelia that share functional requirements but also have distinct, highly specialized roles. Distinct populations of somatic stem cells (SCs) regenerate these epithelia, yet the mechanisms that maintain regional identities of these SCs are not well understood. Here, we identify a role for the BMP-like Dpp signaling pathway in diversifying regenerative processes in the adult gastrointestinal tract of Drosophila. Dpp secreted from enterocytes at the boundary between the posterior midgut and the middle midgut (MM) sets up a morphogen gradient that selectively directs copper cell (CC) regeneration from gastric SCs in the MM and thus determines the size of the CC region. In vertebrates, deregulation of BMP signaling has been associated with Barrett's metaplasia, wherein the squamous esophageal epithelium is replaced by a columnar epithelium, suggesting that the maintenance of regional SC identities by BMP is conserved.

  11. Regeneration of stereocilia of hair cells by forced Atoh1 expression in the adult mammalian cochlea.

    PubMed

    Yang, Shi-Ming; Chen, Wei; Guo, Wei-Wei; Jia, Shuping; Sun, Jian-He; Liu, Hui-Zhan; Young, Wie-Yen; He, David Z Z

    2012-01-01

    The hallmark of mechanosensory hair cells is the stereocilia, where mechanical stimuli are converted into electrical signals. These delicate stereocilia are susceptible to acoustic trauma and ototoxic drugs. While hair cells in lower vertebrates and the mammalian vestibular system can spontaneously regenerate lost stereocilia, mammalian cochlear hair cells no longer retain this capability. We explored the possibility of regenerating stereocilia in the noise-deafened guinea pig cochlea by cochlear inoculation of a viral vector carrying Atoh1, a gene critical for hair cell differentiation. Exposure to simulated gunfire resulted in a 60-70 dB hearing loss and extensive damage and loss of stereocilia bundles of both inner and outer hair cells along the entire cochlear length. However, most injured hair cells remained in the organ of Corti for up to 10 days after the trauma. A viral vector carrying an EGFP-labeled Atoh1 gene was inoculated into the cochlea through the round window on the seventh day after noise exposure. Auditory brainstem response measured one month after inoculation showed that hearing thresholds were substantially improved. Scanning electron microscopy revealed that the damaged/lost stereocilia bundles were repaired or regenerated after Atoh1 treatment, suggesting that Atoh1 was able to induce repair/regeneration of the damaged or lost stereocilia. Therefore, our studies revealed a new role of Atoh1 as a gene critical for promoting repair/regeneration of stereocilia and maintaining injured hair cells in the adult mammal cochlea. Atoh1-based gene therapy, therefore, has the potential to treat noise-induced hearing loss if the treatment is carried out before hair cells die. PMID:23029493

  12. Tail regeneration and ependymal outgrowth in the adult newt, Notophthalmus viridescens, are adversely affected by experimentally produced ischemia.

    PubMed

    Tassava, Roy A; Huang, Yan

    2005-12-01

    Spinal axons of the adult newt will regenerate when the spinal cord is severed or when the tail is amputated. Ischemia and associated hypoxia have been correlated with poor central nervous system regeneration in mammals. To test the effects of ischemia on newt spinal cord regeneration, the spinal cord and major blood vessels of the newt tail were severed 2 cm caudal to the cloaca as a primary injury. This primary injury severely reduced circulation in the caudal direction for 7 days; by day 8, circulation was largely restored. After various periods of time after primary injury, tails were amputated 1 cm caudal to the primary injury (in the area of ischemia) and tested for regeneration. If the tail was amputated within 5 days of the primary injury, regeneration did not occur. If amputation was 7 days or longer after the primary injury, a regenerative response occurred. Histology showed that in the non-regenerating tails the spinal cord and associated ependyma, known to be important to tail regeneration, had degenerated in the rostral direction. Such degeneration was prevented when tails were first amputated and allowed to form blastemas before the primary injury. The data indicate that the first 5-7 days of blastema formation are particularly sensitive to compromised blood flow (ischemia/hypoxia). It follows that mechanisms must be present in the adult newt to reduce ischemia to a minimum and thus allow ependymal outgrowth and tail regeneration.

  13. NGF induces adult stem Leydig cells to proliferate and differentiate during Leydig cell regeneration

    SciTech Connect

    Zhang, Lei; Wang, Huaxi; Yang, Yan; Liu, Hui; Zhang, Qihao; Xiang, Qi; Ge, Renshan; Su, Zhijian; Huang, Yadong

    2013-06-28

    Highlights: •Nerve growth factor has shown significant changes on mRNA levels during Adult Leydig cells regeneration. •We established the organ culture model of rat seminiferous tubules with ethane dimethyl sulphonate (EDS) treatment. •Nerve growth factor has shown proliferation and differentiation-promoting effects on Adult stem Leydig cells. •Nerve growth factor induces progenitor Leydig cells to proliferate and differentiate and immature Leydig cells to proliferate. -- Abstract: Nerve growth factor (NGF) has been reported to be involved in male reproductive physiology. However, few reports have described the activity of NGF during Leydig cell development. The objective of the present study was to examine the role of NGF during stem-Leydig-cell (SLC) regeneration. We investigated the effects of NGF on Leydig-cell (LC) regeneration by measuring mRNA levels in the adult rat testis after ethane dimethanesulfonate (EDS) treatment. Furthermore, we used the established organ culture model of rat seminiferous tubules to examine the regulation of NGF during SLC proliferation and differentiation using EdU staining, real-time PCR and western blotting. Progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs) were also used to investigate the effects of NGF on LCs at different developmental stages. NGF mRNA levels changed significantly during Leydig-cell regeneration in vivo. In vitro, NGF significantly promoted the proliferation of stem Leydig cells and also induced steroidogenic enzyme gene expression and 3β-HSD protein expression. The data from PLCs and ILCs showed that NGF could increase Cyclin D1 and Hsd 17b3 mRNA levels in PLCs and Cyclin D1 mRNA levels in ILCs. These results indicate that NGF may play an important role during LC regeneration by regulating the proliferation and differentiation of LCs at different developmental stages, from SLCs to PLCs and from PLCs to ILCs. The discovery of this effect of NGF on Leydig cells will provide useful

  14. Fetal and adult fibroblasts display intrinsic differences in tendon tissue engineering and regeneration

    PubMed Central

    Tang, Qiao-Mei; Chen, Jia Lin; Shen, Wei Liang; Yin, Zi; Liu, Huan Huan; Fang, Zhi; Heng, Boon Chin; Ouyang, Hong Wei; Chen, Xiao

    2014-01-01

    Injured adult tendons do not exhibit optimal healing through a regenerative process, whereas fetal tendons can heal in a regenerative fashion without scar formation. Hence, we compared FFs (mouse fetal fibroblasts) and AFs (mouse adult fibroblasts) as seed cells for the fabrication of scaffold-free engineered tendons. Our results demonstrated that FFs had more potential for tendon tissue engineering, as shown by higher levels of tendon-related gene expression. In the in situ AT injury model, the FFs group also demonstrated much better structural and functional properties after healing, with higher levels of collagen deposition and better microstructure repair. Moreover, fetal fibroblasts could increase the recruitment of fibroblast-like cells and reduce the infiltration of inflammatory cells to the injury site during the regeneration process. Our results suggest that the underlying mechanisms of better regeneration with FFs should be elucidated and be used to enhance adult tendon healing. This may assist in the development of future strategies to treat tendon injuries. PMID:24992450

  15. Distinct effects of inflammation on preconditioning and regeneration of the adult zebrafish heart

    PubMed Central

    de Preux Charles, Anne-Sophie; Bise, Thomas; Baier, Felix; Marro, Jan; Jaźwińska, Anna

    2016-01-01

    The adult heart is able to activate cardioprotective programmes and modifies its architecture in response to physiological or pathological changes. While mammalian cardiac remodelling often involves hypertrophic expansion, the adult zebrafish heart exploits hyperplastic growth. This capacity depends on the responsiveness of zebrafish cardiomyocytes to mitogenic signals throughout their entire life. Here, we have examined the role of inflammation on the stimulation of cell cycle activity in the context of heart preconditioning and regeneration. We used thoracotomy as a cardiac preconditioning model and cryoinjury as a model of cardiac infarction in the adult zebrafish. First, we performed a spatio-temporal characterization of leucocytes and cycling cardiac cells after thoracotomy. This analysis revealed a concomitance between the infiltration of inflammatory cells and the stimulation of the mitotic activity. However, decreasing the immune response using clodronate liposome injection, PLX3397 treatment or anti-inflammatory drugs surprisingly had no effect on the re-entry of cardiac cells into the cell cycle. In contrast, reducing inflammation using the same strategies after cryoinjury strongly impaired cardiac cell mitotic activity and the regenerative process. Taken together, our results show that, while the immune response is not necessary to induce cell-cycle activity in intact preconditioned hearts, inflammation is required for the regeneration of injured hearts in zebrafish. PMID:27440424

  16. Fetal and adult fibroblasts display intrinsic differences in tendon tissue engineering and regeneration.

    PubMed

    Tang, Qiao-Mei; Chen, Jia Lin; Shen, Wei Liang; Yin, Zi; Liu, Huan Huan; Fang, Zhi; Heng, Boon Chin; Ouyang, Hong Wei; Chen, Xiao

    2014-07-03

    Injured adult tendons do not exhibit optimal healing through a regenerative process, whereas fetal tendons can heal in a regenerative fashion without scar formation. Hence, we compared FFs (mouse fetal fibroblasts) and AFs (mouse adult fibroblasts) as seed cells for the fabrication of scaffold-free engineered tendons. Our results demonstrated that FFs had more potential for tendon tissue engineering, as shown by higher levels of tendon-related gene expression. In the in situ AT injury model, the FFs group also demonstrated much better structural and functional properties after healing, with higher levels of collagen deposition and better microstructure repair. Moreover, fetal fibroblasts could increase the recruitment of fibroblast-like cells and reduce the infiltration of inflammatory cells to the injury site during the regeneration process. Our results suggest that the underlying mechanisms of better regeneration with FFs should be elucidated and be used to enhance adult tendon healing. This may assist in the development of future strategies to treat tendon injuries.

  17. Trop2 marks transient gastric fetal epithelium and adult regenerating cells after epithelial damage

    PubMed Central

    Fernandez Vallone, Valeria; Leprovots, Morgane; Strollo, Sandra; Vasile, Gabriela; Lefort, Anne; Libert, Frederick; Vassart, Gilbert; Garcia, Marie-Isabelle

    2016-01-01

    ABSTRACT Mouse fetal intestinal progenitors lining the epithelium prior to villogenesis grow as spheroids when cultured ex vivo and express the transmembrane glycoprotein Trop2 as a marker. Here, we report the characterization of Trop2-expressing cells from fetal pre-glandular stomach, growing as immortal undifferentiated spheroids, and their relationship with gastric development and regeneration. Trop2+ cells generating gastric spheroids differed from adult glandular Lgr5+ stem cells, but appeared highly related to fetal intestinal spheroids. Although they shared a common spheroid signature, intestinal and gastric fetal spheroid-generating cells expressed organ-specific transcription factors and were committed to intestinal and glandular gastric differentiation, respectively. Trop2 expression was transient during glandular stomach development, being lost at the onset of gland formation, whereas it persisted in the squamous forestomach. Undetectable under homeostasis, Trop2 was strongly re-expressed in glands after acute Lgr5+ stem cell ablation or following indomethacin-induced injury. These highly proliferative reactive adult Trop2+ cells exhibited a transcriptome displaying similarity with that of gastric embryonic Trop2+ cells, suggesting that epithelium regeneration in adult stomach glands involves the partial re-expression of a fetal genetic program. PMID:26989172

  18. Production of transgenic adult plants from clementine mandarin by enhancing cell competence for transformation and regeneration.

    PubMed

    Cervera, Magdalena; Navarro, Antonio; Navarro, Luis; Peña, Leandro

    2008-01-01

    Genetic transformation of mature trees is difficult because adult tissues are recalcitrant to Agrobacterium tumefaciens infection and transformation and because transgenic mature events are less competent for regeneration. We have shown that reinvigoration allows manipulation of the vegetative phase to increase the potential for transformation and regeneration without loss of competence for flowering and fruiting. To produce transgenic plants from clementine mandarin (Citrus clementina hort. ex Tanaka), we optimized the conditions of the source material both ex vitro and in vitro. Grafting of mature buds on juvenile rootstocks in the spring and preventing multiple bud sprouting by removing all but one bud permitted selection of vigorous first flushes for in vitro culture. Use of additional virulence genes from A. tumefaciens to increase transformation frequency and optimization of culture media and conditions to enhance explant cell competence for T-DNA integration and organogenesis resulted in efficient and reliable transgenic plant production. Transformed regenerants from explants, cultured in media without antibiotics, were identified by a screenable marker (either beta-glucuronidase or green fluorescent protein (GFP)), creating the possibility of generating transgenic clementine plants without antibiotic resistance marker genes. Stable integration of foreign genes was demonstrated by Southern blot analysis, and expression of these foreign genes was confirmed by detection of GFP fluorescence in leaves, floral organs and fruits of the transgenic plants.

  19. Regeneration and characterization of adult mouse hippocampal neurons in a defined in vitro system.

    PubMed

    Varghese, Kucku; Das, Mainak; Bhargava, Neelima; Stancescu, Maria; Molnar, Peter; Kindy, Mark S; Hickman, James J

    2009-02-15

    Although the majority of human illnesses occur during adulthood, most of the available in vitro disease models are based upon cells obtained from embryonic/fetal tissues because of the difficulties involved with culturing adult cells. Development of adult mouse neuronal cultures has a special significance because of the abundance of transgenic disease models that use this species. In this study a novel cell culture method has been developed that supports the long-term survival and physiological regeneration of adult mouse hippocampal cells in a serum-free defined environment. In this well-defined, controlled system, adult mouse hippocampal cells survived for up to 21 days in culture. The cultured cells exhibited typical hippocampal neuronal morphology and electrophysiological properties after recovery from the trauma of dissociation, and stained positive for the expected neuronal markers. This system has great potential as an investigative tool for in vitro studies of adult diseases, the aging brain or transgenic models of age-associated disorders. PMID:18955083

  20. Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair.

    PubMed

    Ellison, Georgina M; Vicinanza, Carla; Smith, Andrew J; Aquila, Iolanda; Leone, Angelo; Waring, Cheryl D; Henning, Beverley J; Stirparo, Giuliano Giuseppe; Papait, Roberto; Scarfò, Marzia; Agosti, Valter; Viglietto, Giuseppe; Condorelli, Gianluigi; Indolfi, Ciro; Ottolenghi, Sergio; Torella, Daniele; Nadal-Ginard, Bernardo

    2013-08-15

    The epidemic of heart failure has stimulated interest in understanding cardiac regeneration. Evidence has been reported supporting regeneration via transplantation of multiple cell types, as well as replication of postmitotic cardiomyocytes. In addition, the adult myocardium harbors endogenous c-kit(pos) cardiac stem cells (eCSCs), whose relevance for regeneration is controversial. Here, using different rodent models of diffuse myocardial damage causing acute heart failure, we show that eCSCs restore cardiac function by regenerating lost cardiomyocytes. Ablation of the eCSC abolishes regeneration and functional recovery. The regenerative process is completely restored by replacing the ablated eCSCs with the progeny of one eCSC. eCSCs recovered from the host and recloned retain their regenerative potential in vivo and in vitro. After regeneration, selective suicide of these exogenous CSCs and their progeny abolishes regeneration, severely impairing ventricular performance. These data show that c-kit(pos) eCSCs are necessary and sufficient for the regeneration and repair of myocardial damage. PMID:23953114

  1. Effects of estradiol and methoxychlor on Leydig cell regeneration in the adult rat testis.

    PubMed

    Chen, Bingbing; Chen, Dongxin; Jiang, Zheli; Li, Jingyang; Liu, Shiwen; Dong, Yaoyao; Yao, Wenwen; Akingbemi, Benson; Ge, Renshan; Li, Xiaokun

    2014-05-06

    The objective of the present study is to determine whether methoxychlor (MXC) exposure in adulthood affects rat Leydig cell regeneration and to compare its effects with estradiol (E2). Adult 90-day-old male Sprague-Dawley rats received ethane dimethane sulfonate (EDS) to eliminate the adult Leydig cell population. Subsequently, rats were randomly assigned to four groups and gavaged with corn oil (control), 0.25 mg/kg E2 and 10 or 100 mg/kg MXC daily from days 5 to 30 post-EDS treatment. The results showed that MXC and E2 reduced serum testosterone levels on day 58 post-EDS treatment. qPCR showed Hsd17b3 mRNA levels were downregulated 7-15 fold by E2 and MXC, indicating that development of the new population of Leydig cells was arrested at the earlier stage. This observation was supported by the results of histochemical staining, which demonstrated that Leydig cells in MXC-treated testis on day 58 post-EDS treatment were mostly progenitor Leydig cells. However, Pdgfb mRNA levels were downregulated, while Lif transcript levels were increased by MXC. In contrast, E2 did not affect gene expression for these growth factors. In conclusion, our findings indicated that both MXC and E2 delayed rat Leydig cell regeneration in the EDS-treated model, presumably acting by different mechanisms.

  2. Effects of Estradiol and Methoxychlor on Leydig Cell Regeneration in the Adult Rat Testis

    PubMed Central

    Chen, Bingbing; Chen, Dongxin; Jiang, Zheli; Li, Jingyang; Liu, Shiwen; Dong, Yaoyao; Yao, Wenwen; Akingbemi, Benson; Ge, Renshan; Li, Xiaokun

    2014-01-01

    The objective of the present study is to determine whether methoxychlor (MXC) exposure in adulthood affects rat Leydig cell regeneration and to compare its effects with estradiol (E2). Adult 90-day-old male Sprague-Dawley rats received ethane dimethane sulfonate (EDS) to eliminate the adult Leydig cell population. Subsequently, rats were randomly assigned to four groups and gavaged with corn oil (control), 0.25 mg/kg E2 and 10 or 100 mg/kg MXC daily from days 5 to 30 post-EDS treatment. The results showed that MXC and E2 reduced serum testosterone levels on day 58 post-EDS treatment. qPCR showed Hsd17b3 mRNA levels were downregulated 7–15 fold by E2 and MXC, indicating that development of the new population of Leydig cells was arrested at the earlier stage. This observation was supported by the results of histochemical staining, which demonstrated that Leydig cells in MXC-treated testis on day 58 post-EDS treatment were mostly progenitor Leydig cells. However, Pdgfb mRNA levels were downregulated, while Lif transcript levels were increased by MXC. In contrast, E2 did not affect gene expression for these growth factors. In conclusion, our findings indicated that both MXC and E2 delayed rat Leydig cell regeneration in the EDS-treated model, presumably acting by different mechanisms. PMID:24806340

  3. Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair

    PubMed Central

    Xin, Mei; Olson, Eric N.; Bassel-Duby, Rhonda

    2013-01-01

    As the adult mammalian heart has limited potential for regeneration and repair, the loss of cardiomyocytes during injury and disease can result in heart failure and death. The cellular processes and regulatory mechanisms involved in heart growth and development can be exploited to repair the injured adult heart through ‘reawakening’ pathways that are active during embryogenesis. Heart function has been restored in rodents by reprogramming non-myocytes into cardiomyocytes, by expressing transcription factors (GATA4, HAND2, myocyte-specific enhancer factor 2C (MEF2C) and T-box 5 (TBX5)) and microRNAs (miR-1, miR-133, miR-208 and miR-499) that control cardiomyocyte identity. Stimulating cardiomyocyte dedifferentiation and proliferation by activating mitotic signalling pathways involved in embryonic heart growth represents a complementary approach for heart regeneration and repair. Recent advances in understanding the mechanistic basis of heart development offer exciting opportunities for effective therapies for heart failure. PMID:23839576

  4. Identification of adult nephron progenitors capable of kidney regeneration in zebrafish.

    PubMed

    Diep, Cuong Q; Ma, Dongdong; Deo, Rahul C; Holm, Teresa M; Naylor, Richard W; Arora, Natasha; Wingert, Rebecca A; Bollig, Frank; Djordjevic, Gordana; Lichman, Benjamin; Zhu, Hao; Ikenaga, Takanori; Ono, Fumihito; Englert, Christoph; Cowan, Chad A; Hukriede, Neil A; Handin, Robert I; Davidson, Alan J

    2011-02-01

    Loss of kidney function underlies many renal diseases. Mammals can partly repair their nephrons (the functional units of the kidney), but cannot form new ones. By contrast, fish add nephrons throughout their lifespan and regenerate nephrons de novo after injury, providing a model for understanding how mammalian renal regeneration may be therapeutically activated. Here we trace the source of new nephrons in the adult zebrafish to small cellular aggregates containing nephron progenitors. Transplantation of single aggregates comprising 10-30 cells is sufficient to engraft adults and generate multiple nephrons. Serial transplantation experiments to test self-renewal revealed that nephron progenitors are long-lived and possess significant replicative potential, consistent with stem-cell activity. Transplantation of mixed nephron progenitors tagged with either green or red fluorescent proteins yielded some mosaic nephrons, indicating that multiple nephron progenitors contribute to a single nephron. Consistent with this, live imaging of nephron formation in transparent larvae showed that nephrogenic aggregates form by the coalescence of multiple cells and then differentiate into nephrons. Taken together, these data demonstrate that the zebrafish kidney probably contains self-renewing nephron stem/progenitor cells. The identification of these cells paves the way to isolating or engineering the equivalent cells in mammals and developing novel renal regenerative therapies.

  5. Hydrodynamics of a Digitized Adult Humpback Whale Flipper

    NASA Astrophysics Data System (ADS)

    Fassmann, Wesley N.; McDonald, Samuel J.; Thomson, Scott L.; Fish, Frank E.

    2013-11-01

    During feeding, humpback whales turn with a turn radius of up to 1 /6th of their length towards schools of fish enclosed by bubble nets. This high maneuverability requirement is facilitated by high aspect ratio flippers with leading edge tubercles that delay stall. Previous experimental and computational studies have used idealized models, such as airfoils with scalloped leading edges, to explore the influence of leading edge tubercles on boundary layer separation, vortex generation, and airfoil lift and drag characteristics. Owing to the substantial size of the flipper, no studies have been performed on a digitized adult humpback flipper with real geometry. In this study the hydrodynamics of a realistic humpback flipper model were explored. The model was developed by digitizing a sequence of 18 images circumscribing the suspended flipper of a beached humpback whale. A physical prototype was constructed based on the resulting 3D model, along with a complementary model with the tubercles removed. Experimentally-obtained measurements of lift and drag were used to study the influence of the tubercles. In the presentation, digitization and flow measurement methods are described, and the flow data and results are presented and discussed.

  6. Comparison of short- with long-term regeneration results after digital nerve reconstruction with muscle-in-vein conduits

    PubMed Central

    Schiefer, Jennifer Lynn; Schulz, Lukas; Rath, Rebekka; Stahl, Stéphane; Schaller, Hans-Eberhard; Manoli, Theodora

    2015-01-01

    Muscle-in-vein conduits are used alternatively to nerve grafts for bridging nerve defects. The purpose of this study was to examine short- and long-term regeneration results after digital nerve reconstruction with muscle-in-vein conduits. Static and moving two-point discriminations and Semmes-Weinstein Monofilaments were used to evaluate sensory recovery 6–12 months and 14–35 months after repair of digital nerves with muscle-in-vein in 7 cases. Both follow-ups were performed after clinical signs of progressing regeneration disappeared. In 4 of 7 cases, a further recovery of both two-point discriminations and in another case of only the static two-point discrimination of 1–3 mm could be found between the short-term and long-term follow-up examination. Moreover, a late recovery of both two-point discriminations was demonstrated in another case. Four of 7 cases showed a sensory improvement by one Semmes-Weinstein Monofilaments. This pilot study suggests that sensory recovery still takes place even when clinical signs of progressing regeneration disappear. PMID:26692868

  7. Natural ECM as biomaterial for scaffold based cardiac regeneration using adult bone marrow derived stem cells.

    PubMed

    Sreejit, P; Verma, R S

    2013-04-01

    Cellular therapy using stem cells for cardiac diseases has recently gained much interest in the scientific community due to its potential in regenerating damaged and even dead tissue and thereby restoring the organ function. Stem cells from various sources and origin are being currently used for regeneration studies directly or along with differentiation inducing agents. Long term survival and minimal side effects can be attained by using autologous cells and reduced use of inducing agents. Cardiomyogenic differentiation of adult derived stem cells has been previously reported using various inducing agents but the use of a potentially harmful DNA demethylating agent 5-azacytidine (5-azaC) has been found to be critical in almost all studies. Alternate inducing factors and conditions/stimulant like physical condition including electrical stimulation, chemical inducers and biological agents have been attempted by numerous groups to induce cardiac differentiation. Biomaterials were initially used as artificial scaffold in in vitro studies and later as a delivery vehicle. Natural ECM is the ideal biological scaffold since it contains all the components of the tissue from which it was derived except for the living cells. Constructive remodeling can be performed using such natural ECM scaffolds and stem cells since, the cells can be delivered to the site of infraction and once delivered the cells adhere and are not "lost". Due to the niche like conditions of ECM, stem cells tend to differentiate into tissue specific cells and attain several characteristics similar to that of functional cells even in absence of any directed differentiation using external inducers. The development of niche mimicking biomaterials and hybrid biomaterial can further advance directed differentiation without specific induction. The mechanical and electrical integration of these materials to the functional tissue is a problem to be addressed. The search for the perfect extracellular matrix for

  8. DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport

    PubMed Central

    Bernier-Latmani, Jeremiah; Cisarovsky, Christophe; Demir, Cansaran Saygili; Bruand, Marine; Jaquet, Muriel; Davanture, Suzel; Ragusa, Simone; Siegert, Stefanie; Dormond, Olivier; Benedito, Rui; Radtke, Freddy; Luther, Sanjiv A.; Petrova, Tatiana V.

    2015-01-01

    The small intestine is a dynamic and complex organ that is characterized by constant epithelium turnover and crosstalk among various cell types and the microbiota. Lymphatic capillaries of the small intestine, called lacteals, play key roles in dietary fat absorption and the gut immune response; however, little is known about the molecular regulation of lacteal function. Here, we performed a high-resolution analysis of the small intestinal stroma and determined that lacteals reside in a permanent regenerative, proliferative state that is distinct from embryonic lymphangiogenesis or quiescent lymphatic vessels observed in other tissues. We further demonstrated that this continuous regeneration process is mediated by Notch signaling and that the expression of the Notch ligand delta-like 4 (DLL4) in lacteals requires activation of VEGFR3 and VEGFR2. Moreover, genetic inactivation of Dll4 in lymphatic endothelial cells led to lacteal regression and impaired dietary fat uptake. We propose that such a slow lymphatic regeneration mode is necessary to match a unique need of intestinal lymphatic vessels for both continuous maintenance, due to the constant exposure to dietary fat and mechanical strain, and efficient uptake of fat and immune cells. Our work reveals how lymphatic vessel responses are shaped by tissue specialization and uncover a role for continuous DLL4 signaling in the function of adult lymphatic vasculature. PMID:26529256

  9. Streptomycin ototoxicity and hair cell regeneration in the adult pigeon utricle

    NASA Technical Reports Server (NTRS)

    Frank, T. C.; Dye, B. J.; Newlands, S. D.; Dickman, J. D.

    1999-01-01

    OBJECTIVE: The purpose of this study was to develop a technique to investigate the regeneration of utricular hair cells in the adult pigeon (Columba livia) following complete hair cell loss through administration of streptomycin. STUDY DESIGN: Experimental animal study. METHODS: Animals were divided into four groups. Group 1 received 10 to 15 days of systemic streptomycin injections. Animals in Groups 2 and 3 received a single direct placement of a 1-, 2-, 4-, or 8-mg streptomycin dose into the perilymphatic space. Animals in Groups 1 and 2 were analyzed within 1 week from injection to investigate hair cell destruction, whereas Group 3 was investigated at later dates to study hair cell recovery. Group 4 animals received a control injection of saline into the perilymphatic space. Damage and recovery were quantified by counting hair cells in isolated utricles using scanning electron microscopy. RESULTS: Although systemic injections failed to reliably achieve complete utricular hair cell destruction, a single direct placement of a 2-, 4-, or 8-mg streptomycin dose caused complete destruction within the first week. Incomplete hair cell loss was observed with the 1-mg dose. Over the long term, regeneration of the hair cells was seen with the 2-mg dose but not the 8-mg dose. Control injections of saline into the perilymphatic space caused no measurable hair cell loss. CONCLUSIONS: Direct placement of streptomycin into the perilymph is an effective, reliable method for complete destruction of utricular hair cells while preserving the regenerative potential of the neuroepithelium.

  10. Production and Consumption: A Closer Look at Adult Digital Literacy Acquisition

    ERIC Educational Resources Information Center

    Jacobs, Gloria E.; Castek, Jill; Pizzolato, Andrew; Reder, Stephen; Pendell, Kimberly

    2014-01-01

    In this column, the authors discuss emerging research in the field of adult digital literacy acquisition. The authors argue that the field of adult digital literacy acquisition has been under-researched, especially in relation to multiliteracies and multimodal literacy practices. Data emerging from a large scale mixed methods study of adults…

  11. Greening the Net Generation: Outdoor Adult Learning in the Digital Age

    ERIC Educational Resources Information Center

    Walter, Pierre

    2013-01-01

    Adult learning today takes place primarily within walled classrooms or in other indoor settings, and often in front of various types of digital screens. As adults have adopted the digital technologies and indoor lifestyle attributed to the so-called "Net Generation," we have become detached from contact with the natural world outdoors.…

  12. Adult Learning in the Digital Age: Perspectives on Online Technologies and Outcomes

    ERIC Educational Resources Information Center

    Kidd, Terry T., Ed.; Keengwe, Jared, Ed.

    2010-01-01

    As instructors move further into the incorporation of 21st century technologies in adult education, a new paradigm of digitally-enriched mediated learning has emerged. This book provides a comprehensive framework of trends and issues related to adult learning for the facilitation of authentic learning in the age of digital technology. This…

  13. Lithium Alters the Morphology of Neurites Regenerating from Cultured Adult Spiral Ganglion Neurons

    PubMed Central

    Shah, S. M.; Patel, C. H.; Feng, A. S.; Kollmar, R.

    2013-01-01

    The small-molecule drug lithium (as a monovalent ion) promotes neurite regeneration and functional recovery, is easy to administer, and is approved for human use to treat bipolar disorder. Lithium exerts its neuritogenic effect mainly by inhibiting glycogen synthase kinase 3, a constitutively-active serine/threonine kinase that is regulated by neurotrophin and “wingless-related MMTV integration site” (Wnt) signaling. In spiral ganglion neurons of the cochlea, the effects of lithium and the function of glycogen synthase kinase 3 have not been investigated. We, therefore, set out to test whether lithium modulates neuritogenesis from adult spiral ganglion neurons. Primary cultures of dissociated spiral ganglion neurons from adult mice were exposed to lithium at concentrations between 0 and 12.5 mM. The resulting neurite morphology and growth-cone appearance were measured in detail by using immunofluorescence microscopy and image analysis. We found that lithium altered the morphology of regenerating neurites and their growth cones in a differential, concentration-dependent fashion. Low concentrations of 0.5 to 2.5 mM (around the half-maximal inhibitory concentration for glycogen synthase kinase 3 and the recommended therapeutic serum concentration for bipolar disorder) enhanced neurite sprouting and branching. A high concentration of 12.5 mM, in contrast, slowed elongation. As the lithium concentration rose from low to high, the microtubules became increasingly disarranged and the growth cones more arborized. Our results demonstrate that lithium selectively stimulates phases of neuritogenesis that are driven by microtubule reorganization. In contrast, most other drugs that have previously been tested on spiral ganglion neurons are reported to inhibit neurite outgrowth or affect only elongation. Lithium sensitivity is a necessary, but not sufficient condition for the involvement of glycogen synthase kinase 3. Our results are, therefore, consistent with, but do not

  14. Spontaneous Bone Regeneration After Enucleation of Large Jaw Cysts: A Digital Radiographic Analysis of 44 Consecutive Cases

    PubMed Central

    Chacko, Rabin; Paul, Arun; Arvind

    2015-01-01

    Purpose This study evaluated the healing in cystic defect of the jaw to substantiate our understanding of spontaneous bone healing after enucleation of jaw cysts subjectively and with analysis of digital postoperative panoramic radiographs. Materials and Methods Fourty four consecutive patients reporting to the Department of Dental and Oral Surgery, during the period between 2008-2012 having maxillary and mandibular cysts treated by either surgical enucleation or by marsupialization followed by enucleation were evaluated for subsequent bone formation at the site of cystectomy defect by subjective clinical examination along with digital radiographic examination. Postoperative clinical and radiographic examinations were performed at 6,9,12, and 24 months. Bone regeneration was evaluated by reduction of the size of residual cavities at the cystectomy defect using digital orthopantomogram. Results Out of 44 patients 15 patients completed two years of follow-up with all the patients having 6 months follow-up. The maximum size of the cystic pathology was 150.40mm and minimum of 14.73mm at the time of presentation (average size of 58.16mm). Twenty patients were diagnosed with odontogenic keratocyst, with one patient having multiple OKC associated with Gorlin Goltz Syndrome, 17 patients had dentigerous cyst, 5 had Radicular cyst; solitary bone cyst and globulomaxillary cyst formed one each. Uneventful healing and spontaneous filling of the residual cavities were obtained in all cases. The digital analysis of the postoperative radiographs showed mean values of reduction in size of the residual cavity of 25.85% after 6 months, 57.13% after 9 months, 81.03% after one year and 100% after two year. Conclusion Spontaneous bone regeneration can occur after surgical removal of jaw cysts without the aid of any graft materials even in large cystic cavity sufficiently surrounded by enough bony walls. This simplifies the surgical procedure, decreases the overall cost of surgery, and

  15. A transcriptome for the study of early processes of retinal regeneration in the adult newt, Cynops pyrrhogaster.

    PubMed

    Nakamura, Kenta; Islam, Md Rafiqul; Takayanagi, Miyako; Yasumuro, Hirofumi; Inami, Wataru; Kunahong, Ailidana; Casco-Robles, Roman M; Toyama, Fubito; Chiba, Chikafumi

    2014-01-01

    Retinal regeneration in the adult newt is a useful system to uncover essential mechanisms underlying the regeneration of body parts of this animal as well as to find clues to treat retinal disorders such as proliferative vitreoretinopathy. Here, to facilitate the study of early processes of retinal regeneration, we provide a de novo assembly transcriptome and inferred proteome of the Japanese fire bellied newt (Cynops pyrrhogaster), which was obtained from eyeball samples of day 0-14 after surgical removal of the lens and neural retina. This transcriptome (237,120 in silico transcripts) contains most information of cDNAs/ESTs which has been reported in newts (C. pyrrhogaster, Pleurodeles waltl and Notophthalmus viridescence) thus far. On the other hand, de novo assembly transcriptomes reported lately for N. viridescence only covered 16-31% of this transcriptome, suggesting that most constituents of this transcriptome are specific to the regenerating eye tissues of C. pyrrhogaster. A total of 87,102 in silico transcripts of this transcriptome were functionally annotated. Coding sequence prediction in combination with functional annotation revealed that 76,968 in silico transcripts encode protein/peptides recorded in public databases so far, whereas 17,316 might be unique. qPCR and Sanger sequencing demonstrated that this transcriptome contains much information pertaining to genes that are regulated in association with cell reprogramming, cell-cycle re-entry/proliferation, and tissue patterning in an early phase of retinal regeneration. This data also provides important insight for further investigations addressing cellular mechanisms and molecular networks underlying retinal regeneration as well as differences between retinal regeneration and disorders. This transcriptome can be applied to ensuing comprehensive gene screening steps, providing candidate genes, regardless of whether annotated or unique, to uncover essential mechanisms underlying early processes of

  16. Scar formation and lack of regeneration in adult and neonatal liver after stromal injury.

    PubMed

    Masuzaki, Ryota; Zhao, Sophia R; Csizmadia, Eva; Yannas, Ioannis; Karp, Seth J

    2013-01-01

    Known as a uniquely regenerative tissue, the liver shows a remarkable capacity to heal without scarring after many types of acute injury. In contrast, during chronic liver disease, the liver responds with fibrosis, which can progress to cirrhosis and ultimately liver failure. The cause of this shift from a nonfibrotic to a fibrotic response is unknown. We hypothesized that stromal injury is a key event that prevents restoration of normal liver architecture. To test this, we developed a model of stromal injury using a surgical incision through the normal liver in adult and neonatal mice. This injury produces minimal cell death but locally complete stromal (extracellular matrix) disruption. The adult liver responds with inflammation and stellate cell activation, culminating in fibrosis characterized by collagen deposition. This sequence of events is remarkably similar to the fibrotic response leading to cirrhosis. Studies in neonates reveal a similar fibrotic response to a stromal injury. These findings suggest that extracellular matrix disruption leads not to regeneration but rather to scar, similar to other mammalian organs. These findings may shed light on the pathogenesis of chronic liver disease, and suggest therapeutic strategies. PMID:23228176

  17. Defects in ErbB-dependent establishment of adult melanocyte stem cells reveal independent origins for embryonic and regeneration melanocytes.

    PubMed

    Hultman, Keith A; Budi, Erine H; Teasley, Daniel C; Gottlieb, Andrew Y; Parichy, David M; Johnson, Stephen L

    2009-07-01

    Adult stem cells are responsible for maintaining and repairing tissues during the life of an organism. Tissue repair in humans, however, is limited compared to the regenerative capabilities of other vertebrates, such as the zebrafish (Danio rerio). An understanding of stem cell mechanisms, such as how they are established, their self-renewal properties, and their recruitment to produce new cells is therefore important for the application of regenerative medicine. We use larval melanocyte regeneration following treatment with the melanocytotoxic drug MoTP to investigate these mechanisms in Melanocyte Stem Cell (MSC) regulation. In this paper, we show that the receptor tyrosine kinase, erbb3b, is required for establishing the adult MSC responsible for regenerating the larval melanocyte population. Both the erbb3b mutant and wild-type fish treated with the ErbB inhibitor, AG1478, develop normal embryonic melanocytes but fail to regenerate melanocytes after MoTP-induced melanocyte ablation. By administering AG1478 at different time points, we show that ErbB signaling is only required for regeneration prior to MoTP treatment and before 48 hours of development, consistent with a role in establishing MSCs. We then show that overexpression of kitla, the Kit ligand, in transgenic larvae leads to recruitment of MSCs, resulting in overproliferation of melanocytes. Furthermore, kitla overexpression can rescue AG1478-blocked regeneration, suggesting that ErbB signaling is required to promote the progression and specification of the MSC from a pre-MSC state. This study provides evidence that ErbB signaling is required for the establishment of adult MSCs during embryonic development. That this requirement is not shared with the embryonic melanocytes suggests that embryonic melanocytes develop directly, without proceeding through the ErbB-dependent MSC. Moreover, the shared requirement of larval melanocyte regeneration and metamorphic melanocytes that develops at the larval-to-adult

  18. Environmental changes in oxygen tension reveal ROS-dependent neurogenesis and regeneration in the adult newt brain.

    PubMed

    Hameed, L Shahul; Berg, Daniel A; Belnoue, Laure; Jensen, Lasse D; Cao, Yihai; Simon, András

    2015-01-01

    Organisms need to adapt to the ecological constraints in their habitat. How specific processes reflect such adaptations are difficult to model experimentally. We tested whether environmental shifts in oxygen tension lead to events in the adult newt brain that share features with processes occurring during neuronal regeneration under normoxia. By experimental simulation of varying oxygen concentrations, we show that hypoxia followed by re-oxygenation lead to neuronal death and hallmarks of an injury response, including activation of neural stem cells ultimately leading to neurogenesis. Neural stem cells accumulate reactive oxygen species (ROS) during re-oxygenation and inhibition of ROS biosynthesis counteracts their proliferation as well as neurogenesis. Importantly, regeneration of dopamine neurons under normoxia also depends on ROS-production. These data demonstrate a role for ROS-production in neurogenesis in newts and suggest that this role may have been recruited to the capacity to replace lost neurons in the brain of an adult vertebrate. PMID:26485032

  19. Environmental changes in oxygen tension reveal ROS-dependent neurogenesis and regeneration in the adult newt brain.

    PubMed

    Hameed, L Shahul; Berg, Daniel A; Belnoue, Laure; Jensen, Lasse D; Cao, Yihai; Simon, András

    2015-10-20

    Organisms need to adapt to the ecological constraints in their habitat. How specific processes reflect such adaptations are difficult to model experimentally. We tested whether environmental shifts in oxygen tension lead to events in the adult newt brain that share features with processes occurring during neuronal regeneration under normoxia. By experimental simulation of varying oxygen concentrations, we show that hypoxia followed by re-oxygenation lead to neuronal death and hallmarks of an injury response, including activation of neural stem cells ultimately leading to neurogenesis. Neural stem cells accumulate reactive oxygen species (ROS) during re-oxygenation and inhibition of ROS biosynthesis counteracts their proliferation as well as neurogenesis. Importantly, regeneration of dopamine neurons under normoxia also depends on ROS-production. These data demonstrate a role for ROS-production in neurogenesis in newts and suggest that this role may have been recruited to the capacity to replace lost neurons in the brain of an adult vertebrate.

  20. Fetal and adult liver stem cells for liver regeneration and tissue engineering.

    PubMed

    Fiegel, H C; Lange, Claudia; Kneser, U; Lambrecht, W; Zander, A R; Rogiers, X; Kluth, D

    2006-01-01

    For the development of innovative cell-based liver directed therapies, e.g. liver tissue engineering, the use of stem cells might be very attractive to overcome the limitation of donor liver tissue. Liver specific differentiation of embryonic, fetal or adult stem cells is currently under investigation. Different types of fetal liver (stem) cells during development were identified, and their advantageous growth potential and bipotential differentiation capacity were shown. However, ethical and legal issues have to be addressed before using fetal cells. Use of adult stem cells is clinically established, e.g. transplantation of hematopoietic stem cells. Other bone marrow derived liver stem cells might be mesenchymal stem cells (MSC). However, the transdifferentiation potential is still in question due to the observation of cellular fusion in several in vivo experiments. In vitro experiments revealed a crucial role of the environment (e.g. growth factors and extracellular matrix) for specific differentiation of stem cells. Co-cultured liver cells also seemed to be important for hepatic gene expression of MSC. For successful liver cell transplantation, a novel approach of tissue engineering by orthotopic transplantation of gel-immobilized cells could be promising, providing optimal environment for the injected cells. Moreover, an orthotopic tissue engineering approach using bipotential stem cells could lead to a repopulation of the recipients liver with healthy liver and biliary cells, thus providing both hepatic functions and biliary excretion. Future studies have to investigate, which stem cell and environmental conditions would be most suitable for the use of stem cells for liver regeneration or tissue engineering approaches.

  1. Prostate-regenerating capacity of cultured human adult prostate epithelial cells.

    PubMed

    Yao, M; Taylor, R A; Richards, M G; Sved, P; Wong, J; Eisinger, D; Xie, C; Salomon, R; Risbridger, G P; Dong, Q

    2010-01-01

    Experimentation with the progenitor/stem cells in adult prostate epithelium can be inconvenient due to a tight time line from tissue acquisition to cell isolation and to downstream experiments. To circumvent this inconvenience, we developed a simple technical procedure for culturing epithelial cells derived from human prostate tissue. In this study, benign prostate tissue was enzymatically digested and fractionated into epithelium and stroma, which were then cultured in the medium designed for prostate epithelial and stromal cells, respectively. The cultured cells were analyzed by immunocytochemical staining and flow cytometry. Prostate tissue-regenerating capacity of cultured cells in vitro was determined by co-culturing epithelial and stromal cells in dihydrotestosterone-containing RPMI. Cell lineages in formed acini-like structures were determined by immunohistochemistry. The culture of epithelial cells mainly consisted of basal cells. A minor population was negative for known lineage markers and positive for CD133. The culture also contained cells with high activity of aldehyde dehydrogenase. After co-culturing with stromal cells, the epithelial cells were able to form acini-like structures containing multiple cell lineages. Thus, the established culture of prostate epithelial cells provides an alternative source for studying progenitor/stem cells of prostate epithelium.

  2. Regeneration of adult rat spinal cord is promoted by the soluble KDI domain of gamma1 laminin.

    PubMed

    Wiksten, Markus; Väänänen, Antti J; Liebkind, Ron; Liesi, Päivi

    2004-11-01

    Regeneration in the central nervous system (CNS) of adult mammals is hampered by formation of a glial scar and by proteins released from the myelin sheaths of injured neuronal pathways. Our recent data indicate that the KDI (Lys-Asp-Ile) domain of gamma1 laminin neutralizes both glial- and myelin-derived inhibitory signals and promotes survival and neurite outgrowth of cultured human spinal cord neurons. We show that after complete transection of the adult rat spinal cord, animals receiving onsite infusion of the KDI domain via osmotic mini-pumps recover and are able to sustain their body weights and walk with their hindlimbs. Animals treated with placebo suffer from irreversible hindlimb paralysis. Microscopic and molecular analyses of the spinal cords indicate that the KDI domain reduces tissue damage at the lesion site and enables neurite outgrowth through the injured area to effect functional recovery of the initially paralyzed animals. That the KDI domain enhances regeneration of acute spinal cord injuries in the adult rat suggests that it may be used to promote regeneration of spinal cord injuries in humans.

  3. Further amputations of the tail in adult Triturus carnifex: contribution to the study on the nature of regenerated spinal cord.

    PubMed

    Margotta, Vito

    2008-01-01

    Adult Urodele Amphibians, if deprived of the tail, are able to fully regenerate it. This occurs owing to a typical epimorphic phenomenon which takes place in various phases. Within this matter, in particular on the reconstruction of the caudal nervous component, literature sources refer to a great quantity of research following only one amputation of the tail. Being aware of these data we programmed to investigate the possible persistence, decrease or disappearance of the medullary regenerative power after repeated amputations of the regenerated tail. With this objective in view, we have performed on adult Triturus carnifex a series of such operations at time spaced out from one another. In previous experiments, the amputations of the tail have been before seven and then nine. In the current experiment, the same specimens have been subjected to further removals of the tail. This study has developed into three cycles going on over a period of more than ten years. Overall, our panorama rising from the integration of present results and those of former observations is in agreement with what occurs in the area which is the centre of the beginnings of medullary regeneration processes and the bibliographic information concerning the pre-blastematic and blastematic phases. In the subsequent morphogenetic and differentiative phases, however, with the recurrence of the re-establishment of the spinal cord, these events proceed more slowly (gap which reduces when the time interval starting from the operation increases) than in the spinal cords which regenerated after only one tail amputation. Furthermore, although the regenerated spinal cords, if compared to normal spinal cord, show some anomalies (regarding medullary length and diameter, distribution of the spinal nerves and ganglia), the regenerated spinal cords (as well-known uncapable to re-form the Mauthner fibres and supplied with the Rohon-Beard sensitive neurons), their nerves and ganglia reacquire the same complex

  4. Access to Technology in Transnational Social Fields: Simultaneity and Digital Literacy Socialization of Adult Immigrants

    ERIC Educational Resources Information Center

    Nogueron-Liu, Silvia

    2013-01-01

    Some studies of technology use by immigrants have explored the role of digital media in their maintenance of affiliations with their nations of origin. However, the potential for transnational social networks to serve as "resources" that facilitate digital literacy socialization for adult immigrant learners remains unexplored. In this study, I…

  5. The Use of Digital Technologies across the Adult Life Span in Distance Education

    ERIC Educational Resources Information Center

    Jelfs, Anne; Richardson, John T. E.

    2013-01-01

    In June 2010, a survey was carried out to explore access to digital technology, attitudes to digital technology and approaches to studying across the adult life span in students taking courses with the UK Open University. In total, 7000 people were surveyed, of whom more than 4000 responded. Nearly all these students had access to a computer and…

  6. Engaging Post-Secondary Students and Older Adults in an Intergenerational Digital Storytelling Course

    ERIC Educational Resources Information Center

    Hewson, Jennifer; Danbrook, Claire; Sieppert, Jackie

    2015-01-01

    A five day Digital Storytelling course was offered to Social Work students, integrating a three day workshop with older adult storytellers who shared stories related to the theme stories of home. A course evaluation was conducted exploring the Digital Storytelling experience and learning in an intergenerational setting. Findings from surveys…

  7. Changes in neurotrophic factors of adult rat laryngeal muscles during nerve regeneration.

    PubMed

    Hernandez-Morato, Ignacio; Sharma, Sansar; Pitman, Michael J

    2016-10-01

    Injury to the recurrent laryngeal nerve (RLN) leads to the loss of ipsilateral laryngeal fold movement, with dysphonia, and occasionally dysphagia. Functional movement of the vocal folds is never restored due to misrouting of regenerating axons to agonist and antagonist laryngeal muscles. Changes of neurotrophic factor expression within denervated muscles occur after nerve injury and may influence nerve regeneration, axon guidance and muscle reinnervation. This study investigates the expression of certain neurotrophic factors in the laryngeal muscles during the course of axonal regeneration using RT-PCR. The timing of neurotrophic factor expression was correlated to the reinnervation of the laryngeal muscles by motor axons. Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF) and Netrin-1 (NTN-1) increased their expression levels in laryngeal muscles after nerve section and during regeneration of RLN. The upregulation of trophic factors returned to control levels following regeneration of RLN. The expression levels of the neurotrophic factors were correlated with the innervation of regenerating axons into the denervated muscles. The results suggest that certain neurotrophic factor expression is strongly correlated to the reinnervation pattern of the regenerating RLN. These factors may be involved in guidance and neuromuscular junction formation during nerve regeneration. In the future, their manipulation may enhance the selective reinnervation of the larynx. PMID:27421227

  8. The Digital Health Divide: Evaluating Online Health Information Access and Use among Older Adults

    ERIC Educational Resources Information Center

    Hall, Amanda K.; Bernhardt, Jay M.; Dodd, Virginia; Vollrath, Morgan W.

    2015-01-01

    Objective: Innovations in health information technology (HIT) provide opportunities to reduce health care spending, improve quality of care, and improve health outcomes for older adults. However, concerns relating to older adults' limited access and use of HIT, including use of the Internet for health information, fuel the digital health divide…

  9. Characterizing Vibratory Kinematics in Children and Adults with High-Speed Digital Imaging

    ERIC Educational Resources Information Center

    Patel, Rita; Dubrovskiy, Denis; Döllinger, Michael

    2014-01-01

    Purpose: The aim of this study is to quantify and identify characteristic vibratory motion in typically developing prepubertal children and young adults using high-speed digital imaging. Method: The vibrations of the vocal folds were recorded from 27 children (ages 5-9 years) and 35 adults (ages 21-45 years), with high speed at 4,000 frames per…

  10. Adult Thymic Medullary Epithelium Is Maintained and Regenerated by Lineage-Restricted Cells Rather Than Bipotent Progenitors.

    PubMed

    Ohigashi, Izumi; Zuklys, Saulius; Sakata, Mie; Mayer, Carlos E; Hamazaki, Yoko; Minato, Nagahiro; Hollander, Georg A; Takahama, Yousuke

    2015-11-17

    Medullary thymic epithelial cells (mTECs) play an essential role in establishing self-tolerance in T cells. mTECs originate from bipotent TEC progenitors that generate both mTECs and cortical TECs (cTECs), although mTEC-restricted progenitors also have been reported. Here, we report in vivo fate-mapping analysis of cells that transcribe β5t, a cTEC trait expressed in bipotent progenitors, during a given period in mice. We show that, in adult mice, most mTECs are derived from progenitors that transcribe β5t during embryogenesis and the neonatal period up to 1 week of age. The contribution of adult β5t(+) progenitors was minor even during injury-triggered regeneration. Our results further demonstrate that adult mTEC-restricted progenitors are derived from perinatal β5t(+) progenitors. These results indicate that the adult thymic medullary epithelium is maintained and regenerated by mTEC-lineage cells that pass beyond the bipotent stage during early ontogeny. PMID:26549457

  11. Pancreatic-derived pathfinder cells enable regeneration of critically damaged adult pancreatic tissue and completely reverse streptozotocin-induced diabetes.

    PubMed

    Stevenson, Karen; Chen, Daxin; MacIntyre, Alan; McGlynn, Liane M; Montague, Paul; Charif, Rawiya; Subramaniam, Murali; George, W D; Payne, Anthony P; Davies, R Wayne; Dorling, Anthony; Shiels, Paul G

    2011-04-01

    We demonstrate that intravenous delivery of human, or rat, pancreas-derived pathfinder (PDP) cells can totally regenerate critically damaged adult tissue and restore normal function across a species barrier. We have used a mouse model of streptozotocin (STZ)-induced diabetes to demonstrate this. Normoglycemia was restored and maintained for up to 89 days following the induction of diabetes and subsequent intravenous delivery of PDP cells. Normal pancreatic histology also appeared to be restored, and treated diabetic animals gained body weight. Regenerated tissue was primarily of host origin, with few rat or human cells detectable by fluorescent in situ hybridization (FISH). Crucially, the insulin produced by these animals was overwhelmingly murine in origin and was both types I and II, indicative of a process of developmental recapitulation. These results demonstrate the feasibility of using intravenous administration of adult cells to regenerate damaged tissue. Critically, they enhance our understanding of the mechanisms relating to such repair and suggest a means for novel therapeutic intervention in loss of tissue and organ function with age.

  12. Promoting axon regeneration in the adult CNS by modulation of the melanopsin/GPCR signaling

    PubMed Central

    Li, Songshan; Yang, Chao; Zhang, Li; Gao, Xin; Wang, Xuejie; Liu, Wen; Wang, Yuqi; Jiang, Songshan; Wong, Yung Hou; Zhang, Yifeng; Liu, Kai

    2016-01-01

    Cell-type–specific G protein-coupled receptor (GPCR) signaling regulates distinct neuronal responses to various stimuli and is essential for axon guidance and targeting during development. However, its function in axonal regeneration in the mature CNS remains elusive. We found that subtypes of intrinsically photosensitive retinal ganglion cells (ipRGCs) in mice maintained high mammalian target of rapamycin (mTOR) levels after axotomy and that the light-sensitive GPCR melanopsin mediated this sustained expression. Melanopsin overexpression in the RGCs stimulated axonal regeneration after optic nerve crush by up-regulating mTOR complex 1 (mTORC1). The extent of the regeneration was comparable to that observed after phosphatase and tensin homolog (Pten) knockdown. Both the axon regeneration and mTOR activity that were enhanced by melanopsin required light stimulation and Gq/11 signaling. Specifically, activating Gq in RGCs elevated mTOR activation and promoted axonal regeneration. Melanopsin overexpression in RGCs enhanced the amplitude and duration of their light response, and silencing them with Kir2.1 significantly suppressed the increased mTOR signaling and axon regeneration that were induced by melanopsin. Thus, our results provide a strategy to promote axon regeneration after CNS injury by modulating neuronal activity through GPCR signaling. PMID:26831088

  13. Regeneration strategies after the adult mammalian central nervous system injury—biomaterials

    PubMed Central

    Gao, Yudan; Yang, Zhaoyang; Li, Xiaoguang

    2016-01-01

    The central nervous system (CNS) has very restricted intrinsic regeneration ability under the injury or disease condition. Innovative repair strategies, therefore, are urgently needed to facilitate tissue regeneration and functional recovery. The published tissue repair/regeneration strategies, such as cell and/or drug delivery, has been demonstrated to have some therapeutic effects on experimental animal models, but can hardly find clinical applications due to such methods as the extremely low survival rate of transplanted cells, difficulty in integrating with the host or restriction of blood–brain barriers to administration patterns. Using biomaterials can not only increase the survival rate of grafts and their integration with the host in the injured CNS area, but also sustainably deliver bioproducts to the local injured area, thus improving the microenvironment in that area. This review mainly introduces the advances of various strategies concerning facilitating CNS regeneration. PMID:27047678

  14. Further amputations of the tail in adult Triturus carnifex: contribution to the study on the nature of regenerated spinal cord.

    PubMed

    Margotta, Vito

    2008-01-01

    Adult Urodele Amphibians, if deprived of the tail, are able to fully regenerate it. This occurs owing to a typical epimorphic phenomenon which takes place in various phases. Within this matter, in particular on the reconstruction of the caudal nervous component, literature sources refer to a great quantity of research following only one amputation of the tail. Being aware of these data we programmed to investigate the possible persistence, decrease or disappearance of the medullary regenerative power after repeated amputations of the regenerated tail. With this objective in view, we have performed on adult Triturus carnifex a series of such operations at time spaced out from one another. In previous experiments, the amputations of the tail have been before seven and then nine. In the current experiment, the same specimens have been subjected to further removals of the tail. This study has developed into three cycles going on over a period of more than ten years. Overall, our panorama rising from the integration of present results and those of former observations is in agreement with what occurs in the area which is the centre of the beginnings of medullary regeneration processes and the bibliographic information concerning the pre-blastematic and blastematic phases. In the subsequent morphogenetic and differentiative phases, however, with the recurrence of the re-establishment of the spinal cord, these events proceed more slowly (gap which reduces when the time interval starting from the operation increases) than in the spinal cords which regenerated after only one tail amputation. Furthermore, although the regenerated spinal cords, if compared to normal spinal cord, show some anomalies (regarding medullary length and diameter, distribution of the spinal nerves and ganglia), the regenerated spinal cords (as well-known uncapable to re-form the Mauthner fibres and supplied with the Rohon-Beard sensitive neurons), their nerves and ganglia reacquire the same complex

  15. Morphological and physiological regeneration in the auditory system of adult Mecopoda elongata (Orthoptera: Tettigoniidae).

    PubMed

    Krüger, Silke; Butler, Casey S; Lakes-Harlan, Reinhard

    2011-02-01

    Orthopterans are suitable model organisms for investigations of regeneration mechanisms in the auditory system. Regeneration has been described in the auditory systems of locusts (Caelifera) and of crickets (Ensifera). In this study, we comparatively investigate the neural regeneration in the auditory system in the bush cricket Mecopoda elongata. A crushing of the tympanal nerve in the foreleg of M. elongata results in a loss of auditory information transfer. Physiological recordings of the tympanal nerve suggest outgrowing fibers 5 days after crushing. An anatomical regeneration of the fibers within the central nervous system starts 10 days after crushing. The neuronal projection reaches the target area at day 20. Threshold values to low frequency airborne sound remain high after crushing, indicating a lower regeneration capability of this group of fibers. However, within the central target area the low frequency areas are also innervated. Recordings of auditory interneurons show that the regenerating fibers form new functional connections starting at day 20 after crushing.

  16. Transient overexpression of cyclin D2/CDK4/GLP1 genes induces proliferation and differentiation of adult pancreatic progenitors and mediates islet regeneration

    PubMed Central

    Chen, Shuyuan; Shimoda, Masyuki; Chen, Jiaxi; Matsumodo, Shinichi

    2012-01-01

    The molecular mechanism of β-cell regeneration remains poorly understood. Cyclin D2/CDK4 expresses in normal β cells and maintains adult β-cell growth. We hypothesized that gene therapy with cyclin D2/CDK4/GLP-1 plasmids targeted to the pancreas of STZ-treated rats by ultrasound-targeted microbubble destruction (UTMD) would force cell cycle re-entry of residual G0-phase islet cells into G1/S phase to regenerate β cells. A single UTMD treatment induced β-cell regeneration with reversal of diabetes for 6 mo without evidence of toxicity. We observed that this β-cell regeneration was not mediated by self-replication of pre-existing β cells. Instead, cyclin D2/CDK4/GLP-1 initiated robust proliferation of adult pancreatic progenitor cells that exist within islets and terminally differentiate to mature islets with β cells and α cells. PMID:22373529

  17. STAT3 Regulates Self-Renewal of Adult Muscle Satellite Cells during Injury-Induced Muscle Regeneration.

    PubMed

    Zhu, Han; Xiao, Fang; Wang, Gang; Wei, Xiuqing; Jiang, Lei; Chen, Yan; Zhu, Lin; Wang, Haixia; Diao, Yarui; Wang, Huating; Ip, Nancy Y; Cheung, Tom H; Wu, Zhenguo

    2016-08-23

    Recent studies have shown that STAT3 negatively regulates the proliferation of muscle satellite cells (MuSCs) and injury-induced muscle regeneration. These studies have been largely based on STAT3 inhibitors, which may produce off-target effects and are not cell type-specific in vivo. Here, we examine the role of STAT3 in MuSCs using two different mouse models: a MuSC-specific Stat3 knockout line and a Stat3 (MuSC-specific)/dystrophin (Dmd) double knockout (dKO) line. Stat3(-/-) MuSCs from both mutant lines were defective in proliferation. Moreover, in both mutant strains, the MuSC pool shrank, and regeneration was compromised after injury, with defects more pronounced in dKO mice along with severe muscle inflammation and fibrosis. We analyzed the transcriptomes of MuSCs from dKO and Dmd(-/-) control mice and identified multiple STAT3 target genes, including Pax7. Collectively, our work reveals a critical role of STAT3 in adult MuSCs that regulates their self-renewal during injury-induced muscle regeneration. PMID:27524611

  18. Actin-Cytoskeleton- and Rock-Mediated INM Are Required for Photoreceptor Regeneration in the Adult Zebrafish Retina

    PubMed Central

    Lahne, Manuela; Li, Jingling; Marton, Rebecca M.

