Sample records for adult female offspring

  1. Intrauterine programming mechanism for hypercholesterolemia in prenatal caffeine-exposed female adult rat offspring.

    PubMed

    Xu, Dan; Luo, Hanwen W; Hu, Wen; Hu, Shuwei W; Yuan, Chao; Wang, Guihua H; Zhang, Li; Yu, Hong; Magdalou, Jacques; Chen, Liaobin B; Wang, Hui

    2018-05-02

    Clinical and animal studies have indicated that hypercholesterolemia and its associated diseases have intrauterine developmental origins. Our previous studies showed that prenatal caffeine exposure (PCE) led to fetal overexposure to maternal glucocorticoids (GCs) and increased serum total cholesterol levels in adult rat offspring. This study further confirms the intrauterine programming of PCE-induced hypercholesterolemia in female adult rat offspring. Pregnant Wistar rats were intragastrically administered caffeine (30, 60, and 120 mg/kg/d) from gestational day (GD)9 to 20. Female rat offspring were euthanized at GD20 and postnatal wk 12; several adult rat offspring were additionally subjected to ice-water swimming stimulation to induce chronic stress prior to death. The effects of GCs on cholesterol metabolism and epigenetic regulation were verified using the L02 cell line. The results showed that PCE induced hypercholesterolemia in adult offspring, which manifested as significantly higher levels of serum total cholesterol and LDL cholesterol (LDL-C) as well as higher ratios of LDL-C/HDL cholesterol. We further found that the cholesterol levels were increased in fetal livers but were decreased in fetal blood, accompanied by increased maternal blood cholesterol levels and reduced placental cholesterol transport. Furthermore, analysis of PCE offspring in the uterus and in a postnatal basal/chronic stress state and the results of in vitro experiments showed that hepatic cholesterol metabolism underwent GC-dependent changes and was associated with cholesterol synthase via abnormalities in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) histone acetylation. We concluded that, to compensate for intrauterine placentally derived decreases in fetal blood cholesterol levels, high intrauterine GC levels activated fetal hepatic CCAAT enhancer binding protein α signaling and down-regulated Sirtuin1 expression, which mediated the high levels of histone acetylation ( via H3K9

  2. Maternal postpartum corticosterone and fluoxetine differentially affect adult male and female offspring on anxiety-like behavior, stress reactivity, and hippocampal neurogenesis.

    PubMed

    Gobinath, Aarthi R; Workman, Joanna L; Chow, Carmen; Lieblich, Stephanie E; Galea, Liisa A M

    2016-02-01

    Postpartum depression (PPD) affects approximately 15% of mothers, disrupts maternal care, and can represent a form of early life adversity for the developing offspring. Intriguingly, male and female offspring are differentially vulnerable to the effects of PPD. Antidepressants, such as fluoxetine, are commonly prescribed for treating PPD. However, fluoxetine can reach offspring via breast milk, raising serious concerns regarding the long-term consequences of infant exposure to fluoxetine. The goal of this study was to examine the long-term effects of maternal postpartum corticosterone (CORT, a model of postpartum stress/depression) and concurrent maternal postpartum fluoxetine on behavioral, endocrine, and neural measures in adult male and female offspring. Female Sprague-Dawley dams were treated daily with either CORT or oil and fluoxetine or saline from postnatal days 2-23, and offspring were weaned and left undisturbed until adulthood. Here we show that maternal postpartum fluoxetine increased anxiety-like behavior and impaired hypothalamic-pituitary-adrenal (HPA) axis negative feedback in adult male, but not female, offspring. Furthermore, maternal postpartum fluoxetine increased the density of immature neurons (doublecortin-expressing) in the hippocampus of adult male offspring but decreased the density of immature neurons in adult female offspring. Maternal postpartum CORT blunted HPA axis negative feedback in males and tended to increase density of immature neurons in males but decreased it in females. These results indicate that maternal postpartum CORT and fluoxetine can have long-lasting effects on anxiety-like behavior, HPA axis negative feedback, and adult hippocampal neurogenesis and that adult male and female offspring are differentially affected by these maternal manipulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Perinatal nicotine exposure increases obesity susceptibility by peripheral leptin resistance in adult female rat offspring.

    PubMed

    Zhang, Wan-Xia; Li, Yin-Ping; Fan, Jie; Chen, Hui-Jian; Li, Gai-Ling; Ouyang, Yan-Qiong; Yan, You-E

    2018-02-01

    Maternal nicotine (NIC) exposure causes overweight, hyperleptinemia and metabolic disorders in adult offspring. Our study aims to explore the underlying mechanism of perinatal NIC exposure increases obesity susceptibility in adult female rat offspring. In our model, we found that adult NIC-exposed females presented higher body weight and subcutaneous and visceral fat mass, as well as larger adipocytes, while no change was found in food intake. Serum profile showed a higher serum glucose, insulin and leptin levels in NIC-exposed females. In adipose tissue and liver, the leptin signaling pathway was blocked at 26 weeks, presented lower Janus tyrosine kinase 2 and signal transducer and activator of transcription 3 gene expression, higher suppressor of cytokine signaling 3 gene expression (in adipose tissue) and lower leptin receptors gene expression (in liver), indicating that peripheral leptin resistance occurred in NIC-exposed adult females. In female rats, the expression of lipolysis genes was affected dominantly in adipose tissue, but lipogenesis genes was affected in liver. Furthermore, the glucose and insulin tolerance tests showed a delayed glucose clearance and a higher area under the curve in NIC-exposed females. Therefore, perinatal NIC exposure programed female rats for adipocyte hypertrophy and obesity in adult life, through the leptin resistance in peripheral tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Perinatal Exposure of Mice to the Pesticide DDT Impairs Energy Expenditure and Metabolism in Adult Female Offspring

    PubMed Central

    La Merrill, Michele; Karey, Emma; Moshier, Erin; Lindtner, Claudia; La Frano, Michael R.; Newman, John W.; Buettner, Christoph

    2014-01-01

    Dichlorodiphenyltrichloroethane (DDT) has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE) have an increased prevalence of diabetes and insulin resistance. Here we hypothesize that perinatal exposure to DDT disrupts metabolic programming leading to impaired metabolism in adult offspring. To test this, we administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5 and studied their metabolic phenotype at several ages up to nine months. Perinatal DDT exposure reduced core body temperature, impaired cold tolerance, decreased energy expenditure, and produced a transient early-life increase in body fat in female offspring. When challenged with a high fat diet for 12 weeks in adulthood, female offspring perinatally exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered bile acid metabolism. Perinatal DDT exposure combined with high fat feeding in adulthood further impaired thermogenesis as evidenced by reductions in core temperature and in the expression of numerous RNA that promote thermogenesis and substrate utilization in the brown adipose tissue of adult female mice. These observations suggest that perinatal DDT exposure impairs thermogenesis and the metabolism of carbohydrates and lipids which may increase susceptibility to the metabolic syndrome in adult female offspring. PMID:25076055

  5. Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring.

    PubMed

    Boulle, Fabien; Pawluski, Jodi L; Homberg, Judith R; Machiels, Barbie; Kroeze, Yvet; Kumar, Neha; Steinbusch, Harry W M; Kenis, Gunter; van den Hove, Daniel L A

    2016-04-01

    A growing number of infants are exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. Perinatal exposure to SSRI medications alter neuroplasticity and increase depressive- and anxiety-related behaviors, particularly in male offspring as little work has been done in female offspring to date. The long-term effects of SSRI on development can also differ with previous exposure to prenatal stress, a model of maternal depression. Because of the limited work done on the role of developmental SSRI exposure on neurobehavioral outcomes in female offspring, the aim of the present study was to investigate how developmental fluoxetine exposure affects anxiety and depression-like behavior, as well as the regulation of hippocampal brain-derived neurotrophic factor (BDNF) signaling in the hippocampus of adult female offspring. To do this female Sprague-Dawley rat offspring were exposed to prenatal stress and fluoxetine via the dam, for a total of four groups of female offspring: 1) No Stress+Vehicle, 2) No Stress+Fluoxetine, 3) Prenatal Stress+Vehicle, and 4) Prenatal Stress+Fluoxetine. Primary results show that, in adult female offspring, developmental SSRI exposure significantly increases behavioral despair measures on the forced swim test, decreases hippocampal BDNF exon IV mRNA levels, and increases levels of the repressive histone 3 lysine 27 tri-methylated mark at the corresponding promoter. There was also a significant negative correlation between hippocampal BDNF exon IV mRNA levels and immobility in the forced swim test. No effects of prenatal stress or developmental fluoxetine exposure were seen on tests of anxiety-like behavior. This research provides important evidence for the long-term programming effects of early-life exposure to SSRIs on female offspring, particularily with regard to affect-related behaviors and their underlying molecular mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Perinatal exercise improves glucose homeostasis in adult offspring

    PubMed Central

    Carter, Lindsay G.; Lewis, Kaitlyn N.; Wilkerson, Donald C.; Tobia, Christine M.; Ngo Tenlep, Sara Y.; Shridas, Preetha; Garcia-Cazarin, Mary L.; Wolff, Gretchen; Andrade, Francisco H.; Charnigo, Richard J.; Esser, Karyn A.; Egan, Josephine M.; de Cabo, Rafael

    2012-01-01

    Emerging research has shown that subtle factors during pregnancy and gestation can influence long-term health in offspring. In an attempt to be proactive, we set out to explore whether a nonpharmacological intervention, perinatal exercise, might improve offspring health. Female mice were separated into sedentary or exercise cohorts, with the exercise cohort having voluntary access to a running wheel prior to mating and during pregnancy and nursing. Offspring were weaned, and analyses were performed on the mature offspring that did not have access to running wheels during any portion of their lives. Perinatal exercise caused improved glucose disposal following an oral glucose challenge in both female and male adult offspring (P < 0.05 for both). Blood glucose concentrations were reduced to lower values in response to an intraperitoneal insulin tolerance test for both female and male adult offspring of parents with access to running wheels (P < 0.05 and P < 0.01, respectively). Male offspring from exercised dams showed increased percent lean mass and decreased fat mass percent compared with male offspring from sedentary dams (P < 0.01 for both), but these parameters were unchanged in female offspring. These data suggest that short-term maternal voluntary exercise prior to and during healthy pregnancy and nursing can enhance long-term glucose homeostasis in offspring. PMID:22932781

  7. Older maternal age is associated with depression, anxiety, and stress symptoms in young adult female offspring.

    PubMed

    Tearne, Jessica E; Robinson, Monique; Jacoby, Peter; Allen, Karina L; Cunningham, Nadia K; Li, Jianghong; McLean, Neil J

    2016-01-01

    The evidence regarding older parental age and incidence of mood disorder symptoms in offspring is limited, and that which exists is mixed. We sought to clarify these relationships by using data from the Western Australian Pregnancy Cohort (Raine) Study. The Raine Study provided comprehensive data from 2,900 pregnancies, resulting in 2,868 live born children. A total of 1,220 participants completed the short form of the Depression Anxiety Stress Scale (DASS-21) at the 20-year cohort follow-up. We used negative binomial regression analyses with log link and with adjustment for known perinatal risk factors to examine the extent to which maternal and paternal age at childbirth predicted continuous DASS-21 index scores. In the final multivariate models, a maternal age of 30-34 years was associated with significant increases in stress DASS-21 scores in female offspring relative to female offspring of 25- to 29-year-old mothers. A maternal age of 35 years and over was associated with increased scores on all DASS-21 scales in female offspring. Our results indicate that older maternal age is associated with depression, anxiety, and stress symptoms in young adult females. Further research into the mechanisms underpinning this relationship is needed. (c) 2016 APA, all rights reserved.

  8. Prenatal ethanol exposure programs an increased susceptibility of non-alcoholic fatty liver disease in female adult offspring rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Lang; Liu, Zhongfen; Gong, Jun

    Prenatal ethanol exposure (PEE) induces dyslipidemia and hyperglycemia in fetus and adult offspring. However, whether PEE increases the susceptibility to non-alcoholic fatty liver disease (NAFLD) in offspring and its underlying mechanism remain unknown. This study aimed to demonstrate an increased susceptibility to high-fat diet (HFD)-induced NAFLD and its intrauterine programming mechanisms in female rat offspring with PEE. Rat model of intrauterine growth retardation (IUGR) was established by PEE, the female fetus and adult offspring that fed normal diet (ND) or HFD were sacrificed. The results showed that, in PEE + ND group, serum corticosterone (CORT) slightly decreased and insulin-like growthmore » factor-1 (IGF-1) and glucose increased with partial catch-up growth; In PEE + HFD group, serum CORT decreased, while serum IGF-1, glucose and triglyceride (TG) increased, with notable catch-up growth, higher metabolic status and NAFLD formation. Enhanced liver expression of the IGF-1 pathway, gluconeogenesis, and lipid synthesis as well as reduced expression of lipid output were accompanied in PEE + HFD group. In PEE fetus, serum CORT increased while IGF-1 decreased, with low body weight, hyperglycemia, and hepatocyte ultrastructural changes. Hepatic IGF-1 expression as well as lipid output was down-regulated, while lipid synthesis significantly increased. Based on these findings, we propose a “two-programming” hypothesis for an increased susceptibility to HFD-induced NAFLD in female offspring of PEE. That is, the intrauterine programming of liver glucose and lipid metabolic function is “the first programming”, and postnatal adaptive catch-up growth triggered by intrauterine programming of GC-IGF1 axis acts as “the second programming”. - Highlights: • Prenatal ethanol exposure increase the susceptibility of NAFLD in female offspring. • Prenatal ethanol exposure reprograms fetal liver’s glucose and lipid metabolism . • Prenatal ethanol exposure

  9. Adolescent Female Cannabinoid Exposure Diminishes the Reward-Facilitating Effects of Δ9-Tetrahydrocannabinol and d-Amphetamine in the Adult Male Offspring.

    PubMed

    Pitsilis, George; Spyridakos, Dimitrios; Nomikos, George G; Panagis, George

    2017-01-01

    Marijuana is currently the most commonly abused illicit drug. According to recent studies, cannabinoid use occurring prior to pregnancy can impact brain plasticity and behavior in future generations. The purpose of the present study was to determine whether adolescent exposure of female rats to Δ 9 -tetrahydrocannabinol (Δ 9 -THC) induces transgenerational effects on the reward-facilitating effects of Δ 9 -THC and d -amphetamine in their adult male offspring. Female Sprague-Dawley rats received Δ 9 -THC (0.1 or 1 mg/kg, i.p.) or vehicle during postnatal days 28-50. As adults, females were mated with drug-naïve males. We then assessed potential alterations of the Δ 9 -THC's (0, 0.1, 0.5, and 1 mg/kg, i.p.) and d -amphetamine's (0, 0.1, 0.5, and 1 mg/kg, i.p.) reward-modifying effects using the curve-shift variant of the intracranial self-stimulation (ICSS) procedure in their adult male F1 offspring. The reward-facilitating effect of the 0.1 mg dose of Δ 9 -THC was abolished in the F1 offspring of females that were exposed to Δ 9 -THC (0.1 or 1 mg/kg), whereas the reward-attenuating effect of the 1 mg dose of Δ 9 -THC remained unaltered. The reward-facilitating effects of 0.5 and 1 mg of d -amphetamine were significantly decreased in the F1 offspring of females that were exposed to Δ 9 -THC (1 mg/kg and 0.1 or 1 mg, respectively). The present results reveal that female Δ 9 -THC exposure during adolescence can diminish the reward-facilitating effects of Δ 9 -THC and d -amphetamine in the adult male offspring. These transgenerational effects occur in the absence of in utero exposure. It is speculated that Δ 9 -THC exposure during female adolescence may affect neural mechanisms that are shaping reward-related behavioral responses in a subsequent generation, as indicated by the shifts in the reward-facilitating effects of commonly used and abused drugs.

  10. Maternal exercise during pregnancy promotes physical activity in adult offspring

    PubMed Central

    Eclarinal, Jesse D.; Zhu, Shaoyu; Baker, Maria S.; Piyarathna, Danthasinghe B.; Coarfa, Cristian; Fiorotto, Marta L.; Waterland, Robert A.

    2016-01-01

    Previous rodent studies have shown that maternal voluntary exercise during pregnancy leads to metabolic changes in adult offspring. We set out to test whether maternal voluntary exercise during pregnancy also induces persistent changes in voluntary physical activity in the offspring. Adult C57BL/6J female mice were randomly assigned to be caged with an unlocked (U) or locked (L) running wheel before and during pregnancy. Maternal running behavior was monitored during pregnancy, and body weight, body composition, food intake, energy expenditure, total cage activity, and running wheel activity were measured in the offspring at various ages. U offspring were slightly heavier at birth, but no group differences in body weight or composition were observed at later ages (when mice were caged without access to running wheels). Consistent with our hypothesis, U offspring were more physically active as adults. This effect was observed earlier in female offspring (at sexual maturation). Remarkably, at 300 d of age, U females achieved greater fat loss in response to a 3-wk voluntary exercise program. Our findings show for the first time that maternal physical activity during pregnancy affects the offspring’s lifelong propensity for physical activity and may have important implications for combating the worldwide epidemic of physical inactivity and obesity.—Eclarinal, J. D., Zhu, S., Baker, M. S., Piyarathna, D. B., Coarfa, C., Fiorotto, M. L., Waterland, R. A. Maternal exercise during pregnancy promotes physical activity in adult offspring. PMID:27033262

  11. Elevated paternal glucocorticoid exposure modifies memory retention in female offspring.

    PubMed

    Yeshurun, Shlomo; Rogers, Jake; Short, Annabel K; Renoir, Thibault; Pang, Terence Y; Hannan, Anthony J

    2017-09-01

    Recent studies have demonstrated that behavioral traits are subject to transgenerational modification by paternal environmental factors. We previously reported on the transgenerational influences of increased paternal stress hormone levels on offspring anxiety and depression-related behaviors. Here, we investigated whether offspring sociability and cognition are also influenced by paternal stress. Adult C57BL/6J male mice were treated with corticosterone (CORT; 25mg/L) for four weeks prior to paired-matings to generate F1 offspring. Paternal CORT treatment was associated with decreased body weights of female offspring and a marked reduction of the male offspring. There were no differences in social behavior of adult F1 offspring in the three-chamber social interaction test. Despite male offspring of CORT-treated fathers displaying hyperactivity in the Y-maze, there was no observable difference in short-term spatial working memory. Spatial learning and memory testing in the Morris water maze revealed that female, but not male, F1 offspring of CORT-treated fathers had impaired memory retention. We used our recently developed methodology to analyze the spatial search strategy of the mice during the learning trials and determined that the impairment could not be attributed to underlying differences in search strategy. These results provide evidence for the impact of paternal corticosterone administration on offspring cognition and complement the cumulative knowledge of transgenerational epigenetic inheritance of acquired traits in rodents and humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effects of prenatal caffeine exposure on glucose homeostasis of adult offspring rats

    NASA Astrophysics Data System (ADS)

    Kou, Hao; Wang, Gui-hua; Pei, Lin-guo; Zhang, Li; Shi, Chai; Guo, Yu; Wu, Dong-fang; Wang, Hui

    2017-12-01

    Epidemiological evidences show that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR). The IUGR offspring also present glucose intolerance and type 2 diabetes mellitus after maturity. We have previously demonstrated that PCE induced IUGR and increased susceptibility to adult metabolic syndrome in rats. This study aimed to further investigate the effects of PCE on glucose homeostasis in adult offspring rats. Pregnant rats were administered caffeine (120 mg/kg/day, intragastrically) from gestational days 11 to 20. PCE offspring presented partial catch-up growth pattern after birth, characterizing by the increased body weight gain rates. Meanwhile, PCE had no significant influences on the basal blood glucose and insulin phenotypes of adult offspring but increased the glucose tolerance, glucose-stimulated insulin section and β cell sensitivity to glucose in female progeny. The insulin sensitivity of both male and female PCE offspring were enhanced accompanied with reduced β cell fraction and mass. Western blotting results revealed that significant augmentation in protein expression of hepatic insulin signaling elements of PCE females, including insulin receptor (INSR), insulin receptor substrate 1 (IRS-1) and the phosphorylation of serine-threonine protein kinase (Akt), was also potentiated. In conclusion, we demonstrated that PCE reduced the pancreatic β mass but increased the glucose tolerance in adult offspring rats, especially for females. The adaptive compensatory enhancement of β cell responsiveness to glucose and elevated insulin sensitivity mainly mediated by upregulated hepatic insulin signaling might coordinately contribute to the increased glucose tolerance.

  13. Exposure of Pregnant Mice to Perfluorobutanesulfonate Causes Hypothyroxinemia and Developmental Abnormalities in Female Offspring.

    PubMed

    Feng, Xuejiao; Cao, Xinyuan; Zhao, Shasha; Wang, Xiaoli; Hua, Xu; Chen, Lin; Chen, Ling

    2017-02-01

    Perfluorobutanesulfonate (PFBS) is widely used in many industrial products. We evaluated the influence of prenatal PFBS exposure on perinatal growth and development, pubertal onset, and reproductive and thyroid endocrine system in female mice. Here, we show that when PFBS (200 and 500 mg/kg/day) was orally administered to pregnant mice (PFBS-dams) on days 1-20 of gestation; their female offspring (PFBS-offspring) exhibited decreased perinatal body weight and delayed eye opening compared with control offspring. Vaginal opening and first estrus were also significantly delayed in PFBS-offspring, and diestrus was prolonged. Ovarian and uterine size, as well as follicle and corpus luteum numbers, were reduced in adult PFBS-offspring. Furthermore, pubertal and adult PFBS-offspring exhibited decreases in serum estrogen (E2) and progesterone (P4) levels with the elevation of luteinizing hormone levels. Notably, decreases in serum total thyroxine (T4) and 3,3', 5-triiodothyronine (T3) levels were observed in fetal, pubertal, and adult PFBS-offspring in conjunction with slight increases in thyroid-stimulating hormone (TSH) and thyrotropin-releasing hormone levels. In addition, PFBS-dams exhibited significant decreases in total T4 and T3 levels and free T4 levels and increases in TSH levels, but no changes in E2 and P4 levels. These results indicate that prenatal PFBS exposure (≥200 mg/kg/day) causes permanent hypothyroxinemia accompanied by deficits in perinatal growth, pubertal onset, and reproductive organ development in female mice. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Parental divorce, parental depression, and gender differences in adult offspring suicide attempt.

    PubMed

    Lizardi, Dana; Thompson, Ronald G; Keyes, Katherine; Hasin, Deborah

    2009-12-01

    Research suggests parental divorce during childhood increases risk of suicide attempt for male but not female offspring. The negative impact on offspring associated with parental divorce may be better explained by parental psychopathology, such as depression. We examined whether adult offspring of parental divorce experience elevated risk of suicide attempt, controlling for parental history of depression, and whether the risk varies by the gender of the offspring. Using the 2001 to 2002 National Epidemiologic Survey on Alcohol and Related Conditions (NESARC), the sample consists of respondents who experienced parental divorce (N = 4895). Multivariable regressions controlled for age, race/ethnicity, income, marital status, and parental history of depression. Females living with their fathers were significantly more likely to report lifetime suicide attempts than females living with their mothers, even after controlling for parental depression. Findings suggest that childhood/adolescent parental divorce may have a stronger impact on suicide attempt risk in female offspring than previously recognized.

  15. Parental Divorce, Parental Depression, and Gender Differences in Adult Offspring Suicide Attempt

    PubMed Central

    Lizardi, Dana; Thompson, Ronald G.; Keyes, Katherine; Hasin, Deborah

    2013-01-01

    Research suggests parental divorce during childhood increases risk of suicide attempt for male but not female offspring. The negative impact on offspring associated with parental divorce may be better explained by parental psychopathology, such as depression. We examined whether adult offspring of parental divorce experience elevated risk of suicide attempt, controlling for parental history of depression, and whether the risk varies by the gender of the offspring. Using the 2001 to 2002 National Epidemiologic Survey on Alcohol and Related Conditions (NESARC), the sample consists of respondents who experienced parental divorce (N = 4895). Multivariable regressions controlled for age, race/ethnicity, income, marital status, and parental history of depression. Females living with their fathers were significantly more likely to report lifetime suicide attempts than females living with their mothers, even after controlling for parental depression. Findings suggest that childhood/adolescent parental divorce may have a stronger impact on suicide attempt risk in female offspring than previously recognized. PMID:20010025

  16. Maternal effects on offspring depend on female mating pattern and offspring environment in yellow dung flies.

    PubMed

    Tregenza, Tom; Wedell, Nina; Hosken, David J; Ward, Paul I

    2003-02-01

    Direct costs and benefits to females of multiple mating have been shown to have large effects on female fecundity and longevity in several species. However, with the exception of studies examining genetic benefits of polyandry, little attention has been paid to the possible effects on offspring of multiple mating by females. We propose that nongenetic effects of maternal matings on offspring fitness are best viewed in the same context as other maternal phenotype effects on offspring that are well known even in species lacking parental care. Hence, matings can exert effects on offspring in the same way as other maternal environment variables, and are likely to interact with such effects. We have conducted a study using yellow dung flies (Scathophaga stercoraria), in which we independently manipulated female mating rate, number of mates and maternal thermal environment and measured subsequent fecundity, hatching success, and offspring life-history traits. To distinguish between direct effects of matings and potential genetic benefits of polyandry we split broods and reared offspring at three different temperature regimes. This allowed us to demonstrate that although we could not detect any simple benefits or costs to matings, there are effects of maternal environment on offspring and these effects interact with female mating regime affecting offspring fitness. Such interactions between female phenotype and the costs and benefits of matings have potentially broad implications for understanding female behavior.

  17. Maternal handling during pregnancy reduces DMBA-induced mammary tumorigenesis among female offspring.

    PubMed Central

    Hilakivi-Clarke, L.

    1997-01-01

    The present study investigated whether handling of pregnant rats would affect mammary tumorigenesis in their female offspring. Pregnant Sprague-Dawley rats were injected daily with 0.05 ml of vehicle between days 14 and 20 of gestation or were left undisturbed. Handling did not have any effects on pregnancy or early development of the offspring. The female offspring were administered 10 mg of 7,12-dimethylbenz(a)anthracene (DMBA) at the age of 55 days. The rats whose mothers were handled during pregnancy had a significantly reduced mammary tumour incidence when compared with the offspring of non-handled mothers. Thus, on week 18 after DMBA exposure, 15% of the handled offspring had developed mammary tumours, whereas 44% of the non-handled offspring had tumours. No significant differences in the latency to tumour appearance, in the size of the tumours or in their growth rates were noted. Daily handling performed during post-natal days 5 and 20 produced similar data to that obtained for prenatal handling; on week 18 after DMBA exposure, the mammary tumour incidence among the post-natally handled rats was 22% and among the non-handled rats 44%. Possible deviations in hormonal parameters were also studied in adult female rats exposed in utero to handling. The onset of puberty tended to occur later among the handled offspring, but no differences in the uterine wet weights or serum oestradiol levels between the groups were noted. In conclusion, maternal handling reduced the offspring's risk to develop mammary tumours, and this effect was independent of the oestrogenic environment at adulthood. We propose that handling of a pregnant rat reduces mammary tumorigenesis in her offspring by means of changing the morphology of the mammary gland, the pattern of expression of specific genes and/or immune functions. PMID:9231913

  18. Effect of maternal diabetes on female offspring

    PubMed Central

    Martins, Juliana de Oliveira; Panício, Maurício Isaac; Dantas, Marcos Paulo Suehiro; Gomes, Guiomar Nascimento

    2014-01-01

    Objective To evaluate the effect of maternal diabetes on the blood pressure and kidney function of female offspring, as well as if such changes exacerbate during pregnancy. Methods Diabetes mellitus was induced in female rats with the administration of streptozotocin in a single dose, one week before mating. During pregnancy, blood pressure was measured through plethysmography. On the 20th day of pregnancy, the animals were placed for 24 hours in metabolic cages to obtain urine samples. After the animals were removed from the cages, blood samples were withdrawn. One month after pregnancy, new blood and urine sample were collected. Kidney function was evaluated through proteinuria, plasma urea, plasma creatinine, creatinine excretion rate, urinary flow, and creatinine clearance. Results The female offspring from diabetic mothers showed an increase in blood pressure, and a decrease in glomerular filtration rate in relation to the control group. Conclusion Hyperglycemia during pregnancy was capable of causing an increase in blood pressure and kidney dysfunction in the female offspring. PMID:25628190

  19. The Role of Depression in the Differential Effect of Childhood Parental Divorce on Male and Female Adult Offspring Suicide Attempt Risk

    PubMed Central

    Lizardi, Dana; Thompson, Ronald G.; Keyes, Katherine; Hasin, Deborah

    2013-01-01

    In previous studies by our group, we found that female offspring of parental divorce and parental remarriage are more susceptible to suicide attempt than male offspring. In this study, we examine whether these findings remain even after controlling for offspring depression. The sample consists of respondents from the 2001-2002 National Epidemiologic Survey on Alcohol and Related Conditions. Multivariable regressions controlled for offspring depression, parental depression, age, race/ethnicity, income, and marital status. Our previous findings that female offspring of parental divorce and parental remarriage are more likely to report a lifetime suicide attempt than male offspring remained even after controlling for offspring depression. Findings suggest that focusing on engaging female offspring who demonstrate symptoms of depression is not sufficient to reduce suicide attempt risk in this group as many at risk individuals will remain unrecognized. PMID:20823733

  20. The role of depression in the differential effect of childhood parental divorce on male and female adult offspring suicide attempt risk.

    PubMed

    Lizardi, Dana; Thompson, Ronald G; Keyes, Katherine; Hasin, Deborah

    2010-09-01

    In previous studies by our group, we found that female offspring of parental divorce and parental remarriage are more susceptible to suicide attempt than male offspring. In this study, we examine whether these findings remain even after controlling for offspring depression. The sample consists of respondents from the 2001-2002 National Epidemiologic Survey on Alcohol and Related Conditions. Multivariable regressions controlled for offspring depression, parental depression, age, race/ethnicity, income, and marital status. Our previous findings that female offspring of parental divorce and parental remarriage are more likely to report a lifetime suicide attempt than male offspring remained even after controlling for offspring depression. Findings suggest that focusing on engaging female offspring who demonstrate symptoms of depression is not sufficient to reduce suicide attempt risk in this group as many at risk individuals will remain unrecognized.

  1. Prenatal Gender-Related Nicotine Exposure Increases Blood Pressure Response to Angiotensin II in Adult Offspring

    PubMed Central

    Xiao, DaLiao; Xu, Zhice; Huang, Xiaohui; Longo, Lawrence D.; Yang, Shumei; Zhang, Lubo

    2008-01-01

    Epidemiological studies suggest that maternal cigarette smoking is associated with an increased risk of elevated blood pressure (BP) in postnatal life. The present study tested the hypothesis that prenatal nicotine exposure causes an increase in BP response to angiotensin II (Ang II) in adult offspring. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps throughout the gestation. BP and vascular responses to Ang II were measured in 5-month–old adult offspring. Prenatal nicotine had no effect on baseline BP but significantly increased Ang II–stimulated BP in male but not female offspring. The baroreflex sensitivity was significantly decreased in both male and female offspring. Prenatal nicotine significantly increased arterial media thickness in male but not female offspring. In male offspring, nicotine exposure significantly increased Ang II–induced contractions of aortas and mesenteric arteries. These responses were not affected by inhibition of endothelial NO synthase activity. Losartan blocked Ang II–induced contractions in both control and nicotine-treated animals. In contrast, PD123319 had no effect on Ang II–induced contractions in control but inhibited them in nicotine-treated animals. Nicotine significantly increased Ang II type 1 receptor but decreased Ang II type 2 receptor protein levels, resulting in a significant increase in the ratio of Ang II type 1 receptor/Ang II type 2 receptor in the aorta. Furthermore, the increased contractions of mesenteric arteries were mediated by increases in intracellular Ca2+ concentrations and Ca2+ sensitivity. These results suggest that prenatal nicotine exposure alters vascular function via changes in Ang II receptor–mediated signaling pathways in adult offspring in a gender-specific manner, which may lead to an increased risk of hypertension in male offspring. PMID:18259024

  2. Maternal exposure to cadmium during gestation perturbs the vascular system of the adult rat offspring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronco, Ana Maria, E-mail: amronco@inta.cl; Montenegro, Marcela; Castillo, Paula

    2011-03-01

    Several cardiovascular diseases (CVD) observed in adulthood have been associated with environmental influences during fetal growth. Here, we show that maternal exposure to cadmium, a ubiquitously distributed heavy metal and main component of cigarette smoke is able to induce cardiovascular morpho-functional changes in the offspring at adult age. Heart morphology and vascular reactivity were evaluated in the adult offspring of rats exposed to 30 ppm of cadmium during pregnancy. Echocardiographic examination shows altered heart morphology characterized by a concentric left ventricular hypertrophy. Also, we observed a reduced endothelium-dependent reactivity in isolated aortic rings of adult offspring, while endothelium-independent reactivity remainedmore » unaltered. These effects were associated with an increase of hem-oxygenase 1 (HO-1) expression in the aortas of adult offspring. The expression of HO-1 was higher in females than males, a finding likely related to the sex-dependent expression of the vascular cell adhesion molecule 1 (VCAM-1), which was lower in the adult female. All these long-term consequences were observed along with normal birth weights and absence of detectable levels of cadmium in fetal and adult tissues of the offspring. In placental tissues however, cadmium levels were detected and correlated with increased NF-{kappa}B expression - a transcription factor sensitive to inflammation and oxidative stress - suggesting a placentary mechanism that affect genes related to the development of the cardiovascular system. Our results provide, for the first time, direct experimental evidence supporting that exposure to cadmium during pregnancy reprograms cardiovascular development of the offspring which in turn may conduce to a long term increased risk of CVD.« less

  3. Maternal high-sodium intake alters the responsiveness of the renin-angiotensin system in adult offspring.

    PubMed

    Ramos, Débora R; Costa, Nauilo L; Jang, Karen L L; Oliveira, Ivone B; da Silva, Alexandre A; Heimann, Joel C; Furukawa, Luzia N S

    2012-05-22

    The goal of the current study was to evaluate the impact of maternal sodium intake during gestation on the systemic and renal renin-angiotensin-aldosterone-system (RAAS) of the adult offspring. Female Wistar rats were fed high- (HSD-8.0% NaCl) or normal-sodium diets (NSD-1.3% NaCl) from 8 weeks of age until the delivery of their first litter. After birth, the offspring received NSD. Tail-cuff blood pressure (TcBP) was measured in the offspring between 6 and 12 weeks of age. At 12 weeks of age, the offspring were subjected to either one week of HSD or low sodium diet (LSD-0.16% NaCl) feeding to evaluate RAAS responsiveness or to acute saline overload to examine sodium excretory function. Plasma (PRA) and renal renin content (RRC), serum aldosterone (ALDO) levels, and renal cortical and medullary renin mRNA expression levels were evaluated at the end of the study. TcBP was higher among dams fed HSD, but no TcBP differences were observed among the offspring. Male offspring, however, exhibited increased TcBP after one week of HSD feeding, and this effect was independent of maternal diet. Increased RAAS responsiveness to the HSD and LSD was also observed in male offspring. The baseline levels of PRA, ALDO, and cortical and medullary renin gene expression were lower but the RRC levels were higher among HSD-fed male offspring (HSDoff). Conversely, female HSDoff showed reduced sodium excretion 4 h after saline overload compared with female NSDoff. High maternal sodium intake is associated with gender-specific changes in RAAS responsiveness among adult offspring. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Prenatal ethanol exposure increases osteoarthritis susceptibility in female rat offspring by programming a low-functioning IGF-1 signaling pathway

    PubMed Central

    Ni, Qubo; Tan, Yang; Zhang, Xianrong; Luo, Hanwen; Deng, Yu; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2015-01-01

    Epidemiological evidence indicates that osteoarthritis (OA) and prenatal ethanol exposure (PEE) are both associated with low birth weight but possible causal interrelationships have not been investigated. To investigate the effects of PEE on the susceptibility to OA in adult rats that experienced intrauterine growth retardation (IUGR), and to explore potential intrauterine mechanisms, we established the rat model of IUGR by PEE and dexamethasone, and the female fetus and 24-week-old adult offspring subjected to strenuous running for 6 weeks were sacrificed. Knee joints were collected from fetuses and adult offspring for histochemistry, immunohistochemistry and qPCR assays. Histological analyses and the Mankin score revealed increased cartilage destruction and accelerated OA progression in adult offspring from the PEE group compared to the control group. Immunohistochemistry showed reduced expression of insulin-like growth factor-1 (IGF-1) signaling pathway components. Furthermore, fetuses in the PEE group experienced IUGR but exhibited a higher postnatal growth rate. The expression of many IGF-1 signaling components was downregulated, which coincided with reduced amounts of type II collagen in the epiphyseal cartilage of fetuses in the PEE group. These results suggest that PEE enhances the susceptibility to OA in female adult rat offspring by down-regulating IGF-1 signaling and retarding articular cartilage development. PMID:26434683

  5. Prenatal ethanol exposure increases osteoarthritis susceptibility in female rat offspring by programming a low-functioning IGF-1 signaling pathway

    NASA Astrophysics Data System (ADS)

    Ni, Qubo; Tan, Yang; Zhang, Xianrong; Luo, Hanwen; Deng, Yu; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2015-10-01

    Epidemiological evidence indicates that osteoarthritis (OA) and prenatal ethanol exposure (PEE) are both associated with low birth weight but possible causal interrelationships have not been investigated. To investigate the effects of PEE on the susceptibility to OA in adult rats that experienced intrauterine growth retardation (IUGR), and to explore potential intrauterine mechanisms, we established the rat model of IUGR by PEE and dexamethasone, and the female fetus and 24-week-old adult offspring subjected to strenuous running for 6 weeks were sacrificed. Knee joints were collected from fetuses and adult offspring for histochemistry, immunohistochemistry and qPCR assays. Histological analyses and the Mankin score revealed increased cartilage destruction and accelerated OA progression in adult offspring from the PEE group compared to the control group. Immunohistochemistry showed reduced expression of insulin-like growth factor-1 (IGF-1) signaling pathway components. Furthermore, fetuses in the PEE group experienced IUGR but exhibited a higher postnatal growth rate. The expression of many IGF-1 signaling components was downregulated, which coincided with reduced amounts of type II collagen in the epiphyseal cartilage of fetuses in the PEE group. These results suggest that PEE enhances the susceptibility to OA in female adult rat offspring by down-regulating IGF-1 signaling and retarding articular cartilage development.

  6. Gestational N-hexane inhalation alters the expression of genes related to ovarian hormone production and DNA methylation states in adult female F1 rat offspring.

    PubMed

    Li, Hong; Zhang, Chenyun; Ni, Feng; Guo, Suhua; Wang, Wenxiang; Liu, Jing; Lu, Xiaoli; Huang, Huiling; Zhang, Wenchang

    2015-12-15

    Research has revealed that n-hexane can disrupt adult female endocrine functions; however, few reports have focused on endocrine changes in adult F1 females after maternal exposure during gestation. In this study, female Wistar rats inhaled 100, 500, 2500, or 12,500 ppm n-hexane for 4 h daily during their initial 20 gestational days. The F1 female offspring exhibited abnormal oestrus cycles. Compared with the controls, the in vitro-cultured ovarian granulosa cells of the 12,500 ppm group showed significantly reduced in vitro progesterone and oestradiol secretion. Elevated progesterone secretion was observed in the 500 ppm group, and decreased and significantly upregulated mRNA expression of the Star, Cyp11a1, Cyp17a1, and Hsd3b genes was observed in the 12,500 ppm and 500 ppm groups, respectively. The protein expression levels were consistent with the mRNA expression levels. Methylation screening of the promoter regions of these genes was performed using MeDIP-chip and confirmed by methylation-sensitive high-resolution melting (MS-HRM), and the observed methylation state changes of the promoter regions were correlated with the gene expression levels. The results suggest that the hormone levels in the female offspring after gestational n-hexane inhalation correspond to the expression levels and DNA methylation states of the hormone production genes. Copyright © 2015. Published by Elsevier Ireland Ltd.

  7. Effects of perinatal methylphenidate (MPH) treatment in male and female Sprague-Dawley offspring.

    PubMed

    Panos, John J; Law, C Delbert; Ferguson, Sherry A

    2014-01-01

    MPH is a common treatment for adult Attention Deficit Hyperactivity Disorder (ADHD). However, little information exists regarding its safety during pregnancy and thus, women with ADHD face difficult decisions regarding continued use during pregnancy. Here, Sprague-Dawley rats were orally treated 3 ×/day with 0 (control), 6 (low), 18 (mid), or 42 (high) mg MPH/kg/day (i.e., 0, 2, 6, or 14 mg/kg at each treatment time) on gestational days 6-21. On postnatal days (PNDs) 1-21, all offspring/litter were orally treated 2 ×/day with the same dose. Righting reflex (PNDs 3-6) and slant board performance (PNDs 8-11) were assessed. T3, T4, E2, testosterone, LH and corticosterone were measured at PND 22. Separate pregnant dams and resulting litters were used for serum MPH measurements. MPH treatment had mild, but significant, effects on gestational body weight and food intake. Birth weight of high MPH offspring was 5% more than controls (p<0.0500). Relative to same-sex controls on PNDs 1-22, low and mid MPH males weighed more (p<0.0094), low MPH females weighed more (p<0.0001), while high MPH females weighed less (p<0.0397). PND 22 serum E2 levels were significantly decreased (20-25%) in high MPH males and females (p<0.0500). Behavioral performance was unaffected by treatment. Serum MPH levels of the low MPH pregnant dams were within the range produced by therapeutic MPH doses in adults; however, offspring levels in all groups were substantially higher. These results indicate that developmental MPH treatment has mild effects on gestational body weight and food intake and offspring preweaning body weight. Potential functional consequences of decreased serum E2 levels are not clear, but may impact later behavior or physiology. Published by Elsevier Inc.

  8. Perinatal programming of depressive-like behavior by inflammation in adult offspring mice whose mothers were fed polluted eels: Gender selective effects.

    PubMed

    Soualeh, Nidhal; Dridi, Imen; Eppe, Gauthier; Némos, Christophe; Soulimani, Rachid; Bouayed, Jaouad

    2017-07-01

    Several lines of evidence indicate that early-life inflammation may predispose to mental illness, including depression, in later-life. We investigated the impact of perinatal exposure to polluted eels on neonatal, postnatal, and adult brain inflammation, and on the resignation behavior of male and female adult offspring mice. The effects of maternal standard diet (laboratory food) were compared to the same diet enriched with low, intermediate, or highly polluted eels. Brain inflammatory markers including cytokines were assessed in offspring mice on the day of birth (i.e., on the postnatal day-PND 1), upon weaning (PND 21) and at adulthood (PND 100). Plasma myeloperoxidase and corticosterone levels were evaluated at PND 100. Immobility behavior of offspring was assessed in adulthood (i.e., at PNDs 95-100), using the tail suspension and forced swimming tests. Chronic brain inflammation was found in male and female offspring mice compared to controls, as assessed at PNDs 1, 21, and 100. The level of myeloperoxidase was found to be significantly higher in both adult males and females vs. control offspring. However, high corticosterone levels were only found in male offspring mice that were perinatally exposed to eels, suggesting a gender-selective dysregulation of the adult hypothalamic-pituitaryadrenal (HPA) axis. Gender-specific differences were also detected in adulthood in regard to offspring resignation behavior. Thus, compared to controls, males, but not females, whose mothers were fed eels during pregnancy and lactation exhibited a depressive-like behavior in adult age in both behavioral models of depression. Depressive symptoms were more pronounced in male mice perinatally exposed to either intermediate or highly polluted eels than those exposed to only lowly polluted eels. Our results indicate that early-life inflammatory insult is a plausible causative factor that induces the depressive phenotype exhibited by male adult offspring mice, most likely through a

  9. Exposure to Alumina Nanoparticles in Female Mice During Pregnancy Induces Neurodevelopmental Toxicity in the Offspring.

    PubMed

    Zhang, Qinli; Ding, Yong; He, Kaihong; Li, Huan; Gao, Fuping; Moehling, Taylor J; Wu, Xiaohong; Duncan, Jeremy; Niu, Qiao

    2018-01-01

    Alumina nanoparticles (AlNP) have been shown to accumulate in organs and penetrate biological barriers which lead to toxic effects in many organ systems. However, it is not known whether AlNP exposure to female mice during pregnancy can affect the development of the central nervous system or induce neurodevelopmental toxicity in the offspring. The present study aims to examine the effect of AlNP on neurodevelopment and associated underlying mechanism. ICR strain adult female mice were randomly divided into four groups, which were treated with normal saline (control), 10 μm particle size of alumina (bulk-Al), and 50 and 13 nm AlNP during entire pregnancy period. Aluminum contents in the hippocampus of newborns were measured and neurodevelopmental behaviors were tracked in the offspring from birth to 1 month of age. Furthermore, oxidative stress and neurotransmitter levels were measured in the cerebral cortex of the adolescents. Our results showed that aluminum contents in the hippocampus of newborns in AlNP-treated groups were significantly higher than those in bulk-Al and controls. Moreover, the offspring delivered by AlNP-treated female mice displayed stunted neurodevelopmental behaviors. Finally, the offspring of AlNP-treated mice demonstrated significantly increased anxiety-like behavior with impaired learning and memory performance at 1 month of age. The underlying mechanism could be related to increased oxidative stress and decreased neurotransmitter levels in the cerebral cortex. We therefore conclude that AlNP exposure of female mice during pregnancy can induce neurodevelopmental toxicity in offspring.

  10. Fish oil supplementation of rats during pregnancy reduces adult disease risks in their offspring.

    PubMed

    Joshi, Sadhana; Rao, Shobha; Golwilkar, Ajit; Patwardhan, Manisha; Bhonde, Ramesh

    2003-10-01

    Metabolic programming in utero due to maternal undernutrition is considered to increase the risk of adult diseases in offspring. It is therefore of relevance to investigate how dietary supplementation of specific nutrients can ameliorate the negative effects of maternal malnutrition. We examined the effects of supplementing fish oil or folic acid, both of which are conventional supplements in maternal intervention, on risk factors in the offspring as adults. Pregnant female rats from 4 groups (n = 6/group) were fed casein diets with 18 g/100 g protein (control diet), 12 g/100 g protein supplemented with 8 mg folic acid/kg diet (0.08 mg/kg diet) (FAS), 12 g/100 g protein without folic acid (FAD) or 12 g/100 g protein supplemented with 7 g/100 g fish oil (FOIL). Pups were weaned to a standard laboratory diet with 18 g/100 g protein. Serum glucose, insulin and cholesterol and plasma homocysteine levels were measured in the offspring at 6 and 11 mo of age. Serum glucose in 11-mo-old male and female pups was greater (P < 0.05) in both the FAS (males 2.46 +/- 0.51, females 2.49 +/- 0.29 mmol/L) and FAD groups (2.48 +/- 0.28 and 2.67 +/- 0.41 mmol/L) than in controls (2.03 +/- 0.15 and 2.02 +/- 0.18 mmol/L). Serum insulin concentrations were higher (P < 0.05) in the FAD group (males 1476 +/- 317, females 1441 +/- 220 pmol/L) but were lower in males from the FAS group (483 +/- 165 pmol/L) compared with controls (males 917 +/- 373, females 981 +/- 264 pmol/L). Glucose and insulin concentrations did not differ between the control and FOIL groups. Plasma homocysteine levels were lower (P < 0.05) only in 11-mo-old folate-deficient males; none of the other groups differed from the controls. Maternal supplementation of fish oil to a diet containing marginal protein was beneficial in maintaining circulating glucose, insulin, cholesterol and homocysteine levels in the offspring as adults.

  11. Sugared water consumption by adult offspring of mothers fed a protein-restricted diet during pregnancy results in increased offspring adiposity: the second hit effect.

    PubMed

    Cervantes-Rodríguez, M; Martínez-Gómez, M; Cuevas, E; Nicolás, L; Castelán, F; Nathanielsz, P W; Zambrano, E; Rodríguez-Antolín, J

    2014-02-01

    Poor maternal nutrition predisposes offspring to metabolic disease. This predisposition is modified by various postnatal factors. We hypothesised that coupled to the initial effects of developmental programming due to a maternal low-protein diet, a second hit resulting from increased offspring postnatal sugar consumption would lead to additional changes in metabolism and adipose tissue function. The objective of the present study was to determine the effects of sugared water consumption (5% sucrose in the drinking-water) on adult offspring adiposity as a 'second hit' following exposure to maternal protein restriction during pregnancy. We studied four offspring groups: (1) offspring of mothers fed the control diet (C); (2) offspring of mothers fed the restricted protein diet (R); (3) offspring of control mothers that drank sugared water (C-S); (4) offspring of restricted mothers that drank sugared water (R-S). Maternal diet in pregnancy was considered the first factor and sugared water consumption as the second factor - the second hit. Body weight and total energy consumption, before and after sugared water consumption, were similar in all the groups. Sugared water consumption increased TAG, insulin and cholesterol concentrations in both the sexes of the C-S and R-S offspring. Sugared water consumption increased leptin concentrations in the R-S females and males but not in the R offspring. There was also an interaction between sugared water and maternal diet in males. Sugared water consumption increased adipocyte size and adiposity index in both females and males, but the interaction with maternal diet was observed only in females. Adiposity index and plasma leptin concentrations were positively correlated in both the sexes. The present study shows that a second hit during adulthood can amplify the effects of higher adiposity arising due to poor maternal pregnancy diet in an offspring sex dependent fashion.

  12. Late gestational intermittent hypoxia induces metabolic and epigenetic changes in male adult offspring mice.

    PubMed

    Khalyfa, Abdelnaby; Cortese, Rene; Qiao, Zhuanhong; Ye, Honggang; Bao, Riyue; Andrade, Jorge; Gozal, David

    2017-04-15

    Late gestation during pregnancy has been associated with a relatively high prevalence of obstructive sleep apnoea (OSA). Intermittent hypoxia, a hallmark of OSA, could impose significant long-term effects on somatic growth, energy homeostasis and metabolic function in offspring. Here we show that late gestation intermittent hypoxia induces metabolic dysfunction as reflected by increased body weight and adiposity index in adult male offspring that is paralleled by epigenomic alterations and inflammation in visceral white adipose tissue. Fetal perturbations by OSA during pregnancy impose long-term detrimental effects manifesting as metabolic dysfunction in adult male offspring. Pregnancy, particularly late gestation (LG), has been associated with a relatively high prevalence of obstructive sleep apnoea (OSA). Intermittent hypoxia (IH), a hallmark of OSA, could impose significant long-term effects on somatic growth, energy homeostasis, and metabolic function in offspring. We hypothesized that IH during late pregnancy (LG-IH) may increase the propensity for metabolic dysregulation and obesity in adult offspring via epigenetic modifications. Time-pregnant female C57BL/6 mice were exposed to LG-IH or room air (LG-RA) during days 13-18 of gestation. At 24 weeks, blood samples were collected from offspring mice for lipid profiles and insulin resistance, indirect calorimetry was performed and visceral white adipose tissues (VWAT) were assessed for inflammatory cells as well as for differentially methylated gene regions (DMRs) using a methylated DNA immunoprecipitation on chip (MeDIP-chip). Body weight, food intake, adiposity index, fasting insulin, triglycerides and cholesterol levels were all significantly higher in LG-IH male but not female offspring. LG-IH also altered metabolic expenditure and locomotor activities in male offspring, and increased number of pro-inflammatory macrophages emerged in VWAT along with 1520 DMRs (P < 0.0001), associated with 693

  13. Maternal stress does not exacerbate long-term bone deficits in female rats born growth restricted, with differential effects on offspring bone health.

    PubMed

    Anevska, Kristina; Cheong, Jean N; Wark, John D; Wlodek, Mary E; Romano, Tania

    2018-02-01

    Females born growth restricted have poor adult bone health. Stress exposure during pregnancy increases risk of pregnancy complications. We determined whether maternal stress exposure in growth-restricted females exacerbates long-term maternal and offspring bone phenotypes. On gestational day 18, bilateral uterine vessel ligation (restricted) or sham (control) surgery was performed on Wistar-Kyoto rats. At 4 mo, control and restricted females were mated and allocated to unstressed or stressed pregnancies. Stressed pregnancies had physiological measurements performed; unstressed females were not handled. After birth, mothers were aged to 13 mo. Second-generation (F2) offspring generated four experimental groups: control unstressed, restricted unstressed, control stressed and restricted stressed. F2 offspring were studied at postnatal day 35 (PN35), 6, 12, and 16 mo. Peripheral quantitative computed tomography was performed on maternal and F2 offspring femurs. Restricted females, irrespective of stress during pregnancy, had decreased endosteal circumference, bending strength, and increased osteocalcin concentrations after pregnancy at 13 mo. F2 offspring of stressed mothers were born lighter. F2 male offspring from stressed pregnancies had decreased trabecular content at 6 mo and decreased endosteal circumference at 16 mo. F2 female offspring from growth-restricted mothers had reduced cortical thickness at PN35 and reduced endosteal circumference at 6 mo. At 12 mo, females from unstressed restricted and stressed control mothers had decreased trabecular content. Low birth weight females had long-term bone changes, highlighting programming effects on bone health. Stress during pregnancy did not exacerbate these programmed effects. Male and female offspring responded differently to maternal growth restriction and stress, indicating gender-specific programming effects.

