Science.gov

Sample records for adult drosophila midgut

  1. Intestinal stem cells in the adult Drosophila midgut

    SciTech Connect

    Jiang, Huaqi; Edgar, Bruce A.

    2011-11-15

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: Black-Right-Pointing-Pointer The homeostasis and regeneration of adult fly midguts are mediated by ISCs. Black-Right-Pointing-Pointer Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). Black-Right-Pointing-Pointer EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. Black-Right-Pointing-Pointer Notch signaling regulates ISC self-renewal and differentiation.

  2. Conserved Mechanisms of Tumorigenesis in the Drosophila Adult Midgut

    PubMed Central

    Martorell, Òscar; Merlos-Suárez, Anna; Campbell, Kyra; Barriga, Francisco M.; Christov, Christo P.; Miguel-Aliaga, Irene; Batlle, Eduard; Casanova, Jordi; Casali, Andreu

    2014-01-01

    Whereas the series of genetic events leading to colorectal cancer (CRC) have been well established, the precise functions that these alterations play in tumor progression and how they disrupt intestinal homeostasis remain poorly characterized. Activation of the Wnt/Wg signaling pathway by a mutation in the gene APC is the most common trigger for CRC, inducing benign lesions that progress to carcinomas due to the accumulation of other genetic alterations. Among those, Ras mutations drive tumour progression in CRC, as well as in most epithelial cancers. As mammalian and Drosophila's intestines share many similarities, we decided to explore the alterations induced in the Drosophila midgut by the combined activation of the Wnt signaling pathway with gain of function of Ras signaling in the intestinal stem cells. Here we show that compound Apc-Ras clones, but not clones bearing the individual mutations, expand as aggressive intestinal tumor-like outgrowths. These lesions reproduce many of the human CRC hallmarks such as increased proliferation, blockade of cell differentiation and cell polarity and disrupted organ architecture. This process is followed by expression of tumoral markers present in human lesions. Finally, a metabolic behavioral assay shows that these flies suffer a progressive deterioration in intestinal homeostasis, providing a simple readout that could be used in screens for tumor modifiers or therapeutic compounds. Taken together, our results illustrate the conservation of the mechanisms of CRC tumorigenesis in Drosophila, providing an excellent model system to unravel the events that, upon mutation in Apc and Ras, lead to CRC initiation and progression. PMID:24516653

  3. The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration

    PubMed Central

    Shaw, Rachael L.; Kohlmaier, Alexander; Polesello, Cédric; Veelken, Cornelia; Edgar, Bruce A.; Tapon, Nicolas

    2010-01-01

    Intestinal stem cells (ISCs) in the adult Drosophila midgut proliferate to self-renew and to produce differentiating daughter cells that replace those lost as part of normal gut function. Intestinal stress induces the activation of Upd/Jak/Stat signalling, which promotes intestinal regeneration by inducing rapid stem cell proliferation. We have investigated the role of the Hippo (Hpo) pathway in the Drosophila intestine (midgut). Hpo pathway inactivation in either the ISCs or the differentiated enterocytes induces a phenotype similar to that observed under stress situations, including increased stem cell proliferation and expression of Jak/Stat pathway ligands. Hpo pathway targets are induced by stresses such as bacterial infection, suggesting that the Hpo pathway functions as a sensor of cellular stress in the differentiated cells of the midgut. In addition, Yki, the pro-growth transcription factor target of the Hpo pathway, is required in ISCs to drive the proliferative response to stress. Our results suggest that the Hpo pathway is a mediator of the regenerative response in the Drosophila midgut. PMID:21068063

  4. EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila

    PubMed Central

    Jiang, Huaqi; Grenley, Marc O.; Bravo, Maria-Jose; Blumhagen, Rachel Z.; Edgar, Bruce A.

    2010-01-01

    Many tissues in higher animals undergo dynamic homeostatic growth, wherein damaged or aged cells are replaced by the progeny of resident stem cells. To maintain homeostasis, stem cells must respond to tissue needs. Here we show that in response to damage or stress in the intestinal (midgut) epithelium of adult Drosophila, multiple EGFR ligands and rhomboids (intramembrane proteases that activate some EGFR ligands) are induced, leading to the activation of EGFR signaling in intestinal stem cells (ISCs). Activation of EGFR signaling promotes ISC division and midgut epithelium regeneration, thus maintaining tissue homeostasis. ISCs defective in EGFR signaling cannot grow or divide, are poorly maintained, and cannot support midgut epithelium regeneration following enteric infection by the bacterium, Pseudomonas entomophila. Furthermore, ISC proliferation induced by Jak/Stat signaling is dependent upon EGFR signaling. Thus the EGFR/Ras/MAPK signaling pathway plays central, essential roles in ISC maintenance and the feedback system that mediates intestinal homeostasis. PMID:21167805

  5. GATAe regulates intestinal stem cell maintenance and differentiation in Drosophila adult midgut.

    PubMed

    Okumura, Takashi; Takeda, Koji; Kuchiki, Megumi; Akaishi, Marie; Taniguchi, Kiichiro; Adachi-Yamada, Takashi

    2016-02-01

    Adult intestinal tissues, exposed to the external environment, play important roles including barrier and nutrient-absorption functions. These functions are ensured by adequately controlled rapid-cell metabolism. GATA transcription factors play essential roles in the development and maintenance of adult intestinal tissues both in vertebrates and invertebrates. We investigated the roles of GATAe, the Drosophila intestinal GATA factor, in adult midgut homeostasis with its first-generated knock-out mutant as well as cell type-specific RNAi and overexpression experiments. Our results indicate that GATAe is essential for proliferation and maintenance of intestinal stem cells (ISCs). Also, GATAe is involved in the differentiation of enterocyte (EC) and enteroendocrine (ee) cells in both Notch (N)-dependent and -independent manner. The results also indicate that GATAe has pivotal roles in maintaining normal epithelial homeostasis of the Drosophila adult midgut through interaction of N signaling. Since recent reports showed that mammalian GATA-6 regulates normal and cancer stem cells in the adult intestinal tract, our data also provide information on the evolutionally conserved roles of GATA factors in stem-cell regulation. PMID:26719127

  6. Requirement of matrix metalloproteinase-1 for intestinal homeostasis in the adult Drosophila midgut

    SciTech Connect

    Lee, Shin-Hae; Park, Joung-Sun; Kim, Young-Shin; Chung, Hae-Young; Yoo, Mi-Ae

    2012-03-10

    Stem cells are tightly regulated by both intrinsic and extrinsic signals as well as the extracellular matrix (ECM) for tissue homeostasis and regenerative capacity. Matrix metalloproteinases (MMPs), proteolytic enzymes, modulate the turnover of numerous substrates, including cytokine precursors, growth factors, and ECM molecules. However, the roles of MMPs in the regulation of adult stem cells are poorly understood. In the present study, we utilize the Drosophila midgut, which is an excellent model system for studying stem cell biology, to show that Mmp1 is involved in the regulation of intestinal stem cells (ISCs). The results showed that Mmp1 is expressed in the adult midgut and that its expression increases with age and with exposure to oxidative stress. Mmp1 knockdown or Timp-overexpressing flies and flies heterozygous for a viable, hypomorphic Mmp1 allele increased ISC proliferation in the gut, as shown by staining with an anti-phospho-histone H3 antibody and BrdU incorporation assays. Reduced Mmp1 levels induced intestinal hyperplasia, and the Mmp1depletion-induced ISC proliferation was rescued by the suppression of the EGFR signaling pathway, suggesting that Mmp1 regulates ISC proliferation through the EGFR signaling pathway. Furthermore, adult gut-specific knockdown and whole-animal heterozygotes of Mmp1 increased additively sensitivity to paraquat-induced oxidative stress and shortened lifespan. Our data suggest that Drosophila Mmp1 is involved in the regulation of ISC proliferation for maintenance of gut homeostasis. -- Highlights: Black-Right-Pointing-Pointer Mmp1 is expressed in the adult midgut. Black-Right-Pointing-Pointer Mmp1 is involved in the regulation of ISC proliferation activity. Black-Right-Pointing-Pointer Mmp1-related ISC proliferation is associated with EGFR signaling. Black-Right-Pointing-Pointer Mmp1 in the gut is required for the intestinal homeostasis and longevity.

  7. Debra-mediated Ci degradation controls tissue homeostasis in Drosophila adult midgut.

    PubMed

    Li, Zhouhua; Guo, Yueqin; Han, Lili; Zhang, Yan; Shi, Lai; Huang, Xudong; Lin, Xinhua

    2014-02-11

    Adult tissue homeostasis is maintained by resident stem cells and their progeny. However, the underlying mechanisms that control tissue homeostasis are not fully understood. Here, we demonstrate that Debra-mediated Ci degradation is important for intestinal stem cell (ISC) proliferation in Drosophila adult midgut. Debra inhibition leads to increased ISC activity and tissue homeostasis loss, phenocopying defects observed in aging flies. These defects can be suppressed by depleting Ci, suggesting that increased Hedgehog (Hh) signaling contributes to ISC proliferation and tissue homeostasis loss. Consistently, Hh signaling activation causes the same defects, whereas depletion of Hh signaling suppresses these defects. Furthermore, the Hh ligand from multiple sources is involved in ISC proliferation and tissue homeostasis. Finally, we show that the JNK pathway acts downstream of Hh signaling to regulate ISC proliferation. Together, our results provide insights into the mechanisms of stem cell proliferation and tissue homeostasis control. PMID:24527387

  8. Debra-Mediated Ci Degradation Controls Tissue Homeostasis in Drosophila Adult Midgut

    PubMed Central

    Li, Zhouhua; Guo, Yueqin; Han, Lili; Zhang, Yan; Shi, Lai; Huang, Xudong; Lin, Xinhua

    2014-01-01

    Summary Adult tissue homeostasis is maintained by resident stem cells and their progeny. However, the underlying mechanisms that control tissue homeostasis are not fully understood. Here, we demonstrate that Debra-mediated Ci degradation is important for intestinal stem cell (ISC) proliferation in Drosophila adult midgut. Debra inhibition leads to increased ISC activity and tissue homeostasis loss, phenocopying defects observed in aging flies. These defects can be suppressed by depleting Ci, suggesting that increased Hedgehog (Hh) signaling contributes to ISC proliferation and tissue homeostasis loss. Consistently, Hh signaling activation causes the same defects, whereas depletion of Hh signaling suppresses these defects. Furthermore, the Hh ligand from multiple sources is involved in ISC proliferation and tissue homeostasis. Finally, we show that the JNK pathway acts downstream of Hh signaling to regulate ISC proliferation. Together, our results provide insights into the mechanisms of stem cell proliferation and tissue homeostasis control. PMID:24527387

  9. Hindsight/RREB-1 functions in both the specification and differentiation of stem cells in the adult midgut of Drosophila.

    PubMed

    Baechler, Brittany L; McKnight, Cameron; Pruchnicki, Porsha C; Biro, Nicole A; Reed, Bruce H

    2015-01-01

    The adult Drosophila midgut is established during the larval/pupal transition from undifferentiated cells known as adult midgut precursors (AMPs). Four fundamental cell types are found in the adult midgut epithelium: undifferentiated intestinal stem cells (ISCs) and their committed daughter cells, enteroblasts (EBs), plus enterocytes (ECs) and enteroendocrine cells (EEs). Using the Drosophila posterior midgut as a model, we have studied the function of the transcription factor Hindsight (Hnt)/RREB-1 and its relationship to the Notch and Egfr signaling pathways. We show that hnt is required for EC differentiation in the context of ISC-to-EC differentiation, but not in the context of AMP-to-EC differentiation. In addition, we show that hnt is required for the establishment of viable or functional ISCs. Overall, our studies introduce hnt as a key factor in the regulation of both the developing and the mature adult midgut. We suggest that the nature of these contextual differences can be explained through the interaction of hnt with multiple signaling pathways. PMID:26658272

  10. Hindsight/RREB-1 functions in both the specification and differentiation of stem cells in the adult midgut of Drosophila

    PubMed Central

    Baechler, Brittany L.; McKnight, Cameron; Pruchnicki, Porsha C.; Biro, Nicole A.; Reed, Bruce H.

    2016-01-01

    ABSTRACT The adult Drosophila midgut is established during the larval/pupal transition from undifferentiated cells known as adult midgut precursors (AMPs). Four fundamental cell types are found in the adult midgut epithelium: undifferentiated intestinal stem cells (ISCs) and their committed daughter cells, enteroblasts (EBs), plus enterocytes (ECs) and enteroendocrine cells (EEs). Using the Drosophila posterior midgut as a model, we have studied the function of the transcription factor Hindsight (Hnt)/RREB-1 and its relationship to the Notch and Egfr signaling pathways. We show that hnt is required for EC differentiation in the context of ISC-to-EC differentiation, but not in the context of AMP-to-EC differentiation. In addition, we show that hnt is required for the establishment of viable or functional ISCs. Overall, our studies introduce hnt as a key factor in the regulation of both the developing and the mature adult midgut. We suggest that the nature of these contextual differences can be explained through the interaction of hnt with multiple signaling pathways. PMID:26658272

  11. The Drosophila Hand gene is required for remodeling of the developing adult heart and midgut during metamorphosis

    PubMed Central

    Lo, Patrick C.H.; Zaffran, Stéphane; Sénatore, Sébastien; Frasch, Manfred

    2007-01-01

    The Hand proteins of the bHLH family of transcriptional factors play critical roles in vertebrate cardiogenesis. In Drosophila, the single orthologous Hand gene is expressed in the developing embryonic dorsal vessel (heart), lymph glands, circular visceral musculature, and a subset of CNS cells. We demonstrate that the absence of Hand activity causes semilethality during the early larval instars. The dorsal vessel and midgut musculature are unaffected in null mutant embryos, but in a large fraction the lymph glands are missing. However, homozygous adult flies lacking Hand possess morphologically abnormal dorsal vessels characterized by a disorganized myofibrillar structure, reduced systolic and diastolic diameter, abnormal heartbeat contractions, and suffer from premature lethality. In addition, their midguts are highly deformed; in the most severe cases, there is midgut blockage and a massive excess of ectopic peritrophic membrane tubules exiting a rupture in an anterior midgut bulge. Nevertheless, the visceral musculature appears to be relatively normal. Based on these phenotypes, we conclude that the expression of the Drosophila Hand gene in the dorsal vessel and circular visceral muscles is mainly required during pupal stages, when Hand participates in the proper hormone-dependent remodeling of the larval aorta into the adult heart and in the normal morphogenesis of the adult midgut endoderm during metamorphosis. PMID:17904115

  12. βν Integrin Inhibits Chronic and High Level Activation of JNK to Repress Senescence Phenotypes in Drosophila Adult Midgut

    PubMed Central

    Okumura, Takashi; Takeda, Koji; Taniguchi, Kiichiro; Adachi-Yamada, Takashi

    2014-01-01

    Proper control of adult stem cells including their proliferation and differentiation is crucial in maintaining homeostasis of well-organized tissues/organs throughout an organism's life. The Drosophila adult midgut has intestinal stem cells (ISCs), which have been exploited as a simple model system to investigate mechanisms controlling adult tissue homeostasis. Here, we found that a viable mutant of βν integrin (βint-ν), encoding one of two Drosophila integrin β subunits, showed a short midgut and abnormal multilayered epithelia accompanied by an increase in ISC proliferation and misdifferentiation defects. The increase in ISC proliferation and misdifferentiation was due to frequent ISC duplication expanding a pool of ISCs, which was caused by depression of the Notch signalling, and up-regulation of unpaired (upd), a gene encoding an extracellular ligand in the JAK/STAT signalling pathway. In addition, we observed that abnormally high accumulation of filamentous actin (F-actin) was caused in the βint-ν mutant enterocytes. Furthermore, the defects were rescued by suppressing c-Jun N-terminal kinase (JNK) signalling, which was up-regulated in a manner correlated with the defect levels in the above-mentioned βint-ν mutant phenotype. These symptoms observed in young βint-ν mutant midgut were very similar to those in the aged midgut in wild type. Our results suggested that βint-ν has a novel function for the Drosophila adult midgut homeostasis under normal conditions and provided a new insight into possible age-related diseases caused by latent abnormality of an integrin function. PMID:24586740

  13. Isolating Intestinal Stem Cells from Adult Drosophila Midguts by FACS to Study Stem Cell Behavior During Aging

    PubMed Central

    Pandur, Petra

    2014-01-01

    Aging tissue is characterized by a continuous decline in functional ability. Adult stem cells are crucial in maintaining tissue homeostasis particularly in tissues that have a high turnover rate such as the intestinal epithelium. However, adult stem cells are also subject to aging processes and the concomitant decline in function. The Drosophila midgut has emerged as an ideal model system to study molecular mechanisms that interfere with the intestinal stem cells’ (ISCs) ability to function in tissue homeostasis. Although adult ISCs can be easily identified and isolated from midguts of young flies, it has been a major challenge to study endogenous molecular changes of ISCs during aging. This is due to the lack of a combination of molecular markers suitable to isolate ISCs from aged intestines. Here we propose a method that allows for successful dissociation of midgut tissue into living cells that can subsequently be separated into distinct populations by FACS. By using dissociated cells from the esg-Gal4, UAS-GFP fly line, in which both ISCs and the enteroblast (EB) progenitor cells express GFP, two populations of cells are distinguished based on different GFP intensities. These differences in GFP expression correlate with differences in cell size and granularity and represent enriched populations of ISCs and EBs. Intriguingly, the two GFP-positive cell populations remain distinctly separated during aging, presenting a novel technique for identifying and isolating cell populations enriched for either ISCs or EBs at any time point during aging. The further analysis, for example transcriptome analysis, of these particular cell populations at various time points during aging is now possible and this will facilitate the examination of endogenous molecular changes that occur in these cells during aging. PMID:25548862

  14. A subset of neurons controls the permeability of the peritrophic matrix and midgut structure in Drosophila adults.

    PubMed

    Kenmoku, Hiroyuki; Ishikawa, Hiroki; Ote, Manabu; Kuraishi, Takayuki; Kurata, Shoichiro

    2016-08-01

    The metazoan gut performs multiple physiological functions, including digestion and absorption of nutrients, and also serves as a physical and chemical barrier against ingested pathogens and abrasive particles. Maintenance of these functions and structures is partly controlled by the nervous system, yet the precise roles and mechanisms of the neural control of gut integrity remain to be clarified in Drosophila Here, we screened for GAL4 enhancer-trap strains and labeled a specific subsets of neurons, using Kir2.1 to inhibit their activity. We identified an NP3253 line that is susceptible to oral infection by Gram-negative bacteria. The subset of neurons driven by the NP3253 line includes some of the enteric neurons innervating the anterior midgut, and these flies have a disorganized proventricular structure with high permeability of the peritrophic matrix and epithelial barrier. The findings of the present study indicate that neural control is crucial for maintaining the barrier function of the gut, and provide a route for genetic dissection of the complex brain-gut axis in adults of the model organism Drosophila. PMID:27229474

  15. Enteroendocrine cells are generated from stem cells through a distinct progenitor in the adult Drosophila posterior midgut

    PubMed Central

    Zeng, Xiankun; Hou, Steven X.

    2015-01-01

    Functional mature cells are continually replenished by stem cells to maintain tissue homoeostasis. In the adult Drosophila posterior midgut, both terminally differentiated enterocyte (EC) and enteroendocrine (EE) cells are generated from an intestinal stem cell (ISC). However, it is not clear how the two differentiated cells are generated from the ISC. In this study, we found that only ECs are generated through the Su(H)GBE+ immature progenitor enteroblasts (EBs), whereas EEs are generated from ISCs through a distinct progenitor pre-EE by a novel lineage-tracing system. EEs can be generated from ISCs in three ways: an ISC becoming an EE, an ISC becoming a new ISC and an EE through asymmetric division, or an ISC becoming two EEs through symmetric division. We further identified that the transcriptional factor Prospero (Pros) regulates ISC commitment to EEs. Our data provide direct evidence that different differentiated cells are generated by different modes of stem cell lineage specification within the same tissues. PMID:25670791

  16. A novel tissue in an established model system: the Drosophila pupal midgut.

    PubMed

    Takashima, Shigeo; Younossi-Hartenstein, Amelia; Ortiz, Paola A; Hartenstein, Volker

    2011-06-01

    The Drosophila larval and adult midguts are derived from two populations of endodermal progenitors that separate from each other in the early embryo. As larval midgut cells differentiate into an epithelial layer, adult midgut progenitors (AMPs) remain as small clusters of proliferating, undifferentiated cells attached to the basal surface of the larval gut epithelium. During the first few hours of metamorphosis, AMPs merge into a continuous epithelial tube that overgrows the larval layer and differentiates into the adult midgut; at the same time, the larval midgut degenerates. As shown in this paper, there is a second, transient pupal midgut that develops from the AMPs at the beginning of metamorphosis and that intercalates between the adult and larval midgut epithelia. Cells of the transient pupal midgut form a multilayered tube that exhibits signs of differentiation, in the form of septate junctions and rudimentary apical microvilli. Some cells of the pupal midgut develop as endocrine cells. The pupal midgut remains closely attached to the degenerating larval midgut cells. Along with these cells, pupal midgut cells are sequestered into the lumen where they form the compact "yellow body." The formation of a pupal midgut has been reported from several other species and may represent a general feature of intestinal metamorphosis in insects. PMID:21556856

  17. A novel tissue in an established model system: the Drosophila pupal midgut

    PubMed Central

    Takashima, Shigeo; Younossi-Hartenstein, Amelia; Ortiz, Paola A.; Hartenstein, Volker

    2014-01-01

    The Drosophila larval and adult midgut are derived from two populations of endodermal progenitors that separate from each other in the early embryo. As larval midgut cells differentiate into an epithelial layer, adult midgut progenitors (AMPs) remain as small clusters of proliferating, undifferentiated cells attached to the basal surface of the larval gut epithelium. During the first few hours of metamorphosis, AMPs merge into a continuous epithelial tube that overgrows the larval layer and differentiates into the adult midgut; at the same time, the larval midgut degenerates. As shown in this paper, there is a second, transient pupal midgut that develops from the AMPs at the beginning of metamorphosis, and that intercalates between the adult and larval midgut epithelia. Cells of the transient pupal midgut form a multilayered tube that exhibits signs of differentiation, in the form of septate junctions and rudimentary apical microvilli. Some cells of the pupal midgut develop as endocrine cells. The pupal midgut remains closely attached to the degenerating larval midgut cells. Along with these cells, pupal midgut cells are sequestered into the lumen where they form the compact “yellow body”. The formation of a pupal midgut has been reported from several other species, and may represent a general feature of intestinal metamorphosis in insects. PMID:21556856

  18. Bursicon-α subunit modulates dLGR2 activity in the adult Drosophila melanogaster midgut independently to Bursicon-β

    PubMed Central

    Scopelliti, Alessandro; Bauer, Christin; Cordero, Julia B.; Vidal, Marcos

    2016-01-01

    ABSTRACT Bursicon is the main regulator of post molting and post eclosion processes during arthropod development. The active Bursicon hormone is a heterodimer of Burs-α and Burs-β. However, adult midguts express Burs-α to regulate the intestinal stem cell niche. Here, we examined the potential expression and function of its heterodimeric partner, Burs-β in the adult midgut. Unexpectedly, our evidence suggests that Burs-β is not significantly expressed in the adult midgut. burs-β mutants displayed the characteristic developmental defects but showed wild type-like adult midguts, thus uncoupling the developmental and adult phenotypes seen in burs-α mutants. Gain of function data and ex vivo experiments using a cAMP biosensor, demonstrated that Burs-α is sufficient to drive stem cell quiescence and to activate dLGR2 in the adult midgut. Our evidence suggests that the post developmental transactivation of dLGR2 in the adult midgut is mediated by Burs-α and that the β subunit of Bursicon is dispensable for these activities. PMID:27191973

  19. Bursicon-α subunit modulates dLGR2 activity in the adult Drosophila melanogaster midgut independently to Bursicon-β.

    PubMed

    Scopelliti, Alessandro; Bauer, Christin; Cordero, Julia B; Vidal, Marcos

    2016-06-17

    Bursicon is the main regulator of post molting and post eclosion processes during arthropod development. The active Bursicon hormone is a heterodimer of Burs-α and Burs-β. However, adult midguts express Burs-α to regulate the intestinal stem cell niche. Here, we examined the potential expression and function of its heterodimeric partner, Burs-β in the adult midgut. Unexpectedly, our evidence suggests that Burs-β is not significantly expressed in the adult midgut. burs-β mutants displayed the characteristic developmental defects but showed wild type-like adult midguts, thus uncoupling the developmental and adult phenotypes seen in burs-α mutants. Gain of function data and ex vivo experiments using a cAMP biosensor, demonstrated that Burs-α is sufficient to drive stem cell quiescence and to activate dLGR2 in the adult midgut. Our evidence suggests that the post developmental transactivation of dLGR2 in the adult midgut is mediated by Burs-α and that the β subunit of Bursicon is dispensable for these activities. PMID:27191973

  20. Increased centrosome amplification in aged stem cells of the Drosophila midgut

    SciTech Connect

    Park, Joung-Sun; Pyo, Jung-Hoon; Na, Hyun-Jin; Jeon, Ho-Jun; Kim, Young-Shin; Arking, Robert; Yoo, Mi-Ae

    2014-07-25

    Highlights: • Increased centrosome amplification in ISCs of aged Drosophila midguts. • Increased centrosome amplification in ISCs of oxidative stressed Drosophila midguts. • Increased centrosome amplification in ISCs by overexpression of PVR, EGFR, and AKT. • Supernumerary centrosomes can be responsible for abnormal ISC polyploid cells. • Supernumerary centrosomes can be a useful marker for aging stem cells. - Abstract: Age-related changes in long-lived tissue-resident stem cells may be tightly linked to aging and age-related diseases such as cancer. Centrosomes play key roles in cell proliferation, differentiation and migration. Supernumerary centrosomes are known to be an early event in tumorigenesis and senescence. However, the age-related changes of centrosome duplication in tissue-resident stem cells in vivo remain unknown. Here, using anti-γ-tubulin and anti-PH3, we analyzed mitotic intestinal stem cells with supernumerary centrosomes in the adult Drosophila midgut, which may be a versatile model system for stem cell biology. The results showed increased centrosome amplification in intestinal stem cells of aged and oxidatively stressed Drosophila midguts. Increased centrosome amplification was detected by overexpression of PVR, EGFR, and AKT in intestinal stem cells/enteroblasts, known to mimic age-related changes including hyperproliferation of intestinal stem cells and hyperplasia in the midgut. Our data show the first direct evidence for the age-related increase of centrosome amplification in intestinal stem cells and suggest that the Drosophila midgut is an excellent model for studying molecular mechanisms underlying centrosome amplification in aging adult stem cells in vivo.

  1. Injury-induced BMP signaling negatively regulates Drosophila midgut homeostasis

    PubMed Central

    Guo, Zheng; Driver, Ian

    2013-01-01

    Although much is known about injury-induced signals that increase rates of Drosophila melanogaster midgut intestinal stem cell (ISC) proliferation, it is largely unknown how ISC activity returns to quiescence after injury. In this paper, we show that the bone morphogenetic protein (BMP) signaling pathway has dual functions during midgut homeostasis. Constitutive BMP signaling pathway activation in the middle midgut mediated regional specification by promoting copper cell differentiation. In the anterior and posterior midgut, injury-induced BMP signaling acted autonomously in ISCs to limit proliferation and stem cell number after injury. Loss of BMP signaling pathway members in the midgut epithelium or loss of the BMP signaling ligand decapentaplegic from visceral muscle resulted in phenotypes similar to those described for juvenile polyposis syndrome, a human intestinal tumor caused by mutations in BMP signaling pathway components. Our data establish a new link between injury and hyperplasia and may provide insight into how BMP signaling mutations drive formation of human intestinal cancers. PMID:23733344

  2. A tetraspanin regulates septate junction formation in Drosophila midgut.

    PubMed

    Izumi, Yasushi; Motoishi, Minako; Furuse, Kyoko; Furuse, Mikio

    2016-03-15

    Septate junctions (SJs) are membrane specializations that restrict the free diffusion of solutes through the paracellular pathway in invertebrate epithelia. In arthropods, two morphologically different types of septate junctions are observed; pleated (pSJs) and smooth (sSJs), which are present in ectodermally and endodermally derived epithelia, respectively. Recent identification of sSJ-specific proteins, Mesh and Ssk, in Drosophila indicates that the molecular compositions of sSJs and pSJs differ. A deficiency screen based on immunolocalization of Mesh identified a tetraspanin family protein, Tsp2A, as a newly discovered protein involved in sSJ formation in Drosophila Tsp2A specifically localizes at sSJs in the midgut and Malpighian tubules. Compromised Tsp2A expression caused by RNAi or the CRISPR/Cas9 system was associated with defects in the ultrastructure of sSJs, changed localization of other sSJ proteins, and impaired barrier function of the midgut. In most Tsp2A mutant cells, Mesh failed to localize to sSJs and was distributed through the cytoplasm. Tsp2A forms a complex with Mesh and Ssk and these proteins are mutually interdependent for their localization. These observations suggest that Tsp2A cooperates with Mesh and Ssk to organize sSJs. PMID:26848177

  3. Transcriptional Signatures in Response to Wheat Germ Agglutinin and Starvation in Drosophila melanogaster Larval Midgut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One function of plant lectins such as wheat germ agglutinin (WGA) is to serve as defenses against herbivorous insects. The midgut is one critical site affected by dietary lectins. We observed marked cellular, structural, and gene expression changes in the midguts of Drosophila melanogaster third-i...

  4. Drosophila Myc integrates multiple signaling pathways to regulate intestinal stem cell proliferation during midgut regeneration

    PubMed Central

    Ren, Fangfang; Shi, Qing; Chen, Yongbin; Jiang, Alice; Ip, Y Tony; Jiang, Huaqi; Jiang, Jin

    2013-01-01

    Intestinal stem cells (ISCs) in the Drosophila adult midgut are essential for maintaining tissue homeostasis, and their proliferation and differentiation speed up in order to meet the demand for replenishing the lost cells in response to injury. Several signaling pathways including JAK-STAT, EGFR and Hippo (Hpo) pathways have been implicated in damage-induced ISC proliferation, but the mechanisms that integrate these pathways have remained elusive. Here, we demonstrate that the Drosophila homolog of the oncoprotein Myc (dMyc) functions downstream of these signaling pathways to mediate their effects on ISC proliferation. dMyc expression in precursor cells is stimulated in response to tissue damage, and dMyc is essential for accelerated ISC proliferation and midgut regeneration. We show that tissue damage caused by dextran sulfate sodium feeding stimulates dMyc expression via the Hpo pathway, whereas bleomycin feeding activates dMyc through the JAK-STAT and EGFR pathways. We provide evidence that dMyc expression is transcriptionally upregulated by multiple signaling pathways, which is required for optimal ISC proliferation in response to tissue damage. We have also obtained evidence that tissue damage can upregulate dMyc expression post-transcriptionally. Finally, we show that a basal level of dMyc expression is required for ISC maintenance, proliferation and lineage differentiation during normal tissue homeostasis. PMID:23896988

  5. Origin and dynamic lineage characteristics of the developing Drosophila midgut stem cells.

    PubMed

    Takashima, Shigeo; Aghajanian, Patrick; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2016-08-15

    Proliferating intestinal stem cells (ISCs) generate all cell types of the Drosophila midgut, including enterocytes, endocrine cells, and gland cells (e.g., copper cells), throughout the lifetime of the animal. Among the signaling mechanisms controlling the balance between ISC self-renewal and the production of different cell types, Notch (N) plays a pivotal role. In this paper we investigated the emergence of ISCs during metamorphosis and the role of N in this process. Precursors of the Drosophila adult intestinal stem cells (pISCs) can be first detected within the pupal midgut during the first hours after onset of metamorphosis as motile mesenchymal cells. pISCs perform 2-3 rounds of parasynchronous divisions. The first mitosis yields only an increase in pISC number. During the following rounds of mitosis, dividing pISCs give rise to more pISCs, as well as the endocrine cells that populate the midgut of the eclosing fly. Enterocytes do not appear among the pISC progeny until around the time of eclosion. The "proendocrine" gene prospero (pros), expressed from mid-pupal stages onward in pISCs, is responsible to advance the endocrine fate in these cells; following removal of pros, pISCs continue to proliferate, but endocrine cells do not form. Conversely, the onset of N activity that occurs around the stage when pros comes on restricts pros expression among pISCs. Loss of N abrogates proliferation and switches on an endocrine fate among all pISCs. Our results suggest that a switch depending on the activity of N and pros acts at the level of the pISC to decide between continued proliferation and endocrine differentiation. PMID:27321560

  6. Plant Defense Inhibitors Affect the Structures of Midgut Cells in Drosophila melanogaster and Callosobruchus maculatus.

    PubMed

    Li-Byarlay, Hongmei; Pittendrigh, Barry R; Murdock, Larry L

    2016-01-01

    Plants produce proteins such as protease inhibitors and lectins as defenses against herbivorous insects and pathogens. However, no systematic studies have explored the structural responses in the midguts of insects when challenged with plant defensive proteins and lectins across different species. In this study, we fed two kinds of protease inhibitors and lectins to the fruit fly Drosophila melanogaster and alpha-amylase inhibitors and lectins to the cowpea bruchid Callosobruchus maculatus. We assessed the changes in midgut cell structures by comparing them with such structures in insects receiving normal diets or subjected to food deprivation. Using light and transmission electron microscopy in both species, we observed structural changes in the midgut peritrophic matrix as well as shortened microvilli on the surfaces of midgut epithelial cells in D. melanogaster. Dietary inhibitors and lectins caused similar lesions in the epithelial cells but not much change in the peritrophic matrix in both species. We also noted structural damages in the Drosophila midgut after six hours of starvation and changes were still present after 12 hours. Our study provided the first evidence of key structural changes of midguts using a comparative approach between a dipteran and a coleopteran. Our particular observation and discussion on plant-insect interaction and dietary stress are relevant for future mode of action studies of plant defensive protein in insect physiology. PMID:27594789

  7. Plant Defense Inhibitors Affect the Structures of Midgut Cells in Drosophila melanogaster and Callosobruchus maculatus

    PubMed Central

    Li-Byarlay, Hongmei; Pittendrigh, Barry R.; Murdock, Larry L.

    2016-01-01

    Plants produce proteins such as protease inhibitors and lectins as defenses against herbivorous insects and pathogens. However, no systematic studies have explored the structural responses in the midguts of insects when challenged with plant defensive proteins and lectins across different species. In this study, we fed two kinds of protease inhibitors and lectins to the fruit fly Drosophila melanogaster and alpha-amylase inhibitors and lectins to the cowpea bruchid Callosobruchus maculatus. We assessed the changes in midgut cell structures by comparing them with such structures in insects receiving normal diets or subjected to food deprivation. Using light and transmission electron microscopy in both species, we observed structural changes in the midgut peritrophic matrix as well as shortened microvilli on the surfaces of midgut epithelial cells in D. melanogaster. Dietary inhibitors and lectins caused similar lesions in the epithelial cells but not much change in the peritrophic matrix in both species. We also noted structural damages in the Drosophila midgut after six hours of starvation and changes were still present after 12 hours. Our study provided the first evidence of key structural changes of midguts using a comparative approach between a dipteran and a coleopteran. Our particular observation and discussion on plant–insect interaction and dietary stress are relevant for future mode of action studies of plant defensive protein in insect physiology. PMID:27594789

  8. Transcriptomic profile of Drosophila melanogaster larval midgut and responses to oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oligoarray analysis was used to determine the number and nature of genes expressed in third-instar Drosophila melanogaster larval midguts. The majority of transcripts were associated with protein synthesis and metabolism. Serine proteases were the main proteolytic enzymes detected. Some 40% of th...

  9. Regulatory peptides in fruit fly midgut.

    PubMed

    Veenstra, Jan A; Agricola, Hans-Jürgen; Sellami, Azza

    2008-12-01

    Regulatory peptides were immunolocalized in the midgut of the fruit fly Drosophila melanogaster. Endocrine cells were found to produce six different peptides: allatostatins A, B and C, neuropeptide F, diuretic hormone 31, and the tachykinins. Small neuropeptide-F (sNPF) was found in neurons in the hypocerebral ganglion innervating the anterior midgut, whereas pigment-dispersing factor was found in nerves on the most posterior part of the posterior midgut. Neuropeptide-F (NPF)-producing endocrine cells were located in the anterior and middle midgut and in the very first part of the posterior midgut. All NPF endocrine cells also produced tachykinins. Endocrine cells containing diuretic hormone 31 were found in the caudal half of the posterior midgut; these cells also produced tachykinins. Other endocrine cells produced exclusively tachykinins in the anterior and posterior extemities of the midgut. Allatostatin-immunoreactive endocrine cells were present throughout the midgut. Those in the caudal half of the posterior midgut produced allatostatins A, whereas those in the anterior, middle, and first half of the posterior midgut produced allatostatin C. In the middle of the posterior midgut, some endocrine cells produced both allatostatins A and C. Allatostatin-C-immunoreactive endocrine cells were particularly prominent in the first half of the posterior midgut. Allatostatin B/MIP-immunoreactive cells were not consistently found and, when present, were only weakly immunoreactive, forming a subgroup of the allatostatin-C-immunoreactive cells in the posterior midgut. Previous work on Drosophila and other insect species suggested that (FM)RFamide-immunoreactive endocrine cells in the insect midgut could produce NPF, sNPF, myosuppressin, and/or sulfakinins. Using a combination of specific antisera to these peptides and transgenic fly models, we showed that the endocrine cells in the adult Drosophila midgut produced exclusively NPF. Although the Drosophila insulin gene Ilp3

  10. Adult midgut malrotation presented with acute bowel obstruction and ischemia

    PubMed Central

    Zengin, Akile; Uçar, Bercis İmge; Düzgün, Şükrü Aydın; Bayhan, Zülfü; Zeren, Sezgin; Yaylak, Faik; Şanal, Bekir; Bayhan, Nilüfer Araz

    2016-01-01

    Introduction Intestinal malrotation refers to the partial or complete failure of rotation of midgut around the superior mesenteric vessels in embryonic life. Arrested midgut rotation results due to narrow-based mesentery and increases the risk of twisting midgut and subsequent obstruction and necrosis. Presentation of case 40 years old female patient admitted to emergency service with acute abdomen and computerized tomography scan showed dilated large and small intestine segments with air-fluid levels and twisted mesentery around superior mesenteric artery and vein indicating “whirpool sign”. Discussion Malrotation in adults is a rare cause of midgut volvulus as though it should be considered in differential diagnosis in patients presented with acute abdomen and intestinal ischemia. Even though clinical symptoms are obscure, adult patients usually present with vomiting and recurrent abdominal pain due to chronic partial obstruction. Contrast enhanced radiograph has been shown to be the most accurate method. Typical radiological signs are corkscrew sign, which is caused by the dilatation of various duodenal segments at different levels and the relocation of duodenojejunal junction due to jejunum folding. As malrotation commonly causes intestinal obstruction, patients deserve an elective laparotomy. Conclusion Malrotation should be considered in differential diagnosis in patients presented with acute abdomen and intestinal ischemia. Surgical intervention should be prompt to limit morbidity and mortality. PMID:27015011

  11. Fine-structural changes in the midgut of old Drosophila melanogaster

    NASA Technical Reports Server (NTRS)

    Anton-Erxleben, F.; Miquel, J.; Philpott, D. E.

    1983-01-01

    Senescent fine-structural changes in the midgut of Drosophila melanogaster are investigated. A large number of midgut mitochondria in old flies exhibit nodular cristae and a tubular system located perpendicular to the normal cristae orientation. Anterior intestinal cells show a senescent accumulation of age pigment, either with a surrounding two-unit membrane or without any membrane. The predominant localization of enlarged mitochondria and pigment in the luminal gut region may be related to the polarized metabolism of the intestinal cells. Findings concur with previous observations of dense-body accumulations and support the theory that mitochondria are involved in the aging of fixed post-mitotic cells. Demonstrated by statistical analyses is that mitochondrial size increase is related to mitochondrial variation increase.

  12. Changes in Drosophila melanogaster midgut proteins in response to dietary Bowman-Birk inhibitor.

    PubMed

    Li, H-M; Margam, V; Muir, W M; Murdock, L L; Pittendrigh, B R

    2007-10-01

    The midgut proteome of Drosophila melanogaster was compared in larvae fed dietary Bowman-Birk inhibitor (BBI) vs. larvae fed a control diet. By using two-dimensional gel electrophoresis, nine differentially expressed proteins were observed, which were associated with enzymes or transport functions such as sterol carrier protein X (SCPX), ubiquitin-conjugating enzyme, endopeptidase, receptor signalling protein kinase, ATP-dependent RNA helicase and alpha-tocopherol transport. Quantitative real-time PCR verified differential expression of transcripts coding for six of the proteins observed from the proteomic analysis. BBI evidently affects expression of proteins associated with protein degradation, transport and fatty acid catabolism. We then tested the hypothesis that SCPX was critical for the Drosophila third instars' response to BBI treatment. Inhibition of SCPX caused the third instars to become more susceptible to dietary BBI. PMID:17725801

  13. Ecdysone-Induced Receptor Tyrosine Phosphatase PTP52F Regulates Drosophila Midgut Histolysis by Enhancement of Autophagy and Apoptosis

    PubMed Central

    Santhanam, Abirami; Peng, Wen-Hsin; Yu, Ya-Ting; Sang, Tzu-Kang

    2014-01-01

    The rapid removal of larval midgut is a critical developmental process directed by molting hormone ecdysone during Drosophila metamorphosis. To date, it remains unclear how the stepwise events can link the onset of ecdysone signaling to the destruction of larval midgut. This study investigated whether ecdysone-induced expression of receptor protein tyrosine phosphatase PTP52F regulates this process. The mutation of the Ptp52F gene caused significant delay in larval midgut degradation. Transitional endoplasmic reticulum ATPase (TER94), a regulator of ubiquitin proteasome system, was identified as a substrate and downstream effector of PTP52F in the ecdysone signaling. The inducible expression of PTP52F at the puparium formation stage resulted in dephosphorylation of TER94 on its Y800 residue, ensuring the rapid degradation of ubiquitylated proteins. One of the proteins targeted by dephosphorylated TER94 was found to be Drosophila inhibitor of apoptosis 1 (DIAP1), which was rapidly proteolyzed in cells with significant expression of PTP52F. Importantly, the reduced level of DIAP1 in response to inducible PTP52F was essential not only for the onset of apoptosis but also for the initiation of autophagy. This study demonstrates a novel function of PTP52F in regulating ecdysone-directed metamorphosis via enhancement of autophagic and apoptotic cell death in doomed Drosophila midguts. PMID:24550005

  14. Ras-oncogenic Drosophila hindgut but not midgut cells use an inflammation-like program to disseminate to distant sites.

    PubMed

    Christofi, Theodoulakis; Apidianakis, Yiorgos

    2013-01-01

    The gastrointestinal tract is habitable by a variety of microorganisms and it is often a tissue inflicted by inflammation. Much discussion is raised in recent years about the role of microbiota in intestinal inflammation, but their role in intestinal cancer remains unclear. Here we discuss and extent our work on Drosophila melanogaster models of tumorigenesis and tumor cell invasion upon intestinal infection. In Drosophila midgut bacteria that cause enterocyte damage induce intestinal stem cell proliferation, which is diverted toward aberrant stem cell expansion upon oncogene expression to induce dysplastic tumors. In the hindgut though, oncogenes synergize with the innate immune response-not the bacterially mediated damage-to induce tumor cell invasion and dissemination to distant sites. Interestingly, our novel gene expression analysis of Drosophila hemocyte-like cells suggests commonalities with oncogenic hindgut cells in the innate immune response and the expression of matrix metalloproteinase 1 in response to bacterial infection. PMID:23060054

  15. Organoaxial partial rotation of duodenum with midgut malrotation in an adult

    PubMed Central

    Amarakoon, Luckshika Udeshani; Rathnamali, Baj Gamage Anushka; Jayasundara, Jasin Arachchige Saman Bingumal; de Silva, Ajith

    2014-01-01

    Midgut malrotation includes a range of developmental abnormalities that occur during fetal intestinal rotation. Manifestations of intestinal malrotation are generally seen in the paediatric population and are uncommon in adults. Symptomatic patients may present with either acute abdominal pain due to midgut volvulus, or chronic abdominal pain due to proximal midgut partial obstruction in the presence of congenital bands. A limited number of paediatric cases of duodenal occlusion due to duodenal malrotation has been previously reported in the medical literature. We herein report the case of a 57-year-old woman who presented with duodenal obstruction due to organoaxial partial rotation of the distal duodenum associated with midgut malrotation. This is probably the first of such a case diagnosed in adulthood reported in the medical literature. Our patient underwent Roux-en-Y duodenojejunostomy and had symptomatic relief following the successful surgery. PMID:25630324

  16. biniou (FoxF), a central component in a regulatory network controlling visceral mesoderm development and midgut morphogenesis in Drosophila

    PubMed Central

    Zaffran, Stephane; Küchler, Axel; Lee, Hsiu-Hsiang; Frasch, Manfred

    2001-01-01

    The subdivision of the lateral mesoderm into a visceral (splanchnic) and a somatic layer is a crucial event during early mesoderm development in both arthropod and vertebrate embryos. In Drosophila, this subdivision leads to the differential development of gut musculature versus body wall musculature. Here we report that biniou, the sole Drosophila representative of the FoxF subfamily of forkhead domain genes, has a key role in the development of the visceral mesoderm and the derived gut musculature. biniou expression is activated in the trunk visceral mesoderm primordia downstream of dpp, tinman, and bagpipe and is maintained in all types of developing gut muscles. We show that biniou activity is essential for maintaining the distinction between splanchnic and somatic mesoderm and for differentiation of the splanchnic mesoderm into midgut musculature. biniou is required not only for the activation of differentiation genes that are expressed ubiquitously in the trunk visceral mesoderm but also for the expression of dpp in parasegment 7, which governs proper midgut morphogenesis. Activation of dpp is mediated by specific Biniou binding sites in a dpp enhancer element, which suggests that Biniou serves as a tissue-specific cofactor of homeotic gene products in visceral mesoderm patterning. Based upon these and other data, we propose that the splanchnic mesoderm layers in Drosophila and vertebrate embryos are homologous structures whose development into gut musculature and other visceral organs is critically dependent on FoxF genes. PMID:11691840

  17. Adult midgut expressed sequence tags from the tsetse fly Glossina morsitans morsitans and expression analysis of putative immune response genes

    PubMed Central

    Lehane, M J; Aksoy, S; Gibson, W; Kerhornou, A; Berriman, M; Hamilton, J; Soares, M B; Bonaldo, M F; Lehane, S; Hall, N

    2003-01-01

    Background Tsetse flies transmit African trypanosomiasis leading to half a million cases annually. Trypanosomiasis in animals (nagana) remains a massive brake on African agricultural development. While trypanosome biology is widely studied, knowledge of tsetse flies is very limited, particularly at the molecular level. This is a serious impediment to investigations of tsetse-trypanosome interactions. We have undertaken an expressed sequence tag (EST) project on the adult tsetse midgut, the major organ system for establishment and early development of trypanosomes. Results A total of 21,427 ESTs were produced from the midgut of adult Glossina morsitans morsitans and grouped into 8,876 clusters or singletons potentially representing unique genes. Putative functions were ascribed to 4,035 of these by homology. Of these, a remarkable 3,884 had their most significant matches in the Drosophila protein database. We selected 68 genes with putative immune-related functions, macroarrayed them and determined their expression profiles following bacterial or trypanosome challenge. In both infections many genes are downregulated, suggesting a malaise response in the midgut. Trypanosome and bacterial challenge result in upregulation of different genes, suggesting that different recognition pathways are involved in the two responses. The most notable block of genes upregulated in response to trypanosome challenge are a series of Toll and Imd genes and a series of genes involved in oxidative stress responses. Conclusions The project increases the number of known Glossina genes by two orders of magnitude. Identification of putative immunity genes and their preliminary characterization provides a resource for the experimental dissection of tsetse-trypanosome interactions. PMID:14519198

  18. Ecdysteroid receptors in Drosophila melanogaster adult females

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecdysteroid receptors were identified and partially characterized from total cell extracts of whole animals and dissected tissues from Drosophila melanogaster adult females. Binding studies indicated the presence of two ecdysteroid binding components having high affinity and specificity consistent w...

  19. Barber Pole Sign in CT Angiography, Adult Presentation of Midgut Malrotation: A Case Report.

    PubMed

    Garcelan-Trigo, Juan Arsenio; Tello-Moreno, Manuel; Rabaza-Espigares, Manuel Jesus; Talavera-Martinez, Ildefonso

    2015-07-01

    Adult midgut volvulus is a challenging diagnosis because of its low incidence and nonspecific symptoms. Diagnostic delay and long-term complaints are frequent in this clinical scenario. We reported a patient referred to our diagnostic imaging unit with intermittent abdominal pain, bloating and episodic vomiting for several years. He underwent barium gastrointestinal transit and abdominal ultrasound, which revealed severe gastric dilatation, food retention and slow transit until a depressed duodenojejunal flexure, with malrotation of the midgut and jejunal loops being located in the right upper quadrant. Computed tomography angiography was performed, showing rotation of the small intestine around the mesentery root, suggestive of midgut malrotation. In addition, an abnormal twisted disposition of superior mesenteric artery with corkscrew appearance was seen, shaping the pole-barber sign which was evident in volume rendering three-dimensional reconstructions. The patient underwent scheduled surgical treatment without any complication and had good outcome after hospital discharge and follow-up. Computed tomography plays an important role in evaluation of adult midgut volvulus. In addition, angiographic reconstructions can help us to assess the anatomic disposition of mesenteric vascular supply. Both of these assessments are useful in preoperative management. PMID:26557278

  20. Forces driven by morphogenesis modulate Twist Expression to determine Anterior Mid-gut Differentiation in Drosophila embryos

    NASA Astrophysics Data System (ADS)

    Farge, Emmanuel

    2008-03-01

    By combining magnetic tweezers to in vivo laser ablation, we locally manipulate Drosophila embryonic tissues with physiologically relevant forces. We demonstrate that high level of Twist expression in the stomodeal primordium is mechanically induced in response to compression by the 60±20 nN force developed during germ-band extension (GBE). We find that this force triggers the junctional release and nuclear translocation of Armadillo involved in Twist mechanical induction in the stomodeum in a Src42A dependent way. Finally, stomodeal-specific RNAi-mediated silencing of Twist during compression impairs the differentiation of midgut cells, as revealed by strong defects in Dve expression and abnormal larval lethality. Thus, mechanical induction of Twist overexpression in stomodeal cells is necessary for subsequent midgut differentiation. In collaboration with Nicolas Desprat, Willy Supatto, and Philippe-Alexandre Pouille, MGDET, UMR168 CNRS, Institut Curie11 rue Pierre et Marie Curie, F-75005, Paris, France; and Emmanuel Beaurepaire, LOB, Ecole Polytechnique, CNRS and INSERM U 696, 91128 Palaiseau, France.

  1. Dpp signaling determines regional stem cell identity in the regenerating adult Drosophila gastrointestinal tract

    PubMed Central

    Li, Hongjie; Qi, Yanyan; Jasper, Heinrich

    2013-01-01

    Summary The gastrointestinal tract is lined by a series of epithelia that share functional requirements, but also have distinct, highly specialized roles. Distinct populations of somatic stem cells (SCs) regenerate these epithelia, yet the mechanisms that maintain regional identities of these SCs are not well understood. Here, we identify a role for the BMP-like Dpp signaling pathway in diversifying regenerative processes in the adult gastrointestinal tract of Drosophila. Dpp secreted from enterocytes at the boundary between the posterior midgut (PM) and the middle midgut (MM) sets up a morphogen gradient that selectively directs copper cell (CC) regeneration from gastric SCs in the MM and thus determines the size of the CC region. In vertebrates, deregulation of BMP signaling has been associated with Barrett’s metaplasia, where the squamous esophageal epithelium is replaced by a columnar epithelium, suggesting that the maintenance of regional SC identities by BMP is conserved. PMID:23810561

  2. Fluid absorption in the isolated midgut of adult female yellow fever mosquitoes (Aedes aegypti)

    PubMed Central

    Onken, Horst; Moffett, David F.

    2015-01-01

    ABSTRACT The transepithelial voltage (Vte) and the volume of isolated posterior midguts of adult female yellow fever mosquitoes (Aedes aegypti) were monitored. In all experiments, the initial Vte after filling the midgut was lumen negative, but subsequently became lumen positive at a rate of approximately 1 mV min−1. Simultaneously, the midgut volume decreased, indicating spontaneous fluid absorption. When the midguts were filled and bathed with mosquito saline, the average rate of fluid absorption was 36.5±3.0 nl min−1 (N=4, ±s.e.m.). In the presence of theophylline (10 mmol l−1), Vte reached significantly higher lumen-positive values, but the rate of fluid absorption was not affected (N=6). In the presence of NaCN (5 mmol l−1), Vte remained close to 0 mV (N=4) and fluid absorption was reduced (14.4±1.3 nl min−1, N=3, ±s.e.m.). When midguts were filled with buffered NaCl (154 mmol l−1 plus 1 mmol l−1 HEPES) and bathed in mosquito saline with theophylline, fluid absorption was augmented (50.0±5.8 nl min−1, N=12, ±s.e.m.). Concanamycin A (10 µmol l−1), ouabain (1 mmol l−1), and acetazolamide (1 mmol l−1) affected Vte in different ways, but all reduced fluid absorption by 60–70% of the value before addition of the drugs. PMID:25944920

  3. Endocrine remodelling of the adult intestine sustains reproduction in Drosophila

    PubMed Central

    Reiff, Tobias; Jacobson, Jake; Cognigni, Paola; Antonello, Zeus; Ballesta, Esther; Tan, Kah Junn; Yew, Joanne Y; Dominguez, Maria; Miguel-Aliaga, Irene

    2015-01-01

    The production of offspring is energetically costly and relies on incompletely understood mechanisms that generate a positive energy balance. In mothers of many species, changes in key energy-associated internal organs are common yet poorly characterised functionally and mechanistically. In this study, we show that, in adult Drosophila females, the midgut is dramatically remodelled to enhance reproductive output. In contrast to extant models, organ remodelling does not occur in response to increased nutrient intake and/or offspring demands, but rather precedes them. With spatially and temporally directed manipulations, we identify juvenile hormone (JH) as an anticipatory endocrine signal released after mating. Acting through intestinal bHLH-PAS domain proteins Methoprene-tolerant (Met) and Germ cell-expressed (Gce), JH signals directly to intestinal progenitors to yield a larger organ, and adjusts gene expression and sterol regulatory element-binding protein (SREBP) activity in enterocytes to support increased lipid metabolism. Our findings identify a metabolically significant paradigm of adult somatic organ remodelling linking hormonal signals, epithelial plasticity, and reproductive output. DOI: http://dx.doi.org/10.7554/eLife.06930.001 PMID:26216039

  4. More Frequent than Desired: Midgut Stem Cell Somatic Mutations.

    PubMed

    Li, Qi; Ip, Y Tony

    2015-12-01

    The accumulation of somatic mutations in adult stem cells contributes to the decline of tissue functions and cancer initiation. In this issue of Cell Stem Cell, Siudeja et al. (2015) investigate the rate and mechanism of naturally occurring mutations in Drosophila midgut intestinal stem cells during aging and find high-frequency mutations arising from multiple mechanisms. PMID:26637937

  5. A subset of enteroendocrine cells is activated by amino acids in the Drosophila midgut.

    PubMed

    Park, Jeong-Ho; Chen, Ji; Jang, Sooin; Ahn, Tae Jung; Kang, KyeongJin; Choi, Min Sung; Kwon, Jae Young

    2016-02-01

    The intestine is involved in digestion and absorption, as well as the regulation of metabolism upon sensation of the internal intestinal environment. Enteroendocrine cells are thought to mediate these internal intestinal chemosensory functions. Using the CaLexA (calcium-dependent nuclear import of LexA) method, we examined the enteroendocrine cell populations that are activated when flies are subjected to various dietary conditions such as starvation, sugar, high fat, protein, or pathogen exposure. We find that a specific subpopulation of enteroendocrine cells in the posterior midgut which express Dh31 and tachykinin are activated by the presence of proteins and amino acids. PMID:26801353

  6. The Drosophila melanogaster sex determination gene sisA is required in yolk nuclei for midgut formation.

    PubMed Central

    Walker, J J; Lee, K K; Desai, R N; Erickson, J W

    2000-01-01

    During sex determination, the sisterlessA (sisA) gene functions as one of four X:A numerator elements that set the alternative male or female regulatory states of the switch gene Sex-lethal. In somatic cells, sisA functions specifically in sex determination, but its expression pattern also hints at a role in the yolk cell, a syncytial structure believed to provide energy and nutrients to the developing embryo. Previous studies of sisA have been limited by the lack of a null allele, leaving open the possibility that sisA has additional functions. Here we report the isolation and molecular characterization of four new sisA alleles including two null mutations. Our findings highlight key aspects of sisA structure-function and reveal important qualitative differences between the effects of sisA and the other strong X:A numerator element, sisterlessB, on Sex-lethal expression. We use genetic, expression, clonal, and phenotypic analyses to demonstrate that sisA has an essential function in the yolk nuclei of both sexes. In the absence of sisA, endoderm migration and midgut formation are blocked, suggesting that the yolk cell may have a direct role in larval gut development. To our knowledge, this is the first report of a requirement for the yolk nuclei in Drosophila development. PMID:10790394

  7. Molecular mechanism and functional significance of acid generation in the Drosophila midgut

    PubMed Central

    Overend, Gayle; Luo, Yuan; Henderson, Louise; Douglas, Angela E.; Davies, Shireen A.; Dow, Julian A. T.

    2016-01-01

    The gut of Drosophila melanogaster includes a proximal acidic region (~pH 2), however the genome lacks the H+/K+ ATPase characteristic of the mammalian gastric parietal cell, and the molecular mechanisms of acid generation are poorly understood. Here, we show that maintenance of the low pH of the acidic region is dependent on H+ V-ATPase, together with carbonic anhydrase and five further transporters or channels that mediate K+, Cl− and HCO3− transport. Abrogation of the low pH did not influence larval survival under standard laboratory conditions, but was deleterious for insects subjected to high Na+ or K+ load. Insects with elevated pH in the acidic region displayed increased susceptibility to Pseudomonas pathogens and increased abundance of key members of the gut microbiota (Acetobacter and Lactobacillus), suggesting that the acidic region has bacteriostatic or bacteriocidal activity. Conversely, the pH of the acidic region was significantly reduced in germ-free Drosophila, indicative of a role of the gut bacteria in shaping the pH conditions of the gut. These results demonstrate that the acidic gut region protects the insect and gut microbiome from pathological disruption, and shed light on the mechanisms by which low pH can be maintained in the absence of H+, K+ ATPase. PMID:27250760

  8. Molecular mechanism and functional significance of acid generation in the Drosophila midgut.

    PubMed

    Overend, Gayle; Luo, Yuan; Henderson, Louise; Douglas, Angela E; Davies, Shireen A; Dow, Julian A T

    2016-01-01

    The gut of Drosophila melanogaster includes a proximal acidic region (~pH 2), however the genome lacks the H(+)/K(+) ATPase characteristic of the mammalian gastric parietal cell, and the molecular mechanisms of acid generation are poorly understood. Here, we show that maintenance of the low pH of the acidic region is dependent on H(+) V-ATPase, together with carbonic anhydrase and five further transporters or channels that mediate K(+), Cl(-) and HCO3(-) transport. Abrogation of the low pH did not influence larval survival under standard laboratory conditions, but was deleterious for insects subjected to high Na(+) or K(+) load. Insects with elevated pH in the acidic region displayed increased susceptibility to Pseudomonas pathogens and increased abundance of key members of the gut microbiota (Acetobacter and Lactobacillus), suggesting that the acidic region has bacteriostatic or bacteriocidal activity. Conversely, the pH of the acidic region was significantly reduced in germ-free Drosophila, indicative of a role of the gut bacteria in shaping the pH conditions of the gut. These results demonstrate that the acidic gut region protects the insect and gut microbiome from pathological disruption, and shed light on the mechanisms by which low pH can be maintained in the absence of H(+), K(+) ATPase. PMID:27250760

  9. Mesenchymal to epithelial transition during tissue homeostasis and regeneration: Patching up the Drosophila midgut epithelium

    PubMed Central

    Antonello, Zeus A.; Reiff, Tobias; Dominguez, Maria

    2015-01-01

    Stem cells are responsible for preserving morphology and function of adult tissues. Stem cells divide to self-renew and to generate progenitor cells to sustain cell demand from the tissue throughout the organism's life. Unlike stem cells, the progenitor cells have limited proliferation potential but have the capacity to terminally differentiate and thereby to substitute older or damaged mature cells. Recent findings indicate that adult stem cells can adapt their division kinetics dynamically to match changes in tissue demand during homeostasis and regeneration. However, cell turnover not only requires stem cell division but also needs timed differentiation of the progenitor cells, which has been much less explored. In this Extra View article, we discuss the ability of progenitor cells to actively postpone terminal differentiation in the absence of a local demand and how tissue demand activates terminal differentiation via a conserved mesenchymal-epithelial transition program revealed in our recent EMBO J paper and other published and unpublished data. The extent of the significance of these results is discussed for models of tissue dynamics during both homeostasis and regeneration. PMID:26760955

  10. A rare presentation of midgut malrotation as an acute intestinal obstruction in an adult: Two case reports and literature review

    PubMed Central

    Singh, Shailendra; Das, Anupam; Chawla, A.S.; Arya, S.V.; Chaggar, Jasneet

    2012-01-01

    INTRODUCTION Midgut malrotation is a congenital anomaly presenting mainly in the childhood. Its presentation as an acute intestinal obstruction is extremely rare in adults usually recognized intra-operatively, therefore a high index of suspicion is always required when dealing with any case of acute intestinal obstruction. PRESENTATION OF CASE We report two cases of young adults who presented with symptoms of acute intestinal obstruction and were diagnosed intra-operatively as cecal volvulus and paraduodenal hernia, respectively, caused by midgut malrotation. Post-operative CT scan confirmed these findings. DISCUSSION Malrotation of the intestinal tract is a product of an aberrant embryology. The presentation of intestinal malrotation in adults is rare (0.2–0.5%). Contrast enhanced CT can show the abnormal anatomic location of a right sided small bowel, a left-sided colon and an abnormal relationship of the superior mesenteric vein (SMV) situated to the left of the superior mesenteric artery (SMA) instead of to the right. CONCLUSION Anomalies like midgut malrotation can present as an operative surprise and awareness regarding these anomalies can help surgeons deal with these conditions. PMID:23123419

  11. Comparative microarray analyses of adult female midgut tissues from feeding Rhipicephalus species.

    PubMed

    van Zyl, Willem A; Stutzer, Christian; Olivier, Nicholas A; Maritz-Olivier, Christine

    2015-02-01

    The cattle tick, Rhipicephalus microplus, has a debilitating effect on the livestock industry worldwide, owing to its being a vector of the causative agents of bovine babesiosis and anaplasmosis. In South Africa, co-infestation with R. microplus and R. decoloratus, a common vector species on local livestock, occurs widely in the northern and eastern parts of the country. An alternative to chemical control methods is sought in the form of a tick vaccine to control these tick species. However, sequence information and transcriptional data for R. decoloratus is currently lacking. Therefore, this study aimed at identifying genes that are shared between midgut tissues of feeding adult female R. microplus and R. decoloratus ticks. In this regard, a custom oligonucleotide microarray comprising of 13,477 R. microplus sequences was used for transcriptional profiling and 2476 genes were found to be shared between these Rhipicephalus species. In addition, 136 transcripts were found to be more abundantly expressed in R. decoloratus and 1084 in R. microplus. Chi-square analysis revealed that genes involved in lipid transport and metabolism are significantly overrepresented in R. microplus and R. decoloratus. This study is the first transcriptional profiling of R. decoloratus and is an additional resource that can be evaluated further in future studies for possible tick control. PMID:25448423

  12. Wildtype adult stem cells, unlike tumor cells, are resistant to cellular damages in Drosophila.

    PubMed

    Ma, Meifang; Zhao, Hang; Zhao, Hanfei; Binari, Richard; Perrimon, Norbert; Li, Zhouhua

    2016-03-15

    Adult stem cells or residential progenitor cells are critical to maintain the structure and function of adult tissues (homeostasis) throughout the lifetime of an individual. Mis-regulation of stem cell proliferation and differentiation often leads to diseases including cancer, however, how wildtype adult stem cells and cancer cells respond to cellular damages remains unclear. We find that in the adult Drosophila midgut, intestinal stem cells (ISCs), unlike tumor intestinal cells, are resistant to various cellular damages. Tumor intestinal cells, unlike wildtype ISCs, are easily eliminated by apoptosis. Further, their proliferation is inhibited upon autophagy induction, and autophagy-mediated tumor inhibition is independent of caspase-dependent apoptosis. Interestingly, inhibition of tumorigenesis by autophagy is likely through the sequestration and degradation of mitochondria, as compromising mitochondria activity in these tumor models mimics the induction of autophagy and increasing the production of mitochondria alleviates the tumor-suppression capacity of autophagy. Together, these data demonstrate that wildtype adult stem cells and tumor cells show dramatic differences in sensitivity to cellular damages, thus providing potential therapeutic implications targeting tumorigenesis. PMID:26845534

  13. Drosophila adult and larval pheromones modulate larval food choice

    PubMed Central

    Farine, Jean-Pierre; Cortot, Jérôme; Ferveur, Jean-François

    2014-01-01

    Insects use chemosensory cues to feed and mate. In Drosophila, the effect of pheromones has been extensively investigated in adults, but rarely in larvae. The colonization of natural food sources by Drosophila buzzatii and Drosophila simulans species may depend on species-specific chemical cues left in the food by larvae and adults. We identified such chemicals in both species and measured their influence on larval food preference and puparation behaviour. We also tested compounds that varied between these species: (i) two larval volatile compounds: hydroxy-3-butanone-2 and phenol (predominant in D. simulans and D. buzzatii, respectively), and (ii) adult cuticular hydrocarbons (CHs). Drosophila buzzatii larvae were rapidly attracted to non-CH adult conspecific cues, whereas D. simulans larvae were strongly repulsed by CHs of the two species and also by phenol. Larval cues from both species generally reduced larval attraction and pupariation on food, which was generally—but not always—low, and rarely reflected larval response. As these larval and adult pheromones specifically influence larval food search and the choice of a pupariation site, they may greatly affect the dispersion and survival of Drosophila species in nature. PMID:24741012

  14. An unexpected cause of small bowel obstruction in an adult patient: midgut volvulus.

    PubMed

    Söker, Gökhan; Yılmaz, Cengiz; Karateke, Faruk; Gülek, Bozkurt

    2014-01-01

    The most important complication of intestinal malrotation is midgut volvulus because it may lead to intestinal ischaemia and necrosis. A 29-year-old male patient was admitted to the emergency department with abdominal pain. Ultrasonography (US), colour Doppler ultrasonography (CDUS), CT and barium studies were carried out. On US and CDUS, twisting of intestinal segments around the superior mesenteric artery (SMA) and superior mesenteric vein (SMV) and alteration of the SMA-SMV relationship were detected. CT demonstrated that the small intestine was making a rotation around the SMA and SMV, which amounted to more than 360°. The upper gastrointestinal barium series revealed a corkscrew appearance of the duodenum and proximal jejunum, which is a pathognomonic finding of midgut volvulus. Prior knowledge of characteristic imaging findings of midgut volvulus is essential in order to reach proper diagnosis and establish proper treatment before the development of intestinal ischaemia and necrosis. PMID:24811563

  15. A case report of hepatic and renal dysfunction complicating midgut malrotation in an adult

    PubMed Central

    Samaraee, Ahmad Al; Kilgour, Alixe H M; Goulbourne, Ian A; Robson, Rita; Hayat, Mumtaz

    2009-01-01

    A 39-year-old man had an unusual presentation of jaundice and acute renal dysfunction complicating midgut malrotation. Diagnosis by computed tomography scan enabled prompt surgery and functional correction of the malrotation, with a full return to normal life. PMID:21686902

  16. Rosa damascena decreased mortality in adult Drosophila.

    PubMed

    Jafari, Mahtab; Zarban, Asghar; Pham, Steven; Wang, Thomas

    2008-03-01

    The effects of a rose-flower extract, Rosa damascena, on the mortality rate of Drosophila melanogaster was evaluated in this study. R. damascena is a potent antioxidant that has many therapeutic uses in addition to its perfuming effects. Supplementing Drosophila with this rose extract resulted in a statistically significant decrease in mortality rate in male and female flies. Moreover, the observed anti-aging effects were not associated with common confounds of anti-aging properties, such as a decrease in fecundity or metabolic rate. PMID:18361732

  17. Intestinal stem cell response to injury: lessons from Drosophila.

    PubMed

    Jiang, Huaqi; Tian, Aiguo; Jiang, Jin

    2016-09-01

    Many adult tissues and organs are maintained by resident stem cells that are activated in response to injury but the mechanisms that regulate stem cell activity during regeneration are still poorly understood. An emerging system to study such problem is the Drosophila adult midgut. Recent studies have identified both intrinsic factors and extrinsic niche signals that control the proliferation, self-renewal, and lineage differentiation of Drosophila adult intestinal stem cells (ISCs). These findings set up the stage to interrogate how niche signals are regulated and how they are integrated with cell-intrinsic factors to control ISC activity during normal homeostasis and regeneration. Here we review the current understanding of the mechanisms that control ISC self-renewal, proliferation, and lineage differentiation in Drosophila adult midgut with a focus on the niche signaling network that governs ISC activity in response to injury. PMID:27137186

  18. Axonal injury and regeneration in the adult brain of Drosophila

    PubMed Central

    Ayaz, Derya; Leyssen, Maarten; Koch, Marta; Yan, Jiekun; Srahna, Mohammed; Sheeba, Vasu; Fogle, Keri J.; Holmes, Todd C.; Hassan, Bassem A.

    2009-01-01

    Drosophila melanogaster is a leading genetic model system in nervous system development and disease research. Using the power of fly genetics in traumatic axonal injury research will significantly speed up the characterization of molecular processes that control axonal regeneration in the Central Nervous System (CNS). We developed a versatile and physiologically robust preparation for the long-term culture of the whole Drosophila brain. We use this method to develop a novel Drosophila model for CNS axonal injury and regeneration. We first show that, similar to mammalian CNS axons, injured adult wild type fly CNS axons fail to regenerate, whereas adult-specific enhancement of Protein Kinase A activity increases the regenerative capacity of lesioned neurons. Combined, these observations suggest conservation of neuronal regeneration mechanisms following injury. We next exploit this model to explore pathways that induce robust regeneration and find that adult-specific activation of JNK signalling is sufficient for de novo CNS axonal regeneration after injury, including the growth of new axons past the lesion site and into the normal target area. PMID:18524906

  19. Dietary glucose regulates yeast consumption in adult Drosophila males.

    PubMed

    Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males. PMID:25566097

  20. Dietary glucose regulates yeast consumption in adult Drosophila males

    PubMed Central

    Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G.

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males. PMID:25566097

  1. Genotypic structure of a Drosophila population for adult locomotor activity

    SciTech Connect

    Grechanyi, G.V.; Korzun, V.M.

    1995-01-01

    Analysis of the variation of adult locomotor activity in four samples taken at different times from a natural population of Drosophila melanogaster showed that the total variation of this trait is relatively stable in time and has a substantial genetic component. Genotypic structure of the population for locomotor activity is characterized by the presence of large groups of genotypes with high and low values of this trait. A possible explanation for the presence of such groups in a population is cyclic density-dependent selection.

  2. Migration of Drosophila intestinal stem cells across organ boundaries.

    PubMed

    Takashima, Shigeo; Paul, Manash; Aghajanian, Patrick; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2013-05-01

    All components of the Drosophila intestinal tract, including the endodermal midgut and ectodermal hindgut/Malpighian tubules, maintain populations of dividing stem cells. In the midgut and hindgut, these stem cells originate from within larger populations of intestinal progenitors that proliferate during the larval stage and form the adult intestine during metamorphosis. The origin of stem cells found in the excretory Malpighian tubules ('renal stem cells') has not been established. In this paper, we investigate the migration patterns of intestinal progenitors that take place during metamorphosis. Our data demonstrate that a subset of adult midgut progenitors (AMPs) move posteriorly to form the adult ureters and, consecutively, the renal stem cells. Inhibiting cell migration by AMP-directed expression of a dominant-negative form of Rac1 protein results in the absence of stem cells in the Malpighian tubules. As the majority of the hindgut progenitor cells migrate posteriorly and differentiate into hindgut enterocytes, a group of the progenitor cells, unexpectedly, invades anteriorly into the midgut territory. Consequently, these progenitor cells differentiate into midgut enterocytes. The midgut determinant GATAe is required for the differentiation of midgut enterocytes derived from hindgut progenitors. Wingless signaling acts to balance the proportion of hindgut progenitors that differentiate as midgut versus hindgut enterocytes. Our findings indicate that a stable boundary between midgut and hindgut/Malpighian tubules is not established during early embryonic development; instead, pluripotent progenitor populations cross in between these organs in both directions, and are able to adopt the fate of the organ in which they come to reside. PMID:23571215

  3. Migration of Drosophila intestinal stem cells across organ boundaries

    PubMed Central

    Takashima, Shigeo; Paul, Manash; Aghajanian, Patrick; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2013-01-01

    All components of the Drosophila intestinal tract, including the endodermal midgut and ectodermal hindgut/Malpighian tubules, maintain populations of dividing stem cells. In the midgut and hindgut, these stem cells originate from within larger populations of intestinal progenitors that proliferate during the larval stage and form the adult intestine during metamorphosis. The origin of stem cells found in the excretory Malpighian tubules (‘renal stem cells’) has not been established. In this paper, we investigate the migration patterns of intestinal progenitors that take place during metamorphosis. Our data demonstrate that a subset of adult midgut progenitors (AMPs) move posteriorly to form the adult ureters and, consecutively, the renal stem cells. Inhibiting cell migration by AMP-directed expression of a dominant-negative form of Rac1 protein results in the absence of stem cells in the Malpighian tubules. As the majority of the hindgut progenitor cells migrate posteriorly and differentiate into hindgut enterocytes, a group of the progenitor cells, unexpectedly, invades anteriorly into the midgut territory. Consequently, these progenitor cells differentiate into midgut enterocytes. The midgut determinant GATAe is required for the differentiation of midgut enterocytes derived from hindgut progenitors. Wingless signaling acts to balance the proportion of hindgut progenitors that differentiate as midgut versus hindgut enterocytes. Our findings indicate that a stable boundary between midgut and hindgut/Malpighian tubules is not established during early embryonic development; instead, pluripotent progenitor populations cross in between these organs in both directions, and are able to adopt the fate of the organ in which they come to reside. PMID:23571215

  4. Contribution of larval nutrition to adult reproduction in Drosophila melanogaster.

    PubMed

    Aguila, Jerell R; Hoshizaki, Deborah K; Gibbs, Allen G

    2013-02-01

    Within the complex life cycle of holometabolous insects, nutritional resources acquired during larval feeding are utilized by the pupa and the adult. The broad features of the transfer of larval resources to the pupae and the allocation of larval resources in the adult have been described by studies measuring and tracking macronutrients at different developmental stages. However, the mechanisms of resource transfer from the larva and the factors regulating the allocation of these resources in the adult between growth, reproduction and somatic maintenance are unknown. Drosophila melanogaster presents a tractable system in which to test cellular and tissue mechanisms of resource acquisition and allocation because of the detailed understanding of D. melanogaster development and the experimental tools to manipulate its tissues across developmental stages. In previous work, we demonstrated that the fat body of D. melanogaster larvae is important for survival of starvation stress in the young adult, and suggested that programmed cell death of the larval fat cells in the adult is important for allocation of resources for female reproduction. Here, we describe the temporal uptake of larval-derived carbon by the ovaries, and demonstrate the importance of larval fat-cell death in the maturation of the ovary and in fecundity. Larvae and adults were fed stable carbon isotopes to follow the acquisition of larval-derived carbon by the adult ovaries. We determined that over half of the nutrients acquired by the ovaries in 2-day-old adult females are dependent upon the death of the fat cells. Furthermore, when programmed cell death is inhibited in the larval fat cells, ovarian development was depressed and fecundity was reduced. PMID:23038728

  5. Wiring stability of the adult Drosophila olfactory circuit after lesion.

    PubMed

    Berdnik, Daniela; Chihara, Takahiro; Couto, Africa; Luo, Liqun

    2006-03-29

    Neuronal wiring plasticity in response to experience or injury has been reported in many parts of the adult nervous system. For instance, visual or somatosensory cortical maps can reorganize significantly in response to peripheral lesions, yet a certain degree of stability is essential for neuronal circuits to perform their dedicated functions. Previous studies on lesion-induced neuronal reorganization have primarily focused on systems that use continuous neural maps. Here, we assess wiring plasticity in a discrete neural map represented by the adult Drosophila olfactory circuit. Using conditional expression of toxins, we genetically ablated specific classes of neurons and examined the consequences on their synaptic partners or neighboring classes in the adult antennal lobe. We find no alteration of connection specificity between olfactory receptor neurons (ORNs) and their postsynaptic targets, the projection neurons (PNs). Ablating an ORN class maintains PN dendrites within their glomerular borders, and ORN axons normally innervating an adjacent target do not expand. Likewise, ablating PN classes does not alter their partner ORN axon connectivity. Interestingly, an increase in the contralateral ORN axon terminal density occurs in response to the removal of competing ipsilateral ORNs. Therefore, plasticity in this circuit can occur but is confined within a glomerulus, thereby retaining the wiring specificity of ORNs and PNs. We conclude that, although adult olfactory neurons can undergo plastic changes in response to the loss of competition, the olfactory circuit overall is extremely stable in preserving segregated information channels in this discrete map. PMID:16571743

  6. Locomotion Induced by Spatial Restriction in Adult Drosophila

    PubMed Central

    Xiao, Chengfeng; Robertson, R. Meldrum

    2015-01-01

    Drosophila adults display an unwillingness to enter confined spaces but the behaviors induced by spatial restriction in Drosophila are largely unknown. We developed a protocol for high-throughput analysis of locomotion and characterized features of locomotion in a restricted space. We observed intense and persistent locomotion of flies in small circular arenas (diameter 1.27 cm), whereas locomotion was greatly reduced in large circular arenas (diameter 3.81 cm). The increased locomotion induced by spatial restriction was seen in male flies but not female flies, indicating sexual dimorphism of the response to spatial restriction. In large arenas, male flies increased locomotion in arenas previously occupied by male but not female individuals. In small arenas, such pre-conditioning had no effect on male flies, which showed intense and persistent locomotion similar to that seen in fresh arenas. During locomotion with spatial restriction, wildtype Canton-S males traveled slower and with less variation in speed than the mutant w1118 carrying a null allele of white gene. In addition, wildtype flies showed a stronger preference for the boundary than the mutant in small arenas. Genetic analysis with a series of crosses revealed that the white gene was not associated with the phenotype of boundary preference in wildtype flies. PMID:26351842

  7. Impact of floral feeding on adult Drosophila suzukii survival and nutrient status

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drosophila suzukii, spotted wing drosophila, is a serious pest of small fruits and cherries in many regions of the world. While host usage has been well studied at the ovipositional and larval feeding stages, little is known about the feeding ecology of adults. This study addressed the impact of fee...