    2015-01-01

    Loss of retinal neurons in adult zebrafish (Danio rerio) induces a robust regenerative response mediated by the reentry of the resident Müller glia into the cell cycle. Upon initiating Müller glia proliferation, their nuclei migrate along the apicobasal axis of the retina in phase with the cell cycle in a process termed interkinetic nuclear migration (INM). We examined the mechanisms governing this cellular process and explored its function in regenerating the adult zebrafish retina. Live-cell imaging revealed that the majority of Müller glia nuclei migrated to the outer nuclear layer (ONL) to divide. These Müller glia formed prominent actin filaments at the rear of nuclei that had migrated to the ONL. Inhibiting actin filament formation or Rho-associated coiled-coil kinase (Rock) activity, which is necessary for phosphorylation of myosin light chain and actin myosin-mediated contraction, disrupted INM with increased numbers of mitotic nuclei remaining in the basal inner nuclear layer, the region where Müller glia typically reside. Double knockdown of Rho-associated coiled-coil kinase 2a (Rock2a) and Rho-associated coiled-coil kinase 2b (Rock2b) similarly disrupted INM and reduced Müller glial cell cycle reentry. In contrast, Rock inhibition immediately before the onset of INM did not affect Müller glia proliferation, but subsequently reduced neuronal progenitor cell proliferation due to early cell cycle exit. Long-term, Rock inhibition increased the generation of mislocalized ganglion/amacrine cells at the expense of rod and cone photoreceptors. In summary, INM is driven by an actin-myosin-mediated process controlled by Rock2a and Rock2b activity, which is required for sufficient proliferation and regeneration of photoreceptors after light damage. SIGNIFICANCE STATEMENT The human retina does not replace lost or damaged neurons, ultimately causing vision impairment. In contrast, zebrafish are capable of regenerating lost neurons. Understanding the mechanisms

  19. Localization of 5'-ribonucleotide phosphohydrolase in regenerating (and normal) limb tissues of the adult newt Notophthalmus viridescens.

    PubMed

    Schmidt, A J; Woerthwein, K F

    1975-08-11

    The regenerating forelimb of the adult newt, Notophthalmus viridescens was investigated for 5'-nucleotidase (5' ribonucleotide phosphohydrolase, 3.1.3.5) acitivity. The newt's humeri were surgically removed, and after a twenty-one-day recovery period, the forelimbs amputated above the elbows. Regenerates were sampled at predetermined times for specific phases in the progress of regeneration, frozen, sectioned in a cryostat, and the sections fixed in 10% cold formol calcium. The Wachstein and Meisel [25] lead procedure at neutral pH was used predominately in these experiments, although tests were also conducted with Gomori's [14] calcium, Allen's [21] highly alkaline procedures. The substrates used to obtain specific enzyme reactions were adenine, cytosine, guanine, uracil and inosine 5'-monophosphate nucleotides. Sodium beta-glycerophosphate served as a non-specific phosphomonoesterase substrate, distilled water replaced substrate, and inhibitors such as zinc and cyanide ions were used as control measures to assist in increasing the precision in interpreting the results obtained. The most reactive 5'-nucleotidase (5'-Nase) loci were in the walls of the blood vascular system, mysial and neural sheaths, dermis, and periosteum: the principal cells involved were macrophages, endothelium of blood vessels, and fibrocytes of connective tissues. A moderate enzyme response was elicited from secretory cells of some of the subcutaneous glands, hypertrophied chondrocytes and osteogenic centers, chondrocytes in the articular regions and within red blood cells and leucocytes. Normal, injured and degenerating, or regenerating striated muscle and nerve fibers were judged unreactive for 5'-Nase. The epidermis and wound epithelium displayed negative responses for 5'-Nase. Cells forming the regeneration blastema were 5'-Nase reactive during the early formative phase, but with growth and development of the blastema into bulb and conic forms, these cells did not respond for this enzyme

  20. Retinal Afferent Ingrowth to Neocortical Transplants in the Adult Rat Superior Colliculus is due to the Regeneration of Damaged Axons

    PubMed Central

    Ross, D. T.; Das, G. D.

    1994-01-01

    Retinal afferent ingrowth to embryonic neural transplants in the adult rat superior colliculus may represent either sprouting of intact axons or the regeneration of transected axons. If ingrowth represents regeneration of damaged retinofugai axons, then lesions that axotomize more retinofugal axons at the transplantation site should induce greater retinal afferent ingrowth. Alternately, if ingrowth represents terminal or collateral sprouting of intact retinofugal axons at or near the transplant/host optic layer interface, then the magnitude of retinal afferent ingrowth should be directly related to the total area of this interface. To test between these two hypotheses surgical knife wounds were made either parallel (in the sagittal plane) or perpendicular (in the transverse plane) to the course of axons in the stratum opticum, embryonic neocortical tissue was transplanted at the coordinates of these tectal slits, and retinal afferent ingrowth visualized 1-90 days after surgery using anterogradely transported HRP. A zone of traumatic reaction (ztr) in the optic layers was seen in every case, characterized by hypertrophied axons and swollen terminal clubs at 1 day. Between 30 and 90 days the damaged retinofugal axons in the zone formed dense fascicles and neuroma-like tangles. Retinal afferent ingrowth occurred only across transplant interface regions with the ztr. The magnitude of ingrowth was directly related to the area of the ztr interface and not the total optic layer interface area. Retinal afferent ingrowth appears to reflect the intrinsic regenerative capacity of adult mammalian retinal ganglion cells and not sprouting of undamaged axons. PMID:7703292

  1. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart.

    PubMed

    Malliaras, Konstantinos; Zhang, Yiqiang; Seinfeld, Jeffrey; Galang, Giselle; Tseliou, Eleni; Cheng, Ke; Sun, Baiming; Aminzadeh, Mohammad; Marbán, Eduardo

    2013-02-01

    Cardiosphere-derived cells (CDCs) have been shown to regenerate infarcted myocardium in patients after myocardial infarction (MI). However, whether the cells of the newly formed myocardium originate from the proliferation of adult cardiomyocytes or from the differentiation of endogenous stem cells remains unknown. Using genetic fate mapping to mark resident myocytes in combination with long-term BrdU pulsing, we investigated the origins of postnatal cardiomyogenesis in the normal, infarcted and cell-treated adult mammalian heart. In the normal mouse heart, cardiomyocyte turnover occurs predominantly through proliferation of resident cardiomyocytes at a rate of ∼1.3-4%/year. After MI, new cardiomyocytes arise from both progenitors as well as pre-existing cardiomyocytes. Transplantation of CDCs upregulates host cardiomyocyte cycling and recruitment of endogenous progenitors, while boosting heart function and increasing viable myocardium. The observed phenomena cannot be explained by cardiomyocyte polyploidization, bi/multinucleation, cell fusion or DNA repair. Thus, CDCs induce myocardial regeneration by differentially upregulating two mechanisms of endogenous cell proliferation.

  2. Environmental changes in oxygen tension reveal ROS-dependent neurogenesis and regeneration in the adult newt brain

    PubMed Central

    Hameed, L Shahul; Berg, Daniel A; Belnoue, Laure; Jensen, Lasse D; Cao, Yihai; Simon, András

    2015-01-01

    Organisms need to adapt to the ecological constraints in their habitat. How specific processes reflect such adaptations are difficult to model experimentally. We tested whether environmental shifts in oxygen tension lead to events in the adult newt brain that share features with processes occurring during neuronal regeneration under normoxia. By experimental simulation of varying oxygen concentrations, we show that hypoxia followed by re-oxygenation lead to neuronal death and hallmarks of an injury response, including activation of neural stem cells ultimately leading to neurogenesis. Neural stem cells accumulate reactive oxygen species (ROS) during re-oxygenation and inhibition of ROS biosynthesis counteracts their proliferation as well as neurogenesis. Importantly, regeneration of dopamine neurons under normoxia also depends on ROS-production. These data demonstrate a role for ROS-production in neurogenesis in newts and suggest that this role may have been recruited to the capacity to replace lost neurons in the brain of an adult vertebrate. DOI: http://dx.doi.org/10.7554/eLife.08422.001 PMID:26485032

  3. Krüppel-like Factor 7 engineered for transcriptional activation promotes axon regeneration in the adult corticospinal tract.

    PubMed

    Blackmore, Murray G; Wang, Zimei; Lerch, Jessica K; Motti, Dario; Zhang, Yi Ping; Shields, Christopher B; Lee, Jae K; Goldberg, Jeffrey L; Lemmon, Vance P; Bixby, John L

    2012-05-01

    Axon regeneration in the central nervous system normally fails, in part because of a developmental decline in the intrinsic ability of CNS projection neurons to extend axons. Members of the KLF family of transcription factors regulate regenerative potential in developing CNS neurons. Expression of one family member, KLF7, is down-regulated developmentally, and overexpression of KLF7 in cortical neurons in vitro promotes axonal growth. To circumvent difficulties in achieving high neuronal expression of exogenous KLF7, we created a chimera with the VP16 transactivation domain, which displayed enhanced neuronal expression compared with the native protein while maintaining transcriptional activation and growth promotion in vitro. Overexpression of VP16-KLF7 overcame the developmental loss of regenerative ability in cortical slice cultures. Adult corticospinal tract (CST) neurons failed to up-regulate KLF7 in response to axon injury, and overexpression of VP16-KLF7 in vivo promoted both sprouting and regenerative axon growth in the CST of adult mice. These findings identify a unique means of promoting CST axon regeneration in vivo by reengineering a developmentally down-regulated, growth-promoting transcription factor. PMID:22529377

  4. Sustaining intrinsic growth capacity of adult neurons promotes spinal cord regeneration

    NASA Astrophysics Data System (ADS)

    Neumann, Simona; Skinner, Kate; Basbaum, Allan I.

    2005-11-01

    The peripheral axonal branch of primary sensory neurons readily regenerates after peripheral nerve injury, but the central branch, which courses in the dorsal columns of the spinal cord, does not. However, if a peripheral nerve is transected before a spinal cord injury, sensory neurons that course in the dorsal columns will regenerate, presumably because their intrinsic growth capacity is enhanced by the priming peripheral nerve lesion. As the effective priming lesion is made before the spinal cord injury it would clearly have no clinical utility, and unfortunately, a priming lesion made after a spinal cord injury results in an abortive regenerative response. Here, we show that two priming lesions, one made at the time of a spinal cord injury and a second 1 week after a spinal cord injury, in fact, promote dramatic regeneration, within and beyond the lesion. The first lesion, we hypothesize, enhances intrinsic growth capacity, and the second one sustains it, providing a paradigm for promoting CNS regeneration after injury. primary afferents | dorsal columns | neurite outgrowth | sprouting | priming

  5. A Longitudinal Study on the Uses of Mobile Tablet Devices and Changes in Digital Media Literacy of Young Adults

    ERIC Educational Resources Information Center

    Park, Sora; Burford, Sally

    2013-01-01

    This study examined whether gaining access to a new digital device enhanced the digital media literacy of young adults and what factors determine such change. Thirty-five young adults were given a mobile tablet device and observed for one year. Participants engaged in an online community, responding regularly to online surveys and discussion…

  6. Digital Gaming Perspectives of Older Adults: Content vs. Interaction

    ERIC Educational Resources Information Center

    Marston, Hannah R.

    2013-01-01

    There were two objectives to this study: (a) to establish flow and (2) to establish whether computer game interaction or content was important to the older adult, using the Nintendo Wii and the Sony PlayStation 2 consoles. An earlier study had identified the sports genre as a preference, and three games (golf, tennis, and boxing) were selected…

  7. The Satellite Cell in Male and Female, Developing and Adult Mouse Muscle: Distinct Stem Cells for Growth and Regeneration

    PubMed Central

    Neal, Alice; Boldrin, Luisa; Morgan, Jennifer Elizabeth

    2012-01-01

    Satellite cells are myogenic cells found between the basal lamina and the sarcolemma of the muscle fibre. Satellite cells are the source of new myofibres; as such, satellite cell transplantation holds promise as a treatment for muscular dystrophies. We have investigated age and sex differences between mouse satellite cells in vitro and assessed the importance of these factors as mediators of donor cell engraftment in an in vivo model of satellite cell transplantation. We found that satellite cell numbers are increased in growing compared to adult and in male compared to female adult mice. We saw no difference in the expression of the myogenic regulatory factors between male and female mice, but distinct profiles were observed according to developmental stage. We show that, in contrast to adult mice, the majority of satellite cells from two week old mice are proliferating to facilitate myofibre growth; however a small proportion of these cells are quiescent and not contributing to this growth programme. Despite observed changes in satellite cell populations, there is no difference in engraftment efficiency either between satellite cells derived from adult or pre-weaned donor mice, male or female donor cells, or between male and female host muscle environments. We suggest there exist two distinct satellite cell populations: one for muscle growth and maintenance and one for muscle regeneration. PMID:22662253

  8. Developing Mental Imagery Using a Digital Camera: A Study of Adult Vocational Training

    ERIC Educational Resources Information Center

    Ryba, Ken; Selby, Linda; Brown, Roy

    2004-01-01

    This study was undertaken to explore the use of a digital camera for mental imagery training of a vocational task with two young adult men with Down syndrome. The results indicate that these particular men benefited from the use of a collaborative training process that involved mental imagery for learning a series of photocopying operations. An…

  9. Digital Curation: A Framework to Enhance Adolescent and Adult Literacy Initiatives

    ERIC Educational Resources Information Center

    Sharma, Sue Ann; Deschaine, Mark E.

    2016-01-01

    Digital curation provides a way to transcend traditional academic fields of study and create instructional materials available to support adolescent and adult literacy initiatives. The instructional capabilities that Web 2.0 tools offer provide curators with the ability to reach audiences in a way that has not been possible in the past. The…

  10. Adult Stem Cells Seeded on Electrospinning Silk Fibroin Nanofiberous Scaffold Enhance Wound Repair and Regeneration.

    PubMed

    Xie, Sheng-Yang; Peng, Li-Hua; Shan, Ying-Hui; Niu, Jie; Xiong, Jie; Gao, Jian-Qing

    2016-06-01

    Development of novel strategy stimulating the healing with skin appendages regeneration is the critical goal for wound therapy. In this study, influence of the transplantation of bone marrow derived mesenchymal stem cells (MSCs) and epidermal stem cells (ESCs) with the nanofiberous scaffold prepared from silk fibroin protein in wound re-epithelization, collagen synthesis, as well as the skin appendages regeneration were investigated. It was shown that both the transplantation of MSCs and ESCs could significantly accelerate the skin re-epithelization, stimulate the collagen synthesis. Furthermore, the regenerative features of MSCs and ESCs in activating the blood vessels and hair follicles formation, respectively were suggested. These results demonstrated that the electrospinning nanofiberous scaffold is an advantageous carrier for the cells transplantation, but also provided the experimental proofs for the application of MSCs and ESCs as promising therapeutics in skin tissue engineering. PMID:27427589

  11. Writing in a Digital World: Self-Correction While Typing in Younger and Older Adults.

    PubMed

    Kalman, Yoram M; Kavé, Gitit; Umanski, Daniil

    2015-10-13

    This study examined how younger and older adults approach simple and complex computerized writing tasks. Nineteen younger adults (age range 21-31, mean age 26.1) and 19 older adults (age range 65-83, mean age 72.1) participated in the study. Typing speed, quantitative measures of outcome and process, and self-corrections were recorded. Younger adults spent a lower share of their time on actual typing, and demonstrated more prevalent use of delete keys than did older adults. Within the older group, there was no correlation between the total time spent on the entire task and the number of corrections, but increased typing speed was related to more errors. The results suggest that the approach to the task was different across age groups, either because of age or because of cohort effects. We discuss the interplay of speed and accuracy with regard to digital writing, and its implications for the design of human-computer interactions.

  12. Neuronal regeneration in the cerebellum of adult teleost fish, Apteronotus leptorhynchus: guidance of migrating young cells by radial glia.

    PubMed

    Clint, S C; Zupanc, G K

    2001-09-23

    In contrast to mammals, adult fish exhibit an enormous potential to replace injured brain neurons by newly generated ones. In the present study, the role of radial glia, identified by immunostaining against fibrillary acidic protein (GFAP), was examined in this process of neuronal regeneration. Approximately 8 days after application of a mechanical lesion to the corpus cerebelli in the teleost fish Apteronotus leptorhynchus, the areal density of radial glial fibers increased markedly in the ipsilateral dorsal molecular layer compared to shorter survival times, or to the densities found in the intact brain or in the hemisphere contralateral to the lesion. This density remained elevated throughout the time period of up to 100 days examined. The increase in fiber density was followed approximately 2 days later by a rise in the areal density of young cells, characterized by labeling with the nuclear dye DAPI, in the ipsilateral dorsal molecular layer. Based on this remarkable spatio-temporal correlation, and the frequently observed close apposition of elongated young cells to radial glial fibers, we hypothesize that radial glia play an important role in the guidance of migrating young cells from their proliferation zones to the site of lesion where regeneration takes place.

  13. The circadian clock in skin: implications for adult stem cells, tissue regeneration, cancer, aging, and immunity

    PubMed Central

    Plikus, Maksim V.; Van Spyk, Elyse Noelani; Pham, Kim; Geyfman, Mikhail; Kumar, Vivek; Takahashi, Joseph S.; Andersen, Bogi

    2015-01-01

    Historically work on peripheral circadian clocks has been focused on organs and tissues that have prominent metabolic functions, such as liver, fat and muscle. In recent years, skin is emerging as a model for studying circadian clock regulation of cell proliferation, stem cell functions, tissue regeneration, aging and carcinogenesis. Morphologically skin is complex, containing multiple cell types and structures, and there is evidence for a functional circadian clock in most, if not all, of its cell types. Despite the complexity, skin stem cell populations are well defined, experimentally tractable and exhibit prominent daily cell proliferation cycles. Hair follicle stem cells also participate in recurrent, long-lasting cycles of regeneration -- the hair growth cycles. Among other advantages of skin is a broad repertoire of available genetic tools enabling the creation of cell-type specific circadian mutants. Also, due to the accessibility of the skin, in vivo imaging techniques can be readily applied to study the circadian clock and its outputs in real time, even at the single-cell level. Skin provides the first line of defense against many environmental and stress factors that exhibit dramatic diurnal variations such as solar UV radiation and temperature. Studies have already linked the circadian clock to the control of UVB-induced DNA damage and skin cancers. Due to the important role that skin plays in the defense against microorganisms, it represents a promising model system to further explore the role of the clock in the regulation of the body's immune functions. To that end, recent studies have already linked the circadian clock to psoriasis, one of the most common immune-mediated skin disorders. The skin also provides opportunities to interrogate clock regulation of tissue metabolism in the context of stem cells and regeneration. Furthermore, many animal species feature prominent seasonal hair molt cycles, offering an attractive model for investigating the

  14. The circadian clock in skin: implications for adult stem cells, tissue regeneration, cancer, aging, and immunity.

    PubMed

    Plikus, Maksim V; Van Spyk, Elyse N; Pham, Kim; Geyfman, Mikhail; Kumar, Vivek; Takahashi, Joseph S; Andersen, Bogi

    2015-06-01

    Historically, work on peripheral circadian clocks has been focused on organs and tissues that have prominent metabolic functions, such as the liver, fat, and muscle. In recent years, skin has emerged as a model for studying circadian clock regulation of cell proliferation, stem cell functions, tissue regeneration, aging, and carcinogenesis. Morphologically, skin is complex, containing multiple cell types and structures, and there is evidence for a functional circadian clock in most, if not all, of its cell types. Despite the complexity, skin stem cell populations are well defined, experimentally tractable, and exhibit prominent daily cell proliferation cycles. Hair follicle stem cells also participate in recurrent, long-lasting cycles of regeneration: the hair growth cycles. Among other advantages of skin is a broad repertoire of available genetic tools enabling the creation of cell type-specific circadian mutants. Also, due to the accessibility of skin, in vivo imaging techniques can be readily applied to study the circadian clock and its outputs in real time, even at the single-cell level. Skin provides the first line of defense against many environmental and stress factors that exhibit dramatic diurnal variations such as solar ultraviolet (UV) radiation and temperature. Studies have already linked the circadian clock to the control of UVB-induced DNA damage and skin cancers. Due to the important role that skin plays in the defense against microorganisms, it also represents a promising model system to further explore the role of the clock in the regulation of the body's immune functions. To that end, recent studies have already linked the circadian clock to psoriasis, one of the most common immune-mediated skin disorders. Skin also provides opportunities to interrogate the clock regulation of tissue metabolism in the context of stem cells and regeneration. Furthermore, many animal species feature prominent seasonal hair molt cycles, offering an attractive model

  15. Digital Immigrants, Digital Learning: Reaching Adults through Information Literacy Instruction Online

    ERIC Educational Resources Information Center

    Rapchak, Marcia; Behary, Robert

    2013-01-01

    As information literacy programs become more robust, finding methods of reaching students beyond the traditional undergraduate has become a priority for many institutions. At Duquesne University, efforts have been made to reach adult learners in an accelerated program targeted to nontraditional students, much of which is provided online. This…

  16. Digital Inclusion for Older Adults based on Physical Activities: an Age Concern.

    PubMed

    Gusmão, Cristine; Menezes, Júlio; Pina, Carmelo; Lima, Juliana; Barbosa Neto, João

    2015-01-01

    Nowadays, we are living in an interdependent and interconnected world during an age that is driven by technological progress. It has extraordinary potential to improve the quality of later life: creating social networks to tackle isolation and loneliness; transforming services to help people live independently at home for longer; empowering consumers; and enabling civil participation. In light of this, this poster aims to present the development process of a digital booklet for mobile devices--smartphones and tablets that illustrate the benefits of doing physical exercises for older adults aiming to improve life quality and minimizing digital exclusion.

  17. Digital Inclusion for Older Adults based on Physical Activities: an Age Concern.

    PubMed

    Gusmão, Cristine; Menezes, Júlio; Pina, Carmelo; Lima, Juliana; Barbosa Neto, João

    2015-01-01

    Nowadays, we are living in an interdependent and interconnected world during an age that is driven by technological progress. It has extraordinary potential to improve the quality of later life: creating social networks to tackle isolation and loneliness; transforming services to help people live independently at home for longer; empowering consumers; and enabling civil participation. In light of this, this poster aims to present the development process of a digital booklet for mobile devices--smartphones and tablets that illustrate the benefits of doing physical exercises for older adults aiming to improve life quality and minimizing digital exclusion. PMID:26262272

  18. Bridging the digital divide in older adults: a study from an initiative to inform older adults about new technologies

    PubMed Central

    Wu, Ya-Huei; Damnée, Souad; Kerhervé, Hélène; Ware, Caitlin; Rigaud, Anne-Sophie

    2015-01-01

    Purpose In a society where technology progresses at an exponential rate, older adults are often unaware of the existence of different kinds of information and communication technologies (ICTs). To bridge the gap, we launched a 2-year project, during which we conducted focus groups (FGs) with demonstrations of ICTs, allowing older adults to try them out and to share their opinions. This study aimed at investigating how participants perceived this kind of initiative and how they reacted to different kinds of ICTs. Patients and methods In total, 14 FGs were conducted with community-dwelling older adults, with a frequency of two FGs on the same topic once per trimester. Twenty-three older adults (four men and 19 women) attended at least one FG but only nearly half of them were regular attendants (ten participating in at least five sessions). Age of participants ranged from 63 years to 88 years, with a mean of 77.1 years. All of them had completed secondary education. The analyses of the data were performed according to inductive thematic analysis. Results Four overarching themes emerged from the analysis. The first concerned participants’ motivation for and assessment of the project. The second theme identified the underlying factors of the “digital divide” between the younger and the older generations. The third theme concerned the factors of technology adoption among older adults. The fourth one identified participants’ attitudes toward assistive ICTs, designed specifically for older adults (“gerontechnologies”). Discussions and conclusion This project encouraging older adults to be informed about different kinds of ICTs was positively rated. With regard to ICTs, participants perceived a digital divide. The underlying factors are generation/cohort effects, cognitive and physical decline related to aging, and negative attitudes toward technologies. However, more and more older adults adopt different kinds of ICTs in order to fit in with the society

  19. Uptake and distribution of hepatocyte growth factor in normal and regenerating adult rat liver.

    PubMed Central

    Liu, M. L.; Mars, W. M.; Zarnegar, R.; Michalopoulos, G. K.

    1994-01-01

    We have previously shown that systemically injected hepatocyte growth factor (HGF) is primarily taken up by the liver. The present study shows that HGF injected systemically or through the portal circulation is retained primarily at periportal sites. The periportal retention of HGF seems to persist longer in regenerating liver. The percentage of the total HGF injected that was retained within the liver at 1 minute after injection varied with the dose. A maximal amount of 0.157 +/- 0.012 microgram of HGF per gram liver tissue is retained by normal liver. Analysis of the circulating form of HGF in the plasma showed a relative enrichment with time for the heterodimeric form of HGF. A portion of portally injected HGF, composed of both single chain and two chain (heterodimeric) form was excreted intact in the bile. This was found in both normal and regenerating liver. These studies show that the liver can sequester large amounts of HGF and that the sequestration occurs primarily at periportal sites. Our studies support the hypothesis that a nonlysosomal processing pathway for HGF is present in the liver. Images Figure 1 Figure 3 Figure 4 Figure 6 PMID:8291602

  20. Digit symbol substitution test score and hyperhomocysteinemia in older adults.

    PubMed

    Hsu, Wen-Chuin; Chu, Yi-Chuan; Fung, Hon-Chung; Wai, Yau-Yau; Wang, Jiun-Jie; Lee, Jiann-Der; Chen, Yi-Chun

    2016-08-01

    Mounting evidence shows that hyperhomocysteinemia is a risk factor for cognitive decline. This study enrolled subjects with normal serum levels of B12 and folate and performed thorough neuropsychological assessments to illuminate the independent role of homocysteine on cognitive functions.Participants between ages 50 and 85 were enrolled with Modified Hachinski ischemic score of <4, adequate visual and auditory acuity to allow neuropsychological testing, and good general health. Subjects with cognitive impairment resulting from secondary causes were excluded. Each of the participants completed evaluations of general intellectual function, including the Mini-Mental State Examination, Cognitive Abilities Screening Instrument, Clinical Dementia Rating, and a battery of neuropsychological assessments.This study enrolled 225 subjects (90 subjects younger than 65 years and 135 subjects aged 65 years or older). The sex proportion was similar between the 2 age groups. Years of education were significantly fewer in the elderly (7.49 ± 5.40 years) than in the young (9.76 ± 4.39 years, P = 0.001). There was no significant difference in body mass index or levels of vitamin B12 and folate between the 2 age groups. Homocysteine levels were significantly higher in the elderly group compared to the younger group (10.8 ± 2.7 vs. 9.5 ± 2.5 μmol/L, respectively, P = 0.0006). After adjusting for age, sex, and education, only the Digit Symbol Substitution (DSS) score was significantly lower in subjects with hyperhomocysteinemia (homocysteine >12 μmol/L) than those with homocysteine ≤12 μmol/L in the elderly group (DSS score: 7.1 ± 2.7 and 9.0 ± 3.0, respectively, beta = -1.6, 95% confidence interval [CI] = -2.8∼-0.5, P = 0.001) and borderline significance was noted in the combined age group (beta = -1.1, 95% CI = -2.1∼-0.1, P = 0.04). We did not find an association between hyperhomocysteinemia and other

  1. Digit symbol substitution test score and hyperhomocysteinemia in older adults

    PubMed Central

    Hsu, Wen-Chuin; Chu, Yi-Chuan; Fung, Hon-Chung; Wai, Yau-Yau; Wang, Jiun-Jie; Lee, Jiann-Der; Chen, Yi-Chun

    2016-01-01

    Abstract Mounting evidence shows that hyperhomocysteinemia is a risk factor for cognitive decline. This study enrolled subjects with normal serum levels of B12 and folate and performed thorough neuropsychological assessments to illuminate the independent role of homocysteine on cognitive functions. Participants between ages 50 and 85 were enrolled with Modified Hachinski ischemic score of <4, adequate visual and auditory acuity to allow neuropsychological testing, and good general health. Subjects with cognitive impairment resulting from secondary causes were excluded. Each of the participants completed evaluations of general intellectual function, including the Mini-Mental State Examination, Cognitive Abilities Screening Instrument, Clinical Dementia Rating, and a battery of neuropsychological assessments. This study enrolled 225 subjects (90 subjects younger than 65 years and 135 subjects aged 65 years or older). The sex proportion was similar between the 2 age groups. Years of education were significantly fewer in the elderly (7.49 ± 5.40 years) than in the young (9.76 ± 4.39 years, P = 0.001). There was no significant difference in body mass index or levels of vitamin B12 and folate between the 2 age groups. Homocysteine levels were significantly higher in the elderly group compared to the younger group (10.8 ± 2.7 vs. 9.5 ± 2.5 μmol/L, respectively, P = 0.0006). After adjusting for age, sex, and education, only the Digit Symbol Substitution (DSS) score was significantly lower in subjects with hyperhomocysteinemia (homocysteine >12 μmol/L) than those with homocysteine ≤12 μmol/L in the elderly group (DSS score: 7.1 ± 2.7 and 9.0 ± 3.0, respectively, beta = −1.6, 95% confidence interval [CI] = −2.8∼−0.5, P = 0.001) and borderline significance was noted in the combined age group (beta = −1.1, 95% CI = −2.1∼−0.1, P = 0.04). We did not find an association between

  2. Exploration of malingering indices in the Wechsler Adult Intelligence Scale-Fourth Edition Digit Span subtest.

    PubMed

    Reese, Caitlin S; Suhr, Julie A; Riddle, Tara L

    2012-03-01

    Prior research shows that Digit Span is a useful embedded measure of malingering. However, the Wechsler Adult Intelligence Scale-IV (Wechsler, 2008) altered Digit Span in meaningful ways, necessitating another look at Digit Span as an embedded measure of malingering. Using a simulated malingerer design, we examined the predictive accuracy of existing Digit Span validity indices and explored whether patterns of performance utilizing the new version would provide additional evidence for malingering. Undergraduates with a history of mild head injury performed with best effort or simulated impaired cognition and were also compared with a large sample of non-head-injured controls. Previously established cutoffs for the age-corrected scaled score and Reliable Digit Span (RDS) performed similarly in the present samples. Patterns of RDS length using all three subscales of the new scale were different in malingerers when compared with both head-injured and non-head-injured controls. Two potential alternative RDS scores were introduced, which showed better sensitivity than the traditional RDS, while retaining specificity to malingering.

  3. Effect of neural stem cell transplantation combined with erythropoietin injection on axon regeneration in adult rats with transected spinal cord injury.

    PubMed

    Zhao, Y; Zuo, Y; Wang, X L; Huo, H J; Jiang, J M; Yan, H B; Xiao, Y L

    2015-01-01

    We investigated the effect of neural stem cells (NSC) and erythropoietin (EPO) on axon regeneration in adult rats with transected spinal cord injury, and provided an experimental basis for clinical treatment. Forty Wistar rats with T10-transected spinal cord injury were randomly divided into four groups of ten rats: a control group (group A), an NSC-transplant group (group B), an NSC-transplant and EPO group (group C), and an EPO group (group D). Biotinylated dextran amines (BDA) anterograde corticospinal cord neuronal tracing and Fluoro-Gold (FG) retrograde tracing were carried out at the 8th week after operation to observe the regeneration of nerve fibers. The Basso, Beattie, and Bresnahan (BBB) locomotor score was used to evaluate restoration. 1) BDA and FG immunofluorescence staining: in group C, a large number of regenerated axons were observed and some penetrated the injured area. In group B, only a small number of regenerated axons were observed and none penetrated the injured area. In group D, only sporadic regenerated nerve fibers were observed occasionally, while in group A, no axonal regeneration was observed. In group C, a small number of cones and axons emitted yellow fluorescence, and no FG-labeled cells were observed in the other groups. 2) The BBB scores for group C were higher than those for the other groups, and the differences were statistically significance (P < 0.05). NSC transplantation combined with EPO intraperitoneal injection may benefit axon regeneration in rats with transected spinal cord injury, and accelerate the functional recovery of the hindlimb locomotor. PMID:26782425

  4. Genome-wide analysis of the bHLH gene family in planarians identifies factors required for adult neurogenesis and neuronal regeneration.

    PubMed

    Cowles, Martis W; Brown, David D R; Nisperos, Sean V; Stanley, Brianna N; Pearson, Bret J; Zayas, Ricardo M

    2013-12-01

    In contrast to most well-studied model organisms, planarians have a remarkable ability to completely regenerate a functional nervous system from a pluripotent stem cell population. Thus, planarians provide a powerful model to identify genes required for adult neurogenesis in vivo. We analyzed the basic helix-loop-helix (bHLH) family of transcription factors, many of which are crucial for nervous system development and have been implicated in human diseases. However, their potential roles in adult neurogenesis or central nervous system (CNS) function are not well understood. We identified 44 planarian bHLH homologs, determined their patterns of expression in the animal and assessed their functions using RNAi. We found nine bHLHs expressed in stem cells and neurons that are required for CNS regeneration. Our analyses revealed that homologs of coe, hes (hesl-3) and sim label progenitors in intact planarians, and following amputation we observed an enrichment of coe(+) and sim(+) progenitors near the wound site. RNAi knockdown of coe, hesl-3 or sim led to defects in CNS regeneration, including failure of the cephalic ganglia to properly pattern and a loss of expression of distinct neuronal subtype markers. Together, these data indicate that coe, hesl-3 and sim label neural progenitor cells, which serve to generate new neurons in uninjured or regenerating animals. Our study demonstrates that this model will be useful to investigate how stem cells interpret and respond to genetic and environmental cues in the CNS and to examine the role of bHLH transcription factors in adult tissue regeneration.

  5. Non-therapist identification of falling hazards in older adult homes using digital photography

    PubMed Central

    Ritchey, Katherine C.; Meyer, Deborah; Ice, Gillian H.

    2015-01-01

    Evaluation and removal of home hazards is an invaluable method for preventing in-home falls and preserving independent living. Current processes for conducting home hazard assessments are impractical from a whole population standpoint given the substantial resources required for implementation. Digital photography offers an opportunity to remotely evaluate an environment for falling hazards. However, reliability of this method has only been tested under the direction of skilled therapists. Ten community dwelling adults over the age of 65 were recruited from local primary care practices between July, 2009 and February, 2010. In-home (IH) assessments were completed immediately after a photographer, blinded to the assessment form, took digital photographs (DP) of the participant home. A different non-therapist assessor then reviewed the photographs and completed a second assessment of the home. Kappa statistic was used to analyze the reliability between the two independent assessments. Home assessments completed by a non-therapist using digital photographs had a substantial agreement (Kappa = 0.61, p < 0.001) with in-home assessments completed by another non-therapist. Additionally, the DP assessments agreed with the IH assessments on the presence or absence of items 96.8% of the time. This study showed that non-therapists can reliably conduct home hazard evaluations using digital photographs. PMID:26844151

  6. Non-therapist identification of falling hazards in older adult homes using digital photography.

    PubMed

    Ritchey, Katherine C; Meyer, Deborah; Ice, Gillian H

    2015-01-01

    Evaluation and removal of home hazards is an invaluable method for preventing in-home falls and preserving independent living. Current processes for conducting home hazard assessments are impractical from a whole population standpoint given the substantial resources required for implementation. Digital photography offers an opportunity to remotely evaluate an environment for falling hazards. However, reliability of this method has only been tested under the direction of skilled therapists. Ten community dwelling adults over the age of 65 were recruited from local primary care practices between July, 2009 and February, 2010. In-home (IH) assessments were completed immediately after a photographer, blinded to the assessment form, took digital photographs (DP) of the participant home. A different non-therapist assessor then reviewed the photographs and completed a second assessment of the home. Kappa statistic was used to analyze the reliability between the two independent assessments. Home assessments completed by a non-therapist using digital photographs had a substantial agreement (Kappa = 0.61, p < 0.001) with in-home assessments completed by another non-therapist. Additionally, the DP assessments agreed with the IH assessments on the presence or absence of items 96.8% of the time. This study showed that non-therapists can reliably conduct home hazard evaluations using digital photographs. PMID:26844151

  7. Non-therapist identification of falling hazards in older adult homes using digital photography.

    PubMed

    Ritchey, Katherine C; Meyer, Deborah; Ice, Gillian H

    2015-01-01

    Evaluation and removal of home hazards is an invaluable method for preventing in-home falls and preserving independent living. Current processes for conducting home hazard assessments are impractical from a whole population standpoint given the substantial resources required for implementation. Digital photography offers an opportunity to remotely evaluate an environment for falling hazards. However, reliability of this method has only been tested under the direction of skilled therapists. Ten community dwelling adults over the age of 65 were recruited from local primary care practices between July, 2009 and February, 2010. In-home (IH) assessments were completed immediately after a photographer, blinded to the assessment form, took digital photographs (DP) of the participant home. A different non-therapist assessor then reviewed the photographs and completed a second assessment of the home. Kappa statistic was used to analyze the reliability between the two independent assessments. Home assessments completed by a non-therapist using digital photographs had a substantial agreement (Kappa = 0.61, p < 0.001) with in-home assessments completed by another non-therapist. Additionally, the DP assessments agreed with the IH assessments on the presence or absence of items 96.8% of the time. This study showed that non-therapists can reliably conduct home hazard evaluations using digital photographs.

  8. Writing in a Digital World: Self-Correction While Typing in Younger and Older Adults

    PubMed Central

    Kalman, Yoram M.; Kavé, Gitit; Umanski, Daniil

    2015-01-01

    This study examined how younger and older adults approach simple and complex computerized writing tasks. Nineteen younger adults (age range 21–31, mean age 26.1) and 19 older adults (age range 65–83, mean age 72.1) participated in the study. Typing speed, quantitative measures of outcome and process, and self-corrections were recorded. Younger adults spent a lower share of their time on actual typing, and demonstrated more prevalent use of delete keys than did older adults. Within the older group, there was no correlation between the total time spent on the entire task and the number of corrections, but increased typing speed was related to more errors. The results suggest that the approach to the task was different across age groups, either because of age or because of cohort effects. We discuss the interplay of speed and accuracy with regard to digital writing, and its implications for the design of human-computer interactions. PMID:26473904

  9. Radial glia-mediated up-regulation of somatostatin in the regenerating adult fish brain.

    PubMed

    Zupanc, G K; Clint, S C

    2001-08-31

    Adult teleost fish, Apteronotus leptorhynchus, exhibit an enormous regenerative capability after application of mechanical lesions to the dorsalmost subdivision of the cerebellum, the corpus cerebelli. Restoration of the neural tissue is achieved by a cascade of processes, including the guidance of migrating new neurons to the site of injury by radial glial fibers. These fibers are characterised by the expression of immunoreactive glial fibrillary acidic protein and by several morphological features. Within 12 h following the lesion, the fraction of radial glial fibers expressing the neuropeptide somatostatin (SRIF) dramatically increased from approximately 1%, as found in the intact brain, to roughly 27% 12-24 h post-lesion. Subsequently, the percentage of SRIF-expressing radial glial fibers gradually declined, until it reached background levels at about 10 days following the injury. We hypothesise that the expression of SRIF is related to the generation and/or differentiation of the new neurons produced in response to the lesion, rather than to the later guidance of these cells along their migratory pathway.

  10. Peripheral Nerve Transplantation Combined with Acidic Fibroblast Growth Factor and Chondroitinase Induces Regeneration and Improves Urinary Function in Complete Spinal Cord Transected Adult Mice

    PubMed Central

    DePaul, Marc A.; Lin, Ching-Yi; Silver, Jerry; Lee, Yu-Shang

    2015-01-01

    The loss of lower urinary tract (LUT) control is a ubiquitous consequence of a complete spinal cord injury, attributed to a lack of regeneration of supraspinal pathways controlling the bladder. Previous work in our lab has utilized a combinatorial therapy of peripheral nerve autografts (PNG), acidic fibroblast growth factor (aFGF), and chondroitinase ABC (ChABC) to treat a complete T8 spinal cord transection in the adult rat, resulting in supraspinal control of bladder function. In the present study we extended these findings by examining the use of the combinatorial PNG+aFGF+ChABC treatment in a T8 transected mouse model, which more closely models human urinary deficits following spinal cord injury. Cystometry analysis and external urethral sphincter electromyograms reveal that treatment with PNG+aFGF+ChABC reduced bladder weight, improved bladder and external urethral sphincter histology, and significantly enhanced LUT function, resulting in more efficient voiding. Treated mice’s injured spinal cord also showed a reduction in collagen scaring, and regeneration of serotonergic and tyrosine hydroxylase-positive axons across the lesion and into the distal spinal cord. Regeneration of serotonin axons correlated with LUT recovery. These results suggest that our mouse model of LUT dysfunction recapitulates the results found in the rat model and may be used to further investigate genetic contributions to regeneration failure. PMID:26426529

  11. The "Stars and Stripes" Metaphor for Animal Regeneration-Elucidating Two Fundamental Strategies along a Continuum.

    PubMed

    Rinkevich, Baruch; Rinkevich, Yuval

    2012-12-27

    A number of challenges have hindered the development of a unified theory for metazoan regeneration. To describe the full range of complex regeneration phenomena in Animalia, we suggest that metazoans that regenerate missing body parts exhibit biological attributes that are tailored along a morpho-spatial regeneration continuum, illustrated in its polar scenarios by the USA "stars and stripes" flag. Type 1 organisms ("T1, 'stars'") are typical colonial organisms (but contain unitary taxa) that are able to regenerate "whole new stars", namely, whole bodies and colonial modules, through systemic induction and sometimes multiple regeneration foci (hollow regeneration spheres, resembling the blastula) that compete for dominance. They regenerate soma and germ constituents with pluripotent adult stem cells and exhibit somatic-embryogenesis mode of ontogeny. Type 2 organisms ("T2, 'stripes'") are capable of limited regeneration of somatic constituents via fate-restricted stem cells, and regenerate through centralized inductions that lead to a single regeneration front. T2 organisms are unitary and use preformistic mode of ontogeny. T1 and T2 organisms also differ in interpretation of what constitutes positional information. T2 organisms also execute alternative, less effective, regeneration designs (i.e., scar formation). We assigned 15 characteristics that distinguish between T1/T2 strategies: those involving specific regeneration features and those operating on biological features at the whole-organism level. Two model organisms are discussed, representing the two strategies of T1/T2 along the regeneration continuum, the Botrylloides whole body regeneration (T1) and the mouse digit-tip regeneration (T2) phenomena. The above working hypothesis also postulates that regeneration is a primeval attribute of metazoans. As specified, the "stars and stripes" paradigm allows various combinations of the biological features assigned to T1 and T2 regeneration strategies. It does not

  12. The alpha1 isoform of the Na+/K+ ATPase is up-regulated in dedifferentiated progenitor cells that mediate lens and retina regeneration in adult newts.

    PubMed

    Vergara, M Natalia; Smiley, Laura K; Del Rio-Tsonis, Katia; Tsonis, Panagiotis A

    2009-02-01

    Adult newts are able to regenerate their retina and lens after injury or complete removal through transdifferentiation of the pigmented epithelial tissues of the eye. This process needs to be tightly controlled, and several different mechanisms are likely to be recruited for this function. The Na(+)/K(+) ATPase is a transmembrane protein that establishes electrochemical gradients through the transport of Na(+) and K(+) and has been implicated in the modulation of key cellular processes such as cell division, migration and adhesion. Even though it is expressed in all cells, its isoform composition varies with cell type and is tightly controlled during development and regeneration. In the present study we characterize the expression pattern of Na(+)/K(+) ATPase alpha1 in the adult newt eye and during the process of lens and retina regeneration. We show that this isoform is up-regulated in undifferentiated cells during transdifferentiation. Such change in composition could be one of the mechanisms that newt cells utilize to modulate this process.

  13. Adult skin-derived precursor Schwann cells exhibit superior myelination and regeneration supportive properties compared to chronically denervated nerve-derived Schwann cells.

    PubMed

    Kumar, Ranjan; Sinha, Sarthak; Hagner, Andrew; Stykel, Morgan; Raharjo, Eko; Singh, Karun K; Midha, Rajiv; Biernaskie, Jeff

    2016-04-01

    Functional outcomes following delayed peripheral nerve repair are poor. Schwann cells (SCs) play key roles in supporting axonal regeneration and remyelination following nerve injury, thus understanding the impact of chronic denervation on SC function is critical toward developing therapies to enhance regeneration. To improve our understanding of SC function following acute versus chronic-denervation, we performed functional assays of SCs from adult rodent sciatic nerve with acute- (Day 5 post) or chronic-denervation (Day 56 post), versus embryonic nerves. We also compared Schwann cells derived from adult skin-derived precursors (aSKP-SCs) as an accessible, autologous alternative to supplement the distal (denervated) nerve. We found that acutely-injured SCs and aSKP-SCs exhibited superior proliferative capacity, promotion of neurite outgrowth and myelination of axons, both in vitro and following transplant into a sciatic nerve crush injury model, while chronically-denervated SCs were severely impaired. Acute injury caused re-activation of transcription factors associated with an immature and pro-myelinating SC state (Oct-6, cJun, Sox2, AP2α, cadherin-19), but was diminished with prolonged denervation in vivo and could not be rescued following expansion in vitro suggesting that this is a permanent deficiency. Interestingly, aSKP-SCs closely resembled acutely injured and embryonic SCs, exhibiting elevated expression of these same transcription factors. In summary, prolonged denervation resulted in SC deficiency in several functional parameters that may contribute to impaired regeneration. In contrast, aSKP-SCs closely resemble the regenerative attributes ascribed to acutely-denervated or embryonic SCs emphasizing their potential as an accessible and autologous source of glia cells to enhance nerve regeneration, particularly following delays to surgical repair.

  14. Acquisition of high-quality digital video of Drosophila larval and adult behaviors from a lateral perspective.

    PubMed

    Zenger, Beatrix; Wetzel, Sabine; Duncan, Jason

    2014-01-01

    Drosophila melanogaster is a powerful experimental model system for studying the function of the nervous system. Gene mutations that cause dysfunction of the nervous system often produce viable larvae and adults that have locomotion defective phenotypes that are difficult to adequately describe with text or completely represent with a single photographic image. Current modes of scientific publishing, however, support the submission of digital video media as supplemental material to accompany a manuscript. Here we describe a simple and widely accessible microscopy technique for acquiring high-quality digital video of both Drosophila larval and adult phenotypes from a lateral perspective. Video of larval and adult locomotion from a side-view is advantageous because it allows the observation and analysis of subtle distinctions and variations in aberrant locomotive behaviors. We have successfully used the technique to visualize and quantify aberrant crawling behaviors in third instar larvae, in addition to adult mutant phenotypes and behaviors including grooming. PMID:25350294

  15. Acquisition of High-Quality Digital Video of Drosophila Larval and Adult Behaviors from a Lateral Perspective

    PubMed Central

    Zenger, Beatrix; Wetzel, Sabine; Duncan, Jason

    2014-01-01

    Drosophila melanogaster is a powerful experimental model system for studying the function of the nervous system. Gene mutations that cause dysfunction of the nervous system often produce viable larvae and adults that have locomotion defective phenotypes that are difficult to adequately describe with text or completely represent with a single photographic image. Current modes of scientific publishing, however, support the submission of digital video media as supplemental material to accompany a manuscript. Here we describe a simple and widely accessible microscopy technique for acquiring high-quality digital video of both Drosophila larval and adult phenotypes from a lateral perspective. Video of larval and adult locomotion from a side-view is advantageous because it allows the observation and analysis of subtle distinctions and variations in aberrant locomotive behaviors. We have successfully used the technique to visualize and quantify aberrant crawling behaviors in third instar larvae, in addition to adult mutant phenotypes and behaviors including grooming. PMID:25350294

  16. Probability of regenerating a normal limb after bite injury in the Mexican axolotl (Ambystoma mexicanum)

    PubMed Central

    Thompson, Sierra; Muzinic, Laura; Muzinic, Christopher; Niemiller, Matthew L.

    2014-01-01

    Abstract Multiple factors are thought to cause limb abnormalities in amphibian populations by altering processes of limb development and regeneration. We examined adult and juvenile axolotls (Ambystoma mexicanum) in the Ambystoma Genetic Stock Center (AGSC) for limb and digit abnormalities to investigate the probability of normal regeneration after bite injury. We observed that 80% of larval salamanders show evidence of bite injury at the time of transition from group housing to solitary housing. Among 717 adult axolotls that were surveyed, which included solitary‐housed males and group‐housed females, approximately half presented abnormalities, including examples of extra or missing digits and limbs, fused digits, and digits growing from atypical anatomical positions. Bite injury probably explains these limb defects, and not abnormal development, because limbs with normal anatomy regenerated after performing rostral amputations. We infer that only 43% of AGSC larvae will present four anatomically normal looking adult limbs after incurring a bite injury. Our results show regeneration of normal limb anatomy to be less than perfect after bite injury. PMID:25745564

  17. Digital Clock Drawing: differentiating "thinking" versus "doing" in younger and older adults with depression.

    PubMed

    Cohen, Jamie; Penney, Dana L; Davis, Randall; Libon, David J; Swenson, Rodney A; Ajilore, Olusola; Kumar, Anand; Lamar, Melissa

    2014-10-01

    Psychomotor slowing has been documented in depression. The digital Clock Drawing Test (dCDT) provides: (i) a novel technique to assess both cognitive and motor aspects of psychomotor speed within the same task and (ii) the potential to uncover subtleties of behavior not previously detected with non-digitized modes of data collection. Using digitized pen technology in 106 participants grouped by Age (younger/older) and Affect (euthymic/unmedicated depressed), we recorded cognitive and motor output by capturing how the clock is drawn rather than focusing on the final product. We divided time to completion (TTC) for Command and Copy conditions of the dCDT into metrics of percent of drawing (%Ink) versus non-drawing (%Think) time. We also obtained composite Z-scores of cognition, including attention/information processing (AIP), to explore associations of %Ink and %Think times to cognitive and motor performance. Despite equivalent TTC, %Ink and %Think Command times (Copy n.s.) were significant (AgeXAffect interaction: p=.03)-younger depressed spent a smaller proportion of time drawing relative to thinking compared to the older depressed group. Command %Think time negatively correlated with AIP in the older depressed group (r=-.46; p=.02). Copy %Think time negatively correlated with AIP in the younger depressed (r=-.47; p=.03) and older euthymic groups (r=-.51; p=.01). The dCDT differentiated aspects of psychomotor slowing in depression regardless of age, while dCDT/cognitive associates for younger adults with depression mimicked patterns of older euthymics.

  18. Digital Clock Drawing: differentiating "thinking" versus "doing" in younger and older adults with depression.

    PubMed

    Cohen, Jamie; Penney, Dana L; Davis, Randall; Libon, David J; Swenson, Rodney A; Ajilore, Olusola; Kumar, Anand; Lamar, Melissa

    2014-10-01

    Psychomotor slowing has been documented in depression. The digital Clock Drawing Test (dCDT) provides: (i) a novel technique to assess both cognitive and motor aspects of psychomotor speed within the same task and (ii) the potential to uncover subtleties of behavior not previously detected with non-digitized modes of data collection. Using digitized pen technology in 106 participants grouped by Age (younger/older) and Affect (euthymic/unmedicated depressed), we recorded cognitive and motor output by capturing how the clock is drawn rather than focusing on the final product. We divided time to completion (TTC) for Command and Copy conditions of the dCDT into metrics of percent of drawing (%Ink) versus non-drawing (%Think) time. We also obtained composite Z-scores of cognition, including attention/information processing (AIP), to explore associations of %Ink and %Think times to cognitive and motor performance. Despite equivalent TTC, %Ink and %Think Command times (Copy n.s.) were significant (AgeXAffect interaction: p=.03)-younger depressed spent a smaller proportion of time drawing relative to thinking compared to the older depressed group. Command %Think time negatively correlated with AIP in the older depressed group (r=-.46; p=.02). Copy %Think time negatively correlated with AIP in the younger depressed (r=-.47; p=.03) and older euthymic groups (r=-.51; p=.01). The dCDT differentiated aspects of psychomotor slowing in depression regardless of age, while dCDT/cognitive associates for younger adults with depression mimicked patterns of older euthymics. PMID:25222513

  19. Enhanced expression of the peripheral benzodiazepine receptor (PBR) and its endogenous ligand octadecaneuropeptide (ODN) in the regenerating adult rat sciatic nerve.

    PubMed

    Lacor, P; Benavides, J; Ferzaz, B

    1996-12-01

    In this study we have investigated the expression of the peripheral benzodiazepine receptor (PBR) and its endogenous ligand octadecaneuropeptide (ODN) in the sciatic nerve of the adult rat by immunohistochemistry. We have also determined the effect of nerve freezing lesion or chronic denervation on PBR and ODN expression. In the sciatic nerve of control rats PBR- and ODN-immunoreactivities (IR) were associated to Schwann cells. Ten days after nerve injury, PBR- and ODN-IR increased significantly in the distal stump. PBR-IR was associated to Schwann cells and macrophages, whereas ODN-IR was only detected in Schwann cells. Immunoreactivities returned to normal levels when axons were allowed to regenerate for 2 months after nerve freezing-injury. Under chronic denervation conditions, PBR- and ODN-IR remained elevated in the distal stump, at least for this period of time. These results suggest that PBR and ODN are regulated by signals from regenerating axons and that PBR and its endogenous ligand may play a role in peripheral nerve regeneration.

  20. "Digital Natives": Honour and Respect in Computerized Encounters between Israeli Jewish and Arab Children and Adult Learners

    ERIC Educational Resources Information Center

    Gamliel, Tova; Hazan, Haim

    2014-01-01

    In Israel's Multigenerational Connection Program (MCP), children instruct adults in computer and Internet use. Taking children's advantage in digital literacy as a given, the study examines their generational status in computerized encounters that MCP creates in two schools, one Jewish and one Arab. The data were gathered by means of…

  1. Exploring Adult Digital Literacy Using Learners' and Educators' Perceptions and Experiences: The Case of the Second Chance Schools in Greece

    ERIC Educational Resources Information Center

    Jimoyiannis, Athanassios; Gravani, Maria

    2011-01-01

    The research reported in this paper aspires to shed light into adult digital literacy using learners' and educators' experiences and perceptions at Second Chance Schools, a project in Greece aiming at combating social exclusion through education. In exploring the above, this investigation uses a case-study approach within a qualitative paradigm…

  2. A Digital Gene Expression-Based Bovine Gene Atlas Evaluating 92 Adult, Juvenile and Fetal Cattle Tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A comprehensive transcriptome survey, or “Gene Atlas,” provides information essential for a complete understanding of the genomic biology of an organism. Using a digital gene expression approach, we developed a Gene Atlas of RNA abundance in 92 adult, juvenile and fetal cattle tissues. The samples...

  3. Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats

    SciTech Connect

    Cheng, Lei; Liu, Yi; Zhao, Hua; Zhang, Wen; Guo, Ying-Jun; Nie, Lin

    2013-10-18

    Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a

  4. Getting Grandma Online: Are Tablets the Answer for Increasing Digital Inclusion for Older Adults in the U.S.?

    PubMed Central

    Tsai, Hsin-yi Sandy; Shillair, Ruth; Cotten, Shelia R.; Winstead, Vicki; Yost, Elizabeth

    2015-01-01

    Using information and communication technologies (ICTs) can improve older adults’ quality of life. ICT use is associated with decreased feelings of loneliness and depression, along with increased feelings of independence and personal growth. However, limited access and low technological self-efficacy are key reasons why some groups, especially older adults, are excluded from being fully engaged in the digital world. In this study, we focus on older adults’ technological self-efficacy, which is related to their actual use of technology and the second level digital divide. Specifically, we examine: 1) how older adults decide to use a new technology, tablet computers; 2) how they conquer the barrier of technological self-efficacy through using tablets; and 3) the impacts of using this new technology in their lives. Twenty-one in-depth interviews were conducted with older adults residing in independent living communities in a medium-sized city in the Deep South region of the United States. Observational and enactive learning played important roles for older adults in using tablets. Seeing others use tablets, getting recommendations from family members, or having tablets given to them were the primary reasons they started to use tablet computers. The ease of use feature of tablets helped solve the problem of lacking technological self-efficacy. Using tablets helped increase a sense of connectedness. Tablet computers may be one way to increase digital inclusion among older adults. PMID:26877583

  5. Tales of regeneration in zebrafish.

    PubMed

    Poss, Kenneth D; Keating, Mark T; Nechiporuk, Alex

    2003-02-01

    Complex tissue regeneration involves exquisitely coordinated proliferation and patterning of adult cells after severe injury or amputation. Certain lower vertebrates such as urodele amphibians and teleost fish have a greater capacity for regeneration than mammals. However, little is known about molecular mechanisms of regeneration, and cellular mechanisms are incompletely defined. To address this deficiency, we and others have focused on the zebrafish model system. Several helpful tools and reagents are available for use with zebrafish, including the potential for genetic approaches to regeneration. Recent studies have shed light on the remarkable ability of zebrafish to regenerate fins. PMID:12557199

  6. Fading-free transmission of 124-Gb/s PDM-DMT signal over 100-km SSMF using digital carrier regeneration.

    PubMed

    Li, Cai; Hu, Rong; Yang, Qi; Luo, Ming; Li, Wei; Yu, Shaohua

    2016-01-25

    The coherent reception of intensity modulated signal has been recently widely investigated, in which the signal is recovered by the envelop detection. High linewidth tolerance is achieved with such scheme. However, strong optical carrier exists during the transmission, which degrades the optical power efficiency. In this paper, an efficient modulation scheme for discrete multi-tone (DMT) signal is proposed based on the Mach-Zehnder modulator (MZM). Different from the traditional intensity modulation, the proposed method employs both intensity and phase domain. Thus, the optical carrier power can be greatly reduced by adjusting the bias of MZM around the null point. By employing coherent detection and digital carrier regeneration (DCR), the carrier suppressed DMT signal can be recovered using envelop detection. No carrier frequency or phase estimation is required. Numerical investigations are made to demonstrate the feasibility, in which significant improvements are found for the proposed DCR method, showing great tolerance against laser linewidth and carrier power reduction. Finally, a 124-Gb/s transmission of polarization-division multiplexed DMT (PDM-DMT) signal is demonstrated over 100-km SSMF, with only -8 dB optical carrier to signal power ratio (CSPR).

  7. Fading-free transmission of 124-Gb/s PDM-DMT signal over 100-km SSMF using digital carrier regeneration.

    PubMed

    Li, Cai; Hu, Rong; Yang, Qi; Luo, Ming; Li, Wei; Yu, Shaohua

    2016-01-25

    The coherent reception of intensity modulated signal has been recently widely investigated, in which the signal is recovered by the envelop detection. High linewidth tolerance is achieved with such scheme. However, strong optical carrier exists during the transmission, which degrades the optical power efficiency. In this paper, an efficient modulation scheme for discrete multi-tone (DMT) signal is proposed based on the Mach-Zehnder modulator (MZM). Different from the traditional intensity modulation, the proposed method employs both intensity and phase domain. Thus, the optical carrier power can be greatly reduced by adjusting the bias of MZM around the null point. By employing coherent detection and digital carrier regeneration (DCR), the carrier suppressed DMT signal can be recovered using envelop detection. No carrier frequency or phase estimation is required. Numerical investigations are made to demonstrate the feasibility, in which significant improvements are found for the proposed DCR method, showing great tolerance against laser linewidth and carrier power reduction. Finally, a 124-Gb/s transmission of polarization-division multiplexed DMT (PDM-DMT) signal is demonstrated over 100-km SSMF, with only -8 dB optical carrier to signal power ratio (CSPR). PMID:26832465

  8. Changes in the extracellular matrix and glycosaminoglycan synthesis during the initiation of regeneration in adult newt forelimbs

    SciTech Connect

    Mescher, A.L.; Munaim, S.I.