  14. Exercise in obese female rats has beneficial effects on maternal and male and female offspring metabolism

    PubMed Central

    Vega, Claudia C; Reyes-Castro, Luis A; Bautista, Claudia J; Larrea, Fernando; Nathanielsz, Peter W; Zambrano, Elena

    2013-01-01

    BACKGROUND Maternal obesity (MO) impairs maternal and offspring health. Mechanisms and interventions to prevent adverse maternal and offspring outcomes need to be determined. Human studies are confounded by socio-economic status providing the rationale for controlled animal data on effects of maternal exercise (MEx) intervention on maternal (F0) and offspring (F1) outcomes in MO. HYPOTHESIS MO produces metabolic and endocrine dysfunction, increases maternal and offspring glucocorticoid exposure, oxidative stress and adverse offspring outcomes by postnatal day (PND) 36. MEx prevents these outcomes. METHODS F0 female rats ate either control or obesogenic diet from weaning through lactation. Half of each group wheel ran (from day ninety of life through pregnancy beginning day 120) providing four groups (n=8/group) – i) controls, ii) obese, iii) exercised controls and iv) exercised obese. After weaning, PND 21, F1 offspring ate a control diet. Metabolic parameters of F0 prepregnancy and end of lactation and F1 offspring at PND 36 were analyzed. RESULTS Exercise did not change maternal weight. Before breeding, MO elevated F0 glucose, insulin, triglycerides, cholesterol, leptin, fat and oxidative stress. Exercise completely prevented the triglyceride rise and partially glucose, insulin, cholesterol and oxidative stress increases. MO decreased fertility, recovered by exercise. At the end of lactation, exercise returned all metabolic variables except leptin to control levels. Exercise partially prevented MO elevated corticosterone. F1 Offspring weights were similar at birth. At PND 36 MO increased F1 male but not female offspring leptin, triglycerides and fat mass. In controls exercise reduced male and female offspring glucose, prevented the offspring leptin increase and partially the triglyceride rise. CONCLUSIONS MEx before and during pregnancy has beneficial effects on maternal and offspring metabolism and endocrine function occurring with no weight change in mothers

  15. Intermittent prenatal MDMA exposure alters physiological but not mood related parameters in adult rat offspring.

    PubMed

    Adori, Csaba; Zelena, Dóra; Tímár, Júlia; Gyarmati, Zsuzsa; Domokos, Agnes; Sobor, Melinda; Fürst, Zsuzsanna; Makara, Gábor; Bagdy, György

    2010-01-20

    The recreational party drug "ecstasy" (3,4-methylenedioxymethamphetamine MDMA) is particularly popular among young adults who are in the childbearing age and thus there is a substantial risk of prenatal MDMA exposure. We applied an intermittent treatment protocol with an early first injection on pregnant Wistar rats (15 mg/kg MDMA s.c. on the E4, E11 and E18 days of gestation) to examine the potential physiological, endocrine and behavioral effects on adult male and female offspring. Prenatal MDMA-treatment provoked reduced body weight of offspring from the birth as far as the adulthood. Adult MDMA-offspring had a reduced blood-glucose concentration and hematocrit, altered relative spleen and thymus weight, had lower performance on wire suspension test and on the first trial of rotarod test. In contrast, no alteration in the locomotor activity was found. Anxiety and depression related behavioral parameters in elevated plus maze, sucrose preference or forced swimming tests were normal. MDMA-offspring had elevated concentration of the ACTH-precursor proopiomelanocortin and male MDMA-offspring exhibited elevated blood corticosterone concentration. No significant alteration was detected in the serotonergic marker tryptophan-hydroxylase and the catcholaminergic marker tyrosine-hydroxylase immunoreactive fiber densities in MDMA-offspring. The mothers exhibited reduced densities of serotonergic but not catecholaminergic fibers after the MDMA treatment. Our findings suggest that an intermittent prenatal MDMA exposure with an early first injection and a relatively low cumulative dose provokes mild but significant alterations in physical-physiological parameters and reduces motor skill learning in adulthood. In contrast, these adult offspring do not produce anxiety or depression like behavior.

  16. Transgenerational epigenetic effects of the endocrine disruptor vinclozolin on pregnancies and female adult onset disease.

    PubMed

    Nilsson, Eric E; Anway, Matthew D; Stanfield, Jacob; Skinner, Michael K

    2008-05-01

    Endocrine disruptor exposure during gonadal sex determination was previously found to induce male rat adult onset transgenerational disease (F1-F4 generation), and this was associated with an alteration in the epigenetic (i.e., DNA methylation) programming of the male germ line. The current study was designed to characterize the transgenerational disease phenotypes of the female adult offspring. Pregnant rats (F0 generation) were treated transiently with vinclozolin (i.e., fungicide with anti-androgenic activity) on embryonic (E) days E8-E14 of gestation. F1 control and vinclozolin generation offspring from different litters were mated to produce F2 offspring, and similarly F2 generation animals produced F3 generation offspring. Observations demonstrated that 9 out of 105 pregnant rats (8.6%) from the vinclozolin F1-F3 generations exhibited uterine hemorrhage and/or anemia late in pregnancy. None (0 out of 82) of the control F1-F3 generation females had similar pregnancy problems. Complete blood cell counts and serum chemistry profiles demonstrated that selected vinclozolin generation animals, but not controls, exhibited marked regenerative anemia in late pregnancy. Examination of kidney histology revealed moderate or severe glomerular abnormalities in 67% of the vinclozolin F2 and F3 generation adult females compared with 18% of the controls. Adult female vinclozolin generation animals also developed various types of tumors in 6.5% of the animals (11 out of 170), while 2% of control-line animals (3 out of 151) developed mammary tumors. Observations demonstrate that vinclozolin exposure during gonadal sex determination promotes a transgenerational increase in pregnancy abnormalities and female adult onset disease states.

  17. Transgenerational epigenetic effects of the endocrine disruptor vinclozolin on pregnancies and female adult onset disease

    PubMed Central

    Nilsson, Eric E; Anway, Matthew D; Stanfield, Jacob; Skinner, Michael K

    2017-01-01

    Endocrine disruptor exposure during gonadal sex determination was previously found to induce male rat adult onset transgenerational disease (F1–F4 generation), and this was associated with an alteration in the epigenetic (i.e., DNA methylation) programming of the male germ line. The current study was designed to characterize the transgenerational disease phenotypes of the female adult offspring. Pregnant rats (F0 generation) were treated transiently with vinclozolin (i.e., fungicide with anti-androgenic activity) on embryonic (E) days E8–E14 of gestation. F1 control and vinclozolin generation offspring from different litters were mated to produce F2 offspring, and similarly F2 generation animals produced F3 generation offspring. Observations demonstrated that 9 out of 105 pregnant rats (8.6%) from the vinclozolin F1–F3 generations exhibited uterine hemorrhage and/or anemia late in pregnancy. None (0 out of 82) of the control F1–F3 generation females had similar pregnancy problems. Complete blood cell counts and serum chemistry profiles demonstrated that selected vinclozolin generation animals, but not controls, exhibited marked regenerative anemia in late pregnancy. Examination of kidney histology revealed moderate or severe glomerular abnormalities in 67% of the vinclozolin F2 and F3 generation adult females compared with 18% of the controls. Adult female vinclozolin generation animals also developed various types of tumors in 6.5% of the animals (11 out of 170), while 2% of control-line animals (3 out of 151) developed mammary tumors. Observations demonstrate that vinclozolin exposure during gonadal sex determination promotes a transgenerational increase in pregnancy abnormalities and female adult onset disease states. PMID:18304984

  18. Constraints on the adult-offspring size relationship in protists.

    PubMed

    Caval-Holme, Franklin; Payne, Jonathan; Skotheim, Jan M

    2013-12-01

    The relationship between adult and offspring size is an important aspect of reproductive strategy. Although this filial relationship has been extensively examined in plants and animals, we currently lack comparable data for protists, whose strategies may differ due to the distinct ecological and physiological constraints on single-celled organisms. Here, we report measurements of adult and offspring sizes in 3888 species and subspecies of foraminifera, a class of large marine protists. Foraminifera exhibit a wide range of reproductive strategies; species of similar adult size may have offspring whose sizes vary 100-fold. Yet, a robust pattern emerges. The minimum (5th percentile), median, and maximum (95th percentile) offspring sizes exhibit a consistent pattern of increase with adult size independent of environmental change and taxonomic variation over the past 400 million years. The consistency of this pattern may arise from evolutionary optimization of the offspring size-fecundity trade-off and/or from cell-biological constraints that limit the range of reproductive strategies available to single-celled organisms. When compared with plants and animals, foraminifera extend the evidence that offspring size covaries with adult size across an additional five orders of magnitude in organism size. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  19. Mother knows best: dominant females determine offspring dispersal in red foxes (Vulpes vulpes).

    PubMed

    Whiteside, Helen M; Dawson, Deborah A; Soulsbury, Carl D; Harris, Stephen

    2011-01-01

    Relatedness between group members is central to understanding the causes of animal dispersal. In many group-living mammals this can be complicated as extra-pair copulations result in offspring having varying levels of relatedness to the dominant animals, leading to a potential conflict between male and female dominants over offspring dispersal strategies. To avoid resource competition and inbreeding, dominant males might be expected to evict unrelated males and related females, whereas the reverse strategy would be expected for dominant females. We used microsatellites and long-term data from an urban fox (Vulpes vulpes) population to compare dispersal strategies between offspring with intra- and extra-group fathers and mothers of differing social status in red foxes. Relatedness to the dominant male had no effect on dispersal in offspring of either sex, whereas there was a strong effect of relatedness to resident females on offspring dispersal independent of population density. Males with dominant mothers dispersed significantly more often than males with subordinate mothers, whereas dispersing females were significantly more likely to have subordinate mothers compared to philopatric females. This is the first study to demonstrate that relatedness to resident females is important in juvenile dispersal in group-living mammals. Male dispersal may be driven by inbreeding avoidance, whereas female dispersal appears to be influenced by the fitness advantages associated with residing with the same-sex dominant parent. Selection pressure for paternal influence on offspring dispersal is low due to the limited costs associated with retaining unrelated males and the need for alternative inbreeding avoidance mechanisms between the dominant male and his female offspring. These findings have important implications for the evolution of dispersal and group living in social mammals, and our understanding of a key biological process.

  20. Young adult's attachment style as a partial mediator between maternal functioning and young adult offsprings' functioning.

    PubMed

    Ruiz, Sarah K; Harris, Susan J; Martinez, Pedro; Gold, Philip M; Klimes-Dougan, Bonnie

    2018-05-01

    The quality of our early attachment relationships with primary caregivers is carried forward to new developmental domains, including interpersonal contexts in adulthood. One of the factors that can disrupt early attachment is maternal depression, which may be associated with less responsive care and may impede the development of a secure attachment. Moreover, this disruption in secure attachment may act as a mechanism by which offspring of depressed mothers are more likely to experience their own psychopathology. In this study we predicted that attachment anxiety and avoidance would mediate the relationship between maternal depression diagnosis and functional impairment predicting young adult offspring's functional impairment. This study utilized longitudinal data from 98 families with clinically diagnosed depressed and well mothers, and two of their young adult children, an older and younger sibling (N = 123, Female = 75, Mage = 22.09, SD = 2.57). Mother's and young adult children's functioning was based on clinical ratings on the Global Assessment Scale. Attachment was based on the young adult's self-report on the Experiences in Close Relationships. Results indicate that maternal diagnosis and functional impairment predicted offspring's functional impairment. This relationship was partially mediated through offspring's attachment anxiety, but not attachment avoidance. The mediator and outcome variable were measured concurrently, thus causal implications are limited. Our study provides critical evidence that early experiences with depressed mothers may have influence into young adulthood in typical and atypical domains of development. This work extends our understanding of the impact of early experiences in long-term development, and may have treatment implications for intervening on both maternal and romantic relationships to improve attachment. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Female sociality and sexual conflict shape offspring survival in a Neotropical primate.

    PubMed

    Kalbitzer, Urs; Bergstrom, Mackenzie L; Carnegie, Sarah D; Wikberg, Eva C; Kawamura, Shoji; Campos, Fernando A; Jack, Katharine M; Fedigan, Linda M

    2017-02-21

    Most mammals live in social groups in which members form differentiated social relationships. Individuals may vary in their degree of sociality, and this variation can be associated with differential fitness. In some species, for example, female sociality has a positive effect on infant survival. However, investigations of such cases are still rare, and no previous study has considered how male infanticide might constrain effects of female sociality on infant survival. Infanticide is part of the male reproductive strategy in many mammals, and it has the potential to override, or even reverse, effects of female reproductive strategies, including sociality. Therefore, we investigated the relationships between female sociality, offspring survival, and infanticide risk in wild white-faced capuchin monkeys using long-term data from Santa Rosa, Costa Rica. Female capuchins formed differentiated bonds, and bond strength was predicted by kin relationship, rank difference, and the presence of female infants. Most females formed stable bonds with their top social partners, although bond stability varied considerably. Offspring of highly social females, who were often high-ranking females, exhibited higher survivorship during stable periods compared with offspring of less social females. However, offspring of highly social females were more likely to die or disappear during periods of alpha male replacements, probably because new alpha males are central to the group, and therefore more likely to target the infants of highly social, central females. This study shows that female sociality in mammals can have negative fitness consequences that are imposed by male behavior.

  2. Influencing factors, underlying mechanism and interactions affecting hypercholesterolemia in adult offspring with caffeine exposure during pregnancy.

    PubMed

    Guo, Yitian; Luo, Hanwen; Wu, Yimeng; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2018-05-22

    Epidemiological surveys suggest that adult hypercholesterolemia has an intrauterine origin and exhibits gender differences. Our previous study demonstrated that adult rats with intrauterine growth retardation (IUGR) offspring rats induced by prenatal caffeine exposure (PCE) had a higher serum total cholesterol (TCH) level. In this study, we aimed to analyze the influencing factors, underlying mechanism and interactions affecting hypercholesterolemia in adult offspring with caffeine exposure during pregnancy. Pregnant rats were administered caffeine (120 mg/kg d) from gestational day 11 until delivery. Offspring rats fed a normal diet or a high-fat diet (HFD) were euthanized at postnatal week 24, and blood and liver samples were collected. The results showed that PCE could increase the serum levels of TCH and low-density lipoprotein-cholesterol (LDL-C), and the hepatic expression of HMG CoA reductase (HMGCR) and apolipoprotein B (ApoB), but decreased the high-density lipoprotein-cholesterol (HDL-C) level and the hepatic expression of scavenger receptor B1 (SR-B1) and LDL receptor (LDLR). Furthermore, PCE, HFD and gender interact with each other to influence the serum cholesterol phenotype and expression of hepatic cholesterol metabolic genes. These results suggest that the hypercholesterolemia in adult offspring rats induced by PCE mainly resulted from enhanced synthesis and the weakened reverse transport of cholesterol in the liver, furthermore HFD could aggravate this effect, which is caused by hepatic cholesterol metabolic disorders. Moreover, cholesterol metabolism in female rats was more sensitive to neuroendocrine changes and HFD than that in males. This study confirmed the influencing factors (such as a HFD and female gender) of hypercholesterolemia in IUGR offspring providing theoretical and experimental bases for the effective prevention of fetal-originated hypercholesterolemia. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Female sociality and sexual conflict shape offspring survival in a Neotropical primate

    PubMed Central

    Kalbitzer, Urs; Bergstrom, Mackenzie L.; Carnegie, Sarah D.; Wikberg, Eva C.; Kawamura, Shoji; Campos, Fernando A.; Jack, Katharine M.; Fedigan, Linda M.

    2017-01-01

    Most mammals live in social groups in which members form differentiated social relationships. Individuals may vary in their degree of sociality, and this variation can be associated with differential fitness. In some species, for example, female sociality has a positive effect on infant survival. However, investigations of such cases are still rare, and no previous study has considered how male infanticide might constrain effects of female sociality on infant survival. Infanticide is part of the male reproductive strategy in many mammals, and it has the potential to override, or even reverse, effects of female reproductive strategies, including sociality. Therefore, we investigated the relationships between female sociality, offspring survival, and infanticide risk in wild white-faced capuchin monkeys using long-term data from Santa Rosa, Costa Rica. Female capuchins formed differentiated bonds, and bond strength was predicted by kin relationship, rank difference, and the presence of female infants. Most females formed stable bonds with their top social partners, although bond stability varied considerably. Offspring of highly social females, who were often high-ranking females, exhibited higher survivorship during stable periods compared with offspring of less social females. However, offspring of highly social females were more likely to die or disappear during periods of alpha male replacements, probably because new alpha males are central to the group, and therefore more likely to target the infants of highly social, central females. This study shows that female sociality in mammals can have negative fitness consequences that are imposed by male behavior. PMID:28167774

  4. Transgenerational effects of adolescent nicotine exposure in rats: Evidence for cognitive deficits in adult female offspring.

    PubMed

    Renaud, Samantha M; Fountain, Stephen B

    2016-01-01

    This study investigated whether adolescent nicotine exposure in one generation of rats would impair the cognitive capacity of a subsequent generation. Male and female rats in the parental F0 generation were given twice-daily i.p. injections of either 1.0mg/kg nicotine or an equivalent volume of saline for 35days during adolescence on postnatal days 25-59 (P25-59). After reaching adulthood, male and female nicotine-exposed rats were paired for breeding as were male and female saline control rats. Only female offspring were used in this experiment. Half of the offspring of F0 nicotine-exposed breeders and half of the offspring of F0 saline control rats received twice-daily i.p. injections of 1.0mg/kg nicotine during adolescence on P25-59. The remainder of the rats received twice-daily saline injections for the same period. To evaluate transgenerational effects of nicotine exposure on complex cognitive learning abilities, F1 generation rats were trained to perform a highly structured serial pattern in a serial multiple choice (SMC) task. Beginning on P95, rats in the F1 generation were given either 4days of massed training (20patterns/day) followed by spaced training (10 patterns/day) or only spaced training. Transgenerational effects of adolescent nicotine exposure were observed as greater difficulty in learning a "violation element" of the pattern, which indicated that rats were impaired in the ability to encode and remember multiple sequential elements as compound or configural cues. The results indicated that for rats that received massed training, F1 generation rats with adolescent nicotine exposure whose F0 generation parents also experienced adolescent nicotine exposure showed poorer learning of the violation element than rats that experienced adolescent nicotine exposure only in the F1 generation. Thus, adolescent nicotine exposure in one generation of rats produced a cognitive impairment in the next generation. Copyright © 2016 Elsevier Inc. All rights

  5. Hyperglycaemia in pregnant rats causes sex-related vascular dysfunction in adult offspring: role of cyclooxygenase-2.

    PubMed

    de Sá, Francine Gomes; de Queiroz, Diego Barbosa; Ramos-Alves, Fernanda Elizabethe; Santos-Rocha, Juliana; da Silva, Odair Alves; Moreira, Hicla Stefany; Leal, Geórgia Andrade; da Rocha, Marcelo Aurélio; Duarte, Gloria Pinto; Xavier, Fabiano Elias

    2017-08-01

    What is the central question of this study? Hyperglycaemia during pregnancy induces vascular dysfunction and hypertension in male offspring. Given that female offspring from other fetal programming models are protected from the effects of fetal insult, the present study investigated whether there are sex differences in blood pressure and vascular function in hyperglycaemia-programmed offspring. What is the main finding and its importance? We demonstrated that hyperglycaemia in pregnant rats induced vascular dysfunction and hypertension only in male offspring. We found sex differences in oxidative stress and cyclooxygenase-2-derived prostanoid production that might underlie the vascular dysfunction. These differences, particularly in resistance arteries, may in part explain the absence of hypertension in female offspring born to hyperglycaemic dams. Exposure to maternal hyperglycaemia induces hypertension and vascular dysfunction in adult male offspring. Given that female offspring from several fetal programming models are protected from the effects of fetal insult, in this study we analysed possible differences relative to sex in blood pressure and vascular function in hyperglycaemia-programmed offspring. Hyperglycaemia was induced on day 7 of gestation (streptozotocin, 50 mg kg -1 ). Blood pressure, acetylcholine and phenylephrine or noradrenaline responses were analysed in the aorta and mesenteric resistance arteries of 3-, 6- and 12-month-old male and female offspring. Thromboxane A 2 release was analysed with commercial kits and superoxide anion (O 2 - ) production by dihydroethidium-emitted fluorescence. Male but not female offspring of hyperglycaemic dams (O-DR) had higher blood pressure than control animals (O-CR). Contraction in response to phenylephrine increased and relaxation in response to acetylcholine decreased only in the aorta from 12-month-old male O-DR and not in age-matched O-CR. Contractile and vasodilator responses were preserved in both the

  6. Maternal periodontal disease in rats decreases insulin sensitivity and insulin signaling in adult offspring.

    PubMed

    Shirakashi, Daisy J; Leal, Rosana P; Colombo, Natalia H; Chiba, Fernando Y; Garbin, Cléa A S; Jardim, Elerson G; Antoniali, Cristina; Sumida, Doris H

    2013-03-01

    Periodontal disease during pregnancy has been recognized as one of the causes of preterm and low-birth-weight (PLBW) babies. Several studies have demonstrated that PLBW babies are prone to developing insulin resistance as adults. Although there is controversy over the association between periodontal disease and PLBW, the phenomenon known as programming can translate any stimulus or aggression experienced during intrauterine growth into physiologic and metabolic alterations in adulthood. The purpose of the present study is to investigate whether the offspring of rats with periodontal disease develop insulin resistance in adulthood. Ten female Wistar rats were divided into periodontal disease (PED) and control (CN) groups. All rats were mated at 7 days after induction of periodontal disease. Male offspring were divided into two groups: 1) periodontal disease offspring (PEDO; n = 24); and 2) control offspring (CNO; n = 24). Offspring body weight was measured from birth until 75 days. When the offspring reached 75 days old, the following parameters were measured: 1) plasma concentrations of glucose, insulin, fructosamine, lipase, amylase, and tumor necrosis factor-α (TNF-α); 2) insulin sensitivity (IS); and 3) insulin signal transduction (IST) in insulin-sensitive tissues. Low birth weight was not detected in the PEDO group. However, plasma concentrations of glucose, insulin, fructosamine, lipase, amylase, and TNF-α were increased and IS and IST were reduced (P <0.05) in the PEDO group compared with the CNO group. Maternal periodontal disease may induce insulin resistance and reduce IST in adult offspring, but such alterations are not attributable to low birth weight.

  7. Prenatal zinc reduces stress response in adult rat offspring exposed to lipopolysaccharide during gestation.

    PubMed

    Galvão, Marcella C; Chaves-Kirsten, Gabriela P; Queiroz-Hazarbassanov, Nicolle; Carvalho, Virgínia M; Bernardi, Maria M; Kirsten, Thiago B

    2015-01-01

    Previous investigations by our group have shown that prenatal treatment with lipopolysaccharide (LPS; 100 μg/kg, intraperitoneally) on gestation day (GD) 9.5 in rats, which mimics infections by Gram-negative bacteria, induces short- and long-term behavioral and neuroimmune changes in the offspring. Because LPS induces hypozincemia, dams were treated with zinc after LPS in an attempt to prevent or ameliorate the impairments induced by prenatal LPS exposure. LPS can also interfere with hypothalamic-pituitary-adrenal (HPA) axis development; thus, behavioral and neuroendocrine parameters linked to HPA axis were evaluated in adult offspring after a restraint stress session. We prenatally exposed Wistar rats to LPS (100 μg/kg, intraperitoneally, on GD 9.5). One hour later they received zinc (ZnSO4, 2 mg/kg, subcutaneously). Adult female offspring that were in metestrus/diestrus were submitted to a 2 h restraint stress session. Immediately after the stressor, 22 kHz ultrasonic vocalizations, open field behavior, serum corticosterone and brain-derived neurotrophic factor (BDNF) levels, and striatal and hypothalamic neurotransmitter and metabolite levels were assessed. Offspring that received prenatal zinc after LPS presented longer periods in silence, increased locomotion, and reduced serum corticosterone and striatal norepinephrine turnover compared with rats treated with LPS and saline. Prenatal zinc reduced acute restraint stress response in adult rats prenatally exposed to LPS. Our findings suggest a potential beneficial effect of prenatal zinc, in which the stress response was reduced in offspring that were stricken with infectious/inflammatory processes during gestation. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Gestational and Lactational Exposure to Atrazine via the Drinking Water Causes Specific Behavioral Deficits and Selectively Alters Monoaminergic Systems in C57BL/6 Mouse Dams, Juvenile and Adult Offspring

    PubMed Central

    Krishna, Saritha; Ye, Xiaoqin; Filipov, Nikolay M.

    2014-01-01

    Atrazine (ATR) is one of the most frequently detected pesticides in the U.S. water supply. This study aimed to investigate neurobehavioral and neurochemical effects of ATR in C57BL/6 mouse offspring and dams exposed to a relatively low (3 mg/l, estimated intake 1.4 mg/kg/day) concentration of ATR via the drinking water (DW) from gestational day 6 to postnatal day (PND) 23. Behavioral tests included open field, pole, grip strength, novel object recognition (NOR), forced swim, and marble burying tests. Maternal weight gain and offspring (PND21, 35, and 70) body or brain weights were not affected by ATR. However, ATR-treated dams exhibited decreased NOR performance and a trend toward hyperactivity. Juvenile offspring (PND35) from ATR-exposed dams were hyperactive (both sexes), spent less time swimming (males), and buried more marbles (females). In adult offspring (PND70), the only behavioral change was a sex-specific (females) decreased NOR performance by ATR. Neurochemically, a trend toward increased striatal dopamine (DA) in dams and a significant increase in juvenile offspring (both sexes) was observed. Additionally, ATR exposure decreased perirhinal cortex serotonin in the adult female offspring. These results suggest that perinatal DW exposure to ATR targets the nigrostriatal DA pathway in dams and, especially, juvenile offspring, alters dams’ cognitive performance, induces sex-selective changes involving motor and emotional functions in juvenile offspring, and decreases cognitive ability of adult female offspring, with the latter possibly associated with altered perirhinal cortex serotonin homeostasis. Overall, ATR exposure during gestation and lactation may cause adverse nervous system effects to both offspring and dams. PMID:24913803

  9. Maternal exercise during pregnancy promotes physical activity in adult offspring

    USDA-ARS?s Scientific Manuscript database

    Previous rodent studies have shown that maternal voluntary exercise during pregnancy leads to metabolic changes in adult offspring. We set out to test whether maternal voluntary exercise during pregnancy also induces persistent changes in voluntary physical activity in the offspring. Adult C57BL/6J ...

  10. Arsenite in drinking water produces glucose intolerance in pregnant rats and their female offspring.

    PubMed

    Bonaventura, María Marta; Bourguignon, Nadia Soledad; Bizzozzero, Marianne; Rodriguez, Diego; Ventura, Clara; Cocca, Claudia; Libertun, Carlos; Lux-Lantos, Victoria Adela

    2017-02-01

    Drinking water is the main source of arsenic exposure. Chronic exposure has been associated with metabolic disorders. Here we studied the effects of arsenic on glucose metabolism, in pregnant and post-partum of dams and their offspring. We administered 5 (A5) or 50 (A50) mg/L of sodium arsenite in drinking water to rats from gestational day 1 (GD1) until two months postpartum (2MPP), and to their offspring from weaning until 8 weeks old. Liver arsenic dose-dependently increased in arsenite-treated rats to levels similar to exposed population. Pregnant A50 rats gained less weight than controls and recovered normal weight at 2MPP. Arsenite-treated pregnant animals showed glucose intolerance on GD16-17, with impaired insulin secretion but normal insulin sensitivity; they showed dose-dependent increased pancreas insulin on GD18. All alterations reverted at 2MPP. Offspring from A50-treated mothers showed lower body weight at birth, 4 and 8 weeks of age, and glucose intolerance in adult females, probably due to insulin secretion and sensitivity alterations. Arsenic alters glucose homeostasis during pregnancy by altering beta-cell function, increasing risk of developing gestational diabetes. In pups, it induces low body weight from birth to 8 weeks of age, and glucose intolerance in females, demonstrating a sex specific response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Female partner preferences enhance offspring ability to survive an infection.

    PubMed

    Raveh, Shirley; Sutalo, Sanja; Thonhauser, Kerstin E; Thoß, Michaela; Hettyey, Attila; Winkelser, Friederike; Penn, Dustin J

    2014-01-23

    It is often suggested that mate choice enhances offspring immune resistance to infectious diseases. To test this hypothesis, we conducted a study with wild-derived house mice (Mus musculus musculus) in which females were experimentally mated either with their preferred or non-preferred male, and their offspring were infected with a mouse pathogen, Salmonella enterica (serovar Typhimurium). We found that offspring sired by preferred males were significantly more likely to survive the experimental infection compared to those sired by non-preferred males. We found no significant differences in the pathogen clearance or infection dynamics between the infected mice, suggesting that offspring from preferred males were better able to cope with infection and had improved tolerance rather than immune resistance. Our results provide the first direct experimental evidence within a single study that partner preferences enhance offspring resistance to infectious diseases.

  12. Maternal folic acid supplementation to dams on marginal protein level alters brain fatty acid levels of their adult offspring.

    PubMed

    Rao, Shobha; Joshi, Sadhana; Kale, Anvita; Hegde, Mahabaleshwar; Mahadik, Sahebarao

    2006-05-01

    Studies on fetal programming of adult diseases have highlighted the importance of maternal nutrition during pregnancy. Folic acid and long-chain essential polyunsaturated fatty acids (LC-PUFAs) have independent effects on fetal growth. However, folic acid effects may also involve alteration of LC-PUFA metabolism. Because marginal deficiency of LC-PUFAs during critical periods of brain growth and development is associated with risks for adult diseases, it is highly relevant to investigate how maternal supplementation of such nutrients can alter brain fatty acid levels. We examined the impact of folic acid supplementation, conventionally used in maternal intervention, on brain essential fatty acid levels and plasma corticosterone concentrations in adult offspring at 11 months of age. Pregnant female rats from 4 groups (6 in each) were fed with casein diets either with 18 g protein/100 g diet (control diet) or treatment diets that were marginal in protein (MP), such as 12 g protein/100 g diet supplemented with 8 mg folic acid (FAS/MP), 12 g protein/100 g diet without folic acid (FAD/MP), or 12 g protein/100 g diet (MP) with 2 mg folic acid. Pups were weaned to a standard laboratory diet with 18 g protein/100 g diet. All male adult offspring in the FAS/MP group showed lower docosahexaenoic acid (P<.05) as compared with control adult offspring (6.04+/-2.28 vs 10.33+/-0.86 g/100 g fatty acids) and higher n-6/n-3 ratio (P<.05). Docosahexaenoic acid levels in FAS/MP adult offspring were also lower (P<.05) when compared with the MP group. Plasma corticosterone concentrations were higher (P<.05) in male adult offspring from the FAS/MP group compared with control as well as the MP adult offspring. Results suggest that maternal folic acid supplementation at MP intake decreased brain docosahexaenoic acid levels probably involving corticosterone increase.

  13. Gestational and lactational exposure to atrazine via the drinking water causes specific behavioral deficits and selectively alters monoaminergic systems in C57BL/6 mouse dams, juvenile and adult offspring.

    PubMed

    Lin, Zhoumeng; Dodd, Celia A; Xiao, Shuo; Krishna, Saritha; Ye, Xiaoqin; Filipov, Nikolay M

    2014-09-01

    Atrazine (ATR) is one of the most frequently detected pesticides in the U.S. water supply. This study aimed to investigate neurobehavioral and neurochemical effects of ATR in C57BL/6 mouse offspring and dams exposed to a relatively low (3 mg/l, estimated intake 1.4 mg/kg/day) concentration of ATR via the drinking water (DW) from gestational day 6 to postnatal day (PND) 23. Behavioral tests included open field, pole, grip strength, novel object recognition (NOR), forced swim, and marble burying tests. Maternal weight gain and offspring (PND21, 35, and 70) body or brain weights were not affected by ATR. However, ATR-treated dams exhibited decreased NOR performance and a trend toward hyperactivity. Juvenile offspring (PND35) from ATR-exposed dams were hyperactive (both sexes), spent less time swimming (males), and buried more marbles (females). In adult offspring (PND70), the only behavioral change was a sex-specific (females) decreased NOR performance by ATR. Neurochemically, a trend toward increased striatal dopamine (DA) in dams and a significant increase in juvenile offspring (both sexes) was observed. Additionally, ATR exposure decreased perirhinal cortex serotonin in the adult female offspring. These results suggest that perinatal DW exposure to ATR targets the nigrostriatal DA pathway in dams and, especially, juvenile offspring, alters dams' cognitive performance, induces sex-selective changes involving motor and emotional functions in juvenile offspring, and decreases cognitive ability of adult female offspring, with the latter possibly associated with altered perirhinal cortex serotonin homeostasis. Overall, ATR exposure during gestation and lactation may cause adverse nervous system effects to both offspring and dams. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Prenatal air pollution exposure induces sexually dimorphic fetal programming of metabolic and neuroinflammatory outcomes in adult offspring.

    PubMed

    Bolton, Jessica L; Auten, Richard L; Bilbo, Staci D

    2014-03-01

    Environmental chemical exposures during critical windows of development may contribute to the escalating prevalence of obesity. We tested the hypothesis that prenatal exposure to diesel exhaust particles (DEP), a primary component of air pollution, would prime microglia long-term, resulting in exacerbated metabolic and affective outcomes following exposure to a high-fat diet in adulthood. Time-mated mouse dams were intermittently exposed to respiratory instillations of either vehicle (VEH) or DEP throughout gestation. Adult male and female offspring were then fed either a low-fat diet (LFD) or high-fat diet (HFD) for 9 weeks. The male offspring of DEP-exposed dams exhibited exaggerated weight gain, insulin resistance, and anxiety-like behavior on HFD compared to the male offspring of VEH-exposed dams, whereas female offspring did not differ according to prenatal treatment. Furthermore, HFD induced evidence of macrophage infiltration of both adipose tissue and the brain in both sexes, but these cells were more activated specifically in DEP/HFD males. DEP/HFD males also expressed markedly higher levels of microglial/macrophage, but not astrocyte, activation markers in the hippocampus, whereas females exhibited only a suppression of astrocyte activation markers due to HFD. In a second experiment, DEP male offspring mounted an exaggerated peripheral IL-1β response to an LPS challenge at postnatal day (P)30, whereas their central IL-1β response did not differ from VEH male offspring, which is suggestive of macrophage priming due to prenatal DEP exposure. In sum, prenatal air pollution exposure "programs" offspring for increased susceptibility to diet-induced metabolic, behavioral, and neuroinflammatory changes in adulthood in a sexually dimorphic manner. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Maternal High-Fat and High-Salt Diets Have Differential Programming Effects on Metabolism in Adult Male Rat Offspring.

    PubMed

    Segovia, Stephanie A; Vickers, Mark H; Harrison, Claudia J; Patel, Rachna; Gray, Clint; Reynolds, Clare M

    2018-01-01

    Maternal high-fat or high-salt diets can independently program adverse cardiometabolic outcomes in offspring. However, there is a paucity of evidence examining their effects in combination on metabolic function in adult offspring. Female Sprague Dawley rats were randomly assigned to either: control (CD; 10% kcal from fat, 1% NaCl), high-salt (SD; 10% kcal from fat, 4% NaCl), high-fat (HF; 45% kcal from fat, 1% NaCl) or high-fat and salt (HFSD; 45% kcal from fat, 4% NaCl) diets 21 days prior to mating and throughout pregnancy and lactation. Male offspring were weaned onto a standard chow diet and were culled on postnatal day 130 for plasma and tissue collection. Adipocyte histology and adipose tissue, liver, and gut gene expression were examined in adult male offspring. HF offspring had significantly greater body weight, impaired insulin sensitivity and hyperleptinemia compared to CD offspring, but these increases were blunted in HFSD offspring. HF offspring had moderate adipocyte hypertrophy and increased expression of the pre-adipocyte marker Dlk1 . There was a significant effect of maternal salt with increased hepatic expression of Dgat1 and Igfb2 . Gut expression of inflammatory ( Il1r1, Tnfα, Il6 , and Il6r ) and renin-angiotensin system ( Agtr1a, Agtr1b ) markers was significantly reduced in HFSD offspring compared to HF offspring. Therefore, salt mitigates some adverse offspring outcomes associated with a maternal HF diet, which may be mediated by altered adipose tissue morphology and gut inflammatory and renin-angiotensin regulation.

  16. Paternal B Vitamin Intake Is a Determinant of Growth, Hepatic Lipid Metabolism and Intestinal Tumor Volume in Female Apc1638N Mouse Offspring

    PubMed Central

    Sabet, Julia A.; Park, Lara K.; Iyer, Lakshmanan K.; Tai, Albert K.; Koh, Gar Yee; Pfalzer, Anna C.; Parnell, Laurence D.; Mason, Joel B.; Liu, Zhenhua; Byun, Alexander J.; Crott, Jimmy W.

    2016-01-01

    Background The importance of maternal nutrition to offspring health and risk of disease is well established. Emerging evidence suggests paternal diet may affect offspring health as well. Objective In the current study we sought to determine whether modulating pre-conception paternal B vitamin intake alters intestinal tumor formation in offspring. Additionally, we sought to identify potential mechanisms for the observed weight differential among offspring by profiling hepatic gene expression and lipid content. Methods Male Apc1638N mice (prone to intestinal tumor formation) were fed diets containing replete (control, CTRL), mildly deficient (DEF), or supplemental (SUPP) quantities of vitamins B2, B6, B12, and folate for 8 weeks before mating with control-fed wild type females. Wild type offspring were euthanized at weaning and hepatic gene expression profiled. Apc1638N offspring were fed a replete diet and euthanized at 28 weeks of age to assess tumor burden. Results No differences in intestinal tumor incidence or burden were found between male Apc1638N offspring of different paternal diet groups. Although in female Apc1638N offspring there were no differences in tumor incidence or multiplicity, a stepwise increase in tumor volume with increasing paternal B vitamin intake was observed. Interestingly, female offspring of SUPP and DEF fathers had a significantly lower body weight than those of CTRL fed fathers. Moreover, hepatic trigylcerides and cholesterol were elevated 3-fold in adult female offspring of SUPP fathers. Weanling offspring of the same fathers displayed altered expression of several key lipid-metabolism genes. Hundreds of differentially methylated regions were identified in the paternal sperm in response to DEF and SUPP diets. Aside from a few genes including Igf2, there was a striking lack of overlap between these genes differentially methylated in sperm and differentially expressed in offspring. Conclusions In this animal model, modulation of

  17. Maternal Exercise Improves the Metabolic Health of Adult Offspring.

    PubMed

    Harris, Johan E; Baer, Lisa A; Stanford, Kristin I

    2018-03-01

    The intrauterine environment can modulate the course of development and confer an enduring effect on offspring health. The effects of maternal diet to impair offspring metabolic health are well established, but the effects of maternal exercise on offspring metabolic health have been less defined. Because physical exercise is a treatment for obesity and type 2 diabetes (T2D), maternal exercise is an appealing intervention to positively influence the intrauterine environment and improve the metabolic health of offspring. Recent research has provided insights into the effects of maternal exercise on the metabolic health of adult offspring, which is the focus of this review. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Intravenous gestational nicotine exposure results in increased motivation for sucrose reward in adult rat offspring.

    PubMed

    Lacy, Ryan T; Hord, Lauren L; Morgan, Amanda J; Harrod, Steven B

    2012-08-01

    Prenatal tobacco smoke exposure is associated with alterations in motivated behavior in offspring, such as increased consumption of highly palatable foods and abused drugs. Animal models show that gestational nicotine (GN) exposure mediates changes in responding for sucrose and drug reward. A novel, intermittent low-dose intravenous (IV) exposure model was used to administer nicotine (0.05 mg/kg/injection) or saline 3×/day to rats on gestational days 8-21. Two experiments investigated the effect of IV GN on (1) the habituation of spontaneous locomotor activity and on (2) sucrose reinforced responding in offspring. For the operant experiments, animals acquired fixed-ratio (FR-3) responding for sucrose, 26% (w/v), and were tested on varying concentrations (0, 3, 10, 30, and 56%; Latin-square) according to a FR-3, and then a progressive-ratio (PR) schedule. Male and female adult offspring were used. IV GN did not alter birth or growth weight, or the number of pups born. No between-group differences in habituation to spontaneous locomotor activity were observed. FR testing produced an inverted U-shaped response curve, and rats showed peak responding for 10% sucrose reinforcement. Neither gestation nor sex affected responding, suggesting equivalent sensitivity to varying sucrose concentrations. PR testing revealed that GN rats showed greater motivation for sucrose reinforcement relative to controls. A low-dose, IV GN exposure model resulted in increased motivation to respond for sucrose reinforcement in adult offspring. This suggests that using a low number of cigarettes throughout pregnancy will result in increased motivation for highly palatable foods in adult, and perhaps, adolescent offspring. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Maternal Consumption of Hesperidin and Naringin Flavanones Exerts Transient Effects to Tibia Bone Structure in Female CD-1 Offspring

    PubMed Central

    Sacco, Sandra M.; Saint, Caitlin; LeBlanc, Paul J.; Ward, Wendy E.

    2017-01-01

    Hesperidin (HSP) and naringin (NAR), flavanones rich in citrus fruits, support skeletal integrity in adult and aging rodent models. This study determined whether maternal consumption of HSP and NAR favorably programs bone development, resulting in higher bone mineral density (BMD) and greater structure and biomechanical strength (i.e., peak load) in female offspring. Female CD-1 mice were fed a control diet or a HSP + NAR diet five weeks before pregnancy and throughout pregnancy and lactation. At weaning, female offspring were fed a control diet until six months of age. The structure and BMD of the proximal tibia were measured longitudinally using in vivo micro-computed tomography at 2, 4, and 6 months of age. The trabecular bone structure at two and four months and the trabecular BMD at four months were compromised at the proximal tibia in mice exposed to HSP and NAR compared to the control diet (p < 0.001). At six months of age, these differences in trabecular structure and BMD at the proximal tibia had disappeared. At 6 months of age, the tibia midpoint peak load, BMD, structure, and the peak load of lumbar vertebrae and femurs were similar (p > 0.05) between the HSP + NAR and control groups. In conclusion, maternal consumption of HSP and NAR does not enhance bone development in female CD-1 offspring. PMID:28282882

  20. Levels of maternal care in dogs affect adult offspring temperament

    NASA Astrophysics Data System (ADS)

    Foyer, Pernilla; Wilsson, Erik; Jensen, Per

    2016-01-01

    Dog puppies are born in a state of large neural immaturity; therefore, the nervous system is sensitive to environmental influences early in life. In primates and rodents, early experiences, such as maternal care, have been shown to have profound and lasting effects on the later behaviour and physiology of offspring. We hypothesised that this would also be the case for dogs with important implications for the breeding of working dogs. In the present study, variation in the mother-offspring interactions of German Shepherd dogs within the Swedish breeding program for military working dogs was studied by video recording 22 mothers with their litters during the first three weeks postpartum. The aim was to classify mothers with respect to their level of maternal care and to investigate the effect of this care on pup behaviour in a standardised temperament test carried out at approximately 18 months of age. The results show that females differed consistently in their level of maternal care, which significantly affected the adult behaviour of the offspring, mainly with respect to behaviours classified as Physical and Social Engagement, as well as Aggression. Taking maternal quality into account in breeding programs may therefore improve the process of selecting working dogs.

  1. Preconception Alcohol Increases Offspring Vulnerability to Stress

    PubMed Central

    Jabbar, Shaima; Chastain, Lucy G; Gangisetty, Omkaram; Cabrera, Miguel A; Sochacki, Kamil; Sarkar, Dipak K

    2016-01-01

    The effect of preconception drinking by the mother on the life-long health outcomes of her children is not known, and therefore, in this study using an animal model, we determined the impact of preconception alcohol drinking of the mother on offspring stress response during adulthood. In our preconception alcohol exposure model, adult female rats were fed with 6.7% alcohol in their diet for 4 weeks, went without alcohol for 3 weeks and were bred to generate male and female offspring. Preconception alcohol-exposed offsprings' birth weight, body growth, stress response, anxiety-like behaviors, and changes in stress regulatory gene and protein hormone levels were evaluated. In addition, roles of epigenetic mechanisms in preconception alcohol effects were determined. Alcohol feeding three weeks prior to conception significantly affected pregnancy outcomes of female rats, with respect to delivery period and birth weight of offspring, without affecting maternal care behaviors. Preconception alcohol negatively affected offspring adult health, producing an increased stress hormone response to an immune challenge. In addition, preconception alcohol was associated with changes in expression and methylation profiles of stress regulatory genes in various brain areas. These changes in stress regulatory genes were normalized following treatment with a DNA methylation blocker during the postnatal period. These data highlight the novel possibility that preconception alcohol affects the inheritance of stress-related diseases possibly by epigenetic mechanisms. PMID:27296153

  2. Consuming a low-fat diet from weaning to adulthood reverses the programming of food preferences in male, but not in female, offspring of 'junk food'-fed rat dams.

    PubMed

    Ong, Z Y; Muhlhausler, B S

    2014-01-01

    This study aimed to determine whether the negative effects of maternal 'junk food' feeding on food preferences and gene expression in the mesolimbic reward system could be reversed by weaning the offspring onto a low-fat diet. Offspring of control (n = 11) and junk food-fed (JF, n = 12) dams were weaned onto a standard rodent chow until 6 weeks (juvenile) or 3 months (adult). They were then given free access to both chow and junk food for 3 weeks and food preferences determined. mRNA expression of key components of the mesolimbic reward system was determined by qRT-PCR at 6 weeks, 3 and 6 months of age. In the juvenile group, both male and female JF offspring consumed more energy and carbohydrate during the junk food exposure at 6 weeks of age and had a higher body fat mass at 3 months (P < 0.05). Female juvenile JF offspring had higher tyrosine hydroxylase, dopamine receptors and dopamine active transporter expression in the ventral tegmental area (P < 0.05). In the adult group, there was no difference between control and JF offspring in energy and macronutrient intakes during exposure to junk food; however, female JF offspring had a higher body fat mass at 6 months (P < 0.05). These results suggest that the effects of perinatal junk food exposure on food preferences and fat mass can be reversed by consuming a low-fat diet from weaning to adulthood in males. Females, however, retain a higher propensity for diet-induced obesity even after consuming a low-fat diet for an extended period after weaning. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  3. Female fecundity and offspring survival are not increased through sexual cannibalism in the spider Larinioides sclopetarius.

    PubMed

    Deventer, S A; Herberstein, M E; Mayntz, D; O'Hanlon, J C; Schneider, J M

    2017-12-01

    Many hypotheses explaining the evolution and maintenance of sexual cannibalism incorporate the nutritional aspect of the consumption of males. Most studies have focused on a fecundity advantage through consumption of a male; however, recent studies have raised the intriguing possibility that consumption of a male may also affect offspring quality. In particular, recent studies suggest prolonged survival for offspring from sexually cannibalistic females. Here, we measured the protein and lipid content of males compared to insect prey (crickets), quantified female nutrient intake of both prey types and finally assessed how sexual cannibalism affects female fecundity and spiderling quality in the orb-web spider Larinioides sclopetarius. We found no evidence that sexual cannibalism increased fecundity when compared to a female control group fed a cricket. Contrary to previous studies, spiderlings from females fed a male showed reduced survival under food deprivation compared to spiderlings from the control group. Offspring from females fed a male also tended to begin web construction sooner. The low lipid content of males compared to crickets may have reduced offspring survival duration. Whether additional proteins obtained through consumption of a male translate to enhanced silk production in offspring requires further investigation. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  4. Maternal exposure to di(2-ethylhexyl)phthalate (DEHP) promotes the transgenerational inheritance of adult-onset reproductive dysfunctions through the female germline in mice.

    PubMed

    Pocar, Paola; Fiandanese, Nadia; Berrini, Anna; Secchi, Camillo; Borromeo, Vitaliano

    2017-05-01

    Endocrine disruptors (EDs) are compounds known to promote transgenerational inheritance of adult-onset disease in subsequent generations after maternal exposure during fetal gonadal development. This study was designed to establish whether gestational and lactational exposure to the plasticizer di(2-ethylhexyl)phthalate (DEHP) at environmental doses promotes transgenerational effects on reproductive health in female offspring, as adults, over three generations in the mouse. Gestating F0 mouse dams were exposed to 0, 0.05, 5mg/kg/day DEHP in the diet from gestational day 0.5 until the end of lactation. The incidence of adult-onset disease in reproductive function was recorded in F1, F2 and F3 female offspring. In adult F1 females, DEHP exposure induced reproductive adverse effects with: i) altered ovarian follicular dynamics with reduced primordial follicular reserve and a larger growing pre-antral follicle population, suggesting accelerated follicular recruitment; ii) reduced oocyte quality and embryonic developmental competence; iii) dysregulation of the expression profile of a panel of selected ovarian and pre-implantation embryonic genes. F2 and F3 female offspring displayed the same altered reproductive morphological phenotype and gene expression profiles as F1, thus showing transgenerational transmission of reproductive adverse effects along the female lineage. These findings indicate that in mice exposure to DEHP at doses relevant to human exposure during gonadal sex determination significantly perturbs the reproductive indices of female adult offspring and subsequent generations. Evidence of transgenerational transmission has important implications for the reproductive health and fertility of animals and humans, significantly increasing the potential biohazards of this toxicant. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Facial emotion labeling in unaffected offspring of adults with bipolar I disorder.

    PubMed

    Sharma, Aditya Narain; Barron, Evelyn; Le Couteur, James; Close, Andrew; Rushton, Steven; Grunze, Heinz; Kelly, Thomas; Nicol Ferrier, Ian; Le Couteur, Ann Simone

    2017-01-15

    Young people 'at risk' for developing Bipolar Disorder have been shown to have deficits in facial emotion labeling across emotions with some studies reporting deficits for one or more particular emotions. However, these have included a heterogeneous group of young people (siblings of adolescents and offspring of adults with bipolar disorder), who have themselves diagnosed psychopathology (mood disorders and neurodevelopmental disorders including ADHD). 24 offspring of adults with bipolar I disorder and 34 offspring of healthy controls were administered the Diagnostic Analysis of Non Verbal Accuracy 2 (DANVA 2) to investigate the ability of participants to correctly label 4 emotions: happy, sad, fear and anger using both child and adult faces as stimuli at low and high intensity. Mixed effects modelling revealed that the offspring of adults with bipolar I disorder made more errors in both the overall recognition of facial emotions and the specific recognition of fear compared with the offspring of healthy controls. Further more errors were made by offspring that were male, younger in age and also in recognition of emotions using 'child' stimuli. The sample size, lack of blinding of the study team and the absence of any stimuli that assess subjects' response to a neutral emotional stimulus are limitations of the study. Offspring (with no history of current or past psychopathology or psychotropic medication) of adults with bipolar I disorder displayed facial emotion labeling deficits (particularly fear) suggesting facial emotion labeling may be an endophenotype for bipolar disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Offspring of a parent with genetic disease: childhood experiences and adult psychological characteristics.

    PubMed

    van der Meer, Lucienne; van Duijn, Erik; Wolterbeek, Ron; Tibben, Aad

    2014-12-01

    To investigate childhood experiences and psychological characteristics in offspring of a parent with genetic disease. Self-report scales were used to assess adverse childhood experiences (ACEs), adult attachment style, mental health, and psychological symptomatology in offspring of a parent with a neurogenetic disorder (i.e. Huntington's Disease, HD; Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy, CADASIL; and Hereditary Cerebral Hemorrhage With Amyloidosis-Dutch type, HCHWA-D), and in offspring of a parent affected with Hereditary Breast/Ovarian Cancer (HBOC). These groups were compared to persons who did not have a parent with one of these genetic diseases. Associations between childhood experiences and adult psychological characteristics were investigated. Compared with the reference group (n = 127), offspring of a parent with a neurogenetic disorder (n = 96) reported more parental dysfunction in childhood, and showed more adult attachment anxiety and poorer mental health. Offspring of a parent with HBOC (n = 70) reported more parental loss in childhood and showed poorer mental health. Offspring who experienced parental genetic disease in childhood had more attachment anxiety than offspring who experienced parental disease later in life. In the group of offspring, a higher number of ACEs was associated with poorer mental health and more psychological symptomatology. This cross-sectional study indicates that adult offspring of a parent with genetic disease may differ in attachment style and mental health from persons without one of these genetic diseases in their family, and that this may be related to adverse childhood experiences.

  7. Chronic prenatal ethanol exposure increases adiposity and disrupts pancreatic morphology in adult guinea pig offspring.

    PubMed

    Dobson, C C; Mongillo, D L; Brien, D C; Stepita, R; Poklewska-Koziell, M; Winterborn, A; Holloway, A C; Brien, J F; Reynolds, J N

    2012-12-17

    Ethanol consumption during pregnancy can lead to a range of adverse developmental outcomes in children, termed fetal alcohol spectrum disorder (FASD). Central nervous system injury is a debilitating and widely studied manifestation of chronic prenatal ethanol exposure (CPEE). However, CPEE can also cause structural and functional deficits in metabolic pathways in offspring. This study tested the hypothesis that CPEE increases whole-body adiposity and disrupts pancreatic structure in guinea pig offspring. Pregnant guinea pigs received ethanol (4 g kg(-1) maternal body weight per day) or isocaloric-sucrose/pair-feeding (control) for 5 days per week throughout gestation. Male and female CPEE offspring demonstrated growth restriction at birth, followed by a rapid period of catch-up growth before weaning (postnatal day (PD) 1-7). Whole-body magnetic resonance imaging (MRI) in young adult offspring (PD100-140) revealed increased visceral and subcutaneous adiposity produced by CPEE. At the time of killing (PD150-200), CPEE offspring also had increased pancreatic adipocyte area and decreased β-cell insulin-like immunopositive area, suggesting reduced insulin production and/or secretion from pancreatic islets. CPEE causes increased adiposity and pancreatic dysmorphology in offspring, which may signify increased risk for the development of metabolic syndrome and type 2 diabetes mellitus.

  8. Maternal Fructose Exposure Programs Metabolic Syndrome-Associated Bladder Overactivity in Young Adult Offspring

    PubMed Central

    Lee, Wei-Chia; Tain, You-Lin; Wu, Kay L. H.; Leu, Steve; Chan, Julie Y. H.