  8. The Drosophila Prosecretory Transcription Factor dimmed Is Dynamically Regulated in Adult Enteroendocrine Cells and Protects Against Gram-Negative Infection.

    PubMed

    Beebe, Katherine; Park, Dongkook; Taghert, Paul H; Micchelli, Craig A

    2015-07-01

    The endocrine system employs peptide hormone signals to translate environmental changes into physiological responses. The diffuse endocrine system embedded in the gastrointestinal barrier epithelium is one of the largest and most diverse endocrine tissues. Furthermore, it is the only endocrine tissue in direct physical contact with the microbial environment of the gut lumen. However, it remains unclear how this sensory epithelium responds to specific pathogenic challenges in a dynamic and regulated manner. We demonstrate that the enteroendocrine cells of the adult Drosophila melanogaster midgut display a transient, sensitive, and systemic induction of the prosecretory factor dimmed (dimm) in response to the Gram-negative pathogen Pseudomonas entomophila (Pe). In enteroendocrine cells, dimm controls the levels of the targets Phm, dcat-4, and the peptide hormone, Allatostatin A. Finally, we identify dimm as a host factor that protects against Pe infection and controls the expression of antimicrobial peptides. We propose that dimm provides "gain" in enteroendocrine output during the adaptive response to episodic pathogen exposure. PMID:25999585

  9. The Drosophila Prosecretory Transcription Factor dimmed Is Dynamically Regulated in Adult Enteroendocrine Cells and Protects Against Gram-Negative Infection

    PubMed Central

    Beebe, Katherine; Park, Dongkook; Taghert, Paul H.; Micchelli, Craig A.

    2015-01-01

    The endocrine system employs peptide hormone signals to translate environmental changes into physiological responses. The diffuse endocrine system embedded in the gastrointestinal barrier epithelium is one of the largest and most diverse endocrine tissues. Furthermore, it is the only endocrine tissue in direct physical contact with the microbial environment of the gut lumen. However, it remains unclear how this sensory epithelium responds to specific pathogenic challenges in a dynamic and regulated manner. We demonstrate that the enteroendocrine cells of the adult Drosophila melanogaster midgut display a transient, sensitive, and systemic induction of the prosecretory factor dimmed (dimm) in response to the Gram-negative pathogen Pseudomonas entomophila (Pe). In enteroendocrine cells, dimm controls the levels of the targets Phm, dcat-4, and the peptide hormone, Allatostatin A. Finally, we identify dimm as a host factor that protects against Pe infection and controls the expression of antimicrobial peptides. We propose that dimm provides “gain” in enteroendocrine output during the adaptive response to episodic pathogen exposure. PMID:25999585

  10. Associations of Yeasts with Spotted-Wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in Cherries and Raspberries

    PubMed Central

    Hernández, Alejandro; Zalom, Frank G.

    2012-01-01

    A rich history of investigation documents various Drosophila-yeast mutualisms, suggesting that Drosophila suzukii similarly has an association with a specific yeast species or community. To discover candidate yeast species, yeasts were isolated from larval frass, adult midguts, and fruit hosts of D. suzukii. Terminal restriction fragment length polymorphism (TRFLP) technology and decimal dilution plating were used to identify and determine the relative abundance of yeast species present in fruit juice samples that were either infested with D. suzukii or not infested. Yeasts were less abundant in uninfested than infested samples. A total of 126 independent yeast isolates were cultivated from frass, midguts, and fruit hosts of D. suzukii, representing 28 species of yeasts, with Hanseniaspora uvarum predominating. This suggests an association between D. suzukii and H. uvarum that could be utilized for pest management of the highly pestiferous D. suzukii. PMID:22582060

  11. Associations of yeasts with spotted-wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in cherries and raspberries.

    PubMed

    Hamby, Kelly A; Hernández, Alejandro; Boundy-Mills, Kyria; Zalom, Frank G

    2012-07-01

    A rich history of investigation documents various Drosophila-yeast mutualisms, suggesting that Drosophila suzukii similarly has an association with a specific yeast species or community. To discover candidate yeast species, yeasts were isolated from larval frass, adult midguts, and fruit hosts of D. suzukii. Terminal restriction fragment length polymorphism (TRFLP) technology and decimal dilution plating were used to identify and determine the relative abundance of yeast species present in fruit juice samples that were either infested with D. suzukii or not infested. Yeasts were less abundant in uninfested than infested samples. A total of 126 independent yeast isolates were cultivated from frass, midguts, and fruit hosts of D. suzukii, representing 28 species of yeasts, with Hanseniaspora uvarum predominating. This suggests an association between D. suzukii and H. uvarum that could be utilized for pest management of the highly pestiferous D. suzukii. PMID:22582060

  12. A novel method for infecting Drosophila adult flies with insect pathogenic nematodes

    PubMed Central

    Castillo, Julio Cesar; Shokal, Upasana; Eleftherianos, Ioannis

    2012-01-01

    Drosophila has been established as an excellent genetic and genomic model to investigate host-pathogen interactions and innate immune defense mechanisms. To date, most information on the Drosophila immune response derives from studies that involve bacterial, fungal or viral pathogens. However, immune reactions to insect parasitic nematodes are still not well characterized. The nematodes Heterorhabditis bacteriophora live in symbiosis with the entomopathogenic bacteria Photorhabdus luminescens, and they are able to invade and kill insects. Interestingly, Heterorhabditis nematodes are viable in the absence of Photorhabdus. Techniques for infecting Drosophila larvae with these nematodes have been previously reported. Here, we have developed a method for infecting Drosophila adult flies with Heterorhabditis nematodes carrying (symbiotic worms) or lacking (axenic worms) their associated bacteria. The protocol we present can be readily adapted for studying parasitic strategies of other insect nematodes using Drosophila as the host infection model. PMID:22546901

  13. Development of the Drosophila entero-endocrine lineage and its specification by the Notch signaling pathway.

    PubMed

    Takashima, Shigeo; Adams, Katrina L; Ortiz, Paola A; Ying, Chong T; Moridzadeh, Rameen; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2011-05-15

    In this paper we have investigated the developmental-genetic steps that shape the entero-endocrine system of Drosophila melanogaster from the embryo to the adult. The process starts in the endoderm of the early embryo where precursors of endocrine cells and enterocytes of the larval midgut, as well as progenitors of the adult midgut, are specified by a Notch signaling-dependent mechanism. In a second step that occurs during the late larval period, enterocytes and endocrine cells of a transient pupal midgut are selected from within the clusters of adult midgut progenitors. As in the embryo, activation of the Notch pathway triggers enterocyte differentiation and inhibits cells from further proliferation or choosing the endocrine fate. The third step of entero-endocrine cell development takes place at a mid-pupal stage. Before this time point, the epithelial layer destined to become the adult midgut is devoid of endocrine cells. However, precursors of the intestinal midgut stem cells (pISCs) are already present. After an initial phase of symmetric divisions which causes an increase in their own population size, pISCs start to spin off cells that become postmitotic and express the endocrine fate marker, Prospero. Activation of Notch in pISCs forces these cells into an enterocyte fate. Loss of Notch function causes an increase in the proliferatory activity of pISCs, as well as a higher ratio of Prospero-positive cells. PMID:21382366

  14. Development of the Drosophila entero-endocrine lineage and its specification by the Notch signaling pathway

    PubMed Central

    Takashima, Shigeo; Adams, Katrina L.; Ortiz, Paola A.; Ying, Chong T.; Moridzadeh, Rameen; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2013-01-01

    In this paper we have investigated the developmental-genetic steps that shape the entero-endocrine system of Drosophila melanogaster from the embryo to the adult. The process starts in the endoderm of the early embryo where precursors of endocrine cells and enterocytes of the larval midgut, as well as progenitors of the adult midgut, are specified by a Notch signaling-dependent mechanism. In a second step that occurs during the late larval period, enterocytes and endocrine cells of a transient pupal midgut are selected from within the clusters of adult midgut progenitors. As in the embryo, activation of the Notch pathway triggers enterocyte differentiation, and inhibits cells from further proliferation or choosing the endocrine fate. The third step of entero-endocrine cell development takes place at a mid-pupal stage. Before this time point, the epithelial layer destined to become the adult midgut is devoid of endocrine cells. However, precursors of the intestinal midgut stem cells (pISCs) are already present. After an initial phase of symmetric divisions which causes an increase in their own population size, pISCs start to spin off cells that become postmitotic and express the endocrine fate marker, Prospero. Activation of Notch in pISCs forces these cells into an enterocyte fate. Loss of Notch function causes an increase in the proliferatory activity of pISCs, as well as a higher ratio of Prospero-positive cells. PMID:21382366

  15. Octopamine mediates starvation-induced hyperactivity in adult Drosophila

    PubMed Central

    Yang, Zhe; Yu, Yue; Zhang, Vivian; Tian, Yinjun; Qi, Wei; Wang, Liming

    2015-01-01

    Starved animals often exhibit elevated locomotion, which has been speculated to partly resemble foraging behavior and facilitate food acquisition and energy intake. Despite its importance, the neural mechanism underlying this behavior remains unknown in any species. In this study we confirmed and extended previous findings that starvation induced locomotor activity in adult fruit flies Drosophila melanogaster. We also showed that starvation-induced hyperactivity was directed toward the localization and acquisition of food sources, because it could be suppressed upon the detection of food cues via both central nutrient-sensing and peripheral sweet-sensing mechanisms, via induction of food ingestion. We further found that octopamine, the insect counterpart of vertebrate norepinephrine, as well as the neurons expressing octopamine, were both necessary and sufficient for starvation-induced hyperactivity. Octopamine was not required for starvation-induced changes in feeding behaviors, suggesting independent regulations of energy intake behaviors upon starvation. Taken together, our results establish a quantitative behavioral paradigm to investigate the regulation of energy homeostasis by the CNS and identify a conserved neural substrate that links organismal metabolic state to a specific behavioral output. PMID:25848004

  16. The Glycolytic Enzymes Activity in the Midgut of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) adult and their Seasonal Changes

    PubMed Central

    Guzik, Joanna; Nakonieczny, Mirosław; Tarnawska, Monika; Bereś, Paweł K.; Drzewiecki, Sławomir; Migula, Paweł

    2015-01-01

    The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) is an important pest of maize. The diet of the D. virgifera imago is rich in starch and other polysaccharides present in cereals such as maize. Therefore, knowledge about enzymes involved in digestion of such specific food of this pest seems to be important. The paper shows, for the first time, the activities of main glycolytic enzymes in the midgut of D. virgifera imago: endoglycosidases (α-amylase, cellulase, chitinase, licheninase, laminarinase); exoglycosidases (α- and β-glucosidases, α- and β-galactosidases) and disaccharidases (maltase, isomaltase, sucrase, trehalase, lactase, and cellobiase). Activities of α-amylase, α-glucosidase, and maltase were the highest among assayed endoglycosidases, exoglycosidases, and disaccharidases, respectively. This indicates that in the midgut of D. virgifera imago α-amylase, α-glucosidase and maltase are important enzymes in starch hydrolysis and products of its digestion. These results lead to conclusion that inhibition of most active glycolytic enzymes of D. virgifera imago may be another promising method for chemical control of this pest of maize.

  17. Starvation-Induced Dietary Behaviour in Drosophila melanogaster Larvae and Adults

    PubMed Central

    Ahmad, Muhammad; Chaudhary, Safee Ullah; Afzal, Ahmed Jawaad; Tariq, Muhammad

    2015-01-01

    Drosophila melanogaster larvae are classified as herbivores and known to feed on non-carnivorous diet under normal conditions. However, when nutritionally challenged these larvae exhibit cannibalistic behaviour by consuming a diet composed of larger conspecifics. Herein, we report that cannibalism in Drosophila larvae is confined not only to scavenging on conspecifics that are larger in size, but also on their eggs. Moreover, such cannibalistic larvae develop as normally as those grown on standard cornmeal medium. When stressed, Drosophila melanogaster larvae can also consume a carnivorous diet derived from carcasses of organisms belonging to diverse taxonomic groups, including Musca domestica, Apis mellifera, and Lycosidae sp. While adults are ill-equipped to devour conspecific carcasses, they selectively oviposit on them and also consume damaged cadavers of conspecifics. Thus, our results suggest that nutritionally stressed Drosophila show distinct as well as unusual feeding behaviours that can be classified as detritivorous, cannibalistic and/or carnivorous. PMID:26399327

  18. Starvation-Induced Dietary Behaviour in Drosophila melanogaster Larvae and Adults.

    PubMed

    Ahmad, Muhammad; Chaudhary, Safee Ullah; Afzal, Ahmed Jawaad; Tariq, Muhammad

    2015-01-01

    Drosophila melanogaster larvae are classified as herbivores and known to feed on non-carnivorous diet under normal conditions. However, when nutritionally challenged these larvae exhibit cannibalistic behaviour by consuming a diet composed of larger conspecifics. Herein, we report that cannibalism in Drosophila larvae is confined not only to scavenging on conspecifics that are larger in size, but also on their eggs. Moreover, such cannibalistic larvae develop as normally as those grown on standard cornmeal medium. When stressed, Drosophila melanogaster larvae can also consume a carnivorous diet derived from carcasses of organisms belonging to diverse taxonomic groups, including Musca domestica, Apis mellifera, and Lycosidae sp. While adults are ill-equipped to devour conspecific carcasses, they selectively oviposit on them and also consume damaged cadavers of conspecifics. Thus, our results suggest that nutritionally stressed Drosophila show distinct as well as unusual feeding behaviours that can be classified as detritivorous, cannibalistic and/or carnivorous. PMID:26399327

  19. The Osa-containing SWI/SNF chromatin-remodeling complex regulates stem cell commitment in the adult Drosophila intestine

    PubMed Central

    Zeng, Xiankun; Lin, Xinhua; Hou, Steven X.

    2013-01-01

    The proportion of stem cells versus differentiated progeny is well balanced to maintain tissue homeostasis, which in turn depends on the balance of the different signaling pathways involved in stem cell self-renewal versus lineage-specific differentiation. In a screen for genes that regulate cell lineage determination in the posterior midgut, we identified that the Osa-containing SWI/SNF (Brahma) chromatin-remodeling complex regulates Drosophila midgut homeostasis. Mutations in subunits of the Osa-containing complex result in intestinal stem cell (ISC) expansion as well as enteroendocrine (EE) cell reduction. We further demonstrated that Osa regulates ISC self-renewal and differentiation into enterocytes by elaborating Notch signaling, and ISC commitment to differentiation into EE cells by regulating the expression of Asense, an EE cell fate determinant. Our data uncover a unique mechanism whereby the commitment of stem cells to discrete lineages is coordinately regulated by chromatin-remodeling factors. PMID:23942514

  20. The digestive tract of Drosophila melanogaster.

    PubMed

    Lemaitre, Bruno; Miguel-Aliaga, Irene

    2013-01-01

    The digestive tract plays a central role in the digestion and absorption of nutrients. Far from being a passive tube, it provides the first line of defense against pathogens and maintains energy homeostasis by exchanging neuronal and endocrine signals with other organs. Historically neglected, the gut of the fruit fly Drosophila melanogaster has recently come to the forefront of Drosophila research. Areas as diverse as stem cell biology, neurobiology, metabolism, and immunity are benefitting from the ability to study the genetics of development, growth regulation, and physiology in the same organ. In this review, we summarize our knowledge of the Drosophila digestive tract, with an emphasis on the adult midgut and its functional underpinnings. PMID:24016187

  1. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector

    PubMed Central

    2009-01-01

    Background Mosquitoes are intermediate hosts for numerous disease causing organisms. Vector control is one of the most investigated strategy for the suppression of mosquito-borne diseases. Anopheles stephensi is one of the vectors of malaria parasite Plasmodium vivax. The parasite undergoes major developmental and maturation steps within the mosquito midgut and little is known about Anopheles-associated midgut microbiota. Identification and characterization of the mosquito midgut flora is likely to contribute towards better understanding of mosquito biology including longevity, reproduction and mosquito-pathogen interactions that are important to evolve strategies for vector control mechanisms. Results Lab-reared and field-collected A. stephensi male, female and larvae were screened by "culture-dependent and culture-independent" methods. Five 16S rRNA gene library were constructed form lab and field-caught A. stephensi mosquitoes and a total of 115 culturable isolates from both samples were analyzed further. Altogether, 68 genera were identified from midgut of adult and larval A. stephensi, 53 from field-caught and 15 from lab-reared mosquitoes. A total of 171 and 44 distinct phylotypes having 85 to 99% similarity with the closest database matches were detected among field and lab-reared A. stephensi midgut, respectively. These OTUs had a Shannon diversity index value of 1.74–2.14 for lab-reared and in the range of 2.75–3.49 for field-caught A. stephensi mosquitoes. The high species evenness values of 0.93 to 0.99 in field-collected adult and larvae midgut flora indicated the vastness of microbial diversity retrieved by these approaches. The dominant bacteria in field-caught adult male A. stephensi were uncultured Paenibacillaceae while in female and in larvae it was Serratia marcescens, on the other hand in lab-reared mosquitoes, Serratia marcescens and Cryseobacterium meninqosepticum bacteria were found to be abundant. Conclusion More than fifty percent of

  2. big bang gene modulates gut immune tolerance in Drosophila.

    PubMed

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y; Boulianne, Gabrielle L; Hoffmann, Jules A; Matt, Nicolas; Reichhart, Jean-Marc

    2013-02-19

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases. PMID:23378635

  3. Clonal development and organization of the adult Drosophila central brain

    PubMed Central

    Yu, Hung-Hsiang; Awasaki, Takeshi; Schroeder, Mark David; Long, Fuhui; Yang, Jacob S.; He, Yisheng; Ding, Peng; Kao, Jui-Chun; Wu, Gloria Yueh-Yi; Peng, Hanchuan; Myers, Gene; Lee, Tzumin

    2013-01-01

    Summary Background The insect brain can be divided into neuropils that are formed by neurites of both local and remote origin. The complexity of the interconnections obscures how these neuropils are established and interconnected through development. The Drosophila central brain develops from a fixed number of neuroblasts (NBs) that deposit neurons in regional clusters. Results By determining individual NB clones and pursuing their projections into specific neuropils we unravel the regional development of the brain neural network. Exhaustive clonal analysis revealed 95 stereotyped neuronal lineages with characteristic cell body locations and neurite trajectories. Most clones show complex projection patterns, but despite the complexity, neighboring clones often co-innervate the same local neuropil(s) and further target a restricted set of distant neuropils. Conclusions These observations argue for regional clonal development of both neuropils and neuropil connectivity throughout the Drosophila central brain. PMID:23541733

  4. An integrated hybrid microfluidic device for oviposition-based chemical screening of adult Drosophila melanogaster.

    PubMed

    Leung, Jacob C K; Hilliker, Arthur J; Rezai, Pouya

    2016-02-21

    Chemical screening using Drosophila melanogaster (the fruit fly) is vital in drug discovery, agricultural, and toxicological applications. Oviposition (egg laying) on chemically-doped agar plates is an important read-out metric used to quantitatively assess the biological fitness and behavioral responses of Drosophila. Current oviposition-based chemical screening studies are inaccurate, labor-intensive, time-consuming, and inflexible due to the manual chemical doping of agar. In this paper, we have developed a novel hybrid agar-polydimethylsiloxane (PDMS) microfluidic device for single- and multi-concentration chemical dosing and on-chip oviposition screening of free-flying adult stage Drosophila. To achieve this, we have devised a novel technique to integrate agar with PDMS channels using ice as a sacrificial layer. Subsequently, we have conducted single-chemical toxicity and multiple choice chemical preference assays on adult Drosophila melanogaster using zinc and acetic acid at various concentrations. Our device has enabled us to 1) demonstrate that Drosophila is capable of sensing the concentration of different chemicals on a PDMS-agar microfluidic device, which plays significant roles in determining oviposition site selection and 2) investigate whether oviposition preference differs between single- and multi-concentration chemical environments. This device may be used to study fundamental and applied biological questions in Drosophila and other egg laying insects. It can also be extended in design to develop sophisticated and dynamic chemical dosing and high-throughput screening platforms in the future that are not easily achievable with the existing oviposition screening techniques. PMID:26768402

  5. The glial investment of the adult and developing antennal lobe of Drosophila

    PubMed Central

    Oland, Lynne A.; Biebelhausen, John P.; Tolbert, Leslie P.

    2009-01-01

    In recent years, the Drosophila olfactory system, with its unparalleled opportunities for genetic dissection of development and functional organization, has been used to study the development of central olfactory neurons and the molecular basis of olfactory coding. The results of these studies have been interpreted in the absence of a detailed understanding of the steps in maturation of glial cells in the antennal lobe. Here, we present a high-resolution study of the glia associated with olfactory glomeruli in adult and developing antennal lobes. The study provides a basis for comparison of findings in Drosophila with those in the moth Manduca sexta that indicate a critical role for glia in antennal lobe development. Using flies expressing GFP under a Nervana2 driver to visualize glia for confocal microscopy, and probing at higher resolution with the electron microscope, we find that glial development in Drosophila differs markedly from that in moths: glial cell bodies remain in a rind around the glomerular neuropil; glial processes ensheathe axon bundles in the nerve layer but likely contribute little to axonal sorting; their processes insinuate between glomeruli only very late and then form only a sparse, open network around each glomerulus; and glial processes invade the synaptic neuropil. Taking our results in the context of previous studies, we conclude that glial cells in the developing Drosophila antennal lobe are unlikely to play a strong role in either axonal sorting or glomerulus stabilization and that in the adult, glial processes do not electrically isolate glomeruli from their neighbors. PMID:18537134

  6. Continued Neurogenesis in Adult Drosophila as a Mechanism for Recruiting Environmental Cue-Dependent Variants

    PubMed Central

    Ben Rokia-Mille, Selim; Tinette, Sylvette; Engler, Gilbert; Arthaud, Laury; Tares, Sophie; Robichon, Alain

    2008-01-01

    Background The skills used by winged insects to explore their environment are strongly dependent upon the integration of neurosensory information comprising visual, acoustic and olfactory signals. The neuronal architecture of the wing contains a vast array of different sensors which might convey information to the brain in order to guide the trajectories during flight. In Drosophila, the wing sensory cells are either chemoreceptors or mechanoreceptors and some of these sensors have as yet unknown functions. The axons of these two functionally distinct types of neurons are entangled, generating a single nerve. This simple and accessible coincidental signaling circuitry in Drosophila constitutes an excellent model system to investigate the developmental variability in relation to natural behavioral polymorphisms. Methodology/Principal Findings A fluorescent marker was generated in neurons at all stages of the Drosophila life cycle using a highly efficient and controlled genetic recombination system that can be induced in dividing precursor cells (MARCM system, flybase web site). It allows fluorescent signals in axons only when the neuroblasts and/or neuronal cell precursors like SOP (sensory organ precursors) undergo division during the precedent steps. We first show that a robust neurogenesis continues in the wing after the adults emerge from the pupae followed by an extensive axonal growth. Arguments are presented to suggest that this wing neurogenesis in the newborn adult flies was influenced by genetic determinants such as the frequency dependent for gene and by environmental cues such as population density. Conclusions We demonstrate that the neuronal architecture in the adult Drosophila wing is unfinished when the flies emerge from their pupae. This unexpected developmental step might be crucial for generating non-heritable variants and phenotypic plasticity. This might therefore constitute an advantage in an unstable ecological system and explain much

  7. Ehrlichia chaffeensis replication sites in adult Drosophila melanogaster

    PubMed Central

    Drolia, Rishi; Von Ohlen, Tonia; Chapes, Stephen K.

    2012-01-01

    Ehrlichia chaffeensis is a Gram-negative, obligate intracellular bacterium which causes the tick-borne disease human monocytic ehrlichiosis. In vertebrates, E. chaffeensis replicates in monocytes and macrophages. However, no clear cell or tissue tropism has been defined in arthropods. Our group identified two host genes that control E. chaffeensis replication and infection in vivo in Drosophila, Uridine cytidine kinase and separation anxiety. Using the UAS-GAL4 RNAi system, we generated F1 flies (UAS-gene of interest RNAi x tissue-GAL4 flies) that have Uck2 or san silenced in ubiquitous or tissue-specific fashion. When Uck2 or san were suppressed in the hemocytes or in the fat body, E. chaffeensis replicated poorly and caused significantly less severe infections. Silencing of these genes in the eyes, wings, or the salivary glands did not impact fly susceptibility or bacterial replication. Our data suggest that in Drosophila, E. chaffeensis replicates within the hemocytes, the insect homolog of mammalian macrophages, and in the fat body, the liver homolog of mammals. PMID:23306065

  8. Chinmo is sufficient to induce male fate in somatic cells of the adult Drosophila ovary.

    PubMed

    Ma, Qing; de Cuevas, Margaret; Matunis, Erika L

    2016-03-01

    Sexual identity is continuously maintained in specific differentiated cell types long after sex determination occurs during development. In the adult Drosophila testis, the putative transcription factor Chronologically inappropriate morphogenesis (Chinmo) acts with the canonical male sex determinant DoublesexM (Dsx(M)) to maintain the male identity of somatic cyst stem cells and their progeny. Here we find that ectopic expression of chinmo is sufficient to induce a male identity in adult ovarian somatic cells, but it acts through a Dsx(M)-independent mechanism. Conversely, the feminization of the testis somatic stem cell lineage caused by loss of chinmo is enhanced by expression of the canonical female sex determinant Dsx(F), indicating that chinmo acts in parallel with the canonical sex determination pathway to maintain the male identity of testis somatic cells. Consistent with this finding, ectopic expression of female sex determinants in the adult testis disrupts tissue morphology. The miRNA let-7 downregulates chinmo in many contexts, and ectopic expression of let-7 in the adult testis is sufficient to recapitulate the chinmo loss-of-function phenotype, but we find no apparent phenotypes upon removal of let-7 in the adult ovary or testis. Our finding that chinmo is necessary and sufficient to promote a male identity in adult gonadal somatic cells suggests that the sexual identity of somatic cells can be reprogrammed in the adult Drosophila ovary as well as in the testis. PMID:26811385

  9. Stem cells of the beetle midgut epithelium.

    PubMed

    Nardi, James B; Bee, Charles Mark; Miller, Lou Ann

    2010-03-01

    At the completion of metamorphosis, adult insect cells have traditionally been assumed to halt cell divisions and terminally differentiate. While this model of differentiation holds for adult ectodermal epithelia that secrete cuticular specializations of exoskeletons, adult endodermal epithelia are populated by discrete three-dimensional aggregates of stem cells that continue to divide and differentiate after adult emergence. Aggregates of these presumptive adult stem cells are scattered throughout larval and pupal midgut monolayers. At the beginning of adult development (pupal-adult apolysis), the number of cells within each aggregate begins to increase rapidly. Dividing cells form three-dimensional, coherent populations that project as regenerative pouches of stem cells into the hemocoel surrounding the midgut. Stem cell pouches are regularly spaced throughout endodermal monolayers, having adopted a spacing pattern suggesting that each incipient pouch inhibits the formation of a similar pouch within a certain radius of itself-a process referred to as lateral inhibition. At completion of adult development (pupal-adult ecdysis), a distinct basal-luminal polarity has been established within each regenerative pouch. Dividing stem cells occupying the basal region are arranged in three-dimensional aggregates. As these are displaced toward the lumen, they transform into two-dimensional monolayers of differentiated epithelial cells whose apical surfaces are covered by microvilli. This organization of stem cell pouches in insect midguts closely parallels that of regenerative crypts in mammalian intestines. PMID:19909756

  10. Dexterous robotic manipulation of alert adult Drosophila for high-content experimentation

    PubMed Central

    Huang, Cheng; Maxey, Jessica R.; Schnitzer, Mark J.

    2015-01-01

    We present a robot that enables high-content studies of alert adult Drosophila by combining operations including gentle picking, translations and rotations, characterizations of fly phenotypes and behaviors, micro-dissection or release. To illustrate, we assessed fly morphology, tracked odor-evoked locomotion, sorted flies by sex, and dissected the cuticle to image neural activity. The robot's tireless capacity for precise manipulations enables a scalable platform for screening flies’ complex attributes and behavioral patterns. PMID:26005812

  11. Dexterous robotic manipulation of alert adult Drosophila for high-content experimentation.

    PubMed

    Savall, Joan; Ho, Eric Tatt Wei; Huang, Cheng; Maxey, Jessica R; Schnitzer, Mark J

    2015-07-01

    We present a robot that enables high-content studies of alert adult Drosophila by combining operations including gentle picking; translations and rotations; characterizations of fly phenotypes and behaviors; microdissection; or release. To illustrate, we assessed fly morphology, tracked odor-evoked locomotion, sorted flies by sex, and dissected the cuticle to image neural activity. The robot's tireless capacity for precise manipulations enables a scalable platform for screening flies' complex attributes and behavioral patterns. PMID:26005812

  12. Extradenticle and homothorax control adult muscle fiber identity in Drosophila.

    PubMed

    Bryantsev, Anton L; Duong, Sandy; Brunetti, Tonya M; Chechenova, Maria B; Lovato, TyAnna L; Nelson, Cloyce; Shaw, Elizabeth; Uhl, Juli D; Gebelein, Brian; Cripps, Richard M

    2012-09-11

    Here we identify a key role for the homeodomain proteins Extradenticle (Exd) and Homothorax (Hth) in the specification of muscle fiber fate in Drosophila. exd and hth are expressed in the fibrillar indirect flight muscles but not in tubular jump muscles, and manipulating exd or hth expression converts one muscle type into the other. In the flight muscles, exd and hth are genetically upstream of another muscle identity gene, salm, and are direct transcriptional regulators of the signature flight muscle structural gene, Actin88F. Exd and Hth also impact muscle identity in other somatic muscles of the body by cooperating with Hox factors. Because mammalian orthologs of exd and hth also contribute to muscle gene regulation, our studies suggest that an evolutionarily conserved genetic pathway determines muscle fiber differentiation. PMID:22975331

  13. Left-Sided Appendicitis in an Elderly Patient with Midgut Malrotation.

    PubMed

    Chuang, Pei Wen; Huang, Bo-Ming; Liu, Chung Hsien; Chen, Chien-Chin; Tsai, Ming-Jen

    2015-12-01

    Appendicitis is a common surgical abdominal disease with various presentations. Its diagnosis may be obscured by asymptomatic congenital anatomical anomalies like midgut malrotation. Midgut malrotation is a rare fetal anomaly resulting from incomplete or failure of midgut rotation and fixation. It is mostly presented with bowel obstruction or volvulus in early life. Presentation in adult is rare. Here, we report an elderly patient presented with left lower abdominal pain and urinary tract infection. Abdominal computed tomography revealed left-sided appendicitis with non-rotational-type midgut malrotation. Clinicians should bear in mind the possibility of underlying midgut malrotation, as appendicitis could be the first presentation of this rare congenital condition. PMID:27011586

  14. Persistent Activation of the Innate Immune Response in Adult Drosophila Following Radiation Exposure During Larval Development

    PubMed Central

    Sudmeier, Lisa J.; Samudrala, Sai-Suma; Howard, Steven P.; Ganetzky, Barry

    2015-01-01

    Cranial radiation therapy (CRT) is an effective treatment for pediatric central nervous system malignancies, but survivors often suffer from neurological and neurocognitive side effects that occur many years after radiation exposure. Although the biological mechanisms underlying these deleterious side effects are incompletely understood, radiation exposure triggers an acute inflammatory response that may evolve into chronic inflammation, offering one avenue of investigation. Recently, we developed a Drosophila model of the neurotoxic side effects of radiation exposure. Here we use this model to investigate the role of the innate immune system in response to radiation exposure. We show that the innate immune response and NF-ĸB target gene expression is activated in the adult Drosophila brain following radiation exposure during larval development, and that this response is sustained in adult flies weeks after radiation exposure. We also present preliminary data suggesting that innate immunity is radioprotective during Drosophila development. Together our data suggest that activation of the innate immune response may be beneficial initially for survival following radiation exposure but result in long-term deleterious consequences, with chronic inflammation leading to impaired neuronal function and viability at later stages. This work lays the foundation for future studies of how the innate immune response is triggered by radiation exposure and its role in mediating the biological responses to radiation. These studies may facilitate the development of strategies to reduce the deleterious side effects of CRT. PMID:26333838

  15. Controlling anoxic tolerance in adult Drosophila via the cGMP–PKG pathway

    PubMed Central

    Dawson-Scully, K.; Bukvic, D.; Chakaborty-Chatterjee, M.; Ferreira, R.; Milton, S. L.; Sokolowski, M. B.

    2010-01-01

    In this study we identify a cGMP-dependent protein kinase (PKG) cascade as a biochemical pathway critical for controlling low-oxygen tolerance in the adult fruit fly, Drosophila melanogaster. Even though adult Drosophila can survive in 0% oxygen (anoxia) environments for hours, air with less than 2% oxygen rapidly induces locomotory failure resulting in an anoxic coma. We use natural genetic variation and an induced mutation in the foraging (for) gene, which encodes a Drosophila PKG, to demonstrate that the onset of anoxic coma is correlated with PKG activity. Flies that have lower PKG activity demonstrate a significant increase in time to the onset of anoxic coma. Further, in vivo pharmacological manipulations reveal that reducing either PKG or protein phosphatase 2A (PP2A) activity increases tolerance of behavior to acute hypoxic conditions. Alternatively, PKG activation and phosphodiesterase (PDE5/6) inhibition significantly reduce the time to the onset of anoxic coma. By manipulating these targets in paired combinations, we characterized a specific PKG cascade, with upstream and downstream components. Further, using genetic variants of PKG expression/activity subjected to chronic anoxia over 6 h, ~50% of animals with higher PKG activity survive, while only ~25% of those with lower PKG activity survive after a 24 h recovery. Therefore, in this report we describe the PKG pathway and the differential protection of function vs survival in a critically low oxygen environment. PMID:20581270

  16. Avoidance of heat and attraction to optogenetically induced sugar sensation as operant behavior in adult Drosophila.

    PubMed

    Nuwal, Nidhi; Stock, Patrick; Hiemeyer, Jochen; Schmid, Benjamin; Fiala, André; Buchner, Erich

    2012-09-01

    Animals have to perform adequate behavioral actions dependent on internal states and environmental situations, and adjust their behavior according to positive or negative consequences. The fruit fly Drosophila melanogaster represents a key model organism for the investigation of neuronal mechanisms underlying adaptive behavior. The authors are using a behavioral paradigm in which fruit flies attached to a manipulator can walk on a Styrofoam ball whose movements are recorded such that intended left or right turns of the flies can be registered and used to operantly control heat stimuli or optogenetic activation of distinct subsets of neurons. As proof of principle, the authors find that flies in this situation avoid heat stimuli but prefer optogenetic self-stimulation of sugar receptors. Using this setup it now should be possible to study the neuronal network underlying positive and negative value assessment of adult Drosophila in an operant setting. PMID:22834571

  17. Optogenetic control of freely behaving adult Drosophila using a red-shifted channelrhodopsin

    PubMed Central

    Inagaki, Hidehiko K.; Jung, Yonil; Hoopfer, Eric D.; Wong, Allan M.; Mishra, Neeli; Lin, John Y.; Tsien, Roger Y.; Anderson, David J.

    2014-01-01

    Optogenetics allows the manipulation of neural activity in freely moving animals with millisecond precision, but its application in Drosophila has been limited. Here we show that a recently described Red activatable Channelrhodopsin (ReaChR) permits control of complex behavior in freely moving adult flies, at wavelengths that are not thought to interfere with normal visual function. This tool affords the opportunity to control neural activity over a broad dynamic range of stimulation intensities. Using time-resolved activation, we show that the neural control of male courtship song can be separated into probabilistic, persistent and deterministic, command-like components. The former, but not the latter, neurons are subject to functional modulation by social experience, supporting the idea that they constitute a locus of state-dependent influence. This separation is not evident using thermogenetic tools, underscoring the importance of temporally precise control of neuronal activation in the functional dissection of neural circuits in Drosophila. PMID:24363022

  18. The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling.

    PubMed

    Takashima, Shigeo; Mkrtchyan, Marianna; Younossi-Hartenstein, Amelia; Merriam, John R; Hartenstein, Volker

    2008-07-31

    The intestinal tract maintains proper function by replacing aged cells with freshly produced cells that arise from a population of self-renewing intestinal stem cells (ISCs). In the mammalian intestine, ISC self renewal, amplification and differentiation take place along the crypt-villus axis, and are controlled by the Wnt and hedgehog (Hh) signalling pathways. However, little is known about the mechanisms that specify ISCs within the developing intestinal epithelium, or about the signalling centres that help maintain them in their self-renewing stem cell state. Here we show that in adult Drosophila melanogaster, ISCs of the posterior intestine (hindgut) are confined to an anterior narrow segment, which we name the hindgut proliferation zone (HPZ). Within the HPZ, self renewal of ISCs, as well as subsequent proliferation and differentiation of ISC descendants, are controlled by locally emanating Wingless (Wg, a Drosophila Wnt homologue) and Hh signals. The anteriorly restricted expression of Wg in the HPZ acts as a niche signal that maintains cells in a slow-cycling, self-renewing mode. As cells divide and move posteriorly away from the Wg source, they enter a phase of rapid proliferation. During this phase, Hh signal is required for exiting the cell cycle and the onset of differentiation. The HPZ, with its characteristic proliferation dynamics and signalling properties, is set up during the embryonic phase and becomes active in the larva, where it generates all adult hindgut cells including ISCs. The mechanism and genetic control of cell renewal in the Drosophila HPZ exhibits a large degree of similarity with what is seen in the mammalian intestine. Our analysis of the Drosophila HPZ provides an insight into the specification and control of stem cells, highlighting the way in which the spatial pattern of signals that promote self renewal, growth and differentiation is set up within a genetically tractable model system. PMID:18633350

  19. The functional organisation of glia in the adult brain of Drosophila and other insects

    PubMed Central

    Edwards, Tara N.; Meinertzhagen, Ian A.

    2010-01-01

    This review annotates and categorises the glia of adult Drosophila and other model insects and describes the developmental origins of these in the Drosophila optic lobe. The functions of glia in the adult vary depending upon their sub-type and location in the brain. The task of annotating glia is essentially complete only for the glia of the fly's lamina, which comprise: two types of surface glia - the pseudocartridge and fenestrated glia; two types of cortex glia - the distal and proximal satellite glia; and two types of neuropile glia - the epithelial and marginal glia. We advocate that the term subretinal glia, as used to refer to both pseudocartridge and fenestrated glia, be abandoned. Other neuropiles contain similar glial subtypes, but other than the antennal lobes these have not been described in detail. Surface glia form the blood brain barrier, regulating the flow of substances into and out of the nervous system, both for the brain as a whole and the optic neuropiles in particular. Cortex glia provide a second level of barrier, wrapping axon fascicles and isolating neuronal cell bodies both from neighbouring brain regions and from their underlying neuropiles. Neuropile glia can be generated in the adult and a subtype, ensheathing glia, are responsible for cleaning up cellular debris during Wallerian degeneration. Both the neuropile ensheathing and astrocyte-like glia may be involved in clearing neurotransmitters from the extracellular space, thus modifying the levels of histamine, glutamate and possibly dopamine at the synapse to ultimately affect behaviour. PMID:20109517

  20. Juvenile Hormone Is Required in Adult Males for Drosophila Courtship

    PubMed Central

    Wijesekera, Thilini P.; Saurabh, Sumit; Dauwalder, Brigitte

    2016-01-01

    Juvenile Hormone (JH) has a prominent role in the regulation of insect development. Much less is known about its roles in adults, although functions in reproductive maturation have been described. In adult females, JH has been shown to regulate egg maturation and mating. To examine a role for JH in male reproductive behavior we created males with reduced levels of Juvenile Hormone Acid O-Methyl Transferase (JHAMT) and tested them for courtship. JHAMT regulates the last step of JH biosynthesis in the Corpora Allata (CA), the organ of JH synthesis. Males with reduced levels of JHAMT showed a reduction in courtship that could be rescued by application of Methoprene, a JH analog, shortly before the courtship assays were performed. In agreement with this, reducing JHAMT conditionally in mature flies led to courtship defects that were rescuable by Methoprene. The same result was also observed when the CA were conditionally ablated by the expression of a cellular toxin. Our findings demonstrate that JH plays an important physiological role in the regulation of male mating behavior. PMID:27003411

  1. Lithium suppresses Aβ pathology by inhibiting translation in an adult Drosophila model of Alzheimer's disease

    PubMed Central

    Sofola-Adesakin, Oyinkan; Castillo-Quan, Jorge I.; Rallis, Charalampos; Tain, Luke S.; Bjedov, Ivana; Rogers, Iain; Li, Li; Martinez, Pedro; Khericha, Mobina; Cabecinha, Melissa; Bähler, Jürg; Partridge, Linda

    2014-01-01

    The greatest risk factor for Alzheimer's disease (AD) is age, and changes in the ageing nervous system are likely contributors to AD pathology. Amyloid beta (Aβ) accumulation, which occurs as a result of the amyloidogenic processing of amyloid precursor protein (APP), is thought to initiate the pathogenesis of AD, eventually leading to neuronal cell death. Previously, we developed an adult-onset Drosophila model of AD. Mutant Aβ42 accumulation led to increased mortality and neuronal dysfunction in the adult flies. Furthermore, we showed that lithium reduced Aβ42 protein, but not mRNA, and was able to rescue Aβ42-induced toxicity. In the current study, we investigated the mechanism/s by which lithium modulates Aβ42 protein levels and Aβ42 induced toxicity in the fly model. We found that lithium caused a reduction in protein synthesis in Drosophila and hence the level of Aβ42. At both the low and high doses tested, lithium rescued the locomotory defects induced by Aβ42, but it rescued lifespan only at lower doses, suggesting that long-term, high-dose lithium treatment may have induced toxicity. Lithium also down-regulated translation in the fission yeast Schizosaccharomyces pombe associated with increased chronological lifespan. Our data highlight a role for lithium and reduced protein synthesis as potential therapeutic targets for AD pathogenesis. PMID:25126078

  2. The influence of Adh function on ethanol preference and tolerance in adult Drosophila melanogaster.

    PubMed

    Ogueta, Maite; Cibik, Osman; Eltrop, Rouven; Schneider, Andrea; Scholz, Henrike

    2010-11-01

    Preference determines behavioral choices such as choosing among food sources and mates. One preference-affecting chemical is ethanol, which guides insects to fermenting fruits or leaves. Here, we show that adult Drosophila melanogaster prefer food containing up to 5% ethanol over food without ethanol and avoid food with high levels (23%) of ethanol. Although female and male flies behaved differently at ethanol-containing food sources, there was no sexual dimorphism in the preference for food containing modest ethanol levels. We also investigated whether Drosophila preference, sensitivity and tolerance to ethanol was related to the activity of alcohol dehydrogenase (Adh), the primary ethanol-metabolizing enzyme in D. melanogaster. Impaired Adh function reduced ethanol preference in both D. melanogaster and a related species, D. sechellia. Adh-impaired flies also displayed reduced aversion to high ethanol concentrations, increased sensitivity to the effects of ethanol on postural control, and negative tolerance/sensitization (i.e., a reduction of the increased resistance to ethanol's effects that normally occurs upon repeated exposure). These data strongly indicate a linkage between ethanol-induced behavior and ethanol metabolism in adult fruit flies: Adh deficiency resulted in reduced preference to low ethanol concentrations and reduced aversion to high ones, despite recovery from ethanol being strongly impaired. PMID:20739429

  3. Inhibiting the Mitochondrial Calcium Uniporter during Development Impairs Memory in Adult Drosophila.

    PubMed

    Drago, Ilaria; Davis, Ronald L

    2016-09-01

    The uptake of cytoplasmic calcium into mitochondria is critical for a variety of physiological processes, including calcium buffering, metabolism, and cell survival. Here, we demonstrate that inhibiting the mitochondrial calcium uniporter in the Drosophila mushroom body neurons (MBn)-a brain region critical for olfactory memory formation-causes memory impairment without altering the capacity to learn. Inhibiting uniporter activity only during pupation impaired adult memory, whereas the same inhibition during adulthood was without effect. The behavioral impairment was associated with structural defects in MBn, including a decrease in synaptic vesicles and an increased length in the axons of the αβ MBn. Our results reveal an in vivo developmental role for the mitochondrial uniporter complex in establishing the necessary structural and functional neuronal substrates for normal memory formation in the adult organism. PMID:27568554

  4. The ROP vesicle release factor is required in adult Drosophila glia for normal circadian behavior

    PubMed Central

    Ng, Fanny S.; Jackson, F. Rob

    2015-01-01

    We previously showed that endocytosis and/or vesicle recycling mechanisms are essential in adult Drosophila glial cells for the neuronal control of circadian locomotor activity. In this study, our goal was to identify specific glial vesicle trafficking, recycling, or release factors that are required for rhythmic behavior. From a glia-specific, RNAi-based genetic screen, we identified eight glial factors that are required for normally robust circadian rhythms in either a light-dark cycle or in constant dark conditions. In particular, we show that conditional knockdown of the ROP vesicle release factor in adult glial cells results in arrhythmic behavior. Immunostaining for ROP reveals reduced protein in glial cell processes and an accumulation of the Par Domain Protein 1ε (PDP1ε) clock output protein in the small lateral clock neurons. These results suggest that glia modulate rhythmic circadian behavior by secretion of factors that act on clock neurons to regulate a clock output factor. PMID:26190976

  5. The role of p38b MAPK in age-related modulation of intestinal stem cell proliferation and differentiation in Drosophila.

    PubMed

    Park, Joung-Sun; Kim, Young-Shin; Yoo, Mi-Ae

    2009-07-01

    It is important to understand how age-related changes in intestinal stem cells (ISCs) may contribute to age-associated intestinal diseases, including cancer. Drosophila midgut is an excellent model system for the study of ISC proliferation and differentiation. Recently, age-related changes in the Drosophila midgut have been shown to include an increase in ISC proliferation and accumulation of mis-differentiated ISC daughter cells. Here, we show that the p38b MAPK pathway contributes to the age-related changes in ISC and progenitor cells in Drosophila. D-p38b MAPK is required for an age-related increase of ISC proliferation. In addition, this pathway is involved in age and oxidative stress-associated mis-differentiation of enterocytes and upregulation of Delta, a Notch receptor ligand. Furthermore, we also show that D-p38b acts downstream of PVF2/PVR signaling in these age-related changes. Taken together, our findings suggest that p38 MAPK plays a crucial role in the balance between ISC proliferation and proper differentiation in the adult Drosophila midgut. PMID:20157545

  6. The involvement of several enzymes in methanol detoxification in Drosophila melanogaster adults.

    PubMed

    Wang, Shu-Ping; Hu, Xing-Xing; Meng, Qing-Wei; Muhammad, Shahid Arain; Chen, Rui-Rui; Li, Fei; Li, Guo-Qing

    2013-09-01

    Methanol is among the most common short-chain alcohols in fermenting fruits, the natural food and oviposition sites of the fruit fly Drosophila melanogaster. Our previous results showed that cytochrome P450 monooxygenases (CYPs) were associated with methanol detoxification in the larvae. Catalases, alcohol dehydrogenases (ADHs), esterases (ESTs) and glutathione S-transferases (GSTs) were specifically inhibited by 3-amino-1,2,4-triazole (3-AT), 4-methylpyrazole (4-MP), triphenyl phosphate (TPP) and diethylmeleate (DEM), respectively. CYPs were inhibited by piperonyl butoxide (PBO) and 1-aminobenzotriazole (1-ABT). In the present paper, the involvements of these enzymes in methanol metabolism were investigated in female and male adults by determining the combination indices of methanol and their corresponding inhibitors. When PBO, 1-ABT, 3-AT, 4-MP and TPP were individually mixed with methanol, they exhibited significant synergism to the mortality of the adults after 72h of dietary exposure. In contrast, the DEM and methanol mixture showed additive effects. Moreover, methanol exposure dramatically increased CYP activity and up-regulated mRNA expression levels of several Cyp genes. Bioassays using different strains revealed that the variation in ADH activity and RNAi-mediated knockdown of α-Est7 significantly changed LC50 values for methanol. These results suggest that CYPs, catalases, ADHs and ESTs are partially responsible for methanol elimination in adults. It seems that there are some differences in methanol metabolism between larvae and adults, but not between female and male adults. PMID:23751173

  7. Evolution of increased adult longevity in Drosophila melanogaster populations selected for adaptation to larval crowding.

    PubMed

    Shenoi, V N; Ali, S Z; Prasad, N G

    2016-02-01

    In holometabolous animals such as Drosophila melanogaster, larval crowding can affect a wide range of larval and adult traits. Adults emerging from high larval density cultures have smaller body size and increased mean life span compared to flies emerging from low larval density cultures. Therefore, adaptation to larval crowding could potentially affect adult longevity as a correlated response. We addressed this issue by studying a set of large, outbred populations of D. melanogaster, experimentally evolved for adaptation to larval crowding for 83 generations. We assayed longevity of adult flies from both selected (MCUs) and control populations (MBs) after growing them at different larval densities. We found that MCUs have evolved increased mean longevity compared to MBs at all larval densities. The interaction between selection regime and larval density was not significant, indicating that the density dependence of mean longevity had not evolved in the MCU populations. The increase in longevity in MCUs can be partially attributed to their lower rates of ageing. It is also noteworthy that reaction norm of dry body weight, a trait probably under direct selection in our populations, has indeed evolved in MCU populations. To the best of our knowledge, this is the first report of the evolution of adult longevity as a correlated response of adaptation to larval crowding. PMID:26575793

  8. Variation in adult life history and stress resistance across five species of Drosophila.

    PubMed

    Sharmila Bharathi, N; Prasad, N G; Shakarad, Mallikarjun; Joshi, Amitabh

    2003-12-01

    Dry weight at eclosion, adult lifespan, lifetime fecundity, lipid and carbohydrate content at eclosion, and starvation and desiccation resistance at eclosion were assayed on a long-term laboratory population of Drosophila melanogaster, and one recently wild-caught population each of four other species of Drosophila, two from the melanogaster and two from the immigrans species group. The relationships among trait means across the five species did not conform to expectations based on correlations among these traits inferred from selection studies on D. melanogaster. In particular, the expected positive relationships between fecundity and size/lipid content, lipid content and starvation resistance, carbohydrate (glycogen) content and desiccation resistance, and the expected negative relationship between lifespan and fecundity were not observed. Most traits were strongly positively correlated between sexes across species, except for fractional lipid content and starvation resistance per microgram lipid. For most traits, there was evidence for significant sexual dimorphism but the degree of dimorphism did not vary across species except in the case of adult lifespan, starvation resistance per microgram lipid, and desiccation resistance per microgram carbohydrate. Overall, D. nasuta nasuta and D. sulfurigaster neonasuta (immigrans group) were heavier at eclosion than the melanogaster group species, and tended to have somewhat higher absolute lipid content and starvation resistance. Yet, these two immigrans group species were shorter-lived and had lower average daily fecundity than the melanogaster group species. The smallest species, D. malerkotliana (melanogaster group), had relatively high daily fecundity, intermediate lifespan and high fractional lipid content, especially in females. D. ananassae (melanogaster group) had the highest absolute and fractional carbohydrate content, but its desiccation resistance per microgram carbohydrate was the lowest among the five

  9. Acquisition of high-quality digital video of Drosophila larval and adult behaviors from a lateral perspective.

    PubMed

    Zenger, Beatrix; Wetzel, Sabine; Duncan, Jason

    2014-01-01

    Drosophila melanogaster is a powerful experimental model system for studying the function of the nervous system. Gene mutations that cause dysfunction of the nervous system often produce viable larvae and adults that have locomotion defective phenotypes that are difficult to adequately describe with text or completely represent with a single photographic image. Current modes of scientific publishing, however, support the submission of digital video media as supplemental material to accompany a manuscript. Here we describe a simple and widely accessible microscopy technique for acquiring high-quality digital video of both Drosophila larval and adult phenotypes from a lateral perspective. Video of larval and adult locomotion from a side-view is advantageous because it allows the observation and analysis of subtle distinctions and variations in aberrant locomotive behaviors. We have successfully used the technique to visualize and quantify aberrant crawling behaviors in third instar larvae, in addition to adult mutant phenotypes and behaviors including grooming. PMID:25350294

  10. The Drosophila melanogaster Muc68E Mucin Gene Influences Adult Size, Starvation Tolerance, and Cold Recovery.

    PubMed

    Reis, Micael; Silva, Ana C; Vieira, Cristina P; Vieira, Jorge

    2016-01-01

    Mucins have been implicated in many different biological processes, such as protection from mechanical damage, microorganisms, and toxic molecules, as well as providing a luminal scaffold during development. Nevertheless, it is conceivable that mucins have the potential to modulate food absorption as well, and thus contribute to the definition of several important phenotypic traits. Here we show that the Drosophila melanogaster Muc68E gene is 40- to 60-million-yr old, and is present in Drosophila species of the subgenus Sophophora only. The central repeat region of this gene is fast evolving, and shows evidence for repeated expansions/contractions. This and/or frequent gene conversion events lead to the homogenization of its repeats. The amino acid pattern P[ED][ED][ST][ST][ST] is found in the repeat region of Muc68E proteins from all Drosophila species studied, and can occur multiple times within a single conserved repeat block, and thus may have functional significance. Muc68E is a nonessential gene under laboratory conditions, but Muc68E mutant flies are smaller and lighter than controls at birth. However, at 4 d of age, Muc68E mutants are heavier, recover faster from chill-coma, and are more resistant to starvation than control flies, although they have the same percentage of lipids as controls. Mutant flies have enlarged abdominal size 1 d after chill-coma recovery, which is associated with higher lipid content. These results suggest that Muc68E has a role in metabolism modulation, food absorption, and/or feeding patterns in larvae and adults, and under normal and stress conditions. Such biological function is novel for mucin genes. PMID:27172221

  11. The Drosophila melanogaster Muc68E Mucin Gene Influences Adult Size, Starvation Tolerance, and Cold Recovery

    PubMed Central

    Reis, Micael; Silva, Ana C.; Vieira, Cristina P.; Vieira, Jorge

    2016-01-01

    Mucins have been implicated in many different biological processes, such as protection from mechanical damage, microorganisms, and toxic molecules, as well as providing a luminal scaffold during development. Nevertheless, it is conceivable that mucins have the potential to modulate food absorption as well, and thus contribute to the definition of several important phenotypic traits. Here we show that the Drosophila melanogaster Muc68E gene is 40- to 60-million-yr old, and is present in Drosophila species of the subgenus Sophophora only. The central repeat region of this gene is fast evolving, and shows evidence for repeated expansions/contractions. This and/or frequent gene conversion events lead to the homogenization of its repeats. The amino acid pattern P[ED][ED][ST][ST][ST] is found in the repeat region of Muc68E proteins from all Drosophila species studied, and can occur multiple times within a single conserved repeat block, and thus may have functional significance. Muc68E is a nonessential gene under laboratory conditions, but Muc68E mutant flies are smaller and lighter than controls at birth. However, at 4 d of age, Muc68E mutants are heavier, recover faster from chill-coma, and are more resistant to starvation than control flies, although they have the same percentage of lipids as controls. Mutant flies have enlarged abdominal size 1 d after chill-coma recovery, which is associated with higher lipid content. These results suggest that Muc68E has a role in metabolism modulation, food absorption, and/or feeding patterns in larvae and adults, and under normal and stress conditions. Such biological function is novel for mucin genes. PMID:27172221

  12. Average shape standard atlas for the adult Drosophila ventral nerve cord.

    PubMed

    Boerner, Jana; Duch, Carsten

    2010-07-01

    Neuroanatomy benefits from quantification of neural structures, i.e., neurons, circuits, and brain parts, within a common reference system. Recent improvements in imaging techniques and increased computational power have made the creation of Web-based databases possible, which serve as common platforms for incorporating anatomical data. This study establishes a standard average shape atlas for the ventral nerve cord (VNC) of Drosophila melanogaster. This atlas allows for the registration of morphological, developmental, and genetic data into one quantitative 3D reference system. The standard is based on an average adult Drosophila VNC neuropil as labeled in 24 whole-mount preparations with the commercially available antibody (nc82) recognizing the Drosophila Bruchpilot protein (Brp). For the standardization procedure no expert knowledge of brain anatomy is required and global thresholding as well as straightforward affine and elastic registration procedures minimize user interactions. Successful registration is demonstrated for tracts and commissures, gene expression patterns, and geometric reconstructions of individual neurons. Any structure that is counterstained with anti-Brp can be registered into the standard, allowing for fast comparison of data from different experiments and different laboratories. In addition, standard transformations can be applied to gray scale image data, so that any confocal image stack that is colabeled with anti-Brp can be analyzed within standardized 3D reference coordinates. This allows for the creation of putative neural connectivity maps and the comparison of expression patterns derived from different preparations. The standard and protocols for histological methods, segmentation, and registration procedures will be made available on the Web. PMID:20503421

  13. Lin-28 promotes symmetric stem cell division and drives adaptive growth in the adult Drosophila intestine.

    PubMed

    Chen, Ching-Huan; Luhur, Arthur; Sokol, Nicholas

    2015-10-15

    Stem cells switch between asymmetric and symmetric division to expand in number as tissues grow during development and in response to environmental changes. The stem cell intrinsic proteins controlling this switch are largely unknown, but one candidate is the Lin-28 pluripotency factor. A conserved RNA-binding protein that is downregulated in most animals as they develop from embryos to adults, Lin-28 persists in populations of adult stem cells. Its function in these cells has not been previously characterized. Here, we report that Lin-28 is highly enriched in adult intestinal stem cells in the Drosophila intestine. lin-28 null mutants are homozygous viable but display defects in this population of cells, which fail to undergo a characteristic food-triggered expansion in number and have reduced rates of symmetric division as well as reduced insulin signaling. Immunoprecipitation of Lin-28-bound mRNAs identified Insulin-like Receptor (InR), forced expression of which completely rescues lin-28-associated defects in intestinal stem cell number and division pattern. Furthermore, this stem cell activity of lin-28 is independent of one well-known lin-28 target, the microRNA let-7, which has limited expression in the intestinal epithelium. These results identify Lin-28 as a stem cell intrinsic factor that boosts insulin signaling in intestinal progenitor cells and promotes their symmetric division in response to nutrients, defining a mechanism through which Lin-28 controls the adult stem cell division patterns that underlie tissue homeostasis and regeneration. PMID:26487778

  14. Functional genomics identifies regulators of the phototransduction machinery in the Drosophila larval eye and adult ocelli.

    PubMed

    Mishra, Abhishek Kumar; Bargmann, Bastiaan O R; Tsachaki, Maria; Fritsch, Cornelia; Sprecher, Simon G

    2016-02-15

    Sensory perception of light is mediated by specialized Photoreceptor neurons (PRs) in the eye. During development all PRs are genetically determined to express a specific Rhodopsin (Rh) gene and genes mediating a functional phototransduction pathway. While the genetic and molecular mechanisms of PR development is well described in the adult compound eye, it remains unclear how the expression of Rhodopsins and the phototransduction cascade is regulated in other visual organs in Drosophila, such as the larval eye and adult ocelli. Using transcriptome analysis of larval PR-subtypes and ocellar PRs we identify and study new regulators required during PR differentiation or necessary for the expression of specific signaling molecules of the functional phototransduction pathway. We found that the transcription factor Krüppel (Kr) is enriched in the larval eye and controls PR differentiation by promoting Rh5 and Rh6 expression. We also identified Camta, Lola, Dve and Hazy as key genes acting during ocellar PR differentiation. Further we show that these transcriptional regulators control gene expression of the phototransduction cascade in both larval eye and adult ocelli. Our results show that PR cell type-specific transcriptome profiling is a powerful tool to identify key transcriptional regulators involved during several aspects of PR development and differentiation. Our findings greatly contribute to the understanding of how combinatorial action of key transcriptional regulators control PR development and the regulation of a functional phototransduction pathway in both larval eye and adult ocelli. PMID:26769100

  15. Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster.

    PubMed Central

    Sun, Jingtao; Folk, Donna; Bradley, Timothy J; Tower, John

    2002-01-01

    A transgenic system ("FLP-out") based on yeast FLP recombinase allowed induced overexpression of MnSOD enzyme in adult Drosophila melanogaster. With FLP-out a brief heat pulse (HP) of young, adult flies triggered the rearrangement and subsequent expression of a MnSOD transgene throughout the adult life span. Control (no HP) and overexpressing (HP) flies had identical genetic backgrounds. The amount of MnSOD enzyme overexpression achieved varied among six independent transgenic lines, with increases up to 75%. Life span was increased in proportion to the increase in enzyme. Mean life span was increased by an average of 16%, with some lines showing 30-33% increases. Maximum life span was increased by an average of 15%, with one line showing as much as 37% increase. Simultaneous overexpression of catalase with MnSOD had no added benefit, consistent with previous observations that catalase is present in excess in the adult fly with regard to life span. Cu/ZnSOD overexpression also increases mean and maximum life span. For both MnSOD and Cu/ZnSOD lines, increased life span was not associated with decreased metabolic activity, as measured by O2 consumption. PMID:12072463

  16. Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster.

    PubMed

    Sun, Jingtao; Folk, Donna; Bradley, Timothy J; Tower, John

    2002-06-01

    A transgenic system ("FLP-out") based on yeast FLP recombinase allowed induced overexpression of MnSOD enzyme in adult Drosophila melanogaster. With FLP-out a brief heat pulse (HP) of young, adult flies triggered the rearrangement and subsequent expression of a MnSOD transgene throughout the adult life span. Control (no HP) and overexpressing (HP) flies had identical genetic backgrounds. The amount of MnSOD enzyme overexpression achieved varied among six independent transgenic lines, with increases up to 75%. Life span was increased in proportion to the increase in enzyme. Mean life span was increased by an average of 16%, with some lines showing 30-33% increases. Maximum life span was increased by an average of 15%, with one line showing as much as 37% increase. Simultaneous overexpression of catalase with MnSOD had no added benefit, consistent with previous observations that catalase is present in excess in the adult fly with regard to life span. Cu/ZnSOD overexpression also increases mean and maximum life span. For both MnSOD and Cu/ZnSOD lines, increased life span was not associated with decreased metabolic activity, as measured by O2 consumption. PMID:12072463

  17. Muscle niche-driven Insulin-Notch-Myc cascade reactivates dormant Adult Muscle Precursors in Drosophila

    PubMed Central

    Aradhya, Rajaguru; Zmojdzian, Monika; Da Ponte, Jean Philippe; Jagla, Krzysztof

    2015-01-01

    How stem cells specified during development keep their non-differentiated quiescent state, and how they are reactivated, remain poorly understood. Here, we applied a Drosophila model to follow in vivo behavior of adult muscle precursors (AMPs), the transient fruit fly muscle stem cells. We report that emerging AMPs send out thin filopodia that make contact with neighboring muscles. AMPs keep their filopodia-based association with muscles throughout their dormant state but also when they start to proliferate, suggesting that muscles could play a role in AMP reactivation. Indeed, our genetic analyses indicate that muscles send inductive dIlp6 signals that switch the Insulin pathway ON in closely associated AMPs. This leads to the activation of Notch, which regulates AMP proliferation via dMyc. Altogether, we report that Drosophila AMPs display homing behavior to muscle niche and that the niche-driven Insulin-Notch-dMyc cascade plays a key role in setting the activated state of AMPs. DOI: http://dx.doi.org/10.7554/eLife.08497.001 PMID:26650355

  18. A simple method for imaging axonal transport in aging neurons using the adult Drosophila wing.

    PubMed

    Vagnoni, Alessio; Bullock, Simon L

    2016-09-01

    There is growing interest in the link between axonal cargo transport and age-associated neuronal dysfunction. The study of axonal transport in neurons of adult animals requires intravital or ex vivo imaging approaches, which are laborious and expensive in vertebrate models. We describe simple, noninvasive procedures for imaging cargo motility within axons using sensory neurons of the translucent Drosophila wing. A key aspect is a method for mounting the intact fly that allows detailed imaging of transport in wing neurons. Coupled with existing genetic tools in Drosophila, this is a tractable system for studying axonal transport over the life span of an animal and thus for characterization of the relationship between cargo dynamics, neuronal aging and disease. Preparation of a sample for imaging takes ∼5 min, with transport typically filmed for 2-3 min per wing. We also document procedures for the quantification of transport parameters from the acquired images and describe how the protocol can be adapted to study other cell biological processes in aging neurons. PMID:27560175

  19. Muscle organizers in Drosophila: the role of persistent larval fibers in adult flight muscle development

    NASA Technical Reports Server (NTRS)

    Farrell, E. R.; Fernandes, J.; Keshishian, H.

    1996-01-01

    In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.

  20. Reducing Lissencephaly-1 levels augments mitochondrial transport and has a protective effect in adult Drosophila neurons

    PubMed Central

    Vagnoni, Alessio; Hoffmann, Patrick C.; Bullock, Simon L.

    2016-01-01

    ABSTRACT Defective transport of mitochondria in axons is implicated in the pathogenesis of several age-associated neurodegenerative diseases. However, the regulation and function of axonal mitochondrial motility during normal ageing is poorly understood. Here, we use novel imaging procedures to characterise axonal transport of these organelles in the adult Drosophila wing nerve. During early adult life there is a boost and progressive decline in the proportion of mitochondria that are motile, which is not due to general changes in cargo transport. Experimental inhibition of the mitochondrial transport machinery specifically in adulthood accelerates the appearance of focal protein accumulations in ageing axons, which is suggestive of defects in protein homeostasis. Unexpectedly, lowering levels of Lissencephaly-1 (Lis1), a dynein motor co-factor, augments axonal mitochondrial transport in ageing wing neurons. Lis1 mutations suppress focal protein accumulations in ageing neurons, including those caused by interfering with the mitochondrial transport machinery. Our data provide new insights into the dynamics of mitochondrial motility in adult neurons in vivo, identify Lis1 as a negative regulator of transport of these organelles, and provide evidence of a link between mitochondrial movement and neuronal protein homeostasis. PMID:26598558

  1. Cdk4 functions in multiple cell types to control Drosophila intestinal stem cell proliferation and differentiation

    PubMed Central

    Adlesic, Mojca; Frei, Christian; Frew, Ian J.

    2016-01-01

    ABSTRACT The proliferation of intestinal stem cells (ISCs) and differentiation of enteroblasts to form mature enteroendocrine cells and enterocytes in the Drosophila intestinal epithelium must be tightly regulated to maintain homeostasis. We show that genetic modulation of CyclinD/Cdk4 activity or mTOR-dependent signalling cell-autonomously regulates enterocyte growth, which influences ISC proliferation and enteroblast differentiation. Increased enterocyte growth results in higher numbers of ISCs and defective enterocyte growth reduces ISC abundance and proliferation in the midgut. Adult midguts deficient for Cdk4 show severe disruption of intestinal homeostasis characterised by decreased ISC self-renewal, enteroblast differentiation defects and low enteroendocrine cell and enterocyte numbers. The ISC/enteroblast phenotypes result from a combination of cell autonomous and non-autonomous requirements for Cdk4 function. One non-autonomous consequence of Cdk4-dependent deficient enterocyte growth is high expression of Delta in ISCs and Delta retention in enteroblasts. We postulate that aberrant activation of the Delta–Notch pathway is a possible partial cause of lost ISC stemness. These results support the idea that enterocytes contribute to a putative stem cell niche that maintains intestinal homeostasis in the Drosophila anterior midgut. PMID:26879465

  2. Cdk4 functions in multiple cell types to control Drosophila intestinal stem cell proliferation and differentiation.

    PubMed

    Adlesic, Mojca; Frei, Christian; Frew, Ian J

    2016-01-01

    The proliferation of intestinal stem cells (ISCs) and differentiation of enteroblasts to form mature enteroendocrine cells and enterocytes in the Drosophila intestinal epithelium must be tightly regulated to maintain homeostasis. We show that genetic modulation of CyclinD/Cdk4 activity or mTOR-dependent signalling cell-autonomously regulates enterocyte growth, which influences ISC proliferation and enteroblast differentiation. Increased enterocyte growth results in higher numbers of ISCs and defective enterocyte growth reduces ISC abundance and proliferation in the midgut. Adult midguts deficient for Cdk4 show severe disruption of intestinal homeostasis characterised by decreased ISC self-renewal, enteroblast differentiation defects and low enteroendocrine cell and enterocyte numbers. The ISC/enteroblast phenotypes result from a combination of cell autonomous and non-autonomous requirements for Cdk4 function. One non-autonomous consequence of Cdk4-dependent deficient enterocyte growth is high expression of Delta in ISCs and Delta retention in enteroblasts. We postulate that aberrant activation of the Delta-Notch pathway is a possible partial cause of lost ISC stemness. These results support the idea that enterocytes contribute to a putative stem cell niche that maintains intestinal homeostasis in the Drosophila anterior midgut. PMID:26879465

  3. Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways

    PubMed Central

    Ren, Fangfang; Wang, Bing; Yue, Tao; Yun, Eun-Young; Ip, Y. Tony; Jiang, Jin

    2010-01-01

    Intestinal stem cells (ISCs) in the Drosophila adult midgut are essential for maintaining tissue homeostasis and replenishing lost cells in response to tissue damage. Here we demonstrate that the Hippo (Hpo) signaling pathway, an evolutionarily conserved pathway implicated in organ size control and tumorigenesis, plays an essential role in regulating ISC proliferation. Loss of Hpo signaling in either midgut precursor cells or epithelial cells stimulates ISC proliferation. We provide evidence that loss of Hpo signaling in epithelial cells increases the production of cytokines of the Upd family and multiple EGFR ligands that activate JAK-STAT and EGFR signaling pathways in ISCs to stimulate their proliferation, thus revealing a unique non–cell-autonomous role of Hpo signaling in blocking ISC proliferation. Finally, we show that the Hpo pathway mediator Yorkie (Yki) is also required in precursor cells for injury-induced ISC proliferation in response to tissue-damaging reagent DSS. PMID:21078993

  4. Targeted Manipulation of Serotonergic Neurotransmission Affects the Escalation of Aggression in Adult Male Drosophila melanogaster

    PubMed Central

    Alekseyenko, Olga V.; Lee, Carol; Kravitz, Edward A.

    2010-01-01

    Dopamine (DA) and serotonin (5HT) are reported to serve important roles in aggression in a wide variety of animals. Previous investigations of 5HT function in adult Drosophila behavior have relied on pharmacological manipulations, or on combinations of genetic tools that simultaneously target both DA and 5HT neurons. Here, we generated a transgenic line that allows selective, direct manipulation of serotonergic neurons and asked whether DA and 5HT have separable effects on aggression. Quantitative morphological examination demonstrated that our newly generated tryptophan hydroxylase (TRH)-Gal4 driver line was highly selective for 5HT-containing neurons. This line was used in conjunction with already available Gal4 driver lines that target DA or both DA and 5HT neurons to acutely alter the function of aminergic systems. First, we showed that acute impairment of DA and 5HT neurotransmission using expression of a temperature sensitive form of dynamin completely abolished mid- and high-level aggression. These flies did not escalate fights beyond brief low-intensity interactions and therefore did not yield dominance relationships. We showed next that manipulation of either 5HT or DA neurotransmission failed to duplicate this phenotype. Selective disruption of 5HT neurotransmission yielded flies that fought, but with reduced ability to escalate fights, leading to fewer dominance relationships. Acute activation of 5HT neurons using temperature sensitive dTrpA1 channel expression, in contrast, resulted in flies that escalated fights faster and that fought at higher intensities. Finally, acute disruption of DA neurotransmission produced hyperactive flies that moved faster than controls, and rarely engaged in any social interactions. By separately manipulating 5HT- and DA- neuron systems, we collected evidence demonstrating a direct role for 5HT in the escalation of aggression in Drosophila. PMID:20520823

  5. Analyzing variation in egg-to-adult viability in experimental populations of Drosophila melanogaster.

    PubMed

    Wallace, B

    1989-03-01

    Selective culling in populations of most organisms is rank-order: individuals of low rank on a scale of potential fitnesses tend to be eliminated during early development, whereas surviving adults (whose number reflects the carrying capacity of the environment) are generally drawn from the distribution's upper end. Haldane pointed out [Haldane, J.B.S. (1932) The Causes of Evolution (Harper & Row, New York)] that selection which favors individuals in the upper tail of a composite distribution curve tends to favor members of the more variable of two populations, rather than members of a less variable one, even though the latter may possess the higher mean. In addition to reviewing earlier observations bearing on Haldane's argument, the present report describes an analysis of the comparative egg-to-adult viabilities of flies (Drosophila melanogaster) carrying combinations of second chromosomes obtained from one or another of eight experimental populations. Overall, the viabilities of flies carrying combinations of chromosomes one of which is shared (i/j vs. j/k) are as different as those of flies carrying combinations of independently sampled chromosomes (i/j vs. k/l). Episodes seemingly occurred within the populations during which flies carrying combinations that shared a chromosome differed more in their viabilities than flies carrying unrelated combinations. Such episodes could reflect the occurrence of selection of the sort described by Haldane. PMID:2494660

  6. Lineage mapping identifies molecular and architectural similarities between the larval and adult Drosophila central nervous system

    PubMed Central

    Lacin, Haluk; Truman, James W

    2016-01-01

    Neurogenesis in Drosophila occurs in two phases, embryonic and post-embryonic, in which the same set of neuroblasts give rise to the distinct larval and adult nervous systems, respectively. Here, we identified the embryonic neuroblast origin of the adult neuronal lineages in the ventral nervous system via lineage-specific GAL4 lines and molecular markers. Our lineage mapping revealed that neurons born late in the embryonic phase show axonal morphology and transcription factor profiles that are similar to the neurons born post-embryonically from the same neuroblast. Moreover, we identified three thorax-specific neuroblasts not previously characterized and show that HOX genes confine them to the thoracic segments. Two of these, NB2-3 and NB3-4, generate leg motor neurons. The other neuroblast is novel and appears to have arisen recently during insect evolution. Our findings provide a comprehensive view of neurogenesis and show how proliferation of individual neuroblasts is dictated by temporal and spatial cues. DOI: http://dx.doi.org/10.7554/eLife.13399.001 PMID:26975248

  7. Differential effects of arsenite and arsenate to Drosophila melanogaster in a combined adult/developmental toxicity assay

    SciTech Connect

    Goldstein, S.H.; Babich, H.

    1989-02-01

    Current concern of the environmental consequences of chemical wastes in soils has led to the development of microbial, plant, and, to a lesser extent, animal bioassays for terrestrial ecosystems. This paper evaluated a Drosophila assay that yields data both on acute toxicity to adults and on developmental toxicity to offspring and which is applicable for screening extracts from soils contaminated with chemical wastes. Acute toxicity assays with Drosophila have been used to evaluate the relative potencies of chemicals. The acute toxicity to adults and the developmental exposure bioassays were designed to be performed as separate tests. This paper combined these two tests into a single bioassay, using arsenic compounds as the test agents. Arsenite and arsenate were selected to evaluate the sensitivity of this combined assay in distinguishing between the toxicities of closely related chemicals.

  8. Inactivation of Drosophila Huntingtin affects long-term adult functioning and the pathogenesis of a Huntington’s disease model

    PubMed Central

    Zhang, Sheng; Feany, Mel B.; Saraswati, Sudipta; Littleton, J. Troy; Perrimon, Norbert

    2009-01-01

    SUMMARY A polyglutamine expansion in the huntingtin (HTT) gene causes neurodegeneration in Huntington’s disease (HD), but the in vivo function of the native protein (Htt) is largely unknown. Numerous biochemical and in vitro studies have suggested a role for Htt in neuronal development, synaptic function and axonal trafficking. To test these models, we generated a null mutant in the putative Drosophila HTT homolog (htt, hereafter referred to asdhtt) and, surprisingly, found that dhtt mutant animals are viable with no obvious developmental defects. Instead, dhtt is required for maintaining the mobility and long-term survival of adult animals, and for modulating axonal terminal complexity in the adult brain. Furthermore, removing endogenous dhtt significantly accelerates the neurodegenerative phenotype associated with a Drosophila model of polyglutamine Htt toxicity (HD-Q93), providing in vivo evidence that disrupting the normal function of Htt might contribute to HD pathogenesis. PMID:19380309

  9. A Systematic Analysis of Drosophila Regulatory Peptide Expression in Enteroendocrine Cells

    PubMed Central

    Chen, Ji; Kim, Seol-min; Kwon, Jae Young

    2016-01-01

    The digestive system is gaining interest as a major regulator of various functions including immune defense, nutrient accumulation, and regulation of feeding behavior, aside from its conventional function as a digestive organ. The Drosophila midgut epithelium is completely renewed every 1–2 weeks due to differentiation of pluripotent intestinal stem cells in the midgut. Intestinal stem cells constantly divide and differentiate into enterocytes that secrete digestive enzymes and absorb nutrients, or enteroendocrine cells that secrete regulatory peptides. Regulatory peptides have important roles in development and metabolism, but study has mainly focused on expression and functions in the nervous system, and not much is known about the roles in endocrine functions of enteroendocrine cells. We systemically examined the expression of 45 regulatory peptide genes in the Drosophila midgut, and verified that at least 10 genes are expressed in the midgut enteroendocrine cells through RT-PCR, in situ hybridization, antisera, and 25 regulatory peptide-GAL transgenes. The Drosophila midgut is highly compartmentalized, and individual peptides in enteroendocrine cells were observed to express in specific regions of the midgut. We also confirmed that some peptides expressed in the same region of the midgut are expressed in mutually exclusive enteroendocrine cells. These results indicate that the midgut enteroendocrine cells are functionally differentiated into different subgroups. Through this study, we have established a basis to study regulatory peptide functions in enteroendocrine cells as well as the complex organization of enteroendocrine cells in the Drosophila midgut. PMID:27025390

  10. Steroid hormone inactivation is required during the juvenile-adult transition in Drosophila.

    PubMed

    Rewitz, Kim F; Yamanaka, Naoki; O'Connor, Michael B

    2010-12-14

    Steroid hormones are systemic signaling molecules that regulate juvenile-adult transitions in both insects and mammals. In insects, pulses of the steroid hormone 20-hydroxyecdysone (20E) are generated by increased biosynthesis followed by inactivation/clearance. Although mechanisms that control 20E synthesis have received considerable recent attention, the physiological significance of 20E inactivation remains largely unknown. We show that the cytochrome P450 Cyp18a1 lowers 20E titer during the Drosophila prepupal to pupal transition. Furthermore, this reduction of 20E levels is a prerequisite to induce βFTZ-F1, a key factor in the genetic hierarchy that controls early metamorphosis. Resupplying βFTZ-F1 rescues Cyp18a1-deficient prepupae. Because Cyp18a1 is 20E-inducible, it appears that the increased production of steroid is responsible for its eventual decline, thereby generating the regulatory pulse required for proper temporal progression of metamorphosis. The coupling of hormone clearance to βFTZ-F1 expression suggests a general mechanism by which transient signaling drives unidirectional progression through a multistep process. PMID:21145504

  11. The ADP-ribose polymerase Tankyrase regulates adult intestinal stem cell proliferation during homeostasis in Drosophila.