    1986-04-01

    The extracellular matrix (ECM) of the distal tissues in a newt limb stump is completely reorganized in the 2-3-week period following amputation. In view of numerous in vitro studies showing that extracellular material influences cellular migration and proliferation, it is likely that the changes in the limb's ECM are important activities in the process leading to regeneration of such limbs. Using biochemical, autoradiographic, and histochemical techniques we studied temporal and spatial differences in the synthesis of glycosaminoglycans (GAGs) during the early, nerve-dependent phase of limb regeneration. Hyaluronic acid synthesis began with the onset of tissue dedifferentiation, became maximal within 1 weeks, and continued throughout the period of active cell proliferation. Chondroitin sulfate synthesis began somewhat later, increased steadily, and reached very high levels during chondrogenesis. During the first 10 days after amputation, distributions of sulfated and nonsulfated GAGs were both uniform throughout dedifferentiating tissues, except for a heavier localization near the bone. Since nerves are necessary to promote the regenerative process, we examined the neural influence on synthesis and accumulation of extracellular GAGs. Denervation decreased GAG production in all parts of the limb stump by approximately 50%. Newt dorsal root ganglia and brain-derived fibroblast growth factor each produced twofold stimulation of GAG synthesis in cultured 7-day regenerates. The latter effect was primarily on synthesis of hyaluronic acid. The results indicate that the trophic action of nerves on amphibian limb regeneration includes a positive influence on synthesis and extracellular accumulation of GAGs.

  9. Are Adult Educators and Learners "Digital Immigrants"? Examining the Evidence and Impacts for Continuing Education

    ERIC Educational Resources Information Center

    Smith, Erika

    2013-01-01

    Over the past decade, Prensky's distinctions between "digital immigrants" and "digital natives" have been oft-referenced. Much has been written about digital native students as a part of the Net generation or as Millennials. However, little work fully considers the impact of digital immigrant discourse within the fields of…

  10. Validity of energy intake estimated by digital photography + recall in overweight and obese young adults

    PubMed Central

    Ptomey, Lauren T.; Willis, Erik A.; Honas, Jeffery J.; Mayo, Matthew S.; Washburn, Richard A.; Herrmann, Stephen D.; Sullivan, Debra K.; Donnelly, Joseph E.

    2015-01-01

    Background Recent reports have questioned the adequacy of self-report measures of dietary intake as the basis for scientific conclusions regarding the associations of dietary intake and health, and reports have recommended the development and evaluation of better methods for the assessment of dietary intake in free-living individuals. We developed a procedure that utilized pre- and post-meal digital photographs in combination with dietary recalls (DP+R) to assess energy intake during ad libitum eating in a cafeteria setting. Objective To compare mean daily energy intake of overweight and obese young adults assessed by a DP+R method with mean total daily energy expenditure assessed by doubly labelled water (TDEEDLW). Methods Energy intake was assessed using the DP+R method in 91 overweight and obese young adults (age = 22.9±3.2 yrs., BMI=31.2 ± 5.6 kg·m2, female = 49%) over 7-days of ad libitum eating in a University cafeteria. Foods consumed outside the cafeteria (i.e., snacks, non-cafeteria meals) were assessed using multiple-pass recall procedures using food models and standardized, neutral probing questions. TDEEDLW was assessed in all participants over the 14-day period. Results The mean energy intakes estimated by DP+R and TDEEDLW were not significantly different (DP+R = 2912 ± 661 kcal/d; TDEEDLW = 2849 ± 748 kcal/d, p = 0.42). The DP+R method overestimated TDEEDLW by 63 ± 750 kcal/d (6.8 ± 28%). Conclusion Results suggest that the DP+R method provides estimates of energy intake comparable to those obtained by TDEEDLW. PMID:26122282

  11. Regeneration: rewarding, but potentially risky.

    PubMed

    Egger, Bernhard

    2008-12-01

    Some bilaterally symmetric animals, such as flatworms, annelids, and nemerteans, are renowned for their outstanding regeneration capacity-even a fraction of the body can give rise to a complete new animal. However, not all species of these taxa can regenerate equally well-some cannot regenerate at all. If regeneration was purely beneficial, why cannot all of members of the flat, round, and ribbon worms regenerate? At that, why cannot all other bilaterians, including humans, regenerate as well? Regeneration capacity is an obvious advantage in accidental, predatory, and parasitic loss of body parts and is also closely intertwined with asexual reproduction strategies. Regeneration is suspected to play a role in life span extension or even rejuvenation. An answer for reduced or missing regeneration capacity in many species may be found in limitations of the body plan, high costs, and inherent dangers of regeneration. Defects in adults and juveniles are shown, and similarities between development and regeneration are pointed out. With a focus on some worms, but also highlighting comparisons with other animal taxa, putative reasons for a limited and an advanced regeneration capacity are discussed in this article. PMID:19067421

  12. In search of the best candidate for regeneration of ischemic tissues: are embryonic/fetal stem cells more advantageous than adult counterparts?

    PubMed

    Emanueli, Costanza; Lako, Majlinda; Stojkovic, Miodrag; Madeddu, Paolo

    2005-10-01

    Human stem cells and progenitor cells from the bone marrow have been proposed for the regeneration of ischemic cardiac tissues. Early clinical trials indicate that infusion of autologous bone-marrow cells into the infarcted heart enhances ventricular function, albeit the long-term benefit remains to be ascertained. Alternatively, angiogenic growth factors could be used to stimulate the recruitment of vascular progenitor cells into tissues in need of regeneration. Unfortunately, in atherosclerotic patients, the curative potential of autologous stem cells might be impoverished by underlying disease and associated risk factors. Thus, research is focusing on the use of embryonic stem cells which are capable of unlimited self-renewal and have the potential to give rise to all tissue types in the body. Ethical problems and technical hurdles may limit the immediate application of embryonic stem cells. In the meanwhile, fetal hematopoietic stem cells,which have been routinely used to reconstitute the hematopoietic system in man, could represent an alternative, owing to their juvenile phenotype and ability to differentiate into vascular endothelial, muscular, and neuronal cell lineages. With progresses in stem cell expansion, the blood of a single cord could be sufficient to transplant an adult. These observations raise the exciting possibility of using fetal cells as a new way to speed up the healing of damaged tissues.

  13. ‘Fast’ and ‘slow’ muscle fibres in hindlimb muscles of adult rats regenerate from intrinsically different satellite cells

    PubMed Central

    Kalhovde, JM; Jerkovic, R; Sefland, I; Cordonnier, C; Calabria, E; Schiaffino, S; Lømo, T

    2005-01-01

    Myosin heavy chain (MyHC) expression was examined in regenerating fast extensor digitorum longus (EDL) and slow soleus (SOL) muscles of adult rats. Myotoxic bupivacaine was injected into SOL and EDL and the muscles were either denervated or neuromuscularly blocked by tetrodotoxin (TTX) on the sciatic nerve. Three to 10 or 30 days later, denervated SOL or EDL, or innervated but neuromuscularly blocked EDL received a slow 20 Hz stimulus pattern through electrodes implanted on the muscles or along the fibular nerve to EDL below the TTX block. In addition, denervated SOL and EDL received a fast 100 Hz stimulus pattern. Denervated EDL and SOL stimulated with the same slow stimulus pattern expressed different amounts of type 1 MyHC protein (8%versus 35% at 10 days, 13%versus 87% at 30 days). Stimulated denervated and stimulated innervated (TTX blocked) EDL expressed the same amounts of type 1, 2A, 2X and 2B MyHC proteins. Cross-sections treated for in situ hybridization and immunocytochemistry showed expression of type 1 MyHC in all SOL fibres but only in some scattered single or smaller groups of fibres in EDL. The results suggest that muscle fibres regenerate from intrinsically different satellite cells in EDL and SOL and within EDL. However, induction by different extrinsic factors arising in extracellular matrix or from muscle position and usage in the limb has not been excluded. No evidence for nerve-derived trophic influences was obtained. PMID:15564285

  14. Myomaker is essential for muscle regeneration

    PubMed Central

    Millay, Douglas P.; Sutherland, Lillian B.; Bassel-Duby, Rhonda

    2014-01-01

    Regeneration of injured adult skeletal muscle involves fusion of activated satellite cells to form new myofibers. Myomaker is a muscle-specific membrane protein required for fusion of embryonic myoblasts, but its potential involvement in adult muscle regeneration has not been explored. We show that myogenic basic helix–loop–helix (bHLH) transcription factors induce myomaker expression in satellite cells during acute and chronic muscle regeneration. Moreover, genetic deletion of myomaker in adult satellite cells completely abolishes muscle regeneration, resulting in severe muscle destruction after injury. Myomaker is the only muscle-specific protein known to be absolutely essential for fusion of embryonic and adult myoblasts. PMID:25085416

  15. Assessing the feasibility and sample quality of a national random-digit dialing cellular phone survey of young adults.

    PubMed

    Gundersen, Daniel A; ZuWallack, Randal S; Dayton, James; Echeverría, Sandra E; Delnevo, Cristine D

    2014-01-01

    The majority of adults aged 18-34 years have only cellular phones, making random-digit dialing of landline telephones an obsolete methodology for surveillance of this population. However, 95% of this group has cellular phones. This article reports on the 2011 National Young Adult Health Survey (NYAHS), a pilot study conducted in the 50 US states and Washington, DC, that used random-digit dialing of cellular phones and benchmarked this methodology against that of the 2011 Behavioral Risk Factor Surveillance System (BRFSS). Comparisons of the demographic distributions of subjects in the NYAHS and BRFSS (aged 18-34 years) with US Census data revealed adequate reach for all demographic subgroups. After adjustment for design factors, the mean absolute deviations across demographic groups were 3 percentage points for the NYAHS and 2.8 percentage points for the BRFSS, nationally, and were comparable for each census region. Two-sided z tests comparing cigarette smoking prevalence revealed no significant differences between NYAHS and BRFSS participants overall or by subgroups. The design effects of the sampling weight were 2.09 for the NYAHS and 3.26 for the BRFSS. Response rates for the NYAHS and BRFSS cellular phone sampling frames were comparable. Our assessment of the NYAHS methodology found that random-digit dialing of cellular phones is a feasible methodology for surveillance of young adults.

  16. Assessing the Feasibility and Sample Quality of a National Random-digit Dialing Cellular Phone Survey of Young Adults

    PubMed Central

    Gundersen, Daniel A.; ZuWallack, Randal S.; Dayton, James; Echeverría, Sandra E.; Delnevo, Cristine D.

    2014-01-01

    The majority of adults aged 18–34 years have only cellular phones, making random-digit dialing of landline telephones an obsolete methodology for surveillance of this population. However, 95% of this group has cellular phones. This article reports on the 2011 National Young Adult Health Survey (NYAHS), a pilot study conducted in the 50 US states and Washington, DC, that used random-digit dialing of cellular phones and benchmarked this methodology against that of the 2011 Behavioral Risk Factor Surveillance System (BRFSS). Comparisons of the demographic distributions of subjects in the NYAHS and BRFSS (aged 18–34 years) with US Census data revealed adequate reach for all demographic subgroups. After adjustment for design factors, the mean absolute deviations across demographic groups were 3 percentage points for the NYAHS and 2.8 percentage points for the BRFSS, nationally, and were comparable for each census region. Two-sided z tests comparing cigarette smoking prevalence revealed no significant differences between NYAHS and BRFSS participants overall or by subgroups. The design effects of the sampling weight were 2.09 for the NYAHS and 3.26 for the BRFSS. Response rates for the NYAHS and BRFSS cellular phone sampling frames were comparable. Our assessment of the NYAHS methodology found that random-digit dialing of cellular phones is a feasible methodology for surveillance of young adults. PMID:24100957

  17. Axonal regeneration in zebrafish.

    PubMed

    Becker, Thomas; Becker, Catherina G

    2014-08-01

    In contrast to mammals, fish and amphibia functionally regenerate axons in the central nervous system (CNS). The strengths of the zebrafish model, that is, transgenics and mutant availability, ease of gene expression analysis and manipulation and optical transparency of larvae lend themselves to the analysis of successful axonal regeneration. Analyses in larval and adult zebrafish suggest a high intrinsic capacity for axon regrowth, yet signaling pathways employed in axonal growth and pathfinding are similar to those in mammals. However, the lesioned CNS environment in zebrafish shows remarkably little scarring or expression of inhibitory molecules and regenerating axons use molecular cues in the environment to successfully navigate to their targets. Future zebrafish research, including screening techniques, will complete our picture of the mechanisms behind successful CNS axon regeneration in this vertebrate model organism.

  18. An orphan gene is necessary for preaxial digit formation during salamander limb development

    PubMed Central

    Kumar, Anoop; Gates, Phillip B.; Czarkwiani, Anna; Brockes, Jeremy P.

    2015-01-01

    Limb development in salamanders differs from other tetrapods in that the first digits to form are the two most anterior (preaxial dominance). This has been proposed as a salamander novelty and its mechanistic basis is unknown. Salamanders are the only adult tetrapods able to regenerate the limb, and the contribution of preaxial dominance to limb regeneration is unclear. Here we show that during early outgrowth of the limb bud, a small cohort of cells express the orphan gene Prod1 together with Bmp2, a critical player in digit condensation in amniotes. Disruption of Prod1 with a gene-editing nuclease abrogates these cells, and blocks formation of the radius and ulna, and outgrowth of the anterior digits. Preaxial dominance is a notable feature of limb regeneration in the larval newt, but this changes abruptly after metamorphosis so that the formation of anterior and posterior digits occurs together within the autopodium resembling an amniote-like pattern. PMID:26498026

  19. An orphan gene is necessary for preaxial digit formation during salamander limb development.

    PubMed

    Kumar, Anoop; Gates, Phillip B; Czarkwiani, Anna; Brockes, Jeremy P

    2015-10-26

    Limb development in salamanders differs from other tetrapods in that the first digits to form are the two most anterior (preaxial dominance). This has been proposed as a salamander novelty and its mechanistic basis is unknown. Salamanders are the only adult tetrapods able to regenerate the limb, and the contribution of preaxial dominance to limb regeneration is unclear. Here we show that during early outgrowth of the limb bud, a small cohort of cells express the orphan gene Prod1 together with Bmp2, a critical player in digit condensation in amniotes. Disruption of Prod1 with a gene-editing nuclease abrogates these cells, and blocks formation of the radius and ulna, and outgrowth of the anterior digits. Preaxial dominance is a notable feature of limb regeneration in the larval newt, but this changes abruptly after metamorphosis so that the formation of anterior and posterior digits occurs together within the autopodium resembling an amniote-like pattern.

  20. An orphan gene is necessary for preaxial digit formation during salamander limb development.

    PubMed

    Kumar, Anoop; Gates, Phillip B; Czarkwiani, Anna; Brockes, Jeremy P

    2015-01-01

    Limb development in salamanders differs from other tetrapods in that the first digits to form are the two most anterior (preaxial dominance). This has been proposed as a salamander novelty and its mechanistic basis is unknown. Salamanders are the only adult tetrapods able to regenerate the limb, and the contribution of preaxial dominance to limb regeneration is unclear. Here we show that during early outgrowth of the limb bud, a small cohort of cells express the orphan gene Prod1 together with Bmp2, a critical player in digit condensation in amniotes. Disruption of Prod1 with a gene-editing nuclease abrogates these cells, and blocks formation of the radius and ulna, and outgrowth of the anterior digits. Preaxial dominance is a notable feature of limb regeneration in the larval newt, but this changes abruptly after metamorphosis so that the formation of anterior and posterior digits occurs together within the autopodium resembling an amniote-like pattern. PMID:26498026

  1. Regeneration inducers in limb regeneration.

    PubMed

    Satoh, Akira; Mitogawa, Kazumasa; Makanae, Aki

    2015-08-01

    Limb regeneration ability, which can be observed in amphibians, has been investigated as a representative phenomenon of organ regeneration. Recently, an alternative experimental system called the accessory limb model was developed to investigate early regulation of amphibian limb regeneration. The accessory limb model contributed to identification of limb regeneration inducers in urodele amphibians. Furthermore, the accessory limb model may be applied to other species to explore universality of regeneration mechanisms. This review aims to connect the insights recently gained to emboss universality of regeneration mechanisms among species. The defined molecules (BMP7 (or2) + FGF2 + FGF8) can transform skin wound healing to organ (limb) regeneration responses. The same molecules can initiate regeneration responses in some species. PMID:26100345

  2. Limb regeneration.

    PubMed

    Simon, András; Tanaka, Elly M

    2013-01-01

    Limb regeneration is observed in certain members of the animal phyla. Some animals keep this ability during their entire life while others lose it at some time during development. How do animals regenerate limbs? Is it possible to find unifying, conserved mechanisms of limb regeneration or have different species evolved distinct means of replacing a lost limb? How is limb regeneration similar or different to limb development? Studies on many organisms, including echinoderms, arthropods, and chordates have provided significant knowledge about limb regeneration. In this focus article, we concentrate on tetrapod limb regeneration as studied in three model amphibians: newts, axolotls, and frogs. We review recent progress on tissue interactions during limb regeneration, and place those findings into an evolutionary context. PMID:24009038

  3. In vitro somatic embryogenesis and plantlet regeneration from immature male inflorescence of adult dura and tenera palms of Elaeis guineensis (Jacq.).

    PubMed

    Jayanthi, Madhavan; Susanthi, Bollarapu; Murali Mohan, Nandiganti; Mandal, Pranab Kumar

    2015-01-01

    We report here a method for plant regeneration through somatic embryogenesis from explants collected from immature male inflorescence of adult oil palm cultivated in India. Callus induction was successful from tissues of immature male inflorescence collected from both dura and tenera varieties of oil palm. A modified Y3 (Eeuwens) media supplemented with several additives and activated charcoal (3%) were used for the experiments. Out of four different auxin treatments, 4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid (picloram) produced maximum callus induction (82%) and it was not significantly different from 2,4-dichlorophenoxyacetic acid (2,4-D) and a combination of 2,4-D + picloram. The callus induction obtained with auxin α-naphthalene acetic acid was only 54% and it was significantly low as compared to the other treatments. Highest embryogenesis was obtained with a combination of 2,4-D + picloram (4.9%) followed by picloram (3.4%). Genotypic variation in response to the same auxins was observed both for callus induction and embryogenesis. Callus induction and embryogenesis ranged from 42 to 72% and 6.8 to 9.35%, respectively in tenera. The formation of embryogenic calli was marked by the appearance of white to yellowish globular or nodular structures which subsequently formed clear somatic embryos. Somatic embryogenesis was asynchronous and at one time we could find different stages of embryogenesis like the globular, torpedo and the cotyledonary stages. The somatic embryos when exposed to light in the same basal media along with 6-benzyladenine (18 µM), abscisic acid (3.78 µM) and gibberellic acid (5.78 µM) regenerated into plantlets. To the best of our knowledge this is the first report o f callus induction and somatic embryogenesis from immature male inflorescence of oil palm. PMID:26085976

  4. Ultrasound-Guided Forearm Nerve Blocks: A Novel Application for Pain Control in Adult Patients with Digit Injuries

    PubMed Central

    Patricia Javedani, Parisa; Amini, Albert

    2016-01-01

    Phalanx fractures and interphalangeal joint dislocations commonly present to the emergency department. Although these orthopedic injuries are not complex, the four-point digital block used for anesthesia during the reduction can be painful. Additionally, cases requiring prolonged manipulation or consultation for adequate reduction may require repeat blockade. This case series reports four patients presenting after mechanical injuries resulting in phalanx fracture or interphalangeal joint dislocations. These patients received an ultrasound-guided peripheral nerve block of the forearm with successful subsequent reduction. To our knowledge, use of ultrasound-guided peripheral nerve blocks of the forearm for anesthesia in reduction of upper extremity digit injuries in adult patients in the emergency department setting has not been described before. PMID:27555971

  5. Hair cell regeneration after ATOH1 gene therapy in the cochlea of profoundly deaf adult guinea pigs.

    PubMed

    Atkinson, Patrick J; Wise, Andrew K; Flynn, Brianna O; Nayagam, Bryony A; Richardson, Rachael T

    2014-01-01

    The degeneration of hair cells in the mammalian cochlea results in permanent sensorineural hearing loss. This study aimed to promote the regeneration of sensory hair cells in the mature cochlea and their reconnection with auditory neurons through the introduction of ATOH1, a transcription factor known to be necessary for hair cell development, and the introduction of neurotrophic factors. Adenoviral vectors containing ATOH1 alone, or with neurotrophin-3 and brain derived neurotrophic factor were injected into the lower basal scala media of guinea pig cochleae four days post ototoxic deafening. Guinea pigs treated with ATOH1 gene therapy, alone, had a significantly greater number of cells expressing hair cell markers compared to the contralateral non-treated cochlea when examined 3 weeks post-treatment. This increase, however, did not result in a commensurate improvement in hearing thresholds, nor was there an increase in synaptic ribbons, as measured by CtBP2 puncta after ATOH1 treatment alone, or when combined with neurotrophins. However, hair cell formation and synaptogenesis after co-treatment with ATOH1 and neurotrophic factors remain inconclusive as viral transduction was reduced due to the halving of viral titres when the samples were combined. Collectively, these data suggest that, whilst ATOH1 alone can drive non-sensory cells towards an immature sensory hair cell phenotype in the mature cochlea, this does not result in functional improvements after aminoglycoside-induced deafness.

  6. Hair Cell Regeneration after ATOH1 Gene Therapy in the Cochlea of Profoundly Deaf Adult Guinea Pigs

    PubMed Central

    Atkinson, Patrick J.; Wise, Andrew K.; Flynn, Brianna O.; Nayagam, Bryony A.; Richardson, Rachael T.

    2014-01-01

    The degeneration of hair cells in the mammalian cochlea results in permanent sensorineural hearing loss. This study aimed to promote the regeneration of sensory hair cells in the mature cochlea and their reconnection with auditory neurons through the introduction of ATOH1, a transcription factor known to be necessary for hair cell development, and the introduction of neurotrophic factors. Adenoviral vectors containing ATOH1 alone, or with neurotrophin-3 and brain derived neurotrophic factor were injected into the lower basal scala media of guinea pig cochleae four days post ototoxic deafening. Guinea pigs treated with ATOH1 gene therapy, alone, had a significantly greater number of cells expressing hair cell markers compared to the contralateral non-treated cochlea when examined 3 weeks post-treatment. This increase, however, did not result in a commensurate improvement in hearing thresholds, nor was there an increase in synaptic ribbons, as measured by CtBP2 puncta after ATOH1 treatment alone, or when combined with neurotrophins. However, hair cell formation and synaptogenesis after co-treatment with ATOH1 and neurotrophic factors remain inconclusive as viral transduction was reduced due to the halving of viral titres when the samples were combined. Collectively, these data suggest that, whilst ATOH1 alone can drive non-sensory cells towards an immature sensory hair cell phenotype in the mature cochlea, this does not result in functional improvements after aminoglycoside-induced deafness. PMID:25036727

  7. Expressing Constitutively Active Rheb in Adult Dorsal Root Ganglion Neurons Enhances the Integration of Sensory Axons that Regenerate Across a Chondroitinase-Treated Dorsal Root Entry Zone Following Dorsal Root Crush

    PubMed Central

    Wu, Di; Klaw, Michelle C.; Kholodilov, Nikolai; Burke, Robert E.; Detloff, Megan R.; Côté, Marie-Pascale; Tom, Veronica J.

    2016-01-01

    While the peripheral branch of dorsal root ganglion neurons (DRG) can successfully regenerate after injury, lesioned central branch axons fail to regrow across the dorsal root entry zone (DREZ), the interface between the dorsal root and the spinal cord. This lack of regeneration is due to the limited regenerative capacity of adult sensory axons and the growth-inhibitory environment at the DREZ, which is similar to that found in the glial scar after a central nervous system (CNS) injury. We hypothesized that transduction of adult DRG neurons using adeno-associated virus (AAV) to express a constitutively-active form of the GTPase Rheb (caRheb) will increase their intrinsic growth potential after a dorsal root crush. Additionally, we posited that if we combined that approach with digestion of upregulated chondroitin sulfate proteoglycans (CSPG) at the DREZ with chondroitinase ABC (ChABC), we would promote regeneration of sensory axons across the DREZ into the spinal cord. We first assessed if this strategy promotes neuritic growth in an in vitro model of the glial scar containing CSPG. ChABC allowed for some regeneration across the once potently inhibitory substrate. Combining ChABC treatment with expression of caRheb in DRG significantly improved this growth. We then determined if this combination strategy also enhanced regeneration through the DREZ after dorsal root crush in adult rats in vivo. After unilaterally crushing C4-T1 dorsal roots, we injected AAV5-caRheb or AAV5-GFP into the ipsilateral C5-C8 DRGs. ChABC or PBS was injected into the ipsilateral dorsal horn at C5-C8 to digest CSPG, for a total of four animal groups (caRheb + ChABC, caRheb + PBS, GFP + ChABC, GFP + PBS). Regeneration was rarely observed in PBS-treated animals, whereas short-distance regrowth across the DREZ was observed in ChABC-treated animals. No difference in axon number or length between the ChABC groups was observed, which may be related to intraganglionic inflammation induced by the

  8. Expressing Constitutively Active Rheb in Adult Dorsal Root Ganglion Neurons Enhances the Integration of Sensory Axons that Regenerate Across a Chondroitinase-Treated Dorsal Root Entry Zone Following Dorsal Root Crush.

    PubMed

    Wu, Di; Klaw, Michelle C; Kholodilov, Nikolai; Burke, Robert E; Detloff, Megan R; Côté, Marie-Pascale; Tom, Veronica J

    2016-01-01

    While the peripheral branch of dorsal root ganglion neurons (DRG) can successfully regenerate after injury, lesioned central branch axons fail to regrow across the dorsal root entry zone (DREZ), the interface between the dorsal root and the spinal cord. This lack of regeneration is due to the limited regenerative capacity of adult sensory axons and the growth-inhibitory environment at the DREZ, which is similar to that found in the glial scar after a central nervous system (CNS) injury. We hypothesized that transduction of adult DRG neurons using adeno-associated virus (AAV) to express a constitutively-active form of the GTPase Rheb (caRheb) will increase their intrinsic growth potential after a dorsal root crush. Additionally, we posited that if we combined that approach with digestion of upregulated chondroitin sulfate proteoglycans (CSPG) at the DREZ with chondroitinase ABC (ChABC), we would promote regeneration of sensory axons across the DREZ into the spinal cord. We first assessed if this strategy promotes neuritic growth in an in vitro model of the glial scar containing CSPG. ChABC allowed for some regeneration across the once potently inhibitory substrate. Combining ChABC treatment with expression of caRheb in DRG significantly improved this growth. We then determined if this combination strategy also enhanced regeneration through the DREZ after dorsal root crush in adult rats in vivo. After unilaterally crushing C4-T1 dorsal roots, we injected AAV5-caRheb or AAV5-GFP into the ipsilateral C5-C8 DRGs. ChABC or PBS was injected into the ipsilateral dorsal horn at C5-C8 to digest CSPG, for a total of four animal groups (caRheb + ChABC, caRheb + PBS, GFP + ChABC, GFP + PBS). Regeneration was rarely observed in PBS-treated animals, whereas short-distance regrowth across the DREZ was observed in ChABC-treated animals. No difference in axon number or length between the ChABC groups was observed, which may be related to intraganglionic inflammation induced by the

  9. Liver regeneration.

    PubMed

    Mao, Shennen A; Glorioso, Jaime M; Nyberg, Scott L

    2014-04-01

    The liver is unique in its ability to regenerate in response to injury. A number of evolutionary safeguards have allowed the liver to continue to perform its complex functions despite significant injury. Increased understanding of the regenerative process has significant benefit in the treatment of liver failure. Furthermore, understanding of liver regeneration may shed light on the development of cancer within the cirrhotic liver. This review provides an overview of the models of study currently used in liver regeneration, the molecular basis of liver regeneration, and the role of liver progenitor cells in regeneration of the liver. Specific focus is placed on clinical applications of current knowledge in liver regeneration, including small-for-size liver transplant. Furthermore, cutting-edge topics in liver regeneration, including in vivo animal models for xenogeneic human hepatocyte expansion and the use of decellularized liver matrices as a 3-dimensional scaffold for liver repopulation, are proposed. Unfortunately, despite 50 years of intense study, many gaps remain in the scientific understanding of liver regeneration.

  10. Liver Regeneration

    PubMed Central

    Mao, Shennen A; Glorioso, Jaime M; Nyberg, Scott L

    2014-01-01

    The liver is unique in its ability to regenerate in response to injury. A number of evolutionary safeguards have allowed the liver to continue to perform its complex functions despite significant injury. Increased understanding of the regenerative process has significant benefit in the treatment of liver failure. Furthermore, understanding of liver regeneration may shed light on the development of cancer within the cirrhotic liver. This review will provide an overview of the models of study currently utilized in liver regeneration, the molecular basis of liver regeneration, and the role of liver progenitor cells in regeneration of the liver. Specific focus will be placed on clinical applications of current knowledge in liver regeneration including small for size liver transplant. Furthermore, cutting edge topics in liver regeneration including in vivo animal models for xenogeneic human hepatocyte expansion and the use of decellularized liver matrices as a three dimensional scaffold for liver repopulation will be proposed. Unfortunately, despite 50 years of intense study, many gaps remain in the scientific understanding of liver regeneration. PMID:24495569

  11. Adult-brain-derived neural stem cells grafting into a vein bridge increases postlesional recovery and regeneration in a peripheral nerve of adult pig.

    PubMed

    Liard, Olivier; Segura, Stéphanie; Sagui, Emmanuel; Nau, André; Pascual, Aurélie; Cambon, Melissa; Darlix, Jean-Luc; Fusai, Thierry; Moyse, Emmanuel

    2012-01-01

    We attempted transplantation of adult neural stem cells (ANSCs) inside an autologous venous graft following surgical transsection of nervis cruralis with 30 mm long gap in adult pig. The transplanted cell suspension was a primary culture of neurospheres from adult pig subventricular zone (SVZ) which had been labeled in vitro with BrdU or lentivirally transferred fluorescent protein. Lesion-induced loss of leg extension on the thigh became definitive in controls but was reversed by 45-90 days after neurosphere-filled vein grafting. Electromyography showed stimulodetection recovery in neurosphere-transplanted pigs but not in controls. Postmortem immunohistochemistry revealed neurosphere-derived cells that survived inside the venous graft from 10 to 240 post-lesion days and all displayed a neuronal phenotype. Newly formed neurons were distributed inside the venous graft along the severed nerve longitudinal axis. Moreover, ANSC transplantation increased CNPase expression, indicating activation of intrinsic Schwann cells. Thus ANSC transplantation inside an autologous venous graft provides an efficient repair strategy. PMID:22448170

  12. Adult-Brain-Derived Neural Stem Cells Grafting into a Vein Bridge Increases Postlesional Recovery and Regeneration in a Peripheral Nerve of Adult Pig

    PubMed Central

    Liard, Olivier; Segura, Stéphanie; Sagui, Emmanuel; Nau, André; Pascual, Aurélie; Cambon, Melissa; Darlix, Jean-Luc; Fusai, Thierry; Moyse, Emmanuel

    2012-01-01

    We attempted transplantation of adult neural stem cells (ANSCs) inside an autologous venous graft following surgical transsection of nervis cruralis with 30 mm long gap in adult pig. The transplanted cell suspension was a primary culture of neurospheres from adult pig subventricular zone (SVZ) which had been labeled in vitro with BrdU or lentivirally transferred fluorescent protein. Lesion-induced loss of leg extension on the thigh became definitive in controls but was reversed by 45–90 days after neurosphere-filled vein grafting. Electromyography showed stimulodetection recovery in neurosphere-transplanted pigs but not in controls. Postmortem immunohistochemistry revealed neurosphere-derived cells that survived inside the venous graft from 10 to 240 post-lesion days and all displayed a neuronal phenotype. Newly formed neurons were distributed inside the venous graft along the severed nerve longitudinal axis. Moreover, ANSC transplantation increased CNPase expression, indicating activation of intrinsic Schwann cells. Thus ANSC transplantation inside an autologous venous graft provides an efficient repair strategy. PMID:22448170

  13. [Digital Game Addiction Among Adolescents and Younger Adults: A Current Overview].

    PubMed

    Yalçın Irmak, Aylin; Erdoğan, Semra

    2016-01-01

    The games that adolescents and young people used to play in the play grounds and on the streets have been replaced in recent years with cyber games played in front of the computer on the internet or in game arcades. This changing culture has particularly brought up the concept of "digital game addiction", a condition that stems from the steadily growing passion for digital games and their excessived and uncontrolled usage among adolescents and young people. Game addiction in the psychiatry literature has been described as an impulse control disorder characterized by the symptoms such as "the inability to control the time spent on game-playing", "a loss of interest in other activities", "continuing to play despite the adverse effects" and "feeling psychologically deprived when not being able to play"."Although digital game addiction has not been accepted by psychiatric authorities as a psychiatric disorder yet, the increasing psychiatry referrals due to the problems accompanying this disorder, the efforts of families to seek support and solutions, the evidence that similarities with other types of addiction have been revealed by researchers, as well as the current prevalence rates are all factors that suggest the existence of important of the examination of issue. Despite the discussions about the digital game addiction, the literature on the subject is increasing. This article offers an overview of digital game-playing behavior in the light of current literature, seeking to share its findings with health care professionals. PMID:27370064

  14. [Digital Game Addiction Among Adolescents and Younger Adults: A Current Overview].

    PubMed

    Yalçın Irmak, Aylin; Erdoğan, Semra

    2016-01-01

    The games that adolescents and young people used to play in the play grounds and on the streets have been replaced in recent years with cyber games played in front of the computer on the internet or in game arcades. This changing culture has particularly brought up the concept of "digital game addiction", a condition that stems from the steadily growing passion for digital games and their excessived and uncontrolled usage among adolescents and young people. Game addiction in the psychiatry literature has been described as an impulse control disorder characterized by the symptoms such as "the inability to control the time spent on game-playing", "a loss of interest in other activities", "continuing to play despite the adverse effects" and "feeling psychologically deprived when not being able to play"."Although digital game addiction has not been accepted by psychiatric authorities as a psychiatric disorder yet, the increasing psychiatry referrals due to the problems accompanying this disorder, the efforts of families to seek support and solutions, the evidence that similarities with other types of addiction have been revealed by researchers, as well as the current prevalence rates are all factors that suggest the existence of important of the examination of issue. Despite the discussions about the digital game addiction, the literature on the subject is increasing. This article offers an overview of digital game-playing behavior in the light of current literature, seeking to share its findings with health care professionals.

  15. Spatio-temporal distribution of microglia/macrophages during regeneration in the cerebellum of adult teleost fish, Apteronotus leptorhynchus: a quantitative analysis.

    PubMed

    Zupanc, Günther K H; Clint, Sorcha C; Takimoto, Noriko; Hughes, Alun T L; Wellbrock, Ursula M; Meissner, Daniela

    2003-01-01

    In contrast to mammals, adult teleost fish exhibit an enormous capacity to replace damaged neurons with newly generated ones after injuries in the central nervous system. In the present study, the role of microglia/macrophages, identified by tomato lectin binding, was examined in this process of neuronal regeneration in the corpus cerebelli of the teleost fish Apteronotus leptorhynchus. In the intact corpus cerebelli, or after short survival times following application of a mechanical lesion to this cerebellar subdivision, microglia/macrophages were virtually absent. Conversely, approximately 3 days after application of the lesion, the areal density of microglia/macrophages started to increase at and near the lesion site in the ipsilateral hemisphere, as well as in the contralateral hemisphere, and reached maximum levels at approximately 10 days post lesion. The density remained elevated until it reached background levels approximately one month after the injury. By comparing the time course of the appearance of microglia/macrophages with that of other regenerative events occurring within the first few weeks of wound healing in this model system, we hypothesize that one possible function of microglia/macrophages might be to remove debris of cells that have undergone apoptotic cell death at the lesion site.

  16. Incorporating digital health literacy into adult ESL education on the US-Mexico border.

    PubMed

    Mein, Erika; Fuentes, Brenda; Soto Más, Francisco; Muro, Andrés

    2012-12-01

    The increasing digitization of information and communication has undoubtedly impacted the ways in which people in the United States access and interpret health information. Although the traditional emphasis of health literacy research has been the comprehension of health-related texts such as patient information forms, prescriptions, and medicine labels, the increased use of electronic means to locate health information requires more critical engagement with texts beyond basic comprehension. In accessing electronic health information, patients need to be able to navigate the vast amount of online health information and to interpret and synthesize health information across multiple sources (i.e. websites) while also evaluating the credibility of these sources. Recent health literacy research has examined the increased role of the media literacy in influencing health behaviors (Bergsma & Carney, 2008) and the role of increased access to computers (Salovey et al., 2009), but little (if any) research to date has provided recommendations for best practices related to meeting the health literacy demands required by digitization. This article attempts to fill this gap by exploring the use of the internet as a key source of health information and by looking at best practices in teaching digital health literacy. It describes the development of a digital literacy component within a community-based health literacy/ESL curriculum funded by the National Institutes of Health and implemented on the US-Mexico border. PMID:23730533

  17. A "Neogeographical Education"? The Geospatial Web, GIS and Digital Art in Adult Education

    ERIC Educational Resources Information Center

    Papadimitriou, Fivos

    2010-01-01

    Neogeography provides a link between the science of geography and digital art. The carriers of this link are geospatial technologies (global navigational satellite systems such as the global positioning system, Geographical Information System [GIS] and satellite imagery) along with ubiquitous information and communication technologies (such as…

  18. Incorporating digital health literacy into adult ESL education on the US-Mexico border.

    PubMed

    Mein, Erika; Fuentes, Brenda; Soto Más, Francisco; Muro, Andrés

    2012-12-01

    The increasing digitization of information and communication has undoubtedly impacted the ways in which people in the United States access and interpret health information. Although the traditional emphasis of health literacy research has been the comprehension of health-related texts such as patient information forms, prescriptions, and medicine labels, the increased use of electronic means to locate health information requires more critical engagement with texts beyond basic comprehension. In accessing electronic health information, patients need to be able to navigate the vast amount of online health information and to interpret and synthesize health information across multiple sources (i.e. websites) while also evaluating the credibility of these sources. Recent health literacy research has examined the increased role of the media literacy in influencing health behaviors (Bergsma & Carney, 2008) and the role of increased access to computers (Salovey et al., 2009), but little (if any) research to date has provided recommendations for best practices related to meeting the health literacy demands required by digitization. This article attempts to fill this gap by exploring the use of the internet as a key source of health information and by looking at best practices in teaching digital health literacy. It describes the development of a digital literacy component within a community-based health literacy/ESL curriculum funded by the National Institutes of Health and implemented on the US-Mexico border.

  19. Reflections on the Construction of a Digital Family Oral History and Its Impact on Adult Learning

    ERIC Educational Resources Information Center

    Londt, Susan Cole

    2013-01-01

    The Digital Family Oral History Pilot (DFOHP) data were collected and catalogued on a private website blog for family members to learn about their grandfather (ALP) who died without telling his own story. This study examined the outcomes and perceptions of the family members who were engaged with the pilot. A self-selected sample of 17 family…

  20. Digital Exclusion or Learning Exclusion? An Ethnographic Study of Adult Male Distance Learners in English Prisons

    ERIC Educational Resources Information Center

    Pike, Anne; Adams, Anne

    2012-01-01

    Previous research has highlighted the value of technology to enhance learning. However, digital inclusion research has argued that many issues such as skills, access, usability and choice impact on the effectiveness of technology to enhance learning. The findings in this paper add to the debate by highlighting the importance of value and context.…

  1. Incorporating digital health literacy into adult ESL education on the US-Mexico border

    PubMed Central

    Mein, Erika; Fuentes, Brenda; Soto Más, Francisco; Muro, Andrés

    2013-01-01

    The increasing digitization of information and communication has undoubtedly impacted the ways in which people in the United States access and interpret health information. Although the traditional emphasis of health literacy research has been the comprehension of health-related texts such as patient information forms, prescriptions, and medicine labels, the increased use of electronic means to locate health information requires more critical engagement with texts beyond basic comprehension. In accessing electronic health information, patients need to be able to navigate the vast amount of online health information and to interpret and synthesize health information across multiple sources (i.e. websites) while also evaluating the credibility of these sources. Recent health literacy research has examined the increased role of the media literacy in influencing health behaviors (Bergsma & Carney, 2008) and the role of increased access to computers (Salovey et al., 2009), but little (if any) research to date has provided recommendations for best practices related to meeting the health literacy demands required by digitization. This article attempts to fill this gap by exploring the use of the internet as a key source of health information and by looking at best practices in teaching digital health literacy. It describes the development of a digital literacy component within a community-based health literacy/ESL curriculum funded by the National Institutes of Health and implemented on the US-Mexico border. PMID:23730533

  2. Cardiac Regeneration and Stem Cells.

    PubMed

    Zhang, Yiqiang; Mignone, John; MacLellan, W Robb

    2015-10-01

    After decades of believing the heart loses the ability to regenerate soon after birth, numerous studies are now reporting that the adult heart may indeed be capable of regeneration, although the magnitude of new cardiac myocyte formation varies greatly. While this debate has energized the field of cardiac regeneration and led to a dramatic increase in our understanding of cardiac growth and repair, it has left much confusion in the field as to the prospects of regenerating the heart. Studies applying modern techniques of genetic lineage tracing and carbon-14 dating have begun to establish limits on the amount of endogenous regeneration after cardiac injury, but the underlying cellular mechanisms of this regeneration remained unclear. These same studies have also revealed an astonishing capacity for cardiac repair early in life that is largely lost with adult differentiation and maturation. Regardless, this renewed focus on cardiac regeneration as a therapeutic goal holds great promise as a novel strategy to address the leading cause of death in the developed world.

  3. Cardiac Regeneration and Stem Cells

    PubMed Central

    Zhang, Yiqiang; Mignone, John; MacLellan, W. Robb

    2015-01-01

    After decades of believing the heart loses the ability to regenerate soon after birth, numerous studies are now reporting that the adult heart may indeed be capable of regeneration, although the magnitude of new cardiac myocyte formation varies greatly. While this debate has energized the field of cardiac regeneration and led to a dramatic increase in our understanding of cardiac growth and repair, it has left much confusion in the field as to the prospects of regenerating the heart. Studies applying modern techniques of genetic lineage tracing and carbon-14 dating have begun to establish limits on the amount of endogenous regeneration after cardiac injury, but the underlying cellular mechanisms of this regeneration remained unclear. These same studies have also revealed an astonishing capacity for cardiac repair early in life that is largely lost with adult differentiation and maturation. Regardless, this renewed focus on cardiac regeneration as a therapeutic goal holds great promise as a novel strategy to address the leading cause of death in the developed world. PMID:26269526

  4. Adult zebrafish intestine resection: a novel model of short bowel syndrome, adaptation, and intestinal stem cell regeneration.

    PubMed

    Schall, K A; Holoyda, K A; Grant, C N; Levin, D E; Torres, E R; Maxwell, A; Pollack, H A; Moats, R A; Frey, M R; Darehzereshki, A; Al Alam, D; Lien, C; Grikscheit, T C

    2015-08-01

    Loss of significant intestinal length from congenital anomaly or disease may lead to short bowel syndrome (SBS); intestinal failure may be partially offset by a gain in epithelial surface area, termed adaptation. Current in vivo models of SBS are costly and technically challenging. Operative times and survival rates have slowed extension to transgenic models. We created a new reproducible in vivo model of SBS in zebrafish, a tractable vertebrate model, to facilitate investigation of the mechanisms of intestinal adaptation. Proximal intestinal diversion at segment 1 (S1, equivalent to jejunum) was performed in adult male zebrafish. SBS fish emptied distal intestinal contents via stoma as in the human disease. After 2 wk, S1 was dilated compared with controls and villus ridges had increased complexity, contributing to greater villus epithelial perimeter. The number of intervillus pockets, the intestinal stem cell zone of the zebrafish increased and contained a higher number of bromodeoxyuridine (BrdU)-labeled cells after 2 wk of SBS. Egf receptor and a subset of its ligands, also drivers of adaptation, were upregulated in SBS fish. Igf has been reported as a driver of intestinal adaptation in other animal models, and SBS fish exposed to a pharmacological inhibitor of the Igf receptor failed to demonstrate signs of intestinal adaptation, such as increased inner epithelial perimeter and BrdU incorporation. We describe a technically feasible model of human SBS in the zebrafish, a faster and less expensive tool to investigate intestinal stem cell plasticity as well as the mechanisms that drive intestinal adaptation.

  5. Adult zebrafish intestine resection: a novel model of short bowel syndrome, adaptation, and intestinal stem cell regeneration

    PubMed Central

    Schall, K. A.; Holoyda, K. A.; Grant, C. N.; Levin, D. E.; Torres, E. R.; Maxwell, A.; Pollack, H. A.; Moats, R. A.; Frey, M. R.; Darehzereshki, A.; Al Alam, D.; Lien, C.

    2015-01-01

    Loss of significant intestinal length from congenital anomaly or disease may lead to short bowel syndrome (SBS); intestinal failure may be partially offset by a gain in epithelial surface area, termed adaptation. Current in vivo models of SBS are costly and technically challenging. Operative times and survival rates have slowed extension to transgenic models. We created a new reproducible in vivo model of SBS in zebrafish, a tractable vertebrate model, to facilitate investigation of the mechanisms of intestinal adaptation. Proximal intestinal diversion at segment 1 (S1, equivalent to jejunum) was performed in adult male zebrafish. SBS fish emptied distal intestinal contents via stoma as in the human disease. After 2 wk, S1 was dilated compared with controls and villus ridges had increased complexity, contributing to greater villus epithelial perimeter. The number of intervillus pockets, the intestinal stem cell zone of the zebrafish increased and contained a higher number of bromodeoxyuridine (BrdU)-labeled cells after 2 wk of SBS. Egf receptor and a subset of its ligands, also drivers of adaptation, were upregulated in SBS fish. Igf has been reported as a driver of intestinal adaptation in other animal models, and SBS fish exposed to a pharmacological inhibitor of the Igf receptor failed to demonstrate signs of intestinal adaptation, such as increased inner epithelial perimeter and BrdU incorporation. We describe a technically feasible model of human SBS in the zebrafish, a faster and less expensive tool to investigate intestinal stem cell plasticity as well as the mechanisms that drive intestinal adaptation. PMID:26089336

  6. The receptor protein tyrosine phosphatase HmLAR1 is up-regulated in the CNS of the adult medicinal leech following injury and is required for neuronal sprouting and regeneration.

    PubMed

    Sethi, Jasmine; Zhao, Bailey; Cuvillier-Hot, Virginie; Boidin-Wichlacz, Céline; Salzet, Michel; Macagno, Eduardo R; Baker, Michael W

    2010-12-01

    LAR-like receptor protein tyrosine phosphatases (RPTPs), which are abundantly expressed in the nervous systems of most if not all bilaterian animals thus far examined, have been implicated in regulating a variety of critical neuronal processes. These include neuronal pathfinding, adhesion and synaptogenesis during development and, in adult mammals, neuronal regeneration. Here we explored a possible role of a LAR-like RPTP (HmLAR1) in response to mechanical trauma in the adult nervous system of the medicinal leech. In situ hybridization and QPCR analyses of HmLAR1 expression in individual segmental ganglia revealed a significant up-regulation in receptor expression following CNS injury, both in situ and following a period in vitro. Furthermore, we observed up-regulation in the expression of the leech homologue of the Abelson tyrosine kinase, a putative signaling partner to LAR receptors, but not among other tyrosine kinases. The effects on neuronal regeneration were assayed by comparing growth across a nerve crush by projections of individual dorsal P neurons (P(D)) following single-cell injection of interfering RNAs against the receptor or control RNAs. Receptor RNAi led to a significant reduction in HmLAR1 expression by the injected cells and resulted in a significant decrease in sprouting and regenerative growth at the crush site relative to controls. These studies extend the role of the HmLARs from leech neuronal development to adult neuronal regeneration and provide a platform to investigate neuronal regeneration and gene regulation at the single cell level. PMID:20708686

  7. The receptor protein tyrosine phosphatase HmLAR1 is up-regulated in the CNS of the adult medicinal leech following injury and is required for neuronal sprouting and regeneration.

    PubMed

    Sethi, Jasmine; Zhao, Bailey; Cuvillier-Hot, Virginie; Boidin-Wichlacz, Céline; Salzet, Michel; Macagno, Eduardo R; Baker, Michael W

    2010-12-01

    LAR-like receptor protein tyrosine phosphatases (RPTPs), which are abundantly expressed in the nervous systems of most if not all bilaterian animals thus far examined, have been implicated in regulating a variety of critical neuronal processes. These include neuronal pathfinding, adhesion and synaptogenesis during development and, in adult mammals, neuronal regeneration. Here we explored a possible role of a LAR-like RPTP (HmLAR1) in response to mechanical trauma in the adult nervous system of the medicinal leech. In situ hybridization and QPCR analyses of HmLAR1 expression in individual segmental ganglia revealed a significant up-regulation in receptor expression following CNS injury, both in situ and following a period in vitro. Furthermore, we observed up-regulation in the expression of the leech homologue of the Abelson tyrosine kinase, a putative signaling partner to LAR receptors, but not among other tyrosine kinases. The effects on neuronal regeneration were assayed by comparing growth across a nerve crush by projections of individual dorsal P neurons (P(D)) following single-cell injection of interfering RNAs against the receptor or control RNAs. Receptor RNAi led to a significant reduction in HmLAR1 expression by the injected cells and resulted in a significant decrease in sprouting and regenerative growth at the crush site relative to controls. These studies extend the role of the HmLARs from leech neuronal development to adult neuronal regeneration and provide a platform to investigate neuronal regeneration and gene regulation at the single cell level.

  8. Age estimation by modified Demirjian's method (2004) and its applicability in Tibetan young adults: A digital panoramic study

    PubMed Central

    Bijjaragi, Shobha C; Sangle, Varsha A; Saraswathi, FK; Patil, Veerendra S; Ashwini Rani, SR; Bapure, Sunil K

    2015-01-01

    Context: Estimation of the age is a procedure adopted by anthropologists, archeologists and forensic scientists. Different methods have been undertaken. However none of them meet the standards as Demirjian's method since 1973. Various researchers have applied this method, in both original and modified form (Chaillet and Demirjian in 2004) in different ethnic groups and the results obtained were not satisfactory. Aims: To determine the applicability and accuracy of modified Demirjian's method of dental age estimation (AE) in 8–18 year old Tibetan young adults to evaluate the interrelationship between dental and chronological age and the reliability between intra- and inter observer relationship. Settings and Design: Clinical setting and computerized design. Subjects and Methods: A total of 300 Tibetan young adults with an age range from 8 to 18 years were recruited in the study. Digital panoramic radiographs (DPRs) were evaluated as per the modified Demirjian's method (2004). Statistical Analysis Used: Pearson correlation, paired t-test, linear regression analysis. Results: Inter -and intraobserver reliability revealed a strong agreement. A positive and strong association was found between chronological age and estimated dental age (r = 0.839) with P < 0.01. Modified Demirjian method (2004) overestimated the age by 0.04 years (2.04 months)in Tibetan young adults. Conclusions: Results suggest that, the modified Demirjian method of AE is not suitable for Tibetan young adults. Further studies: With larger sample size and comparision with different methods of AE in a given population would be an interesting area for future research. PMID:26097317

  9. The stat3/socs3a pathway is a key regulator of hair cell regeneration in zebrafish. [corrected].

    PubMed

    Liang, Jin; Wang, Dongmei; Renaud, Gabriel; Wolfsberg, Tyra G; Wilson, Alexander F; Burgess, Shawn M

    2012-08-01

    All nonmammalian vertebrates studied can regenerate inner ear mechanosensory receptors (i.e., hair cells) (Corwin and Cotanche, 1988; Lombarte et al., 1993; Baird et al., 1996), but mammals possess only a very limited capacity for regeneration after birth (Roberson and Rubel, 1994). As a result, mammals experience permanent deficiencies in hearing and balance once their inner ear hair cells are lost. The mechanisms of hair cell regeneration are poorly understood. Because the inner ear sensory epithelium is highly conserved in all vertebrates (Fritzsch et al., 2007), we chose to study hair cell regeneration mechanism in adult zebrafish, hoping the results would be transferrable to inducing hair cell regeneration in mammals. We defined the comprehensive network of genes involved in hair cell regeneration in the inner ear of adult zebrafish with the powerful transcriptional profiling technique digital gene expression, which leverages the power of next-generation sequencing ('t Hoen et al., 2008). We also identified a key pathway, stat3/socs3, and demonstrated its role in promoting hair cell regeneration through stem cell activation, cell division, and differentiation. In addition, transient pharmacological inhibition of stat3 signaling accelerated hair cell regeneration without overproducing cells. Taking other published datasets into account (Sano et al., 1999; Schebesta et al., 2006; Dierssen et al., 2008; Riehle et al., 2008; Zhu et al., 2008; Qin et al., 2009), we propose that the stat3/socs3 pathway is a key response in all tissue regeneration and thus an important therapeutic target for a broad application in tissue repair and injury healing. PMID:22855815

  10. Adult Learning in the Digital Age: Information Technology and the Learning Society

    ERIC Educational Resources Information Center

    Selwyn, Neil; Gorard, Stephen; Furlong, John

    2005-01-01

    This book sheds light on the ways in which adults in the twenty-first century interact with technology in different learning environments. Based on one of the first large-scale academic research projects in this area, the authors present their findings and offer practical recommendations for the use of new technology in a learning society. They…

  11. Does Having Digital Skills Really Pay Off? Adult Skills in Focus. No. 1

    ERIC Educational Resources Information Center

    OECD Publishing, 2015

    2015-01-01

    Having the highest levels of skills in problem solving using ICT (information and communication technologies) increases chances of participating in the labour force by six percentage points compared with adults who have the lowest levels of these skills, even after accounting for various other factors, such as age, gender, level of education,…

  12. Usability of a novel digital medicine system in adults with schizophrenia treated with sensor-embedded tablets of aripiprazole

    PubMed Central

    Peters-Strickland, Timothy; Pestreich, Linda; Hatch, Ainslie; Rohatagi, Shashank; Baker, Ross A; Docherty, John P; Markovtsova, Lada; Raja, Praveen; Weiden, Peter J; Walling, David P

    2016-01-01

    Objective Digital medicine system (DMS) is a novel drug–device combination that objectively measures and reports medication ingestion. The DMS consists of medication embedded with an ingestible sensor (digital medicine), a wearable sensor, and software applications. This study evaluated usability of the DMS in adults with schizophrenia rated by both patients and their health care providers (HCPs) during 8-week treatment with prescribed doses of digital aripiprazole. Methods Six US sites enrolled outpatients into this Phase IIa, open-label study (NCT02219009). The study comprised a screening phase, a training phase (three weekly site visits), and a 5-week independent phase. Patients and HCPs independently rated usability of and satisfaction with the DMS. Results Sixty-seven patients were enrolled, and 49 (73.1%) patients completed the study. The mean age (SD) of the patients was 46.6 years (9.7 years); the majority of them were male (74.6%), black (76.1%), and rated mildly ill on the Clinical Global Impression – Severity scale (70.1%). By the end of week 8 or early termination, 82.1% (55/67) of patients had replaced the wearable sensor independently or with minimal assistance, based on HCP rating. The patients used the wearable sensor for a mean (SD) of 70.7% (24.7%) and a median of 77.8% of their time in the trial. The patients contacted a call center most frequently at week 1. At the last visit, 78% (47/60) of patients were somewhat satisfied/satisfied/extremely satisfied with the DMS. Conclusion A high proportion of patients with schizophrenia were able to use the DMS and reported satisfaction with the DMS. These data support the potential utility of the DMS in clinical practice. PMID:27785036

  13. Digital clock drawing: Differentiating ‘thinking’ versus ‘doing’ in younger and older adults with depression

    PubMed Central

    Cohen, Jamie; Penney, Dana L.; Davis, Randall; Libon, David J.; Swenson, Rodney A.; Ajilore, Olusola; Kumar, Anand; Lamar, Melissa

    2015-01-01

    Objective Psychomotor slowing has been documented in depression. The digital Clock Drawing Test (dCDT) provides: i) a novel technique to assess both cognitive and motor aspects of psychomotor speed within the same task and ii) the potential to uncover subtleties of behavior not previously detected with non-digitized modes of data collection. Method Using digitized pen technology in 106 participants grouped by Age (younger/older) and Affect (euthymic/unmedicated depressed), we recorded cognitive and motor output by capturing how the clock is drawn rather than focusing on the final product. We divided time to completion (TTC) for Command and Copy conditions of the dCDT into metrics of percent of drawing (%Ink) versus non-drawing (%Think) time. We also obtained composite z-scores of cognition, including attention/ information processing (AIP), to explore associations of %Ink and %Think times to cognitive and motor performance. Results Despite equivalent TTC, %Ink and %Think Command times (Copy n.s.) were significant (AgeXAffect interaction:p=.03)—younger depressed spent a smaller proportion of time drawing relative to thinking compared to the older depressed group. Command %Think time negatively correlated with AIP in the older depressed group (r=−.46;p=.02). Copy %Think time negatively correlated with AIP in the younger depressed (r=−.47;p=.03) and older euthymic groups (r=−.51;p=.01). Conclusion The dCDT differentiated aspects of psychomotor slowing in depression regardless of age, while dCDT/cognitive associates for younger adults with depression mimicked patterns of older euthymics. PMID:25222513

  14. The Mobile College Community: A Study of Adult Learners' Adoption and Use of Digital Communication Technologies on the Campuses of Florida's Community Colleges

    ERIC Educational Resources Information Center

    Weidert, John William

    2012-01-01

    Rapid advancements in technology and the proliferation of mobile communication devices available in the marketplace require that community college administrators and teachers better understand levels of digital communication technology adoption and how adult learners currently use them. Such an understanding is necessary to developing the…

  15. The regeneration capacity of the flatworm Macrostomum lignano—on repeated regeneration, rejuvenation, and the minimal size needed for regeneration

    PubMed Central

    Ladurner, P.; Nimeth, K.; Gschwentner, R.; Rieger, R.

    2006-01-01

    The lion’s share of studies on regeneration in Plathelminthes (flatworms) has been so far carried out on a derived taxon of rhabditophorans, the freshwater planarians (Tricladida), and has shown this group’s outstanding regeneration capabilities in detail. Sharing a likely totipotent stem cell system, many other flatworm taxa are capable of regeneration as well. In this paper, we present the regeneration capacity of Macrostomum lignano, a representative of the Macrostomorpha, the basal-most taxon of rhabditophoran flatworms and one of the most basal extant bilaterian protostomes. Amputated or incised transversally, obliquely, and longitudinally at various cutting levels, M. lignano is able to regenerate the anterior-most body part (the rostrum) and any part posterior of the pharynx, but cannot regenerate a head. Repeated regeneration was observed for 29 successive amputations over a period of almost 12 months. Besides adults, also first-day hatchlings and older juveniles were shown to regenerate after transversal cutting. The minimum number of cells required for regeneration in adults (with a total of 25,000 cells) is 4,000, including 160 neoblasts. In hatchlings only 1,500 cells, including 50 neoblasts, are needed for regeneration. The life span of untreated M. lignano was determined to be about 10 months. PMID:16604349

  16. Liver Regeneration

    PubMed Central

    Michalopoulos, George K.

    2009-01-01

    Liver regeneration after partial hepatectomy is a very complex and well-orchestrated phenomenon. It is carried out by the participation of all mature liver cell types. The process is associated with signaling cascades involving growth factors, cytokines, matrix remodeling, and several feedbacks of stimulation and inhibition of growth related signals. Liver manages to restore any lost mass and adjust its size to that of the organism, while at the same time providing full support for body homeostasis during the entire regenerative process. In situations when hepatocytes or biliary cells are blocked from regeneration, these cell types can function as facultative stem cells for each other. PMID:17559071

  17. Biomaterial selection for tooth regeneration.

    PubMed

    Yuan, Zhenglin; Nie, Hemin; Wang, Shuang; Lee, Chang Hun; Li, Ang; Fu, Susan Y; Zhou, Hong; Chen, Lili; Mao, Jeremy J

    2011-10-01

    Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or synthetic polymers, three-dimensional scaffold fabrication, stem cell transplantation, and stem cell homing. A tooth is a complex biological organ. Tooth loss represents the most common organ failure. Tooth regeneration encompasses not only regrowth of an entire tooth as an organ, but also biological restoration of individual components of the tooth including enamel, dentin, cementum, or dental pulp. Regeneration of tooth root represents perhaps more near-term opportunities than the regeneration of the whole tooth. In the adult, a tooth owes its biological vitality, arguably more, to the root than the crown. Biomaterials are indispensible for the regeneration of tooth root, tooth crown, dental pulp, or an entire tooth.