    2016-01-01

    Maternal fructose exposure (MFE) programs the development of metabolic syndrome (MetS) in young adult offspring. Epidemiological data indicate that MetS may increase the risks of overactive bladder (OAB) symptoms. However, it remains unknown whether MFE programs MetS-associated bladder dysfunction in adult offspring. Using Sprague-Dawley rats, we investigated the effects of MFE during pregnancy and lactation on developmental programming of MetS-associated bladder dysfunction. In addition, next generation sequencing technology was used to identify potential transcripts involved in the programmed bladder dysfunction in adult male offspring to MFE. We found that MFE programmed the MetS-associated OAB symptoms (i.e., an increase in micturition frequency and a shortened mean inter-contractile interval) in young adult male offspring, alongside significant alterations in bladder transcripts, including Chrm2, Chrm3, P2rx1, Trpv4, and Vipr2 gene expression. At protein level, the expressions of M2-, M3-muscarinic and P2X1 receptor proteins were upregulated in the MFE bladder. Functionally, the carbachol-induced detrusor contractility was reduced in the MFE offspring. These data suggest that alterations in the bladder transcripts and impairment of the bladder cholinergic pathways may underlie the pathophysiology of programmed bladder dysfunction in adult offspring to MFE. PMID:27703194

  9. Maternal Fructose Exposure Programs Metabolic Syndrome-Associated Bladder Overactivity in Young Adult Offspring.

    PubMed

    Lee, Wei-Chia; Tain, You-Lin; Wu, Kay L H; Leu, Steve; Chan, Julie Y H

    2016-10-05

    Maternal fructose exposure (MFE) programs the development of metabolic syndrome (MetS) in young adult offspring. Epidemiological data indicate that MetS may increase the risks of overactive bladder (OAB) symptoms. However, it remains unknown whether MFE programs MetS-associated bladder dysfunction in adult offspring. Using Sprague-Dawley rats, we investigated the effects of MFE during pregnancy and lactation on developmental programming of MetS-associated bladder dysfunction. In addition, next generation sequencing technology was used to identify potential transcripts involved in the programmed bladder dysfunction in adult male offspring to MFE. We found that MFE programmed the MetS-associated OAB symptoms (i.e., an increase in micturition frequency and a shortened mean inter-contractile interval) in young adult male offspring, alongside significant alterations in bladder transcripts, including Chrm2, Chrm3, P2rx1, Trpv4, and Vipr2 gene expression. At protein level, the expressions of M 2 -, M 3 -muscarinic and P2X 1 receptor proteins were upregulated in the MFE bladder. Functionally, the carbachol-induced detrusor contractility was reduced in the MFE offspring. These data suggest that alterations in the bladder transcripts and impairment of the bladder cholinergic pathways may underlie the pathophysiology of programmed bladder dysfunction in adult offspring to MFE.

  10. Prenatal Stress Impairs Spatial Learning and Memory Associated with Lower mRNA Level of the CAMKII and CREB in the Adult Female Rat Hippocampus.

    PubMed

    Sun, Hongli; Wu, Haibin; Liu, Jianping; Wen, Jun; Zhu, Zhongliang; Li, Hui

    2017-05-01

    Prenatal stress (PS) results in various behavioral and emotional alterations observed in later life. In particular, PS impairs spatial learning and memory processes but the underlying mechanism involved in this pathogenesis still remains unknown. Here, we reported that PS lowered the body weight in offspring rats, particularly in female rats, and impaired spatial learning and memory of female offspring rats in the Morris water maze. Correspondingly, the decreased CaMKII and CREB mRNA in the hippocampus were detected in prenatally stressed female offspring, which partially explained the effect of PS on the spatial learning and memory. Our findings suggested that CaMKII and CREB may be involved in spatial learning and memory processes in the prenatally stressed adult female offspring.

  11. Female sticklebacks transfer information via eggs: effects of maternal experience with predators on offspring

    PubMed Central

    Giesing, Eric R.; Suski, Cory D.; Warner, Richard E.; Bell, Alison M.

    2011-01-01

    There is growing evidence that maternal experience influences offspring via non-genetic mechanisms. When female three-spined sticklebacks (Gasterosteus aculeatus) were exposed to the threat of predation, they produced larger eggs with higher cortisol content, which consumed more oxygen shortly after fertilization compared with a control group. As juveniles, the offspring of predator-exposed mothers exhibited tighter shoaling behaviour, an antipredator defence. We did not detect an effect of maternal exposure to predation risk on the somatic growth of fry. Altogether, we found that exposure to an ecologically relevant stressor during egg formation had several long-lasting consequences for offspring, some of which might be mediated by exposure to maternally derived cortisol. These results support the hypothesis that female sticklebacks might influence the development, growth and behaviour of their offspring via eggs to match their future environment. PMID:21068041

  12. Deficits in social behavior and reversal learning are more prevalent in male offspring of VIP deficient female mice

    PubMed Central

    Stack, Conor M.; Lim, Maria A.; Cuasay, Katrina; Stone, Madeleine M.; Seibert, Kimberly. M.; Spivak-Pohis, Irit; Crawley, Jacqueline N.; Waschek, James A.; Hill, Joanna M.

    2008-01-01

    Blockage of vasoactive intestinal peptide (VIP) receptors during early embryogenesis in the mouse has been shown to result in developmental delays in neonates, and social behavior deficits selectively in adult male offspring. Offspring of VIP deficient mothers (VIP +/−) also exhibited developmental delays, and reductions in maternal affiliation and play behavior. In the current study, comparisons among the offspring of VIP deficient mothers (VIP +/−) mated to VIP +/− males with the offspring of wild type (WT) mothers mated to VIP +/− males allowed assessment of the contributions of both maternal and offspring VIP genotype to general health measures, social behavior, fear conditioning, and spatial learning and memory in the water maze. These comparisons revealed few differences in general health among offspring of WT and VIP deficient mothers, and all offspring exhibited normal responses in fear conditioning and in the acquisition phase of spatial discrimination in the water maze. WT mothers produced offspring that were normal in all tests; the reduced VIP in their VIP +/− offspring apparently did not contribute to any defects in the measures under study. However, regardless of their own VIP genotype, all male offspring of VIP deficient mothers exhibited severe deficits in social approach behavior and reversal learning. The deficits in these behaviors in the female offspring of VIP deficient mothers were less severe than in their male littermates, and the extent of their impairment was related to their own VIP genotype. This study has shown that intrauterine conditions had a greater influence on behavioral outcome than did genetic inheritance. In addition, the greater prevalence of deficits in social behavior and the resistance to change seen in reversal learning in the male offspring of VIP deficient mothers indicate a potential usefulness of the VIP knockout mouse in furthering the understanding of neurodevelopmental disorders such as autism. PMID

  13. Effect of maternal protein restriction during pregnancy and postweaning high-fat feeding on diet-induced thermogenesis in adult mouse offspring.

    PubMed

    Sellayah, Dyan; Dib, Lea; Anthony, Frederick W; Watkins, Adam J; Fleming, Tom P; Hanson, Mark A; Cagampang, Felino R

    2014-10-01

    Prenatal undernutrition followed by postweaning feeding of a high-fat diet results in obesity in the adult offspring. In this study, we investigated whether diet-induced thermogenesis is altered as a result of such nutritional mismatch. Female MF-1 mice were fed a normal protein (NP, 18% casein) or a protein-restricted (PR, 9% casein) diet throughout pregnancy and lactation. After weaning, male offspring of both groups were fed either a high-fat diet (HF; 45% kcal fat) or standard chow (C, 7% kcal fat) to generate the NP/C, NP/HF, PR/C and PR/HF adult offspring groups (n = 7-11 per group). PR/C and NP/C offspring have similar body weights at 30 weeks of age. Postweaning HF feeding resulted in significantly heavier NP/HF offspring (P < 0.01), but not in PR/HF offspring, compared with their chow-fed counterparts. However, the PR/HF offspring exhibited greater adiposity (P < 0.01) v the NP/HF group. The NP/HF offspring had increased energy expenditure and increased mRNA expression of uncoupling protein-1 and β-3 adrenergic receptor in the interscapular brown adipose tissue (iBAT) compared with the NP/C mice (both at P < 0.01). No such differences in energy expenditure and iBAT gene expression were observed between the PR/HF and PR/C offspring. These data suggest that a mismatch between maternal diet during pregnancy and lactation, and the postweaning diet of the offspring, can attenuate diet-induced thermogenesis in the iBAT, resulting in the development of obesity in adulthood.

  14. The effect of maternal chromium status on lipid metabolism in female elderly mice offspring and involved molecular mechanism

    PubMed Central

    Zhang, Qian; Sun, Xiaofang; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2017-01-01

    Maternal malnutrition leads to the incidence of metabolic diseases in offspring. The purpose of this project was to examine whether maternal low chromium could disturb normal lipid metabolism in offspring, altering adipose cell differentiation and leading to the incidence of lipid metabolism diseases, including metabolic syndrome and obesity. Female C57BL mice were given a control diet (CD) or a low chromium diet (LCD) during the gestational and lactation periods. After weaning, offspring was fed with CD or LCD. The female offspring were assessed at 32 weeks of age. Fresh adipose samples from CD–CD group and LCD–CD group were collected. Genome mRNA were analysed using Affymetrix GeneChip Mouse Gene 2.0 ST Whole Transcript-based array. Differentially expressed genes (DEGs) were analysed based on gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis database. Maternal low chromium irreversibly increased offspring body weight, fat-pad weight, serum triglyceride (TG) and TNF-α. Eighty five genes increased and 109 genes reduced in the offspring adipose of the maternal low chromium group. According to KEGG pathway and String analyses, the PPAR signalling pathway may be the key controlled pathway related to the effect of maternal low chromium on female offspring. Maternal chromium status have long-term effects of lipid metabolism in female mice offspring. Normalizing offspring diet can not reverse these effects. The potential underlying mechanisms are the disturbance of the PPAR signalling pathway in adipose tissue. PMID:28320771

  15. Prenatal stress produces anxiety prone female offspring and impaired maternal behaviour in the domestic pig.

    PubMed

    Rutherford, Kenneth M D; Piastowska-Ciesielska, Agnieszka; Donald, Ramona D; Robson, Sheena K; Ison, Sarah H; Jarvis, Susan; Brunton, Paula J; Russell, John A; Lawrence, Alistair B

    2014-04-22

    Numerous studies have shown that prenatal stress (PNS) can have profound effects on postnatal well-being. Here, the domestic pig (Sus scrofa) was used to investigate PNS effects owing to the direct relevance for farm animal welfare and the developing status of the pig as a large animal model in translational research. Pregnant primiparous sows were exposed, in mid-gestation, to either a social stressor (mixing with unfamiliar conspecifics) or were kept in stable social groups. The ratio of levels of mRNAs for corticotropin releasing hormone (CRH) receptors 1 and 2 in the amygdala, measured for the first time in the pig, was substantially increased in 10-week-old female, but not male, PNS progeny indicating a neurobiological propensity for anxiety-related behaviour. Mature female offspring were observed at parturition in either a behaviourally restrictive crate or open pen. Such PNS sows showed abnormal maternal behaviour in either environment, following the birth of their first piglet. They spent more time lying ventrally, more time standing and showed a higher frequency of posture changes. They were also more reactive towards their piglets, and spent longer visually attending to their piglets compared to controls. Associated with this abnormal maternal care, piglet mortality was increased in the open pen environment, where protection for piglets is reduced. Overall, these data indicate that PNS females have their brain development shifted towards a pro-anxiety phenotype and that PNS can be causally related to subsequent impaired maternal behaviour in adult female offspring. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Methyl donor supplementation alters cognitive performance and motivation in female offspring from high-fat diet-fed dams.

    PubMed

    McKee, Sarah E; Grissom, Nicola M; Herdt, Christopher T; Reyes, Teresa M

    2017-06-01

    During gestation, fetal nutrition is entirely dependent on maternal diet. Maternal consumption of excess fat during pregnancy has been linked to an increased risk of neurologic disorders in offspring, including attention deficit/hyperactivity disorder, autism, and schizophrenia. In a mouse model, high-fat diet (HFD)-fed offspring have cognitive and executive function deficits as well as whole-genome DNA and promoter-specific hypomethylation in multiple brain regions. Dietary methyl donor supplementation during pregnancy or adulthood has been used to alter DNA methylation and behavior. Given that extensive brain development occurs during early postnatal life-particularly within the prefrontal cortex (PFC), a brain region critical for executive function-we examined whether early life methyl donor supplementation ( e.g., during adolescence) could ameliorate executive function deficits observed in offspring that were exposed to maternal HFD. By using operant testing, progressive ratio, and the PFC-dependent 5-choice serial reaction timed task (5-CSRTT), we determined that F1 female offspring (B6D2F1/J) from HFD-fed dams have decreased motivation (decreased progressive ratio breakpoint) and require a longer stimulus length to complete the 5-CSRTT task successfully, whereas early life methyl donor supplementation increased motivation and shortened the minimum stimulus length required for a correct response in the 5-CSRTT. Of interest, we found that expression of 2 chemokines, CCL2 and CXCL10, correlated with the median stimulus length in the 5-CSRTT. Furthermore, we found that acute adult supplementation of methyl donors increased motivation in HFD-fed offspring and those who previously received supplementation with methyl donors. These data point to early life as a sensitive time during which dietary methyl donor supplementation can alter PFC-dependent cognitive behaviors.-McKee, S. E., Grissom, N. M., Herdt, C. T., Reyes, T. M. Methyl donor supplementation alters

  17. Methyl donor supplementation alters cognitive performance and motivation in female offspring from high-fat diet–fed dams

    PubMed Central

    McKee, Sarah E.; Grissom, Nicola M.; Herdt, Christopher T.; Reyes, Teresa M.

    2017-01-01

    During gestation, fetal nutrition is entirely dependent on maternal diet. Maternal consumption of excess fat during pregnancy has been linked to an increased risk of neurologic disorders in offspring, including attention deficit/hyperactivity disorder, autism, and schizophrenia. In a mouse model, high-fat diet (HFD)–fed offspring have cognitive and executive function deficits as well as whole-genome DNA and promoter-specific hypomethylation in multiple brain regions. Dietary methyl donor supplementation during pregnancy or adulthood has been used to alter DNA methylation and behavior. Given that extensive brain development occurs during early postnatal life—particularly within the prefrontal cortex (PFC), a brain region critical for executive function—we examined whether early life methyl donor supplementation (e.g., during adolescence) could ameliorate executive function deficits observed in offspring that were exposed to maternal HFD. By using operant testing, progressive ratio, and the PFC-dependent 5-choice serial reaction timed task (5-CSRTT), we determined that F1 female offspring (B6D2F1/J) from HFD-fed dams have decreased motivation (decreased progressive ratio breakpoint) and require a longer stimulus length to complete the 5-CSRTT task successfully, whereas early life methyl donor supplementation increased motivation and shortened the minimum stimulus length required for a correct response in the 5-CSRTT. Of interest, we found that expression of 2 chemokines, CCL2 and CXCL10, correlated with the median stimulus length in the 5-CSRTT. Furthermore, we found that acute adult supplementation of methyl donors increased motivation in HFD-fed offspring and those who previously received supplementation with methyl donors. These data point to early life as a sensitive time during which dietary methyl donor supplementation can alter PFC-dependent cognitive behaviors.—McKee, S. E., Grissom, N. M., Herdt, C. T., Reyes, T. M. Methyl donor supplementation

  18. Social bonds in the dispersing sex: partner preferences among adult female chimpanzees.

    PubMed

    Foerster, Steffen; McLellan, Karen; Schroepfer-Walker, Kara; Murray, Carson M; Krupenye, Christopher; Gilby, Ian C; Pusey, Anne E

    2015-07-01

    In most primate societies, strong and enduring social bonds form preferentially among kin, who benefit from cooperation through direct and indirect fitness gains. Chimpanzees, Pan troglodytes , differ from most species by showing consistent female-biased dispersal and strict male philopatry. In most East African populations, females tend to forage alone in small core areas and were long thought to have weak social bonds of little biological significance. Recent work in some populations is challenging this view. However, challenges remain in quantifying the influence of shared space use on association patterns, and in identifying the drivers of partner preferences and social bonds. Here, we use the largest data set on wild chimpanzee behaviour currently available to assess potential determinants of female association patterns. We quantify pairwise similarities in ranging, dyadic association and grooming for 624 unique dyads over 38 years, including 17 adult female kin dyads. To search for social preferences that could not be explained by spatial overlap alone, we controlled for expected association based on pairwise kernel volume intersections of core areas. We found that association frequencies among females with above-average overlap correlated positively with grooming rates, suggesting that associations reflected social preferences in these dyads. Furthermore, when available, females preferred kin over nonkin partners for association and grooming, and variability was high among nonkin dyads. While variability in association above and below expected values was high, on average, nonkin associated more frequently if they had immature male offspring, while having female offspring had the opposite effect. Dominance rank, an important determinant of reproductive success at Gombe, influenced associations primarily for low-ranking females, who associated preferentially with each other. Our findings support the hypothesis that female chimpanzees form well

  19. Acute exposure to ethanol on gestational day 15 affects social motivation of female offspring.

    PubMed

    Varlinskaya, Elena I; Mooney, Sandra M

    2014-03-15

    Alterations in social behavior are a hallmark of many neurodevelopmental disorders in humans. In rodents, social behavior is affected by prenatal insults. The outcomes are dependent on the timing of the insult as well as the sex and age of the animal tested. The limbic system is particularly important for social behavior, and a peak of neurogenesis within this system occurs on gestational day (G)15. Neurons appear particularly vulnerable to ethanol insult around the time they become post-mitotic. We tested the hypothesis that acute exposure to ethanol on G15 would result in significant social behavior deficits. Accordingly, Long Evans pregnant females were injected with ethanol (2.9 g/kg) or an equivalent volume of saline on G15. Offspring were assessed in a modified social interaction test on postnatal day (P) 28, P42, or P75, i.e., during early adolescence, late adolescence, or young adulthood. Prenatal ethanol exposure decreased social investigation in P28 females and transformed social preference into social avoidance in 75-day-old females. Contact behavior, play fighting, and locomotor activity differed as a function of age, but were not significantly affected by ethanol exposure. Males demonstrated significantly more contact behavior and play fighting at P42 than at P28 or P70, whereas there were no age-related changes in females. Adult females showed more locomotor activity than adult males. Overall, prenatal ethanol exposure on G15 enhanced social anxiety in females, with these effects seen in adulthood only. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Female offspring desertion and male-only care increase with natural and experimental increase in food abundance

    PubMed Central

    Eldegard, Katrine; Sonerud, Geir A.

    2009-01-01

    In species with biparental care, one parent may escape the costs of parental care by deserting and leaving the partner to care for the offspring alone. A number of theoretical papers have suggested a link between uniparental offspring desertion and ecological factors, but empirical evidence is scarce. We investigated the relationship between uniparental desertion and food abundance in a natural population of Tengmalm's owl Aegolius funereus, both by means of a 5-year observational study and a 1-year experimental study. Parents and offspring were fitted with radio-transmitters in order to reveal the parental care strategy (i.e. care or desert) of individual parents, and to keep track of the broods post-fledging. We found that 70 per cent of the females from non-experimental nests deserted, while their partner continued to care for their joint offspring alone. Desertion rate was positively related to natural prey population densities and body reserves of the male partner. In response to food supplementation, a larger proportion of the females deserted, and females deserted the offspring at an earlier age. Offspring survival during the post-fledging period tended to be lower in deserted than in non-deserted broods. We argue that the most important benefit of deserting may be remating (sequential polyandry). PMID:19324835

  1. Female offspring desertion and male-only care increase with natural and experimental increase in food abundance.

    PubMed

    Eldegard, Katrine; Sonerud, Geir A

    2009-05-07

    In species with biparental care, one parent may escape the costs of parental care by deserting and leaving the partner to care for the offspring alone. A number of theoretical papers have suggested a link between uniparental offspring desertion and ecological factors, but empirical evidence is scarce. We investigated the relationship between uniparental desertion and food abundance in a natural population of Tengmalm's owl Aegolius funereus, both by means of a 5-year observational study and a 1-year experimental study. Parents and offspring were fitted with radio-transmitters in order to reveal the parental care strategy (i.e. care or desert) of individual parents, and to keep track of the broods post-fledging. We found that 70 per cent of the females from non-experimental nests deserted, while their partner continued to care for their joint offspring alone. Desertion rate was positively related to natural prey population densities and body reserves of the male partner. In response to food supplementation, a larger proportion of the females deserted, and females deserted the offspring at an earlier age. Offspring survival during the post-fledging period tended to be lower in deserted than in non-deserted broods. We argue that the most important benefit of deserting may be remating (sequential polyandry).

  2. Maternal exposure to di(2-ethylhexyl)phthalate (DEHP) promotes the transgenerational inheritance of adult-onset reproductive dysfunctions through the female germline in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pocar, Paola, E-mail: paola.pocar@unimi.it; Fianda

    Endocrine disruptors (EDs) are compounds known to promote transgenerational inheritance of adult-onset disease in subsequent generations after maternal exposure during fetal gonadal development. This study was designed to establish whether gestational and lactational exposure to the plasticizer di(2-ethylhexyl)phthalate (DEHP) at environmental doses promotes transgenerational effects on reproductive health in female offspring, as adults, over three generations in the mouse. Gestating F0 mouse dams were exposed to 0, 0.05, 5 mg/kg/day DEHP in the diet from gestational day 0.5 until the end of lactation. The incidence of adult-onset disease in reproductive function was recorded in F1, F2 and F3 female offspring.more » In adult F1 females, DEHP exposure induced reproductive adverse effects with: i) altered ovarian follicular dynamics with reduced primordial follicular reserve and a larger growing pre-antral follicle population, suggesting accelerated follicular recruitment; ii) reduced oocyte quality and embryonic developmental competence; iii) dysregulation of the expression profile of a panel of selected ovarian and pre-implantation embryonic genes. F2 and F3 female offspring displayed the same altered reproductive morphological phenotype and gene expression profiles as F1, thus showing transgenerational transmission of reproductive adverse effects along the female lineage. These findings indicate that in mice exposure to DEHP at doses relevant to human exposure during gonadal sex determination significantly perturbs the reproductive indices of female adult offspring and subsequent generations. Evidence of transgenerational transmission has important implications for the reproductive health and fertility of animals and humans, significantly increasing the potential biohazards of this toxicant. - Highlights: • Maternal exposure to DEHP transgenerationally affects female reproductive health. • DEHP reduced ovarian follicular reserve up to the third generation.

  3. The effect of maternal chromium status on lipid metabolism in female elderly mice offspring and involved molecular mechanism.

    PubMed

    Zhang, Qian; Sun, Xiaofang; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2017-04-30

    Maternal malnutrition leads to the incidence of metabolic diseases in offspring. The purpose of this project was to examine whether maternal low chromium could disturb normal lipid metabolism in offspring, altering adipose cell differentiation and leading to the incidence of lipid metabolism diseases, including metabolic syndrome and obesity. Female C57BL mice were given a control diet (CD) or a low chromium diet (LCD) during the gestational and lactation periods. After weaning, offspring was fed with CD or LCD. The female offspring were assessed at 32 weeks of age. Fresh adipose samples from CD-CD group and LCD-CD group were collected. Genome mRNA were analysed using Affymetrix GeneChip Mouse Gene 2.0 ST Whole Transcript-based array. Differentially expressed genes (DEGs) were analysed based on gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis database. Maternal low chromium irreversibly increased offspring body weight, fat-pad weight, serum triglyceride (TG) and TNF-α. Eighty five genes increased and 109 genes reduced in the offspring adipose of the maternal low chromium group. According to KEGG pathway and String analyses, the PPAR signalling pathway may be the key controlled pathway related to the effect of maternal low chromium on female offspring. Maternal chromium status have long-term effects of lipid metabolism in female mice offspring. Normalizing offspring diet can not reverse these effects. The potential underlying mechanisms are the disturbance of the PPAR signalling pathway in adipose tissue. © 2017 The Author(s).

  4. Exposure to opiates in female adolescents alters mu opiate receptor expression and increases the rewarding effects of morphine in future offspring.

    PubMed

    Vassoler, Fair M; Wright, Siobhan J; Byrnes, Elizabeth M

    2016-04-01

    Prescription opiate use and abuse has increased dramatically over the past two decades, including increased use in adolescent populations. Recently, it has been proposed that use during this critical period may affect future offspring even when use is discontinued prior to conception. Here, we utilize a rodent model to examine the effects of adolescent morphine exposure on the reward functioning of the offspring. Female Sprague Dawley rats were administered morphine for 10 days during early adolescence (post-natal day 30-39) using an escalating dosing regimen. Animals then remained drug free until adulthood at which point they were mated with naïve males. Adult offspring (F1 animals) were tested for their response to morphine-induced (0, 1, 2.5, 5, and 10 mg/kg, s.c.) conditioned place preference (CPP) and context-independent morphine-induced sensitization. Naïve littermates were used to examine mu opiate receptor expression in the nucleus accumbens and ventral tegmental area. Results indicate that F1 females whose mothers were exposed to morphine during adolescence (Mor-F1) demonstrate significantly enhanced CPP to the lowest doses of morphine compared with Sal-F1 females. There were no differences in context-independent sensitization between maternal treatment groups. Protein expression analysis showed significantly increased levels of accumbal mu opiate receptor in Mor-F1 offspring and decreased levels in the VTA. Taken together, these findings demonstrate a shift in the dose response curve with regard to the rewarding effects of morphine in Mor-F1 females which may in part be due to altered mu opiate receptor expression in the nucleus accumbens and VTA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Exposure to Opiates in Female Adolescents Alters Mu Opiate Receptor Expression and Increases the Rewarding Effects of Morphine in Future Offspring

    PubMed Central

    Vassoler, Fair M.; Wright, Siobhan J.; Byrnes, Elizabeth M.

    2016-01-01

    Prescription opiate use and abuse has increased dramatically over the past two decades, including increased use in adolescent populations. Recently, it has been proposed that use during this critical period may affect future offspring even when use is discontinued prior to conception. Here, we utilize a rodent model to examine the effects of adolescent morphine exposure on the reward functioning of the offspring. Female Sprague Dawley rats were administered morphine for 10 days during early adolescence (post-natal day 30–39) using an escalating dosing regimen. Animals then remained drug free until adulthood at which point they were mated with naïve males. Adult offspring (F1 animals) were tested for their response to morphine-induced (0, 1, 2.5, 5, and 10 mg/kg, s.c.) conditioned place preference (CPP) and context-independent morphine-induced sensitization. Naïve littermates were used to examine mu opiate receptor expression in the nucleus accumbens and ventral tegmental area. Results indicate that F1 females whose mothers were exposed to morphine during adolescence (Mor-F1) demonstrate significantly enhanced CPP to the lowest doses of morphine compared with Sal-F1 females. There were no differences in context-independent sensitization between maternal treatment groups. Protein expression analysis showed significantly increased levels of accumbal mu opiate receptor in Mor-F1 offspring and decreased levels in the VTA. Taken together, these findings demonstrate a shift in the dose response curve with regard to the rewarding effects of morphine in Mor-F1 females which may in part be due to altered mu opiate receptor expression in the nucleus accumbens and VTA. PMID:26700246

  6. Maternal testosterone exposure increases anxiety-like behavior and impacts the limbic system in the offspring.

    PubMed

    Hu, Min; Richard, Jennifer Elise; Maliqueo, Manuel; Kokosar, Milana; Fornes, Romina; Benrick, Anna; Jansson, Thomas; Ohlsson, Claes; Wu, Xiaoke; Skibicka, Karolina Patrycja; Stener-Victorin, Elisabet

    2015-11-17

    During pregnancy, women with polycystic ovary syndrome (PCOS) display high circulating androgen levels that may affect the fetus and increase the risk of mood disorders in offspring. This study investigated whether maternal androgen excess causes anxiety-like behavior in offspring mimicking anxiety disorders in PCOS. The PCOS phenotype was induced in rats following prenatal androgen (PNA) exposure. PNA offspring displayed anxiety-like behavior in the elevated plus maze, which was reversed by flutamide [androgen receptor (AR) blocker] and tamoxifen [selective estrogen receptor (ER) modulator]. Circulating sex steroids did not differ between groups at adult age. The expression of serotonergic and GABAergic genes associated with emotional regulation in the amygdala was consistent with anxiety-like behavior in female, and partly in male PNA offspring. Furthermore, AR expression in amygdala was reduced in female PNA offspring and also in females exposed to testosterone in adult age. To determine whether AR activation in amygdala affects anxiety-like behavior, female rats were given testosterone microinjections into amygdala, which resulted in anxiety-like behavior. Together, these data describe the anxiety-like behavior in PNA offspring and adult females with androgen excess, an impact that seems to occur during fetal life, and is mediated via AR in amygdala, together with changes in ERα, serotonergic, and GABAergic genes in amygdala and hippocampus. The anxiety-like behavior following testosterone microinjections into amygdala demonstrates a key role for AR activation in this brain area. These results suggest that maternal androgen excess may underpin the risk of developing anxiety disorders in daughters and sons of PCOS mothers.

  7. Maternal testosterone exposure increases anxiety-like behavior and impacts the limbic system in the offspring

    PubMed Central

    Hu, Min; Richard, Jennifer Elise; Maliqueo, Manuel; Kokosar, Milana; Fornes, Romina; Benrick, Anna; Jansson, Thomas; Ohlsson, Claes; Wu, Xiaoke; Skibicka, Karolina Patrycja; Stener-Victorin, Elisabet

    2015-01-01

    During pregnancy, women with polycystic ovary syndrome (PCOS) display high circulating androgen levels that may affect the fetus and increase the risk of mood disorders in offspring. This study investigated whether maternal androgen excess causes anxiety-like behavior in offspring mimicking anxiety disorders in PCOS. The PCOS phenotype was induced in rats following prenatal androgen (PNA) exposure. PNA offspring displayed anxiety-like behavior in the elevated plus maze, which was reversed by flutamide [androgen receptor (AR) blocker] and tamoxifen [selective estrogen receptor (ER) modulator]. Circulating sex steroids did not differ between groups at adult age. The expression of serotonergic and GABAergic genes associated with emotional regulation in the amygdala was consistent with anxiety-like behavior in female, and partly in male PNA offspring. Furthermore, AR expression in amygdala was reduced in female PNA offspring and also in females exposed to testosterone in adult age. To determine whether AR activation in amygdala affects anxiety-like behavior, female rats were given testosterone microinjections into amygdala, which resulted in anxiety-like behavior. Together, these data describe the anxiety-like behavior in PNA offspring and adult females with androgen excess, an impact that seems to occur during fetal life, and is mediated via AR in amygdala, together with changes in ERα, serotonergic, and GABAergic genes in amygdala and hippocampus. The anxiety-like behavior following testosterone microinjections into amygdala demonstrates a key role for AR activation in this brain area. These results suggest that maternal androgen excess may underpin the risk of developing anxiety disorders in daughters and sons of PCOS mothers. PMID:26578781

  8. The female advantage in natural populations of gynodioecious Plantago coronopus: seed quantity vs. offspring quality.

    PubMed

    van der Meer, Sascha; Sebrechts, Thomas; Vanderstraeten, Sylvette; Jacquemyn, Hans

    2017-12-01

    In gynodioecious plant species, females can only persist when they have a reproductive advantage in comparison with hermaphrodites. However, several studies have shown that females do not necessarily produce more seeds than hermaphrodites, since seed production can be affected by population characteristics, such as female frequency or population size. The aim of this study was to quantify the female advantage across a large number of natural populations, examine its relationship with population sex ratio and size, and to assess the role of competition on the magnitude of the female advantage. We sampled 27 populations of Plantago coronopus (nuclear-cytoplasmic gynodioecy) along the Belgian and Dutch coast. In each population, we estimated population sex ratio and size, and assessed seed production per flower and seed production per plant. Subsequently, germination, growth, and competition experiments were performed in the greenhouse to determine the female advantage regarding offspring quality. Females produced fewer seeds per plant than hermaphrodites (FA = 0.90), and seed production was negatively related to female frequency. Since both sex morphs were equally affected by pollen availability, the female advantage was not related to population sex ratio. On the other hand, offspring of females showed higher germination and growth rates, resulting in higher competitive abilities when seeds of a female and a hermaphrodite were grown together. Overall, these results indicate that differences in competitive abilities between the offspring of females and hermaphrodites may have contributed to the maintenance of females in relatively high frequencies in populations of this short-lived gynodioecious plant species.

  9. Maternal hyperthyroidism increases the susceptibility of rat adult offspring to cardiovascular disorders.

    PubMed

    Lino, Caroline A; da Silva, Ivson Bezerra; Shibata, Caroline E R; Monteiro, Priscilla de S; Barreto-Chaves, Maria Luiza M

    2015-11-15

    Suboptimal intrauterine conditions as changed hormone levels during critical periods of the development are considered an insult and implicate in physiological adaptations which may result in pathological outcomes in later life. This study evaluated the effect of maternal hyperthyroidism (hyper) on cardiac function in adult offspring and the possible involvement of cardiac Renin-Angiotensin System (RAS) in this process. Wistar dams received orally thyroxin (12 mg/L) from gestational day 9 (GD9) until GD18. Adult offspring at postnatal day 90 (PND90) from hyper dams presented increased SBP evaluated by plethysmography and worse recovery after ischemia-reperfusion (I/R), as evidenced by decreased LVDP, +dP/dT and -dP/dT at 25 min of reperfusion and by increased infarct size. Increased cardiac Angiotensin I/II levels and AT1R in hyper offspring were verified. Herein, we provide evidences that maternal hyperthyroidism leads to altered expression of RAS components in adult offspring, which may be correlated with worse recovery of the cardiac performance after ischemic insults and hypertension. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Post-copulatory opportunities for sperm competition and cryptic female choice provide no offspring fitness benefits in externally fertilizing salmon

    PubMed Central

    Lumley, Alyson J.; Diamond, Sian E.; Einum, Sigurd; Yeates, Sarah E.; Peruffo, Danielle; Emerson, Brent C.; Gage, Matthew J. G.

    2016-01-01

    There is increasing evidence that females can somehow improve their offspring fitness by mating with multiple males, but we understand little about the exact stage(s) at which such benefits are gained. Here, we measure whether offspring fitness is influenced by mechanisms operating solely between sperm and egg. Using externally fertilizing and polyandrous Atlantic salmon (Salmo salar), we employed split-clutch and split-ejaculate in vitro fertilization experiments to generate offspring using designs that either denied or applied opportunities for sperm competition and cryptic female choice. Following fertilizations, we measured 140 days of offspring fitness after hatch, through growth and survival in hatchery and near-natural conditions. Despite an average composite mortality of 61%, offspring fitness at every life stage was near-identical between groups fertilized under the absence versus presence of opportunities for sperm competition and cryptic female choice. Of the 21 551 and 21 771 eggs from 24 females fertilized under monandrous versus polyandrous conditions, 68% versus 67.8% survived to the 100-day juvenile stage; sub-samples showed similar hatching success (73.1% versus 74.3%), had similar survival over 40 days in near-natural streams (57.3% versus 56.2%) and grew at similar rates throughout. We therefore found no evidence that gamete-specific interactions allow offspring fitness benefits when polyandrous fertilization conditions provide opportunities for sperm competition and cryptic female choice. PMID:27069665

  11. Tumors and proliferative lesions in adult offspring after maternal exposure to methylarsonous acid during gestation in CD1 mice.

    PubMed

    Tokar, Erik J; Diwan, Bhalchandra A; Thomas, David J; Waalkes, Michael P

    2012-06-01

    Developmental exposure to inorganic arsenic is carcinogenic in humans and mice, and adult offspring of mice exposed to inorganic arsenic can develop tumors of the lung, liver, adrenal, uterus, and ovary. It has been suggested that methylarsonous acid (MMA3+), a product of the biological methylation of inorganic arsenic, could be a key carcinogenic species. Thus, pregnant CD1 mice were provided drinking water containing MMA3+ at 0 (control), 12.5, or 25 parts per million (ppm) from gestational days 8 to 18. Tumors were assessed in groups of male or female (initial n = 25) offspring up to 2 years of age. In utero treatment had no effect on survival or body weights. Female offspring exhibited increases in total epithelial uterine tumors (control 0%; 12.5 ppm 26%; 25 ppm 30%), oviduct hyperplasia (control 4%; 12.5 ppm 35%; 25 ppm 43%), adrenal cortical adenoma at 25 ppm (control 0%; 12.5 ppm 9%; 25 ppm 26%), and total epithelial ovarian tumors (control 0%; 12.5 ppm 39%; 25 ppm 26%). Male offspring showed dose-related increases in hepatocellular carcinoma (control 0%; 12.5 ppm 12%; 25 ppm 22%), adrenal adenoma (control 0%; 12.5 ppm 28%; 25 ppm 17%), and lung adenocarcinoma (control 17%; 12.5 ppm 44%). Male offspring had unusual testicular lesions, including two rete testis carcinomas, two adenomas, and three interstitial cell tumors. Overall, maternal consumption of MMA3+ during pregnancy in CD1 mice produced some similar proliferative lesions as gestationally applied inorganic arsenic in the offspring during adulthood.

  12. Tumors and Proliferative Lesions in Adult Offspring After Maternal Exposure to Methylarsonous Acid During Gestation in CD1 Mice

    PubMed Central

    Tokar, Erik J.; Diwan, Bhalchandra A.; Thomas, David J.; Waalkes, Michael P.

    2012-01-01

    Developmental exposure to inorganic arsenic is carcinogenic in humans and mice, and adult offspring of mice exposed to inorganic arsenic can develop tumors of the lung, liver, adrenal, uterus, and ovary. It has been suggested that methylarsonous acid (MMA3+), a product of the biological methylation of inorganic arsenic, could be a key carcinogenic species. Thus, pregnant CD1 mice were provided drinking water containing MMA3+ at 0 (control), 12.5 or 25 parts per million (ppm) from gestational day 8 to 18. Tumors were assessed in groups of male or female (initial n = 25) offspring up to two years of age. In utero treatment had no effect on survival or body weights. Female offspring exhibited increases in total epithelial uterine tumors (control 0%; 12.5 ppm 26%; 25 ppm 30%), oviduct hyperplasia (control 4%; 12.5 ppm 35%; 25 ppm 43%), adrenal cortical adenoma at 25 ppm (control 0%; 12.5 ppm 9%; 25 ppm 26%), and total epithelial ovarian tumors (control 0%; 12.5 ppm 39%; 25 ppm 26%). Male offspring showed dose-related increases in hepatocellular carcinoma (control 0%; 12.5 ppm 12%; 25 ppm 22%), adrenal adenoma (control 0%; 12.5 ppm 28%; 25 ppm 17%), and lung adenocarcinoma (control 17%; 12.5 ppm 44%). Male offspring had unusual testicular lesions, including two rete testis carcinomas and two adenomas, and three interstitial cell tumors. Overall, maternal consumption of MMA3+ during pregnancy in CD1 mice produced some similar proliferative lesions as gestationally applied inorganic arsenic in the offspring during adulthood. PMID:22398986

  13. Maternal treatment with picrotoxin in late pregnancy improved female sexual behavior but did not alter male sexual behavior of offspring.

    PubMed

    Bernardi, Maria M; Scanzerla, Kayne K; Chamlian, Mayra; Teodorov, Elizabeth; Felicio, Luciano F

    2013-08-01

    Previous studies from our laboratory investigated the effects of picrotoxin (PT), a γ-aminobutyric acid receptor antagonist administered during several perinatal periods, on the sexual behavior of male and female rats. We observed that the time of perinatal exposure to PT is critical to determine either facilitation or impairment of sexual behavior. The present study evaluated the effects of prenatal administration of a single dose of PT on gestation day 18 of dams (the first critical period of male brain sexual differentiation) on sexual behavior of male and female offspring. Thus, female Wistar rats were mated with males and, on gestation day 18, received 0.6 mg/kg of PT or 0.9% saline solution subcutaneously. On postnatal day 1, the offspring were weighed and several measures of sexual development were assessed. The sexual behaviors and the general activity in the open field of adult male and ovariectomized, hormone-treated female rats were observed. On comparison with the control group, maternal PT treatment: (i) did not alter the maternal weight, pup weight, anogenital distance, or male and female general activity; (ii) increased female sexual behavior, that is, decreased the latencies to first mount, first lordosis, and tenth lordosis, and the percentage of females presenting lordosis; and (iii) did not alter male sexual behavior. It is suggested that prenatal PT exposure interfered with epigenetic mechanisms related to the development of sex differences in the brain, leading to the observed sexually dimorphic effects on sexual behavior.

  14. Predator-Specific Effects on Incubation Behaviour and Offspring Growth in Great Tits

    PubMed Central

    Basso, Alessandra; Richner, Heinz

    2015-01-01

    In birds, different types of predators may target adults or offspring differentially and at different times of the reproductive cycle. Hence they may also differentially influence incubation behaviour and thus embryonic development and offspring phenotype. This is poorly understood, and we therefore performed a study to assess the effects of the presence of either a nest predator or a predator targeting adults and offspring after fledging on female incubation behaviour in great tits (Parus major), and the subsequent effects on offspring morphological traits. We manipulated perceived predation risk during incubation using taxidermic models of two predators: the short-tailed weasel posing a risk to incubating females and nestlings, and the sparrowhawk posing a risk to adults and offspring after fledging. To disentangle treatment effects induced during incubation from potential carry-over effects of parental behaviour after hatching, we cross-fostered whole broods from manipulated nests with broods from unmanipulated nests. Both predator treatments lead to a reduced on- and off-bout frequency, to a slower decline in on-bout temperature as incubation advanced and showed a negative effect on nestling body mass gain. At the current state of knowledge on predator-induced variation in incubation patterns alternative hypotheses are feasible, and the findings of this study will be useful for guiding future research. PMID:25830223

  15. Family ties: maternal-offspring attachment and young adult nonmedical prescription opioid use.

    PubMed

    Cerdá, M; Bordelois, P; Keyes, K M; Roberts, A L; Martins, S S; Reisner, S L; Austin, S B; Corliss, H L; Koenen, K C

    2014-09-01

    Nonmedical prescription drug use is prevalent among young adults, yet little is known about modifiable determinants of use. We examined whether maternal-offspring attachment reported at mean age 21 was associated with nonmedical prescription opioid use at mean age 26, and investigated whether a history of depressive symptoms and substance use played a role in associations between maternal-offspring attachment and nonmedical prescription opioid use. We used data from the Growing Up Today Study, a longitudinal cohort of United States adolescents followed into young adulthood. Maternal-offspring attachment was reported by young adults and their mothers, and defined as mutual low, mutual medium or high, and dissonant. Analyses were carried out in the full sample using generalized estimating equation models, and in a sibling subsample, using conditional fixed effects models to control for stable aspects of the family environment. Analyses with the full sample and the sibling subsample both showed that mutual medium/high maternal-offspring attachment at age 21 was associated with lower odds of nonmedical prescription opioid use at age 26 (RR=0.74; 95% CI=0.57-0.97 in full sample). The association was partly mediated by mean age 23 offspring smoking, heavy episodic drinking, and illicit drug use. Promoting reciprocal attachment in the maternal-offspring dyad should be investigated as a strategy to prevent nonmedical prescription opioid use by young adulthood. Even in young adulthood, programs that target both parents and offspring may have greater impact on offspring substance use than programs that target offspring alone. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Family ties: maternal-offspring attachment and young adult nonmedical prescription opioid use

    PubMed Central

    Cerdá, M.; Bordelois, P.; Keyes, K.M.; Roberts, A.L.; Martins, S.S.; Reisner, S.L.; Austin, S.B.; Corliss, H.L.; Koenen, K.C.

    2014-01-01

    Background Nonmedical prescription drug use is prevalent among young adults, yet little is known about modifiable determinants of use. We examined whether maternal-offspring attachment reported at mean age 21 was associated with nonmedical prescription opioid use at mean age 26, and investigated whether a history of depressive symptoms and substance use played a role in associations between maternal-offspring attachment and nonmedical prescription opioid use. Methods We used data from the Growing Up Today Study, a longitudinal cohort of United States adolescents followed into young adulthood. Maternal-offspring attachment was reported by young adults and their mothers, and defined as mutual low, mutual medium or high, and dissonant. Analyses were carried out in the full sample using generalized estimating equation models, and in a sibling subsample, using conditional fixed effects models to control for stable aspects of the family environment. Results Analyses with the full sample and the sibling subsample both showed that mutual medium/high maternal-offspring attachment at age 21 was associated with lower odds of nonmedical prescription opioid use at age 26 (RR=0.74; 95% CI=0.57-0.97 in full sample). The association was partly mediated by mean age 23 offspring smoking, heavy episodic drinking, and illicit drug use. Conclusions Promoting reciprocal attachment in the maternal-offspring dyad should be investigated as a strategy to prevent nonmedical prescription opioid use by young adulthood. Even in young adulthood, programs that target both parents and offspring may have greater impact on offspring substance use than programs that target offspring alone. PMID:25024105

  17. The scent of stress: environmental challenge in the peripartum environment of mice affects emotional behaviours of the adult offspring in a sex-specific manner.

    PubMed

    Lerch, S; Dormann, C; Brandwein, C; Gass, P; Chourbaji, S

    2016-06-01

    Early adverse experiences are known to influence the risk of developing psychiatric disorders later. To shed further light on the development of laboratory mice, we systematically examined the influence of a prenatal or postnatal olfactory stressor, namely unfamiliar male mouse faeces, presented to pregnant or nursing mouse dams. Maternal and offspring behaviours were then examined. Maternal behaviours relative to controls revealed changes in nest building by the pregnant dams exposed to the unfamiliar faeces. There were no differences among groups on pup retrieval or exploration by the dams. Behavioural phenotyping of male and female offspring as adults included measures of exploration, anxiety, social and depressive-like behaviours. Additionally, serum corticosterone was assessed as a marker of physiological stress response. Group differences were dependent on the sex of the adult offspring. Males raised by dams that were stressed during pregnancy presented elevated emotionality as indicated by increased numbers of faecal boluses in the open field paradigm. Consistent with the effects of prenatal stress on the males only the prenatally stressed females had higher body weights than their respective controls. Indeed, males in both experimental groups had higher circulating corticosterone levels. By contrast, female offspring of dams exposed to the olfactory stressor after parturition were more anxious in the O-maze as indicated by increased latencies in entering the exposed areas of the maze. These findings emphasize the necessity for researchers to consider the pre- and postnatal environments, even of mice with almost identical genetic backgrounds, in designing experiments and interpreting their data. © The Author(s) 2015.

  18. Multiple exposures of sevoflurane during pregnancy induces memory impairment in young female offspring mice

    PubMed Central

    Chung, Woosuk; Yoon, Seunghwan

    2017-01-01

    Background Earlier studies have reported conflicting results regarding long-term behavioral consequences after anesthesia during the fetal period. Previous studies also suggest several factors that may explain such conflicting data. Thus, we examined the influence of age and sex on long-term behavioral consequences after multiple sevoflurane exposures during the fetal period. Methods C57BL/6J pregnant mice received oxygen with or without sevoflurane for 2 hours at gestational day (GD) 14-16. Offspring mice were subjected to behavioral assays for general activity (open field test), learning, and memory (fear chamber test) at postnatal day 30–35. Results Multiple sevoflurane exposures at GD 14–16 caused significant changes during the fear chamber test in young female offspring mice. Such changes did not occur in young male offspring mice. However, general activity was not affected in both male and female mice. Conclusions Multiple sevoflurane exposures in the second trimester of pregnancy affects learning and memory only in young female mice. Further studies focusing on diverse cognitive functions in an age-, sex-dependent manner may provide valuable insights regarding anesthesia-induced neurotoxicity. PMID:29225748

  19. Maternal enrichment affects prenatal hippocampal proliferation and open-field behaviors in female offspring mice.

    PubMed

    Maruoka, Takashi; Kodomari, Ikuko; Yamauchi, Rena; Wada, Etsuko; Wada, Keiji

    2009-04-17

    The maternal environment is thought to be important for fetal brain development. However, the effects of maternal environment are not fully understood. Here, we investigated whether enrichment of the maternal environment can influence prenatal brain development and postnatal behaviors in mice. An enriched environment is a housing condition with several objects such as a running wheel, tube and ladder, which are thought to increase sensory, cognitive and motor stimulation in rodents compared with standard housing conditions. First, we measured the number of BrdU-positive cells in the hippocampal dentate gyrus of fetuses from pregnant dams housed in an enriched environment. Our results revealed that maternal enrichment influences cell proliferation in the hippocampus of female, but not male, fetuses. Second, we used the open-field test to investigate postnatal behaviors in the offspring of dams housed in the enriched environment during pregnancy. We found that maternal enrichment significantly affects the locomotor activity and time spent in the center of the open-field in female, but not male, offspring. These results indicate that maternal enrichment influences prenatal brain development and postnatal behaviors in female offspring.

  20. Programming of stress-related behavior and epigenetic neural gene regulation in mice offspring through maternal exposure to predator odor

    PubMed Central

    St-Cyr, Sophie; McGowan, Patrick O.

    2015-01-01

    Perinatal stress mediated through the mother can lead to long-term alterations in stress-related phenotypes in offspring. The capacity for adaptation to adversity in early life depends in part on the life history of the animal. This study was designed to examine the behavioral and neural response in adult offspring to prenatal exposure to predator odor: an ethologically-relevant psychological stressor. Pregnant mice were exposed daily to predator odors or distilled water control over the second half of the pregnancy. Predator odor exposure lead to a transient decrease in maternal care in the mothers. As adults, the offspring of predator odor-exposed mothers showed increased anti-predator behavior, a predator-odor induced decrease in activity and, in female offspring, an increased corticosterone (CORT) response to predator odor exposure. We found a highly specific response among stress-related genes within limbic brain regions. Transcript abundance of Corticotropin-releasing hormone receptor 1 (CRHR1) was elevated in the amygdala in adult female offspring of predator odor-exposed mothers. In the hippocampus of adult female offspring, decreased Brain-derived neurotrophic factor (BDNF) transcript abundance was correlated with a site-specific decrease in DNA methylation in Bdnf exon IV, indicating the potential contribution of this epigenetic mechanism to maternal programming by maternal predator odor exposure. These data indicate that maternal predator odor exposure alone is sufficient to induce an altered stress-related phenotype in adulthood, with implications for anti-predator behavior in offspring. PMID:26082698

  1. Programming of stress-related behavior and epigenetic neural gene regulation in mice offspring through maternal exposure to predator odor.

    PubMed

    St-Cyr, Sophie; McGowan, Patrick O

    2015-01-01

    Perinatal stress mediated through the mother can lead to long-term alterations in stress-related phenotypes in offspring. The capacity for adaptation to adversity in early life depends in part on the life history of the animal. This study was designed to examine the behavioral and neural response in adult offspring to prenatal exposure to predator odor: an ethologically-relevant psychological stressor. Pregnant mice were exposed daily to predator odors or distilled water control over the second half of the pregnancy. Predator odor exposure lead to a transient decrease in maternal care in the mothers. As adults, the offspring of predator odor-exposed mothers showed increased anti-predator behavior, a predator-odor induced decrease in activity and, in female offspring, an increased corticosterone (CORT) response to predator odor exposure. We found a highly specific response among stress-related genes within limbic brain regions. Transcript abundance of Corticotropin-releasing hormone receptor 1 (CRHR1) was elevated in the amygdala in adult female offspring of predator odor-exposed mothers. In the hippocampus of adult female offspring, decreased Brain-derived neurotrophic factor (BDNF) transcript abundance was correlated with a site-specific decrease in DNA methylation in Bdnf exon IV, indicating the potential contribution of this epigenetic mechanism to maternal programming by maternal predator odor exposure. These data indicate that maternal predator odor exposure alone is sufficient to induce an altered stress-related phenotype in adulthood, with implications for anti-predator behavior in offspring.

  2. Ontogeny of tetrodotoxin levels in blue-ringed octopuses: maternal investment and apparent independent production in offspring of Hapalochlaena lunulata.

    PubMed

    Williams, Becky L; Hanifin, Charles T; Brodie, Edmund D; Caldwell, Roy L

    2011-01-01

    Many organisms provision offspring with antipredator chemicals. Adult blue-ringed octopuses (Hapalochlaena spp.) harbor tetrodotoxin (TTX), which may be produced by symbiotic bacteria. Regardless of the ultimate source, we find that females invest TTX into offspring and offspring TTX levels are significantly correlated with female TTX levels. Because diversion of TTX to offspring begins during the earliest stages of egg formation, when females are still actively foraging and looking for mates, females may face an evolutionary tradeoff between provisioning larger stores of TTX in eggs and retaining that TTX for their own defense and offense (venom). Given that total TTX levels appear to increase during development and that female TTX levels correlate with those of offspring, investment may be an active adaptive process. Even after eggs have been laid, TTX levels continue to increase, suggesting that offspring or their symbionts begin producing TTX independently. The maternal investment of TTX in offspring of Hapalochlaena spp. represents a rare examination of chemical defenses, excepting ink, in cephalopods.

  3. Effects of maternal high-fat diet and sedentary lifestyle on susceptibility of adult offspring to ozone exposure in rats.

    PubMed

    Gordon, C J; Phillips, P M; Johnstone, A F M; Schmid, J; Schladweiler, M C; Ledbetter, A; Snow, S J; Kodavanti, U P

    2017-05-01

    Epidemiological and experimental data suggest that obesity exacerbates the health effects of air pollutants such as ozone (O 3 ). Maternal inactivity and calorically rich diets lead to offspring that show signs of obesity. Exacerbated O 3 susceptibility of offspring could thus be manifested by maternal obesity. Thirty-day-old female Long-Evans rats were fed a control (CD) or high-fat (HF) (60% calories) diet for 6 wks and then bred. GD1 rats were then housed with a running wheel (RW) or without a wheel (SED) until parturition, creating four groups of offspring: CD-SED, CD-RW, HF-SED and HF-RW. HF diet was terminated at PND 35 and all offspring were placed on CD. Body weight and %fat of dams were greatest in order; HF-SED > HF-RW > CD-SED > CD-RW. Adult offspring were exposed to O 3 for two consecutive days (0.8 ppm, 4 h/day). Glucose tolerance tests (GTT), ventilatory parameters (plethysmography), and bronchoalveolar fluid (BALF) cell counts and protein biomarkers were performed to assess response to O 3 . Exercise and diet altered body weight and %fat of young offspring. GTT, ventilation and BALF cell counts were exacerbated by O 3 with responses markedly exacerbated in males. HF diet and O 3 led to significant exacerbation of several BALF parameters: total cell count, neutrophils and lymphocytes were increased in male HF-SED versus CD-SED. Males were hyperglycemic after O 3 exposure and exhibited exacerbated GTT responses. Ventilatory dysfunction was also exacerbated in males. Maternal exercise had minimal effects on O 3 response. The results of this exploratory study suggest a link between maternal obesity and susceptibility to O 3 in their adult offspring in a sex-specific manner.

  4. Maternal natal environment and breeding territory predict the condition and sex ratio of offspring.

    PubMed

    Bowers, E Keith; Thompson, Charles F; Sakaluk, Scott K

    2017-03-01

    Females in a variety of taxa adjust offspring sex ratios to prevailing ecological conditions. However, little is known about whether conditions experienced during a female's early ontogeny influence the sex ratio of her offspring. We tested for past and present ecological predictors of offspring sex ratios among known-age females that were produced as offspring and bred as adults in a population of house wrens. The body condition of offspring that a female produced and the proportion of her offspring that were male were negatively correlated with the size of the brood in which she herself was reared. The proportion of sons within broods was negatively correlated with maternal hatching date, and varied positively with the quality of a female's current breeding territory as predicted. However, females producing relatively more sons than daughters were less likely to return to breed in the population the following year. Although correlative, our results suggest that the rearing environment can have enduring effects on later maternal investment and sex allocation. Moreover, the overproduction of sons relative to daughters may increase costs to a female's residual reproductive value, constraining the extent to which sons might be produced in high-quality breeding conditions. Sex allocation in birds remains a contentious subject, largely because effects on offspring sex ratios are small. Our results suggest that offspring sex ratios are shaped by various processes and trade-offs that act throughout the female life history and ultimately reduce the extent of sex-ratio adjustment relative to classic theoretical predictions.