    PubMed

    Wang, Zhenghan; Tian, Ai; Benchabane, Hassina; Tacchelly-Benites, Ofelia; Yang, Eungi; Nojima, Hisashi; Ahmed, Yashi

    2016-05-15

    Wnt/β-catenin signaling controls intestinal stem cell (ISC) proliferation, and is aberrantly activated in colorectal cancer. Inhibitors of the ADP-ribose polymerase Tankyrase (Tnks) have become lead therapeutic candidates for Wnt-driven cancers, following the recent discovery that Tnks targets Axin, a negative regulator of Wnt signaling, for proteolysis. Initial reports indicated that Tnks is important for Wnt pathway activation in cultured human cell lines. However, the requirement for Tnks in physiological settings has been less clear, as subsequent studies in mice, fish and flies suggested that Tnks was either entirely dispensable for Wnt-dependent processes in vivo, or alternatively, had tissue-specific roles. Here, using null alleles, we demonstrate that the regulation of Axin by the highly conserved Drosophila Tnks homolog is essential for the control of ISC proliferation. Furthermore, in the adult intestine, where activity of the Wingless pathway is graded and peaks at each compartmental boundary, Tnks is dispensable for signaling in regions where pathway activity is high, but essential where pathway activity is relatively low. Finally, as observed previously for Wingless pathway components, Tnks activity in absorptive enterocytes controls the proliferation of neighboring ISCs non-autonomously by regulating JAK/STAT signaling. These findings reveal the requirement for Tnks in the control of ISC proliferation and suggest an essential role in the amplification of Wnt signaling, with relevance for development, homeostasis and cancer. PMID:27190037

  12. Purification and characterization of an endo-exonuclease from adult flies of Drosophila melanogaster.

    PubMed Central

    Shuai, K; Das Gupta, C K; Hawley, R S; Chase, J W; Stone, K L; Williams, K R

    1992-01-01

    An endo-exonuclease (designated nuclease III) has been purified to near homogeneity from adult flies of Drosophila melanogaster. The enzyme degrades single- and double-stranded DNA and RNA. It has a sedimentation co-efficient of 3.1S and a strokes radius of 27A The native form of the purified enzyme appears to be a monomer of 33,600 dalton. It has a pH optimum of 7-8.5 and requires Mg2+ or Mn2+ but not Ca2+ or Co2+ for its activity. The enzyme activity on double-stranded DNA was inhibited 50% by 30 mM NaCl, while its activity on single-stranded DNA required 100 mM NaCl for 50% inhibition. Under the latter conditions, its activity on double-stranded DNA was inhibited approximately 98%. The enzyme degrades DNA to complete acid soluble products which are a mixture of mono- and oligonucleotides with 5'-P and 3'-OH termini. Supercoiled DNA was converted by the enzyme to nicked and subsequently to linear forms in a stepwise fashion under the condition in which the enzyme works optimally on single-stranded DNA. The amino acid composition and amino acid sequencing of tryptic peptides from purified nuclease III is also reported. Images PMID:1313969

  13. Crossveinless and the TGFbeta pathway regulate fiber number in the Drosophila adult jump muscle.

    PubMed

    Jaramillo, Maryann S; Lovato, Candice V; Baca, Erica M; Cripps, Richard M

    2009-04-01

    Skeletal muscles are readily characterized by their location within the body and by the number and composition of their constituent muscle fibers. Here, we characterize a mutation that causes a severe reduction in the number of fibers comprising the tergal depressor of the trochanter muscle (TDT, or jump muscle), which functions in the escape response of the Drosophila adult. The wild-type TDT comprises over 20 large muscle fibers and four small fibers. In crossveinless (cv) mutants, the number of large fibers is reduced by 50%, and the number of small fibers is also occasionally reduced. This reduction in fiber number arises from a reduction in the number of founder cells contributing to the TDT at the early pupal stage. Given the role of cv in TGFbeta signaling, we determined whether this pathway directly impacts TDT development. Indeed, gain- and loss-of-function manipulations in the TGFbeta pathway resulted in dramatic increases and decreases, respectively, in TDT fiber number. By identifying the origins of the TDT muscle, from founder cells specified in the mesothoracic leg imaginal disc, we also demonstrate that the TGFbeta pathway directly impacts the specification of founder cells for the jump muscle. Our studies define a new role for the TGFbeta pathway in the control of specific skeletal muscle characteristics. PMID:19244280

  14. Why Adult Stem Cell Functionality Declines with Age? Studies from the Fruit Fly Drosophila Melanogaster Model Organism

    PubMed Central

    Gonen, Oren; Toledano, Hila

    2014-01-01

    Highly regenerative adult tissues are supported by rare populations of stem cells that continuously divide to self-renew and generate differentiated progeny. This process is tightly regulated by signals emanating from surrounding cells to fulfill the dynamic demands of the tissue. One of the hallmarks of aging is slow and aberrant tissue regeneration due to deteriorated function of stem and supporting cells. Several Drosophila regenerative tissues are unique in that they provide exact identification of stem and neighboring cells in whole-tissue anatomy. This allows for precise tracking of age-related changes as well as their targeted manipulation within the tissue. In this review we present the stem cell niche of Drosophila testis, ovary and intestine and describe the major changes and phenotypes that occur in the course of aging. Specifically we discuss changes in both intrinsic properties of stem cells and their microenvironment that contribute to the decline in tissue functionality. Understanding these mechanisms in adult Drosophila tissues will likely provide new paradigms in the field of aging. PMID:24955030

  15. The Drosophila BTB Domain Protein Jim Lovell Has Roles in Multiple Larval and Adult Behaviors

    PubMed Central

    Bjorum, Sonia M.; Simonette, Rebecca A.; Alanis, Raul; Wang, Jennifer E.; Lewis, Benjamin M.; Trejo, Michael H.; Hanson, Keith A.; Beckingham, Kathleen M.

    2013-01-01

    Innate behaviors have their origins in the specification of neural fates during development. Within Drosophila, BTB (Bric-a-brac,Tramtrack, Broad) domain proteins such as Fruitless are known to play key roles in the neural differentiation underlying such responses. We previously identified a gene, which we have termed jim lovell (lov), encoding a BTB protein with a role in gravity responses. To understand more fully the behavioral roles of this gene we have investigated its function through several approaches. Transcript and protein expression patterns have been examined and behavioral phenotypes of new lov mutations have been characterized. Lov is a nuclear protein, suggesting a role as a transcriptional regulator, as for other BTB proteins. In late embryogenesis, Lov is expressed in many CNS and PNS neurons. An examination of the PNS expression indicates that lov functions in the late specification of several classes of sensory neurons. In particular, only two of the five abdominal lateral chordotonal neurons express Lov, predicting functional variation within this highly similar group. Surprisingly, Lov is also expressed very early in embryogenesis in ways that suggests roles in morphogenetic movements, amnioserosa function and head neurogenesis. The phenotypes of two new lov mutations that delete adjacent non-coding DNA regions are strikingly different suggesting removal of different regulatory elements. In lov47, Lov expression is lost in many embryonic neurons including the two lateral chordotonal neurons. lov47 mutant larvae show feeding and locomotor defects including spontaneous backward movement. Adult lov47 males perform aberrant courtship behavior distinguished by courtship displays that are not directed at the female. lov47 adults also show more defective negative gravitaxis than the previously isolated lov91Y mutant. In contrast, lov66 produces largely normal behavior but severe female sterility associated with ectopic lov expression in the ovary. We

  16. Transcriptional control of stem cell maintenance in the Drosophila intestine.

    PubMed

    Bardin, Allison J; Perdigoto, Carolina N; Southall, Tony D; Brand, Andrea H; Schweisguth, François

    2010-03-01

    Adult stem cells maintain tissue homeostasis by controlling the proper balance of stem cell self-renewal and differentiation. The adult midgut of Drosophila contains multipotent intestinal stem cells (ISCs) that self-renew and produce differentiated progeny. Control of ISC identity and maintenance is poorly understood. Here we find that transcriptional repression of Notch target genes by a Hairless-Suppressor of Hairless complex is required for ISC maintenance, and identify genes of the Enhancer of split complex [E(spl)-C] as the major targets of this repression. In addition, we find that the bHLH transcription factor Daughterless is essential to maintain ISC identity and that bHLH binding sites promote ISC-specific enhancer activity. We propose that Daughterless-dependent bHLH activity is important for the ISC fate and that E(spl)-C factors inhibit this activity to promote differentiation. PMID:20147375

  17. Segment-specific Ca(2+) transport by isolated Malpighian tubules of Drosophila melanogaster: A comparison of larval and adult stages.

    PubMed

    Browne, Austin; O'Donnell, Michael J

    2016-04-01

    Haemolymph calcium homeostasis in insects is achieved through the regulation of calcium excretion by Malpighian tubules in two ways: (1) sequestration of calcium within biomineralized granules and (2) secretion of calcium in soluble form within the primary urine. Using the scanning ion-selective electrode technique (SIET), basolateral Ca(2+) transport was measured at the distal, transitional, main and proximal tubular segments of anterior tubules isolated from both 3rd instar larvae and adults of the fruit fly Drosophila melanogaster. Basolateral Ca(2+) transport exceeded transepithelial secretion by 800-fold and 11-fold in anterior tubules of larvae and adults, respectively. The magnitude of Ca(2+) fluxes across the distal tubule of larvae and adults were larger than fluxes across the downstream segments by 10 and 40 times, respectively, indicating a dominant role for the distal segment in whole animal Ca(2+) regulation. Basolateral Ca(2+) transport across distal tubules of Drosophila varied throughout the life cycle; Ca(2+) was released by distal tubules of larvae, taken up by distal tubules of young adults and was released once again by tubules of adults ⩾ 168 h post-eclosion. In adults and larvae, SIET measurements revealed sites of both Ca(2+) uptake and Ca(2+) release across the basolateral surface of the distal segment of the same tubule, indicating that Ca(2+) transport is bidirectional. Ca(2+) uptake across the distal segment of tubules of young adults and Ca(2+) release across the distal segment of tubules of older adults was also suggestive of reversible Ca(2+) storage. Our results suggest that the distal tubules of D. melanogaster are dynamic calcium stores which allow efficient haemolymph calcium regulation through active Ca(2+) sequestration during periods of high dietary calcium intake and passive Ca(2+) release during periods of calcium deficiency. PMID:26802560

  18. Overwintering Survival of Drosophila suzukii (Diptera: Drosophilidae) and the Effect of Food on Adult Survival in California's San Joaquin Valley.

    PubMed

    Kaçar, Gülay; Wang, Xin-Geng; Stewart, Thomas J; Daane, Kent M

    2016-08-01

    The overwintering survival and development of Drosophila suzukii Matsumura were investigated in California's San Joaquin Valley. Drosophila suzukii were exposed to overwintering conditions in cages hung in a citrus orchard, and the pupae were buried in the soil. Eggs exposed from late November to January did not survive; a low percentage (<3%) of larvae and pupae developed into adults. Survival of pupae was significantly higher when buried in the soil than on the citrus tree. From late January to March, all life stages developed into adults and overwintered adult female D. suzukii produced eggs when provided with 10% honey-water and sliced oranges. Adult survival varied among fruit juice provision treatments and overwintering exposure periods, ranging from 3.4 ± 0.9 d (water) to 44.1 ± 3.0 d (10% honey-water). Fruit juices of apple, cherry, grape, orange, and pomegranate were tested as adult food sources; results showed that adult female and male D. suzukii lived only 2 d with water only, whereas adults survived from 14.2 to 34.8 d with fruit juice treatments and the 10% honey-water control. An unexpected event was the oviposition and immature development of D. suzukii with the fruit juice. In a follow-up laboratory trial, when 10% honey-water or orange juice were provided along with an artificial diet for oviposition and immature development, female D. suzukii survived for 21.6 ± 2.4 or 21.6 ± 1.5 d, and produced 106.8 ± 14.1 or 98.5 ± 13.1 offspring, respectively. We discuss factors potentially influencing overwintering survival of D. suzukii. PMID:26654917

  19. SUMO regulates somatic cyst stem cell maintenance and directly targets the Hedgehog pathway in adult Drosophila testis.

    PubMed

    Lv, Xiangdong; Pan, Chenyu; Zhang, Zhao; Xia, Yuanxin; Chen, Hao; Zhang, Shuo; Guo, Tong; Han, Hui; Song, Haiyun; Zhang, Lei; Zhao, Yun

    2016-05-15

    SUMO (Small ubiquitin-related modifier) modification (SUMOylation) is a highly dynamic post-translational modification (PTM) that plays important roles in tissue development and disease progression. However, its function in adult stem cell maintenance is largely unknown. Here, we report the function of SUMOylation in somatic cyst stem cell (CySC) self-renewal in adult Drosophila testis. The SUMO pathway cell-autonomously regulates CySC maintenance. Reduction of SUMOylation promotes premature differentiation of CySCs and impedes the proliferation of CySCs, which leads to a reduction in the number of CySCs. Consistent with this, CySC clones carrying a mutation of the SUMO-conjugating enzyme are rapidly lost. Furthermore, inhibition of the SUMO pathway phenocopies disruption of the Hedgehog (Hh) pathway, and can block the proliferation of CySCs induced by Hh activation. Importantly, the SUMO pathway directly regulates the SUMOylation of Hh pathway transcription factor Cubitus interruptus (Ci), which is required for promoting CySC proliferation. Thus, we conclude that SUMO directly targets the Hh pathway and regulates CySC maintenance in adult Drosophila testis. PMID:27013244

  20. Gene–environment interplay in Drosophila melanogaster: Chronic food deprivation in early life affects adult exploratory and fitness traits

    PubMed Central

    Burns, James Geoffrey; Svetec, Nicolas; Rowe, Locke; Mery, Frederic; Dolan, Michael J.; Boyce, W. Thomas; Sokolowski, Marla B.

    2012-01-01

    Early life adversity has known impacts on adult health and behavior, yet little is known about the gene–environment interactions (GEIs) that underlie these consequences. We used the fruit fly Drosophila melanogaster to show that chronic early nutritional adversity interacts with rover and sitter allelic variants of foraging (for) to affect adult exploratory behavior, a phenotype that is critical for foraging, and reproductive fitness. Chronic nutritional adversity during adulthood did not affect rover or sitter adult exploratory behavior; however, early nutritional adversity in the larval period increased sitter but not rover adult exploratory behavior. Increasing for gene expression in the mushroom bodies, an important center of integration in the fly brain, changed the amount of exploratory behavior exhibited by sitter adults when they did not experience early nutritional adversity but had no effect in sitters that experienced early nutritional adversity. Manipulation of the larval nutritional environment also affected adult reproductive output of sitters but not rovers, indicating GEIs on fitness itself. The natural for variants are an excellent model to examine how GEIs underlie the biological embedding of early experience. PMID:23045644

  1. Non-Nutritive Polyol Sweeteners Differ in Insecticidal Activity When Ingested by Adult Drosophila melanogaster (Diptera: Drosophilidae)

    PubMed Central

    O’Donnell, Sean; Baudier, Kaitlin; Marenda, Daniel R.

    2016-01-01

    Previous work showed the non-nutritive polyol sweetener Erythritol was toxic when ingested by Drosophila melanogaster (Meigen, 1930). This study assessed whether insect toxicity is a general property of polyols. Among tested compounds, toxicity was highest for erythritol. Adult fruit flies (D. melanogaster) fed erythritol had reduced longevity relative to controls. Other polyols did not reduce longevity; the only exception was a weaker but significant reduction of female (but not male) longevity when flies were fed D-mannitol. We conclude at least some non-nutritive polyols are not toxic to adult D. melanogaster when ingested for 17 days. The longer time course (relative to erythritol) and female specificity of D-mannitol mortality suggests different mechanisms for D-mannitol and erythritol toxicity to D. melanogaster. PMID:27271968

  2. Non-Nutritive Polyol Sweeteners Differ in Insecticidal Activity When Ingested by Adult Drosophila melanogaster (Diptera: Drosophilidae).

    PubMed

    O'Donnell, Sean; Baudier, Kaitlin; Marenda, Daniel R

    2016-01-01

    Previous work showed the non-nutritive polyol sweetener Erythritol was toxic when ingested by Drosophila melanogaster (Meigen, 1930). This study assessed whether insect toxicity is a general property of polyols. Among tested compounds, toxicity was highest for erythritol. Adult fruit flies (D. melanogaster) fed erythritol had reduced longevity relative to controls. Other polyols did not reduce longevity; the only exception was a weaker but significant reduction of female (but not male) longevity when flies were fed D-mannitol. We conclude at least some non-nutritive polyols are not toxic to adult D. melanogaster when ingested for 17 days. The longer time course (relative to erythritol) and female specificity of D-mannitol mortality suggests different mechanisms for D-mannitol and erythritol toxicity to D. melanogaster. PMID:27271968

  3. The Jak-STAT target Chinmo prevents sex transformation of adult stem cells in the Drosophila testis niche

    PubMed Central

    Ma, Qing; Wawersik, Matthew; Matunis, Erika L.

    2014-01-01

    Local signals maintain adult stem cells in many tissues. Whether the sexual identity of adult stem cells must also be maintained was not known. In the adult Drosophila testis niche, local Jak-STAT signaling promotes somatic cyst stem cell (CySC) renewal through several effectors, including the putative transcription factor Chronologically inappropriate morphogenesis (Chinmo). Here, we find that Chinmo also prevents feminization of CySCs. Chinmo promotes expression of the canonical male sex determination factor DoublesexM (DsxM) within CySCs and their progeny, and ectopic expression of DsxM in the CySC lineage partially rescues the chinmo sex transformation phenotype, placing Chinmo upstream of DsxM. The Dsx homologue DMRT1 prevents the male-to female conversion of differentiated somatic cells in the adult mammalian testis, but its regulation is not well understood. Our work indicates that sex maintenance occurs in adult somatic stem cells, and that this highly conserved process is governed by effectors of niche signals. PMID:25453558

  4. Intestinal malrotation and midgut volvulus.

    PubMed

    Hamidi, Hidayatullah; Obaidy, Yalda; Maroof, Sahar

    2016-09-01

    A four-day-old boy presented with persistent bilious vomiting, bloody stained stool, and mild abdominal distension. Transabdominal ultrasound demonstrated a round soft-tissue mass-like structure in the right upper quadrant. With color Doppler ultrasound, the whirlpool sign was observed. Abdominal radiograph showed nonspecific findings. Upper gastrointestinal series revealed upper gastrointestinal tract obstruction at the level of distal duodenum. The diagnosis of intestinal malrotation with midgut volvulus was established and the treated surgically. Intestinal malrotation is congenital abnormal positioning of the bowel loops within the peritoneal cavity resulting in abnormal shortening of mesenteric root that is predisposed to midgut volvulus. Neonates and infants with persistent bilious vomiting should undergo diagnostic workup and preferably ultrasound as the first step. With classic sonographic appearance of whirlpool sign, even further imaging investigations is often not needed, and the surgeon should be alerted to plan surgery. PMID:27594965

  5. A gain-of-function screen for genes that affect the development of the Drosophila adult external sensory organ.

    PubMed Central

    Abdelilah-Seyfried, S; Chan, Y M; Zeng, C; Justice, N J; Younger-Shepherd, S; Sharp, L E; Barbel, S; Meadows, S A; Jan, L Y; Jan, Y N

    2000-01-01

    The Drosophila adult external sensory organ, comprising a neuron and its support cells, is derived from a single precursor cell via several asymmetric cell divisions. To identify molecules involved in sensory organ development, we conducted a tissue-specific gain-of-function screen. We screened 2293 independent P-element lines established by P. Rorth and identified 105 lines, carrying insertions at 78 distinct loci, that produced misexpression phenotypes with changes in number, fate, or morphology of cells of the adult external sensory organ. On the basis of the gain-of-function phenotypes of both internal and external support cells, we subdivided the candidate lines into three classes. The first class (52 lines, 40 loci) exhibits partial or complete loss of adult external sensory organs. The second class (38 lines, 28 loci) is associated with increased numbers of entire adult external sensory organs or subsets of sensory organ cells. The third class (15 lines, 10 loci) results in potential cell fate transformations. Genetic and molecular characterization of these candidate lines reveals that some loci identified in this screen correspond to genes known to function in the formation of the peripheral nervous system, such as big brain, extra macrochaetae, and numb. Also emerging from the screen are a large group of previously uncharacterized genes and several known genes that have not yet been implicated in the development of the peripheral nervous system. PMID:10835395

  6. DNA-histone interactions are sufficient to position a single nucleosome juxtaposing Drosophila Adh adult enhancer and distal promoter.

    PubMed Central

    Jackson, J R; Benyajati, C

    1993-01-01

    The alcohol dehydrogenase gene (Adh) of Drosophila melanogaster is transcribed from two tandem promoters in distinct developmental and tissue-specific patterns. Both promoters are regulated by separate upstream enhancer regions. In its wild-type context the adult enhancer specifically stimulates only the distal promoter, approximately 400 bp downstream, and not the proximal promoter, which is approximately 700 bp further downstream. Genomic footprinting and micrococcal nuclease analyses have revealed a specifically positioned nucleosome between the distal promoter and adult enhancer. In vitro reconstitution of this nucleosome demonstrated that DNA-core histone interactions alone are sufficient to position the nucleosome. Based on this observation and sequence periodicities in the underlying DNA, the mechanism of positioning appears to involve specific DNA structural features (ie flexibility or curvature). We have observed this nucleosome positioned early during development, before tissue differentiation, and before non-histone protein-DNA interactions are established at the distal promoter or adult enhancer. This nucleosome positioning element in the Adh regulatory region could be involved in establishing a specific tertiary nucleoprotein structure that facilitates specific cis-element accessibility and/or distal promoter-adult enhancer interactions. Images PMID:8451195

  7. Larval Population Density Alters Adult Sleep in Wild-Type Drosophila melanogaster but Not in Amnesiac Mutant Flies

    PubMed Central

    Chi, Michael W.; Griffith, Leslie C.; Vecsey, Christopher G.

    2014-01-01

    Sleep has many important biological functions, but how sleep is regulated remains poorly understood. In humans, social isolation and other stressors early in life can disrupt adult sleep. In fruit flies housed at different population densities during early adulthood, social enrichment was shown to increase subsequent sleep, but it is unknown if population density during early development can also influence adult sleep. To answer this question, we maintained Drosophila larvae at a range of population densities throughout larval development, kept them isolated during early adulthood, and then tested their sleep patterns. Our findings reveal that flies that had been isolated as larvae had more fragmented sleep than those that had been raised at higher population densities. This effect was more prominent in females than in males. Larval population density did not affect sleep in female flies that were mutant for amnesiac, which has been shown to be required for normal memory consolidation, adult sleep regulation, and brain development. In contrast, larval population density effects on sleep persisted in female flies lacking the olfactory receptor or83b, suggesting that olfactory signals are not required for the effects of larval population density on adult sleep. These findings show that population density during early development can alter sleep behavior in adulthood, suggesting that genetic and/or structural changes are induced by this developmental manipulation that persist through metamorphosis. PMID:25116571

  8. Drosophila Microbiota Modulates Host Metabolic Gene Expression via IMD/NF-κB Signaling

    PubMed Central

    Bozonnet, Noémie; Puthier, Denis; Royet, Julien; Leulier, François

    2014-01-01

    Most metazoans engage in mutualistic interactions with their intestinal microbiota. Despite recent progress the molecular mechanisms through which microbiota exerts its beneficial influences on host physiology are still largely uncharacterized. Here we use axenic Drosophila melanogaster adults associated with a standardized microbiota composed of a defined set of commensal bacterial strains to study the impact of microbiota association on its host transcriptome. Our results demonstrate that Drosophila microbiota has a marked impact on the midgut transcriptome and promotes the expression of genes involved in host digestive functions and primary metabolism. We identify the IMD/Relish signaling pathway as a central regulator of this microbiota-mediated transcriptional response and we reveal a marked transcriptional trade-off between the midgut response to its beneficial microbiota and to bacterial pathogens. Taken together our results indicate that microbiota association potentiates host nutrition and host metabolic state, two key physiological parameters influencing host fitness. Our work paves the way to subsequent mechanistic studies to reveal how these microbiota-dependent transcriptional signatures translate into host physiological benefits. PMID:24733183

  9. UPRT, a suicide-gene therapy candidate in higher eukaryotes, is required for Drosophila larval growth and normal adult lifespan.

    PubMed

    Ghosh, Arpan C; Shimell, MaryJane; Leof, Emma R; Haley, Macy J; O'Connor, Michael B

    2015-01-01

    Uracil phosphoribosyltransferase (UPRT) is a pyrimidine salvage pathway enzyme that catalyzes the conversion of uracil to uridine monophosphate (UMP). The enzyme is highly conserved from prokaryotes to humans and yet phylogenetic evidence suggests that UPRT homologues from higher-eukaryotes, including Drosophila, are incapable of binding uracil. Purified human UPRT also do not show any enzymatic activity in vitro, making microbial UPRT an attractive candidate for anti-microbial drug development, suicide-gene therapy, and cell-specific mRNA labeling techniques. Nevertheless, the enzymatic site of UPRT remains conserved across the animal kingdom indicating an in vivo role for the enzyme. We find that the Drosophila UPRT homologue, krishah (kri), codes for an enzyme that is required for larval growth, pre-pupal/pupal viability and long-term adult lifespan. Our findings suggest that UPRT from all higher eukaryotes is likely enzymatically active in vivo and challenges the previous notion that the enzyme is non-essential in higher eukaryotes and cautions against targeting the enzyme for therapeutic purposes. Our findings also suggest that expression of the endogenous UPRT gene will likely cause background incorporation when using microbial UPRT as a cell-specific mRNA labeling reagent in higher eukaryotes. PMID:26271729

  10. Contribution of ethyl methanesulfonate vapors to the yield of mutations detected in Drosophila melanogaster when the adult feeding technique is used

    SciTech Connect

    Munoz, E.R.

    1987-01-01

    Ethyl methanesulfonate (EMS) is an alkylating agent widely used in mutation research. In experiments with adult Drosophila melanogaster, EMS is either injected or fed to the flies using different feeding methods that essentially consist of placing the flies in bottles or vials with a piece of tissue paper moistened with a sucrose solution containing the desired concentration of EMS. To determine the extent to which vapors contribute to the mutagenic effect detected in Drosophila when the feeding technique is used, 7-day-old wild-type Samarkand males were fed EMS or were exposed only to its vapors.

  11. The regenerative cells during the metamorphosis in the midgut of bees.

    PubMed

    Martins, Gustavo Ferreira; Neves, Clóvis Andrade; Campos, Lúcio Antonio Oliveira; Serrão, José Eduardo

    2006-01-01

    The midgut epithelium of bees is formed by the digestive cells, responsible for enzyme secretion and nutrient absorption and for small regenerative cells that are placed in nests scattered among the digestive cells. During metamorphosis, the larval midgut epithelium degenerates and a new adult midgut epithelium is built during larval differentiation of regenerative cells. The present work focuses on the midgut epithelial modifications during the post-embryonic development of the stingless bee Melipona quadrifasciata anthidioides worker and the occurrence of regenerative cell proliferation during midgut metamorphosis in order to test the hypothesis that adult midgut epithelium of worker bees results from regenerative cell proliferation during the pupal stage. Regenerative cell proliferation was detected during larval lifespan. Larval aging is followed by an increase in the number and the size of the nests of regenerative cells. Larval epithelium degeneration begins 2 days after the start of defecation process and in this period the nests of regenerative cells are in contact by means of cytoplasmic extension which have many septate desmosomes and gap junctions. The BrdU immunoreactive regenerative cells were found in the prepupae 12 h after BrdU injection, suggesting that regenerative cell population increase during this larval period. Regenerative cell proliferation results in the increase of the regenerative cell population and not in the formation of new digestive cells because the proliferation of regenerative cells would not be enough to reestablish the nests of regenerative cells and at the same time form new adult digestive cells. In this sense the hypothesis that digestive adult cells originate from regenerative cell proliferation during midgut metamorphosis in M. quadrifasciata anthidioides was rejected. PMID:16168658

  12. Postembryonic lineages of the Drosophila ventral nervous system: Neuroglian expression reveals the adult hemilineage associated fiber tracts in the adult thoracic neuromeres.

    PubMed

    Shepherd, David; Harris, Robin; Williams, Darren W; Truman, James W

    2016-09-01

    During larval life most of the thoracic neuroblasts (NBs) in Drosophila undergo a second phase of neurogenesis to generate adult-specific neurons that remain in an immature, developmentally stalled state until pupation. Using a combination of MARCM and immunostaining with a neurotactin antibody, Truman et al. (2004; Development 131:5167-5184) identified 24 adult-specific NB lineages within each thoracic hemineuromere of the larval ventral nervous system (VNS), but because of the neurotactin labeling of lineage tracts disappearing early in metamorphosis, they were unable extend the identification of these lineages into the adult. Here we show that immunostaining with an antibody against the cell adhesion molecule neuroglian reveals the same larval secondary lineage projections through metamorphosis and bfy identifying each neuroglian-positive tract at selected stages we have traced the larval hemilineage tracts for all three thoracic neuromeres through metamorphosis into the adult. To validate tract identifications we used the genetic toolkit developed by Harris et al. (2015; Elife 4) to preserve hemilineage-specific GAL4 expression patterns from larval into the adult stage. The immortalized expression proved a powerful confirmation of the analysis of the neuroglian scaffold. This work has enabled us to directly link the secondary, larval NB lineages to their adult counterparts. The data provide an anatomical framework that 1) makes it possible to assign most neurons to their parent lineage and 2) allows more precise definitions of the neuronal organization of the adult VNS based in developmental units/rules. J. Comp. Neurol. 524:2677-2695, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26878258

  13. The Drosophila HNF4 nuclear receptor promotes glucose-stimulated insulin secretion and mitochondrial function in adults.

    PubMed

    Barry, William E; Thummel, Carl S

    2016-01-01

    Although mutations in HNF4A were identified as the cause of Maturity Onset Diabetes of the Young 1 (MODY1) two decades ago, the mechanisms by which this nuclear receptor regulates glucose homeostasis remain unclear. Here we report that loss of Drosophila HNF4 recapitulates hallmark symptoms of MODY1, including adult-onset hyperglycemia, glucose intolerance and impaired glucose-stimulated insulin secretion (GSIS). These defects are linked to a role for dHNF4 in promoting mitochondrial function as well as the expression of Hex-C, a homolog of the MODY2 gene Glucokinase. dHNF4 is required in the fat body and insulin-producing cells to maintain glucose homeostasis by supporting a developmental switch toward oxidative phosphorylation and GSIS at the transition to adulthood. These findings establish an animal model for MODY1 and define a developmental reprogramming of metabolism to support the energetic needs of the mature animal. PMID:27185732

  14. Maintenance of Glia in the Optic Lamina Is Mediated by EGFR Signaling by Photoreceptors in Adult Drosophila

    PubMed Central

    Lee, Yuan-Ming; Sun, Y. Henry

    2015-01-01

    The late onset of neurodegeneration in humans indicates that the survival and function of cells in the nervous system must be maintained throughout adulthood. In the optic lamina of the adult Drosophila, the photoreceptor axons are surrounded by multiple types of glia. We demonstrated that the adult photoreceptors actively contribute to glia maintenance in their target field within the optic lamina. This effect is dependent on the epidermal growth factor receptor (EGFR) ligands produced by the R1-6 photoreceptors and transported to the optic lamina to act on EGFR in the lamina glia. EGFR signaling is necessary and sufficient to act in a cell-autonomous manner in the lamina glia. Our results suggest that EGFR signaling is required for the trafficking of the autophagosome/endosome to the lysosome. The loss of EGFR signaling results in cell degeneration most likely because of the accumulation of autophagosomes. Our findings provide in vivo evidence for the role of adult neurons in the maintenance of glia and a novel role for EGFR signaling in the autophagic flux. PMID:25909451

  15. Timing of Expression of a Gene in the Adult Drosophila Is Regulated by Mechanisms Independent of Temperature and Metabolic Rate

    PubMed Central

    Rogina, B.; Helfand, S. L.

    1996-01-01

    The examination of β-galactosidase (β-gal) expression in the third segment of the antenna of the 2216 enhancer trap line in Drosophila melanogaster reveals two distinct spatial and temporal regulatory patterns of expression during adult life. Type I expression is characterized by a decline in the level of β-gal expression with increasing age. Starting from a maximal level of expression at the time of adult emergence, there is a decrease in the number of cells that express β-gal so that by 40-50 days of adult life few cells express β-gal. Varying the ambient temperature and using hyperactivity mutants (Hyperkinetic(1), Shaker(5)) demonstrates that the rate of this decline is independent of temperature and metabolic rate. Type II expression is distinctly different in spatial distribution and temporal regulation from the first pattern. Type II expression is restricted in the antenna to a small (<20-30) set of cells whose level of expression changes in a periodic manner with time. The regulation of this periodicity appears to be linked to ambient temperature. PMID:8844152

  16. DNA damage in haemocytes and midgut gland cells of Steatoda grossa (Theridiidae) spiders exposed to food contaminated with cadmium.

    PubMed

    Stalmach, Monika; Wilczek, Grażyna; Wilczek, Piotr; Skowronek, Magdalena; Mędrzak, Monika

    2015-03-01

    The aim of this study was to assess the genotoxic effects of Cd on haemocytes and midgut gland cells of web-building spiders, Steatoda grossa (Theridiidae), exposed to the metal under laboratory conditions. Analyzes were conducted on adult females and males, fed for four weeks with cadmium-contaminated Drosophila hydei flies, grown on a medium suplemented with 0.25 mM CdCl2. The comet assay, providing a quantitative measure of DNA strand breaks, was used to evaluate the DNA damage caused by the metal. Cadmium content was measured in whole spider bodies by the AAS method. Metal body burden was significantly lower in females (0.25 µgg(-1) dry weight) than in males (3.03 µgg(-1) dry weight), suggesting that females may have more effective mechanisms controlling the uptake of metal, via the digestive tract, or its elimination from the body. Irrespectively of sex, spiders fed prey contaminated with cadmium showed significantly higher values of comet parameters: tail DNA (TDNA), tail length (TL) and olive tail moment (OTM), in comparison with the control. In midgut gland cells, the level of DNA damage was higher for males than females, while in haemocytes the genotoxic effect of cadmium was greater in females. The obtained results indicate that in spiders cadmium displays strong genotoxic effects and may cause DNA damage even at low concentrations, however the severity of damage seems to be sex- and internal organ-dependent. The comet assay can be considered a sensitive tool for measuring the deleterious effect of cadmium on DNA integrity in spiders. PMID:25531832

  17. Midgut of the non-hematophagous mosquito Toxorhynchites theobaldi (Diptera, Culicidae)

    PubMed Central

    Godoy, Raquel S. M.; Fernandes, Kenner M.; Martins, Gustavo F.

    2015-01-01

    In most mosquito species, the females require a blood-feeding for complete egg development. However, in Toxorhynchites mosquitoes, the eggs develop without blood-feeding, and both females and males exclusively feed on sugary diets. The midgut is a well-understood organ in blood-feeding mosquitoes, but little is known about it in non-blood-feeding ones. In the present study, the detailed morphology of the midgut of Toxorhynchites theobaldi were investigated using histochemical and ultrastructural methods. The midgut of female and male T. theobaldi adults consists of a long, slender anterior midgut (AMG), and a short, dilated posterior midgut (PMG). The AMG is subdivided into AMG1 (short, with folds) and AMG2 (long, without folds). Nerve branches and enteroendocrine cells are present in AMG and PMG, respectively. Compared with the PMG of blood-feeding female mosquitoes, the PMG of T. theobaldi is smaller; however, in both mosquitoes, PMG seems be the main region of food digestion and absorption, and protein secretion. The epithelial folds present in the AMG of T. theobaldi have not been reported in other mosquitoes; however, the midgut muscle organization and endocrine control of the digestion process are conserved in both T. theobaldi and blood-feeding mosquitoes. PMID:26514271

  18. Open Source Tracking and Analysis of Adult Drosophila Locomotion in Buridan's Paradigm with and without Visual Targets

    PubMed Central

    Colomb, Julien; Reiter, Lutz; Blaszkiewicz, Jedrzej; Wessnitzer, Jan; Brembs, Bjoern

    2012-01-01

    Background Insects have been among the most widely used model systems for studying the control of locomotion by nervous systems. In Drosophila, we implemented a simple test for locomotion: in Buridan's paradigm, flies walk back and forth between two inaccessible visual targets [1]. Until today, the lack of easily accessible tools for tracking the fly position and analyzing its trajectory has probably contributed to the slow acceptance of Buridan's paradigm. Methodology/Principal Findings We present here a package of open source software designed to track a single animal walking in a homogenous environment (Buritrack) and to analyze its trajectory. The Centroid Trajectory Analysis (CeTrAn) software is coded in the open source statistics project R. It extracts eleven metrics and includes correlation analyses and a Principal Components Analysis (PCA). It was designed to be easily customized to personal requirements. In combination with inexpensive hardware, these tools can readily be used for teaching and research purposes. We demonstrate the capabilities of our package by measuring the locomotor behavior of adult Drosophila melanogaster (whose wings were clipped), either in the presence or in the absence of visual targets, and comparing the latter to different computer-generated data. The analysis of the trajectories confirms that flies are centrophobic and shows that inaccessible visual targets can alter the orientation of the flies without changing their overall patterns of activity. Conclusions/Significance Using computer generated data, the analysis software was tested, and chance values for some metrics (as well as chance value for their correlation) were set. Our results prompt the hypothesis that fixation behavior is observed only if negative phototaxis can overcome the propensity of the flies to avoid the center of the platform. Together with our companion paper, we provide new tools to promote Open Science as well as the collection and analysis of digital

  19. Transgenerational Effects of Parental Larval Diet on Offspring Development Time, Adult Body Size and Pathogen Resistance in Drosophila melanogaster

    PubMed Central

    Valtonen, Terhi M.; Kangassalo, Katariina; Pölkki, Mari; Rantala, Markus J.

    2012-01-01

    Environmental conditions experienced by parents are increasingly recognized to affect offspring performance. We set out to investigate the effect of parental larval diet on offspring development time, adult body size and adult resistance to the bacterium Serratia marcescens in Drosophila melanogaster. Flies for the parental generation were raised on either poor or standard diet and then mated in the four possible sex-by-parental diet crosses. Females that were raised on poor food produced larger offspring than females that were raised on standard food. Furthermore, male progeny sired by fathers that were raised on poor food were larger than male progeny sired by males raised on standard food. Development times were shortest for offspring whose one parent (mother or the father) was raised on standard and the other parent on poor food and longest for offspring whose parents both were raised on poor food. No evidence for transgenerational effects of parental diet on offspring disease resistance was found. Although paternal effects have been previously demonstrated in D. melanogaster, no earlier studies have investigated male-mediated transgenerational effects of diet in this species. The results highlight the importance of not only considering the relative contribution each parental sex has on progeny performance but also the combined effects that the two sexes may have on offspring performance. PMID:22359607

  20. Autophagy precedes apoptosis during the remodeling of silkworm larval midgut.

    PubMed

    Franzetti, Eleonora; Huang, Zhi-Jun; Shi, Yan-Xia; Xie, Kun; Deng, Xiao-Juan; Li, Jian-Ping; Li, Qing-Rong; Yang, Wan-Ying; Zeng, Wen-Nian; Casartelli, Morena; Deng, Hui-Min; Cappellozza, Silvia; Grimaldi, Annalisa; Xia, Qingyou; Feng, Qili; Cao, Yang; Tettamanti, Gianluca

    2012-03-01

    Although several features of apoptosis and autophagy have been reported in the larval organs of Lepidoptera during metamorphosis, solid experimental evidence for autophagy is still lacking. Moreover, the role of the two processes and the nature of their relationship are still cryptic. In this study, we perform a cellular, biochemical and molecular analysis of the degeneration process that occurs in the larval midgut of Bombyx mori during larval-adult transformation, with the aim to analyze autophagy and apoptosis in cells that die under physiological conditions. We demonstrate that larval midgut degradation is due to the concerted action of the two mechanisms, which occur at different times and have different functions. Autophagy is activated from the wandering stage and reaches a high level of activity during the spinning and prepupal stages, as demonstrated by specific autophagic markers. Our data show that the process of autophagy can recycle molecules from the degenerating cells and supply nutrients to the animal during the non-feeding period. Apoptosis intervenes later. In fact, although genes encoding caspases are transcribed at the end of the larval period, the activity of these proteases is not appreciable until the second day of spinning and apoptotic features are observable from prepupal phase. The abundance of apoptotic features during the pupal phase, when the majority of the cells die, indicates that apoptosis is actually responsible for cell death and for the disappearance of larval midgut cells. PMID:22127643

  1. Aging and Autophagic Function Influences the Progressive Decline of Adult Drosophila Behaviors.

    PubMed

    Ratliff, Eric P; Mauntz, Ruth E; Kotzebue, Roxanne W; Gonzalez, Arysa; Achal, Madhulika; Barekat, Ayeh; Finley, Kaelyn A; Sparhawk, Jonathan M; Robinson, James E; Herr, Deron R; Harris, Greg L; Joiner, William J; Finley, Kim D

    2015-01-01

    Multiple neurological disorders are characterized by the abnormal accumulation of protein aggregates and the progressive impairment of complex behaviors. Our Drosophila studies demonstrate that middle-aged wild-type flies (WT, ~4-weeks) exhibit a marked accumulation of neural aggregates that is commensurate with the decline of the autophagy pathway. However, enhancing autophagy via neuronal over-expression of Atg8a (Atg8a-OE) reduces the age-dependent accumulation of aggregates. Here we assess basal locomotor activity profiles for single- and group-housed male and female WT flies and observed that only modest behavioral changes occurred by 4-weeks of age, with the noted exception of group-housed male flies. Male flies in same-sex social groups exhibit a progressive increase in nighttime activity. Infrared videos show aged group-housed males (4-weeks) are engaged in extensive bouts of courtship during periods of darkness, which is partly repressed during lighted conditions. Together, these nighttime courtship behaviors were nearly absent in young WT flies and aged Atg8a-OE flies. Previous studies have indicated a regulatory role for olfaction in male courtship partner choice. Coincidently, the mRNA expression profiles of several olfactory genes decline with age in WT flies; however, they are maintained in age-matched Atg8a-OE flies. Together, these results suggest that middle-aged male flies develop impairments in olfaction, which could contribute to the dysregulation of courtship behaviors during dark time periods. Combined, our results demonstrate that as Drosophila age, they develop early behavior defects that are coordinate with protein aggregate accumulation in the nervous system. In addition, the nighttime activity behavior is preserved when neuronal autophagy is maintained (Atg8a-OE flies). Thus, environmental or genetic factors that modify autophagic capacity could have a positive impact on neuronal aging and complex behaviors. PMID:26182057

  2. Aging and Autophagic Function Influences the Progressive Decline of Adult Drosophila Behaviors

    PubMed Central

    Kotzebue, Roxanne W.; Gonzalez, Arysa; Achal, Madhulika; Barekat, Ayeh; Finley, Kaelyn A.; Sparhawk, Jonathan M.; Robinson, James E.; Herr, Deron R.; Harris, Greg L.; Joiner, William J.; Finley, Kim D.

    2015-01-01

    Multiple neurological disorders are characterized by the abnormal accumulation of protein aggregates and the progressive impairment of complex behaviors. Our Drosophila studies demonstrate that middle-aged wild-type flies (WT, ~4-weeks) exhibit a marked accumulation of neural aggregates that is commensurate with the decline of the autophagy pathway. However, enhancing autophagy via neuronal over-expression of Atg8a (Atg8a-OE) reduces the age-dependent accumulation of aggregates. Here we assess basal locomotor activity profiles for single- and group-housed male and female WT flies and observed that only modest behavioral changes occurred by 4-weeks of age, with the noted exception of group-housed male flies. Male flies in same-sex social groups exhibit a progressive increase in nighttime activity. Infrared videos show aged group-housed males (4-weeks) are engaged in extensive bouts of courtship during periods of darkness, which is partly repressed during lighted conditions. Together, these nighttime courtship behaviors were nearly absent in young WT flies and aged Atg8a-OE flies. Previous studies have indicated a regulatory role for olfaction in male courtship partner choice. Coincidently, the mRNA expression profiles of several olfactory genes decline with age in WT flies; however, they are maintained in age-matched Atg8a-OE flies. Together, these results suggest that middle-aged male flies develop impairments in olfaction, which could contribute to the dysregulation of courtship behaviors during dark time periods. Combined, our results demonstrate that as Drosophila age, they develop early behavior defects that are coordinate with protein aggregate accumulation in the nervous system. In addition, the nighttime activity behavior is preserved when neuronal autophagy is maintained (Atg8a-OE flies). Thus, environmental or genetic factors that modify autophagic capacity could have a positive impact on neuronal aging and complex behaviors. PMID:26182057

  3. Notch Is Required in Adult Drosophila Sensory Neurons for Morphological and Functional Plasticity of the Olfactory Circuit

    PubMed Central

    Struhl, Gary

    2015-01-01

    Olfactory receptor neurons (ORNs) convey odor information to the central brain, but like other sensory neurons were thought to play a passive role in memory formation and storage. Here we show that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila ORNs for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. Specifically, we show that Notch activity in ORNs is necessary for the odor specific increase in the volume of glomeruli that occurs as a consequence of prolonged odor exposure. Calcium imaging experiments indicate that Notch in ORNs is also required for the chronic odor induced changes in the physiology of ORNs and the ensuing changes in the physiological response of their second order projection neurons (PNs). We further show that Notch in ORNs acts by both canonical cleavage-dependent and non-canonical cleavage-independent pathways. The Notch ligand Delta (Dl) in PNs switches the balance between the pathways. These data define a circuit whereby, in conjunction with odor, N activity in the periphery regulates the activity of neurons in the central brain and Dl in the central brain regulates N activity in the periphery. Our work highlights the importance of experience dependent plasticity at the first olfactory synapse. PMID:26011623

  4. Tumor suppressors Sav/Scrib and oncogene Ras regulate stem cell transformation in adult Drosophila Malpighian Tubules

    PubMed Central

    Zeng, Xiankun; Singh, Shree Ram; Hou, David; Hou, Steven X.

    2012-01-01

    An increasing body of evidence suggests that tumors might originate from a few transformed cells that share many properties with normal stem cells. However, it remains unclear how normal stem cells are transformed into cancer stem cells. Here, we demonstrated that mutations causing the loss of tumor suppressor Sav or Scrib or activation of the oncogene Ras transform normal stem cells into cancer stem cells through a multistep process in the adult Drosophila Malpighian Tubules (MTs). In wild-type MTs, each stem cell generates one self-renewing and one differentiating daughter cell. However, in flies with loss-of-function sav or scrib or gain-of-function Ras mutations, both daughter cells grew and behaved like stem cells, leading to the formation of tumors in MTs. Ras functioned downstream of Sav and Scrib in regulating the stem cell transformation. The Ras-transformed stem cells exhibited many of the hallmarks of cancer, such as increased proliferation, reduced cell death, and failure to differentiate. We further demonstrated that several signal transduction pathways (including MEK/MAPK, RhoA, PKA, and TOR) mediate Rasṕ function in the stem cell transformation. Therefore, we have identified a molecular mechanism that regulates stem cell transformation, and this finding may lead to strategies for preventing tumor formation in certain organs. PMID:20432470

  5. The Drosophila HNF4 nuclear receptor promotes glucose-stimulated insulin secretion and mitochondrial function in adults

    PubMed Central

    Barry, William E; Thummel, Carl S

    2016-01-01

    Although mutations in HNF4A were identified as the cause of Maturity Onset Diabetes of the Young 1 (MODY1) two decades ago, the mechanisms by which this nuclear receptor regulates glucose homeostasis remain unclear. Here we report that loss of Drosophila HNF4 recapitulates hallmark symptoms of MODY1, including adult-onset hyperglycemia, glucose intolerance and impaired glucose-stimulated insulin secretion (GSIS). These defects are linked to a role for dHNF4 in promoting mitochondrial function as well as the expression of Hex-C, a homolog of the MODY2 gene Glucokinase. dHNF4 is required in the fat body and insulin-producing cells to maintain glucose homeostasis by supporting a developmental switch toward oxidative phosphorylation and GSIS at the transition to adulthood. These findings establish an animal model for MODY1 and define a developmental reprogramming of metabolism to support the energetic needs of the mature animal. DOI: http://dx.doi.org/10.7554/eLife.11183.001 PMID:27185732

  6. Multigenerational Effects of Rearing Atmospheric Oxygen Level on the Tracheal Dimensions and Diffusing Capacities of Pupal and Adult Drosophila melanogaster.

    PubMed

    Klok, C Jaco; Kaiser, Alexander; Socha, John J; Lee, Wah-Keat; Harrison, Jon F

    2016-01-01

    Insects are small relative to vertebrates, and were larger in the Paleozoic when atmospheric oxygen levels were higher. The safety margin for oxygen delivery does not increase in larger insects, due to an increased mass-specific investment in the tracheal system and a greater use of convection in larger insects. Prior studies have shown that the dimensions and number of tracheal system branches varies inversely with rearing oxygen in embryonic and larval insects. Here we tested whether rearing in 10, 21, or 40 kPa atmospheric oxygen atmospheres for 5-7 generations affected the tracheal dimensions and diffusing capacities of pupal and adult Drosophila. Abdominal tracheae and pupal snorkel tracheae showed weak responses to oxygen, while leg tracheae showed strong, but imperfect compensatory changes. The diffusing capacity of leg tracheae appears closely matched to predicted oxygen transport needs by diffusion, perhaps explaining the consistent and significant responses of these tracheae to rearing oxygen. The reduced investment in tracheal structure in insects reared in higher oxygen levels may be important for conserving tissue PO2 and may provide an important mechanism for insects to invest only the space and materials necessary into respiratory structure. PMID:27343104

  7. Lamellipodia-based migrations of larval epithelial cells are required for normal closure of the adult epidermis of Drosophila

    PubMed Central

    Bischoff, Marcus

    2012-01-01

    Cell migrations are an important feature of animal development. They are, furthermore, essential to wound healing and tumour progression. Despite recent progress, it is still mysterious how cell migration is spatially and temporally regulated during morphogenesis and how cell migration is coordinated with other cellular behaviours to shape tissues and organs. The formation of the abdominal epithelium of Drosophila during metamorphosis provides an attractive system to study morphogenesis. Here, the diploid adult histoblasts replace the polyploid larval epithelial cells (LECs). Using in vivo 4D microscopy, I show that, besides apical constriction and apoptosis, the LECs undergo extensive coordinated migrations. The migrations follow a transition from a stationary (epithelial) to a migratory mode. The migratory behaviour is stimulated by autocrine Dpp signalling. Directed apical lamellipodia-like protrusions propel the cells. Initially, planar cell polarity determines the orientation of LEC migration. While LECs are migrating they also constrict apically, and changes in activity of the small GTPase Rho1 can favour one behaviour over the other. This study shows that the LECs play a more active role in morphogenesis than previously thought, with their migrations contributing to abdominal closure. It furthermore provides insights into how the migratory behaviour of cells is regulated during morphogenesis. PMID:22230614

  8. Drosophila homologs of transcriptional mediator complex subunits are required for adult cell and segment identity specification

    PubMed Central

    Boube, Muriel; Faucher, Christian; Joulia, Laurent; Cribbs, David L.; Bourbon, Henri-Marc

    2000-01-01

    The origins of specificity in gene expression are a central concern in understanding developmental control. Mediator protein complexes regulate transcriptional initiation, acting as modular adaptors linking specific transcription factors to core RNA polymerase II. Here, we identified the Drosophila homologs of 23 human mediator genes and mutations of two, dTRAP240 and of dTRAP80 (the putative fly homolog of yeast SRB4). Clonal analysis indicates a general role for dTRAP80 necessary for cell viability. The dTRAP240 gene is also essential, but cells lacking its function are viable and proliferate normally. Clones reveal localized developmental activities including a sex comb cell identity function. This contrasts with the ubiquitous nuclear accumulation of dTRAP240 protein in imaginal discs. Synergistic genetic interactions support shared developmental cell and segment identity functions of dTRAP240 and dTRAP80, potentially within a common complex. Further, they identify the homeotic Sex combs reduced product, required for the same cell/tissue identities, as a functional partner of these mediator proteins. PMID:11090137

  9. Proteomic Analysis of the Ubiquitin Landscape in the Drosophila Embryonic Nervous System and the Adult Photoreceptor Cells

    PubMed Central

    Ramirez, Juanma; Martinez, Aitor; Lectez, Benoit; Lee, So Young; Franco, Maribel; Barrio, Rosa; Dittmar, Gunnar; Mayor, Ugo

    2015-01-01

    Background Ubiquitination is known to regulate physiological neuronal functions as well as to be involved in a number of neuronal diseases. Several ubiquitin proteomic approaches have been developed during the last decade but, as they have been mostly applied to non-neuronal cell culture, very little is yet known about neuronal ubiquitination pathways in vivo. Methodology/Principal Findings Using an in vivo biotinylation strategy we have isolated and identified the ubiquitinated proteome in neurons both for the developing embryonic brain and for the adult eye of Drosophila melanogaster. Bioinformatic comparison of both datasets indicates a significant difference on the ubiquitin substrates, which logically correlates with the processes that are most active at each of the developmental stages. Detection within the isolated material of two ubiquitin E3 ligases, Parkin and Ube3a, indicates their ubiquitinating activity on the studied tissues. Further identification of the proteins that do accumulate upon interference with the proteasomal degradative pathway provides an indication of the proteins that are targeted for clearance in neurons. Last, we report the proof-of-principle validation of two lysine residues required for nSyb ubiquitination. Conclusions/Significance These data cast light on the differential and common ubiquitination pathways between the embryonic and adult neurons, and hence will contribute to the understanding of the mechanisms by which neuronal function is regulated. The in vivo biotinylation methodology described here complements other approaches for ubiquitome study and offers unique advantages, and is poised to provide further insight into disease mechanisms related to the ubiquitin proteasome system. PMID:26460970

  10. Tie-mediated signal from apoptotic cells protects stem cells in Drosophila melanogaster.

    PubMed

    Xing, Yalan; Su, Tin Tin; Ruohola-Baker, Hannele

    2015-01-01

    Many types of normal and cancer stem cells are resistant to killing by genotoxins, but the mechanism for this resistance is poorly understood. Here we show that adult stem cells in Drosophila melanogaster germline and midgut are resistant to ionizing radiation (IR) or chemically induced apoptosis and dissect the mechanism for this protection. We find that upon IR the receptor tyrosine kinase Tie/Tie-2 is activated, leading to the upregulation of microRNA bantam that represses FOXO-mediated transcription of pro-apoptotic Smac/DIABLO orthologue, Hid in germline stem cells. Knockdown of the IR-induced putative Tie ligand, Pvf1, a functional homologue of human Angiopoietin, in differentiating daughter cells renders germline stem cells sensitive to IR, suggesting that the dying daughters send a survival signal to protect their stem cells for future repopulation of the tissue. If conserved in cancer stem cells, this mechanism may provide therapeutic options for the eradication of cancer. PMID:25959206

  11. Mapping and Application of Enhancer-trap Flippase Expression in Larval and Adult Drosophila CNS

    PubMed Central

    Fore, Taylor R.; Ojwang, Audrey A.; Warner, Margaret L.; Peng, Xinyun; Bohm, Rudolf A.; Welch, William P.; Goodnight, Lindsey K.; Bao, Hong; Zhang, Bing

    2011-01-01

    The Gal4/ UAS binary method is powerful for gene and neural circuitry manipulation in Drosophila. For most neurobiological studies, however, Gal4 expression is rarely tissue-specific enough to allow for precise correlation of the circuit with behavioral readouts. To overcome this major hurdle, we recently developed the FINGR method to achieve a more restrictive Gal4 expression in the tissue of interest. The FINGR method has three components: 1) the traditional Gal4/UAS system; 2) a set of FLP/FRT-mediated Gal80 converting tools; and 3) enhancer-trap FLP (ET-FLP). Gal4 is used to define the primary neural circuitry of interest. Paring the Gal4 with a UAS-effector, such as UAS-MJD78Q or UAS-Shits, regulates the neuronal activity, which is in turn manifested by alterations in the fly behavior. With an additional UAS-reporter such as UAS-GFP, the neural circuit involved in the specific behavior can be simultaneously mapped for morphological analysis. For Gal4 lines with broad expression, Gal4 expression can be restricted by using two complementary Gal80-converting tools: tubP>Gal80> ('flip out') and tubP>stop>Gal80 ('flip in'). Finally, investigators can turn Gal80 on or off, respectively, with the help of tissue-specific ET-FLP. In the flip-in mode, Gal80 will repress Gal4 expression wherever Gal4 and ET-FLP intersect. In the flip-out mode, Gal80 will relieve Gal4 repression in cells in which Gal4 and FLP overlap. Both approaches enable the restriction of the number of cells in the Gal4-defined circuitry, but in an inverse pattern. The FINGR method is compatible with the vast collection of Gal4 lines in the fly community and highly versatile for traditional clonal analysis and for neural circuit mapping. In this protocol, we demonstrate the mapping of FLP expression patterns in select ET-FLPx2 lines and the effectiveness of the FINGR method in photoreceptor cells. The principle of the FINGR method should also be applicable to other genetic model organisms in which Gal

  12. Local overexpression of Su(H)-MAPK variants affects Notch target gene expression and adult phenotypes in Drosophila

    PubMed Central

    Auer, Jasmin S.; Nagel, Anja C.; Schulz, Adriana; Wahl, Vanessa; Preiss, Anette

    2015-01-01

    In Drosophila, Notch and EGFR signalling pathways are closely intertwined. Their relationship is mostly antagonistic, and may in part be based on the phosphorylation of the Notch signal transducer Suppressor of Hairless [Su(H)] by MAPK. Su(H) is a transcription factor that together with several cofactors regulates the expression of Notch target genes. Here we address the consequences of a local induction of three Su(H) variants on Notch target gene expression. To this end, wild-type Su(H), a phospho-deficient Su(H)MAPK-ko and a phospho-mimetic Su(H)MAPK-ac isoform were overexpressed in the central domain of the wing anlagen. The expression of the Notch target genes cut, wingless, E(spl)m8-HLH and vestigial, was monitored. For the latter two, reporter genes were used (E(spl)m8-lacZ, vgBE-lacZ). In general, Su(H)MAPK-ko induced a stronger response than wild-type Su(H), whereas the response to Su(H)MAPK-ac was very weak. Notch target genes cut, wingless and vgBE-lacZ were ectopically activated, whereas E(spl)m8-lacZ was repressed by overexpression of Su(H) proteins. In addition, in epistasis experiments an activated form of the EGF-receptor (DERact) or the MAPK (rlSEM) and individual Su(H) variants were co-overexpressed locally, to compare the resultant phenotypes in adult flies (thorax, wings and eyes) as well as to assay the response of the Notch target gene cut in cell clones. PMID:26702412

  13. Local overexpression of Su(H)-MAPK variants affects Notch target gene expression and adult phenotypes in Drosophila.

    PubMed

    Auer, Jasmin S; Nagel, Anja C; Schulz, Adriana; Wahl, Vanessa; Preiss, Anette

    2015-12-01

    In Drosophila, Notch and EGFR signalling pathways are closely intertwined. Their relationship is mostly antagonistic, and may in part be based on the phosphorylation of the Notch signal transducer Suppressor of Hairless [Su(H)] by MAPK. Su(H) is a transcription factor that together with several cofactors regulates the expression of Notch target genes. Here we address the consequences of a local induction of three Su(H) variants on Notch target gene expression. To this end, wild-type Su(H), a phospho-deficient Su(H) (MAPK-) (ko) and a phospho-mimetic Su(H) (MAPK-ac) isoform were overexpressed in the central domain of the wing anlagen. The expression of the Notch target genes cut, wingless, E(spl)m8-HLH and vestigial, was monitored. For the latter two, reporter genes were used (E(spl)m8-lacZ, vg (BE) -lacZ). In general, Su(H) (MAPK-) (ko) induced a stronger response than wild-type Su(H), whereas the response to Su(H) (MAPK-ac) was very weak. Notch target genes cut, wingless and vg (BE) -lacZ were ectopically activated, whereas E(spl)m8-lacZ was repressed by overexpression of Su(H) proteins. In addition, in epistasis experiments an activated form of the EGF-receptor (DER (act) ) or the MAPK (rl (SEM) ) and individual Su(H) variants were co-overexpressed locally, to compare the resultant phenotypes in adult flies (thorax, wings and eyes) as well as to assay the response of the Notch target gene cut in cell clones. PMID:26702412

  14. Origin and development of neuropil glia of the Drosophila larval and adult brain: two distinct glial populations derived from separate progenitors

    PubMed Central

    Omoto, Jaison Jiro; Yogi, Puja; Hartenstein, Volker

    2015-01-01

    Glia comprise a conspicuous population of non-neuronal cells in vertebrate and invertebrate nervous systems. Drosophila serves as a favorable model to elucidate basic principles of glial biology in vivo. The Drosophila neuropil glia (NPG), subdivided into astrocyte-like (ALG) and ensheathing glia (EG), extend reticular processes which associate with synapses and sheath-like processes which surround neuropil compartments, respectively. In this paper we characterize the development of NPG throughout fly brain development. We find that differentiated neuropil glia of the larval brain originate as a cluster of precursors derived from embryonic progenitors located in the basal brain. These precursors undergo a characteristic migration to spread over the neuropil surface while specifying/differentiating into primary ALG and EG. Embryonically-derived primary NPG are large cells which are few in number, and occupy relatively stereotyped positions around the larval neuropil surface. During metamorphosis, primary NPG undergo cell death. Neuropil glia of the adult (secondary NPG) are derived from type II lineages during the postembryonic phase of neurogliogenesis. These secondary NPG are much smaller in size but greater in number than primary NPG. Lineage tracing reveals that both NPG subtypes derive from intermediate neural progenitors of multipotent type II lineages. Taken together, this study reveals previously uncharacterized dynamics of NPG development and provides a framework for future studies utilizing Drosophila glia as a model. PMID:25779704

  15. Origin and development of neuropil glia of the Drosophila larval and adult brain: Two distinct glial populations derived from separate progenitors.

    PubMed

    Omoto, Jaison Jiro; Yogi, Puja; Hartenstein, Volker

    2015-08-15

    Glia comprise a conspicuous population of non-neuronal cells in vertebrate and invertebrate nervous systems. Drosophila serves as a favorable model to elucidate basic principles of glial biology in vivo. The Drosophila neuropil glia (NPG), subdivided into astrocyte-like (ALG) and ensheathing glia (EG), extend reticular processes which associate with synapses and sheath-like processes which surround neuropil compartments, respectively. In this paper we characterize the development of NPG throughout fly brain development. We find that differentiated neuropil glia of the larval brain originate as a cluster of precursors derived from embryonic progenitors located in the basal brain. These precursors undergo a characteristic migration to spread over the neuropil surface while specifying/differentiating into primary ALG and EG. Embryonically-derived primary NPG are large cells which are few in number, and occupy relatively stereotyped positions around the larval neuropil surface. During metamorphosis, primary NPG undergo cell death. Neuropil glia of the adult (secondary NPG) are derived from type II lineages during the postembryonic phase of neurogliogenesis. These secondary NPG are much smaller in size but greater in number than primary NPG. Lineage tracing reveals that both NPG subtypes derive from intermediate neural progenitors of multipotent type II lineages. Taken together, this study reveals previously uncharacterized dynamics of NPG development and provides a framework for future studies utilizing Drosophila glia as a model. PMID:25779704

  16. Gene expression profiling identifies the zinc-finger protein Charlatan as a regulator of intestinal stem cells in Drosophila

    PubMed Central

    Amcheslavsky, Alla; Nie, Yingchao; Li, Qi; He, Feng; Tsuda, Leo; Markstein, Michele; Ip, Y. Tony

    2014-01-01

    Intestinal stem cells (ISCs) in the adult Drosophila midgut can respond to tissue damage and support repair. We used genetic manipulation to increase the number of ISC-like cells in the adult midgut and performed gene expression profiling to identify potential ISC regulators. A detailed analysis of one of these potential regulators, the zinc-finger protein Charlatan, was carried out. MARCM clonal analysis and RNAi in precursor cells showed that loss of Chn function caused severe ISC division defects, including loss of EdU incorporation, phosphorylated histone 3 staining and expression of the mitotic protein Cdc2. Loss of Charlatan also led to a much reduced histone acetylation staining in precursor cells. Both the histone acetylation and ISC division defects could be rescued by the simultaneous decrease of the Histone Deacetylase 2. The overexpression of Charlatan blocked differentiation reversibly, but loss of Charlatan did not lead to automatic differentiation. The results together suggest that Charlatan does not simply act as an anti-differentiation factor but instead functions to maintain a chromatin structure that is compatible with stem cell properties, including proliferation. PMID:24961799

  17. Requirements for Hedgehog, a Segmental Polarity Gene, in Patterning Larval and Adult Cuticle of Drosophila

    PubMed Central

    Mohler, J.

    1988-01-01

    Mutations of the hedgehog gene are generally embryonic lethal, resulting in a lawn of denticles on the ventral surface. In strong alleles, no segmentation is obvious and the anteroposterior polarity of ventral denticles is lost. Temperature shift analysis of a temperature-sensitive allele indicates an embryonic activity period for hedgehog between 2.5 and 6 hr of embryonic development (at 25°) and a larval/pupal period from 4 to 7 days of development (at 25°). Mosaic analysis of hedgehog mutations in the adult cuticle indicates a series of defined defects associated with the failure of appropriate hedgehog expression. In particular, defects in the distal portions of the legs and antenna occur in association with homozygous hedgehog clones in the posterior compartment of those structures. Because the defects are associated with homozygous clones, but are not co-extensive, a type of ``domineering'' nonautonomy is proposed for the activity of the hedgehog gene. PMID:3147217

  18. Unusual presentation of left sided acute appendicitis in elderly male with asymptomatic midgut malrotation

    PubMed Central

    Singla, Animesh A.; Rajaratnam, Joshua; Singla, Apresh A.; Wiltshire, Stephanie; Kwik, Charlotte; Smigelski, Michelle; Morgan, Mathew J.

    2015-01-01

    Introduction Acute appendicitis in the setting of midgut malrotation is uncommon. Midgut malrotation commonly presents within the first month of life. A minority remain asymptomatic and may present with concomitant abdominal pathology making diagnosis difficult. Presentation of case This paper reports a rare case of a 73-year-old male diagnosed with acute appendicitis and asymptomatic MM .The patient underwent a laparoscopic appendectomy, but had an unplanned return to theatre for washout of post-operative intra-abdominal haematoma. Discussion Midgut malrotation is commonly described by the stringer classification and type 1a is the most common in adults. There have only been a handful of documented cases of acute appendicitis with midgut malrotation occurring in the adult population. Previous delay in diagnosis has led to a delay in definitive management. Both laparoscopic and open surgery has been used in the past. Conclusion Acute appendicitis with malrotation should be considered in elderly patients presenting with atypical signs and symptoms. Imaging offers significant advantage for timely and definitive management. PMID:26520036

  19. Discovery of midgut genes for the RNA interference control of corn rootworm

    PubMed Central

    Hu, Xu; Richtman, Nina M.; Zhao, Jian-Zhou; Duncan, Keith E.; Niu, Xiping; Procyk, Lisa A.; Oneal, Meghan A.; Kernodle, Bliss M.; Steimel, Joseph P.; Crane, Virginia C.; Sandahl, Gary; Ritland, Julie L.; Howard, Richard J.; Presnail, James K.; Lu, Albert L.; Wu, Gusui

    2016-01-01

    RNA interference (RNAi) is a promising new technology for corn rootworm control. This paper presents the discovery of new gene targets - dvssj1 and dvssj2, in western corn rootworm (WCR). Dvssj1 and dvssj2 are orthologs of the Drosophila genes snakeskin (ssk) and mesh, respectively. These genes encode membrane proteins associated with smooth septate junctions (SSJ) which are required for intestinal barrier function. Based on bioinformatics analysis, dvssj1 appears to be an arthropod-specific gene. Diet based insect feeding assays using double-stranded RNA (dsRNA) targeting dvssj1 and dvssj2 demonstrate targeted mRNA suppression, larval growth inhibition, and mortality. In RNAi treated WCR, injury to the midgut was manifested by “blebbing” of the midgut epithelium into the gut lumen. Ultrastructural examination of midgut epithelial cells revealed apoptosis and regenerative activities. Transgenic plants expressing dsRNA targeting dvssj1 show insecticidal activity and significant plant protection from WCR damage. The data indicate that dvssj1 and dvssj2 are effective gene targets for the control of WCR using RNAi technology, by apparent suppression of production of their respective smooth septate junction membrane proteins located within the intestinal lining, leading to growth inhibition and mortality. PMID:27464714

  20. Discovery of midgut genes for the RNA interference control of corn rootworm.

    PubMed

    Hu, Xu; Richtman, Nina M; Zhao, Jian-Zhou; Duncan, Keith E; Niu, Xiping; Procyk, Lisa A; Oneal, Meghan A; Kernodle, Bliss M; Steimel, Joseph P; Crane, Virginia C; Sandahl, Gary; Ritland, Julie L; Howard, Richard J; Presnail, James K; Lu, Albert L; Wu, Gusui

    2016-01-01

    RNA interference (RNAi) is a promising new technology for corn rootworm control. This paper presents the discovery of new gene targets - dvssj1 and dvssj2, in western corn rootworm (WCR). Dvssj1 and dvssj2 are orthologs of the Drosophila genes snakeskin (ssk) and mesh, respectively. These genes encode membrane proteins associated with smooth septate junctions (SSJ) which are required for intestinal barrier function. Based on bioinformatics analysis, dvssj1 appears to be an arthropod-specific gene. Diet based insect feeding assays using double-stranded RNA (dsRNA) targeting dvssj1 and dvssj2 demonstrate targeted mRNA suppression, larval growth inhibition, and mortality. In RNAi treated WCR, injury to the midgut was manifested by "blebbing" of the midgut epithelium into the gut lumen. Ultrastructural examination of midgut epithelial cells revealed apoptosis and regenerative activities. Transgenic plants expressing dsRNA targeting dvssj1 show insecticidal activity and significant plant protection from WCR damage. The data indicate that dvssj1 and dvssj2 are effective gene targets for the control of WCR using RNAi technology, by apparent suppression of production of their respective smooth septate junction membrane proteins located within the intestinal lining, leading to growth inhibition and mortality. PMID:27464714

  1. Midgut and salivary gland transcriptomes of the arbovirus vector Culicoides sonorensis (Diptera: Ceratopogonidae).

    PubMed

    Campbell, C L; Vandyke, K A; Letchworth, G J; Drolet, B S; Hanekamp, T; Wilson, W C

    2005-04-01

    Numerous Culicoides spp. are important vectors of livestock or human disease pathogens. Transcriptome information from midguts and salivary glands of adult female Culicoides sonorensis provides new insight into vector biology. Of 1719 expressed sequence tags (ESTs) from adult serum-fed female midguts harvested within 5 h of feeding, twenty-eight clusters of serine proteases were derived. Four clusters encode putative iron binding proteins (FER1, FERL, PXDL1, PXDL2), and two clusters encode metalloendopeptidases (MDP6C, MDP6D) that probably function in bloodmeal catabolism. In addition, a diverse variety of housekeeping cDNAs were identified. Selected midgut protease transcripts were analysed by quantitative real-time PCR (q-PCR): TRY1_115 and MDP6C mRNAs were induced in adult female midguts upon feeding, whereas TRY1_156 and CHYM1 were abundant in midguts both before and immediately after feeding. Of 708 salivary gland ESTs analysed, clusters representing two new classes of protein families were identified: a new class of D7 proteins and a new class of Kunitz-type protease inhibitors. Additional cDNAs representing putative immunomodulatory proteins were also identified: 5' nucleotidases, antigen 5-related proteins, a hyaluronidase, a platelet-activating factor acetylhydrolase, mucins and several immune response cDNAs. Analysis by q-PCR showed that all D7 and Kunitz domain transcripts tested were highly enriched in female heads compared with other tissues and were generally absent from males. The mRNAs of two additional protease inhibitors, TFPI1 and TFPI2, were detected in salivary glands of paraffin-embedded females by in situ hybridization. PMID:15796745

  2. The Drosophila Couch Potato Gene: An Essential Gene Required for Normal Adult Behavior

    PubMed Central

    Bellen, H. J.; Vaessin, H.; Bier, E.; Kolodkin, A.; D'Evelyn, D.; Kooyer, S.; Jan, Y. N.

    1992-01-01

    Through enhancer detection screens we have isolated 14 insertions in an essential gene that is expressed in embryonic sensory mother cells (SMC), in most cells of the mature embryonic peripheral nervous system (PNS), and in glial cells of the PNS and the central nervous system (CNS). Embryos homozygote for amorphic alleles die, but show no obvious defects in their cuticle, PNS or CNS. The gene has been named couch potato (cpo) because several insertional alleles alter adult behavior. Homozygous hypomorphic cpo flies recover slowly from ether anaesthesia, show aberrant flight behavior, fail to move toward light and do not exhibit normal negative geotactic behavior. However, the flies are able to groom and walk, and some are able to fly when prodded, indicating that not all processes required for behavior are severely affected. A molecular analysis shows that the 14 insertions are confined to a few hundred nucleotides which probably contain key regulatory sequences of the gene. The orientation of these insertions and their position within this DNA fragment play an important role in the couch potato phenotype. In situ hybridization to whole mount embryos suggest that some insertions affect the levels of transcription of cpo in most cells in which it is expressed. PMID:1644278

  3. Whole Mount Preparation of the Adult Drosophila Ventral Nerve Cord for Giant Fiber Dye Injection

    PubMed Central

    Boerner, Jana; Godenschwege, Tanja A.

    2011-01-01

    To analyze the axonal and dendritic morphology of neurons, it is essential to obtain accurate labeling of neuronal structures. Preparing well labeled samples with little to no tissue damage enables us to analyze cell morphology and to compare individual samples to each other, hence allowing the identification of mutant anomalies. In the demonstrated dissection method the nervous system remains mostly inside the adult fly. Through a dorsal incision, the abdomen and thorax are opened and most of the internal organs are removed. Only the dorsal side of the ventral nerve cord (VNC) and the cervical connective (CvC) containing the big axons of the giant fibers (GFs)1 are exposed, while the brain containing the GF cell body and dendrites remains2 in the intact head. In this preparation most nerves of the VNC should remain attached to their muscles. Following the dissection, the intracellular filling of the giant fiber (GF) with a fluorescent dye is demonstrated. In the CvC the GF axons are located at the dorsal surface and thus can be easily visualized under a microscope with differential interference contrast (DIC) optics. This allows the injection of the GF axons with dye at this site to label the entire GF including the axons and their terminals in the VNC. This method results in reliable and strong staining of the GFs allowing the neurons to be imaged immediately after filling with an epifluorescent microscope. Alternatively, the fluorescent signal can be enhanced using standard immunohistochemistry procedures3 suitable for high resolution confocal microscopy. PMID:21673644

  4. Adipocyte amino acid sensing controls adult germline stem cell number via the amino acid response pathway and independently of Target of Rapamycin signaling in Drosophila.

    PubMed

    Armstrong, Alissa R; Laws, Kaitlin M; Drummond-Barbosa, Daniela

    2014-12-01

    How adipocytes contribute to the physiological control of stem cells is a critical question towards understanding the link between obesity and multiple diseases, including cancers. Previous studies have revealed that adult stem cells are influenced by whole-body physiology through multiple diet-dependent factors. For example, nutrient-dependent pathways acting within the Drosophila ovary control the number and proliferation of germline stem cells (GSCs). The potential role of nutrient sensing by adipocytes in modulating stem cells in other organs, however, remains largely unexplored. Here, we report that amino acid sensing by adult adipocytes specifically modulates the maintenance of GSCs through a Target of Rapamycin-independent mechanism. Instead, reduced amino acid levels and the consequent increase in uncoupled tRNAs trigger activation of the GCN2-dependent amino acid response pathway within adipocytes, causing increased rates of GSC loss. These studies reveal a new step in adipocyte-stem cell crosstalk. PMID:25359724

  5. Adipocyte amino acid sensing controls adult germline stem cell number via the amino acid response pathway and independently of Target of Rapamycin signaling in Drosophila

    PubMed Central

    Armstrong, Alissa R.; Laws, Kaitlin M.; Drummond-Barbosa, Daniela

    2014-01-01

    How adipocytes contribute to the physiological control of stem cells is a critical question towards understanding the link between obesity and multiple diseases, including cancers. Previous studies have revealed that adult stem cells are influenced by whole-body physiology through multiple diet-dependent factors. For example, nutrient-dependent pathways acting within the Drosophila ovary control the number and proliferation of germline stem cells (GSCs). The potential role of nutrient sensing by adipocytes in modulating stem cells in other organs, however, remains largely unexplored. Here, we report that amino acid sensing by adult adipocytes specifically modulates the maintenance of GSCs through a Target of Rapamycin-independent mechanism. Instead, reduced amino acid levels and the consequent increase in uncoupled tRNAs trigger activation of the GCN2-dependent amino acid response pathway within adipocytes, causing increased rates of GSC loss. These studies reveal a new step in adipocyte-stem cell crosstalk. PMID:25359724

  6. Obstructive jaundice secondary to chronic midgut volvulus.

    PubMed Central

    Spitz, L; Orr, J D; Harries, J T

    1983-01-01

    A case of progressive extrahepatic biliary obstruction due to chronic midgut volvulus secondary to malrotation in a 5-month-old girl is presented. The obstruction to the bile duct was relieved after correction of the malrotation and division of the obstructing bands. Images Fig. 1 Fig. 2 PMID:6859923

  7. Seasonality and Locality Affect the Diversity of Anopheles gambiae and Anopheles coluzzii Midgut Microbiota from Ghana

    PubMed Central

    Gendrin, Mathilde; Pels, Nana Adjoa P.; Yeboah-Manu, Dorothy; Christophides, George K.; Wilson, Michael D.