  18. Biomaterial Selection for Tooth Regeneration

    PubMed Central

    Yuan, Zhenglin; Nie, Hemin; Wang, Shuang; Lee, Chang Hun; Li, Ang; Fu, Susan Y.; Zhou, Hong

    2011-01-01

    Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or synthetic polymers, three-dimensional scaffold fabrication, stem cell transplantation, and stem cell homing. A tooth is a complex biological organ. Tooth loss represents the most common organ failure. Tooth regeneration encompasses not only regrowth of an entire tooth as an organ, but also biological restoration of individual components of the tooth including enamel, dentin, cementum, or dental pulp. Regeneration of tooth root represents perhaps more near-term opportunities than the regeneration of the whole tooth. In the adult, a tooth owes its biological vitality, arguably more, to the root than the crown. Biomaterials are indispensible for the regeneration of tooth root, tooth crown, dental pulp, or an entire tooth. PMID:21699433

  19. Kicking the digital dog: a longitudinal investigation of young adults' victimization and cyber-displaced aggression.

    PubMed

    Wright, Michelle F; Li, Yan

    2012-09-01

    Using the general strain theory as a theoretical framework, the present longitudinal study investigated both face-to-face and cyber victimization in relation to cyber-displaced aggression. Longitudinal data were collected from 130 (70 women) young adults who completed measures assessing their victimization (face-to-face and cyber), cyber aggression, and both face-to-face and cyber-displaced aggression. Findings indicated that victimization in both social contexts (face-to-face and cyber) contributed to cyber-displaced aggression 6 months later (Time 2), after controlling for gender, cyber aggression, face-to-face displaced aggression, and cyber-displaced aggression at Time 1. A significant two-way interaction revealed that Time 1 cyber victimization was more strongly related to Time 2 cyber-displaced aggression when young adults had higher levels of face-to-face victimization at Time 1. Implications of these findings are discussed as well as a call for more research investigating displaced aggression in the cyber context.

  20. The cellular basis for animal regeneration

    PubMed Central

    Tanaka, Elly; Reddien, Peter W.

    2011-01-01

    The ability of animals to regenerate missing parts is a dramatic and poorly understood aspect of biology. The sources of new cells for these regenerative phenomena have been sought for decades. Recent advances involving cell fate tracking in complex tissues have shed new light on the cellular underpinnings of regeneration in Hydra, planarians, zebrafish, Xenopus, and Axolotl. Planarians accomplish regeneration with use of adult pluripotent stem cells, whereas several vertebrates utilize a collection of lineage-restricted progenitors from different tissues. Together, an array of cellular strategies—from pluripotent stem cells to tissue-specific stem cells and dedifferentiation—are utilized for regeneration. PMID:21763617

  1. Immunohistochemical study of skin nerve regeneration after toe-to-finger transplantation: correlations with clinical, quantitative sensory, and electrophysiological evaluations.

    PubMed

    Hsieh, Sung-Tsang; Chu, Nai-Shin

    2004-12-01

    Cutaneous nerve regeneration following toe-to-finger transplantation was studied by immunohistochemical technique using antibody to protein gene product 9.5 (PGP 9.5) which is a specific neuronal marker. By this technique, epidermal and dermal nerves were semi-quantified and the Meissner's corpuscles were quantified. There were also quantitative sensory tests (QST) including pinprick, pressure and temperature, as well as electrophysiological studies including digital nerve sensory conduction, digital nerve somatosensory evoked potentials and sympathetic skin response at the pulp of the transplanted toes. The opposite corresponding normal finger and normal toe served as controls. Study subjects were 20 adult patients with toe-to-finger transplantation for at least one year. A score system was used to quantify the results of histochemical, psychophysiological and electrophysiological studies. Clinically 7 patients had good recovery and 13 patients had poor recovery. Cutaneous nerve regeneration in the transplanted toes was incomplete with epidermal nerve, dermal nerve and the Meissner's corpuscle significantly reduced. The nerve regeneration was correlated with clinical recovery, QST and electrophysiological data. These findings indicate that immunohischemical technique is useful to evaluate skin nerve regeneration following toe-to-finger transplantation, and that although nerve regeneration did occur, it was incomplete and correlated with the severity of hand injury.

  2. Cardiac muscle regeneration: lessons from development

    PubMed Central

    Mercola, Mark; Ruiz-Lozano, Pilar; Schneider, Michael D.

    2011-01-01

    The adult human heart is an ideal target for regenerative intervention since it does not functionally restore itself after injury yet has a modest regenerative capacity that could be enhanced by innovative therapies. Adult cardiac cells with regenerative potential share gene expression signatures with early fetal progenitors that give rise to multiple cardiac cell types, suggesting that the evolutionarily conserved regulatory networks that drive embryonic heart development might also control aspects of regeneration. Here we discuss commonalities of development and regeneration, and the application of the rich developmental biology heritage to achieve therapeutic regeneration of the human heart. PMID:21325131

  3. Cell migration during heart regeneration in zebrafish.

    PubMed

    Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko

    2016-07-01

    Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, pre-existing cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. Developmental Dynamics 245:774-787, 2016. © 2016 Wiley Periodicals, Inc. PMID:27085002

  4. Regenerator seal

    DOEpatents

    Davis, Leonard C.; Pacala, Theodore; Sippel, George R.

    1981-01-01

    A method for manufacturing a hot side regenerator cross arm seal assembly having a thermally stablilized wear coating with a substantially flat wear surface thereon to seal between low pressure and high pressure passages to and from the hot inboard side of a rotary regenerator matrix includes the steps of forming a flat cross arm substrate member of high nickel alloy steel; fixedly securing the side edges of the substrate member to a holding fixture with a concave surface thereacross to maintain the substrate member to a slightly bent configuration on the fixture surface between the opposite ends of the substrate member to produce prestress therein; applying coating layers on the substrate member including a wear coating of plasma sprayed nickel oxide/calcium flouride material to define a wear surface of slightly concave form across the restrained substrate member between the free ends thereon; and thereafter subjecting the substrate member and the coating thereon to a heat treatment of 1600.degree. F. for sixteen hours to produce heat stabilizing growth in the coating layers on the substrate member and to produce a thermally induced growth stress in the wear surface that substantially equalizes the prestress in the substrate whereby when the cross arm is removed from the fixture surface following the heat treatment step a wear face is formed on the cross arm assembly that will be substantially flat between the ends.

  5. Digital interventions to promote self-management in adults with hypertension systematic review and meta-analysis

    PubMed Central

    McLean, Gary; Band, Rebecca; Saunderson, Kathryn; Hanlon, Peter; Murray, Elizabeth; Little, Paul; McManus, Richard J.; Yardley, Lucy; Mair, Frances S.

    2016-01-01

    Objective: To synthesize the evidence for using interactive digital interventions (IDIs) to support patient self-management of hypertension, and to determine their impact on control and reduction of blood pressure. Method: Systematic review with meta-analysis was undertaken with a search performed in MEDLINE, EMBASE, CINAHL, PsycINFO, ERIC, Cochrane Library, DoPHER, TROPHI, Social Science Citation Index and Science Citation Index. The population was adults (>18 years) with hypertension, intervention was an IDI and the comparator was usual care. Primary outcomes were change in SBP and DBP. Only randomized controlled trials and studies published in journals and in English were eligible. Eligible IDIs included interventions accessed through a computer, smartphone or other hand-held device. Results: Four out of seven studies showed a significantly greater reduction for intervention compared to usual care for SBP, with no difference found for three. Overall, IDIs significantly reduced SBP, with the weighted mean difference being −3.74 mmHg [95% confidence interval (CI) −2.19 to −2.58] with no heterogeneity observed (I-squared = 0.0%, P = 0.990). For DBP, four out of six studies indicated a greater reduction for intervention compared to controls, with no difference found for two. For DBP, a significant reduction of −2.37 mmHg (95% CI −0.40 to −4.35) was found, but considerable heterogeneity was noted (I-squared = 80.1%, P = <0.001). Conclusion: IDIs lower both SBP and DBP compared to usual care. Results suggest these findings can be applied to a wide range of healthcare systems and populations. However, sustainability and long-term clinical effectiveness of these interventions remain uncertain. PMID:26845284

  6. Cardiac regeneration: epicardial mediated repair

    PubMed Central

    2015-01-01

    The hearts of lower vertebrates such as fish and salamanders display scarless regeneration following injury, although this feature is lost in adult mammals. The remarkable capacity of the neonatal mammalian heart to regenerate suggests that the underlying machinery required for the regenerative process is evolutionarily retained. Recent studies highlight the epicardial covering of the heart as an important source of the signalling factors required for the repair process. The developing epicardium is also a major source of cardiac fibroblasts, smooth muscle, endothelial cells and stem cells. Here, we examine animal models that are capable of scarless regeneration, the role of the epicardium as a source of cells, signalling mechanisms implicated in the regenerative process and how these mechanisms influence cardiomyocyte proliferation. We also discuss recent advances in cardiac stem cell research and potential therapeutic targets arising from these studies. PMID:26702046

  7. Heart regeneration.

    PubMed

    Breckwoldt, Kaja; Weinberger, Florian; Eschenhagen, Thomas

    2016-07-01

    Regenerating an injured heart holds great promise for millions of patients suffering from heart diseases. Since the human heart has very limited regenerative capacity, this is a challenging task. Numerous strategies aiming to improve heart function have been developed. In this review we focus on approaches intending to replace damaged heart muscle by new cardiomyocytes. Different strategies for the production of cardiomyocytes from human embryonic stem cells or human induced pluripotent stem cells, by direct reprogramming and induction of cardiomyocyte proliferation are discussed regarding their therapeutic potential and respective advantages and disadvantages. Furthermore, different methods for the transplantation of pluripotent stem cell-derived cardiomyocytes are described and their clinical perspectives are discussed. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  8. Degeneration and regeneration of ganglion cell axons.

    PubMed

    Weise, J; Ankerhold, R; Bähr, M

    2000-01-15

    The retino-tectal system has been used to study developmental aspects of axon growth, synapse formation and the establishment of a precise topographic order as well as degeneration and regeneration of adult retinal ganglion cell (RGC) axons after axonal lesion. This paper reviews some novel findings that provide new insights into the mechanisms of developmental RGC axon growth, pathfinding, and target formation. It also focuses on the cellular and molecular cascades that underlie RGC degeneration following an axonal lesion and on some therapeutic strategies to enhance survival of axotomized RGCs in vivo. In addition, this review deals with problems related to the induction of regeneration after axonal lesion in the adult CNS using the retino-tectal system as model. Different therapeutic approaches to promote RGC regeneration and requirements for specific target formation of regenerating RGCs in vitro and in vivo are discussed. PMID:10649506

  9. Ectoderm to mesoderm lineage switching during axolotl tail regeneration.

    PubMed

    Echeverri, Karen; Tanaka, Elly M

    2002-12-01

    Foreign environments may induce adult stem cells to switch lineages and populate multiple tissue types, but whether this mechanism is used for tissue repair remains uncertain. Urodele amphibians can regenerate fully functional, multitissue structures including the limb and tail. To determine whether lineage switching is an integral feature of this regeneration, we followed individual spinal cord cells live during tail regeneration in the axolotl. Spinal cord cells frequently migrate into surrounding tissue to form regenerating muscle and cartilage. Thus, in axolotls, cells switch lineage during a real example of regeneration. PMID:12471259

  10. The zebrafish as a model of heart regeneration.

    PubMed

    Raya, Angel; Consiglio, Antonella; Kawakami, Yasuhiko; Rodriguez-Esteban, Concepcion; Izpisúa-Belmonte, Juan Carlos

    2004-01-01

    Regeneration is a complex biological process by which animals can restore the shape, structure and function of body parts lost after injury, or after experimental amputation. Only a few species of vertebrates display the capacity to regenerate body parts during adulthood. In the case of the heart, newts display a remarkable ability to regenerate large portions of myocardium after amputation, although the mechanisms underlying this process have not been addressed. Recently, it has been shown that adult zebrafish can also regenerate their hearts, thus offering new possibilities for experimentally approaching this fascinating biological phenomenon. The first insights into heart regeneration gained by studying this model organism are reviewed here. PMID:15671662

  11. Principles and mechanisms of regeneration in the mouse model for wound‐induced hair follicle neogenesis

    PubMed Central

    Wang, Xiaojie; Hsi, Tsai‐Ching; Guerrero‐Juarez, Christian Fernando; Pham, Kim; Cho, Kevin; McCusker, Catherine D.; Monuki, Edwin S.; Cho, Ken W.Y.; Gay, Denise L.

    2015-01-01

    Abstract Wound‐induced hair follicle neogenesis (WIHN) describes a regenerative phenomenon in adult mammalian skin wherein fully functional hair follicles regenerate de novo in the center of large excisional wounds. Originally described in rats, rabbits, sheep, and humans in 1940−1960, the WIHN phenomenon was reinvestigated in mice only recently. The process of de novo hair regeneration largely duplicates the morphological and signaling features of normal embryonic hair development. Similar to hair development, WIHN critically depends on the activation of canonical WNT signaling. However, unlike hair development, WNT activation in WIHN is dependent on fibroblast growth factor 9 signaling generated by the immune system's γδ T cells. The cellular bases of WIHN remain to be fully characterized; however, the available evidence leaves open the possibility for a blastema‐like mechanism wherein epidermal and/or dermal wound cells undergo epigenetic reprogramming toward a more plastic, embryonic‐like state. De novo hair follicles do not regenerate from preexisting hair‐fated bulge stem cells. This suggests that hair neogenesis is not driven by preexisting lineage‐restricted progenitors, as is the case for amputation‐induced mouse digit tip regeneration, but rather may require a blastema‐like mechanism. The WIHN model is characterized by several intriguing features, which await further explanation. These include (1) the minimum wound size requirement for activating neogenesis, (2) the restriction of hair neogenesis to the wound's center, and (3) imperfect patterning outcomes, both in terms of neogenic hair positioning within the wound and in terms of their orientation. Future enquiries into the WIHN process, made possible by a wide array of available skin‐specific genetic tools, will undoubtedly expand our understanding of the regeneration mechanisms in adult mammals. PMID:26504521

  12. Clinical implications of advances in liver regeneration.

    PubMed

    Kwon, Yong Jin; Lee, Kyeong Geun; Choi, Dongho

    2015-03-01

    Remarkable advances have been made recently in the area of liver regeneration. Even though liver regeneration after liver resection has been widely researched, new clinical applications have provided a better understanding of the process. Hepatic damage induces a process of regeneration that rarely occurs in normal undamaged liver. Many studies have concentrated on the mechanism of hepatocyte regeneration following liver damage. High mortality is usual in patients with terminal liver failure. Patients die when the regenerative process is unable to balance loss due to liver damage. During disease progression, cellular adaptations take place and the organ microenvironment changes. Portal vein embolization and the associating liver partition and portal vein ligation for staged hepatectomy are relatively recent techniques exploiting the remarkable progress in understanding liver regeneration. Living donor liver transplantation is one of the most significant clinical outcomes of research on liver regeneration. Another major clinical field involving liver regeneration is cell therapy using adult stem cells. The aim of this article is to provide an outline of the clinical approaches being undertaken to examine regeneration in liver diseases.

  13. Where Do U.S. Adults Who Do Not Use the Internet Get Health Information? Examining Digital Health Information Disparities From 2008 to 2013.

    PubMed

    Massey, Philip M

    2016-01-01

    With more people turning to the Internet for health information, a few questions remain: Which populations represent the remaining few who have never used the Internet, and where do they go for health information? The purpose of this study is to describe population characteristics and sources of health information among U.S. adults who do not use the Internet. Data from 3 iterations of the Health Information National Trends Survey (n = 1,722) are used to examine trends in health information sources. Weighted predicted probabilities demonstrate changes in information source over time. Older adults, minority populations, and individuals with low educational attainment represent a growing percentage of respondents who have looked for health information but have never used the Internet, highlighting trends in digital information disparities. However, 1 in 10 respondents who have never used the Internet also indicate that the Internet was their first source of health information, presumably through surrogates. Findings highlight digital disparities in information seeking and the complex nature of online information seeking. Future research should examine how individuals conceptualize information sources, measure skills related to evaluating information and sources, and investigate the social nature of information seeking. Health care organizations and public health agencies can leverage the multifaceted nature of information seeking to better develop information resources to increase information access by vulnerable populations. PMID:26166484

  14. Where Do U.S. Adults Who Do Not Use the Internet Get Health Information? Examining Digital Health Information Disparities From 2008 to 2013.

    PubMed

    Massey, Philip M

    2016-01-01

    With more people turning to the Internet for health information, a few questions remain: Which populations represent the remaining few who have never used the Internet, and where do they go for health information? The purpose of this study is to describe population characteristics and sources of health information among U.S. adults who do not use the Internet. Data from 3 iterations of the Health Information National Trends Survey (n = 1,722) are used to examine trends in health information sources. Weighted predicted probabilities demonstrate changes in information source over time. Older adults, minority populations, and individuals with low educational attainment represent a growing percentage of respondents who have looked for health information but have never used the Internet, highlighting trends in digital information disparities. However, 1 in 10 respondents who have never used the Internet also indicate that the Internet was their first source of health information, presumably through surrogates. Findings highlight digital disparities in information seeking and the complex nature of online information seeking. Future research should examine how individuals conceptualize information sources, measure skills related to evaluating information and sources, and investigate the social nature of information seeking. Health care organizations and public health agencies can leverage the multifaceted nature of information seeking to better develop information resources to increase information access by vulnerable populations.

  15. Articulatory Suppression Effects on Short-term Memory of Signed Digits and Lexical Items in Hearing Bimodal-Bilingual Adults.

    PubMed

    Liu, Hsiu Tan; Squires, Bonita; Liu, Chun Jung

    2016-10-01

    We can gain a better understanding of short-term memory processes by studying different language codes and modalities. Three experiments were conducted to investigate: (a) Taiwanese Sign Language (TSL) digit spans in Chinese/TSL hearing bilinguals (n = 32); (b) American Sign Language (ASL) digit spans in English/ASL hearing bilinguals (n = 15); and (c) TSL lexical sign spans in Chinese/TSL hearing bilinguals (n = 22). Articulatory suppression conditions were manipulated to determine if participants would use a speech- or sign-based code to rehearse lists of signed items. Results from all 3 experiments showed that oral suppression significantly reduced spans while manual suppression had no effect, revealing that participants were using speech-based rehearsal to retain lists of signed items in short-term memory. In addition, sub-vocal rehearsal using Chinese facilitated higher digit spans than English even though stimuli were perceived and recalled using signs. This difference was not found for lexical sign spans.

  16. Reduced shedding regenerator and method

    DOEpatents

    Qiu, Songgang; Augenblick, John E.; Erbeznik, Raymond M.

    2007-05-22

    A reduced shedding regenerator and method are disclosed with regenerator surfaces to minimize shedding of particles from the regenerator thereby alleviating a source of potential damage and malfunction of a thermal regenerative machine using the regenerator.

  17. Active magnetic regenerator

    DOEpatents

    Barclay, John A.; Steyert, William A.

    1982-01-01

    The disclosure is directed to an active magnetic regenerator apparatus and method. Brayton, Stirling, Ericsson, and Carnot cycles and the like may be utilized in an active magnetic regenerator to provide efficient refrigeration over relatively large temperature ranges.

  18. New insights into vertebrate skin regeneration.

    PubMed

    Seifert, Ashley W; Maden, Malcolm

    2014-01-01

    Regeneration biology has experienced a renaissance as clinicians, scientists, and engineers have combined forces to drive the field of regenerative medicine. Studies investigating the mechanisms that regulate wound healing in adult mammals have led to a good understanding of the stereotypical processes that lead to scarring. Despite comparative studies of fetal wound healing in which no scar is produced, the fact remains that insights from this work have failed to produce therapies that can regenerate adult human skin. In this review, we analyze past and contemporary accounts of wound healing in a variety of vertebrates, namely, fish, amphibians, and mammals, in order to demonstrate how examples of skin regeneration in adult organisms can impact traditional wound-healing research. When considered together, these studies suggest that inflammation and reepithelialization are necessary events preceding both scarring and regeneration. However, the extent to which these processes may direct one outcome over another is likely weaker than currently accepted. In contrast, the extent to which newly deposited extracellular matrix in the wound bed can be remodeled into new skin, and the intrinsic ability of new epidermis to regenerate appendages, appears to underlie the divergence between scar-free healing and the persistence of a scar. We discuss several ideas that may offer areas of overlap between researchers using these different model organisms and which may be of benefit to the ultimate goal of scar-free human wound healing. PMID:24725426

  19. The mammalian blastema: regeneration at our fingertips

    PubMed Central

    Simkin, Jennifer; Sammarco, Mimi C.; Dawson, Lindsay A.; Schanes, Paula P.; Yu, Ling

    2015-01-01

    Abstract In the mouse, digit tip regeneration progresses through a series of discrete stages that include inflammation, histolysis, epidermal closure, blastema formation, and redifferentiation. Recent studies reveal how each regenerative stage influences subsequent stages to establish a blastema that directs the successful regeneration of a complex mammalian structure. The focus of this review is on early events of healing and how an amputation wound transitions into a functional blastema. The stepwise formation of a mammalian blastema is proposed to provide a model for how specific targeted treatments can enhance regenerative performance in humans. PMID:27499871

  20. Current concepts in limb regeneration: a hand surgeon's perspective.

    PubMed

    Wicker, Jordan; Kamler, Kenneth

    2009-08-01

    Cognitive-behavioral practices such as meditation and yoga have long been viewed as methods of reaching states of peace and relaxation, but recent research has focused on the role of these practices in reducing endogenous mediators of stress and inflammation that would otherwise be harmful to our bodies. Further, these stress-related factors play major roles in inflammation, acting as barriers to wound healing and tissue regeneration. Fractures, denervation, tendon and ligament rupture, and cartilage degradation are morbidities associated with injury and often act as an impediment for healing. Studies of human fingertip regeneration exist; however, the underlying molecular and environmental changes have yet to be completely elucidated. Studying the regenerative capabilities of lower organisms and fetal wound healing has allowed scientists to understand the mechanisms behind regeneration, coming closer to a human application. Much research relies on the idea that the developing embryo shares a great deal in common with regenerating appendages of organisms such as the salamander. This review will cover historical perspectives of regeneration biology and current topics in limb regeneration, with particular interest given to the upper extremity, including the commonalities between human embryological development and amphibian regeneration, growth factors and pathways that show correlation with development and regeneration, recently discovered differences in fetal and adult wound healing, and current research and knowledge regarding human extremity tissue regeneration. With a greater understanding of the mechanisms and mediators involved in regeneration, the application of cognitive-behavioral practices may assist in seeing the future goals of regeneration come to fruition.

  1. Human stem cells and articular cartilage regeneration.

    PubMed

    Inui, Atsuyuki; Iwakura, Takashi; Reddi, A Hari

    2012-11-05

    The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem (ES) cells has been studied for more than a decade. However, establishment of ES cells requires embryos and leads to ethical issues for clinical applications. Induced pluripotent stem (iPS) cells are generated by cellular reprogramming of adult cells by transcription factors. Although iPS cells have chondrogenic potential, optimization, generation and differentiation toward articular chondrocytes are currently under intense investigation.

  2. Articulatory Suppression Effects on Short-term Memory of Signed Digits and Lexical Items in Hearing Bimodal-Bilingual Adults.

    PubMed

    Liu, Hsiu Tan; Squires, Bonita; Liu, Chun Jung

    2016-10-01

    We can gain a better understanding of short-term memory processes by studying different language codes and modalities. Three experiments were conducted to investigate: (a) Taiwanese Sign Language (TSL) digit spans in Chinese/TSL hearing bilinguals (n = 32); (b) American Sign Language (ASL) digit spans in English/ASL hearing bilinguals (n = 15); and (c) TSL lexical sign spans in Chinese/TSL hearing bilinguals (n = 22). Articulatory suppression conditions were manipulated to determine if participants would use a speech- or sign-based code to rehearse lists of signed items. Results from all 3 experiments showed that oral suppression significantly reduced spans while manual suppression had no effect, revealing that participants were using speech-based rehearsal to retain lists of signed items in short-term memory. In addition, sub-vocal rehearsal using Chinese facilitated higher digit spans than English even though stimuli were perceived and recalled using signs. This difference was not found for lexical sign spans. PMID:27507848

  3. Centroacinar cells: At the center of pancreas regeneration.

    PubMed

    Beer, Rebecca L; Parsons, Michael J; Rovira, Meritxell

    2016-05-01

    The process of regeneration serves to heal injury by replacing missing cells. Understanding regeneration can help us replace cell populations lost during disease, such as the insulin-producing β cells lost in diabetic patients. Centroacinar cells (CACs) are a specialized ductal pancreatic cell type that act as progenitors to replace β cells in the zebrafish. However, whether CACs contribute to β-cell regeneration in adult mammals remains controversial. Here we review the current understanding of the role of CACs as endocrine progenitors during regeneration in zebrafish and mammals.

  4. Centroacinar cells: At the center of pancreas regeneration.

    PubMed

    Beer, Rebecca L; Parsons, Michael J; Rovira, Meritxell

    2016-05-01

    The process of regeneration serves to heal injury by replacing missing cells. Understanding regeneration can help us replace cell populations lost during disease, such as the insulin-producing β cells lost in diabetic patients. Centroacinar cells (CACs) are a specialized ductal pancreatic cell type that act as progenitors to replace β cells in the zebrafish. However, whether CACs contribute to β-cell regeneration in adult mammals remains controversial. Here we review the current understanding of the role of CACs as endocrine progenitors during regeneration in zebrafish and mammals. PMID:26963675

  5. Regeneration: The Origin of Cancer or a Possible Cure?

    PubMed Central

    Oviedo, Néstor J.; Beane, Wendy S.

    2009-01-01

    A better understanding of the forces controlling cell growth will be essential for developing effective therapies in regenerative medicine and cancer. Historically, the literature has linked cancer and tissue regeneration—proposing regeneration as both the source of cancer and a method to inhibit tumorigenesis. This review discusses two powerful regeneration models, the vertebrate urodele amphibians and invertebrate planarians, in light of cancer regulation. Urodele limb and eye lens regeneration is described, as well as the planarian’s emergence as a molecular and genetic model system in which recent insights begin to molecularly dissect cancer and regeneration in adult tissues. PMID:19427247

  6. Impaired pancreatic duct-cell growth in focal areas of regeneration after partial pancreatectomy in the adult Goto-Kakizaki rat, a spontaneous model of non-insulin dependent diabetes mellitus.

    PubMed

    Plachot, C; Portha, B

    2001-03-01

    The Paris colony of adult Goto-Kakizaki (GK/Par) rat, a genetic model of non-insulin dependent diabetes mellitus, is characterized by a restriction of the beta-cell mass and reduced beta-cell regeneration capacity. In order to have a better understanding of the impaired mechanism(s) leading to reduced beta-cell plasticity in the GK/Par rat, we have investigated duct-cell growth capacity following 90% pancreatectomy, a well-defined procedure leading in non-diabetic rats, to sequential duct proliferation and subsequent differentiation. To this aim, we have performed pancreatectomy in 8-10-week-old male normoglycaemic Wistar and diabetic GK rats. Duct-cell proliferation and apoptosis were evaluated at different time points: day 0 (D0), day 2 (D2), day 7 (D7) and day 14 (D14) after pancreatectomy. A transient wave of duct-cell proliferation was observed on D2 in both small and main ducts in the pancreatectomized Wistar rats. A similar increase occurred in the similarly treated GK rats, but to a higher extent as compared to the Wistar rats. Thereafter, duct-cell proliferation from main or small ducts returned to non-pancreatectomized values on D7 and remained at this level on D14 in both the Wistar and GK pancreatectomized groups. In the common pancreatic duct, the number of proliferative duct-cells was higher in GK rats compared to Wistar on D0. In both the operated Wistar and GK rats, duct-cell proliferation from the common pancreatic duct similarly decreased on D2. On D7 and D14, the same parameter returned to non-pancreatectomized values in the Wistar rats, while it was maintained lower in the GK rats as compared to the GK values on D0. In focal areas of regeneration, duct-cell proliferation was significantly lower in the pancreatectomized GK group compared to the age-related Wistar group on D7 (Wistar: 5.85+/-0.98%, GK: 3.02+/-0.69%; p < 0.01) and D14 (Wistar: 3.82+/-0.29%, GK: 2.62+/-0.27%; ns). Only a few apoptotic duct-cells were observed, with no difference

  7. Coronal Pulpotomy Technique Analysis as an Alternative to Pulpectomy for Preserving the Tooth Vitality, in the Context of Tissue Regeneration: A Correlated Clinical Study across 4 Adult Permanent Molars

    PubMed Central

    Solomon, Raji Viola; Faizuddin, Umrana; Karunakar, Parupalli; Deepthi Sarvani, Grandhala; Sree Soumya, Sevvana

    2015-01-01

    Aim. (1) The aim of the clinical study revolves around the accurate diagnosis, proper case selection, and the management of acute irreversible pulpitis in permanent molars with closed apices using conservative and economical treatment modalities like vital pulpotomies with regenerative approaches over conventional root canal procedures. (2) To evaluate the use of autologous substances such as platelet concentrates and calcium silicate based materials in promoting the healing and regeneration of the inflamed pulp. Summary. Vital pulpotomy was performed on 5 carious involved, permanent molars diagnosed with acute irreversible pulpitis in 17- to 22-year-old patients. Taking into consideration the patient's age and the condition of the underlying pulp tissue, PRF pulpotomy was planned in view of preserving the vitality of the intact radicular pulps. Regenerative procedures with second generation blood matrices were chosen to encourage the recovery of the inflamed pulps. The systematic follow-up examinations performed at 3, 6, 9, 12, 18, 22, and 24 months revealed a successful clinical and radiological outcome. Within the limits of the present clinical study and correlating the success across the treated clinical cases, we safely conclude the potential scope of regenerative pulpotomy approaches in acute irreversible pulpitis in adult permanent teeth. PMID:26097752

  8. The Effect of Interactive CD-ROM/Digitized Audio Courseware on Reading among Low-Literate Adults.

    ERIC Educational Resources Information Center

    Gretes, John A.; Green, Michael

    1994-01-01

    Compares a multimedia adult literacy instructional course, Reading to Educate and Develop Yourself (READY), to traditional classroom instruction by studying effects of replacing conventional learning tools with computer-assisted instruction (CD-ROMs and audio software). Results reveal that READY surpassed traditional instruction for virtually…

  9. Getting Grandma Online: Are Tablets the Answer for Increasing Digital Inclusion for Older Adults in the U.S.?

    ERIC Educational Resources Information Center

    Tsai, Hsin-yi Sandy; Shillair, Ruth; Cotten, Shelia R.; Winstead, Vicki; Yost, Elizabeth

    2015-01-01

    Using information and communication technologies (ICTs) can improve older adults' quality of life. ICT use is associated with decreased feelings of loneliness and depression, along with increased feelings of independence and personal growth. However, limited access and low technological self-efficacy are key reasons why some groups, especially…

  10. Picture Me Smokefree: A Qualitative Study Using Social Media and Digital Photography to Engage Young Adults in Tobacco Reduction and Cessation

    PubMed Central

    Kelly, Mary T; Oliffe, John L; Bottorff, Joan L

    2015-01-01

    Background Young adults have high rates of tobacco use compared to other subpopulations, yet there are relatively few tobacco interventions specifically targeted to this group. Picture Me Smokefree is an online tobacco reduction and cessation intervention for young adults that uses digital photography and social networking. Objective The main goal of the project was to determine the feasibility of engaging young adults in participating in user-driven, online forums intended to provide peer support and motivate critical reflection about tobacco use and cessation among this high-use, hard-to-reach population. A related aim was to explore the influence of gender-related factors on participation, in order to determine the need for online interventions to be tailored to the specific gender preferences reflecting young men and women’s participation styles. Methods A total of 60 young adults ages 19-24 years who self-identified as current cigarette smokers or who had quit within the last year were recruited from across British Columbia, Canada, and participated in an online photo group on Facebook over a period of 12 consecutive weeks. A variety of data collection methods were used including tracking online activity, a brief online follow-up survey, and qualitative interviews with study participants. Data analysis involved descriptive statistics on recruitment, retention, and participation and qualitative (eg, narrative analysis, synthesis of feedback) feedback about participant engagement. Results Findings from this study suggest good potential for Facebook as an accessible, low-cost platform for engaging young adults to reflect on the reasons for their tobacco use, the benefits of quitting or reducing, and the best strategies for tobacco reduction. Young adults’ frequent use of mobile phones and other mobile devices to access social networking permitted ease of access and facilitated real-time peer-to-peer support across a diverse group of participants. However, our

  11. Sensory hair cell development and regeneration: similarities and differences

    PubMed Central

    Atkinson, Patrick J.; Huarcaya Najarro, Elvis; Sayyid, Zahra N.; Cheng, Alan G.

    2015-01-01

    Sensory hair cells are mechanoreceptors of the auditory and vestibular systems and are crucial for hearing and balance. In adult mammals, auditory hair cells are unable to regenerate, and damage to these cells results in permanent hearing loss. By contrast, hair cells in the chick cochlea and the zebrafish lateral line are able to regenerate, prompting studies into the signaling pathways, morphogen gradients and transcription factors that regulate hair cell development and regeneration in various species. Here, we review these findings and discuss how various signaling pathways and factors function to modulate sensory hair cell development and regeneration. By comparing and contrasting development and regeneration, we also highlight the utility and limitations of using defined developmental cues to drive mammalian hair cell regeneration. PMID:25922522

  12. Learning To Bridge the Digital Divide: Schooling for Tomorrow. Education and Skills. [National Center on Adult Literacy (NCAL)/Organization for Economic Cooperation and Development (OECD) Roundtable (5th, Philadelphia, Pennsylvania, December 8-10, 1999)].

    ERIC Educational Resources Information Center

    Jame, Edwyn; Istance, David

    This publication builds on the papers and discussions of the Fifth National Center on Adult Literacy (NCAL)/Organization for Economic Cooperation and Development (OECD) Roundtable. The volume presents an analysis of the "learning digital divide" in different countries--developed and developing--and the policies and innovations designed to bridge…

  13. Regeneration of organs and tissues in lower vertebrates during and after space flight

    NASA Astrophysics Data System (ADS)

    Mitashov, V. I.; Brushlinskaya, N. V.; Grigoryan, E. N.; Tuchkova, S. Ya.; Anton, H. J.

    In this paper most important data obtained in studies on the effect of space flight conditions on regeneration in the adult newt are summarized. We demonstrate a phenomenon of synchronization of limb and lens regeneration and increase in its rate during and after space flight. We also describe a peculiarities of cell proliferation in lens, limb and tail regenerates and of the process of minced muscle regeneration.

  14. Desulfurization sorbent regeneration

    DOEpatents

    Jalan, V.M.; Frost, D.G.

    1982-07-07

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  15. Regeneration Heat Exchange

    SciTech Connect

    J. Lin

    2003-07-30

    The original project goals were to establish the viability of the proposed gas turbine regenerator concept by performing the following tasks: (1) Perform detailed design of a working model of the regenerator concept. (2) Construct a ''bench-top'' model of the regenerator concept based upon the detail design. (3) Test the bench-top model and gather data to support the concept's viability. The project funding was used to acquire the tools and material to perform the aforementioned tasks.

  16. Role of Se+Zn in regeneration (Ki-67) following Pb toxicity (p53andcad) in the germinal epithelium of adult Wistar rats.

    PubMed

    Falana, B A; Ogundele, O M; Duru, F I; Oshinubi, A A; Falode, D T

    2013-01-15

    The germinal epithelium is the delicate epithelial lining of the seminiferous tubule lying on the blood-testes barrier; formed by the sustenacular cells of Sertoli and the adjoining basement epithelium this study addresses the effect of lead (Pb) toxicity on the epithelium and the proliferative effect of Zinc (Zn) and Selenium (Se) administered in trace concentration. Sixty F1 generation adult male Wistar rats were divided into four groups of 15 animals each. Group 1 received normal saline, group 2: 100 mg kg(-1) of lead acetate, group 3: 100 mg kg(-1) of lead acetate then 2.25 mg kg(-1) each of Zinc (Chelated zinc) and Selenium (Sodium Selenium) and group 4: 2.25 mg kg(-1) of zinc and selenium (Se+Zn). The duration of treatment was 56 days following which the animals were sacrificed on the 57th day and the testes harvested and fixed in Bouin's fluid. Pb induced toxicity can follow a mitochondria pathway involving Cathepsin D (CAD) or a cytoplasmic pathway involving p53 (protein 53; a 53 KDa nucleolase), the most predominant form of cell death is apoptosis which can result from both pathways. Se+Zn treatment improves proliferation and counters Pb toxicity by substitution, activation of enzymes (radical scavengers and vitamins), growth factors, activation of endothelial factors and activation of oxygen radical scavengers.

  17. A feasibility study to develop a diabetes prevention program for young adults with prediabetes using digital platforms and a hand held device

    PubMed Central

    Cha, EunSeok; Kim, Kevin H.; Umpierrez, Guillermo; Dawkins, Colleen R.; Bello, Morenike K.; Lerner, Hannah; Narayan, K.M. Venkat; Dunbar, Sandra B.

    2014-01-01

    Purpose The purpose of the pilot study was to examine the feasibility and preliminary efficacy of an age-specific diabetes prevention program in young adults with prediabetes. Methods One group pretest-posttest design was conducted. The inclusion criteria were young adults age 18–29 years with prediabetes [either Impaird fasting glucose [IFG] (100–125 mg/dL), or an A1C of 5.7%–6.4%]. Fifteen participants were enrolled in this study. A technology based lifestyle coaching program focused on diet and physical activity and incorporating a hand-held device and digital platforms was developed and tested. Psychosocial factors (health literacy, illness perception, self-efficacy, therapeutic efficacy) based on social cognitive theory, changes in diet and physical activity, and cardiometabolic risk factors were assessed at baseline and week 12 after intervention. A paired-samples t-test was performed to examine changes between baseline and post-intervention on each psychosocial and physical variable. Results Participants (n= 13 completers) were mean age 24.4 yrs [SD: 2.2], 23.1% male, and 53.8% were African American. Overall, the participants were satisfied with the intervention (M = 4.15 on a 5-point Likert scale). Between pre and post testing, BMI and A1C decreased from 41.0 ±7.3 to 40.1±7.0 and 6.0% ± .5 to 5.6% ± .5, respectively, while fasting glucose did not significantly change (92.6±11 mg/dl to 97.6 ±14.3 mg/dl). Conclusion The intervention resulted in reduced A1C and a trend for decreased BMI in obese sedentary young adults with prediabetes after 12 weeks of intervention. Further study through a randomized clinical trial with a longer intervention period is warranted. PMID:24950683

  18. Maintaining Eastern newts (Notophthalmus viridescens) for regeneration research.

    PubMed

    Simon, Hans-Georg; Odelberg, Shannon

    2015-01-01

    The adult Eastern newt, Notophthalmus viridescens, has long served as a model for appendage as well as heart muscle regeneration studies. Newt tissues include all major cell types known in other vertebrates and mammals, including bone, cartilage, tendon, muscle, nerves, dermis, and epidermis. Therefore, these aquatic salamanders make an excellent model for studying the regeneration of complex tissues. Regeneration of adult tissues requires the integration of new tissues with preexisting tissues to form a functioning unit through a process that is not yet well understood. Scale is also an issue, because the regenerating tissues or structures are magnitudes larger than their embryonic counterparts during development, and therefore, it is likely that different physics and mechanics apply. Regardless, regeneration recapitulates to some degree developmental processes. In this chapter, we will describe basic methods for maintaining adult Eastern newts in the laboratory for the study of regeneration. To determine similarities and differences between development and regeneration at the cellular and molecular level, there is also a need for embryonic newt tissue. We therefore also outline a relatively simple way to produce and raise newt embryos in the laboratory.

  19. Ceramic regenerator program

    NASA Technical Reports Server (NTRS)

    Franklin, Jerrold E.

    1991-01-01

    The feasibility of fabricating an Air Turbo Ramjet (ATR) regenerator containing intricate hydraulic passages from a ceramic material in order to allow operation with high temperature combustion gas and to reduce weight as compared with metallic materials was demonstrated. Platelet technology, ceramic tape casting, and multilayer ceramic packaging techniques were used in this fabrication of subscale silicon nitride components. Proof-of-concept demonstrations were performed to simulate a methane cooled regenerator for an ATR engine. The regenerator vane was designed to operate at realistic service conditions, i.e., 600 psi in a 3500 R (3040 F), 500 fps combustion gas environment. A total of six regenerators were fabricated and tested. The regenerators were shown to be able to withstand internal pressurization to 1575 psi. They were subjected to testing in 500 fps, 3560 R (3100 F) air/propane combustion products and were operated satisfactorily for an excess of 100 hr and 40 thermal cycles which exceeded 2460 R (2000 F).

  20. Specialized progenitors and regeneration

    PubMed Central

    Reddien, Peter W.

    2013-01-01

    Planarians are flatworms capable of regenerating all body parts. Planarian regeneration requires neoblasts, a population of dividing cells that has been studied for over a century. Neoblast progeny generate new cells of blastemas, which are the regenerative outgrowths at wounds. If the neoblasts comprise a uniform population of cells during regeneration (e.g. they are all uncommitted and pluripotent), then specialization of new cell types should occur in multipotent, non-dividing neoblast progeny cells. By contrast, recent data indicate that some neoblasts express lineage-specific transcription factors during regeneration and in uninjured animals. These observations raise the possibility that an important early step in planarian regeneration is the specialization of neoblasts to produce specified rather than naïve blastema cells. PMID:23404104

  1. Medicinal Chemistry Approaches to Heart Regeneration.

    PubMed

    Schade, Dennis; Plowright, Alleyn T

    2015-12-24

    Because of the minimal and clearly insufficient ability of the adult heart to regenerate after ischemic injury, there is a great opportunity to identify biological mechanisms, substances, and factors that enhance this process. Hence, innovative therapeutic management of heart failure following infarction requires a paradigm shift in pharmacotherapy. Spurred by tremendous progress in the field of stem cell and cardiac biology, several attractive approaches for regeneration of lost cardiomyocytes and supporting vasculature have emerged. Research in this area focuses on restoring the hearts' original function via proliferation and differentiation of cardiac progenitor cells, proliferation of pre-existing cardiomyocytes, and reprogramming of cardiac fibroblasts. In this review, we outline these principal strategies, putative biological targets or signaling pathways and chemical agents, with a focus on small molecules, to achieve therapeutic heart regeneration. We also point out the many remaining questions and challenges, particularly for translating in vitro discoveries to in vivo application.

  2. The multicellular complexity of peripheral nerve regeneration.

    PubMed

    Cattin, Anne-Laure; Lloyd, Alison C

    2016-08-01

    Peripheral nerves show a remarkable ability to regenerate following a transection injury. Downstream of the cut, the axons degenerate and so to regenerate the nerve, the severed axons need to regrow back to their targets and regain function. This requires the axons to navigate through two different environments. (1) The bridge of new tissue that forms between the two nerve stumps and (2) the distal stump of the nerve that remains associated with the target tissues. This involves distinct, complex multicellular responses that guide and sustain axonal regrowth. These processes have important implications for our understanding of the regeneration of an adult tissue and have parallels to aspects of tumour formation and spread. PMID:27128880

  3. Circulating Extracellular RNA Markers of Liver Regeneration

    PubMed Central

    Yan, Irene K.; Wang, Xue; Asmann, Yan W.; Haga, Hiroaki; Patel, Tushar

    2016-01-01

    Background and Aims Although a key determinant of hepatic recovery after injury is active liver regeneration, the ability to detect ongoing regeneration is lacking. The restoration of liver mass after hepatectomy involves systemic changes with coordinated changes in gene expression guiding regenerative responses, activation of progenitor cells, and proliferation of quiescent hepatocytes. We postulated that these responses involve intercellular communication involving extracellular RNA and that these could represent biomarkers of active regenerative responses. Methods RNA sequencing was performed to identify temporal changes in serum extracellular non-coding RNA after partial hepatectomy in C57BL/6 male mice. Tissue expression of selected RNA was performed by microarray analysis and validated using qRT-PCR. Digital PCR was used to detect and quantify serum expression of selected RNA. Results A peak increase in extracellular RNA content occurred six hours after hepatectomy. RNA sequencing identified alterations in several small non-coding RNA including known and novel microRNAs, snoRNAs, tRNA, antisense and repeat elements after partial hepatectomy. Combinatorial effects and network analyses identified signal regulation, protein complex assembly, and signal transduction as the most common biological processes targeted by miRNA that altered. miR-1A and miR-181 were most significantly altered microRNA in both serum and in hepatic tissues, and their presence in serum was quantitated using digital PCR. Conclusions Extracellular RNA selectively enriched during acute regeneration can be detected within serum and represent biomarkers of ongoing liver regeneration in mice. The ability to detect ongoing active regeneration would improve the assessment of hepatic recovery from liver injury. PMID:27415797

  4. Equine model for soft-tissue regeneration.

    PubMed

    Bellas, Evangelia; Rollins, Amanda; Moreau, Jodie E; Lo, Tim; Quinn, Kyle P; Fourligas, Nicholas; Georgakoudi, Irene; Leisk, Gary G; Mazan, Melissa; Thane, Kristen E; Taeymans, Olivier; Hoffman, A M; Kaplan, D L; Kirker-Head, C A

    2015-08-01

    Soft-tissue regeneration methods currently yield suboptimal clinical outcomes due to loss of tissue volume and a lack of functional tissue regeneration. Grafted tissues and natural biomaterials often degrade or resorb too quickly, while most synthetic materials do not degrade. In previous research we demonstrated that soft-tissue regeneration can be supported using silk porous biomaterials for at least 18 months in vivo in a rodent model. In the present study, we scaled the system to a survival study using a large animal model and demonstrated the feasibility of these biomaterials for soft-tissue regeneration in adult horses. Both slow and rapidly degrading silk matrices were evaluated in subcutaneous pocket and intramuscular defect depots. We showed that we can effectively employ an equine model over 6 months to simultaneously evaluate many different implants, reducing the number of animals needed. Furthermore, we were able to tailor matrix degradation by varying the initial format of the implanted silk. Finally, we demonstrate ultrasound imaging of implants to be an effective means for tracking tissue regeneration and implant degradation.

  5. Equine Model for Soft Tissue Regeneration

    PubMed Central

    Moreau, J.E.; Lo, T.; Quinn, K.P.; Fourligas, N.; Georgakoudi, I.; Leisk, G.G.; Mazan, M.; Thane, K.E.; Taeymans, O.; Hoffman, A.M.; Kaplan, D. L.; Kirker-Head, C.A.

    2016-01-01

    Soft tissue regeneration methods currently yield suboptimal clinical outcomes due to loss of tissue volume and a lack of functional tissue regeneration. Grafted tissues and natural biomaterials often degrade or resorb too quickly, while most synthetic materials do not degrade. In previous research we demonstrated that soft tissue regeneration can be supported using silk porous biomaterials for at least 18 months in vivo in a rodent model. In the present study, we scaled the system to a survival study using a large animal model and demonstrated the feasibility of these biomaterials for soft tissue regeneration in adult horses. Both slow and rapidly degrading silk matrices were evaluated in subcutaneous pocket and intramuscular defect depots. We showed that we can effectively employ an equine model over six months to simultaneously evaluate many different implants, reducing the number of animals needed. Furthermore, we were able to tailor matrix degradation by varying the initial format of the implanted silk. Finally, we demonstrate ultrasound imaging of implants to be an effective means for tracking tissue regeneration and implant degradation. PMID:25350377

  6. Effects of Aging on Thyroarytenoid Muscle Regeneration

    PubMed Central

    Lee, Kyungah; Kletzien, Heidi; Connor, Nadine P.; Schultz, Edward; Chamberlain, Connie S.; Bless, Diane M.

    2012-01-01

    Objectives/hypotheses Regenerative properties of age-associated changes in the intrinsic laryngeal muscles following injury are unclear. The purpose of this study was to investigate the regenerative properties of the thyroarytenoid muscle (TA) in an aging rat model. The hypothesis was that, following myotoxic injury, old animals would exhibit a decrease in mitotic activities of muscle satellite cells when compared with younger rats, suggesting reduced regenerative potential in the aging rat TA. Study Design Animal group comparison. Method Regeneration responses following injury to the TA were examined in 18 young adult, middle-aged, and old Fischer 344/Brown Norway rats. TA muscle fiber cross sectional area (CSA), satellite cell mitosis (number/fiber), and regeneration index (CSA injured side/CSA non-injured side) were measured and compared across age groups. Results Young animals had a significantly higher regeneration index than the middle-aged and old groups. Within the lateral region of the TA (LTA), the regeneration index was significantly higher in the young animals than in the middle-aged and old animals. The regeneration index of the medial TA (MTA) was significantly higher than the LTA across all age groups. Conclusions The regenerative capacity of the TA muscle is impaired with increasing age. Evidence N/A PMID:22965923

  7. Anatomy, biogenesis and regeneration of salivary glands.

    PubMed

    Holmberg, Kyle V; Hoffman, Matthew P

    2014-01-01

    An overview of the anatomy and biogenesis of salivary glands is important in order to understand the physiology, functions and disorders associated with saliva. A major disorder of salivary glands is salivary hypofunction and resulting xerostomia, or dry mouth, which affects hundreds of thousands of patients each year who suffer from salivary gland diseases or undergo head and neck cancer treatment. There is currently no curative therapy for these patients. To improve these patients' quality of life, new therapies are being developed based on findings in salivary gland cell and developmental biology. Here we discuss the anatomy and biogenesis of the major human salivary glands and the rodent submandibular gland, which has been used extensively as a research model. We also include a review of recent research on the identification and function of stem cells in salivary glands, and the emerging field of research suggesting that nerves play an instructive role during development and may be essential for adult gland repair and regeneration. Understanding the molecular mechanisms involved in gland biogenesis provides a template for regenerating, repairing or reengineering diseased or damaged adult human salivary glands. We provide an overview of 3 general approaches currently being developed to regenerate damaged salivary tissue, including gene therapy, stem cell-based therapy and tissue engineering. In the future, it may be that a combination of all three will be used to repair, regenerate and reengineer functional salivary glands in patients to increase the secretion of their saliva, the focus of this monograph. PMID:24862590

  8. Problematic digital gaming behavior and its relation to the psychological, social and physical health of Finnish adolescents and young adults

    PubMed Central

    Männikkö, Niko; Billieux, Joël; Kääriäinen, Maria

    2015-01-01

    Background and Aims The aim of this study was to identify problematic gaming behavior among Finnish adolescents and young adults, and evaluate its connection to a variety of psychological, social, and physical health symptoms. Methods This cross-sectional study was conducted with a random sample of 293 respondents aged from 13 to 24 years. Participants completed an online survey. Problematic gaming behavior was measured with the Game Addiction Scale (GAS). Self-reports covered health measures such as psychological health (psychopathological symptoms, satisfaction with life), social health (preferences for social interaction), and physical health (general health, Body Mass Index [BMI], body discomfort, physical activity). Results Problematic gaming behavior was found to relate to psychological and health problems, namely fatigue, sleep interference, depression and anxiety symptoms. Multiple linear regression indicated that the amount of weekly gaming, depression and a preference for online social interaction predicted increased problematic gaming symptoms. Conclusions This research emphasized that problematic gaming behavior had a strong negative correlation to a variety of subjective health outcomes. PMID:26690623

  9. Newt limb regeneration studied with synchrotron micro-CT

    NASA Astrophysics Data System (ADS)

    Stock, Stuart R.; Ignatiev, Konstantin I.; Simon, Hans-Georg; De Carlo, Francesco

    2004-10-01

    Newts are the most developed vertebrates which retain the ability as adults to regenerate missing limbs; they are, therefore, of great interest in terms understanding how such regeneration could be triggered in mammals. In this study, synchrotron microCT was used to study bone microstructure in control forelimbs and in forelimbs regenerated for periods from 37 to 85 days. The bone microstructure in newts has been largely neglected, and interesting patterns within the original bone and in the regenerating arm and hand are described. Periosteal bone formation in the regenerating arm and finger bones, delayed ossification of carpal (but not metacarpal) bones and the complex microstructure of the original carpal bones are areas where microCT reveals detail of particular interest.

  10. EGFR Activation Mediates Inhibition of Axon Regeneration by Myelin and Chondroitin Sulfate Proteoglycans

    NASA Astrophysics Data System (ADS)

    Koprivica, Vuk; Cho, Kin-Sang; Park, Jong Bae; Yiu, Glenn; Atwal, Jasvinder; Gore, Bryan; Kim, Jieun A.; Lin, Estelle; Tessier-Lavigne, Marc; Chen, Dong Feng; He, Zhigang

    2005-10-01

    Inhibitory molecules associated with myelin and the glial scar limit axon regeneration in the adult central nervous system (CNS), but the underlying signaling mechanisms of regeneration inhibition are not fully understood. Here, we show that suppressing the kinase function of the epidermal growth factor receptor (EGFR) blocks the activities of both myelin inhibitors and chondroitin sulfate proteoglycans in inhibiting neurite outgrowth. In addition, regeneration inhibitors trigger the phosphorylation of EGFR in a calcium-dependent manner. Local administration of EGFR inhibitors promotes significant regeneration of injured optic nerve fibers, pointing to a promising therapeutic avenue for enhancing axon regeneration after CNS injury.

  11. Chemical genetics and regeneration.

    PubMed

    Sengupta, Sumitra; Zhang, Liyun; Mumm, Jeff S

    2015-01-01

    Regeneration involves interactions between multiple signaling pathways acting in a spatially and temporally complex manner. As signaling pathways are highly conserved, understanding how regeneration is controlled in animal models exhibiting robust regenerative capacities should aid efforts to stimulate repair in humans. One way to discover molecular regulators of regeneration is to alter gene/protein function and quantify effect(s) on the regenerative process: dedifferentiation/reprograming, stem/progenitor proliferation, migration/remodeling, progenitor cell differentiation and resolution. A powerful approach for applying this strategy to regenerative biology is chemical genetics, the use of small-molecule modulators of specific targets or signaling pathways. Here, we review advances that have been made using chemical genetics for hypothesis-focused and discovery-driven studies aimed at furthering understanding of how regeneration is controlled.

  12. Nanomaterials and bone regeneration

    PubMed Central

    Gong, Tao; Xie, Jing; Liao, Jinfeng; Zhang, Tao; Lin, Shiyu; Lin, Yunfeng

    2015-01-01

    The worldwide incidence of bone disorders and conditions has been increasing. Bone is a nanomaterials composed of organic (mainly collagen) and inorganic (mainly nano-hydroxyapatite) components, with a hierarchical structure ranging from nanoscale to macroscale. In consideration of the serious limitation in traditional therapies, nanomaterials provide some new strategy in bone regeneration. Nanostructured scaffolds provide a closer structural support approximation to native bone architecture for the cells and regulate cell proliferation, differentiation, and migration, which results in the formation of functional tissues. In this article, we focused on reviewing the classification and design of nanostructured materials and nanocarrier materials for bone regeneration, their cell interaction properties, and their application in bone tissue engineering and regeneration. Furthermore, some new challenges about the future research on the application of nanomaterials for bone regeneration are described in the conclusion and perspectives part. PMID:26558141

  13. Regulation of p53 is critical for vertebrate limb regeneration.

    PubMed

    Yun, Maximina H; Gates, Phillip B; Brockes, Jeremy P

    2013-10-22

    Extensive regeneration of the vertebrate body plan is found in salamander and fish species. In these organisms, regeneration takes place through reprogramming of differentiated cells, proliferation, and subsequent redifferentiation of adult tissues. Such plasticity is rarely found in adult mammalian tissues, and this has been proposed as the basis of their inability to regenerate complex structures. Despite their importance, the mechanisms underlying the regulation of the differentiated state during regeneration remain unclear. Here, we analyzed the role of the tumor-suppressor p53 during salamander limb regeneration. The activity of p53 initially decreases and then returns to baseline. Its down-regulation is required for formation of the blastema, and its up-regulation is necessary for the redifferentiation phase. Importantly, we show that a decrease in the level of p53 activity is critical for cell cycle reentry of postmitotic, differentiated cells, whereas an increase is required for muscle differentiation. In addition, we have uncovered a potential mechanism for the regulation of p53 during limb regeneration, based on its competitive inhibition by ΔNp73. Our results suggest that the regulation of p53 activity is a pivotal mechanism that controls the plasticity of the differentiated state during regeneration. PMID:24101460

  14. [Stem cells and cardiac regeneration].

    PubMed

    Perez Millan, Maria Ines; Lorenti, Alicia

    2006-01-01

    Stem cells are defined by virtue of their functional attributes: absence of tissue specific differentitated markers, capable of proliferation, able to self-maintain the population, able to produce a large number of differentiated, functional progeny, able to regenerate the tissue after injury. Cell therapy is an alternative for the treatment of several diseases, like cardiac diseases (cell cardiomyoplasty). A variety of stem cells could be used for cardiac repair: from cardiac and extracardiac sources. Each cell type has its own profile of advantages, limitations, and practicability issues in specific clinical settings. Differentiation of bone marrow stem cells to cardiomyocyte-like cells have been observed under different culture conditions. The presence of resident cardiac stem cell population capable of differentiation into cardiomyocyte or vascular lineage suggests that these cells could be used for cardiac tissue repair, and represent a great promise for clinical application. Stem cells mobilization by cytokines may also offer a strategy for cardiac regeneration. The use of stem cells (embryonic and adult) may hold the key to replacing cells lost in many devastating diseases. This potential benefit is a major focus for stem cell research.

  15. Extracellular Control of Limb Regeneration

    NASA Astrophysics Data System (ADS)

    Calve, S.; Simon, H.-G.

    Adult newts possess the ability to completely regenerate organs and appendages. Immediately after limb loss, the extracellular matrix (ECM) undergoes dramatic changes that may provide mechanical and biochemical cues to guide the formation of the blastema, which is comprised of uncommitted stem-like cells that proliferate to replace the lost structure. Skeletal muscle is a known reservoir for blastema cells but the mechanism by which it contributes progenitor cells is still unclear. To create physiologically relevant culture conditions for the testing of primary newt muscle cells in vitro, the spatio-temporal distribution of ECM components and the mechanical properties of newt muscle were analyzed. Tenascin-C and hyaluronic acid (HA) were found to be dramatically upregulated in the amputated limb and were co-expressed around regenerating skeletal muscle. The transverse stiffness of muscle measured in situ was used as a guide to generate silicone-based substrates of physiological stiffness. Culturing newt muscle cells under different conditions revealed that the cells are sensitive to both matrix coating and substrate stiffness: Myoblasts on HA-coated soft substrates display a rounded morphology and become more elongated as the stiffness of the substrate increases. Coating of soft substrates with matrigel or fibronectin enhanced cell spreading and eventual cell fusion.

  16. Animal models of skin regeneration.

    PubMed

    Gawronska-Kozak, Barbara; Grabowska, Anna; Kopcewicz, Marta; Kur, Anna

    2014-03-01

    Cutaneous injury in the majority of vertebrate animals results in the formation of a scar in the post-injured area. Scar tissues, although beneficial for maintaining integrity of the post-wounded region often interferes with full recovery of injured tissues. The goal of wound-healing studies is to identify mechanisms to redirect reparative pathways from debilitating scar formation to regenerative pathways that lead to normal functionality. To perform such studies models of regeneration, which are rare in mammals, are required. In this review we discussed skin regenerative capabilities present in lower vertebrates and in models of skin scar-free healing in mammals, e.g. mammalian fetuses. However, we especially focused on the attributes of two unusual models of skin scar-free healing capabilities that occur in adult mammals, that is, those associated with nude, FOXN1-deficient mice and in wild-type African spiny mice.

  17. Current concepts in limb regeneration: a hand surgeon's perspective.

    PubMed

    Wicker, Jordan; Kamler, Kenneth

    2009-08-01

    Cognitive-behavioral practices such as meditation and yoga have long been viewed as methods of reaching states of peace and relaxation, but recent research has focused on the role of these practices in reducing endogenous mediators of stress and inflammation that would otherwise be harmful to our bodies. Further, these stress-related factors play major roles in inflammation, acting as barriers to wound healing and tissue regeneration. Fractures, denervation, tendon and ligament rupture, and cartilage degradation are morbidities associated with injury and often act as an impediment for healing. Studies of human fingertip regeneration exist; however, the underlying molecular and environmental changes have yet to be completely elucidated. Studying the regenerative capabilities of lower organisms and fetal wound healing has allowed scientists to understand the mechanisms behind regeneration, coming closer to a human application. Much research relies on the idea that the developing embryo shares a great deal in common with regenerating appendages of organisms such as the salamander. This review will cover historical perspectives of regeneration biology and current topics in limb regeneration, with particular interest given to the upper extremity, including the commonalities between human embryological development and amphibian regeneration, growth factors and pathways that show correlation with development and regeneration, recently discovered differences in fetal and adult wound healing, and current research and knowledge regarding human extremity tissue regeneration. With a greater understanding of the mechanisms and mediators involved in regeneration, the application of cognitive-behavioral practices may assist in seeing the future goals of regeneration come to fruition. PMID:19735243

  18. Black Men and the Digital Divide

    ERIC Educational Resources Information Center

    Conceição, Simone C. O.; Martin, Larry G.