  5. The Maternal Legacy: Female Identity Predicts Offspring Sex Ratio in the Loggerhead Sea Turtle.

    PubMed

    Reneker, Jaymie L; Kamel, Stephanie J

    2016-07-01

    In organisms with temperature-dependent sex determination, the incubation environment plays a key role in determining offspring sex ratios. Given that global temperatures have warmed approximately 0.6 °C in the last century, it is necessary to consider how organisms will adjust to climate change. To better understand the degree to which mothers influence the sex ratios of their offspring, we use 24 years of nesting data for individual female loggerhead sea turtles (Caretta caretta) observed on Bald Head Island, North Carolina. We find that maternal identity is the best predictor of nest sex ratio in univariate and multivariate predictive models. We find significant variability in estimated nest sex ratios among mothers, but a high degree of consistency within mothers, despite substantial spatial and temporal thermal variation. Our results suggest that individual differences in nesting preferences are the main driver behind divergences in nest sex ratios. As such, a female's ability to plastically adjust her nest sex ratios in response to environmental conditions is constrained, potentially limiting how individuals behaviorally mitigate the effects of environmental change. Given that many loggerhead populations already show female-biased offspring sex ratios, understanding maternal behavioral responses is critical for predicting the future of long-lived species vulnerable to extinction.

  6. Stillbirth, early death and neonatal morbidity among offspring of female cancer survivors.

    PubMed

    Madanat-Harjuoja, Laura-Maria; Lähteenmäki, Päivi M; Dyba, Tadeusz; Gissler, Mika; Boice, John D; Malila, Nea

    2013-08-01

    Increased awareness of the adverse effects of cancer treatments has prompted the development of fertility preserving regimens for the growing population of cancer survivors who desire to have children of their own. We conducted a registry-based study to evaluate the risk of stillbirth, early death and neonatal morbidity among children of female cancer survivors (0-34 years at diagnosis) compared with children of female siblings. A total of 3501 and 16 908 children of female cancer patients and siblings, respectively, were linked to the national medical birth and cause-of-death registers. The risk of stillbirth or early death was not significantly increased among offspring of cancer survivors as compared to offspring of siblings: the risk [Odds Ratio (OR)] of early neonatal death, i.e. mortality within the first week was 1.35, with a 95% confidence interval (CI) of 0.58-3.18, within 28 days 1.40, 95% CI 0.46-4.24 and within the first year of life 1.11, 95% CI 0.64-1.93 after adjustment for the main explanatory variables. All these risk estimates were reduced towards one after further adjustment for duration of pregnancy. Measures of serious neonatal morbidity were not significantly increased among the children of survivors. However, there was a significant increase in the monitoring of children of cancer survivors for neonatal conditions (OR 1.56, 95% CI 1.35-1.80), which persisted even after correcting for duration of pregnancy, that might be related to parental cancer and its treatment or increased surveillance among the children. Offspring of cancer survivors were more likely to require monitoring or care in a neonatal intensive care unit, but the risk of early death or stillbirth was not increased after adjustment for prematurity. Due to the rarity of the mortality outcomes studied, collaborative studies may be helpful in ruling out the possibility of an increased risk among offspring of cancer survivors.

  7. Sex Dimorphism in Late Gestational Sleep Fragmentation and Metabolic Dysfunction in Offspring Mice

    PubMed Central

    Khalyfa, Abdelnaby; Carreras, Alba; Almendros, Isaac; Hakim, Fahed; Gozal, David

    2015-01-01

    Background: Excessive sleep fragmentation (SF) is common in pregnant women. Adult-onset metabolic disorders may begin during early development and exhibit substantial sex dimorphism. We hypothesized that metabolic dysfunction induced by gestational SF in male mice would not be apparent in female littermates. Methods: Body weight and food consumption were measured weekly in male and female offspring after late gestational SF or control sleep (SC). At 20 weeks, plasma leptin, adiponectin, lipid profiles, and insulin and glucose tolerance tests were assessed. Leptin and adiponectin, M1, and M2 macrophage messenger RNA expression and polarity were examined. Adiponectin gene promoter methylation levels in several tissues were assessed. Results: Food intake, body weight, visceral fat mass, and insulin resistance were higher, and adiponectin levels lower in male but not female offspring exposed to gestational SF. However, dyslipidemia was apparent in both male and female offspring exposed to SF, albeit of lesser magnitude. In visceral fat, leptin messenger RNA expression was selectively increased and adiponectin expression was decreased in male offspring exposed to gestational SF, but adiponectin was increased in exposed female offspring. Differences in adipokine expression also emerged in liver, subcutaneous fat, and muscle. Increased M1 macrophage markers were present in male offspring exposed to SF (SFOM) while increased M2 markers emerged in SF in female offspring (SFOF). Similarly, significant differences emerged in the methylation patterns of adiponectin promoter in SFOM and SFOF. Conclusion: Gestational sleep fragmentation increases the susceptibility to obesity and metabolic syndrome in male but not in female offspring, most likely via epigenetic changes. Thus, sleep perturbations impose long-term detrimental effects to the fetus manifesting as sex dimorphic metabolic dysfunction in adulthood. Citation: Khalyfa A, Carreras A, Almendros I, Hakim F, Gozal D. Sex

  8. Parent–offspring resemblance in colony-specific adult survival of cliff swallows

    USGS Publications Warehouse

    Brown, Charles R.; Roche, Erin A.; Brown, Mary Bomberger

    2015-01-01

    Survival is a key component of fitness. Species that occupy discrete breeding colonies with different characteristics are often exposed to varying costs and benefits associated with group size or environmental conditions, and survival is an integrative net measure of these effects. We investigated the extent to which survival probability of adult (≥1-year old) cliff swallows (Petrochelidon pyrrhonota) occupying different colonies resembled that of their parental cohort and thus whether the natal colony had long-term effects on individuals. Individuals were cross-fostered between colonies soon after hatching and their presence as breeders monitored at colonies in the western Nebraska study area for the subsequent decade. Colony-specific adult survival probabilities of offspring born and reared in the same colony, and those cross-fostered away from their natal colony soon after birth, were positively and significantly related to subsequent adult survival of the parental cohort from the natal colony. This result held when controlling for the effect of natal colony size and the age composition of the parental cohort. In contrast, colony-specific adult survival of offspring cross-fostered to a site was unrelated to that of their foster parent cohort or to the cohort of non-fostered offspring with whom they were reared. Adult survival at a colony varied inversely with fecundity, as measured by mean brood size, providing evidence for a survival–fecundity trade-off in this species. The results suggest some heritable variation in adult survival, likely maintained by negative correlations between fitness components. The study provides additional evidence that colonies represent non-random collections of individuals.

  9. [Tissue-specific Changes in the Polymorphism of Simple Repeats in DNA of the Offspring of Different Sex Born from Irradiated Male or Female Mice].

    PubMed

    Lomaeva, M G; Fomenko, L A; Vasil'eva, G V; Bezlepkin, V G

    2016-01-01

    Evidence is presented indicating the differences in the polymorphism of microsatellite (MCS) repeats in DNA of somatic tissues in the offspring of BALB/c mice of different sex born from preconceptionally irradiated males or females. Brother-sister groups of the offspring born by non-irradiated parental pairs were compared with the offspring obtained after the irradiation of one parent in the same pairs. The number of MCS repeats in DNA of somatic tissues of the offspring from irradiated males or females was compared by a polymerase chain reaction using an arbitrary primer. It was found that changes in the polymorphism of the number of MCS repeats in the offspring from the males irradiated at a dose of 2 Gy was insignificant as compared with the offspring from control animals. In the offspring born by the females irradiated at a dose of 2 Gy (which does not impair the reproductive capacity), a statistically significant increase in the polymorphism was observed. Changes in the polymorphism were different in the offspring of different sex. A higher level of polymorphism was revealed in the female offspring born from the females of the F0 generation after their irradiation at a dose of 2 Gy. The increase in the polymorphism of the number of MCS repeats in DNA was more pronounced in postmitotic tissues compared with proliferating tissues.

  10. Reversal of prenatal morphine exposure-induced memory deficit in male but not female rats.

    PubMed

    Nasiraei-Moghadam, Shiva; Sherafat, Mohammad Amin; Safari, Mir-Shahram; Moradi, Fatemeh; Ahmadiani, Abolhassan; Dargahi, Leila

    2013-05-01

    Impaired memory performance in offspring is one of the long-lasting neurobehavioral consequences of prenatal opiate exposure. Here, we studied the effects of prenatal morphine exposure on inhibitory avoidance memory performance in male and female offspring and also investigated whether these deficits are reversible during the postnatal development. Pregnant Wistar rats received morphine sulfate through drinking water, from the first day of gestation up to the day 13, M₁₋₁₃, or to the time of delivery, M₁₋₂₁. Four- and ten-week-old (adolescent and adult, respectively) male and female offspring were subjected to behavioral assays and then analysis of proteins involved in apoptosis or in synaptic plasticity. Results revealed that adolescent and adult female rats failed in passive avoidance retention task in both M₁₋₁₃ and M₁₋₂₁ groups. Adolescent and adult male offspring were similar to control animals in M₁₋₁₃ group. However M₁₋₂₁ impaired retention task in prepubertal male offspring, and this memory loss was repaired in postpubertal stage. Consistently, Bax/Bcl-2 ratio and cleaved caspase-3 were significantly increased in both M₁₋₁₃ and M₁₋₂₁ adolescent and adult female rats, but only in M₁₋₂₁ adolescent male rats. Furthermore, prenatal morphine exposure reduced the expression of brain-derived neurotrophic factor precursor protein in adolescent and adult female offspring and also decreased p-ca(2+)/calmodulin-dependent kinase II/ca(2+)/calmodulin-dependent kinase II ratio in adolescent male and female rats. Altogether, the results show that prenatal morphine exposure, depending on the time or duration of exposure, has distinct effects on male and female rats, and postnatal development may reverse these deficits more likely in males.

  11. Polyandry and fitness of offspring reared under varying nutritional stress in decorated crickets.

    PubMed

    Sakaluk, Scott K; Schaus, Jennifer M; Eggert, Anne-Katrin; Snedden, W Andrew; Brady, Pamela L

    2002-10-01

    Females, by mating with more than one male in their lifetime, may reduce their risk of receiving sperm from genetically incompatible sires or increase their prospects of obtaining sperm from genetically superior sires. Although there is evidence of both kinds of genetic benefits in crickets, their relative importance remains unclear, and the extent to which experimentally manipulated levels of polyandry in the laboratory correspond to those that occur in nature remain unknown. We measured lifetime polyandry of free-living female decorated crickets, Gryllodes sigillatus, and conducted an experiment to determine whether polyandry leads to an increase in offspring viability. We experimentally manipulated both the levels of polyandry and opportunities for females to select among males, randomly allocating the offspring of experimental females to high-food-stress or low-food-stress regimes to complete their development. Females exhibited a high degree of polyandry, mating on average with more than seven different males during their lifetime and up to as many as 15. Polyandry had no effect on either the developmental time or survival of offspring. However, polyandrous females produced significantly heavier sons than those of monandrous females, although there was no difference in the adult mass of daughters. There was no significant interaction between mating treatment and offspring nutritional regimen in their effects on offspring mass, suggesting that benefits accruing to female polyandry are independent of the environment in which offspring develop. The sex difference in the extent to which male and female offspring benefit via their mother's polyandry may reflect possible differences in the fitness returns from sons and daughters. The larger mass gain shown by sons of polyandrous females probably leads to their increased reproductive success, either because of their increased success in sperm competition or because of their increased life span.

  12. Prenatal air pollution exposure induces neuroinflammation and predisposes offspring to weight gain in adulthood in a sex-specific manner.

    PubMed

    Bolton, Jessica L; Smith, Susan H; Huff, Nicole C; Gilmour, M Ian; Foster, W Michael; Auten, Richard L; Bilbo, Staci D

    2012-11-01

    Emerging evidence suggests environmental chemical exposures during critical windows of development may contribute to the escalating prevalence of obesity. We tested the hypothesis that prenatal air pollution exposure would predispose the offspring to weight gain in adulthood. Pregnant mice were exposed to filtered air (FA) or diesel exhaust (DE) on embryonic days (E) 9-17. Prenatal DE induced a significant fetal brain cytokine response at E18 (46-390% over FA). As adults, offspring were fed either a low-fat diet (LFD) or high-fat diet (HFD) for 6 wk. Adult DE male offspring weighed 12% more and were 35% less active than FA male offspring at baseline, whereas there were no differences in females. Following HFD, DE males gained weight at the same rate as FA males, whereas DE females gained 340% more weight than FA females. DE-HFD males had 450% higher endpoint insulin levels than FA-HFD males, and all males on HFD showed decreased activity and increased anxiety, whereas females showed no differences. Finally, both DE males and females fed HFD showed increased microglial activation (30-66%) within several brain regions. Thus, prenatal air pollution exposure can "program" offspring for increased susceptibility to diet-induced weight gain and neuroinflammation in adulthood in a sex-specific manner.

  13. Female mating preferences and offspring survival: testing hypotheses on the genetic basis of mate choice in a wild lekking bird.

    PubMed

    Sardell, Rebecca J; Kempenaers, Bart; Duval, Emily H

    2014-02-01

    Indirect benefits of mate choice result from increased offspring genetic quality and may be important drivers of female behaviour. 'Good-genes-for-viability' models predict that females prefer mates of high additive genetic value, such that offspring survival should correlate with male attractiveness. Mate choice may also vary with genetic diversity (e.g. heterozygosity) or compatibility (e.g. relatedness), where the female's genotype influences choice. The relative importance of these nonexclusive hypotheses remains unclear. Leks offer an excellent opportunity to test their predictions, because lekking males provide no material benefits and choice is relatively unconstrained by social limitations. Using 12 years of data on lekking lance-tailed manakins, Chiroxiphia lanceolata, we tested whether offspring survival correlated with patterns of mate choice. Offspring recruitment weakly increased with father attractiveness (measured as reproductive success, RS), suggesting attractive males provide, if anything, only minor benefits via offspring viability. Both male RS and offspring survival until fledging increased with male heterozygosity. However, despite parent-offspring correlation in heterozygosity, offspring survival was unrelated to its own or maternal heterozygosity or to parental relatedness, suggesting survival was not enhanced by heterozygosity per se. Instead, offspring survival benefits may reflect inheritance of specific alleles or nongenetic effects. Although inbreeding depression in male RS should select for inbreeding avoidance, mates were not less related than expected under random mating. Although mate heterozygosity and relatedness were correlated, selection on mate choice for heterozygosity appeared stronger than that for relatedness and may be the primary mechanism maintaining genetic variation in this system despite directional sexual selection. © 2014 John Wiley & Sons Ltd.

  14. Parental Depression as a Moderator of Secondary Deficits of Depression in Adult Offspring

    ERIC Educational Resources Information Center

    Timko, Christine; Cronkite, Ruth C.; Swindle, Ralph; Robinson, Rebecca L.; Sutkowi, Anne; Moos, Rudolf H.

    2009-01-01

    This study examined whether having a depressed parent intensifies the secondary deficits that often co-occur with offspring's depression symptoms. The sample was adult offspring of parents who had been diagnosed with depression 23 years earlier (N = 143) and demographically matched nondepressed parents (N = 197). Respondents completed mailed…

  15. Female bluethroats enhance offspring immunocompetence through extra-pair copulations.

    PubMed

    Johnsen, A; Andersen, V; Sunding, C; Lifjeld, J T

    2000-07-20

    Female birds frequently copulate with extra-pair males, but the adaptive value of this behaviour is poorly understood. Some studies have suggested that 'good genes' may be involved, where females seek to have their eggs fertilized by high-quality males without receiving any material benefits from them. Nevertheless, it remains to be shown that a genetic benefit is passed on to offspring. Here we report that nestling bluethroats, Luscinia svecica, sired by extra-pair males had a higher T-cell-mediated immune response than their maternal half-siblings raised in the same nest. The difference could not be attributed to nestling body mass, sex or hatching order, but may be an effect of paternal genotype. Extra-pair young were also more immunocompetent than their paternal half-sibs raised in the genetic father's own nest, which indicates an additional effect of maternal genotype. Our results are consistent with the idea that females engage in extra-pair copulations to obtain compatible viability genes, rather than 'good genes' per se.

  16. Maternal High-Fat Diet-Induced Loss of Fetal Oocytes Is Associated with Compromised Follicle Growth in Adult Rat Offspring1

    PubMed Central

    Tsoulis, Michael W.; Chang, Pauline E.; Moore, Caroline J.; Chan, Kaitlyn A.; Gohir, Wajiha; Petrik, James J.; Vickers, Mark H.; Connor, Kristin L.; Sloboda, Deborah M.

    2016-01-01

    Maternal obesity predisposes offspring to metabolic and reproductive dysfunction. We have shown previously that female rat offspring born to mothers fed a high-fat (HF) diet throughout pregnancy and lactation enter puberty early and display aberrant reproductive cyclicity. The mechanisms driving this reproductive phenotype are currently unknown thus we investigated whether changes in ovarian function were involved. Wistar rats were mated and randomized to: dams fed a control diet (CON) or dams fed a HF diet from conception until the end of lactation (HF). Ovaries were collected from fetuses at Embryonic Day (E) 20, and neonatal ovaries at Day 4 (P4), prepubertal ovaries at P27 and adult ovaries at P120. In a subset of offspring, the effects of a HF diet fed postweaning were evaluated. The present study shows that fetuses of mothers fed a HF diet had significantly fewer oocytes at E20, and in neonates, have reduced AMH signaling that may facilitate an increased number of assembled primordial follicles. Both prepubertally and in adulthood, ovaries show increased follicular atresia. As adults, offspring have reduced FSH responsiveness, low expression levels of estrogen receptor alpha (Eralpha), the oocyte-secreted factor, Gdf9, oocyte-specific RNA binding protein, Dazl, and high expression levels of the granulosa-cell derived factor, AMH, in antral follicles. Together, these data suggest that ovarian compromise in offspring born to HF-fed mothers may arise from changes already observable in the fetus and neonate and in the long term, associated with increased follicular atresia through adulthood. PMID:26962114

  17. Sex dimorphism in late gestational sleep fragmentation and metabolic dysfunction in offspring mice.

    PubMed

    Khalyfa, Abdelnaby; Carreras, Alba; Almendros, Isaac; Hakim, Fahed; Gozal, David

    2015-04-01

    Excessive sleep fragmentation (SF) is common in pregnant women. Adult-onset metabolic disorders may begin during early development and exhibit substantial sex dimorphism. We hypothesized that metabolic dysfunction induced by gestational SF in male mice would not be apparent in female littermates. Body weight and food consumption were measured weekly in male and female offspring after late gestational SF or control sleep (SC). At 20 weeks, plasma leptin, adiponectin, lipid profiles, and insulin and glucose tolerance tests were assessed. Leptin and adiponectin, M1, and M2 macrophage messenger RNA expression and polarity were examined. Adiponectin gene promoter methylation levels in several tissues were assessed. Food intake, body weight, visceral fat mass, and insulin resistance were higher, and adiponectin levels lower in male but not female offspring exposed to gestational SF. However, dyslipidemia was apparent in both male and female offspring exposed to SF, albeit of lesser magnitude. In visceral fat, leptin messenger RNA expression was selectively increased and adiponectin expression was decreased in male offspring exposed to gestational SF, but adiponectin was increased in exposed female offspring. Differences in adipokine expression also emerged in liver, subcutaneous fat, and muscle. Increased M1 macrophage markers were present in male offspring exposed to SF (SFOM) while increased M2 markers emerged in SF in female offspring (SFOF). Similarly, significant differences emerged in the methylation patterns of adiponectin promoter in SFOM and SFOF. Gestational sleep fragmentation increases the susceptibility to obesity and metabolic syndrome in male but not in female offspring, most likely via epigenetic changes. Thus, sleep perturbations impose long-term detrimental effects to the fetus manifesting as sex dimorphic metabolic dysfunction in adulthood. © 2015 Associated Professional Sleep Societies, LLC.

  18. Offspring from mothers fed a 'junk food' diet in pregnancy and lactation exhibit exacerbated adiposity that is more pronounced in females.

    PubMed

    Bayol, S A; Simbi, B H; Bertrand, J A; Stickland, N C

    2008-07-01

    We have shown previously that a maternal junk food diet during pregnancy and lactation plays a role in predisposing offspring to obesity. Here we show that rat offspring born to mothers fed the same junk food diet rich in fat, sugar and salt develop exacerbated adiposity accompanied by raised circulating glucose, insulin, triglyceride and/or cholesterol by the end of adolescence (10 weeks postpartum) compared with offspring also given free access to junk food from weaning but whose mothers were exclusively fed a balanced chow diet in pregnancy and lactation. Results also showed that offspring from mothers fed the junk food diet in pregnancy and lactation, and which were then switched to a balanced chow diet from weaning, exhibited increased perirenal fat pad mass relative to body weight and adipocyte hypertrophy compared with offspring which were never exposed to the junk food diet. This study shows that the increased adiposity was more enhanced in female than male offspring and gene expression analyses showed raised insulin-like growth factor-1 (IGF-1), insulin receptor substrate (IRS)-1, vascular endothelial growth factor (VEGF)-A, peroxisome proliferator-activated receptor-gamma (PPARgamma), leptin, adiponectin, adipsin, lipoprotein lipase (LPL), Glut 1, Glut 3, but not Glut 4 mRNA expression in females fed the junk food diet throughout the study compared with females never given access to junk food. Changes in gene expression were not as marked in male offspring with only IRS-1, VEGF-A, Glut 4 and LPL being up-regulated in those fed the junk food diet throughout the study compared with males never given access to junk food. This study therefore shows that a maternal junk food diet promotes adiposity in offspring and the earlier onset of hyperglycemia, hyperinsulinemia and/or hyperlipidemia. Male and female offspring also display a different metabolic, cellular and molecular response to junk-food-diet-induced adiposity.

  19. Impact of maternal mild hyperglycemia on maternal care and offspring development and behavior of Wistar rats.

    PubMed

    Kiss, Ana Carolina Inhasz; Woodside, Barbara; Felício, Luciano Freitas; Anselmo-Franci, Janete; Damasceno, Débora Cristina

    2012-10-10

    The aim of the present study was to evaluate the effect of maternal mild hyperglycemia on maternal behavior, as well as the development, behavior, reproductive function, and glucose tolerance of the offspring. At birth, litters were assigned either to Control (subcutaneous (sc)-citrate buffer) or STZ groups (streptozotocin (STZ)-100mg/kg-sc.). On PND 90 both STZ-treated and Control female rats were mated. Glucose tolerance tests (GTT) and insulin tolerance tests (ITT) were performed during pregnancy. Pregnancy duration, litter size and sex ratio were assessed. Newborns were classified according to birth weight as small (SPA), adequate (APA), or large for pregnancy age (LPA). Maternal behavior was analyzed on PND 5 and 10. Offspring body weight, length, and anogenital distance were measured and general activity was assessed in the open field. Sexual behavior was tested in both male and female offspring. Levels of reproductive hormones and estrous cycle duration were evaluated in female offspring. Female offspring were mated and both a GTT and ITT performed during pregnancy. Neonatal STZ administration caused mild hyperglycemia during pregnancy and changed some aspects of maternal care. The hyperglycemic intrauterine milieu impaired physical development and increased immobility in the open field in the offspring although the latter effect appeared at different ages for males (adulthood) and females (infancy). There was no impairment in the sexual behavior of either male or female offspring. As adults, female offspring of STZ-treated mothers did not show glucose intolerance during pregnancy. Thus, offspring of female rats that show mild hyperglycemia in pregnancy have fewer behavioral and developmental impairments than previously reported in the offspring of severely diabetic dams suggesting that the degree of impairment is directly related to the mother glycemic intensity. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. A test of maternal programming of offspring stress response to predation risk in threespine sticklebacks.

    PubMed

    Mommer, Brett C; Bell, Alison M

    2013-10-02

    Non-genetic maternal effects are widespread across taxa and challenge our traditional understanding of inheritance. Maternal experience with predators, for example, can have lifelong consequences for offspring traits, including fitness. Previous work in threespine sticklebacks showed that females exposed to simulated predation risk produced eggs with higher cortisol content and offspring with altered anti-predator behavior. However, it is unknown whether this maternal effect is mediated via the offspring glucocorticoid stress response and if it is retained over the entire lifetime of offspring. Therefore, we tested the hypothesis that maternal exposure to simulated predation risk has long-lasting effects on the cortisol response to simulated predation risk in stickleback offspring. We measured circulating concentrations of cortisol before (baseline), 15 min after, and 60 min after exposure to a simulated predation risk. We compared adult offspring of predator-exposed mothers and control mothers in two different social environments (alone or in a group). Relative to baseline, offspring plasma cortisol was highest 15 min after exposure to simulated predation risk and decreased after 60 min. Offspring of predator-exposed mothers differed in the cortisol response to simulated predation risk compared to offspring of control mothers. In general, females had higher cortisol than males, and fish in a group had lower cortisol than fish that were by themselves. The buffering effect of the social environment did not differ between maternal treatments or between males and females. Altogether the results show that while a mother's experience with simulated predation risk might affect the physiological response of her adult offspring to a predator, sex and social isolation have much larger effects on the stress response to predation risk in sticklebacks. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Effects of maternal and lactational exposure to 2-hydroxy-4-methoxybenzone on development and reproductive organs in male and female rat offspring

    PubMed Central

    Nakamura, Noriko; Inselman, Amy L.; White, Gene A.; Chang, Ching-Wei; Trbojevich, Raul A.; Sepehr, Estatira; Voris, Kristie L.; Patton, Ralph E.; Bryant, Matthew S.; Harrouk, Wafa; McIntyre, Barry; Foster, Paul M.; Hansen, Deborah K.

    2015-01-01

    BACKGROUND 2-hydroxy-4-methoxybenzophenone (HMB) is an ultraviolet (UV)-absorbing compound used in many cosmetic products as a UV-protecting agent and in plastics for preventing UV-induced photodecomposition. HMB has been detected in over 95% of randomly collected human urine samples from adults and from premature infants, and it may have estrogenic potential. METHODS To determine the effects of maternal and lactational exposure to HMB on development and reproductive organs of offspring, time-mated female Harlan Sprague-Dawley rats were dosed with 0, 1,000, 3,000, 10,000, 25,000, or 50,000 ppm HMB (7-8 per group) added to chow from gestation day 6 until weaning on postnatal day (PND) 23. RESULTS AND CONCLUSION Exposure to HMB was associated with reduced body and organ weights in female and male offspring. No significant differences were observed in the number of implantation sites/litter, mean resorptions/litter, % litters with resorptions, number and weights of live fetuses, or sex ratios between the control and HMB dose groups. Normalized anogenital distance in male pups at PND 23 was decreased in the highest dose group. Spermatocyte development was impaired in testes of male offspring in the highest dose group. In females, follicular development was delayed in the highest dose group. However, by evaluating levels of the compound in rat serum, the doses at which adverse events occurred are much higher than usual human exposure levels. Thus, exposure to less than 10,000 ppm HMB does not appear to be associated with adverse effects on the reproductive system in rats. PMID:25707689

  2. Growth and insulin dynamics in two generations of female offspring of mothers receiving a single course of synthetic glucocorticoids

    PubMed Central

    Long, Nathan M.; Shasa, Desiree R.; Ford, Stephen P.; Nathanielsz, Peter W.

    2013-01-01

    OBJECTIVE Synthetic glucocorticoid administration to women threatening preterm delivery increases neonatal survival. However, mounting evidence shows that fetal exposure to glucocorticoid levels higher than appropriate for current maturation adversely programs offspring development. We examined fetal synthetic glucocorticoid multigenerational metabolic effects on F1 and F2 female offspring. STUDY DESIGN At 0.7 gestation, pregnant F0 ewes received 4 injections of dexamethasone (2 mg, approximately 60 ug.kg−1 day−1 12 hours apart) or saline (control). F1 female offspring were bred to produce F2 female offspring. Postpubertal pancreatic β-cell function was tested in F1 and F2 by intravenous glucose tolerance test. RESULTS F1 and F2 ewe lambs showed reduced birthweight and morphometrics, and similar increased fasting glucose and decreased intravenous glucose tolerance test β-cell response. CONCLUSION This is the first demonstration of multigenerational programming of later life β-cell response by clinically relevant doses of synthetic glucocorticoid indicating the need for study of long-term effects of fetal exposure to synthetic glucocorticoid. PMID:22939726

  3. Parental Divorce, Maternal-Paternal Alcohol Problems, and Adult Offspring Lifetime Alcohol Dependence.

    PubMed

    Thompson, Ronald G; Alonzo, Dana; Hasin, Deborah S

    2013-01-01

    This study examined the influences of parental divorce and maternal-paternal histories of alcohol problems on adult offspring lifetime alcohol dependence using data from the 2001-2002 National Epidemiological Survey on Alcohol and Related Conditions (NESARC). Parental divorce and maternal-paternal alcohol problems interacted to differentially influence the likelihood of offspring lifetime alcohol dependence. Experiencing parental divorce and either maternal or paternal alcohol problems doubled the likelihood of alcohol dependence. Divorce and history of alcohol problems for both parents tripled the likelihood. Offspring of parental divorce may be more vulnerable to developing alcohol dependence, particularly when one or both parents have alcohol problems.

  4. Hitting a triple in the non-alcoholic fatty liver disease field: sucrose intake in adulthood increases fat content in the female but not in the male rat offspring of dams fed a gestational low-protein diet.

    PubMed

    Nicolás-Toledo, L; Cervantes-Rodríguez, M; Cuevas-Romero, E; Corona-Quintanilla, D L; Pérez-Sánchez, E; Zambrano, E; Castelán, F; Rodríguez-Antolín, J

    2018-04-01

    The excessive consumption of carbohydrates is related to non-alcoholic fatty liver disease (NAFLD) in infants and adults. The effect of combining maternal malnutrition and a high carbohydrate intake on the development of NAFLD in adulthood remains unknown. We therefore hypothesized that consumption of 5% sucrose by the offspring of dams fed a low-protein diet during pregnancy promotes liver fat accumulation and oxidative damage differently in females and males. To test this, 12-month-old female and male offspring of mothers fed a Control (C) or low-protein diet (Restricted, R) were provided with either tap water or 5% sucrose for a period of 10 weeks. Livers were excised to measure the fat content and 3-nitrotyrosine (3-NTyr) immunostaining; serum samples were also obtained to measure the concentration of malondialdehyde (MDA). Data were analyzed using a non-repeated measures three-way analysis of variance to determine significant differences (P<0.05) regarding to the interaction among maternal diet, sucrose consumption and sex. Results showed that the liver fat content of females from R mothers was higher than that of their male counterpart. Hepatic 3-NTyr immunostaining and serum MDA concentrations were not affected by the interaction involving maternal diet, sucrose consumption and sex. Otherwise, liver fat content was correlated with the hepatic 3-NTyr immunostaining and serum MDA concentrations only in females. Thus, sucrose intake in adulthood increases fat content in the female but not in the male rat offspring of dams fed with a low-protein diet during pregnancy. This research emphasizes the importance of a balanced diet during pregnancy and the influence of the diet on the adult offspring.

  5. Maternal bisphenol A exposure alters rat offspring hepatic and skeletal muscle insulin signaling protein abundance.

    PubMed

    Galyon, Kristina D; Farshidi, Farnoosh; Han, Guang; Ross, Michael G; Desai, Mina; Jellyman, Juanita K

    2017-03-01

    The obesogenic and diabetogenic effects of the environmental toxin bisphenol A during critical windows of development are well recognized. Liver and skeletal muscle play a central role in the control of glucose production, utilization, and storage. We hypothesized that maternal bisphenol A exposure disrupts insulin signaling in rat offspring liver and skeletal muscle. We determined the protein expression of hepatic and skeletal muscle insulin signaling molecules including insulin receptor beta, its downstream target insulin receptor substrate 1 and glucose transporters (glucose transporter 2, glucose transporter 4), and hepatic glucose-regulating enzymes phosphoenolpyruvate carboxykinase and glucokinase. Rat dams had ad libitum access to filtered drinking water (control) or drinking water with bisphenol A from 2 weeks prior to mating and through pregnancy and lactation. Offspring litters were standardized to 4 males and 4 females and nursed by the same dam. At weaning, bisphenol A exposure was removed from all offspring. Glucose tolerance was tested at 6 weeks and 6 months. Liver and skeletal muscle was collected from 3 week old and 10 month old offspring for protein expression (Western blot) of insulin receptor beta, insulin receptor substrate 1, glucose transporter 2, glucose transporter 4, phosphoenolpyruvate carboxykinase, and glucokinase. Male, but not female, bisphenol A offspring had impaired glucose tolerance at 6 weeks and 6 months. Both male and female adult offspring had higher glucose-stimulated insulin secretion as well as the ratio of stimulated insulin to glucose. Male bisphenol A offspring had higher liver protein abundance of the 200 kDa insulin receptor beta precursor (2-fold), and insulin receptor substrate 1 (1.5-fold), whereas glucose transporter 2 was 0.5-fold of the control at 3 weeks of age. In adult male bisphenol A offspring, the abundance of insulin receptor beta was higher (2-fold) and glucose transporter 4 was 0.8-fold of the control in

  6. Cytotoxic effect of aspartame (diet sweet) on the histological and genetic structures of female albino rats and their offspring.

    PubMed

    Abd Elfatah, Azza A M; Ghaly, Inas S; Hanafy, Safaa M

    2012-10-01

    The present study evaluated the effect of aspartame intake on the histological and genetic structures of mother albino rats and their offspring. Sixty adult female albino rats and 180 of their offspring were equally divided into two groups (control and treated), each group divided into three subgroups. Each subgroup consisted of 10 pregnant rats and 30 of their offspring. The experimental design divided into three periods: (1) the gestation period (subgroup one), (2) the gestation period and three weeks after delivery (subgroup two) and (3) animals in the third subgroup treated as subgroup two then left till the end of the ninth week after delivery. Each pregnant rat in the treated subgroups was given a single daily dose of 1 mL aspartame solution (50.4 mg) by gastric gavage throughout the time intervals of experimental design. At the end of each experimental period for control and treated subgroups, the liver of half of both control and treated groups were subjected for histological study while the liver and bone marrow of the other halves were subjected for cytogenetic studies. Body weight of both groups were recorded individually twice weekly in the morning before offering the diet. The results revealed that the rats and their offspring in the subgroups of control animals showed increases in body weight, normal histological sections, low chromosomal aberration and low DNA fragmentation. The treated animals in the three subgroups rats and their offspring revealed decreases in body weight, high histological lesions, increases in the chromosomal aberration and DNA fragmentation compared with control groups. In conclusion, the consumption of aspartame leads to histopathological lesions in the liver and alterations of the genetic system in the liver and bone marrow of mother albino rats and their offspring. These toxicological changes were directly proportional to the duration of its administration and improved after its withdrawal.

  7. Oxidative Stress in Mouse Sperm Impairs Embryo Development, Fetal Growth and Alters Adiposity and Glucose Regulation in Female Offspring

    PubMed Central

    Lane, Michelle; McPherson, Nicole O.; Fullston, Tod; Spillane, Marni; Sandeman, Lauren; Kang, Wan Xian; Zander-Fox, Deirdre L.

    2014-01-01

    Paternal health cues are able to program the health of the next generation however the mechanism for this transmission is unknown. Reactive oxygen species (ROS) are increased in many paternal pathologies, some of which program offspring health, and are known to induce DNA damage and alter the methylation pattern of chromatin. We therefore investigated whether a chemically induced increase of ROS in sperm impairs embryo, pregnancy and offspring health. Mouse sperm was exposed to 1500 µM of hydrogen peroxide (H2O2), which induced oxidative damage, however did not affect sperm motility or the ability to bind and fertilize an oocyte. Sperm treated with H2O2 delayed on-time development of subsequent embryos, decreased the ratio of inner cell mass cells (ICM) in the resulting blastocyst and reduced implantation rates. Crown-rump length at day 18 of gestation was also reduced in offspring produced by H2O2 treated sperm. Female offspring from H2O2 treated sperm were smaller, became glucose intolerant and accumulated increased levels of adipose tissue compared to control female offspring. Interestingly male offspring phenotype was less severe with increases in fat depots only seen at 4 weeks of age, which was restored to that of control offspring later in life, demonstrating sex-specific impacts on offspring. This study implicates elevated sperm ROS concentrations, which are common to many paternal health pathologies, as a mediator of programming offspring for metabolic syndrome and obesity. PMID:25006800

  8. Immune activation in lactating dams alters sucklings' brain cytokines and produces non-overlapping behavioral deficits in adult female and male offspring: A novel neurodevelopmental model of sex-specific psychopathology.

    PubMed

    Arad, Michal; Piontkewitz, Yael; Albelda, Noa; Shaashua, Lee; Weiner, Ina

    2017-07-01

    Early immune activation (IA) in rodents, prenatal through the mother or early postnatal directly to the neonate, is widely used to produce behavioral endophenotypes relevant to schizophrenia and depression. Given that maternal immune response plays a crucial role in the deleterious effects of prenatal IA, and lactation is a critical vehicle of immunological support to the neonate, we predicted that immune activation of the lactating dam will produce long-term abnormalities in the sucklings. Nursing dams were injected on postnatal day 4 with the viral mimic poly-I:C (4mg/kg) or saline. Cytokine assessment was performed in dams' plasma and milk 2h, and in the sucklings' hippocampus, 6h and 24h following poly-I:C injection. Male and female sucklings were assessed in adulthood for: a) performance on behavioral tasks measuring constructs considered relevant to schizophrenia (selective attention and executive control) and depression (despair and anhedonia); b) response to relevant pharmacological treatments; c) brain structural changes. Maternal poly-I:C injection caused cytokine alterations in the dams' plasma and milk, as well as in the sucklings' hippocampus. Lactational poly-I:C exposure led to sex-dimorphic (non-overlapping) behavioral abnormalities in the adult offspring, with male but not female offspring exhibiting attentional and executive function abnormalities (manifested in persistent latent inhibition and slow reversal) and hypodopaminergia, and female but not male offspring exhibiting despair and anhedonia (manifested in increased immobility in the forced swim test and reduced saccharine preference) and hyperdopaminergia, mimicking the known sex-bias in schizophrenia and depression. The behavioral double-dissociation predicted distinct pharmacological profiles, recapitulating the pharmacology of negative/cognitive symptoms and depression. In-vivo imaging revealed hippocampal and striatal volume reductions in both sexes, as found in both disorders. This is

  9. Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity.

    PubMed

    Cissé, Yasmine M; Russart, Kathryn L G; Nelson, Randy J

    2017-03-31

    Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to either dark nights (DARK) or dLAN (~5 lux) for 9 weeks, then paired in full factorial design, mated, and thereafter housed under dark nights. Offspring were gestated and reared in dark nights, then tested as adults for cell-mediated and humoral immunity. Maternal exposure to dLAN dampened delayed type hypersensitivity (DTH) responses in male offspring. Maternal and paternal exposure to dLAN reduced DTH responses in female offspring. IgG antibodies to a novel antigen were elevated in offspring of dams exposed to dLAN. Paternal exposure to dLAN decreased splenic endocrine receptor expression and global methylation in a parental sex-specific manner. Together, these data suggest that exposure to dLAN has transgenerational effects on endocrine-immune function that may be mediated by global alterations in the epigenetic landscape of immune tissues.

  10. Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity

    PubMed Central

    Cissé, Yasmine M.; Russart, Kathryn L.G.; Nelson, Randy J.

    2017-01-01

    Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to either dark nights (DARK) or dLAN (~5 lux) for 9 weeks, then paired in full factorial design, mated, and thereafter housed under dark nights. Offspring were gestated and reared in dark nights, then tested as adults for cell-mediated and humoral immunity. Maternal exposure to dLAN dampened delayed type hypersensitivity (DTH) responses in male offspring. Maternal and paternal exposure to dLAN reduced DTH responses in female offspring. IgG antibodies to a novel antigen were elevated in offspring of dams exposed to dLAN. Paternal exposure to dLAN decreased splenic endocrine receptor expression and global methylation in a parental sex-specific manner. Together, these data suggest that exposure to dLAN has transgenerational effects on endocrine-immune function that may be mediated by global alterations in the epigenetic landscape of immune tissues. PMID:28361901

  11. GESTATIONAL EXPOSURE TO NONYLPHENOL CAUSES PRECOCIOUS MAMMARY GLAND DEVELOPMENT IN FEMALE RAT OFFSPRING

    EPA Science Inventory

    This study examined whether or not exposure to 4-nonylphenol (NP) during late gestation affects reproductive and mammary development in the offspring of female rats. Time pregnant Long Evans rats were gavaged with NP (10 or 100 mg/kg), atrazine (ATR, 100 mg/kg), or corn oil on ge...

  12. A general model for the scaling of offspring size and adult size.

    PubMed

    Falster, Daniel S; Moles, Angela T; Westoby, Mark

    2008-09-01

    Understanding evolutionary coordination among different life-history traits is a key challenge for ecology and evolution. Here we develop a general quantitative model predicting how offspring size should scale with adult size by combining a simple model for life-history evolution with a frequency-dependent survivorship model. The key innovation is that larger offspring are afforded three different advantages during ontogeny: higher survivorship per time, a shortened juvenile phase, and advantage during size-competitive growth. In this model, it turns out that size-asymmetric advantage during competition is the factor driving evolution toward larger offspring sizes. For simplified and limiting cases, the model is shown to produce the same predictions as the previously existing theory on which it is founded. The explicit treatment of different survival advantages has biologically important new effects, mainly through an interaction between total maternal investment in reproduction and the duration of competitive growth. This goes on to explain alternative allometries between log offspring size and log adult size, as observed in mammals (slope = 0.95) and plants (slope = 0.54). Further, it suggests how these differences relate quantitatively to specific biological processes during recruitment. In these ways, the model generalizes across previous theory and provides explanations for some differences between major taxa.

  13. Parental Divorce, Maternal-Paternal Alcohol Problems, and Adult Offspring Lifetime Alcohol Dependence

    PubMed Central

    THOMPSON, RONALD G.; ALONZO, DANA; HASIN, DEBORAH S.

    2014-01-01

    This study examined the influences of parental divorce and maternal-paternal histories of alcohol problems on adult offspring lifetime alcohol dependence using data from the 2001–2002 National Epidemiological Survey on Alcohol and Related Conditions (NESARC). Parental divorce and maternal-paternal alcohol problems interacted to differentially influence the likelihood of offspring lifetime alcohol dependence. Experiencing parental divorce and either maternal or paternal alcohol problems doubled the likelihood of alcohol dependence. Divorce and history of alcohol problems for both parents tripled the likelihood. Offspring of parental divorce may be more vulnerable to developing alcohol dependence, particularly when one or both parents have alcohol problems. PMID:24678271

  14. The Evaluation of Folic Acid-Deficient or Folic Acid-Supplemented Diet in the Gestational Phase of Female Rats and in Their Adult Offspring Subjected to an Animal Model of Schizophrenia.

    PubMed

    Canever, L; Alves, C S V; Mastella, G; Damázio, L; Polla, J V; Citadin, S; De Luca, L A; Barcellos, A S; Garcez, M L; Quevedo, J; Budni, J; Zugno, A I

    2018-03-01

    Although folic acid (FA) supplementation is known to influence numerous physiological functions, especially during pregnancy, little is known about its direct effects on the mothers' health. However, this vitamin is essential for the health of the mother and for the normal growth and development of the fetus. Thus, the aim of this study was (1) to evaluate the cognitive effects and biochemical markers produced by the AIN-93 diet (control), the AIN-93 diet supplemented with different doses of FA (5, 10, and 50 mg/kg), and a FA-deficient diet during pregnancy and lactation in female mother rats (dams) and (2) to evaluate the effect of maternal diets on inflammatory parameters in the adult offspring which were subjected to an animal model of schizophrenia (SZ) induced by ketamine (Ket). Our study demonstrated through the Y-maze test that rats subjected to the FA-deficient diet showed significant deficits in spatial memory, while animals supplemented with FA (5 and 10 mg/kg) showed no deficit in spatial memory. Our results also suggest that the rats subjected to the FA-deficient diet had increased levels of carbonylated proteins in the frontal cortex and hippocampus and also increased plasma levels of homocysteine (Hcy). Folate was able to prevent cognitive impairments in the rats supplemented with FA (5 and 10 mg/kg), data which may be attributed to the antioxidant effect of the vitamin. Moreover, FA prevented protein damage and elevations in Hcy levels in the rats subjected to different doses of this vitamin (5, 10, and 50 mg/kg). We verified a significant increase of the anti-inflammatory cytokine (interleukin-4 (IL-4)) and a reduction in the plasma levels of proinflammatory cytokines (interleukin-6 (IL-6)) and TNF-α) in the dams that were subjected to the diets supplemented with FA (5, 10, and 50 mg/kg), showing the possible anti-inflammatory effects of FA during pregnancy and lactation. In general, we also found that in the adult offspring that were

  15. Experimentally induced gestational androgen excess disrupts glucoregulation in rhesus monkey dams and their female offspring.

    PubMed

    Abbott, David H; Bruns, Cristin R; Barnett, Deborah K; Dunaif, Andrea; Goodfriend, Theodore L; Dumesic, Daniel A; Tarantal, Alice F

    2010-11-01

    Discrete fetal androgen excess during early gestation in rhesus monkeys (Macaca mulatta) promotes endocrine antecedents of adult polycystic ovary syndrome (PCOS)-like traits in female offspring. Because developmental changes promoting such PCOS-like metabolic dysfunction remain unclear, the present study examined time-mated, gravid rhesus monkeys with female fetuses, of which nine gravid females received 15 mg of testosterone propionate (TP) subcutaneously daily from 40 to 80 days (first to second trimesters) of gestation [term, mean (range): 165 (155-175) days], whereas an additional six such females received oil vehicle injections over the same time interval. During gestation, ultrasonography quantified fetal growth measures and was used as an adjunct for fetal blood collections. At term, all fetuses were delivered by cesarean section for postnatal studies. Blood samples were collected from dams and infants for glucose, insulin, and total free fatty acid (FFA) determinations. TP injections transiently accelerated maternal weight gain in dams, very modestly increased head diameter of prenatally androgenized (PA) fetuses, and modestly increased weight gain in infancy compared with concurrent controls. Mild to moderate glucose intolerance, with increased area-under-the-curve circulating insulin values, occurred in TP-injected dams during an intravenous glucose tolerance test in the early second trimester. Moreover, reduced circulating FFA levels occurred in PA fetuses during a third trimester intravenous glucagon-tolbutamide challenge (140 days gestation), whereas excessive insulin sensitivity and increased insulin secretion relative to insulin sensitivity occurred in PA infants during an intravenous glucose-tolbutamide test at ∼1.5 mo postnatal age. Data from these studies suggest that experimentally induced fetal androgen excess may result in transient hyperglycemic episodes in the intrauterine environment that are sufficient to induce relative increases in

  16. Experimentally induced gestational androgen excess disrupts glucoregulation in rhesus monkey dams and their female offspring

    PubMed Central

    Bruns, Cristin R.; Barnett, Deborah K.; Dunaif, Andrea; Goodfriend, Theodore L.; Dumesic, Daniel A.; Tarantal, Alice F.

    2010-01-01

    Discrete fetal androgen excess during early gestation in rhesus monkeys (Macaca mulatta) promotes endocrine antecedents of adult polycystic ovary syndrome (PCOS)-like traits in female offspring. Because developmental changes promoting such PCOS-like metabolic dysfunction remain unclear, the present study examined time-mated, gravid rhesus monkeys with female fetuses, of which nine gravid females received 15 mg of testosterone propionate (TP) subcutaneously daily from 40 to 80 days (first to second trimesters) of gestation [term, mean (range): 165 (155–175) days], whereas an additional six such females received oil vehicle injections over the same time interval. During gestation, ultrasonography quantified fetal growth measures and was used as an adjunct for fetal blood collections. At term, all fetuses were delivered by cesarean section for postnatal studies. Blood samples were collected from dams and infants for glucose, insulin, and total free fatty acid (FFA) determinations. TP injections transiently accelerated maternal weight gain in dams, very modestly increased head diameter of prenatally androgenized (PA) fetuses, and modestly increased weight gain in infancy compared with concurrent controls. Mild to moderate glucose intolerance, with increased area-under-the-curve circulating insulin values, occurred in TP-injected dams during an intravenous glucose tolerance test in the early second trimester. Moreover, reduced circulating FFA levels occurred in PA fetuses during a third trimester intravenous glucagon-tolbutamide challenge (140 days gestation), whereas excessive insulin sensitivity and increased insulin secretion relative to insulin sensitivity occurred in PA infants during an intravenous glucose-tolbutamide test at ∼1.5 mo postnatal age. Data from these studies suggest that experimentally induced fetal androgen excess may result in transient hyperglycemic episodes in the intrauterine environment that are sufficient to induce relative increases in

  17. Later Life Impacts of Social Participation on Parents of Adult Offspring With and Without Intellectual and Developmental Disabilities.

    PubMed

    Olsen, Darren L

    2018-01-01

    Social participation is an important resource for parents in old age, and may be particularly important for parents living with adult offspring with intellectual and developmental disabilities. To evaluate whether socializing with friends and family and participating in social organizations protects against depression in old age, this study examined parents of adult offspring with disabilities ( n = 164) and without disabilities ( n = 820). As expected, more socializing with friends and more participating in organizations were associated with fewer depressive symptoms for all parents. However, socializing with family members predicted fewer depressive symptoms only for parents co-residing with their adult offspring with disabilities, suggesting that socializing with family is particularly important for parents providing direct care to adults with disabilities.

  18. The Maternal Legacy: Female Identity Predicts Offspring Sex Ratio in the Loggerhead Sea Turtle

    PubMed Central

    Reneker, Jaymie L.; Kamel, Stephanie J.

    2016-01-01

    In organisms with temperature-dependent sex determination, the incubation environment plays a key role in determining offspring sex ratios. Given that global temperatures have warmed approximately 0.6 °C in the last century, it is necessary to consider how organisms will adjust to climate change. To better understand the degree to which mothers influence the sex ratios of their offspring, we use 24 years of nesting data for individual female loggerhead sea turtles (Caretta caretta) observed on Bald Head Island, North Carolina. We find that maternal identity is the best predictor of nest sex ratio in univariate and multivariate predictive models. We find significant variability in estimated nest sex ratios among mothers, but a high degree of consistency within mothers, despite substantial spatial and temporal thermal variation. Our results suggest that individual differences in nesting preferences are the main driver behind divergences in nest sex ratios. As such, a female’s ability to plastically adjust her nest sex ratios in response to environmental conditions is constrained, potentially limiting how individuals behaviorally mitigate the effects of environmental change. Given that many loggerhead populations already show female-biased offspring sex ratios, understanding maternal behavioral responses is critical for predicting the future of long-lived species vulnerable to extinction. PMID:27363786

  19. Effects on reproduction in female offspring from Sprague-Dawley rats fed 10% snakeweed (Gutierrezia microcephala) throughout pregnancy and concurrent treatment with safflower oil.

    PubMed

    Staley, E C; Smith, G S; Greenberg, J A

    1995-10-01

    Previous studies determined that safflower oil administration provided protection against the embryotoxicity seen following ingestion of 10% snakeweed (Gutierrezia microcephala) throughout pregnancy. Sixty-two young primiparous female rats born in those studies were paired with adult male Sprague-Dawley rats. After 4 d they were removed and carried their litters to term. Observations were made of the presence and extent of reproductive effects attributable to the 10% snakeweed exposure and differences in fecundity that were attributable to dosing with safflower oil or normal saline during the snakeweed exposure. Of the 62 rats, 50 carried litters to term and approximated the reproductive efficiency of normal primiparous Sprague-Dawley rats. There was no significant difference between the fecundity of females born to rats fed the 10% snakeweed and dosed with safflower oil, those born of rats fed snakeweed dosed with normal saline, or those fed a snakeweed-free diet and dosed with normal saline. Regardless of the diet or treatment administered, dams carrying their litters to parturition gave birth to healthy, normo-reproductive offspring. While the toxic principles in Gutierrezia species plants may act as estrogenic or anti-estrogenic compounds, they did not impair fertility in the female offspring of dosed rats.

  20. Cross-generational THC exposure alters the developmental sensitivity of ventral and dorsal striatal gene expression in male and female offspring

    PubMed Central

    Szutorisz, Henrietta; Egervari, Gabor; Sperry, James; Carter, Jenna M.; Hurd, Yasmin L.

    2016-01-01

    Cannabis (Cannabis sativa, Cannabis indica) is the illicit drug most frequently abused by young men and women. The growing use of the drug has raised attention not only on the impact of direct exposure on the developing brain and behavior later in life, but also on potential cross-generational consequences. Our previous work demonstrated that adolescent exposure to Δ9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis, affects reward-related behavior and striatal gene expression in male offspring that were unexposed to the drug during their own lifespan. The significant sex differences documented for most addiction and psychiatric disorders suggest that understanding the perturbation of the brain in the two sexes due to cannabis could provide insights about neuronal systems underpinning vulnerability to psychiatric illnesses. In the current study, we expanded our previous observations in males by analyzing the female brain for specific aberrations associated with cross-generational THC exposure. Based on the impact of adolescent development on subsequent adult behavioral pathology, we examined molecular patterns during both adolescence and adulthood. The results revealed a switch from the ventral striatum during adolescence to the dorsal striatum in adulthood in alterations of gene expression related to synaptic plasticity in both sexes. Females, however, exhibited stronger correlation patterns between genes and also showed locomotor disturbances not evident in males. Overall, the findings demonstrate cross-generational consequences of parental THC exposure in both male and female offspring. PMID:27221226

  1. Association between parental psychopathology and suicidal behavior among adult offspring: results from the cross-sectional South African Stress and Health survey

    PubMed Central

    2014-01-01

    Background Prior studies have demonstrated a link between parental psychopathology and offspring suicidal behavior. However, it remains unclear what aspects of suicidal behavior among adult offspring are predicted by specific parental mental disorders, especially in Africa. This study set out to investigate the association between parental psychopathology and suicidal behavior among their adult offspring in a South African general population sample. Method Parental psychopathology and suicidal behavior in offspring were assessed using structured interviews among 4,315 respondents from across South Africa. The WHO CIDI was used to collect data on suicidal behavior, while the Family History Research Diagnostic Criteria Interview was used to assess prior parental psychopathology. Bivariate and multivariate survival models tested the associations between the type and number parental mental disorders (including suicide) and lifetime suicidal behavior in the offspring. Associations between a range of parental disorders and the onset of subsequent suicidal behavior (suicidal ideation, plans, and attempts) among adult offspring were tested. Results The presence of parental psychopathology significantly increased the odds of suicidal behavior among their adult offspring. More specifically, parental panic disorder was associated with offspring suicidal ideation, while parental panic disorder, generalized anxiety disorder and suicide were significantly associated with offspring suicide attempts. Among those with suicidal ideation, none of the tested forms of parental psychopathology was associated with having suicide plans or attempts. There was a dose–response relationship between the number of parental disorders and odds of suicidal ideation. Conclusions Parental psychopathology increases the odds of suicidal behavior among their adult offspring in the South African context, replicating results found in other regions. Specific parental disorders predicted the onset and

  2. Neuropsychological functioning in posttraumatic stress disorder following forced displacement in older adults and their offspring.