    2016-01-01

    Symbiotic bacteria can have important implications in the development and competence of disease vectors. In Anopheles mosquitoes, the composition of the midgut microbiota is largely influenced by the larval breeding site, but the exact factors shaping this composition are currently unknown. Here, we examined whether the proximity to urban areas and seasons have an impact on the midgut microbial community of the two major malaria vectors in Africa, An. coluzzii and An. gambiae. Larvae and pupae were collected from selected habitats in two districts of Ghana during the dry and rainy season periods. The midgut microbiota of adults that emerged from these collections was determined by 454-pyrosequencing of the 16S ribosomal DNA. We show that in both mosquito species, Shewanellaceae constituted on average of 54% and 73% of the midgut microbiota from each site in the dry and rainy season, respectively. Enterobacteriaceae was found in comparatively low abundance below 1% in 22/30 samples in the dry season, and in 25/38 samples in the rainy season. Our data indicate that seasonality and locality significantly affect both the diversity of microbiota and the relative abundance of bacterial families with a positive impact of dry season and peri-urban settings. PMID:27322614

  8. Seasonality and Locality Affect the Diversity of Anopheles gambiae and Anopheles coluzzii Midgut Microbiota from Ghana.

    PubMed

    Akorli, Jewelna; Gendrin, Mathilde; Pels, Nana Adjoa P; Yeboah-Manu, Dorothy; Christophides, George K; Wilson, Michael D

    2016-01-01

    Symbiotic bacteria can have important implications in the development and competence of disease vectors. In Anopheles mosquitoes, the composition of the midgut microbiota is largely influenced by the larval breeding site, but the exact factors shaping this composition are currently unknown. Here, we examined whether the proximity to urban areas and seasons have an impact on the midgut microbial community of the two major malaria vectors in Africa, An. coluzzii and An. gambiae. Larvae and pupae were collected from selected habitats in two districts of Ghana during the dry and rainy season periods. The midgut microbiota of adults that emerged from these collections was determined by 454-pyrosequencing of the 16S ribosomal DNA. We show that in both mosquito species, Shewanellaceae constituted on average of 54% and 73% of the midgut microbiota from each site in the dry and rainy season, respectively. Enterobacteriaceae was found in comparatively low abundance below 1% in 22/30 samples in the dry season, and in 25/38 samples in the rainy season. Our data indicate that seasonality and locality significantly affect both the diversity of microbiota and the relative abundance of bacterial families with a positive impact of dry season and peri-urban settings. PMID:27322614

  9. The role of hemagglutinins in the midgut extracts of two lines of Aedes aegypti in their susceptibility to Dengue-2 virus.

    PubMed

    Barde, P V; Khan, M I; Gokhale, M D; Mishra, A C; Mourya, D T

    2004-01-01

    Hemagglutinin activity (HA) was studied in the midgut extracts from highly (h) and lowly susceptible strains of Aedes aegypti mosquitoes to Dengue-2 virus (DEN-2). HA in the midgut extracts from these two isofemale strains of mosquitoes was high in as compared to (h) mosquitoes. HA was found to be higher with chicken red blood cells (RBCs) than with rabbit and human RBCs of O group. Larval midgut extracts showed higher activity than those from adult female mosquitoes. Exposure of midgut extracts to 100 degrees C for 10 mins destroyed the activity. The activity was observed between pH 6 and pH 10. HA in midgut extracts was also studied using twenty different carbohydrates; five of them showed an inhibition of HA. The inhibitory carbohydrates, when incorporated into DEN-2-infected bloodmeal, showed a reduction in the susceptibility of mosquitoes to the virus as compared to the control ones fed on the virus alone. Similarly, when these carbohydrates were incorporated in the DEN-2-infected inoculum, the inoculated mosquitoes showed a reduction in the susceptibility to the virus. HA in the virus-infected midgut extracts was higher than that in the uninfected controls. These results suggest that the presence of HA in the midgut may be one of the factors that affect the susceptibility of Ae. aegypti mosquitoes to DEN-2. PMID:15462286

  10. Drosophila coracle, a Member of the Protein 4.1 Superfamily, Has Essential Structural Functions in the Septate Junctions and Developmental Functions in Embryonic and Adult Epithelial Cells

    PubMed Central

    Lamb, Rebecca S.; Ward, Robert E.; Schweizer, Liang; Fehon, Richard G.

    1998-01-01

    Although extensively studied biochemically, members of the Protein 4.1 superfamily have not been as well characterized genetically. Studies of coracle, a Drosophila Protein 4.1 homologue, provide an opportunity to examine the genetic functions of this gene family. coracle was originally identified as a dominant suppressor of EgfrElp, a hypermorphic form of the Drosophila Epidermal growth factor receptor gene. In this article, we present a phenotypic analysis of coracle, one of the first for a member of the Protein 4.1 superfamily. Screens for new coracle alleles confirm the null coracle phenotype of embryonic lethality and failure in dorsal closure, and they identify additional defects in the embryonic epidermis and salivary glands. Hypomorphic coracle alleles reveal functions in many imaginal tissues. Analysis of coracle mutant cells indicates that Coracle is a necessary structural component of the septate junction required for the maintenance of the transepithelial barrier but is not necessary for apical–basal polarity, epithelial integrity, or cytoskeletal integrity. In addition, coracle phenotypes suggest a specific role in cell signaling events. Finally, complementation analysis provides information regarding the functional organization of Coracle and possibly other Protein 4.1 superfamily members. These studies provide insights into a range of in vivo functions for coracle in developing embryos and adults. PMID:9843584

  11. Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, impaired adult social behavior and activity patterns

    PubMed Central

    Wise, Alexandra; Tenezaca, Luis; Fernandez, Robert W.; Schatoff, Emma; Flores, Julian; Ueda, Atsushi; Zhong, Xiaotian; Wu, Chun-Fang; Simon, Anne F.; Venkatesh, Tadmiri

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder in humans characterized by complex behavioral deficits, including intellectual disability, impaired social interactions and hyperactivity. ASD exhibits a strong genetic component with underlying multi-gene interactions. Candidate gene studies have shown that the neurobeachin gene is disrupted in human patients with idiopathic autism (Castermans et al., 2003). The gene for neurobeachin (NBEA) spans the common fragile site FRA 13A and encodes a signal scaffold protein (Savelyeva et al., 2006). In mice, NBEA has been shown to be involved in the trafficking and function of a specific subset of synaptic vesicles. (Medrihan et al., 2009; Savelyeva, Sagulenko, Schmitt, & Schwab, 2006). rugose (rg) is the Drosophila homologue of the mammalian and human neurobeachin. Our previous genetic and molecular analyses have shown that rg encodes an A kinase anchor protein (DAKAP 550), which interacts with components of the EGFR and Notch mediated signaling pathways, facilitating cross-talk between these and other pathways (Shamloula et al., 2002). We now present functional data from studies on the larval neuromuscular junction that reveal abnormal synaptic architecture and physiology. In addition, adult rg loss-of-function mutants exhibit defective social interactions, impaired habituation, aberrant locomotion and hyperactivity. These results demonstrate that Drosophila neurobeachin (rugose) mutants exhibit phenotypic characteristics reminiscent of human ASD and thus could serve as a genetic model for studying autism spectrum disorders. PMID:26100104

  12. The DHR96 nuclear receptor controls triacylglycerol homeostasis in Drosophila.

    PubMed

    Sieber, Matthew H; Thummel, Carl S

    2009-12-01

    Triacylglycerol (TAG) homeostasis is an integral part of normal physiology and essential for proper energy metabolism. Here we show that the single Drosophila ortholog of the PXR and CAR nuclear receptors, DHR96, plays an essential role in TAG homeostasis. DHR96 mutants are sensitive to starvation, have reduced levels of TAG in the fat body and midgut, and are resistant to diet-induced obesity, while DHR96 overexpression leads to starvation resistance and increased TAG levels. We show that DHR96 function is required in the midgut for the breakdown of dietary fat and that it exerts this effect through the CG5932 gastric lipase, which is essential for TAG homeostasis. This study provides insights into the regulation of dietary fat metabolism in Drosophila and demonstrates that the regulation of lipid metabolism is an ancestral function of the PXR/CAR/DHR96 nuclear receptor subfamily. PMID:19945405

  13. Constitutive activation of the midgut response to Bacillus thuringiensis in Bt-resistant Spodoptera exigua.

    PubMed

    Hernández-Martínez, Patricia; Navarro-Cerrillo, Gloria; Caccia, Silvia; de Maagd, Ruud A; Moar, William J; Ferré, Juan; Escriche, Baltasar; Herrero, Salvador

    2010-01-01

    Bacillus thuringiensis is the most effective microbial control agent for controlling numerous species from different insect orders. The main threat for the long term use of B. thuringiensis in pest control is the ability of insects to develop resistance. Thus, the identification of insect genes involved in conferring resistance is of paramount importance. A colony of Spodoptera exigua (Lepidoptera: Noctuidae) was selected for 15 years in the laboratory for resistance to Xentari™, a B. thuringiensis-based insecticide, reaching a final resistance level of greater than 1,000-fold. Around 600 midgut ESTs were analyzed by DNA-macroarray in order to find differences in midgut gene expression between susceptible and resistant insects. Among the differentially expressed genes, repat and arylphorin were identified and their increased expression was correlated with B. thuringiensis resistance. We also found overlap among genes that were constitutively over-expressed in resistant insects with genes that were up-regulated in susceptible insects after exposure to Xentari™, suggesting a permanent activation of the response to Xentari™ in resistant insects. Increased aminopeptidase activity in the lumen of resistant insects in the absence of exposure to Xentari™ corroborated the hypothesis of permanent activation of response genes. Increase in midgut proliferation has been proposed as a mechanism of response to pathogens in the adult from several insect species. Analysis of S. exigua larvae revealed that midgut proliferation was neither increased in resistant insects nor induced by exposure of susceptible larvae to Xentari™, suggesting that mechanisms other than midgut proliferation are involved in the response to B. thuringiensis by S. exigua larvae. PMID:20862260

  14. Constitutive Activation of the Midgut Response to Bacillus thuringiensis in Bt-Resistant Spodoptera exigua

    PubMed Central

    Hernández-Martínez, Patricia; Navarro-Cerrillo, Gloria; Caccia, Silvia; de Maagd, Ruud A.; Moar, William J.; Ferré, Juan; Escriche, Baltasar; Herrero, Salvador

    2010-01-01

    Bacillus thuringiensis is the most effective microbial control agent for controlling numerous species from different insect orders. The main threat for the long term use of B. thuringiensis in pest control is the ability of insects to develop resistance. Thus, the identification of insect genes involved in conferring resistance is of paramount importance. A colony of Spodoptera exigua (Lepidoptera: Noctuidae) was selected for 15 years in the laboratory for resistance to Xentari™, a B. thuringiensis-based insecticide, reaching a final resistance level of greater than 1,000-fold. Around 600 midgut ESTs were analyzed by DNA-macroarray in order to find differences in midgut gene expression between susceptible and resistant insects. Among the differentially expressed genes, repat and arylphorin were identified and their increased expression was correlated with B. thuringiensis resistance. We also found overlap among genes that were constitutively over-expressed in resistant insects with genes that were up-regulated in susceptible insects after exposure to Xentari™, suggesting a permanent activation of the response to Xentari™ in resistant insects. Increased aminopeptidase activity in the lumen of resistant insects in the absence of exposure to Xentari™ corroborated the hypothesis of permanent activation of response genes. Increase in midgut proliferation has been proposed as a mechanism of response to pathogens in the adult from several insect species. Analysis of S. exigua larvae revealed that midgut proliferation was neither increased in resistant insects nor induced by exposure of susceptible larvae to Xentari™, suggesting that mechanisms other than midgut proliferation are involved in the response to B. thuringiensis by S. exigua larvae. PMID:20862260

  15. A dataset for assessing temporal changes in gene expression during the aging process of adult Drosophila melanogaster.

    PubMed

    Carlson, Kimberly A; Zhang, Chi; Harshman, Lawrence G

    2016-06-01

    A Drosophila melanogaster genome-wide transcriptome dataset is available for studies on temporal patterns of gene expression. Gene expression was measured using two-dye color oligonucleotide arrays derived from Version 2 of the Drosophila Genomics Resource Center. A total of 15,158 oligonucleotide probes corresponded to a high proportion of the coding genes in the genome. The source of the flies was a highly genetically heterogeneous population maintained in an overlapping generation population regime. This regime was designed to maintain life history traits so that they were similar to those found in natural populations. Flies collected for the cohorts were obtained in a short period of time in a carefully controlled manner before virgin females and males were allowed to mate. Mated females were introduced into two large population cages in unusually high numbers (approximately 12,000 per cage) for a Drosophila laboratory longevity study. Samples were taken weekly from each cohort for 11 weeks; only a small proportion of surviving flies were present at the last two collection time points and thus they were exceptionally old compared to those collected in early-to-midlife samples. The data set is useful for studies of temporal patterns of gene expression as flies age. The very large size of each cohort, and relatively frequent incidence of temporal samples, allows for a fine-scale study of gene expression from young to very old flies. PMID:27252981

  16. Identification of singles bar as a direct transcriptional target of Drosophila Myocyte enhancer factor-2 and a regulator of adult myoblast fusion

    PubMed Central

    Brunetti, Tonya M.; Fremin, Brayon J.; Cripps, Richard M.

    2015-01-01

    In Drosophila, myoblast fusion is a conserved process in which founder cells (FCs) and fusion competent myoblasts (FCMs) fuse to form a syncytial muscle fiber. Mutants for the myogenic regulator Myocyte enhancer factor-2 (MEF2) show a failure of myoblast fusion, indicating that MEF2 regulates the fusion process. Indeed, chromatin immunoprecipitation studies show that several genes involved in myoblast fusion are bound by MEF2 during embryogenesis. Of these, the MARVEL domain gene singles bar (sing), is down-regulated in MEF2 knockdown pupae, and has five consensus MEF2 binding sites within a 9000-bp region. To determine if MEF2 is an essential and direct regulator of sing during pupal muscle development, we identified a 315-bp myoblast enhancer of sing. This enhancer was active during myoblast fusion, and mutation of two MEF2 sites significantly decreased enhancer activity. We show that lack of sing expression resulted in adult lethality and muscle loss, due to a failure of fusion during the pupal stage. Additionally, we sought to determine if sing was required in either FCs or FCMs to support fusion. Interestingly, knockdown of sing in either population did not significantly affect fusion, however, knockdown in both FCs and FCMs resulted in muscles with significantly reduced nuclei numbers, provisionally indicating that sing function is required in either cell type, but not both. Finally, we found that MEF2 regulated sing expression at the embryonic stage through the same 315-bp enhancer, indicating that sing is a MEF2 target at both critical stages of myoblast fusion. Our studies define for the first time how MEF2 directly controls fusion at multiple stages of the life cycle, and provide further evidence that the mechanisms of fusion characterized in Drosophila embryos is also used in the formation of the more complex adult muscles. PMID:25797154

  17. Midgut bacterial dynamics in Aedes aegypti.

    PubMed

    Terenius, Olle; Lindh, Jenny M; Eriksson-Gonzales, Karolina; Bussière, Luc; Laugen, Ane T; Bergquist, Helen; Titanji, Kehmia; Faye, Ingrid

    2012-06-01

    In vector mosquitoes, the presence of midgut bacteria may affect the ability to transmit pathogens. We have used a laboratory colony of Aedes aegypti as a model for bacterial interspecies competition and show that after a blood meal, the number of species (culturable on Luria-Bertani agar) that coexist in the midgut is low and that about 40% of the females do not harbor any cultivable bacteria. We isolated species belonging to the genera Bacillus, Elizabethkingia, Enterococcus, Klebsiella, Pantoea, Serratia, and Sphingomonas, and we also determined their growth rates, antibiotic resistance, and ex vivo inhibition of each other. To investigate the possible existence of coadaptation between midgut bacteria and their host, we fed Ae. aegypti cohorts with gut bacteria from human, a frog, and two mosquito species and followed the bacterial population growth over time. The dynamics of the different species suggests coadaptation between host and bacteria, and interestingly, we found that Pantoea stewartii isolated from Ae. aegypti survive better in Ae. aegypti as compared to P. stewartii isolated from the malaria mosquito Anopheles gambiae. PMID:22283178

  18. Cytotoxic effects of neem oil in the midgut of the predator Ceraeochrysa claveri.

    PubMed

    Scudeler, Elton Luiz; Garcia, Ana Silvia Gimenes; Padovani, Carlos Roberto; Pinheiro, Patricia Fernanda Felipe; dos Santos, Daniela Carvalho

    2016-01-01

    Studies of morphological and ultrastructural alterations in target organs have been useful for evaluating the sublethal effects of biopesticides regarded as safe for non-target organisms in ecotoxicological analyses. One of the most widely used biopesticides is neem oil, and its safety and compatibility with natural enemies have been further clarified through bioassays performed to analyze the effects of indirect exposure by the intake of poisoned prey. Thus, this study examined the cellular response of midgut epithelial cells of the adult lacewing, Ceraeochrysa claveri, to neem oil exposure via intake of neem oil-contaminated prey during the larval stage. C. claveri larvae were fed Diatraea saccharalis eggs treated with neem oil at concentrations of 0.5%, 1% and 2% throughout the larval stage. The adult females obtained from these treatments were used at two ages (newly emerged and at the start of oviposition) in morphological and ultrastructural analyses. Neem oil was found to cause pronounced cytotoxic effects in the adult midgut, such as cell dilation, emission of cytoplasmic protrusions, cell lysis, loss of integrity of the cell cortex, dilation of cisternae of the rough endoplasmic reticulum, swollen mitochondria, vesiculated appearance of the Golgi complex and dilated invaginations of the basal labyrinth. Epithelial cells responded to those injuries with various cytoprotective and detoxification mechanisms, including increases in cell proliferation, the number of calcium-containing cytoplasmic granules, and HSP 70 expression, autophagic processes and the development of smooth endoplasmic reticulum, but these mechanisms were insufficient for recovery from all of the cellular damage to the midgut. This study demonstrates that neem oil exposure impairs the midgut by causing sublethal effects that may affect the physiological functions of this organ, indicating the importance of studies of different life stages of this species and similar species to evaluate the

  19. Circular DNA Molecules in the Genus Drosophila

    PubMed Central

    Travaglini, E. C.; Schultz, J.

    1972-01-01

    The satellite DNA's from the embryos of five species of Drosophila (D. melanogaster, D. simulans, D. nasuta, D. virilis and D. hydei) have been analyzed for the presence of closed circular duplex DNA molecules, as determined by CsCl-EBr gradients. Circular DNA molecules were found in every species but D. melanogaster. Analyses of cell fractions from adult Drosophila and organ fractions from Drosophila larvae show that fractions containing mitochondria are highly enriched in these molecules. PMID:4643820

  20. The bHLH Transcription Factor Hand Regulates the Expression of Genes Critical to Heart and Muscle Function in Drosophila melanogaster

    PubMed Central

    Hallier, Benjamin; Hoffmann, Julia; Roeder, Thomas; Tögel, Markus; Meyer, Heiko; Paululat, Achim

    2015-01-01

    Hand proteins belong to the highly conserved family of basic Helix-Loop-Helix transcription factors and are critical to distinct developmental processes, including cardiogenesis and neurogenesis in vertebrates. In Drosophila melanogaster a single orthologous hand gene is expressed with absence of the respective protein causing semilethality during early larval instars. Surviving adult animals suffer from shortened lifespan associated with a disorganized myofibrillar structure being apparent in the dorsal vessel, the wing hearts and in midgut tissue. Based on these data, the major biological significance of Hand seems to be related to muscle development, maintenance or function; however, up to now the physiological basis for Hand functionality remains elusive. Thus, the identification of genes whose expression is, directly or indirectly, regulated by Hand has considerable relevance with respect to understanding its biological functionality in flies and vertebrates. Beneficially, hand mutants are viable and exhibit affected tissues, which renders Drosophila an ideal model to investigate up- or downregulated target genes by a comparative microarray approach focusing on the respective tissues from mutant specimens. Our present work reveals for the first time that Drosophila Hand regulates the expression of numerous genes of diverse physiological relevancy, including distinct factors required for proper muscle development and function such as Zasp52 or Msp-300. These results relate Hand activity to muscle integrity and functionality and may thus be highly beneficial to the evaluation of corresponding hand phenotypes. PMID:26252215

  1. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. X. Age-specific dynamics of adult epicuticular hydrocarbon expression in response to different host plants

    PubMed Central

    Etges, William J; de Oliveira, Cassia C

    2014-01-01

    Analysis of sexual selection and sexual isolation in Drosophila mojavensis and its relatives has revealed a pervasive role of rearing substrates on adult courtship behavior when flies were reared on fermenting cactus in preadult stages. Here, we assessed expression of contact pheromones comprised of epicuticular hydrocarbons (CHCs) from eclosion to 28 days of age in adults from two populations reared on fermenting tissues of two host cacti over the entire life cycle. Flies were never exposed to laboratory food and showed significant reductions in average CHC amounts consistent with CHCs of wild-caught flies. Overall, total hydrocarbon amounts increased from eclosion to 14–18 days, well past age at sexual maturity, and then declined in older flies. Most flies did not survive past 4 weeks. Baja California and mainland populations showed significantly different age-specific CHC profiles where Baja adults showed far less age-specific changes in CHC expression. Adults from populations reared on the host cactus typically used in nature expressed more CHCs than on the alternate host. MANCOVA with age as the covariate for the first six CHC principal components showed extensive differences in CHC composition due to age, population, cactus, sex, and age × population, age × sex, and age × cactus interactions. Thus, understanding variation in CHC composition as adult D. mojavensis age requires information about population and host plant differences, with potential influences on patterns of mate choice, sexual selection, and sexual isolation, and ultimately how these pheromones are expressed in natural populations. Studies of drosophilid aging in the wild are badly needed. PMID:25360246

  2. Bacterial Communities and Midgut Microbiota Associated with Mosquito Populations from Waste Tires in East-Central Illinois.

    PubMed

    Kim, Chang-Hyun; Lampman, Richard L; Muturi, Ephantus J

    2015-01-01

    Mosquito-microbe interactions tend to influence larval nutrition, immunity, and development, as well as fitness and vectorial capacity of adults. Understanding the role of different bacterial species not only improves our knowledge of the physiological and ecological consequences of these interactions, but also provides the basis for developing novel strategies for controlling mosquito-borne diseases. We used culture-dependent and culture-independent techniques to characterize the bacterial composition and abundance in water and midgut samples of larval and adult females of Aedes japonicus (Theobald), Aedes triseriatus (Say), and Culex restuans (Theobald) collected from waste tires at two wooded study sites in Urbana, IL. The phylum-specific real-time quantitative polymerase chain reaction assay revealed a higher proportion of Actinobacteria and a lower proportion of gamma-Proteobacteria and Bacteroidetes in water samples and larval midguts compared to adult female midguts. Only 15 of the 57 bacterial species isolated in this study occurred in both study sites. The number of bacterial species was highest in water samples (28 species from Trelease Woods; 25 species from South Farms), intermediate in larval midguts (13 species from Ae. japonicus; 12 species from Ae. triseriatus; 8 species from Cx. restuans), and lowest in adult female midguts (2 species from Ae. japonicus; 3 species from Ae. triseriatus). These findings suggest that the composition and richness of bacterial communities varies both between habitats and among mosquito species and that the reduction in bacteria diversity during metamorphosis is more evident among bacteria detected using the culture-dependent method. PMID:26336281

  3. Environmental ethanol as an ecological constraint on dietary breadth of Spotted-Wing Drosophila, Drosophila suzukii Mat. (Diptera: Drosophilidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spotted-wing Drosophila (SWD), Drosophila suzukii, is a recent fruit pest of the Americas whose destructiveness stems from its subcutaneous insertion of eggs into cultivated berries via a female’s prominent double bladed and serrated ovipositor. Atypical of most other Drosophila, D. suzukii adults a...

  4. Curly Encodes Dual Oxidase, Which Acts with Heme Peroxidase Curly Su to Shape the Adult Drosophila Wing

    PubMed Central

    Hurd, Thomas Ryan; Liang, Feng-Xia; Lehmann, Ruth

    2015-01-01

    Abstract Curly, described almost a century ago, is one of the most frequently used markers in Drosophila genetics. Despite this the molecular identity of Curly has remained obscure. Here we show that Curly mutations arise in the gene dual oxidase (duox), which encodes a reactive oxygen species (ROS) generating NADPH oxidase. Using Curly mutations and RNA interference (RNAi), we demonstrate that Duox autonomously stabilizes the wing on the last day of pupal development. Through genetic suppression studies, we identify a novel heme peroxidase, Curly Su (Cysu) that acts with Duox to form the wing. Ultrastructural analysis suggests that Duox and Cysu are required in the wing to bond and adhere the dorsal and ventral cuticle surfaces during its maturation. In Drosophila, Duox is best known for its role in the killing of pathogens by generating bactericidal ROS. Our work adds to a growing number of studies suggesting that Duox’s primary function is more structural, helping to form extracellular and cuticle structures in conjunction with peroxidases. PMID:26587980

  5. Biology and physiology of Drosophila suzukii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spotted wing drosophila, Drosophila suzukii, quickly emerged as a devastating invasive pest of small and stone fruits in the Americas and Europe. To better understand the population dynamics of D. suzukii, we reviewed recent work on juvenile development, adult reproduction, and seasonal variation in...

  6. The Drosophila melanogaster importin alpha3 locus encodes an essential gene required for the development of both larval and adult tissues.

    PubMed Central

    Mason, D Adam; Máthé, Endre; Fleming, Robert J; Goldfarb, David S

    2003-01-01

    The nuclear transport of classical nuclear localization signal (cNLS)-containing proteins is mediated by the cNLS receptor importin alpha. The conventional importin alpha gene family in metazoan animals is composed of three clades that are conserved between flies and mammals and are referred to here as alpha1, alpha2, and alpha3. In contrast, plants and fungi contain only alpha1 genes. In this study we report that Drosophila importin alpha3 is required for the development of both larval and adult tissues. Importin alpha3 mutant flies die around the transition from first to second instar larvae, and homozygous importin alpha3 mutant eyes are defective. The transition to second instar larvae was rescued with importin alpha1, alpha2, or alpha3 transgenes, indicating that Importin alpha3 is normally required at this stage for an activity shared by all three importin alpha's. In contrast, an alpha3-specific biochemical activity(s) of Importin alpha3 is probably required for development to adults and photoreceptor cell development, since only an importin alpha3 transgene rescued these processes. These results are consistent with the view that the importin alpha's have both overlapping and distinct functions and that their role in animal development involves the spatial and temporal control of their expression. PMID:14704178

  7. Control of adult stem cells in vivo by a dynamic physiological environment: diet-dependent systemic factors in Drosophila and beyond

    PubMed Central

    Ables, Elizabeth T.; Laws, Kaitlin M.; Drummond-Barbosa, Daniela

    2012-01-01

    Adult stem cells are inextricably linked to whole-body physiology and nutrient availability through complex systemic signaling networks. A full understanding of how stem cells sense and respond to dietary fluctuations will require identifying key systemic mediators, as well as elucidating how they are regulated and integrated with local and intrinsic factors across multiple tissues. Studies focused on the Drosophila germline have generated valuable insights into how stem cells are controlled by diet-dependent pathways, and increasing evidence suggests that diverse adult stem cell populations respond to nutrients through similar mechanisms. Systemic signals, including nutrients themselves and diet-regulated hormones such as Insulin/Insulin-like growth factor or steroid hormones, can directly or indirectly affect stem cell behavior by modifying local cell-cell communication or intrinsic factors. The physiological regulation of stem cells in response to nutritional status not only is a fascinating biological problem, but also has clinical implications, as research in this field holds the key to non-invasive approaches for manipulating stem cells in vivo. In addition, given the known associations between diet, stem cells, and cancer risk, this research may inspire novel anti-cancer therapies. PMID:23799567

  8. The Drosophila Z-disc Protein Z(210) Is an Adult Muscle Isoform of Zasp52, Which Is Required for Normal Myofibril Organization in Indirect Flight Muscles*

    PubMed Central

    Chechenova, Maria B.; Bryantsev, Anton L.; Cripps, Richard M.

    2013-01-01

    The Z-disc is a critical anchoring point for thin filaments as they slide during muscle contraction. Therefore, identifying components of the Z-disc is critical for fully comprehending how myofibrils assemble and function. In the adult Drosophila musculature, the fibrillar indirect flight muscles accumulate a >200 kDa Z-disc protein termed Z(210), the identity of which has to date been unknown. Here, we use mass spectrometry and gene specific knockdown studies, to identify Z(210) as an adult isoform of the Z-disc protein Zasp52. The Zasp52 primary transcript is extensively alternatively spliced, and we describe its splicing pattern in the flight muscles, identifying a new Zasp52 isoform, which is the one recognized by the Z(210) antibody. We also demonstrate that Zasp52 is required for the association of α-actinin with the flight muscle Z-disc, and for normal sarcomere structure. These studies expand our knowledge of Zasp isoforms and their functions in muscle. Given the role of Zasp proteins in mammalian muscle development and disease, our results have relevance to mammalian muscle biology. PMID:23271733

  9. Non-rotated midgut in a dog.

    PubMed

    Kirk, E J; Nutman, A W; Murray, S L

    2009-02-01

    Macroscopic observations of the partly-dissected abdomen of the preserved cadaver of a Labrador bitch were recorded and photographs taken. Neither the duodenum nor the colon looped around the root of the great (jejuno-ileal) mesentery, but both were long enough to have done so. The abdominal organs appeared to be otherwise normal, as did the other parts of the body. The condition appeared to have resulted from non-rotation of the midgut during embryonic development and to have no adverse effect on the animal. PMID:18983624

  10. Imidacloprid impairs the post-embryonic development of the midgut in the yellow fever mosquito Stegomyia aegypti (=Aedes aegypti).

    PubMed

    Fernandes, K M; Gonzaga, W G; Pascini, T V; Miranda, F R; Tomé, H V V; Serrão, J E; Martins, G F

    2015-09-01

    The mosquito Stegomyia aegypti (=Aedes aegypti) (Diptera: Culicidae) is a vector for the dengue and yellow fever viruses. As blood digestion occurs in the midgut, this organ constitutes the route of entry of many pathogens. The effects of the insecticide imidacloprid on the survival of St. aegypti were investigated and the sub-lethal effects of the insecticide on midgut development were determined. Third instar larvae were exposed to different concentrations of imidacloprid (0.15, 1.5, 3.0, 6.0 and 15.0 p.p.m.) and survival was monitored every 24 h for 10 days. Midguts from imidacloprid-treated insects at different stages of development were dissected and processed for analyses by transmission electron microscopy, immunofluorescence microscopy and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assays. Imidacloprid concentrations of 3.0 and 15.0 p.p.m. were found to affect midgut development similarly. Digestive cells of the fourth instar larvae (L4) midgut exposed to imidacloprid had more multilamellar bodies, abundantly found in the cell apex, and more electron-lucent vacuoles in the basal region compared with those from untreated insects. Moreover, imidacloprid interfered with the differentiation of regenerative cells, dramatically reducing the number of digestive and endocrine cells and leading to malformation of the midgut epithelium in adults. The data demonstrate that imidacloprid can reduce the survival of mosquitoes and thus indicate its potentially high efficacy in the control of St. aegypti populations. PMID:25968596

  11. The effect of developmental nutrition on life span and fecundity depends on the adult reproductive environment in Drosophila melanogaster

    PubMed Central

    May, Christina M; Doroszuk, Agnieszka; Zwaan, Bas J

    2015-01-01

    Both developmental nutrition and adult nutrition affect life-history traits; however, little is known about whether the effect of developmental nutrition depends on the adult environment experienced. We used the fruit fly to determine whether life-history traits, particularly life span and fecundity, are affected by developmental nutrition, and whether this depends on the extent to which the adult environment allows females to realize their full reproductive potential. We raised flies on three different developmental food levels containing increasing amounts of yeast and sugar: poor, control, and rich. We found that development on poor or rich larval food resulted in several life-history phenotypes indicative of suboptimal conditions, including increased developmental time, and, for poor food, decreased adult weight. However, development on poor larval food actually increased adult virgin life span. In addition, we manipulated the reproductive potential of the adult environment by adding yeast or yeast and a male. This manipulation interacted with larval food to determine adult fecundity. Specifically, under two adult conditions, flies raised on poor larval food had higher reproduction at certain ages – when singly mated this occurred early in life and when continuously mated with yeast this occurred during midlife. We show that poor larval food is not necessarily detrimental to key adult life-history traits, but does exert an adult environment-dependent effect, especially by affecting virgin life span and altering adult patterns of reproductive investment. Our findings are relevant because (1) they may explain differences between published studies on nutritional effects on life-history traits; (2) they indicate that optimal nutritional conditions are likely to be different for larvae and adults, potentially reflecting evolutionary history; and (3) they urge for the incorporation of developmental nutritional conditions into the central life-history concept of

  12. Snoo and Dpp Act as Spatial and Temporal Regulators Respectively of Adult Progenitor Cells in the Drosophila Trachea

    PubMed Central

    Djabrayan, Nareg J.-V.; Casanova, Jordi

    2016-01-01

    Clusters of differentiated cells contributing to organ structures retain the potential to re-enter the cell cycle and replace cells lost during development or upon damage. To do so, they must be designated spatially and respond to proper activation cues. Here we show that in the case of Drosophila differentiated larval tracheal cells, progenitor potential is conferred by the spatially restricted activity of the Snoo transcription cofactor. Furthermore, Dpp signalling regulated by endocrine hormonal cues provides the temporal trigger for their activation. Finally, we elucidate the genetic network elicited by Snoo and Dpp activity. These results illustrate a regulatory mechanism that translates intrinsic potential and extrinsic cues into the facultative stem cell features of differentiated progenitors. PMID:26942411

  13. Snoo and Dpp Act as Spatial and Temporal Regulators Respectively of Adult Progenitor Cells in the Drosophila Trachea.

    PubMed

    Djabrayan, Nareg J-V; Casanova, Jordi

    2016-03-01

    Clusters of differentiated cells contributing to organ structures retain the potential to re-enter the cell cycle and replace cells lost during development or upon damage. To do so, they must be designated spatially and respond to proper activation cues. Here we show that in the case of Drosophila differentiated larval tracheal cells, progenitor potential is conferred by the spatially restricted activity of the Snoo transcription cofactor. Furthermore, Dpp signalling regulated by endocrine hormonal cues provides the temporal trigger for their activation. Finally, we elucidate the genetic network elicited by Snoo and Dpp activity. These results illustrate a regulatory mechanism that translates intrinsic potential and extrinsic cues into the facultative stem cell features of differentiated progenitors. PMID:26942411

  14. Cell Competition Modifies Adult Stem Cell and Tissue Population Dynamics in a JAK-STAT-Dependent Manner

    PubMed Central

    Kolahgar, Golnar; Suijkerbuijk, Saskia J.E.; Kucinski, Iwo; Poirier, Enzo Z.; Mansour, Sarah; Simons, Benjamin D.; Piddini, Eugenia

    2015-01-01

    Summary Throughout their lifetime, cells may suffer insults that reduce their fitness and disrupt their function, and it is unclear how these potentially harmful cells are managed in adult tissues. We address this question using the adult Drosophila posterior midgut as a model of homeostatic tissue and ribosomal Minute mutations to reduce fitness in groups of cells. We take a quantitative approach combining lineage tracing and biophysical modeling and address how cell competition affects stem cell and tissue population dynamics. We show that healthy cells induce clonal extinction in weak tissues, targeting both stem and differentiated cells for elimination. We also find that competition induces stem cell proliferation and self-renewal in healthy tissue, promoting selective advantage and tissue colonization. Finally, we show that winner cell proliferation is fueled by the JAK-STAT ligand Unpaired-3, produced by Minute−/+ cells in response to chronic JNK stress signaling. PMID:26212135

  15. Cell Competition Modifies Adult Stem Cell and Tissue Population Dynamics in a JAK-STAT-Dependent Manner.

    PubMed

    Kolahgar, Golnar; Suijkerbuijk, Saskia J E; Kucinski, Iwo; Poirier, Enzo Z; Mansour, Sarah; Simons, Benjamin D; Piddini, Eugenia

    2015-08-10

    Throughout their lifetime, cells may suffer insults that reduce their fitness and disrupt their function, and it is unclear how these potentially harmful cells are managed in adult tissues. We address this question using the adult Drosophila posterior midgut as a model of homeostatic tissue and ribosomal Minute mutations to reduce fitness in groups of cells. We take a quantitative approach combining lineage tracing and biophysical modeling and address how cell competition affects stem cell and tissue population dynamics. We show that healthy cells induce clonal extinction in weak tissues, targeting both stem and differentiated cells for elimination. We also find that competition induces stem cell proliferation and self-renewal in healthy tissue, promoting selective advantage and tissue colonization. Finally, we show that winner cell proliferation is fueled by the JAK-STAT ligand Unpaired-3, produced by Minute(-/+) cells in response to chronic JNK stress signaling. PMID:26212135

  16. Dynamics of Midgut Microflora and Dengue Virus Impact on Life History Traits in Aedes aegypti

    PubMed Central

    Hill, Casey L.; Sharma, Avinash; Shouche, Yogesh; Severson, David W.

    2014-01-01

    Significant morbidity and potential mortality following dengue virus infection is a re-emerging global health problem. Due to the limited effectiveness of current disease control methods, mosquito biologists have been searching for new methods of controlling dengue transmission. While much effort has concentrated on determining genetic aspects to vector competence, paratransgenetic approaches could also uncover novel vector control strategies. The interactions of mosquito midgut microflora and pathogens may play significant roles in vector biology. However, little work has been done to see how the microbiome influences the host's fitness and ultimately vector competence. Here we investigated the effects of the midgut microbial environment and dengue infection on several fitness characteristics among three strains of the primary dengue virus vector mosquito Aedes aegypti. This included comparisons of dengue infection rates of females with and without their normal midgut flora. According to our findings, few effects on fitness characteristics were evident following microbial clearance or with dengue virus infection. Adult survivorship significantly varied due to strain and in one strain varied due to antibiotic treatment. Fecundity varied in one strain due to microbial clearance by antibiotics but no variation was observed in fertility due to either treatment. We show here that fitness characteristics of Ae. aegypti vary largely between strains, including varying response to microflora presence or absence, but did not vary in response to dengue virus infection. PMID:25193134

  17. Dynamics of midgut microflora and dengue virus impact on life history traits in Aedes aegypti.

    PubMed

    Hill, Casey L; Sharma, Avinash; Shouche, Yogesh; Severson, David W

    2014-12-01

    Significant morbidity and potential mortality following dengue virus infection is a re-emerging global health problem. Due to the limited effectiveness of current disease control methods, mosquito biologists have been searching for new methods of controlling dengue transmission. While much effort has concentrated on determining genetic aspects to vector competence, paratransgenetic approaches could also uncover novel vector control strategies. The interactions of mosquito midgut microflora and pathogens may play significant roles in vector biology. However, little work has been done to see how the microbiome influences the host's fitness and ultimately vector competence. Here we investigated the effects of the midgut microbial environment and dengue infection on several fitness characteristics among three strains of the primary dengue virus vector mosquito Aedes aegypti. This included comparisons of dengue infection rates of females with and without their normal midgut flora. According to our findings, few effects on fitness characteristics were evident following microbial clearance or with dengue virus infection. Adult survivorship significantly varied due to strain and in one strain varied due to antibiotic treatment. Fecundity varied in one strain due to microbial clearance by antibiotics but no variation was observed in fertility due to either treatment. We show here that fitness characteristics of Ae. aegypti vary largely between strains, including varying response to microflora presence or absence, but did not vary in response to dengue virus infection. PMID:25193134

  18. Incidental midgut malrotation detected during second laparotomy: Case report and literature review

    PubMed Central

    Vural, Veli; Türkoğlu, Mehmet Akif; Karatas, Gulnur

    2014-01-01

    Introduction Intestinal malrotation is defined as intestinal nonrotation or incomplete rotation around superior mesenteric artery (SMA), involving anomalies of intestinal fixation as well. The patients may be recognized incidentally during other surgical procedures or at autopsy. Here in, we present a case of midgut malrotation which was diagnosed incidentally during hepaticojejunostomy procedure for benign biliary stricture. Presentation of case A 46 years old male patient was referred to our clinic with failed surgery for biliary stricture due to extensive adhesions. Prior to our surgery, intestinal malrotation was not reported and noticed by the diagnostic tools. When the patient underwent relaparotomy, midgut malrotation was observed. Discussion Distruption in the normal embryological development of bowel is the cause of intestinal malrotation. Various anatomic configurations and anomalies resulting from rotation anomalies of midgut. Adult patients are usually asymptomatic and the anomaly is discovered only at autopsy or incidentally at surgery. The role of additional surgery especially in patients with asymptomatic disease related to malrotation is debated. Conclusion Performing loop hepaticojejunostomy with Braun enteroenterostomy is feasible and acceptable option rather than Roux-N-Y hepaticojejunostomy in case of intestinal malrotation. PMID:25533325

  19. Monitoring the developmental impact of copper and silver nanoparticle exposure in Drosophila and their microbiomes.

    PubMed

    Han, Xu; Geller, Brennen; Moniz, Kristy; Das, Pranab; Chippindale, Adam K; Walker, Virginia K

    2014-07-15

    There is concern that waste waters containing manufactured metal nanoparticles (NPs) originating from consumer goods, will find their way into streams and larger water bodies. Aquatic invertebrates could be vulnerable to such pollution, and here we have used fruit flies, Drosophila melanogaster, as a model invertebrate, to test for the effect of NPs on fitness. Both copper NP and microparticle (MP)-containing medium slowed development, reduced adult longevity and decreased sperm competition. In contrast, ingestion of silver resulted in a significant reduction in developmental success only if the metal particles were nanosized. Ag NP-treatments resulted in reduced developmental success as assessed by larval and pupal survival as well as larval climbing ability, but there was no impact of silver on adult longevity and little effect on reproductive success. However, Cu NPs generally appeared to be no more toxic to this invertebrate model than the bulk counterpart. The impact of silver ingestion in larvae was further investigated by 454 pyrosequencing of the 16S rRNA genes of the midgut flora. There was a striking reduction in the diversity of the gut microbiota of Ag NP-treated larvae with a rise in the predominance of Lactobacillus brevis and a decrease in Acetobacter compared to control or Ag MP-treatment groups. Importantly, these experiments show that perturbation of the microbial assemblage within a metazoan model may contribute to Ag NP-mediated toxicity. These observations have implications for impact assessments of nanoparticles as emerging contaminants. PMID:24462134

  20. Local and systemic effects of targeted zinc redistribution in Drosophila neuronal and gastrointestinal tissues.

    PubMed

    Richards, Christopher D; Burke, Richard

    2015-12-01

    While the effects of systemic zinc ion deficiency and toxicity on animal health are well documented, the impacts of localized, tissue-specific disturbances in zinc homeostasis are less well understood. Previously we have identified zinc dyshomeostasis scenarios caused by the targeted manipulation of zinc transport genes in the Drosophila eye. Over expression of the uptake transporter dZIP42C.1 (dZIP1) combined with knockdown of the efflux transporter dZNT63C (dZNT1) causes a zinc toxicity phenotype, as does over expression of dZIP71B or dZNT86D. However, all three genotypes result in different morphologies, responses to dietary zinc, and genetic interactions with the remaining zinc transport genes, indicating that each causes a different redistribution of zinc within affected cells. dZNT86D (eGFP) over expression generates a completely different phenotype, interpreted as a Golgi zinc deficiency. Here we assess the effect of each of these transgenes when targeted to a range of Drosophila tissues. We find that dZIP71B is a particularly potent zinc uptake gene, causing early developmental lethality when targeted to multiple different tissue types. dZNT86D over expression (Golgi-only zinc toxicity) is less deleterious, but causes highly penetrant adult cuticle, sensory bristle and wing expansion defects. The dZIP42C.1 over expression, dZNT63C knockdown combination causes only moderate adult cuticle defects and sensitivity to dietary zinc when expressed in the midgut. The Golgi-only zinc deficiency caused by dZNT86D (eGFP) expression results in mild cuticle defects, highly penetrant wing expansion defects and developmental lethality when targeted to the central nervous system and, uniquely, the fat bodies. PMID:26411574

  1. Expression of the Troponin C at 41C Gene in Adult Drosophila Tubular Muscles Depends upon Both Positive and Negative Regulatory Inputs

    PubMed Central

    Chechenova, Maria B.; Maes, Sara; Cripps, Richard M.

    2015-01-01

    Most animals express multiple isoforms of structural muscle proteins to produce tissues with different physiological properties. In Drosophila, the adult muscles include tubular-type muscles and the fibrillar indirect flight muscles. Regulatory processes specifying tubular muscle fate remain incompletely understood, therefore we chose to analyze the transcriptional regulation of TpnC41C, a Troponin C gene expressed in the tubular jump muscles, but not in the fibrillar flight muscles. We identified a 300-bp promoter fragment of TpnC41C sufficient for the fiber-specific reporter expression. Through an analysis of this regulatory element, we identified two sites necessary for the activation of the enhancer. Mutations in each of these sites resulted in 70% reduction of enhancer activity. One site was characterized as a binding site for Myocyte Enhancer Factor-2. In addition, we identified a repressive element that prevents activation of the enhancer in other muscle fiber types. Mutation of this site increased jump muscle-specific expression of the reporter, but more importantly reporter expression expanded into the indirect flight muscles. Our findings demonstrate that expression of the TpnC41C gene in jump muscles requires integration of multiple positive and negative transcriptional inputs. Identification of the transcriptional regulators binding the cis-elements that we identified will reveal the regulatory pathways controlling muscle fiber differentiation. PMID:26641463

  2. Windpipe Controls Drosophila Intestinal Homeostasis by Regulating JAK/STAT Pathway via Promoting Receptor Endocytosis and Lysosomal Degradation

    PubMed Central

    Li, Min; Wu, Longfei; Wang, Guolun; Baeg, Gyeong-Hun; You, Jia; Li, Zhouhua; Lin, Xinhua

    2015-01-01

    The adult intestinal homeostasis is tightly controlled by proper proliferation and differentiation of intestinal stem cells. The JAK/STAT (Janus Kinase/Signal Transducer and Activator of Transcription) signaling pathway is essential for the regulation of adult stem cell activities and maintenance of intestinal homeostasis. Currently, it remains largely unknown how JAK/STAT signaling activities are regulated in these processes. Here we have identified windpipe (wdp) as a novel component of the JAK/STAT pathway. We demonstrate that Wdp is positively regulated by JAK/STAT signaling in Drosophila adult intestines. Loss of wdp activity results in the disruption of midgut homeostasis under normal and regenerative conditions. Conversely, ectopic expression of Wdp inhibits JAK/STAT signaling activity. Importantly, we show that Wdp interacts with the receptor Domeless (Dome), and promotes its internalization for subsequent lysosomal degradation. Together, these data led us to propose that Wdp acts as a novel negative feedback regulator of the JAK/STAT pathway in regulating intestinal homeostasis. PMID:25923769

  3. The development of malaria parasites in the mosquito midgut.

    PubMed

    Bennink, Sandra; Kiesow, Meike J; Pradel, Gabriele

    2016-07-01

    The mosquito midgut stages of malaria parasites are crucial for establishing an infection in the insect vector and to thus ensure further spread of the pathogen. Parasite development in the midgut starts with the activation of the intraerythrocytic gametocytes immediately after take-up and ends with traversal of the midgut epithelium by the invasive ookinetes less than 24 h later. During this time period, the plasmodia undergo two processes of stage conversion, from gametocytes to gametes and from zygotes to ookinetes, both accompanied by dramatic morphological changes. Further, gamete formation requires parasite egress from the enveloping erythrocytes, rendering them vulnerable to the aggressive factors of the insect gut, like components of the human blood meal. The mosquito midgut stages of malaria parasites are unprecedented objects to study a variety of cell biological aspects, including signal perception, cell conversion, parasite/host co-adaptation and immune evasion. This review highlights recent insights into the molecules involved in gametocyte activation and gamete formation as well as in zygote-to-ookinete conversion and ookinete midgut exit; it further discusses factors that can harm the extracellular midgut stages as well as the measures of the parasites to protect themselves from any damage. PMID:27111866

  4. Brazilian Pampa Biome Honey Protects Against Mortality, Locomotor Deficits and Oxidative Stress Induced by Hypoxia/Reperfusion in Adult Drosophila melanogaster.

    PubMed

    Cruz, L C; Ecker, A; Dias, R S; Seeger, R L; Braga, M M; Boligon, A A; Martins, I K; Costa-Silva, D G; Barbosa, N V; Cañedo, A D; Posser, T; Franco, J L

    2016-02-01

    We aimed to investigate the potential beneficial effects of the Brazilian Pampa biome honey in a Drosophila-based hypoxia model. Adult flies were reared in standard medium in the presence or absence of honey (at a final concentration of 10 % in medium). Then, control flies (4 % sucrose in medium) and honey-treated flies were submitted to hypoxia. Subsequently, flies were analyzed for mortality, neurolocomotor behavior (negative geotaxis), mitochondrial/oxidative stress parameters and expression of hypoxia/stress related genes by RT-qPCR. The HPLC analysis revealed the presence of phenolics and flavonoids in the studied honey. Caffeic acid was the major compound followed by p-coumaric acid and kaempferol. The presence of such compounds was correlated with a substantial antioxidant activity in vitro. Flies subjected to hypoxia presented marked mortality, locomotor deficits and changes in oxidative stress and mitochondrial activity parameters. Honey treatment was able to completely block mortality and locomotor phenotypes. In addition, honey was able to reverse ROS production and hypoxia-induced changes in mitochondrial complex I and II activity. Hypoxia also induced an up-regulation in mRNA expression of Sima (HIF-1), NFκβ, NRF2, HOX, AKT-1, InR, dILP2, dILP5 and HSP27. Honey treatment was not able to modulate changes in the tested genes, indicating that its protective effects involve additional mechanisms other than transcriptional activity of hypoxia-driven adaptive responses in flies. Our results demonstrated, for the first time, the beneficial effects of honey against the deleterious effects of hypoxia/reperfusion processes in a complex organism. PMID:26518676

  5. Methods to assay Drosophila behavior.

    PubMed

    Nichols, Charles D; Becnel, Jaime; Pandey, Udai B

    2012-01-01

    Drosophila melanogaster, the fruit fly, has been used to study molecular mechanisms of a wide range of human diseases such as cancer, cardiovascular disease and various neurological diseases(1). We have optimized simple and robust behavioral assays for determining larval locomotion, adult climbing ability (RING assay), and courtship behaviors of Drosophila. These behavioral assays are widely applicable for studying the role of genetic and environmental factors on fly behavior. Larval crawling ability can be reliably used for determining early stage changes in the crawling abilities of Drosophila larvae and also for examining effect of drugs or human disease genes (in transgenic flies) on their locomotion. The larval crawling assay becomes more applicable if expression or abolition of a gene causes lethality in pupal or adult stages, as these flies do not survive to adulthood where they otherwise could be assessed. This basic assay can also be used in conjunction with bright light or stress to examine additional behavioral responses in Drosophila larvae. Courtship behavior has been widely used to investigate genetic basis of sexual behavior, and can also be used to examine activity and coordination, as well as learning and memory. Drosophila courtship behavior involves the exchange of various sensory stimuli including visual, auditory, and chemosensory signals between males and females that lead to a complex series of well characterized motor behaviors culminating in successful copulation. Traditional adult climbing assays (negative geotaxis) are tedious, labor intensive, and time consuming, with significant variation between different trials(2-4). The rapid iterative negative geotaxis (RING) assay(5) has many advantages over more widely employed protocols, providing a reproducible, sensitive, and high throughput approach to quantify adult locomotor and negative geotaxis behaviors. In the RING assay, several genotypes or drug treatments can be tested simultaneously

  6. The Sox gene Dichaete is expressed in local interneurons and functions in development of the Drosophila adult olfactory circuit

    PubMed Central

    Melnattur, Krishna V.; Berdnik, Daniela; Rusan, Zeid; Ferreira, Christopher J.; Nambu, John R.

    2012-01-01

    In insects, the primary sites of integration for olfactory sensory input are the glomeruli in the antennal lobes. Here, axons of olfactory receptor neurons synapse with dendrites of the projection neurons that relay olfactory input to higher brain centers, such as the mushroom bodies and lateral horn. Interactions between olfactory receptor neurons and projection neurons are modulated by excitatory and inhibitory input from a group of local interneurons. While significant insight has been gleaned into the differentiation of olfactory receptor and projection neurons, much less is known about the development and function of the local interneurons. We have found that Dichaete, a conserved Sox HMG box gene, is strongly expressed in a cluster of LAAL cells located adjacent to each antennal lobe in the adult brain. Within these clusters, Dichaete protein expression is detected in both cholinergic and GABAergic local interneurons. In contrast, Dichaete expression is not detected in mature or developing projection neurons, or developing olfactory receptor neurons. Analysis of novel viable Dichaete mutant alleles revealed misrouting of specific projection neuron dendrites and axons, and alterations in glomeruli organization. These results suggest non-cell autonomous functions of Dichaete in projection neuron differentiation as well as a potential role for Dichaete-expressing local interneurons in development of the adult olfactory circuitry. PMID:22648855

  7. The sox gene Dichaete is expressed in local interneurons and functions in development of the Drosophila adult olfactory circuit.

    PubMed

    Melnattur, Krishna V; Berdnik, Daniela; Rusan, Zeid; Ferreira, Christopher J; Nambu, John R

    2013-02-01

    In insects, the primary sites of integration for olfactory sensory input are the glomeruli in the antennal lobes. Here, axons of olfactory receptor neurons synapse with dendrites of the projection neurons that relay olfactory input to higher brain centers, such as the mushroom bodies and lateral horn. Interactions between olfactory receptor neurons and projection neurons are modulated by excitatory and inhibitory input from a group of local interneurons. While significant insight has been gleaned into the differentiation of olfactory receptor and projection neurons, much less is known about the development and function of the local interneurons. We have found that Dichaete, a conserved Sox HMG box gene, is strongly expressed in a cluster of LAAL cells located adjacent to each antennal lobe in the adult brain. Within these clusters, Dichaete protein expression is detected in both cholinergic and GABAergic local interneurons. In contrast, Dichaete expression is not detected in mature or developing projection neurons, or developing olfactory receptor neurons. Analysis of novel viable Dichaete mutant alleles revealed misrouting of specific projection neuron dendrites and axons, and alterations in glomeruli organization. These results suggest noncell autonomous functions of Dichaete in projection neuron differentiation as well as a potential role for Dichaete-expressing local interneurons in development of the adult olfactory circuitry. PMID:22648855

  8. Requirement of ATR for maintenance of intestinal stem cells in aging Drosophila

    PubMed Central

    Pyo, Jung-Hoon; Jeon, Ho-Jun; Kim, Young-Shin; Yoo, Mi-Ae

    2015-01-01

    The stem cell genomic stability forms the basis for robust tissue homeostasis, particularly in high-turnover tissues. For the genomic stability, DNA damage response (DDR) is essential. This study was focused on the role of two major DDR-related factors, ataxia telangiectasia-mutated (ATM) and ATM- and RAD3-related (ATR) kinases, in the maintenance of intestinal stem cells (ISCs) in the adult Drosophila midgut. We explored the role of ATM and ATR, utilizing immunostaining with an anti-pS/TQ antibody as an indicator of ATM/ATR activation, γ-irradiation as a DNA damage inducer, and the UAS/GAL4 system for cell type-specific knockdown of ATM, ATR, or both during adulthood. The results showed that the pS/TQ signals got stronger with age and after oxidative stress. The pS/TQ signals were found to be more dependent on ATR rather than on ATM in ISCs/enteroblasts (EBs). Furthermore, an ISC/EB-specific knockdown of ATR, ATM, or both decreased the number of ISCs and oxidative stress-induced ISC proliferation. The phenotypic changes that were caused by the ATR knockdown were more pronounced than those caused by the ATM knockdown; however, our data indicate that ATR and ATM are both needed for ISC maintenance and proliferation; ATR seems to play a bigger role than does ATM. PMID:26000719

  9. Tie-mediated signal from apoptotic cells protects stem cells in Drosophila melanogaster

    PubMed Central

    Xing, Yalan; Su, Tin Tin; Ruohola-Baker, Hannele

    2015-01-01

    Many types of normal and cancer stem cells are resistant to killing by genotoxins, but the mechanism for this resistance is poorly understood. Here we show that adult stem cells in Drosophila melanogaster germline and midgut are resistant to ionizing radiation (IR) or chemically induced apoptosis and dissect the mechanism for this protection. We find that upon IR the receptor tyrosine kinase Tie/Tie-2 is activated, leading to the upregulation of microRNA bantam that represses FOXO-mediated transcription of pro-apoptotic Smac/DIA-BLO orthologue, Hid in germline stem cells. Knockdown of the IR-induced putative Tie ligand, Pvf1, a functional homologue of human Angiopoietin, in differentiating daughter cells renders germline stem cells sensitive to IR, suggesting that the dying daughters send a survival signal to protect their stem cells for future repopulation of the tissue. If conserved in cancer stem cells, this mechanism may provide therapeutic options for the eradication of cancer. PMID:25959206

  10. Escargot maintains stemness and suppresses differentiation in Drosophila intestinal stem cells.

    PubMed

    Korzelius, Jerome; Naumann, Svenja K; Loza-Coll, Mariano A; Chan, Jessica Sk; Dutta, Devanjali; Oberheim, Jessica; Gläßer, Christine; Southall, Tony D; Brand, Andrea H; Jones, D Leanne; Edgar, Bruce A

    2014-12-17

    Snail family transcription factors are expressed in various stem cell types, but their function in maintaining stem cell identity is unclear. In the adult Drosophila midgut, the Snail homolog Esg is expressed in intestinal stem cells (ISCs) and their transient undifferentiated daughters, termed enteroblasts (EB). We demonstrate here that loss of esg in these progenitor cells causes their rapid differentiation into enterocytes (EC) or entero-endocrine cells (EE). Conversely, forced expression of Esg in intestinal progenitor cells blocks differentiation, locking ISCs in a stem cell state. Cell type-specific transcriptome analysis combined with Dam-ID binding studies identified Esg as a major repressor of differentiation genes in stem and progenitor cells. One critical target of Esg was found to be the POU-domain transcription factor, Pdm1, which is normally expressed specifically in differentiated ECs. Ectopic expression of Pdm1 in progenitor cells was sufficient to drive their differentiation into ECs. Hence, Esg is a critical stem cell determinant that maintains stemness by repressing differentiation-promoting factors, such as Pdm1. PMID:25298397

  11. Escargot maintains stemness and suppresses differentiation in Drosophila intestinal stem cells

    PubMed Central

    Korzelius, Jerome; Naumann, Svenja K; Loza-Coll, Mariano A; Chan, Jessica SK; Dutta, Devanjali; Oberheim, Jessica; Gläßer, Christine; Southall, Tony D; Brand, Andrea H; Jones, D Leanne; Edgar, Bruce A

    2014-01-01

    Snail family transcription factors are expressed in various stem cell types, but their function in maintaining stem cell identity is unclear. In the adult Drosophila midgut, the Snail homolog Esg is expressed in intestinal stem cells (ISCs) and their transient undifferentiated daughters, termed enteroblasts (EB). We demonstrate here that loss of esg in these progenitor cells causes their rapid differentiation into enterocytes (EC) or entero-endocrine cells (EE). Conversely, forced expression of Esg in intestinal progenitor cells blocks differentiation, locking ISCs in a stem cell state. Cell type-specific transcriptome analysis combined with Dam-ID binding studies identified Esg as a major repressor of differentiation genes in stem and progenitor cells. One critical target of Esg was found to be the POU-domain transcription factor, Pdm1, which is normally expressed specifically in differentiated ECs. Ectopic expression of Pdm1 in progenitor cells was sufficient to drive their differentiation into ECs. Hence, Esg is a critical stem cell determinant that maintains stemness by repressing differentiation-promoting factors, such as Pdm1. PMID:25298397

  12. Drosophila melanogaster lipins are tissue-regulated and developmentally regulated and present specific subcellular distributions.

    PubMed

    Valente, Valeria; Maia, Rafaela Martins; Vianna, Murilo Carlos Bizam; Paçó-Larson, Maria Luisa

    2010-11-01

    Lipins constitute a novel family of Mg(2+)-dependent phosphatidate phosphatases that catalyze the dephosphorylation of phosphatidic acid to yield diacylglycerol, an important intermediate in lipid metabolism and cell signaling. Whereas a single lipin is detected in less complex organisms, in mammals there are distinct lipin isoforms and paralogs that are differentially expressed among tissues. Compatible with organism tissue complexity, we show that the single Drosophila Lpin1 ortholog (CG8709, here named DmLpin) expresses at least three isoforms (DmLpinA, DmLpinK and DmLpinJ) in a temporal and spatially regulated manner. The highest levels of lipin in the fat body, where DmLpinA and DmLpinK are expressed, correlate with the highest levels of triacylglycerol (TAG) measured in this tissue. DmLpinK is the most abundant isoform in the central nervous system, where TAG levels are significantly lower than in the fat body. In the testis, where TAG levels are even lower, DmLpinJ is the predominant isoform. Together, these data suggest that DmLpinA might be the isoform that is mainly involved in TAG production, and that DmLpinK and DmLpinJ could perform other cellular functions. In addition, we demonstrate by immunofluorescence that lipins are most strongly labeled in the perinuclear region of the fat body and ventral ganglion cells. In visceral muscles of the larval midgut and adult testis, lipins present a sarcomeric distribution. In the ovary chamber, the lipin signal is concentrated in the internal rim of the ring canal. These specific subcellular localizations of the Drosophila lipins provide the basis for future investigations on putative novel cellular functions of this protein family. PMID:20977671

  13. Drosophila spermiogenesis

    PubMed Central

    Fabian, Lacramioara; Brill, Julie A.

    2012-01-01

    Drosophila melanogaster spermatids undergo dramatic morphological changes as they differentiate from small round cells approximately 12 μm in diameter into highly polarized, 1.8 mm long, motile sperm capable of participating in fertilization. During spermiogenesis, syncytial cysts of 64 haploid spermatids undergo synchronous differentiation. Numerous changes occur at a subcellular level, including remodeling of existing organelles (mitochondria, nuclei), formation of new organelles (flagellar axonemes, acrosomes), polarization of elongating cysts and plasma membrane addition. At the end of spermatid morphogenesis, organelles, mitochondrial DNA and cytoplasmic components not needed in mature sperm are stripped away in a caspase-dependent process called individualization that results in formation of individual sperm. Here, we review the stages of Drosophila spermiogenesis and examine our current understanding of the cellular and molecular mechanisms involved in shaping male germ cell-specific organelles and forming mature, fertile sperm. PMID:23087837

  14. Schinus terebinthifolius Leaf Extract Causes Midgut Damage, Interfering with Survival and Development of Aedes aegypti Larvae

    PubMed Central

    Procópio, Thamara Figueiredo; Fernandes, Kenner Morais; Pontual, Emmanuel Viana; Ximenes, Rafael Matos; de Oliveira, Aline Rafaella Cardoso; Souza, Carolina de Santana; Melo, Ana Maria Mendonça de Albuquerque; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes; Martins, Gustavo Ferreira; Napoleão, Thiago Henrique

    2015-01-01

    In this study, a leaf extract from Schinus terebinthifolius was evaluated for effects on survival, development, and midgut of A. aegypti fourth instar larvae (L4), as well as for toxic effect on Artemia salina. Leaf extract was obtained using 0.15 M NaCl and evaluated for phytochemical composition and lectin activity. Early L4 larvae were incubated with the extract (0.3–1.35%, w/v) for 8 days, in presence or absence of food. Polymeric proanthocyanidins, hydrolysable tannins, heterosid and aglycone flavonoids, cinnamic acid derivatives, traces of steroids, and lectin activity were detected in the extract, which killed the larvae at an LC50 of 0.62% (unfed larvae) and 1.03% (fed larvae). Further, the larvae incubated with the extract reacted by eliminating the gut content. No larvae reached the pupal stage in treatments at concentrations between 0.5% and 1.35%, while in the control (fed larvae), 61.7% of individuals emerged as adults. The extract (1.0%) promoted intense disorganization of larval midgut epithelium, including deformation and hypertrophy of cells, disruption of microvilli, and vacuolization of cytoplasms, affecting digestive, enteroendocrine, regenerative, and proliferating cells. In addition, cells with fragmented DNA were observed. Separation of extract components by solid phase extraction revealed that cinnamic acid derivatives and flavonoids are involved in larvicidal effect of the extract, being the first most efficient in a short time after larvae treatment. The lectin present in the extract was isolated, but did not show deleterious effects on larvae. The extract and cinnamic acid derivatives were toxic to A. salina nauplii, while the flavonoids showed low toxicity. S. terebinthifolius leaf extract caused damage to the midgut of A. aegypti larvae, interfering with survival and development. The larvicidal effect of the extract can be attributed to cinnamic acid derivatives and flavonoids. The data obtained using A. salina indicates that caution

  15. Insulin receptor in Drosophila melanogaster

    SciTech Connect

    Petruzzelli, L.; Herrera, R.; Rosen, O.

    1986-05-01

    A specific, high affinity insulin receptor is present in both adult Drosophila and in Drosophila embryos. Wheat germ lectin-enriched extracts of detergent-solubilized membranes from embryos and adults bind insulin with a K/sub d/ of 15 nM. Binding is specific for insulin; micromolar concentrations of proinsulin, IGFI, and IGFII are required to displace bound /sup 125/I-insulin. Insulin-dependent protein tyrosine kinase activity appears during embryogenesis. It is evident between 6 and 12 hours of development, peaks between 12 and 18 hours and falls in the adult. During 0-6 hours of embryogenesis, and in the adult, a specific protein band (Mr = 135,000) is crosslinked to /sup 125/I-insulin. During 6-12 and 12-18 hours of embryogenesis stages in which insulin-dependent protein tyrosine kinase is high, an additional band (Mr = 100,000) becomes crosslinked to /sup 125/I-insulin. Isolation and DNA sequence analysis of genomic clones encoding the Drosophila insulin receptor will be presented as will the characterization of insulin receptor mRNA's during development.

  16. Midgut fungal and bacterial microbiota of Aedes triseriatus and Aedes japonicus shift in response to La Crosse virus infection.

    PubMed

    Muturi, Ephantus J; Bara, Jeffrey J; Rooney, Alejandro P; Hansen, Allison K

    2016-08-01

    Understanding how midgut microbial communities of field-collected mosquitoes interact with pathogens is critical for controlling vector infection and disease. We used 16S rRNA and internal transcribed spacer sequencing to characterize the midgut bacterial and fungal communities of adult females of Aedes triseriatus and Aedes japonicus collected as pupae in tree holes, plastic bins and waste tires and their response to La Crosse virus (LACV) infection. For both mosquito species and across all habitat and virus treatments, a total of 62 bacterial operational taxonomic units (OTUs) from six phyla and 21 fungal OTUs from two phyla were identified. The majority of bacterial (92%) and fungal (71%) OTUs were shared between the mosquito species; however, several OTUs were unique to each species. Bacterial and fungal communities of individuals that took either infectious or noninfectious bloodmeals were less diverse and more homogeneous compared to those of newly emerged adults. Interestingly, LACV-infected A. triseriatus and A. japonicus had higher bacterial richness and lower fungal richness compared to individuals that took a noninfectious bloodmeal, suggesting that viral infection was associated with an increase in bacterial OTUs and a decrease in fungal OTUs. For both mosquito species, several OTUs were identified that had both high fidelity and specificity to mosquito midguts that were infected with LACV. Overall, these findings demonstrate that bacterial and fungal communities that reside in mosquito midguts respond to host diet and viral infection and could play a role in modulating vector susceptibility to LACV. PMID:27357374

  17. Drosophila suzukii population response to environment and management strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spotted wing drosophila, Drosophila suzukii, quickly emerged as a devastating invasive pest of small and stone fruits in the Americas and Europe. To better understand the population dynamics of D. suzukii, we reviewed recent work on juvenile development, adult reproduction, and seasonal variation in...

  18. Drosophila myogenesis.

    PubMed

    Bothe, Ingo; Baylies, Mary K

    2016-09-12

    The skeletal muscle system is the largest organ in motile animals, constituting between 35 and 55% of the human body mass, and up to 75% of the body mass in flying organisms like Drosophila. The flight muscles alone in flying insects comprise up to 65% of total body mass. Not only is the musculature the largest organ system, it is also exquisitely complex, with single muscles existing in different shapes and sizes. These different morphologies allow for such different functions as the high-frequency beating of a wing in a hummingbird, the dilation of the pupil in a human eye, or the maintenance of posture in a giraffe's neck. PMID:27623256

  19. Aedes aegypti midgut early trypsin is post-transcriptionally regulated by blood feeding.

    PubMed

    Noriega, F G; Pennington, J E; Barillas-Mury, C; Wang, X Y; Wells, M A

    1996-02-01

    Early trypsin is a female-specific protease present in the Aedes aegypti midgut during the first hours after ingestion of a blood meal. Early trypsin gene expression was studied by Northern blot analysis. The early trypsin mRNA, absent in larvae, pupae and newly emerged females, reaches detectable levels at 24 h post-emergence and attains a maximum level at an adult age of 4-7 days. After the first week there is a decrease in the steady-state level of the transcript, but it remains readily detectable for up to a month after emergence. Despite the high levels of early trypsin mRNA present in the midgut of the unfed female, translation of the early trypsin mRNA occurs only after a blood or a protein meal. Early trypsin mRNA levels rapidly decrease during the first 24 h after feeding, but the steady-state level of the transcript rises again at the end of the blood digestion cycle (60 h), as the mosquito prepares for a second blood meal. PMID:8630532

  20. Macrophages and cellular immunity in Drosophila melanogaster.

    PubMed

    Gold, Katrina S; Brückner, Katja

    2015-12-01

    The invertebrate Drosophila melanogaster has been a powerful model for understanding blood cell development and immunity. Drosophila is a holometabolous insect, which transitions through a series of life stages from embryo, larva and pupa to adulthood. In spite of this, remarkable parallels exist between Drosophila and vertebrate macrophages, both in terms of development and function. More than 90% of Drosophila blood cells (hemocytes) are macrophages (plasmatocytes), making this highly tractable genetic system attractive for studying a variety of questions in macrophage biology. In vertebrates, recent findings revealed that macrophages have two independent origins: self-renewing macrophages, which reside and proliferate in local microenvironments in a variety of tissues, and macrophages of the monocyte lineage, which derive from hematopoietic stem or progenitor cells. Like vertebrates, Drosophila possesses two macrophage lineages with a conserved dual ontogeny. These parallels allow us to take advantage of the Drosophila model when investigating macrophage lineage specification, maintenance and amplification, and the induction of macrophages and their progenitors by local microenvironments and systemic cues. Beyond macrophage development, Drosophila further serves as a paradigm for understanding the mechanisms underlying macrophage function and cellular immunity in infection, tissue homeostasis and cancer, throughout development and adult life. PMID:27117654

  1. Anopheles gambiae collagen IV genes: cloning, phylogeny and midgut expression associated with blood feeding and Plasmodium infection.

    PubMed

    Gare, D C; Piertney, S B; Billingsley, P F

    2003-07-01

    A prerequisite for understanding the role that mosquito midgut extracellular matrix molecules play in malaria parasite development is proper isolation and characterisation of the genes coding for components of the basal lamina. Here we have identified genes coding for alpha1 and alpha2 chains of collagen IV from the major malaria vector, Anopheles gambiae. Conserved sequences in the terminal NC1 domain were used to obtain partial gene sequences of this functional region, and full sequence was isolated from a pupal cDNA library. In a DNA-derived phylogeny, the alpha1 and alpha2 chains cluster with dipteran orthologs, and the alpha2 is ancestral. The expression of collagen alpha1(IV) peaked during the pupal stage of mosquito development, and was expressed continuously in the adult female following a blood meal with a further rise detected in older mosquitoes. Collagen alpha1(IV) is also upregulated when the early oocyst of Plasmodium yoelii was developing within the mosquito midgut and may contribute to a larger wound healing response. A model describing the expression of basal lamina proteins during oocyst development is presented, and we hypothesise that the development of new basal lamina between the oocyst and midgut epithelium is akin to a wound healing process. PMID:12814648

  2. Tissue- and time-dependent transcription in Ixodes ricinus salivary glands and midguts when blood feeding on the vertebrate host

    PubMed Central

    Kotsyfakis, Michalis; Schwarz, Alexandra; Erhart, Jan; Ribeiro, José M. C.

    2015-01-01

    Ixodes ricinus is a tick that transmits the pathogens of Lyme and several arboviral diseases. Pathogens invade the tick midgut, disseminate through the hemolymph, and are transmitted to the vertebrate host via the salivary glands; subverting these processes could be used to interrupt pathogen transfer. Here, we use massive de novo sequencing to characterize the transcriptional dynamics of the salivary and midgut tissues of nymphal and adult I. ricinus at various time points after attachment on the vertebrate host. Members of a number of gene families show stage- and time-specific expression. We hypothesize that gene expression switching may be under epigenetic control and, in support of this, identify 34 candidate proteins that modify histones. I. ricinus-secreted proteins are encoded by genes that have a non-synonymous to synonymous mutation rate even greater than immune-related genes. Midgut transcriptome (mialome) analysis reveals several enzymes associated with protein, carbohydrate, and lipid digestion, transporters and channels that might be associated with nutrient uptake, and immune-related transcripts including antimicrobial peptides. This publicly available dataset supports the identification of protein and gene targets for biochemical and physiological studies that exploit the transmission lifecycle of this disease vector for preventative and therapeutic purposes. PMID:25765539

  3. Tissue- and time-dependent transcription in Ixodes ricinus salivary glands and midguts when blood feeding on the vertebrate host.

    PubMed

    Kotsyfakis, Michalis; Schwarz, Alexandra; Erhart, Jan; Ribeiro, José M C

    2015-01-01

    Ixodes ricinus is a tick that transmits the pathogens of Lyme and several arboviral diseases. Pathogens invade the tick midgut, disseminate through the hemolymph, and are transmitted to the vertebrate host via the salivary glands; subverting these processes could be used to interrupt pathogen transfer. Here, we use massive de novo sequencing to characterize the transcriptional dynamics of the salivary and midgut tissues of nymphal and adult I. ricinus at various time points after attachment on the vertebrate host. Members of a number of gene families show stage- and time-specific expression. We hypothesize that gene expression switching may be under epigenetic control and, in support of this, identify 34 candidate proteins that modify histones. I. ricinus-secreted proteins are encoded by genes that have a non-synonymous to synonymous mutation rate even greater than immune-related genes. Midgut transcriptome (mialome) analysis reveals several enzymes associated with protein, carbohydrate, and lipid digestion, transporters and channels that might be associated with nutrient uptake, and immune-related transcripts including antimicrobial peptides. This publicly available dataset supports the identification of protein and gene targets for biochemical and physiological studies that exploit the transmission lifecycle of this disease vector for preventative and therapeutic purposes. PMID:25765539

  4. BTB-Zinc Finger Oncogenes Are Required for Ras and Notch-Driven Tumorigenesis in Drosophila

    PubMed Central

    Doggett, Karen; Turkel, Nezaket; Willoughby, Lee F.; Ellul, Jason; Murray, Michael J.; Richardson, Helena E.; Brumby, Anthony M.

    2015-01-01

    During tumorigenesis, pathways that promote the epithelial-to-mesenchymal transition (EMT) can both facilitate metastasis and endow tumor cells with cancer stem cell properties. To gain a greater understanding of how these properties are interlinked in cancers we used Drosophila epithelial tumor models, which are driven by orthologues of human oncogenes (activated alleles of Ras and Notch) in cooperation with the loss of the cell polarity regulator, scribbled (scrib). Within these tumors, both invasive, mesenchymal-like cell morphology and continual tumor overgrowth, are dependent upon Jun N-terminal kinase (JNK) activity. To identify JNK-dependent changes within the tumors we used a comparative microarray analysis to define a JNK gene signature common to both Ras and Notch-driven tumors. Amongst the JNK-dependent changes was a significant enrichment for BTB-Zinc Finger (ZF) domain genes, including chronologically inappropriate morphogenesis (chinmo). chinmo was upregulated by JNK within the tumors, and overexpression of chinmo with either RasV12 or Nintra was sufficient to promote JNK-independent epithelial tumor formation in the eye/antennal disc, and, in cooperation with RasV12, promote tumor formation in the adult midgut epithelium. Chinmo primes cells for oncogene-mediated transformation through blocking differentiation in the eye disc, and promoting an escargot-expressing stem or enteroblast cell state in the adult midgut. BTB-ZF genes are also required for Ras and Notch-driven overgrowth of scrib mutant tissue, since, although loss of chinmo alone did not significantly impede tumor development, when loss of chinmo was combined with loss of a functionally related BTB-ZF gene, abrupt, tumor overgrowth was significantly reduced. abrupt is not a JNK-induced gene, however, Abrupt is present in JNK-positive tumor cells, consistent with a JNK-associated oncogenic role. As some mammalian BTB-ZF proteins are also highly oncogenic, our work suggests that EMT

  5. BTB-Zinc Finger Oncogenes Are Required for Ras and Notch-Driven Tumorigenesis in Drosophila.

    PubMed

    Doggett, Karen; Turkel, Nezaket; Willoughby, Lee F; Ellul, Jason; Murray, Michael J; Richardson, Helena E; Brumby, Anthony M

    2015-01-01

    During tumorigenesis, pathways that promote the epithelial-to-mesenchymal transition (EMT) can both facilitate metastasis and endow tumor cells with cancer stem cell properties. To gain a greater understanding of how these properties are interlinked in cancers we used Drosophila epithelial tumor models, which are driven by orthologues of human oncogenes (activated alleles of Ras and Notch) in cooperation with the loss of the cell polarity regulator, scribbled (scrib). Within these tumors, both invasive, mesenchymal-like cell morphology and continual tumor overgrowth, are dependent upon Jun N-terminal kinase (JNK) activity. To identify JNK-dependent changes within the tumors we used a comparative microarray analysis to define a JNK gene signature common to both Ras and Notch-driven tumors. Amongst the JNK-dependent changes was a significant enrichment for BTB-Zinc Finger (ZF) domain genes, including chronologically inappropriate morphogenesis (chinmo). chinmo was upregulated by JNK within the tumors, and overexpression of chinmo with either RasV12 or Nintra was sufficient to promote JNK-independent epithelial tumor formation in the eye/antennal disc, and, in cooperation with RasV12, promote tumor formation in the adult midgut epithelium. Chinmo primes cells for oncogene-mediated transformation through blocking differentiation in the eye disc, and promoting an escargot-expressing stem or enteroblast cell state in the adult midgut. BTB-ZF genes are also required for Ras and Notch-driven overgrowth of scrib mutant tissue, since, although loss of chinmo alone did not significantly impede tumor development, when loss of chinmo was combined with loss of a functionally related BTB-ZF gene, abrupt, tumor overgrowth was significantly reduced. abrupt is not a JNK-induced gene, however, Abrupt is present in JNK-positive tumor cells, consistent with a JNK-associated oncogenic role. As some mammalian BTB-ZF proteins are also highly oncogenic, our work suggests that EMT

  6. Genome-wide RNAi screening implicates the E3 ubiquitin ligase Sherpa in mediating innate immune signaling by Toll in Drosophila adults.