    2016-01-01

    This chapter focuses on the role adult educators can play in assisting Black men to overcome the challenges faced in accessing and using digital technology and acquiring appropriate skills in a digital society.

  19. Relations of Digital Vascular Function, Cardiovascular Risk Factors, and Arterial Stiffness: The Brazilian Longitudinal Study of Adult Health (ELSA‐Brasil) Cohort Study

    PubMed Central

    Brant, Luisa C. C.; Hamburg, Naomi M.; Barreto, Sandhi M.; Benjamin, Emelia J.; Ribeiro, Antonio L. P.

    2014-01-01

    Background Vascular dysfunction is an early expression of atherosclerosis and predicts cardiovascular (CV) events. Peripheral arterial tonometry (PAT) evaluates basal pulse amplitude (BPA), endothelial function (PAT ratio), and wave reflection (PAT‐AIx) in the digital microvessels. In Brazilian adults, we investigated the correlations of PAT responses to CV risk factors and to carotid‐femoral pulse wave velocity (PWV), a measure of arterial stiffness. Methods and Results In a cross‐sectional study, 1535 participants of the ELSA‐Brasil cohort underwent PAT testing (52±9 years; 44% women). In multivariable analyses, more‐impaired BPA and PAT ratios were associated with male sex, higher body mass index (BMI), and total cholesterol/high‐density lipoprotein. Higher age and triglycerides were related to higher BPA, whereas lower systolic blood pressure, hypertension (HTN) treatment, and prevalent CV disease (CVD) were associated with lower PAT ratio. PAT‐AIx correlated positively with female sex, advancing age, systolic and diastolic blood pressures, and smoking and inversely to heart rate, height, BMI, and prevalent CVD. Black race was associated with lower BPA, higher PAT ratio, and PAT‐AIx. Microvessel vasodilator function was not associated with PWV. Higher PAT‐AIx was modestly correlated to higher PWV and PAT ratio and inversely correlated to BPA. Conclusion Metabolic risk factors are related to impaired microvessel vasodilator function in Brazil. However, in contrast to studies from the United States, black race was not associated with an impaired microvessel vasodilator response, implying that vascular function may vary by race across populations. PAT‐AIx relates to HTN, may be a valid measure of wave reflection, and provides distinct information from arterial stiffness. PMID:25510401

  20. [Bone regeneration over plastic implants after mandibular resection breaking the continuity].

    PubMed

    Utz, W

    1977-04-01

    In young patients, bone regeneration may start from the region of the temporo-mandibular joint and from the peripheral mandibular stump in cases of continuity defects of the mandible. A resin graft implanted for soft tissue reconstruction is collar-like surrounded by bone which is developing into a functionally and anatomically full regenerate over many years, in correspondence to periosteal and desmal growth stimuli. In adults, regeneration is minimal.

  1. Muscle regeneration after sepsis.

    PubMed

    Bouglé, Adrien; Rocheteau, Pierre; Sharshar, Tarek; Chrétien, Fabrice

    2016-01-01

    Severe critical illness is often complicated by intensive care unit-acquired weakness (ICU-AW), which is associated with increased ICU and post-ICU mortality, delayed weaning from mechanical ventilation and long-term functional disability. Several mechanisms have been implicated in the pathophysiology of ICU-AW, but muscle regeneration has not been investigated to any extent in this context, even though its involvement is suggested by the protracted functional consequences of ICU-AW. Recent data suggest that muscle regeneration could be impaired after sepsis, and that mesenchymal stem cell treatment could improve the post-injury muscle recovery. PMID:27193340

  2. Electrochemically regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.; Heppner, D. B.

    1979-01-01

    Preliminary designs were generated for two electrochemically regenerable carbon dioxide absorber concepts. Initially, an electrochemically regenerable absorption bed concept was designed. This concept incorporated the required electrochemical regeneration components in the absorber design, permitting the absorbent to be regenerated within the absorption bed. This hardware was identified as the electrochemical absorber hardware. The second hardware concept separated the functional components of the regeneration and absorption process. This design approach minimized the extravehicular activity component volume by eliminating regeneration hardware components within the absorber. The electrochemical absorber hardware was extensively characterized for major operating parameters such as inlet carbon dioxide partial pressure, process air flow rate, operational pressure, inlet relative humidity, regeneration current density and absorption/regeneration cycle endurance testing.

  3. Supercritical fluid regeneration of adsorbents

    NASA Astrophysics Data System (ADS)

    Defilippi, R. P.; Robey, R. J.

    1983-05-01

    The results of a program to perform studies supercritical (fluid) carbon dioxide (SCF CO2) regeneration of adsorbents, using samples of industrial wastewaters from manufacturing pesticides and synthetic solution, and to estimate the economics of the specific wastewater treatment regenerations, based on test data are given. Processing costs for regenerating granular activated carbon GAC) for treating industrial wastewaters depend on stream properties and regeneration throughput.

  4. The cell biology of regeneration

    PubMed Central

    King, Ryan S.

    2012-01-01

    Regeneration of complex structures after injury requires dramatic changes in cellular behavior. Regenerating tissues initiate a program that includes diverse processes such as wound healing, cell death, dedifferentiation, and stem (or progenitor) cell proliferation; furthermore, newly regenerated tissues must integrate polarity and positional identity cues with preexisting body structures. Gene knockdown approaches and transgenesis-based lineage and functional analyses have been instrumental in deciphering various aspects of regenerative processes in diverse animal models for studying regeneration. PMID:22391035

  5. Tibetan medicine and regeneration.

    PubMed

    Dhondup, Lobsang; Husted, Cynthia

    2009-08-01

    An overview of the concept of regeneration in Tibetan medicine is presented with descriptions of detoxification and tonification longevity protocols. The body must be fortified before receiving stronger treatments for regeneration. All disease is brought into balance with understanding of the interplay of the five elements, three humors, and their qualities and locations. The example of multiple sclerosis (MS) is given. The macroscopic three-humor interpretation of MS agrees with the microscopic three-humor description of demyelination, providing a new framework for the understanding and treatment of MS. Treatments for MS and other chronic conditions are based on age, season, time of day, and the individual's three-humor and hot (excess) and cold (deficiency) balance. Treatments to promote regeneration include nutrition, gentle exercise, herbal formulas, accessory therapies such as herbal baths and oils, and meditation. It is built into the theory of Tibetan medicine to have predictions about outcome and distinguish different disease patterns in patients with MS and other disorders. Taking into account daily and seasonal variations coupled with the changing nature of MS, it is critical to frequently evaluate people with MS and other chronic conditions for monitoring and adjustment of treatment for regeneration.

  6. Regenerator seal design

    DOEpatents

    Eckart, Francis H.

    1982-01-01

    A rotary regenerator disc matrix has a face seal with a cross arm and arcuate rim segments joined by prestress clamps to prestrain the arcuate rim seals so as to compensate seal rim twisting or coning and resultant disc face seal leakage as produced by operating thermal gradients across the seal.

  7. Receptor Tyrosine Kinases: Molecular Switches Regulating CNS Axon Regeneration

    PubMed Central

    Vigneswara, Vasanthy; Kundi, Sarina; Ahmed, Zubair

    2012-01-01

    The poor or lack of injured adult central nervous system (CNS) axon regeneration results in devastating consequences and poor functional recovery. The interplay between the intrinsic and extrinsic factors contributes to robust inhibition of axon regeneration of injured CNS neurons. The insufficient or lack of trophic support for injured neurons is considered as one of the major obstacles contributing to their failure to survive and regrow their axons after injury. In the CNS, many of the signalling pathways associated with neuronal survival and axon regeneration are regulated by several classes of receptor tyrosine kinases (RTK) that respond to a variety of ligands. This paper highlights and summarises the most relevant recent findings pertinent to different classes of the RTK family of molecules, with a particular focus on elucidating their role in CNS axon regeneration. PMID:22848811

  8. Regeneration of the vocal fold using autologous mesenchymal stem cells.

    PubMed

    Kanemaru, Shin-Ichi; Nakamura, Tatsuo; Omori, Koichi; Kojima, Hisayoshi; Magrufov, Akhmar; Hiratsuka, Yasuyuki; Hirano, Shigeru; Ito, Juichi; Shimizu, Yasuhiko

    2003-11-01

    The aim of this study was to regenerate the injured vocal fold by means of selective cultured autologous mesenchymal stem cells (MSCs). Eight adult beagle dogs were used for this experiment. Selective incubation of MSCs from bone marrow was done. These MSCs were submitted to 3-dimensional incubation in 1% hydrochloric acid atelocollagen. Three-dimensional incubated MSCs were injected into the left vocal fold, and atelocollagen only was injected into the right vocal fold of the same dog as a control. Four days after injection, the posterior parts of the vocal folds were incised. The regeneration of the vocal fold was estimated by morphological and histologic evaluations. Our results showed that 3-dimensional incubated MSCs were useful in the regeneration of the injured vocal fold. This study shows that damaged tissues such as an injured vocal fold would be able to be regenerated by tissue engineering. PMID:14653358

  9. Regenerated Fe is tasty!

    NASA Astrophysics Data System (ADS)

    Nuester, J.; Twining, B. S.

    2012-12-01

    Bioavailability of nutrients is an essential factor controlling primary productivity in the ocean. In addition to macronutrients such as nitrogen and phosphorous, availability of the trace element iron unequivocally affects growth rates and community structure of phytoplankton and thereby primary productivity in many ocean regions. External sources of iron such as Aeolian dust, upwelling of Fe-rich waters, and hydrothermal are reduced in high-nutrient low-chlorophyll regions, and most Fe used by phytoplankton has been regenerated by zooplankton. While zooplankton regeneration of Fe was first shown two decades ago, major factors controlling this process such as chemical composition of prey and grazer taxonomy are not well constrained. As pH varies significantly in digestive systems between protozoa and mesozooplankton, we hypothesize that the extent and the bioavailability of regenerated Fe is a function of the digestive physiology. Furthermore, major element components such as silica for diatoms and calcium carbonate for cocolithophores may be able to buffer the pH of digestive systems of different grazer taxa. Such effects may further influence the magnitude and bioavailability of regenerated Fe. In order to constrain the effect of grazer taxonomy and chemical composition of prey on Fe bioavailability, 55Fe-labeled phytoplankton were fed to different grazers and unlabeled phytoplankton were subsequently inoculated to the filtrate of the grazing experiment in the regrowth phase of the experiment, and the uptake of 55Fe into the phytoplankton biomass was monitored over time. A parallel uptake experiment using inorganic 55Fe was used to compare the bioavailability of regenerated and inorganic Fe to the same phytoplankton species. Furthermore, some samples of the inorganic and the regenerated uptake experiments were treated with an oxalate rinse to remove any adsorbed Fe. This allowed us to estimate the adsorption of 55Fe from either source to the cell walls of

  10. Digital Libraries.

    ERIC Educational Resources Information Center

    Fox, Edward A.; Urs, Shalini R.

    2002-01-01

    Provides an overview of digital libraries research, practice, and literature. Highlights include new technologies; redefining roles; historical background; trends; creating digital content, including conversion; metadata; organizing digital resources; services; access; information retrieval; searching; natural language processing; visualization;…

  11. Characterization of optic nerve regeneration using transgenic zebrafish

    PubMed Central

    Diekmann, Heike; Kalbhen, Pascal; Fischer, Dietmar

    2015-01-01

    In contrast to the adult mammalian central nervous system (CNS), fish are able to functionally regenerate severed axons upon injury. Although the zebrafish is a well-established model vertebrate for genetic and developmental studies, its use for anatomical studies of axon regeneration has been hampered by the paucity of appropriate tools to visualize re-growing axons in the adult CNS. On this account, we used transgenic zebrafish that express enhanced green fluorescent protein (GFP) under the control of a GAP-43 promoter. In adult, naïve retinae, GFP was restricted to young retinal ganglion cells (RGCs) and their axons. Within the optic nerve, these fluorescent axons congregated in a distinct strand at the nerve periphery, indicating age-related order. Upon optic nerve crush, GFP expression was markedly induced in RGC somata and intra-retinal axons at 4 to at least 14 days post injury. Moreover, individual axons were visualized in their natural environment of the optic nerve using wholemount tissue clearing and confocal microscopy. With this novel approach, regenerating axons were clearly detectable beyond the injury site as early as 2 days after injury and grew past the optic chiasm by 4 days. Regenerating axons in the entire optic nerve were labeled from 6 to at least 14 days after injury, thereby allowing detailed visualization of the complete regeneration process. Therefore, this new approach could now be used in combination with expression knockdown or pharmacological manipulations to analyze the relevance of specific proteins and signaling cascades for axonal regeneration in vivo. In addition, the RGC-specific GFP expression facilitated accurate evaluation of neurite growth in dissociated retinal cultures. This fast in vitro assay now enables the screening of compound and expression libraries. Overall, the presented methodologies provide exciting possibilities to investigate the molecular mechanisms underlying successful CNS regeneration in zebrafish. PMID

  12. Whole-body acoel regeneration is controlled by Wnt and Bmp-Admp signaling.

    PubMed

    Srivastava, Mansi; Mazza-Curll, Kathleen L; van Wolfswinkel, Josien C; Reddien, Peter W

    2014-05-19

    Whole-body regeneration is widespread in the Metazoa, yet little is known about how underlying molecular mechanisms compare across phyla. Acoels are an enigmatic phylum of invertebrate worms that can be highly informative about many questions in bilaterian evolution, including regeneration. We developed the three-banded panther worm, Hofstenia miamia, as a new acoelomorph model system for molecular studies of regeneration. Hofstenia were readily cultured, with accessible embryos, juveniles, and adults for experimentation. We developed molecular resources and tools for Hofstenia, including a transcriptome and robust systemic RNAi. We report the identification of molecular mechanisms that promote whole-body regeneration in Hofstenia. Wnt signaling controls regeneration of the anterior-posterior axis, and Bmp-Admp signaling controls regeneration of the dorsal-ventral axis. Perturbation of these pathways resulted in regeneration-abnormal phenotypes involving axial feature duplication, such as the regeneration of two heads following Wnt perturbation or the regeneration of ventral cells in place of dorsal ones following bmp or admp RNAi. Hofstenia regenerative mechanisms are strikingly similar to those guiding regeneration in planarians. However, phylogenetic analyses using the Hofstenia transcriptome support an early branching position for acoels among bilaterians, with the last common ancestor of acoels and planarians being the ancestor of the Bilateria. Therefore, these findings identify similar whole-body regeneration mechanisms in animals separated by more than 550 million years of evolution.

  13. Matrix metalloproteinases in osteoclasts of ontogenetic and regenerating zebrafish scales.

    PubMed

    de Vrieze, Erik; Sharif, Faiza; Metz, Juriaan R; Flik, Gert; Richardson, Michael K

    2011-04-01

    Matrix metalloproteinases (MMPs) are key enzymes in the turnover of extracellular matrix in health, disease, development and regeneration. We have studied zebrafish scale regeneration to ascertain the role of MMP-2 and MMP-9 in these processes. Scales were plucked from the surface of anaesthetised adult male zebrafish, and the scales that regenerated in the scale pocket were recovered at various time points after plucking. Analyses consisted of (i) mmp-9 in situ hybridisation; (ii) MMP-9+TRAcP double-staining; (iii) qRT-PCR for mmp-2 and mmp-9; (iv) zymography for gelatinolytic activity and (v) a hydroxyproline assay. We found that mmp-9 positive cells were confined to the episquamal side of the scales. Ontogenetic scales had irregular clusters of mono- and multinucleated mmp-9 expressing cells along their lateral margins and radii. During regeneration, mmp-9 positive cells were seen on the scale plate, but not along the lateral margins. Double staining for TRAcP and MMP-9 revealed the osteoclastic nature of these cells. During early scale regeneration, mmp-2 and mmp-9 transcripts increased in abundance in the scale, enzymatic MMP activity increased and collagen degradation was detected by means of hydroxyproline measurements. Near the end of regeneration, all of these parameters returned to the basal values seen in ontogenetic scales. These findings suggest that MMPs play an important role in remodelling of the scale plate during regeneration, and that this function resides in mononucleated and multinucleated osteoclasts which co-express TRAcP and mmp-9. Our findings suggest that the fish scale regeneration model may be a useful system in which to study the cells and mechanisms responsible for regeneration, development and skeletal remodelling.

  14. Transcriptional components of anteroposterior positional information during zebrafish fin regeneration

    PubMed Central

    Nachtrab, Gregory; Kikuchi, Kazu; Tornini, Valerie A.; Poss, Kenneth D.

    2013-01-01

    Many fish and salamander species regenerate amputated fins or limbs, restoring the size and shape of the original appendage. Regeneration requires that spared cells retain or recall information encoding pattern, a phenomenon termed positional memory. Few factors have been implicated in positional memory during vertebrate appendage regeneration. Here, we investigated potential regulators of anteroposterior (AP) pattern during fin regeneration in adult zebrafish. Sequence-based profiling from tissues along the AP axis of uninjured pectoral fins identified many genes with region-specific expression, several of which encoded transcription factors with known AP-specific expression or function in developing embryonic pectoral appendages. Transgenic reporter strains revealed that regulatory sequences of the transcription factor gene alx4a activated expression in fibroblasts and osteoblasts within anterior fin rays, whereas hand2 regulatory sequences activated expression in these same cell types within posterior rays. Transgenic overexpression of hand2 in all pectoral fin rays did not affect formation of the proliferative regeneration blastema, yet modified the lengths and widths of regenerating bones. Hand2 influenced the character of regenerated rays in part by elevation of the vitamin D-inactivating enzyme encoded by cyp24a1, contributing to region-specific regulation of bone metabolism. Systemic administration of vitamin D during regeneration partially rescued bone defects resulting from hand2 overexpression. Thus, bone-forming cells in a regenerating appendage maintain expression throughout life of transcription factor genes that can influence AP pattern, and differ across the AP axis in their expression signatures of these and other genes. These findings have implications for mechanisms of positional memory in vertebrate tissues. PMID:23924636

  15. Neuronal regeneration from ependymo-radial glial cells: cook, little pot, cook!

    PubMed

    Becker, Catherina G; Becker, Thomas

    2015-02-23

    Adult fish and salamanders regenerate specific neurons as well as entire CNS areas after injury. Recent studies shed light on how these anamniotes activate progenitor cells, generate the required cell types, and functionally integrate these into a complex environment. Some developmental signals and mechanisms are recapitulated during neuronal regeneration, whereas others are unique to the regeneration process. The use of genetic techniques, such as cell ablation and lineage-tracing, in combination with cell-type-specific expression profiling reveal factors that initiate, fine-tune, and terminate the regenerative response in anamniotes, with a view to translating findings to non-regenerating species.

  16. Amphibian tail regeneration in space: effect on the pigmentation of the blastema

    NASA Astrophysics Data System (ADS)

    Grinfeld, S.; Foulquier, F.; Mitashov, V.; Bruchlinskaia, N.; Duprat, A. M.

    In Urodele amphibians, the tail regenerates after section. This regeneration, including tissues as different as bone (vertebrae), muscle, epidermis and central nervous system (spinal cord), was studied in adult Pleurodeles sent aboard the russian satellite Bion 10 and compared with tail regeneration in synchronous controls. Spinal cord, muscle and cartilage regeneration occurred in space animals as in synchronous controls. One of the most important differences between the two groups was the pigmentation of the blastemas: it was shown in laboratory, to be not due to a difference in light intensity.

  17. Tissue regeneration with photobiomodulation

    NASA Astrophysics Data System (ADS)

    Tang, Elieza G.; Arany, Praveen R.

    2013-03-01

    Low level light therapy (LLLT) has been widely reported to reduce pain and inflammation and enhance wound healing and tissue regeneration in various settings. LLLT has been noted to have both stimulatory and inhibitory biological effects and these effects have been termed Photobiomodulation (PBM). Several elegant studies have shown the key role of Cytochrome C oxidase and ROS in initiating this process. The downstream biological responses remain to be clearly elucidated. Our work has demonstrated activation of an endogenous latent growth factor complex, TGF-β1, as one of the major biological events in PBM. TGF-β1 has critical roles in various biological processes especially in inflammation, immune responses, wound healing and stem cell biology. This paper overviews some of the studies demonstrating the efficacy of PBM in promoting tissue regeneration.

  18. Regenerable adsorption system

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Subir (Inventor); Perry, Jay (Inventor); Walsh, Dennis (Inventor)

    2006-01-01

    A method for regenerable adsorption includes providing a substrate that defines at least one layer of ultra short channel length mesh capable of conducting an electrical current therethrough, coating at least a portion of the substrate with a desired sorbent for trace contaminant control or CO.sub.2 sorption, resistively heating the substrate, and passing a flowstream through the substrate and in contact with the sorbent.

  19. Digital Preservation.

    ERIC Educational Resources Information Center

    Yakel, Elizabeth

    2001-01-01

    Reviews research on digital preservation issues, including born-digital and digitally recreated documents. Discusses electronic records research; metadata and other standards; electronic mail; Web-based documents; moving images media; selection of materials for digitization, including primary sources; administrative issues; media stability…

  20. Myelin regeneration: a recapitulation of development?

    PubMed

    Fancy, Stephen P J; Chan, Jonah R; Baranzini, Sergio E; Franklin, Robin J M; Rowitch, David H

    2011-01-01

    The developmental process of myelination and the adult regenerative process of remyelination share the common objective of investing nerve axons with myelin sheaths. A central question in myelin biology is the extent to which the mechanisms of these two processes are conserved, a concept encapsulated in the recapitulation hypothesis of remyelination. This question also has relevance for translating myelin biology into a better understanding of and eventual treatments for human myelin disorders. Here we review the current evidence for the recapitulation hypothesis and discuss recent findings in the development and regeneration of myelin in the context of human neurological disease.

  1. Serotonin Promotes Development and Regeneration of Spinal Motor Neurons in Zebrafish.

    PubMed

    Barreiro-Iglesias, Antón; Mysiak, Karolina S; Scott, Angela L; Reimer, Michell M; Yang, Yujie; Becker, Catherina G; Becker, Thomas

    2015-11-01

    In contrast to mammals, zebrafish regenerate spinal motor neurons. During regeneration, developmental signals are re-deployed. Here, we show that, during development, diffuse serotonin promotes spinal motor neuron generation from pMN progenitor cells, leaving interneuron numbers unchanged. Pharmacological manipulations and receptor knockdown indicate that serotonin acts at least in part via 5-HT1A receptors. In adults, serotonin is supplied to the spinal cord mainly (90%) by descending axons from the brain. After a spinal lesion, serotonergic axons degenerate caudal to the lesion but sprout rostral to it. Toxin-mediated ablation of serotonergic axons also rostral to the lesion impaired regeneration of motor neurons only there. Conversely, intraperitoneal serotonin injections doubled numbers of new motor neurons and proliferating pMN-like progenitors caudal to the lesion. Regeneration of spinal-intrinsic serotonergic interneurons was unaltered by these manipulations. Hence, serotonin selectively promotes the development and adult regeneration of motor neurons in zebrafish.

  2. Serotonin Promotes Development and Regeneration of Spinal Motor Neurons in Zebrafish

    PubMed Central

    Barreiro-Iglesias, Antón; Mysiak, Karolina S.; Scott, Angela L.; Reimer, Michell M.; Yang (杨宇婕), Yujie; Becker, Catherina G.; Becker, Thomas

    2015-01-01

    Summary In contrast to mammals, zebrafish regenerate spinal motor neurons. During regeneration, developmental signals are re-deployed. Here, we show that, during development, diffuse serotonin promotes spinal motor neuron generation from pMN progenitor cells, leaving interneuron numbers unchanged. Pharmacological manipulations and receptor knockdown indicate that serotonin acts at least in part via 5-HT1A receptors. In adults, serotonin is supplied to the spinal cord mainly (90%) by descending axons from the brain. After a spinal lesion, serotonergic axons degenerate caudal to the lesion but sprout rostral to it. Toxin-mediated ablation of serotonergic axons also rostral to the lesion impaired regeneration of motor neurons only there. Conversely, intraperitoneal serotonin injections doubled numbers of new motor neurons and proliferating pMN-like progenitors caudal to the lesion. Regeneration of spinal-intrinsic serotonergic interneurons was unaltered by these manipulations. Hence, serotonin selectively promotes the development and adult regeneration of motor neurons in zebrafish. PMID:26565906

  3. Live imaging reveals the progenitors and cell dynamics of limb regeneration

    PubMed Central

    Alwes, Frederike; Enjolras, Camille; Averof, Michalis

    2016-01-01

    Regeneration is a complex and dynamic process, mobilizing diverse cell types and remodelling tissues over long time periods. Tracking cell fate and behaviour during regeneration in active adult animals is especially challenging. Here, we establish continuous live imaging of leg regeneration at single-cell resolution in the crustacean Parhyale hawaiensis. By live recordings encompassing the first 4-5 days after amputation, we capture the cellular events that contribute to wound closure and morphogenesis of regenerating legs with unprecedented resolution and temporal detail. Using these recordings we are able to track cell lineages, to generate fate maps of the blastema and to identify the progenitors of regenerated epidermis. We find that there are no specialized stem cells for the epidermis. Most epidermal cells in the distal part of the leg stump proliferate, acquire new positional values and contribute to new segments in the regenerating leg. DOI: http://dx.doi.org/10.7554/eLife.19766.001 PMID:27776632

  4. Comparative analysis of ear-hole closure identifies epimorphic regeneration as a discrete trait in mammals.

    PubMed

    Gawriluk, Thomas R; Simkin, Jennifer; Thompson, Katherine L; Biswas, Shishir K; Clare-Salzler, Zak; Kimani, John M; Kiama, Stephen G; Smith, Jeramiah J; Ezenwa, Vanessa O; Seifert, Ashley W

    2016-01-01

    Why mammals have poor regenerative ability has remained a long-standing question in biology. In regenerating vertebrates, injury can induce a process known as epimorphic regeneration to replace damaged structures. Using a 4-mm ear punch assay across multiple mammalian species, here we show that several Acomys spp. (spiny mice) and Oryctolagus cuniculus completely regenerate tissue, whereas other rodents including MRL/MpJ 'healer' mice heal similar injuries by scarring. We demonstrate ear-hole closure is independent of ear size, and closure rate can be modelled with a cubic function. Cellular and genetic analyses reveal that injury induces blastema formation in Acomys cahirinus. Despite cell cycle re-entry in Mus musculus and A. cahirinus, efficient cell cycle progression and proliferation only occurs in spiny mice. Together, our data unite blastema-mediated regeneration in spiny mice with regeneration in other vertebrates such as salamanders, newts and zebrafish, where all healthy adults regenerate in response to injury. PMID:27109826

  5. Regenerative capacity in newts is not altered by repeated regeneration and ageing.

    PubMed

    Eguchi, Goro; Eguchi, Yukiko; Nakamura, Kenta; Yadav, Manisha C; Millán, José Luis; Tsonis, Panagiotis A

    2011-07-12

    The extent to which adult newts retain regenerative capability remains one of the greatest unanswered questions in the regeneration field. Here we report a long-term lens regeneration project spanning 16 years that was undertaken to address this question. Over that time, the lens was removed 18 times from the same animals, and by the time of the last tissue collection, specimens were at least 30 years old. Regenerated lens tissues number 18 and number 17, from the last and the second to the last extraction, respectively, were analysed structurally and in terms of gene expression. Both exhibited structural properties identical to lenses from younger animals that had never experienced lens regeneration. Expression of mRNAs encoding key lens structural proteins or transcription factors was very similar to that of controls. Thus, contrary to the belief that regeneration becomes less efficient with time or repetition, repeated regeneration, even at old age, does not alter newt regenerative capacity.

  6. Mechanisms underlying vertebrate limb regeneration: lessons from the salamander.

    PubMed

    Brockes, Jeremy P; Gates, Phillip B

    2014-06-01

    Limb regeneration in adult salamanders proceeds by formation of a mound of progenitor cells called the limb blastema. It provides several pointers for regenerative medicine. These include the role of differentiated cells in the origin of the blastema, the role of regenerating axons of peripheral nerves and the importance of cell specification in conferring morphogenetic autonomy on the blastema. One aspect of regeneration that has received less attention is the ability to undergo multiple episodes without detectable change in the outcome, and with minimal effect of aging. We suggest that, although such pointers are valuable, it is important to understand why salamanders are the only adult tetrapod vertebrates able to regenerate their limbs. Although this remains a controversial issue, the existence of salamander-specific genes that play a significant role in the mechanism of regeneration provides evidence for the importance of local evolution, rather than a purely ancestral mechanism. The three-finger protein called Prod1 is discussed in the present article as an exemplar of this approach.

  7. Stem cells sources for intervertebral disc regeneration.

    PubMed

    Vadalà, Gianluca; Russo, Fabrizio; Ambrosio, Luca; Loppini, Mattia; Denaro, Vincenzo

    2016-05-26

    Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments. Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers (e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration.

  8. microRNA and Cardiac Regeneration.

    PubMed

    Gnecchi, Massimiliano; Pisano, Federica; Bariani, Riccardo

    2015-01-01

    Heart diseases are a very common health problem in developed as well as developing countries. In particular, ischemic heart disease and heart failure represent a plague for the patients and for the society. Loss of cardiac tissue after myocardial infarction or dysfunctioning tissue in nonischemic cardiomyopathies may result in cardiac failure. Despite great advancements in the treatment of these diseases, there is a substantial unmet need for novel therapies, ideally addressing repair and regeneration of the damaged or lost myocardium. Along this line, cardiac cell based therapies have gained substantial attention. Three main approaches are currently under investigation: stem cell therapy with either embryonic or adult stem cells; generation of patient-specific induced pluripotent stem cells; stimulation of endogenous regeneration trough direct reprogramming of fibroblasts into cardiomyocytes, activation of resident cardiac stem cells or induction of native resident cardiomyocytes to reenter the cell cycle. All these strategies need to be optimized since their efficiency is low.It has recently become clear that cardiac signaling and transcriptional pathways are intimately intertwined with microRNA molecules which act as modulators of cardiac development, function, and disease. Moreover, miRNA also regulates stem cell differentiation. Here we describe how miRNA may circumvent hurdles that hamper the field of cardiac regeneration and stem cell therapy, and how miRNA may result as the most suitable solution for the damaged heart.

  9. Stem cells sources for intervertebral disc regeneration

    PubMed Central

    Vadalà, Gianluca; Russo, Fabrizio; Ambrosio, Luca; Loppini, Mattia; Denaro, Vincenzo

    2016-01-01

    Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments. Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers (e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration. PMID:27247704

  10. Stem cells sources for intervertebral disc regeneration.

    PubMed

    Vadalà, Gianluca; Russo, Fabrizio; Ambrosio, Luca; Loppini, Mattia; Denaro, Vincenzo

    2016-05-26

    Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments. Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers (e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration. PMID:27247704

  11. Posterior regeneration in Isodiametra pulchra (Acoela, Acoelomorpha)

    PubMed Central

    2013-01-01

    Introduction Regeneration is a widespread phenomenon in the animal kingdom, but the capacity to restore damaged or missing tissue varies greatly between different phyla and even within the same phylum. However, the distantly related Acoelomorpha and Platyhelminthes share a strikingly similar stem-cell system and regenerative capacity. Therefore, comparing the underlying mechanisms in these two phyla paves the way for an increased understanding of the evolution of this developmental process. To date, Isodiametra pulchra is the most promising candidate as a model for the Acoelomorpha, as it reproduces steadily under laboratory conditions and is amenable to various techniques, including the silencing of gene expression by RNAi. In order to provide an essential framework for future studies, we report the succession of regeneration events via the use of cytochemical, histological and microscopy techniques, and specify the total number of cells in adult individuals. Results Isodiametra pulchra is not capable of regenerating a new head, but completely restores all posterior structures within 10 days. Following amputation, the wound closes via the contraction of local muscle fibres and an extension of the dorsal epidermis. Subsequently, stem cells and differentiating cells invade the wound area and form a loosely delimited blastema. After two days, the posterior end is re-patterned with the male (and occasionally the female) genital primordium being apparent. Successively, these primordia differentiate into complete copulatory organs. The size of the body and also of the male and female copulatory organs, as well as the distance between the copulatory organs, progressively increase and by nine days copulation is possible. Adult individuals with an average length of 670 μm consist of approximately 8100 cells. Conclusion Isodiametra pulchra regenerates through a combination of morphallactic and epimorphic processes. Existing structures are “re-modelled” and provide a

  12. Tooth regeneration: a revolution in stomatology and evolution in regenerative medicine

    PubMed Central

    Yildirim, Sibel; Fu, Susan Y; Kim, Keith; Zhou, Hong; Lee, Chang Hun; Li, Ang; Kim, Sahng Gyoon; Wang, Shuang; Mao, Jeremy J

    2011-01-01

    A tooth is a complex biological organ and consists of multiple tissues including the enamel, dentin, cementum and pulp. Tooth loss is the most common organ failure. Can a tooth be regenerated? Can adult stem cells be orchestrated to regenerate tooth structures such as the enamel, dentin, cementum and dental pulp, or even an entire tooth? If not, what are the therapeutically viable sources of stem cells for tooth regeneration? Do stem cells necessarily need to be taken out of the body, and manipulated ex vivo before they are transplanted for tooth regeneration? How can regenerated teeth be economically competitive with dental implants? Would it be possible to make regenerated teeth affordable by a large segment of the population worldwide? This review article explores existing and visionary approaches that address some of the above-mentioned questions. Tooth regeneration represents a revolution in stomatology as a shift in the paradigm from repair to regeneration: repair is by metal or artificial materials whereas regeneration is by biological restoration. Tooth regeneration is an extension of the concepts in the broad field of regenerative medicine to restore a tissue defect to its original form and function by biological substitutes. PMID:21789959

  13. Temperature preference during forelimb regeneration in the red-spotted newt Notophthalmus viridescens.

    PubMed

    Tattersall, Glenn J; Tyson, Teala M; Lenchyshyn, Jessika R; Carlone, Robert L

    2012-04-01

    Red-spotted newts (Notophthalmus viridescens) are model organisms for regenerative research. These animals can regenerate limbs, tails, jaws, spinal cords, as well as the lens of the eye. Newts are small ectotherms that are aquatic as adults; as ectotherms, they naturally conform to the temperature of their surroundings. Environmental temperatures, however, can increase or decrease the red-spotted newt's metabolic processes, including their rate of tissue regeneration; whether an optimal temperature for this rate of regeneration exists is unknown. However, newts do exhibit behavioral preferences for certain temperatures, and these thermal preferences can change with season or with acclimation. Given this flexibility in behavioral thermoregulation, we hypothesized that the process of tissue regeneration could also affect thermal preference, given the metabolic costs or altered temperature sensitivities of tissue regrowth. It was predicted that regenerating newts would select an environmental temperature that maximized the rate of regeneration, however, this prediction was not fully supported. Thermal preference trials revealed that newts consistently selected temperatures between 24 and 25°C throughout regeneration. This temperature selection was warmer than that of uninjured conspecifics, but was lower than temperatures that would have further augmented the rate of regeneration. Interestingly, regenerating newts maintained a more stable temperature preference than sham newts, suggesting that accuracy in thermoregulation may be more important to regenerating individuals, than to noninjured individuals.

  14. Regenerating Water-Sterilizing Resins

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.

    1982-01-01

    Iodine-dispensing resin can be regenerated after iodine content has been depleted, without being removed from water system. Resin is used to make water potable by killing bacteria, fungi, and viruses. Regeneration technique may be come basis of water purifier for very long space missions. Enough crystalline iodine for multiple regenerations during mission can be stored in one small cartridge. Cartridge could be inserted in waterline as necessary on signal from iodine monitor or timer.

  15. Towards a comprehensive model of feather regeneration.

    PubMed

    Maderson, Paul F A; Hillenius, Willem J; Hiller, Uwe; Dove, Carla C

    2009-10-01

    Understanding of the regeneration of feathers, despite a 140 year tradition of study, has remained substantially incomplete. Moreover, accumulated errors and mis-statements in the literature have confounded the intrinsic difficulties in describing feather regeneration. Lack of allusion to Rudall's (Rudall [1947] Biochem Biophys Acta 1:549-562) seminal X-ray diffraction study that revealed two distinct keratins, beta- and alpha-, in a mature feather, is one of the several examples where lack of citation long inhibited progress in understanding. This article reviews and reevaluates the available literature and provides a synthetic, comprehensive, morphological model for the regeneration of a generalized, adult contour feather. Particular attention is paid to several features that have previously been largely ignored. Some of these, such as the beta-keratogenic sheath and the alpha-keratogenic, supra-umbilical, pulp caps, are missing from mature, functional feathers sensu stricto because they are lost through preening, but these structures nevertheless play a critical role in development. A new developmental role for a tissue unique to feathers, the medullary pith of the rachis and barb rami, and especially its importance in the genesis of the superior umbilical region (SUR) that forms the transition from the spathe (rachis and vanes) to the calamus, is described. It is postulated that feathers form through an intricate interplay between cyto- and histodifferentiative processes, determined by patterning signals that emanate from the dermal core, and a suite of interacting biomechanical forces. Precisely regulated patterns of loss of intercellular adhesivity appear to be the most fundamental aspect of feather morphogenesis and regeneration: rather than a hierarchically branched structure, it appears more appropriate to conceive of feathers as a sheet of mature keratinocytes that is "full of holes.

  16. Understanding Urban Regeneration in Turkey

    NASA Astrophysics Data System (ADS)

    Candas, E.; Flacke, J.; Yomralioglu, T.

    2016-06-01

    In Turkey, rapid population growth, informal settlements, and buildings and infrastructures vulnerable to natural hazards are seen as the most important problems of cities. Particularly disaster risk cannot be disregarded, as large parts of various cities are facing risks from earthquakes, floods and landslides and have experienced loss of lives in the recent past. Urban regeneration is an important planning tool implemented by local and central governments in order to reduce to disaster risk and to design livable environments for the citizens. The Law on the Regeneration of Areas under Disaster Risk, commonly known as the Urban Regeneration Law, was enacted in 2012 (Law No.6306, May 2012). The regulation on Implementation of Law No. 6306 explains the fundamental steps of the urban regeneration process. The relevant institutions furnished with various authorities such as expropriation, confiscation and changing the type and place of your property which makes urban regeneration projects very important in terms of property rights. Therefore, urban regeneration projects have to be transparent, comprehensible and acceptable for all actors in the projects. In order to understand the urban regeneration process, the legislation and projects of different municipalities in Istanbul have been analyzed. While some steps of it are spatial data demanding, others relate to land values. In this paper an overview of the urban regeneration history and activities in Turkey is given. Fundamental steps of the urban regeneration process are defined, and particularly spatial-data demanding steps are identified.

  17. Synthetic Phage for Tissue Regeneration

    PubMed Central

    Merzlyak, Anna; Lee, Seung-Wuk

    2014-01-01

    Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy. PMID:24991085

  18. Effect of adenine sulphate interaction on growth and development of shoot regeneration and inhibition of shoot tip necrosis under in vitro condition in adult Syzygium cumini L.--a multipurpose tree.

    PubMed

    Naaz, Afshan; Shahzad, Anwar; Anis, Mohammad

    2014-05-01

    An efficient method for cloning Syzygium cumini (above 40 years old) through mature nodal segments has been successfully developed and that could be exploited for large-scale production of this valuable multipurpose tree. Nodal segments from mature tree were taken as explants and cultured on MS basal medium with different cytokinins (BA, Kin, AdS). The application of BA proved to be the best responsive cytokinin for the induction of shoot buds and shoots, but the proliferated shoots exhibited slower and stunted growth accompanied with abscission of leaves and shoot tip necrosis (STN). The problem of leaf abscission and STN was considerably reduced by the application of an adjuvant, adenine sulphate (AdS) in the optimal medium which led to the production of a maximum of 14 shoots. Further improvement in shoot bud regeneration and improved growth pattern of the regenerating tissue was obtained on the media comprised of MS + BA (10 μM) + GA3 (2.5 μM). A total number of 15 shoots with mean shoot length of 5.9 cm was obtained. The healthy elongated shoots were then rooted on MS basal augmented with NAA (5 μM). The plantlets obtained were healthy and were successfully acclimatized and transferred under field condition with 70 % survival rate.

  19. Cell Death and Tissue Remodeling in Planarian Regeneration

    PubMed Central

    Pellettieri, Jason; Fitzgerald, Patrick; Watanabe, Shigeki; Mancuso, Joel; Green, Douglas R.; Alvarado, Alejandro Sánchez

    2010-01-01

    Many long-lived organisms, including humans, can regenerate some adult tissues lost to physical injury or disease. Much of the previous research on mechanisms of regeneration has focused on adult stem cells, which give rise to new tissue necessary for the replacement of missing body parts. Here we report that apoptosis of differentiated cells complements stem cell division during regeneration in the planarian Schmidtea mediterranea. Specifically, we developed a whole-mount TUNEL assay that allowed us to document two dramatic increases in the rate of apoptosis following amputation – an intial localized response near the wound site and a subsequent systemic response that varies in magnitude depending on the type of fragment examined. The latter cell death response can be induced in uninjured organs, occurs in the absence of planarian stem cells, and can also be triggered by prolonged starvation. Taken together, our results implicate apoptosis in the restoration of proper anatomical scale and proportion through remodeling of existing tissues. We also report results from initial mechanistic studies of apoptosis in planarians, which revealed that a S. mediterranea homolog of the antiapoptotic gene BCL2 is required for cell survival in adult animals. We propose that apoptosis is a central mechanism working in concert with stem cell division to restore anatomical form and function during metazoan regeneration. PMID:19766622

  20. Closed end regeneration method

    DOEpatents

    Yang, Arthur Jing-Min; Zhang, Yuehua

    2006-06-27

    A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g. metal, enzyme, etc. particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as irons, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.

  1. Regenerable solid imine sorbents

    DOEpatents

    Gray, McMahan; Champagne, Kenneth J.; Fauth, Daniel; Beckman, Eric

    2013-09-10

    Two new classes of amine-based sorbents are disclosed. The first class comprises new polymer-immobilized tertiary amine sorbents; the second class new polymer-bound amine sorbents. Both classes are tailored to facilitate removal of acid anhydrides, especially carbon dioxide (CO.sub.2), from effluent gases. The amines adsorb acid anhydrides in a 1:1 molar ratio. Both classes of amine sorbents adsorb in the temperature range from about 20.degree. C. upwards to 90.degree. C. and can be regenerated by heating upwards to 100.degree. C.

  2. Pathogenic shifts in endogenous microbiota impede tissue regeneration via distinct activation of TAK1/MKK/p38.

    PubMed

    Arnold, Christopher P; Merryman, M Shane; Harris-Arnold, Aleishia; McKinney, Sean A; Seidel, Chris W; Loethen, Sydney; Proctor, Kylie N; Guo, Longhua; Sánchez Alvarado, Alejandro

    2016-07-21

    The interrelationship between endogenous microbiota, the immune system, and tissue regeneration is an area of intense research due to its potential therapeutic applications. We investigated this relationship in Schmidtea mediterranea, a model organism capable of regenerating any and all of its adult tissues. Microbiome characterization revealed a high Bacteroidetes to Proteobacteria ratio in healthy animals. Perturbations eliciting an expansion of Proteobacteria coincided with ectopic lesions and tissue degeneration. The culture of these bacteria yielded a strain of Pseudomonas capable of inducing progressive tissue degeneration. RNAi screening uncovered a TAK1 innate immune signaling module underlying compromised tissue homeostasis and regeneration during infection. TAK1/MKK/p38 signaling mediated opposing regulation of apoptosis during infection versus normal tissue regeneration. Given the complex role of inflammation in either hindering or supporting reparative wound healing and regeneration, this invertebrate model provides a basis for dissecting the duality of evolutionarily conserved inflammatory signaling in complex, multi-organ adult tissue regeneration.

  3. Use of a Hand-Held Personal Digital Assistant (PDA) to Self-Prompt Pedestrian Travel by Young Adults with Moderate Intellectual Disabilities

    ERIC Educational Resources Information Center

    Mechling, Linda C.; Seid, Nicole H.

    2011-01-01

    The purpose of this study was to evaluate use of a personal digital assistant (PDA) with picture, auditory, and video prompts as a portable self-prompting device to facilitate independent pedestrian travel by three high school age students with moderate intellectual disabilities. Using a multiple probe design across three destinations and their…

  4. Keeping at arm’s length during regeneration

    PubMed Central

    Tornini, Valerie A.; Poss, Kenneth D.

    2014-01-01

    SUMMARY Regeneration of a lost appendage in adult amphibians and fish is a remarkable feat of developmental patterning. Although the limb or fin may be years removed from its initial creation by an embryonic primordium, the blastema that emerges at the injury site fashions a close mimic of adult form. Central to understanding these events are revealing the cellular origins of new structures, how positional identity is maintained, and the determinants for completion. Each of these topics has been advanced recently, strengthening models for how complex tissue pattern is recalled in the adult context. PMID:24780734

  5. Regeneration in insects.

    PubMed

    Marsh, J L; Theisen, H

    1999-08-01

    @9cIntroduction@21T issues exhibit an impressive ability to respond to a myriad of insults by repairing and regenerating complex structures. The elegant and orderly process of regeneration provides clues to the mechanisms of pattern formation but also offers the hope that the process might one day be manipulated to replace damaged body parts. To manipulate the process, it will be necessary to understand the genetic basis of the process. In the case of the insect leg, we are coming close to such a level of understanding and many of the lessons learned are relevant to vertebrate systems. A dynamic web of gene regulatory networks appears to create a robust self-organizing system that is at once extremely intricate but also perhaps simple in its reliance on a few key signaling pathways and a few simple processes, e.g. autoactivation and lateral inhibition. Here we will summarize what has been learned about the networks of gene regulation present in the Drosophila leg discs and then we will explore how the regenerative responses to different insults can be understood as predictable responses to these networks. Each of the regulatory networks could themselves serve as the subject of a detailed review and that is beyond the scope of this discussion. Here we will focus on the interplay between the regulatory networks in patterning the tissue.

  6. E-Learning Environments for Digitally-Minded Students

    ERIC Educational Resources Information Center

    Andone, Diana; Dron, Jon; Pemberton, Lyn; Boyne, Chris

    2007-01-01

    While most existing online learning environments cater for needs identified during the 1990s, a new generation of digital students has emerged in the developed world. Digital students are young adults who have grown up with digital technologies integrated as an everyday feature of their lives. Digital students use technology differently, fluidly…

  7. Digital Citizenship

    ERIC Educational Resources Information Center

    Isman, Aytekin; Canan Gungoren, Ozlem

    2014-01-01

    Era in which we live is known and referred as digital age.In this age technology is rapidly changed and developed. In light of these technological advances in 21st century, schools have the responsibility of training "digital citizen" as well as a good citizen. Digital citizens must have extensive skills, knowledge, Internet and …

  8. [Histological aspects of posttraumatic regeneration].

    PubMed

    Truupyl'd Aiu

    1976-02-01

    A number of histological aspects (regeneration capacity, origins of regeneration, means of reparation) are discussed on the example of the reparative regeneration of the adrenal cortex. The adrenal cortex is found to possess high regeneration capacity after a traumatic injury of the organ. Realization of this capacity is dependent on general and local conditions, the character and the volume of the injury and the degree of involvment of cambial zones being of substantial significance. Among these zones are the glomerular zone and the external part of the bundle zone, whose proliferating cells are the source of the reparative regeneration of the cortical substance. The reparation of the functioning mass of the adrenal cortex is performed by the type of regenerative hypertrophy or the reparative regeneration depending on the character of the trauma. After the first type, the division of cells and their differentiation occur within the limits of the available structural elements, after the second type- of the newly formed ones. Both types are evolutionally conditioned and are definitely similar eather to postnatal growth and physiological regeneration (regenerative hypertrophy), or to the embryonic histogenesis of the definitive adrenal cortex (reparative regeneration).

  9. Regenerable Iodine Water-Disinfection System

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Colombo, Gerald V.; Jolly, Clifford D.

    1994-01-01

    Iodinated resin bed for disinfecting water regenerated to extend useful life. Water flows through regeneration bed of crystalline iodine during regeneration. At other times, flow diverted around regeneration bed. Although regeneration cycle manually controlled readily automated to start and stop according to signals from concentration sensors. Further benefit of regeneration is bed provides highly concentrated biocide source when needed. Concentrated biocide used to superiodinate system after contamination from routine maintenance or unexpected introduction of large concentration of microbes.

  10. Regeneration, Stem Cells, and Aging in the Tunicate Ciona: Insights from the Oral Siphon.

    PubMed

    Jeffery, William R

    2015-01-01

    Regeneration studies in the tunicate Ciona intestinalis have recently been focused on the potential of adult stem cells to replace injured tissues and organs during the adult life cycle using the oral siphon (OS) as a model. The OS has oral siphon pigment organs (OPOs) along its rim and an underlying network of muscle fibers in its tube. Different regeneration processes are triggered by OS amputation at the tip, along the tube, or at the base. One process involves the replacement of OPOs without new cell division by direct differentiation of locally deployed stem cells or stem cells that migrate from the branchial sac. Another process involves blastema formation by the migration of progenitor cells produced from branchial sac stem cells. The capacity for complete and accurate OS regeneration declines continuously during the adult life cycle. Finally, after an age threshold is reached, OS regeneration ceases in old animals. The loss of regeneration capacity in old animals involves the depletion of stem cells in the branchial sac, the inability of branchial sac progenitor cells to migrate to the sites of regeneration, and defective oral pigment organ replacement. The significance of the OS model for studying regeneration, stem cells, and aging will be enhanced by the application of molecular methods.

  11. Regeneration, Stem Cells, and Aging in the Tunicate Ciona: Insights from the Oral Siphon.

    PubMed

    Jeffery, William R

    2015-01-01

    Regeneration studies in the tunicate Ciona intestinalis have recently been focused on the potential of adult stem cells to replace injured tissues and organs during the adult life cycle using the oral siphon (OS) as a model. The OS has oral siphon pigment organs (OPOs) along its rim and an underlying network of muscle fibers in its tube. Different regeneration processes are triggered by OS amputation at the tip, along the tube, or at the base. One process involves the replacement of OPOs without new cell division by direct differentiation of locally deployed stem cells or stem cells that migrate from the branchial sac. Another process involves blastema formation by the migration of progenitor cells produced from branchial sac stem cells. The capacity for complete and accurate OS regeneration declines continuously during the adult life cycle. Finally, after an age threshold is reached, OS regeneration ceases in old animals. The loss of regeneration capacity in old animals involves the depletion of stem cells in the branchial sac, the inability of branchial sac progenitor cells to migrate to the sites of regeneration, and defective oral pigment organ replacement. The significance of the OS model for studying regeneration, stem cells, and aging will be enhanced by the application of molecular methods. PMID:26404471

  12. Regeneration of Articular Cartilage Surface: Morphogens, Cells, and Extracellular Matrix Scaffolds.

    PubMed

    Sakata, Ryosuke; Iwakura, Takashi; Reddi, A Hari

    2015-10-01

    The articular cartilage is a well-organized tissue for smooth and friction-free joint movement for locomotion in animals and humans. Adult articular cartilage has a very low self-regeneration capacity due to its avascular nature. The regeneration of articular cartilage surface is critical to prevent the progression to osteoarthritis (OA). Although various joint resurfacing procedures in experimental articular cartilage defects have been developed, no standardized clinical protocol has yet been established. The three critical ingredients for tissue regeneration are morphogens and growth factors, cells, and scaffolds. The concepts based on the regeneration triad have been extensively investigated in animal models. However, these studies in animal models have demonstrated variable results and outcomes. An optimal animal model must precisely mimic and model the sequence of events in articular cartilage regeneration in human. In this article, the progress and remaining challenges in articular cartilage regeneration in animal models are reviewed. The role of individual morphogens and growth factors in cartilage regeneration has been investigated. In normal articular cartilage homeostasis, morphogens and growth factors function sequentially in tissue regeneration. Mesenchymal stem cell-based repair of articular cartilage defects, performed with or without various growth factors and scaffolds, has been widely attempted in animal models. Stem cells, including embryonic and adult stem cells and induced pluripotent stem cells, have also been reported as attractive cell sources for articular cartilage surface regeneration. Several studies with regard to scaffolds have been advanced, including recent investigations based on nanomaterials, functional mechanocompatible scaffolds, multilayered scaffolds, and extracellular matrix scaffolds for articular cartilage surface regeneration. Continuous refinement of animal models in chondral and osteochondral defects provide opportunities

  13. Extrinsic and intrinsic regulation of axon regeneration at a crossroads

    PubMed Central

    Kaplan, Andrew; Ong Tone, Stephan; Fournier, Alyson E.

    2015-01-01

    Repair of the injured spinal cord is a major challenge in medicine. The limited intrinsic regenerative response mounted by adult central nervous system (CNS) neurons is further hampered by astrogliosis, myelin debris and scar tissue that characterize the damaged CNS. Improved axon regeneration and recovery can be elicited by targeting extrinsic factors as well as by boosting neuron-intrinsic growth regulators. Our knowledge of the molecular basis of intrinsic and extrinsic regulators of regeneration has expanded rapidly, resulting in promising new targets to promote repair. Intriguingly certain neuron-intrinsic growth regulators are emerging as promising targets to both stimulate growth and relieve extrinsic inhibition of regeneration. This crossroads between the intrinsic and extrinsic aspects of spinal cord injury is a promising target for effective therapies for this unmet need. PMID:26136657

  14. Fibrogenic Cell Plasticity Blunts Tissue Regeneration and Aggravates Muscular Dystrophy.

    PubMed

    Pessina, Patrizia; Kharraz, Yacine; Jardí, Mercè; Fukada, So-ichiro; Serrano, Antonio L; Perdiguero, Eusebio; Muñoz-Cánoves, Pura

    2015-06-01

    Preservation of cell identity is necessary for homeostasis of most adult tissues. This process is challenged every time a tissue undergoes regeneration after stress or injury. In the lethal Duchenne muscular dystrophy (DMD), skeletal muscle regenerative capacity declines gradually as fibrosis increases. Using genetically engineered tracing mice, we demonstrate that, in dystrophic muscle, specialized cells of muscular, endothelial, and hematopoietic origins gain plasticity toward a fibrogenic fate via a TGFβ-mediated pathway. This results in loss of cellular identity and normal function, with deleterious consequences for regeneration. Furthermore, this fibrogenic process involves acquisition of a mesenchymal progenitor multipotent status, illustrating a link between fibrogenesis and gain of progenitor cell functions. As this plasticity also was observed in DMD patients, we propose that mesenchymal transitions impair regeneration and worsen diseases with a fibrotic component. PMID:25981413

  15. Fibrogenic Cell Plasticity Blunts Tissue Regeneration and Aggravates Muscular Dystrophy.

    PubMed

    Pessina, Patrizia; Kharraz, Yacine; Jardí, Mercè; Fukada, So-ichiro; Serrano, Antonio L; Perdiguero, Eusebio; Muñoz-Cánoves, Pura

    2015-06-01

    Preservation of cell identity is necessary for homeostasis of most adult tissues. This process is challenged every time a tissue undergoes regeneration after stress or injury. In the lethal Duchenne muscular dystrophy (DMD), skeletal muscle regenerative capacity declines gradually as fibrosis increases. Using genetically engineered tracing mice, we demonstrate that, in dystrophic muscle, specialized cells of muscular, endothelial, and hematopoietic origins gain plasticity toward a fibrogenic fate via a TGFβ-mediated pathway. This results in loss of cellular identity and normal function, with deleterious consequences for regeneration. Furthermore, this fibrogenic process involves acquisition of a mesenchymal progenitor multipotent status, illustrating a link between fibrogenesis and gain of progenitor cell functions. As this plasticity also was observed in DMD patients, we propose that mesenchymal transitions impair regeneration and worsen diseases with a fibrotic component.

  16. Motonuclear changes after cranial nerve injury and regeneration.

    PubMed

    Fernandez, E; Pallini, R; Lauretti, L; La Marca, F; Scogna, A; Rossi, G F

    1997-09-01

    Little is known about the mechanisms at play in nerve regeneration after nerve injury. Personal studies are reported regarding motonuclear changes after regeneration of injured cranial nerves, in particular of the facial and oculomotor nerves, as well as the influence that the natural molecule acetyl-L-carnitine (ALC) has on post-axotomy cranial nerve motoneuron degeneration after facial and vagus nerve lesions. Adult and newborn animal models were used. Massive motoneuron response after nerve section and reconstruction was observed in the motonuclei of all nerves studied. ALC showed to have significant neuroprotective effects on the degeneration of axotomized motoneurons. Complex quantitative, morphological and somatotopic nuclear changes occurred that sustain new hypotheses regarding the capacities of motoneurons to regenerate and the possibilities of new neuron proliferation. The particularities of such observations are described and discussed.

  17. Implication of two different regeneration systems in limb regeneration

    PubMed Central

    Makanae, Aki; Mitogawa, Kazumasa

    2014-01-01

    Abstract Limb regeneration is a representative phenomenon of organ regeneration in urodele amphibians, such as an axolotl. An amputated limb starts regenerating from a remaining stump (proximal) to lost finger tips (distal). In the present case, proximal−distal (PD) reorganization takes place in a regenerating tissue, called a blastema. It has been a mystery how an induced blastema recognizes its position and restores an exact replica of missing parts. Recently, a new experimental system called the accessory limb model (ALM) has been established. The gained ALM phenotypes are demanding to reconsider the reorganization PD positional values. Based on the ALM phenotype, it is reasonable to hypothesize that reorganization of positional values has a certain discontinuity and that two different regeneration systems cooperatively reorganize the PD axis to restore an original structure. In this review, PD axis reestablishments are focused on limb regeneration. Knowledge from ALM studies in axolotls and Xenopus is providing a novel concept of PD axis reorganization in limb regeneration. PMID:27499860

  18. Centroacinar Cells Are Progenitors That Contribute to Endocrine Pancreas Regeneration.

    PubMed

    Delaspre, Fabien; Beer, Rebecca L; Rovira, Meritxell; Huang, Wei; Wang, Guangliang; Gee, Stephen; Vitery, Maria del Carmen; Wheelan, Sarah J; Parsons, Michael J

    2015-10-01

    Diabetes is associated with a paucity of insulin-producing β-cells. With the goal of finding therapeutic routes to treat diabetes, we aim to find molecular and cellular mechanisms involved in β-cell neogenesis and regeneration. To facilitate discovery of such mechanisms, we use a vertebrate organism where pancreatic cells readily regenerate. The larval zebrafish pancreas contains Notch-responsive progenitors that during development give rise to adult ductal, endocrine, and centroacinar cells (CACs). Adult CACs are also Notch responsive and are morphologically similar to their larval predecessors. To test our hypothesis that adult CACs are also progenitors, we took two complementary approaches: 1) We established the transcriptome for adult CACs. Using gene ontology, transgenic lines, and in situ hybridization, we found that the CAC transcriptome is enriched for progenitor markers. 2) Using lineage tracing, we demonstrated that CACs do form new endocrine cells after β-cell ablation or partial pancreatectomy. We concluded that CACs and their larval predecessors are the same cell type and represent an opportune model to study both β-cell neogenesis and β-cell regeneration. Furthermore, we show that in cftr loss-of-function mutants, there is a deficiency of larval CACs, providing a possible explanation for pancreatic complications associated with cystic fibrosis. PMID:26153247

  19. Digital Natives or Digital Tribes?

    ERIC Educational Resources Information Center

    Watson, Ian Robert

    2013-01-01

    This research builds upon the discourse surrounding digital natives. A literature review into the digital native phenomena was undertaken and found that researchers are beginning to identify the digital native as not one cohesive group but of individuals influenced by other factors. Primary research by means of questionnaire survey of technologies…

  20. Regenerable biocide delivery unit

    NASA Technical Reports Server (NTRS)

    Colombo, Gerald V.; Jolly, Clifford D.; Sauer, Richard L.

    1991-01-01

    The Microbial Check Valve (MCV) is used on the Space Shuttle to impart an iodine residual to the drinking water to maintain microbial control. Approximately twenty MCV locations have been identified in the Space Station Freedom design, each with a 90-day life. This translates to 2400 replacement units in 30 years of operation. An in situ regeneration concept has been demonstrated that will reduce this replacement requirement to less than 300 units based on data to date. A totally automated system will result in significant savings in crew time, resupply requirements, and replacement costs. An additional feature of the device is the ability to provide a concentrated biocide source (200 mg/liter of I2) that can be used to superiodinate systems routinely or after a microbial upset.