    PubMed

    Jelinek, Lena; Wittekind, Charlotte E; Moritz, Steffen; Kellner, Michael; Muhtz, Christoph

    2013-12-15

    The aim of the present study was to investigate neuropsychological performance in an untried trauma sample of older adults displaced during childhood at the end of World War II (WWII) with and without posttraumatic stress disorder (PTSD) as well as transgenerational effects of trauma and PTSD on their offspring. Displaced older adults with (n=20) and without PTSD (n=24) and nondisplaced healthy individuals (n=11) as well as one of their respective offspring were assessed with a large battery of cognitive tests (primarily targeting memory functioning). No evidence for deficits in neuropsychological performance was found in the aging group of displaced people with PTSD. Moreover, no group difference emerged in the offspring groups. Findings may be interpreted as first evidence for a rather resilient PTSD group of older adults that is available for assessment 60 years after displacement. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Abnormal Neurological Responses in Young Adult Offspring Caused by Excess Omega-3 Fatty Acid (Fish Oil) Consumption by the Mother during Pregnancy and Lactation

    PubMed Central

    Church, M. W.; Jen, K-L. C.; Jackson, D. A.; Adams, B. R.; Hotra, J. W.

    2009-01-01

    Consuming omega-3 fatty acids (ω-3 FA) during pregnancy and lactation benefits fetal and infant brain development and might reduce the severity of preterm births by prolonging pregnancy. However, diets that are relatively rich in ω-3 FA can adversely affect fetal and infant development and the auditory brainstem response (ABR), a measure of brain development and sensory function. We previously examined the offspring of female rats fed excessive, adequate or deficient amounts of ω-3 FA during pregnancy and lactation. The 24-day-old offspring in the Excess group, compared to the Control group, had postnatal growth retardation and poor hearing acuity and prolonged neural transmission times as evidenced by the ABR. The Deficient group was intermediate. The current study followed these offspring to see if these poor outcomes persisted into young adulthood. Based on prior findings, we hypothesized that the Excess and Deficient offspring would “catch-up” to the Control offspring by young adulthood. Female Wistar rats received one of the three diet conditions from day 1 of pregnancy through lactation. The three diets were the Control ω-3 FA condition (ω-3/ω-6 ratio ~ 0.14), the Excess ω-3 FA condition (ω-3/ω-6 ratio ~ 14.0) and Deficient ω-3 FA condition (ω-3/ω-6 ratio ~ 0% ratio). The Control diet contained 7 % soybean oil; whereas the Deficient and Excess ω-3 FA diets contained 7% safflower oil and 7% fish oil, respectively. One male and female offspring per litter were ABR-tested as young adults using tone pip stimuli of 2, 4, 8 and 16 kHz. The postnatal growth retardation and prolonged neural transmission times in the Excess and Deficient pups had dissipated by young adulthood. In contrast, the Excess group had elevated ABR thresholds (hearing loss) at all tone pip frequencies in comparison to the Control and Deficient groups. The Deficient group had worse ABR thresholds than the Control group in response to the 8 kHz tone pips only. The Excess group

  4. The Association of Maternal Socialization in Childhood and Adolescence with Adult Offsprings' Sympathy/Caring

    ERIC Educational Resources Information Center

    Eisenberg, Nancy; VanSchyndel, Sarah K.; Hofer, Claire

    2015-01-01

    The purpose of the study was to examine associations between mothers' socialization practices in childhood and adolescence and offsprings' (N = 32, 16 female) sympathy/concern in early adulthood. Mothers reported on their socialization practices and beliefs a total of 6 times using a Q-sort during their offsprings' childhood…

  5. DIFFERENTIAL POSTPARTUM SENSITIVITY TO THE ANXIETY-MODULATING EFFECTS OF OFFSPRING CONTACT IS ASSOCIATED WITH INNATE ANXIETY AND BRAINSTEM LEVELS OF DOPAMINE BETA-HYDROXYLASE IN FEMALE LABORATORY RATS

    PubMed Central

    RAGAN, C. M.; LONSTEIN, J. S.

    2014-01-01

    In female mammals, the postpartum period involves dramatic shifts in many socioemotional behaviors. This includes a suppression of anxiety-related behaviors that requires recent physical contact with offspring. Factors contributing to differences among females in their susceptibility to the anxiety-modulating effect of offspring contact are unknown, but could include their innate anxiety and brain monoaminergic activity. Anxiety behavior was assessed in a large group of nulliparous female rats and the least-anxious and most-anxious tertiles were mated. Anxiety was assessed again postpartum after females were permitted or prevented from contacting their offspring 4 h before testing. Levels of dopamine β-hydroxylase (DBH, norepinephrine synthesizing enzyme) and tryptophan hydroxylase- 2 (TPH2, serotonin synthesizing enzyme) were measured in the brainstem and dorsal raphe, respectively. It was found that anxiety-related behavior in the two groups did not differ when dams were permitted contact with offspring before testing. Removal of the offspring before testing, however, differentially affected anxiety based on dams’ innate anxiety. Specifically, dams reverted back to their pre-mating levels of anxiety such that offspring removal slightly increased anxiety in the most-anxious females but greatly lowered anxiety in the least-anxious females. This reduction in anxiety in the least-anxious females after litter removal was associated with lower brainstem DBH. There was no relationship between females’ anxiety and dorsal raphe TPH2. Thus, a primary effect of recent contact with offspring on anxiety-related behavior in postpartum rats is to shift females away from their innate anxiety to a more moderate level of responding. This effect is particularly true for females with the lowest anxiety, may be mediated by central noradrenergic systems, and has implications for their ability to attend to their offspring. PMID:24161285

  6. Parental Legacy in Insects: Variation of Transgenerational Immune Priming during Offspring Development

    PubMed Central

    Trauer, Ute; Hilker, Monika

    2013-01-01

    In insects, a parental immune challenge can prepare and enhance offspring immune activity. Previous studies of such transgenerational immune priming (TGIP) mainly focused on a single offspring life stage. However, different developmental stages may be exposed to different risks and show different susceptibility to parental immune priming. Here we addressed the question (i) whether TGIP effects on the immunity of Manduca sexta offspring vary among the different developmental offspring stages. We differentiated between unchallenged and immunochallenged offspring; for the latter type of offspring, we further investigated (ii) whether TGIP has an impact on the time that enhanced immune levels persist after offspring immune challenge. Finally, we determined (iii) whether TGIP effects on offspring performance depend on the offspring stage. Our results show that TGIP effects on phenoloxidase (PO) activity, but not on antibacterial activity, vary among unchallenged offspring stages. In contrast, TGIP effects on PO and antibacterial activity did not vary among immunochallenged offspring stages. The persistence of enhanced immune levels in immunochallenged offspring was dependent on the parental immune state. Antibacterial (but not PO) activity in offspring of immunochallenged parents decreased over five days after pupal immune challenge, whereas no significant change over time was detectable in offspring of control parents. Finally, TGIP effects on the developmental time of unchallenged offspring varied among stages; young larvae of immunochallenged parents developed faster and gained more weight than larvae of control parents. However, offspring females of immunochallenged parents laid fewer eggs than females derived from control parents. These findings suggest that the benefits which the offspring gains from TGIP during juvenile development are paid by the adults with reduced reproductive power. Our study shows that TGIP effects vary among offspring stages and depend on

  7. Offspring from mothers fed a ‘junk food’ diet in pregnancy and lactation exhibit exacerbated adiposity that is more pronounced in females

    PubMed Central

    Bayol, S A; Simbi, B H; Bertrand, J A; Stickland, N C

    2008-01-01

    We have shown previously that a maternal junk food diet during pregnancy and lactation plays a role in predisposing offspring to obesity. Here we show that rat offspring born to mothers fed the same junk food diet rich in fat, sugar and salt develop exacerbated adiposity accompanied by raised circulating glucose, insulin, triglyceride and/or cholesterol by the end of adolescence (10 weeks postpartum) compared with offspring also given free access to junk food from weaning but whose mothers were exclusively fed a balanced chow diet in pregnancy and lactation. Results also showed that offspring from mothers fed the junk food diet in pregnancy and lactation, and which were then switched to a balanced chow diet from weaning, exhibited increased perirenal fat pad mass relative to body weight and adipocyte hypertrophy compared with offspring which were never exposed to the junk food diet. This study shows that the increased adiposity was more enhanced in female than male offspring and gene expression analyses showed raised insulin-like growth factor-1 (IGF-1), insulin receptor substrate (IRS)-1, vascular endothelial growth factor (VEGF)-A, peroxisome proliferator-activated receptor-γ (PPARγ), leptin, adiponectin, adipsin, lipoprotein lipase (LPL), Glut 1, Glut 3, but not Glut 4 mRNA expression in females fed the junk food diet throughout the study compared with females never given access to junk food. Changes in gene expression were not as marked in male offspring with only IRS-1, VEGF-A, Glut 4 and LPL being up-regulated in those fed the junk food diet throughout the study compared with males never given access to junk food. This study therefore shows that a maternal junk food diet promotes adiposity in offspring and the earlier onset of hyperglycemia, hyperinsulinemia and/or hyperlipidemia. Male and female offspring also display a different metabolic, cellular and molecular response to junk-food-diet-induced adiposity. PMID:18467362

  8. Like mother, like offspring: maternal and offspring wound healing correlate in snakes.

    PubMed

    Hopkins, Brittney C; Chin, Stephanie Y; Willson, John D; Hopkins, William A

    2013-07-15

    Immune function early in life can be influenced by parental effects and the environment, but it remains unclear how these two factors may interact to influence immunocompetence. We evaluated maternal and environmental contributions to offspring healing ability in a viviparous reptile, the northern watersnake (Nerodia sipedon). We measured wound healing rates, a highly integrative and biologically relevant measure of innate immunity, of females and their offspring collected from sites contaminated with a toxic heavy metal and compared them with those of individuals from reference sites. We found that female watersnakes that healed the fastest produced offspring that also exhibited faster healing rates. However, we detected no influence of environmental pollution on maternal or offspring healing rates. To our knowledge, our study is the first to correlate maternal and offspring wound healing ability in a wild vertebrate.

  9. Maternal modulation of paternal effects on offspring development

    PubMed Central

    Habrylo, Ireneusz B.; Gudsnuk, Kathryn M.; Pelle, Geralyn; Champagne, Frances A.

    2018-01-01

    The paternal transmission of environmentally induced phenotypes across generations has been reported to occur following a number of qualitatively different exposures and appear to be driven, at least in part, by epigenetic factors that are inherited via the sperm. However, previous studies of paternal germline transmission have not addressed the role of mothers in the propagation of paternal effects to offspring. We hypothesized that paternal exposure to nutritional restriction would impact male mate quality and subsequent maternal reproductive investment with consequences for the transmission of paternal germline effects. In the current report, using embryo transfer in mice, we demonstrate that sperm factors in adult food restricted males can influence growth rate, hypothalamic gene expression and behaviour in female offspring. However, under natural mating conditions females mated with food restricted males show increased pre- and postnatal care, and phenotypic outcomes observed during embryo transfer conditions are absent or reversed. We demonstrate that these compensatory changes in maternal investment are associated with a reduced mate preference for food restricted males and elevated gene expression within the maternal hypothalamus. Therefore, paternal experience can influence offspring development via germline inheritance, but mothers can serve as a modulating factor in determining the impact of paternal influences on offspring development. PMID:29514964

  10. Maternal modulation of paternal effects on offspring development.

    PubMed

    Mashoodh, Rahia; Habrylo, Ireneusz B; Gudsnuk, Kathryn M; Pelle, Geralyn; Champagne, Frances A

    2018-03-14

    The paternal transmission of environmentally induced phenotypes across generations has been reported to occur following a number of qualitatively different exposures and appear to be driven, at least in part, by epigenetic factors that are inherited via the sperm. However, previous studies of paternal germline transmission have not addressed the role of mothers in the propagation of paternal effects to offspring. We hypothesized that paternal exposure to nutritional restriction would impact male mate quality and subsequent maternal reproductive investment with consequences for the transmission of paternal germline effects. In the current report, using embryo transfer in mice, we demonstrate that sperm factors in adult food restricted males can influence growth rate, hypothalamic gene expression and behaviour in female offspring. However, under natural mating conditions females mated with food restricted males show increased pre- and postnatal care, and phenotypic outcomes observed during embryo transfer conditions are absent or reversed. We demonstrate that these compensatory changes in maternal investment are associated with a reduced mate preference for food restricted males and elevated gene expression within the maternal hypothalamus. Therefore, paternal experience can influence offspring development via germline inheritance, but mothers can serve as a modulating factor in determining the impact of paternal influences on offspring development. © 2018 The Author(s).

  11. [Effects of in utero exposure to di(2-ethylhexyl) phthalate on sexual development in female offspring].

    PubMed

    Ding, Yu; Gao, Yu; Shi, Rong; Zhou, Yi-Jun; Tian, Ying

    2010-02-01

    To evaluate the ability of di(2-ethylhexyl) phthalate (DEHP) with inducing damage in sexual development of female offspring rats after maternal exposure. On gestational day (GD) 12, pregnant Wistar rats were weighed, encoded and randomly assigned to 5 groups (10 dams per group). From GD 12 through GD 17 each dam was dosed daily by gavage with either corn oil (vehicle control, 1 mgxkg(-1)xd(-1)) or DEHP (1, 250, 750 and 1000 mgxkg(-1)xd(-1)). Then female offspring were monitored for eye opening on postnatal day (PND) 14-17, organ coefficient on PND 22 and the time to vaginal opening on PND 30 - 38 (if vagina did not open during the period, observation time should extent to adult), as well as body weight, time to first estrus. No significant changes were observed on eye opening at any dose, which were (15.8 +/- 0.4) d, (16.3 +/- 0.6) d, (16.0 +/- 0.6) d, (15.9 +/- 0.6) d, (15.8 +/- 0.4) d respectively in control, 1, 250, 750 and 1000 mgxkg(-1)xd(-1) (F = 1.363, P = 0.262). However, 62.50% (15/24), 81.25% (26/32) female offspring were permanently absence of vaginal orifice in 750 and 1000 mgxkg(-1)xd(-1) groups respectively, while control, 1 and 250 mgxkg(-1)xd(-1) groups developed normally with vaginal orifices (chi(2) values were 84.92, 132.79, respectively, P < 0.01). The ages of vaginal opening were (32.7 +/- 1.3) d, (33.3 +/- 1.5) d, (32.2 +/- 1.5) d, (33.1 +/- 1.3) d, (33.3 +/- 1.2) d and the body weight were (91.56 +/- 6.65) g, (93.79 +/- 6.28) g, (92.98 +/- 8.48) g, (100.57 +/- 6.47) g, (103.83 +/- 8.24) g in control, 1, 250, 750 and 1000 mgxkg(-1)xd(-1). After covariance adjustment for body weight, which can statistically influenced the age of vaginal opening (F = 40.857, P < 0.05), difference were found at the age of vaginal opening (F = 3.075, P < 0.05), and 250 mgxkg(-1)xd(-1) group was advanced than control (t = -2.056, P < 0.05). Exposure to DEHP in utero from GD 12 - 17 can result in abnormalities of sexual development such as the time to vaginal

  12. Supplementation of Mice with Specific Nondigestible Oligosaccharides during Pregnancy or Lactation Leads to Diminished Sensitization and Allergy in the Female Offspring.

    PubMed

    Hogenkamp, Astrid; Knippels, Leon M J; Garssen, Johan; van Esch, Betty C A M

    2015-05-01

    The maternal environment and early life exposure affect immune development in offspring. We investigated whether development of food allergy in offspring is affected by supplementing pregnant or lactating sensitized or nonsensitized mice with a mixture of nondigestible oligosaccharides. Dams were sensitized intragastrically with ovalbumin before mating, with use of cholera toxin (CT) as an adjuvant. Nonsensitized dams received CT only. Dams were fed a control diet or a diet supplemented with short-chain galacto oligosaccharides (scGOSs), long-chain fructo oligosaccharides (lcFOSs), and pectin-derived acidic oligosaccharides (pAOSs) in a ratio of 9:1:2 at a dose of 2% during pregnancy or lactation, resulting in 7 experimental groups. After weaning, offspring were fed a control diet and ovalbumin-CT sensitized. Acute allergic skin responses (ASRs), shock symptoms, body temperature, and specific plasma immunoglobulins were measured upon intradermal ovalbumin challenge. Th2/Th1- and regulatory T cells were analyzed with use of quantitative polymerase chain reaction and flow cytometric analysis in spleen, mesenteric lymph nodes, and blood. Supplementing sensitized pregnant or lactating dams with scGOS/lcFOS/pAOS resulted in lower ASRs in the offspring [offspring of sensitized female mice fed experimental diet during pregnancy (S-Preg): 48 ± 2.1 μm; offspring of sensitized female mice fed experimental diet during lactation (S-Lact): 60 ± 6.2 μm] compared with the sensitized control group (119 ± 13.9 μm). In the S-Lact group, this coincided with an absence of shock symptoms compared with the offspring of sensitized female mice fed control food during pregnancy and lactation (S-Con) and S-Preg groups, and lower ovalbumin-IgG1 [S-Con: 3.8 ± 0.1 arbitrary units (AUs); S-Preg: 3.3 ± 0.1 AUs; S-Lact: 2.4 ± 0.1 AUs] and higher ovalbumin-IgG2a concentrations (S-Con: 1.1 ± 0.1 AUs; S-Preg: 0.8 ± 0.1 AUs; S-Lact: 2.0 ± 0.1 AUs). Supplementing nonsensitized pregnant or

  13. Developmental origins of pregnancy loss in the adult female common marmoset monkey (Callithrix jacchus).

    PubMed

    Rutherford, Julienne N; deMartelly, Victoria A; Layne Colon, Donna G; Ross, Corinna N; Tardif, Suzette D

    2014-01-01

    The impact of the intrauterine environment on the developmental programming of adult female reproductive success is still poorly understood and potentially underestimated. Litter size variation in a nonhuman primate, the common marmoset monkey (Callithrix jacchus), allows us to model the effects of varying intrauterine environments (e.g. nutrient restriction, exposure to male womb-mates) on the risk of losing fetuses in adulthood. Our previous work has characterized the fetuses of triplet pregnancies as experiencing intrauterine nutritional restriction. We used over a decade of demographic data from the Southwest National Primate Research Center common marmoset colony. We evaluated differences between twin and triplet females in the number of pregnancies they produce and the proportion of those pregnancies that ended in fetal loss. We found that triplet females produced the same number of total offspring as twin females, but lost offspring during pregnancy at a significantly higher rate than did twins (38% vs. 13%, p = 0.02). Regardless of their own birth weight or the sex ratio of the litter the experienced as fetuses, triplet females lost more fetuses than did twins. Females with a male littermate experienced a significant increase in the proportion of stillbirths. These striking findings anchor pregnancy loss in the mother's own fetal environment and development, underscoring a "Womb to Womb" view of the lifecourse and the intergenerational consequences of development. This has important translational implications for understanding the large proportion of human stillbirths that are unexplained. Our findings provide strong evidence that a full understanding of mammalian life history and reproductive biology requires a developmental foundation.

  14. Administration of the Antioxidant N-Acetyl-Cysteine in Pregnant Mice Has Long-Term Positive Effects on Metabolic and Behavioral Endpoints of Male and Female Offspring Prenatally Exposed to a High-Fat Diet.

    PubMed

    Berry, Alessandra; Bellisario, Veronica; Panetta, Pamela; Raggi, Carla; Magnifico, Maria C; Arese, Marzia; Cirulli, Francesca

    2018-01-01

    A growing body of evidence suggests the consumption of high-fat diet (HFD) during pregnancy to model maternal obesity and the associated increase in oxidative stress (OS), might act as powerful prenatal stressors, leading to adult stress-related metabolic or behavioral disorders. We hypothesized that administration of antioxidants throughout gestation might counteract the negative effects of prenatal exposure to metabolic challenges (maternal HFD feeding during pregnancy) on the developing fetus. In this study, female C57BL/6J mice were fed HFD for 13 weeks (from 5-weeks of age until delivery) and were exposed to the N-acetyl-cysteine (NAC) antioxidant from 10-weeks of age until right before delivery. Body weight of the offspring was assessed following birth, up to weaning and at adulthood. The metabolic, neuroendocrine and emotional profile of the adult offspring was tested at 3-months of age. Prenatal HFD increased mother's body weight and offspring's weight at the time of weaning, when administered in conjunction with NAC. In females, NAC administration reduced high levels of leptin resulting from prenatal HFD. Prenatal NAC administration also resulted in greater glucose tolerance and insulin sensitivity while increasing adiponectin levels, as well as increasing exploratory behavior, an effect accompanied by reduced plasma corticosterone levels in response to restraint stress. Analysis of glutathione levels in the hypothalamus and in brown adipose tissue indicates that, while HFD administration to pregnant dams led to reduced levels of glutathione in the offspring, as in the male hypothalamus, NAC was able to revert this effect and to increase glutathione levels both in the periphery (Brown Adipose Tissue, both males and females) and in the central nervous system (males). Overall, results from this study indicate that the body redox milieu should be tightly regulated during fetal life and that buffering OS during pregnancy can have important long

  15. A Maternal Low-Fiber Diet Predisposes Offspring to Improved Metabolic Phenotypes in Adulthood in an Herbivorous Rodent.

    PubMed

    Zhang, Xue-Ying; Lou, Mei-Fang; Shen, Wei; Fu, Rong-Shu; Wang, De-Hua

    The maternal or paternal dietary composition can have important effects on various aspects of their offspring's physiology. Studies from animal models and humans showed that a maternal high-fiber diet protected offspring against fat accumulation. However, little is known about how a maternal low-fiber diet modifies the metabolism of offspring in herbivorous rodents. We hypothesized that a maternal low-fiber diet would confer long-lasting beneficial effects on offspring metabolic phenotypes in herbivorous Brandt's vole (Lasiopodomys brandtii). Female voles were fed either a control (12.4% fiber) or a low-fiber (3.5% fiber) diet throughout pregnancy and lactation, and all offspring were fed the control diet after weaning till 14 wk old. Offspring were sampled from each litter at 18 d and 14 wk of age. Another subset of adult offspring at 15 wk of age was fed a high-fat diet for 8 wk. We found that there was no difference in litter size, litter mass, or pup mass before weaning between the two maternal diet groups. Offspring from the maternal low-fiber diet increased energy intake, body mass, and lean mass; suppressed fat accumulation; and improved glucose tolerance compared with those from the control diet. Moreover, the maternal low-fiber diet alleviated high-fat diet-induced obesity in the adult offspring. Serum leptin concentration and uncoupling protein 1 content in brown adipose tissue of offspring were not affected by a maternal low-fiber diet. We demonstrate that herbivorous females fed a low-fiber diet during pregnancy and lactation may predispose their offspring to accelerated growth of lean tissue, which may increase the opportunity for survival and reproduction in offspring.

  16. Maternal intake of trans-unsaturated or interesterified fatty acids during pregnancy and lactation modifies mitochondrial bioenergetics in the liver of adult offspring in mice.

    PubMed

    de Velasco, Patricia C; Chicaybam, Gustavo; Ramos-Filho, Dionizio M; Dos Santos, Raísa M A R; Mairink, Caroline; Sardinha, Fátima L C; El-Bacha, Tatiana; Galina, Antonio; Tavares-do-Carmo, Maria das Graças

    2017-07-01

    The quality of dietary lipids in the maternal diet can programme the offspring to diseases in later life. We investigated whether the maternal intake of palm oil or interesterified fat, substitutes for trans-unsaturated fatty acids (FA), induces metabolic changes in the adult offspring. During pregnancy and lactation, C57BL/6 female mice received normolipidic diets containing partially hydrogenated vegetable fat rich in trans-unsaturated fatty acids (TG), palm oil (PG), interesterified fat (IG) or soyabean oil (CG). After weaning, male offspring from all groups received the control diet until day 110. Plasma glucose and TAG and liver FA profiles were ascertained. Liver mitochondrial function was accessed with high-resolution respirometry by measuring VO2, fluorimetry for detection of hydrogen peroxide (H2O2) production and mitochondrial Ca2+ uptake. The results showed that the IG offspring presented a 20 % increase in plasma glucose and both the IG and TG offspring presented a 2- and 1·9-fold increase in TAG, respectively, when compared with CG offspring. Liver MUFA and PUFA contents decreased in the TG and IG offspring when compared with CG offspring. Liver MUFA content also decreased in the PG offspring. These modifications in FA composition possibly affected liver mitochondrial function, as respiration was impaired in the TG offspring and H2O2 production was higher in the IG offspring. In addition, mitochondrial Ca2+ retention capacity was reduced by approximately 40 and 55 % in the TG and IG offspring, respectively. In conclusion, maternal consumption of trans-unsaturated and interesterified fat affected offspring health by compromising mitochondrial bioenergetics and lipid metabolism in the liver.

  17. Gender-Dependent Effects of Maternal Immune Activation on the Behavior of Mouse Offspring

    PubMed Central

    Xuan, Ingrid C. Y.; Hampson, David R.

    2014-01-01

    Autism spectrum disorders are neurodevelopmental disorders characterized by two core symptoms; impaired social interactions and communication, and ritualistic or repetitive behaviors. Both epidemiological and biochemical evidence suggests that a subpopulation of autistics may be linked to immune perturbations that occurred during fetal development. These findings have given rise to an animal model, called the “maternal immune activation” model, whereby the offspring from female rodents who were subjected to an immune stimulus during early or mid-pregnancy are studied. Here, C57BL/6 mouse dams were treated mid-gestation with saline, lipopolysaccharide (LPS) to mimic a bacterial infection, or polyinosinic:polycytidylic acid (Poly IC) to mimic a viral infection. Autism-associated behaviors were examined in the adult offspring of the treated dams. Behavioral tests were conducted to assess motor activity, exploration in a novel environment, sociability, and repetitive behaviors, and data analyses were carried independently on male and female mice. We observed a main treatment effect whereby male offspring from Poly IC-treated dams showed reduced motor activity. In the marble burying test of repetitive behavior, male offspring but not female offspring from both LPS and Poly IC-treated mothers showed increased marble burying. Our findings indicate that offspring from mothers subjected to immune stimulation during gestation show a gender-specific increase in stereotyped repetitive behavior. PMID:25111339

  18. Multigenerational effects of parental prenatal exposure to famine on adult offspring cognitive function

    PubMed Central

    Li, Jie; Na, Lixin; Ma, Hao; Zhang, Zhe; Li, Tianjiao; Lin, Liqun; Li, Qiang; Sun, Changhao; Li, Ying

    2015-01-01

    The effects of prenatal nutrition on adult cognitive function have been reported for one generation. However, human evidence for multigenerational effects is lacking. We examined whether prenatal exposure to the Chinese famine of 1959–61 affects adult cognitive function in two consecutive generations. In this retrospective family cohort study, we investigated 1062 families consisting of 2124 parents and 1215 offspring. We assessed parental and offspring cognitive performance by means of a comprehensive test battery. Generalized linear regression model analysis in the parental generation showed that prenatal exposure to famine was associated with a 8.1 (95% CI 5.8 to 10.4) second increase in trail making test part A, a 7.0 (1.5 to 12.5) second increase in trail making test part B, and a 5.5 (−7.3 to −3.7) score decrease in the Stroop color-word test in adulthood, after adjustment for potential confounders. In the offspring generation, linear mixed model analysis found no significant association between parental prenatal exposure to famine and offspring cognitive function in adulthood after adjustment for potential confounders. In conclusion, prenatal exposure to severe malnutrition is negatively associated with visual- motor skill, mental flexibility, and selective attention in adulthood. However, these associations are limited to only one generation. PMID:26333696

  19. Maternal Immune Activation Alters Nonspatial Information Processing in the Hippocampus of the Adult Offspring

    PubMed Central

    Ito, Hiroshi T.; Smith, Stephen E. P.; Hsiao, Elaine; Patterson, Paul H.

    2010-01-01

    The observation that maternal infection increases the risk for schizophrenia in the offspring suggests that the maternal immune system plays a key role in the etiology of schizophrenia. In a mouse model, maternal immune activation (MIA) by injection of poly(I:C) yields adult offspring that display abnormalities in a variety of behaviors relevant to schizophrenia. As abnormalities in the hippocampus are a consistent observation in schizophrenia patients, we examined synaptic properties in hippocampal slices prepared from the offspring of poly(I:C)- and saline-treated mothers. Compared to controls, CA1 pyramidal neurons from adult offspring of MIA mothers display reduced frequency and increased amplitude of miniature excitatory postsynaptic currents. In addition, the specific component of the temporoammonic pathway that mediates object-related information displays increased sensitivity to dopamine. To assess hippocampal network function in vivo, we used expression of the immediate early gene, c-Fos, as a surrogate measure of neuronal activity. Compared to controls, the offspring of poly(I:C)-treated mothers display a distinct c-Fos expression pattern in area CA1 following novel object, but not novel location, exposure. Thus, the offspring of MIA mothers may have an abnormality in modality-specific information processing. Indeed, the MIA offspring display enhanced discrimination in a novel object recognition, but not in an object location, task. Thus, analysis of object and spatial information processing at both synaptic and behavioral levels reveals a largely selective abnormality in object information processing in this mouse model. Our results suggest that altered processing of object-related information may be part of the pathogenesis of schizophrenia-like cognitive behaviors. PMID:20227486

  20. Maternal immune activation alters nonspatial information processing in the hippocampus of the adult offspring.

    PubMed

    Ito, Hiroshi T; Smith, Stephen E P; Hsiao, Elaine; Patterson, Paul H

    2010-08-01

    The observation that maternal infection increases the risk for schizophrenia in the offspring suggests that the maternal immune system plays a key role in the etiology of schizophrenia. In a mouse model, maternal immune activation (MIA) by injection of poly(I:C) yields adult offspring that display abnormalities in a variety of behaviors relevant to schizophrenia. As abnormalities in the hippocampus are a consistent observation in schizophrenia patients, we examined synaptic properties in hippocampal slices prepared from the offspring of poly(I:C)- and saline-treated mothers. Compared to controls, CA1 pyramidal neurons from adult offspring of MIA mothers display reduced frequency and increased amplitude of miniature excitatory postsynaptic currents. In addition, the specific component of the temporoammonic pathway that mediates object-related information displays increased sensitivity to dopamine. To assess hippocampal network function in vivo, we used expression of the immediate-early gene, c-Fos, as a surrogate measure of neuronal activity. Compared to controls, the offspring of poly(I:C)-treated mothers display a distinct c-Fos expression pattern in area CA1 following novel object, but not novel location, exposure. Thus, the offspring of MIA mothers may have an abnormality in modality-specific information processing. Indeed, the MIA offspring display enhanced discrimination in a novel object recognition, but not in an object location, task. Thus, analysis of object and spatial information processing at both synaptic and behavioral levels reveals a largely selective abnormality in object information processing in this mouse model. Our results suggest that altered processing of object-related information may be part of the pathogenesis of schizophrenia-like cognitive behaviors. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Intrauterine programming of lipid metabolic alterations in the heart of the offspring of diabetic rats is prevented by maternal diets enriched in olive oil.

    PubMed

    Capobianco, Evangelina; Pelesson, Magalí; Careaga, Valeria; Fornes, Daiana; Canosa, Ivana; Higa, Romina; Maier, Marta; Jawerbaum, Alicia

    2015-10-01

    Maternal diabetes can program metabolic and cardiovascular diseases in the offspring. The aim of this work was to address whether an olive oil supplemented diet during pregnancy can prevent lipid metabolic alterations in the heart of the offspring of mild diabetic rats. Control and diabetic Wistar rats were fed during pregnancy with either a standard diet or a 6% olive oil supplemented diet. The heart of adult offspring from diabetic rats showed increases in lipid concentrations (triglycerides in males and phospholipids, cholesterol, and free fatty acids in females), which were prevented with the maternal diets enriched in olive oil. Maternal olive oil supplementation increased the content of unsaturated fatty acids in the hearts of both female and male offspring from diabetic rats (possibly due to a reduction in lipoperoxidation), increased the expression of Δ6 desaturase in the heart of male offspring from diabetic rats, and increased the expression of peroxisome proliferator activated receptor α in the hearts of both female and male offspring from diabetic rats. Relevant alterations in cardiac lipid metabolism were evident in the adult offspring of a mild diabetic rat model, and regulated by maternal diets enriched in olive oil. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Gestational Protein Restriction Increases Cardiac Connexin 43 mRNA levels in male adult rat offspring

    PubMed Central

    Rossini, Kamila Fernanda; de Oliveira, Camila Andrea; Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Catisti, Rosana

    2017-01-01

    Background The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. Objectives The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Methods Pregnant Wistar rats were fed a normal-protein (NP, 17% casein) or low-protein (LP, 6% casein) diet. Blood pressure (BP) values from 60-day-old male offspring were measured by an indirect tail-cuff method using an electro sphygmomanometer. Hearts (d60) were collected for assessment of connexin 43 (Cx43) mRNA expression and morphological and morphometric analysis. Results LP offspring showed no difference in body weight, although they were born lighter than NP offspring. BP levels were significantly higher in the LP group. We observed a significant increase in the area occupied by collagen fibers, a decrease in the number of cardiomyocytes by 104 µm2, and an increase in cardiomyocyte area associated with an increased Cx43 expression. Conclusion GPR changes myocardial levels of Cx43 mRNA in male young adult rats, suggesting that this mechanism aims to compensate the fibrotic process by the accumulation of collagen fibers in the heart interstitium. PMID:28678925

  3. Perinatal Exposure to Perfluorooctane Sulfonate Affects Glucose Metabolism in Adult Offspring

    PubMed Central

    Wan, Hin T.; Zhao, Yin G.; Leung, Pik Y.; Wong, Chris K. C.

    2014-01-01

    Perfluoroalkyl acids (PFAAs) are globally present in the environment and are widely distributed in human populations and wildlife. The chemicals are ubiquitous in human body fluids and have a long serum elimination half-life. The notorious member of PFAAs, perfluorooctane sulfonate (PFOS) is prioritized as a global concerning chemical at the Stockholm Convention in 2009, due to its harmful effects in mammals and aquatic organisms. PFOS is known to affect lipid metabolism in adults and was found to be able to cross human placenta. However the effects of in utero exposure to the susceptibility of metabolic disorders in offspring have not yet been elucidated. In this study, pregnant CD-1 mice (F0) were fed with 0, 0.3 or 3 mg PFOS/kg body weight/day in corn oil by oral gavage daily throughout gestational and lactation periods. We investigated the immediate effects of perinatal exposure to PFOS on glucose metabolism in both maternal and offspring after weaning (PND 21). To determine if the perinatal exposure predisposes the risk for metabolic disorder to the offspring, weaned animals without further PFOS exposure, were fed with either standard or high-fat diet until PND 63. Fasting glucose and insulin levels were measured while HOMA-IR index and glucose AUCs were reported. Our data illustrated the first time the effects of the environmental equivalent dose of PFOS exposure on the disturbance of glucose metabolism in F1 pups and F1 adults at PND 21 and 63, respectively. Although the biological effects of PFOS on the elevated levels of fasting serum glucose and insulin levels were observed in both pups and adults of F1, the phenotypes of insulin resistance and glucose intolerance were only evident in the F1 adults. The effects were exacerbated under HFD, highlighting the synergistic action at postnatal growth on the development of metabolic disorders. PMID:24498028

  4. Dietary enrichment with alpha-linolenic acid during pregnancy attenuates insulin resistance in adult offspring in mice.

    PubMed

    Hollander, K S; Tempel Brami, C; Konikoff, F M; Fainaru, M; Leikin-Frenkel, A

    2014-07-01

    Our objective was to test the contribution of dietary enrichment in essential or saturated fatty acids, in normocaloric diets, on the lipid accumulation and insulin resistance in the adult offspring in a C57Bl6/J mice model. Pregnant mothers were fed normocaloric diets containing 6% fat enriched in essential fatty acids (EFA): alpha-linolenic (ALA-18:3, n-3), linoleic (LA-18:2, n-6), or saturated fatty acids (SFA). After a washing-out period with regular diet, the offspring received a high-fat diet before euthanization. Adult mice fed maternal ALA showed lower body weight gain and lower liver fat accumulation, lower HOMA index and lower stearoyl-CoA desaturase (SCD1) activity than those fed maternal SFA. The results observed using this novel model suggest that ALA in maternal diet may have the potential to inhibit insulin resistance in adult offspring.

  5. Sex-Differences in the Metabolic Health of Offspring of Parents with Diabetes: A Record-Linkage Study

    PubMed Central

    Aldhous, Marian C.; Reynolds, Rebecca M.; Campbell, Archie; Linksted, Pamela; Lindsay, Robert S.; Smith, Blair H.; Seckl, Jonathan R.; Porteous, David J.; Norman, Jane E.

    2015-01-01

    Maternal diabetes in pregnancy affects offspring health. The impact of parental diabetes on offspring health is unclear. We investigated the impact of parental diabetes on the metabolic-health of adult-offspring who did not themselves have diabetes. Data from the Generation Scotland: Scottish Family Health Study, a population-based family cohort, were record-linked to subjects’ own diabetes medical records. From F0-parents, we identified F1-offspring of: mothers with diabetes (OMD, n = 409), fathers with diabetes (OFD, n = 468), no parent with diabetes (ONoPD, n = 2489). Metabolic syndrome, body, biochemical measurements and blood-pressures were compared between F1-offspring groups by sex. A higher proportion of female OMD had metabolic syndrome than female OFD or ONoPD (P<0.0001). In female offspring, predictors of metabolic syndrome were: having a mother with diabetes (OR = 1.78, CI 1.03–3.07, [reference ONoPD]), body mass index (BMI, OR = 1.21, CI 1.13–1.30) and age (OR = 1.03, CI 1.01–1.06). In male offspring, predictors of metabolic syndrome were: BMI (OR = 1.18, CI 1.09–1.29) and percent body-fat (OR = 1.12, CI 1.05–1.19). In both sexes, OMD had higher blood-pressures than OFD (P<0.0001). In females, OMD had higher glucose (P<0.0001) and percent body-fat (P<0.0001) compared with OFD or ONoPD. OMD and OFD both had increased waist-measurements (P<0.0001), BMI (P<0.0001) and percent body-fat (P<0.0001) compared with ONoPD. Female OMD and OFD had lower HDL-cholesterol levels (P<0.0001) than female ONoPD. Parental diabetes is associated with higher offspring-BMI and body-fat. In female offspring, maternal diabetes increased the odds of metabolic syndrome, even after adjusting for BMI. Further investigations are required to determine the mechanisms involved. PMID:26308734

  6. Effects of Prior Contest Experience and Contest Outcome on Female Reproductive Decisions and Offspring Fitness.

    PubMed

    Pilakouta, Natalie; Halford, Cerian; Rácz, Rita; Smiseth, Per T

    2016-09-01

    Winning or losing a prior contest can influence the outcome of future contests, but it might also alter subsequent reproductive decisions. For example, losers may increase their investment in the current breeding attempt if losing a contest indicates limited prospects for future breeding. Using the burying beetle Nicrophorus vespilloides, we tested whether females adjust their prehatching and posthatching reproductive effort after winning or losing a contest with a same-sex conspecific. Burying beetles breed on carcasses of small vertebrates for which there is fierce intrasexual competition. We found no evidence that winning or losing a contest influenced reproductive investment decisions in this species. Instead, we show that a female's prior contest experience (regardless of its outcome) influenced the amount of posthatching care provided, with downstream consequences for the female's reproductive output; both winners and losers spent more time provisioning food to their offspring and produced larger broods than females with no contest experience. We discuss the wider implications of our findings and present a conceptual model linking contest-mediated adjustments in parental investment to population-level processes. We propose that the frequency of intraspecific contests could both influence and be influenced by population dynamics in species where contest experience influences the size and/or number of offspring produced.

  7. Maternal obesity in the ewe increases cardiac ventricular expression of glucocorticoid receptors, proinflammatory cytokines and fibrosis in adult male offspring

    PubMed Central

    Odhiambo, John F.; McCormick, Richard J.; Nathanielsz, Peter W.; Ford, Stephen P.

    2017-01-01

    Obesity during human pregnancy predisposes offspring to obesity and cardiovascular disease in postnatal life. In a sheep model of maternal overnutrition/obesity we have previously reported myocardial inflammation and fibrosis, as well as cardiac dysfunction in late term fetuses, in association with chronically elevated blood cortisol. Significant research has suggested a link between elevated glucocorticoid exposure in utero and hypertension and cardiovascular disease postnatally. Here we examined the effects of maternal obesity on myocardial inflammation and fibrosis of their adult offspring. Adult male offspring from control (CON) mothers fed 100% of National Research Council (NRC) recommendations (n = 6) and male offspring from obese mothers (MO) fed 150% NRC (n = 6), were put on a 12-week ad libitum feeding challenge then necropsied. At necropsy, plasma cortisol and left and right ventricular thickness were markedly increased (P<0.05) in adult male MO offspring. Myocardial collagen content and collagen-crosslinking were greater (P<0.05) in MO offspring compared to CON offspring in association with increased mRNA and protein expression of glucocorticoid receptors (GR). No group difference was found in myocardial mineralocorticoids receptor (MR) protein expression. Further, mRNA expression for the proinflammatory cytokines: cluster of differentiation (CD)-68, transforming growth factor (TGF)-β1, and tumor necrosis factor (TNF)-α were increased (P < 0.05), and protein expression of CD-68, TGF-β1, and TNF-α tended to increase (P<0.10) in MO vs. CON offspring. These data provide evidence for MO-induced programming of elevated plasma cortisol and myocardial inflammation and fibrosis in adult offspring potentially through increased GR. PMID:29267325

  8. Can domestic helpers moderate distress of offspring caregivers of cognitively impaired older adults?

    PubMed

    Chong, Alice M L; Kwan, Chi Wai; Lou, Vivian W Q; Chi, Iris

    2017-10-01

    This study examined the moderating effect of domestic helpers on distress of offspring caring for parents with cognitive impairments and with or without behavioural problems. This secondary analysis of data involved 5086 Hong Kong Chinese adults aged 60 or older applying for public long-term care services from 2010 to 2012. All variables were measured using the mandatory Hong Kong version of the Minimum Data Set-Home Care 2.0. Regarding taking care of parents with cognitive impairments, 10.7% of offspring primary caregivers were aided by domestic helpers, 55.54% reported distress, and 75.70% lived with their parents. Assistance from domestic helpers reduced offspring caregiver distress if the offspring provided psychological support to parents (ratio of OR = 0.655, p < .05) and were not living with parents (ratio of OR = 1.183, p < .01). These findings might suggest: a) the positive effects of audience on psychological responses to stress; b) caregiving is usually less stressful for informal caregivers not residing with care recipients. Conversely, having a domestic helper could add to caregiving distress if offspring caregivers live with their parents, most likely because offspring may witness difficulties that domestic helpers face in providing dementia care.

  9. Semen quality of young adult ICSI offspring: the first results.

    PubMed

    Belva, F; Bonduelle, M; Roelants, M; Michielsen, D; Van Steirteghem, A; Verheyen, G; Tournaye, H

    2016-12-01

    What is the semen quality of young adult men who were conceived 18-22 years ago by ICSI for male infertility? In this cohort of 54 young adult ICSI men, median sperm concentration, total sperm count and total motile sperm count were significantly lower than in spontaneously conceived peers. The oldest ICSI offspring cohort worldwide has recently reached adulthood. Hence, their reproductive health can now be investigated. Since these children were conceived by ICSI because of severe male-factor infertility, there is reasonable concern that male offspring have inherited the deficient spermatogenesis from their fathers. Previously normal pubertal development and adequate Sertoli and Leydig cell function have been described in pubertal ICSI boys; however, no information on their sperm quality is currently available. This study was conducted at UZ Brussel between March 2013 and April 2016 and is part of a large follow-up project focussing on reproductive and metabolic health of young adults, between 18 and 22 years and conceived after ICSI with ejaculated sperm. Results of both a physical examination and semen analysis were compared between young ICSI men being part of a longitudinally followed cohort and spontaneously conceived controls who were recruited cross-sectionally. Results of a single semen sample in 54 young adult ICSI men and 57 spontaneously conceived men are reported. All young adults were individually assessed, and the results of their physical examination were completed by questionnaires. Data were analysed by multiple linear and logistic regression, adjusted for covariates. In addition, semen parameters of the ICSI fathers dating back from their ICSI treatment application were analysed for correlations. Young ICSI adults had a lower median sperm concentration (17.7 million/ml), lower median total sperm count (31.9 million) and lower median total motile sperm count (12.7 million) in comparison to spontaneously conceived peers (37.0 million/ml; 86

  10. Maternal swimming exercise during pregnancy attenuates anxiety/depressive-like behaviors and voluntary morphine consumption in the pubertal male and female rat offspring born from morphine dependent mothers.

    PubMed

    Torabi, Masoumeh; Pooriamehr, Alireza; Bigdeli, Imanollah; Miladi-Gorji, Hossein

    2017-10-17

    This study was designed to examine whether maternal swimming exercise during pregnancy would attenuate prenatally morphine-induced anxiety, depression and voluntary consumption of morphine in the pubertal male and female rat offspring. Pregnant rats during the development of morphine dependence were allowed to swim (30-45min/d, 3days per a week) on gestational days 11-18. Then, the pubertal male and female rat offspring were tested for the elevated plus-maze (EPM), sucrose preference test (SPT) and voluntary morphine consumption using a two-bottle choice (TBC) paradigm. The results showed that male and female rat offspring born of the swimmer morphine-dependent mothers exhibited an increase in EPM open arm time and entries, higher levels of sucrose preference than their sedentary control mothers. Voluntary consumption of morphine was less in the male and female rat offspring born of the swimmer morphine-dependent mothers as compared with their sedentary control mothers during three periods of the intake of drug. Thus, swimming exercise in pregnant morphine dependent mothers decreased anxiety, depressive-like behavior and also the voluntary morphine consumption in the pubertal male and female offspring, which may prevent prenatally morphine-induced behavioral sensitization in offspring. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Squamate hatchling size and the evolutionary causes of negative offspring size allometry.

    PubMed

    Meiri, S; Feldman, A; Kratochvíl, L

    2015-02-01

    Although fecundity selection is ubiquitous, in an overwhelming majority of animal lineages, small species produce smaller number of offspring per clutch. In this context, egg, hatchling and neonate sizes are absolutely larger, but smaller relative to adult body size in larger species. The evolutionary causes of this widespread phenomenon are not fully explored. The negative offspring size allometry can result from processes limiting maximal egg/offspring size forcing larger species to produce relatively smaller offspring ('upper limit'), or from a limit on minimal egg/offspring size forcing smaller species to produce relatively larger offspring ('lower limit'). Several reptile lineages have invariant clutch sizes, where females always lay either one or two eggs per clutch. These lineages offer an interesting perspective on the general evolutionary forces driving negative offspring size allometry, because an important selective factor, fecundity selection in a single clutch, is eliminated here. Under the upper limit hypotheses, large offspring should be selected against in lineages with invariant clutch sizes as well, and these lineages should therefore exhibit the same, or shallower, offspring size allometry as lineages with variable clutch size. On the other hand, the lower limit hypotheses would allow lineages with invariant clutch sizes to have steeper offspring size allometries. Using an extensive data set on the hatchling and female sizes of > 1800 species of squamates, we document that negative offspring size allometry is widespread in lizards and snakes with variable clutch sizes and that some lineages with invariant clutch sizes have unusually steep offspring size allometries. These findings suggest that the negative offspring size allometry is driven by a constraint on minimal offspring size, which scales with a negative allometry. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary

  12. Psychopathology in the adolescent and young adult offspring of parents with dysthymic disorder and major depressive disorder.

    PubMed

    Lizardi, Humberto; Klein, Daniel N; Shankman, Stewart A

    2004-03-01

    This study addressed the following question: are the adolescent and young adult offspring of parents with early-onset dysthymic disorder (DD) at increased risk for psychopathology? Participants included 41 offspring of 21 outpatients with early-onset DD, 19 offspring of nine outpatients with episodic major depressive disorder (MDD), and 32 offspring of 11 normal controls (NCs). Lifetime best-estimate diagnoses were determined for each offspring using a team consensus method. Diagnoses were derived blind to all information about the index parents. The offspring of outpatients with early-onset DD exhibited significantly higher lifetime rates of a broad range of psychiatric disorders than the offspring of NCs. In addition, the offspring of outpatients with early-onset DD exhibited significantly higher lifetime rates of DD, anxiety disorders, and phobia than the offspring of outpatients with episodic MDD. These results support the importance of early-onset DD in parents as a risk factor for psychopathology in their offspring.

  13. Adult exercise effects on oxidative stress and reproductive programming in male offspring of obese rats.

    PubMed

    Santos, Mery; Rodríguez-González, Guadalupe L; Ibáñez, Carlos; Vega, Claudia C; Nathanielsz, Peter W; Zambrano, Elena

    2015-02-01

    Exercise improves health but few data are available regarding benefits of exercise in offspring exposed to developmental programming. There is currently a worldwide epidemic of obesity. Obesity in pregnant women predisposes offspring to obesity. Maternal obesity has well documented effects on offspring reproduction. Few studies address ability of offspring exercise to reduce adverse outcomes. We observed increased oxidative stress and impaired sperm function in rat offspring of obese mothers. We hypothesized that regular offspring exercise reverses adverse effects of maternal obesity on offspring sperm quality and fertility. Female Wistar rats ate chow (C) or high-energy, obesogenic diet (MO) from weaning through lactation, bred at postnatal day (PND) 120, and ate their pregnancy diet until weaning. All offspring ate C diet from weaning. Five male offspring (different litters) ran on a wheel for 15 min, 5 times/week from PND 330 to 450 and were euthanized at PND 450. Average distance run per session was lower in MO offspring who had higher body weight, adiposity index, and gonadal fat and showed increases in testicular oxidative stress biomarkers. Sperm from MO offspring had reduced antioxidant enzyme activity, lower sperm quality, and fertility. Exercise in MO offspring decreased testicular oxidative stress, increased sperm antioxidant activity and sperm quality, and improved fertility. Exercise intervention has beneficial effects on adiposity index, gonadal fat, oxidative stress markers, sperm quality, and fertility. Thus regular physical exercise in male MO offspring recuperates key male reproductive functions even at advanced age: it's never too late. Copyright © 2015 the American Physiological Society.

  14. Timing of Maternal Immunization Affects Immunological and Behavioral Outcomes of Adult Offspring in Siberian Hamsters (Phodopus sungorus)

    PubMed Central

    French, Susannah S.; Chester, Emily M.; Demas, Gregory E.

    2016-01-01

    Maternal influences are an important contributing factor to offspring survival, development, and behavior. Common environmental pathogens can induce maternal immune responses and affect subsequent development of offspring. There are likely sensitive periods during pregnancy when animals are particularly vulnerable to environmental disruption. Here we characterize the effects of maternal immunization across pregnancy and postpartum on offspring physiology and behavior in Siberian hamsters (Phodopus sungorus). Hamsters were injected with the antigen keyhole limpet hemocyanin (KLH) 1) prior to pairing with a male (pre-mating), 2) at separation (post-mating), 3) at mid-pregnancy, or 4) after birth (lactation). Maternal food intake, body mass, and immunity were monitored throughout gestation, and litters were measured weekly for growth until adulthood when social behavior, hormone concentrations, and immune responses were determined. We found that immunizations altered maternal immunity throughout pregnancy and lactation. The effects of maternal treatment differed between male and female offspring. Aggressive behavior was enhanced in offspring of both sexes born to mothers treated post-mating and thus early in pregnancy relative to other stages. In contrast, maternal treatment and maternal stage differentially affected innate immunity in males and females. Offspring cortisol, however, was unaffected by maternal treatment. Collectively, these data demonstrate that maternal immunization affects offspring physiology and behavior in a time-dependent and sex-specific manner. More broadly, these findings contribute to our understanding of the effects of maternal immune activation, whether it be from environmental exposure or immunization, on immunological and behavioral responses of offspring. PMID:27320639

  15. Developmental Origins of Pregnancy Loss in the Adult Female Common Marmoset Monkey (Callithrix jacchus)

    PubMed Central

    Rutherford, Julienne N.; deMartelly, Victoria A.; Layne Colon, Donna G.; Ross, Corinna N.; Tardif, Suzette D.