    PubMed

    Kanoh, Hirotaka; Tong, Li-Li; Kuraishi, Takayuki; Suda, Yamato; Momiuchi, Yoshiki; Shishido, Fumi; Kurata, Shoichiro

    2015-10-27

    The Drosophila Toll pathway plays important roles in innate immune responses against Gram-positive bacteria and fungi. To identify previously uncharacterized components of this pathway, we performed comparative, ex vivo, genome-wide RNA interference screening. In four screens, we overexpressed the Toll adaptor protein dMyd88, the downstream kinase Pelle, or the nuclear factor κB (NF-κB) homolog Dif, or we knocked down Cactus, the Drosophila homolog of mammalian inhibitor of NF-κB. On the basis of these screens, we identified the E3 ubiquitin ligase Sherpa as being necessary for the activation of Toll signaling. A loss-of-function sherpa mutant fly exhibited compromised production of antimicrobial peptides and enhanced susceptibility to infection by Gram-positive bacteria. In cultured cells, Sherpa mediated ubiquitylation of dMyd88 and Sherpa itself, and Sherpa and Drosophila SUMO (small ubiquitin-like modifier) were required for the proper membrane localization of an adaptor complex containing dMyd88. These findings highlight a role for Sherpa in Drosophila host defense and suggest the SUMOylation-mediated regulation of dMyd88 functions in Toll innate immune signaling. PMID:26508789

  7. Properties and secretory mechanism of Musca domestica digestive chymotrypsin and its relation with Drosophila melanogaster homologs.

    PubMed

    Tamaki, Fábio K; Padilha, Marcelo H P; Pimentel, Andre C; Ribeiro, Alberto F; Terra, Walter R

    2012-07-01

    Musca domestica larvae present two different digestive chymotryptic activities found in the posterior midgut (PMG): one major soluble activity in the lumen and another minor present in cell membrane fractions. Both soluble and membrane-bound chymotryptic activities have different half lives of thermal inactivation (46 °C) in the presence and absence of 10 mM Triton X-100, indicating that they are two different molecular species. Purified soluble chymotryptic activity has pH optimum 7.4 and a molecular mass of 28 kDa in SDS-PAGE. It does not cleave short substrates, such as Suc-F-MCA, preferring longer substrates, such as Suc-AAPF-MCA, with a primary specificity (kcat/Km) for Phe rather than Tyr and Leu residues. In-gel activity revealed a unique band against S-AAPF-MCA with the same migration as purified chymotrypsin. One chymotrypsinogen-like sequence (MdChy1) was sequenced, cloned and recombinantly expressed in Escherichia coli (DE3) Star. MdChy1 is expressed in the proximal posterior midgut (PMG1), as seen by RT-PCR. Expression analysis of other chymotrypsin genes revealed genes expressed at the anterior midgut (AMG) and PMG. Western blot of M. domestica midgut tissues using anti-MdChy1 antiserum showed a single band in samples from AMG and PMG, co-migrating with recombinant and purified enzymes. Immunogold labeling corresponding to Mdchy1 was found in small vesicles (thus indicating exocytosis) and in the lumen of AMG and PMG, corroborating the existence of two similar groups of chymotrypsins. Transcriptomes of M. domestica AMG and whole midgut prepared by pyrosequencing disclosed 41 unique sequences of chymotrypsin-like enzymes (19 probably functional), from which MdChy1 is highly expressed. Phylogenetic reconstruction of Drosophila melanogaster and M. domestica chymotrypsin-like sequences revealed that the chymotrypsin genes expanded before the evolutionary separation of Musca and Drosophila. PMID:22808532

  8. Cloning of PaAtg8 and roles of autophagy in adaptation to starvation with respect to the fat body and midgut of the Americana cockroach, Periplaneta americana.

    PubMed

    Park, Moon Soo; Takeda, Makio

    2014-05-01

    Starvation, in particular amino acid deprivation, induces autophagy in trophocytes (adipocytes), the major component of the fat body cell types, in the larvae of Drosophila melanogaster. However, the fat body of cockroach has two additional cell types: urocytes depositing uric acid in urate vacuoles as a nitrogen resource and mycetocytes harboring an endosymbiont, Blattabacterium cuenoti, which can synthesize amino acids from the metabolites of the stored uric acid. These cells might complement the roles of autophagy in recycling amino acids in the fat body or other organs of cockroaches under starvation. We investigate the presence of autophagy in tissues such as the fat body and midgut of the American cockroach, Periplaneta americana, under starvation by immunoblotting with antibody against Atg8, a ubiquitin-like protein required for the formation of autophagosomes and by electron microscopy. Corresponding changes in acid phosphatase activity were also investigated as representing lysosome activity. Starvation increased the level of an autophagic marker, Atg8-II, in both the tissues, extensively stimulating the formation of autophagic compartments in trophocytes of the fat body and columnar cells of the midgut for over 2 weeks. Acid phosphatase showed no significant increase in the fat body of the starved cockroaches but was higher in the midgut of the continuously fed animals. Thus, a distinct autophagic mechanism operates in these tissues under starvation of 2 weeks and longer. The late induction of autophagy implies exhaustion of the stored uric acid in the fat body. High activity of acid phosphatase in the midgut of the fed cockroaches might represent enhanced assimilation and not an autophagy-related function. PMID:24696316

  9. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism.

    PubMed

    Caccia, Silvia; Di Lelio, Ilaria; La Storia, Antonietta; Marinelli, Adriana; Varricchio, Paola; Franzetti, Eleonora; Banyuls, Núria; Tettamanti, Gianluca; Casartelli, Morena; Giordana, Barbara; Ferré, Juan; Gigliotti, Silvia; Ercolini, Danilo; Pennacchio, Francesco

    2016-08-23

    Bacillus thuringiensis is a widely used bacterial entomopathogen producing insecticidal toxins, some of which are expressed in insect-resistant transgenic crops. Surprisingly, the killing mechanism of B. thuringiensis remains controversial. In particular, the importance of the septicemia induced by the host midgut microbiota is still debated as a result of the lack of experimental evidence obtained without drastic manipulation of the midgut and its content. Here this key issue is addressed by RNAi-mediated silencing of an immune gene in a lepidopteran host Spodoptera littoralis, leaving the midgut microbiota unaltered. The resulting cellular immunosuppression was characterized by a reduced nodulation response, which was associated with a significant enhancement of host larvae mortality triggered by B. thuringiensis and a Cry toxin. This was determined by an uncontrolled proliferation of midgut bacteria, after entering the body cavity through toxin-induced epithelial lesions. Consequently, the hemolymphatic microbiota dramatically changed upon treatment with Cry1Ca toxin, showing a remarkable predominance of Serratia and Clostridium species, which switched from asymptomatic gut symbionts to hemocoelic pathogens. These experimental results demonstrate the important contribution of host enteric flora in B. thuringiensis-killing activity and provide a sound foundation for developing new insect control strategies aimed at enhancing the impact of biocontrol agents by reducing the immunocompetence of the host. PMID:27506800

  10. STIMULATION OF MIDGUT STEM CELL PROLIFERATION BY MANDUCA SEXTA ARYLPHORIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extracts of the green-colored perivisceral fat body of newly ecdysed Manduca sexta pupae stimulate mitosis in midgut stem cells of Heliothis virescens cultured in vitro. Using a combination of cation- and anion-exchange chromatography, we have isolated a protein from these fat body extracts that acc...

  11. The role of stem cells in midgut growth and regeneration.

    PubMed

    Hakim, R S; Baldwin, K M; Loeb, M

    2001-06-01

    The Manduca sexta (L.) [Lepidoptera: Sphingidae] and Heliothis virescens (F.) [Lepidoptera: Noctuidae] midguts consist of a pseudostratified epithelium surrounded by striated muscle and tracheae. This epithelium contains goblet, columnar, and basal stem cells. The stem cells are critically important in that they are capable of massive proliferation and differentiation. This growth results in a fourfold enlargement of the midgut at each larval molt. The stem cells are also responsible for limited cell replacement during repair. While the characteristics of the stem cell population vary over the course of an instar, stem cells collected early in an instar and those collected late can start in vitro cultures. Cultures of larval stem, goblet, and columnar cells survive in vitro for several mo through proliferation and differentiation of the stem cells. One of the two polypeptide differentiation factors which have been identified and characterized from the culture medium has now been shown to be present in midgut in vivo. Thus the ability to examine lepidopteran midgut stem cell growth in vitro and in vivo is proving to be effective in determining the basic features of stem cell action and regulation. PMID:11515964

  12. Ecdysone signaling at metamorphosis triggers apoptosis of Drosophila abdominal muscles.

    PubMed

    Zirin, Jonathan; Cheng, Daojun; Dhanyasi, Nagaraju; Cho, Julio; Dura, Jean-Maurice; Vijayraghavan, Krishnaswamy; Perrimon, Norbert

    2013-11-15

    One of the most dramatic examples of programmed cell death occurs during Drosophila metamorphosis, when most of the larval tissues are destroyed in a process termed histolysis. Much of our understanding of this process comes from analyses of salivary gland and midgut cell death. In contrast, relatively little is known about the degradation of the larval musculature. Here, we analyze the programmed destruction of the abdominal dorsal exterior oblique muscle (DEOM) which occurs during the first 24h of metamorphosis. We find that ecdysone signaling through Ecdysone receptor isoform B1 is required cell autonomously for the muscle death. Furthermore, we show that the orphan nuclear receptor FTZ-F1, opposed by another nuclear receptor, HR39, plays a critical role in the timing of DEOM histolysis. Finally, we show that unlike the histolysis of salivary gland and midgut, abdominal muscle death occurs by apoptosis, and does not require autophagy. Thus, there is no set rule as to the role of autophagy and apoptosis during Drosophila histolysis. PMID:24051228

  13. Ecdysone signaling at metamorphosis triggers apoptosis of Drosophila abdominal muscles

    PubMed Central

    Zirin, Jonathan; Cheng, Daojun; Dhanyasi, Nagaraju; Cho, Julio; Dura, Jean-Maurice; VijayRaghavan, Krishnaswamy; Perrimon, Norbert

    2013-01-01

    One of the most dramatic examples of programmed cell death occurs during Drosophila metamorphosis, when most of the larval tissues are destroyed in a process termed histolysis. Much of our understanding of this process comes from analyses of salivary gland and midgut cell death. In contrast, relatively little is known about the degradation of the larval musculature. Here, we analyze the programmed destruction of the abdominal dorsal exterior oblique muscle (DEOM) which occurs during the first 24 hrs of metamorphosis. We find that ecdysone signaling through Ecdysone receptor isoform B1 is required cell autonomously for the muscle death. Furthermore, we show that the orphan nuclear receptor FTZ-F1, opposed by another nuclear receptor, HR39, plays a critical role in the timing of DEOM histolysis. Finally, we show that unlike the histolysis of salivary gland and midgut, abdominal muscle death occurs by apoptosis, and does not require autophagy. Thus, there is no set rule as to the role of autophagy and apoptosis during Drosophila histolysis. PMID:24051228

  14. Midgut Microbial Community of Culex quinquefasciatus Mosquito Populations from India

    PubMed Central

    Chandel, Kshitij; Mendki, Murlidhar J.; Parikh, Rasesh Y.; Kulkarni, Girish; Tikar, Sachin N.; Sukumaran, Devanathan; Prakash, Shri; Parashar, Brahma D.; Shouche, Yogesh S.; Veer, Vijay

    2013-01-01

    The mosquito Culex quinquefasciatus is a ubiquitous species that serves as a major vector for west nile virus and lymphatic filariasis. Ingestion of bloodmeal by females triggers a series of physiological processes in the midgut and also exposes them to infection by these pathogens. The bacteria normally harbored in the midgut are known to influence physiology and can also alter the response to various pathogens. The midgut bacteria in female Cx. quinquefasciatus mosquitoes collected over a large geographical area from India was studied. Examination of 16S ribosomal DNA amplicons from culturable microflora revealed the presence of 83 bacterial species belonging to 31 bacterial genera. All of these species belong to three phyla i.e. Proteobacteria, Firmicutes and Actinobacteria. Phylum Proteobacteria was the most dominant phylum (37 species), followed by Firmicutes (33 species) and Actinobacteria (13 species). Phylum Proteobacteria, was dominated by members of γ-proteobacteria class. The genus Staphylococcus was the largest genus represented by 11 species whereas Enterobacter was the most prevalent genus and recovered from all the field stations except Leh. Highest bacterial prevalence was observed from Bhuj (22 species) followed by Nagrota (18 species), Masimpur (18 species) and Hathigarh (16 species). Whereas, least species were observed from Leh (8 species). It has been observed that individual mosquito harbor extremely diverse gut bacteria and have very small overlap bacterial taxa in their gut. This variation in midgut microbiota may be one of the factors responsible for variation in disease transmission rates or vector competence within mosquito population. The present data strongly encourage further investigations to verify the potential role of the detected bacteria in mosquito for the transmission of lymphatic filariasis and west nile virus. To the best of our knowledge this is the first study on midgut microbiota of wild Cx. quinquefasciatus from over a

  15. Cryobiological preservation of Drosophila embryos

    SciTech Connect

    Mazur, P.; Schreuders, P.D.; Cole, K.W.; Hall, J.W. ); Mahowald, A.P. )

    1992-12-18

    The inability to cryobiologically preserve the fruit fly Drosophila melanogaster has required that fly stocks be maintained by frequent transfer of adults. This method is costly in terms of time and can lead to loss of stocks. Traditional slow freezing methods do not succeed because the embryos are highly sensitive to chilling. With the procedures described here, 68 percent of precisely staged 15-hour Oregon R (wild-type) embryos hatch after vitrification at -205[degree]C, and 40 percent of the resulting larvae develop into normal adult flies. These embryos are among the most complex organisms successfully preserved by cryobiology.

  16. Alpha-adaptin, a marker for endocytosis, is expressed in complex patterns during Drosophila development.

    PubMed Central

    Dornan, S; Jackson, A P; Gay, N J

    1997-01-01

    A Drosophila cDNA encoding a structural homologue of the mammalian coated vesicle component alpha-adaptin (AP2 adaptor complex) has been cloned and sequenced. The mammalian and invertebrate sequences are highly conserved, especially within the amino terminal region, a domain that mediates interactions with other components within the AP2 complex and with specific receptors tails. Mammalian alpha-adaptins are encoded by two genes; however, Drosophila alpha-adaptin has a single gene locus, within polytene bands 21C2-C3 on the left arm of the chromosome 2, closely adjacent to the paired homeobox gene aristaless. There seem to be at least two Drosophila alpha-adaptin transcripts expressed, plausibly by alternative splicing. One of the transcripts is more abundant during early embryogenesis and may be of maternal origin. We have studied the distribution of the alpha-adaptin protein throughout embryogenesis and at the neuromuscular junction of the third instar larva. During cellularization of the blastoderm embryo, the protein is seen between and ahead of the elongating nuclei, and then redistributes to the cell surface during gastrulation. These observations suggest a role for endocytosis in cellularization and are consistent with the finding that dynamin (the shibire gene product), another component of the endocytic mechanism, is required for cellularization. At later stages of embryogenesis, alpha-adaptin is expressed in complex and dynamic patterns. It is strongly induced in elements of the central and peripheral nervous system (e.g., in neuroblasts, the presumptive stomatogastric nervous system, and the lateral chordotonal sense organs), in the Garland cells, the adult midgut precursors, the antenno-maxillary complex, the endoderm, the fat bodies, and the visceral mesoderm. In the larva, alpha-adaptin is localized at the plasma membrane in the synaptic boutons of the neuromuscular junctions. The cells expressing high levels of alpha-adaptin are known or expected to

  17. Alpha-adaptin, a marker for endocytosis, is expressed in complex patterns during Drosophila development.

    PubMed

    Dornan, S; Jackson, A P; Gay, N J

    1997-08-01

    A Drosophila cDNA encoding a structural homologue of the mammalian coated vesicle component alpha-adaptin (AP2 adaptor complex) has been cloned and sequenced. The mammalian and invertebrate sequences are highly conserved, especially within the amino terminal region, a domain that mediates interactions with other components within the AP2 complex and with specific receptors tails. Mammalian alpha-adaptins are encoded by two genes; however, Drosophila alpha-adaptin has a single gene locus, within polytene bands 21C2-C3 on the left arm of the chromosome 2, closely adjacent to the paired homeobox gene aristaless. There seem to be at least two Drosophila alpha-adaptin transcripts expressed, plausibly by alternative splicing. One of the transcripts is more abundant during early embryogenesis and may be of maternal origin. We have studied the distribution of the alpha-adaptin protein throughout embryogenesis and at the neuromuscular junction of the third instar larva. During cellularization of the blastoderm embryo, the protein is seen between and ahead of the elongating nuclei, and then redistributes to the cell surface during gastrulation. These observations suggest a role for endocytosis in cellularization and are consistent with the finding that dynamin (the shibire gene product), another component of the endocytic mechanism, is required for cellularization. At later stages of embryogenesis, alpha-adaptin is expressed in complex and dynamic patterns. It is strongly induced in elements of the central and peripheral nervous system (e.g., in neuroblasts, the presumptive stomatogastric nervous system, and the lateral chordotonal sense organs), in the Garland cells, the adult midgut precursors, the antenno-maxillary complex, the endoderm, the fat bodies, and the visceral mesoderm. In the larva, alpha-adaptin is localized at the plasma membrane in the synaptic boutons of the neuromuscular junctions. The cells expressing high levels of alpha-adaptin are known or expected to

  18. CPB1 of Aedes aegypti interacts with DENV2 E protein and regulates intracellular viral accumulation and release from midgut cells.

    PubMed

    Tham, Hong-Wai; Balasubramaniam, Vinod R M T; Tejo, Bimo Ario; Ahmad, Hamdan; Hassan, Sharifah Syed

    2014-12-01

    Aedes aegypti is a principal vector responsible for the transmission of dengue viruses (DENV). To date, vector control remains the key option for dengue disease management. To develop new vector control strategies, a more comprehensive understanding of the biological interactions between DENV and Ae. aegypti is required. In this study, a cDNA library derived from the midgut of female adult Ae. aegypti was used in yeast two-hybrid (Y2H) screenings against DENV2 envelope (E) protein. Among the many interacting proteins identified, carboxypeptidase B1 (CPB1) was selected, and its biological interaction with E protein in Ae. aegypti primary midgut cells was further validated. Our double immunofluorescent assay showed that CPB1-E interaction occurred in the endoplasmic reticulum (ER) of the Ae. aegypti primary midgut cells. Overexpression of CPB1 in mosquito cells resulted in intracellular DENV2 genomic RNA or virus particle accumulation, with a lower amount of virus release. Therefore, we postulated that in Ae. aegypti midgut cells, CPB1 binds to the E protein deposited on the ER intraluminal membranes and inhibits DENV2 RNA encapsulation, thus inhibiting budding from the ER, and may interfere with immature virus transportation to the trans-Golgi network. PMID:25521592

  19. CPB1 of Aedes aegypti Interacts with DENV2 E Protein and Regulates Intracellular Viral Accumulation and Release from Midgut Cells

    PubMed Central

    Tham, Hong-Wai; Balasubramaniam, Vinod R. M. T.; Tejo, Bimo Ario; Ahmad, Hamdan; Hassan, Sharifah Syed

    2014-01-01

    Aedes aegypti is a principal vector responsible for the transmission of dengue viruses (DENV). To date, vector control remains the key option for dengue disease management. To develop new vector control strategies, a more comprehensive understanding of the biological interactions between DENV and Ae. aegypti is required. In this study, a cDNA library derived from the midgut of female adult Ae. aegypti was used in yeast two-hybrid (Y2H) screenings against DENV2 envelope (E) protein. Among the many interacting proteins identified, carboxypeptidase B1 (CPB1) was selected, and its biological interaction with E protein in Ae. aegypti primary midgut cells was further validated. Our double immunofluorescent assay showed that CPB1-E interaction occurred in the endoplasmic reticulum (ER) of the Ae. aegypti primary midgut cells. Overexpression of CPB1 in mosquito cells resulted in intracellular DENV2 genomic RNA or virus particle accumulation, with a lower amount of virus release. Therefore, we postulated that in Ae. aegypti midgut cells, CPB1 binds to the E protein deposited on the ER intraluminal membranes and inhibits DENV2 RNA encapsulation, thus inhibiting budding from the ER, and may interfere with immature virus transportation to the trans-Golgi network. PMID:25521592

  20. Genetic characterization and cloning of Mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster

    SciTech Connect

    Sekelsky, J.J.; Newfeld, S.J.; Raftery, L.A.; Chartoff, E.H.; Gelbart, W.M.

    1995-03-01

    The decapentaplegic (dpp) gene of Drosophila melanogaster encodes a growth factor that belongs to the transforming growth factor-{beta} (TGF-{beta}) superfamily and that plays a central role in multiple cell-cell signaling events throughout development. Through genetic screens we are seeking to identify other functions that act upstream, downstream or in concert with dpp to mediate its signaling role. We report the genetic characterization and cloning of Mothers against dpp (Mad), a gene identified in two such screens. Mad loss-of-function mutations interact with dpp alleles to enhance embryonic dorsal-ventral patterning defects, as well as adult appendage defects, suggesting a role for Mad in mediating some aspect of dpp function. In support of this, homozygous Mad mutant animals exhibit defects in midgut morphogenesis, imaginal disk development and embryonic dorsal-ventral patterning that are very reminiscent of dpp mutant phenotypes. We cloned the Mad region and identified the Mad transcription unit through germline transformation rescue. We sequenced a Mad cDNA and identified three Mad point mutations that alter the coding information. The predicted MAD polypeptide lacks known protein motifs, but has strong sequence similarity to three polypeptides predicted from genomic sequence from the nematode Caenorhabiditis elegans. Hence, MAD is a member of a novel, highly conserved protein family. 60 refs., 8 figs., 3 tabs.

  1. The conserved Misshapen-Warts-Yorkie pathway acts in enteroblasts to regulate intestinal stem cells in Drosophila

    PubMed Central

    Li, Qi; Li, Shuangxi; Mana-Capelli, Sebastian; Roth Flach, Rachel J.; Danai, Laura V.; Amcheslavsky, Alla; Nie, Yingchao; Kaneko, Satoshi; Yao, Xiaohao; Chen, Xiaochu; Cotton, Jennifer L.; Mao, Junhao; McCollum, Dannel; Jiang, Jin; Czech, Michael P.; Xu, Lan; Ip, Y. Tony

    2014-01-01

    SUMMARY Similar to the mammalian intestine, the Drosophila adult midgut has resident stem cells that support growth and regeneration. How the niche regulates intestinal stem cell activity in both mammals and flies is not well understood. Here we show that the conserved germinal center protein kinase Misshapen restricts intestinal stem cell division by repressing the expression of the JAK-STAT pathway ligand Upd3 in differentiating enteroblasts. Misshapen, a distant relative to the prototypic Warts activating kinase Hippo, interacts with and activates Warts to negatively regulate the activity of Yorkie and the expression of Upd3. The mammalian Misshapen homolog MAP4K4 similarly interacts with LATS (Warts homolog) and promotes inhibition of YAP (Yorkie homolog). Together, this work reveals that the Misshapen-Warts-Yorkie pathway acts in enteroblasts to control niche signaling to intestinal stem cells. These findings also provide a model in which to study requirements for MAP4K4-related kinases in MST1/2-independent regulation of LATS and YAP. PMID:25453828

  2. Optogenetics in Drosophila Neuroscience.

    PubMed

    Riemensperger, Thomas; Kittel, Robert J; Fiala, André

    2016-01-01

    Optogenetic techniques enable one to target specific neurons with light-sensitive proteins, e.g., ion channels, ion pumps, or enzymes, and to manipulate their physiological state through illumination. Such artificial interference with selected elements of complex neuronal circuits can help to determine causal relationships between neuronal activity and the effect on the functioning of neuronal circuits controlling animal behavior. The advantages of optogenetics can best be exploited in genetically tractable animals whose nervous systems are, on the one hand, small enough in terms of cell numbers and to a certain degree stereotypically organized, such that distinct and identifiable neurons can be targeted reproducibly. On the other hand, the neuronal circuitry and the behavioral repertoire should be complex enough to enable one to address interesting questions. The fruit fly Drosophila melanogaster is a favorable model organism in this regard. However, the application of optogenetic tools to depolarize or hyperpolarize neurons through light-induced ionic currents has been difficult in adult flies. Only recently, several variants of Channelrhodopsin-2 (ChR2) have been introduced that provide sufficient light sensitivity, expression, and stability to depolarize central brain neurons efficiently in adult Drosophila. Here, we focus on the version currently providing highest photostimulation efficiency, ChR2-XXL. We exemplify the use of this optogenetic tool by applying it to a widely used aversive olfactory learning paradigm. Optogenetic activation of a population of dopamine-releasing neurons mimics the reinforcing properties of a punitive electric shock typically used as an unconditioned stimulus. In temporal coincidence with an odor stimulus this artificially induced neuronal activity causes learning of the odor signal, thereby creating a light-induced memory. PMID:26965122

  3. Leigh Syndrome in Drosophila melanogaster

    PubMed Central

    Da-Rè, Caterina; von Stockum, Sophia; Biscontin, Alberto; Millino, Caterina; Cisotto, Paola; Zordan, Mauro A.; Zeviani, Massimo; Bernardi, Paolo; De Pittà, Cristiano; Costa, Rodolfo

    2014-01-01

    Leigh Syndrome (LS) is the most common early-onset, progressive mitochondrial encephalopathy usually leading to early death. The single most prevalent cause of LS is occurrence of mutations in the SURF1 gene, and LSSurf1 patients show a ubiquitous and specific decrease in the activity of mitochondrial respiratory chain complex IV (cytochrome c oxidase, COX). SURF1 encodes an inner membrane mitochondrial protein involved in COX assembly. We established a Drosophila melanogaster model of LS based on the post-transcriptional silencing of CG9943, the Drosophila homolog of SURF1. Knockdown of Surf1 was induced ubiquitously in larvae and adults, which led to lethality; in the mesodermal derivatives, which led to pupal lethality; or in the central nervous system, which allowed survival. A biochemical characterization was carried out in knockdown individuals, which revealed that larvae unexpectedly displayed defects in all complexes of the mitochondrial respiratory chain and in the F-ATP synthase, while adults had a COX-selective impairment. Silencing of Surf1 expression in Drosophila S2R+ cells led to selective loss of COX activity associated with decreased oxygen consumption and respiratory reserve. We conclude that Surf1 is essential for COX activity and mitochondrial function in D. melanogaster, thus providing a new tool that may help clarify the pathogenic mechanisms of LS. PMID:25164807

  4. Optogenetic pacing in Drosophila melanogaster

    PubMed Central

    Alex, Aneesh; Li, Airong; Tanzi, Rudolph E.; Zhou, Chao

    2015-01-01

    Electrical stimulation is currently the gold standard for cardiac pacing. However, it is invasive and nonspecific for cardiac tissues. We recently developed a noninvasive cardiac pacing technique using optogenetic tools, which are widely used in neuroscience. Optogenetic pacing of the heart provides high spatial and temporal precisions, is specific for cardiac tissues, avoids artifacts associated with electrical stimulation, and therefore promises to be a powerful tool in basic cardiac research. We demonstrated optogenetic control of heart rhythm in a well-established model organism, Drosophila melanogaster. We developed transgenic flies expressing a light-gated cation channel, channelrhodopsin-2 (ChR2), specifically in their hearts and demonstrated successful optogenetic pacing of ChR2-expressing Drosophila at different developmental stages, including the larva, pupa, and adult stages. A high-speed and ultrahigh-resolution optical coherence microscopy imaging system that is capable of providing images at a rate of 130 frames/s with axial and transverse resolutions of 1.5 and 3.9 μm, respectively, was used to noninvasively monitor Drosophila cardiac function and its response to pacing stimulation. The development of a noninvasive integrated optical pacing and imaging system provides a novel platform for performing research studies in developmental cardiology. PMID:26601299

  5. Three-Dimensional Imaging of Drosophila melanogaster

    PubMed Central

    McGurk, Leeanne; Morrison, Harris; Keegan, Liam P.; Sharpe, James; O'Connell, Mary A.

    2007-01-01

    Background The major hindrance to imaging the intact adult Drosophila is that the dark exoskeleton makes it impossible to image through the cuticle. We have overcome this obstacle and describe a method whereby the internal organs of adult Drosophila can be imaged in 3D by bleaching and clearing the adult and then imaging using a technique called optical projection tomography (OPT). The data is displayed as 2D optical sections and also in 3D to provide detail on the shape and structure of the adult anatomy. Methodology We have used OPT to visualize in 2D and 3D the detailed internal anatomy of the intact adult Drosophila. In addition this clearing method used for OPT was tested for imaging with confocal microscopy. Using OPT we have visualized the size and shape of neurodegenerative vacuoles from within the head capsule of flies that suffer from age-related neurodegeneration due to a lack of ADAR mediated RNA-editing. In addition we have visualized tau-lacZ expression in 2D and 3D. This shows that the wholemount adult can be stained without any manipulation and that this stain penetrates well as we have mapped the localization pattern with respect to the internal anatomy. Conclusion We show for the first time that the intact adult Drosophila can be imaged in 3D using OPT, also we show that this method of clearing is also suitable for confocal microscopy to image the brain from within the intact head. The major advantage of this is that organs can be represented in 3D in their natural surroundings. Furthermore optical sections are generated in each of the three planes and are not prone to the technical limitations that are associated with manual sectioning. OPT can be used to dissect mutant phenotypes and to globally map gene expression in both 2D and 3D. PMID:17786206

  6. Drosophila Models of Cardiac Disease

    PubMed Central

    Piazza, Nicole; Wessells, R.J.

    2013-01-01

    The fruit fly Drosophila melanogaster has emerged as a useful model for cardiac diseases, both developmental abnormalities and adult functional impairment. Using the tools of both classical and molecular genetics, the study of the developing fly heart has been instrumental in identifying the major signaling events of cardiac field formation, cardiomyocyte specification, and the formation of the functioning heart tube. The larval stage of fly cardiac development has become an important model system for testing isolated preparations of living hearts for the effects of biological and pharmacological compounds on cardiac activity. Meanwhile, the recent development of effective techniques to study adult cardiac performance in the fly has opened new uses for the Drosophila model system. The fly system is now being used to study long-term alterations in adult performance caused by factors such as diet, exercise, and normal aging. The fly is a unique and valuable system for the study of such complex, long-term interactions, as it is the only invertebrate genetic model system with a working heart developmentally homologous to the vertebrate heart. Thus, the fly model combines the advantages of invertebrate genetics (such as large populations, facile molecular genetic techniques, and short lifespan) with physiological measurement techniques that allow meaningful comparisons with data from vertebrate model systems. As such, the fly model is well situated to make important contributions to the understanding of complicated interactions between environmental factors and genetics in the long-term regulation of cardiac performance. PMID:21377627

  7. Drosophila C Virus Systemic Infection Leads to Intestinal Obstruction

    PubMed Central

    Chtarbanova, Stanislava; Lamiable, Olivier; Lee, Kwang-Zin; Galiana, Delphine; Troxler, Laurent; Meignin, Carine; Hetru, Charles; Hoffmann, Jules A.; Daeffler, Laurent

    2014-01-01

    ABSTRACT Drosophila C virus (DCV) is a positive-sense RNA virus belonging to the Dicistroviridae family. This natural pathogen of the model organism Drosophila melanogaster is commonly used to investigate antiviral host defense in flies, which involves both RNA interference and inducible responses. Although lethality is used routinely as a readout for the efficiency of the antiviral immune response in these studies, virus-induced pathologies in flies still are poorly understood. Here, we characterize the pathogenesis associated with systemic DCV infection. Comparison of the transcriptome of flies infected with DCV or two other positive-sense RNA viruses, Flock House virus and Sindbis virus, reveals that DCV infection, unlike those of the other two viruses, represses the expression of a large number of genes. Several of these genes are expressed specifically in the midgut and also are repressed by starvation. We show that systemic DCV infection triggers a nutritional stress in Drosophila which results from intestinal obstruction with the accumulation of peritrophic matrix at the entry of the midgut and the accumulation of the food ingested in the crop, a blind muscular food storage organ. The related virus cricket paralysis virus (CrPV), which efficiently grows in Drosophila, does not trigger this pathology. We show that DCV, but not CrPV, infects the smooth muscles surrounding the crop, causing extensive cytopathology and strongly reducing the rate of contractions. We conclude that the pathogenesis associated with systemic DCV infection results from the tropism of the virus for an important organ within the foregut of dipteran insects, the crop. IMPORTANCE DCV is one of the few identified natural viral pathogens affecting the model organism Drosophila melanogaster. As such, it is an important virus for the deciphering of host-virus interactions in insects. We characterize here the pathogenesis associated with DCV infection in flies and show that it results from the

  8. Aspen defense chemicals influence midgut bacterial community composition of gypsy moth.

    PubMed

    Mason, Charles J; Rubert-Nason, Kennedy F; Lindroth, Richard L; Raffa, Kenneth F

    2015-01-01

    Microbial symbionts are becoming increasingly recognized as mediators of many aspects of plant - herbivore interactions. However, the influence of plant chemical defenses on gut associates of insect herbivores is less well understood. We used gypsy moth (Lymantria dispar L.), and differing trembling aspen (Populus tremuloides Michx.) genotypes that vary in chemical defenses, to assess the influence of foliar chemistry on bacterial communities of larval midguts. We evaluated the bacterial community composition of foliage, and of midguts of larvae feeding on those leaves, using next-generation high-throughput sequencing. Plant defense chemicals did not influence the composition of foliar communities. In contrast, both phenolic glycosides and condensed tannins affected the bacterial consortia of gypsy moth midguts. The two most abundant operational taxonomic units were classified as Ralstonia and Acinetobacter. The relative abundance of Ralstonia was higher in midguts than in foliage when phenolic glycoside concentrations were low, but lower in midguts when phenolic glycosides were high. In contrast, the relative abundance of Ralstonia was lower in midguts than in foliage when condensed tannin concentrations were low, but higher in midguts when condensed tannins were high. Acinetobacter showed a different relationship with host chemistry, being relatively more abundant in midguts than with foliage when condensed tannin concentrations were low, but lower in midguts when condensed tannins were high. Acinetobacter tended to have a greater relative abundance in midguts of insects feeding on genotypes with high phenolic glycoside concentrations. These results show that plant defense chemicals influence herbivore midgut communities, which may in turn influence host utilization. PMID:25475786

  9. Characterisation of Drosophila UbxCPTI000601 and hthCPTI000378 Protein Trap Lines

    PubMed Central

    2014-01-01

    In Drosophila, protein trap strategies provide powerful approaches for the generation of tagged proteins expressed under endogenous control. Here, we describe expression and functional analysis to evaluate new Ubx and hth protein trap lines generated by the Cambridge Protein Trap project. Both protein traps exhibit spatial and temporal expression patterns consistent with the reported endogenous pattern in the embryo. In imaginal discs, Ubx-YFP is expressed throughout the haltere and 3rd leg imaginal discs, while Hth-YFP is expressed in the proximal regions of haltere and wing discs but not in the pouch region. The UbxCPTI000601 line is semilethal as a homozygote. No T3/A1 to T2 transformations were observed in the embryonic cuticle or the developing midgut. The homozygous survivors, however, exhibit a weak haltere phenotype with a few wing-like marginal bristles on the haltere capitellum. Although hthCPTI000378 is completely lethal as a homozygote, the hthCPTI000378/hthC1 genotype is viable. Using a hth deletion (Df(3R)BSC479) we show that hthCPTI000378/Df(3R)BSC479 adults are phenotypically normal. No transformations were observed in hthCPTI000378, hthCPTI000378/hthC1, or hthCPTI000378/Df(3R)BSC479 embryonic cuticles. We have successfully characterised the Ubx-YFP and Hth-YFP protein trap lines demonstrating that the tagged proteins show appropriate expression patterns and produce at least partially functional proteins. PMID:25389534

  10. Developmental Toxicity Assays Using the Drosophila Model

    PubMed Central

    Rand, Matthew D.; Montgomery, Sara L.; Prince, Lisa; Vorojeikina, Daria

    2014-01-01

    The fruit fly (Drosophila melanogaster) has long been a premier model for developmental biologists and geneticists. The utility of Drosophila for toxicology studies has only recently gained broader recognition as a tool to elaborate molecular genetic mechanisms of toxic substances. In this article two practical applications of Drosophila for developmental toxicity assays are described. The first assay takes advantage of newly developed methods to render the fly embryo accessible to small molecules, toxicants and drugs. The second assay engages straightforward exposures to developing larvae and easy to score outcomes of adult development. With the extensive collections of flies that are publicly available and the ease with which to create transgenic flies, these two assays have a unique power for identifying and characterizing molecular mechanisms and cellular pathways specific to the mode of action of a number of toxicants and drugs. PMID:24789363

  11. Response of the common cutworm Spodoptera litura to lead stress: changes in sex ratio, Pb accumulations, midgut cell ultrastructure.

    PubMed

    Shu, Yinghua; Zhou, Jialiang; Lu, Kai; Li, Keqing; Zhou, Qiang

    2015-11-01

    When cutworm Spodoptera litura larvae were fed on the diets with different lead (Pb) concentrations for one or five generations, changes in growth and food utilization were recorded; Pb accumulations were detected by Atomic Absorption Spectrophotometer; changes in midgut cell ultrastructure were observed by Transmission Electron Microscopy (TEM). The effects of Pb stress on S. litura growth and food utilization differed significantly between insects of the 1st and 5th generation. The male-female rate of 200mgkg(-1) Pb treatment from the 1st generation and 50mgkg(-1) Pb treatment from the 5th generation was significantly higher than control. No significant difference of Pb accumulations was found in larvae, pupae and adults between the 1st and 5th generation. No significant difference of Pb accumulations in corresponding tissues of larvae was found between male and female. Compared to fat body, hemolymph, head, foregut and hindgut, the highest Pb accumulation was found in migut of larvae exposed to 200mgkg(-1) Pb. TEM showed that expanded intercellular spaces were observed in Pb-treated midgut cells. The nuclei were strongly destroyed by Pb stress, evidenced by chromatin condensation and destroyed nuclear envelope. Mitochondria became swollen with some broken cristae after exposure to Pb. Therefore, neither gender nor progeny difference was present in Pb accumulations of S. litura, although effects of Pb stress on S. litura growth and food utilization differed from different generations and genders. Pb accumulations in midgut caused pathological changes in cells ultrastructure, possibly reflected the growth and food utilization of S. litura. PMID:26248226

  12. Porphyromonas gingivalis-host interactions in a Drosophila melanogaster model.

    PubMed

    Igboin, Christina O; Tordoff, Kevin P; Moeschberger, Melvin L; Griffen, Ann L; Leys, Eugene J

    2011-01-01

    Porphyromonas gingivalis is a Gram-negative obligate anaerobe that has been implicated in the etiology of adult periodontitis. We recently introduced a Drosophila melanogaster killing model for examination of P. gingivalis-host interactions. In the current study, the Drosophila killing model was used to characterize the host response to P. gingivalis infection by identifying host components that play a role during infection. Drosophila immune response gene mutants were screened for altered susceptibility to killing by P. gingivalis. The Imd signaling pathway was shown to be important for the survival of Drosophila infected by nonencapsulated P. gingivalis strains but was dispensable for the survival of Drosophila infected by encapsulated P. gingivalis strains. The P. gingivalis capsule was shown to mediate resistance to killing by Drosophila antimicrobial peptides (Imd pathway-regulated cecropinA and drosocin) and human beta-defensin 3. Drosophila thiol-ester protein II (Tep II) and Tep IV and the tumor necrosis factor (TNF) homolog Eiger were also involved in the immune response against P. gingivalis infection, while the scavenger receptors Eater and Croquemort played no roles in the response to P. gingivalis infection. This study demonstrates that the Drosophila killing model is a useful high-throughput model for characterizing the host response to P. gingivalis infection and uncovering novel interactions between the bacterium and the host. PMID:21041486

  13. Genotoxic effects of cisplatin in somatic tissue of Drosophila melanogaster

    SciTech Connect

    Katz, A.J.

    1987-01-01

    Third instar larvae of Drosophila melanogaster transdihybrid for mwh and flr were exposed to varying concentrations of cisplatin by feeding on dry media wetted with aqueous solutions of the test compound. Larval feeding continued until pupation, and surviving transdihybrid adults were collected seven days following commencement of feeding. Wings of adults were removed and scored under 400X magnification for the presence of twin spots and single spots comprised of clones of cells possessing malformed wing hairs. Cisplatin was found to induce both twin spots and single spots, and significant linear concentration-response relationships were obtained with respect to the induction of all endpoints. This capacity to induce mitotic exchange in the somatic tissue of Drosophila compares well with the compound's reported ability to induce chromosome breaks in Drosophila germ cells. However, not all compounds possess similar genotoxic profiles in the somatic an germ tissue of Drosophila.

  14. Loading of lipophorin particles with phospholipids at the midgut of Rhodnius prolixus.

    PubMed

    Atella, G C; Gondim, C; Masuda, H

    1995-01-01

    32P-Labelled midguts (32P-midguts) of Rhodnius prolixus females were incubated in the presence of nonradioactive purified lipophorin and the release of radioactivity to the medium was analysed. The radioactivity found in the medium was associated with lipophorin phospholipids. When the 32P-midguts were incubated in the absence of lipophorin, no 32P-phospholipids were found in the medium. Comparative analysis by thin-layer chromatography of 32P-phospholipids derived from metabolically labelled 32P-midgut or lipophorin particles after incubation with 32P-midgut showed some differences, revealing a possible selectivity in the process of phospholipids transfer. The transfer of phospholipids to lipophorin was linear with time up to 45 min, was saturable with respect to the concentration of lipophorin, and was half-maximal at about 5 mg/ml. The binding of 32P-lipophorin to the midgut at 0 degrees C reached the equilibrium at about 1 h of incubation. The binding of 32P-lipophorin was inhibited by an excess of nonradioactive lipophorin, which suggests a specific receptor for lipophorin. The capacity of midguts and fat bodies to transfer phospholipids to lipophorin varied during the days following the meal. When lipophorin enzymatically depleted of phospholipids by treatment with phospholipase A2 was incubated with 32P-midguts, the same amount of phospholipids was transferred, indicating a net gain of phospholipids by the particle. PMID:11488302

  15. Effect of Insect Larval Midgut Proteases on the Activity of Bacillus thuringiensis Cry Toxins▿

    PubMed Central

    Fortier, Mélanie; Vachon, Vincent; Frutos, Roger; Schwartz, Jean-Louis; Laprade, Raynald

    2007-01-01

    To test the possibility that proteolytic cleavage by midgut juice enzymes could enhance or inhibit the activity of Bacillus thuringiensis insecticidal toxins, once activated, the effects of different toxins on the membrane potential of the epithelial cells of isolated Manduca sexta midguts in the presence and absence of midgut juice were measured. While midgut juice had little effect on the activity of Cry1Aa, Cry1Ac, Cry1Ca, Cry1Ea, and R233A, a mutant of Cry1Aa from which one of the four salt bridges linking domains I and II of the toxin was eliminated, it greatly increased the activity of Cry1Ab. In addition, when tested in the presence of a cocktail of protease inhibitors or when boiled, midgut juice retained almost completely its capacity to enhance Cry1Ab activity, suggesting that proteases were not responsible for the stimulation. On the other hand, in the absence of midgut juice, the cocktail of protease inhibitors also enhanced the activity of Cry1Ab, suggesting that proteolytic cleavage by membrane proteases could render the toxin less effective. The lower toxicity of R233A, despite a similar in vitro pore-forming ability, compared with Cry1Aa, cannot be accounted for by an increased susceptibility to midgut proteases. Although these assays were performed under conditions approaching those found in the larval midgut, the depolarizing activities of the toxins correlated only partially with their toxicities. PMID:17693568

  16. Fine-Tuning of PI3K/AKT Signalling by the Tumour Suppressor PTEN Is Required for Maintenance of Flight Muscle Function and Mitochondrial Integrity in Ageing Adult Drosophila melanogaster

    PubMed Central

    Mensah, Lawrence B.; Davison, Claire; Fan, Shih-Jung; Morris, John F.; Goberdhan, Deborah C. I.; Wilson, Clive

    2015-01-01

    Insulin/insulin-like growth factor signalling (IIS), acting primarily through the PI3-kinase (PI3K)/AKT kinase signalling cassette, plays key evolutionarily conserved regulatory roles in nutrient homeostasis, growth, ageing and longevity. The dysfunction of this pathway has been linked to several age-related human diseases including cancer, Type 2 diabetes and neurodegenerative disorders. However, it remains unclear whether minor defects in IIS can independently induce the age-dependent functional decline in cells that accompany some of these diseases or whether IIS alters the sensitivity to other aberrant signalling. We identified a novel hypomorphic allele of PI3K’s direct antagonist, Phosphatase and tensin homologue on chromosome 10 (Pten), in the fruit fly, Drosophila melanogaster. Adults carrying combinations of this allele, Pten5, combined with strong loss-of-function Pten mutations exhibit subtle or no increase in mass, but are highly susceptible to a wide range of stresses. They also exhibit dramatic upregulation of the oxidative stress response gene, GstD1, and a progressive loss of motor function that ultimately leads to defects in climbing and flight ability. The latter phenotype is associated with mitochondrial disruption in indirect flight muscles, although overall muscle structure appears to be maintained. We show that the phenotype is partially rescued by muscle-specific expression of the Bcl-2 homologue Buffy, which in flies, maintains mitochondrial integrity, modulates energy homeostasis and suppresses cell death. The flightless phenotype is also suppressed by mutations in downstream IIS signalling components, including those in the mechanistic Target of Rapamycin Complex 1 (mTORC1) pathway, suggesting that elevated IIS is responsible for functional decline in flight muscle. Our data demonstrate that IIS levels must be precisely regulated by Pten in adults to maintain the function of the highly metabolically active indirect flight muscles

  17. Morpho-functional characterization and esterase patterns of the midgut of Tribolium castaneum Herbst, 1797 (Coleoptera: Tenebrionidae) parasitized by Gregarina cuneata (Apicomplexa: Eugregarinidae).

    PubMed

    Gigliolli, Adriana A Sinópolis; Lapenta, Ana Silva; Ruvolo-Takasusuki, Maria Claudia Colla; Abrahão, Josielle; Conte, Hélio

    2015-09-01

    Tribolium castaneum (Coleoptera: Tenebrionidae) is a common pest of stored grains and byproducts and is normally infected by Gregarina cuneata (Apicomplexa: Eugregarinidae). The life cycle of this parasite includes the sporozoite, trophozoite, gamont, gametocyte, and oocyst stages, which occur between the epithelium and lumen of the host's midgut. This study aims to describe the morphofunctional alterations in the midgut and determine the esterase patterns in T. castaneum when parasitized by gregarines. To achieve this purpose, midguts of adult insects were isolated, processed, and analysed using light and electron microscopy. We determined total protein content, amylase activity, and the expression and related activities of the esterases by using polyacrylamide gel electrophoresis (PAGE). The midgut of T. castaneum is formed by digestive, regenerative, and endocrine cells. The effects of parasitism on the digestive cells are severe, because the gregarines remain attached to these cells to absorb all the nutrients they need throughout their development. In these cells, the most common alterations observed include expansion and fragmentation of the rough endoplasmic reticulum, development of the smooth endoplasmic reticulum, changes in mitochondrial cristae, cytoplasmic vacuolization, formation of myelin structures, spherites, large intercellular spaces, autophagic vesicles, expansion of the basal labyrinth, and cytoplasmic protrusions. Deposits of glycogen granules were also observed. Amylase activity was reduced in parasitized insects. Regenerative cells were found in disorganized crypts and did not differentiate into new cells, thus, compromising the restoration of the damaged epithelium. Though few morphological alterations were observed in the endocrine cells, results suggest that the synthesis and/or release of hormones might be impaired. Nine esterases (EST-1 to 9) were identified in the midgut of T. castaneum and were expressed in varying levels in response

  18. Retinal differentiation in Drosophila.

    PubMed

    Treisman, Jessica E

    2013-07-01

    Drosophila eye development has been extensively studied, due to the ease of genetic screens for mutations disrupting this process. The eye imaginal disc is specified during embryonic and larval development by the Pax6 homolog Eyeless and a network of downstream transcription factors. Expression of these factors is regulated by signaling molecules and also indirectly by growth of the eye disc. Differentiation of photoreceptor clusters initiates in the third larval instar at the posterior of the eye disc and progresses anteriorly, driven by the secreted protein Hedgehog. Within each cluster, the combined activities of Hedgehog signaling and Notch-mediated lateral inhibition induce and refine the expression of the transcription factor Atonal, which specifies the founding R8 photoreceptor of each ommatidium. Seven additional photoreceptors, followed by cone and pigment cells, are successively recruited by the signaling molecules Spitz, Delta, and Bride of sevenless. Combinations of these signals and of intrinsic transcription factors give each ommatidial cell its specific identity. During the pupal stages, rhodopsins are expressed, and the photoreceptors and accessory cells take on their final positions and morphologies to form the adult retina. Over the past few decades, the genetic analysis of this small number of cell types arranged in a repetitive structure has allowed a remarkably detailed understanding of the basic mechanisms controlling cell differentiation and morphological rearrangement. PMID:24014422

  19. Infection Dynamics and Immune Response in a Newly Described Drosophila-Trypanosomatid Association

    PubMed Central

    Votýpka, Jan; Dostálová, Anna; Yurchenko, Vyacheslav; Bird, Nathan H.; Lukeš, Julius; Lemaitre, Bruno

    2015-01-01

    ABSTRACT Trypanosomatid parasites are significant causes of human disease and are ubiquitous in insects. Despite the importance of Drosophila melanogaster as a model of infection and immunity and a long awareness that trypanosomatid infection is common in the genus, no trypanosomatid parasites naturally infecting Drosophila have been characterized. Here, we establish a new model of trypanosomatid infection in Drosophila—Jaenimonas drosophilae, gen. et sp. nov. As far as we are aware, this is the first Drosophila-parasitic trypanosomatid to be cultured and characterized. Through experimental infections, we find that Drosophila falleni, the natural host, is highly susceptible to infection, leading to a substantial decrease in host fecundity. J. drosophilae has a broad host range, readily infecting a number of Drosophila species, including D. melanogaster, with oral infection of D. melanogaster larvae resulting in the induction of numerous immune genes. When injected into adult hemolymph, J. drosophilae kills D. melanogaster, although interestingly, neither the Imd nor the Toll pathway is induced and Imd mutants do not show increased susceptibility to infection. In contrast, mutants deficient in drosocrystallin, a major component of the peritrophic matrix, are more severely infected during oral infection, suggesting that the peritrophic matrix plays an important role in mediating trypanosomatid infection in Drosophila. This work demonstrates that the J. drosophilae-Drosophila system can be a powerful model to uncover the effects of trypanosomatids in their insect hosts. PMID:26374124

  20. Tsetse EP Protein Protects the Fly Midgut from Trypanosome Establishment

    PubMed Central

    Haines, Lee R.; Lehane, Stella M.; Pearson, Terry W.; Lehane, Michael J.

    2010-01-01

    African trypanosomes undergo a complex developmental process in their tsetse fly vector before transmission back to a vertebrate host. Typically, 90% of fly infections fail, most during initial establishment of the parasite in the fly midgut. The specific mechanism(s) underpinning this failure are unknown. We have previously shown that a Glossina-specific, immunoresponsive molecule, tsetse EP protein, is up regulated by the fly in response to gram-negative microbial challenge. Here we show by knockdown using RNA interference that this tsetse EP protein acts as a powerful antagonist of establishment in the fly midgut for both Trypanosoma brucei brucei and T. congolense. We demonstrate that this phenomenon exists in two species of tsetse, Glossina morsitans morsitans and G. palpalis palpalis, suggesting tsetse EP protein may be a major determinant of vector competence in all Glossina species. Tsetse EP protein levels also decline in response to starvation of the fly, providing a possible explanation for increased susceptibility of starved flies to trypanosome infection. As starvation is a common field event, this fact may be of considerable importance in the epidemiology of African trypanosomiasis. PMID:20221444

  1. Revisiting rubisco as a protein substrate for insect midgut proteases.

    PubMed

    Bhardwaj, Usha; Bhardwaj, Amit; Kumar, Rakesh; Leelavathi, Sadhu; Reddy, Vanga Siva; Mazumdar-Leighton, Sudeshna

    2014-01-01

    Gene fragments encoding the large subunit (LS) of Rubisco (RBCL) were cloned from various species of host plants of phytophagous Lepidoptera and expressed as recombinant proteins in Escherichia coli. Recombinant RBCLs were compared among each other along with casein and native Rubisco as proteinaceous substrates for measuring total midgut protease activities of fourth instar larvae of Helicoverpa armigera feeding on casein, Pieris brassicae feeding on cauliflower, and Antheraea assamensis feeding on Litsea monopetala and Persea bombycina. Cognate rRBCL (from the pertinent host plant species) substrates performed similar to noncognate rRBCL reflecting the conserved nature of encoding genes and the versatile use of these recombinant proteins. Casein and recombinant RBCL generally outperformed native Rubisco as substrates, except where inclusion of a reducing agent in the enzyme assay likely unfolded the plant proteins. Levels of total midgut protease activities detected in A. assamensis larvae feeding on two primary host species were similar, suggesting that the suite(s) of digestive enzymes in these insects could hydrolyze a plant protein efficiently. Protease activities detected in the presence of protease inhibitors and the reducing agent dithiothreitol (DTT) suggested that recombinant RBCL was a suitable protein substrate for studying insect proteases using in vitro enzyme assays and substrate zymography. PMID:24338735

  2. Rapid Establishment of a Regular Distribution of Adult Tropical Drosophila Parasitoids in a Multi-Patch Environment by Patch Defence Behaviour

    PubMed Central

    de Jong, Peter W.; Hemerik, Lia; Gort, Gerrit; van Alphen, Jacques J. M.

    2011-01-01

    Females of the larval parasitoid of Drosophila, Asobara citri, from sub-Saharan Africa, defend patches with hosts by fighting and chasing conspecific females upon encounter. Females of the closely related, palearctic species Asobara tabida do not defend patches and often search simultaneously in the same patch. The effect of patch defence by A. citri females on their distribution in a multi-patch environment was investigated, and their distributions were compared with those of A. tabida. For both species 20 females were released from two release-points in replicate experiments. Females of A. citri quickly reached a regular distribution across 16 patches, with a small variance/mean ratio per patch. Conversely, A. tabida females initially showed a clumped distribution, and after gradual dispersion, a more Poisson-like distribution across patches resulted (variance/mean ratio was closer to 1 and higher than for A. citri). The dispersion of A. tabida was most probably an effect of exploitation: these parasitoids increasingly made shorter visits to already exploited patches. We briefly discuss hypotheses on the adaptive significance of patch defence behaviour or its absence in the light of differences in the natural history of both parasitoid species, notably the spatial distribution of their hosts. PMID:21765889

  3. Side Effects of Neem Oil on the Midgut Endocrine Cells of the Green Lacewing Ceraeochrysa claveri (Navás) (Neuroptera: Chrysopidae).

    PubMed

    Scudeler, E L; Santos, D C

    2014-04-01

    We described the ultrastructure of Ceraeochrysa claveri (Navás) midgut endocrine cells in larva, pupa, and adult, and evaluated the side effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree (Azadirachta indica), on these cells. During the larval period, C. claveri were fed (ad libitum) Diatraea saccharalis (F.) eggs treated with neem oil at concentrations of 0.5%, 1%, or 2%. Transmission electron microscopy showed that two subtypes of endocrine cells, namely granular and vesicular, occurred in the midgut epithelium during the three stages of the life cycle. Both cell types did not reach the midgut lumen and were positioned basally in the epithelium. The endocrine cells did not show extensive infoldings of the basal plasma membrane, and there were numerous secretory granules in the basal region of the cytoplasm. In the granular endocrine cells, the granules were completely filled with a dense matrix. In the vesicular endocrine cells, the main secretory products consisted of haloed vesicles. Ultrastructural examination indicated that only the granular endocrine cells exhibited signs of morphologic changes of cell injury present in all life cycle stages after the larvae were chronically exposed to neem oil by ingestion. The major cellular damage consisted of dilatation and vesiculation of the rough endoplasmic reticulum and the development of smooth endoplasmic reticulum and mitochondrial swelling. Our data suggest that cytotoxic effects on midgut endocrine cells can contribute to a generalized disruption of the physiological processes in this organ due to a general alteration of endocrine function. PMID:27193522

  4. Lack of Connection Between Midgut Cell Autophagy Gene Expression and BmCPV Infection in the Midgut of Bombyx mori

    PubMed Central

    Yang, Xiaobing; Wu, Suli; Wu, Yongpeng; Liu, Yang; Qian, Yonghua; Jiao, Feng

    2015-01-01

    Autophagy is associated with multiple biological processes and has protective and defensive functions with respect to immunity, inflammation, and resistance to microbial infection. In this experiment, we wished to investigate whether autophagy is a factor in the midgut cell response of Bombyx mori to infection by the B. mori cytoplasmic polyhedrosis virus (BmCPV). Our results indicated that the expression of three autophagy-related genes (BmAtg8, BmAtg5, and BmAtg7) in the midgut did not change greatly after BmCPV infection in B. mori. Basal ATG8/ATG8PE protein expression was detected in different B. mori tissues by using western blot analysis. Immunohistochemistry showed that the ATG8/ATG8PE proteins were located mainly in the cytoplasm. ATG8/ATG8PE protein levels decreased at 12 and 16 h after BmCPV infection. Our results indicate that autophagy responded slightly to BmCPV infection, but could not prevent the invasion and replication of the virus. PMID:26163666

  5. Biotic and abiotic factors impacting development, behavior, phenology, and reproductive biology of Drosophila suzukii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spotted wing drosophila, Drosophila suzukii, quickly emerged as a devastating invasive pest of small and stone fruits in the Americas and Europe. To better understand the population dynamics of D. suzukii, we reviewed recent work on juvenile development, adult reproduction, and seasonal variation in...

  6. Modelling Drosophila suzukii populations in response to the environment and management strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spotted wing drosophila, Drosophila suzukii, quickly emerged as a devastating invasive pest of small and stone fruits in the Americas and Europe. To better understand the population dynamics of D. suzukii, we reviewed recent work on juvenile development, adult reproduction, and seasonal variation in...

  7. Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae.

    PubMed

    Mason, Charles J; Raffa, Kenneth F

    2014-06-01

    Insects are associated with a diversity of bacteria that colonize their midguts. The extent to which these communities reflect maternal transmission, environmental acquisition, and subsequent structuring by the extreme conditions within the insect gut are poorly understood in many species. We used gypsy moth (Lymantria dispar L.) as a model to investigate interactions between egg mass and environmental sources of bacteria on larval midgut communities. Egg masses were collected from several wild and laboratory populations, and the effects of diet, initial egg mass community, and internal host environment were evaluated using 454 16S-rRNA gene pyrosequencing. Wild populations were highly diverse, while laboratory-maintained egg masses were associated with few operational taxonomic units. As larvae developed, their midgut bacterial communities became more similar to each other and the consumed diet despite initial differences in egg mass-associated bacteria. Subsequent experiments revealed that while midgut membership was more similar to bacteria associated with diet than with egg mass-associated bacteria, we were unable to detect distinct, persistent differences attributable to specific host plants. The differences between foliar communities and midgut communities of larvae that ingested them were owing to relative changes in populations of several bacteria phylotypes. We conclude that gypsy moth has a relatively characteristic midgut bacterial community that is reflective of, but ultimately distinct from, its foliar diet. This work demonstrates that environmental acquisition of diverse microbes can lead to similar midgut bacterial assemblages, underscoring the importance of host physiological environment in structuring bacterial communities. PMID:24780292

  8. Identification and characterization of kraken, a gene encoding a putative hydrolytic enzyme in Drosophila melanogaster.

    PubMed

    Edwin Chan, H Y; Harris, S J; O'Kane, C J

    1998-11-19

    Kraken, a novel Drosophila gene isolated from a 4-8-h-old Drosophila embryo cDNA library, shows homology to a family of serine hydrolases whose common feature is that they all catalyse breakage of substrates with a carbonyl-containing group. It is a single-copy gene with at least two introns and maps to position 21D on polytene chromosomes. kraken is a member of a conserved gene family. Messenger RNA of kraken is expressed ubiquitously in early embryogenesis. Later, it is concentrated in the foregut and the posterior midgut primordium. Towards the end of embryogenesis, expression of kraken is confined to the gastric caeca. During the third-instar larval stage, kraken is expressed at low levels in the gastric caeca and parts of the gut, and at higher levels in the fat body. We suggest a role for Kraken in detoxification and digestion during embryogenesis and larval development. PMID:9831651

  9. Characterization of a midgut-specific chitin synthase gene (LmCHS2) responsible for biosynthesis of chitin of peritrophic matrix in Locusta migratoria.

    PubMed

    Liu, Xiaojian; Zhang, Huanhuan; Li, Sheng; Zhu, Kun Yan; Ma, Enbo; Zhang, Jianzhen

    2012-12-01

    Chitin, an essential component of peritrophic matrix (PM), is produced by a series of biochemical reactions. Chitin synthase plays a crucial role in chitin polymerization in chitin biosynthetic pathway. In this study, we identified and characterized a full-length cDNA of chitin synthase 2 gene (LmCHS2) from Locusta migratoria. The cDNA contains an open reading frame of 4569 nucleotides that encode 1523 amino acid residues, and 76- and 373-nucleotides for 5'- and 3'-noncoding regions, respectively. Analysis of LmCHS2 transcript in different tissues of the locust by using real-time quantitative PCR indicated that LmCHS2 was exclusively expressed in midgut and gastric caeca (a part of the midgut). The highest expression was found in the anterior midgut with a decline of the transcript level from the anterior to posterior regions. During growth and development of locusts, there was only a slight expression in eggs, but the expression gradually increased from nymphs to adults. In situ hybridization further revealed that LmCHS2 transcript mainly presented in the apical regions of brush border forming columnar cells of gastric caeca. LmCHS2 dsRNA was injected to fifth-instar nymphs to further explore biological functions of LmCHS2. Significantly down-regulated transcript of LmCHS2 resulted in a cessation of feeding and a high mortality of the insect. However, no visible abnormal morphological change of locusts was observed until insects molted to adults. After dissection, we found that the average length of midguts from the LmCHS2 dsRNA-injected locusts was shorter than that of the control insects that were injected with dsGFP. Furthermore, microsection of midguts showed that the PM of the LmCHS2 dsRNA-injected nymphs was amorphous and thin as compared with the controls. Our results demonstrate that LmCHS2 is responsible for the biosynthesis of chitin associated with PM and plays an essential role in locust growth and development. PMID:23006725

  10. Localisation of laminin within Plasmodium berghei oocysts and the midgut epithelial cells of Anopheles stephensi

    PubMed Central

    Nacer, Adéla; Walker, Karen; Hurd, Hilary

    2008-01-01

    Background Oocysts of the malaria parasite form and develop in close proximity to the mosquito midgut basal lamina and it has been proposed that components of this structure play a crucial role in the development and maturation of oocysts that produce infective sporozoites. It is further suggested that oocysts incorporate basal lamina proteins into their capsule and that this provides them with a means to evade recognition by the mosquito's immune system. The site of production of basal lamina proteins in insects is controversial and it is still unclear whether haemocytes or midgut epithelial cells are the main source of components of the mosquito midgut basal lamina. Of the multiple molecules that compose the basal lamina, laminin is known to interact with a number of Plasmodium proteins. In this study, the localisation of mosquito laminin within the capsule and cytoplasm of Plasmodium berghei oocysts and in the midgut epithelial cells of Anopheles stephensi was investigated. Results An ultrastructural examination of midgut sections from infected and uninfected An. stephensi was performed. Post-embedded immunogold labelling demonstrated the presence of laminin within the mosquito basal lamina. Laminin was also detected on the outer surface of the oocyst capsule, incorporated within the capsule and associated with sporozoites forming within the oocysts. Laminin was also found within cells of the midgut epithelium, providing support for the hypothesis that these cells contribute towards the formation of the midgut basal lamina. Conclusion We suggest that ookinetes may become coated in laminin as they pass through the midgut epithelium. Thereafter, laminin secreted by midgut epithelial cells and/or haemocytes, binds to the outer surface of the oocyst capsule and that some passes through and is incorporated into the developing oocysts. The localisation of laminin on sporozoites was unexpected and the importance of this observation is less clear. PMID:18808667

  11. Antioxidant defenses in caterpillars: role of the ascorbate-recycling system in the midgut lumen.

    PubMed

    Barbehenn, R V; Bumgarner, S L; Roosen, E F; Martin, M M

    2001-04-01

    This study demonstrates that an ascorbate-recycling system in the midgut lumen can act as an effective antioxidant defense in caterpillars that feed on prooxidant-rich foods. In tannin-sensitive larvae of the forest tent caterpillar, Malacosoma disstria (Lasiocampidae), ingested tannic acid is oxidized in the midgut lumen, generating significant quantities of peroxides, including hydrogen peroxide, which readily diffuses across cell membranes and is a powerful cytotoxin. By contrast, in the tannin-tolerant larvae of the white-marked tussock moth, Orgyia leucostigma (Lymantriidae), tannic acid oxidation and the generation of peroxides are suppressed. The superior defense of O. leucostigma against oxidative stress imposed by the oxidation of ingested polyphenols can be explained by the presence of higher concentrations of ascorbate and glutathione in the midgut lumen. In O. leucostigma at least 50% of the ingested ascorbate present in the anterior midgut is still present in the posterior midgut, whereas in M. disstria, only 10% of the ascorbate is present in the posterior half of the midgut. We propose that the maintenance of higher levels of ascorbate in the midgut lumen of O. leucostigma than in M. disstria is explained by the secretion of glutathione into the midgut lumen by O. leucostigma, thereby forming a complete ascorbate-recycling system. The concentration of glutathione in the midgut lumen of O. leucostigma is 3.5-fold higher than in M. disstria and more than double the concentration in the diet. Our results emphasize the importance of a defensive strategy in herbivorous insects based on the maintenance of conditions in the gut lumen that reduce or eliminate the potential prooxidant behavior of ingested phenols. PMID:11166299

  12. Dimethylnitrosamine demethylase activity in Drosophila melanogaster

    SciTech Connect

    Waters, L.C.; Nix, C.E.; Epler, J.L.

    1982-06-15

    A dimethylnitrosamine (DMN) demethylase with levels of activity comparable to that in uninduced rat liver was demonstrated in both larval and adult forms of the Hikone-R strain of Drosophila. A microsomal enzyme, it has many properties of a cytochrome P-450-containing mixed-function oxidase. Kinetic analysis indicates only a single enzyme with an apparent K/sub m/ of 10.5 mM DMN.

  13. The Drosophila visual system

    PubMed Central

    Zhu, Yan

    2013-01-01

    A compact genome and a tiny brain make Drosophila the prime model to understand the neural substrate of behavior. The neurogenetic efforts to reveal neural circuits underlying Drosophila vision started about half a century ago, and now the field is booming with sophisticated genetic tools, rich behavioral assays, and importantly, a greater number of scientists joining from different backgrounds. This review will briefly cover the structural anatomy of the Drosophila visual system, the animal’s visual behaviors, the genes involved in assembling these circuits, the new and powerful techniques, and the challenges ahead for ultimately identifying the general principles of biological computation in the brain.   A typical brain utilizes a great many compact neural circuits to collect and process information from the internal biological and external environmental worlds and generates motor commands for observable behaviors. The fruit fly Drosophila melanogaster, despite of its miniature body and tiny brain, can survive in almost any corner of the world.1 It can find food, court mate, fight rival conspecific, avoid predators, and amazingly fly without crashing into trees. Drosophila vision and its underlying neuronal machinery has been a key research model for at least half century for neurogeneticists.2 Given the efforts invested on the visual system, this animal model is likely to offer the first full understanding of how visual information is computed by a multi-cellular organism. Furthermore, research in Drosophila has revealed many genes that play crucial roles in the formation of functional brains across species. The architectural similarities between the visual systems of Drosophila and vertebrate at the molecular, cellular, and network levels suggest new principles discovered at the circuit level on the relationship between neurons and behavior in Drosophila shall also contribute greatly to our understanding of the general principles for how bigger brains work.3

  14. Transcription factor broad suppresses precocious development of adult structures during larval–pupal metamorphosis in the red flour beetle, Tribolium castaneum

    PubMed Central

    Parthasarathy, R.; Tan, A.; Bai, H.; Palli, Subba R.

    2013-01-01

    Broad (br), a transcription factor containing the Broad-Tramtrack-Bric-a-brac (BTB) and zinc finger domains was shown to mediate 20-hydroxyecdysone (20E) action and pupal development in Drosophila melanogaster and Manduca sexta. We determined the key roles of br during larval–pupal metamorphosis using RNA interference (RNAi) in a coleopteran insect, Tribolium castaneum. Two major peaks of T. castaneum broad (Tcbr) mRNA, one peak at the end of feeding stage prior to the larvae entering the quiescent stage and another peak during the quiescent stage were detected in the whole body and midgut tissue dissected from staged insects. Expression of br during the final instar larval stage is essential for successful larval–pupal metamorphosis, because, RNAi-mediated knock-down of Tcbr during this stage derailed larval–pupal metamorphosis and produced insects that showed larval, pupal and adult structures. Tcbr dsRNA injected into the final instar larvae caused reduction in the mRNA levels of genes known to be involved in 20E action (EcRA, E74 and E75B). Tcbr dsRNA injected into the final instar larvae also caused an increase in the mRNA levels of JH-response genes (JHE and Kr-h1b). Knock-down of Tcbr expression also affected 20E-mediated remodeling of midgut during larval–pupal metamorphosis. These data suggest that the expression of Tcbr during the final instar larval stage promotes pupal program while suppressing the larval and adult programs ensuring a transitory pupal stage in holometabolous insects. PMID:18083350

  15. Transcription factor broad suppresses precocious development of adult structures during larval-pupal metamorphosis in the red flour beetle, Tribolium castaneum.

    PubMed

    Parthasarathy, R; Tan, A; Bai, H; Palli, Subba R

    2008-01-01

    Broad (br), a transcription factor containing the Broad-Tramtrack-Bric-a-brac (BTB) and zinc finger domains was shown to mediate 20-hydroxyecdysone (20E) action and pupal development in Drosophila melanogaster and Manduca sexta. We determined the key roles of br during larval-pupal metamorphosis using RNA interference (RNAi) in a coleopteran insect, Tribolium castaneum. Two major peaks of T. castaneum broad (Tcbr) mRNA, one peak at the end of feeding stage prior to the larvae entering the quiescent stage and another peak during the quiescent stage were detected in the whole body and midgut tissue dissected from staged insects. Expression of br during the final instar larval stage is essential for successful larval-pupal metamorphosis, because, RNAi-mediated knock-down of Tcbr during this stage derailed larval-pupal metamorphosis and produced insects that showed larval, pupal and adult structures. Tcbr dsRNA injected into the final instar larvae caused reduction in the mRNA levels of genes known to be involved in 20E action (EcRA, E74 and E75B). Tcbr dsRNA injected into the final instar larvae also caused an increase in the mRNA levels of JH-response genes (JHE and Kr-h1b). Knock-down of Tcbr expression also affected 20E-mediated remodeling of midgut during larval-pupal metamorphosis. These data suggest that the expression of Tcbr during the final instar larval stage promotes pupal program while suppressing the larval and adult programs ensuring a transitory pupal stage in holometabolous insects. PMID:18083350

  16. Drosophila Blastorderm Analysis Software

    SciTech Connect

    2006-10-25

    PointCloudMake analyzes 3D fluorescent images of whole Drosophila embryo and produces a table-style "PointCloud" file which contains the coordinates and volumes of all the nuclei, cells, their associated relative gene expression levels along with morphological features of the embryo. See: Luengo Hendrix et at 2006 3D Morphology and Gene Expression in the Drosophila Blastoderm at Cellular Resolution manuscript submitted LBNL # LBNL-60178 Knowles DW, Keranen SVE, Biggin M. Sudar S (2002) Mapping organism expression levels at cellular resolution in developing Drosophila. In: Conchello JA, Cogswell CJ, Wilson T, editors. Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing IX. pp. 57-64

  17. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes.

    PubMed Central

    Spradling, A C; Stern, D; Beaton, A; Rhem, E J; Laverty, T; Mozden, N; Misra, S; Rubin, G M

    1999-01-01

    A fundamental goal of genetics and functional genomics is to identify and mutate every gene in model organisms such as Drosophila melanogaster. The Berkeley Drosophila Genome Project (BDGP) gene disruption project generates single P-element insertion strains that each mutate unique genomic open reading frames. Such strains strongly facilitate further genetic and molecular studies of the disrupted loci, but it has remained unclear if P elements can be used to mutate all Drosophila genes. We now report that the primary collection has grown to contain 1045 strains that disrupt more than 25% of the estimated 3600 Drosophila genes that are essential for adult viability. Of these P insertions, 67% have been verified by genetic tests to cause the associated recessive mutant phenotypes, and the validity of most of the remaining lines is predicted on statistical grounds. Sequences flanking >920 insertions have been determined to exactly position them in the genome and to identify 376 potentially affected transcripts from collections of EST sequences. Strains in the BDGP collection are available from the Bloomington Stock Center and have already assisted the research community in characterizing >250 Drosophila genes. The likely identity of 131 additional genes in the collection is reported here. Our results show that Drosophila genes have a wide range of sensitivity to inactivation by P elements, and provide a rationale for greatly expanding the BDGP primary collection based entirely on insertion site sequencing. We predict that this approach can bring >85% of all Drosophila open reading frames under experimental control. PMID:10471706

  18. Assembling of Holotrichia parallela (dark black chafer) midgut tissue transcriptome and identification of midgut proteins that bind to Cry8Ea toxin from Bacillus thuringiensis.