  1. Bone regeneration in dentistry

    PubMed Central

    Tonelli, Paolo; Duvina, Marco; Barbato, Luigi; Biondi, Eleonora; Nuti, Niccolò; Brancato, Leila; Rose, Giovanna Delle

    2011-01-01

    Summary The edentulism of the jaws and the periodontal disease represent conditions that frequently leads to disruption of the alveolar bone. The loss of the tooth and of its bone of support lead to the creation of crestal defects or situation of maxillary atrophy. The restoration of a functional condition involves the use of endosseous implants who require adequate bone volume, to deal with the masticatory load. In such situations the bone need to be regenerated, taking advantage of the biological principles of osteogenesis, osteoinduction and osteoconduction. Several techniques combine these principles with different results, due to the condition of the bone base on which we operate changes, the surgical technique that we use, and finally for the bone metabolic conditions of the patient who can be in a state of systemic osteopenia or osteoporosis; these can also affect the result of jaw bone reconstruction. PMID:22461825

  2. Nanocomposites and bone regeneration

    NASA Astrophysics Data System (ADS)

    James, Roshan; Deng, Meng; Laurencin, Cato T.; Kumbar, Sangamesh G.

    2011-12-01

    This manuscript focuses on bone repair/regeneration using tissue engineering strategies, and highlights nanobiotechnology developments leading to novel nanocomposite systems. About 6.5 million fractures occur annually in USA, and about 550,000 of these individual cases required the application of a bone graft. Autogenous and allogenous bone have been most widely used for bone graft based therapies; however, there are significant problems such as donor shortage and risk of infection. Alternatives using synthetic and natural biomaterials have been developed, and some are commercially available for clinical applications requiring bone grafts. However, it remains a great challenge to design an ideal synthetic graft that very closely mimics the bone tissue structurally, and can modulate the desired function in osteoblast and progenitor cell populations. Nanobiomaterials, specifically nanocomposites composed of hydroxyapatite (HA) and/or collagen are extremely promising graft substitutes. The biocomposites can be fabricated to mimic the material composition of native bone tissue, and additionally, when using nano-HA (reduced grain size), one mimics the structural arrangement of native bone. A good understanding of bone biology and structure is critical to development of bone mimicking graft substitutes. HA and collagen exhibit excellent osteoconductive properties which can further modulate the regenerative/healing process following fracture injury. Combining with other polymeric biomaterials will reinforce the mechanical properties thus making the novel nano-HA based composites comparable to human bone. We report on recent studies using nanocomposites that have been fabricated as particles and nanofibers for regeneration of segmental bone defects. The research in nanocomposites, highlight a pivotal role in the future development of an ideal orthopaedic implant device, however further significant advancements are necessary to achieve clinical use.

  3. Comparative study of muscle regeneration following cardiotoxin and glycerol injury.

    PubMed

    Mahdy, Mohamed A A; Lei, Hsiao Yin; Wakamatsu, Jun-Ichi; Hosaka, Yoshinao Z; Nishimura, Takanori

    2015-11-01

    In the present study, we examined muscle regeneration following two types of chemical injuries, cardiotoxin (CTX) and glycerol, in order to compare their effect on the morphological characteristics during muscle regeneration, in addition we studied the structural changes of the intramuscular connective tissue (IMCT) during the regeneration process, by scanning electron microscopy (SEM) after digestion of the cellular elements of the muscle with sodium hydroxide. Tibialis anterior (TA) muscles of adult male mice were injected either with CTX or glycerol. Muscle degeneration was greater in the CTX-injured model than in the glycerol-injured model at day 4 post injection. Muscle regeneration started at day 7 in both the CTX and glycerol models. However, the CTX-injured model showed a higher myotube density and larger myotube diameter than the glycerol-injured model at days 10 and 14 post injection. On other hand, adipocyte infiltration was detected in the glycerol-injured model. In contrast, no adipocytes could be detected in the CTX-injured model. Furthermore, ultrastructural analysis showed a significant difference in myofiber damage and regeneration between the two models. SEM of the IMCT showed a transient increase in endomysial collagen deposition at early stages of regeneration in the CTX-injured model. In contrast, glycerol-injured model showed slight endomysial collagen deposition. Our results suggest that changes in IMCT affect the efficiency of muscle regeneration. Studying the three dimensional structure of IMCT may help clinical therapies to reduce skeletal muscle fibrosis. To our knowledge this is the first time the changes in IMCT following CTX and glycerol injury using SEM-cell maceration technique have been compared.

  4. ¿Usted Va Al Capitolio También?: Adult Immigrants' Positioning in Response to News and Digital Media about Immigration Policy

    ERIC Educational Resources Information Center

    Noguerón-Liu, Silvia

    2016-01-01

    This article explores the ways in which adult immigrants engaged in discussion about immigration news at a web design course during the passing of Senate Bill 1070 in Arizona. Drawing on the method and theory of mediated discourse analysis, two focal interactions reveal the diverse positions that students took up in relation to anti-immigrant…

  5. Neuregulin-1 signaling is essential for nerve-dependent axolotl limb regeneration.

    PubMed

    Farkas, Johanna E; Freitas, Polina D; Bryant, Donald M; Whited, Jessica L; Monaghan, James R

    2016-08-01

    The Mexican axolotl (Ambystoma mexicanum) is capable of fully regenerating amputated limbs, but denervation of the limb inhibits the formation of the post-injury proliferative mass called the blastema. The molecular basis behind this phenomenon remains poorly understood, but previous studies have suggested that nerves support regeneration via the secretion of essential growth-promoting factors. An essential nerve-derived factor must be found in the blastema, capable of rescuing regeneration in denervated limbs, and its inhibition must prevent regeneration. Here, we show that the neuronally secreted protein Neuregulin-1 (NRG1) fulfills all these criteria in the axolotl. Immunohistochemistry and in situ hybridization of NRG1 and its active receptor ErbB2 revealed that they are expressed in regenerating blastemas but lost upon denervation. NRG1 was localized to the wound epithelium prior to blastema formation and was later strongly expressed in proliferating blastemal cells. Supplementation by implantation of NRG1-soaked beads rescued regeneration to digits in denervated limbs, and pharmacological inhibition of NRG1 signaling reduced cell proliferation, blocked blastema formation and induced aberrant collagen deposition in fully innervated limbs. Taken together, our results show that nerve-dependent NRG1/ErbB2 signaling promotes blastemal proliferation in the regenerating limb and may play an essential role in blastema formation, thus providing insight into the longstanding question of why nerves are required for axolotl limb regeneration.

  6. Neuregulin-1 signaling is essential for nerve-dependent axolotl limb regeneration.

    PubMed

    Farkas, Johanna E; Freitas, Polina D; Bryant, Donald M; Whited, Jessica L; Monaghan, James R

    2016-08-01

    The Mexican axolotl (Ambystoma mexicanum) is capable of fully regenerating amputated limbs, but denervation of the limb inhibits the formation of the post-injury proliferative mass called the blastema. The molecular basis behind this phenomenon remains poorly understood, but previous studies have suggested that nerves support regeneration via the secretion of essential growth-promoting factors. An essential nerve-derived factor must be found in the blastema, capable of rescuing regeneration in denervated limbs, and its inhibition must prevent regeneration. Here, we show that the neuronally secreted protein Neuregulin-1 (NRG1) fulfills all these criteria in the axolotl. Immunohistochemistry and in situ hybridization of NRG1 and its active receptor ErbB2 revealed that they are expressed in regenerating blastemas but lost upon denervation. NRG1 was localized to the wound epithelium prior to blastema formation and was later strongly expressed in proliferating blastemal cells. Supplementation by implantation of NRG1-soaked beads rescued regeneration to digits in denervated limbs, and pharmacological inhibition of NRG1 signaling reduced cell proliferation, blocked blastema formation and induced aberrant collagen deposition in fully innervated limbs. Taken together, our results show that nerve-dependent NRG1/ErbB2 signaling promotes blastemal proliferation in the regenerating limb and may play an essential role in blastema formation, thus providing insight into the longstanding question of why nerves are required for axolotl limb regeneration. PMID:27317805

  7. SENSORY HAIR CELL REGENERATION IN THE ZEBRAFISH LATERAL LINE

    PubMed Central

    Lush, Mark E.; Piotrowski, Tatjana

    2014-01-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. PMID:25045019

  8. [Morphogenetic changes during newt tail regeneration under changed gravity conditions].

    PubMed

    Radugina, E A; Grigorian, É N

    2012-01-01

    Gravity-dependent shape alterations in newt tail regenerates are described, which were previously noticed in experiments onboard satellites Foton M2, M3 and in corresponding laboratory controls. Laboratory conditions were developed that allow reproducing this phenomenon persistently in the adult newts Pleurodeles waltl (Michahelles, 1830). The newts kept in an aquarium (in partial weightlessness) after 1/3 tail amputation developed normal lanceolate regenerates, while those that stayed on a moist mat (exposed to greater gravity than in aquarium) developed curved tail regenerates. Dynamics of the shape alterations were described using computer morphometric analysis. The curve was shown to develop at stage III of regeneration and to be caused by bending of the developing axial structures: the ependymal tube and the cartilage rode. Cellular processes were described that accompany the tail shape changes, such as cell migration and formation of dense aggregates. Unequal proliferation throughout the wound epidermis and blastema was revealed using BrdU assay. Proliferation increased within dorsal and apical regions of the regenerates in the newts kept on the mat cell compared with the aquarian animals. PMID:23136735

  9. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches.

    PubMed

    Akram, Khondoker M; Patel, Neil; Spiteri, Monica A; Forsyth, Nicholas R

    2016-01-19

    The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases.

  10. A regulatory program for excretory system regeneration in planarians.

    PubMed

    Scimone, M Lucila; Srivastava, Mansi; Bell, George W; Reddien, Peter W

    2011-10-01

    Planarians can regenerate any missing body part, requiring mechanisms for the production of organ systems in the adult, including their prominent tubule-based filtration excretory system called protonephridia. Here, we identify a set of genes, Six1/2-2, POU2/3, hunchback, Eya and Sall, that encode transcription regulatory proteins that are required for planarian protonephridia regeneration. During regeneration, planarian stem cells are induced to form a cell population in regeneration blastemas expressing Six1/2-2, POU2/3, Eya, Sall and Osr that is required for excretory system formation. POU2/3 and Six1/2-2 are essential for these precursor cells to form. Eya, Six1/2-2, Sall, Osr and POU2/3-related genes are required for vertebrate kidney development. We determined that planarian and vertebrate excretory cells express homologous proteins involved in reabsorption and waste modification. Furthermore, we identified novel nephridia genes. Our results identify a transcriptional program and cellular mechanisms for the regeneration of an excretory organ and suggest that metazoan excretory systems are regulated by genetic programs that share a common evolutionary origin.

  11. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches.

    PubMed

    Akram, Khondoker M; Patel, Neil; Spiteri, Monica A; Forsyth, Nicholas R

    2016-01-01

    The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases. PMID:26797607

  12. A regulatory program for excretory system regeneration in planarians

    PubMed Central

    Scimone, M. Lucila; Srivastava, Mansi; Bell, George W.; Reddien, Peter W.

    2011-01-01

    Planarians can regenerate any missing body part, requiring mechanisms for the production of organ systems in the adult, including their prominent tubule-based filtration excretory system called protonephridia. Here, we identify a set of genes, Six1/2-2, POU2/3, hunchback, Eya and Sall, that encode transcription regulatory proteins that are required for planarian protonephridia regeneration. During regeneration, planarian stem cells are induced to form a cell population in regeneration blastemas expressing Six1/2-2, POU2/3, Eya, Sall and Osr that is required for excretory system formation. POU2/3 and Six1/2-2 are essential for these precursor cells to form. Eya, Six1/2-2, Sall, Osr and POU2/3-related genes are required for vertebrate kidney development. We determined that planarian and vertebrate excretory cells express homologous proteins involved in reabsorption and waste modification. Furthermore, we identified novel nephridia genes. Our results identify a transcriptional program and cellular mechanisms for the regeneration of an excretory organ and suggest that metazoan excretory systems are regulated by genetic programs that share a common evolutionary origin. PMID:21937596

  13. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches

    PubMed Central

    Akram, Khondoker M.; Patel, Neil; Spiteri, Monica A.; Forsyth, Nicholas R.

    2016-01-01

    The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases. PMID:26797607

  14. [Morphogenetic changes during newt tail regeneration under changed gravity conditions].

    PubMed

    Radugina, E A; Grigorian, É N

    2012-01-01

    Gravity-dependent shape alterations in newt tail regenerates are described, which were previously noticed in experiments onboard satellites Foton M2, M3 and in corresponding laboratory controls. Laboratory conditions were developed that allow reproducing this phenomenon persistently in the adult newts Pleurodeles waltl (Michahelles, 1830). The newts kept in an aquarium (in partial weightlessness) after 1/3 tail amputation developed normal lanceolate regenerates, while those that stayed on a moist mat (exposed to greater gravity than in aquarium) developed curved tail regenerates. Dynamics of the shape alterations were described using computer morphometric analysis. The curve was shown to develop at stage III of regeneration and to be caused by bending of the developing axial structures: the ependymal tube and the cartilage rode. Cellular processes were described that accompany the tail shape changes, such as cell migration and formation of dense aggregates. Unequal proliferation throughout the wound epidermis and blastema was revealed using BrdU assay. Proliferation increased within dorsal and apical regions of the regenerates in the newts kept on the mat cell compared with the aquarian animals.

  15. FLAGELLAR REGENERATION IN PROTOZOAN FLAGELLATES

    PubMed Central

    Rosenbaum, Joel L.; Child, F. M.

    1967-01-01

    The flagella of populations of three protozoan species (Ochromonas, Euglena, and Astasia) were amputated and allowed to regenerate. The kinetics of regeneration in all species were characterized by a lag phase during which there was no apparent flagellar elongation; this phase was followed by elongation at a rate which constantly decelerated as the original length was regained. Inhibition by cycloheximide applied at the time of flagellar amputation showed that flagellar regeneration was dependent upon de novo protein synthesis. This was supported by evidence showing that a greater amount of leucine was incorporated into the proteins of regenerating than nonregenerating flagella. The degree of inhibition of flagellar elongation observed with cycloheximide depended on how soon after flagellar amputation it was applied: when applied to cells immediately following amputation, elongation was almost completely inhibited, but its application at various times thereafter permitted considerable elongation to occur prior to complete inhibition of flagellar elongation. Hence, a sufficient number of precursors were synthesized and accumulated prior to addition of cycloheximide so that their assembly (elongation) could occur for a time under conditions in which protein synthesis had been inhibited. Evidence that the site of this assembly may be at the tip of the elongating flagellum was obtained from radioautographic studies in which the flagella of Ochromonas were permitted to regenerate part way in the absence of labeled leucine and to complete their regeneration in the presence of the isotope. Possible mechanisms which may be operating to control flagellar regeneration are discussed in light of these and other observations. PMID:6033540

  16. Proximodistal patterning during limb regeneration.

    PubMed

    Echeverri, Karen; Tanaka, Elly M

    2005-03-15

    Regeneration is an ability that has been observed extensively throughout metazoan phylogeny. Amongst vertebrates, the urodele amphibians stand out for their exceptional capacity to regenerate body parts such as the limb. During this process, only the missing portion of the limb is precisely replaced--amputation in the upper arm results in regeneration of the entire limb, while amputation at the wrist produces a hand. Limb regeneration occurs through the formation of a local proliferative zone called the blastema. Here, we examine how proximodistal identity is established in the blastema. Using cell marking and transplantation experiments, we show that distal identities have already been established in the earliest stages of blastemas examined. Transplantation of cells into new environments is not sufficient to respecify cell identity. However, overexpression of the CD59, a cell surface molecule previously implicated in proximodistal identity during limb regeneration, causes distal blastema cells to translocate to a more proximal location and causes defects in the patterning of the distal elements of the regenerate. We suggest a model for the limb regeneration blastema where by 4 days post-amputation the blastema is already divided into distinct growth zones; the cells of each zone are already specified to give rise to upper arm, lower arm, and hand. PMID:15733667

  17. Notch signaling regulates venous arterialization during zebrafish fin regeneration

    PubMed Central

    Kametani, Yoshiko; Chi, Neil C.; Stainier, Didier Y.R.; Takada, Shinji

    2015-01-01

    In order to protect against blood pressure, a mature artery is supported by mural cells which include vascular smooth muscle cells and pericytes. To regenerate a functional vascular system, arteries should be properly reconstructed with mural cells although the mechanisms underlying artery reconstruction remain unclear. In this study, we examined the process of artery reconstruction during regeneration of the zebrafish caudal fin as a model to study arterial formation in an adult setting. During fin regeneration, the arteries and veins form a net-like vasculature called the vascular plexus, and this plexus undergoes remodeling to form a new artery and 2 flanking veins. We found that the new vascular plexus originates mainly from venous cells in the stump but very rarely from the arterial cells. Interestingly, these vein-derived cells contributed to the reconstructed arteries. This arterialization was dependent on Notch signaling, and further analysis revealed that Notch signaling was required for the initiation of arterial gene expression. In contrast, venous remodeling did not require Notch signaling. These results provide new insights towards understanding mechanisms of vascular regeneration and illustrate the utility of the adult zebrafish fin to study this process. PMID:25810153

  18. Evaluation of advanced regenerator systems

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.

    1978-01-01

    The major considerations are discussed which will affect the selection of a ceramic regenerative heat exchanger for an improved 100 HP automotive gas turbine engine. The regenerator considered for this application is about 36cm in diameter. Regenerator comparisons are made on the basis of material, method of fabrication, cost, and performance. A regenerator inlet temperature of 1000 C is assumed for performance comparisons, and laboratory test results are discussed for material comparisons at 1100 and 1200 C. Engine test results using the Ford 707 industrial gas turbine engine are also discussed.

  19. A developmentally regulated switch from stem cells to dedifferentiation for limb muscle regeneration in newts.

    PubMed

    Tanaka, Hibiki Vincent; Ng, Nathaniel Chuen Yin; Yang Yu, Zhan; Casco-Robles, Martin Miguel; Maruo, Fumiaki; Tsonis, Panagiotis A; Chiba, Chikafumi

    2016-01-01

    The newt, a urodele amphibian, is able to repeatedly regenerate its limbs throughout its lifespan, whereas other amphibians deteriorate or lose their ability to regenerate limbs after metamorphosis. It remains to be determined whether such an exceptional ability of the newt is either attributed to a strategy, which controls regeneration in larvae, or on a novel one invented by the newt after metamorphosis. Here we report that the newt switches the cellular mechanism for limb regeneration from a stem/progenitor-based mechanism (larval mode) to a dedifferentiation-based one (adult mode) as it transits beyond metamorphosis. We demonstrate that larval newts use stem/progenitor cells such as satellite cells for new muscle in a regenerated limb, whereas metamorphosed newts recruit muscle fibre cells in the stump for the same purpose. We conclude that the newt has evolved novel strategies to secure its regenerative ability of the limbs after metamorphosis. PMID:27026263

  20. Localization of coxsackie virus and adenovirus receptor (CAR) in normal and regenerating human muscle.

    PubMed

    Sinnreich, M; Shaw, C A; Pari, G; Nalbantoglu, J; Holland, P C; Karpati, G

    2005-08-01

    The primary receptor for Adenovirus and Coxsackie virus (CAR) serves as main port of entry of the adenovirus vector mediating gene transfer into skeletal muscle. Information about CAR expression in normal and diseased human skeletal muscle is lacking. C'- or N'-terminally directed polyclonal antibodies against CAR were generated and immunohistochemical analysis of CAR on morphologically normal and regenerating human skeletal muscle of children and adults was performed. In morphologically normal human muscle fibers, CAR immunoreactivity was limited to the neuromuscular junction. In regenerating muscle fibers, CAR was abundantly co-expressed with markers of regeneration. The function of CAR at the neuromuscular junction is currently unknown. Co-expression of CAR with markers of regeneration suggests that CAR is developmentally regulated, and may serve as a marker of skeletal muscle fiber regeneration.

  1. Cartilage and bone cells do not participate in skeletal regeneration in Ambystoma mexicanum limbs.

    PubMed

    McCusker, Catherine D; Diaz-Castillo, Carlos; Sosnik, Julian; Q Phan, Anne; Gardiner, David M

    2016-08-01

    The Mexican Axolotl is one of the few tetrapod species that is capable of regenerating complete skeletal elements in injured adult limbs. Whether the skeleton (bone and cartilage) plays a role in the patterning and contribution to the skeletal regenerate is currently unresolved. We tested the induction of pattern formation, the effect on cell proliferation, and contributions of skeletal tissues (cartilage, bone, and periosteum) to the regenerating axolotl limb. We found that bone tissue grafts from transgenic donors expressing GFP fail to induce pattern formation and do not contribute to the newly regenerated skeleton. Periosteum tissue grafts, on the other hand, have both of these activities. These observations reveal that skeletal tissue does not contribute to the regeneration of skeletal elements; rather, these structures are patterned by and derived from cells of non-skeletal connective tissue origin.

  2. Axon Regeneration Can Facilitate or Suppress Hindlimb Function after Olfactory Ensheathing Glia Transplantation

    PubMed Central

    Takeoka, Aya; Jindrich, Devin L.; Muñoz-Quiles, Cintia; Zhong, Hui; van den Brand, Rubia; Pham, Daniel L.; Ziegler, Matthias D.; Ramón-Cueto, Almudena; Roy, Roland R.; Edgerton, V. Reggie

    2011-01-01

    Reports based primarily on anatomical evidence suggest that olfactory ensheathing glia (OEG) transplantation promotes axon regeneration across a complete spinal cord transection in adult rats. Based on functional, electrophysiological, and anatomical assessments, we found that OEG promoted axon regeneration across a complete spinal cord transection and that this regeneration altered motor responses over time. At 7 months after transection, 70% of OEG-treated rats showed motor-evoked potentials in hindlimb muscles after transcranial electric stimulation. Furthermore, a complete spinal cord retransection performed 8 months after injury demonstrated that this axon regeneration suppressed locomotor performance and decreased the hypersensitive hindlimb withdrawal response to mechanical stimulation. OEG transplantation alone promoted reorganization of lumbosacral locomotor networks and, when combined with long-term training, enhanced some stepping measures. These novel findings demonstrate that OEG promote regeneration of mature axons across a complete transection and reorganization of spinal circuitry, both of which contribute to sensorimotor function. PMID:21411671

  3. A developmentally regulated switch from stem cells to dedifferentiation for limb muscle regeneration in newts.

    PubMed

    Tanaka, Hibiki Vincent; Ng, Nathaniel Chuen Yin; Yang Yu, Zhan; Casco-Robles, Martin Miguel; Maruo, Fumiaki; Tsonis, Panagiotis A; Chiba, Chikafumi

    2016-03-30

    The newt, a urodele amphibian, is able to repeatedly regenerate its limbs throughout its lifespan, whereas other amphibians deteriorate or lose their ability to regenerate limbs after metamorphosis. It remains to be determined whether such an exceptional ability of the newt is either attributed to a strategy, which controls regeneration in larvae, or on a novel one invented by the newt after metamorphosis. Here we report that the newt switches the cellular mechanism for limb regeneration from a stem/progenitor-based mechanism (larval mode) to a dedifferentiation-based one (adult mode) as it transits beyond metamorphosis. We demonstrate that larval newts use stem/progenitor cells such as satellite cells for new muscle in a regenerated limb, whereas metamorphosed newts recruit muscle fibre cells in the stump for the same purpose. We conclude that the newt has evolved novel strategies to secure its regenerative ability of the limbs after metamorphosis.

  4. A developmentally regulated switch from stem cells to dedifferentiation for limb muscle regeneration in newts

    PubMed Central

    Tanaka, Hibiki Vincent; Ng, Nathaniel Chuen Yin; Yang Yu, Zhan; Casco-Robles, Martin Miguel; Maruo, Fumiaki; Tsonis, Panagiotis A.; Chiba, Chikafumi

    2016-01-01

    The newt, a urodele amphibian, is able to repeatedly regenerate its limbs throughout its lifespan, whereas other amphibians deteriorate or lose their ability to regenerate limbs after metamorphosis. It remains to be determined whether such an exceptional ability of the newt is either attributed to a strategy, which controls regeneration in larvae, or on a novel one invented by the newt after metamorphosis. Here we report that the newt switches the cellular mechanism for limb regeneration from a stem/progenitor-based mechanism (larval mode) to a dedifferentiation-based one (adult mode) as it transits beyond metamorphosis. We demonstrate that larval newts use stem/progenitor cells such as satellite cells for new muscle in a regenerated limb, whereas metamorphosed newts recruit muscle fibre cells in the stump for the same purpose. We conclude that the newt has evolved novel strategies to secure its regenerative ability of the limbs after metamorphosis. PMID:27026263

  5. Technical brief: Constant intense light exposure to lesion and initiate regeneration in normally pigmented zebrafish.

    PubMed

    Rajaram, Kamya; Summerbell, Emily R; Patton, James G

    2014-01-01

    Zebrafish are capable of robust and spontaneous regeneration of injured retina. Constant intense light exposure to adult albino zebrafish specifically causes apoptosis of rod and cone photoreceptor cells and is an excellent model to study the molecular mechanisms underlying photoreceptor regeneration. However, this paradigm has only been applied to lesion zebrafish of the nonpigmented albino genetic background, which precludes the use of numerous transgenic reporter lines that are widely used to study regeneration. Here, we explored the effectiveness of constant intense light exposure in causing photoreceptor apoptosis and stimulating regeneration in normally pigmented zebrafish retinas. We show that constant intense light exposure causes widespread photoreceptor damage in the dorsal-central retinas of pigmented zebrafish. Photoreceptor loss triggers dedifferentiation and proliferation of Müller glia as well as progenitor cell proliferation. We also demonstrate that the timeline of regeneration response is comparable between the albino and the pigmented retinas. PMID:25324680

  6. Cartilage and bone cells do not participate in skeletal regeneration in Ambystoma mexicanum limbs.

    PubMed

    McCusker, Catherine D; Diaz-Castillo, Carlos; Sosnik, Julian; Q Phan, Anne; Gardiner, David M

    2016-08-01

    The Mexican Axolotl is one of the few tetrapod species that is capable of regenerating complete skeletal elements in injured adult limbs. Whether the skeleton (bone and cartilage) plays a role in the patterning and contribution to the skeletal regenerate is currently unresolved. We tested the induction of pattern formation, the effect on cell proliferation, and contributions of skeletal tissues (cartilage, bone, and periosteum) to the regenerating axolotl limb. We found that bone tissue grafts from transgenic donors expressing GFP fail to induce pattern formation and do not contribute to the newly regenerated skeleton. Periosteum tissue grafts, on the other hand, have both of these activities. These observations reveal that skeletal tissue does not contribute to the regeneration of skeletal elements; rather, these structures are patterned by and derived from cells of non-skeletal connective tissue origin. PMID:27316294

  7. Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury.

    PubMed

    Gey, Manuel; Wanner, Renate; Schilling, Corinna; Pedro, Maria T; Sinske, Daniela; Knöll, Bernd

    2016-08-01

    Axon injury in the peripheral nervous system (PNS) induces a regeneration-associated gene (RAG) response. Atf3 (activating transcription factor 3) is such a RAG and ATF3's transcriptional activity might induce 'effector' RAGs (e.g. small proline rich protein 1a (Sprr1a), Galanin (Gal), growth-associated protein 43 (Gap43)) facilitating peripheral axon regeneration. We provide a first analysis of Atf3 mouse mutants in peripheral nerve regeneration. In Atf3 mutant mice, facial nerve regeneration and neurite outgrowth of adult ATF3-deficient primary dorsal root ganglia neurons was decreased. Using genome-wide transcriptomics, we identified a neuropeptide-encoding RAG cluster (vasoactive intestinal peptide (Vip), Ngf, Grp, Gal, Pacap) regulated by ATF3. Exogenous administration of neuropeptides enhanced neurite growth of Atf3 mutant mice suggesting that these molecules might be effector RAGs of ATF3's pro-regenerative function. In addition to the induction of growth-promoting molecules, we present data that ATF3 suppresses growth-inhibiting molecules such as chemokine (C-C motif) ligand 2. In summary, we show a pro-regenerative ATF3 function during PNS nerve regeneration involving transcriptional activation of a neuropeptide-encoding RAG cluster. ATF3 is a general injury-inducible factor, therefore ATF3-mediated mechanisms identified herein might apply to other cell and injury types. PMID:27581653

  8. Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury

    PubMed Central

    Gey, Manuel; Wanner, Renate; Schilling, Corinna; Pedro, Maria T.; Sinske, Daniela

    2016-01-01

    Axon injury in the peripheral nervous system (PNS) induces a regeneration-associated gene (RAG) response. Atf3 (activating transcription factor 3) is such a RAG and ATF3's transcriptional activity might induce ‘effector’ RAGs (e.g. small proline rich protein 1a (Sprr1a), Galanin (Gal), growth-associated protein 43 (Gap43)) facilitating peripheral axon regeneration. We provide a first analysis of Atf3 mouse mutants in peripheral nerve regeneration. In Atf3 mutant mice, facial nerve regeneration and neurite outgrowth of adult ATF3-deficient primary dorsal root ganglia neurons was decreased. Using genome-wide transcriptomics, we identified a neuropeptide-encoding RAG cluster (vasoactive intestinal peptide (Vip), Ngf, Grp, Gal, Pacap) regulated by ATF3. Exogenous administration of neuropeptides enhanced neurite growth of Atf3 mutant mice suggesting that these molecules might be effector RAGs of ATF3's pro-regenerative function. In addition to the induction of growth-promoting molecules, we present data that ATF3 suppresses growth-inhibiting molecules such as chemokine (C-C motif) ligand 2. In summary, we show a pro-regenerative ATF3 function during PNS nerve regeneration involving transcriptional activation of a neuropeptide-encoding RAG cluster. ATF3 is a general injury-inducible factor, therefore ATF3-mediated mechanisms identified herein might apply to other cell and injury types. PMID:27581653

  9. The DLK signalling pathway--a double-edged sword in neural development and regeneration.

    PubMed

    Tedeschi, Andrea; Bradke, Frank

    2013-07-01

    Dual leucine zipper kinase (DLK), a mitogen-activated protein kinase kinase kinase, controls axon growth, apoptosis and neuron degeneration during neural development, as well as neurodegeneration after various insults to the adult nervous system. Interestingly, recent studies have also highlighted a role of DLK in promoting axon regeneration in diverse model systems. Invertebrates and vertebrates, cold- and warm-blooded animals, as well as central and peripheral mammalian nervous systems all differ in their ability to regenerate injured axons. Here, we discuss how DLK-dependent signalling regulates apparently contradictory functions during neural development and regeneration in different species. In addition, we outline strategies to fine-tune DLK function, either alone or together with other approaches, to promote axon regeneration in the adult mammalian central nervous system. PMID:23681442

  10. Metabolic scaling predicts posthepatectomy liver regeneration after accounting for hepatocyte hypertrophy.

    PubMed

    Young, LeAnne H; Periwal, Vipul

    2016-04-01

    We adapted a mathematical model of posthepatectomy liver regeneration using data from a subset of patients in the Adult-to-Adult Living Donor Liver Transplantation Cohort Study. The original model addressed changes in the number of quiescent, primed, and proliferating cells. Our adapted model takes into account hypertrophy of primed and replicating cells, and it is better able to predict liver volume. In addition, by building off the hypothesis that cell cycle parameters are approximately the same across all mammals, we found that changing only a single parameter characterizing metabolic load could model liver regeneration in 5 species of mammals. In conclusion, we improved a mathematical model of liver regeneration, predicted mammalian liver regeneration based on metabolism, and found correlations between model parameters and physiological measurements from liver donors.

  11. Non-coding RNAs in cardiac regeneration

    PubMed Central

    Zhou, Yanli; Xiao, Junjie; Li, Xinli

    2015-01-01

    Developing new therapeutic strategies which could enhance cardiomyocyte regenerative capacity is of significant clinical importance. Though promising, methods to promote cardiac regeneration have had limited success due to the weak regenerative capacity of the adult mammalian heart. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs, miRs) and long non-coding RNAs (lncRNAs), are functional RNA molecules without a protein coding function that have been reported to engage in cardiac regeneration and repair. In light of current regenerative strategies, the regulatory effects of ncRNAs can be categorized as follows: cardiac proliferation, cardiac differentiation, cardiac survival and cardiac reprogramming. miR-590, miR-199a, miR-17-92 cluster, miR302-367 cluster and miR-222 have been reported to promote cardiomyocyte proliferation while miR-1 and miR-133 suppress that. miR-499 and miR-1 promote the differentiation of cardiac progenitors into cardiomyocyte while miR-133 and H19 inhibit that. miR-21, miR-24, miR-221, miR-199a and miR-155 improve cardiac survival while miR-34a, miR-1 and miR-320 exhibit opposite effects. miR-1, miR-133, miR-208 and miR-499 are capable of reprogramming fibroblasts to cardiomyocyte-like cells and miR-284, miR-302, miR-93, miR-106b and lncRNA-ST8SIA3 are able to enhace cardiac reprogramming. Exploring non-coding RNA-based methods to enhance cardiac regeneration would be instrumental for devising new effective therapies against cardiovascular diseases. PMID:26462179

  12. Regenerable Iodine Water-Disinfection System

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Colombo, Gerald V.; Jolly, Clifford D.

    1994-01-01

    Iodinated resin bed for disinfecting water regenerated to extend its useful life. Water flows through regeneration bed of crystalline iodine during regeneration. At other times, flow diverted around regeneration bed. Although regeneration cycle was manually controlled in demonstration, readily automated to start and stop according to signals and stop according to signals from concentration sensors. Further benefit of regeneration is that regeneration bed provides highly concentrated biocide source (200 mg/L) when needed. Concentrated biocide used to superiodinate system after contamination from routine maintenance or unexpected introduction of large concentration of microbes.

  13. Digital printing

    NASA Astrophysics Data System (ADS)

    Sobotka, Werner K.

    1997-02-01

    Digital printing is described as a tool to replace conventional printing machines completely. Still this goal was not reached until now with any of the digital printing technologies to be described in the paper. Productivity and costs are still the main parameters and are not really solved until now. Quality in digital printing is no problem anymore. Definition of digital printing is to transfer digital datas directly on the paper surface. This step can be carried out directly or with the use of an intermediate image carrier. Keywords in digital printing are: computer- to-press; erasable image carrier; image carrier with memory. Digital printing is also the logical development of the new digital area as it is pointed out in Nicholas Negropotes book 'Being Digital' and also the answer to networking and Internet technologies. Creating images text and color in one country and publishing the datas in another country or continent is the main advantage. Printing on demand another big advantage and last but not least personalization the last big advantage. Costs and being able to coop with this new world of prepress technology is the biggest disadvantage. Therefore the very optimistic growth rates for the next few years are really nonexistent. The development of complete new markets is too slow and the replacing of old markets is too small.

  14. Digital metamaterials.

    PubMed

    Della Giovampaola, Cristian; Engheta, Nader

    2014-12-01

    Balancing complexity and simplicity has played an important role in the development of many fields in science and engineering. One of the well-known and powerful examples of such balance can be found in Boolean algebra and its impact on the birth of digital electronics and the digital information age. The simplicity of using only two numbers, '0' and '1', in a binary system for describing an arbitrary quantity made the fields of digital electronics and digital signal processing powerful and ubiquitous. Here, inspired by the binary concept, we propose to develop the notion of digital metamaterials. Specifically, we investigate how one can synthesize an electromagnetic metamaterial with a desired permittivity, using as building blocks only two elemental materials, which we call 'metamaterial bits', with two distinct permittivity functions. We demonstrate, analytically and numerically, how proper spatial mixtures of such metamaterial bits lead to elemental 'metamaterial bytes' with effective material parameters that are different from the parameters of the metamaterial bits. We then apply this methodology to several design examples of optical elements, such as digital convex lenses, flat graded-index digital lenses, digital constructs for epsilon-near-zero (ENZ) supercoupling and digital hyperlenses, thus highlighting the power and simplicity of the methodology.

  15. Regeneration in Alfalfa Tissue Culture

    PubMed Central

    Skokut, Thomas A.; Manchester, Jill; Schaefer, Jacob

    1985-01-01

    The production of somatic embryos in alfalfa (Medicago sativa L., cv Regen S) is increased 5- to 10-fold by alanine and proline. However, utilization of nitrogen for synthesis of protein from alanine, proline, glutamate, and glycine is not qualitatively different, even though the latter two amino acids do not increase somatic embryo formation. These determinations were made by 15N labeling with detection by nuclear magnetic resonance. Overall metabolism of the nitrogen of proline, alanine, glutamate, and glycine is also similar in two regenerating and nonregenerating genotypes with similar germplasm, except that the levels of free amino acids are consistently higher in the nonregenerating line. In addition, when regeneration is suppressed in either of the two regenerating lines, the level of intracellular free amino acids increases. This increased level of metabolites is the only direct evidence provided by analysis of nitrogen metabolism of differences between the regenerating and nonregenerating states in alfalfa. PMID:16664455

  16. Control of growth during regeneration.

    PubMed

    Sun, Gongping; Irvine, Kenneth D

    2014-01-01

    Regeneration is a process by which organisms replace damaged or amputated organs to restore normal body parts. Regeneration of many tissues or organs requires proliferation of stem cells or stem cell-like blastema cells. This regenerative growth is often initiated by cell death pathways induced by damage. The executors of regenerative growth are a group of growth-promoting signaling pathways, including JAK/STAT, EGFR, Hippo/YAP, and Wnt/β-catenin. These pathways are also essential to developmental growth, but in regeneration, they are activated in distinct ways and often at higher strengths, under the regulation by certain stress-responsive signaling pathways, including JNK signaling. Growth suppressors are important in termination of regeneration to prevent unlimited growth and also contribute to the loss of regenerative capacity in nonregenerative organs. Here, we review cellular and molecular growth regulation mechanisms induced by organ damage in several models with different regenerative capacities. PMID:24512707

  17. Lgr5+ cells regenerate hair cells via proliferation and direct transdifferentiation in damaged neonatal mouse utricle.

    PubMed

    Wang, Tian; Chai, Renjie; Kim, Grace S; Pham, Nicole; Jansson, Lina; Nguyen, Duc-Huy; Kuo, Bryan; May, Lindsey A; Zuo, Jian; Cunningham, Lisa L; Cheng, Alan G

    2015-01-01

    Recruitment of endogenous progenitors is critical during tissue repair. The inner ear utricle requires mechanosensory hair cells (HCs) to detect linear acceleration. After damage, non-mammalian utricles regenerate HCs via both proliferation and direct transdifferentiation. In adult mammals, limited transdifferentiation from unidentified progenitors occurs to regenerate extrastriolar Type II HCs. Here we show that HC damage in neonatal mouse utricle activates the Wnt target gene Lgr5 in striolar supporting cells. Lineage tracing and time-lapse microscopy reveal that Lgr5+ cells transdifferentiate into HC-like cells in vitro. In contrast to adults, HC ablation in neonatal utricles in vivo recruits Lgr5+ cells to regenerate striolar HCs through mitotic and transdifferentiation pathways. Both Type I and II HCs are regenerated, and regenerated HCs display stereocilia and synapses. Lastly, stabilized ß-catenin in Lgr5+ cells enhances mitotic activity and HC regeneration. Thus Lgr5 marks Wnt-regulated, damage-activated HC progenitors and may help uncover factors driving mammalian HC regeneration.

  18. Advances in Liver Regeneration: Revisiting Hepatic Stem/Progenitor Cells and Their Origin.

    PubMed

    Sadri, Ali-Reza; Jeschke, Marc G; Amini-Nik, Saeid

    2016-01-01

    The liver has evolved to become a highly plastic organ with extraordinary regenerative capabilities. What drives liver regeneration is still being debated. Adult liver stem/progenitor cells have been characterized and used to produce functional hepatocytes and biliary cells in vitro. However, in vivo, numerous studies have questioned whether hepatic progenitor cells have a significant role in liver regeneration. Mature hepatocytes have recently been shown to be more plastic than previously believed and give rise to new hepatocytes after acute and chronic injury. In this review, we discuss current knowledge in the field of liver regeneration and the importance of the serotonin pathway as a clinical target for patients with liver dysfunction.

  19. Thymic generation and regeneration.

    PubMed

    Gill, Jason; Malin, Mark; Sutherland, Jayne; Gray, Daniel; Hollander, George; Boyd, Richard

    2003-10-01

    The thymus is a complex epithelial organ in which thymocyte development is dependent upon the sequential contribution of morphologically and phenotypically distinct stromal cell compartments. It is these microenvironments that provide the unique combination of cellular interactions, cytokines, and chemokines to induce thymocyte precursors to undergo a differentiation program that leads to the generation of functional T cells. Despite the indispensable role of thymic epithelium in the generation of T cells, the mediators of this process and the differentiation pathway undertaken by the primordial thymic epithelial cells are not well defined. There is a lack of lineage-specific cell-surface-associated markers, which are needed to characterize putative thymic epithelial stem cell populations. This review explores the role of thymic stromal cells in T-cell development and thymic organogenesis, as well as the molecular signals that contribute to the growth and expansion of primordial thymic epithelial cells. It highlights recent advances in these areas, which have allowed for a lineage relationship amongst thymic epithelial cell subsets to be proposed. While many fundamental questions remain to be addressed, collectively these works have broadened our understanding of how the thymic epithelium becomes specialized in the ability to support thymocyte differentiation. They should also facilitate the development of novel, rationally based therapeutic strategies for the regeneration and manipulation of thymic function in the treatment of many clinical conditions in which defective T cells have an important etiological role.

  20. Regenerable biocide delivery unit

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L. (Inventor); Colombo, Gerald V. (Inventor); Jolly, Clifford D. (Inventor)

    1993-01-01

    A method and apparatus are disclosed for maintaining continuous, long-term microbial control in the water supply for potable, hygiene, and experimental water for space activities, as well as treatment of water supplies on Earth. The water purification is accomplished by introduction of molecular iodine into the water supply to impart a desired iodine residual. The water is passed through an iodinated anion exchange resin bed. The iodine is bound as I-(sub n) at the anion exchange sites and releases I(sub 2) into the water stream flowing through the bed. The concentration of I(sub 2) in the flowing water gradually decreases and, in the prior art, the ion-exchange bed has had to be replaced. In a preferred embodiment, a bed of iodine crystals is provided with connections for flowing water therethrough to produce a concentrated (substantially saturated) aqueous iodine solution which is passed through the iodinated resin bed to recharge the bed with bound iodine. The bed of iodine crystals is connected in parallel with the iodinated resin bed and is activated periodically (e.g., by timer, by measured flow of water, or by iodine residual level) to recharge the bed. Novelty resides in the capability of inexpensively and repeatedly regenerating the ion-exchange bed in situ.

  1. Biomaterials for periodontal regeneration

    PubMed Central

    Shue, Li; Yufeng, Zhang; Mony, Ullas

    2012-01-01

    Periodontal disease is characterized by the destruction of periodontal tissues. Various methods of regenerative periodontal therapy, including the use of barrier membranes, bone replacement grafts, growth factors and the combination of these procedures have been investigated. The development of biomaterials for tissue engineering has considerably improved the available treatment options above. They fall into two broad classes: ceramics and polymers. The available ceramic-based materials include calcium phosphate (eg, tricalcium phosphate and hydroxyapatite), calcium sulfate and bioactive glass. The bioactive glass bonds to the bone with the formation of a layer of carbonated hydroxyapatite in situ. The natural polymers include modified polysaccharides (eg, chitosan,) and polypeptides (collagen and gelatin). Synthetic polymers [eg, poly(glycolic acid), poly(L-lactic acid)] provide a platform for exhibiting the biomechanical properties of scaffolds in tissue engineering. The materials usually work as osteogenic, osteoconductive and osteoinductive scaffolds. Polymers are more widely used as a barrier material in guided tissue regeneration (GTR). They are shown to exclude epithelial downgrowth and allow periodontal ligament and alveolar bone cells to repopulate the defect. An attempt to overcome the problems related to a collapse of the barrier membrane in GTR or epithelial downgrowth is the use of a combination of barrier membranes and grafting materials. This article reviews various biomaterials including scaffolds and membranes used for periodontal treatment and their impacts on the experimental or clinical management of periodontal defect. PMID:23507891

  2. Characterization of mesonephric development and regeneration using transgenic zebrafish

    PubMed Central

    Zhou, Weibin; Boucher, Rudrick C.; Bollig, Frank; Englert, Christoph

    2010-01-01

    The zebrafish is a valuable vertebrate model for kidney research. The majority of previous studies focused on the zebrafish pronephros, which comprises only two nephrons and is structurally simpler than the mesonephros of adult fish and the metanephros of mammals. To evaluate the zebrafish system for more complex studies of kidney development and regeneration, we investigated the development and postinjury regeneration of the mesonephros in adult zebrafish. Utilizing two transgenic zebrafish lines (wt1b::GFP and pod::NTR-mCherry), we characterized the developmental stages of individual mesonephric nephrons and the temporal-spatial pattern of mesonephrogenesis. We found that mesonephrogenesis continues throughout the life of zebrafish, with a rapid growth phase during the juvenile period and a slower phase in adulthood such that the total nephron number of juvenile and adult fish linearly correlates with body mass. Following gentamicin-induced renal injury, the zebrafish mesonephros can undergo de novo regeneration of mesonephric nephrons, a process known as neonephrogenesis. We found that wt1b expression was induced in individually dispersed cells in the mesonephric interstitium as early as 48 h following injury. These wt1b-expressing cells formed aggregates by 72–96 h following injury which proceeded to form nephrons. This suggests that wt1b may serve as an early marker of fated renal progenitor cells. The synchronous nature of regenerative neonephrogenesis suggests that this process may be useful for studies of nephron development. PMID:20810610

  3. Cell replacement and regeneration therapy for diabetes.

    PubMed

    Jun, Hee-Sook

    2010-04-01

    Reduction of beta cell function and a beta cell mass is observed in both type 1 and type 2 diabetes. Therefore, restoration of this deficiency might be a therapeutic option for treatment of diabetes. Islet transplantation has benefits, such as reduced incidence of hypoglycemia and achievement of insulin independence. However, the major drawback is an insufficient supply of islet donors. Transplantation of cells differentiated in vitro or in vivo regeneration of insulin-producing cells are possible approaches for beta cell/islet regenerative therapy. Embryonic and adult stem cells, pancreatic ductal progenitor cells, acinar cells, and other endocrine cells have been shown to differentiate into pancreatic beta cells. Formation of fully functional beta cells and the safety of these cells are critical issues for successful clinical application. PMID:20548838

  4. Digital Discrimination

    ERIC Educational Resources Information Center

    Blansett, Jim

    2008-01-01

    In recent years, the Internet has become a digital commons of commerce and education. However, accessibility standards have often been overlooked online, and the digital equivalents to curb-cuts and other physical accommodations have only rarely been implemented to serve those with print disabilities. (A print disability can be a learning…

  5. Digitizing Preservation.

    ERIC Educational Resources Information Center

    Conway, Paul

    1994-01-01

    Discussion of digital imaging technology focuses on its potential use for preservation of library materials. Topics addressed include converting microfilm to digital; the high cost of conversion from paper or microfilm; quality; indexing; database management issues; incompatibility among imaging systems; longevity; cooperative pilot projects; and…

  6. Digital Roundup

    ERIC Educational Resources Information Center

    Horn, Michael B.

    2013-01-01

    State policy is crucial to the spread of digital-learning opportunities at the elementary and secondary level. A review of recent legislative action reveals policies that are constantly in flux and differ quite markedly from one state to another. Some have hoped for model digital-learning legislation that could handle all the various issues…

  7. Digital TMI

    NASA Technical Reports Server (NTRS)

    Rios, Joseph

    2012-01-01

    Presenting the current status of the Digital TMI project to visiting members of the FAA Command Center. Digital TMI is an effort to store national-level traffic management initiatives in a standards-compliant manner. Work is funded by the FAA.

  8. Evidence for the local evolution of mechanisms underlying limb regeneration in salamanders.

    PubMed

    Garza-Garcia, A Acely; Driscoll, Paul C; Brockes, Jeremy P

    2010-10-01

    The most extensive regenerative ability in adult vertebrates is found in the salamanders. Although it is often suggested that regeneration is an ancestral property for vertebrates, our studies on the cell-surface three-finger-protein Prod 1 provide clear evidence for the importance of local evolution of limb regeneration in salamanders. Prod 1 is implicated in both patterning and growth in the regeneration of limbs. It interacts with well-conserved proteins such as the epidermal growth-factor receptor and the anterior gradient protein that are widely expressed in phylogeny. A detailed analysis of the structure and sequence of Prod 1 in relation to other vertebrate three-finger proteins in mammals and zebra fish supports the view that it is a salamander-specific protein. This is the first example of a taxon-specific protein that is clearly implicated in the mechanisms of regeneration. We propose the hypothesis that regeneration depends on the activity of taxon-specific components in orchestrating a cellular machinery that is extensively conserved between regenerating and non-regenerating taxa. This hypothesis has significant implications for our outlook on regeneration in vertebrates, as well as for the strategies employed in extending regenerative ability in mammals.

  9. Neurotrophic regulation of fibroblast dedifferentiation during limb skeletal regeneration in the axolotl (Ambystoma mexicanum).

    PubMed

    Satoh, Akira; Cummings, Gillian M C; Bryant, Susan V; Gardiner, David M

    2010-01-15

    The ability of animals to repair tissue damage is widespread and impressive. Among tissues, the repair and remodeling of bone occurs during growth and in response to injury; however, loss of bone above a threshold amount is not regenerated, resulting in a "critical-size defect" (CSD). The development of therapies to replace or regenerate a CSD is a major focus of research in regenerative medicine and tissue engineering. Adult urodeles (salamanders) are unique in their ability to regenerate complex tissues perfectly, yet like mammals do not regenerate a CSD. We report on an experimental model for the regeneration of a CSD in the axolotl (the Excisional Regeneration Model) that allows for the identification of signals to induce fibroblast dedifferentiation and skeletal regeneration. This regenerative response is mediated in part by BMP signaling, as is the case in mammals; however, a complete regenerative response requires the induction of a population of undifferentiated, regeneration-competent cells. These cells can be induced by signaling from limb amputation to generate blastema cells that can be grafted to the wound, as well as by signaling from a nerve and a wound epithelium to induce blastema cells from fibroblasts within the wound environment. PMID:19944088

  10. Planarian regeneration involves distinct stem cell responses to wounds and tissue absence

    PubMed Central

    Wenemoser, Danielle; Reddien, Peter W.

    2010-01-01

    Regeneration requires signaling from a wound site for detection of the wound, and a mechanism that determines the nature of the injury to specify the appropriate regenerative response. Wound signals and tissue responses to wounds that elicit regeneration remain poorly understood. Planarians are able to regenerate from essentially any type of injury and present a novel system for the study of wound responses in regeneration initiation. Newly developed molecular and cellular tools now enable study of regeneration initiation using the planarian Schmidtea mediterranea. Planarian regeneration requires adult stem cells called neoblasts and amputation triggers two peaks in neoblast mitoses early in regeneration. We demonstrate that the first mitotic peak is a body-wide response to any injury and that a second, local, neoblast response is induced only when injury results in missing tissue. This second response was characterized by recruitment of neoblasts to wounds, even in areas that lack neoblasts in the intact animal. Subsequently, these neoblasts were induced to divide and differentiate near the wound, leading to formation of new tissue. We conclude that there exist two functionally distinct signaling phases of the stem cell wound response that distinguish between simple injury and situations that require the regeneration of missing tissue. PMID:20599901

  11. Physiological Maturation of Regenerating Hair Cells

    NASA Technical Reports Server (NTRS)

    Baird, Richard A.

    2003-01-01

    The bullfrog saccule, a sensor of gravity and substrate-borne vibration, is a model system for hair cell transduction. Saccular hair cells also increase in number throughout adult life and rapidly recover after hair cell damage, making this organ an ideal system for studying hair cell development, repair, and regeneration. We have used of hair cell and supporting cell immunocytochemical markers to identify damaged hair cells and hair cell precursors in organotypic cultures of the bullfrog saccule. We then used an innovative combination of confocal, electron, and time-lapse microscopy to study the fate of damaged hair cells and the origin of new hair cells after gentamicin ototoxicity in normal and mitotically blocked saccular cultures. These studies have shown that gentamicin ototoxicity produces both lethal and sublethal hair cell damage. They have also shown that hair cell recovery in this organ takes place by both the repair of sublethally damaged hair cells and by the replacement of lost hair cells by mitotic regeneration. In parallel studies, we have used biophysical and molecular biological techniques to study the differentiation and innervation of developing, repairing, and regenerating hair cells. More specifically, we have used RT-PCR to obtain the bullfrog homologues of L-type voltage- gated calcium (L-VGCC) and large-conductance Ca(2+)-activated potassium (BK) channel genes. We have then obtained probes for these genes and, using in situ hybridization, begun to examine their expression in the bullfrog saccule and amphibian papilla. We have also used fluorescent-labeled channel toxins and channel toxin derivatives to determine the time of appearance of L-type voltage-gated calcium (L-VGCC) and Ca(2+)-activated potassium (BK) channels and to study dynamic changes in the number, distribution, and co-localization of these proteins in developing, repairing, and regenerating hair cells. Using time-lapse microscopy, we are also studying the dynamic relationship

  12. Innate immune system and tissue regeneration in planarians: an area ripe for exploration.

    PubMed

    Peiris, T Harshani; Hoyer, Katrina K; Oviedo, Néstor J

    2014-08-01

    The immune system has been implicated as an important modulator of tissue regeneration. However, the mechanisms driving injury-induced immune response and tissue repair remain poorly understood. For over 200 years, planarians have been a classical model for studies on tissue regeneration, but the planarian immune system and its potential role in repair is largely unknown. We found through comparative genomic analysis and data mining that planarians contain many potential homologs of the innate immune system that are activated during injury and repair of adult tissues. These findings support the notion that the relationship between adult tissue repair and the immune system is an ancient feature of basal Bilateria. Further analysis of the planarian immune system during regeneration could potentially add to our understanding of how the innate immune system and inflammatory responses interplay with regenerative signals to induce scar-less tissue repair in the context of the adult organism.

  13. HB-GAM (pleiotrophin) reverses inhibition of neural regeneration by the CNS extracellular matrix

    PubMed Central

    Paveliev, Mikhail; Fenrich, Keith K.; Kislin, Mikhail; Kuja-Panula, Juha; Kulesskiy, Evgeny; Varjosalo, Markku; Kajander, Tommi; Mugantseva, Ekaterina; Ahonen-Bishopp, Anni; Khiroug, Leonard; Kulesskaya, Natalia; Rougon, Geneviève; Rauvala, Heikki

    2016-01-01

    Chondroitin sulfate (CS) glycosaminoglycans inhibit regeneration in the adult central nervous system (CNS). We report here that HB-GAM (heparin-binding growth-associated molecule; also known as pleiotrophin), a CS-binding protein expressed at high levels in the developing CNS, reverses the role of the CS chains in neurite growth of CNS neurons in vitro from inhibition to activation. The CS-bound HB-GAM promotes neurite growth through binding to the cell surface proteoglycan glypican-2; furthermore, HB-GAM abrogates the CS ligand binding to the inhibitory receptor PTPσ (protein tyrosine phosphatase sigma). Our in vivo studies using two-photon imaging of CNS injuries support the in vitro studies and show that HB-GAM increases dendrite regeneration in the adult cerebral cortex and axonal regeneration in the adult spinal cord. Our findings may enable the development of novel therapies for CNS injuries. PMID:27671118

  14. Cross-talk between KLF4 and STAT3 regulates axon regeneration

    NASA Astrophysics Data System (ADS)

    Qin, Song; Zou, Yuhua; Zhang, Chun-Li

    2013-10-01

    Cytokine-induced activation of signal transducer and activator of transcription 3 (STAT3) promotes the regrowth of damaged axons in the adult central nervous system (CNS). Here we show that KLF4 physically interacts with STAT3 upon cytokine-induced phosphorylation of tyrosine 705 (Y705) on STAT3. This interaction suppresses STAT3-dependent gene expression by blocking its DNA-binding activity. The deletion of KLF4 in vivo induces axon regeneration of adult retinal ganglion cells (RGCs) via Janus kinase (JAK)-STAT3 signalling. This regeneration can be greatly enhanced by exogenous cytokine treatment, or removal of an endogenous JAK-STAT3 pathway inhibitor called suppressor of cytokine signalling 3 (SOCS3). These findings reveal an unexpected cross-talk between KLF4 and activated STAT3 in the regulation of axon regeneration that might have therapeutic implications in promoting repair of injured adult CNS.

  15. Cementum and Periodontal Ligament Regeneration.

    PubMed

    Menicanin, Danijela; Hynes, K; Han, J; Gronthos, S; Bartold, P M

    2015-01-01

    The unique anatomy and composition of the periodontium make periodontal tissue healing and regeneration a complex process. Periodontal regeneration aims to recapitulate the crucial stages of wound healing associated with periodontal development in order to restore lost tissues to their original form and function and for regeneration to occur, healing events must progress in an ordered and programmed sequence both temporally and spatially, replicating key developmental events. A number of procedures have been employed to promote true and predictable regeneration of the periodontium. Principally, the approaches are based on the use of graft materials to compensate for the bone loss incurred as a result of periodontal disease, use of barrier membranes for guided tissue regeneration and use of bioactive molecules. More recently, the concept of tissue engineering has been integrated into research and applications of regenerative dentistry, including periodontics, to aim to manage damaged and lost oral tissues, through reconstruction and regeneration of the periodontium and alleviate the shortcomings of more conventional therapeutic options. The essential components for generating effective cellular based therapeutic strategies include a population of multi-potential progenitor cells, presence of signalling molecules/inductive morphogenic signals and a conductive extracellular matrix scaffold or appropriate delivery system. Mesenchymal stem cells are considered suitable candidates for cell-based tissue engineering strategies owing to their extensive expansion rate and potential to differentiate into cells of multiple organs and systems. Mesenchymal stem cells derived from multiple tissue sources have been investigated in pre-clinical animal studies and clinical settings for the treatment and regeneration of the periodontium.

  16. Digital Literacy Practices and Their Layered Multiplicity

    ERIC Educational Resources Information Center

    Bhatt, Ibrar

    2012-01-01

    Success in educational programmes often depends on learners being able to negotiate and manage a variety of digital literacy practices commensurate with the literacy demands of their course. This paper reports on preliminary findings of a multi-method PhD study which examines the digital literacy practices arising when an adult learner in a UK…

  17. Tail regeneration in Urodela: old model and new perspectives in studies

    NASA Astrophysics Data System (ADS)

    Grigoryan, E.; Anton, H.; Mitashov, V.

    For better understanding of micro-"g" effect on nervous tissue regeneration we have chosen the regeneration of the Urodele tail, because it utilizes many developmental processes and represents the most convenient model for experiments in Space. The special interesting aspect lies in the ability of regenerates to differentiate the spinal cord (SC) and this, in turn, has a potential of practical application. Meanwhile there are conclusive evidences suggesting the production by SC cells the neurotrophic factors promoting cell proliferation and differentiation in growing tail regenerate. Previously our studies on tail regeneration in the adult newt showed that the force of gravity clearly inf luences the events underlying the regeneration. We reported the significant increase of tail regeneration rate and tissue volume of tail regenerates in the newts exposed to real and simulated low "g". In Bion 11 mission animals that were exposed 14 days in microgravity and whose tails were operated two and four weeks before launch demonstrated the regenerates achieved 1.5 - 2 times the volume of those in 1"g" control. Results of this experiment indicated also that the regeneration of central and peripheral neurons and nerve fibers was carrying out faster under low "g" conditions than in 1 "g" control. Similar data were obtained in several experiments remodeling physiological weightlessness by mean of the clinostat. It led us to the hypothesis that the stimulation of tail regeneration is linked with an over activation of neurotrophic factors produced by quickly growing SC neurons. Now we've completed the experiment on tail regeneration in the newts Tr. alpestris subjected to 5 day long clinorotation after 6 days post tail amputation. The rate of primary- and secondary regeneration was evaluated at different time points after treatment. Cell proliferation, differentiation and expression of neurotrophic proteins in SC and other major tissue-type of regenerate were investigated by

  18. Cell Therapy for Cardiovascular Regeneration

    PubMed Central

    2013-01-01

    A great numbers of cardiovascular disease patients all over the world are suffering in the poor outcomes. Under this situation, cardiac regeneration therapy to reorganize the postnatal heart that is defined as a terminal differentiated-organ is a very important theme and mission for human beings. However, the temporary success of several clinical trials using usual cell types with uncertain cell numbers has provided the transient effect of cell therapy to these patients. We therefore should redevelop the evidence of cell-based cardiovascular regeneration therapy, focusing on targets (disease, patient’s status, cardiac function), materials (cells, cytokines, genes), and methodology (transplantation route, implantation technology, tissue engineering). Meanwhile, establishment of the induced pluripotent stem (iPS) cells is an extremely innovative technology which should be proposed as embryonic stem (ES) cellularization of post natal somatic cells, and this application have also showed the milestones of the direct conversion to reconstruct cardiomyocyte from the various somatic cells, which does not need the acquisition of the re-pluripotency. This review discusses the new advance in cardiovascular regeneration therapy from cardiac regeneration to cardiac re-organization, which is involved in recent progress of on-going clinical trials, basic research in cardiovascular regeneration, and the possibility of tissue engineering technology. PMID:23825492

  19. Hindlimb suspension reduces muscle regeneration

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Truong, Q.; Macius, A.; Schultz, E.