    2014-01-01

    Background The impact of the intrauterine environment on the developmental programming of adult female reproductive success is still poorly understood and potentially underestimated. Litter size variation in a nonhuman primate, the common marmoset monkey (Callithrix jacchus), allows us to model the effects of varying intrauterine environments (e.g. nutrient restriction, exposure to male womb-mates) on the risk of losing fetuses in adulthood. Our previous work has characterized the fetuses of triplet pregnancies as experiencing intrauterine nutritional restriction. Methodology/Principal Findings We used over a decade of demographic data from the Southwest National Primate Research Center common marmoset colony. We evaluated differences between twin and triplet females in the number of pregnancies they produce and the proportion of those pregnancies that ended in fetal loss. We found that triplet females produced the same number of total offspring as twin females, but lost offspring during pregnancy at a significantly higher rate than did twins (38% vs. 13%, p = 0.02). Regardless of their own birth weight or the sex ratio of the litter the experienced as fetuses, triplet females lost more fetuses than did twins. Females with a male littermate experienced a significant increase in the proportion of stillbirths. Conclusions/Significance These striking findings anchor pregnancy loss in the mother’s own fetal environment and development, underscoring a "Womb to Womb" view of the lifecourse and the intergenerational consequences of development. This has important translational implications for understanding the large proportion of human stillbirths that are unexplained. Our findings provide strong evidence that a full understanding of mammalian life history and reproductive biology requires a developmental foundation. PMID:24871614

  16. Fetal growth restriction promotes physical inactivity and obesity in female mice.

    PubMed

    Baker, M S; Li, G; Kohorst, J J; Waterland, R A

    2015-01-01

    Environmental exposures during critical periods of prenatal and early postnatal life affect the development of mammalian body weight regulatory mechanisms, influencing lifelong risk of obesity. The specific biological processes that mediate the persistence of such effects, however, remain poorly understood. The objectives of this study were to determine the developmental timing and physiological basis of the obesity-promoting effect previously reported in offspring of obese agouti viable yellow (A(vy)/a) mothers. Newborn offspring of obese A(vy)/a and lean (a/a) mothers were cross-fostered shortly after birth to study separately the effects of in utero or suckling period exposure to A(vy)/a dams. Body composition, food intake, physical activity and energy expenditure were measured in offspring shortly after weaning and in adulthood. Offspring of obese A(vy)/a dams paradoxically experienced fetal growth restriction, which was followed by adult-onset obesity specifically in females. Our main analyses focused on wild-type (a/a) offspring, because a subset of adult A(vy)/a offspring contracted a kidney disease resembling diabetic nephropathy. Detailed physiological characterization demonstrated that, both shortly after weaning and in adulthood, female wild-type mice born to A(vy)/a mothers are not hyperphagic but have reduced physical activity and energy expenditure. No such coordinated changes were detected in male offspring. Mediational regression analysis of our longitudinal data supported a causal pathway in which fetal growth restriction persistently reduces physical activity, leading to adult obesity. Our data are consistent with several recent human epidemiological studies showing female-specific effects of perinatal nutritional restriction on later obesity, and provide the novel mechanistic insight that this may occur via permanent and sex-specific changes in one's inherent propensity for physical activity.

  17. Females of the communally breeding rodent, Octodon degus, transfer antibodies to their offspring during pregnancy and lactation.

    PubMed

    Becker, María Inés; De Ioannes, Alfredo E; León, Cecilia; Ebensperger, Luis A

    2007-06-01

    Females in numerous rodent species engage in communal nesting and breeding, meaning that they share a nest to rear their young together. One potential benefit to communally nesting mothers is that infants improve their immunocompetence. Thus, suckling from two or more females might provide newborns with a more diverse array of antibodies and defensive cells. As a first step toward testing the immunocompetence hypothesis, we assessed whether female degus (Octodon degus), a communally nesting and breeding caviomorph rodent, transfer immunoglobulins to their young through the yolk sac or placenta while in the uterus and, during lactation, through milk. With this aim, adult degu females were immunized with four antigens, including two mollusk hemocyanins from Concholepas and Megathura (CCH and KLH, respectively), porcine thyroglobulin and tetanus toxoid. Specific antibodies against the experimental antigens were used to track the origin of antibodies in the young. To establish the presence of specific antibodies of IgG and IgA isotypes in sera and milk of animals, an indirect enzyme-linked immunosorbent assay (ELISA) was developed. Degu females produced specific antibodies against antigens not found in their natural environment, and mothers were able to transfer the induced antibodies to their litters during pregnancy (IgG) and during lactation (IgA). However, we recorded only limited evidence of degu offspring acquiring antibodies from lactating mothers other than their own, giving little support to the increased immunocompetence hypothesis.

  18. The influence of maternal condition on offspring performance in sockeye salmon Oncorhynchus nerka.

    PubMed

    Tierney, K B; Patterson, D A; Kennedy, C J

    2009-10-01

    Eggs were taken from adult sockeye salmon Oncorhynchus nerka that had reached their journey's end in spawn-ready and moribund condition, and fertilized by healthy males. Egg number, size, hatching success and offspring growth did not differ with maternal condition, which suggests the absence of any persisting physiological maternal effects. Differences were noted in the swimming behaviour and physiology of the offspring at parr stage. In a 30 min schooling test conducted using groups of five in a flume, parr from moribund females were more likely to fatigue, were not as tightly schooled, and had a diminished startle response, both in the per cent responding and the burst distance. In individual, confined swimming tests conducted within a tube, post-exercise plasma lactate concentration, which is an indicator of white muscle use, was greater for parr from moribund adult females. The moribund females also had elevated lactate following exercise (their migration), which suggests heritable differences may exist in muscle use. This study shows that juvenile O. nerka artificially propagated from females exhausted by their return migration can exhibit swimming performance differences, indicating that maternal condition may need to be considered in breeding programmes.

  19. Psychological stress has a higher rate of developing addictive behaviors compared to physical stress in rat offspring

    PubMed Central

    Nazeri, Masoud; Ebrahimi, Arezoo; Aghaei, Iraj; Ghotbi Ravandi, Samaneh; Shabani, Mohammad

    2017-01-01

    Prenatal stress could have great influence on development of offspring and might alter cognitive function and other physiological processes of children. The current study was conducted to study the effect of physical or psychological prenatal stress on addictive and anxiety-like behavior of male and female offspring during their adolescence period (postnatal day (PND) 40). Adult female rats were exposed to physical (swimming) or psychological (observing another female rat swimming) stress from day six of gestation for 10 days. Male and female offspring were assayed for anxiety-like behavior, motor and balance function and morphine conditioned place preference using the open field, elevated plus maze (EPM), rotarod and wire grip assay and conditioned place preference. Offspring in both physical and psychological prenatal stress groups demonstrated significant increase in anxiety-like behavior in EPM paradigm, but no alterations were observed in motor and balance function of animals. Offspring in the psychological prenatal stress group had an increased preference for morphine in comparison to control and physical prenatal stress groups. Results of the current study demonstrated that animals exposed to psychological stress during fetal development are at a higher risk of developing addictive behaviors. Further research might elucidate the exact mechanisms involved to provide better preventive and therapeutic interventions. PMID:28900372

  20. Developmental Environment Effects on Sexual Selection in Male and Female Drosophila melanogaster

    PubMed Central

    Morimoto, Juliano; Pizzari, Tommaso; Wigby, Stuart

    2016-01-01

    The developmental environment can potentially alter the adult social environment and influence traits targeted by sexual selection such as body size. In this study, we manipulated larval density in male and female Drosophila melanogaster, which results in distinct adult size phenotypes–high (low) densities for small (large) adults–and measured sexual selection in experimental groups consisting of adult males and females from high, low, or a mixture of low and high larval densities. Overall, large adult females (those reared at low larval density) had more matings, more mates and produced more offspring than small females (those reared at high larval density). The number of offspring produced by females was positively associated with their number of mates (i.e. there was a positive female Bateman gradient) in social groups where female size was experimentally varied, likely due to the covariance between female productivity and mating rate. For males, we found evidence that the larval environment affected the relative importance of sexual selection via mate number (Bateman gradients), mate productivity, paternity share, and their covariances. Mate number and mate productivity were significantly reduced for small males in social environments where males were of mixed sizes, versus social environments where all males were small, suggesting that social heterogeneity altered selection on this subset of males. Males are commonly assumed to benefit from mating with large females, but in contrast to expectations we found that in groups where both the male and female size varied, males did not gain more offspring per mating with large females. Collectively, our results indicate sex-specific effects of the developmental environment on the operation of sexual selection, via both the phenotype of individuals, and the phenotype of their competitors and mates. PMID:27167120

  1. Does maternal body mass index during pregnancy influence risk of schizophrenia in the adult offspring?

    PubMed Central

    Khandaker, G M; Dibben, C R M; Jones, P B

    2012-01-01

    Summary Maternal obesity in pregnancy has been linked with several adverse outcomes in offspring including schizophrenia. The rising prevalence of obesity may contribute to an increase in the number of schizophrenia cases in the near future; therefore, it warrants further exploration. We reviewed current evidence regarding maternal body mass index (BMI) in pregnancy and risk of schizophrenia in adult offspring. We searched PubMed and Embase databases and included studies that were based on large and representative population-based datasets. A qualitative review was undertaken due to heterogeneity between studies. Four studies with 305 cases of schizophrenia and 24,442 controls were included. Maternal obesity (pre-pregnant BMI over 29 or 30 compared with mothers with low or average BMI) was associated with two- to threefold increased risk of schizophrenia in the adult offspring in two birth cohorts. High maternal BMI at both early and late pregnancy also increased risk of schizophrenia in the offspring. Discrepant findings from one study could be attributable to sample characteristics and other factors. The area needs more research. Future studies should take into account obstetric complications, diabetes, maternal infections and immune responses that might potentially mediate this association. PMID:22188548

  2. Parental and offspring associations of the metabolic syndrome in the Fels Longitudinal Study123

    PubMed Central

    Sabo, Roy T; Lu, Zheng; Deng, Xiaoyan; Ren, Chunfeng; Daniels, Stephen; Arslanian, Silva; Sun, Shumei S

    2012-01-01

    Background: Evidence shows that some causes of the metabolic syndrome (MS) begin in childhood, which could indicate a familial association, through either genetic inheritance or cohabitation. Objective: This study examined associations between parents and adult offspring diagnoses of the MS and its risk factors. Design: Measurements were obtained from adult participants and their adult offspring enrolled in the Fels Longitudinal Study, with simultaneous waist circumference, systolic blood pressure (SBP), diastolic blood pressure (DBP), triglycerides, HDL, and glucose observations used for diagnosis. On the basis of repeated measurements (in some cases), adult participants were classified as having the MS at least once or as never having the MS. Chi-square tests, ORs, and mixed-effects models were used to study familial associations. Results: Maternal (OR: 2.5; 95% CI: 1.1, 5.5) and paternal (OR: 4.1; 95% CI: 1.4, 12.1) MS classifications were significantly associated with MS classification in sons. MS classification in mothers and daughters (OR: 2.7; 95% CI: 0.9, 8.7; P = 0.08) was similar to that in sons but was not significant, whereas fathers and daughters were not associated (OR: 1.1; 95% CI: 0.4, 3.5). Maternal MS diagnoses were significantly and positively associated with triglycerides in male offspring and were significantly associated with SBP, DBP, and triglycerides in females. Paternal diagnoses were significantly associated only with DBP and HDL in male offspring. Conclusions: Parental MS diagnosis is significantly associated with MS diagnosis in adult male offspring, and adverse levels of certain risk factors are associated between offspring and parents, although these associations vary across risk factors and child sex. PMID:22811445

  3. Effect of rat parental morphine exposure on passive avoidance memory and morphine conditioned place preference in male offspring.

    PubMed

    Akbarabadi, Ardeshir; Niknamfar, Saba; Vousooghi, Nasim; Sadat-Shirazi, Mitra-Sadat; Toolee, Heidar; Zarrindast, Mohammad-Reza

    2018-02-01

    Drug addiction is a chronic disorder resulted from complex interaction of genetic, environmental, and developmental factors. Epigenetic mechanisms play an important role in the development and maintenance of addiction and also memory formation in the brain. We have examined passive avoidance memory and morphine conditioned place preference (CPP) in the offspring of male and/or female rats with a history of adulthood morphine consumption. Adult male and female animals received chronic oral morphine for 21days and then were maintained drug free for 10days. After that, they were let to mate with either an abstinent or control rat. Male offspring's memory was evaluated by step through test. Besides, rewarding effects of morphine were checked with CCP paradigm. Offspring of abstinent animals showed significant memory impairment compared to the control group which was more prominent in the offspring of abstinent females. Conditioning results showed that administration of a high dose of morphine (10mg/kg) that could significantly induce CPP in control rats, was not able to induce similar results in the offspring of morphine abstinent parents; and CPP was much more prominent when it was induced in the offspring of morphine exposed females compared to the progeny of morphine exposed males. It is concluded that parental morphine consumption in adulthood even before mating has destructive effects on memory state of the male offspring and also leads to tolerance to the rewarding effects of morphine. These effects are greater when the morphine consumer parent is the female one. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A maternal "junk-food" diet reduces sensitivity to the opioid antagonist naloxone in offspring postweaning.

    PubMed

    Gugusheff, Jessica R; Ong, Zhi Yi; Muhlhausler, Beverly S

    2013-03-01

    Perinatal exposure to a maternal "junk-food" diet has been demonstrated to increase the preference for palatable diets in adult offspring. We aimed to determine whether this increased preference could be attributed to changes in μ-opioid receptor expression within the mesolimbic reward pathway. We report here that mRNA expression of the μ-opioid receptor in the ventral tegmental area (VTA) at weaning was 1.4-fold (males) and 1.9-fold (females) lower in offspring of junk-food (JF)-fed rat dams than in offspring of dams fed a standard rodent diet (control) (P<0.05). Administration of the opioid antagonist naloxone to offspring given a palatable diet postweaning significantly reduced fat intake in control offspring (males: 7.7 ± 0.7 vs. 5.4 ± 0.6 g/kg/d; females: 6.9 ± 0.3 vs. 3.9 ± 0.5 g/kg/d; P<0.05), but not in male JF offspring (8.6 ± 0.6 vs. 7.1 ± 0.5 g/kg/d) and was less effective at reducing fat intake in JF females (42.2 ± 6.0 vs. 23.1 ± 4.1% reduction, P<0.05). Similar findings were observed for total energy intake. Naloxone treatment did not affect intake of standard rodent feed in control or JF offspring. These findings suggest that exposure to a maternal junk-food diet results in early desensitization of the opioid system which may explain the increased preference for junk food in these offspring.

  5. Prenatal Ethanol Exposure Causes Glucose Intolerance with Increased Hepatic Gluconeogenesis and Histone Deacetylases in Adult Rat Offspring: Reversal by Tauroursodeoxycholic Acid

    PubMed Central

    Yao, Xing-Hai; Nguyen, Hoa K.; Nyomba, B. L. Grégoire

    2013-01-01

    Prenatal ethanol exposure results in increased glucose production in adult rat offspring and this may involve modulation of protein acetylation by cellular stress. We used adult male offspring of dams given ethanol during gestation days 1–7 (early), 8–14 (mid) and 15–21 (late) compared with those from control dams. A group of ethanol offspring was treated with tauroursodeoxycholic acid (TUDCA) for 3 weeks. We determined gluconeogenesis, phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase, hepatic free radicals, histone deacetylases (HDAC), acetylated foxo1, acetylated PEPCK, and C/EBP homologous protein as a marker of endoplasmic reticulum stress. Prenatal ethanol during either of the 3 weeks of pregnancy increased gluconeogenesis, gluconeogenic genes, oxidative and endoplasmic reticulum stresses, sirtuin-2 and HDAC3, 4, 5, and 7 in adult offspring. Conversely, prenatal ethanol reduced acetylation of foxo1 and PEPCK. Treatment of adult ethanol offspring with TUDCA reversed all these abnormalities. Thus, prenatal exposure of rats to ethanol results in long lasting oxidative and endoplasmic reticulum stresses explaining increased expression of gluconeogenic genes and HDAC proteins which, by deacetylating foxo1 and PEPCK, contribute to increased gluconeogenesis. These anomalies occurred regardless of the time of ethanol exposure during pregnancy, including early embryogenesis. As these anomalies were reversed by treatment of the adult offspring with TUDCA, this compound has therapeutic potentials in the treatment of glucose intolerance associated with prenatal ethanol exposure. PMID:23544086

  6. Neonatal over-expression of estrogen receptor-α alters midbrain dopamine neuron development and reverses the effects of low maternal care in female offspring

    PubMed Central

    Peña, Catherine Jensen; Champagne, Frances A

    2014-01-01

    Maternal behavior is dependent on estrogen receptor-alpha (ERα; Esr1) and oxytocin receptor (OTR) signaling in the medial preoptic area (MPOA) of the hypothalamus, as well as dopamine signaling from the ventral tegmental area (VTA) to forebrain regions. Previous studies in rats indicate that low levels of maternal care, particularly licking/grooming (LG), lead to reduced levels of MPOA ERα and VTA dopamine neurons in female offspring and predict lower levels of postpartum maternal behavior by these offspring. The aim of the current study was to determine the functional impact on maternal behavior of neonatal manipulation of ERα in females that had experienced low vs. high levels of postnatal maternal LG. Adenovirus expressing ESR1 was targeted to the MPOA in female pups from low and high LG litters on postnatal day 2–3. Over-expression of ESR1 in low LG offspring elevated the level of ERα-immunoreactive cells in the MPOA and of tyrosine hydroxylase cells in the VTA to that observed in high LG females. Amongst juvenile female low LG offspring, ESR1 over-expression also decreased the latency to engage in maternal behavior toward donor pups. These results show that virally-mediated expression of ESR1 in the neonatal rat hypothalamus results in lasting changes in ESR1 expression through the juvenile period, and can “rescue” hormone receptor levels and behavior of offspring reared by low LG dams, potentially mediated by downstream alterations within reward circuitry. Thus, the transmission of maternal behavior from one generation to the next can be augmented by neonatal ERα in the MPOA. PMID:25044746

  7. Parents are a drag: long-lived birds share the cost of increased foraging effort with their offspring, but males pass on more of the costs than females.

    PubMed

    Jacobs, Shoshanah R; Elliott, Kyle Hamish; Gaston, Anthony J

    2013-01-01

    Life history theory predicts that parents will balance benefits from investment in current offspring against benefits from future reproductive investments. Long-lived organisms are therefore less likely to increase parental effort when environmental conditions deteriorate. To investigate the effect of decreased foraging capacity on parental behaviour of long-lived monogamous seabirds, we experimentally increased energy costs for chick-rearing thick-billed murres (Uria lomvia). Handicapped birds had lighter chicks and lower provisioning rates, supporting the prediction that long-lived animals would pass some of the costs of impaired foraging ability on to their offspring. Nonetheless, handicapped birds spent less time underwater, had longer inter-dive surface intervals, had lower body mass, showed lower resighting probabilities in subsequent years and consumed fewer risky prey items. Corticosterone levels were similar between control and handicapped birds. Apparently, adults shared some of the costs of impaired foraging, but those costs were not measurable in all metrics. Handicapped males had higher plasma neutral lipid concentrations (higher energy mobilisation) and their chicks exhibited lower growth rates than handicapped females, suggesting different sex-specific investment strategies. Unlike other studies of auks, partners did not compensate for handicapping, despite good foraging conditions for unhandicapped birds. In conclusion, parental murres and their offspring shared the costs of experimentally increased foraging constraints, with females investing more than males.

  8. Parents are a Drag: Long-Lived Birds Share the Cost of Increased Foraging Effort with Their Offspring, but Males Pass on More of the Costs than Females

    PubMed Central

    Jacobs, Shoshanah R.; Elliott, Kyle Hamish; Gaston, Anthony J.

    2013-01-01

    Life history theory predicts that parents will balance benefits from investment in current offspring against benefits from future reproductive investments. Long-lived organisms are therefore less likely to increase parental effort when environmental conditions deteriorate. To investigate the effect of decreased foraging capacity on parental behaviour of long-lived monogamous seabirds, we experimentally increased energy costs for chick-rearing thick-billed murres (Uria lomvia). Handicapped birds had lighter chicks and lower provisioning rates, supporting the prediction that long-lived animals would pass some of the costs of impaired foraging ability on to their offspring. Nonetheless, handicapped birds spent less time underwater, had longer inter-dive surface intervals, had lower body mass, showed lower resighting probabilities in subsequent years and consumed fewer risky prey items. Corticosterone levels were similar between control and handicapped birds. Apparently, adults shared some of the costs of impaired foraging, but those costs were not measurable in all metrics. Handicapped males had higher plasma neutral lipid concentrations (higher energy mobilisation) and their chicks exhibited lower growth rates than handicapped females, suggesting different sex-specific investment strategies. Unlike other studies of auks, partners did not compensate for handicapping, despite good foraging conditions for unhandicapped birds. In conclusion, parental murres and their offspring shared the costs of experimentally increased foraging constraints, with females investing more than males. PMID:23382921

  9. Developmental cigarette smoke exposure II: Hepatic proteome profiles in 6 month old adult offspring.

    PubMed

    Neal, Rachel E; Chen, Jing; Webb, Cindy; Stocke, Kendall; Gambrell, Caitlin; Greene, Robert M; Pisano, M Michele

    2016-10-01

    Utilizing a mouse model of 'active' developmental cigarette smoke exposure (CSE) [gestational day (GD) 1 through postnatal day (PD) 21] characterized by offspring low birth weight, the impact of developmental CSE on liver proteome profiles of adult offspring at 6 months of age was determined. Liver tissue was collected from Sham- and CSE-offspring for 2D-SDS-PAGE based proteome analysis with Partial Least Squares-Discriminant Analysis (PLS-DA). A similar study conducted at the cessation of exposure to cigarette smoke documented decreased gluconeogenesis coupled to oxidative stress in weanling offspring. In the current study, exposure throughout development to cigarette smoke resulted in impaired hepatic carbohydrate metabolism, decreased serum glucose levels, and increased gluconeogenic regulatory enzyme abundances during the fed-state coupled to decreased expression of SIRT1 as well as increased PEPCK and PGC1α expression. Together these findings indicate inappropriately timed gluconeogenesis that may reflect impaired insulin signaling in mature offspring exposed to 'active' developmental CSE. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Maternal Active Mastication during Prenatal Stress Ameliorates Prenatal Stress-Induced Lower Bone Mass in Adult Mouse Offspring.

    PubMed

    Azuma, Kagaku; Ogura, Minori; Kondo, Hiroko; Suzuki, Ayumi; Hayashi, Sakurako; Iinuma, Mitsuo; Onozuka, Minoru; Kubo, Kin-Ya

    2017-01-01

    Chronic psychological stress is a risk factor for osteoporosis. Maternal active mastication during prenatal stress attenuates stress response. The aim of this study is to test the hypothesis that maternal active mastication influences the effect of prenatal stress on bone mass and bone microstructure in adult offspring. Pregnant ddY mice were randomly divided into control, stress, and stress/chewing groups. Mice in the stress and stress/chewing groups were placed in a ventilated restraint tube for 45 minutes, 3 times a day, and was initiated on day 12 of gestation and continued until delivery. Mice in the stress/chewing group were allowed to chew a wooden stick during the restraint stress period. The bone response of 5-month-old male offspring was evaluated using quantitative micro-CT, bone histomorphometry, and biochemical markers. Prenatal stress resulted in significant decrease of trabecular bone mass in both vertebra and distal femur of the offspring. Maternal active mastication during prenatal stress attenuated the reduced bone formation and increased bone resorption, improved the lower trabecular bone volume and bone microstructural deterioration induced by prenatal stress in the offspring. These findings indicate that maternal active mastication during prenatal stress can ameliorate prenatal stress-induced lower bone mass of the vertebra and femur in adult offspring. Active mastication during prenatal stress in dams could be an effective coping strategy to prevent lower bone mass in their offspring.

  11. Development of Anxiety-Like Behavior via Hippocampal IGF-2 Signaling in the Offspring of Parental Morphine Exposure: Effect of Enriched Environment

    PubMed Central

    Li, Chang-Qi; Luo, Yan-Wei; Bi, Fang-Fang; Cui, Tao-Tao; Song, Ling; Cao, Wen-Yu; Zhang, Jian-Yi; Li, Fang; Xu, Jun-Mei; Hao, Wei; Xing, Xiao-Wei; Zhou, Fiona H; Zhou, Xin-Fu; Dai, Ru-Ping

    2014-01-01

    Opioid addiction is a major social, economic, and medical problem worldwide. Long-term adverse consequences of chronic opiate exposure not only involve the individuals themselves but also their offspring. Adolescent maternal morphine exposure results in behavior and morphologic changes in the brain of their adult offspring. However, few studies investigate the effect of adult opiate exposure on their offspring. Furthermore, the underlying molecular signals regulating the intergenerational effects of morphine exposure are still elusive. We report here that morphine exposure of adult male and female rats resulted in anxiety-like behavior and dendritic retraction in the dentate gyrus (DG) region of the hippocampus in their adult offspring. The behavior and morphologic changes were concomitant with the downregulation of insulin-like growth factor (IGF)-2 signaling in the granular zone of DG. Overexpression of hippocampal IGF-2 by bilateral intra-DG injection of lentivirus encoding the IGF-2 gene prevented anxiety-like behaviors in the offspring. Furthermore, exposure to an enriched environment during adolescence corrected the reduction of hippocampal IGF-2 expression, normalized anxiety-like behavior and reversed dendritic retraction in the adult offspring. Thus, parental morphine exposure can lead to the downregulation of hippocampal IGF-2, which contributed to the anxiety and hippocampal dendritic retraction in their offspring. An adolescent-enriched environment experience prevented the behavior and morphologic changes in their offspring through hippocampal IGF-2 signaling. IGF-2 and an enriched environment may be a potential intervention to prevention of anxiety and brain atrophy in the offspring of parental opioid exposure. PMID:24889368

  12. Low protein diet fed exclusively during mouse oocyte maturation leads to behavioural and cardiovascular abnormalities in offspring

    PubMed Central

    Watkins, Adam J; Wilkins, Adrian; Cunningham, Colm; Perry, V Hugh; Seet, Meei J; Osmond, Clive; Eckert, Judith J; Torrens, Christopher; Cagampang, Felino R A; Cleal, Jane; Gray, William P; Hanson, Mark A; Fleming, Tom P

    2008-01-01

    Early embryonic development is known to be susceptible to maternal undernutrition, leading to a disease-related postnatal phenotype. To determine whether this sensitivity extended into oocyte development, we examined the effect of maternal normal protein diet (18% casein; NPD) or isocaloric low protein diet (9% casein; LPD) restricted to one ovulatory cycle (3.5 days) prior to natural mating in female MF-1 mice. After mating, all females received NPD for the remainder of gestation and all offspring were litter size adjusted and fed standard chow. No difference in gestation length, litter size, sex ratio or postnatal growth was observed between treatments. Maternal LPD did, however, induce abnormal anxiety-related behaviour in open field activities in male and female offspring (P < 0.05). Maternal LPD offspring also exhibited elevated systolic blood pressure (SBP) in males at 9 and 15 weeks and in both sexes at 21 weeks (P < 0.05). Male LPD offspring hypertension was accompanied by attenuated arterial responsiveness in vitro to vasodilators acetylcholine and isoprenaline (P < 0.05). LPD female offspring adult kidneys were also smaller, but had increased nephron numbers (P < 0.05). Moreover, the relationship between SBP and kidney or heart size or nephron number was altered by diet treatment (P < 0.05). These data demonstrate the sensitivity of mouse maturing oocytes in vivo to maternal protein undernutrition and identify both behavioural and cardiovascular postnatal outcomes, indicative of adult disease. These outcomes probably derive from a direct effect of protein restriction, although indirect stress mechanisms may also be contributory. Similar and distinct postnatal outcomes were observed here compared with maternal LPD treatment during post-fertilization preimplantation development which may reflect the relative contribution of the paternal genome. PMID:18308825

  13. Unexpected Long-Term Protection of Adult Offspring Born to High-Fat Fed Dams against Obesity Induced by a Sucrose-Rich Diet

    PubMed Central

    Couvreur, Odile; Ferezou, Jacqueline; Gripois, Daniel; Serougne, Colette; Crépin, Delphine; Aubourg, Alain; Gertler, Arieh; Vacher, Claire-Marie; Taouis, Mohammed

    2011-01-01

    Background Metabolic and endocrine environment during early life is crucial for metabolic imprinting. When dams were fed a high fat diet (HF diet), rat offspring developed hypothalamic leptin resistance with lean phenotype when weaned on a normal diet. Interestingly, when grown on the HF diet, they appeared to be protected against the effects of HF diet as compared to offspring of normally fed dams. The mechanisms involved in the protective effect of maternal HF diet are unclear. Methodology/Principal Findings We thus investigated the impact of maternal high fat diet on offspring subjected to normal or high palatable diet (P diet) on metabolic and endocrine parameters. We compared offspring born to dams fed P or HF diet. Offspring born to dams fed control or P diet, when fed P diet exhibited a higher body weight, altered hypothalamic leptin sensitivity and metabolic parameters suggesting that maternal P diet has no protective effect on offspring. Whereas, maternal HF diet reduces body weight gain and circulating triglycerides, and ameliorates corpulence index of offspring, even when subjected to P diet. Interestingly, this protective effect is differently expressed in male and female offspring. Male offspring exhibited higher energy expenditure as mirrored by increased hypothalamic UCP-2 and liver AdipoR1/R2 expression, and a profound change in the arcuate nucleus astrocytic organization. In female offspring, the most striking impact of maternal HF diet is the reduced hypothalamic expression of NPY and POMC. Conclusions/Significance HF diet given during gestation and lactation protects, at least partially, offspring from excessive weight gain through several mechanisms depending upon gender including changes in arcuate nucleus astrocytic organization and increased hypothalamic UCP-2 and liver AdipoR1/2 expression in males and reduced hypothalamic expression of NPY and POMC in females. Taken together our results reveal new mechanisms involved in the protective

  14. Perinatal Hypercholesterolemia Exacerbates Atherosclerosis Lesions in Offspring by Altering Metabolism of Trimethylamine-N-Oxide and Bile Acids.

    PubMed

    Trenteseaux, Charlotte; Gaston, Anh-Thu; Aguesse, Audrey; Poupeau, Guillaume; de Coppet, Pierre; Andriantsitohaina, Ramaroson; Laschet, Jamila; Amarger, Valérie; Krempf, Michel; Nobecourt-Dupuy, Estelle; Ouguerram, Khadija

    2017-11-01

    Experimental studies suggest that maternal hypercholesterolemia may be relevant for the early onset of cardiovascular disease in offspring. We investigated the effect of perinatal hypercholesterolemia on the atherosclerosis development in the offspring of apolipoprotein E-deficient mice and the underlying mechanism. Atherosclerosis and related parameters were studied in adult male or female apolipoprotein E-deficient mice offspring from either normocholesterolemic or hypercholesterolemic mothers and normocholesterolemic fathers. Female born to hypercholesterolemic mothers had more aortic root lesions than female born to normocholesterolemic mothers. Lesions in whole aorta did not differ between groups. Higher trimethylamine-N-oxide levels and Fmo3 hepatic gene expression were higher in female born to hypercholesterolemic mothers offspring compared with female born to normocholesterolemic mothers and male. Trimethylamine-N-oxide levels were correlated with the size of atherosclerotic root lesions. Levels of hepatic cholesterol and gallbladder bile acid were greater in male born to hypercholesterolemic mothers compared with male born to normocholesterolemic mothers. At 18 weeks of age, female born to hypercholesterolemic mothers showed lower hepatic Scarb1 and Cyp7a1 but higher Nr1h4 gene expression compared with female born to normocholesterolemic mothers. Male born to hypercholesterolemic mothers showed an increase in Scarb1 and Ldlr gene expression compared with male born to normocholesterolemic mothers. At 25 weeks of age, female born to hypercholesterolemic mothers had lower Cyp7a1 gene expression compared with female born to normocholesterolemic mothers. DNA methylation of Fmo3, Scarb1 , and Ldlr promoter regions was slightly modified and may explain the mRNA expression modulation. Our findings suggest that maternal hypercholesterolemia may exacerbate the development of atherosclerosis in female offspring by affecting metabolism of trimethylamine-N-oxide and

  15. Does the Mother or Father Determine the Offspring Sex Ratio? Investigating the Relationship between Maternal Digit Ratio and Offspring Sex Ratio

    PubMed Central

    Kim, Tae Beom; Oh, Jin Kyu; Kim, Kwang Taek; Yoon, Sang Jin; Kim, Soo Woong

    2015-01-01

    Objective In mammals, high parental testosterone levels present around the time of conception are thought to skew offspring sex ratio toward sons. The second to fourth digit ratio (digit ratio) is now widely accepted as a negative correlate of prenatal testosterone. Thus, we investigated the association between digit ratio and offspring sex ratio. Methods A total of 508 Korean patients (257 males and 251 females) less than 60 years old who had one or more offspring were prospectively enrolled. The lengths of the 2nd and 4th digits of the right hand were measured by a single investigator using a digital vernier calliper. Next, the patients’ lifetime offspring birth sex ratios were investigated. Results Maternal (rather than paternal) digit ratio was significantly associated with the number of sons (r = -0.153, p = 0.015), number of daughters (r = 0.130, p = 0.039), and offspring sex ratio (r = -0.171, p = 0.007). And, the maternal digit ratio was a significant factor for predicting offspring sex ratio (B = -1.620, p = 0.008) on multiple linear regression analysis. The female patients with a lower digit ratio (< 0.95) were found to have a higher offspring sex ratio (0.609 versus 0.521, p = 0.046) compared to those with a higher digit ratio (≥ 0.95). Furthermore, females in the low digit ratio group have a probability 1.138 greater of having sons than females in the high digit ratio group. Conclusions Maternal digit ratio was negatively associated with offspring sex ratio. Females with a lower digit ratio were more likely to have more male offspring compared to those with a higher digit ratio. Thus, our results suggest that the sex of offspring might be more influenced by maternal rather than paternal factors. PMID:26575995

  16. Parental exposure to heavy fuel oil induces developmental toxicity in offspring of the sea urchin Strongylocentrotus intermedius.

    PubMed

    Duan, Meina; Xiong, Deqi; Yang, Mengye; Xiong, Yijun; Ding, Guanghui

    2018-05-03

    The present study investigated the toxic effects of parental (maternal/paternal) exposure to heavy fuel oil (HFO) on the adult reproductive state, gamete quality and development of the offspring of the sea urchin Strongylocentrotus intermedius. Adult sea urchins were exposed to effluents from HFO-oiled gravel columns for 7 days to simulate an oil-contaminated gravel shore, and then gametes of adult sea urchins were used to produce embryos to determine developmental toxicity. For adult sea urchins, no significant difference in the somatic size and weight was found between the various oil loadings tested, while the gonad weight and gonad index were significantly decreased at higher oil loadings. The spawning ability of adults and fecundity of females significantly decreased. For gametes, no effect was observed on the egg size and fertilization success in any of the groups. However, a significant increase in the percentage of anomalies in the offspring was observed and then quantified by an integrative toxicity index (ITI) at 24 and 48 h post fertilization. The offspring from exposed parents showed higher ITI values with more malformed embryos. The results confirmed that parental exposure to HFO can cause adverse effects on the offspring and consequently affect the recruitment and population maintenance of sea urchins. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Role of maternal 5-HT(1A) receptor in programming offspring emotional and physical development.

    PubMed

    van Velzen, A; Toth, M

    2010-11-01

    Serotonin(1A) receptor (5-HT(1A)R) deficiency has been associated with anxiety and depression and mice with genetic receptor inactivation exhibit heightened anxiety. We have reported that 5-HT(1A)R is not only a genetic but also a maternal 'environmental' factor in the development of anxiety in Swiss-Webster mice. Here, we tested whether the emergence of maternal genotype-dependent adult anxiety is preceded by early behavioral abnormalities or whether it is manifested following a normal emotional development. Pups born to null or heterozygote mothers had significantly reduced ultrasonic vocalization (USV) between postnatal day (P) 4 and 12, indicating an influence of the maternal genotype. The offspring's own genotype had an effect limited to P4. Furthermore, we observed reduced weight gain in the null offspring of null but not heterozygote mothers, indicating that a complete maternal receptor deficiency compromises physical development of the offspring. Except a short perinatal deficit during the dark period, heterozygote females displayed normal maternal behavior, which, with the early appearance of USV deficit, suggests a role for 5-HT(1A)R during pre-/perinatal development. Consistent with this notion, adult anxiety in the offspring is determined during the pre-/perinatal period. In contrast to heterozygote females, null mothers exhibited impaired pup retrieval and nest building that may explain the reduced weight gain of their offspring. Taken together, our data indicate an important role for the maternal 5-HT(1A)R in regulating emotional and physical development of their offspring. Because reduced receptor binding has been reported in depression, including postpartum depression, reduced 5-HT(1A)R function in mothers may influence the emotional development of their offspring. © 2010 The Authors. Genes, Brain and Behavior © 2010 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  18. Maternal High Fat Diet Alters Skeletal Muscle Mitochondrial Catalytic Activity in Adult Male Rat Offspring

    PubMed Central

    Pileggi, Chantal A.; Hedges, Christopher P.; Segovia, Stephanie A.; Markworth, James F.; Durainayagam, Brenan R.; Gray, Clint; Zhang, Xiaoyuan D.; Barnett, Matthew P. G.; Vickers, Mark H.; Hickey, Anthony J. R.; Reynolds, Clare M.; Cameron-Smith, David

    2016-01-01

    A maternal high-fat (HF) diet during pregnancy can lead to metabolic compromise, such as insulin resistance in adult offspring. Skeletal muscle mitochondrial dysfunction is one mechanism contributing to metabolic impairments in insulin resistant states. Therefore, the present study aimed to investigate whether mitochondrial dysfunction is evident in metabolically compromised offspring born to HF-fed dams. Sprague-Dawley dams were randomly assigned to receive a purified control diet (CD; 10% kcal from fat) or a high fat diet (HFD; 45% kcal from fat) for 10 days prior to mating, throughout pregnancy and during lactation. From weaning, all male offspring received a standard chow diet and soleus muscle was collected at day 150. Expression of the mitochondrial transcription factors nuclear respiratory factor-1 (NRF1) and mitochondrial transcription factor A (mtTFA) were downregulated in HF offspring. Furthermore, genes encoding the mitochondrial electron transport system (ETS) respiratory complex subunits were suppressed in HF offspring. Moreover, protein expression of the complex I subunit, NDUFB8, was downregulated in HF offspring (36%), which was paralleled by decreased maximal catalytic linked activity of complex I and III (40%). Together, these results indicate that exposure to a maternal HF diet during development may elicit lifelong mitochondrial alterations in offspring skeletal muscle. PMID:27917127

  19. Complex life cycles and offspring provisioning in marine invertebrates.

    PubMed

    Marshall, Dustin J; Keough, Michael J

    2006-10-01

    Offspring size can have pervasive effects throughout an organism's life history. Mothers can make either a few large or many small offspring, and the balance between these extremes is determined by the relationship between offspring size and performance. This relationship in turn is thought to be determined by the offspring's environment. Recently, it has become clear that events in one life-history stage can strongly affect performance in another. Given these strong carryover effects, we asked whether events in the larval phase can change the relationship between offspring size and performance in the adult phase. We manipulated the length of the larval period in the bryozoan Bugula neritina and then examined the relationship between offspring size and various parameters of adult performance under field conditions. We found that despite the adult stage being outplanted into identical conditions, different offspring sizes were predicted to be optimal, depending on the experience of those adults as larvae. This work highlights the fact that the strong phenotypic links between life-history stages may result in optimal offspring size being highly unpredictable for organisms with complex life cycles.

  20. Maternal Active Mastication during Prenatal Stress Ameliorates Prenatal Stress-Induced Lower Bone Mass in Adult Mouse Offspring

    PubMed Central

    Azuma, Kagaku; Ogura, Minori; Kondo, Hiroko; Suzuki, Ayumi; Hayashi, Sakurako; Iinuma, Mitsuo; Onozuka, Minoru; Kubo, Kin-ya

    2017-01-01

    Chronic psychological stress is a risk factor for osteoporosis. Maternal active mastication during prenatal stress attenuates stress response. The aim of this study is to test the hypothesis that maternal active mastication influences the effect of prenatal stress on bone mass and bone microstructure in adult offspring. Pregnant ddY mice were randomly divided into control, stress, and stress/chewing groups. Mice in the stress and stress/chewing groups were placed in a ventilated restraint tube for 45 minutes, 3 times a day, and was initiated on day 12 of gestation and continued until delivery. Mice in the stress/chewing group were allowed to chew a wooden stick during the restraint stress period. The bone response of 5-month-old male offspring was evaluated using quantitative micro-CT, bone histomorphometry, and biochemical markers. Prenatal stress resulted in significant decrease of trabecular bone mass in both vertebra and distal femur of the offspring. Maternal active mastication during prenatal stress attenuated the reduced bone formation and increased bone resorption, improved the lower trabecular bone volume and bone microstructural deterioration induced by prenatal stress in the offspring. These findings indicate that maternal active mastication during prenatal stress can ameliorate prenatal stress-induced lower bone mass of the vertebra and femur in adult offspring. Active mastication during prenatal stress in dams could be an effective coping strategy to prevent lower bone mass in their offspring. PMID:28553167

  1. Gestational Protein Restriction Impairs Insulin-Regulated Glucose Transport Mechanisms in Gastrocnemius Muscles of Adult Male Offspring

    PubMed Central

    Blesson, Chellakkan S.; Sathishkumar, Kunju; Chinnathambi, Vijayakumar

    2014-01-01

    Type II diabetes originates from various genetic and environmental factors. Recent studies showed that an adverse uterine environment such as that caused by a gestational low-protein (LP) diet can cause insulin resistance in adult offspring. The mechanism of insulin resistance induced by gestational protein restriction is not clearly understood. Our aim was to investigate the role of insulin signaling molecules in gastrocnemius muscles of gestational LP diet–exposed male offspring to understand their role in LP-induced insulin resistance. Pregnant Wistar rats were fed a control (20% protein) or isocaloric LP (6%) diet from gestational day 4 until delivery and a normal diet after weaning. Only male offspring were used in this study. Glucose and insulin responses were assessed after a glucose tolerance test. mRNA and protein levels of molecules involved in insulin signaling were assessed at 4 months in gastrocnemius muscles. Muscles were incubated ex vivo with insulin to evaluate insulin-induced phosphorylation of insulin receptor (IR), Insulin receptor substrate-1, Akt, and AS160. LP diet-fed rats gained less weight than controls during pregnancy. Male pups from LP diet–fed mothers were smaller but exhibited catch-up growth. Plasma glucose and insulin levels were elevated in LP offspring when subjected to a glucose tolerance test; however, fasting levels were comparable. LP offspring showed increased expression of IR and AS160 in gastrocnemius muscles. Ex vivo treatment of muscles with insulin showed increased phosphorylation of IR (Tyr972) in controls, but LP rats showed higher basal phosphorylation. Phosphorylation of Insulin receptor substrate-1 (Tyr608, Tyr895, Ser307, and Ser318) and AS160 (Thr642) were defective in LP offspring. Further, glucose transporter type 4 translocation in LP offspring was also impaired. A gestational LP diet leads to insulin resistance in adult offspring by a mechanism involving inefficient insulin-induced IR, Insulin receptor

  2. Effects of maternal stress and perinatal fluoxetine exposure on behavioral outcomes of adult male offspring.

    PubMed

    Kiryanova, V; Meunier, S J; Vecchiarelli, H A; Hill, M N; Dyck, R H

    2016-04-21

    Women of child-bearing age are the population group at highest risk for depression. In pregnant women, fluoxetine (Flx) is the most widely prescribed selective serotonin reuptake inhibitor (SSRI) used for the treatment of depression. While maternal stress, depression, and Flx exposure have been shown to effect neurodevelopment of the offspring, separately, combined effects of maternal stress and Flx exposure have not been extensively examined. The present study investigated the effects of prenatal maternal stress and perinatal exposure to the SSRI Flx on the behavior of male mice as adults. C57BL/6 dams exposed to chronic unpredictable stress from embryonic (E) day 4 to E18 and non-stressed dams were administered Flx (25 mg/kg/d) in the drinking water from E15 to postnatal day 12. A separate control group consisted of animals that were not exposed to stress or Flx. At 12 days of age, brain levels of serotonin were assessed in the male offspring. At two months of age, the male offspring of mothers exposed to prenatal stress (PS), perinatal Flx, PS and Flx, or neither PS or Flx, went through a comprehensive behavioral test battery. At the end of testing brain-derived neurotropic factor (BDNF) levels were assessed in the frontal cortex of the offspring. Maternal behavior was not altered by either stress or Flx treatment. Treatment of the mother with Flx led to detectible Flx and NorFlx levels and lead to a decrease in serotonin levels in pup brains. In the adult male offspring, while perinatal exposure to Flx increased aggressive behavior, prenatal maternal stress decreased aggressive behavior. Interestingly, the combined effects of stress and Flx normalized aggressive behavior. Furthermore, perinatal Flx treatment led to a decrease in anxiety-like behavior in male offspring. PS led to hyperactivity and a decrease in BDNF levels in the frontal cortex regardless of Flx exposure. Neither maternal stress or Flx altered offspring performance in tests of cognitive

  3. Grandparentage assignments identify unexpected adfluvial life history tactic contributing offspring to a reintroduced population.

    PubMed

    Sard, Nicholas M; Jacobson, Dave P; Banks, Michael A

    2016-10-01

    Diversity in life history tactics contributes to the persistence of a population because it helps to protect against stochastic environments by varying individuals in space and time. However, some life history tactics may not be accounted for when assessing the demographic viability of a population. One important factor in demographic viability assessments is cohort replacement rate (CRR), which is defined as the number of future adults produced by an adult. We assessed if precocial resident males (adults that reside in freshwater their entire lives, contributed offspring to a reintroduced population from 2008 to 2013. We found that 9 ± 5% of offspring with an unassigned parent remained unexplained after accounting for sources of human error. Using grandparentage assignments, we identified 31 precocial resident males and 48 probable adfluvial Chinook salmon produced by anadromous mate pairs from 2007 to 2012. Previously published CRR estimates for the 2007 and 2008 reintroduced adults, based on only anadromous returning adult offspring, were 0.40 and 0.31, respectively. By incorporating adfluvial females, we found CRR estimates increased by 17% (CRR: 0.46) and 13% (CRR: 0.35) for the 2007 and 2008 cohorts, respectively.

  4. Maternal Nutrition Induces Pervasive Gene Expression Changes but No Detectable DNA Methylation Differences in the Liver of Adult Offspring

    PubMed Central

    Cannon, Matthew V.; Buchner, David A.; Hester, James; Miller, Hadley; Sehayek, Ephraim; Nadeau, Joseph H.; Serre, David

    2014-01-01

    Aims Epidemiological and animal studies have shown that maternal diet can influence metabolism in adult offspring. However, the molecular mechanisms underlying these changes remain poorly understood. Here, we characterize the phenotypes induced by maternal obesity in a mouse model and examine gene expression and epigenetic changes induced by maternal diet in adult offspring. Methods We analyzed genetically identical male mice born from dams fed a high- or low-fat diet throughout pregnancy and until day 21 postpartum. After weaning, half of the males of each group were fed a high-fat diet, the other half a low-fat diet. We first characterized the genome-wide gene expression patterns of six tissues of adult offspring - liver, pancreas, white adipose, brain, muscle and heart. We then measured DNA methylation patterns in liver at selected loci and throughout the genome. Results Maternal diet had a significant effect on the body weight of the offspring when they were fed an obesogenic diet after weaning. Our analyses showed that maternal diet had a pervasive effect on gene expression, with a pronounced effect in liver where it affected many genes involved in inflammation, cholesterol synthesis and RXR activation. We did not detect any effect of the maternal diet on DNA methylation in the liver. Conclusions Overall, our findings highlighted the persistent influence of maternal diet on adult tissue regulation and suggested that the transcriptional changes were unlikely to be caused by DNA methylation differences in adult liver. PMID:24594983

  5. Size-biased allocation of prey from male to offspring via female: family conflicts, prey selection, and evolution of sexual size dimorphism in raptors.

    PubMed

    Sonerud, Geir A; Steen, Ronny; Løw, Line M; Røed, Line T; Skar, Kristin; Selås, Vidar; Slagsvold, Tore

    2013-05-01

    In birds with bi-parental care, the provisioning link between prey capture and delivery to dependent offspring is regarded as often symmetric between the mates. However, in raptors, the larger female usually broods and feeds the nestlings, while the smaller male provides food for the family, assisted by the female in the latter part of the nestling period, if at all. Prey items are relatively large and often impossible for nestlings to handle without extended maternal assistance. We video-recorded prey delivery and handling in nests of a raptor with a wide diet, the Eurasian kestrel Falco tinnunculus, and simultaneously observed prey transfer from male to female outside the nest. The male selectively allocated larger items, in particular birds and larger mammals, to the female for further processing and feeding of nestlings, and smaller items, in particular lizards and smaller mammals, directly to the nestlings for unassisted feeding. Hence, from the video, the female appeared to have captured larger prey than the male, while in reality no difference existed. The female's size-biased interception of the male's prey provisioning line would maximize the male's foraging time, and maximize the female's control of the allocation of food between her own need and that of the offspring. The male would maximize his control of food allocation by capturing smaller prey. This conflict would select for larger dominant females and smaller energy-efficient males, and induce stronger selection the longer the female depends on the male for self-feeding, as a proportion of the offspring dependence period.

  6. Influence of Panax ginseng on the offspring of adult rats exposed to prenatal stress

    PubMed Central

    KIM, YOUNG OCK; LEE, HWA-YOUNG; WON, HANSOL; NAH, SEONG-SU; LEE, HWA-YOUNG; KIM, HYUNG-KI; KWON, JUN-TACK; KIM, HAK-JAE

    2015-01-01

    The exposure of pregnant females to stress during a critical period of fetal brain development is an environmental risk factor for the development of schizophrenia in adult offspring. Schizophrenia is a group of common mental disorders of unclear origin, affecting approximately 1% of the global population, showing a generally young age at onset. In the present study, a repeated variable stress paradigm was applied to pregnant rats during the final week of gestation. The effects of an extract of Panax ginseng C.A. Meyer (PG) on rats exposed to prenatal stress (PNS) were investigated in terms of behavioral activity and protein expression analyses. In the behavioral tests, grooming behavior in a social interaction test, line-crossing behavior in an open-field test and swimming activity in a forced-swim test were decreased in the rats exposed to PNS compared with the non-stressed offspring; the changes in behavioral activity were reversed upon oral treatment with PG (300 mg/kg). Subsequently, western blot analysis and immunohistochemical analyses of the prefrontal cortex and hippocampus revealed that the downregulation of several neurodevelopmental genes which occurred following exposure to PNS was reversed upon treatment with PG. The current findings demonstrate that the downregulation of several genes following exposure to PNS may affect subsequent behavioral changes, and that these phenomena are reversed following treatment with PG during pregnancy. Our results suggest that oral treatment with PG reduces the incidence of psychiatric disorders, such as schizophrenia. PMID:25394395

  7. Excess maternal salt intake produces sex-specific hypertension in offspring: putative roles for kidney and gastrointestinal sodium handling.

    PubMed

    Gray, Clint; Al-Dujaili, Emad A; Sparrow, Alexander J; Gardiner, Sheila M; Craigon, Jim; Welham, Simon J M; Gardner, David S

    2013-01-01

    Hypertension is common and contributes, via cardiovascular disease, towards a large proportion of adult deaths in the Western World. High salt intake leads to high blood pressure, even when occurring prior to birth - a mechanism purported to reside in altered kidney development and later function. Using a combination of in vitro and in vivo approaches we tested whether increased maternal salt intake influences fetal kidney development to render the adult individual more susceptible to salt retention and hypertension. We found that salt-loaded pregnant rat dams were hypernatraemic at day 20 gestation (147±5 vs. 128±5 mmoles/L). Increased extracellular salt impeded murine kidney development in vitro, but had little effect in vivo. Kidneys of the adult offspring had few structural or functional abnormalities, but male and female offspring were hypernatraemic (166±4 vs. 149±2 mmoles/L), with a marked increase in plasma corticosterone (e.g. male offspring; 11.9 [9.3-14.8] vs. 2.8 [2.0-8.3] nmol/L median [IQR]). Furthermore, adult male, but not female, offspring had higher mean arterial blood pressure (effect size, +16 [9-21] mm Hg; mean [95% C.I.]. With no clear indication that the kidneys of salt-exposed offspring retained more sodium per se, we conducted a preliminary investigation of their gastrointestinal electrolyte handling and found increased expression of proximal colon solute carrier family 9 (sodium/hydrogen exchanger), member 3 (SLC9A3) together with altered faecal characteristics and electrolyte handling, relative to control offspring. On the basis of these data we suggest that excess salt exposure, via maternal diet, at a vulnerable period of brain and gut development in the rat neonate lays the foundation for sustained increases in blood pressure later in life. Hence, our evidence further supports the argument that excess dietary salt should be avoided per se, particularly in the range of foods consumed by physiologically immature young.

  8. Excess Maternal Salt Intake Produces Sex-Specific Hypertension in Offspring: Putative Roles for Kidney and Gastrointestinal Sodium Handling

    PubMed Central

    Gray, Clint; Al-Dujaili, Emad A.; Sparrow, Alexander J.; Gardiner, Sheila M.; Craigon, Jim; Welham, Simon J.M.; Gardner, David S.

    2013-01-01

    Hypertension is common and contributes, via cardiovascular disease, towards a large proportion of adult deaths in the Western World. High salt intake leads to high blood pressure, even when occurring prior to birth – a mechanism purported to reside in altered kidney development and later function. Using a combination of in vitro and in vivo approaches we tested whether increased maternal salt intake influences fetal kidney development to render the adult individual more susceptible to salt retention and hypertension. We found that salt-loaded pregnant rat dams were hypernatraemic at day 20 gestation (147±5 vs. 128±5 mmoles/L). Increased extracellular salt impeded murine kidney development in vitro, but had little effect in vivo. Kidneys of the adult offspring had few structural or functional abnormalities, but male and female offspring were hypernatraemic (166±4 vs. 149±2 mmoles/L), with a marked increase in plasma corticosterone (e.g. male offspring; 11.9 [9.3–14.8] vs. 2.8 [2.0–8.3] nmol/L median [IQR]). Furthermore, adult male, but not female, offspring had higher mean arterial blood pressure (effect size, +16 [9–21] mm Hg; mean [95% C.I.]. With no clear indication that the kidneys of salt-exposed offspring retained more sodium per se, we conducted a preliminary investigation of their gastrointestinal electrolyte handling and found increased expression of proximal colon solute carrier family 9 (sodium/hydrogen exchanger), member 3 (SLC9A3) together with altered faecal characteristics and electrolyte handling, relative to control offspring. On the basis of these data we suggest that excess salt exposure, via maternal diet, at a vulnerable period of brain and gut development in the rat neonate lays the foundation for sustained increases in blood pressure later in life. Hence, our evidence further supports the argument that excess dietary salt should be avoided per se, particularly in the range of foods consumed by physiologically immature young. PMID

  9. Low functional programming of renal AT2R mediates the developmental origin of glomerulosclerosis in adult offspring induced by prenatal caffeine exposure.