    PubMed

    Shu, Changlong; Tan, Shuqian; Yin, Jiao; Soberón, Mario; Bravo, Alejandra; Liu, Chunqing; Geng, Lili; Song, Fuping; Li, Kebin; Zhang, Jie

    2015-09-01

    Holotrichia parallela is one of the most severe crop pests in China, affecting peanut, soybean, and sweet potato crops. Previous work showed that Cry8Ea toxin is highly effective against this insect. In order to identify Cry8Ea-binding proteins in the midgut cells of H. parallela larvae, we assembled a midgut tissue transcriptome by high-throughput sequencing and used this assembled transcriptome to identify Cry8Ea-binding proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS). First, we obtained de novo sequences of cDNAs from midgut tissue of H. parallela larvae and used available cDNA data in the GenBank. In a parallel assay, we obtained 11 Cry8Ea-binding proteins by pull-down assays performed with midgut brush border membrane vesicles. Peptide sequences from these proteins were matched to the H. parallela newly assembled midgut transcriptome, and 10 proteins were identified. Some of the proteins were shown to be intracellular proteins forming part of the cell cytoskeleton and/or vesicle transport such as actin, myosin, clathrin, dynein, and tubulin among others. In addition, an apolipophorin, which is a protein involved in lipid metabolism, and a novel membrane-bound alanyl aminopeptidase were identified. Our results suggest that Cry8Ea-binding proteins could be different from those characterized for Cry1A toxins in lepidopteran insects. PMID:26135984

  19. Mammalian homologues of the Drosophila eye specification genes.

    PubMed

    Hanson, I M

    2001-12-01

    The Drosophila compound eye is specified by the simultaneous and interdependent activity of transcriptional regulatory genes from four families: PAX6 (eyeless, twin of eyeless, eyegone), EYA (eyes absent), SIX (sine oculis, Optix) and DACH (dachshund). Mammals have homologues of all these genes, and many of them are expressed in the embryonic or adult eye, but the functional relationships between them are currently much less clear than in Drosophila. Nevertheless, mutations in the mammalian genes highlight their requirement both within and outside the eye in embryos and adults, and emphasize that they can be deployed in many different contexts. PMID:11735383

  20. Cruzipain Promotes Trypanosoma cruzi Adhesion to Rhodnius prolixus Midgut

    PubMed Central

    Uehara, Lívia Almeida; Moreira, Otacílio C.; Oliveira, Ana Carolina; Azambuja, Patrícia; Lima, Ana Paula Cabral Araujo; Britto, Constança; dos Santos, André Luis Souza; Branquinha, Marta Helena; d'Avila-Levy, Claudia Masini

    2012-01-01

    Background Trypanosoma cruzi is the etiological agent of Chagas' disease. Cysteine peptidases are relevant to several aspects of the T. cruzi life cycle and are implicated in parasite-mammalian host relationships. However, little is known about the factors that contribute to the parasite-insect host interaction. Methodology/Principal Findings Here, we have investigated whether cruzipain could be involved in the interaction of T. cruzi with the invertebrate host. We analyzed the effect of treatment of T. cruzi epimastigotes with anti-cruzipain antibodies or with a panel of cysteine peptidase inhibitors (cystatin, antipain, E-64, leupeptin, iodocetamide or CA-074-OMe) on parasite adhesion to Rhodnius prolixus posterior midgut ex vivo. All treatments, with the exception of CA074-OMe, significantly decreased parasite adhesion to R. prolixus midgut. Cystatin presented a dose-dependent reduction on the adhesion. Comparison of the adhesion rate among several T. cruzi isolates revealed that the G isolate, which naturally possesses low levels of active cruzipain, adhered to a lesser extent in comparison to Dm28c, Y and CL Brener isolates. Transgenic epimastigotes overexpressing an endogenous cruzipain inhibitor (pCHAG), chagasin, and that have reduced levels of active cruzipain adhered to the insect gut 73% less than the wild-type parasites. The adhesion of pCHAG parasites was partially restored by the addition of exogenous cruzipain. In vivo colonization experiments revealed low levels of pCHAG parasites in comparison to wild-type. Parasites isolated after passage in the insect presented a drastic enhancement in the expression of surface cruzipain. Conclusions/Significance These data highlight, for the first time, that cruzipain contributes to the interaction of T. cruzi with the insect host. PMID:23272264

  1. A Drosophila Model of Epidermolysis Bullosa Simplex.

    PubMed

    Bohnekamp, Jens; Cryderman, Diane E; Paululat, Achim; Baccam, Gabriel C; Wallrath, Lori L; Magin, Thomas M

    2015-08-01

    The blistering skin disorder epidermolysis bullosa simplex (EBS) results from dominant mutations in keratin 5 (K5) or keratin 14 (K14) genes, encoding the intermediate filament (IF) network of basal epidermal keratinocytes. The mechanisms governing keratin network formation and collapse due to EBS mutations remain incompletely understood. Drosophila lacks cytoplasmic IFs, providing a 'null' environment to examine the formation of keratin networks and determine mechanisms by which mutant keratins cause pathology. Here, we report that ubiquitous co-expression of transgenes encoding wild-type human K14 and K5 resulted in the formation of extensive keratin networks in Drosophila epithelial and non-epithelial tissues, causing no overt phenotype. Similar to mammalian cells, treatment of transgenic fly tissues with phosphatase inhibitors caused keratin network collapse, validating Drosophila as a genetic model system to investigate keratin dynamics. Co-expression of K5 and a K14(R125C) mutant that causes the most severe form of EBS resulted in widespread formation of EBS-like cytoplasmic keratin aggregates in epithelial and non-epithelial fly tissues. Expression of K14(R125C)/K5 caused semi-lethality; adult survivors developed wing blisters and were flightless due to a lack of intercellular adhesion during wing heart development. This Drosophila model of EBS is valuable for the identification of pathways altered by mutant keratins and for the development of EBS therapies. PMID:25830653

  2. Meiosis in male Drosophila

    PubMed Central

    McKee, Bruce D.; Yan, Rihui; Tsai, Jui-He

    2012-01-01

    Meiosis entails sorting and separating both homologous and sister chromatids. The mechanisms for connecting sister chromatids and homologs during meiosis are highly conserved and include specialized forms of the cohesin complex and a tightly regulated homolog synapsis/recombination pathway designed to yield regular crossovers between homologous chromatids. Drosophila male meiosis is of special interest because it dispenses with large segments of the standard meiotic script, particularly recombination, synapsis and the associated structures. Instead, Drosophila relies on a unique protein complex composed of at least two novel proteins, SNM and MNM, to provide stable connections between homologs during meiosis I. Sister chromatid cohesion in Drosophila is mediated by cohesins, ring-shaped complexes that entrap sister chromatids. However, unlike other eukaryotes Drosophila does not rely on the highly conserved Rec8 cohesin in meiosis, but instead utilizes two novel cohesion proteins, ORD and SOLO, which interact with the SMC1/3 cohesin components in providing meiotic cohesion. PMID:23087836

  3. From pathogens to microbiota: How Drosophila intestinal stem cells react to gut microbes.

    PubMed

    Bonfini, Alessandro; Liu, Xi; Buchon, Nicolas

    2016-11-01

    The intestine acts as one of the interfaces between an organism and its external environment. As the primary digestive organ, it is constantly exposed to a multitude of stresses as it processes and absorbs nutrients. Among these is the recurring damage induced by ingested pathogenic and commensal microorganisms. Both the bacterial activity and immune response itself can result in the loss of epithelial cells, which subsequently requires replacement. In the Drosophila midgut, this regenerative role is fulfilled by intestinal stem cells (ISCs). Microbes not only trigger cell loss and replacement, but also modify intestinal and whole organism physiology, thus modulating ISC activity. Regulation of ISCs is integrated through a complex network of signaling pathways initiated by other gut cell populations, including enterocytes, enteroblasts, enteroendocrine and visceral muscles cells. The gut also receives signals from circulating immune cells, the hemocytes, to properly respond against infection. This review summarizes the types of gut microbes found in Drosophila, mechanisms for their elimination, and provides an integrated view of the signaling pathways that regulate tissue renewal in the midgut. PMID:26855015

  4. The Effects of Midgut Serine Proteases on Dengue Virus Type 2 Infectivity of Aedes aegypti

    PubMed Central

    Brackney, Doug E.; Foy, Brian D.; Olson, Ken E.

    2009-01-01

    Dengue viruses (DENV) cause significant morbidity and mortality worldwide and are transmitted by the mosquito Aedes aegypti. Mosquitoes become infected after ingesting a viremic bloodmeal, and molecular mechanisms involved in bloodmeal digestion may affect the ability of DENV to infect the midgut. We used RNA interference (RNAi) to silence expression of four midgut serine proteases and assessed the effect of each RNAi phenotype on DENV-2 infectivity of Aedes aegypti. Silencing resulted in significant reductions in protease mRNA levels and correlated with a reduction in activity except in the case of late trypsin. RNA silencing of chymotrypsin, early and late trypsin had no effect on DENV-2 infectivity. However, silencing of 5G1 or the addition of soybean trypsin inhibitor to the infectious bloodmeals significantly increased midgut infection rates. These results suggest that some midgut serine proteases may actually limit DENV-2 infectivity of Ae. aegypti. PMID:18689635

  5. Proteomic profiling of Rhipicephalus (Boophilus) microplus midgut responses to infection with Babesia bovis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in protein expression in midgut tissue of uninfected and Babesia bovis-infected southern cattle ticks, Rhipicephalus (Boophilus) microplus, were investigated in an effort to establish a proteome database containing proteins involved in successful pathogen transmission. The electrophoreti...

  6. In focus: spotted wing drosophila, Drosophila suzukii, across perspectives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An effective response to the invasion of spotted wing Drosophila (SWD), Drosophila suzukii, requires proper taxonomic identification at the initial phase, understanding its basic biology and phenology, developing management tools, transferring information and technology quickly to user groups, and e...

  7. [Morphofunctional changes in the midgut of ticks of the genus Ixodes (Acarina: Ixodidae) during life cycle].

    PubMed

    Grigor'eva, L A

    2009-01-01

    Morphofunctional investigations of five Ixodes species (Ixodes pacificus, I. pavlovsky, I. persulcatus, I. ricinus and I. scapularis) were carried out. It was established, that the change of midgut epithelium lags at the each next developmental stage, and it is not synchronized with general processes of metamorphosis and organogenesis during molts. The midgut epithelium of a previous phase of the life cycle persists and functions during the feeding stage at the next phase. PMID:19957908

  8. Disruption of Plasmodium falciparum development by antibodies against a conserved mosquito midgut antigen

    PubMed Central

    Dinglasan, Rhoel R.; Kalume, Dario E.; Kanzok, Stefan M.; Ghosh, Anil K.; Muratova, Olga; Pandey, Akhilesh; Jacobs-Lorena, Marcelo

    2007-01-01

    Malaria parasites must undergo development within mosquitoes to be transmitted to a new host. Antivector transmission-blocking vaccines inhibit parasite development by preventing ookinete interaction with mosquito midgut ligands. Therefore, the discovery of novel midgut antigen targets is paramount. Jacalin (a lectin) inhibits ookinete attachment by masking glycan ligands on midgut epithelial surface glycoproteins. However, the identities of these midgut glycoproteins have remained unknown. Here we report on the molecular characterization of an Anopheles gambiae aminopeptidase N (AgAPN1) as the predominant jacalin target on the mosquito midgut luminal surface and provide evidence for its role in ookinete invasion. α-AgAPN1 IgG strongly inhibited both Plasmodium berghei and Plasmodium falciparum development in different mosquito species, implying that AgAPN1 has a conserved role in ookinete invasion of the midgut. Molecules targeting single midgut antigens seldom achieve complete abrogation of parasite development. However, the combined blocking activity of α-AgAPN1 IgG and an unrelated inhibitory peptide, SM1, against P. berghei was incomplete. We also found that SM1 can block only P. berghei, whereas α-AgAPN1 IgG can block both parasite species significantly. Therefore, we hypothesize that ookinetes can evade inhibition by two potent transmission-blocking molecules, presumably through the use of other ligands, and that this process further partitions murine from human parasite midgut invasion models. These results advance our understanding of malaria parasite–mosquito host interactions and guide in the design of transmission-blocking vaccines. PMID:17673553

  9. The Dopaminergic System in the Aging Brain of Drosophila

    PubMed Central

    White, Katherine E.; Humphrey, Dickon M.; Hirth, Frank

    2010-01-01

    Drosophila models of Parkinson's disease are characterized by two principal phenotypes: the specific loss of dopaminergic (DA) neurons in the aging brain and defects in motor behavior. However, an age-related analysis of these baseline parameters in wildtype Drosophila is lacking. Here we analyzed the DA system and motor behavior in aging Drosophila. DA neurons in the adult brain can be grouped into bilateral symmetric clusters, each comprising a stereotypical number of cells. Analysis of TH > mCD8::GFP and cell type-specific MARCM clones revealed that DA neurons show cluster-specific, stereotypical projection patterns with terminal arborization in target regions that represent distinct functional areas of the adult brain. Target areas include the mushroom bodies, involved in memory formation and motivation, and the central complex, involved in the control of motor behavior, indicating that similar to the mammalian brain, DA neurons in the fly brain are involved in the regulation of specific behaviors. Behavioral analysis revealed that Drosophila show an age-related decline in startle-induced locomotion and negative geotaxis. Motion tracking however, revealed that walking activity, and exploration behavior, but not centrophobism increase at late stages of life. Analysis of TH > Dcr2, mCD8::GFP revealed a specific effect of Dcr2 expression on walking activity but not on exploratory or centrophobic behavior, indicating that the siRNA pathway may modulate distinct DA behaviors in Drosophila. Moreover, DA neurons were maintained between early- and late life, as quantified by TH > mCD8::GFP and anti-TH labeling, indicating that adult onset, age-related degeneration of DA neurons does not occur in the aging brain of Drosophila. Taken together, our data establish baseline parameters in Drosophila for the study of Parkinson's disease as well as other disorders affecting DA neurons and movement control. PMID:21165178

  10. The midgut epithelium of aquatic arthropods: a critical target organ in environmental toxicology.

    PubMed Central

    Beaty, Barry J; Mackie, Ryan S; Mattingly, Kimberly S; Carlson, Jonathan O; Rayms-Keller, Alfredo

    2002-01-01

    The midgut epithelium of aquatic arthropods is emerging as an important and toxicologically relevant organ system for monitoring environmental pollution. The peritrophic matrix of aquatic arthropods, which is secreted by the midgut epithelium cells, is perturbed by copper or cadmium. Molecular biological studies have identified and characterized two midgut genes induced by heavy metals in the midgut epithelium. Many other metal-responsive genes (MRGs) await characterization. One of the MRGs codes for an intestinal mucin, which is critical for protecting the midgut from toxins and pathogens. Another codes for a tubulin gene, which is critical for structure and function of the midgut epithelial cells. Perturbation of expression of either gene could condition aquatic arthropod survivorship. Induction of these MRGs is a more sensitive and rapid indicator of heavy-metal pollution than biological assays. Characterization of genes induced by pollutants could provide mechanistic understanding of fundamental cellular responses to pollutants and insight into determinants of aquatic arthropod population genetic structure and survivorship in nature. PMID:12634118

  11. Identification of a midgut-specific promoter in the silkworm Bombyx mori.

    PubMed

    Jiang, Liang; Cheng, Tingcai; Dang, Yinghui; Peng, Zhengwen; Zhao, Ping; Liu, Shiping; Jin, Shengkai; Lin, Ping; Sun, Qiang; Xia, Qingyou

    2013-04-19

    The midgut is an important organ for digestion and absorption of nutrients and immune defense in the silkworm Bombyx mori. In an attempt to create a tool for midgut research, we cloned the 1080 bp P2 promoter sequence (P2P) of a highly expressed midgut-specific gene in the silkworm. The transgenic line (P2) was generated via embryo microinjection, in which the expression of EGFP was driven by P2P. There was strong green fluorescence only in the midgut of P2. RT-PCR and Western blot showed that P2P was a midgut-specific promoter with activity throughout the larval stage. A transgenic truncation experiment suggested that regions -305 to -214 and +107 to +181 were very important for P2P activity. The results of this study revealed that we have identified a midgut-specific promoter with a high level of activity in the silkworm that will aid future research and application of silkworm genes. PMID:23524268

  12. Ultrastructural midgut events in Culicidae larvae fed with Bacillus sphaericus 2297 spore/crystal complex.

    PubMed

    Charles, J F

    1987-01-01

    Ingestion of Bacillus sphaericus 2297 spore/crystal complex by Culicidae larvae Anopheles stephensi, Culex pipiens subsp. pipiens and Aedes aegypti was rapidly followed by a dissolution of the protein crystalline inclusions inside the anterior stomach of the three species. During the first day of intoxication, B. sphaericus spores germinated within the midgut lumen, and were in a vegetative stage between 36-48 h after ingestion when the larvae began to die. Ultrastructural observations focused on larval midgut showed alterations which differed according to the mosquito species, being localized mainly in the gastric caeca and posterior stomach. With the bacterial concentration used, neither general cell swelling nor complete breakdown of the midgut epithelium was recorded before larval death. In A. stephensi larval midgut epithelium large low-electron-density areas appeared, rough endoplasmic reticula formed numerous concentrical structures and mitochondria swelled. Large vacuoles (of unknown origin) appeared early on in the C. pipiens midgut cells, and rough endoplasmic reticula broke into small vesicles. Midgut epithelial cells of A. aegypti showed mitochondria swelling except in the anterior stomach, and a vacuolisation of smooth reticula: these aspects remained unchanged until the larvae died. PMID:3663390

  13. Plasmodium gallinaceum preferentially invades vesicular ATPase-expressing cells in Aedes aegypti midgut

    PubMed Central

    Shahabuddin, Mohammed; Pimenta, Paulo F. P.

    1998-01-01

    Penetration of the mosquito midgut epithelium is obligatory for the further development of Plasmodium parasites. Therefore, blocking the parasite from invading the midgut wall disrupts the transmission of malaria. Despite such a pivotal role in malaria transmission, the cellular and molecular interactions that occur during the invasion are not understood. Here, we demonstrate that the ookinetes of Plasmodium gallinaceum, which is related closely to the human malaria parasite Plasmodium falciparum, selectively invade a cell type in the Aedes aegypti midgut. These cells, unlike the majority of the cells in the midgut, do not stain with a basophilic dye (toluidine blue) and are less osmiophilic. In addition, they contain minimal endoplasmic reticulum, lack secretory granules, and have few microvilli. Instead, these cells are highly vacuolated and express large amounts of vesicular ATPase. The enzyme is associated with the apical plasma membrane, cytoplasmic vesicles, and tubular extensions of the basal membrane of the invaded cells. The high cost of insecticide use in endemic areas and the emergence of drug resistant malaria parasites call for alternative approaches such as modifying the mosquito to block the transmission of malaria. One of the targets for such modification is the parasite receptor on midgut cells. A step toward the identification of this receptor is the realization that malaria parasites invade a special cell type in the mosquito midgut. PMID:9520375

  14. Implications of Time Bomb model of ookinete invasion of midgut cells.

    PubMed

    Han, Yeon Soo; Barillas-Mury, Carolina

    2002-10-01

    In this review, we describe the experimental observations that led us to propose the Time Bomb model of ookinete midgut invasion and discuss potential implications of this model when considering malaria transmission-blocking strategies aimed at arresting parasite development within midgut cells. A detailed analysis of the molecular interactions between Anopheles stephensi midgut epithelial cells and Plasmodium berghei parasites, as they migrate through midgut cells, revealed that ookinetes induce nitric oxide synthase (NOS) expression, remodeling of the actin cytoskeleton and characteristic morphological changes in the invaded epithelial cells. Parasites inflict extensive damage that ultimately leads to genome fragmentation and cell death. During their migration through the cytoplasm, ookinetes release a subtilisin-like protease (PbSub2) and the surface protein (Pbs21). The model proposes that ookinetes must escape rapidly from the invaded cells, as the responses mediating cell death could be potentially lethal to the parasites. In other words, the physical and/or chemical damage triggered by the parasite can be thought of as a 'lethal bomb'. Once this cascade of events is initiated, the parasite must leave the cellular compartment within a limited time to escape unharmed from the 'bomb' it has activated. The midgut epithelium has the ability to heal rapidly by 'budding off' the damaged cells to the midgut lumen without losing its integrity. PMID:12225921

  15. Sequence of three cDNAs encoding an alkaline midgut trypsin from Manduca sexta.

    PubMed

    Peterson, A M; Barillas-Mury, C V; Wells, M A

    1994-05-01

    We have purified trypsin from the midgut of Manduca sexta and shown it has an alkaline pH optimum of 10.5. In order to clone the midgut trypsin, a DNA probe was generated using the polymerase chain reaction (PCR) with template isolated from a midgut cDNA library phage stock, a mixture of degenerate primers synthesized to code for the highly conserved region around the active site serine found in trypsins, and the T7 sequencing primer. Three different trypsin cDNAs were isolated each of which encodes a preproenzyme of 256 amino acids with a putative signal sequence of 17 amino acids, an activation peptide of seven amino acids and a mature trypsin of 232 amino acids. The encoded midgut trypsins contain the highly conserved residues, Asp, His, Ser, involved in catalysis in serine proteases, along with the residues which define the trypsin specificity pocket. Sequence comparisons show that all sequences are similar to other invertebrate and vertebrate serine proteases, but they differ in that two of the three encoded trypsins have an odd number of cysteines. Northern analysis localizes the trypsin mRNA to the middle third of the midgut. A large number of arginines (19, 20 and 21) are encoded by the three cDNAs which may stabilize the trypsin, by remaining protonated, in the alkaline midgut of M. sexta. PMID:8205142

  16. Effect of mosquito midgut trypsin activity on dengue-2 virus infection and dissemination in Aedes aegypti.

    PubMed

    Molina-Cruz, Alvaro; Gupta, Lalita; Richardson, Jason; Bennett, Kristine; Black, William; Barillas-Mury, Carolina

    2005-05-01

    The effect of mosquito midgut trypsins in dengue serotype 2 flavivirus (DENV-2) infectivity to Aedes aegypti was studied. Addition of soybean trypsin inhibitor (STI) in a DENV-2 infectious blood meal resulted in a 91-97% decrease in midgut DENV-2 RNA copies (qRT-PCR analysis). STI treatment also resulted in slower DENV-2 replication in the midgut, less DENV-2 E protein expression, and decreased dissemination to the thorax and the head. A second uninfected blood meal, 7 days after the STI-treated infectious meal, significantly increased DENV-2 replication in the midgut and recovered oogenesis, suggesting that the lower viral infection caused by STI was in part due to a nutritional effect. Mosquitoes fed DENV-2 digested in vitro with bovine trypsin (before STI addition) exhibited a transient increase in midgut DENV-2 4 days postinfection. Blood digestion and possibly DENV-2 proteolytic processing, mediated by midgut trypsins, influence the rate of DENV-2 infection, replication, and dissemination in Ae. aegypti. PMID:15891140

  17. Ferritin Is Required in Multiple Tissues during Drosophila melanogaster Development

    PubMed Central

    Blowes, Liisa M.; Missirlis, Fanis; Riesgo-Escovar, Juan R.

    2015-01-01

    In Drosophila melanogaster, iron is stored in the cellular endomembrane system inside a protein cage formed by 24 ferritin subunits of two types (Fer1HCH and Fer2LCH) in a 1:1 stoichiometry. In larvae, ferritin accumulates in the midgut, hemolymph, garland, pericardial cells and in the nervous system. Here we present analyses of embryonic phenotypes for mutations in Fer1HCH, Fer2LCH and in both genes simultaneously. Mutations in either gene or deletion of both genes results in a similar set of cuticular embryonic phenotypes, ranging from non-deposition of cuticle to defects associated with germ band retraction, dorsal closure and head involution. A fraction of ferritin mutants have embryonic nervous systems with ventral nerve cord disruptions, misguided axonal projections and brain malformations. Ferritin mutants die with ectopic apoptotic events. Furthermore, we show that ferritin maternal contribution, which varies reflecting the mother’s iron stores, is used in early development. We also evaluated phenotypes arising from the blockage of COPII transport from the endoplasmic reticulum to the Golgi apparatus, feeding the secretory pathway, plus analysis of ectopically expressed and fluorescently marked Fer1HCH and Fer2LCH. Overall, our results are consistent with insect ferritin combining three functions: iron storage, intercellular iron transport, and protection from iron-induced oxidative stress. These functions are required in multiple tissues during Drosophila embryonic development. PMID:26192321

  18. Maintenance of a Drosophila melanogaster Population Cage

    PubMed Central

    Caravaca, Juan Manuel; Lei, Elissa P.

    2016-01-01

    Large quantities of DNA, RNA, proteins and other cellular components are often required for biochemistry and molecular biology experiments. The short life cycle of Drosophila enables collection of large quantities of material from embryos, larvae, pupae and adult flies, in a synchronized way, at a low economic cost. A major strategy for propagating large numbers of flies is the use of a fly population cage. This useful and common tool in the Drososphila community is an efficient way to regularly produce milligrams to tens of grams of embryos, depending on uniformity of developmental stage desired. While a population cage can be time consuming to set up, maintaining a cage over months takes much less time and enables rapid collection of biological material in a short period. This paper describes a detailed and flexible protocol for the maintenance of a Drosophila melanogaster population cage, starting with 1.5 g of harvested material from the previous cycle. PMID:27023790

  19. Chitin is a necessary component to maintain the barrier function of the peritrophic matrix in the insect midgut.

    PubMed

    Kelkenberg, Marco; Odman-Naresh, Jothini; Muthukrishnan, Subbaratnam; Merzendorfer, Hans

    2015-01-01

    In most insects, the peritrophic matrix (PM) partitions the midgut into different digestive compartments, and functions as a protective barrier against abrasive particles and microbial infections. In a previous study we demonstrated that certain PM proteins are essential in maintaining the PM's barrier function and establishing a gradient of PM permeability from the anterior to the posterior part of the midgut which facilitates digestion (Agrawal et al., 2014). In this study, we focused on the effects of a reduction in chitin content on PM permeability in larvae of the red flour beetle, Tribolium castaneum. Oral administration of the chitin synthesis inhibitor diflubenzuron (DFB) only partially reduced chitin content of the larval PM even at high concentrations. We observed no nutritional effects, as larval growth was unaffected and neutral lipids were not depleted from the fat body. However, the metamorphic molt was disrupted and the insects died at the pharate pupal stage, presumably due to DFB's effect on cuticle formation. RNAi to knock-down expression of the gene encoding chitin synthase 2 in T. castaneum (TcCHS-2) caused a complete loss of chitin in the PM. Larval growth was significantly reduced, and the fat body was depleted of neutral lipids. In situ PM permeability assays monitoring the distribution of FITC dextrans after DFB exposure or RNAi for TcCHS-2 revealed that PM permeability was increased in both cases. RNAi for TcCHS-2, however, led to a higher permeation of the PM by FITC dextrans than DFB treatment even at high doses. Similar effects were observed when the chitin content was reduced by feeding DFB to adult yellow fever mosquitos, Aedes aegypti. We demonstrate that the presence of chitin is necessary for maintaining the PM's barrier function in insects. It seems that the insecticidal effects of DFB are mediated by the disruption of cuticle synthesis during the metamorphic molt rather than by interfering with larval nutrition. However, as DFB

  20. The bacterial communities of Drosophila suzukii collected from undamaged cherries

    PubMed Central

    James, Pamela M.; Jospin, Guillaume; Lang, Jenna M.

    2014-01-01

    Drosophila suzukii is an introduced pest insect that feeds on undamaged, attached fruit. This diet is distinct from the fallen, discomposing fruits utilized by most other species of Drosophila. Since the bacterial microbiota of Drosophila, and of many other animals, is affected by diet, we hypothesized that the bacteria associated with D. suzukii are distinct from that of other Drosophila. Using 16S rDNA PCR and Illumina sequencing, we characterized the bacterial communities of larval and adult D. suzukii collected from undamaged, attached cherries in California, USA. We find that the bacterial communities associated with these samples of D. suzukii contain a high frequency of Tatumella. Gluconobacter and Acetobacter, two taxa with known associations with Drosophila, were also found, although at lower frequency than Tatumella in four of the five samples examined. Sampling D. suzukii from different locations and/or while feeding on different fruits is needed to determine the generality of the results determined by these samples. Nevertheless this is, to our knowledge, the first study characterizing the bacterial communities of this ecologically unique and economically important species of Drosophila. PMID:25101226

  1. Sex-specific and blood meal-induced proteins of Anopheles gambiae midguts: analysis by two-dimensional gel electrophoresis

    PubMed Central

    Prévot, GI; Laurent-Winter, C; Rodhain, F; Bourgouin, C

    2003-01-01

    Background Anopheles gambiae is the main vector of Plasmodium falciparum in Africa. The mosquito midgut constitutes a barrier that the parasite must cross if it is to develop and be transmitted. Despite the central role of the mosquito midgut in the host/parasite interaction, little is known about its protein composition. Characterisation of An. gambiae midgut proteins may identify the proteins that render An. gambiae receptive to the malaria parasite. Methods We carried out two-dimensional gel electrophoresis of An. gambiae midgut proteins and compared protein profiles for midguts from males, sugar-fed females and females fed on human blood. Results Very few differences were detected between male and female mosquitoes for the approximately 375 silver-stained proteins. Male midguts contained ten proteins not detected in sugar-fed or blood-fed females, which are therefore probably involved in male-specific functions; conversely, female midguts contained twenty-three proteins absent from male midguts. Eight of these proteins were specific to sugar-fed females, and another ten, to blood-fed females. Conclusion Mass spectrometry analysis of the proteins found only in blood-fed female midguts, together with data from the recent sequencing of the An. gambiae genome, should make it possible to determine the role of these proteins in blood digestion or parasite receptivity. PMID:12605724

  2. Queuine metabolism and cadmium toxicity in Drosophila

    SciTech Connect

    Farkas, W.R.; Siard, T. ); Jacobson, K.B. )

    1991-03-11

    Queuine is a derivative of guanine found in the first position of the anticodon of the transfer RNAs for Asp, Asn, His and Tyr. The transcripts of these tRNAs contain a guanine in this position. This guanine is enzymatically excised and replaced by queuine. The ratio of queuine-containing or (q+) tRNA to its precursor or (q{minus}) tRNA changes throughout the Drosophila life cycle. in the egg 10% of the tRNA is (q+). During the three larval stages this ratio drops to zero. In the one day old adult it is about 10%. It has previously been shown that when flies are selected for the ability to grow in the presence of cadmium, the tolerant flies had 100% (q+) tRNA at the first day after pupation instead of 10%. However, it was not known whether the elevated level of (q+) tRNA was a coincidence or if the elevated levels of (q+) tRNA was protective. The authors explored this problem using germfree Drosophila. The first thing was to determine if Drosophila can synthesize queuine. Sterilized eggs were seeded onto sterile chemically defined medium. The flies were grown to the adult stage. This study showed that Drosophila like mammals cannot synthesize queuine. A second result of this research was the demonstration that the authors could alter the ratio of (q+) to (q{minus}) tRNA by adding exogenous queuine to the medium e.g. at 0.008 mM queuine the (q+) tRNA was 95% instead of {lt} 5% in the last instar stage. Finally, the authors investigated whether or not queuine gave protection against cadmium. The results were that when the flies were grown in the presence of 0.2 mM cadmium queuine at 0.008 mM gave a statistically significant increase in the number of survivors.

  3. Embryonic multipotent progenitors remodel the Drosophila airways during metamorphosis

    PubMed Central

    Pitsouli, Chrysoula; Perrimon, Norbert

    2010-01-01

    Adult structures in holometabolous insects such as Drosophila are generated by groups of imaginal cells dedicated to the formation of different organs. Imaginal cells are specified in the embryo and remain quiescent until the larval stages, when they proliferate and differentiate to form organs. The Drosophila tracheal system is extensively remodeled during metamorphosis by a small number of airway progenitors. Among these, the spiracular branch tracheoblasts are responsible for the generation of the pupal and adult abdominal airways. To understand the coordination of proliferation and differentiation during organogenesis of tubular organs, we analyzed the remodeling of Drosophila airways during metamorphosis. We show that the embryonic spiracular branch tracheoblasts are multipotent cells that express the homeobox transcription factor Cut, which is necessary for their survival and normal development. They give rise to three distinct cell populations at the end of larval development, which generate the adult tracheal tubes, the spiracle and the epidermis surrounding the spiracle. Our study establishes the series of events that lead to the formation of an adult tubular structure in Drosophila. PMID:20940225

  4. Knockdown of Midgut Genes by dsRNA-Transgenic Plant-Mediated RNA Interference in the Hemipteran Insect Nilaparvata lugens

    PubMed Central

    Zha, Wenjun; Peng, Xinxin; Chen, Rongzhi; Du, Bo; Zhu, Lili; He, Guangcun

    2011-01-01

    Background RNA interference (RNAi) is a powerful technique for functional genomics research in insects. Transgenic plants producing double-stranded RNA (dsRNA) directed against insect genes have been reported for lepidopteran and coleopteran insects, showing potential for field-level control of insect pests, but this has not been reported for other insect orders. Methodology/Principal Findings The Hemipteran insect brown planthopper (Nilaparvata lugens Stål) is a typical phloem sap feeder specific to rice (Oryza sativa L.). To analyze the potential of exploiting RNAi-mediated effects in this insect, we identified genes (Nlsid-1 and Nlaub) encoding proteins that might be involved in the RNAi pathway in N. lugens. Both genes are expressed ubiquitously in nymphs and adult insects. Three genes (the hexose transporter gene NlHT1, the carboxypeptidase gene Nlcar and the trypsin-like serine protease gene Nltry) that are highly expressed in the N. lugens midgut were isolated and used to develop dsRNA constructs for transforming rice. RNA blot analysis showed that the dsRNAs were transcribed and some of them were processed to siRNAs in the transgenic lines. When nymphs were fed on rice plants expressing dsRNA, levels of transcripts of the targeted genes in the midgut were reduced; however, lethal phenotypic effects after dsRNA feeding were not observed. Conclusions Our study shows that genes for the RNAi pathway (Nlsid-1 and Nlaub) are present in N. lugens. When insects were fed on rice plant materials expressing dsRNAs, RNA interference was triggered and the target genes transcript levels were suppressed. The gene knockdown technique described here may prove to be a valuable tool for further investigations in N. lugens. The results demonstrate the potential of dsRNA-mediated RNAi for field-level control of planthoppers, but appropriate target genes must be selected when designing the dsRNA-transgenic plants. PMID:21655219

  5. Drosophila Blastorderm Analysis Software

    2006-10-25

    PointCloudMake analyzes 3D fluorescent images of whole Drosophila embryo and produces a table-style "PointCloud" file which contains the coordinates and volumes of all the nuclei, cells, their associated relative gene expression levels along with morphological features of the embryo. See: Luengo Hendrix et at 2006 3D Morphology and Gene Expression in the Drosophila Blastoderm at Cellular Resolution manuscript submitted LBNL # LBNL-60178 Knowles DW, Keranen SVE, Biggin M. Sudar S (2002) Mapping organism expression levelsmore » at cellular resolution in developing Drosophila. In: Conchello JA, Cogswell CJ, Wilson T, editors. Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing IX. pp. 57-64« less

  6. Regulation of Stem Cell Proliferation and Cell Fate Specification by Wingless/Wnt Signaling Gradients Enriched at Adult Intestinal Compartment Boundaries.

    PubMed

    Tian, Ai; Benchabane, Hassina; Wang, Zhenghan; Ahmed, Yashi

    2016-02-01

    Intestinal stem cell (ISC) self-renewal and proliferation are directed by Wnt/β-catenin signaling in mammals, whereas aberrant Wnt pathway activation in ISCs triggers the development of human colorectal carcinoma. Herein, we have utilized the Drosophila midgut, a powerful model for ISC regulation, to elucidate the mechanisms by which Wingless (Wg)/Wnt regulates intestinal homeostasis and development. We provide evidence that the Wg signaling pathway, activation of which peaks at each of the major compartment boundaries of the adult intestine, has essential functions. Wg pathway activation in the intestinal epithelium is required not only to specify cell fate near compartment boundaries during development, but also to control ISC proliferation within compartments during homeostasis. Further, in contrast with the previous focus on Wg pathway activation within ISCs, we demonstrate that the primary mechanism by which Wg signaling regulates ISC proliferation during homeostasis is non-autonomous. Activation of the Wg pathway in absorptive enterocytes is required to suppress JAK-STAT signaling in neighboring ISCs, and thereby their proliferation. We conclude that Wg signaling gradients have essential roles during homeostasis and development of the adult intestine, non-autonomously controlling stem cell proliferation inside compartments, and autonomously specifying cell fate near compartment boundaries. PMID:26845150

  7. Regulation of Stem Cell Proliferation and Cell Fate Specification by Wingless/Wnt Signaling Gradients Enriched at Adult Intestinal Compartment Boundaries

    PubMed Central

    Tian, Ai; Benchabane, Hassina; Wang, Zhenghan; Ahmed, Yashi

    2016-01-01

    Intestinal stem cell (ISC) self-renewal and proliferation are directed by Wnt/β-catenin signaling in mammals, whereas aberrant Wnt pathway activation in ISCs triggers the development of human colorectal carcinoma. Herein, we have utilized the Drosophila midgut, a powerful model for ISC regulation, to elucidate the mechanisms by which Wingless (Wg)/Wnt regulates intestinal homeostasis and development. We provide evidence that the Wg signaling pathway, activation of which peaks at each of the major compartment boundaries of the adult intestine, has essential functions. Wg pathway activation in the intestinal epithelium is required not only to specify cell fate near compartment boundaries during development, but also to control ISC proliferation within compartments during homeostasis. Further, in contrast with the previous focus on Wg pathway activation within ISCs, we demonstrate that the primary mechanism by which Wg signaling regulates ISC proliferation during homeostasis is non-autonomous. Activation of the Wg pathway in absorptive enterocytes is required to suppress JAK-STAT signaling in neighboring ISCs, and thereby their proliferation. We conclude that Wg signaling gradients have essential roles during homeostasis and development of the adult intestine, non-autonomously controlling stem cell proliferation inside compartments, and autonomously specifying cell fate near compartment boundaries. PMID:26845150

  8. Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut

    PubMed Central

    Chen, Hui; Wilkerson, Curtis G.; Kuchar, Jason A.; Phinney, Brett S.; Howe, Gregg A.

    2005-01-01

    The plant hormone jasmonic acid (JA) activates host defense responses against a broad spectrum of herbivores. Although it is well established that JA controls the expression of a large set of target genes in response to tissue damage, very few gene products have been shown to play a direct role in reducing herbivore performance. To test the hypothesis that JA-inducible proteins (JIPs) thwart attack by disrupting digestive processes in the insect gut, we used a MS-based approach to identify host proteins that accumulate in the midgut of Manduca sexta larvae reared on tomato (Solanum lycopersicum) plants. We show that two JIPs, arginase and threonine deaminase (TD), act in the M. sexta midgut to catabolize the essential amino acids Arg and Thr, respectively. Transgenic plants that overexpress arginase were more resistant to M. sexta larvae, and this effect was correlated with reduced levels of midgut Arg. We present evidence indicating that the ability of TD to degrade Thr in the midgut is enhanced by herbivore-induced proteolytic removal of the enzyme's C-terminal regulatory domain, which confers negative feedback regulation by isoleucine in planta. Our results demonstrate that the JA signaling pathway strongly influences the midgut protein content of phytophagous insects and support the hypothesis that catabolism of amino acids in the insect digestive tract by host enzymes plays a role in plant protection against herbivores. PMID:16357201

  9. BmVDAC upregulation in the midgut of Rhipicephalus microplus, during infection with Babesia bigemina.

    PubMed

    Rodríguez-Hernández, Elba; Mosqueda, Juan; León-Ávila, Gloria; Castañeda-Ortiz, Elizabeth J; Álvarez-Sánchez, María Elizbeth; Camacho, Alejandro D; Ramos, Alberto; Camacho-Nuez, Minerva

    2015-09-15

    The molecular mechanisms involved during the infection of Rhipicephalus microplus midgut cells by Babesia bigemina are of great relevance and currently unknown. In a previous study, we found a voltage-dependent anion channel (VDAC)-like protein (BmVDAC) that may participate during parasite invasion of midgut cells. In this work, we investigated BmVDAC expression at both mRNA and protein levels and examined BmVDAC localization in midgut cells of ticks infected with B. bigemina at different times post-repletion. Based on the RT-PCR results, Bmvdac expression levels were significantly higher in infected ticks compared to uninfected ones, reaching their highest values at 24h post-repletion (p<0.0001). Similar results were obtained at the protein level (p<0.0001). Interestingly, BmVDAC immunolocalization showed that there was an important differential expression and redistribution of BmVDAC protein between the midgut cells of infected and uninfected ticks, which was more evident 24h post-repletion of infected ticks. This is the first report of BmVDAC upregulation and immunolocalization in R. microplus midgut cells during B. bigemina infection. Further studies regarding the function of BmVDAC during the infection may provide new insights into the molecular mechanisms between B. bigemina and its tick vector and could result in its use as an anti-tick and transmission-blocking vaccine candidate. PMID:26141408

  10. DNA duplication is essential for the repair of gastrointestinal perforation in the insect midgut

    PubMed Central

    Huang, Wuren; Zhang, Jie; Yang, Bing; Beerntsen, Brenda T.; Song, Hongsheng; Ling, Erjun

    2016-01-01

    Invertebrate animals have the capacity of repairing wounds in the skin and gut via different mechanisms. Gastrointestinal perforation, a hole in the human gastrointestinal system, is a serious condition, and surgery is necessary to repair the perforation to prevent an abdominal abscess or sepsis. Here we report the repair of gastrointestinal perforation made by a needle-puncture wound in the silkworm larval midgut. Following insect gut perforation, only a weak immune response was observed because the growth of Escherichia coli alone was partially inhibited by plasma collected at 6 h after needle puncture of the larval midgut. However, circulating hemocytes did aggregate over the needle-puncture wound to form a scab. While, cell division and apoptosis were not observed at the wound site, the needle puncture significantly enhanced DNA duplication in cells surrounding the wound, which was essential to repair the midgut perforation. Due to the repair capacity and limited immune response caused by needle puncture to the midgut, this approach was successfully used for the injection of small compounds (ethanol in this study) into the insect midgut. Consequently, this needle-puncture wounding of the insect gut can be developed for screening compounds for use as gut chemotherapeutics in the future. PMID:26754166

  11. Midgut-specific immune molecules are produced by the blood-sucking insect Stomoxys calcitrans

    PubMed Central

    Lehane, Michael J.; Wu, Dan; Lehane, Stella M.

    1997-01-01

    We have cloned and sequenced two defensins, Smd1 and Smd2, from anterior midgut tissue of the blood-sucking fly Stomoxys calcitrans. The DNA and N-terminal protein sequences suggest both are produced as prepropeptides. Smd1 differs from the classic defensin pattern in having an unusual six-amino acid-long N-terminal sequence. Both Smd1 and Smd2 have lower pI points and charge than insect defensins derived from fat body/hemocytes. Northern analysis shows both of these defensin molecules are tissue specific; both are produced by the anterior midgut tissue and, unlike the other insect defensins reported to date, neither appears to be expressed in fat body or hemocytes. Northern analysis also shows that mRNAs for both defensins are constitutively produced in the anterior midgut tissues and that these transcripts are up-regulated in response to sterile as well as a lipopolysaccharide-containing blood meal. However, anti-Gram-negative biological activity in the midgut is substantially enhanced by lipopolysaccharide. These findings suggest that the insect midgut has its own tissue-specific immune mechanisms and that this invertebrate epithelium is, like several vertebrate epithelia, protected by specific antibacterial peptides. PMID:9326639

  12. A development-based compartmentalization of the Drosophila central brain

    PubMed Central

    Pereanu, Wayne; Kumar, Abilasha; Jennett, Arnim; Reichert, Heinrich; Hartenstein, Volker

    2010-01-01

    The neuropile of the Drosophila brain is subdivided into anatomically discrete compartments. Compartments are rich in terminal neurite branching and synapses; they are the neuropile domains in which signal processing takes place. Compartment boundaries are defined by more or less dense layers of glial cells, as well as long neurite fascicles. These fascicles are formed during the larval period when the approximately 100 neuronal lineages that constitute the Drosophila central brain differentiate. Each lineage forms an axon tract with a characteristic trajectory in the neuropile; groups of spatially related tracts congregate into the brain fascicles that can be followed from the larva throughout metamorphosis into the adult stage. In this paper we provide a map of the adult brain compartments and the relevant fascicles defining compartmental boundaries. We have identified the neuronal lineages contributing to each fascicle, which allowed us to directly compare compartments of the larval and adult brain. Most adult compartments can be recognized already in the early larval brain where they form a “protomap” of the later adult compartments. Our analysis highlights the morphogenetic changes shaping the Drosophila brain; the data will be important for studies that link early acting genetic mechanisms to the adult neuronal structures and circuits controlled by these mechanisms. PMID:20533357

  13. Development-based compartmentalization of the Drosophila central brain.

    PubMed

    Pereanu, Wayne; Kumar, Abilasha; Jennett, Arnim; Reichert, Heinrich; Hartenstein, Volker

    2010-08-01

    The neuropile of the Drosophila brain is subdivided into anatomically discrete compartments. Compartments are rich in terminal neurite branching and synapses; they are the neuropile domains in which signal processing takes place. Compartment boundaries are defined by more or less dense layers of glial cells as well as long neurite fascicles. These fascicles are formed during the larval period, when the approximately 100 neuronal lineages that constitute the Drosophila central brain differentiate. Each lineage forms an axon tract with a characteristic trajectory in the neuropile; groups of spatially related tracts congregate into the brain fascicles that can be followed from the larva throughout metamorphosis into the adult stage. Here we provide a map of the adult brain compartments and the relevant fascicles defining compartmental boundaries. We have identified the neuronal lineages contributing to each fascicle, which allowed us to compare compartments of the larval and adult brain directly. Most adult compartments can be recognized already in the early larval brain, where they form a "protomap" of the later adult compartments. Our analysis highlights the morphogenetic changes shaping the Drosophila brain; the data will be important for studies that link early-acting genetic mechanisms to the adult neuronal structures and circuits controlled by these mechanisms. PMID:20533357

  14. Rearing the Fruit Fly Drosophila melanogaster Under Axenic and Gnotobiotic Conditions.

    PubMed

    Koyle, Melinda L; Veloz, Madeline; Judd, Alec M; Wong, Adam C-N; Newell, Peter D; Douglas, Angela E; Chaston, John M

    2016-01-01

    The influence of microbes on myriad animal traits and behaviors has been increasingly recognized in recent years. The fruit fly Drosophila melanogaster is a model for understanding microbial interactions with animal hosts, facilitated by approaches to rear large sample sizes of Drosophila under microorganism-free (axenic) conditions, or with defined microbial communities (gnotobiotic). This work outlines a method for collection of Drosophila embryos, hypochlorite dechorionation and sterilization, and transfer to sterile diet. Sterilized embryos are transferred to sterile diet in 50 ml centrifuge tubes, and developing larvae and adults remain free of any exogenous microbes until the vials are opened. Alternatively, flies with a defined microbiota can be reared by inoculating sterile diet and embryos with microbial species of interest. We describe the introduction of 4 bacterial species to establish a representative gnotobiotic microbiota in Drosophila. Finally, we describe approaches for confirming bacterial community composition, including testing if axenic Drosophila remain bacteria-free into adulthood. PMID:27500374

  15. Heritable Endosymbionts of Drosophila

    PubMed Central

    Mateos, Mariana; Castrezana, Sergio J.; Nankivell, Becky J.; Estes, Anne M.; Markow, Therese A.; Moran, Nancy A.

    2006-01-01

    Although heritable microorganisms are increasingly recognized as widespread in insects, no systematic screens for such symbionts have been conducted in Drosophila species (the primary insect genetic models for studies of evolution, development, and innate immunity). Previous efforts screened relatively few Drosophila lineages, mainly for Wolbachia. We conducted an extensive survey of potentially heritable endosymbionts from any bacterial lineage via PCR screens of mature ovaries in 181 recently collected fly strains representing 35 species from 11 species groups. Due to our fly sampling methods, however, we are likely to have missed fly strains infected with sex ratio-distorting endosymbionts. Only Wolbachia and Spiroplasma, both widespread in insects, were confirmed as symbionts. These findings indicate that in contrast to some other insect groups, other heritable symbionts are uncommon in Drosophila species, possibly reflecting a robust innate immune response that eliminates many bacteria. A more extensive survey targeted these two symbiont types through diagnostic PCR in 1225 strains representing 225 species from 32 species groups. Of these, 19 species were infected by Wolbachia while only 3 species had Spiroplasma. Several new strains of Wolbachia and Spiroplasma were discovered, including ones divergent from any reported to date. The phylogenetic distribution of Wolbachia and Spiroplasma in Drosophila is discussed. PMID:16783009

  16. ``sex Ratio'' Meiotic Drive in Drosophila Testacea

    PubMed Central

    James, A. C.; Jaenike, J.

    1990-01-01

    We document the occurrence of ``sex ratio'' meiotic drive in natural populations of Drosophila testacea. ``Sex ratio'' males sire >95% female offspring. Genetic analysis reveals that this effect is due to a meiotically driven X chromosome, as in other species of Drosophila in which ``sex ratio'' has been found. In contrast to other drosophilids, the ``sex ratio'' and standard chromosomes of D. testacea do not differ in gene arrangement, implying that the effect may be due to a single genetic factor in this species. In all likelihood, the ``sex ratio'' condition has evolved independently in D. testacea and in the Drosophila obscura species group, as the loci responsible for the effect occur on different chromosomal elements. An important ecological consequence of ``sex ratio'' is that natural populations of D. testacea exhibit a strong female bias. Because D. testacea mates, oviposits, and feeds as adults and larvae on mushrooms, this species provides an excellent opportunity to study the selective factors in nature that prevent ``sex ratio'' chromosomes from increasing to fixation and causing the extinction of the species. PMID:2249763

  17. SPARC–Dependent Cardiomyopathy in Drosophila

    PubMed Central

    Motamedchaboki, Khatereh; Bodmer, Rolf

    2016-01-01

    Background— The Drosophila heart is an important model for studying the genetics underpinning mammalian cardiac function. The system comprises contractile cardiomyocytes, adjacent to which are pairs of highly endocytic pericardial nephrocytes that modulate cardiac function by uncharacterized mechanisms. Identifying these mechanisms and the molecules involved is important because they may be relevant to human cardiac physiology. Methods and Results— This work aimed to identify circulating cardiomodulatory factors of potential relevance to humans using the Drosophila nephrocyte–cardiomyocyte system. A Kruppel-like factor 15 (dKlf15) loss-of-function strategy was used to ablate nephrocytes and then heart function and the hemolymph proteome were analyzed. Ablation of nephrocytes led to a severe cardiomyopathy characterized by a lengthening of diastolic interval. Rendering adult nephrocytes dysfunctional by disrupting their endocytic function or temporally conditional knockdown of dKlf15 led to a similar cardiomyopathy. Proteomics revealed that nephrocytes regulate the circulating levels of many secreted proteins, the most notable of which was the evolutionarily conserved matricellular protein Secreted Protein Acidic and Rich in Cysteine (SPARC), a protein involved in mammalian cardiac function. Finally, reducing SPARC gene dosage ameliorated the cardiomyopathy that developed in the absence of nephrocytes. Conclusions— The data implicate SPARC in the noncell autonomous control of cardiac function in Drosophila and suggest that modulation of SPARC gene expression may ameliorate cardiac dysfunction in humans. PMID:26839388

  18. Mechanisms of systemic wound response in Drosophila.

    PubMed

    Lee, Won-Jae; Miura, Masayuki

    2014-01-01

    In response to cellular and tissue losses caused by physical or chemical injuries, organisms must activate multiple wound repair systems at the cellular, tissue, and organismal levels. The systemic wound response (SWR) that occurs via interorgan communication between local wound sites and remote organs ensures that the host is protected efficiently in response to a local wound. The local wound response around the wound site is fairly well documented, but the molecular mechanisms that allow the host to launch SWR are poorly understood. Recent studies on the Drosophila adult model system have shown that the local wound response is not restricted to the wound site because it plays an essential role in generating signals transmitted to remote organs that subsequently achieve SWR. By exploiting the genetic methods available for investigating Drosophila, we are just beginning to understand the complex interorgan networks that operate during SWRs. This review discusses the basic processes involved with classical integumental wound responses and tissue regeneration, such as epithelial cell movement, hemocyte recruitment, apoptosis, melanization, and generation of reactive oxygen species, as well as the recently described intestinal epithelial cell renewal program that occurs in response to gut cell damages. Furthermore, we discuss how these local wound responses integrate with organ-to-organ communication to launch SWR. Genetic analysis of SWRs using the Drosophila model system will provide a unique opportunity to dissect the molecular mechanisms that control wound-induced organ-to-organ communication. PMID:24512709

  19. The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix.

    PubMed

    Arakane, Y; Muthukrishnan, S; Kramer, K J; Specht, C A; Tomoyasu, Y; Lorenzen, M D; Kanost, M; Beeman, R W

    2005-10-01

    Functional analysis of the two chitin synthase genes, TcCHS1 and TcCHS2, in the red flour beetle, Tribolium castaneum, revealed unique and complementary roles for each gene. TcCHS1-specific RNA interference (RNAi) disrupted all three types of moult (larval-larval, larval-pupal and pupal-adult) and greatly reduced whole-body chitin content. Exon-specific RNAi showed that splice variant 8a of TcCHS1 was required for both the larval-pupal and pupal-adult moults, whereas splice variant 8b was required only for the latter. TcCHS2-specific RNAi had no effect on metamorphosis or on total body chitin content. However, RNAi-mediated down-regulation of TcCHS2, but not TcCHS1, led to cessation of feeding, a dramatic shrinkage in larval size and reduced chitin content in the midgut. PMID:16164601

  20. Interaction of salivary and midgut proteins of Helicoverpa armigera with soybean trypsin inhibitor.

    PubMed

    Upadhyay, Santosh Kumar; Chandrashekar, Krishnappa

    2012-03-01

    Feeding of Helicoverpa armigera larvae on semi-synthetic diet containing Soybean trypsin inhibitor (STI) resulted in disappearance of STI sensitive protease in salivary and midgut protease extract. This might be due to in situ inhibition by dietary STI. STI was largely degraded within 1 h of incubation with total salivary protease (1:1). Degradation was relatively low in midgut proteases. STI interacting proteins were isolated from saliva and midgut extracts of larvae fed on STI supplemented diet using affinity column. Most of the isolated proteins showed caseinolytic activity in zymogram. Denovo sequencing data of seven different peptides selected from trypsin digested total protein showed similarity to chymotrypsinogen, serine protease, aminopeptidase N, peroxidase, hypothetical protein and muscle specific protein. PMID:22415700

  1. Age- and oxidative stress-induced DNA damage in Drosophila intestinal stem cells as marked by Gamma-H2AX.

    PubMed

    Park, Joung-Sun; Lee, Shin-Hae; Na, Hyun-Jin; Pyo, Jung-Hoon; Kim, Young-Shin; Yoo, Mi-Ae

    2012-05-01

    A decline in stem cell function is considered as a major cause of tissue atrophy, organ-system failure, cancer development and aging process. For a better understanding of the mechanism underlying age-related decline of stem cell function, characterization of aged stem cells is required. DNA damage induces epigenetic modifications that are associated with cell dysfunction. In mammals, γH2AX has been shown as DNA damage marker and an adaptor for recruiting chromatin modifying factors. In current study, utilizing a well-accepted Drosophila midgut model for stem-cell biology, we demonstrated aging- and oxidative stress-related accumulation of γH2AvD foci, analogous to mammal γH2AX, in Drosophila intestinal stem cells (ISCs), and obtained evidence that the changes in γH2AvD is closely associated with γ-ray-induced DNA damage in ISCs and age-related accumulation of 8-oxo-2'-deoxyguanosine. The significance of our study is to document the first direct evidence for the accumulation of age-related DNA-damage in ISCs, and to show γH2AvD as a useful biomarker in exploring the molecular mechanisms underlying stem cell aging in the Drosophila midgut. PMID:22387531

  2. Spatiotemporal rescue of memory dysfunction in Drosophila.

    PubMed

    McGuire, Sean E; Le, Phuong T; Osborn, Alexander J; Matsumoto, Kunihiro; Davis, Ronald L

    2003-12-01

    We have developed a method for temporal and regional gene expression targeting (TARGET) in Drosophila and show the simultaneous spatial and temporal rescue of a memory defect. The transient expression of the rutabaga-encoded adenylyl cyclase in the mushroom bodies of the adult brain was necessary and sufficient to rescue the rutabaga memory deficit, which rules out a developmental brain defect in the etiology of this deficit and demonstrates an acute role for rutabaga in memory formation in these neurons. The TARGET system offers general utility in simultaneously addressing issues of when and where gene products are required. PMID:14657498

  3. Midgut proteinases of Sitotroga cerealella (Oliver) (Lepidoptera:Gelechiidae): Characterization and relationship to resistance in cereals

    SciTech Connect

    Wu, Lan.

    1989-01-01

    Midgut proteinases are vital to the insects which digest ingested food in the midgut. Insect midgut proteinases, therefore, have been considered as possible targets for the control of insect pests. Proteinaceous proteinase inhibitors are very attractive for their potential use in developing insect resistant plant varieties via genetic engineering. Sitotroga cerealella is one of the major storage pests of cereals, and no antibiotic resistance in wheat against this insect has been identified to date. A series of diagnostic inhibitors, thiol-reducing agents and a metal-ion chelator were used in the identification of proteinases in crude extracts from S. cerealella larval midguts with both protein and ester substrates. The partial inhibition of proteolytic activity in crude midgut extract toward ({sup 3}H)-methemoglobin by pepstatin A suggested the presence of another proteinase which was sensitive to pepstatin A. The optimum pH range for the proteolytic activity, however, indicated that the major midgut proteinases were not carboxyl proteinases. Two proteinases were successfully purified by a combination of fractionation with ammonium sulfate, gel permeation and anion exchange chromatography. Characterization of the enzymes with the purified enzyme preparations confirmed that the two major proteinases were serine endoproteinases with trypsin-like and chymotrypsin-like specificities respectively. Bioassays were conducted using the artificial seeds to test naturally occurring proteinaceous proteinase inhibitors of potential value. Soybean trypsin inhibitor and the Bowman-Birk proteinase inhibitor had adverse effects on the development of the insect. A predictive model was constructed to evaluate effects of seed resistance in conjunction with other control methods on S. cerealella population dynamics.

  4. A Drosophila model to image phagosome maturation.

    PubMed

    Shandala, Tetyana; Lim, Chiaoxin; Sorvina, Alexandra; Brooks, Douglas A

    2013-01-01

    Phagocytosis involves the internalization of extracellular material by invagination of the plasma membrane to form intracellular vesicles called phagosomes, which have functions that include pathogen degradation. The degradative properties of phagosomes are thought to be conferred by sequential fusion with endosomes and lysosomes; however, this maturation process has not been studied in vivo. We employed Drosophila hemocytes, which are similar to mammalian professional macrophages, to establish a model of phagosome maturation. Adult Drosophila females, carrying transgenic Rab7-GFP endosome and Lamp1-GFP lysosome markers, were injected with E. coli DH5α and the hemocytes were collected at 15, 30, 45 and 60 minutes after infection. In wild-type females, E. coli were detected within enlarged Rab7-GFP positive phagosomes at 15 to 45 minutes after infection; and were also observed in enlarged Lamp1-GFP positive phagolysosomes at 45 minutes. Two-photon imaging of hemocytes in vivo confirmed this vesicle morphology, including enlargement of Rab7-GFP and Lamp1-GFP structures that often appeared to protrude from hemocytes. The interaction of endosomes and lysosomes with E. coli phagosomes observed in Drosophila hemocytes was consistent with that previously described for phagosome maturation in human ex vivo macrophages. We also tested our model as a tool for genetic analysis using 14-3-3e mutants, and demonstrated altered phagosome maturation with delayed E. coli internalization, trafficking and/or degradation. These findings demonstrate that Drosophila hemocytes provide an appropriate, genetically amenable, model for analyzing phagosome maturation ex vivo and in vivo. PMID:24709696

  5. RNA editing in Drosophila melanogaster: new targets and functionalconsequences

    SciTech Connect

    Stapleton, Mark; Carlson, Joseph W.; Celniker, Susan E.

    2006-09-05

    Adenosine deaminases that act on RNA (ADARs) catalyze the site-specific conversion of adenosine to inosine in primary mRNA transcripts. These re-coding events affect coding potential, splice-sites, and stability of mature mRNAs. ADAR is an essential gene and studies in mouse, C. elegans, and Drosophila suggest its primary function is to modify adult behavior by altering signaling components in the nervous system. By comparing the sequence of isogenic cDNAs to genomic DNA, we have identified and experimentally verified 27 new targets of Drosophila ADAR. Our analyses lead us to identify new classes of genes whose transcripts are targets of ADAR including components of the actin cytoskeleton, and genes involved in ion homeostasis and signal transduction. Our results indicate that editing in Drosophila increases the diversity of the proteome, and does so in a manner that has direct functional consequences on protein function.

  6. Genetic analysis of the bone morphogenetic protein-related gene, gbb, identifies multiple requirements during Drosophila development.

    PubMed Central

    Wharton, K A; Cook, J M; Torres-Schumann, S; de Castro, K; Borod, E; Phillips, D A

    1999-01-01

    We have isolated mutations in the Drosophila melanogaster gene glass bottom boat (gbb), which encodes a TGF-beta signaling molecule (formerly referred to as 60A) with highest sequence similarity to members of the bone morphogenetic protein (BMP) subgroup including vertebrate BMPs 5-8. Genetic analysis of both null and hypomorphic gbb alleles indicates that the gene is required in many developmental processes, including embryonic midgut morphogenesis, patterning of the larval cuticle, fat body morphology, and development and patterning of the imaginal discs. In the embryonic midgut, we show that gbb is required for the formation of the anterior constriction and for maintenance of the homeotic gene Antennapedia in the visceral mesoderm. In addition, we show a requirement for gbb in the anterior and posterior cells of the underlying endoderm and in the formation and extension of the gastric caecae. gbb is required in all the imaginal discs for proper disc growth and for specification of veins in the wing and of macrochaete in the notum. Significantly, some of these tissues have been shown to also require the Drosophila BMP2/4 homolog decapentaplegic (dpp), while others do not. These results indicate that signaling by both gbb and dpp may contribute to the development of some tissues, while in others, gbb may signal independently of dpp. PMID:10353905

  7. Ultrastructural analysis of midgut cells from Culex quinquefasciatus (Diptera: Culicidae) larvae resistant to Bacillus sphaericus.

    PubMed

    de Melo, Janaina Viana; Vasconcelos, Romero Henrique Teixeira; Furtado, André Freire; Peixoto, Christina Alves; Silva-Filha, Maria Helena Neves Lobo

    2008-12-01

    The larvicidal action of the entomopathogen Bacillus sphaericus towards Culex quinquefasciatus is due to the binary (Bin) toxin present in crystals, which are produced during bacterial sporulation. The Bin toxin needs to recognize and bind specifically to a single class of receptors, named Cqm1, which are 60-kDa alpha-glucosidases attached to the apical membrane of midgut cells by a glycosylphosphatidylinositol anchor. C. quinquefasciatus resistance to B. sphaericus has been often associated with the absence of the alpha-glucosidase Cqm1 in larvae midgut microvilli. In this work, we aimed to investigate, at the ultrastructural level, the midgut cells from C. quinquefasciatus larvae whose resistance relies on the lack of the Cqm1 receptor. The morphological analysis showed that midgut columnar cells from the resistant larvae are characterized by a pronounced production of lipid inclusions, throughout the 4th instar. At the end of this stage, resistant larvae had an increased size and number of these inclusions in the midgut cells, while only a small number were observed in the cells from susceptible larvae. The morphological differences in the midgut cells of resistant larvae found in this work suggested that the lack of the Cqm1 receptor, which also has a physiological role as being an alpha-glucosidase, can be related to changes in the cell metabolism. The ultrastructural effects of Bin toxin on midgut epithelial cells from susceptible and resistant larvae were also investigated. The cytopathological alterations observed in susceptible larvae treated with a lethal concentration of toxin included breakdown of the endoplasmic reticulum, mitochondrial swelling, microvillar disruption and vacuolization. Some effects were observed in cells from resistant larvae, although those alterations did not lead to larval death, indicating that the receptor Cqm1 is essential to mediate the larvicidal action of the toxin. This is the first ultrastructural study to show differences

  8. A Peroxidase/Dual Oxidase System Modulates Midgut Epithelial Immunity in Anopheles gambiae

    PubMed Central

    Kumar, Sanjeev; Molina-Cruz, Alvaro; Gupta, Lalita; Rodrigues, Janneth; Barillas-Mury, Carolina

    2012-01-01

    Extracellular matrices in diverse biological systems are crosslinked by dityrosine covalent bonds catalyzed by the peroxidase/oxidase system. We show that the Immunomodulatory Peroxidase (IMPer), an enzyme secreted by the mosquito Anopheles gambiae midgut, and dual oxidase (Duox) form a dityrosine network that decreases gut permeability to immune elicitors and protects the microbiota by preventing activation of epithelial immunity. It also provides a suitable environment for malaria parasites to develop within the midgut lumen without inducing nitric oxide synthase expression. Disruption of this barrier results in strong and effective pathogen-specific immune responses. PMID:20223948

  9. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae.

    PubMed

    Kumar, Sanjeev; Molina-Cruz, Alvaro; Gupta, Lalita; Rodrigues, Janneth; Barillas-Mury, Carolina

    2010-03-26

    Extracellular matrices in diverse biological systems are cross-linked by dityrosine covalent bonds catalyzed by the peroxidase/oxidase system. We show that a peroxidase, secreted by the Anopheles gambiae midgut, and dual oxidase form a dityrosine network that decreases gut permeability to immune elicitors. This network protects the microbiota by preventing activation of epithelial immunity. It also provides a suitable environment for malaria parasites to develop within the midgut lumen without inducing nitric oxide synthase expression. Disruption of this barrier results in strong and effective pathogen-specific immune responses. PMID:20223948

  10. Silencing of Anopheles stephensi Heme Peroxidase HPX15 Activates Diverse Immune Pathways to Regulate the Growth of Midgut Bacteria

    PubMed Central

    Kajla, Mithilesh; Choudhury, Tania P.; Kakani, Parik; Gupta, Kuldeep; Dhawan, Rini; Gupta, Lalita; Kumar, Sanjeev

    2016-01-01

    Anopheles mosquito midgut harbors a diverse group of endogenous bacteria that grow extensively after the blood feeding and help in food digestion and nutrition in many ways. Although, the growth of endogenous bacteria is regulated by various factors, however, the robust antibacterial immune reactions are generally suppressed in this body compartment by a heme peroxidase HPX15 crosslinked mucins barrier. This barrier is formed on the luminal side of the midgut and blocks the direct interactions and recognition of bacteria or their elicitors by the immune reactive midgut epithelium. We hypothesized that in the absence of HPX15, an increased load of exogenous bacteria will enormously induce the mosquito midgut immunity and this situation in turn, can easily regulate mosquito-pathogen interactions. In this study, we found that the blood feeding induced AsHPX15 gene in Anopheles stephensi midgut and promoted the growth of endogenous as well as exogenous fed bacteria. In addition, the mosquito midgut also efficiently regulated the number of these bacteria through the induction of classical Toll and Imd immune pathways. In case of AsHPX15 silenced midguts, the growth of midgut bacteria was largely reduced through the induction of nitric oxide synthase (NOS) gene, a downstream effector molecule of the JAK/STAT pathway. Interestingly, no significant induction of the classical immune pathways was observed in these midguts. Importantly, the NOS is a well known negative regulator of Plasmodium development, thus, we proposed that the induction of diverged immune pathways in the absence of HPX15 mediated midgut barrier might be one of the strategies to manipulate the vectorial capacity of Anopheles mosquito.

  11. Aging Studies in Drosophila melanogaster

    PubMed Central

    Sun, Yaning; Yolitz, Jason; Wang, Cecilia; Spangler, Edward; Zhan, Ming; Zou, Sige

    2015-01-01

    Summary Drosophila is a genetically tractable system ideal for investigating the mechanisms of aging and developing interventions for promoting healthy aging. Here we describe methods commonly used in Drosophila aging research. These include basic approaches for preparation of diets and measurements of lifespan, food intake and reproductive output. We also describe some commonly used assays to measure changes in physiological and behavioral functions of Drosophila in aging, such as stress resistance and locomotor activity. PMID:23929099

  12. Bioluminescence imaging to track real-time armadillo promoter activity in live Drosophila embryos.

    PubMed

    Akiyoshi, Ryutaro; Kaneuch, Taro; Aigaki, Toshiro; Suzuki, Hirobumi

    2014-09-01

    We established a method for bioluminescence imaging (BLI) to track real-time gene expression in live Drosophila embryos. We constructed a transgenesis vector containing multiple cloning sites and enhanced green-emitting luciferase (ELuc; Emerald Luc), a brighter and pH-insensitive luciferase for promoter analysis. To evaluate the utility of BLI using an ELuc reporter together with an optimized microscope system, we visualized the expression pattern of armadillo (arm), a member of the Wnt pathway in Drosophila, throughout embryogenesis. We generated transgenic flies carrying the arm:: ELuc fusion gene, and successfully performed BLI continuously for 22 h in the same embryos. Our study showed, for the first time, that arm::Eluc expression was dramatically increased in the anterior midgut rudiment, myoblasts of the dorsal/lateral musculature, and the posterior spiracle after stage 13, and the cephalic region at stage 17. To further demonstrate the application of our BLI system, we revealed that arm transcriptional activity in embryos was modulated inversely by treatment with ionomycin or 6-bromoindirubin-3-oxime (BIO), an inhibitor and activator of Wnt/β-catenin signaling, respectively. Therefore, our microscopic BLI system is useful for monitoring gene expression in live Drosophila embryos, and for investigating regulatory mechanisms by using chemicals and mutations that might affect expression. PMID:25023969

  13. Bioimage Informatics in the context of Drosophila research.

    PubMed

    Jug, Florian; Pietzsch, Tobias; Preibisch, Stephan; Tomancak, Pavel

    2014-06-15

    Modern biological research relies heavily on microscopic imaging. The advanced genetic toolkit of Drosophila makes it possible to label molecular and cellular components with unprecedented level of specificity necessitating the application of the most sophisticated imaging technologies. Imaging in Drosophila spans all scales from single molecules to the entire populations of adult organisms, from electron microscopy to live imaging of developmental processes. As the imaging approaches become more complex and ambitious, there is an increasing need for quantitative, computer-mediated image processing and analysis to make sense of the imagery. Bioimage Informatics is an emerging research field that covers all aspects of biological image analysis from data handling, through processing, to quantitative measurements, analysis and data presentation. Some of the most advanced, large scale projects, combining cutting edge imaging with complex bioimage informatics pipelines, are realized in the Drosophila research community. In this review, we discuss the current research in biological image analysis specifically relevant to the type of systems level image datasets that are uniquely available for the Drosophila model system. We focus on how state-of-the-art computer vision algorithms are impacting the ability of Drosophila researchers to analyze biological systems in space and time. We pay particular attention to how these algorithmic advances from computer science are made usable to practicing biologists through open source platforms and how biologists can themselves participate in their further development. PMID:24732429

  14. Identification of a polymorphic mucin-like gene expressed in the midgut of the mosquito, Aedes aegypti, using an integrated bulked segregant and differential display analysis.

    PubMed Central

    Morlais, I; Severson, D W

    2001-01-01

    The identification of putative differentially expressed genes within genome regions containing QTL determining susceptibility of the mosquito, Aedes aegypti, to the malarial parasite, Plasmodium gallinaceum, was investigated using an integrated, targeted approach based on bulked segregant and differential display analysis. A mosquito F2 population was obtained from pairwise matings between the parasite-susceptible RED strain and the resistant MOYO-R substrain. DNA from female carcasses was used to genotype individuals at RFLP markers of known chromosomal position around the major QTL (pgs 1). Midguts, dissected 48 hr after an infected blood meal, were used to prepare two RNA bulks, each representing one of the parental genotypes at the QTL interval. The RNA bulks were compared by differential display PCR. A mucin-like protein gene (AeIMUC1) was isolated and characterized. The gene maps within the pgs 1 QTL interval and is expressed in the adult female midgut. AeIMUC1 RNA abundance decreased with time after blood meal ingestion. No differential expression was observed between the two mosquito strains but three different alleles with inter- and intrastrain allelic polymorphisms including indels and SNPs were characterized. The AeIMUC1 gene chromosome location and allelic polymorphisms raise the possibility that the protein might be involved in parasite-mosquito interactions. PMID:11454761

  15. Hsp27 gene in Drosophila ananassae subgroup was split by a recently acquired intron.

    PubMed

    Zhang, Li; Kang, Han; Jin, Shan; Zeng, Qing Tao; Yang, Yong

    2016-06-01

    In Drosophila, heat shock protein 27 (Hsp27) is a critical single-copy intron-free nuclear gene involved in the defense response against fungi and bacteria, and is a regulator of adult lifespan. In the present study, 33 homologous Hsp27 nucleotide sequences from different Drosophila species were amplified by PCR and reverse transcription PCR, and the phylogenetic relationships were analysed using neighbour-joining, maximum-likelihood and Bayesian methods. The phylogenetic topologies from analysis with different algorithms were similar, suggesting that the Hsp27 gene was split by a recently acquired intron during the evolution of the Drosophila ananassae subgroup. PMID:27350667

  16. Drosophila by the dozen

    SciTech Connect

    Celniker, Susan E.; Hoskins, Roger A.

    2007-07-13

    This year's conference on Drosophila research illustratedwell the current focus of Drosophila genomics on the comprehensiveidentification of functional elements in the genome sequence, includingmRNA transcripts arising from multiple alternative start sites and splicesites, a multiplicity of noncoding transcripts and small RNAs,identification of binding sites for transcription factors, sequenceconservation in related species and sequence variation within species.Resources and technologies for genetics and functional genomics aresteadily being improved, including the building of collections oftransposon insertion mutants and hairpin constructs for RNA interference(RNAi). The conference also highlighted progress in the use of genomicinformation by many laboratories to study diverse aspects of biology andmodels of human disease. Here we will review a few highlights of especialinterest to readers of Genome Biology.

  17. The Drosophila Auditory System

    PubMed Central

    Boekhoff-Falk, Grace; Eberl, Daniel F.

    2013-01-01

    Development of a functional auditory system in Drosophila requires specification and differentiation of the chordotonal sensilla of Johnston’s organ (JO) in the antenna, correct axonal targeting to the antennal mechanosensory and motor center (AMMC) in the brain, and synaptic connections to neurons in the downstream circuit. Chordotonal development in JO is functionally complicated by structural, molecular and functional diversity that is not yet fully understood, and construction of the auditory neural circuitry is only beginning to unfold. Here we describe our current understanding of developmental and molecular mechanisms that generate the exquisite functions of the Drosophila auditory system, emphasizing recent progress and highlighting important new questions arising from research on this remarkable sensory system. PMID:24719289

  18. Binding of insecticidal lectin Colocasia esculenta tuber agglutinin (CEA) to midgut receptors of Bemisia tabaci and Lipaphis erysimi provides clues to its insecticidal potential.

    PubMed

    Roy, Amit; Gupta, Sumanti; Hess, Daniel; Das, Kali Pada; Das, Sampa

    2014-07-01

    The insecticidal potential of Galanthus nivalis agglutinin-related lectins against hemipterans has been experimentally proven. However, the basis behind the toxicity of these lectins against hemipterans remains elusive. The present study elucidates the molecular basis behind insecticidal efficacy of Colocasia esculenta tuber agglutinin (CEA) against Bemisia tabaci and Lipaphis erysimi. Confocal microscopic analyses highlighted the binding of 25 kDa stable homodimeric lectin to insect midgut. Ligand blots followed by LC MS/MS analyses identified binding partners of CEA as vacuolar ATP synthase and sarcoplasmic endoplasmic reticulum type Ca(2+) ATPase from B. tabaci, and ATP synthase, heat shock protein 70 and clathrin heavy chain assembly protein from L. erysimi. Internalization of CEA into hemolymph was confirmed by Western blotting. Glycoprotein nature of the receptors was identified through glycospecific staining. Deglycosylation assay indicated the interaction of CEA with its receptors to be probably glycan mediated. Surface plasmon resonance analysis revealed the interaction kinetics between ATP synthase of B. tabaci with CEA. Pathway prediction study based on Drosophila homologs suggested the interaction of CEA with insect receptors that probably led to disruption of cellular processes causing growth retardation and loss of fecundity of target insects. Thus, the present findings strengthen our current understanding of the entomotoxic potentiality of CEA, which will facilitate its future biotechnological applications. PMID:24753494

  19. Midgut serine proteases and alternative host plant utilization in Pieris brassicae L.

    PubMed Central

    Kumar, Rakesh; Bhardwaj, Usha; Kumar, Pawan; Mazumdar-Leighton, Sudeshna

    2015-01-01

    Pieris brassicae L. is a serious pest of cultivated crucifers in several parts of the world. Larvae of P. brassicae also feed prolifically on garden nasturtium (Tropaeolum majus L., of the family Tropaeolaceae). Proteolytic digestion was studied in larvae feeding on multiple hosts. Fourth instars were collected from cauliflower fields before transfer onto detached, aerial tissues of selected host plants in the lab. Variable levels of midgut proteases were detected in larvae fed on different hosts using protein substrates (casein and recombinant RBCL cloned from cauliflower) and diagnostic, synthetic substrates. Qualitative changes in midgut trypsin activities and quantitative changes in midgut chymotrypsin activities were implicated in physiological adaptation of larvae transferred to T. majus. Midgut proteolytic activities were inhibited to different extents by serine protease inhibitors, including putative trypsin inhibitors isolated from herbivore-attacked and herbivore-free leaves of cauliflower (CfTI) and T. majus (TpTI). Transfer of larvae to T. majus significantly influenced feeding parameters but not necessarily when transferred to different tissues of the same host. Results obtained are relevant for devising sustainable pest management strategies, including transgenic approaches using genes encoding plant protease inhibitors. PMID:25873901

  20. Transcriptome of the gypsy moth (Lymantria dispar) larval midgut in response to infection by Bacillus thuringiensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcriptomic profiles of the lepidopteran insect pest Lymantria dispar (gypsy moth) were characterized in the larval midgut in response to infection by the biopesticide Bacillus thuringiensis kurstaki. RNA-Seq approaches were used to define a set of 49,613 assembled transcript sequences, of which...

  1. Perimicrovillar membrane assembly: the fate of phospholipids synthesised by the midgut of Rhodnius prolixus

    PubMed Central

    Bittencourt-Cunha, Paula Rêgo; Silva-Cardoso, Livia; de Oliveira, Giselle Almeida; da Silva, José Roberto; da Silveira, Alan Barbosa; Kluck, George Eduardo Gabriel; Souza-Lima, Michele; Gondim, Katia Calp; Dansa-Petretsky, Marilvia; Silva, Carlos Peres; Masuda, Hatisaburo; da Silva, Mario Alberto Cardoso; Atella, Georgia Correa

    2013-01-01

    In this study, we describe the fate of fatty acids that are incorporated from the lumen by the posterior midgut epithelium of Rhodnius prolixus and the biosynthesis of lipids. We also demonstrate that neutral lipids (NL) are transferred to the haemolymphatic lipophorin (Lp) and that phospholipids remain in the tissue in which they are organised into perimicrovillar membranes (PMMs). 3H-palmitic acid added at the luminal side of isolated midguts of R. prolixus females was readily absorbed and was used to synthesise phospholipids (80%) and NL (20%). The highest incorporation of 3H-palmitic acid was on the first day after a blood meal. The amounts of diacylglycerol (DG) and triacylglycerol synthesised by the tissue decreased in the presence of Lp in the incubation medium. The metabolic fates of 3H-lipids synthesised by the posterior midgut were followed and it was observed that DG was the major lipid released to Lp particles. However, the majority of phospholipids were not transferred to Lp, but remained in the tissue. The phospholipids that were synthesised and accumulated in the posterior midgut were found to be associated with Rhodnius luminal contents as structural components of PMMs. PMID:23827998

  2. Intravital imaging of Bacillus thuringiensis Cry1A toxin binding sites in the midgut of silkworm.

    PubMed

    Li, Na; Wang, Jing; Han, Heyou; Huang, Liang; Shao, Feng; Li, Xuepu

    2014-02-15

    Identification of the resistance mechanism of insects against Bacillus thuringiensis Cry1A toxin is becoming an increasingly challenging task. This fact highlights the need for establishing new methods to further explore the molecular interactions of Cry1A toxin with insects and the receptor-binding region of Cry1A toxins for their wider application as biopesticides and a gene source for gene-modified crops. In this contribution, a quantum dot-based near-infrared fluorescence imaging method has been applied for direct dynamic tracking of the specific binding of Cry1A toxins, CrylAa and CrylAc, to the midgut tissue of silkworm. The in vitro fluorescence imaging displayed the higher binding specificity of CrylAa-QD probes compared to CrylAc-QD to the brush border membrane vesicles of midgut from silkworm. The in vivo imaging demonstrated that more CrylAa-QDs binding to silkworm midgut could be effectively and distinctly monitored in living silkworms. Furthermore, frozen section analysis clearly indicated the broader receptor-binding region of Cry1Aa compared to that of Cry1Ac in the midgut part. These observations suggest that the insecticidal activity of Cry toxins may depend on the receptor-binding sites, and this scatheless and visual near-infrared fluorescence imaging could provide a new avenue to study the resistance mechanism to maintain the insecticidal activity of B. thuringiensis toxins. PMID:24252542

  3. EFFECTS OF INSECT HORMONE ACTIONS, 20E AND JH, ON MIDGUT STEM CELLS OF LEPIDOPTERA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Addition of the two principal insect hormones, 20-hydroxyecdysone (20E) and juvenile hormone (JH3) to the medium containing midgut stem cells cultured in vitro, induced stimulation of stem cell proliferation in a concentration-dependent manner. Stem cells were obtained from larvae of an economically...