    1998-01-01

    Exposure of juvenile skeletal muscle to a weightless environment reduces growth and satellite cell mitotic activity. However, the effect of a weightless environment on the satellite cell population during muscle repair remains unknown. Muscle injury was induced in rat soleus muscles using the myotoxic snake venom, notexin. Rats were placed into hindlimb-suspended or weightbearing groups for 10 days following injury. Cellular proliferation during regeneration was evaluated using 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry and image analysis. Hindlimb suspension reduced (P < 0.05) regenerated muscle mass, regenerated myofiber diameter, uninjured muscle mass, and uninjured myofiber diameter compared to weightbearing rats. Hindlimb suspension reduced (P < 0.05) BrdU labeling in uninjured soleus muscles compared to weight-bearing muscles. However, hindlimb suspension did not abolish muscle regeneration because myofibers formed in the injured soleus muscles of hindlimb-suspended rats, and BrdU labeling was equivalent (P > 0.10) on myofiber segments isolated from the soleus muscles of hindlimb-suspended and weightbearing rats following injury. Thus, hindlimb suspension (weightlessness) does not suppress satellite cell mitotic activity in regenerating muscles before myofiber formation, but reduces growth of the newly formed myofibers.

  20. Pancreas β cell regeneration and type 1 diabetes (Review)

    PubMed Central

    WU, JINXIAO; YANG, XIYAN; CHEN, BIN; XU, XIUPING

    2015-01-01

    Diabetes mellitus, which may cause hyperglycemia and a number of complications, mostly results from a deficiency of β cell mass (type 1 diabetes) or a limitation of β cell function (type 2 diabetes). Currently, enhancing β cell regeneration and increasing cell proliferation have not only been described in experimental diabetes models, but have also been proven to improve outcomes for patients with diabetes. Therefore, understanding the mechanisms controlling the development and regeneration of β cells in the human pancreas may be helpful for the treatment of β cell-deficient disease. In this review, we first introduce the various cell types in the adult pancreas and thereby clarify their functions and origins. Then, the known mechanisms of β cell development and expansion in the normal human pancreas are described. The potential mechanisms of β cell regeneration, including β cell self-replication, neogenesis from non-β cell precursors and transdifferentiation from α cells, are discussed in the next part. Finally, the ability of the pancreas to regenerate mature β cells is explored in pathological conditions, including type 1 diabetes, chronic pancreatitis and persistent hyperinsulinemic hypoglycemia of infancy. PMID:25667609

  1. Insights into the physiological role of CNS regeneration inhibitors

    PubMed Central

    Baldwin, Katherine T.; Giger, Roman J.

    2015-01-01

    The growth inhibitory nature of injured adult mammalian central nervous system (CNS) tissue constitutes a major barrier to robust axonal outgrowth and functional recovery following trauma or disease. Prototypic CNS regeneration inhibitors are broadly expressed in the healthy and injured brain and spinal cord and include myelin-associated glycoprotein (MAG), the reticulon family member NogoA, oligodendrocyte myelin glycoprotein (OMgp), and chondroitin sulfate proteoglycans (CSPGs). These structurally diverse molecules strongly inhibit neurite outgrowth in vitro, and have been most extensively studied in the context of nervous system injury in vivo. The physiological role of CNS regeneration inhibitors in the naïve, or uninjured, CNS remains less well understood, but has received growing attention in recent years and is the focus of this review. CNS regeneration inhibitors regulate myelin development and axon stability, consolidate neuronal structure shaped by experience, and limit activity-dependent modification of synaptic strength. Altered function of CNS regeneration inhibitors is associated with neuropsychiatric disorders, suggesting crucial roles in brain development and health. PMID:26113809

  2. CD59 mediates cartilage patterning during spontaneous tail regeneration.

    PubMed

    Bai, Xue; Wang, Yingjie; Man, Lili; Zhang, Qing; Sun, Cheng; Hu, Wen; Liu, Yan; Liu, Mei; Gu, Xiaosong; Wang, Yongjun

    2015-08-04

    The regeneration-competent adult animals have ability to regenerate their lost complex appendages with a near-perfect replica, owing to the positional identity acquired by the progenitor cells in the blastema, i.e. the blastemal cells. CD59, a CD59/Ly6 family member, has been identified as a regulator of positional identity in the tail blastemal cells of Gekko japonicus. To determine whether this function of CD59 is unique to the regenerative amniote(s) and how CD59 mediates PD axis patterning during tail regeneration, we examined its protective role on the complement-mediated cell lysis and intervened CD59 expression in the tail blastemal cells using an in vivo model of adenovirus transfection. Our data revealed that gecko CD59 was able to inhibit complement-mediated cell lysis. Meanwhile, CD59 functioned on positional identity through expression in cartilage precursor cells. Intervening positional identity by overexpression or siRNA knockdown of CD59 resulted in abnormal cartilaginous cone patterning due to the decreased differentiation of blastemal cells to cartilage precursor cells. The cartilage formation-related genes were found to be under the regulation of CD59. These results indicate that CD59, an evolutionarily transitional molecule linking immune and regenerative regulation, affects tail regeneration by mediating cartilage patterning.

  3. CD59 mediates cartilage patterning during spontaneous tail regeneration

    PubMed Central

    Bai, Xue; Wang, Yingjie; Man, Lili; Zhang, Qing; Sun, Cheng; Hu, Wen; Liu, Yan; Liu, Mei; Gu, Xiaosong; Wang, Yongjun

    2015-01-01

    The regeneration-competent adult animals have ability to regenerate their lost complex appendages with a near-perfect replica, owing to the positional identity acquired by the progenitor cells in the blastema, i.e. the blastemal cells. CD59, a CD59/Ly6 family member, has been identified as a regulator of positional identity in the tail blastemal cells of Gekko japonicus. To determine whether this function of CD59 is unique to the regenerative amniote(s) and how CD59 mediates PD axis patterning during tail regeneration, we examined its protective role on the complement-mediated cell lysis and intervened CD59 expression in the tail blastemal cells using an in vivo model of adenovirus transfection. Our data revealed that gecko CD59 was able to inhibit complement-mediated cell lysis. Meanwhile, CD59 functioned on positional identity through expression in cartilage precursor cells. Intervening positional identity by overexpression or siRNA knockdown of CD59 resulted in abnormal cartilaginous cone patterning due to the decreased differentiation of blastemal cells to cartilage precursor cells. The cartilage formation-related genes were found to be under the regulation of CD59. These results indicate that CD59, an evolutionarily transitional molecule linking immune and regenerative regulation, affects tail regeneration by mediating cartilage patterning. PMID:26238652

  4. Wounded Embryonic Corneas Exhibit Nonfibrotic Regeneration and Complete Innervation

    PubMed Central

    Spurlin, James W.; Lwigale, Peter Y.

    2013-01-01

    Purpose. Wound healing in adult corneas is characterized by activation of keratocytes and extracellular matrix (ECM) synthesis that results in fibrotic scar formation and loss of transparency. Since most fetal wounds heal without scaring, we investigated the regenerative potential of wounded embryonic corneas. Methods. On embryonic day (E) 7 chick corneas were wounded by making a linear incision traversing the epithelium and anterior stroma. Wounded corneas were collected between E7 and E18, and analyzed for apoptosis, cell proliferation, staining of ECM components, and corneal innervation. Results. Substantial wound retraction was observed within 16-hours postwounding (hpw) and partial re-epithelialized by 5-days postwounding (dpw). Corneal wounds were fully re-epithelialized by 11 dpw with no visible scars. There was no difference in the number of cells undergoing apoptosis between wounded and control corneas. Cell proliferation was reduced in the wounded corneas, albeit mitotic cells in the regenerating epithelium. Staining for alpha–smooth muscle actin (α-SMA), tenascin, and fibronectin was vivid but transient at the wound site. Staining for procollagen I, perlecan, and keratan sulfate proteoglycan was reduced at the wound site. Wounded corneas were fully regenerated by 11 dpw and showed similar patterns of staining for ECM components, albeit an increase in perlecan staining. Corneal innervation was inhibited during wound healing, but regenerated corneas were innervated similar to controls. Conclusions. These data show that minimal keratocyte activation, rapid ECM reconstruction, and proper innervation occur during nonfibrotic regeneration of the embryonic cornea. PMID:24003085

  5. Modifying lipid rafts promotes regeneration and functional recovery.

    PubMed

    Tassew, Nardos G; Mothe, Andrea J; Shabanzadeh, Alireza P; Banerjee, Paromita; Koeberle, Paulo D; Bremner, Rod; Tator, Charles H; Monnier, Philippe P

    2014-08-21

    Ideal strategies to ameliorate CNS damage should promote both neuronal survival and axon regeneration. The receptor Neogenin promotes neuronal apoptosis. Its ligand prevents death, but the resulting repulsive guidance molecule a (RGMa)-Neogenin interaction also inhibits axonal growth, countering any prosurvival benefits. Here, we explore strategies to inhibit Neogenin, thus simultaneously enhancing survival and regeneration. We show that bone morphogenetic protein (BMP) and RGMa-dependent recruitment of Neogenin into lipid rafts requires an interaction between RGMa and Neogenin subdomains. RGMa or Neogenin peptides that prevent this interaction, BMP inhibition by Noggin, or reduction of membrane cholesterol all block Neogenin raft localization, promote axon outgrowth, and prevent neuronal apoptosis. Blocking Neogenin raft association influences axonal pathfinding, enhances survival in the developing CNS, and promotes survival and regeneration in the injured adult optic nerve and spinal cord. Moreover, lowering cholesterol disrupts rafts and restores locomotor function after spinal cord injury. These data reveal a unified strategy to promote both survival and regeneration in the CNS. PMID:25127134

  6. Self-regenerating column chromatography

    DOEpatents

    Park, Woo K.

    1995-05-30

    The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.

  7. Ceramic regenerator systems development program

    NASA Technical Reports Server (NTRS)

    Fucinari, C. A.; Rahnke, C. J.; Rao, V. D. N.; Vallance, J. K.

    1980-01-01

    The DOE/NASA Ceramic Regenerator Design and Reliability Program aims to develop ceramic regenerator cores that can be used in passenger car and industrial/truck gas turbine engines. The major cause of failure of early gas turbine regenerators was found to be chemical attack of the ceramic material. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines late in 1974. Results of 53,065 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, show promise. Five aluminum silicate cores attained the durability objective of 10,000 hours at 800 C (1472 F). Another aluminum silicate core shows minimal evidence of chemical attack after 8071 hours at 982 C (1800 F). Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are included.

  8. Molecular Sieve Regeneration System (MSRS)

    SciTech Connect

    Nasise, J.E.; Anderson, J.L. ); Naruse, Y. )

    1992-01-01

    A Molecular Sieve Regeneration System (MSRS) was added to the existing Tritium Waste Treatment system (TWT) within the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The Department of Energy (DOE) no longer allows inventory by difference'' for radioactive wastes that are to be buried. The MSRS was designed and built to comply with this requirement. Within the TWT, water is generated by the catalytic conversion of hydrogen isotopes and removed by molecular sieve trapping prior to release to the environment. Molecular sieve regeneration is required to remove the trapped water and to rejuvenate the beds. The MSRS permits the collection and direct tritium assay of regenerated tritiated water from molecular sieve beds. This paper describes the MSRS in detail and how it is interfaced with the TWT.

  9. Molecular Sieve Regeneration System (MSRS)

    SciTech Connect

    Nasise, J.E.; Anderson, J.L.; Naruse, Y.

    1992-03-01

    A Molecular Sieve Regeneration System (MSRS) was added to the existing Tritium Waste Treatment system (TWT) within the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The Department of Energy (DOE) no longer allows ``inventory by difference`` for radioactive wastes that are to be buried. The MSRS was designed and built to comply with this requirement. Within the TWT, water is generated by the catalytic conversion of hydrogen isotopes and removed by molecular sieve trapping prior to release to the environment. Molecular sieve regeneration is required to remove the trapped water and to rejuvenate the beds. The MSRS permits the collection and direct tritium assay of regenerated tritiated water from molecular sieve beds. This paper describes the MSRS in detail and how it is interfaced with the TWT.

  10. Regenerator cross arm seal assembly

    DOEpatents

    Jackman, Anthony V.

    1988-01-01

    A seal assembly for disposition between a cross arm on a gas turbine engine block and a regenerator disc, the seal assembly including a platform coextensive with the cross arm, a seal and wear layer sealingly and slidingly engaging the regenerator disc, a porous and compliant support layer between the platform and the seal and wear layer porous enough to permit flow of cooling air therethrough and compliant to accommodate relative thermal growth and distortion, a dike between the seal and wear layer and the platform for preventing cross flow through the support layer between engine exhaust and pressurized air passages, and air diversion passages for directing unregenerated pressurized air through the support layer to cool the seal and wear layer and then back into the flow of regenerated pressurized air.

  11. Catalyst regeneration with flue gas

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1989-09-19

    This patent describes an integrated once through reactor system for regenerating acidic medium pore zeolite olefin or oxygenate feedstock conversion catalyst with flue gas. It comprises in combination: fluid catalytic cracking catalyst regenerator means for providing the flue gas containing oxygen; at least two fixed bed reactor means for containing the zeolite catalyst, the reactor means receivably connected to the regenerator means for alternately receiving the flue gas therefrom; feedstock conduit means connected to the reactor means for alternately transferring the feedstock thereto; conversion product conduit means receivably connected to the reactor means for alternately transferring the product therefrom; flue gas conduit means receivably connected to the reactor means for alternately transferring flue gas therefrom.

  12. Recruitment of Progenitor Cells by an Extracellular Matrix Cryptic Peptide in a Mouse Model of Digit Amputation

    PubMed Central

    Agrawal, Vineet; Tottey, Stephen; Johnson, Scott A.; Freund, John M.; Siu, Bernard F.

    2011-01-01

    Biologic scaffolds composed of extracellular matrix (ECM) have been used successfully in preclinical models and humans for constructive remodeling of functional, site-appropriate tissue after injury. The mechanisms underlying ECM-mediated constructive remodeling are not completely understood, but scaffold degradation and site-directed recruitment of both differentiated and progenitor cells are thought to play critical roles. Previous studies have shown that degradation products of ECM scaffolds can recruit a population of progenitor cells both in vitro and in vivo. The present study identified a single cryptic peptide derived from the α subunit of the collagen III molecule that is chemotactic for a well-characterized perivascular stem cell in vitro and causes the site-directed accumulation of progenitor cells in vivo. The oligopeptide was additionally chemotactic for human cortical neural stem cells, rat adipocyte stem cells, C2C12 myoblast cells, and rat Schwann cells in vitro. In an adult murine model of digit amputation, treatment with this peptide after mid-second phalanx amputation resulted in a greater number of Sox2+ and Sca1+,Lin− cells at the site of injury compared to controls. Since progenitor cell activation and recruitment are key prerequisites for epimorphic regeneration in adult mammalian tissues, endogenous site-directed recruitment of such cells has the potential to alter the default wound healing response from scar tissue toward regeneration. PMID:21563860

  13. Digit (2D:4D) ratio is associated with muscle mass (MM) and strength (MS) in older adults: possible effect of in utero androgen exposure.

    PubMed

    Halil, Meltem; Gurel, Esin Ileri; Kuyumcu, Mehmet Emin; Karaismailoglu, Serkan; Yesil, Yusuf; Ozturk, Zeynel Abidin; Yavuz, Burcu Balam; Cankurtaran, Mustafa; Ariogul, Servet

    2013-01-01

    Decline in MM and MS with aging, defined as sarcopenia, is related with physical disability, poor quality of life and death. Its mechanisms are not fully understood. Testosterone increases muscle protein synthesis. However, the effects of in utero androgen exposure to MM and MS in older adults have not been studied. In utero androgen exposure is inversely related with 2D:4D ratio. The aim of this study was to investigate the relationship between 2D:4D ratio as an indicator of in utero androgen exposure and MM and MS in elderly patients. A total of 151 older adults were included. Calf-circumference (CC) and skeletal muscle mass index (SMI) were used for the assessment of MM and hand grip strength for the assessment of MS. Mean age ± SD of the patients was 73.72 ± 6.23. Fifty-two (34.4%) of patients were male, 99 (65.6%) were female. Right and left 2D:4D were significantly and negatively correlated with hand grip strength (r=-0.365, p=0.018 and r=-0.434, p=0.005, respectively), CC (r=-0.422, p=0.002 and r=-0.459, p=0.001, respectively) and SMI (r=-0.354, p=0.018 and r=-0.348, p=0.022, respectively) in men. In women, right and left 2D:4D were significantly and negatively correlated with hand grip strength (r=-0.252, p=0.022 and r=-0.234, p=0.033, respectively), CC (r=-0.229, p=0.024 and r=-0.302, p=0.003, respectively) and SMI (r=-0.382, p<0.001 and r=-0.431, p<0.001, respectively). In this study, we found that 2D:4D ratio was significantly and negatively correlated with parameters depicting MM and MS which may suggest the possible role of in utero androgen exposure in the development of MM and MS loss in the elderly. PMID:23219021

  14. Digital Epidemiology

    PubMed Central

    Salathé, Marcel; Bengtsson, Linus; Bodnar, Todd J.; Brewer, Devon D.; Brownstein, John S.; Buckee, Caroline; Campbell, Ellsworth M.; Cattuto, Ciro; Khandelwal, Shashank; Mabry, Patricia L.; Vespignani, Alessandro

    2012-01-01

    Mobile, social, real-time: the ongoing revolution in the way people communicate has given rise to a new kind of epidemiology. Digital data sources, when harnessed appropriately, can provide local and timely information about disease and health dynamics in populations around the world. The rapid, unprecedented increase in the availability of relevant data from various digital sources creates considerable technical and computational challenges. PMID:22844241

  15. Adult stem-like cells in kidney

    PubMed Central

    Hishikawa, Keiichi; Takase, Osamu; Yoshikawa, Masahiro; Tsujimura, Taro; Nangaku, Masaomi; Takato, Tsuyoshi

    2015-01-01

    Human pluripotent cells are promising for treatment for kidney diseases, but the protocols for derivation of kidney cell types are still controversial. Kidney tissue regeneration is well confirmed in several lower vertebrates such as fish, and the repair of nephrons after tubular damages is commonly observed after renal injury. Even in adult mammal kidney, renal progenitor cell or system is reportedly presents suggesting that adult stem-like cells in kidney can be practical clinical targets for kidney diseases. However, it is still unclear if kidney stem cells or stem-like cells exist or not. In general, stemness is defined by several factors such as self-renewal capacity, multi-lineage potency and characteristic gene expression profiles. The definite use of stemness may be obstacle to understand kidney regeneration, and here we describe the recent broad findings of kidney regeneration and the cells that contribute regeneration. PMID:25815133

  16. Adult stem-like cells in kidney.

    PubMed

    Hishikawa, Keiichi; Takase, Osamu; Yoshikawa, Masahiro; Tsujimura, Taro; Nangaku, Masaomi; Takato, Tsuyoshi

    2015-03-26

    Human pluripotent cells are promising for treatment for kidney diseases, but the protocols for derivation of kidney cell types are still controversial. Kidney tissue regeneration is well confirmed in several lower vertebrates such as fish, and the repair of nephrons after tubular damages is commonly observed after renal injury. Even in adult mammal kidney, renal progenitor cell or system is reportedly presents suggesting that adult stem-like cells in kidney can be practical clinical targets for kidney diseases. However, it is still unclear if kidney stem cells or stem-like cells exist or not. In general, stemness is defined by several factors such as self-renewal capacity, multi-lineage potency and characteristic gene expression profiles. The definite use of stemness may be obstacle to understand kidney regeneration, and here we describe the recent broad findings of kidney regeneration and the cells that contribute regeneration. PMID:25815133

  17. Ceramic regenerator systems development program

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.; Rao, V. D.

    1978-01-01

    Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability tests/in industrial gas turbine engines. A regenerator core made from aluminum silicate shows minimal evidence of chemical attack damage after 7804 hours of engine test at 800 C and another showed little distress after 4983 hours at 982 C. The results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.

  18. Cardiac imaging in adults

    SciTech Connect

    Jaffe, C.C.

    1987-01-01

    This book approaches adult cardiac disease from the correlative imaging perspective. It includes chest X-rays and angiographs, 2-dimensional echocardiograms with explanatory diagrams for clarity, plus details on digital radiology, nuclear medicine techniques, CT and MRI. It also covers the normal heart, valvular heart disease, myocardial disease, pericardial disease, bacterial endocarditis, aortic aneurysm, cardiac tumors, and congenital heart disease of the adult. It points out those aspects where one imaging technique has significant superiority.

  19. Digital Collections, Digital Libraries & the Digitization of Cultural Heritage Information.

    ERIC Educational Resources Information Center

    Lynch, Clifford

    2002-01-01

    Discusses digital collections and digital libraries. Topics include broadband availability; digital rights protection; content, both non-profit and commercial; digitization of cultural content; sustainability; metadata harvesting protocol; infrastructure; authorship; linking multiple resources; data mining; digitization of reference works;…

  20. Regulation of crustacean molting and regeneration

    SciTech Connect

    Skinner, D.M.; Graham, D.E.; Holland, C.A.; Soumoff, C.; Mykles, D.L.

    1981-01-01

    The regulation of molting and regeneration by two antagonistic hormones is discussed. The time course of ecdysteroid titers in crustacean tissues has been followed during molt and regeneration cycles. (ACR)

  1. A model regenerator for a Stirling cycle

    NASA Astrophysics Data System (ADS)

    Carolan, James

    2001-05-01

    An essential feature of the engine patented by Robert Stirling in 1817 was the careful description of the idea of regeneration. In the standard thermodynamic cycle representation of the engine, regeneration is the storing and the reusing of the thermal energy released in the constant volume cooling part of the cycle. Due to the difficulty in treating regeneration quantitatively, introductory physics texts generally either ignore the concept or assume the regeneration to be perfect. As a result students obtain little or no understanding of regeneration. In addition there seem to be differing views in various texts about the efficiency of Stirling engines. In this work a simple finite element model regenerator is presented with which one can do simple calculations. The model does not accurately represent actual regeneration in a practical engine. But the model might help students gain better insight into Stirling engine efficiency and the idea of regeneration.

  2. Cardiomyocyte proliferation in cardiac development and regeneration: a guide to methodologies and interpretations.

    PubMed

    Leone, Marina; Magadum, Ajit; Engel, Felix B

    2015-10-01

    The newt and the zebrafish have the ability to regenerate many of their tissues and organs including the heart. Thus, a major goal in experimental medicine is to elucidate the molecular mechanisms underlying the regenerative capacity of these species. A wide variety of experiments have demonstrated that naturally occurring heart regeneration relies on cardiomyocyte proliferation. Thus, major efforts have been invested to induce proliferation of mammalian cardiomyocytes in order to improve cardiac function after injury or to protect the heart from further functional deterioration. In this review, we describe and analyze methods currently used to evaluate cardiomyocyte proliferation. In addition, we summarize the literature on naturally occurring heart regeneration. Our analysis highlights that newt and zebrafish heart regeneration relies on factors that are also utilized in cardiomyocyte proliferation during mammalian fetal development. Most of these factors have, however, failed to induce adult mammalian cardiomyocyte proliferation. Finally, our analysis of mammalian neonatal heart regeneration indicates experiments that could resolve conflicting results in the literature, such as binucleation assays and clonal analysis. Collectively, cardiac regeneration based on cardiomyocyte proliferation is a promising approach for improving adult human cardiac function after injury, but it is important to elucidate the mechanisms arresting mammalian cardiomyocyte proliferation after birth and to utilize better assays to determine formation of new muscle mass.

  3. Cardiomyocyte proliferation in cardiac development and regeneration: a guide to methodologies and interpretations.

    PubMed

    Leone, Marina; Magadum, Ajit; Engel, Felix B

    2015-10-01

    The newt and the zebrafish have the ability to regenerate many of their tissues and organs including the heart. Thus, a major goal in experimental medicine is to elucidate the molecular mechanisms underlying the regenerative capacity of these species. A wide variety of experiments have demonstrated that naturally occurring heart regeneration relies on cardiomyocyte proliferation. Thus, major efforts have been invested to induce proliferation of mammalian cardiomyocytes in order to improve cardiac function after injury or to protect the heart from further functional deterioration. In this review, we describe and analyze methods currently used to evaluate cardiomyocyte proliferation. In addition, we summarize the literature on naturally occurring heart regeneration. Our analysis highlights that newt and zebrafish heart regeneration relies on factors that are also utilized in cardiomyocyte proliferation during mammalian fetal development. Most of these factors have, however, failed to induce adult mammalian cardiomyocyte proliferation. Finally, our analysis of mammalian neonatal heart regeneration indicates experiments that could resolve conflicting results in the literature, such as binucleation assays and clonal analysis. Collectively, cardiac regeneration based on cardiomyocyte proliferation is a promising approach for improving adult human cardiac function after injury, but it is important to elucidate the mechanisms arresting mammalian cardiomyocyte proliferation after birth and to utilize better assays to determine formation of new muscle mass. PMID:26342071

  4. Original and regenerating lizard tail cartilage contain putative resident stem/progenitor cells.

    PubMed

    Alibardi, Lorenzo

    2015-11-01

    Regeneration of cartilaginous tissues is limited in mammals but it occurs with variable extension in lizards (reptiles), including in their vertebrae. The ability of lizard vertebrae to regenerate cartilaginous tissue that is later replaced with bone has been analyzed using tritiated thymidine autoradiography and 5BrdU immunocytochemistry after single pulse or prolonged-pulse and chase experiments. The massive cartilage regeneration that can restore broad vertebral regions and gives rise to a long cartilaginous tube in the regenerating tail, depends from the permanence of some chondrogenic cells within adult vertebrae. Few cells that retain tritiated thymidine or 5-bromodeoxy-uridine for over 35 days are mainly localized in the inter-vertebral cartilage and in sparse chondrogenic regions of the neural arch of the vertebrae, suggesting that they are putative resident stem/progenitor cells. The study supports previous hypothesis indicating that the massive regeneration of the cartilaginous tissue in damaged vertebrae and in the regenerating tail of lizards derive from resident stem cells mainly present in the cartilaginous areas of the vertebrae including in the perichondrium that are retained in adult lizards as growing centers for most of their lifetime.

  5. High-resolution tissue Doppler imaging of the zebrafish heart during its regeneration.

    PubMed

    Huang, Chih-Chung; Su, Ta-Han; Shih, Cho-Chiang

    2015-02-01

    The human heart cannot regenerate after injury, whereas the adult zebrafish can fully regenerate its heart even after 20% of the ventricle is amputated. Many studies have begun to reveal the cellular and molecular mechanisms underlying this regenerative process, which have exciting implications for human cardiac diseases. However, the dynamic functions of the zebrafish heart during regeneration are not yet understood. This study established a high-resolution echocardiography for tissue Doppler imaging (TDI) of the zebrafish heart to explore the cardiac functions during different regeneration phases. Experiments were performed on AB-line adult zebrafish (n=40) in which 15% of the ventricle was surgically removed. An 80-MHz ultrasound TDI based on color M-mode imaging technology was employed. The cardiac flow velocities and patterns from both the ventricular chamber and myocardium were measured at different regeneration phases relative to the day of amputation. The peak velocities of early diastolic inflow, early diastolic myocardial motion, late diastolic myocardial motion, early diastolic deceleration slope, and heart rate were increased at 3 days after the myocardium amputation, but these parameters gradually returned to close to their baseline values for the normal heart at 7 days after amputation. The peak velocities of late diastolic inflow, ventricular systolic outflow, and systolic myocardial motion did not significantly differ during the heart regeneration.

  6. Notch Signaling Coordinates Progenitor Cell-Mediated Biliary Regeneration Following Partial Hepatectomy

    PubMed Central

    Lu, Jie; Zhou, Yingqun; Hu, Tianyuan; Zhang, Hui; Shen, Miao; Cheng, Ping; Dai, Weiqi; Wang, Fan; Chen, Kan; Zhang, Yan; Wang, Chengfeng; Li, Jingjing; Zheng, Yuanyuan; Yang, Jing; Zhu, Rong; Wang, Jianrong; Lu, Wenxia; Zhang, Huawei; Wang, Junshan; Xia, Yujing; De Assuncao, Thiago M.; Jalan-Sakrikar, Nidhi; Huebert, Robert C.; Bin Zhou; Guo, Chuanyong

    2016-01-01

    Aberrant transcriptional regulation contributes to the pathogenesis of both congenital and adult forms of liver disease. Although the transcription factor RBPJ is essential for liver morphogenesis and biliary development, its specific function in the differentiation of hepatic progenitor cells (HPC) has not been investigated, and little is known about its role in adult liver regeneration. HPCs are bipotent liver stem cells that can self-replicate and differentiate into hepatocytes or cholangiocytes in vitro. HPCs are thought to play an important role in liver regeneration and repair responses. While the coordinated repopulation of both hepatocyte and cholangiocyte compartment is pivotal to the structure and function of the liver after regeneration, the mechanisms coordinating biliary regeneration remain vastly understudied. Here, we utilized complex genetic manipulations to drive liver-specific deletion of the Rbpj gene in conjunction with lineage tracing techniques to delineate the precise functions of RBPJ during biliary development and HPC-associated biliary regeneration after hepatectomy. Furthermore, we demonstrate that RBPJ promotes HPC differentiation toward cholangiocytes in vitro and blocks hepatocyte differentiation through mechanisms involving Hippo-Notch crosstalk. Overall, this study demonstrates that the Notch-RBPJ signaling axis critically regulates biliary regeneration by coordinating the fate decision of HPC and clarifies the molecular mechanisms involved. PMID:26951801

  7. Peculiarities of lens and tail regeneration detected in newts after spaceflight aboard Foton M3

    NASA Astrophysics Data System (ADS)

    Grigoryan, Eleonora N.; Almeida, Eduardo; Poplinskaya, Valentina; Novikova, Julia; Domaratskaya, Elena; Aleinikova, Karina; Souza, Kenneth; Skidmore, Mike; Grigoryan, Eleonora N.

    In September 2007 the joint, 12 day long experiment was carried out aboard Russian satellite Foton M3. The goal of the experiment was to study eye lens, tail and forelimb toe regeneration in adult 16 newts (Pl. waltl.) operated 10 days before taking-off. In spaceflight and synchronous ground control we used video recording, temperature and irradiation control, as well as constant availability of thymidine analog BrdU for its absorption via animals' skin. New techniques allowed us to analyze animals' behavior in hyperand microgravity periods of time, to take proper account of spaceflight factors, and measure accumulated pools of DNA-synthesizing cells in regenerating tissues. All tissue specimens obtained from animals were isolated in the day of landing and then prepared for morphological, immunochemical and molecular investigations. Synchronous control was shifted for two days and reproduced flight conditions except changes of gravity influence. As a result in flown animals as compared with synchronous ground control we found lens regeneration of 0.5-1 stage speeded up and an increased BrdU+ (S-phase) cell number in eye cornea, growth zone, limbus and newly forming lens. These features of regeneration were accompanied by an increase of FGF2 expression in eye growth zone and heat shock protein (HSP90) induction purely in retinal macroglial cells of regenerating eyes. Toe regeneration rate was equal and achieved the stage of accomplished healing of amputation area in both groups - "flown" and control animals. We found no essential differences in tail regeneration rate and tail regenerate sizes in the newts exposed to space and on ground. In both groups tail regeneration reached the stage IV-V when tail length and square were around 4.4 mm and 15.5 mm2, correspondingly. However we did observe remarkable changes of tail regenerate form and some of pigmentation. Computer morphometrical analysis showed that only in ground control animals the evident dorso

  8. Digital Inequalities of Family Life Information Seeking and Family Well-Being Among Chinese Adults in Hong Kong: A Population Survey

    PubMed Central

    2014-01-01

    Background Inequalities in Internet use and health information seeking are well documented, but less is known about information for family life activities. Objective We investigated the social determinants of online family life information seeking behaviors and its associations with family well-being among Chinese adults in Hong Kong. Methods A probability-based telephone survey was conducted in 2012 to record family life information seeking behaviors, including frequency of seeking and paying attention to family life information, levels of trust, and perceived usefulness of family life information. Family well-being was assessed using 3 single items on perceived family harmony, happiness, and health, with higher scores indicating greater well-being. Adjusted odds ratios for family life information seeking behaviors by socioeconomic characteristics and lifestyle behaviors, and adjusted beta coefficients for family well-being by family life information seeking behaviors were calculated. Results Of 1537 respondents, 57.57% (855/1537) had ever and 26.45% (407/1537) sought monthly family life information through the Internet. Lower educational attainment and household income, smoking, and physical inactivity were associated with less frequent seeking and paying attention (all P<.05). Greater perceived family health was associated with more frequent attention (adjusted β=.32, 95% CI.11-.52), greater levels of trust (adjusted β=.28, 95% CI .07-.48), and perceived usefulness (adjusted β=.23, 95% CI .01-.45) of family life information. Frequent attention and higher level of trust were also associated with greater family harmony (adjusted β=.22, 95% CI .002-.41) and happiness (adjusted β=.23, 95% CI .003-.42), respectively. Conclusions This is the first study investigating family life information seeking behaviors and suggested inequalities of online family life information seeking behaviors. The association between family life information seeking behavior and family

  9. Cryogenic regenerator including sarancarbon heat conduction matrix

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Petrick, S. Walter (Inventor); Britcliffe, Michael J. (Inventor)

    1989-01-01

    A saran carbon matrix is employed to conduct heat through the heat storing volume of a cryogenic regenerator. When helium is adsorbed into the saran carbon matrix, the combination exhibits a volumetric specific heat much higher than previously used lead balls. A helium adsorbed saran regenerator should allow much lower refrigerator temperatures than those practically obtainable with lead based regenerators for regenerator type refrigeration systems.

  10. Patterned substrates and methods for nerve regeneration

    DOEpatents

    Mallapragada, Surya K.; Heath, Carole; Shanks, Howard; Miller, Cheryl A.; Jeftinija, Srdija

    2004-01-13

    Micropatterned substrates and methods for fabrication of artificial nerve regeneration conduits and methods for regenerating nerves are provided. Guidance compounds or cells are seeded in grooves formed on the patterned substrate. The substrates may also be provided with electrodes to provide electrical guidance cues to the regenerating nerve. The micropatterned substrates give physical, chemical, cellular and/or electrical guidance cues to promote nerve regeneration at the cellular level.

  11. zic-1 Expression in Planarian Neoblasts after Injury Controls Anterior Pole Regeneration

    PubMed Central

    Vásquez-Doorman, Constanza; Petersen, Christian P.

    2014-01-01

    Mechanisms that enable injury responses to prompt regenerative outgrowth are not well understood. Planarians can regenerate essentially any tissue removed by wounding, even after decapitation, due to robust regulation of adult pluripotent stem cells of the neoblast population. Formation of pole signaling centers involving Wnt inhibitors or Wnt ligands promotes head or tail regeneration, respectively, and this process requires the use of neoblasts early after injury. We used expression profiling of purified neoblasts to identify factors needed for anterior pole formation. Using this approach, we identified zic-1, a Zic-family transcription factor, as transcriptionally activated in a subpopulation of neoblasts near wound sites early in head regeneration. As head regeneration proceeds, the Wnt inhibitor notum becomes expressed in the newly forming anterior pole in zic-1-expressing cells descended from neoblasts. Inhibition of zic-1 by RNAi resulted in a failure to express notum at the anterior pole and to regenerate a head, but did not affect tail regeneration. Both injury and canonical Wnt signaling inhibition are required for zic-1 expression, and double-RNAi experiments suggest zic-1 inhibits Wnt signaling to allow head regeneration. Analysis of neoblast fate determinants revealed that zic-1 controls specification of notum-expressing cells from foxD-expressing neoblasts to form the anterior pole, which organizes subsequent outgrowth. Specialized differentiation programs may in general underlie injury-dependent formation of tissue organizing centers used for regenerative outgrowth. PMID:24992682

  12. Expression analysis of Baf60c during heart regeneration in axolotls and neonatal mice.

    PubMed

    Nakamura, Ryo; Koshiba-Takeuchi, Kazuko; Tsuchiya, Megumi; Kojima, Mizuyo; Miyazawa, Asuka; Ito, Kohei; Ogawa, Hidesato; Takeuchi, Jun K

    2016-05-01

    Some organisms, such as zebrafish, urodele amphibians, and newborn mice, have a capacity for heart regeneration following injury. However, adult mammals fail to regenerate their hearts. To know why newborn mice can regenerate their hearts, we focused on epigenetic factors, which are involved in cell differentiation in many tissues. Baf60c (BRG1/BRM-associated factor 60c), a component of ATP-dependent chromatin-remodeling complexes, has an essential role for cardiomyocyte differentiation at the early heart development. To address the function of Baf60c in postnatal heart homeostasis and regeneration, we examined the detailed expression/localization patterns of Baf60c in both mice and axolotls. In the mouse heart development, Baf60c was highly expressed in the entire heart at the early stages, but gradually downregulated at the postnatal stages. During heart regeneration in neonatal mice and axolotls, Baf60c expression was strongly upregulated after resection. Interestingly, the timing of Baf60c upregulation after resection was consistent with the temporal dynamics of cardiomyocyte proliferation. Moreover, knockdown of Baf60c downregulated proliferation of neonatal mouse cardiomyocytes. These data suggested that Baf60c plays an important role in cardiomyocyte proliferation in heart development and regeneration. This is the first study indicating that Baf60c contributes to the heart regeneration in vertebrates. PMID:27125315

  13. Selective amputation of the pharynx identifies a FoxA-dependent regeneration program in planaria

    PubMed Central

    Adler, Carolyn E; Seidel, Chris W; McKinney, Sean A; Sánchez Alvarado, Alejandro

    2014-01-01

    Planarian flatworms regenerate every organ after amputation. Adult pluripotent stem cells drive this ability, but how injury activates and directs stem cells into the appropriate lineages is unclear. Here we describe a single-organ regeneration assay in which ejection of the planarian pharynx is selectively induced by brief exposure of animals to sodium azide. To identify genes required for pharynx regeneration, we performed an RNAi screen of 356 genes upregulated after amputation, using successful feeding as a proxy for regeneration. We found that knockdown of 20 genes caused a wide range of regeneration phenotypes and that RNAi of the forkhead transcription factor FoxA, which is expressed in a subpopulation of stem cells, specifically inhibited regrowth of the pharynx. Selective amputation of the pharynx therefore permits the identification of genes required for organ-specific regeneration and suggests an ancient function for FoxA-dependent transcriptional programs in driving regeneration. DOI: http://dx.doi.org/10.7554/eLife.02238.001 PMID:24737865

  14. Regeneration in Macrostomum lignano (Platyhelminthes): cellular dynamics in the neoblast stem cell system.

    PubMed

    Nimeth, Katharina Theresia; Egger, Bernhard; Rieger, Reinhard; Salvenmoser, Willi; Peter, Roland; Gschwentner, Robert

    2007-03-01

    Neoblasts are potentially totipotent stem cells and the only proliferating cells in adult Platyhelminthes. We have examined the cellular dynamics of neoblasts during the posterior regeneration of Macrostomum lignano. Double-labeling of neoblasts with bromodeoxyuridine and the anti-phospho histone H3 mitosis marker has revealed a complex cellular response in the first 48 h after amputation; this response is different from that known to occur during regeneration in triclad platyhelminths and in starvation/feeding experiments in M. lignano. Mitotic activity is reduced during the first 8 h of regeneration but, at 48 h after amputation, reaches almost twice the value of control animals. The total number of S-phase cells significantly increases after 1 day of regeneration. A subpopulation of fast-cycling neoblasts surprisingly shows the same dynamics during regeneration as those in control animals. Wound healing and regeneration are accompanied by the formation of a distinct blastema. These results present new insights, at the cellular level, into the early regeneration of rhabditophoran Platyhelminthes.

  15. Selective amputation of the pharynx identifies a FoxA-dependent regeneration program in planaria.

    PubMed

    Adler, Carolyn E; Seidel, Chris W; McKinney, Sean A; Sánchez Alvarado, Alejandro

    2014-04-15

    Planarian flatworms regenerate every organ after amputation. Adult pluripotent stem cells drive this ability, but how injury activates and directs stem cells into the appropriate lineages is unclear. Here we describe a single-organ regeneration assay in which ejection of the planarian pharynx is selectively induced by brief exposure of animals to sodium azide. To identify genes required for pharynx regeneration, we performed an RNAi screen of 356 genes upregulated after amputation, using successful feeding as a proxy for regeneration. We found that knockdown of 20 genes caused a wide range of regeneration phenotypes and that RNAi of the forkhead transcription factor FoxA, which is expressed in a subpopulation of stem cells, specifically inhibited regrowth of the pharynx. Selective amputation of the pharynx therefore permits the identification of genes required for organ-specific regeneration and suggests an ancient function for FoxA-dependent transcriptional programs in driving regeneration. DOI: http://dx.doi.org/10.7554/eLife.02238.001.

  16. Regeneration: New Neurons Wire Up.

    PubMed

    Raymond, Pamela A

    2016-09-12

    Functional repair of damage in the nervous system requires re-establishment of precise patterns of synaptic connectivity. A new study shows that after selective ablation, zebrafish retinal neurons regenerate and reconstruct some, although not all, of their stereotypic wiring. PMID:27623258

  17. Stem cells and kidney regeneration.

    PubMed

    Chou, Yu-Hsiang; Pan, Szu-Yu; Yang, Chian-Huei; Lin, Shuei-Liong

    2014-04-01

    Kidney disease is an escalating burden all over the world. In addition to preventing kidney injury, regenerating damaged renal tissue is as important as to retard the progression of chronic kidney disease to end stage renal disease. Although the kidney is a delicate organ and has only limited regenerative capacity compared to the other organs, an increasing understanding of renal development and renal reprogramming has kindled the prospects of regenerative options for kidney disease. Here, we will review the advances in the kidney regeneration including the manipulation of renal tubular cells, fibroblasts, endothelial cells, and macrophages in renal disease. Several types of stem cells, such as bone marrow-derived cells, adipocyte-derived mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells are also applied for renal regeneration. Endogenous or lineage reprogrammed renal progenitor cells represent an attractive possibility for differentiation into multiple renal cell types. Angiogenesis can ameliorate hypoxia and renal fibrosis. Based on these studies and knowledge, we hope to innovate more reliable pharmacological or biotechnical methods for kidney regeneration medicine.

  18. Stem Cells and Liver Regeneration

    PubMed Central

    DUNCAN, ANDREW W.; DORRELL, CRAIG; GROMPE, MARKUS

    2011-01-01

    One of the defining features of the liver is the capacity to maintain a constant size despite injury. Although the precise molecular signals involved in the maintenance of liver size are not completely known, it is clear that the liver delicately balances regeneration with overgrowth. Mammals, for example, can survive surgical removal of up to 75% of the total liver mass. Within 1 week after liver resection, the total number of liver cells is restored. Moreover, liver overgrowth can be induced by a variety of signals, including hepatocyte growth factor or peroxisome proliferators; the liver quickly returns to its normal size when the proliferative signal is removed. The extent to which liver stem cells mediate liver regeneration has been hotly debated. One of the primary reasons for this controversy is the use of multiple definitions for the hepatic stem cell. Definitions for the liver stem cell include the following: (1) cells responsible for normal tissue turnover, (2) cells that give rise to regeneration after partial hepatectomy, (3) cells responsible for progenitor-dependent regeneration, (4) cells that produce hepatocyte and bile duct epithelial phenotypes in vitro, and (5) transplantable liver-repopulating cells. This review will consider liver stem cells in the context of each definition. PMID:19470389

  19. Increasing FCC regenerator catalyst level

    SciTech Connect

    Wong, R.F. )

    1993-11-01

    A Peruvian FCC unit's operations were improved by increasing the regenerator's catalyst level. This increase resulted in lower stack losses, an improved temperature profile, increased catalyst activity and a lower catalyst consumption rate. A more stable operation saved this Peruvian refiner over $131,000 per year in catalyst alone. These concepts and data may be suitable for your FCC unit as well.

  20. Aging and regeneration in vertebrates.

    PubMed

    Sousounis, Konstantinos; Baddour, Joelle A; Tsonis, Panagiotis A

    2014-01-01

    Aging is marked by changes that affect organs and resident stem cell function. Shorting of telomeres, DNA damage, oxidative stress, deregulation of genes and proteins, impaired cell-cell communication, and an altered systemic environment cause the eventual demise of cells. At the same time, reparative activities also decline. It is intriguing to correlate aging with the decline of regenerative abilities. Animal models with strong regenerative capabilities imply that aging processes might not be affecting regeneration. In this review, we selectively present age-dependent changes in stem/progenitor cells that are vital for tissue homeostasis and repair. In addition, the aging effect on regeneration following injury in organs such as lung, skeletal muscle, heart, nervous system, cochlear hair, lens, and liver are discussed. These tissues are also known for diseases such as heart attack, stroke, cognitive impairment, cataract, and hearing loss that occur mostly during aging in humans. Conclusively, vertebrate regeneration declines with age with the loss of stem/progenitor cell function. Future studies on improving the function of stem cells, along with studies in fish and amphibians where regeneration does not decline with age, will undoubtedly provide insights into both processes. PMID:24512711

  1. Stem cells to replace or regenerate the diabetic pancreas: Huge potential & existing hurdles.

    PubMed

    Bhartiya, Deepa

    2016-03-01

    Various stem cell sources are being explored to treat diabetes since the proof-of-concept for cell therapy was laid down by transplanting cadaveric islets as a part of Edmonton protocol in 2000. Human embryonic stem (hES) cells derived pancreatic progenitors have got US-FDA approval to be used in clinical trials to treat type 1 diabetes mellitus (T1DM). However, these progenitors more closely resemble their foetal counterparts and thus whether they will provide long-term regeneration of adult human pancreas remains to be demonstrated. In addition to lifestyle changes and administration of insulin sensitizers, regeneration of islets from endogenous pancreatic stem cells may benefit T2DM patients. The true identity of pancreatic stem cells, whether these exist or not, whether regeneration involves reduplication of existing islets or ductal epithelial cells transdifferentiate, remains a highly controversial area. We have recently demonstrated that a novel population of very small embryonic-like stem cells (VSELs) is involved during regeneration of adult mouse pancreas after partial-pancreatectomy. VSELs (pluripotent stem cells in adult organs) should be appreciated as an alternative for regenerative medicine as these are autologous (thus immune rejection issues do not exist) with no associated risk of teratoma formation. T2DM is a result of VSELs dysfunction with age and uncontrolled proliferation of VSELs possibly results in pancreatic cancer. Extensive brainstorming and financial support are required to exploit the potential of endogenous VSELs to regenerate the pancreas in a patient with diabetes. PMID:27241638

  2. Fetal Hematopoietic Stem Cell Transplantation Fails to Fully Regenerate the B-Lymphocyte Compartment

    PubMed Central

    Ghosn, Eliver Eid Bou; Waters, Jeffrey; Phillips, Megan; Yamamoto, Ryo; Long, Brian R.; Yang, Yang; Gerstein, Rachel; Stoddart, Cheryl A.; Nakauchi, Hiromitsu; Herzenberg, Leonore A.

    2015-01-01

    Summary B cells are key components of cellular and humoral immunity and, like all lymphocytes, are thought to originate and renew from hematopoietic stem cells (HSCs). However, our recent single-HSC transfer studies demonstrate that adult bone marrow HSCs do not regenerate B-1a, a subset of tissue B cells required for protection against pneumonia, influenza, and other infections. Since B-1a are regenerated by transfers of fetal liver, the question arises as to whether B-1a derive from fetal, but not adult, HSCs. Here we show that, similar to adult HSCs, fetal HSCs selectively fail to regenerate B-1a. We also show that, in humanized mice, human fetal liver regenerates tissue B cells that are phenotypically similar to murine B-1a, raising the question of whether human HSC transplantation, the mainstay of such models, is sufficient to regenerate human B-1a. Thus, our studies overtly challenge the current paradigm that HSCs give rise to all components of the immune system. PMID:26724903

  3. Stem cells to replace or regenerate the diabetic pancreas: Huge potential & existing hurdles

    PubMed Central

    Bhartiya, Deepa

    2016-01-01

    Various stem cell sources are being explored to treat diabetes since the proof-of-concept for cell therapy was laid down by transplanting cadaveric islets as a part of Edmonton protocol in 2000. Human embryonic stem (hES) cells derived pancreatic progenitors have got US-FDA approval to be used in clinical trials to treat type 1 diabetes mellitus (T1DM). However, these progenitors more closely resemble their foetal counterparts and thus whether they will provide long-term regeneration of adult human pancreas remains to be demonstrated. In addition to lifestyle changes and administration of insulin sensitizers, regeneration of islets from endogenous pancreatic stem cells may benefit T2DM patients. The true identity of pancreatic stem cells, whether these exist or not, whether regeneration involves reduplication of existing islets or ductal epithelial cells transdifferentiate, remains a highly controversial area. We have recently demonstrated that a novel population of very small embryonic-like stem cells (VSELs) is involved during regeneration of adult mouse pancreas after partial-pancreatectomy. VSELs (pluripotent stem cells in adult organs) should be appreciated as an alternative for regenerative medicine as these are autologous (thus immune rejection issues do not exist) with no associated risk of teratoma formation. T2DM is a result of VSELs dysfunction with age and uncontrolled proliferation of VSELs possibly results in pancreatic cancer. Extensive brainstorming and financial support are required to exploit the potential of endogenous VSELs to regenerate the pancreas in a patient with diabetes. PMID:27241638

  4. Role of Wnt and Notch signaling in regulating hair cell regeneration in the cochlea.

    PubMed

    Waqas, Muhammad; Zhang, Shasha; He, Zuhong; Tang, Mingliang; Chai, Renjie

    2016-09-01

    Sensory hair cells in the inner ear are responsible for sound recognition. Damage to hair cells in adult mammals causes permanent hearing impairment because these cells cannot regenerate. By contrast, newborn mammals possess limited regenerative capacity because of the active participation of various signaling pathways, including Wnt and Notch signaling. The Wnt and Notch pathways are highly sophisticated and conserved signaling pathways that control multiple cellular events necessary for the formation of sensory hair cells. Both signaling pathways allow resident supporting cells to regenerate hair cells in the neonatal cochlea. In this regard, Wnt and Notch signaling has gained increased research attention in hair cell regeneration. This review presents the current understanding of the Wnt and Notch signaling pathways in the auditory portion of the inner ear and discusses the possibilities of controlling these pathways with the hair cell fate determiner Atoh1 to regulate hair cell regeneration in the mammalian cochlea.

  5. dsRNA Released by Tissue Damage Activates TLR3 to Drive Skin Regeneration.

    PubMed

    Nelson, Amanda M; Reddy, Sashank K; Ratliff, Tabetha S; Hossain, M Zulfiquer; Katseff, Adiya S; Zhu, Amadeus S; Chang, Emily; Resnik, Sydney R; Page, Carly; Kim, Dongwon; Whittam, Alexander J; Miller, Lloyd S; Garza, Luis A

    2015-08-01

    Regeneration of skin and hair follicles after wounding--a process known as wound-induced hair neogenesis (WIHN)--is a rare example of adult organogenesis in mammals. As such, WIHN provides a unique model system for deciphering mechanisms underlying mammalian regeneration. Here, we show that dsRNA, which is released from damaged skin, activates Toll-Like Receptor 3 (TLR3) and its downstream effectors IL-6 and STAT3 to promote hair follicle regeneration. Conversely, TLR3-deficient animals fail to initiate WIHN. TLR3 activation promotes expression of hair follicle stem cell markers and induces elements of the core hair morphogenetic program, including ectodysplasin A receptor (EDAR) and the Wnt and Shh pathways. Our results therefore show that dsRNA and TLR3 link the earliest events of mammalian skin wounding to regeneration and suggest potential therapeutic approaches for promoting hair neogenesis.

  6. Role of Wnt and Notch signaling in regulating hair cell regeneration in the cochlea.

    PubMed

    Waqas, Muhammad; Zhang, Shasha; He, Zuhong; Tang, Mingliang; Chai, Renjie

    2016-09-01

    Sensory hair cells in the inner ear are responsible for sound recognition. Damage to hair cells in adult mammals causes permanent hearing impairment because these cells cannot regenerate. By contrast, newborn mammals possess limited regenerative capacity because of the active participation of various signaling pathways, including Wnt and Notch signaling. The Wnt and Notch pathways are highly sophisticated and conserved signaling pathways that control multiple cellular events necessary for the formation of sensory hair cells. Both signaling pathways allow resident supporting cells to regenerate hair cells in the neonatal cochlea. In this regard, Wnt and Notch signaling has gained increased research attention in hair cell regeneration. This review presents the current understanding of the Wnt and Notch signaling pathways in the auditory portion of the inner ear and discusses the possibilities of controlling these pathways with the hair cell fate determiner Atoh1 to regulate hair cell regeneration in the mammalian cochlea. PMID:27527363

  7. β-Catenin Defines Head Versus Tail Identity During Planarian Regeneration and Homeostasis

    PubMed Central

    Gurley, Kyle A.; Rink, Jochen C.; Alvarado, Alejandro Sánchez

    2009-01-01

    Following amputation, freshwater planarians properly regenerate a head or tail from the resulting anterior or posterior wound. The mechanisms that differentiate anterior from posterior and direct the replacement of the appropriate missing body parts are unknown. Here we report that RNA interference (RNAi) of β-catenin or dishevelled causes the inappropriate regeneration of a head instead of a tail at posterior amputations. Conversely, RNAi of the β-catenin antagonist adenomatous polyposis coli (APC) results in the regeneration of a tail at anterior wounds. In addition, the silencing of β-catenin is sufficient to transform the tail of uncut adult animals into a head. We suggest that β-catenin functions as a molecular switch to specify and maintain anteroposterior (A/P) identity during regeneration and homeostasis in planarians. PMID:18063757

  8. The Role of Cardiac Side Population Cells in Cardiac Regeneration

    PubMed Central

    Yellamilli, Amritha; van Berlo, Jop H.

    2016-01-01

    The heart has a limited ability to regenerate. It is important to identify therapeutic strategies that enhance cardiac regeneration in order to replace cardiomyocytes lost during the progression of heart failure. Cardiac progenitor cells are interesting targets for new regenerative therapies because they are self-renewing, multipotent cells located in the heart. Cardiac side population cells (cSPCs), the first cardiac progenitor cells identified in the adult heart, have the ability to differentiate into cardiomyocytes, endothelial cells, smooth muscle cells, and fibroblasts. They become activated in response to cardiac injury and transplantation of cSPCs into the injured heart improves cardiac function. In this review, we will discuss the current literature on the progenitor cell properties and therapeutic potential of cSPCs. This body of work demonstrates the great promise cSPCs hold as targets for new regenerative strategies.

  9. The Role of Cardiac Side Population Cells in Cardiac Regeneration

    PubMed Central

    Yellamilli, Amritha; van Berlo, Jop H.

    2016-01-01

    The heart has a limited ability to regenerate. It is important to identify therapeutic strategies that enhance cardiac regeneration in order to replace cardiomyocytes lost during the progression of heart failure. Cardiac progenitor cells are interesting targets for new regenerative therapies because they are self-renewing, multipotent cells located in the heart. Cardiac side population cells (cSPCs), the first cardiac progenitor cells identified in the adult heart, have the ability to differentiate into cardiomyocytes, endothelial cells, smooth muscle cells, and fibroblasts. They become activated in response to cardiac injury and transplantation of cSPCs into the injured heart improves cardiac function. In this review, we will discuss the current literature on the progenitor cell properties and therapeutic potential of cSPCs. This body of work demonstrates the great promise cSPCs hold as targets for new regenerative strategies. PMID:27679798

  10. The role of dental stem cells in regeneration

    PubMed Central

    MAXIM, MONICA ANGELA; SORITAU, OLGA; BACIUT, MIHAELA; BRAN, SIMION; BACIUT, GRIGORE

    2015-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells that have the capacity of rising multiple cell types. A rich source of mesenchymal stem cells is represented by the dental tissues: the periodontal ligament, the dental pulp, the apical papilla, the dental follicle and the deciduous teeth. The aim of this review is to characterize the main dental- derived mesenchymal stem cell population, and to show their important role in tissue regeneration based on their properties : the multi-potency, the high proliferation rate, the differentiation in multiple cell lineages, the high cell viability and the positive expression for mesenchymal cell markers. Tissue regeneration or de novo’ formation of craniofacial structures is the future of regenerative medicine, offering a solution for congenital malformations, traumas and other diseases. PMID:26733745

  11. The Role of Cardiac Side Population Cells in Cardiac Regeneration.

    PubMed

    Yellamilli, Amritha; van Berlo, Jop H

    2016-01-01

    The heart has a limited ability to regenerate. It is important to identify therapeutic strategies that enhance cardiac regeneration in order to replace cardiomyocytes lost during the progression of heart failure. Cardiac progenitor cells are interesting targets for new regenerative therapies because they are self-renewing, multipotent cells located in the heart. Cardiac side population cells (cSPCs), the first cardiac progenitor cells identified in the adult heart, have the ability to differentiate into cardiomyocytes, endothelial cells, smooth muscle cells, and fibroblasts. They become activated in response to cardiac injury and transplantation of cSPCs into the injured heart improves cardiac function. In this review, we will discuss the current literature on the progenitor cell properties and therapeutic potential of cSPCs. This body of work demonstrates the great promise cSPCs hold as targets for new regenerative strategies.

  12. The Role of Cardiac Side Population Cells in Cardiac Regeneration.

    PubMed

    Yellamilli, Amritha; van Berlo, Jop H

    2016-01-01

    The heart has a limited ability to regenerate. It is important to identify therapeutic strategies that enhance cardiac regeneration in order to replace cardiomyocytes lost during the progression of heart failure. Cardiac progenitor cells are interesting targets for new regenerative therapies because they are self-renewing, multipotent cells located in the heart. Cardiac side population cells (cSPCs), the first cardiac progenitor cells identified in the adult heart, have the ability to differentiate into cardiomyocytes, endothelial cells, smooth muscle cells, and fibroblasts. They become activated in response to cardiac injury and transplantation of cSPCs into the injured heart improves cardiac function. In this review, we will discuss the current literature on the progenitor cell properties and therapeutic potential of cSPCs. This body of work demonstrates the great promise cSPCs hold as targets for new regenerative strategies. PMID:27679798

  13. [Digital replantation in children].

    PubMed

    Barbary, S; Dautel, G

    2012-10-01

    Digital amputations in children are usually caused by crush or avulsion injuries (door hinge, bicycle chain, etc.). The preponderance of this mechanism of injury means a survival rate generally lower than in adults. However, finger amputation in children is an absolute indication for replantation because the sensory and functional results are significantly higher. Technically, there is little difference, apart from the difficulty of the size of the structure and the presence of growth plates. Kirschner wires are the most suitable fixation method but two subcutaneous needles are ideally used in distal amputations. The dressing and postoperative immobilization in a circular plaster above the elbow is kept for 1 month. Secondary procedures are rare, later than in adults and give poorer results because of the difficulty of understanding the active mobilization exercises. The postoperative analgesia is fundamental following replantation to avoid the risk of arterial spasm, and after a secondary procedure to allow proper rehabilitation.