    PubMed

    Ao, Ying; Sun, Zhaoxia; Hu, Shuangshuang; Zuo, Na; Li, Bin; Yang, Shuailong; Xia, Liping; Wu, Yong; Wang, Linlong; He, Zheng; Wang, Hui

    2015-09-01

    Our previous study has indicated that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR) of offspring. Recent research suggested that IUGR is a risk factor for glomerulosclerosis. However, whether PCE could induce glomerulosclerosis and its underlying mechanisms remain unknown. This study aimed to demonstrate the induction to glomerulosclerosis in adult offspring by PCE and its intrauterine programming mechanisms. A rat model of IUGR was established by PCE, male fetuses and adult offspring at the age of postnatal week 24 were euthanized. The results revealed that the adult offspring kidneys in the PCE group exhibited glomerulosclerosis as well as interstitial fibrosis, accompanied by elevated levels of serum creatinine and urine protein. Renal angiotensin II receptor type 2 (AT2R) gene expression in adult offspring was reduced by PCE, whereas the renal angiotensin II receptor type 1a (AT1aR)/AT2R expression ratio was increased. The fetal kidneys in the PCE group displayed an enlarged Bowman's space and a shrunken glomerular tuft, accompanied by a reduced cortex width and an increase in the nephrogenic zone/cortical zone ratio. Observation by electronic microscope revealed structural damage of podocytes; the reduced expression level of podocyte marker genes, nephrin and podocin, was also detected by q-PCR. Moreover, AT2R gene and protein expressions in fetal kidneys were inhibited by PCE, associated with the repression of the gene expression of glial-cell-line-derived neurotrophic factor (GDNF)/tyrosine kinase receptor (c-Ret) signaling pathway. These results demonstrated that PCE could induce dysplasia of fetal kidneys as well as glomerulosclerosis of adult offspring, and the low functional programming of renal AT2R might mediate the developmental origin of adult glomerulosclerosis. Copyright © 2015. Published by Elsevier Inc.

  10. Low functional programming of renal AT{sub 2}R mediates the developmental origin of glomerulosclerosis in adult offspring induced by prenatal caffeine exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ao, Ying; Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071; Sun, Zhaoxia

    Our previous study has indicated that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR) of offspring. Recent research suggested that IUGR is a risk factor for glomerulosclerosis. However, whether PCE could induce glomerulosclerosis and its underlying mechanisms remain unknown. This study aimed to demonstrate the induction to glomerulosclerosis in adult offspring by PCE and its intrauterine programming mechanisms. A rat model of IUGR was established by PCE, male fetuses and adult offspring at the age of postnatal week 24 were euthanized. The results revealed that the adult offspring kidneys in the PCE group exhibited glomerulosclerosis as well asmore » interstitial fibrosis, accompanied by elevated levels of serum creatinine and urine protein. Renal angiotensin II receptor type 2 (AT{sub 2}R) gene expression in adult offspring was reduced by PCE, whereas the renal angiotensin II receptor type 1a (AT{sub 1a}R)/AT{sub 2}R expression ratio was increased. The fetal kidneys in the PCE group displayed an enlarged Bowman's space and a shrunken glomerular tuft, accompanied by a reduced cortex width and an increase in the nephrogenic zone/cortical zone ratio. Observation by electronic microscope revealed structural damage of podocytes; the reduced expression level of podocyte marker genes, nephrin and podocin, was also detected by q-PCR. Moreover, AT{sub 2}R gene and protein expressions in fetal kidneys were inhibited by PCE, associated with the repression of the gene expression of glial-cell-line-derived neurotrophic factor (GDNF)/tyrosine kinase receptor (c-Ret) signaling pathway. These results demonstrated that PCE could induce dysplasia of fetal kidneys as well as glomerulosclerosis of adult offspring, and the low functional programming of renal AT{sub 2}R might mediate the developmental origin of adult glomerulosclerosis. - Highlights: • Prenatal caffeine exposure induces glomerulosclerosis in adult offspring. • Prenatal caffeine

  11. Maternal corticosterone exposure has transgenerational effects on grand-offspring.

    PubMed

    Khan, Nicola; Peters, Richard A; Richardson, Emily; Robert, Kylie A

    2016-11-01

    The hormone fluctuations that an animal experiences during ovulation can have lifelong effects on developing offspring. These hormones may act as an adaptive mechanism, allowing offspring to be 'pre-programmed' to survive in an unstable environment. Here, we used a transgenerational approach to examine the effects of elevated maternal corticosterone (CORT) on the future reproductive success of female offspring. We show that female zebra finches (Taeniopygia guttata) exposed to embryonic CORT produce daughters that have equal reproductive success (clutch sizes, fertility, hatching success) compared with the daughters produced from untreated mothers, but their offspring had accelerated post-hatching growth rates and were significantly heavier by nutritional independence. Although there was no significant effect on primary offspring sex ratio, females from CORT-treated mothers produced significantly female-biased clutches by nutritional independence. To the best of our knowledge, this is the first record of a transgenerational sex ratio bias in response to elevated maternal CORT in any avian species. © 2016 The Author(s).

  12. Effects of Periconception Cadmium and Mercury Co-Administration to Mice on Indices of Chronic Diseases in Male Offspring at Maturity

    PubMed Central

    Camsari, Cagri; Folger, Joseph K.; McGee, Devin; Bursian, Steven J.; Wang, Hongbing; Knott, Jason G.; Smith, George W.

    2016-01-01

    Background: Long-term exposure to the heavy metals cadmium (Cd) and mercury (Hg) is known to increase the risk of chronic diseases. However, to our knowledge, exposure to Cd and Hg beginning at the periconception period has not been studied to date. Objective: We examined the effect of Cd and Hg that were co-administered during early development on indices of chronic diseases in adult male mice. Methods: Adult female CD1 mice were subcutaneously administered a combination of cadmium chloride (CdCl2) and methylmercury (II) chloride (CH3HgCl) (0, 0.125, 0.5, or 2.0 mg/kg body weight each) 4 days before and 4 days after conception (8 days total). Indices of anxiety-like behavior, glucose homeostasis, endocrine and molecular markers of insulin resistance, and organ weights were examined in adult male offspring. Results: Increased anxiety-like behavior, impaired glucose homeostasis, and higher body weight and abdominal adipose tissue weight were observed in male offspring of treated females compared with controls. Significantly increased serum leptin and insulin concentrations and impaired insulin tolerance in the male offspring of dams treated with 2.0 mg/kg body weight of Cd and Hg suggested insulin resistance. Altered mRNA abundance for genes associated with glucose and lipid homeostasis (GLUT4, IRS1, FASN, ACACA, FATP2, CD36, and G6PC) in liver and abdominal adipose tissues as well as increased IRS1 phosphorylation in liver (Ser 307) provided further evidence of insulin resistance. Conclusions: Results suggest that the co-administration of Cd and Hg to female mice during the early development of their offspring (the periconception period) was associated with anxiety-like behavior, altered glucose metabolism, and insulin resistance in male offspring at adulthood. Citation: Camsari C, Folger JK, McGee D, Bursian SJ, Wang H, Knott JG, Smith GW. 2017. Effects of periconception cadmium and mercury co-administration to mice on indices of chronic diseases in male offspring

  13. Weather, habitat composition, and female behavior interact to modify offspring survival in Greater Sage-Grouse.

    PubMed

    Gibson, Daniel; Blomberg, Erik J; Atamian, Michael T; Sedinger, James S

    2017-01-01

    Weather is a source of environmental variation that can affect population vital rates. However, the influence of weather on individual fitness is spatially heterogeneous and can be driven by other environmental factors, such as habitat composition. Therefore, individuals can experience reduced fitness (e.g., decreased reproductive success) during poor environmental conditions through poor decisions regarding habitat selection. This requires, however, that habitat selection is adaptive and that the organism can correctly interpret the environmental cues to modify habitat use. Greater Sage-Grouse (Centrocercus urophasianus) are an obligate of the sagebrush ecosystems of western North America, relying on sagebrush for food and cover. Greater Sage-Grouse chicks, however, require foods with high nutrient content (i.e., forbs and insects), the abundance of which is both temporally and spatially dynamic and related primarily to water availability. Our goal was to assess whether nest site selection and movements of broods by females reduced the negative effect of drought on offspring survival. As predicted, chick survival was negatively influenced by drought severity. We found that sage-grouse females generally preferred to nest and raise their young in locations where their chicks would experience higher survival. We also found that use of habitats positively associated with chick survival were also positively associated with drought severity, which suggests that females reduced drought impacts on their dependent young by selecting more favorable environments during drought years. Although our findings suggest that female nest site selection and brood movement rates can reduce the negative effects of drought on early offspring survival, the influence of severe drought conditions was not completely mitigated by female behavior, and that drought conditions should be considered a threat to Greater Sage-Grouse population persistence. © 2016 by the Ecological Society of

  14. FEMALE AND MALE GENETIC EFFECTS ON OFFSPRING PATERNITY: ADDITIVE GENETIC (CO)VARIANCES IN FEMALE EXTRA-PAIR REPRODUCTION AND MALE PATERNITY SUCCESS IN SONG SPARROWS (MELOSPIZA MELODIA)

    PubMed Central

    Reid, Jane M; Arcese, Peter; Keller, Lukas F; Losdat, Sylvain

    2014-01-01

    Ongoing evolution of polyandry, and consequent extra-pair reproduction in socially monogamous systems, is hypothesized to be facilitated by indirect selection stemming from cross-sex genetic covariances with components of male fitness. Specifically, polyandry is hypothesized to create positive genetic covariance with male paternity success due to inevitable assortative reproduction, driving ongoing coevolution. However, it remains unclear whether such covariances could or do emerge within complex polyandrous systems. First, we illustrate that genetic covariances between female extra-pair reproduction and male within-pair paternity success might be constrained in socially monogamous systems where female and male additive genetic effects can have opposing impacts on the paternity of jointly reared offspring. Second, we demonstrate nonzero additive genetic variance in female liability for extra-pair reproduction and male liability for within-pair paternity success, modeled as direct and associative genetic effects on offspring paternity, respectively, in free-living song sparrows (Melospiza melodia). The posterior mean additive genetic covariance between these liabilities was slightly positive, but the credible interval was wide and overlapped zero. Therefore, although substantial total additive genetic variance exists, the hypothesis that ongoing evolution of female extra-pair reproduction is facilitated by genetic covariance with male within-pair paternity success cannot yet be definitively supported or rejected either conceptually or empirically. PMID:24724612

  15. Maternally derived carotenoid pigments affect offspring survival, sex ratio, and sexual attractiveness in a colorful songbird

    NASA Astrophysics Data System (ADS)

    McGraw, K. J.; Adkins-Regan, E.; Parker, R. S.

    2005-08-01

    In egg-laying animals, mothers can influence the development of their offspring via the suite of biochemicals they incorporate into the nourishing yolk (e.g. lipids, hormones). However, the long-lasting fitness consequences of this early nutritional environment have often proved elusive. Here, we show that the colorful carotenoid pigments that female zebra finches ( Taeniopygia guttata) deposit into egg yolks influence embryonic and nestling survival, the sex ratio of fledged offspring, and the eventual ornamental coloration displayed by their offspring as adults. Mothers experimentally supplemented with dietary carotenoids prior to egg-laying incorporated more carotenoids into eggs, which, due to the antioxidant activity of carotenoids, rendered their embryos less susceptible to free-radical attack during development. These eggs were subsequently more likely to hatch, fledge offspring, produce more sons than daughters, and produce sons who exhibited more brightly colored carotenoid-based beak pigmentation. Provisioned mothers also acquired more colorful beaks, which directly predicted levels of carotenoids found in eggs, thus indicating that these pigments may function not only as physiological ‘damage-protectants’ in adults and offspring but also as morphological signals of maternal reproductive capabilities.

  16. Female Gnathia marleyi (Isopoda: Gnathiidae) feeding on more susceptible fish hosts produce larger but not more offspring.

    PubMed

    Coile, A M; Welicky, R L; Sikkel, P C

    2014-10-01

    The reproductive success of female Gnathia marleyi (Crustacea: Isopoda) was examined among individuals from eight species belonging to five families of common Caribbean reef fishes of St. John, US Virgin Islands that differ in susceptibility to G. marleyi infestation. Fish were placed in cages during times of peak gnathiid activity. Gnathiids were recovered from host fishes and reared to adulthood in the laboratory. Ovigerous females were then placed in individual containers until offspring were released. Measures of reproductive success used were the number of hatched zuphea 1 larvae that emerged from the brood pouch, "brood size," and the average total length of newly emerged zuphea larvae, "average z-length." Among the five host fish families tested, females that fed on the two families most susceptible to gnathiid infestation (Haemulidae and Lutjanidae) produced longer larvae than those feeding on the three less susceptible host families. However, there was no significant difference in the number of viable offspring produced. To our knowledge, this is the first study to examine the relationship between the source of the blood meal and any measure of reproductive success in female gnathiid isopods. These findings open the door to future research on potential differences in host blood quality and defense mechanisms that may cause variations in susceptibility to gnathiid among different host fishes.

  17. Prenatal Food Restriction with Postweaning High-fat Diet Alters Glucose Metabolic Function in Adult Rat Offspring.

    PubMed

    Xiao, Di; Kou, Hao; Zhang, Li; Guo, Yu; Wang, Hui

    2017-01-01

    The present study was designed to investigate the effects of prenatal food restriction (PFR) with postweaning high-fat diet (HFD) on glucose metabolic function in adult offspring. Pregnant Wistar rats were given PFR treatment from gestational day 11 to spontaneous delivery. All pups were fed by HFD after weaning. Oral glucose tolerance test (OGTT) was conducted at postnatal week (PW) 20. Rats were decapitated in PW24 to collect liver and pancreas, and expression of hepatic insulin signaling genes were then quantified. Body weight from PW4 to PW24 in PFR males was lower than those in control males, whereas there was no distinct difference between females. However, body weight gain rates were higher from PW16 to PW24 in PFR males and females. Fasting serum glucose presented no changes, whereas fasting serum insulin decreased in PW20 in PFR pups. Moreover, glucose intolerance only appeared in PFR males, whereas no changes were shown in PFR females in relative values. Serum insulin increased in both PFR groups after OGTT. Remarkable pathological changes were also found in islets from PFR rats. There was an increase in the hepatic mRNA expression of IR in PFR females and of Glut2 in PFR males. PFR with postweaning HFD induced a catch-up growth in body weight, especially in PFR females. Serum insulin decreased in both PFR groups in fasting status. Insulin resistance after OGTT only existed in PFR males, whereas PFR females showed no obvious changes in glucose metabolism. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  18. Implications of maternal conditions and pregnancy course on offspring's medical problems in adult life.

    PubMed

    von Ehr, Julia; von Versen-Höynck, Frauke

    2016-10-01

    In the last decade, numerous epidemiological, clinical and experimental data show that periconceptional, perinatal and postnatal environment determines the offspring's risk for later-life chronic disease. For this phenomenon, the term "fetal" or "perinatal programming" is used. In exposed offspring already in childhood and early adulthood, metabolic and cardiovascular changes can be observed, leading to obesity, diabetes and hypertension. Nowadays, the mode of conception (e.g., in vitro fertilization), maternal metabolic conditions (e.g., undernutrition, overnutrition, diabetes) and complications during pregnancy (e.g., preeclampsia, intrauterine growth restriction) are suspected to be negative predictors for offspring's long-term health. Mechanisms responsible for these effects still remain mainly unclear, but include epigenetic, transcriptional, endoplasmic reticulum stress, and reactive oxygen species. This review presents a piece of the puzzle with regards to periconceptional and early perinatal conditions determining later-life risk for chronic adult disease.

  19. Differences in the effective population sizes of males and females do not require differences in their distribution of offspring number.

    PubMed

    Mendez, Fernando L

    2017-04-01

    Difference in male and female effective population sizes has, at times, been attributed to both sexes having unequal variance in their number of offspring. Such difference is paralleled by the relative effective sizes of autosomes, sex chromosomes, and mitochondrial DNA. I develop a simple framework to calculate the inbreeding effective population sizes for loci with different modes of inheritance. In this framework, I separate the effects due to mating strategy and those due to genetic transmission. I then show that, in addition to differences in the variance in offspring number, skew in the male/female effective sizes can also be caused by family composition. This approach can be used to illustrate the effect of induced behaviors on the relative male and female effective population sizes. In particular, I show the impact of the one-child policy formerly implemented in the People's Republic of China on the relative male and female effective population sizes. Furthermore, I argue that, under some strong constraints on family structure, the concepts of male and female effective population sizes are invalid. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  20. Effects of Low-Dose Developmental Bisphenol A Exposure on Metabolic Parameters and Gene Expression in Male and Female Fischer 344 Rat Offspring

    PubMed Central

    Lejonklou, Margareta H.; Dunder, Linda; Bladin, Emelie; Pettersson, Vendela; Rönn, Monika; Lind, Lars; Waldén, Tomas B.

    2017-01-01

    Background: Bisphenol A (BPA) is an endocrine-disrupting chemical that may contribute to development of obesity and metabolic disorders. Humans are constantly exposed to low concentrations of BPA, and studies support that the developmental period is particularly sensitive. Objectives: The aim was to investigate the effects of low-dose developmental BPA exposure on metabolic parameters in male and female Fischer 344 (F344) rat offspring. Methods: Pregnant F344 rats were exposed to BPA via their drinking water, corresponding to 0.5μg/kg BW/d (BPA0.5; n=21) or 50μg/kg BW/d (BPA50; n=16), from gestational day (GD) 3.5 until postnatal day (PND) 22, and controls were given vehicle (n=26). Body weight (BW), adipose tissue, liver (weight, histology, and gene expression), heart weight, and lipid profile were investigated in the 5-wk-old offspring. Results: Males and females exhibited differential susceptibility to the different doses of BPA. Developmental BPA exposure increased plasma triglyceride levels (0.81±0.10 mmol/L compared with 0.57±0.03 mmol/L, females BPA50 p=0.04; 0.81±0.05 mmol/L compared with 0.61±0.04 mmol/L, males BPA0.5 p=0.005) in F344 rat offspring compared with controls. BPA exposure also increased adipocyte cell density by 122% in inguinal white adipose tissue (iWAT) of female offspring exposed to BPA0.5 compared with controls (68.2±4.4 number of adipocytes/HPF compared with 55.9±1.5 number of adipocytes/HPF; p=0.03) and by 123% in BPA0.5 females compared with BPA50 animals (68.2±4.4 number of adipocytes/high power field (HPF) compared with 55.3±2.9 number of adipocytes/HPF; p=0.04). In iWAT of male offspring, adipocyte cell density was increased by 129% in BPA50-exposed animals compared with BPA0.5-exposed animals (69.9±5.1 number of adipocytes/HPF compared with 54.0±3.4 number of adipocytes/HPF; p=0.03). Furthermore, the expression of genes involved in lipid and adipocyte homeostasis was significantly different between exposed

  1. Maternal treatment with a placental-targeted antioxidant (MitoQ) impacts offspring cardiovascular function in a rat model of prenatal hypoxia.

    PubMed

    Aljunaidy, Mais M; Morton, Jude S; Kirschenman, Raven; Phillips, Tom; Case, C Patrick; Cooke, Christy-Lynn M; Davidge, Sandra T

    2018-05-17

    Intrauterine growth restriction, a common consequence of prenatal hypoxia, is a leading cause of fetal morbidity and mortality with a significant impact on population health. Hypoxia may increase placental oxidative stress and lead to an abnormal release of placental-derived factors, which are emerging as potential contributors to developmental programming. Nanoparticle-linked drugs are emerging as a novel method to deliver therapeutics targeted to the placenta and avoid risking direct exposure to the fetus. We hypothesize that placental treatment with antioxidant MitoQ loaded onto nanoparticles (nMitoQ) will prevent the development of cardiovascular disease in offspring exposed to prenatal hypoxia. Pregnant rats were intravenously injected with saline or nMitoQ (125 μM) on gestational day (GD) 15 and exposed to either normoxia (21% O 2 ) or hypoxia (11% O 2 ) from GD15-21 (term: 22 days). In one set of animals, rats were euthanized on GD 21 to assess fetal body weight, placental weight and placental oxidative stress. In another set of animals, dams were allowed to give birth under normal atmospheric conditions (term: GD 22) and male and female offspring were assessed at 7 and 13 months of age for in vivo cardiac function (echocardiography) and vascular function (wire myography, mesenteric artery). Hypoxia increased oxidative stress in placentas of male and female fetuses, which was prevented by nMitoQ. 7-month-old male and female offspring exposed to prenatal hypoxia demonstrated cardiac diastolic dysfunction, of which nMitoQ improved only in 7-month-old female offspring. Vascular sensitivity to methacholine was reduced in 13-month-old female offspring exposed to prenatal hypoxia, while nMitoQ treatment improved vasorelaxation in both control and hypoxia exposed female offspring. Male 13-month-old offspring exposed to hypoxia showed an age-related decrease in vascular sensitivity to phenylephrine, which was prevented by nMitoQ. In summary, placental

  2. Immune imbalance of global gene expression, and cytokine, chemokine and selectin levels in the brains of offspring with social deficits via maternal immune activation.

    PubMed

    Hsueh, P-T; Lin, H-H; Wang, H-H; Liu, C-L; Ni, W-F; Liu, J-K; Chang, H-H; Sun, D-S; Chen, Y-S; Chen, Y-L

    2018-04-15

    The murine maternal immune activation (MIA) offspring model enables longitudinal studies to explore aberrant social behaviors similar to those observed in humans. High levels of cytokines, chemokines and cell adhesion molecules (CAM) have been found in the plasma and/or brains of psychiatric patients. We hypothesized that upregulation of the systemic or brain immune response has an augmenting effect by potentially increasing the interplay between the neuronal and immune systems during the growth of the MIA offspring. In this study, a C57BL/6j MIA female offspring model exhibiting social deficits was established. The expression of fetal interferon (IFN)-stimulated (gbp3, irgm1, ifi44), adolescent immunodevelopmental transcription factor (eg, r2, tfap2b), hormone (pomc, hcrt), adult selectin (sell, selp) and neuroligin (nlgn2) genes was altered. Systemic upregulation of endogenous IL-10 occurred at the adult stage, while both IL-1β and IL-6 were increased and persisted in the sera throughout the growth of the MIA offspring. The cerebral IL-6 levels were endogenously upregulated, but both MCP-1 (macrophage inflammatory protein-1) and L-selectin levels were downregulated at the adolescent and/or adult stages. However, the MIA offspring were susceptible to lipopolysaccharide (LPS) stimulation. After reinjecting the MIA offspring with LPS in adulthood, a variety of sera and cerebral cytokines, chemokines and CAMs were increased. Particularly, both MCP-1 and L-selectin showed relatively high expression in the brain compared with the expression levels in phosphate-buffered saline (PBS)-treated offspring injected with LPS. Potentially, MCP-1 was attracted to the L-selectin-mediated immune cells due to augmentation of the immune response following stimulation in MIA female offspring. © 2018 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  3. Nature, nurture or nutrition? Impact of maternal nutrition on maternal care, offspring development and reproductive function

    PubMed Central

    Connor, K L; Vickers, M H; Beltrand, J; Meaney, M J; Sloboda, D M

    2012-01-01

    We have previously reported that offspring of mothers fed a high fat (HF) diet during pregnancy and lactation enter puberty early and are hyperleptinaemic, hyperinsulinaemic and obese as adults. Poor maternal care and bonding can also impact offspring development and disease risk. We therefore hypothesized that prenatal nutrition would affect maternal care and that an interaction may exist between a maternal HF diet and maternal care, subsequently impacting on offspring phenotype. Wistar rats were mated and randomized to control dams fed a control diet (CON) or dams fed a HF diet from conception until the end of lactation (HF). Maternal care was assessed by observing maternal licking and grooming of pups between postnatal day (P)3 and P8. Postweaning (P22), offspring were fed a control (–con) or HF (–hf) diet. From P27, pubertal onset was assessed. At ∼P105 oestrous cyclicity was investigated. Maternal HF diet reduced maternal care; HF-fed mothers licked and groomed pups less than CON dams. Maternal fat:lean ratio was higher in HF dams at weaning and was associated with higher maternal plasma leptin and insulin concentrations, but there was no effect of maternal care on fat:lean ratio or maternal hormone levels. Both female and male offspring of HF dams were lighter from birth to P11 than offspring of CON dams, but by P19, HF offspring were heavier than controls. Prepubertal retroperitoneal fat mass was greater in pups from HF-fed dams compared to CON and was associated with elevated circulating leptin concentrations in females only, but there was neither an effect of maternal care, nor an interaction between maternal diet and care on prepubertal fat mass. Pups from HF-fed dams went into puberty early and this effect was exacerbated by a postweaning HF diet. Maternal and postweaning HF diets independently altered oestrous cyclicity in females: female offspring of HF-fed mothers were more likely to have prolonged or persistent oestrus, whilst female offspring

  4. Epigenetic Patterns Modulate the Connection between Developmental Dynamics of Parenting and Offspring Psychosocial Adjustment

    ERIC Educational Resources Information Center

    Naumova, Oksana Yu.; Hein, Sascha; Suderman, Matthew; Barbot, Baptiste; Lee, Maria; Raefski, Adam; Dobrynin, Pavel V.; Brown, Pamela J.; Szyf, Moshe; Luthar, Suniya S.; Grigorenko, Elena L.

    2016-01-01

    This study attempted to establish and quantify the connections between parenting, offspring psychosocial adjustment, and the epigenome. The participants, 35 African American young adults (19 females and 16 males; age = 17-29.5 years), represented a subsample of a 3-wave longitudinal 15-year study on the developmental trajectories of low-income…

  5. Personality Traits of Centenarians’ Offspring

    PubMed Central

    Givens, Jane L; Frederick, Maureen; Silverman, Leanne; Anderson, Stacy; Senville, Joanna; Silver, Margery; Sebastiani, Paola; Terry, Dellara F; Costa, Paul T.; Perls, Thomas T.

    2010-01-01

    OBJECTIVES To determine whether the offspring of centenarians have personality characteristics that are distinct from the general population. DESIGN Case-control. SETTING Nationwide U.S. sample. PARTICIPANTS Unrelated offspring of centenarians (n = 246, mean age 75) were compared with published norms. MEASUREMENTS Using the NEO-Five-Factor Inventory (NEO-FFI) questionnaire, measures of the personality traits neuroticism, extraversion, openness, agreeableness, and conscientiousness were obtained. T-scores and percentiles were calculated according to sex and used to interpret the results. RESULTS Male and female offspring of centenarians scored in the low range of published norms for neuroticism and in the high range for extraversion. The women also scored comparatively high in agreeableness. Otherwise, both sexes scored within normal range for conscientiousness and openness, and the men scored within normal range for agreeableness. CONCLUSION Specific personality traits may be important to the relative successful aging demonstrated by the offspring of centenarians. Similarities across four of the five domains between male and female offspring is noteworthy and may relate to their successful aging. Measures of personality are an important phenotype to include in studies that assess genetic and environmental influences of longevity and successful aging. PMID:19392961

  6. Parental Involvement in Residential Care and Perceptions of their Offspring's Life Satisfaction in Residential Facilities for Adults with Intellectual Disability

    ERIC Educational Resources Information Center

    Schwartz, Chaya

    2005-01-01

    Background: This study examined parental involvement in relocation and post-placement care of offspring in residential facilities for adults with intellectual disability, as well as the characteristics of residents, parents, and residential institutions and the effect of those variables on parental perceptions of their offspring's life…

  7. Polyandrous females found fitter populations.

    PubMed

    Power, D J; Holman, L

    2014-09-01

    Multiple mating by females (polyandry) requires an evolutionary explanation, because it carries fitness costs in many species. When mated females disperse alone to a new habitat, their offspring may have no option but to mate with their siblings and incur inbreeding depression. However, some of the offspring of polyandrous females may only be half siblings, reducing inbreeding depression when isolated groups of siblings only have each other as mates. We investigated this putative benefit of polyandry over monandry by initiating multiple genetically isolated populations of Callosobruchus maculatus beetles, each founded by a single female, who received a complete ejaculate from either one or two males. The early generations had comparable fitness, but the F4 and F5 descendants of doubly inseminated females were more numerous and had higher egg-to-adult survival than the descendants of singly inseminated females. This fitness benefit was of similar magnitude whether beetles were reared on their standard food plant, or on a less favourable food source. Our results suggest that polyandrous females produce fitter descendants in inbred founder populations and therefore that polyandry may affect movement ecology and invasion biology. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  8. Hypoxia during pregnancy in rats leads to the changes of the cerebral white matter in adult offspring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lingxing; Cai, Ruowei; Lv, Guorong, E-mail: lxingwan502@gmail.com

    The aim of the present study is to evaluate the effect of reduced fetal oxygen supply on cerebral white matter in the adult offspring and further assess its susceptibility to postnatal hypoxia and high-fat diet. Based on a 3 x 2 full factorial design consisting of three factors of maternal hypoxia, postnatal high-fat diet, and postnatal hypoxia, the ultrastructure of myelin, axon and capillaries were observed, and the expression of myelin basic protein (MBP), neurofilament-H+L(NF-H+L), and glial fibrillary acidic protein (GFAP) was analyzed in periventricular white matter of 16-month-old offspring. Demyelination, injured axon and damaged microvasculars were observed in maternalmore » hypoxia offspring. The main effect of maternal hypoxia lead to decreased expression of MBP or NF-H+L, and increased expression of GFAP (all P < 0.05). Moreover, there was positive three-way interaction among maternal hypoxia, high-fat diet and postnatal hypoxia on MBP, NF-H+L or GFAP expression (all P < 0.05). In summary, our results indicated that maternal hypoxia during pregnancy in rats lead to changes of periventricular white matter in adult offspring, including demyelination, damaged axon and proliferated astroglia. This effect was amplified by high-fat diet and postnatal hypoxia.« less

  9. A maternal high n-6 fat diet with fish oil supplementation during pregnancy and lactation in rats decreases breast cancer risk in the female offspring.

    PubMed

    Su, Hui-Min; Hsieh, Pei-Hsuan; Chen, Hui-Feng

    2010-11-01

    The timing of dietary fat intake may modify breast cancer risk. In addition, n-3 fatty acids reduce, and n-6 fatty acids increase, the risk of breast cancer and a maternal high n-6 fat diet results in a greater risk of breast cancer in the female offspring. We hypothesized that the timing of n-3 fatty acid-enriched fish oil supplementation would be important for reducing the risk of breast cancer. Female rats were fed to a high n-6 fat diet containing 20% of the sunflower oil by weight during pregnancy and lactation, and the female offspring were exposed to fish oil by oral gavage either during the perinatal period via maternal intake or during puberty or adulthood. Exposure during the perinatal period to a maternal high n-6 fat diet with fish oil supplementation significantly reduced the incidence of carcinogen-induced mammary tumors in the female offspring compared to a maternal high n-6 fat diet with no fish oil supplementation or fish oil supplementation later in life (P=.0228 by Cox proportional hazards model). We found that a maternal high n-6 fat diet during pregnancy is more important in increasing the risk of mammary tumors in the female offspring than a maternal high n-6 fat diet during lactation. This study suggests that fish oil supplementation during the perinatal period decreases the effect of a maternal high n-6 fat diet on subsequent carcinogen-induced mammary tumor risk, whereas fish oil supplementation during puberty or adulthood does not. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. DNA fingerprint similarity between female and juvenile brown-headed cowbirds trapped together

    USGS Publications Warehouse

    Hahn, D.C.; Fleischer, R.C.

    1995-01-01

    This DNA fingerprinting study investigates whether females of the brood parasite brown-headed cowbird, Molothrus ater, associate with their own juvenile offspring at feeding sites more often than would be expected by chance. Cowbirds lay their eggs in the nests of a variety of host species and, as far as is known, leave them to the care of foster parents. Using baited walk-in funnel traps, 36 adult female-juvenile pairs (or trios) of cowbirds were trapped. Blood samples were collected from these individuals to conduct DNA fingerprinting analyses, calculate similarity indices, and to compare S-values for the 11 comparisons of juveniles and the females with which they were caught with S-values of random pairings of juveniles and the females in adjacent gel lanes with which they were not caught. Overall band-sharing was significantly higher for the individuals trapped together than for the random pairings. These associations between juvenile cowbirds and their mothers could occur as a result of female cowbirds monitoring the development of their young in the nests where they have laid. Alternatively, nestling cowbirds in the nest could become familiar visually and locally with a female parent that is frequently in their territory and could follow her when she departs for feeding grounds. In either case these data suggest that adult cowbirds associate with juveniles, in some cases their own offspring, and that offspring may learn to function as cowbirds in part from this association.

  11. Sex roles, parental care and offspring growth in two contrasting coucal species.

    PubMed

    Goymann, Wolfgang; Safari, Ignas; Muck, Christina; Schwabl, Ingrid

    2016-10-01

    The decision to provide parental care is often associated with trade-offs, because resources allocated to parental care typically cannot be invested in self-maintenance or mating. In most animals, females provide more parental care than males, but the reason for this pattern is still debated in evolutionary ecology. To better understand sex differences in parental care and its consequences, we need to study closely related species where the sexes differ in offspring care. We investigated parental care in relation to offspring growth in two closely related coucal species that fundamentally differ in sex roles and parental care, but live in the same food-rich habitat with a benign climate and have a similar breeding phenology. Incubation patterns differed and uniparental male black coucals fed their offspring two times more often than female and male white-browed coucals combined. Also, white-browed coucals had more 'off-times' than male black coucals, during which they perched and preened. However, these differences in parental care were not reflected in offspring growth, probably because white-browed coucals fed their nestlings a larger proportion of frogs than insects. A food-rich habitat with a benign climate may be a necessary, but-perhaps unsurprisingly-is not a sufficient factor for the evolution of uniparental care. In combination with previous results (Goymann et al . 2015 J. Evol. Biol . 28 , 1335-1353 (doi:10.1111/jeb.12657)), these data suggest that white-browed coucals may cooperate in parental care, because they lack opportunities to become polygamous rather than because both parents were needed to successfully raise all offspring. Our case study supports recent theory suggesting that permissive environmental conditions in combination with a particular life history may induce sexual selection in females. A positive feedback loop among sexual selection, body size and adult sex-ratio may then stabilize reversed sex roles in competition and parental care.

  12. Effects of prenatal lipopolysaccharide exposure on reproductive activities and serum concentrations of pituitary-gonadal hormones in mice offspring.

    PubMed

    Solati, Jalal; Hajikhani, Ramin; Rashidieh, Behnam; Jalilian, Mahshid Fatipour

    2012-04-01

    Maternal infection during pregnancy is a risk factor for some behavioral problems with neurodevelopmental origin. This study aimed to evaluate the effects of exposure of pregnant mice to the bacterial lipopolysaccharide (LPS) on sexual behaviour and serum level of pituitary-gonadal hormones of offspring in adulthood. In this Expremental study, pregnant NMRI mice (n=7/group) were treated with intra-peritoneal administration of LPS (1, 5 and 10 µg/kg) at day 10 of gestation. Induction of the pro-inflammatory cytokines, Tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β) and interleukin-6 (IL-6) were measured in maternal serum 2 hours following the maternal LPS challenge. Behavior in the adult male offspring reproductive activity was investigated using receptive female mice. Concentrations of testosterone, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in adult offspring serum were measured using the enzyme-linked immunosorbent assay (ELISA) method (at postnatal day 60, n=10/group). One-way ANOVA showed that LPS administration induces a significant increase in TNF-α, IL-1β and IL-6 levels of maternal serum. Prenatal LPS exposure reduces sexual behavior and serum concentration of LH and testosterone in adult male offspring. The overall results suggest that prenatal exposure to LPS increases pro- inflammatory cytokine levels, affects development of neuroendocrine systems and results in the inhibition of reproductive behaviors and reactivity of hypothalamic-pituitary-gonadal (HPG) axis in adult male offspring.

  13. Meta-analysis of paternal age and schizophrenia risk in male versus female offspring.

    PubMed

    Miller, Brian; Messias, Erick; Miettunen, Jouko; Alaräisänen, Antti; Järvelin, Marjo-Riita; Koponen, Hannu; Räsänen, Pirkko; Isohanni, Matti; Kirkpatrick, Brian

    2011-09-01

    Advanced paternal age (APA) is a reported risk factor for schizophrenia in the offspring. We performed a meta-analysis of this association, considering the effect of gender and study design. We identified articles by searching Pub Med, PsychInfo, ISI, and EMBASE, and the reference lists of identified studies. Previously unpublished data from the Northern Finland 1966 Birth Cohort (NFBC 1966) study were also included. There were 6 cohort studies and 6 case-control studies that met the inclusion criteria. In both study designs, there was a significant increase in risk of schizophrenia in the offspring of older fathers (≥30) compared to a reference paternal age of 25-29, with no gender differences. The relative risk (RR) in the oldest fathers (≥50) was 1.66 [95% confidence interval (95% CI): 1.46-1.89, P < 0.01]. A significant increase in risk was also found for younger fathers (<25) in males (RR = 1.08, 95% CI: 1.02-1.14, P = 0.01) but not females (RR = 1.04, 95% CI: 0.97-1.14, P = 0.28). The population attributable risk percentage (PAR%) was 10% for paternal age ≥30 and 5% for paternal age <25. Both APA (≥30) and younger paternal age (<25) increase the risk of schizophrenia; younger paternal age may be associated with an increased risk in males but not females. This risk factor increases the risk of schizophrenia as much as any single candidate gene of risk. The mechanism of these associations is not known and may differ for older and younger fathers.

  14. Protein Restriction During the Last Third of Pregnancy Malprograms the Neuroendocrine Axes to Induce Metabolic Syndrome in Adult Male Rat Offspring

    PubMed Central

    Gomes, Rodrigo Mello; Miranda, Rosiane Aparecida; Barella, Luiz Felipe; Malta, Ananda; Martins, Isabela Peixoto; Franco, Claudinéia Conationi da Silva; Pavanello, Audrei; Torrezan, Rosana; Natali, Maria Raquel Marçal; Lisboa, Patrícia Cristina; de Moura, Egberto Gaspar

    2016-01-01

    Metabolic malprogramming has been associated with low birth weight; however, the interplay between insulin secretion disruption and adrenal function upon lipid metabolism is unclear in adult offspring from protein-malnourished mothers during the last third of gestation. Thus, we aimed to study the effects of a maternal low-protein diet during the last third of pregnancy on adult offspring metabolism, including pancreatic islet function and morphophysiological aspects of the liver, adrenal gland, white adipose tissue, and pancreas. Virgin female Wistar rats (age 70 d) were mated and fed a protein-restricted diet (4%, intrauterine protein restricted [IUPR]) from day 14 of pregnancy until delivery, whereas control dams were fed a 20.5% protein diet. At age 91 d, their body composition, glucose-insulin homeostasis, ACTH, corticosterone, leptin, adiponectin, lipid profile, pancreatic islet function and liver, adrenal gland, and pancreas morphology were assessed. The birth weights of the IUPR rats were 20% lower than the control rats (P < .001). Adult IUPR rats were heavier, hyperphagic, hyperglycemic, hyperinsulinemic, hyperleptinemic, and hypercorticosteronemic (P < .05) with higher low-density lipoprotein cholesterol and lower high-density lipoprotein cholesterol, adiponectin, ACTH, and insulin sensitivity index levels (P < .01). The insulinotropic action of glucose and acetylcholine as well as muscarinic and adrenergic receptor function were impaired in the IUPR rats (P < .05). Maternal undernutrition during the last third of gestation disrupts the pancreatic islet insulinotropic response and induces obesity-associated complications. Such alterations lead to a high risk of metabolic syndrome, characterized by insulin resistance, visceral obesity, and lower high-density lipoprotein cholesterol. PMID:27007071

  15. Inbreeding parents should invest more resources in fewer offspring.

    PubMed

    Duthie, A Bradley; Lee, Aline M; Reid, Jane M

    2016-11-30

    Inbreeding increases parent-offspring relatedness and commonly reduces offspring viability, shaping selection on reproductive interactions involving relatives and associated parental investment (PI). Nevertheless, theories predicting selection for inbreeding versus inbreeding avoidance and selection for optimal PI have only been considered separately, precluding prediction of optimal PI and associated reproductive strategy given inbreeding. We unify inbreeding and PI theory, demonstrating that optimal PI increases when a female's inbreeding decreases the viability of her offspring. Inbreeding females should therefore produce fewer offspring due to the fundamental trade-off between offspring number and PI. Accordingly, selection for inbreeding versus inbreeding avoidance changes when females can adjust PI with the degree that they inbreed. By contrast, optimal PI does not depend on whether a focal female is herself inbred. However, inbreeding causes optimal PI to increase given strict monogamy and associated biparental investment compared with female-only investment. Our model implies that understanding evolutionary dynamics of inbreeding strategy, inbreeding depression, and PI requires joint consideration of the expression of each in relation to the other. Overall, we demonstrate that existing PI and inbreeding theories represent special cases of a more general theory, implying that intrinsic links between inbreeding and PI affect evolution of behaviour and intrafamilial conflict. © 2016 The Authors.

  16. Neck/upper back and low back pain in parents and their adult offspring: Family linkage data from the Norwegian HUNT Study.

    PubMed

    Lier, R; Nilsen, T I L; Vasseljen, O; Mork, P J

    2015-07-01

    Chronic pain in the neck and low back is highly prevalent. Although heritable components have been identified, knowledge about generational transmission of spinal pain between parents and their adult offspring is sparse. This study examined the intergenerational association of spinal pain using data from 11,081 parent-offspring trios participating in the population-based HUNT Study in Norway. Logistic regression was used to calculate adjusted odds ratios (ORs) with 95% confidence intervals (CIs) for offspring spinal pain associated with parental spinal pain. In total, 3654 (33%) offspring reported spinal pain at participation. Maternal and paternal spinal pain was consistently associated with higher ORs for offspring spinal pain. The results suggest a slightly stronger association for parental multilevel spinal pain (i.e., both neck/upper back pain and low back pain) than for pain localized to the neck/upper back or low back. Multilevel spinal pain in both parents was associated with ORs of 2.6 (95% CI, 2.1-3.3), 2.4 (95% CI, 1.9-3.1) and 3.1 (95% CI, 2.2-4.4) for offspring neck/upper back, low back and multilevel spinal pain, respectively. Parental chronic spinal pain was consistently associated with increased occurrence of chronic spinal pain in their adult offspring, and this association was particularly strong for multilevel spinal pain. © 2014 European Pain Federation - EFIC®

  17. Maternal caloric restriction partially rescues the deleterious effects of advanced maternal age on offspring

    PubMed Central

    Gribble, Kristin E; Jarvis, George; Bock, Martha; Mark Welch, David B

    2014-01-01

    While many studies have focused on the detrimental effects of advanced maternal age and harmful prenatal environments on progeny, little is known about the role of beneficial non-Mendelian maternal inheritance on aging. Here, we report the effects of maternal age and maternal caloric restriction (CR) on the life span and health span of offspring for a clonal culture of the monogonont rotifer Brachionus manjavacas. Mothers on regimens of chronic CR (CCR) or intermittent fasting (IF) had increased life span compared with mothers fed ad libitum (AL). With increasing maternal age, life span and fecundity of female offspring of AL-fed mothers decreased significantly and life span of male offspring was unchanged, whereas body size of both male and female offspring increased. Maternal CR partially rescued these effects, increasing the mean life span of AL-fed female offspring but not male offspring and increasing the fecundity of AL-fed female offspring compared with offspring of mothers of the same age. Both maternal CR regimens decreased male offspring body size, but only maternal IF decreased body size of female offspring, whereas maternal CCR caused a slight increase. Understanding the genetic and biochemical basis of these different maternal effects on aging may guide effective interventions to improve health span and life span. PMID:24661622

  18. Depression or anxiety in adult twins is associated with asthma diagnosis but not with offspring asthma.

    PubMed

    Tedner, S G; Lundholm, C; Olsson, H; Almqvist, C

    2016-06-01

    Asthma is common in both children and adults in the Western world, just like anxiety and depression. While some research has revealed that these diseases might share important environmental and pathophysiological aspects, the exact mechanisms still remain unclear. To study the correlation firstly between depression or anxiety and asthma diagnosis in adult twins and secondly the association between parental depression or anxiety and offspring asthma in children of twins. In total, 24 685 adult twins aged 20-47 years were interviewed or completed a Web-based questionnaire and their children were identified through the Multi-Generation Register. Asthma diagnosis was obtained from the Patient Register and the Prescribed Drug Register. Assessment of depression and anxiety was obtained from questionnaires using Center for Epidemiologic Studies Depression Scale (CES-D), major depression and generalized anxiety disorder (GAD) from DSM-IV. The association between depression or anxiety and asthma was analyzed with logistic regression adjusting for confounders in twins and offspring. To address genetic and familial environmental confounding, we performed a cotwin analysis using disease-discordant twin pairs. We found an association between asthma and CES-D, major depression and GAD, for example adjusted OR for major depression and register-based asthma 1.56 (1.36-1.79). Most of the point estimates remained in the co-twin control analysis, indicating that the association was likely not due to genetic or familial environmental factors. There was no association between parental depression and/or anxiety and asthma diagnosis in the offspring which implies lack of genetic confounding. We found an association between own asthma diagnosis and anxiety or depression, but not with offspring asthma. Our results indicate that the associations were not due to confounding from genes or environment shared by the twins. © 2016 John Wiley & Sons Ltd.

  19. Male-induced costs of mating for females compensated by offspring viability benefits in an insect.

    PubMed

    Garcia-Gonzalez, F; Simmons, L W

    2010-10-01

    Sexual conflict facilitates the evolution of traits that increase the reproductive success of males at the expense of components of female fitness. Theory suggests that indirect benefits are unlikely to offset the direct costs to females from antagonistic male adaptations, but empirical studies examining the net fitness pay-offs of the interaction between the sexes are scarce. Here, we investigate whether matings with males that invest intrinsically more into accessory gland tissue undermine female lifetime reproductive success (LRS) in the cricket Teleogryllus oceanicus. We found that females incur a longevity cost of mating that is proportional to the partner's absolute investment into the production of accessory gland products. However, male accessory gland weight positively influences embryo survival, and harmful ejaculate-induced effects are cancelled out when these are put in the context of female LRS. The direct costs of mating with males that sire offspring with higher viability are thus compensated by direct and possibly indirect genetic benefits in this species. © 2010 The Authors. Journal Compilation © 2010 European Society For Evolutionary Biology.

  20. Maternal effects on offspring stress physiology in wild chimpanzees.

    PubMed

    Murray, Carson M; Stanton, Margaret A; Wellens, Kaitlin R; Santymire, Rachel M; Heintz, Matthew R; Lonsdorf, Elizabeth V

    2018-01-01

    Early life experiences are known to influence hypothalamic-pituitary-adrenal (HPA) axis development, which can impact health outcomes through the individual's ability to mount appropriate physiological reactions to stressors. In primates, these early experiences are most often mediated through the mother and can include the physiological environment experienced during gestation. Here, we investigate stress physiology of dependent offspring in wild chimpanzees for the first time and examine whether differences in maternal stress physiology are related to differences in offspring stress physiology. Specifically, we explore the relationship between maternal rank and maternal fecal glucocorticoid metabolite (FGM) concentration during pregnancy and early lactation (first 6 months post-partum) and examine whether differences based on maternal rank are associated with dependent offspring FGM concentrations. We found that low-ranking females exhibited significantly higher FGM concentrations during pregnancy than during the first 6 months of lactation. Furthermore, during pregnancy, low-ranking females experienced significantly higher FGM concentrations than high-ranking females. As for dependent offspring, we found that male offspring of low-ranking mothers experienced stronger decreases in FGM concentrations as they aged compared to males with high-ranking mothers or their dependent female counterparts. Together, these results suggest that maternal rank and FGM concentrations experienced during gestation are related to offspring stress physiology and that this relationship is particularly pronounced in males compared to females. Importantly, this study provides the first evidence for maternal effects on the development of offspring HPA function in wild chimpanzees, which likely relates to subsequent health and fitness outcomes. Am. J. Primatol. 80:e22525, 2018. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Maternal stress and effects of prenatal air pollution on offspring mental health outcomes in mice.

    PubMed

    Bolton, Jessica L; Huff, Nicole C; Smith, Susan H; Mason, S Nicholas; Foster, W Michael; Auten, Richard L; Bilbo, Staci D

    2013-09-01

    Low socioeconomic status is consistently associated with reduced physical and mental health, but the mechanisms remain unclear. Increased levels of urban air pollutants interacting with parental stress have been proposed to explain health disparities in respiratory disease, but the impact of such interactions on mental health is unknown. We aimed to determine whether prenatal air pollution exposure and stress during pregnancy act synergistically on offspring to induce a neuroinflammatory response and subsequent neurocognitive disorders in adulthood. Mouse dams were intermittently exposed via oropharyngeal aspiration to diesel exhaust particles (DEP; 50 μg × 6 doses) or vehicle throughout gestation. This exposure was combined with standard housing or nest material restriction (NR; a novel model of maternal stress) during the last third of gestation. Adult (postnatal day 60) offspring of dams that experienced both stressors (DEP and NR) displayed increased anxiety, but only male offspring of this group had impaired cognition. Furthermore, maternal DEP exposure increased proinflammatory interleukin (IL)-1β levels within the brains of adult males but not females, and maternal DEP and NR both decreased anti-inflammatory IL-10 in male, but not female, brains. Similarly, only DEP/NR males showed increased expression of the innate immune recognition gene toll-like receptor 4 (Tlr4) and its downstream effector, caspase-1. These results show that maternal stress during late gestation increases the susceptibility of offspring-particularly males-to the deleterious effects of prenatal air pollutant exposure, which may be due to a synergism of these factors acting on innate immune recognition genes and downstream neuroinflammatory cascades within the developing brain.

  2. Functional impairment due to bereavement after the death of adolescent or young adult offspring in a national population study of 1,051,515 parents.

    PubMed

    Wilcox, Holly C; Mittendorfer-Rutz, Ellenor; Kjeldgård, Linnea; Alexanderson, Kristina; Runeson, Bo

    2015-08-01

    This study addresses the burden of grief after the death of an adolescent or young adult offspring. Parental bereavement following the death of an adolescent or young adult offspring is associated with considerable psychiatric and somatic impairment. Our aim is to fill a research gap by examining offspring death due to suicide, accidents, or natural causes in relation to risk of parental sickness absence with psychiatric or somatic disorders. This whole population-based prospective study included mothers and fathers of all offspring aged 16-24 years in Sweden on December 31, 2004 (n = 1,051,515). This study had no loss to follow-up and exposure, confounders, and the outcome were recorded independently of each other. Cox survival analysis was used to model time to sickness absence exceeding 30 days, adjusting for parental demographic characteristics, previous parental sickness absence and disability pension, and inpatient and outpatient psychiatric and somatic healthcare prior to offspring death in 2001-2004. This large study population provided satisfactory statistical power for stratification by parents' sex and adolescent and young adults' cause of death. Mothers and fathers of offspring suicide and accident decedents both had over tenfold higher risk for psychiatric sickness absence exceeding 30 days as compared to parents of live offspring. Fathers of suicide decedents were at 40 % higher risk for somatic sickness absence. This is the largest study to date of parents who survived their offspring's death and the first study of work-related outcomes in bereaved parents. This study uses a broad metric of work-related functional impairment, sickness absence, for capturing the burden of sudden offspring death.

  3. Intrauterine Exposure to Maternal Stress Alters Bdnf IV DNA Methylation and Telomere Length in the Brain of Adult Rat Offspring

    NASA Technical Reports Server (NTRS)

    Blaze, Jennifer; Asok, Arun; Borrelli, Kristyn; Tulbert, Christine; Bollinger, Justin; Ronca Finco, April E.; Roth, Tania L.

    2017-01-01

    DNA methylation (addition of methyl groups to cytosines which normally represses gene transcription) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could contribute to the long-term effects of intrauterine exposure to maternal stress on offspring behavioral outcomes. Here, we measured methylation of Brain-derived neurotrophic factor (Bdnf), a gene important in development and plasticity, and telomere length in the brains of adult rat male and female offspring whose mothers were exposed to unpredictable and variable stressors throughout gestation. Males exposed to prenatal stress had greater methylation (Bdnf IV) in the medial prefrontal cortex (mPFC) compared to non-stressed controls. Further, prenatally-stressed males had shorter telomeres than controls in the mPFC. This study provides the first evidence in a rodent model of an association between prenatal stress exposure and subsequent shorter brain telomere length. Together findings indicate a long-term impact of prenatal stress on DNA methylation and telomere biology with relevance for behavioral and health outcomes, and contribute to a growing literature linking stress to intergenerational epigenetic alterations and changes in telomere length.

  4. Maternal programming of offspring hypothalamic-pituitary-interrenal axis in wild sockeye salmon (Oncorhynchus nerka).

    PubMed

    Sopinka, N M; Jeffrey, J D; Burnett, N J; Patterson, D A; Gilmour, K M; Hinch, S G

    2017-02-01

    In fishes, maternal exposure to a stressor can influence offspring size and behavior. However, less is known about how maternal stress influences physiological processes in offspring, such as function of the hypothalamic-pituitary-interrenal (HPI) axis. We examined the impact of chronic maternal exposure to an acute chase stressor on the stress response/HPI activity of progeny in wild sockeye salmon (Oncorhynchus nerka). Resting plasma cortisol and brain preoptic area (POA) corticotropin-releasing factor (CRF) mRNA levels did not vary between offspring reared from undisturbed, control females and offspring reared from females exposed to the stressor. However, resting levels of POA glucocorticoid receptors (GR1 and GR2), and head kidney melanocortin 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR), and cytochrome P450 side chain cleavage enzyme (P450scc) were elevated in offspring reared from stressor-exposed females. Offspring reared from stressor-exposed females had lower plasma cortisol levels 1-h after an acute chase stressor compared to cortisol levels in offspring reared from control females. In offspring reared from chased females, mRNA levels of genes associated with cortisol biosynthesis were reduced in the head kidney post-chase. In offspring reared from control females, mRNA levels in the head kidney did not vary pre- to post-chase. Together, the results of the present study suggest maternal programming of progeny with respect to baseline and stressor-induced mediators of HPI axis activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Female and male genetic effects on offspring paternity: additive genetic (co)variances in female extra-pair reproduction and male paternity success in song sparrows (Melospiza melodia).