  4. Midgut gene expression in Asian citrus psyllid (Hemiptera: Psyllidae) Diaphorina citri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We produced a gene expression dataset from the midgut tissues of the Asian citrus psyllid (AsCP), Diaphorina citri (Hemiptera: Psyllidae). The AsCP is the primary vector of the bacterium associated with a devastating citrus disease known as huanglongbing (HLB). The occurrence and spread of the AsCP ...

  5. EFFECT OF A FAT BODY EXTRACT ON LARVAL MIDGUT CELLS AND GROWTH OF LEPIDOPTERA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An extract of fat body (FBX) prepared from green fat body tissue from newly ecdysed pupae of Manduca sexta must be added to cultures with a very low (1 pg/ l) titer of insect molting hormone (20-hydroxyecdysone, 20E) in order to induce midgut stem cells to multiply in vitro. However, FBX fed or...

  6. Recurrent intestinal volvulus in midgut malrotation causing acute bowel obstruction: A case report

    PubMed Central

    Sheikh, Fayed; Balarajah, Vickna; Ayantunde, Abraham Abiodun

    2013-01-01

    Intestinal malrotation occurs when there is a disruption in the normal embryological development of the bowel. The majority of patients present with clinical features in childhood, though rarely a first presentation can take place in adulthood. Recurrent bowel obstruction in patients with previous abdominal operation for midgut malrotation is mostly due to adhesions but very few reported cases have been due to recurrent volvulus. We present the case of a 22-year-old gentleman who had laparotomy in childhood for small bowel volvulus and then presented with acute bowel obstruction. Preoperative computerised tomography scan showed small bowel obstruction and features in keeping with midgut malrotation. Emergency laparotomy findings confirmed midgut malrotation with absent appendix, abnormal location of caecum, ascending colon and small bowel. In addition, there were small bowel volvulus and a segment of terminal ileal stricture. Limited right hemicolectomy was performed with excellent postoperative recovery. This case is presented to illustrate a rare occurrence and raise an awareness of the possibility of dreadful recurrent volvulus even several years following an initial Ladd’s procedure for midgut malrotation. Therefore, one will need to exercise a high index of suspicion and this becomes very crucial in order to ensure prompt surgical intervention and thereby preventing an attendant bowel ischaemia with its associated high fatality. PMID:23556060

  7. Midgut transcriptome profiling of Anoplophora glabripennis, a lignocellulose degrading Cerambycid beetle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Wood-feeding insects often work in collaboration with microbial symbionts to degrade lignin biopolymers and release glucose and other fermentable sugars from recalcitrant plant cell wall carbohydrates, including cellulose and hemicellulose. Here, we present the midgut transcriptome of la...

  8. Gene expression in midgut tissues of Diaphorina citri: Application to biology and vector control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We produced a gene expression dataset from the midgut tissues of the Asian citrus psyllid (AsCP), Diaphorina citri (Hemiptera: Psyllidae). The AsCP is the primary vector associated with the spread of a devastating citrus trees disease, huanglongbing (HLB). The occurrence and spread of the AsCP and H...

  9. Midgut epithelium in molting silkworm: A fine balance among cell growth, differentiation, and survival.

    PubMed

    Franzetti, Eleonora; Casartelli, Morena; D'Antona, Paola; Montali, Aurora; Romanelli, Davide; Cappellozza, Silvia; Caccia, Silvia; Grimaldi, Annalisa; de Eguileor, Magda; Tettamanti, Gianluca

    2016-07-01

    The midgut of insects has attracted great attention as a system for studying intestinal stem cells (ISCs) as well as cell death-related processes, such as apoptosis and autophagy. Among insects, Lepidoptera represent a good model to analyze these cells and processes. In particular, larva-larva molting is an interesting developmental phase since the larva must deal with nutrient starvation and its organs are subjected to rearrangements due to proliferation and differentiation events. Several studies have analyzed ISCs in vitro and characterized key factors involved in their division and differentiation during molt. However, in vivo studies performed during larva-larva transition on these cells, and on the whole midgut epithelium, are fragmentary. In the present study, we analyzed the larval midgut epithelium of the silkworm, Bombyx mori, during larva-larva molting, focusing our attention on ISCs. Moreover, we investigated the metabolic changes that occur in the epithelium and evaluated the intervention of autophagy. Our data on ISCs proliferation and differentiation, autophagy activation, and metabolic and functional activities of the midgut cells shed light on the complexity of this organ during the molting phase. PMID:27349418

  10. Localization of two post-proline cleaving peptidases in the midgut of Tenebrio molitor larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two soluble post-proline cleaving peptidase activities, PPCP1 and PPCP2, were demonstrated in the midgut of Tenebrio molitor larvae with the substrate benzyloxycarbonyl-L-alanyl-L-proline p-nitroanilide. Both activities were serine peptidases. PPCP1 was active in acidic buffers, with maximum activit...

  11. Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi

    PubMed Central

    Sigle, Leah Theresa; Ramalho-Ortigão, Marcelo

    2013-01-01

    Sandflies (Diptera: Psychodidae) are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2). Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells) that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to 9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania. PMID:24037187

  12. Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi.

    PubMed

    Sigle, Leah Theresa; Ramalho-Ortigão, Marcelo

    2013-09-01

    Sandflies (Diptera: Psychodidae) are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2). Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells) that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to 9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania. PMID:24037187

  13. Characterization of Plasmodium developmental transcriptomes in Anopheles gambiae midgut reveals novel regulators of malaria transmission

    PubMed Central

    Akinosoglou, Karolina A; Bushell, Ellen S C; Ukegbu, Chiamaka Valerie; Schlegelmilch, Timm; Cho, Jee-Sun; Redmond, Seth; Sala, Katarzyna; Christophides, George K; Vlachou, Dina

    2015-01-01

    The passage through the mosquito is a major bottleneck for malaria parasite populations and a target of interventions aiming to block disease transmission. Here, we used DNA microarrays to profile the developmental transcriptomes of the rodent malaria parasite Plasmodium berghei in vivo, in the midgut of Anopheles gambiae mosquitoes, from parasite stages in the midgut blood bolus to sporulating oocysts on the basal gut wall. Data analysis identified several distinct transcriptional programmes encompassing genes putatively involved in developmental processes or in interactions with the mosquito. At least two of these programmes are associated with the ookinete development that is linked to mosquito midgut invasion and establishment of infection. Targeted disruption by homologous recombination of two of these genes resulted in mutant parasites exhibiting notable infection phenotypes. GAMER encodes a short polypeptide with granular localization in the gametocyte cytoplasm and shows a highly penetrant loss-of-function phenotype manifested as greatly reduced ookinete numbers, linked to impaired male gamete release. HADO encodes a putative magnesium phosphatase with distinctive cortical localization along the concave ookinete periphery. Disruption of HADO compromises ookinete development leading to significant reduction of oocyst numbers. Our data provide important insights into the molecular framework underpinning Plasmodium development in the mosquito and identifies two genes with important functions at initial stages of parasite development in the mosquito midgut. PMID:25225164

  14. Does autophagy in the midgut epithelium of centipedes depend on the day/night cycle?

    PubMed

    Rost-Roszkowska, M M; Chajec, Ł; Vilimova, J; Tajovský, K; Kszuk-Jendrysik, M

    2015-01-01

    The midgut epithelium of two centipedes, Lithobius forficatus and Scolopendra cingulata, is composed of digestive, secretory and regenerative cells. In L. forficatus, the autophagy occurred only in the cytoplasm of the digestive cells as a sporadic process, while in S. cingulata, it occurred intensively in the digestive, secretory and regenerative cells of the midgut epithelium. In both of the species that were analyzed, this process proceeded in a continuous manner and did not depend on the day/night cycle. Ultrastructural analysis showed that the autophagosomes and autolysosomes were located mainly in the apical and perinuclear cytoplasm of the digestive cells in L. forficatus. However, in S. cingulata, the entire cytoplasm was filled with autophagosomes and autolysosomes. Initially the membranes of phagophores surround organelles during autophagosome formation. Autolysosomes result from the fusion of autophagosomes and lysosomes. Residual bodies which are the last stage of autophagy were released into the midgut lumen due to necrosis. Autophagy in the midgut epithelia that were analyzed was confirmed using acid phosphatase and mono-dansyl-cadaverine stainings. PMID:25464151

  15. Apoptosis and necrosis during the circadian cycle in the centipede midgut.

    PubMed

    Rost-Roszkowska, M M; Chajec, Ł; Vilimova, J; Tajovský, K

    2016-07-01

    Three types of cells have been distinguished in the midgut epithelium of two centipedes, Lithobius forficatus and Scolopendra cingulata: digestive, secretory, and regenerative cells. According to the results of our previous studies, we decided to analyze the relationship between apoptosis and necrosis in their midgut epithelium and circadian rhythms. Ultrastructural analysis showed that these processes proceed in a continuous manner that is independent of the circadian rhythm in L. forficatus, while in S. cingulata necrosis is activated at midnight. Additionally, the description of apoptosis and necrosis showed no differences between males and females of both species analyzed. At the beginning of apoptosis, the cell cytoplasm becomes electron-dense, apparently in response to shrinkage of the cell. Organelles such as the mitochondria, cisterns of endoplasmic reticulum transform and degenerate. Nuclei gradually assume lobular shapes before the apoptotic cell is discharged into the midgut lumen. During necrosis, however, the cytoplasm of the cell becomes electron-lucent, and the number of organelles decreases. While the digestive cells of about 10 % of L. forficatus contain rickettsia-like pathogens, the corresponding cells in S. cingulata are free of rickettsia. As a result, we can state that apoptosis in L. forficatus is presumably responsible for protecting the organism against infections, while in S. cingulata apoptosis is not associated with the elimination of pathogens. Necrosis is attributed to mechanical damage, and the activation of this process coincides with proliferation of the midgut regenerative cells at midnight in S. cingulata. PMID:26277351

  16. Effect of midgut proteolytic activity on susceptibility of lepidopteran larvae to Bacillus thuringiensis subsp. Kurstaki

    PubMed Central

    Talaei-Hassanloui, Reza; Bakhshaei, Raziyeh; Hosseininaveh, Vahid; Khorramnezhad, Ayda

    2014-01-01

    Bacillus thuringiensis (Bt) is the most effective microbial control agent for controlling numerous species from different insect orders. All subspecies and strains of B. thuringiensis can produce a spore and a crystalline parasporal body. This crystal which contains proteinaceous protoxins is dissolved in the alkaline midgut, the resulting molecule is then cleaved and activated by proteolytic enzymes and acts as a toxin. An interesting aspect of this activation process is that variations in midgut pH and protease activity have been shown to account for the spectrum of some Bt proteins activity. Thus, an important factor that could be a determinant of toxin activity is the presence of proteases in the midgut microenvironment of susceptible insects. Reciprocally, any alteration in the midgut protease composition of the host can result in resistance to Bt. Here in this paper, we reviewed this processes in general and presented our assays to reveal whether resistance mechanism to Bt in Diamondback Moth (DbM) larvae could be due to the function of the midgut proteases? We estimated LC50 for both probable susceptible and resistant populations in laboratory and greenhouse tests. Then, the midgut protease activities of the B. thuringiensis induced-resistant and susceptible populations of the DbM were assayed on Hemoglubin and on N-alpha-benzoyl-DL-arginine-p-nitroanilide (BapNA) for total and tryptic activities, respectively. Six hours after feeding on Bt treated and untreated canola leaves, the midguts of instar larvae of both populations were isolated. Following related protocols, peptides released through the activity of proteinases on Hemoglubin and BApNA were recorded using microplate reader. Control (Blank) was also considered with adding TCA to reaction mix before adding enzymatic extract. Data analysis indicated that there are significant differences for tryptic activity on BApNA and also for total proteolytic activity on Hemoglubin between susceptible and

  17. African Swine Fever Virus Replication in the Midgut Epithelium Is Required for Infection of Ornithodoros Ticks

    PubMed Central

    Kleiboeker, S. B.; Scoles, G. A.; Burrage, T. G.; Sur, J.-H.

    1999-01-01

    Although the Malawi Lil20/1 (MAL) strain of African swine fever virus (ASFV) was isolated from Ornithodoros sp. ticks, our attempts to experimentally infect ticks by feeding them this strain failed. Ten different collections of Ornithodorus porcinus porcinus ticks and one collection of O. porcinus domesticus ticks were orally exposed to a high titer of MAL. At 3 weeks postinoculation (p.i.), <25% of the ticks contained detectable virus, with viral titers of <4 log10 50% hemadsorbing doses/ml. Viral titers declined to undetectability in >90% of the ticks by 5 weeks p.i. To further study the growth defect, O. porcinus porcinus ticks were orally exposed to MAL and assayed at regular intervals p.i. Whole-tick viral titers dramatically declined (>1,000-fold) between 2 and 6 days p.i., and by 18 days p.i., viral titers were below the detection limit. In contrast, viral titers of ticks orally exposed to a tick-competent ASFV isolate, Pretoriuskop/96/4/1 (Pr4), increased 10-fold by 10 days p.i. and 50-fold by 14 days p.i. Early viral gene expression, but not extensive late gene expression or viral DNA synthesis, was detected in the midguts of ticks orally exposed to MAL. Ultrastructural analysis demonstrated that progeny virus was rarely present in ticks orally exposed to MAL and, when present, was associated with extensive cytopathology of phagocytic midgut epithelial cells. To determine if viral replication was restricted only in the midgut epithelium, parenteral inoculations into the hemocoel were performed. With inoculation by this route, a persistent infection was established although a delay in generalization of MAL was detected and viral titers in most tissues were typically 10- to 1,000-fold lower than those of ticks injected with Pr4. MAL was detected in both the salivary secretion and coxal fluid following feeding but less frequently and at a lower titer compared to Pr4. Transovarial transmission of MAL was not detected after two gonotrophic cycles

  18. Immune response to bacteria induces dissemination of Ras-activated Drosophila hindgut cells

    PubMed Central

    Bangi, Erdem; Pitsouli, Chrysoula; Rahme, Laurence G; Cagan, Ross; Apidianakis, Yiorgos

    2012-01-01

    Although pathogenic bacteria are suspected contributors to colorectal cancer progression, cancer-promoting bacteria and their mode of action remain largely unknown. Here we report that sustained infection with the human intestinal colonizer Pseudomonas aeruginosa synergizes with the Ras1V12 oncogene to induce basal invasion and dissemination of hindgut cells to distant sites. Cross-talk between infection and dissemination requires sustained activation by the bacteria of the Imd–dTab2–dTak1 innate immune pathway, which converges with Ras1V12 signalling on JNK pathway activation, culminating in extracellular matrix degradation. Hindgut, but not midgut, cells are amenable to this cooperative dissemination, which is progressive and genetically and pharmacologically inhibitable. Thus, Drosophila hindgut provides a valuable system for the study of intestinal malignancies. PMID:22498775

  19. The bHLH transcription factor Hand is regulated by Alk in the Drosophila embryonic gut

    SciTech Connect

    Varshney, Gaurav K.; Palmer, Ruth H. . E-mail: Ruth.Palmer@ucmp.umu.se

    2006-12-29

    During embryonic development the midgut visceral muscle is formed by fusion of cells within the visceral mesoderm, a process initiated by the specification of a specialised cell type, the founder cell, within this tissue. Activation of the receptor tyrosine kinase Anaplastic lymphoma kinase (Alk) in the developing visceral muscle of Drosophila melanogaster initiates a signal transduction pathway required for muscle fusion. In this paper, we have investigated downstream components which are regulated by this novel signalling pathway. Here we show that Alk-mediated signal transduction drives the expression of the bHLH transcription factor Hand in vivo. Loss of Alk function results in a complete lack of Hand expression in this tissue, whereas Alk gain of function results in an expansion of Hand expression. Finally, we have investigated the process of muscle fusion in the gut of Hand mutant animals and can find no obvious defects in this process, suggesting that Hand is not critical for visceral muscle fusion per se.

  20. Evolution, Expression, and Function of Nonneuronal Ligand-Gated Chloride Channels in Drosophila melanogaster.

    PubMed

    Remnant, Emily J; Williams, Adam; Lumb, Chris; Yang, Ying Ting; Chan, Janice; Duchêne, Sebastian; Daborn, Phillip J; Batterham, Philip; Perry, Trent

    2016-01-01

    Ligand-gated chloride channels have established roles in inhibitory neurotransmission in the nervous systems of vertebrates and invertebrates. Paradoxically, expression databases in Drosophila melanogaster have revealed that three uncharacterized ligand-gated chloride channel subunits, CG7589, CG6927, and CG11340, are highly expressed in nonneuronal tissues. Furthermore, subunit copy number varies between insects, with some orders containing one ortholog, whereas other lineages exhibit copy number increases. Here, we show that the Dipteran lineage has undergone two gene duplications followed by expression-based functional differentiation. We used promoter-GFP expression analysis, RNA-sequencing, and in situ hybridization to examine cell type and tissue-specific localization of the three D. melanogaster subunits. CG6927 is expressed in the nurse cells of the ovaries. CG7589 is expressed in multiple tissues including the salivary gland, ejaculatory duct, malpighian tubules, and early midgut. CG11340 is found in malpighian tubules and the copper cell region of the midgut. Overexpression of CG11340 increased sensitivity to dietary copper, and RNAi and ends-out knockout of CG11340 resulted in copper tolerance, providing evidence for a specific nonneuronal role for this subunit in D. melanogaster Ligand-gated chloride channels are important insecticide targets and here we highlight copy number and functional divergence in insect lineages, raising the potential that order-specific receptors could be isolated within an effective class of insecticide targets. PMID:27172217

  1. Reduced Gut Acidity Induces an Obese-Like Phenotype in Drosophila melanogaster and in Mice

    PubMed Central

    Yen, Jui-Hung; Kuo, Ping-Chang; Yeh, Sheng-Rong; Lin, Hung-Yu; Fu, Tsai-Feng; Wu, Ming-Shiang; Wang, Horng-Dar; Wang, Pei-Yu

    2015-01-01

    In order to identify genes involved in stress and metabolic regulation, we carried out a Drosophila P-element-mediated mutagenesis screen for starvation resistance. We isolated a mutant, m2, that showed a 23% increase in survival time under starvation conditions. The P-element insertion was mapped to the region upstream of the vha16-1 gene, which encodes the c subunit of the vacuolar-type H+-ATPase. We found that vha16-1 is highly expressed in the fly midgut, and that m2 mutant flies are hypomorphic for vha16-1 and also exhibit reduced midgut acidity. This deficit is likely to induce altered metabolism and contribute to accelerated aging, since vha16-1 mutant flies are short-lived and display increases in body weight and lipid accumulation. Similar phenotypes were also induced by pharmacological treatment, through feeding normal flies and mice with a carbonic anhydrase inhibitor (acetazolamide) or proton pump inhibitor (PPI, lansoprazole) to suppress gut acid production. Our study may thus provide a useful model for investigating chronic acid suppression in patients. PMID:26436771

  2. Tre1, a G Protein-Coupled Receptor, Directs Transepithelial Migration of Drosophila Germ Cells

    PubMed Central

    2003-01-01

    In most organisms, germ cells are formed distant from the somatic part of the gonad and thus have to migrate along and through a variety of tissues to reach the gonad. Transepithelial migration through the posterior midgut (PMG) is the first active step during Drosophila germ cell migration. Here we report the identification of a novel G protein-coupled receptor (GPCR), Tre1, that is essential for this migration step. Maternal tre1 RNA is localized to germ cells, and tre1 is required cell autonomously in germ cells. In tre1 mutant embryos, most germ cells do not exit the PMG. The few germ cells that do leave the midgut early migrate normally to the gonad, suggesting that this gene is specifically required for transepithelial migration and that mutant germ cells are still able to recognize other guidance cues. Additionally, inhibiting small Rho GTPases in germ cells affects transepithelial migration, suggesting that Tre1 signals through Rho1. We propose that Tre1 acts in a manner similar to chemokine receptors required during transepithelial migration of leukocytes, implying an evolutionarily conserved mechanism of transepithelial migration. Recently, the chemokine receptor CXCR4 was shown to direct migration in vertebrate germ cells. Thus, germ cells may more generally use GPCR signaling to navigate the embryo toward their target. PMID:14691551

  3. Conserved genetic pathways controlling the development of the diffuse endocrine system in vertebrates and Drosophila.

    PubMed

    Hartenstein, Volker; Takashima, Shigeo; Adams, Katrina L

    2010-05-01

    The midgut epithelium is formed by absorptive enterocytes, secretory cells and endocrine cells. Each of these lineages is derived from the pluripotent progenitors that constitute the embryonic endoderm; the mature midgut retains pools of self-renewing stem cells that continue to produce all lineages. Recent findings in vertebrates and Drosophila shed light on the genetic mechanism that specifies the fate of the different lineages. A pivotal role is played by the Notch signaling pathway that, in a manner that appears to be very similar to the way in which Notch signaling selects neural progenitors within the neurectoderm, distinguishes the fate of secretory/endocrine cells and enterocytes. Proneural genes encoding bHLH transcription factors are expressed and required in prospective endocrine cells; activation of the Notch pathways restricts the number of these cells and promotes enterocyte development. In this review we compare the development of the intestinal endocrine cells in vertebrates and insects and summarize recent findings dealing with genetic pathways controlling this cell type. PMID:20005229

  4. Conserved Genetic Pathways Controlling the Development of the Diffuse Endocrine System in Vertebrates and Drosophila

    PubMed Central

    Hartenstein, Volker; Takashima, Shigeo; Adams, Katrina

    2014-01-01

    The midgut epithelium is formed by absorptive enterocytes, secretory cells and endocrine cells. Each of these lineages is derived from the pluripotent progenitors that constitute the embryonic endoderm; the mature midgut retains pools of self-renewing stem cells that continue to produce all lineages. Recent findings in vertebrates and Drosophila shed light on the genetic mechanism that specifies the fate of the different lineages. A pivotal role is played by the Notch signaling pathway that, in a manner that appears to be very similar to the way in which Notch signaling selects neural progenitors within the neurectoderm, distinguishes the fate of secretory/endocrine cells and enterocytes. Proneural genes encoding bHLH transcription factors are expressed and required in prospective endocrine cells; activation of the Notch pathways restricts the number of these cells and promotes enterocyte development. In this review we compare the development of the intestinal endocrine cells in vertebrates and insects and summarize recent findings dealing with genetic pathways controlling this cell type. PMID:20005229

  5. The migrations of Drosophila muscle founders and primordial germ cells are interdependent.

    PubMed

    Stepanik, Vincent; Dunipace, Leslie; Bae, Young-Kyung; Macabenta, Frank; Sun, Jingjing; Trisnadi, Nathanie; Stathopoulos, Angelike

    2016-09-01

    Caudal visceral mesoderm (CVM) cells migrate from posterior to anterior of the Drosophila embryo as two bilateral streams of cells to support the specification of longitudinal muscles along the midgut. To accomplish this long-distance migration, CVM cells receive input from their environment, but little is known about how this collective cell migration is regulated. In a screen we found that wunen mutants exhibit CVM cell migration defects. Wunens are lipid phosphate phosphatases known to regulate the directional migration of primordial germ cells (PGCs). PGC and CVM cell types interact while PGCs are en route to the somatic gonadal mesoderm, and previous studies have shown that CVM impacts PGC migration. In turn, we found here that CVM cells exhibit an affinity for PGCs, localizing to the position of PGCs whether mislocalized or trapped in the endoderm. In the absence of PGCs, CVM cells exhibit subtle changes, including more cohesive movement of the migrating collective, and an increased number of longitudinal muscles is found at anterior sections of the larval midgut. These data demonstrate that PGC and CVM cell migrations are interdependent and suggest that distinct migrating cell types can coordinately influence each other to promote effective cell migration during development. PMID:27578182

  6. Evolution, Expression, and Function of Nonneuronal Ligand-Gated Chloride Channels in Drosophila melanogaster

    PubMed Central

    Remnant, Emily J.; Williams, Adam; Lumb, Chris; Yang, Ying Ting; Chan, Janice; Duchêne, Sebastian; Daborn, Phillip J.; Batterham, Philip; Perry, Trent

    2016-01-01

    Ligand-gated chloride channels have established roles in inhibitory neurotransmission in the nervous systems of vertebrates and invertebrates. Paradoxically, expression databases in Drosophila melanogaster have revealed that three uncharacterized ligand-gated chloride channel subunits, CG7589, CG6927, and CG11340, are highly expressed in nonneuronal tissues. Furthermore, subunit copy number varies between insects, with some orders containing one ortholog, whereas other lineages exhibit copy number increases. Here, we show that the Dipteran lineage has undergone two gene duplications followed by expression-based functional differentiation. We used promoter-GFP expression analysis, RNA-sequencing, and in situ hybridization to examine cell type and tissue-specific localization of the three D. melanogaster subunits. CG6927 is expressed in the nurse cells of the ovaries. CG7589 is expressed in multiple tissues including the salivary gland, ejaculatory duct, malpighian tubules, and early midgut. CG11340 is found in malpighian tubules and the copper cell region of the midgut. Overexpression of CG11340 increased sensitivity to dietary copper, and RNAi and ends-out knockout of CG11340 resulted in copper tolerance, providing evidence for a specific nonneuronal role for this subunit in D. melanogaster. Ligand-gated chloride channels are important insecticide targets and here we highlight copy number and functional divergence in insect lineages, raising the potential that order-specific receptors could be isolated within an effective class of insecticide targets. PMID:27172217

  7. Composition of the Spruce Budworm (Choristoneura fumiferana) Midgut Microbiota as Affected by Rearing Conditions

    PubMed Central

    Landry, Mathieu; Comeau, André M.; Derome, Nicolas; Cusson, Michel; Levesque, Roger C.

    2015-01-01

    The eastern spruce budworm (Choristoneura fumiferana) is one of the most destructive forest insect pests in Canada. Little is known about its intestinal microbiota, which could play a role in digestion, immune protection, communication and/or development. The present study was designed to provide a first characterization of the effects of rearing conditions on the taxonomic diversity and structure of the C. fumiferana midgut microbiota, using a culture-independent approach. Three diets and insect sources were examined: larvae from a laboratory colony reared on a synthetic diet and field-collected larvae reared on balsam fir or black spruce foliage. Bacterial DNA from the larval midguts was extracted to amplify and sequence the V6-V8 region of the 16S rRNA gene, using the Roche 454 GS-FLX technology. Our results showed a dominance of Proteobacteria, mainly Pseudomonas spp., in the spruce budworm midgut, irrespective of treatment group. Taxonomic diversity of the midgut microbiota was greater for larvae reared on synthetic diet than for those collected and reared on host plants, a difference that is likely accounted for by several factors. A greater proportion of bacteria from the phylum Bacteroidetes in insects fed artificial diet constituted the main difference between this group and those reared on foliage; within the phylum Proteobacteria, the presence of the genus Bradyrhizobium was also unique to insects reared on artificial diet. Strikingly, a Bray-Curtis analysis showed important differences in microbial diversity among the treatment groups, pointing to the importance of diet and environment in defining the spruce budworm midgut microbiota. PMID:26636571

  8. An epidemiologically successful Escherichia coli sequence type modulates Plasmodium falciparum infection in the mosquito midgut.

    PubMed

    Tchioffo, Majoline T; Abate, Luc; Boissière, Anne; Nsango, Sandrine E; Gimonneau, Geoffrey; Berry, Antoine; Oswald, Eric; Dubois, Damien; Morlais, Isabelle

    2016-09-01

    Malaria transmission relies on the successful development of Plasmodium parasites in the Anopheles mosquito vector. Within the mosquito midgut, malaria parasites encounter a resident bacterial flora and parasite-bacteria interactions modulate Plasmodium development. The mechanisms by which the bacteria interact with malaria parasites are still unknown. The intestinal microbiota could regulate immune signaling pathways or produce bacterial compounds that block Plasmodium development. In this study, we characterized Escherichia coli strains previously isolated from the Anopheles mosquito midgut and investigated the putative role of two E. coli clones, 444ST95 and 351ST73, on parasite development. Sporogonic development was significantly impacted by exposure to clone 444ST95 whereas prevalence and intensity of infection were not different in mosquitoes challenged with 351ST73 as compared to control mosquitoes. This result indicates midgut bacteria exhibit intra-specific variation in their ability to inhibit Plasmodium development. Expression patterns of immune genes differed between mosquitoes challenged with 444ST95 and 351ST73 and examination of the luminal midgut surface by transmission electron microscopy revealed distinct effects of bacterial exposure on midgut epithelial cells. The 444ST95 clone strongly affected mosquito survival and parasite development and this could be associated to the Hemolysin F or other toxins released by the bacteria. Further studies will be needed to decipher the virulence factors and to determine their contribution to the observed phenotype of the 444ST95E. coli strain that belongs to the epidemiological ST95 clonal group responsible for extra intestinal infections in human and other animals. PMID:27154329

  9. Midgut Transcriptome of the Cockroach Periplaneta americana and Its Microbiota: Digestion, Detoxification and Oxidative Stress Response

    PubMed Central

    Zhang, Jianhua; Zhang, Yixi; Li, Jingjing; Liu, Meiling; Liu, Zewen

    2016-01-01

    The cockroach, Periplaneta americana, is an obnoxious and notorious pest of the world, with a strong ability to adapt to a variety of complex environments. However, the molecular mechanism of this adaptability is mostly unknown. In this study, the genes and microbiota composition associated with the adaptation mechanism were studied by analyzing the transcriptome and 16S rDNA pyrosequencing of the P. americana midgut, respectively. Midgut transcriptome analysis identified 82,905 unigenes, among which 64 genes putatively involved in digestion (11 genes), detoxification (37 genes) and oxidative stress response (16 genes) were found. Evaluation of gene expression following treatment with cycloxaprid further revealed that the selected genes (CYP6J1, CYP4C1, CYP6K1, Delta GST, alpha-amylase, beta-glucosidase and aminopeptidase) were upregulated at least 2.0-fold at the transcriptional level, and four genes were upregulated more than 10.0-fold. An interesting finding was that three digestive enzymes positively responded to cycloxaprid application. Tissue expression profiles further showed that most of the selected genes were midgut-biased, with the exception of CYP6K1. The midgut microbiota composition was obtained via 16S rDNA pyrosequencing and was found to be mainly dominated by organisms from the Firmicutes phylum, among which Clostridiales, Lactobacillales and Burkholderiales were the main orders which might assist the host in the food digestion or detoxification of noxious compounds. The preponderant species, Clostridium cellulovorans, was previously reported to degrade lignocellulose efficiently in insects. The abundance of genes involved in digestion, detoxification and response to oxidative stress, and the diversity of microbiota in the midgut might provide P. americana high capacity to adapt to complex environments. PMID:27153200

  10. Transcriptome analysis in the midgut of the earthworm (Eisenia andrei) using expressed sequence tags.

    PubMed

    Lee, Myung Sik; Cho, Sung Jin; Tak, Eun Sik; Lee, Jong Ae; Cho, Hyun Ju; Park, Bum Joon; Shin, Chuog; Kim, Dae Kyong; Park, Soon Cheol

    2005-03-25

    In order to gain insight into the expression profiles of the earthworm midgut, we analyzed 1106 expressed sequence tags (ESTs) derived from the earthworm midgut cDNA library. Among the 1106 ESTs analyzed, 557 (50.4%) ESTs showed significant similarity to known genes and represented 229 unique genes of which 166 ESTs were singletons and 63 ESTs manifest as two or more ESTs. While 552 ESTs (49.9%) were sequenced only once, 230 ESTs (20.8%) appeared two to five times and 324 ESTs (29.3%) were sequenced more than five times. Considering this redundancy of expression, it is likely that the gene expression profile of the earthworm midgut would be polarized. The expression of globin-related proteins, including ferritin and linker chain, and fibrinolytic enzymes appeared to account for 10.1% and 4.7% of the total ESTs analyzed in this study, respectively. This suggests that the prime functions of the midgut in the earthworm would be associated with protein hydrolysis as well as globin formation. Among the recognized protein-coding genes, the gene category involved in protein synthesis appeared to be the largest one accounting for 15.6% of the expression in the midgut, followed by gene categories associated with energy (11.2%), homeostasis (10.8%), metabolism (3.6%), cytoskeleton (2.5%), and protein fate (1.4%). With regard to functional aspects, the most abundantly expressed genes were associated with respiratory pigment (10.1%), cellular respiration (8.6%), and fibrin hydrolysis (4.7%). In addition, we were able to identify novel ESTs in the earthworm, which were related to the innate immune system, including destabilase, a possible antagonist of transglutaminase. PMID:15708003

  11. Plasmodium falciparum evades mosquito immunity by disrupting JNK-mediated apoptosis of invaded midgut cells.

    PubMed

    Ramphul, Urvashi N; Garver, Lindsey S; Molina-Cruz, Alvaro; Canepa, Gaspar E; Barillas-Mury, Carolina

    2015-02-01

    The malaria parasite, Plasmodium, must survive and develop in the mosquito vector to be successfully transmitted to a new host. The Plasmodium falciparum Pfs47 gene is critical for malaria transmission. Parasites that express Pfs47 (NF54 WT) evade mosquito immunity and survive, whereas Pfs47 knockouts (KO) are efficiently eliminated by the complement-like system. Two alternative approaches were used to investigate the mechanism of action of Pfs47 on immune evasion. First, we examined whether Pfs47 affected signal transduction pathways mediating mosquito immune responses, and show that the Jun-N-terminal kinase (JNK) pathway is a key mediator of Anopheles gambiae antiplasmodial responses to P. falciparum infection and that Pfs47 disrupts JNK signaling. Second, we used microarrays to compare the global transcriptional responses of A. gambiae midguts to infection with WT and KO parasites. The presence of Pfs47 results in broad and profound changes in gene expression in response to infection that are already evident 12 h postfeeding, but become most prominent at 26 h postfeeding, the time when ookinetes invade the mosquito midgut. Silencing of 15 differentially expressed candidate genes identified caspase-S2 as a key effector of Plasmodium elimination in parasites lacking Pfs47. We provide experimental evidence that JNK pathway regulates activation of caspases in Plasmodium-invaded midgut cells, and that caspase activation is required to trigger midgut epithelial nitration. Pfs47 alters the cell death pathway of invaded midgut cells by disrupting JNK signaling and prevents the activation of several caspases, resulting in an ineffective nitration response that makes the parasite undetectable by the mosquito complement-like system. PMID:25552553

  12. Molecular Genetic Analysis of Midgut Serine Proteases in Aedes aegypti Mosquitoes

    PubMed Central

    Isoe, Jun; Rascón, Alberto A.; Kunz, Susan; Miesfeld, Roger L.

    2009-01-01

    Digestion of blood meal proteins by midgut proteases provides anautogenous mosquitoes with the nutrients required to complete the gonotrophic cycle. Inhibition of protein digestion in the midgut of blood feeding mosquitoes could therefore provide a strategy for population control. Based on recent reports indicating that the mechanism and regulation of protein digestion in blood fed female Aedes aegypti mosquitoes is more complex than previously thought, we used a robust RNAi knockdown method to investigate the role of four highly expressed midgut serine proteases in blood meal metabolism. We show by Western blotting that the early phase trypsin protein (AaET) is maximally expressed at 3 h post blood meal (PBM), and that AaET is not required for the protein expression of three late phase serine proteases, AaLT (late trypsin), AaSPVI (5G1), and AaSPVII. Using the trypsin substrate analog BApNA to analyze in vitro enzyme activity in midgut extracts from single mosquitoes, we found that knockdown of AaSPVI expression caused a 77.6% decrease in late phase trypsin-like activity, whereas, knockdown of AaLT and AaSPVII expression had no significant effect on BApNA activity. In contrast, injection of AaLT, AaSPVI, and AaSPVII dsRNA inhibited degradation of endogenous serum albumin protein using an in vivo protease assay, as well as, significantly decreased egg production in both the first and second gonotrophic cycles (p<0.001). These results demonstrate that AaLT, AaSPVI, and AaSPVII all contribute to blood protein digestion and oocyte maturation, even though AaSPVI is the only abundant midgut late phase serine protease that appears to function as a classic trypsin enzyme. PMID:19883761

  13. Midgut Transcriptome of the Cockroach Periplaneta americana and Its Microbiota: Digestion, Detoxification and Oxidative Stress Response.

    PubMed

    Zhang, Jianhua; Zhang, Yixi; Li, Jingjing; Liu, Meiling; Liu, Zewen

    2016-01-01

    The cockroach, Periplaneta americana, is an obnoxious and notorious pest of the world, with a strong ability to adapt to a variety of complex environments. However, the molecular mechanism of this adaptability is mostly unknown. In this study, the genes and microbiota composition associated with the adaptation mechanism were studied by analyzing the transcriptome and 16S rDNA pyrosequencing of the P. americana midgut, respectively. Midgut transcriptome analysis identified 82,905 unigenes, among which 64 genes putatively involved in digestion (11 genes), detoxification (37 genes) and oxidative stress response (16 genes) were found. Evaluation of gene expression following treatment with cycloxaprid further revealed that the selected genes (CYP6J1, CYP4C1, CYP6K1, Delta GST, alpha-amylase, beta-glucosidase and aminopeptidase) were upregulated at least 2.0-fold at the transcriptional level, and four genes were upregulated more than 10.0-fold. An interesting finding was that three digestive enzymes positively responded to cycloxaprid application. Tissue expression profiles further showed that most of the selected genes were midgut-biased, with the exception of CYP6K1. The midgut microbiota composition was obtained via 16S rDNA pyrosequencing and was found to be mainly dominated by organisms from the Firmicutes phylum, among which Clostridiales, Lactobacillales and Burkholderiales were the main orders which might assist the host in the food digestion or detoxification of noxious compounds. The preponderant species, Clostridium cellulovorans, was previously reported to degrade lignocellulose efficiently in insects. The abundance of genes involved in digestion, detoxification and response to oxidative stress, and the diversity of microbiota in the midgut might provide P. americana high capacity to adapt to complex environments. PMID:27153200

  14. Plasmodium falciparum evades mosquito immunity by disrupting JNK-mediated apoptosis of invaded midgut cells

    PubMed Central

    Ramphul, Urvashi N.; Garver, Lindsey S.; Molina-Cruz, Alvaro; Canepa, Gaspar E.; Barillas-Mury, Carolina

    2015-01-01

    The malaria parasite, Plasmodium, must survive and develop in the mosquito vector to be successfully transmitted to a new host. The Plasmodium falciparum Pfs47 gene is critical for malaria transmission. Parasites that express Pfs47 (NF54 WT) evade mosquito immunity and survive, whereas Pfs47 knockouts (KO) are efficiently eliminated by the complement-like system. Two alternative approaches were used to investigate the mechanism of action of Pfs47 on immune evasion. First, we examined whether Pfs47 affected signal transduction pathways mediating mosquito immune responses, and show that the Jun-N-terminal kinase (JNK) pathway is a key mediator of Anopheles gambiae antiplasmodial responses to P. falciparum infection and that Pfs47 disrupts JNK signaling. Second, we used microarrays to compare the global transcriptional responses of A. gambiae midguts to infection with WT and KO parasites. The presence of Pfs47 results in broad and profound changes in gene expression in response to infection that are already evident 12 h postfeeding, but become most prominent at 26 h postfeeding, the time when ookinetes invade the mosquito midgut. Silencing of 15 differentially expressed candidate genes identified caspase-S2 as a key effector of Plasmodium elimination in parasites lacking Pfs47. We provide experimental evidence that JNK pathway regulates activation of caspases in Plasmodium-invaded midgut cells, and that caspase activation is required to trigger midgut epithelial nitration. Pfs47 alters the cell death pathway of invaded midgut cells by disrupting JNK signaling and prevents the activation of several caspases, resulting in an ineffective nitration response that makes the parasite undetectable by the mosquito complement-like system. PMID:25552553

  15. Hypergravity-induced altered behavior in Drosophila

    NASA Astrophysics Data System (ADS)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  16. Drosophila transcriptional repressor protein that binds specifically to negative control elements in fat body enhancers.

    PubMed Central

    Falb, D; Maniatis, T

    1992-01-01

    Expression of the Drosophila melanogaster Adh gene in adults requires a fat body-specific enhancer called the Adh adult enhancer (AAE). We have identified a protein in Drosophila nuclear extracts that binds specifically to a site within the AAE (adult enhancer factor 1 [AEF-1]). In addition, we have shown that AEF-1 binds specifically to two other Drosophila fat body enhancers. Base substitutions in the AEF-1 binding site that disrupt AEF-1 binding in vitro result in a significant increase in the level of Adh expression in vivo. Thus, the AEF-1 binding site is a negative regulatory element within the AAE. A cDNA encoding the AEF-1 protein was isolated and shown to act as a repressor of the AAE in cotransfection studies. The AEF-1 protein contains four zinc fingers and an alanine-rich sequence. The latter motif is found in other eukaryotic proteins known to be transcriptional repressors. Images PMID:1508206

  17. The Drosophila anatomy ontology

    PubMed Central

    2013-01-01

    Background Anatomy ontologies are query-able classifications of anatomical structures. They provide a widely-used means for standardising the annotation of phenotypes and expression in both human-readable and programmatically accessible forms. They are also frequently used to group annotations in biologically meaningful ways. Accurate annotation requires clear textual definitions for terms, ideally accompanied by images. Accurate grouping and fruitful programmatic usage requires high-quality formal definitions that can be used to automate classification and check for errors. The Drosophila anatomy ontology (DAO) consists of over 8000 classes with broad coverage of Drosophila anatomy. It has been used extensively for annotation by a range of resources, but until recently it was poorly formalised and had few textual definitions. Results We have transformed the DAO into an ontology rich in formal and textual definitions in which the majority of classifications are automated and extensive error checking ensures quality. Here we present an overview of the content of the DAO, the patterns used in its formalisation, and the various uses it has been put to. Conclusions As a result of the work described here, the DAO provides a high-quality, queryable reference for the wild-type anatomy of Drosophila melanogaster and a set of terms to annotate data related to that anatomy. Extensive, well referenced textual definitions make it both a reliable and useful reference and ensure accurate use in annotation. Wide use of formal axioms allows a large proportion of classification to be automated and the use of consistency checking to eliminate errors. This increased formalisation has resulted in significant improvements to the completeness and accuracy of classification. The broad use of both formal and informal definitions make further development of the ontology sustainable and scalable. The patterns of formalisation used in the DAO are likely to be useful to developers of other

  18. The developmental transcriptome of Drosophila melanogaster

    SciTech Connect

    University of Connecticut; Graveley, Brenton R.; Brooks, Angela N.; Carlson, Joseph W.; Duff, Michael O.; Landolin, Jane M.; Yang, Li; Artieri, Carlo G.; van Baren, Marijke J.; Boley, Nathan; Booth, Benjamin W.; Brown, James B.; Cherbas, Lucy; Davis, Carrie A.; Dobin, Alex; Li, Renhua; Lin, Wei; Malone, John H.; Mattiuzzo, Nicolas R.; Miller, David; Sturgill, David; Tuch, Brian B.; Zaleski, Chris; Zhang, Dayu; Blanchette, Marco; Dudoit, Sandrine; Eads, Brian; Green, Richard E.; Hammonds, Ann; Jiang, Lichun; Kapranov, Phil; Langton, Laura; Perrimon, Norbert; Sandler, Jeremy E.; Wan, Kenneth H.; Willingham, Aarron; Zhang, Yu; Zou, Yi; Andrews, Justen; Bicke, Peter J.; Brenner, Steven E.; Brent, Michael R.; Cherbas, Peter; Gingeras, Thomas R.; Hoskins, Roger A.; Kaufman, Thomas C.; Oliver, Brian; Celniker, Susan E.

    2010-12-02

    . Whereas, 20% of Drosophila genes are annotated as encoding alternatively spliced premRNAs, splice-junction microarray experiments indicate that this number is at least 40% (ref. 7). Determining the diversity of mRNAs generated by alternative promoters, alternative splicing and RNA editing will substantially increase the inferred protein repertoire. Non-coding RNA genes (ncRNAs) including short interfering RNAs (siRNAs) and microRNAS (miRNAs) (reviewed in ref. 10), and longer ncRNAs such as bxd (ref. 11) and rox (ref. 12), have important roles in gene regulation, whereas others such as small nucleolar RNAs (snoRNAs)and small nuclear RNAs (snRNAs) are important components of macromolecular machines such as the ribosome and spliceosome. The transcription and processing of these ncRNAs must also be fully documented and mapped. As part of the modENCODE project to annotate the functional elements of the D. melanogaster and Caenorhabditis elegans genomes, we used RNA-Seq and tiling microarrays to sample the Drosophila transcriptome at unprecedented depth throughout development from early embryo to ageing male and female adults. We report on a high-resolution view of the discovery, structure and dynamic expression of the D. melanogaster transcriptome.

  19. Sexual circuitry in Drosophila.

    PubMed

    Auer, Thomas O; Benton, Richard

    2016-06-01

    The sexual behavior of Drosophila melanogaster is an outstanding paradigm to understand the molecular and neuronal basis of sophisticated animal actions. We discuss recent advances in our knowledge of the genetic hardwiring of the underlying neuronal circuitry, and how pertinent sensory cues are differentially detected and integrated in the male and female brain. We also consider how experience influences these circuits over short timescales, and the evolution of these pathways over longer timescales to endow species-specific sexual displays and responses. PMID:26851712

  20. Cadmium resistance in Drosophila: a small cadmium binding substance

    SciTech Connect

    Jacobson, K.B.; Williams, M.W.; Richter, L.J.; Holt, S.E.; Hook, G.J.; Knoop, S.M.; Sloop, F.V.; Faust, J.B.

    1985-01-01

    A small cadmium-binding substance (CdBS) has been observed in adult Drosophila melanogaster that were raised for their entire growth cycle on a diet that contained 0.15 mM CdCl/sub 2/. Induction of CdBS was observed in strains that differed widely in their sensitivity of CdCl/sub 2/. This report describes the induction of CdBS and some of its characteristics. 17 refs., 4 figs., 1 tab.

  1. Mutagenicity of four hair dyes in Drosophila melanogaster.

    PubMed

    Blijleven, W G

    1977-04-01

    The hair dye constituents p-phenylenediamine, 2,4-diaminoanisole sulfate, 2,4-diaminotoluene and 4-nitro-0-phenylenediamine were tested for mutagenicity in Drosophila melanogaster. The compounds were given orally to adult males. The induction of sex-linked recessive lethal mutation was used as a measure of mutagenicity. All four of the dyes tested were mutagenic with a peak mutagenic activity in metabolically active germ cells (spermatids and spermatocytes). PMID:406556

  2. Drosophila alcohol dehydrogenase: developmental studies on cryptic variant lines.

    PubMed

    Miglani, G S; Ampy, F R

    1981-10-01

    Thirty-five cryptic variant lines were used to examine the mechanisms involved in genetic modulation of alcohol metabolism in Drosophila. Late third-instar larval, preemergence pupal, and adult stages cultured at 18 and 28 C were examined. Spectrophotometric analyses for native alcohol dehydrogenase (ADH) activity and residual ADH activity after treatment with guanidine hydrochloride and heat were performed. Differential response of cryptic variants to treatment with the denaturants during development suggested that this variation may have an adaptive significance. PMID:6800354

  3. The midgut of Aedes albopictus females expresses active trypsin-like serine peptidases

    PubMed Central

    2014-01-01

    Background Aedes albopictus is widely distributed across tropical and sub-tropical regions and is associated with the transmission of several arboviruses. Although this species is increasingly relevant to public health due its ability to successfully colonize both urban and rural habitats, favoring the dispersion of viral infections, little is known about its biochemical traits, with all assumptions made based on studies of A. aegypti. In previous studies we characterized the peptidase profile of pre-imaginal stages of A. albopictus and we reported the first proteomic analysis of the midgut from sugar-fed females of this insect species. Methods In the present work, we further analyzed the peptidase expression in the midgut of sugar-fed females using 1DE-substrate gel zymography, two-dimensional electrophoresis (2DE), mass spectrometry (MS), and protein identification based on similarity. Results The combination of zymography, in solution assays using fluorescent substrates and 2DE-MS/MS allowed us to identify the active serine peptidase “fingerprint” in the midgut of A. albopictus females. Zymographic analysis revealed a proteolytic profile composed of at least 13 bands ranging from ~25 to 250 kDa, which were identified as trypsin-like serine peptidases by using specific inhibitors of this class of enzymes. Concomitant use of the fluorogenic substrate Z-Phe-Arg-AMC and trypsin-like serine protease inhibitors corroborated the zymographic findings. Our proteomic approach allowed the identification of two different trypsin-like serine peptidases and one chymotrypsin in protein spots of the alkaline region in 2DE map of the A. albopictus female midgut. Identification of these protein coding genes was achieved by similarity to the A. aegypti genome sequences using Mascot and OMSSA search engines. Conclusion These results allowed us to detect, identify and characterize the expression of active trypsin-like serine peptidases in the midgut of sugar-fed A. albopictus

  4. Gene expression and localization analysis of Bombyx mori bidensovirus and its putative receptor in B. mori midgut.

    PubMed

    Ito, Katsuhiko; Shimura, Sachiko; Katsuma, Susumu; Tsuda, Yasuhiro; Kobayashi, Jun; Tabunoki, Hiroko; Yokoyama, Takeshi; Shimada, Toru; Kadono-Okuda, Keiko

    2016-05-01

    Bombyx mori bidensovirus (BmBDV), which causes fatal flacherie disease in the silkworm, replicates only in midgut columnar cells. The viral resistance expressed by some silkworm strains, which is characterized as non-susceptibility irrespective of the viral dose, is determined by a single gene, nsd-2. We previously identified nsd-2 by positional cloning and found that this gene encodes a putative amino acid transporter that might function as a receptor for BmBDV. In this study, we investigated the relationship between the part of the midgut expressing nsd-2 (resistance gene), +(nsd-2) (susceptibility gene) and BmBDV propagation. Quantitative RT-PCR (qRT-PCR) analysis using total RNA isolated from the anterior, middle, and posterior parts of the midgut showed that nsd-2 and +(nsd-2) were strongly expressed in the posterior part of the midgut. The expression levels of both genes were very low in the anterior and middle parts. The qRT-PCR analysis showed that the expression levels of BmBDV-derived transcripts were correlated with the levels of +(nsd-2) expression. However, BmBDV-derived transcripts were clearly detected in all parts of the midgut. These results suggest that the infectivity of BmBDV depends mainly on the expression level of +(nsd-2) in the midgut and that viral infection is supported even by very faint expression of +(nsd-2). By contrast, the expression levels of +(nsd-2) were exceedingly low or undetectable in the middle part of the midgut, indicating that BmBDV infection might occur via another mechanism, independent of +(nsd-2), in the middle part of the midgut. PMID:26953258

  5. Myoblast fusion in Drosophila

    SciTech Connect

    Haralalka, Shruti; Abmayr, Susan M.

    2010-11-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  6. Initial neurogenesis in Drosophila

    PubMed Central

    Hartenstein, Volker; Wodarz, Andreas

    2014-01-01

    Early neurogenesis comprises the phase of nervous system development during which neural progenitor cells are born. In early development, the embryonic ectoderm is subdivided by a conserved signaling mechanism into two main domains, the epidermal ectoderm and the neurectoderm. Subsequently, cells of the neurectoderm are internalized and form a cell layer of proliferating neural progenitors. In vertebrates, the entire neurectoderm folds into the embryo to give rise to the neural tube. In Drosophila and many other invertebrates, a subset of neurectodermal cells, called neuroblasts (NBs), delaminates and forms the neural primordium inside the embryo where they divide in an asymmetric, stem cell-like mode. The remainder of the neuroectodermal cells that stay behind at the surface loose their neurogenic potential and later give rise to the ventral part of the epidermis. The genetic and molecular analysis of the mechanisms controlling specification and proliferation of NBs in the Drosophila embryo, which played a significant part in pioneering the field of modern developmental neurobiology, represents the topic of this review. PMID:24014455

  7. Initial neurogenesis in Drosophila.

    PubMed

    Hartenstein, Volker; Wodarz, Andreas

    2013-01-01

    Early neurogenesis comprises the phase of nervous system development during which neural progenitor cells are born. In early development, the embryonic ectoderm is subdivided by a conserved signaling mechanism into two main domains, the epidermal ectoderm and the neurectoderm. Subsequently, cells of the neurectoderm are internalized and form a cell layer of proliferating neural progenitors. In vertebrates, the entire neurectoderm folds into the embryo to give rise to the neural tube. In Drosophila and many other invertebrates, a subset of neurectodermal cells, called neuroblasts (NBs), delaminates and forms the neural primordium inside the embryo where they divide in an asymmetric, stem cell-like mode. The remainder of the neurectodermal cells that stay behind at the surface loose their neurogenic potential and later give rise to the ventral part of the epidermis. The genetic and molecular analysis of the mechanisms controlling specification and proliferation of NBs in the Drosophila embryo, which played a significant part in pioneering the field of modern developmental neurobiology, represents the topic of this review. PMID:24014455

  8. Proteomic analysis of the mosquito Aedes aegypti midgut brush border membrane vesicles

    PubMed Central

    Popova-Butler, Alexandra; Dean, Donald H.

    2009-01-01

    We analyzed brush border membrane vesicle proteins from isolated midguts of the mosquito Aedes aegypti, by two proteomic methods: two-dimensional gel electrophoresis (isoelectric focusing and SDS-PAGE) and a shotgun two-dimensional liquid chromatographic (LS/LS) approach based on multidimensional protein identification technology (MudPIT). We were interested in the most abundant proteins of the apical brush border midgut membrane. About 400 spots were detected on 2D gels and 39 spots were cored and identified by mass spectrometry. 86 proteins were identified by MudPIT. Three proteins, arginine kinase, putative allergen and actin are shown to be the most predominant proteins in the sample. The total number of 36 proteins detected by both methods represents the most abundant proteins in the BBMV. PMID:19133270

  9. Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut.

    PubMed

    Riehle, Michael A; Moreira, Cristina K; Lampe, David; Lauzon, Carol; Jacobs-Lorena, Marcelo

    2007-05-01

    Bacteria capable of colonizing mosquito midguts are attractive vehicles for delivering anti-malaria molecules. We genetically engineered Escherichia coli to display two anti-Plasmodium effector molecules, SM1 and phospholipase-A(2), on their outer membrane. Both molecules significantly inhibited Plasmodium berghei development when engineered bacteria were fed to mosquitoes 24h prior to an infective bloodmeal (SM1=41%, PLA2=23%). Furthermore, prevalence and numbers of engineered bacteria increased dramatically following a bloodmeal. However, E. coli survived poorly in mosquitoes. Therefore, Enterobacter agglomerans was isolated from mosquitoes and selected for midgut survival by multiple passages through mosquitoes. After four passages, E. agglomerans survivorship increased from 2 days to 2 weeks. Since E. agglomerans is non-pathogenic and widespread, it is an excellent candidate for paratransgenic control strategies. PMID:17224154

  10. Thermotaxis, circadian rhythms, and TRP channels in Drosophila.

    PubMed

    Bellemer, Andrew

    2015-01-01

    The fruit fly Drosophila melanogaster is a poikilothermic organism that must detect and respond to both fine and coarse changes in environmental temperature in order maintain optimal body temperature, synchronize behavior to daily temperature fluctuations, and to avoid potentially injurious environmental hazards. Members of the Transient Receptor Potential (TRP) family of cation channels are well known for their activation by changes in temperature and their essential roles in sensory transduction in both invertebrates and vertebrates. The Drosophila genome encodes 13 TRP channels, and several of these have key sensory transduction and modulatory functions in allowing larval and adult flies to make fine temperature discriminations to attain optimal body temperature, detect and avoid large environmental temperature fluctuations, and make rapid escape responses to acutely noxious stimuli. Drosophila use multiple, redundant signaling pathways and neural circuits to execute these behaviors in response to both increases and decreases in temperature of varying magnitudes and time scales. A plethora of powerful molecular and genetic tools and the fly's simple, well-characterized nervous system have given Drosophila neurobiologists a powerful platform to study the cellular and molecular mechanisms of TRP channel function and how these mechanisms are conserved in vertebrates, as well as how these channels function within sensorimotor circuits to generate both simple and complex thermosensory behaviors. PMID:27227026

  11. Analysis of murine HOXA-2 activity in Drosophila melanogaster.

    PubMed

    Percival-Smith, A; Bondy, J A

    1999-01-01

    The murine HOXA-2 protein shares amino acid sequence similarity with Drosophila Proboscipedia (PB). In this paper, we test whether HOXA-2 and PB are functionally equivalent in Drosophila. In Drosophila, PB inhibits SCR activity required for larval T1 beard formation and adult tarsus formation and is required for maxillary palp and proboscis formation. HOXA-2 expressed from a heat-shock promoter weakly suppressed SCR activity required for T1 beard formation. But interestingly neither PB nor HOXA-2 expressed from a heat-shock promoter suppressed murine HOXA-5 activity, the murine SCR homologue, from inducing ectopic T1 beards in T2 and T3, indicating that HOXA-5 does not interact with PB. HOXA-2 activity expressed from the Tubulin alpha 1 promoter modified the pb null phenotype resulting in a proboscis-to-arista transformation, indicating that HOXA-2 was able to suppress SCR activity required for tarsus formation. However, HOXA-2 expressed from a Tubulin alpha 1 promoter was unable to direct maxillary palp determination when either ectopically expressed in the antenna or in the maxillary palp primordia of a pb null mutant. HOXA-2 was also unable to rescue pseudotrachea formation in a pb null mutant. These results indicate that the only activity that PB and HOXA-2 weakly share is the inhibition of SCR activity, and that murine HOXA-5 and Drosophila SCR do not share inhibition by PB activity. PMID:10322642

  12. Enhancing Undergraduate Teaching and Research with a Drosophila Virginizing System

    PubMed Central

    2006-01-01

    Laboratory exercises using Drosophila crosses are an effective pedagogical method to complement traditional lecture and textbook presentations of genetics. Undergraduate thesis research is another common setting for using Drosophila. A significant barrier to using Drosophila for undergraduate teaching or research is the time and skill required to accurately collect virgins for use in controlled crosses. Erroneously collecting males or nonvirgin females contaminates crosses with unintended genotypes and confounds the results. Collecting adequate numbers of virgins requires large amounts of time, even for those skilled in virgin collection. I have adapted an effective method for virgin collection that eliminates these concerns and is straightforward to use in undergraduate settings. Using a heat-shock–induced, conditional lethal transgene specifically in males, male larvae can be eliminated from a culture before adults eclose. Females thus eclose in the absence of males and remain virgin, eliminating the need to laboriously score and segregate freshly eclosed females. This method is reliable, easily adaptable to any desired phenotypic marker, and readily scaleable to provide sufficient virgins for large laboratory classes or undergraduate research projects. In addition, it allows instructors lacking Drosophila expertise to use this organism as a pedagogical tool. PMID:17146043

  13. Thermotaxis, circadian rhythms, and TRP channels in Drosophila

    PubMed Central

    Bellemer, Andrew

    2015-01-01

    The fruit fly Drosophila melanogaster is a poikilothermic organism that must detect and respond to both fine and coarse changes in environmental temperature in order maintain optimal body temperature, synchronize behavior to daily temperature fluctuations, and to avoid potentially injurious environmental hazards. Members of the Transient Receptor Potential (TRP) family of cation channels are well known for their activation by changes in temperature and their essential roles in sensory transduction in both invertebrates and vertebrates. The Drosophila genome encodes 13 TRP channels, and several of these have key sensory transduction and modulatory functions in allowing larval and adult flies to make fine temperature discriminations to attain optimal body temperature, detect and avoid large environmental temperature fluctuations, and make rapid escape responses to acutely noxious stimuli. Drosophila use multiple, redundant signaling pathways and neural circuits to execute these behaviors in response to both increases and decreases in temperature of varying magnitudes and time scales. A plethora of powerful molecular and genetic tools and the fly's simple, well-characterized nervous system have given Drosophila neurobiologists a powerful platform to study the cellular and molecular mechanisms of TRP channel function and how these mechanisms are conserved in vertebrates, as well as how these channels function within sensorimotor circuits to generate both simple and complex thermosensory behaviors. PMID:27227026

  14. Bazooka mediates secondary axon morphology in Drosophila brain lineages

    PubMed Central

    2011-01-01

    In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that multiple GAL4 drivers have been mapped to several lineages of the Drosophila brain enables investigation of the role of Bazooka from larval to adult stages Bazooka loss-of-function (LOF) clones had abnormal morphologies, including aberrant pathway choice of ventral projection neurons in the BAla1 lineage, ectopic branching in the DALv2 and BAmv1 lineages, and excess BLD5 lineage axon projections in the optic medulla. Exogenous expression of Bazooka protein in BAla1 neurons rescued defective guidance, supporting an intrinsic requirement for Bazooka in the post-mitotic neuron. Elimination of the Par-complex member Par6 recapitulated Bazooka phenotypes in some but not all lineages, suggesting that the Par complex functions in a lineage-dependent manner, and that Bazooka may act independently in some lineages. Importantly, this study highlights the potential of using a multilineage approach when studying gene function during neural development in Drosophila. PMID:21524279

  15. Bazooka mediates secondary axon morphology in Drosophila brain lineages.

    PubMed

    Spindler, Shana R; Hartenstein, Volker

    2011-01-01

    In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that multiple GAL4 drivers have been mapped to several lineages of the Drosophila brain enables investigation of the role of Bazooka from larval to adult stages Bazooka loss-of-function (LOF) clones had abnormal morphologies, including aberrant pathway choice of ventral projection neurons in the BAla1 lineage, ectopic branching in the DALv2 and BAmv1 lineages, and excess BLD5 lineage axon projections in the optic medulla. Exogenous expression of Bazooka protein in BAla1 neurons rescued defective guidance, supporting an intrinsic requirement for Bazooka in the post-mitotic neuron. Elimination of the Par-complex member Par6 recapitulated Bazooka phenotypes in some but not all lineages, suggesting that the Par complex functions in a lineage-dependent manner, and that Bazooka may act independently in some lineages. Importantly, this study highlights the potential of using a multilineage approach when studying gene function during neural development in Drosophila. PMID:21524279

  16. Genetic analysis of glutamatergic function in Drosophila

    SciTech Connect

    Chase, B.A.; Kankel, D.R.

    1987-01-01

    Neurotransmitters are essential for communication between neurons and hence are vital in the overall integrative functioning of the nervous system. Previous work on acetylcholine metabolism in the fruit fly, Drosophila melanogaster, has also raised the possibility that transmitter metabolism may play a prominent role in either the achievement or maintenance of the normal structure of the central nervous system in this species. Unfortunately, acetylcholine is rather poorly characterized as a neurotransmitter in Drosophila; consequently, we have begun an analysis of the role of glutamate (probably the best characterized transmitter in this organism) in the formation and/or maintenance of nervous system structure. We present here the results of a series of preliminary analyses. To suggest where glutamatergic function may be localized, an examination of the spatial distribution of high affinity (/sup 3/H)-glutamate binding sites are presented. We present the results of an analysis of the spatial and temporal distribution of enzymatic activities thought to be important in the regulation of transmitter-glutamate pools (i.e., glutamate oxaloacetic transaminase, glutaminase, and glutamate dehydrogenase). To begin to examine whether mutations in any of these functions are capable of affecting glutamatergic activity, we present the results of an initial genetic analysis of one enzymatic function, glutamate oxaloacetic transaminase (GOT), chosen because of its differential distribution within the adult central nervous system and musculature.

  17. Loading Drosophila nerve terminals with calcium indicators.

    PubMed

    Rossano, Adam J; Macleod, Gregory T

    2007-01-01

    Calcium plays many roles in the nervous system but none more impressive than as the trigger for neurotransmitter release, and none more profound than as the messenger essential for the synaptic plasticity that supports learning and memory. To further elucidate the molecular underpinnings of Ca(2+)-dependent synaptic mechanisms, a model system is required that is both genetically malleable and physiologically accessible. Drosophila melanogaster provides such a model. In this system, genetically-encoded fluorescent indicators are available to detect Ca(2+) changes in nerve terminals. However, these indicators have limited sensitivity to Ca(2+) and often show a non-linear response. Synthetic fluorescent indicators are better suited for measuring the rapid Ca(2+) changes associated with nerve activity. Here we demonstrate a technique for loading dextran-conjugated synthetic Ca(2+) indicators into live nerve terminals in Drosophila larvae. Particular emphasis is placed on those aspects of the protocol most critical to the technique's success, such as how to avoid static electricity discharges along the isolated nerves, maintaining the health of the preparation during extended loading periods, and ensuring axon survival by providing Ca(2+) to promote sealing of severed axon endings. Low affinity dextran-conjugated Ca(2+)-indicators, such as fluo-4 and rhod, are available which show a high signal-to-noise ratio while minimally disrupting presynaptic Ca(2+) dynamics. Dextran-conjugation helps prevent Ca(2+) indicators being sequestered into organelles such as mitochondria. The loading technique can be applied equally to larvae, embryos and adults. PMID:18997898

  18. Peptidoglycan recognition by the Drosophila Imd pathway.

    PubMed

    Kaneko, Takashi; Golenbock, Douglas; Silverman, Neal

    2005-01-01

    The structural requirements for recognition of peptidoglycan (PGN) by PGRP-LC and activation of the Drosophila IMD pathway are not yet clear. In order to examine this question more carefully, the activity of peptidoglycan from different types of bacteria was compared in cell-based and whole animal assays. Drosophila S2* cells, but not adult flies, responded to Lys-type Micrococcus luteus PGN, but with significantly less potency compared to Dap-type Escherichia coli PGN, while intact Lys-type PGN from Staphylococcus aureus was inactive. After treatment with lysostaphin, which digests the cross-bridging peptides, S. aureus PGN weakly stimulated the IMD pathway, similar to M. luteus PGN. Further digestion with mutanolysin, which creates monomeric PGN fragments, abolished the activity of S. aureus PGN. On the other hand, monomeric E. coli PGN, generated by mutanolysin digestion, was still active but required different isoforms of PGRP-LC for recognition. Polymeric PGN required only PGRP-LCx, while monomeric E. coli PGN required both the PGRP-LCa and PGRP-LCx isoforms. These results suggest that the recognition by PGRP-LCx alone requires polymeric PGN, and that polymeric Dap-type PGN is a more potent PGRP-LCx agonist, compared to Lys-type PGN. These results also suggest that the heteromeric PGRP-LCa/LCx receptor complex recognizes monomeric Dap-type, but not Lys-type, PGN. PMID:16303095

  19. Genotoxic testing of titanium dioxide anatase nanoparticles using the wing-spot test and the comet assay in Drosophila.

    PubMed

    Carmona, Erico R; Escobar, Bibi; Vales, Gerard; Marcos, Ricard

    2015-01-15

    Titanium dioxide nanoparticles (TiO2 NPs) are widely used for preparations of sunscreens, cosmetics, food and personal care products. However, the possible genotoxic risk associated with this nano-scale material exposure is not clear, especially in whole organisms. In the present study, we explored the in vivo genotoxic activity of TiO2 NPs as well as their TiO2 bulk form using two well-established genotoxic assays, the wing spot test and the comet assay in Drosophila melanogaster. To determine the extent of tissue damage induced by TiO2 NPs in Drosophila larvae, the trypan blue dye exclusion test was also applied. Both compounds were supplied to third instar larvae by ingestion at concentration ranging from 0.08 to 1.60 mg/mL. The results obtained in the present study indicate that TiO2 NPs can reach and induce cytotoxic effects on midgut and imaginal disc tissues of larvae, but they do not promote genotoxicity in the wing-spot test of Drosophila. However, when both nano- and large-size forms of TiO2 were evaluated with the comet assay in Drosophila hemocytes, a significant increase in DNA damage, with a direct dose-response pattern, was observed for TiO2 NPs. The results obtained with the comet assay suggest that the primary DNA damage associated with TiO2 NPs exposure in Drosophila could be associated with specific physico-chemical properties of nano-TiO2, since no effects were observed with the bulk form. This study remarks the usefulness of using more than one genetic end-point in the evaluation of the genotoxic potential of nanomaterials. PMID:25726144

  20. Atypical midgut malrotation presenting as chronic bowel obstruction in the eighth decade

    PubMed Central

    Horwood, James; Akbar, Fayaz; Maw, Andrew

    2009-01-01

    An elderly patient was referred urgently to our rapid access suspected colorectal cancer clinic with symptoms suspicious for malignancy. Despite exhaustive investigations, no cause for his symptomatology could be identified. However, his condition deteriorated and we elected to undertake exploratory surgery, at which time a congenital midgut malrotation, causing chronic small bowel obstruction, was identified. The malrotation was surgical corrected and the patient has made a full recovery. PMID:21686714

  1. Effects of phoxim on nutrient metabolism and insulin signaling pathway in silkworm midgut.

    PubMed

    Li, Fanchi; Hu, Jingsheng; Tian, Jianghai; Xu, Kaizun; Ni, Min; Wang, Binbin; Shen, Weide; Li, Bing

    2016-03-01

    Silkworm (Bombyx mori) is an important economic insect. Each year, poisoning caused by phoxim pesticide leads to huge economic losses in sericulture in China. Silkworm midgut is the major organ for food digestion and nutrient absorption. In this study, we found that the activity and expression of nutrition metabolism-related enzymes were dysregulated in midgut by phoxim exposure. DGE analysis revealed that 40 nutrition metabolism-related genes were differentially expressed. qRT-PCR results indicated that the expression levels of insulin/insulin growth factor signaling (IIS) pathway genes Akt, PI3K, PI3K60, PI3K110, IRS and PDK were reduced, whereas PTEN's expression was significantly increased in the midgut at 24 h after phoxim treatment. However, the transcription levels of Akt, PI3K60, PI3K110, IRS, InR and PDK were elevated and reached the peaks at 48 h, which were 1.48-, 1.35-, 1.21-, 2.24-, 2.89-, and 1.44-fold of those of the control, respectively. At 72 h, the transcription of these genes was reduced. Akt phosphorylation level was increasing along with the growth of silkworms in the control group. However, phoxim treatment led to increased Akt phosphorylation that surged at 24 h but gradually decreased at 48 h and 72 h. The results indicated that phoxim dysregulated the expression of IIS pathway genes and induced abnormal nutrient metabolism in silkworm midgut, which may be the reason of the slow growth of silkworms. PMID:26741554

  2. Review: Thermal preference in Drosophila

    PubMed Central

    Dillon, Michael E.; Wang, George; Garrity, Paul A.; Huey, Raymond B.

    2009-01-01

    Environmental temperature strongly affects physiology of ectotherms. Small ectotherms, like Drosophila, cannot endogenously regulate body temperature so must rely on behavior to maintain body temperature within a physiologically permissive range. Here we review what is known about Drosophila thermal preference. Work on thermal behavior in this group is particularly exciting because it provides the opportunity to connect genes to neuromolecular mechanisms to behavior to fitness in the wild. PMID:20161211

  3. Changes in the midgut diverticula in the harvestmen Amilenus aurantiacus (Phalangiidae, Opiliones) during winter diapause.

    PubMed

    Lipovšek, Saška; Novak, Tone; Janžekovič, Franc; Leitinger, Gerd

    2015-03-01

    The harvestmen Amilenus aurantiacus overwinter in diapause in hypogean habitats. The midgut diverticula have been studied microscopically (light microscopy, TEM) and biochemically (energy-storing compounds: lipids and glycogen) to analyze changes during this programmed starvation period. Throughout the investigated period, the epithelium of the midgut diverticula is composed of secretory cells, digestive cells and adipocytes. Additionally, after the middle of overwintering, the excretory cells appear, and two assemblages of secretory cells are present: the SC1 secretory cells are characterized by electron-dense cytoplasm with numerous protein granules, and the SC2 cells by an electron-lucent cytoplasm with fewer protein granules. The autophagic activity is observed from the middle of overwintering, indicating its vital role in providing nutrients during this non-feeding period. Lipids and glycogen are present in the midgut diverticula cells, except in the excretory cells. Measurements of the lipid droplet diameters and the lipid quantities yielded quite comparable information on their consumption. Lipids are gradually spent in both sexes, more rapidly in females, owing to ripening of the ovaries. Glycogen rates decrease towards the middle, and increase just before the end of overwintering, indicating that individuals are preparing for the epigean active ecophase. PMID:25546311

  4. Early responses of silkworm midgut to microsporidium infection--A Digital Gene Expression analysis.

    PubMed

    Yue, Ya-Jie; Tang, Xu-Dong; Xu, Li; Yan, Wei; Li, Qian-Long; Xiao, Sheng-Yan; Fu, Xu-Liang; Wang, Wei; Li, Nan; Shen, Zhong-Yuan

    2015-01-01

    Host-pathogen interactions are complex processes, which have been studied extensively in recent years. In insects, the midgut is a vital organ of digestion and nutrient absorption, and also serves as the first physiological and immune barrier against invading pathogenic microorganisms. Our focus is on Nosema bombycis, which is a pathogen of silkworm pebrine and causes great economic losses to the silk industry. A complete understanding of the host response to infection by N. bombycis and the interaction between them is necessary to prevent this disease. Silkworm midgut infected with N. bombycis is a good model to investigate the early host responses to microsporidia infection and the interaction between the silkworm and the microsporidium. Using Digital Gene Expression analysis, we investigated the midgut transcriptome profile of P50 silkworm larvae orally inoculated with N. bombycis. At 6, 12, 18, 24, 48, 72, and 96 h post-infection (hpi), 247, 95, 168, 450, 89, 80, and 773 DEGs were identified, respectively. KEGG pathway analysis showed the influence of N. bombycis infection on many biological processes including folate biosynthesis, spliceosome, nicotinate and nicotinamide metabolism, protein export, protein processing in endoplasmic reticulum, lysosome, biosynthesis of amino acids, ribosome, and RNA degradation. In addition, a number of differentially expressed genes involved in the immune response were identified. Overall, the results of this study provide an understanding of the strategy used by silkworm as a defense against the invasion by N. bombycis. Similar interactions between hosts and pathogens infection may exist in other species. PMID:25315610

  5. Multiple Modes of Action of the Squamocin in the Midgut Cells of Aedes aegypti Larvae.

    PubMed

    da Silva Costa, Marilza; de Paula, Sérgio Oliveira; Martins, Gustavo Ferreira; Zanuncio, José Cola; Santana, Antônio Euzébio Goulart; Serrão, José Eduardo

    2016-01-01

    Annonaceous acetogenins are botanical compounds with good potential for use as insecticides. In the vector, Aedes aegypti (L.) (Diptera: Culicidae), squamocin (acetogenin) has been reported to be a larvicide and cytotoxic, but the modes of action of this molecule are still poorly understood. This study evaluated the changes in the cell morphology, and in the expression of genes, for autophagy (Atg1 and Atg8), for membrane ion transporter V-ATPase, and for water channel aquaporin-4 (Aqp4) in the midgut of A. aegypti larvae exposed to squamocin from Annona mucosa Jacq. (Annonaceae). Squamocin showed cytotoxic action with changes in the midgut epithelium and digestive cells of A. aegypti larvae, increase in the expression for autophagy gene Atg1 and Atg8, decrease in the expression of V-ATPase, decrease in the expression of Aqp4 gene in LC20 and inhibition of Apq4 genes in the midgut of this vector in LC50. These multiple modes of action for squamocin are described for the first time in insects, and they are important because different sites of action of squamocin from A. mucosa may reduce the possibility of resistance of A. aegypti to this molecule. PMID:27532504

  6. Shifts in the Midgut/Pyloric Microbiota Composition within a Honey Bee Apiary throughout a Season

    PubMed Central

    Ludvigsen, Jane; Rangberg, Anbjørg; Avershina, Ekaterina; Sekelja, Monika; Kreibich, Claus; Amdam, Gro; Rudi, Knut

    2015-01-01

    Honey bees (Apis mellifera) are prominent crop pollinators and are, thus, important for effective food production. The honey bee gut microbiota is mainly host specific, with only a few species being shared with other insects. It currently remains unclear how environmental/dietary conditions affect the microbiota within a honey bee population over time. Therefore, the aim of the present study was to characterize the composition of the midgut/pyloric microbiota of a honey bee apiary throughout a season. The rationale for investigating the midgut/pyloric microbiota is its dynamic nature. Monthly sampling of a demographic homogenous population of bees was performed between May and October, with concordant recording of the honey bee diet. Mixed Sanger-and Illumina 16S rRNA gene sequencing in combination with a quantitative PCR analysis were used to determine the bacterial composition. A marked increase in α-diversity was detected between May and June. Furthermore, we found that four distinct phylotypes belonging to the Proteobacteria dominated the microbiota, and these displayed major shifts throughout the season. Gilliamella apicola dominated the composition early on, and Snodgrassella alvi began to dominate when the other bacteria declined to an absolute low in October. In vitro co-culturing revealed that G. apicola suppressed S. alvi. No shift was detected in the composition of the microbiota under stable environment/dietary conditions between November and February. Therefore, environmental/dietary changes may trigger the shifts observed in the honey bee midgut/pyloric microbiota throughout a season. PMID:26330094

  7. Midgut of the diplopod Urostreptus atrobrunneus: structure, function, and redefinition of hepatic cells.

    PubMed

    Moreira-de-Sousa, C; Iamonte, M; Fontanetti, C S

    2016-07-11

    Diplopods are considered important macroarthropods the soil as part of its maintenance and balance. These animals usually do not occur in high densities, but population explosions caused by environmental disturbances, climate changes, and use of pesticides that eliminate possible competitors, have been reported. The millipede Urostreptus atrobrunneus Pierozzi and Fontanetti, 2006 have become a nuisance to humans in infestation sites in urban centers of the state of Sao Paulo, Brazil. As a contribution to the understanding of this potential pest, this study describes the histology, histochemistry, and ultrastructure of the U. atrobrunneus midgut, and presents the redefinition of hepatic cells somewhat controversial in the literature. The region of the midgut is characterized by the absence of a cuticular intima, and composed of a pseudostratified epithelium on a thick basal membrane, followed by a muscle layer, a layer of hepatic cells, lined by an external membrane. The morphology observed in U. atrobrunneus is similar to that reported for other species of diplopods. The hepatic cells have been previously described as randomly without forming a layer, however, the present results clearly demonstrate that these cells form a continuous layer over the whole midgut. PMID:27409229

  8. Effects of gamma irradiation on the midgut ultrastructure of Glossina palpalis subspecies

    SciTech Connect

    Stiles, J.K.; Molyneux, D.H.; Wallbanks, K.R.; Van der Vloedt, A.M.