  14. Polymer scaffolds with preferential parallel grooves enhance nerve regeneration.

    PubMed

    Mobasseri, Atefeh; Faroni, Alessandro; Minogue, Ben M; Downes, Sandra; Terenghi, Giorgio; Reid, Adam J

    2015-03-01

    We have modified the surface topography of poly ɛ-caprolactone (PCL) and polylactic acid (PLA) blended films to improve cell proliferation and to guide the regeneration of peripheral nerves. Films with differing shaped grooves were made using patterned silicon templates, sloped walls (SL), V-shaped (V), and square-shaped (SQ), and compared with nongrooved surfaces with micropits. The solvent cast films were tested in vitro using adult adipose-derived stem cells differentiated to Schwann cell-like cells. Cell attachment, proliferation, and cell orientation were all improved on the grooved surfaces, with SL grooves giving the best results. We present in vivo data on Sprague-Dawley rat sciatic nerve injury with a 10-mm gap, evaluating nerve regeneration at 3 weeks across a polymer nerve conduit modified with intraluminal grooves (SL, V, and SQ) and differing wall thicknesses (70, 100, 120, and 210 μm). The SL-grooved nerve conduit showed a significant improvement over the other topographical-shaped grooves, while increasing the conduit wall thickness saw no positive effect on the biological response of the regenerating nerve. Furthermore, the preferred SL-grooved conduit (C) with 70 μm wall thickness was compared with the current clinical gold standard of autologous nerve graft (Ag) in the rat 10-mm sciatic nerve gap model. At 3 weeks postsurgery, all nerve gaps across both groups were bridged with regenerated nerve fibers. At 16 weeks, features of regenerated axons were comparable between the autograft (Ag) and conduit (C) groups. End organ assessments of muscle weight, electromyography, and skin reinnervation were also similar between the groups. The comparable experimental outcome between conduit and autograft, suggests that the PCL/PLA conduit with inner lumen microstructured grooves could be used as a potential alternative treatment for peripheral nerve repair. PMID:25435096

  15. Polymer Scaffolds with Preferential Parallel Grooves Enhance Nerve Regeneration

    PubMed Central

    Mobasseri, Atefeh; Faroni, Alessandro; Minogue, Ben M.; Downes, Sandra; Reid, Adam J.

    2015-01-01

    We have modified the surface topography of poly ɛ-caprolactone (PCL) and polylactic acid (PLA) blended films to improve cell proliferation and to guide the regeneration of peripheral nerves. Films with differing shaped grooves were made using patterned silicon templates, sloped walls (SL), V-shaped (V), and square-shaped (SQ), and compared with nongrooved surfaces with micropits. The solvent cast films were tested in vitro using adult adipose-derived stem cells differentiated to Schwann cell-like cells. Cell attachment, proliferation, and cell orientation were all improved on the grooved surfaces, with SL grooves giving the best results. We present in vivo data on Sprague-Dawley rat sciatic nerve injury with a 10-mm gap, evaluating nerve regeneration at 3 weeks across a polymer nerve conduit modified with intraluminal grooves (SL, V, and SQ) and differing wall thicknesses (70, 100, 120, and 210 μm). The SL-grooved nerve conduit showed a significant improvement over the other topographical-shaped grooves, while increasing the conduit wall thickness saw no positive effect on the biological response of the regenerating nerve. Furthermore, the preferred SL-grooved conduit (C) with 70 μm wall thickness was compared with the current clinical gold standard of autologous nerve graft (Ag) in the rat 10-mm sciatic nerve gap model. At 3 weeks postsurgery, all nerve gaps across both groups were bridged with regenerated nerve fibers. At 16 weeks, features of regenerated axons were comparable between the autograft (Ag) and conduit (C) groups. End organ assessments of muscle weight, electromyography, and skin reinnervation were also similar between the groups. The comparable experimental outcome between conduit and autograft, suggests that the PCL/PLA conduit with inner lumen microstructured grooves could be used as a potential alternative treatment for peripheral nerve repair. PMID:25435096

  16. Sonic hedgehog (shh) expression in developing and regenerating axolotl limbs.

    PubMed

    Torok, M A; Gardiner, D M; Izpisúa-Belmonte, J C; Bryant, S V

    1999-07-01

    Sonic hedgehog (shh) expression is detectable in the posterior mesenchyme of many developing vertebrate limbs. We have isolated an RT-PCR fragment from the axolotl, Ambystoma mexicanum, that has high identity to other vertebrate shh genes. We describe the localization of this transcript during development and regeneration and in response to tissue grafts and retinoic acid (RA) exposure in the axolotl. Even though axolotl digits show a reversed polarity of differentiation (anterior [A] to posterior [P]) when compared to other tetrapods (P to A), shh is nevertheless expressed on the posterior margin of developing and regenerating limb buds. When A cells are grafted adjacent to P cells, an ectopic domain of shh is induced. Exposure to retinoic acid (RA), a molecule known to alter pattern in all three limb axes in urodeles, results in ectopic expression of shh in anterior cells of the regeneration blastema. Prior to this induced expression in response to RA, there is an earlier response by the endogenous domain of shh, which is downregulated within the first few hours of exposure. PMID:10404648

  17. Variation in salamander tail regeneration is associated with genetic factors that determine tail morphology.

    PubMed

    Voss, Gareth J; Kump, D Kevin; Walker, John A; Voss, S Randal

    2013-01-01

    Very little is known about the factors that cause variation in regenerative potential within and between species. Here, we used a genetic approach to identify heritable genetic factors that explain variation in tail regenerative outgrowth. A hybrid ambystomatid salamander (Ambystoma mexicanum x A. andersoni) was crossed to an A. mexicanum and 217 offspring were induced to undergo metamorphosis and attain terrestrial adult morphology using thyroid hormone. Following metamorphosis, each salamander's tail tip was amputated and allowed to regenerate, and then amputated a second time and allowed to regenerate. Also, DNA was isolated from all individuals and genotypes were determined for 187 molecular markers distributed throughout the genome. The area of tissue that regenerated after the first and second amputations was highly positively correlated across males and females. Males presented wider tails and regenerated more tail tissue during both episodes of regeneration. Approximately 66-68% of the variation in regenerative outgrowth was explained by tail width, while tail length and genetic sex did not explain a significant amount of variation. A small effect QTL was identified as having a sex-independent effect on tail regeneration, but this QTL was only identified for the first episode of regeneration. Several molecular markers significantly affected regenerative outgrowth during both episodes of regeneration, but the effect sizes were small (<4%) and correlated with tail width. The results show that ambysex and minor effect QTL explain variation in adult tail morphology and importantly, tail width. In turn, tail width at the amputation plane largely determines the rate of regenerative outgrowth. Because amputations in this study were made at approximately the same position of the tail, our results resolve an outstanding question in regenerative biology: regenerative outgrowth positively co-varies as a function of tail width at the amputation site.

  18. Body Management: Mesenchymal Stem Cells Control the Internal Regenerator

    PubMed Central

    Hariri, Robert

    2015-01-01

    Summary It has been assumed that adult tissues cannot regenerate themselves. With the current understanding that every adult tissue has its own intrinsic progenitor or stem cell, it is now clear that almost all tissues have regenerative potential partially related to their innate turnover dynamics. Moreover, it appears that a separate class of local cells originating as perivascular cells appears to provide regulatory oversight for localized tissue regeneration. The management of this regeneration oversight has a profound influence on the use of specific cells for cell therapies as a health care delivery tool set. The multipotent mesenchymal stem cell (MSC), now renamed the medicinal signaling cell, predominantly arises from pericytes released from broken and inflamed blood vessels and appears to function as both an immunomodulatory and a regeneration mediator. MSCs are being tested for their management capabilities to produce therapeutic outcomes in more than 480 clinical trials for a wide range of clinical conditions. Local MSCs function by managing the body’s primary repair and regeneration activities. Supplemental MSCs can be provided from either endogenous or exogenous sources of either allogeneic or autologous origin. This MSC-based therapy has the potential to change how health care is delivered. These medicinal cells are capable of sensing their surroundings. Also, by using its complex signaling circuitry, these cells organize site-specific regenerative responses as if these therapeutic cells were well-programmed modern computers. Given these facts, it appears that we are entering a new age of cellular medicine. Significance This report is a perspective from an active scientist and an active entrepreneur and commercial leader. It is neither a comprehensive review nor a narrowly focused treatise. The broad themes and the analogy to the working component of a computer and that of a cell are meant to draw several important scientific principles and health

  19. Immature astrocytes promote CNS axonal regeneration when combined with chondroitinase ABC

    PubMed Central

    Filous, Angela R.; Miller, Jared H.; Coulson-Thomas, Yvette M.; Horn, Kevin P.; Alilain, Warren J.; Silver, Jerry

    2010-01-01

    Regeneration of injured adult CNS axons is inhibited by formation of a glial scar. Immature astrocytes are able to support robust neurite outgrowth and reduce scarring, therefore, we tested whether these cells would have this effect if transplanted into brain injuries. Utilizing an in vitro spot gradient model that recreates the strongly inhibitory proteoglycan environment of the glial scar we found that, alone, immature, but not mature, astrocytes had a limited ability to form bridges across the most inhibitory outer rim. In turn, the astrocyte bridges could promote adult sensory axon re-growth across the gradient. The use of selective enzyme inhibitors revealed that MMP-2 enables immature astrocytes to cross the proteoglycan rim. The bridge-building process and axon regeneration across the immature glial bridges were greatly enhanced by chondroitinase ABC pre-treatment of the spots. We used microlesions in the cingulum of the adult rat brains to test the ability of matrix modification and immature astrocytes to form a bridge for axon regeneration in vivo. Injured axons were visualized via p75 immunolabeling and the extent to which these axons regenerated was quantified. Immature astrocytes co-injected with chondroitinase ABC induced axonal regeneration beyond the distal edge of the lesion. However, when used alone, neither treatment was capable of promoting axonal regeneration. Our findings indicate that when faced with a minimal lesion, neurons of the basal forebrain can regenerate in the presence of a proper bridge across the lesion and when levels of chondroitin sulfate proteoglycans (CSPGs) in the glial scar are reduced. PMID:20629049

  20. Digital Radiography

    NASA Technical Reports Server (NTRS)

    1986-01-01

    System One, a digital radiography system, incorporates a reusable image medium (RIM) which retains an image. No film is needed; the RIM is read with a laser scanner, and the information is used to produce a digital image on an image processor. The image is stored on an optical disc. System allows the radiologist to "dial away" unwanted images to compare views on three screens. It is compatible with existing equipment and cost efficient. It was commercialized by a Stanford researcher from energy selective technology developed under a NASA grant.

  1. Method And Apparatus For Regenerating Nox Adsorbers

    DOEpatents

    Driscoll, J. Joshua; Endicott, Dennis L.; Faulkner, Stephen A.; Verkiel, Maarten

    2006-03-28

    Methods and apparatuses for regenerating a NOx adsorber coupled with an exhaust of an engine. An actuator drives a throttle valve to a first position when regeneration of the NOx adsorber is desired. The first position is a position that causes the regeneration of the NOx adsorber. An actuator drives the throttle valve to a second position while regeneration of the NOx adsorber is still desired. The second position being a position that is more open than the first position and operable to regenerate a NOx adsorber.

  2. Nerve regeneration restores supraspinal control of bladder function after complete spinal cord injury.

    PubMed

    Lee, Yu-Shang; Lin, Ching-Yi; Jiang, Hai-Hong; Depaul, Marc; Lin, Vernon W; Silver, Jerry

    2013-06-26

    A life-threatening disability after complete spinal cord injury is urinary dysfunction, which is attributable to lack of regeneration of supraspinal pathways that control the bladder. Although numerous strategies have been proposed that can promote the regrowth of severed axons in the adult CNS, at present, the approaches by which this can be accomplished after complete cord transection are quite limited. In the present study, we modified a classic peripheral nerve grafting technique with the use of chondroitinase to facilitate the regeneration of axons across and beyond an extensive thoracic spinal cord transection lesion in adult rats. The novel combination treatment allows for remarkably lengthy regeneration of certain subtypes of brainstem and propriospinal axons across the injury site and is followed by markedly improved urinary function. Our studies provide evidence that an enhanced nerve grafting strategy represents a potential regenerative treatment after severe spinal cord injury.

  3. Nerve Regeneration Restores Supraspinal Control of Bladder Function after Complete Spinal Cord Injury

    PubMed Central

    Lin, Ching-Yi; Jiang, Hai-Hong; DePaul, Marc; Lin, Vernon W.

    2013-01-01

    A life-threatening disability after complete spinal cord injury is urinary dysfunction, which is attributable to lack of regeneration of supraspinal pathways that control the bladder. Although numerous strategies have been proposed that can promote the regrowth of severed axons in the adult CNS, at present, the approaches by which this can be accomplished after complete cord transection are quite limited. In the present study, we modified a classic peripheral nerve grafting technique with the use of chondroitinase to facilitate the regeneration of axons across and beyond an extensive thoracic spinal cord transection lesion in adult rats. The novel combination treatment allows for remarkably lengthy regeneration of certain subtypes of brainstem and propriospinal axons across the injury site and is followed by markedly improved urinary function. Our studies provide evidence that an enhanced nerve grafting strategy represents a potential regenerative treatment after severe spinal cord injury. PMID:23804083

  4. Progenitor cells in the adult pancreas.

    PubMed

    Holland, Andrew M; Góñez, L Jorge; Harrison, Leonard C

    2004-01-01

    The beta-cell mass in the adult pancreas possesses the ability to undergo limited regeneration following injury. Identifying the progenitor cells involved in this process and understanding the mechanisms leading to their maturation will open new avenues for the treatment of type 1 diabetes. However, despite steady advances in determining the molecular basis of early pancreatic development, the identification of pancreatic stem cells or beta-cell progenitors and the molecular mechanisms underlying beta-cell regeneration remain unclear. Recent advances in the directed differentiation of embryonic and adult stem cells has heightened interest in the possible application of stem cell therapy in the treatment of type 1 diabetes. Drawing on the expanding knowledge of pancreas development, beta-cell regeneration and stem cell research, this review focuses on progenitor cells in the adult pancreas as a potential source of beta-cells. PMID:14737742

  5. DEVELOPMENT AND UTILIZATION OF TEST FACILITY FOR THE STUDY OF CANDLE FILTER SURFACE REGENERATION

    SciTech Connect

    Bruce S. Kang; Eric K. Johnson

    2003-07-14

    Hot gas particulate filtration is a basic component in advanced power generation systems such as Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC). These systems require effective particulate removal to protect the downstream gas turbine and also to meet environmental emission requirements. The ceramic barrier filter is one of the options for hot gas filtration. Hot gases flow through ceramic candle filters leaving ash deposited on the outer surface of the filter. A process known as surface regeneration removes the deposited ash periodically by using a high pressure pulse of gas to back flush the filter. After this cleaning process has been completed there may be some residual ash on the filter surface. This residual ash may grow and this may then lead to mechanical failure of the filter. A Room Temperature Test Facility (RTTF) and a High Temperature Test Facility (HTTF) were built to investigate the ash characteristics during surface regeneration at room and selected high temperatures. The RTTF system was used to gain experience with the selected instrumentation and develop an operating procedure to be used later at elevated temperatures. The HTTF system is capable of conducting surface regeneration tests of a single candle filter at temperatures up to 1500 F. In order to obtain sequential digital images of ash particle distribution during the surface regeneration process, a high resolution, high speed image acquisition system was integrated into the HTTF system. The regeneration pressure and the transient pressure difference between the inside of the candle filter and the chamber during regeneration were measured using a high speed PC data acquisition system. The control variables for the high temperature regeneration tests were (1) face velocity, (2) pressure of the back pulse, and (3) cyclic ash built-up time. Coal ash sample obtained from the Power System Development Facility (PSDF) at Wilsonville, AL was used at the

  6. Development of parallel wire regenerator for cryocoolers

    NASA Astrophysics Data System (ADS)

    Nam, Kwanwoo; Jeong, Sangkwon

    2006-04-01

    This paper describes development of a novel regenerator geometry for cryocoolers. Parallel wire type is a wire bundle stacked in parallel with the flow in the housing, which is similar to a conventional parallel plate or tube. Simple and unique fabrication procedure is developed and fully depicted in this paper. Hydrodynamic and thermal experiments are performed to demonstrate the feasibility of the parallel wire regenerator. First, pressure drop characteristic of the parallel wire regenerator is compared to that of the screen mesh regenerator. Experimental result shows that the steady flow friction factor of the parallel wire type is three to five times smaller than that of the screen mesh type. Second, thermal ineffectiveness is determined by measuring the instantaneous pressure, the flow rate and the gas temperature at the warm and cold ends of the regenerator. The measured ineffectiveness of the parallel wire regenerator is larger than that of the screen regenerator due to the excessive axial conduction loss. To alleviate the intrinsic axial conduction loss of the parallel wire regenerator, segmentation is introduced and the experimental results reveal the favorable effect of the segmentation. Entropy generation calculation is adopted to compare the total losses between the screen regenerator and the parallel wire regenerator for various operating ranges. Simulation results show that the parallel wire regenerator can be an attractive candidate to improve cryocooler performance especially for the case of smaller NTU and lower cold-end temperature.

  7. Regeneration of oral siphon pigment organs in the ascidian Ciona intestinalis.

    PubMed

    Auger, Hélène; Sasakura, Yasunori; Joly, Jean-Stéphane; Jeffery, William R

    2010-03-15

    Ascidians have powerful capacities for regeneration but the underlying mechanisms are poorly understood. Here we examine oral siphon regeneration in the solitary ascidian Ciona intestinalis. Following amputation, the oral siphon rapidly reforms oral pigment organs (OPO) at its distal margin prior to slower regeneration of proximal siphon parts. The early stages of oral siphon reformation include cell proliferation and re-growth of the siphon nerves, although the neural complex (adult brain and associated organs) is not required for regeneration. Young animals reform OPO more rapidly after amputation than old animals indicating that regeneration is age dependent. UV irradiation, microcautery, and cultured siphon explant experiments indicate that OPOs are replaced as independent units based on local differentiation of progenitor cells within the siphon, rather than by cell migration from a distant source in the body. The typical pattern of eight OPOs and siphon lobes is restored with fidelity after distal amputation of the oral siphon, but as many as 16 OPOs and lobes can be reformed following proximal amputation near the siphon base. Thus, the pattern of OPO regeneration is determined by cues positioned along the proximal distal axis of the oral siphon. A model is presented in which columns of siphon tissue along the proximal-distal axis below pre-existing OPO are responsible for reproducing the normal OPO pattern during regeneration. This study reveals previously unknown principles of oral siphon and OPO regeneration that will be important for developing Ciona as a regeneration model in urochordates, which may be the closest living relatives of vertebrates.

  8. Digital Batteries

    NASA Astrophysics Data System (ADS)

    Hubler, Alfred

    2009-03-01

    The energy density in conventional capacitors is limited by sparking. We present nano-capacitor arrays, where - like in laser diodes and quantum wells [1] - quantization prevents dielectric breakthrough. We show that the energy density and the power/weight ratio are very high, possibly larger than in hydrogen [2]. Digital batteries are a potential clean energy source for cars, laptops, and mobile devices. The technology is related to flash drives. However, because of the high energy density, safety is a concern. Digital batteries can be easily and safely charged and discharged. In the discharged state they pose no danger. Even if a charged digital battery were to explode, it would produce no radioactive waste, no long-term radiation, and probably could be designed to produce no noxious chemicals. We discuss methodologies to prevent shorts and other measures to make digital batteries safe. [1] H. Higuraskh, A. Toriumi, F. Yamaguchi, K. Kawamura, A. Hubler, Correlation Tunnel Device, U. S. Patent No. 5,679,961 (1997) [2] Alfred Hubler, http://server10.how-why.com/blog/

  9. Digital Badges

    ERIC Educational Resources Information Center

    Frederiksen, Linda

    2013-01-01

    Unlike so much of the current vocabulary in education and technology that seems to stir more confusion than clarity, most public service librarians may already have a general idea about digital badges. As visual representations of individual accomplishments, competencies or skills that are awarded by groups, institutions, or organizations, they…

  10. Digital Tidbits

    ERIC Educational Resources Information Center

    Kumaran, Maha; Geary, Joe

    2011-01-01

    Technology has transformed libraries. There are digital libraries, electronic collections, online databases and catalogs, ebooks, downloadable books, and much more. With free technology such as social websites, newspaper collections, downloadable online calendars, clocks and sticky notes, online scheduling, online document sharing, and online…

  11. Epigenetic Regulation of Myocardial Homeostasis, Self-Regeneration and Senescence.

    PubMed

    Matteucci, Marco; Papini, Gaia; Ciofini, Enrica; Barile, Lucio; Lionetti, Vincenzo

    2015-01-01

    The adult myocardium has limited capacity to preserve, renew or rejuvenate itself. The local microenvironment may induce epigenetic changes affecting the survival, proliferation, function and senescence of cardiac cells at rest and following the exposure to different stressors. The cellular response to microenvironment is characterized by the release of ions, oxygen free radicals, auto/paracrine factors and RNAs that drive the magnitude of gene reprogramming through the interaction with specific promoters. The epigenetic alterations may act at transcriptional and post-transcriptional level and change cardiac physiological traits. The abnormal DNA methylation underlies the progressive decay of contractile function and the angiogenic ability; while, the histone acetylation promotes the survival, function and proliferation of cardiac cells in the presence of ischemic microenvironment. At least, the expression and secretion of microRNAs and long noncoding RNAs may regulate the threshold to stress tolerance of adult cardiac cells and induce the matrix turnover as well. Natural or synthetic active compounds effectively modulate the epigenetic state of cardiac cells. Plant foods contain many active compounds with epigenetic properties and might assume a clinical significance as natural cardiac regenerators or rejuvenators. Our review describes novel epigenetic mechanisms that underpin myocardial remodeling, repair/ regeneration or senescence in order to support the development of most effective and reproducible rescue therapy of adult heart. PMID:26122032

  12. Slicing across Kingdoms: Regeneration in Plants and Animals

    PubMed Central

    Birnbaum, Kenneth D.; Alvarado, Alejandro Sánchez

    2009-01-01

    Multicellular organisms possessing relatively long life spans are subjected to diverse, constant, and often intense intrinsic and extrinsic challenges to their survival. Animal and plant tissues wear out as part of normal physiological functions and can be lost to predators, disease, and injury. Both kingdoms survive this wide variety of insults by strategies that include the maintenance of adult stem cells or the induction of stem cell potential in differentiated cells. Repatterning mechanisms often deploy embryonic genes, but the question remains in both plants and animals whether regeneration invokes embryogenesis, generic patterning mechanisms, or unique circuitry comprised of well-established patterning genes. PMID:18295584

  13. Liver regeneration after living donor transplant

    PubMed Central

    Olthoff, Kim M.; Emond, Jean C.; Shearon, Tempie H.; Everson, Greg; Baker, Talia B.; Fisher, Robert A.; Freise, Chris E.; Gillespie, Brenda W.; Everhart, James E.

    2014-01-01

    Background & Aims Adult-to-adult living donors and recipients were studied to characterize patterns of liver growth and identify associated factors in a multicenter study. Methods 350 donors and 353 recipients in A2ALL (Adult to Adult Living Donor Liver Transplantation Cohort Study) transplanted between March 2003 and February 2010 were included. Potential predictors of 3-month liver volume included total and standard liver volumes (TLV, SLV), the model for end-stage liver disease (MELD) score (in recipients), remnant and graft size, remnant to donor and graft to recipient weight ratio (RDWR, GRWR), remnant/TLV, and graft/SLV. Results Among donors, 3-month absolute growth was 676±251g (mean± SD) and percent reconstitution was 80%±13%. Among recipients, GRWR was 1.3%±0.4% (8<0.8%). Graft weight was 60%±13% of SLV. Three-month absolute growth was 549±267g and percent reconstitution was 93%±18%. Predictors of greater 3-month liver volume included larger patient size (donors, recipients), larger graft volume (recipients), and larger TLV (donors). Donors with the smallest remnant/TLV ratios had larger than expected growth, but also had higher postoperative bilirubin and international normalized ratio at 7 and 30 days. In a combined donor-recipient analysis, donors had smaller 3-month liver volumes than recipients adjusted for patient size, remnant or graft volume, and TLV or SLV (p=0.004). Recipient graft failure in the first 90 days was predicted by poor graft function at day 7 (HR=4.50, p=0.001), but not by GRWR or graft fraction (p>0.90 for each). Conclusions Both donors and recipients had rapid yet incomplete restoration of tissue mass in the first 3 months, confirming previous reports. Recipients achieved a greater percentage of expected total volume. Patient size and recipient graft volume significantly influenced 3 month volumes. Importantly, donor liver volume is a critical predictor of the rate of regeneration, and donor remnant fraction impacts post

  14. Developmental basis of sexually dimorphic digit ratios

    PubMed Central

    Zheng, Zhengui; Cohn, Martin J.

    2011-01-01

    Males and females generally have different finger proportions. In males, digit 2 is shorter than digit 4, but in females digit 2 is the same length or longer than digit 4. The second- to fourth-digit (2D:4D) ratio correlates with numerous sexually dimorphic behavioral and physiological conditions. Although correlational studies suggest that digit ratios reflect prenatal exposure to androgen, the developmental mechanism underlying sexually dimorphic digit development remains unknown. Here we report that the 2D:4D ratio in mice is controlled by the balance of androgen to estrogen signaling during a narrow window of digit development. Androgen receptor (AR) and estrogen receptor α (ER-α) activity is higher in digit 4 than in digit 2. Inactivation of AR decreases growth of digit 4, which causes a higher 2D:4D ratio, whereas inactivation of ER-α increases growth of digit 4, which leads to a lower 2D:4D ratio. We also show that addition of androgen has the same effect as inactivation of ER and that addition of estrogen mimics the reduction of AR. Androgen and estrogen differentially regulate the network of genes that controls chondrocyte proliferation, leading to differential growth of digit 4 in males and females. These studies identify previously undescribed molecular dimorphisms between male and female limb buds and provide experimental evidence that the digit ratio is a lifelong signature of prenatal hormonal exposure. Our results also suggest that the 2D:4D ratio can serve as an indicator of disrupted endocrine signaling during early development, which may aid in the identification of fetal origins of adult diseases. PMID:21896736

  15. Wound healing in mammals and amphibians: toward limb regeneration in mammals.

    PubMed

    Kawasumi, Aiko; Sagawa, Natsume; Hayashi, Shinichi; Yokoyama, Hitoshi; Tamura, Koji

    2013-01-01

    Mammalian fetal skin regenerates perfectly, but adult skin repairs by the formation of scar tissue. The cause of this imperfect repair by adult skin is not understood. In contrast, wounded adult amphibian (urodeles and anurans) skin is like mammalian fetal skin in that it repairs by regeneration, not scarring. Scar-free wound repair in adult Xenopus is associated with expression of the paired homeobox transcription factor Prx1 by mesenchymal cells of the wound, a feature shared by mesenchymal cells of the regeneration blastema of the axolotl limb. Furthermore, mesenchymal cells of Xenopus skin wounds that harbor the mouse Prx1-limb-enhancer as a transgene exhibit activation of the enhancer despite the fact that they are Xenopus cells, suggesting that the mouse Prx1 enhancer possesses all elements required for its activation in skin wound healing, even though activation of the same enhancer in the mouse is not seen in the wounded skin of an adult mouse. Elucidation of the role of the Prx1 gene in amphibian skin wound healing will help to clarify the molecular mechanisms of scarless wound healing. Shifting the molecular mechanism of wound repair in mammals to that of amphibians, including reactivation of the Prx1-limb-enhancer, will be an important clue to stimulate scarless wound repair in mammalian adult skin. Finding or creating Prx1-positive stem cells in adult mammal skin by activating the Prx1-limb-enhancer may be a fast and reliable way to provide for scarless skin wound repair, and even directly lead to limb regeneration in mammals.

  16. Spinal motor neurons are regenerated after mechanical lesion and genetic ablation in larval zebrafish

    PubMed Central

    Ohnmacht, Jochen; Yang, Yujie; Maurer, Gianna W.; Barreiro-Iglesias, Antón; Tsarouchas, Themistoklis M.; Wehner, Daniel; Sieger, Dirk; Becker, Catherina G.; Becker, Thomas

    2016-01-01

    ABSTRACT In adult zebrafish, relatively quiescent progenitor cells show lesion-induced generation of motor neurons. Developmental motor neuron generation from the spinal motor neuron progenitor domain (pMN) sharply declines at 48 hours post-fertilisation (hpf). After that, mostly oligodendrocytes are generated from the same domain. We demonstrate here that within 48 h of a spinal lesion or specific genetic ablation of motor neurons at 72 hpf, the pMN domain reverts to motor neuron generation at the expense of oligodendrogenesis. By contrast, generation of dorsal Pax2-positive interneurons was not altered. Larval motor neuron regeneration can be boosted by dopaminergic drugs, similar to adult regeneration. We use larval lesions to show that pharmacological suppression of the cellular response of the innate immune system inhibits motor neuron regeneration. Hence, we have established a rapid larval regeneration paradigm. Either mechanical lesions or motor neuron ablation is sufficient to reveal a high degree of developmental flexibility of pMN progenitor cells. In addition, we show an important influence of the immune system on motor neuron regeneration from these progenitor cells. PMID:26965370

  17. Single epicardial cell transcriptome sequencing identifies Caveolin 1 as an essential factor in zebrafish heart regeneration.

    PubMed

    Cao, Jingli; Navis, Adam; Cox, Ben D; Dickson, Amy L; Gemberling, Matthew; Karra, Ravi; Bagnat, Michel; Poss, Kenneth D

    2016-01-15

    In contrast to mammals, adult zebrafish have a high capacity to regenerate damaged or lost myocardium through proliferation of cardiomyocytes spared from damage. The epicardial sheet covering the heart is activated by injury and aids muscle regeneration through paracrine effects and as a multipotent cell source, and has received recent attention as a target in cardiac repair strategies. Although it is recognized that epicardium is required for muscle regeneration and itself has high regenerative potential, the extent of cellular heterogeneity within epicardial tissue is largely unexplored. Here, we performed transcriptome analysis on dozens of epicardial lineage cells purified from zebrafish harboring a transgenic reporter for the pan-epicardial gene tcf21. Hierarchical clustering analysis suggested the presence of at least three epicardial cell subsets defined by expression signatures. We validated many new pan-epicardial and epicardial markers by alternative expression assays. Additionally, we explored the function of the scaffolding protein and main component of caveolae, caveolin 1 (cav1), which was present in each epicardial subset. In BAC transgenic zebrafish, cav1 regulatory sequences drove strong expression in ostensibly all epicardial cells and in coronary vascular endothelial cells. Moreover, cav1 mutant zebrafish generated by genome editing showed grossly normal heart development and adult cardiac anatomy, but displayed profound defects in injury-induced cardiomyocyte proliferation and heart regeneration. Our study defines a new platform for the discovery of epicardial lineage markers, genetic tools, and mechanisms of heart regeneration.

  18. Digital psychiatry.

    PubMed

    Tang, S; Helmeste, D

    2000-02-01

    The American managed care movement has been viewed as a big experiment and is being watched closely by the rest of the world. In the meanwhile, computer-based information technology (IT) is changing the practice of medicine, much more rapidly than managed care. A New World of digitized knowledge and information has been created. Although literature on IT in psychiatry is largely absent in peer-reviewed psychiatric journals, IT is finding its way into all aspects of medicine, particularly psychiatry. Telepsychiatry programs are becoming very popular. At the same time, medical information sites are flourishing and evolving into a new health-care industry. Patient-physician information asymmetry is decreasing as patients are gaining easy access to medical information hitherto only available to professionals. Thus, psychiatry is facing another paradigm shift, at a time when most attention has been focused on managed care. In this new digital world, knowledge and information are no longer the sole property of professionals. Value will migrate from traditional in-person office-based therapy to digital clinical products, from in-person library search and classroom didactic instruction to interactive on-line searches and distance learning. In this time of value migration, psychiatrists have to determine what their 'distinctive competence' is and where best to add value in the health-care delivery value chain. The authors assess the impact of IT on clinical psychiatry and review how clinical practice, education and research in psychiatry are expected to change in this emerging digital world. PMID:15558872

  19. miRNA control of tissue repair and regeneration.

    PubMed

    Sen, Chandan K; Ghatak, Subhadip

    2015-10-01

    Tissue repair and regeneration rely on the function of miRNA, molecular silencers that enact post-transcriptional gene silencing of coding genes. Disruption of miRNA homeostasis is developmentally lethal, indicating that fetal tissue development is tightly controlled by miRNAs. Multiple critical facets of adult tissue repair are subject to control by miRNAs, as well. Sources of cell pool for tissue repair and regeneration are diverse and provided by processes including cellular dedifferentiation, transdifferentiation, and reprogramming. Each of these processes is regulated by miRNAs. Furthermore, induced pluripotency may be achieved by miRNA-based strategies independent of transcription factor manipulation. The observation that miRNA does not integrate into the genome makes miRNA-based therapeutic strategies translationally valuable. Tools to manipulate cellular and tissue miRNA levels include mimics and inhibitors that may be specifically targeted to cells of interest at the injury site. Here, we discuss the extraordinary importance of miRNAs in tissue repair and regeneration based on emergent reports and rapid advances in miRNA-based therapeutics.

  20. Membranes for Periodontal Regeneration--A Materials Perspective.

    PubMed

    Bottino, Marco C; Thomas, Vinoy

    2015-01-01

    Periodontitis is a chronic inflammatory disorder affecting nearly 50% of adults in the United States. If left untreated, it can lead to the destruction of both soft and mineralized tissues that constitute the periodontium. Clinical management, including but not limited to flap debridement and/or curettage, as well as regenerative-based strategies with periodontal membranes associated or not with grafting materials, has been used with distinct levels of success. Unquestionably, no single implantable biomaterial can consistently guide the coordinated growth and development of multiple tissue types, especially in very large periodontal defects. With the global aging population, it is extremely important to find novel biomaterials, particularly bioactive membranes and/or scaffolds, for guided tissue (GTR) and bone regeneration (GBR) to aid in the reestablishment of the health and function of distinct periodontal tissues. This chapter offers an update on the evolution of biomaterials (i.e. membranes and bioactive scaffolds) as well as material-based strategies applied in periodontal regeneration. The authors start by providing a brief summary of the histological characteristics and functions of the periodontium and its main pathological condition, namely periodontitis. Next, a review of commercially available GTR/GBR membranes is given, followed by a critical appraisal of the most recent advances in the development of bioactive materials that enhance the chance for clinical success of periodontal tissue regeneration.

  1. Asexual propagation and regeneration in colonial ascidians.

    PubMed

    Kürn, Ulrich; Rendulic, Snjezana; Tiozzo, Stefano; Lauzon, Robert J

    2011-08-01

    Regeneration is widely distributed among the metazoans. However, clear differences exist as to the degree of regenerative capacity: some phyla can only replace missing body parts, whereas others can generate entirely new individuals. Ascidians are animals that possess a remarkable regenerative plasticity and exhibit a great diversity of mechanisms for asexual propagation and survival. They are marine invertebrate members of the subphylum Tunicata and represent modern-day descendants of the chordate ancestor; in their tadpole stage they exhibit a chordate body plan that is resorbed during metamorphosis. Solitary species grow into an adult that can reach several centimeters in length, whereas colonial species grow by asexual propagation, creating a colony of genetically identical individuals. In this review, we present an overview of the biology of colonial ascidians as a paradigm for study in stem cell and regenerative biology. Focusing on botryllid ascidians, we introduce the potential roles played by multipotent epithelia and multipotent/pluripotent stem cells as source of asexual propagation and regenerative plasticity in the different budding mechanisms, and consider the putative mechanism of body repatterning in a non-embryonic scenario. We also discuss the involvement of intra-colony homeostatic processes in regulating budding potential, and the functional link between allorecognition, chimerism, and regenerative potential.

  2. Pancreatic Islet Cell Development and Regeneration

    PubMed Central

    Romer, Anthony I.; Sussel, Lori

    2015-01-01

    Purpose This review will discuss recent advances in understanding mouse and human pancreatic islet cell development, novel concepts related to β cell dysfunction and improved approaches for replenishing β cells to treat diabetes. Recent Findings Considerable knowledge about pancreatic islet development and function has been gained using model systems with subsequent validation in human tissues. Recently, several rodent studies have revealed that differentiated adult islet cells retain remarkable plasticity and can be converted to other islet cell types by perturbing their transcription factor profiles. Furthermore, significant advances have been made in the generation of β-like cells from stem cell populations. Therefore, the generation of functionally mature β cells by the in situ conversion of non-β cell populations or by the directed differentiation of human pluripotent stem cells could represent novel mechanisms for replenishing β cells in diabetic patients. Summary The overall conservation between mouse and human pancreatic development, islet physiology and etiology of diabetes encourages the translation of novel β cell replacement therapies to humans. Further deciphering the molecular mechanisms that direct islet cell regeneration, plasticity and function could improve and expand the β cell replacement strategies for treating diabetes. PMID:26087337

  3. Stem cell systems and regeneration in planaria.

    PubMed

    Rink, Jochen C

    2013-03-01

    Planarians are members of the Platyhelminthes (flatworms). These animals have evolved a remarkable stem cell system. A single pluripotent adult stem cell type ("neoblast") gives rise to the entire range of cell types and organs in the planarian body plan, including a brain, digestive-, excretory-, sensory- and reproductive systems. Neoblasts are abundantly present throughout the mesenchyme and divide continuously. The resulting stream of progenitors and turnover of differentiated cells drive the rapid self-renewal of the entire animal within a matter of weeks. Planarians grow and literally de-grow ("shrink") by the food supply-dependent adjustment of organismal turnover rates, scaling body plan proportions over as much as a 50-fold size range. Their dynamic body architecture further allows astonishing regenerative abilities, including the regeneration of complete and perfectly proportioned animals even from tiny tissue remnants. Planarians as an experimental system, therefore, provide unique opportunities for addressing a spectrum of current problems in stem cell research, including the evolutionary conservation of pluripotency, the dynamic organization of differentiation lineages and the mechanisms underlying organismal stem cell homeostasis. The first part of this review focuses on the molecular biology of neoblasts as pluripotent stem cells. The second part examines the fascinating mechanistic and conceptual challenges posed by a stem cell system that epitomizes a universal design principle of biological systems: the dynamic steady state.

  4. Comparative analysis of ear-hole closure identifies epimorphic regeneration as a discrete trait in mammals

    PubMed Central

    Gawriluk, Thomas R.; Simkin, Jennifer; Thompson, Katherine L.; Biswas, Shishir K.; Clare-Salzler, Zak; Kimani, John M.; Kiama, Stephen G.; Smith, Jeramiah J.; Ezenwa, Vanessa O.; Seifert, Ashley W.

    2016-01-01

    Why mammals have poor regenerative ability has remained a long-standing question in biology. In regenerating vertebrates, injury can induce a process known as epimorphic regeneration to replace damaged structures. Using a 4-mm ear punch assay across multiple mammalian species, here we show that several Acomys spp. (spiny mice) and Oryctolagus cuniculus completely regenerate tissue, whereas other rodents including MRL/MpJ ‘healer' mice heal similar injuries by scarring. We demonstrate ear-hole closure is independent of ear size, and closure rate can be modelled with a cubic function. Cellular and genetic analyses reveal that injury induces blastema formation in Acomys cahirinus. Despite cell cycle re-entry in Mus musculus and A. cahirinus, efficient cell cycle progression and proliferation only occurs in spiny mice. Together, our data unite blastema-mediated regeneration in spiny mice with regeneration in other vertebrates such as salamanders, newts and zebrafish, where all healthy adults regenerate in response to injury. PMID:27109826

  5. Myoanatomy and anterior muscle regeneration of the fireworm Eurythoe cf. complanata (Annelida: Amphinomidae).

    PubMed

    Weidhase, Michael; Bleidorn, Christoph; Beckers, Patrick; Helm, Conrad

    2016-03-01

    Amphinomidae or so-called "fireworms" are known for their inflammatory substances and their regeneration ability. Recent transcriptome-based molecular analyses revealed that these remarkable annelids are a basal branching taxon outside the annelid main radiation (Pleistoannelida). Although several studies dealing with analyses of the morphology of these annelids have been published, detailed investigations of the anterior muscle regeneration and the musculature in general are largely lacking for amphinomids. Using histology, phalloidin labeling together with subsequent confocal laser scanning microscopy (cLSM), and further light microscopic image acquisition of different regeneration stages, we here present the first morphological study describing the myoanatomy and muscular regeneration. During anterior muscular regeneration, longitudinal muscle bundles develop prior to transverse muscle fibers and segment boundaries. Additionally, Eurythoe cf. complanata develops an independent muscular ring surrounding the mouth opening in an early stage of regeneration. Detailed investigation of adult body wall musculature and the parapodial muscle complex in amphinomids show that E. cf. complanata bears well-developed dorsal and ventral longitudinal muscle bundles as well as outer transverse muscles comparable to the pattern described for several Pleistoannelida. Furthermore, the biramous parapodia possess a complex meshwork of distinct muscle fibers allowing detailed comparisons with other annelid families.

  6. Myoanatomy and anterior muscle regeneration of the fireworm Eurythoe cf. complanata (Annelida: Amphinomidae).

    PubMed

    Weidhase, Michael; Bleidorn, Christoph; Beckers, Patrick; Helm, Conrad

    2016-03-01

    Amphinomidae or so-called "fireworms" are known for their inflammatory substances and their regeneration ability. Recent transcriptome-based molecular analyses revealed that these remarkable annelids are a basal branching taxon outside the annelid main radiation (Pleistoannelida). Although several studies dealing with analyses of the morphology of these annelids have been published, detailed investigations of the anterior muscle regeneration and the musculature in general are largely lacking for amphinomids. Using histology, phalloidin labeling together with subsequent confocal laser scanning microscopy (cLSM), and further light microscopic image acquisition of different regeneration stages, we here present the first morphological study describing the myoanatomy and muscular regeneration. During anterior muscular regeneration, longitudinal muscle bundles develop prior to transverse muscle fibers and segment boundaries. Additionally, Eurythoe cf. complanata develops an independent muscular ring surrounding the mouth opening in an early stage of regeneration. Detailed investigation of adult body wall musculature and the parapodial muscle complex in amphinomids show that E. cf. complanata bears well-developed dorsal and ventral longitudinal muscle bundles as well as outer transverse muscles comparable to the pattern described for several Pleistoannelida. Furthermore, the biramous parapodia possess a complex meshwork of distinct muscle fibers allowing detailed comparisons with other annelid families. PMID:26596681

  7. Platelet-derived SDF1 primes pulmonary capillary vascular niche to drive lung alveolar regeneration

    PubMed Central

    Rafii, Shahin; Chavez, Deebly; Shido, Koji; Rabbany, Sina Y.; Ding, Bi-Sen

    2016-01-01

    The lung alveoli regenerate after surgical removal of the left lobe by pneumonectomy (PNX). How this alveolar regrowth/regeneration is initiated remains unknown. We found that activated platelets trigger lung regeneration by supplying stromal cell-derived-factor1 (SDF1/CXCL12). After PNX, platelets stimulate SDF1-receptor CXCR4 and CXCR7 on pulmonary capillary endothelial cells (PCECs) to deploy membrane-type metalloproteinase MMP14, stimulating proliferation of alveolar epithelial cells (AECs) and neo-alveolarization. In mice lacking platelets or platelet Sdf1, PNX-induced alveologenesis was diminished. Reciprocally, infusion of Sdf1+/+ but not Sdf1-deficient platelets rescued lung regeneration in platelet-depleted mice. Endothelial-specific ablation of Cxcr4 and Cxcr7 in adult mice similarly impeded lung regeneration. Notably, mice with endothelial-specific Mmp14 deletion (Mmp14iΔEC/iΔEC) exhibited impaired expansion of AECs but not PCECs, which could not be rescued by platelet infusion. Therefore, platelets prime PCECs to initiate lung regeneration, extending beyond their hemostatic contribution. Therapeutic targeting of this hemo-vascular niche could enable regenerative therapy for lung diseases. PMID:25621952

  8. Brain-derived neurotrophic factor (BDNF) expression in normal and regenerating olfactory epithelium of Xenopus laevis.

    PubMed

    Frontera, Jimena Laura; Cervino, Ailen Soledad; Jungblut, Lucas David; Paz, Dante Agustín

    2015-03-01

    Olfactory epithelium has the capability to continuously regenerate olfactory receptor neurons throughout life. Adult neurogenesis results from proliferation and differentiation of neural stem cells, and consequently, olfactory neuroepithelium offers an excellent opportunity to study neural regeneration and the factors involved in the maintenance and regeneration of all their cell types. We analyzed the expression of BDNF in the olfactory system under normal physiological conditions as well as during a massive regeneration induced by chemical destruction of the olfactory epithelium in Xenopus laevis larvae. We described the expression and presence of BDNF in the olfactory epithelium and bulb. In normal physiological conditions, sustentacular (glial) cells and a few scattered basal (stem) cells express BDNF in the olfactory epithelium as well as the granular cells in the olfactory bulb. Moreover, during massive regeneration, we demonstrated a drastic increase in basal cells expressing BDNF as well as an increase in BDNF in the olfactory bulb and nerve. Together these results suggest an important role of BDNF in the maintenance and regeneration of the olfactory system.

  9. Adult Books for Young Adults.

    ERIC Educational Resources Information Center

    Carter, Betty

    1997-01-01

    Considers the differences between young adult and adult books and maintains that teachers must be familiar with young adults' tastes for both. Suggests that traffic between these publishing divisions is a two-way street, with young adults reading adult books and adults reading young adult books. (TB)

  10. Neurosurgery: Functional regeneration after laser axotomy

    NASA Astrophysics Data System (ADS)

    Yanik, Mehmet Fatih; Cinar, Hulusi; Cinar, Hediye Nese; Chisholm, Andrew D.; Jin, Yishi; Ben-Yakar, Adela

    2004-12-01

    Understanding how nerves regenerate is an important step towards developing treatments for human neurological disease, but investigation has so far been limited to complex organisms (mouse and zebrafish) in the absence of precision techniques for severing axons (axotomy). Here we use femtosecond laser surgery for axotomy in the roundworm Caenorhabditis elegans and show that these axons functionally regenerate after the operation. Application of this precise surgical technique should enable nerve regeneration to be studied in vivo in its most evolutionarily simple form.

  11. A quantitative metabolomics peek into planarian regeneration.

    PubMed

    Natarajan, Nivedita; Ramakrishnan, Padma; Lakshmanan, Vairavan; Palakodeti, Dasaradhi; Rangiah, Kannan

    2015-05-21

    The fresh water planarian species Schmidtea mediterranea is an emerging stem cell model because of its capability to regenerate a whole animal from a small piece of tissue. It is one of the best model systems to address the basic mechanisms essential for regeneration. Here, we are interested in studying the roles of various amines, thiols and nucleotides in planarian regeneration, stem cell function and growth. We developed mass spectrometry based quantitative methods and validated the differential enrichment of 35 amines, 7 thiol metabolites and 4 nucleotides from both intact and regenerating planarians. Among the amines, alanine in sexual and asparagine in asexual are the highest (>1000 ng/mg) in the intact planarians. The levels of thiols such as cysteine and GSH are 651 and 1107 ng mg(-1) in planarians. Among the nucleotides, the level of cGMP is the lowest (0.03 ng mg(-1)) and the level of AMP is the highest (187 ng mg(-1)) in both of the planarian strains. We also noticed increasing levels of amines in both anterior and posterior regenerating planarians. The blastema from day 3 regenerating planarians also showed higher amounts of many amines. Interestingly, the thiol (cysteine and GSH) levels are well maintained during planarian regeneration. This suggests an inherent and effective mechanism to control induced oxidative stress because of the robust regeneration and stem cell proliferation. Like in intact planarians, the level of cGMP is also very low in regenerating planarians. Surprisingly, the levels of amines and thiols in head regenerating blastemas are ∼3 times higher compared to those for tail regenerating blastemas. Thus our results strongly indicate the potential roles of amines, thiols and nucleotides in planarian regeneration.

  12. A quantitative metabolomics peek into planarian regeneration.

    PubMed

    Natarajan, Nivedita; Ramakrishnan, Padma; Lakshmanan, Vairavan; Palakodeti, Dasaradhi; Rangiah, Kannan

    2015-05-21

    The fresh water planarian species Schmidtea mediterranea is an emerging stem cell model because of its capability to regenerate a whole animal from a small piece of tissue. It is one of the best model systems to address the basic mechanisms essential for regeneration. Here, we are interested in studying the roles of various amines, thiols and nucleotides in planarian regeneration, stem cell function and growth. We developed mass spectrometry based quantitative methods and validated the differential enrichment of 35 amines, 7 thiol metabolites and 4 nucleotides from both intact and regenerating planarians. Among the amines, alanine in sexual and asparagine in asexual are the highest (>1000 ng/mg) in the intact planarians. The levels of thiols such as cysteine and GSH are 651 and 1107 ng mg(-1) in planarians. Among the nucleotides, the level of cGMP is the lowest (0.03 ng mg(-1)) and the level of AMP is the highest (187 ng mg(-1)) in both of the planarian strains. We also noticed increasing levels of amines in both anterior and posterior regenerating planarians. The blastema from day 3 regenerating planarians also showed higher amounts of many amines. Interestingly, the thiol (cysteine and GSH) levels are well maintained during planarian regeneration. This suggests an inherent and effective mechanism to control induced oxidative stress because of the robust regeneration and stem cell proliferation. Like in intact planarians, the level of cGMP is also very low in regenerating planarians. Surprisingly, the levels of amines and thiols in head regenerating blastemas are ∼3 times higher compared to those for tail regenerating blastemas. Thus our results strongly indicate the potential roles of amines, thiols and nucleotides in planarian regeneration. PMID:25815385

  13. Brain Regeneration in Drosophila Involves Comparison of Neuronal Fitness

    PubMed Central

    Moreno, Eduardo; Fernandez-Marrero, Yuniel; Meyer, Patricia; Rhiner, Christa

    2015-01-01

    Summary Darwinian-like cell selection has been studied during development and cancer [1–11]. Cell selection is often mediated by direct intercellular comparison of cell fitness, using “fitness fingerprints” [12–14]. In Drosophila, cells compare their fitness via several isoforms of the transmembrane protein Flower [12, 13]. Here, we studied the role of intercellular fitness comparisons during regeneration. Regeneration-competent organisms are traditionally injured by amputation [15, 16], whereas in clinically relevant injuries such as local ischemia or traumatic injury, damaged tissue remains within the organ [17–19]. We reasoned that “Darwinian” interactions between old and newly formed tissues may be important in the elimination of damaged cells. We used a model of adult brain regeneration in Drosophila in which mechanical puncture activates regenerative neurogenesis based on damage-responsive stem cells [20]. We found that apoptosis after brain injury occurs in damage-exposed tissue located adjacent to zones of de novo neurogenesis. Injury-affected neurons start to express isoforms of the Flower cell fitness indicator protein not found on intact neurons. We show that this change in the neuronal fitness fingerprint is required to recognize and eliminate such neurons. Moreover, apoptosis is inhibited if all neurons express “low-fitness” markers, showing that the availability of new and healthy cells drives tissue replacement. In summary, we found that elimination of impaired tissue during brain regeneration requires comparison of neuronal fitness and that tissue replacement after brain damage is coordinated by injury-modulated fitness fingerprints. Intercellular fitness comparisons between old and newly formed tissues could be a general mechanism of regenerative tissue replacement. PMID:25754635

  14. Unraveling tissue regeneration pathways using chemical genetics.

    PubMed

    Mathew, Lijoy K; Sengupta, Sumitra; Kawakami, Atsushi; Andreasen, Eric A; Löhr, Christiane V; Loynes, Catherine A; Renshaw, Stephen A; Peterson, Randall T; Tanguay, Robert L

    2007-11-30

    Identifying the molecular pathways that are required for regeneration remains one of the great challenges of regenerative medicine. Although genetic mutations have been useful for identifying some molecular pathways, small molecule probes of regenerative pathways might offer some advantages, including the ability to disrupt pathway function with precise temporal control. However, a vertebrate regeneration model amenable to rapid throughput small molecule screening is not currently available. We report here the development of a zebrafish early life stage fin regeneration model and its use in screening for small molecules that modulate tissue regeneration. By screening 2000 biologically active small molecules, we identified 17 that specifically inhibited regeneration. These compounds include a cluster of glucocorticoids, and we demonstrate that transient activation of the glucocorticoid receptor is sufficient to block regeneration, but only if activation occurs during wound healing/blastema formation. In addition, knockdown of the glucocorticoid receptor restores regenerative capability to nonregenerative, glucocorticoid-exposed zebrafish. To test whether the classical anti-inflammatory action of glucocorticoids is responsible for blocking regeneration, we prevented acute inflammation following amputation by antisense repression of the Pu.1 gene. Although loss of Pu.1 prevents the inflammatory response, regeneration is not affected. Collectively, these results indicate that signaling from exogenous glucocorticoids impairs blastema formation and limits regenerative capacity through an acute inflammation-independent mechanism. These studies also demonstrate the feasibility of exploiting chemical genetics to define the pathways that govern vertebrate regeneration. PMID:17848559

  15. Effects of PTEN and Nogo Codeletion on Corticospinal Axon Sprouting and Regeneration in Mice

    PubMed Central

    Geoffroy, Cédric G.; Lorenzana, Ariana O.; Kwan, Jeffrey P.; Lin, Kyle; Ghassemi, Omeed; Ma, Andrew; Xu, Nuo; Creger, Daniel; Liu, Kai; He, Zhigang

    2015-01-01

    Axons in the adult CNS have poor ability to grow after injury, impeding functional recovery in patients of spinal cord injury. This has been attributed to both a developmental decline in neuron-intrinsic growth ability and the presence of extrinsic growth inhibitors. We previously showed that genetic deletion of Nogo, an extrinsic inhibitor, promoted axonal sprouting from uninjured corticospinal tract (CST) neurons but not regeneration from injured CST neurons, whereas genetic deletion of PTEN, an intrinsic inhibitor, promoted both CST sprouting and regeneration. Here we test the hypothesis that combining an elevation of neuron-intrinsic growth ability and a reduction of extrinsic growth inhibition by genetic codeletion of PTEN and Nogo may further improve injury-induced axonal growth. In an apparent paradox, additionally deleting Nogo further enhanced CST regeneration but not sprouting in PTEN-deleted mice. Enhanced CST regeneration and sprouting in PTEN and PTEN/Nogo-deleted mice were associated with no or only temporary improvement in functional recovery. Our data illustrate that neuron-intrinsic and -extrinsic factors regulate axon regeneration and sprouting in complex ways and provide proof-of-principle evidence that targeting both can further improve regeneration. Neuron-intrinsic growth ability is an important determinant of neuronal responsiveness to changes in extrinsic growth inhibition, such that an elevated intrinsic growth state is a prerequisite for reducing extrinsic inhibition to take effect on CST regeneration. Meanwhile, additional strategies are required to unleash the full potential for functional recovery with enhanced axon regeneration and/or sprouting. PMID:25904793

  16. N-methyl-D-aspartate receptors strongly regulate postsynaptic activity levels during optic nerve regeneration.

    PubMed

    Kolls, Brad J; Meyer, Ronald L

    2013-10-01

    During development, neuronal activity is used as a cue to guide synaptic rearrangements to refine connections. Many studies, especially in the visual system, have shown that the N-methyl-D-aspartate receptor (NMDAr) plays a key role in mediating activity-dependent refinement through long-term potentiation (LTP)-like processes. Adult goldfish can regenerate their optic nerve and utilize neuronal activity to generate precise topography in their projection onto tectum. Although the NMDAr has been implicated in this process, its precise role in regeneration has not been extensively studied. In examining NMDAr function during regeneration, we found salient differences compared with development. By using field excitatory postsynaptic potential (fEPSP) recordings, the contribution of the NMDAr at the primary optic synapse was measured. In contrast to development, no increase in NMDAr function was detectable during synaptic refinement. Unlike development, LTP could not be reliably elicited during regeneration. Unexpectedly, we found that NMDAr exerted a major effect on regulating ongoing tectal (postsynaptic) activity levels during regeneration. Blocking NMDAr strongly suppressed spontaneous activity during regeneration but had no significant effect in the normal projection. This difference could be attributed to an occlusion effect of strong optic drive in the normal projection, which dominated ongoing tectal activity. During regeneration, this optic drive is largely absent. Optic nerve stimulation further indicated that the NMDAr had little effect on the ability of optic fibers to evoke early postsynaptic impulse activity but was important for late network activity. These results indicate that, during regeneration, the NMDAr may play a critical role in the homeostatic regulation of ongoing activity and network excitability. PMID:23873725

  17. Application of stem cells for articular cartilage regeneration.

    PubMed

    Hwang, Nathaniel S; Elisseeff, Jennifer

    2009-01-01

    Articular cartilage is a highly organized tissue lacking self-regeneration capacity upon lesion. Current surgical intervention by application of in vitro-expanded autologous chondrocytes transplantation procedure is associated with several disadvantages, including donor-site morbidity and inferior fibrocartilage formation at the defect site. However, recent advancements in tissue engineering have provided notable strategies for stem cell-based therapies and articular cartilage tissue engineering. In this review, we discuss the current strategies to engineer cartilage tissues from adult stem cells and human embryonic stem cell-derived cells. The characteristics of adult stem cells, the microenvironmental control of cell fate determination, and the limitation imposed by the intrinsic nature of stem cells are discussed. The strategy to commit the stem cells for functional cartilage tissues in vivo is also discussed.

  18. [Regeneration of planarians: experimental object].

    PubMed

    Sheĭman, I M; Kreshchenko, I D

    2015-01-01

    We discuss the expediency of using invertebrates, such as flatworms and planarians, as experimental objects. Free-living planarian flatworms (phylum Platyhelminthes, class Turbellaria) are invertebrate animals in which a bilateral symmetry appears for the first time in evolution and organs and tissues form. As the highest ecological link of the food chain--predators--these animals are characterized by a set of behavioral reactions controlled by a differentiated central nervous system. Planarians have unsurpassed ability to regenerate lost or damaged body parts. Owing to the ease of their breeding and their convenience for manipulations, these animals are used to study the influence of chemical and physical factors on the processes of life, growth, and reproduction. Currently, planarians are recognized as a model for biological research in the field of regeneration, stem cell biology, study of their proliferation and differentiation, as well as the regulatory mechanisms of morphogenetic processes. The genome of the planarian Schmidtea mediterranea was fully sequenced, which opened up the opportunity to work with this object at the molecular biological level. Furthermore, planarians are used in neurobiological and toxicological studies, in studying the evolutionary aspects of centralization of the nervous system, mechanisms of muscle contraction, and in the development of new antiparasitic drugs. This review aims to demonstrate the relevance and diversity of research conducted on simple biological objects--planarians--to awider audience to show the historical continuity of these studies and their wide geographical distribution and to focus on the studies carried out in Russia, which, as a rule, are not included in the foreign reviews on planarian regeneration.

  19. Towards Regeneration of Articular Cartilage

    PubMed Central

    Iwamoto, Masahiro; Ohta, Yoichi; Larmour, Colleen; Enomoto-Iwamoto, Motomi

    2014-01-01

    Articular cartilage is classified into permanent hyaline cartilage and has significant differences in structure, extracelluar matrix components, gene expression profile, and mechanical property from transient hyaline cartilage found in growth plate. In the process of synovial joint development, articular cartilage is originated from the interzone, developing at the edge of the cartilaginous anlagen, it establishes zonal structure over time and supports smooth movement of the synovial joint through life. The cascade actions of key regulators such as Wnts, GDF5, Erg, and PTHLH coordinate sequential steps of articular cartilage formation. Articular chondrocytes are restrictedly controlled not to differentiate into a hypertrophic stage by autocrine and paracrine factors and extracerllular matrix microenvironment, but retain potential to undergo hypertrophy. The basal calcified zone of articular cartilage is connected with subchondral bone, but not invaded by blood vessels nor replaced by bone, which is highly contrasted with the growth plate. Articular cartilage has limited regenerative capacity, but likely possesses and potentially uses intrinsic stem cell source in the superficial layer, Ranvier’s groove, the intra-articular tissues such as synovium and fat pad, and marrow below the subchondral bone. Considering the biological views on articular cartilage, several important points are raised for regeneration of articular cartilage. We should evaluate the nature of regenerated cartilage as permanent hyaline cartilage and not just hyaline cartilage. We should study how a hypertrophic phenotype of transplanted cells can be lastingly suppressed in regenerating tissue. Further, we should develop the methods and reagents to activate recruitment of intrinsic stem/progenitor cells into the damaged site. PMID:24078496

  20. Regenerator matrix physical property data

    NASA Technical Reports Server (NTRS)

    Fucinari, C. A.

    1980-01-01

    Among several cellular ceramic structures manufactured by various suppliers for regenerator application in a gas turbine engine, three have the best potential for achieving durability and performance objectives for use in gas turbines, Stirling engines, and waste heat recovery systems: (1) an aluminum-silicate sinusoidal flow passage made from a corrugated wate paper process; (2) an extruded isosceles triangle flow passage; and (3) a second generation matrix incorporating a square flow passage formed by an embossing process. Key physical and thermal property data for these configurations presented include: heat transfer and pressure drop characteristics, compressive strength, tensile strength and elasticity, thermal expansion characteristics, chanical attack, and thermal stability.