    1989-05-01

    In the sterile insect technique, insects are sterilized prior to release in areas where they are pests. The sterile males compete for and with fertile wild individuals for mates, thus reducing the population's reproductive rate. Tsetse fly (Glossina spp.) populations have been eradicated after release of laboratory-bred flies sterilized by gamma irradiation. However, no studies exist on radiation-induced damage to the midgut morphology and function of the radiation-sterilized insects. After G. palpalis palpalis and G. p. gambiensis were subjected to 130 Gy gamma radiation, their midgut damage and recovery were monitored by electron microscopy. The first sign of damage was atrophy and loss of the microvillous border from epithelial cells. The rate of cell degeneration increased, with young as well as old cells being affected and cellular debris filling the ectoperitrophic space. Muscle cells were destroyed, patches of basal lamina were left bare, intracellular virus- and rickettsia-like organisms became more frequent, and many replacement cells became unusually large. Partial recovery occurred from the 10th day postirradiation. Such changes in midgut ultrastructure and the corresponding inhibition of functions may increase the susceptibility of the fly to trypanosome infection.

  9. Midgut tissue of male pine engraver , Ips pini, synthesizes monoterpenoid pheromone component ipsdienol de novo

    NASA Astrophysics Data System (ADS)

    Hall, Gregory M.; Tittiger, Claus; Andrews, Gracie L.; Mastick, Grant S.; Kuenzli, Marilyn; Luo, Xin; Seybold, Steven J.; Blomquist, Gary J.

    2002-02-01

    For over three decades the site and pathways of bark beetle aggregation pheromone production have remained elusive. Studies on pheromone production in Ips spp. bark beetles have recently shown de novo biosynthesis of pheromone components via the mevalonate pathway. The gene encoding a key regulated enzyme in this pathway, 3-hydroxy-3-methylglutaryl-CoA reductase ( HMG-R), showed high transcript levels in the anterior midgut of male pine engravers, Ips pini (Say) (Coleoptera:Scolytidae). HMG-R expression in the midgut was sex, juvenile hormone, and feeding dependent, providing strong evidence that this is the site of acyclic monoterpenoid (ipsdienol) pheromone production in male beetles. Additionally, isolated midgut tissue from fed or juvenile hormone III (JH III)-treated males converted radiolabeled acetate to ipsdienol, as assayed by radio-HPLC. These data support the de novo production of this frass-associated aggregation pheromone component by the mevalonate pathway. The induction of a metazoan HMG-R in this process does not support the postulated role of microorganisms in ipsdienol production.

  10. Phylogenetically Diverse Burkholderia Associated with Midgut Crypts of Spurge Bugs, Dicranocephalus spp. (Heteroptera: Stenocephalidae).

    PubMed

    Kuechler, Stefan Martin; Matsuura, Yu; Dettner, Konrad; Kikuchi, Yoshitomo

    2016-06-25

    Diverse phytophagous heteropteran insects, commonly known as stinkbugs, are associated with specific gut symbiotic bacteria, which have been found in midgut cryptic spaces. Recent studies have revealed that members of the stinkbug families Coreidae and Alydidae of the superfamily Coreoidea are consistently associated with a specific group of the betaproteobacterial genus Burkholderia, called the "stinkbug-associated beneficial and environmental (SBE)" group, and horizontally acquire specific symbionts from the environment every generation. However, the symbiotic system of another coreoid family, Stenocephalidae remains undetermined. We herein investigated four species of the stenocephalid genus Dicranocephalus. Examinations via fluorescence in situ hybridization (FISH) and transmission electron microscopy (TEM) revealed the typical arrangement and ultrastructures of midgut crypts and gut symbionts. Cloning and molecular phylogenetic analyses of bacterial genes showed that the midgut crypts of all species are colonized by Burkholderia strains, which were further assigned to different subgroups of the genus Burkholderia. In addition to the SBE-group Burkholderia, a number of stenocephalid symbionts belonged to a novel clade containing B. sordidicola and B. udeis, suggesting a specific symbiont clade for the Stenocephalidae. The symbiotic systems of stenocephalid bugs may provide a unique opportunity to study the ongoing evolution of symbiont associations in the stinkbug-Burkholderia interaction. PMID:27265344

  11. Multiple Modes of Action of the Squamocin in the Midgut Cells of Aedes aegypti Larvae

    PubMed Central

    de Paula, Sérgio Oliveira; Martins, Gustavo Ferreira; Zanuncio, José Cola

    2016-01-01

    Annonaceous acetogenins are botanical compounds with good potential for use as insecticides. In the vector, Aedes aegypti (L.) (Diptera: Culicidae), squamocin (acetogenin) has been reported to be a larvicide and cytotoxic, but the modes of action of this molecule are still poorly understood. This study evaluated the changes in the cell morphology, and in the expression of genes, for autophagy (Atg1 and Atg8), for membrane ion transporter V-ATPase, and for water channel aquaporin-4 (Aqp4) in the midgut of A. aegypti larvae exposed to squamocin from Annona mucosa Jacq. (Annonaceae). Squamocin showed cytotoxic action with changes in the midgut epithelium and digestive cells of A. aegypti larvae, increase in the expression for autophagy gene Atg1 and Atg8, decrease in the expression of V-ATPase, decrease in the expression of Aqp4 gene in LC20 and inhibition of Apq4 genes in the midgut of this vector in LC50. These multiple modes of action for squamocin are described for the first time in insects, and they are important because different sites of action of squamocin from A. mucosa may reduce the possibility of resistance of A. aegypti to this molecule. PMID:27532504

  12. Densovirus Crosses the Insect Midgut by Transcytosis and Disturbs the Epithelial Barrier Function

    PubMed Central

    Wang, Y.; Gosselin Grenet, A. S.; Castelli, I.; Cermenati, G.; Ravallec, M.; Fiandra, L.; Debaisieux, S.; Multeau, C.; Lautredou, N.; Dupressoir, T.; Li, Y.

    2013-01-01

    Densoviruses are parvoviruses that can be lethal for insects of different orders at larval stages. Although the horizontal transmission mechanisms are poorly known, densoviral pathogenesis usually starts with the ingestion of contaminated food by the host. Depending on the virus, this leads to replication restricted to the midgut or excluding it. In both cases the success of infection depends on the virus capacity to enter the intestinal epithelium. Using the Junonia coenia densovirus (JcDNV) as the prototype virus and the lepidopteran host Spodoptera frugiperda as an interaction model, we focused on the early mechanisms of infection during which JcDNV crosses the intestinal epithelium to reach and replicate in underlying target tissues. We studied the kinetics of interaction of JcDNV with the midgut epithelium and the transport mechanisms involved. Using several approaches, in vivo, ex vivo, and in vitro, at molecular and cellular levels, we show that JcDNV is specifically internalized by endocytosis in absorptive cells and then crosses the epithelium by transcytosis. As a consequence, viral entry disturbs the midgut function. Finally, we showed that four mutations on the capsid of JcDNV affect specific recognition by the epithelial cells but not their binding. PMID:24027326

  13. Shifts in the Midgut/Pyloric Microbiota Composition within a Honey Bee Apiary throughout a Season.

    PubMed

    Ludvigsen, Jane; Rangberg, Anbjørg; Avershina, Ekaterina; Sekelja, Monika; Kreibich, Claus; Amdam, Gro; Rudi, Knut

    2015-01-01

    Honey bees (Apis mellifera) are prominent crop pollinators and are, thus, important for effective food production. The honey bee gut microbiota is mainly host specific, with only a few species being shared with other insects. It currently remains unclear how environmental/dietary conditions affect the microbiota within a honey bee population over time. Therefore, the aim of the present study was to characterize the composition of the midgut/pyloric microbiota of a honey bee apiary throughout a season. The rationale for investigating the midgut/pyloric microbiota is its dynamic nature. Monthly sampling of a demographic homogenous population of bees was performed between May and October, with concordant recording of the honey bee diet. Mixed Sanger-and Illumina 16S rRNA gene sequencing in combination with a quantitative PCR analysis were used to determine the bacterial composition. A marked increase in α-diversity was detected between May and June. Furthermore, we found that four distinct phylotypes belonging to the Proteobacteria dominated the microbiota, and these displayed major shifts throughout the season. Gilliamella apicola dominated the composition early on, and Snodgrassella alvi began to dominate when the other bacteria declined to an absolute low in October. In vitro co-culturing revealed that G. apicola suppressed S. alvi. No shift was detected in the composition of the microbiota under stable environment/dietary conditions between November and February. Therefore, environmental/dietary changes may trigger the shifts observed in the honey bee midgut/pyloric microbiota throughout a season. PMID:26330094

  14. Effects of gamma irradiation on the midgut ultrastructure of Glossina palpalis subspecies.

    PubMed

    Stiles, J K; Molyneux, D H; Wallbanks, K R; Van der Vloedt, A M

    1989-05-01

    In the sterile insect technique, insects are sterilized prior to release in areas where they are pests. The sterile males compete for and with fertile wild individuals for mates, thus reducing the population's reproductive rate. Tsetse fly (Glossina spp.) populations have been eradicated after release of laboratory-bred flies sterilized by gamma irradiation. However, no studies exist on radiation-induced damage to the midgut morphology and function of the radiation-sterilized insects. After G. palpalis palpalis and G. p. gambiensis were subjected to 130 Gy gamma radiation, their midgut damage and recovery were monitored by electron microscopy. The first sign of damage was atrophy and loss of the microvillous border from epithelial cells. The rate of cell degeneration increased, with young as well as old cells being affected and cellular debris filling the ectoperitrophic space. Muscle cells were destroyed, patches of basal lamina were left bare, intracellular virus- and rickettsia-like organisms became more frequent, and many replacement cells became unusually large. Partial recovery occurred from the 10th day postirradiation. Such changes in midgut ultrastructure and the corresponding inhibition of functions may increase the susceptibility of the fly to trypanosome infection. PMID:2727263

  15. Phylogenetically Diverse Burkholderia Associated with Midgut Crypts of Spurge Bugs, Dicranocephalus spp. (Heteroptera: Stenocephalidae)

    PubMed Central

    Kuechler, Stefan Martin; Matsuura, Yu; Dettner, Konrad; Kikuchi, Yoshitomo

    2016-01-01

    Diverse phytophagous heteropteran insects, commonly known as stinkbugs, are associated with specific gut symbiotic bacteria, which have been found in midgut cryptic spaces. Recent studies have revealed that members of the stinkbug families Coreidae and Alydidae of the superfamily Coreoidea are consistently associated with a specific group of the betaproteobacterial genus Burkholderia, called the “stinkbug-associated beneficial and environmental (SBE)” group, and horizontally acquire specific symbionts from the environment every generation. However, the symbiotic system of another coreoid family, Stenocephalidae remains undetermined. We herein investigated four species of the stenocephalid genus Dicranocephalus. Examinations via fluorescence in situ hybridization (FISH) and transmission electron microscopy (TEM) revealed the typical arrangement and ultrastructures of midgut crypts and gut symbionts. Cloning and molecular phylogenetic analyses of bacterial genes showed that the midgut crypts of all species are colonized by Burkholderia strains, which were further assigned to different subgroups of the genus Burkholderia. In addition to the SBE-group Burkholderia, a number of stenocephalid symbionts belonged to a novel clade containing B. sordidicola and B. udeis, suggesting a specific symbiont clade for the Stenocephalidae. The symbiotic systems of stenocephalid bugs may provide a unique opportunity to study the ongoing evolution of symbiont associations in the stinkbug-Burkholderia interaction. PMID:27265344

  16. Genetic basis of the difference in alcohol dehydrogenase expression between Drosophila melanogaster and Drosophila simulans.

    PubMed Central

    Laurie, C C; Heath, E M; Jacobson, J W; Thomson, M S

    1990-01-01

    Drosophila melanogaster and its sibling species, Drosophila simulans, differ in expression of the enzyme alcohol dehydrogenase (ADH). Adult melanogaster flies that are homozygous for the Slow allozyme have approximately twice the level of ADH activity and crossreacting material as simulans adults. There is no corresponding difference in ADH mRNA, however, so this difference in ADH protein level is evidently due to a difference in the rate of translation of the two RNAs and/or to a difference in protein stability. Here we report an interspecific gene-transfer experiment, using P-element transformation, to determine whether this expression difference is due to genetic background differences between the species (trans-acting modifiers) or to cis-acting factors within the Adh gene. When the Adh genes from D. melanogaster and D. simulans are put into the same genetic background, there is no detectable difference in their level of expression. The level is relatively high in the melanogaster background and relatively low in the simulans background. Therefore, the interspecific difference in Adh expression is due entirely to trans-acting modifiers, in spite of the many sequence differences between the Adh genes of the two species, which include two amino acid substitutions. PMID:2124699

  17. Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: a transmission electron microscopy study.

    PubMed

    Heinlaan, Margit; Kahru, Anne; Kasemets, Kaja; Arbeille, Brigitte; Prensier, Gérard; Dubourguier, Henri-Charles

    2011-01-01

    This work is a follow-up of our previous paper (Heinlaan et al., 2008. Chemosphere 71, 1308-1316) where we showed about 50-fold higher acute toxicity of CuO nanoparticles (NPs) compared to bulk CuO to water flea Daphnia magna. In the current work transmission electron microscopy (TEM) was used to determine potential time-dependent changes in D. magna midgut epithelium ultrastructure upon exposure to CuO NPs compared to bulk CuO at their 48 h EC(50) levels: 4.0 and 175 mg CuO/L, respectively. Special attention was on potential internalization of CuO NPs by midgut epithelial cells. Ingestion of both CuO formulations by daphnids was evident already after 10 min of exposure. In the midgut lumen CuO NPs were dispersed whereas bulk CuO was clumped. By the 48th hour of exposure to CuO NPs (but not to equitoxic concentrations of bulk CuO) the following ultrastructural changes in midgut epithelium of daphnids were observed: protrusion of epithelial cells into the midgut lumen, presence of CuO NPs in circular structures analogous to membrane vesicles from holocrine secretion in the midgut lumen. Implicit internalization of CuO NPs via D. magna midgut epithelial cells was not evident however CuO NPs were no longer contained within the peritrophic membrane but located between the midgut epithelium microvilli. Interestingly, upon exposure to CuO NPs bacterial colonization of the midgut occurred. Ultrastructural changes in the midgut of D. magna upon exposure to CuO NPs but not to bulk CuO refer to its nanosize-related adverse effects. Time-dependent solubilisation of CuO NPs and bulk CuO in the test medium was quantified by recombinant Cu-sensor bacteria: by the 48th hour of exposure to bulk CuO, the concentration of solubilised copper ions was 0.05 ± 0.01 mg Cu/L that was comparable to the acute EC(50) value of Cu-ions to D. magna (48 h CuSO(4) EC(50) = 0.07 ± 0.01 mg Cu/L). However, in case of CuO NPs, the solubilised Cu-ions 0.01 ± 0.001 mg Cu/L, explained only part of

  18. A role for dZIP89B in Drosophila dietary zinc uptake reveals additional complexity in the zinc absorption process.

    PubMed

    Richards, Christopher D; Warr, Coral G; Burke, Richard

    2015-12-01

    Dietary zinc is the principal source of zinc in eukaryotes, with its uptake and distribution controlled by a complex network of numerous membrane-spanning transport proteins. Dietary absorption is achieved by members of the SLC39A (ZIP) gene family, which encode proteins that are generally responsible for the movement of zinc into the cytosol. ZIP4 is thought to be the primary mammalian zinc uptake gene in the small intestine, with mutations in this gene causing the zinc deficiency disease Acrodermatitis enteropathica. In Drosophila, dual knockdown of the major dietary zinc uptake genes dZIP42C.1 (dZIP1) and dZIP42C.2 (dZIP2) results in a severe sensitivity to zinc-deficient media. However, the symptoms associated with ZIP4 loss can be reversed by zinc supplementation and dZIP42C.1 and 2 knockdown has minimal effect under normal dietary conditions, suggesting that additional pathways for zinc absorption exist in both mammals and flies. This study provides evidence that dZIP89B is an ideal candidate for this role in Drosophila, encoding a low-affinity zinc uptake transporter active in the posterior midgut. Flies lacking dZIP89B, while viable and apparently healthy, show indications of low midgut zinc levels, including reduced metallothionein B expression and compensatory up-regulation of dZIP42C.1 and 2. Furthermore dZIP89B mutants display a dramatic resistance to toxic dietary zinc levels which is abrogated by midgut-specific restoration of dZIP89B activity. We postulate that dZIP89B works in concert with the closely related dZIP42C.1 and 2 to ensure optimal zinc absorption under a range of dietary conditions. PMID:26545796

  19. Generation of enteroendocrine cell diversity in midgut stem cell lineages

    PubMed Central

    Beehler-Evans, Ryan; Micchelli, Craig A.

    2015-01-01

    The endocrine system mediates long-range peptide hormone signaling to broadcast changes in metabolic status to distant target tissues via the circulatory system. In many animals, the diffuse endocrine system of the gut is the largest endocrine tissue, with the full spectrum of endocrine cell subtypes not yet fully characterized. Here, we combine molecular mapping, lineage tracing and genetic analysis in the adult fruit fly to gain new insight into the cellular and molecular mechanisms governing enteroendocrine cell diversity. Neuropeptide hormone distribution was used as a basis to generate a high-resolution cellular map of the diffuse endocrine system. Our studies show that cell diversity is seen at two distinct levels: regional and local. We find that class I and class II enteroendocrine cells can be distinguished locally by combinatorial expression of secreted neuropeptide hormones. Cell lineage tracing studies demonstrate that class I and class II cells arise from a common stem cell lineage and that peptide profiles are a stable feature of enteroendocrine cell identity during homeostasis and following challenge with the enteric pathogen Pseudomonas entomophila. Genetic analysis shows that Notch signaling controls the establishment of class II cells in the lineage, but is insufficient to reprogram extant class I cells into class II enteroendocrine cells. Thus, one mechanism by which secretory cell diversity is achieved in the diffuse endocrine system is through cell-cell signaling interactions within individual adult stem cell lineages. PMID:25670792

  20. The invasion of the midgut of the mosquito Culex (Culex) quinquefasciatus Say, 1823 by the helminth Litomosoides chagasfilhoi Moraes Neto, Lanfredi and De Souza, 1997.

    PubMed

    Santos, J N; Lanfredi, R M; Pimenta, P F P

    2006-09-01

    The Litomosoides chagasfilhoi helminth was studied as a model for microfilaria invasion of the midgut of Culex quinquefasciatus mosquito, vector of Wuchereria bancrofti helminth, causative agent of the human filariasis. Histology and transmission and scanning electron microscopy were utilized to show the topography of mosquito midgut invasion by the helminth. An analysis of midguts dissected at different time points after a blood meal demonstrated that the microfilariae interacted and crossed the peritrophic matrix and the midgut epithelium of C. quinquefasciatus. The microfilariae invaded preferentially the mosquito abdominal midgut and the invasion process occurred between 2 and 3h after the blood feeding. In some cases, microfilariae caused an opening in the midgut that separated the epithelial cells, while in others cases, the worms caused the detachment of cells from the epithelium. Ultimately, L. chagasfilhoi crossing activity appeared to damage the midgut. It was also observed that the microfilariae lost their sheaths during their passage through the fibrous material of the peritrophic matrix, before they reached the midgut epithelium. Since the exsheathment process is necessary for the continuity of larvae development, it seems that the passage through the peritrophic matrix is an important step for the parasite's life cycle. This experimental model revealed details of the interaction process of helminthes within the vector midgut, contributing to the knowledge of factors involved in the vector competence of C. quinquefasciatus as a vector of filariasis. PMID:16780868

  1. The fine structure of the midgut epithelium in a centipede, Scolopendra cingulata (Chilopoda, Scolopendridae), with the special emphasis on epithelial regeneration.

    PubMed

    Chajec, Lukasz; Sonakowska, Lidia; Rost-Roszkowska, Magdalena M

    2014-01-01

    Scolopendra cingulata has a tube-shaped digestive system that is divided into three distinct regions: fore-, mid- and hindgut. The midgut is lined with a pseudostratified columnar epithelium which is composed of digestive, secretory and regenerative cells. Hemocytes also appear between the digestive cells of the midgut epithelium. The ultrastructure of three types of epithelial cells and hemocytes of the midgut has been described with the special emphasis on the role of regenerative cells in the protection of midgut epithelium. The process of midgut epithelium regeneration proceeds due to the ability of regenerative cells to proliferate and differentiate according to a circadian rhythm. The regenerative cells serve as unipotent stem cells that divide in an asymmetric manner. Additionally, two types of hemocytes have been distinguished among midgut epithelial cells. They enter the midgut epithelium from the body cavity. Because of the fact that numerous microorganisms occur in the cytoplasm of midgut epithelial cells, we discuss the role of hemocytes in elimination of pathogens from the midgut epithelium. The studies were conducted with the use of transmission electron microscope and immunofluorescent methods. PMID:23831526

  2. Quantitative neuroanatomy for connectomics in Drosophila.

    PubMed

    Schneider-Mizell, Casey M; Gerhard, Stephan; Longair, Mark; Kazimiers, Tom; Li, Feng; Zwart, Maarten F; Champion, Andrew; Midgley, Frank M; Fetter, Richard D; Saalfeld, Stephan; Cardona, Albert

    2016-01-01

    Neuronal circuit mapping using electron microscopy demands laborious proofreading or reconciliation of multiple independent reconstructions. Here, we describe new methods to apply quantitative arbor and network context to iteratively proofread and reconstruct circuits and create anatomically enriched wiring diagrams. We measured the morphological underpinnings of connectivity in new and existing reconstructions of Drosophila sensorimotor (larva) and visual (adult) systems. Synaptic inputs were preferentially located on numerous small, microtubule-free 'twigs' which branch off a single microtubule-containing 'backbone'. Omission of individual twigs accounted for 96% of errors. However, the synapses of highly connected neurons were distributed across multiple twigs. Thus, the robustness of a strong connection to detailed twig anatomy was associated with robustness to reconstruction error. By comparing iterative reconstruction to the consensus of multiple reconstructions, we show that our method overcomes the need for redundant effort through the discovery and application of relationships between cellular neuroanatomy and synaptic connectivity. PMID:26990779

  3. Control of apoptosis by Drosophila DCAF12.

    PubMed

    Hwangbo, Dae-Sung; Biteau, Benoit; Rath, Sneha; Kim, Jihyun; Jasper, Heinrich

    2016-05-01

    Regulated Apoptosis (Programmed Cell Death, PCD) maintains tissue homeostasis in adults, and ensures proper growth and morphogenesis of tissues during development of metazoans. Accordingly, defects in cellular processes triggering or executing apoptotic programs have been implicated in a variety of degenerative and neoplastic diseases. Here, we report the identification of DCAF12, an evolutionary conserved member of the WD40-motif repeat family of proteins, as a new regulator of apoptosis in Drosophila. We find that DCAF12 is required for Diap1 cleavage in response to pro-apoptotic signals, and is thus necessary and sufficient for RHG (Reaper, Hid, and Grim)-mediated apoptosis. Loss of DCAF12 perturbs the elimination of supernumerary or proliferation-impaired cells during development, and enhances tumor growth induced by loss of neoplastic tumor suppressors, highlighting the wide requirement for DCAF12 in PCD. PMID:26972874

  4. Fat absorption is not complete by midgut but is dependent on load of fat.

    PubMed

    Lin, H C; Zhao, X T; Wang, L

    1996-07-01

    Since the intubation study of B. Borgstrom, A. Dahlqvist, and G. Lundh (J. Clin. Invest. 36: 1521-1536, 1957) in humans, the completion of fat absorption within the proximal small intestine has been widely accepted. Based on this report, it has been assumed that the distal small intestine is exposed to fat only in the setting of pathology. This concept may be flawed, since completeness of fat absorption was calculated from the recovery of a water-soluble marker but the aqueous phase is now known to move independently from fat. To reexamine the question of whether fat absorption is complete by midgut, we measured the recovery of a fat-specific marker, 99mTc-thiocyanate, in a canine model equipped with duodenal and midgut fistulas. The fistulous output allowed for the measurement of the amount of fat entering the small intestine and the amount of fat entering the distal one-half of the small intestine. Emulsion meals containing 15 or 60 g of corn oil were tested. The importance of fat exposure of the distal one-half of the small intestine was further confirmed by comparing the fistulous fat recovery under two different patterns of exposure [allowing (ALL) or denying (150 cm) access to the distal small intestine]. We found that fat recovery depended on 1) the dose of fat (15 vs. 60 g; P < 0.0005), 2) the pattern of exposure (150 cm vs. ALL; P < 0.01), and 3) the fistulous position (duodenal vs. midgut; P < 0.005). Specifically, under a 150-cm exposure pattern, whereas 8.8 +/- 1.8 g (means +/- SE) of fat emptied into the duodenum after the 15-g fat meal, 32.6 +/- 3.2 g emptied after the 60-g fat meal. Correspondingly, although 3.5 +/- 1.5 g of fat were recoverable from the midgut fistulous output after the 15-g meal, a much larger amount, 17.1 +/- 5.6 g of fat, was recoverable and therefore not absorbed by the proximal one-half of the small intestine after the 60-g meal. The amount of fat recovery at each fistula was reduced when chyme was allowed access to the whole

  5. Genotoxicity of dichlorvos in strains of Drosophila melanogaster defective in DNA repair.

    PubMed

    Mishra, Manish; Sharma, A; Shukla, A K; Kumar, R; Dwivedi, U N; Kar Chowdhuri, D

    2014-05-15

    Dichlorvos (DDVP), an organophosphate pesticide, is reported to be genotoxic at high concentrations. However, the roles of DNA damage repair pathways in DDVP genotoxicity are not well characterized. To test whether pre- and post-replication pathways are involved, we measured changes in DNA migration (Comet assay) in the midgut cells of Drosophila melanogaster Oregon R+ larvae and in some mutants of pre- (mei-9, mus201, and mus207) and post- (mei-41 and mus209)replication DNA repair pathways. Insects were exposed to environmentally relevant concentrations of DDVP (up to 15ng/ml) for 48h. After insect exposure to 0.15ng/ml DDVP, we observed greater DNA damage in pre-replication repair mutants; effects on Oregon R+ and post-replication repair mutants were insignificant. In contrast, significant DNA damage was observed in the post-replication repair mutants after their exposure to 1.5 and 15ng/ml DDVP. The pre-replication repair mutant mus207 showed maximum sensitivity to DDVP, suggestive of alkylation damage to DNA. We also examined mutants (SOD- and urate-null) that are sensitive to oxidative stress and the results indicate that significant oxidative DNA damage occurs in DDVP-exposed mutants. This study suggests involvement of both pre- and post-replication repair pathways against DDVP-induced DNA damage in Drosophila, with oxidative DNA damage leading to genotoxicity. PMID:24614193

  6. EGFR/Ras Signaling Controls Drosophila Intestinal Stem Cell Proliferation via Capicua-Regulated Genes

    PubMed Central

    Jin, Yinhua; Ha, Nati; Forés, Marta; Xiang, Jinyi; Gläßer, Christine; Maldera, Julieta; Jiménez, Gerardo; Edgar, Bruce A.

    2015-01-01

    Epithelial renewal in the Drosophila intestine is orchestrated by Intestinal Stem Cells (ISCs). Following damage or stress the intestinal epithelium produces ligands that activate the epidermal growth factor receptor (EGFR) in ISCs. This promotes their growth and division and, thereby, epithelial regeneration. Here we demonstrate that the HMG-box transcriptional repressor, Capicua (Cic), mediates these functions of EGFR signaling. Depleting Cic in ISCs activated them for division, whereas overexpressed Cic inhibited ISC proliferation and midgut regeneration. Epistasis tests showed that Cic acted as an essential downstream effector of EGFR/Ras signaling, and immunofluorescence showed that Cic’s nuclear localization was regulated by EGFR signaling. ISC-specific mRNA expression profiling and DNA binding mapping using DamID indicated that Cic represses cell proliferation via direct targets including string (Cdc25), Cyclin E, and the ETS domain transcription factors Ets21C and Pointed (pnt). pnt was required for ISC over-proliferation following Cic depletion, and ectopic pnt restored ISC proliferation even in the presence of overexpressed dominant-active Cic. These studies identify Cic, Pnt, and Ets21C as critical downstream effectors of EGFR signaling in Drosophila ISCs. PMID:26683696

  7. Comparative analysis of midgut bacterial communities of Aedes aegypti mosquito strains varying in vector competence to dengue virus.

    PubMed

    Charan, Shakti S; Pawar, Kiran D; Severson, David W; Patole, Milind S; Shouche, Yogesh S

    2013-07-01

    Differences in midgut bacterial communities of Aedes aegypti, the primary mosquito vector of dengue viruses (DENV), might influence the susceptibility of these mosquitoes to infection by DENV. As a first step toward addressing this hypothesis, comparative analysis of bacterial communities from midguts of mosquito strains with differential genetic susceptibility to DENV was performed. 16S rRNA gene libraries and real-time PCR approaches were used to characterize midgut bacterial community composition and abundance in three Aedes aegypti strains: MOYO, MOYO-R, and MOYO-S. Although Pseudomonas spp.-related clones were predominant across all libraries, some interesting and potentially significant differences were found in midgut bacterial communities among the three strains. Pedobacter sp.- and Janthinobacterium sp.-related phylotypes were identified only in the MOYO-R strain libraries, while Bacillus sp. was detected only in the MOYO-S strain. Rahnella sp. was found in MOYO-R and MOYO strains libraries but was absent in MOYO-S libraries. Both 16S rRNA gene library and real-time PCR approaches confirmed the presence of Pedobacter sp. only in the MOYO-R strain. Further, real-time PCR-based quantification of 16S rRNA gene copies showed bacterial abundance in midguts of the MOYO-R strain mosquitoes to be at least 10-100-folds higher than in the MOYO-S and MOYO strain mosquitoes. Our study identified some putative bacteria with characteristic physiological properties that could affect the infectivity of dengue virus. This analysis represents the first report of comparisons of midgut bacterial communities with respect to refractoriness and susceptibility of Aedes aegypti mosquitoes to DENV and will guide future efforts to address the potential interactive role of midgut bacteria of Aedes aegypti mosquitoes in determining vectorial capacity for DENV. PMID:23636307

  8. Blood Meal-Derived Heme Decreases ROS Levels in the Midgut of Aedes aegypti and Allows Proliferation of Intestinal Microbiota

    PubMed Central

    Oliveira, Jose Henrique M.; Gonçalves, Renata L. S.; Lara, Flavio A.; Dias, Felipe A.; Gandara, Ana Caroline P.; Menna-Barreto, Rubem F. S.; Edwards, Meredith C.; Laurindo, Francisco R. M.; Silva-Neto, Mário A. C.; Sorgine, Marcos H. F.; Oliveira, Pedro L.

    2011-01-01

    The presence of bacteria in the midgut of mosquitoes antagonizes infectious agents, such as Dengue and Plasmodium, acting as a negative factor in the vectorial competence of the mosquito. Therefore, knowledge of the molecular mechanisms involved in the control of midgut microbiota could help in the development of new tools to reduce transmission. We hypothesized that toxic reactive oxygen species (ROS) generated by epithelial cells control bacterial growth in the midgut of Aedes aegypti, the vector of Yellow fever and Dengue viruses. We show that ROS are continuously present in the midgut of sugar-fed (SF) mosquitoes and a blood-meal immediately decreased ROS through a mechanism involving heme-mediated activation of PKC. This event occurred in parallel with an expansion of gut bacteria. Treatment of sugar-fed mosquitoes with increased concentrations of heme led to a dose dependent decrease in ROS levels and a consequent increase in midgut endogenous bacteria. In addition, gene silencing of dual oxidase (Duox) reduced ROS levels and also increased gut flora. Using a model of bacterial oral infection in the gut, we show that the absence of ROS resulted in decreased mosquito resistance to infection, increased midgut epithelial damage, transcriptional modulation of immune-related genes and mortality. As heme is a pro-oxidant molecule released in large amounts upon hemoglobin degradation, oxidative killing of bacteria in the gut would represent a burden to the insect, thereby creating an extra oxidative challenge to the mosquito. We propose that a controlled decrease in ROS levels in the midgut of Aedes aegypti is an adaptation to compensate for the ingestion of heme. PMID:21445237

  9. Digestive enzyme compartmentalization and recycling and sites of absorption and secretion along the midgut of Dermestes maculatus (Coleoptera) larvae.

    PubMed

    Caldeira, Waldir; Dias, Alcides B; Terra, Walter R; Ribeiro, Alberto F

    2007-01-01

    Bostrichiformia is the less known major series of Coleoptera regarding digestive physiology. The midgut of Dermestes maculatus has a cylindrical ventriculus with anterior caeca. There is no cell differentiation along the ventriculus, except for the predominance of cells undergoing apocrine secretion in the anterior region. Apocrine secretion affects a larger extension and a greater number of cells in caeca than in ventriculus. Ventricular cells putatively secrete digestive enzymes, whereas caecal cells are supposed to secrete peritrophic gel (PG) glycoproteins. Feeding larvae with dyes showed that caeca are water-absorbing, whereas the posterior ventriculus is water-secreting. Midgut dissection revealed a PG and a peritrophic membrane (PM) covering the contents in anterior and posterior ventriculus, respectively. This was confirmed by in situ chitin detection with FITC-WGA conjugates. Ion-exchange chromatography of midgut homogenates, associated with enzymatic assays with natural and synthetic substrates and specific inhibitors, showed that trypsin and chymotrypsin are the major proteinases, cysteine proteinase is absent, and aspartic proteinase probably is negligible. Amylase and trypsin occur in contents and decrease along the ventriculus; the contrary is true for cell-membrane-bound aminopeptidase. Maltase is cell-membrane-bound and predominates in anterior and middle midgut. Digestive enzyme activities in hindgut are negligible. This, together with dye data, indicates that enzymes are recovered from inside PM by a posterior-anterior flux of fluid outside PM before being excreted. The combined results suggest that protein digestion starts in anterior midgut and ends in the surface of posterior midgut cells. All glycogen digestion takes place in anterior midgut. PMID:17167750

  10. Nanoparticulate TiO2 protection of midgut damage in the silkworm (Bombyx mori) following phoxim exposure.

    PubMed

    Wang, Ling; Su, Mingyu; Zhao, Xiaoyang; Hong, Jie; Yu, Xiaohong; Xu, Bingqing; Sheng, Lei; Liu, Dong; Shen, Weide; Li, Bing; Hong, Fashui

    2015-04-01

    Bombyx mori (B. mori) is often subjected to phoxim poisoning in China due to phoxim exposure, which leads to a decrease in silk production. Nanoparticulate (NP) titanium dioxide (nano-TiO2) has been shown to attenuate damages in B. mori caused by phoxim exposure. However, little is known about the molecular mechanisms of midgut injury due to organophosphorus insecticide exposure and its repair by nano-TiO2 pretreatment. In this study, phoxim exposure for 36 h led to significant decreases in body weight and survival and increased oxidative stress and midgut injury. Pretreatment with nano-TiO2 attenuated the phoxim-induced midgut injury, increased body weight and survival, and decreased oxidative stress in the midgut of B. mori. Digital gene-expression data showed that exposure to phoxim results in significant changes in the expression of 254 genes in the phoxim-exposed midgut and 303 genes in phoxim + nano-TiO2-exposed midgut. Specifically, phoxim exposure led to upregulation of Tpx, α-amylase, trypsin, and glycoside hydrolase genes involved in digestion and absorption. Phoxim exposure also led to the downregulation of Cyp450 and Cyp4C1 genes involved in an antioxidant capacity. In contrast, a combination of both phoxim and nano-TiO2 treatment significantly decreased the change in α-amylase, trypsin, and glycoside hydrolases (GHs), which are involved in digestion and absorption. These results indicated that Tpx, α-amylase, trypsin, GHs, Cyp450, and Cyp4C1 may be potential biomarkers of midgut toxicity caused by phoxim exposure and the attenuation of these toxic impacts by nano-TiO2. PMID:25552327

  11. Morphological characterization of the nymphs Rhipicephalus sanguineus ticks (Latreille, 1806) (Acari: Ixodidae). Description of the testes, integument, Malpighian tubules, and midgut on the detachment day.

    PubMed

    De Oliveira, Patrícia Rosa; Calligaris, Izabela Braggião; Roma, Gislaine Cristina; Bechara, Gervásio Henrique; Mathias, Maria Izabel Camargo

    2012-06-01

    This study presents the morpho-histological and histochemical characterization of the testes, integument, Malpighian tubules, and midgut of engorged Rhipicephalus sanguineus nymphs on the detachment day, showing the morphological and physiological characteristics to this phase in the life cycle of these individuals. The testis is constituted by germinative cells (only spermatogonia) with large, round-shaped and strongly stained nuclei which are organized into cysts by a thin layer of somatic cells. The integument consists of a cuticle subdivided into epicuticle (lipoprotein) and procuticle (glycoproteic), and a layer of epithelial cells which present glycolipoprotein elements. The procuticle presents two distinct regions: the exocuticle (next to the epicuticle) and the endocuticle (next to the epithelial layer). The Malpighian tubules present a simple epithelium with small flat and/or cubic cells, which form its wall and delimitates a lumen full of lipoprotein material. The midgut consists of an epithelial wall formed by two types of digestive cells, spent cells and empty digest cells, and by generative cells supported by a basal lamina and a thin layer of muscular tissue. This study described the main organs of engorged nymphs of R. sanguineus, to generate information that can help researchers to better understand the biology of these ectoparasites; which is fundamental for the development of compounds that are less aggressive to the environment. In addition, if the immature stages of the ticks are controlled, the number of adult ticks able to cause damages to the animals--and to the man as well--is also under control. PMID:22615106

  12. Drosophila Avoids Parasitoids by Sensing Their Semiochemicals via a Dedicated Olfactory Circuit

    PubMed Central

    Ebrahim, Shimaa A. M.; Dweck, Hany K. M.; Stökl, Johannes; Hofferberth, John E.; Trona, Federica; Weniger, Kerstin; Rybak, Jürgen; Seki, Yoichi; Stensmyr, Marcus C.; Sachse, Silke; Hansson, Bill S.; Knaden, Markus

    2015-01-01

    Detecting danger is one of the foremost tasks for a neural system. Larval parasitoids constitute clear danger to Drosophila, as up to 80% of fly larvae become parasitized in nature. We show that Drosophila melanogaster larvae and adults avoid sites smelling of the main parasitoid enemies, Leptopilina wasps. This avoidance is mediated via a highly specific olfactory sensory neuron (OSN) type. While the larval OSN expresses the olfactory receptor Or49a and is tuned to the Leptopilina odor iridomyrmecin, the adult expresses both Or49a and Or85f and in addition detects the wasp odors actinidine and nepetalactol. The information is transferred via projection neurons to a specific part of the lateral horn known to be involved in mediating avoidance. Drosophila has thus developed a dedicated circuit to detect a life-threatening enemy based on the smell of its semiochemicals. Such an enemy-detecting olfactory circuit has earlier only been characterized in mice and nematodes. PMID:26674493

  13. Heterochromatin remodeling by CDK12 contributes to learning in Drosophila

    PubMed Central

    Pan, Lixia; Xie, Wenbing; Li, Kai-Le; Yang, Zhihao; Xu, Jiang; Zhang, Wenhao; Liu, Lu-Ping; Ren, Xingjie; He, Zhimin; Wu, Junyu; Sun, Jin; Wei, Hui-Min; Wang, Daliang; Xie, Wei; Li, Wei; Ni, Jian-Quan; Sun, Fang-Lin

    2015-01-01

    Dynamic regulation of chromatin structure is required to modulate the transcription of genes in eukaryotes. However, the factors that contribute to the plasticity of heterochromatin structure are elusive. Here, we report that cyclin-dependent kinase 12 (CDK12), a transcription elongation-associated RNA polymerase II (RNAPII) kinase, antagonizes heterochromatin enrichment in Drosophila chromosomes. Notably, loss of CDK12 induces the ectopic accumulation of heterochromatin protein 1 (HP1) on euchromatic arms, with a prominent enrichment on the X chromosome. Furthermore, ChIP and sequencing analysis reveals that the heterochromatin enrichment on the X chromosome mainly occurs within long genes involved in neuronal functions. Consequently, heterochromatin enrichment reduces the transcription of neuronal genes in the adult brain and results in a defect in Drosophila courtship learning. Taken together, these results define a previously unidentified role of CDK12 in controlling the epigenetic transition between euchromatin and heterochromatin and suggest a chromatin regulatory mechanism in neuronal behaviors. PMID:26508632

  14. Heterochromatin remodeling by CDK12 contributes to learning in Drosophila.

    PubMed

    Pan, Lixia; Xie, Wenbing; Li, Kai-Le; Yang, Zhihao; Xu, Jiang; Zhang, Wenhao; Liu, Lu-Ping; Ren, Xingjie; He, Zhimin; Wu, Junyu; Sun, Jin; Wei, Hui-Min; Wang, Daliang; Xie, Wei; Li, Wei; Ni, Jian-Quan; Sun, Fang-Lin

    2015-11-10

    Dynamic regulation of chromatin structure is required to modulate the transcription of genes in eukaryotes. However, the factors that contribute to the plasticity of heterochromatin structure are elusive. Here, we report that cyclin-dependent kinase 12 (CDK12), a transcription elongation-associated RNA polymerase II (RNAPII) kinase, antagonizes heterochromatin enrichment in Drosophila chromosomes. Notably, loss of CDK12 induces the ectopic accumulation of heterochromatin protein 1 (HP1) on euchromatic arms, with a prominent enrichment on the X chromosome. Furthermore, ChIP and sequencing analysis reveals that the heterochromatin enrichment on the X chromosome mainly occurs within long genes involved in neuronal functions. Consequently, heterochromatin enrichment reduces the transcription of neuronal genes in the adult brain and results in a defect in Drosophila courtship learning. Taken together, these results define a previously unidentified role of CDK12 in controlling the epigenetic transition between euchromatin and heterochromatin and suggest a chromatin regulatory mechanism in neuronal behaviors. PMID:26508632

  15. NF-κB in the Immune Response of Drosophila

    PubMed Central

    Hetru, Charles; Hoffmann, Jules A.

    2009-01-01

    The nuclear factor κB (NF-κB) pathways play a major role in Drosophila host defense. Two recognition and signaling cascades control this immune response. The Toll pathway is activated by Gram-positive bacteria and by fungi, whereas the immune deficiency (Imd) pathway responds to Gram-negative bacterial infection. The basic mechanisms of recognition of these various types of microbial infections by the adult fly are now globally understood. Even though some elements are missing in the intracellular pathways, numerous proteins and interactions have been identified. In this article, we present a general picture of the immune functions of NF-κB in Drosophila with all the partners involved in recognition and in the signaling cascades. PMID:20457557

  16. Measurement of Larval Activity in the Drosophila Activity Monitor

    PubMed Central

    McParland, Aidan L.; Follansbee, Taylor L.; Ganter, Geoffrey K.

    2016-01-01

    Drosophila larvae are used in many behavioral studies, yet a simple device for measuring basic parameters of larval activity has not been available. This protocol repurposes an instrument often used to measure adult activity, the TriKinetics Drosophila activity monitor (MB5 Multi-Beam Activity Monitor) to study larval activity. The instrument can monitor the movements of animals in 16 individual 8 cm glass assay tubes, using 17 infrared detection beams per tube. Logging software automatically saves data to a computer, recording parameters such as number of moves, times sensors were triggered, and animals’ positions within the tubes. The data can then be analyzed to represent overall locomotion and/or position preference as well as other measurements. All data are easily accessible and compatible with basic graphing and data manipulation software. This protocol will discuss how to use the apparatus, how to operate the software and how to run a larval activity assay from start to finish. PMID:25993121

  17. High-level expression of the photorepair gene in Drosophila ovary and its evolutionary implications.

    PubMed

    Todo, T; Ryo, H; Takemori, H; Toh, H; Nomura, T; Kondo, S

    1994-11-01

    DNA photolyase catalyzes light-dependent repair of cis, syn-cyclobutane dipyrimidines (pyrimidine dimers); its apoenzyme is encoded by the photorepair (phr) gene. The phr cDNA was cloned from D. melanogaster; it has an open reading frame to encode a 61,483-Da protein. The phr cDNA hybridized to band 44C-D of Drosophila polytene chromosome, equivalent to the locus of the phr- gene. Drosophila photolyase is made of an apoenzyme with a molecular weight of 62 kDa. Drosophila photolyase is extraordinarily abundant in the embryo and adult ovary, whereas mRNA of the phr gene is abundant only in the ovary. The action spectrum of Drosophila photolyase for photoreactivation has a maximum at 440 nm. The phr gene of Drosophila has about 60% identical amino acid sites with that of goldfish but only 13-18% with those of microorganisms. Implications of the unique characteristics of the Drosophila phr gene are discussed overviewing the diversified characteristics of phr genes in various organisms that have presumably evolved from a common ancestral gene. PMID:7526199

  18. Histopathological effects and immunolocalization of periplocoside NW from Periploca sepium Bunge on the midgut epithelium of Mythimna separata Walker larvae.

    PubMed

    Feng, Mingxing; Shi, Baojun; Zhao, Yanchao; Hu, Zhaonong; Wu, Wenjun

    2014-10-01

    Periplocoside NW (PSNW) with pregnane glycoside skeleton is a novel insecticidal compound isolated from the root bark of Periploca sepium Bunge. This compound has a potent stomach poisoning activity against several insect pests. In this study, we observed the intoxication symptoms, investigated the histopathological effects and carried out immuno-electron microscopic localization of PSNW on the midgut epithelium of oriental armyworm Mythimna separata Walker larvae for better understanding its action mechanism against insects. Ultrastructural observations showed that cell damages caused by PSNW in the midgut of M. separata larvae are related to the degeneration of brush border microvilli. The dissolution of cytoskeletal structures in the interior and on the surface of microvilli was responsible for the decrease in size and eventual disappearance of microvilli when bubbles of cytoplasmic substances protrude into the midgut lumen of M. separata, thus resulting in cell death. The immuno-electron microscopic localization research showed that gold particle appeared on the microvilli layer of the midgut of M. separate larvae firstly. The density of gold particle gradually added with the time, and finally microvilli layer was destructed severely. Meantime, the gold particles were also presented to the intracellular organelle membrane and the organelles also were destructed. Therefore, we proposed that this membrane system on insect midgut epithelium cells is the initial acting site of PSNW against insects. PMID:25307468

  19. JAK-STAT is restrained by Notch to control cell proliferation of the Drosophila intestinal stem cells

    PubMed Central

    Liu, Wei; Singh, Shree Ram; Hou, Steven X.

    2010-01-01

    The Drosophila midgut epithelium undergoes continuous regeneration by multipotent intestinal stem cells (ISCs). Notch signaling has dual functions to control the ISCs behavior: it slows down the ISCs proliferation and drives the activated ISCs into differentiation pathways in a dose-dependent manner. Here we identified a molecular mechanism that unites these two contradictory functions. We found JAK-STAT signaling controls ISC proliferation and this ability is negatively regulated by Notch at least through a transcriptional control of the JAK-STAT signaling ligand, unpaired (upd). Our work reveals a novel mechanism of how stem cells, under steady conditions, balance the proliferation and differentiation to maintain the stable cellular composition of a healthy tissue. PMID:20082318

  20. Homeostatic epithelial renewal in the gut is required for dampening a fatal systemic wound response in Drosophila.

    PubMed

    Takeishi, Asuka; Kuranaga, Erina; Tonoki, Ayako; Misaki, Kazuyo; Yonemura, Shigenobu; Kanuka, Hirotaka; Miura, Masayuki

    2013-03-28

    Effective defense responses involve the entire organism. To maintain body homeostasis after tissue damage, a systemic wound response is induced in which the response of each tissue is tightly orchestrated to avoid incomplete recovery or an excessive, damaging response. Here, we provide evidence that in the systemic response to wounding, an apoptotic caspase pathway is activated downstream of reactive oxygen species in the midgut enterocytes (ECs), cells distant from the wound site, in Drosophila. We show that a caspase-pathway mutant has defects in homeostatic gut cell renewal and that inhibiting caspase activity in fly ECs results in the production of systemic lethal factors after wounding. Our results indicate that wounding remotely controls caspase activity in ECs, which activates the tissue stem cell regeneration pathway in the gut to dampen the dangerous systemic wound reaction. PMID:23523355

  1. Learning and Memory Deficits upon TAU Accumulation in "Drosophila" Mushroom Body Neurons

    ERIC Educational Resources Information Center

    Mershin, Andreas; Pavlopoulos, Elias; Fitch, Olivia; Braden, Brittany C.; Nanopoulos, Dimitri V.; Skoulakis, Efthimios M. C.

    2004-01-01

    Mutations in the neuronal-specific microtubule-binding protein TAU are associated with several dementias and neurodegenerative diseases. However, the effects of elevated TAU accumulation on behavioral plasticity are unknown. We report that directed expression of wild-type vertebrate and "Drosophila" TAU in adult mushroom body neurons, centers for…

  2. Microarray Analysis of Juvenile Hormone Response in Drosophila melanogaster S2 cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A microchip array encompassing probes for 14,010 genes of Drosophila melanogaster was used to analyze the effect of juvenile hormone (JH) on genome-wide gene expression. JH is a member of a key group of insect hormones involved in regulating larval development and adult reproductive processes. Altho...

  3. The role of reduced oxygen in the developmental physiology of growth and metamorphosis initiation in Drosophila

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rearing oxygen level is known to affect final body size in a variety of insects, but the physiological mechanisms by which oxygen affects size are incompletely understood. In Manduca and Drosophila, the larval size at which metamorphosis is initiated largely determines adult size, and metamorphosis ...

  4. Activities of natural methyl farnesoids on pupariation and metamorphosis of Drosophila melanogaster

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl farnesoate (MF) and juvenile hormone (JH III), which respectively bind to the receptors USP and MET, and bisepoxy JH III (bisJHIII) were assessed for several activities during Drosophila larval development, and during prepupal development to eclosed adults. Dietary MF and JH III were similar...

  5. Morphogenesis of the somatic musculature in Drosophila melanogaster

    PubMed Central

    Schulman, Victoria K.; Dobi, Krista C.; Baylies, Mary K.

    2015-01-01

    In Drosophila melanogaster, the somatic muscle system is first formed during embryogenesis, giving rise to the larval musculature. Later during metamorphosis, this system is destroyed and replaced by an entirely new set of muscles in the adult fly. Proper formation of the larval and adult muscles is critical for basic survival functions such as hatching and crawling (in the larva), walking and flying (in the adult), and feeding (at both larval and adult stages). Myogenesis, from mononucleated muscle precursor cells to multinucleated functional muscles, is driven by a number of cellular processes that have begun to be mechanistically defined. Once themesodermal cells destined for themyogenic lineage have been specified, individual myoblasts fuse together iteratively to form syncytial myofibers. Combining cytoplasmic contents demands a level of intracellular reorganization that, most notably, leads to redistribution of the myonuclei to maximize internuclear distance. Signaling from extending myofibers induces terminal tendon cell differentiation in the ectoderm, which results in secure muscle-tendon attachments that are critical formuscle contraction. Simultaneously, muscles become innervated and undergo sarcomerogenesis to establish the contractile apparatus that will facilitate movement. The cellular mechanisms governing these morphogenetic events share numerous parallels to mammalian development, and the basic unit of all muscle, the myofiber, is conserved from flies to mammals. Thus, studies of Drosophila myogenesis and comparisons to muscle development in other systems highlight conserved regulatory programs of biomedical relevance to general muscle biology and studies of muscle disease. PMID:25758712

  6. Molecular genetics of a three-gene cluster in the Amy region of Drosophila.

    PubMed

    Doane, W W; Thompson, D B; Norman, R A; Hawley, S A

    1990-01-01

    Analysis of amylase RNA levels in the anterior and posterior midgut regions of flies from the Amy1,6 mapA and c Amy2,3 mapC strains of D. melanogaster, reared on yeast and on yeast supplemented with glucose, indicates that the trans-acting map gene controls the abundance of amylase RNA tissue-specifically, i.e., in the adult posterior midgut. This is consistent with the view that its role in controlling Amy expression is that of a transcription factor. Dietary glucose represses Amy expression in the anterior and posterior midgut regions of adults, reducing the abundance of amylase RNA, which suggests that it also controls Amy transcriptional activity. However, the mechanism for glucose repression appears to act systemically in the midgut, in a manner that is independent of the effects of map on Amy expression. A new glucose repressible TU was identified that is located just proximal to the Amy locus in region 54A of polytene chromosome 2R. It is transcribed in the direction opposite to that of the proximal Amy gene and encodes an RNA about 1500 bases long. Its RNA is expressed in both larvae and adults of the above strains of D. melanogaster, but the nature of the product it encodes is unknown. We speculate that all three genes in the cluster at 54A, namely the two Amy gene copies and the new glucose repressible TU, are coordinately controlled by the same mechanism that regulates Amy gene expression in response to dietary glucose. Somatic transformation experiments suggest that 5' cis-regulatory mechanisms required for the correct spatial expression of the proximal and distal Amylase genes from a Canton-S strain of D. melanogaster, Amy-p1 and Amy-d3, are located within 450 bp and 463 bp of their respective translation start sites. These regions also contain sequences responsive to dietary glucose repression, which is mediated at the DNA level of exogenous Amy genes in somatically transformed larvae reared on a yeast + glucose diet. A positive activator is located

  7. Analysis of Neurotransmitter Tissue Content of Drosophila melanogaster in Different Life Stages

    PubMed Central

    2015-01-01

    Drosophila melanogaster is a widely used model organism for studying neurological diseases with similar neurotransmission to mammals. While both larva and adult Drosophila have central nervous systems, not much is known about how neurotransmitter tissue content changes through development. In this study, we quantified tyramine, serotonin, octopamine, and dopamine in larval, pupal, and adult fly brains using capillary electrophoresis coupled to fast-scan cyclic voltammetry. Tyramine and octopamine content varied between life stages, with almost no octopamine being present in the pupa, while tyramine levels in the pupa were very high. Adult females had significantly higher dopamine content than males, but no other neurotransmitters were dependent on sex in the adult. Understanding the tissue content of different life stages will be beneficial for future work comparing the effects of diseases on tissue content throughout development. PMID:25437353

  8. Why Drosophila to Study Phototransduction?

    PubMed Central

    Pak, William L.

    2010-01-01

    This review recounts the early history of Drosophila phototransduction genetics, covering the period between approximately 1966 to 1979. Early in this period, the author felt that there was an urgent need for a new approach in phototransduction research. Through inputs from a number of colleagues, he was led to consider isolating Drosophila mutants that are defective in the electroretinogram. Thanks to the efforts of dedicated associates and technical staff, by the end of this period, he was able to accumulate a large number of such mutants. Particularly important in this effort was the use of the mutant assay protocol based on the “prolonged depolarizing afterpotential.” This collection of mutants formed the basis of the subsequent intensive investigations of the Drosophila phototransduction cascade by many investigators. PMID:20536286

  9. Micromechanics of Drosophila Audition

    NASA Astrophysics Data System (ADS)

    Göpfert, M. C.; Robert, D.

    2003-02-01

    An analysis is presented of the auditory micromechanics of the fruit fly Drosophila melanogaster. In this animal, the distal part of the antenna constitutes a resonantly tuned sound receiver, the vibrations of which are transduced by a chordotonal sense organ in the antenna's base. Analyzing the mechanical behavior of the antennal receiver by means of microscanning laser Doppler vibrometry, we show that the auditory system of wild-type flies exhibits a hardening stiffness nonlinearity and spontaneously generates oscillations in the absence of external stimuli. According to the deprivation of these mechanical properties in mechanosensory mutants, the receiver's nonlinearity and oscillation activity are introduced by chordotonal auditory neurons. Requiring the mechanoreceptor-specific extracellular linker protein No-mechanoreceptor-potential-A (NompA), NompC mechanosensory transduction channels, Beethoven (Btv), and Touch-insensitive-larva-B (TilB), nonlinearity and oscillation activity of the fly's antennal receiver depend on prominent components of the auditory transduction machinery and seem to originate from motility of auditory receptor cilia.

  10. Sequence variation and differential splicing of the midgut cadherin gene in Trichoplusia ni.

    PubMed

    Zhang, Xin; Kain, Wendy; Wang, Ping

    2013-08-01

    The insect midgut cadherin serves as an important receptor for the Cry toxins from Bacillus thuringiensis (Bt). Variation of the cadherin in insect populations provides a genetic potential for development of cadherin-based Bt resistance in insect populations. Sequence analysis of the cadherin from the cabbage looper, Trichoplusia ni, together with cadherins from 18 other lepidopterans showed a similar phylogenetic relationship of the cadherins to the phylogeny of Lepidoptera. The midgut cadherin in three laboratory populations of T. ni exhibited high variability, although the resistance to Bt toxin Cry1Ac in the T. ni strain is not genetically associated with cadherin gene mutations. A total of 142 single nucleotide polymorphisms (SNPs) were identified in the cadherin cDNAs from the T. ni strains, including 20 missense mutations. In addition, insertion and deletion polymorphisms (indels) were also identified in the cadherin alleles in T. ni. More interestingly, the results from this study reveal that differential splicing of mRNA also occurs in the cadherin gene expression. Therefore, variation of the midgut cadherin in insects may not only be caused by cadherin gene mutations, but could also result from alternative splicing of its mRNA regulated by factors acting in trans. Analysis of cadherin gene alleles in F2, F3 and F4 progenies from the cross between the Cry1Ac resistant and the susceptible strain after consecutive selections with Cry1Ac for three generations showed that selection with Cry1Ac did not result in an increase of frequencies of the cadherin alleles originated from the resistant strain. PMID:23743444

  11. Cytotoxic effects of thiamethoxam in the midgut and malpighian tubules of Africanized Apis mellifera (Hymenoptera: Apidae).

    PubMed

    Catae, Aline Fernanda; Roat, Thaisa Cristina; De Oliveira, Regiane Alves; Nocelli, Roberta Cornélio Ferreira; Malaspina, Osmar

    2014-04-01

    Due to its expansion, agriculture has become increasingly dependent on the use of pesticides. However, the indiscriminate use of insecticides has had additional effects on the environment. These products have a broad spectrum of action, and therefore the insecticide affects not only the pests but also non-target insects such as bees, which are important pollinators of agricultural crops and natural environments. Among the most used pesticides, the neonicotinoids are particularly harmful. One of the neonicotinoids of specific concern is thiamethoxam, which is used on a wide variety of crops and is toxic to bees. Thus, this study aimed to analyze the effects of this insecticide in the midgut and Malpighian tubule cells of Africanized Apis mellifera. Newly emerged workers were exposed until 8 days to a diet containing a sublethal dose of thiamethoxam equal to 1/10 of LC₅₀ (0.0428 ng a.i./l L of diet). The bees were dissected and the organs were processed for transmission electron microscopy. The results showed that thiamethoxam is cytotoxic to midgut and Malpighian tubules. In the midgut, the damage was more evident in bees exposed to the insecticide on the first day. On the eighth day, the cells were ultrastructurally intact suggesting a recovery of this organ. The Malpighian tubules showed pronounced alterations on the eighth day of exposure of bees to the insecticide. This study demonstrates that the continuous exposure to a sublethal dose of thiamethoxam can impair organs that are used during the metabolism of the insecticide. PMID:24470251

  12. Tigutcystatin, a cysteine protease inhibitor from Triatoma infestans midgut expressed in response to Trypanosoma cruzi

    SciTech Connect

    Buarque, Diego S.; Spindola, Leticia M.N.; Martins, Rafael M.; Braz, Gloria R.C.; Tanaka, Aparecida S.

    2011-09-23

    Highlights: {yields} Tigutcystatin inhibits Trypanosoma cruzi cysteine proteases with high specificity. {yields} Tigutcystatin expression is up-regulated in response to T. cruzi infection. {yields} It is the first cysteine proteases inhibitor characterized from a triatomine insect. -- Abstract: The insect Triatoma infestans is a vector of Trypanosoma cruzi, the etiological agent of Chagas disease. A cDNA library was constructed from T. infestans anterior midgut, and 244 clones were sequenced. Among the EST sequences, an open reading frame (ORF) with homology to a cystatin type 2 precursor was identified. Then, a 288-bp cDNA fragment encoding mature cystatin (lacking signal peptide) named Tigutcystatin was cloned fused to a N-terminal His tag in pET-14b vector, and the protein expressed in Escherichia coli strain Rosetta gami. Tigutcystatin purified and cleaved by thrombin to remove His tag presented molecular mass of 11 kDa and 10,137 Da by SDS-PAGE and MALDI-TOF mass spectrometry, respectively. Purified Tigutcystatin was shown to be a tight inhibitor towards cruzain, a T. cruzi cathepsin L-like enzyme (K{sub i} = 3.29 nM) and human cathepsin L (K{sub i} = 3.78 nM). Tissue specific expression analysis showed that Tigutcystatin was mostly expressed in anterior midgut, although amplification in small intestine was also detected by semi quantitative RT-PCR. qReal time PCR confirmed that Tigutcystatin mRNA is significantly up-regulated in anterior midgut when T. infestans is infected with T. cruzi. Together, these results indicate that Tigutcystatin may be involved in modulation of T. cruzi in intestinal tract by inhibiting parasite cysteine proteases, which represent the virulence factors of this protozoan.

  13. Tissue-Specific Transcriptome Profiling of Plutella Xylostella Third Instar Larval Midgut

    PubMed Central

    Xie, Wen; Lei, Yanyuan; Fu, Wei; Yang, Zhongxia; Zhu, Xun; Guo, Zhaojiang; Wu, Qingjun; Wang, Shaoli; Xu, Baoyun; Zhou, Xuguo; Zhang, Youjun

    2012-01-01

    The larval midgut of diamondback moth, Plutella xylostella, is a dynamic tissue that interfaces with a diverse array of physiological and toxicological processes, including nutrient digestion and allocation, xenobiotic detoxification, innate and adaptive immune response, and pathogen defense. Despite its enormous agricultural importance, the genomic resources for P. xylostella are surprisingly scarce. In this study, a Bt resistant P. xylostella strain was subjected to the in-depth transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes in the P. xylostella larval midgut. Using Illumina deep sequencing, we obtained roughly 40 million reads containing approximately 3.6 gigabases of sequence data. De novo assembly generated 63,312 ESTs with an average read length of 416bp, and approximately half of the P. xylostella sequences (45.4%, 28,768) showed similarity to the non-redundant database in GenBank with a cut-off E-value below 10-5. Among them, 11,092 unigenes were assigned to one or multiple GO terms and 16,732 unigenes were assigned to 226 specific pathways. In-depth analysis indentified genes putatively involved in insecticide resistance, nutrient digestion, and innate immune defense. Besides conventional detoxification enzymes and insecticide targets, novel genes, including 28 chymotrypsins and 53 ABC transporters, have been uncovered in the P. xylostella larval midgut transcriptome; which are potentially linked to the Bt toxicity and resistance. Furthermore, an unexpectedly high number of ESTs, including 46 serpins and 7 lysozymes, were predicted to be involved in the immune defense. As the first tissue-specific transcriptome analysis of P. xylostella, this study sheds light on the molecular understanding of insecticide resistance, especially Bt resistance in an agriculturally important insect pest, and lays the foundation for future functional genomics research. In addition, current

  14. Inducible peroxidases mediate nitration of anopheles midgut cells undergoing apoptosis in response to Plasmodium invasion.

    PubMed

    Kumar, Sanjeev; Gupta, Lalita; Han, Yeon Soo; Barillas-Mury, Carolina

    2004-12-17

    Plasmodium berghei invasion of Anopheles stephensi midgut cells causes severe damage, induces expression of nitric-oxide synthase, and leads to apoptosis. The present study indicates that invasion results in tyrosine nitration, catalyzed as a two-step reaction in which nitric-oxide synthase induction is followed by increased peroxidase activity. Ookinete invasion induced localized expression of peroxidase enzymes, which catalyzed protein nitration in vitro in the presence of nitrite and H(2)O(2). Histochemical stainings revealed that when a parasite migrates laterally and invades more than one cell, the pattern of induced peroxidase activity is similar to that observed for tyrosine nitration. In Anopheles gambiae, ookinete invasion elicited similar responses; it induced expression of 5 of the 16 peroxidase genes predicted by the genome sequence and decreased mRNA levels of one of them. One of these inducible peroxidases has a C-terminal oxidase domain homologous to the catalytic moiety of phagocyte NADPH oxidase and could provide high local levels of superoxide anion (O(2)), that when dismutated would generate the local increase in H(2)O(2) required for nitration. Chemically induced apoptosis of midgut cells also activated expression of four ookinete-induced peroxidase genes, suggesting their involvement in general apoptotic responses. The two-step nitration reaction provides a mechanism to precisely localize and circumscribe the toxic products generated by defense reactions involving nitration. The present study furthers our understanding of the biochemistry of midgut defense reactions to parasite invasion and how these may influence the efficiency of malaria transmission by anopheline mosquitoes. PMID:15456781

  15. Restriction of Francisella novicida Genetic Diversity during Infection of the Vector Midgut

    PubMed Central

    Reif, Kathryn E.; Palmer, Guy H.; Crowder, David W.; Ueti, Massaro W.; Noh, Susan M.

    2014-01-01

    The genetic diversity of pathogens, and interactions between genotypes, can strongly influence pathogen phenotypes such as transmissibility and virulence. For vector-borne pathogens, both mammalian hosts and arthropod vectors may limit pathogen genotypic diversity (number of unique genotypes circulating in an area) by preventing infection or transmission of particular genotypes. Mammalian hosts often act as “ecological filters” for pathogen diversity, where novel variants are frequently eliminated because of stochastic events or fitness costs. However, whether vectors can serve a similar role in limiting pathogen diversity is less clear. Here we show using Francisella novicida and a natural tick vector of Francisella spp. (Dermacentor andersoni), that the tick vector acted as a stronger ecological filter for pathogen diversity compared to the mammalian host. When both mice and ticks were exposed to mixtures of F. novicida genotypes, significantly fewer genotypes co-colonized ticks compared to mice. In both ticks and mice, increased genotypic diversity negatively affected the recovery of available genotypes. Competition among genotypes contributed to the reduction of diversity during infection of the tick midgut, as genotypes not recovered from tick midguts during mixed genotype infections were recovered from tick midguts during individual genotype infection. Mediated by stochastic and selective forces, pathogen genotype diversity was markedly reduced in the tick. We incorporated our experimental results into a model to demonstrate how vector population dynamics, especially vector-to-host ratio, strongly affected pathogen genotypic diversity in a population over time. Understanding pathogen genotypic population dynamics will aid in identification of the variables that most strongly affect pathogen transmission and disease ecology. PMID:25392914

  16. Silver nanoparticle toxicity in Drosophila: size does matter

    PubMed Central

    Gorth, Deborah J; Rand, David M; Webster, Thomas J

    2011-01-01

    Background: Consumer nanotechnology is a growing industry. Silver nanoparticles are the most common nanomaterial added to commercially available products, so understanding the influence that size has on toxicity is integral to the safe use of these new products. This study examined the influence of silver particle size on Drosophila egg development by comparing the toxicity of both nanoscale and conventional-sized silver particles. Methods: The toxicity assays were conducted by exposing Drosophila eggs to particle concentrations ranging from 10 ppm to 100 ppm of silver. Size, chemistry, and agglomeration of the silver particles were evaluated using transmission electron microscopy, X-ray photoelectron spectroscopy, and dynamic light scattering. Results: This analysis confirmed individual silver particle sizes in the ranges of 20–30 nm, 100 nm, and 500–1200 nm, with similar chemistry. Dynamic light scattering and transmission electron microscope data also indicated agglomeration in water, with the transmission electron microscopic images showing individual particles in the correct size range, but the dynamic light scattering z-average sizes of the silver nanoparticles were 782 ± 379 nm for the 20–30 nm silver nanoparticles, 693 ± 114 nm for the 100 nm silver nanoparticles, and 508 ± 32 nm for the 500–1200 nm silver particles. Most importantly, here we show significantly more Drosophila egg toxicity when exposed to larger, nonnanometer silver particles. Upon exposure to silver nanoparticles sized 20–30 nm, Drosophila eggs did not exhibit a statistically significant (P < 0.05) decrease in their likelihood to pupate, but eggs exposed to larger silver particles (500–1200 nm) were 91% ± 18% less likely to pupate. Exposure to silver nanoparticles reduced the percentage of pupae able to emerge as adults. At 10 ppm of silver particle exposure, only 57% ± 48% of the pupae exposed to 20–30 nm silver particles became adults, whereas 89% ± 25% of the control

  17. Dietary influences over proliferating cell nuclear antigen expression in the locust midgut.

    PubMed

    Zudaire, E; Simpson, S J; Illa, I; Montuenga, L M

    2004-06-01

    We have studied the influence of variations in dietary protein (P) and digestible carbohydrate (C), the quantity of food eaten, and insect age during the fifth instar on the expression of the proliferating cell nuclear antigen (PCNA) in the epithelial cells of the midgut (with special reference to the midgut caeca) in the African migratory locust, Locusta migratoria. Densitometric analysis of PCNA-immunostained cells was used as an indirect measure of the levels of expression of PCNA, and a PCNA cellular index (PCNA-I) was obtained. Measurements of the DNA content of the cells have also been carried out by means of microdensitometry of Feulgen-stained, thick sections of midgut. A comparison between the PCNA nuclear level and the DNA content was performed. The PCNA levels were significantly different among the cells of the five regions studied: caeca, anterior ventricle, medial ventricle, posterior ventricle and ampullae of the Malpighian tubules. We have studied in more detail the region with highest PCNA-I, i.e. the caeca. The quality and the quantity of food eaten under ad libitum conditions were highly correlated with both the PCNA and DNA levels in the caeca cells. Locusts fed a diet with a close to optimal P:C content (P 21%, C 21%) showed the highest PCNA and DNA content. In locusts fed a food that also contained a 1:1 ratio of P to C but was diluted three-fold by addition of indigestible cellulose (P 7%, C 7%), a compensatory increase in consumption was critical to maintaining PCNA levels. Our measurements also showed that the nuclear DNA content of the mature and differentiated epithelial cells was several-fold higher than the levels in the undifferentiated stem cells of the regenerative nests. These results, combined with the low number of mitotic figures found in the regenerative nests of the caeca and the marked variation in PCNA levels among groups, suggest that some type of DNA endoreduplication process may be taking place. Our data also indicate that

  18. The surgery of malrotation and midgut volvulus: a nine year experience in neonates.

    PubMed Central

    Welch, G. H.; Azmy, A. F.; Ziervogel, M. A.

    1983-01-01

    Thirty four neonates presented with acute duodenal obstruction due to malrotation during a 9 year period between 1973 and the end of 1981. Of these, 20 patients (58.8%) presented in the first week of life, and 24 (70.5%) had an associated midgut volvulus. This frequent association is stressed as bowel necrosis occurs very rapidly. Massive gangrene of small bowel was present in 5 patients, extensive resection was necessary in 3 patients, of whom 2 died postoperatively (5.8%). Five patients required reoperation and 10 had additional G.I. malformations (29.4%). Images Fig. 3 Fig. 4 Fig. 5 PMID:6870133

  19. Identification and Partial Characterization of Midgut Proteases in the Lesser Mulberry Pyralid, Glyphodes pyloalis

    PubMed Central

    Mahdavi, Atiyeh; Ghadamyari, Mohammad; Sajedi, Reza H.; Sharifi, Mahbobeh; Kouchaki, Behrooz

    2013-01-01

    Proteolytic activities in digestive system extracts from the larval midgut of the lesser mulberry pyralid, Glyphodes pyloalis Walker (Lepidoptera: Pyralidae), were analyzed using different specific peptide substrates and proteinase inhibitors. High proteolytic activities were found at pH 10.0 and a temperature of 50° C using azocasein as substrate. The trypsin was active in the pH range of 9.5– 12.0, with its maximum activity at pH 11.5. Ethylene diamine tetraacetic acid had the most inhibitory effect, and 44% inhibition was detected in the presence of this inhibitor. Phenyl methane sulfonyl floride and N-tosyl-L-phe chloromethyl ketone also showed considerable inhibition of larval azocaseinolytic activity, with 40.2 and 35.1% inhibition respectively. These data suggest that the midgut of larvae contains mainly metalloproteases and serine proteases, mainly chymotrypsin. The effect of several metal ions on the activity of proteases showed that NaCl, CaCl2, CoCl2 (5 and 10 mM), and MnCl2 (5mM) reduced the protease activity. The kinetic parameters of trypsin-like proteases using N-benzoyl-L-arg-p-nitroanilide as substrate indicated that the Km and Vmax values of trypsin in the alimentary canal were 50.5 ± 2.0 µM and 116.06 ± 1.96 nmol min-1 mg-1 protein, respectively. Inhibition assays showed only small amounts of cysteine proteases were present in the G. pyloalis digestive system. The midgut digestive protease system of G. pyloalis is as diverse as that of any of the other polyphagous lepidopteran insect species, and the midgut of larvae contains mainly metalloproteases. Moreover, serine proteases and chymotrypsin also play main roles in protein digestion. Characterization of the proteolytic properties of the digestive enzymes of G. pyloalis offers an opportunity for developing appropriate and effective pest management strategies via metalloproteases and chymotrypsin inhibitors. PMID:24228902

  20. Regulation of the Gene Sex-Lethal: A Comparative Analysis of Drosophila Melanogaster and Drosophila Subobscura

    PubMed Central

    Penalva, LOF.; Sakamoto, H.; Navarro-Sabate, A.; Sakashita, E.; Granadino, B.; Segarra, C.; Sanchez, L.

    1996-01-01

    The Drosophila gene Sex-lethal (Sxl) controls the processes of sex determination and dosage compensation. A Drosophila subobscura genomic fragment containing all the exons and the late and early promotors in the Sxl gene of D. melanogaster was isolated. Early Sxl expression in D. subobscura seems to be controlled at the transcriptional level, possibly by the X:A signal. In the region upstream of the early Sxl transcription initiation site are two conserved regions suggested to be involved in the early activation of Sxl. Late Sxl expression in D. subobscura produces four transcripts in adult females and males. In males, the transcripts have an additional exon which contains three translational stop codons so that a truncated, presumably nonfunctional Sxl protein is produced. The Sxl pre-mRNA of D. subobscura lacks the poly-U sequence presented at the polypirimidine tract of the 3' splice site of the male-specific exon present in D. melanogaster. Introns 2 and 3 contain the Sxl-binding poly-U stretches, whose localization in intron 2 varies but in intron 3 is conserved. The Sxl protein is fully conserved at the amino acid level in both species. PMID:8978052

  1. DNA Sequencing Reveals the Midgut Microbiota of Diamondback Moth, Plutella xylostella (L.) and a Possible Relationship with Insecticide Resistance

    PubMed Central

    Xia, Xiaofeng; Zheng, Dandan; Zhong, Huanzi; Qin, Bingcai; Gurr, Geoff M.; Vasseur, Liette; Lin, Hailan; Bai, Jianlin; He, Weiyi; You, Minsheng

    2013-01-01

    Background Insect midgut microbiota is important in host nutrition, development and immune response. Recent studies indicate possible links between insect gut microbiota and resistance to biological and chemical toxins. Studies of this phenomenon and symbionts in general have been hampered by difficulties in culture-based approach. In the present study, DNA sequencing was used to examine the midgut microbiota of diamondback moth (DBM), Plutella xylostella (L.), a destructive pest that attacks cruciferous crops worldwide. Its ability to develop resistance to many types of synthetic insecticide and even Bacillus thuringiensis toxins makes it an important species to study. Methodology/Principal Findings Bacteria of the DBM larval midgut in a susceptible and two insecticide (chlorpyrifos and fipronil) resistant lines were examined by Illumina sequencing sampled from an insect generation that was not exposed to insecticide. This revealed that more than 97% of the bacteria were from three orders: Enterobacteriales, Vibrionales and Lactobacillales. Both insecticide-resistant lines had more Lactobacillales and the much scarcer taxa Pseudomonadales and Xanthomonadales with fewer Enterobacteriales compared with the susceptible strain. Consistent with this, a second study observed an increase in the proportion of Lactobacillales in the midgut of DBM individuals from a generation treated with insecticides. Conclusions/Significance This is the first report of high-throughput DNA sequencing of the entire microbiota of DBM. It reveals differences related to inter- and intra-generational exposure to insecticides. Differences in the midgut microbiota among susceptible and insecticide-resistant lines are independent of insecticide exposure in the sampled generations. While this is consistent with the hypothesis that Lactobacillales or other scarcer taxa play a role in conferring DBM insecticide resistance, further studies are necessary to rule out other possibilities. Findings

  2. Dissimilar Regulation of Antimicrobial Proteins in the Midgut of Spodoptera exigua Larvae Challenged with Bacillus thuringiensis Toxins or Baculovirus

    PubMed Central

    Crava, Cristina M.; Jakubowska, Agata K.; Escriche, Baltasar; Herrero, Salvador; Bel, Yolanda

    2015-01-01

    Antimicrobial peptides (AMPs) and lysozymes are the main effectors of the insect immune system, and they are involved in both local and systemic responses. Among local responses, midgut immune reaction plays an important role in fighting pathogens that reach the insect body through the oral route, as do many microorganisms used in pest control. Under this point of view, understanding how insects defend themselves locally during the first phases of infections caused by food-borne pathogens is important to further improve microbial control strategies. In the present study, we analyzed the transcriptional response of AMPs and lysozymes in the midgut of Spodoptera exigua (Lepidoptera: Noctuidae), a polyphagous pest that is commonly controlled by products based on Bacillus thuringiensis (Bt) or baculovirus. First, we comprehensively characterized the transcripts encoding AMPs and lysozymes expressed in S. exigua larval midgut, identifying 35 transcripts that represent the S. exigua arsenal against microbial infection. Secondly, we analyzed their expression in the midgut after ingestion of sub-lethal doses of two different pore-forming B. thuringiensis toxins, Cry1Ca and Vip3Aa, and the S. exigua nucleopolyhedrovirus (SeMNPV). We observed that both Bt toxins triggered a similar, wide and in some cases high transcriptional activation of genes encoding AMPs and lysozymes, which was not reflected in the activation of the classical systemic immune-marker phenoloxidase in hemolymph. Baculovirus ingestion resulted in the opposed reaction: Almost all transcripts coding for AMPs and lysozymes were down-regulated or not induced 96 hours post infection. Our results shed light on midgut response to different virulence factors or pathogens used nowadays as microbial control agents and point out the importance of the midgut immune response contribution to the larval immunity. PMID:25993013

  3. Dissimilar Regulation of Antimicrobial Proteins in the Midgut of Spodoptera exigua Larvae Challenged with Bacillus thuringiensis Toxins or Baculovirus.

    PubMed

    Crava, Cristina M; Jakubowska, Agata K; Escriche, Baltasar; Herrero, Salvador; Bel, Yolanda

    2015-01-01

    Antimicrobial peptides (AMPs) and lysozymes are the main effectors of the insect immune system, and they are involved in both local and systemic responses. Among local responses, midgut immune reaction plays an important role in fighting pathogens that reach the insect body through the oral route, as do many microorganisms used in pest control. Under this point of view, understanding how insects defend themselv