    PubMed

    Reid, Jane M; Arcese, Peter; Keller, Lukas F; Losdat, Sylvain

    2014-08-01

    Ongoing evolution of polyandry, and consequent extra-pair reproduction in socially monogamous systems, is hypothesized to be facilitated by indirect selection stemming from cross-sex genetic covariances with components of male fitness. Specifically, polyandry is hypothesized to create positive genetic covariance with male paternity success due to inevitable assortative reproduction, driving ongoing coevolution. However, it remains unclear whether such covariances could or do emerge within complex polyandrous systems. First, we illustrate that genetic covariances between female extra-pair reproduction and male within-pair paternity success might be constrained in socially monogamous systems where female and male additive genetic effects can have opposing impacts on the paternity of jointly reared offspring. Second, we demonstrate nonzero additive genetic variance in female liability for extra-pair reproduction and male liability for within-pair paternity success, modeled as direct and associative genetic effects on offspring paternity, respectively, in free-living song sparrows (Melospiza melodia). The posterior mean additive genetic covariance between these liabilities was slightly positive, but the credible interval was wide and overlapped zero. Therefore, although substantial total additive genetic variance exists, the hypothesis that ongoing evolution of female extra-pair reproduction is facilitated by genetic covariance with male within-pair paternity success cannot yet be definitively supported or rejected either conceptually or empirically. © 2014 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  6. Interesterified fat or palm oil as substitutes for partially hydrogenated fat during the perinatal period produces changes in the brain fatty acids profile and increases leukocyte-endothelial interactions in the cerebral microcirculation from the male offspring in adult life.

    PubMed

    Misan, Vanessa; Estato, Vanessa; de Velasco, Patricia Coelho; Spreafico, Flavia Brasil; Magri, Tatiana; Dos Santos, Raísa Magno de Araújo Ramos; Fragoso, Thaiza; Souza, Amanda S; Boldarine, Valter Tadeu; Bonomo, Isabela T; Sardinha, Fátima L C; Oyama, Lila M; Tibiriçá, Eduardo; Tavares do Carmo, Maria das Graças

    2015-08-07

    We investigated whether maternal intake of normolipidic diets with distinct fatty acid (FA) compositions alters the lipidic profile and influences the inflammatory status of the adult offsprings׳ brains. C57BL/6 female mice during pregnancy and lactation received diets containing either soybean oil (CG), partially hydrogenated vegetable fat rich in trans-fatty acids (TG), palm oil (PG), or interesterified fat (IG). After weaning, male offspring from all groups received control diet. The FA profile was measured in the offspring׳s brains at post-natal days 21 and 90. Brain functional capillary density as well as leukocyte-endothelial interactions in the cerebral post-capillary venules was assessed by intravital fluorescence microscopy at post-natal day 90. Inflammation signaling was evaluated through toll-like receptor 4 (TLR4) content in brain of the adult offspring. In the 21-day old offspring, the brains of the TG showed higher levels of trans FA and reduced levels of linoleic acid (LA) and total n-6 polyunsaturated fatty acids (PUFA). At post-natal day 90, TG and IG groups showed reduced levels of eicosapentaenoic acid (EPA) and total n-3 PUFA tended to be lower compared to CG. The offspring׳s brains exhibited an altered microcirculation with increased leukocyte rolling in groups TG, PG and IG and in TG group increased leukocyte adhesion. The TLR4 content of TG, IG and PG groups only tended to increase (23%; 20% and 35%, respectively). Maternal consumption of trans FA, palm oil or interesterified fat during pregnancy and lactation can trigger the initial steps of inflammatory pathways in the brain of offspring in adulthood. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Prenatal Testosterone Exposure Decreases Aldosterone Production but Maintains Normal Plasma Volume and Increases Blood Pressure in Adult Female Rats.

    PubMed

    More, Amar S; Mishra, Jay S; Hankins, Gary D; Kumar, Sathish

    2016-08-01

    Plasma testosterone levels are elevated in pregnant women with preeclampsia and polycystic ovaries; their offspring are at increased risk for hypertension during adult life. We tested the hypothesis that prenatal testosterone exposure induces dysregulation of the renin-angiotensin-aldosterone system, which is known to play an important role in water and electrolyte balance and blood pressure regulation. Female rats (6 mo old) prenatally exposed to testosterone were examined for adrenal expression of steroidogenic genes, telemetric blood pressure, blood volume and Na(+) and K(+) levels, plasma aldosterone, angiotensin II and vasopressin levels, and vascular responses to angiotensin II and arg(8)-vasopressin. The levels of Cyp11b2 (aldosterone synthase), but not the other adrenal steroidogenic genes, were decreased in testosterone females. Accordingly, plasma aldosterone levels were lower in testosterone females. Plasma volume and serum and urine Na(+) and K(+) levels were not significantly different between control and testosterone females; however, prenatal testosterone exposure significantly increased plasma vasopressin and angiotensin II levels and arterial pressure in adult females. In testosterone females, mesenteric artery contractile responses to angiotensin II were significantly greater, while contractile responses to vasopressin were unaffected. Angiotensin II type-1 receptor expression was increased, while angiotensin II type-2 receptor was decreased in testosterone arteries. These results suggest that prenatal testosterone exposure downregulates adrenal Cyp11b2 expression, leading to decreased plasma aldosterone levels. Elevated angiotensin II and vasopressin levels along with enhanced vascular responsiveness to angiotensin II may serve as an underlying mechanism to maintain plasma volume and Na(+) and K(+) levels and mediate hypertension in adult testosterone females. © 2016 by the Society for the Study of Reproduction, Inc.

  8. Maternal caloric restriction partially rescues the deleterious effects of advanced maternal age on offspring.

    PubMed

    Gribble, Kristin E; Jarvis, George; Bock, Martha; Mark Welch, David B

    2014-08-01

    While many studies have focused on the detrimental effects of advanced maternal age and harmful prenatal environments on progeny, little is known about the role of beneficial non-Mendelian maternal inheritance on aging. Here, we report the effects of maternal age and maternal caloric restriction (CR) on the life span and health span of offspring for a clonal culture of the monogonont rotifer Brachionus manjavacas. Mothers on regimens of chronic CR (CCR) or intermittent fasting (IF) had increased life span compared with mothers fed ad libitum (AL). With increasing maternal age, life span and fecundity of female offspring of AL-fed mothers decreased significantly and life span of male offspring was unchanged, whereas body size of both male and female offspring increased. Maternal CR partially rescued these effects, increasing the mean life span of AL-fed female offspring but not male offspring and increasing the fecundity of AL-fed female offspring compared with offspring of mothers of the same age. Both maternal CR regimens decreased male offspring body size, but only maternal IF decreased body size of female offspring, whereas maternal CCR caused a slight increase. Understanding the genetic and biochemical basis of these different maternal effects on aging may guide effective interventions to improve health span and life span. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  9. Offspring production with cryopreserved sperm from a live-bearing fish Xiphophorus maculatus and implications for female fecundity✰

    PubMed Central

    Yang, Huiping; Savage, Markita G.; Hazlewood, Leona; Walter, Ronald B.; Tiersch, Terrence R.

    2011-01-01

    Xiphophorus fishes are well-established models for biomedical research of spontaneous or induced tumors, and their use in research dates back to the 1930’s. Currently, 58 well-pedigreed lines exist among 24 Xiphophorus species housed as live animals at the Xiphophorus Genetic Stock Center. The technique of sperm cryopreservation has been applied to preserve these valuable genetic resources, and production of offspring has been reported with cryopreserved sperm in two species (X. helleri and X. couchianus). The goal of this research was to establish protocols for sperm cryopreservation and artificial insemination that yield live young in X. maculatus, a widely used research species. The objectives were to: 1) collect basic biological characteristics of males, and quantify the sperm production yield after crushing of dissected testis; 2) cryopreserve sperm from X. maculatus by adapting as necessary the protocols for sperm cryopreservation of X. helleri and X. couchianus; 3) use cryopreserved sperm to inseminate virgin females of X maculatus and other species (X. helleri and X. couchianus), and 4) compare experimental trials over a 3-year period to identify opportunities for improving female fecundity. In total, 117 males were used in this study with a standard length of 2.5 ± 0.3 cm (mean ± SD), body weight of 0.474 ± 0.149 g, and dissected testis weight of 7.1 ± 3.7 mg. Calculation of sperm availability showed 5.9 ± 2.8 × 106 sperm cells per mg of testis weight. Offspring were produced from cryopreserved sperm. Male-to-male variation (1-70%) was observed in post-thaw motility despite little variation in motility before freezing (60-90%) or genetic variation (~100 generations of sib-mating). Comparisons of biological factors of males did not have significant correlations with the production of live young, and the influence of females on production of young were identified from the comparison of artificial insemination over the 3 yr. Overall, this study

  10. Offspring production with cryopreserved sperm from a live-bearing fish Xiphophorus maculatus and implications for female fecundity.

    PubMed

    Yang, Huiping; Savage, Markita G; Hazlewood, Leona; Walter, Ronald B; Tiersch, Terrence R

    2012-01-01

    Xiphophorus fishes are well-established models for biomedical research of spontaneous or induced tumors, and their use in research dates back to the 1930s. Currently, 58 well-pedigreed lines exist among 24 Xiphophorus species housed as live animals at the Xiphophorus Genetic Stock Center. The technique of sperm cryopreservation has been applied to preserve these valuable genetic resources, and production of offspring has been reported with cryopreserved sperm in two species (X. helleri and X. couchianus). The goal of this research was to establish protocols for sperm cryopreservation and artificial insemination that yield live young in X. maculatus, a widely used research species. The objectives were to: 1) collect basic biological characteristics of males, and quantify the sperm production yield after crushing of dissected testis; 2) cryopreserve sperm from X. maculatus by adapting as necessary the protocols for sperm cryopreservation of X. helleri and X. couchianus; 3) use cryopreserved sperm to inseminate virgin females of X maculatus and other species (X. helleri and X. couchianus), and 4) compare experimental trials over a 3-year period to identify opportunities for improving female fecundity. In total, 117 males were used in this study with a standard length of 2.5 ± 0.3 cm (mean ± SD), body weight of 0.474 ± 0.149 g, and dissected testis weight of 7.1 ± 3.7 mg. Calculation of sperm availability showed 5.9 ± 2.8 × 10(6) sperm cells per mg of testis weight. Offspring were produced from cryopreserved sperm. Male-to-male variation (1-70%) was observed in post-thaw motility despite little variation in motility before freezing (60-90%) or genetic variation (~100 generations of sib-mating). Comparisons of biological factors of males did not have significant correlations with the production of live young, and the influence of females on production of young was identified from the comparison of artificial insemination over 3 years. Overall, this study describes

  11. Inbreeding depression in an insect with maternal care: influences of family interactions, life stage and offspring sex.

    PubMed

    Meunier, J; Kölliker, M

    2013-10-01

    Although inbreeding is commonly known to depress individual fitness, the severity of inbreeding depression varies considerably across species. Among the factors contributing to this variation, family interactions, life stage and sex of offspring have been proposed, but their joint influence on inbreeding depression remains poorly understood. Here, we demonstrate that these three factors jointly shape inbreeding depression in the European earwig, Forficula auricularia. Using a series of cross-breeding, split-clutch and brood size manipulation experiments conducted over two generations, we first showed that sib mating (leading to inbred offspring) did not influence the reproductive success of earwig parents. Second, the presence of tending mothers and the strength of sibling competition (i.e. brood size) did not influence the expression of inbreeding depression in the inbred offspring. By contrast, our results revealed that inbreeding dramatically depressed the reproductive success of inbred adult male offspring, but only had little effect on the reproductive success of inbred adult female offspring. Overall, this study demonstrates limited effects of family interactions on inbreeding depression in this species and emphasizes the importance of disentangling effects of sib mating early and late during development to better understand the evolution of mating systems and population dynamics. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  12. Flaxseed oil during lactation changes milk and body composition in male and female suckling pups rats.

    PubMed

    Guarda, Deysla Sabino; Lisboa, Patricia Cristina; de Oliveira, Elaine; Nogueira-Neto, José Firmino; de Moura, Egberto Gaspar; Figueiredo, Mariana Sarto

    2014-07-01

    We have reported several changes in neonate or adult offspring after the maternal use of whole flaxseed or its components. However, it is unknown the use of higher oil intake in the neonatal period. Here we evaluated the effects of high maternal intake of flaxseed oil during lactation upon milk and body composition in male and female offspring. Lactating rats were divided into: (1) control (C, n=10), 7% soybean oil; (2) hyper 19% soybean oil (HS, n=10); and (3) hyper 17% flaxseed oil+2% soybean oil (HF, n=10). Dams and offspring were killed at weaning. HS and HF dams, male and female offspring presented lower body weight during lactation. HF mothers presented lower body and visceral fat masses. HF male offspring presented lower body and subcutaneous fat masses. HS and HF milk presented lower triglycerides (TG) and cholesterol. HF male and female offspring showed lower triglyceridemia and insulinemia, but no changes in glycemia and leptinemia. The higher intake of flaxseed oil during lactation reduced the body weight of mothers and offspring, decreases milk lipids and apparently increases insulin sensitivity in this critical period of life. Those changes may explain the previously reported programming effect of maternal flaxseed intake during lactation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Intergenerational Transmission of Resilience? Sense of Coherence Is Associated between Lithuanian Survivors of Political Violence and Their Adult Offspring.

    PubMed

    Kazlauskas, Evaldas; Gailiene, Danute; Vaskeliene, Ieva; Skeryte-Kazlauskiene, Monika

    2017-01-01

    Little is known about intergeneration effects on mental health in the families of survivors of political oppression of communist regime in Central and Eastern Europe. We aimed to explore post-traumatic stress in the second generation of the Lithuanian survivors of political violence, and analyze links between parental and adult offsprings' sense of coherence in the families exposed to political violence during the oppressive communist regime in Lithuania. A total of 110 matched pairs of communist regime political violence survivors (mean age = 73.22 years) and their adult offspring (mean age = 44.65 years) participated in this study. Life-time traumatic experiences and sense of coherence were measured in both parents and their offspring. Post-traumatic stress symptoms were assessed in the second generation of survivors. We found a high vulnerability in the second generation of the Lithuanian families of political violence survivors, with a 29% of probable PTSD in the second generation based on self-report measures. A significant positive correlation between parental and adult offsprings' sense of coherence was found. Post-traumatic stress symptoms were associated negatively with a sense of coherence in the second generation. Our study indicates the links between parental and the second generation's sense of coherence in the families of survivors of political violence. The study raises broader questions about the intergenerational aspects of resilience. Further studies are needed to explore the links between parental and child sense of coherence in other samples.

  14. Maternal overnutrition programs changes in the expression of skeletal muscle genes that are associated with insulin resistance and defects of oxidative phosphorylation in adult male rat offspring.

    PubMed

    Latouche, Celine; Heywood, Sarah E; Henry, Sarah L; Ziemann, Mark; Lazarus, Ross; El-Osta, Assam; Armitage, James A; Kingwell, Bronwyn A

    2014-03-01

    Children of obese mothers have increased risk of metabolic syndrome as adults. Here we report the effects of a high-fat diet in the absence of maternal obesity at conception on skeletal muscle metabolic and transcriptional profiles of adult male offspring. Female Sprague Dawley rats were fed a diet rich in saturated fat and sucrose [high-fat diet (HFD): 23.5% total fat, 9.83% saturated fat, 20% sucrose wt:wt] or a normal control diet [(CD) 7% total fat, 0.5% saturated fat, 10% sucrose wt:wt] for the 3 wk prior to mating and throughout pregnancy and lactation. Maternal weights were not different at conception; however, HFD-fed dams were 22% heavier than controls during pregnancy. On a normal diet, the male offspring of HFD-fed dams were not heavier than controls but demonstrated features of insulin resistance, including elevated plasma insulin concentration [40.1 ± 2.5 (CD) vs 56.2 ± 6.1 (HFD) mU/L; P = 0.023]. Next-generation mRNA sequencing was used to identify differentially expressed genes in the offspring soleus muscle, and gene set enrichment analysis (GSEA) was used to detect coordinated changes that are characteristic of a biological function. GSEA identified 15 upregulated pathways, including cytokine signaling (P < 0.005), starch and sucrose metabolism (P < 0.017), inflammatory response (P < 0.024), and cytokine-cytokine receptor interaction (P < 0.037). A further 8 pathways were downregulated, including oxidative phosphorylation (P < 0.004), mitochondrial matrix (P < 0.006), and electron transport/uncoupling (P < 0.022). Phosphorylation of the insulin signaling protein kinase B was reduced [2.86 ± 0.63 (CD) vs 1.02 ± 0.27 (HFD); P = 0.027] and mitochondrial complexes I, II, and V protein were downregulated by 50-68% (P < 0.005). On a normal diet, the male offspring of HFD-fed dams did not become obese adults but developed insulin resistance, with transcriptional evidence of muscle cytokine activation, inflammation, and mitochondrial dysfunction. These

  15. Affinity to host population stimulates physical growth in adult offspring of Turkish migrants in Germany.

    PubMed

    Özer, Aydan; Scheffler, Christiane

    2018-06-11

    Because of political conflicts and climate change, migration will be increased worldwide and integration in host societies is a challenge also for migrants. We hypothesize that migrants, who take up the challenge in a new social environment are taller than migrants who do not pose this challenge. We analyze by a questionnaire possible social, nutritional and ethnic influencing factors to body height (BH) of adult offspring of Turkish migrants (n = 82, 39 males) aged from 18 to 34 years (mean age 24.6 years). The results of multiple regression (downward selection) show that the more a male adult offspring of Turkish migrants feels like belonging to the Turkish culture, the smaller he is (95% CI, -3.79, -0.323). Further, the more a male adult offspring of Turkish migrants feels like belonging to the German culture, the taller he is (95% CI, -0.152, 1.738). We discussed it comparable to primates taking up their challenge in dominance, where as a result their body size increase is associated with higher IGF-1 level. IGF-1 is associated with emotional belonging and has a fundamental role in the regulation of metabolism and growth of the human body. With all pilot characteristics of our study results show that the successful challenge of integration in a new society is strongly associated with the emotional integration and identification in the sense of a personal sense of belonging to society. We discuss taller BH as a signal of social growth adjustment. In this sense, a secular trend of BH adaptation of migrants to hosts is a sign of integration.

  16. A novel disease affecting the predatory mite Phytoseiulus persimilis (Acari, Phytoseiidae): 2. Disease transmission by adult females.

    PubMed

    Schütte, Conny; Poitevin, Olivier; Negash, Tesfaye; Dicke, Marcel

    2006-01-01

    Adult female Phytoseiulus persimilis Athias-Henriot (Acari, Phytoseiidae) of one of our laboratory populations (=NR-population), show the following set of symptoms: predators shrink several days after mating, cease egg production and die several days after shrinking, show a lower degree of attraction to herbivore-induced plant volatiles and a shorter choice time in olfactometer tests, have the tendency to leave a prey patch with ample food, may carry excretory crystals in the legs, may cease prey consumption, and have a lower excretion rate. We hypothesized earlier that this characteristic syndrome, called non-responding (=NR-) syndrome, is caused by a pathogen infecting P. persimilis. To further support this hypothesis we here study several transmission modes of the factor causing the NR-syndrome. In all tests we measured size, short-term fecundity, mortality, predator position, response to plant odors and crystal location, thus including 6 of the 9 symptoms known yet. No evidence was found for vertical transmission from parent to offspring. Eggs from symptomatic females of the NR-population mated by males of the NR-population gave rise to normal-sized, well performing predators, when they had been surface sterilized or transferred to a new leaf. However, such eggs gave rise to shrunken females (17%) when left on the leaf where they had been laid. In the latter case transmission via products deposited on the leaf by the mothers was possible. We therefore tested several modes of horizontal transmission by exposing females of a commercial population that never showed the NR-syndrome (=R1-population) to products related to the symptomatic NR-population. No evidence was found for transmission via food or via squashed adult females. However, symptoms were induced in adult females of the R1-population after a 3-day exposure to a live adult female of the NR-population (incubation period=3-7 days, fraction shrunken females=53%) and after a 1-day exposure to feces and

  17. Effects of Perinatal Polychlorinated Biphenyls on Adult Female Rat Reproduction: Development, Reproductive Physiology, and Second Generational Effects

    PubMed Central

    Steinberg, Rebecca M.; Walker, Deena M.; Juenger, Thomas E.; Woller, Michael J.; Gore, Andrea C.

    2009-01-01

    Perinatal exposures to endocrine-disrupting chemicals such as polychlorinated biphenyls (PCBs) can cause latent effects on reproductive function. Here, we tested whether PCBs administered during late pregnancy would compromise reproductive physiology in both the fetally-exposed female offspring (F1 generation), as well as in their female offspring (F2 generation). Pregnant Sprague-Dawley rats were treated with the PCB mixture Aroclor (A) 1221 (0, 0.1, 1 or 10 mg/kg) on embryonic days 16 and 18. Somatic and reproductive development of F1 and their F2 female offspring were monitored, including ages of eye opening, pubertal landmarks, and serum reproductive hormones. The results showed that low doses of A1221 given during this critical period of neuroendocrine development caused differential effects of A1221 on F1 and F2 female rats. In both generations, litter sex ratio was skewed towards females. In the F1 generation, additional effects were found including a significant alteration of serum luteinizing hormone (LH) in the 1 mg/kg A1221 group. The F2 generation showed more profound alterations, particularly with respect to fluctuations in hormones and reproductive tract tissues across the estrous cycle. On proestrus, the day of the preovulatory GnRH/gonadotropin surge, F2 females whose mothers had been perinatally exposed to A1221 exhibited substantially suppressed LH and progesterone concentrations, and correspondingly smaller uterine and ovarian weights on estrus, compared to F2 decendants of control rats. These latter changes suggest a dysregulation of reproductive physiology. Thus, low levels of exposure to PCBs during late fetal development cause significant consequences on the maturation and physiology of two generations of female offspring. These findings have implications for reproductive health and fertility of wildlife and humans. PMID:18305224

  18. A maternal high-protein diet predisposes female offspring to increased fat mass in adulthood whereas a prebiotic fibre diet decreases fat mass in rats.

    PubMed

    Hallam, Megan C; Reimer, Raylene A

    2013-11-14

    The negative effects of malnourishment in utero have been widely explored; the effects of increased maternal macronutrient intake are not known in relation to high fibre, and have been inconclusive with regard to high protein. In the present study, virgin Wistar dams were fed either a control (C), high-protein (40 %, w/w; HP) or high-prebiotic fibre (21·6 %, w/w; HF) diet throughout pregnancy and lactation. Pups consumed the C diet from 3 to 14·5 weeks of age, and then switched to a high-fat/sucrose diet for 8 weeks. A dual-energy X-ray absorptiometry scan and an oral glucose tolerance test were performed and plasma satiety hormones measured. The final body weight and the percentage of body fat were significantly affected by the interaction between maternal diet and offspring sex: weight and fat mass were higher in the female offspring of the HP v. HF dams. No differences in body weight or fat mass were seen in the male offspring. There was a significant sex effect for fasting and total AUC for ghrelin and fasting GIP, with females having higher levels than males. Liver TAG content and plasma NEFA were lower in the offspring of high-prebiotic fibre dams (HF1) than in those of high-protein dams (HP1) and control dams (C1). Intestinal expression of GLUT2 was decreased in HF1 and HP1 v. C1. The maternal HP and HF diets had lasting effects on body fat and hepatic TAG accumulation in the offspring, particularly in females. Whereas the HP diet predisposes to an obese phenotype, the maternal HF diet appears to reduce the susceptibility to obesity following a high-energy diet challenge in adulthood.

  19. Effects of fetal hypothyroidism on uterine smooth muscle contraction and structure of offspring rats.

    PubMed

    Bagheripuor, Fatemeh; Ghanbari, Mahboubeh; Piryaei, Abbas; Ghasemi, Asghar

    2018-05-01

    What is the central question of this study? Does fetal hypothyroidism in rats alter uterine contractions and structure in the adult offspring? What is the main finding and its importance? Our study indicated that maternal hypothyroidism during pregnancy increased gestational length and decreased litter size. In addition, maternal hypothyroidism caused delayed puberty onset, irregular uterine contractions and histological changes in the uterus in the female offspring. This model might contribute to a better understanding of the cellular and molecular mechanisms involved in uterine contractions in fetal hypothyroidism, studies which are not possible in humans, and might help to establish therapeutic methods for these disorders observed in uterine contractions. Thyroid hormones play an essential role in fetal growth. Hypothyroidism impairs reproductive function in both humans and animals. The aim of this study was to assess the effects of fetal hypothyroidism on uterine smooth muscle contraction and structure in the adult offspring. The control group of female Wistar rats consumed tap water, whereas the hypothyroid group received water containing 0.025% of 6-propyl-2-thiouracial throughout gestation from mating until delivery. Isometric contractility and histological changes in uterine tissue were evaluated in the adult female offspring. We tested the effects of carbachol (10 -10 -10 -3  m) and oxytocin (10 -13 -10 -8  m) on uterine smooth muscle contraction in the fetal hypothyroid (FH) and control groups. Compared with control uteri, carbachol induced contractions with lower amplitude in the FH group (area under the curve: 1820.0 ± 250.0 versus 1370.0 ± 125.0 a.u., control versus FH group, respectively, P < 0.001) and frequency (86.4 ± 7.3 versus 37.0 ± 6.1 a.u., P < 0.001). Likewise, after exposure to oxytocin the amplitude (6614.0 ± 492.2 versus 4793.0 ± 735.2 a.u., P < 0.001) and frequency (367.4 ± 32.0 versus 167.0 ± 39.0

  20. Persistent sex-by-environment effects on offspring fitness and sex-ratio adjustment in a wild bird population.

    PubMed

    Bowers, E Keith; Thompson, Charles F; Sakaluk, Scott K

    2015-03-01

    A major component of sex-allocation theory, the Trivers-Willard model (TWM), posits that sons and daughters are differentially affected by variation in the rearing environment. In many species, the amount of parental care received is expected to have differing effects on the fitness of males and females. When this occurs, the TWM predicts that selection should favour adjustment of the offspring sex ratio in relation to the expected fitness return from offspring. However, evidence for sex-by-environment effects is mixed, and little is known about the adaptive significance of producing either sex. Here, we test whether offspring sex ratios vary according to predictions of the TWM in the house wren (Troglodytes aedon, Vieillot). We also test the assumption of a sex-by-environment effect on offspring using two experiments, one in which we manipulated age differences among nestlings within broods, and another in which we held nestling age constant but manipulated brood size. As predicted, females with high investment ability overproduced sons relative to those with lower ability. Males were also overproduced early within breeding seasons. In our experiments, the body mass of sons was more strongly affected by the sibling-competitive environment and resource availability than that of daughters: males grew heavier than females when reared in good conditions but were lighter than females when in poor conditions. Parents rearing broods with 1:1 sex ratios were more productive than parents rearing broods biased more strongly towards sons or daughters, suggesting that selection favours the production of mixed-sex broods. However, differences in the condition of offspring as neonates persisted to adulthood, and their reproductive success as adults varied with the body mass of sons, but not daughters, prior to independence from parental care. Thus, selection should favour slight but predictable variations in the sex ratio in relation to the quality of offspring that parents are

  1. Mothers adjust offspring sex to match the quality of the rearing environment

    PubMed Central

    Pryke, Sarah R.; Rollins, Lee A.

    2012-01-01

    Theory predicts that mothers should adjust offspring sex ratios when the expected fitness gains or rearing costs differ between sons and daughters. Recent empirical work has linked biased offspring sex ratios to environmental quality via changes in relative maternal condition. It is unclear, however, whether females can manipulate offspring sex ratios in response to environmental quality alone (i.e. independent of maternal condition). We used a balanced within-female experimental design (i.e. females bred on both low- and high-quality diets) to show that female parrot finches (Erythrura trichroa) manipulate primary offspring sex ratios to the quality of the rearing environment, and not to their own body condition and health. Individual females produced an unbiased sex ratio on high-quality diets, but over-produced sons in poor dietary conditions, even though they maintained similar condition between diet treatments. Despite the lack of sexual size dimorphism, such sex ratio adjustment is in line with predictions from sex allocation theory because nutritionally stressed foster sons were healthier, grew faster and were more likely to survive than daughters. These findings suggest that mothers may adaptively adjust offspring sex ratios to optimally match their offspring to the expected quality of the rearing environment. PMID:22859597

  2. Mothers adjust offspring sex to match the quality of the rearing environment.

    PubMed

    Pryke, Sarah R; Rollins, Lee A

    2012-10-07

    Theory predicts that mothers should adjust offspring sex ratios when the expected fitness gains or rearing costs differ between sons and daughters. Recent empirical work has linked biased offspring sex ratios to environmental quality via changes in relative maternal condition. It is unclear, however, whether females can manipulate offspring sex ratios in response to environmental quality alone (i.e. independent of maternal condition). We used a balanced within-female experimental design (i.e. females bred on both low- and high-quality diets) to show that female parrot finches (Erythrura trichroa) manipulate primary offspring sex ratios to the quality of the rearing environment, and not to their own body condition and health. Individual females produced an unbiased sex ratio on high-quality diets, but over-produced sons in poor dietary conditions, even though they maintained similar condition between diet treatments. Despite the lack of sexual size dimorphism, such sex ratio adjustment is in line with predictions from sex allocation theory because nutritionally stressed foster sons were healthier, grew faster and were more likely to survive than daughters. These findings suggest that mothers may adaptively adjust offspring sex ratios to optimally match their offspring to the expected quality of the rearing environment.

  3. Effect of forced swimming stress on in-vivo fertilization capacity of rat and subsequent offspring quality

    PubMed Central

    Saki, Ghasem; Rahim, Fakher; Vaysi, Ozra Allah

    2010-01-01

    AIMS: This study aimed to determine the effect of 50 days of forced swimming stress on fertilization capacity of rat and subsequent offspring quality. SETTING AND DESIGN: The prospective study designed in vivo. MATERIALS AND METHODS: Total 90 Wistar rats including 30 adult male (3 months of age, weighing 210 ± 10.6 g) and 60 female rats (3 months of age, weighing 230 ± 12.2 g) were engaged in this study. Male rats were randomly divided in two equal groups (n = 15): Control and experimental groups. Animals of the experimental group were submitted to forced swimming stress for 3 min in water at 32°C daily for 50 days. Then all adult male rats were mated with normal females (2 per each male) for 7 days. Female rats were sacrificed and autopsy was performed on day 20 of pregnancy when uterus and ovaries were examined for the number of corpora lutea, dead and live fetuses, embryo resorption, implantation sites, and fetus weight. CONCLUSION: Results of this study have important implications for families attempting pregnancy. Stress pursuant to life events may have a negative impact on in vivo fertilization capacity of male rats and subsequent offspring quality. PMID:20607006

  4. Offspring Size and Reproductive Allocation in Harvester Ants.

    PubMed

    Wiernasz, Diane C; Cole, Blaine J

    2018-01-01

    A fundamental decision that an organism must make is how to allocate resources to offspring, with respect to both size and number. The two major theoretical approaches to this problem, optimal offspring size and optimistic brood size models, make different predictions that may be reconciled by including how offspring fitness is related to size. We extended the reasoning of Trivers and Willard (1973) to derive a general model of how parents should allocate additional resources with respect to the number of males and females produced, and among individuals of each sex, based on the fitness payoffs of each. We then predicted how harvester ant colonies should invest additional resources and tested three hypotheses derived from our model, using data from 3 years of food supplementation bracketed by 6 years without food addition. All major results were predicted by our model: food supplementation increased the number of reproductives produced. Male, but not female, size increased with food addition; the greatest increases in male size occurred in colonies that made small females. We discuss how use of a fitness landscape improves quantitative predictions about allocation decisions. When parents can invest differentially in offspring of different types, the best strategy will depend on parental state as well as the effect of investment on offspring fitness.

  5. Maternal Smoke Exposure Impairs the Long-Term Fertility of Female Offspring in a Murine Model.

    PubMed

    Camlin, Nicole J; Sobinoff, Alexander P; Sutherland, Jessie M; Beckett, Emma L; Jarnicki, Andrew G; Vanders, Rebecca L; Hansbro, Philip M; McLaughlin, Eileen A; Holt, Janet E

    2016-02-01

    The theory of fetal origins of adult disease was first proposed in 1989, and in the decades since, a wide range of other diseases from obesity to asthma have been found to originate in early development. Because mammalian oocyte development begins in fetal life it has been suggested that environmental and lifestyle factors of the mother could directly impact the fertility of subsequent generations. Cigarette smoke is a known ovotoxicant in active smokers, yet disturbingly 13% of Australian and 12% of US women continue to smoke throughout pregnancy. The focus of our investigation was to characterize the adverse effects of smoking on ovary and oocyte quality in female offspring exposed in utero. Pregnant mice were nasally exposed to cigarette smoke for 12 wk throughout pregnancy/lactation, and ovary and oocyte quality of the F1 (maternal smoke exposed) generation was examined. Neonatal ovaries displayed abnormal somatic cell proliferation and increased apoptosis, leading to a reduction in follicle numbers. Further investigation found that altered somatic cell proliferation and reduced follicle number continued into adulthood; however, apoptosis did not. This reduction in follicles resulted in decreased oocyte numbers, with these oocytes found to have elevated levels of oxidative stress, altered metaphase II spindle, and reduced sperm-egg interaction. These ovarian and oocyte changes ultimately lead to subfertility, with maternal smoke-exposed animals having smaller litters and also taking longer to conceive. In conclusion, our results demonstrate that in utero and lactational exposure to cigarette smoke can have long-lasting effects on the fertility of the next generation of females. © 2016 by the Society for the Study of Reproduction, Inc.

  6. The exposure to Trichilia catigua (catuaba) crude extract impairs fertility of adult female rats but does not cause reproductive damage to male offspring.

    PubMed

    Dos Santos, Alice Hartmann; Ramos, Aline Camargo; Silveira, Kennia Moura; Kiss, Ana Carolina Inhasz; Longhini, Renata; Diniz, Andréa; de Mello, João Carlos Palazzo; Gerardin, Daniela Cristina Ceccatto

    2015-05-26

    Trichilia catigua is broadly used in folk medicine due to its mental and physical tonic activities and stimulant effects. In animal models, its antidepressant-like effects have been associated with the dopaminergic (DA) system modulation, which has an important role on maternal behavior and male offspring reproductive development. Since little is known about the adverse effects of the exposure to T. catigua crude extract (CAT) in rats, specially regarding maternal homeostasis and offspring development, the aim of the present study was to evaluate whether CAT exposure may influence maternal toxicity parameters and behavior or disrupt male offspring physical and reproductive development. Dams were treated daily (by gavage) with 400mg/kg of CAT or vehicle (control=CTR) throughout pregnancy and lactation. Fertility and maternal behavior tests were conducted in dams. Male offspring reproductive and behavioral parameters were analyzed. Dams exposed to CAT showed increased pre- and post-implantation losses rates when compared to CTR group. No significant changes regarding maternal behavior or male offspring parameters were observed. In conclusion, maternal exposure to CAT interfered with implantation during the initial phases of pregnancy but did not induce changes on maternal behavior or male offspring reproductive and behavioral parameters. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Educational Attainments of Immigrant Offspring: Success or Segmented Assimilation?

    ERIC Educational Resources Information Center

    Boyd, Monica

    2002-01-01

    Examined the educational attainments of adult offspring of immigrants age 20-64 years, analyzing data from Canada's 1996 Survey of Labour and Income Dynamics. Contrary to second generation decline and segmented underclass assimilation found in the United States, Canadian adult visible-minority immigrant offspring did not have lower educational…

  8. Maternal high-protein diet during pregnancy, but not during suckling, induced altered expression of an increasing number of hepatic genes in adult mouse offspring.

    PubMed

    Vanselow, Jens; Kucia, Marzena; Langhammer, Martina; Koczan, Dirk; Metges, Cornelia C

    2016-04-01

    Indirect effects of a high-protein maternal diet are not well understood. In this study, we analyzed short-term and sustainable effects of a prenatal versus early postnatal maternal high-protein diet on growth and hepatic gene expression in mouse offspring. Dams were exposed to an isoenergetic high-protein (HP, 40 % w/w) diet during pregnancy or lactation. Growth and hepatic expression profiles of male offspring were evaluated directly after weaning and 150 days after birth. Offspring from two dietary groups, high-protein diet during pregnancy and control diet during lactation (HPC), and control diet during pregnancy and high-protein diet during lactation (CHP), were compared with offspring (CC) from control-fed dams. Maternal CHP treatment was associated with sustained offspring growth retardation, but decreased numbers of affected hepatic genes in adults compared to weanlings. In contrast, offspring of the HPC group did not show persistent effects on growth parameters, but the number of affected hepatic genes was even increased at adult age. In both dietary groups, however, only a small subset of genes was affected in weanlings as well as in adults. We conclude that (1) prenatal and early postnatal maternal HP diet caused persistent, but (2) different effects and partially complementary trends on growth characteristics and on the hepatic transcriptome and associated pathways and that (3) only a small number of genes and associated upstream regulators might be involved in passing early diet-induced imprints to adulthood.

  9. Reproduction of Varroa destructor and offspring mortality in worker and drone brood cells of Africanized honey bees.

    PubMed

    Calderón, R A; Ureña, S; van Veen, J W

    2012-04-01

    Varroa destructor is known to be the most serious parasite of Apis mellifera worldwide. In order to reproduce varroa females enter worker or drone brood shortly before the cell is sealed. From March to December 2008, the reproductive rate and offspring mortality (mature and immature stages), focusing on male absence and male mortality of V. destructor, was investigated in naturally infested worker and drone brood of Africanized honey bees (AHB) in Costa Rica. Data were obtained from 388 to 403 single infested worker and drone brood cells, respectively. Mite fertility in worker and drone brood cells was 88.9 and 93.1%, respectively. There was no difference between the groups (X(2) = 3.6, P = 0.06). However, one of the most significant differences in mite reproduction was the higher percentage of mites producing viable offspring in drone cells (64.8%) compared to worker cells (37.6%) (X(2) = 57.2, P < 0.05). A greater proportion of mites in worker brood cells produced non-viable female offspring. Mite offspring mortality in both worker and drone cells was high in the protonymph stage (mobile and immobile). A significant finding was the high rate of male mortality. The worker and drone brood revealed that 23.9 and 6.9%, respectively, of the adult male offspring was found dead. If the absence (missing) of the male and adult male mortality are taken together the percentage of cells increased to 40.0 and 21.3% in worker and drone cells, respectively (X(2) = 28.8, P < 0.05). The absence of the male or male mortality in a considerable number of worker cells naturally infested with varroa is the major factor in our study which reduces the production of viable daughters in AHB colonies in Costa Rica.

  10. Age, pathogen exposure, but not maternal care shape offspring immunity in an insect with facultative family life.

    PubMed

    Vogelweith, Fanny; Körner, Maximilian; Foitzik, Susanne; Meunier, Joël

    2017-03-07

    To optimize their resistance against pathogen infection, individuals are expected to find the right balance between investing into the immune system and other life history traits. In vertebrates, several factors were shown to critically affect the direction of this balance, such as the developmental stage of an individual, its current risk of infection and/or its access to external help such as parental care. However, the independent and/or interactive effects of these factors on immunity remain poorly studied in insects. Here, we manipulated maternal presence and pathogen exposure in families of the European earwig Forficula auricularia to measure whether and how the survival rate and investment into two key immune parameters changed during offspring development. The pathogen was the entomopathogenic fungus Metarhizium brunneum and the immune parameters were hemocyte concentration and phenol/pro-phenoloxidase enzyme activity (total-PO). Our results surprisingly showed that maternal presence had no effect on offspring immunity, but reduced offspring survival. Pathogen exposure also lowered the survival of offspring during their early development. The concentration of hemocytes and the total-PO activity increased during development, to be eventually higher in adult females compared to adult males. Finally, pathogen exposure overall increased the concentration of hemocytes-but not the total-PO activity-in adults, while it had no effect on these measures in offspring. Our results show that, independent of their infection risk and developmental stage, maternal presence does not shape immune defense in young earwigs. This reveals that pathogen pressure is not a universal evolutionary driver of the emergence and maintenance of post-hatching maternal care in insects.

  11. MATERNAL EXPERIENCE OF ABUSE IN CHILDHOOD AND DEPRESSIVE SYMPTOMS IN ADOLESCENT AND ADULT OFFSPRING: A 21-YEAR LONGITUDINAL STUDY

    PubMed Central

    Roberts, Andrea L.; Chen, Ying; Slopen, Natalie; McLaughlin, Katie A.; Koenen, Karestan C.; Austin, Sydney Bryn

    2015-01-01

    Background Intergenerational effects of child abuse have been documented, but it is unknown whether maternal childhood abuse influences offspring mental health in adolescence or adulthood. Methods To examine whether maternal experience of childhood abuse is associated with depressive symptoms in adolescent and young adult offspring, we linked data from two large longitudinal cohorts of women (N = 8,882) and their offspring (N = 11,402), and we examined three possible pathways by which maternal experience of abuse might be associated with offspring depressive symptoms: maternal mental health, family characteristics, and offspring’s own experience of abuse. Results Offspring of women who experienced severe versus no childhood abuse had greater likelihood of high depressive symptoms (RR = 1.78, 95% CI = 1.47, 2.16) and persistent high depressive symptoms (RR = 2.47, 95% CI = 1.37, 4.44). Maternal mental health accounted for 20.9% and offspring’s exposure to abuse accounted for 30.3% of the elevated risk of high depressive symptoms. Disparities in offspring depressive symptoms by maternal abuse exposure were evident at age 12 years and persisted through age 31 years. Conclusions Findings provide evidence that childhood abuse adversely affects the mental health of the victim’s offspring well into adulthood. As offspring exposure to abuse and maternal mental health accounted for more than 50% of the elevated risk of high depressive symptoms among offspring of women who experienced abuse, improving maternal mental health and parenting practices may reduce offspring risk for depressive symptoms in these families. PMID:26220852

  12. When parents disclose BRCA1/2 test results: their communication and perceptions of offspring response.

    PubMed

    Bradbury, Angela R; Patrick-Miller, Linda; Egleston, Brian L; Olopade, Olufunmilayo I; Daly, Mary B; Moore, Cynthia W; Sands, Colleen B; Schmidheiser, Helen; Kondamudi, Preethi K; Feigon, Maia; Ibe, Comfort N; Daugherty, Christopher K

    2012-07-01

    BRCA1/2 testing is not recommended for children, as risk reduction measures and screening are not generally recommended before 25 years old (YO). Little is known about the prevalence and predictors of parent communication to offspring and how offspring respond to this communication. Semi-structured interviews were conducted with parents who had BRCA1/2 testing and at least 1 child <25 YO. Logistic regressions were utilized to evaluate associations with communication. Framework analysis was utilized to analyze open-ended responses. A total of 253 parents completed interviews (61% response rate), reporting on 505 offspring. Twenty-nine percent of parents were BRCA1/2 mutation carriers. Three hundred thirty-four (66%) offspring learned of their parent's test result. Older offspring age (P ≤ .01), offspring gender (female, P = .05), parents' negative test result (P = .03), and parents' education (high school only, P = .02) were associated with communication to offspring. The most frequently reported initial offspring responses were neutral (41%) or relief (28%). Thirteen percent of offspring were reported to experience concern or distress (11%) in response to parental communication of their test results. Distress was more frequently perceived among offspring learning of their parent's BRCA1/2 positive or variant of uncertain significance result. Many parents communicate their BRCA1/2 test results to young offspring. Parents' perceptions of offspring responses appear to vary by offspring age and parent test result. A better understanding of how young offspring respond to information about hereditary risk for adult cancer could provide opportunities to optimize adaptive psychosocial responses to risk information and performance of health behaviors, in adolescence and throughout an at-risk life span. Copyright © 2012 American Cancer Society.

  13. Late gestational hypoxia and a postnatal high salt diet programs endothelial dysfunction and arterial stiffness in adult mouse offspring.

    PubMed

    Walton, Sarah L; Singh, Reetu R; Tan, Tiffany; Paravicini, Tamara M; Moritz, Karen M

    2016-03-01

    Gestational hypoxia and high dietary salt intake have both been associated with impaired vascular function in adulthood. Using a mouse model of prenatal hypoxia, we examined whether a chronic high salt diet had an additive effect in promoting vascular dysfunction in offspring. Pregnant CD1 dams were placed in a hypoxic chamber (12% O2) or housed under normal conditions (21% O2) from embryonic day 14.5 until birth. Gestational hypoxia resulted in a reduced body weight for both male and female offspring at birth. This restriction in body weight persisted until weaning, after which the animals underwent catch-up growth. At 10 weeks of age, a subset of offspring was placed on a high salt diet (5% NaCl). Pressurized myography of mesenteric resistance arteries at 12 months of age showed that both male and female offspring exposed to maternal hypoxia had significantly impaired endothelial function, as demonstrated by impaired vasodilatation to ACh but not sodium nitroprusside. Endothelial dysfunction caused by prenatal hypoxia was not exacerbated by postnatal consumption of a high salt diet. Prenatal hypoxia increased microvascular stiffness in male offspring. The combination of prenatal hypoxia and a postnatal high salt diet caused a leftward shift in the stress-strain relationship in both sexes. Histopathological analysis of aortic sections revealed a loss of elastin integrity and increased collagen, consistent with increased vascular stiffness. These results demonstrate that prenatal hypoxia programs endothelial dysfunction in both sexes. A chronic high salt diet in postnatal life had an additive deleterious effect on vascular mechanics and structural characteristics in both sexes. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  14. Polyandry promotes enhanced offspring survival in decorated crickets.

    PubMed

    Ivy, Tracie M; Sakaluk, Scott K

    2005-01-01

    Although female multiple mating is ubiquitous in insects, its adaptive significance remains poorly understood. Benefits to multiple mating can accrue via direct material benefits, indirect genetic benefits, or both. We investigated the effects of multiple mating in the decorated cricket, Gryllodes sigillatus, by simultaneously varying the number of times that females mated and the number of different males with which they mated, measuring aspects of female fecundity and elements of offspring performance and viability. Multiple matings resulted in enhanced female fitness relative to single matings when females mated with different partners, but not when females mated repeatedly with the same male. Specifically, polyandrous females produced significantly more offspring surviving to reproductive maturity than did monogamous females mating once or mating repeatedly with the same male. These results suggest that the benefit females gain from multiple mating is influenced primarily by genetic and not material benefits.

  15. Parental history of moderate to severe infantile malnutrition is associated with cognitive deficits in their adult offspring.

    PubMed

    Waber, Deborah P; Bryce, Cyralene P; Girard, Jonathan M; Fischer, Laura K; Fitzmaurice, Garrett M; Galler, Janina R

    2018-04-01

    We compared the IQ and academic achievement of the young adult offspring of parents malnourished in infancy and those of a healthy control group in order to test the hypothesis that the offspring of previously malnourished individuals would show IQ and academic deficits that could be related to reduced parental socioeconomic status. We conducted a group comparison study based on a community sample in Barbados (Barbados Nutrition Study). Participants were adult children ≥16 years of age whose parents had been malnourished during the first year of life (n = 64; Mean age 19.3 years; 42% male) or whose parents were healthy community controls (n = 50; Mean age 19.7 years; 48% male). The primary outcome was estimated IQ (Wechsler Abbreviated Scale of Intelligence); a secondary outcome was academic achievement (Wide Range Achievement Test - Third Edition). Data were analyzed using PROC MIXED with and without adjusting for parental socioeconomic status (Hollingshead Index of Social Position). IQ was reduced in the offspring of previously malnourished parents relative to the offspring of controls (9.8 point deficit; P < 0.01), but this difference was not explained by parental socioeconomic status or parental IQ. The magnitude of the group difference was smaller for basic academic skills and did not meet criteria for statistical significance. The deleterious impact of infant malnutrition on cognitive function may be transmitted to the next generation; however, this intergenerational effect does not appear to be explained by the reduced socioeconomic status or IQ of the parent generation.

  16. Moderate maternal food restriction in mice impairs physical growth, behavior, and neurodevelopment of offspring.

    PubMed

    Akitake, Yoshiharu; Katsuragi, Shinji; Hosokawa, Masato; Mishima, Kenichi; Ikeda, Tomoaki; Miyazato, Mikiya; Hosoda, Hiroshi

    2015-01-01

    Intrauterine growth retardation (IUGR) occurs in 3% to 7% of all pregnancies. Recent human studies have indicated that neurodevelopmental disabilities, learning disorders, memory impairment, and mood disturbance are common in IUGR offspring. However, the interactions between IUGR and neurodevelopmental disorders are unclear because of the wide range of causes of IUGR, such as maternal malnutrition, placental insufficiency, pregnancy toxemia, and fetal malformations. Meanwhile, many studies have shown that moderate food restriction enhances spatial learning and improves mood disturbance in adult humans and animals. To date, the effects of maternal moderate food restriction on fetal brain remain largely unknown. In this study, we hypothesized that IUGR would be caused by even moderate food restriction in pregnant females and that the offspring would have neurodevelopmental disabilities. Mid-pregnant mice received moderate food restriction through the early lactation period. The offspring were tested for aspects of physical development, behavior, and neurodevelopment. The results showed that moderate maternal food restriction induced IUGR. Offspring had low birth weight and delayed development of physical and coordinated movement. Moreover, IUGR offspring exhibited mental disabilities such as anxiety and poor cognitive function. In particular, male offspring exhibited significantly impaired cognitive function at 3 weeks of age. These results suggested that a restricted maternal diet could be a risk factor for developmental disability in IUGR offspring and that male offspring might be especially susceptible. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Aerobic exercise training performed by parents reduces mice offspring adiposity.

    PubMed

    Romero, Paulo Vitor da Silva; Guariglia, Débora Alves; Da Rocha, Francielli Ferreira; Picoli, Caroline de Carvalho; Gilio, Gustavo Renan; Fabricio, Gabriel Sergio; Mathias, Paulo Cesar de Freitas; Moraes, Solange Marta Franzói de; Peres, Sidney Barnabé

    2018-07-01

    The present study aimed to determine the effects of physical training performed by parents on mice offspring adiposity. Male and female parents underwent an aerobic training protocol for 7 weeks. The trained and sedentary parents were allowed to mate and the resultant offspring divided in: S (Offspring from Sedentary Parents), T (Offspring from Trained Parents), ST (Offspring from Sedentary Father and Trained Mother) and TS (Offspring from Trained Father and Sedentary Mother). After weaning, offspring was euthanized, blood collected and samples of mesenteric and inguinal fat pads used to isolate adipocytes for morphologic and histological analyses. Lee index, mesenteric fat pad, sum of visceral fat and total fat weight of female T was reduced in comparison to the other groups (p < 0.05). Periepididymal and sum of visceral fat in male T group was also reduced when compared to the other groups (p < 0.05). The diameter of mesenteric and inguinal adipocytes of T group was smaller compared to all groups comparisons for both sexes (p < 0.05). In summary, exercise training performed by parents reduced visceral offspring adiposity, the diameter of subcutaneous adipocytes and improved metabolic parameters associated to metabolic syndrome.

  18. Altered Health Outcomes in Adult Offspring of Sprague Dawley and Wistar Rats Undernourished During Early or Late Pregnancy

    EPA Science Inventory

    Gestational undernutrition in humans can result in birth weight reductions (an indicator of a suboptimal intrauterine environment) and predisposition to adult disease in offspring including high blood pressure, insulin resistance, glucose intolerance, and obesity (key components ...

  19. Maternal high-fat diet acts on the brain to induce baroreflex dysfunction and sensitization of angiotensin II-induced hypertension in adult offspring.

    PubMed

    Zhang, Yu-Ping; Huo, Yan-Li; Fang, Zhi-Qin; Wang, Xue-Fang; Li, Jian-Dong; Wang, Hai-Ping; Peng, Wei; Johnson, Alan Kim; Xue, Baojian

    2018-05-01

    Accumulating evidence indicates that maternal high-fat diet (HFD) is associated with metabolic syndrome and cardiovascular disease in adult offspring. The present study tested the hypothesis that maternal HFD modulates the brain renin-angiotensin system (RAS), oxidative stress, and proinflammatory cytokines that alter angiotensin II (ANG II) and TNF-α actions and sensitize the ANG II-elicited hypertensive response in adult offspring. All offspring were cross fostered by dams on the same or opposite diet to yield the following four groups: offspring from normal-fat control diet-fed dams suckled by control diet-fed dams (OCC group) or by HFD-fed dams (OCH group) and offspring from HFD-fed dams fed a HFD suckled by control diet-fed dams (OHC group) or by HFD-fed dams (OHH group). RT-PCR analyses of the lamina terminalis and paraventricular nucleus indicated upregulation of mRNA expression of several RAS components, NADPH oxidase, and proinflammatory cytokines in 10-wk-old male offspring of dams fed a HFD during either pregnancy, lactation, or both (OHC, OCH, and OHH groups). These offspring also showed decreased cardiac baroreflex sensitivity and increased pressor responses to intracerebroventricular microinjection of either ANG II or TNF-α. Furthermore, chronic systemic infusion of ANG II resulted in enhanced upregulation of mRNA expression of RAS components, NADPH oxidase, and proinflammatory cytokines in the lamina terminalis and paraventricular nucleus and an augmented hypertensive response in the OHC, OCH, and OHH groups compared with the OCC group. The results suggest that maternal HFD blunts cardiac baroreflex function and enhances pressor responses to ANG II or proinflammatory cytokines through upregulation of the brain RAS, oxidative stress, and inflammation. NEW & NOTEWORTHY The results of our study indicate that a maternal high-fat diet during either pregnancy or lactation is sufficient for perinatal programming of sensitization for hypertension, which is

  20. DNA methylation in lung tissues of mouse offspring exposed in utero to polycyclic aromatic hydrocarbons.

    PubMed

    Fish, Trevor J; Benninghoff, Abby D

    2017-11-01

    Polycyclic aromatic hydrocarbons (PAHs) comprise an important class of environmental pollutants that are known to cause lung cancer in animals and are suspected lung carcinogens in humans. Moreover, evidence from cell-based studies points to PAHs as modulators of the epigenome. The objective of this work was to assess patterns of genome-wide DNA methylation in lung tissues of adult offspring initiated in utero with the transplacental PAH carcinogens dibenzo [def,p]chrysene (DBC) or benzo [a]pyrene (BaP). Genome-wide methylation patterns for normal (not exposed), normal adjacent and lung tumor tissues obtained from adult offspring were determined using methylated DNA immunoprecipitation (MeDIP) with the NimbleGen mouse DNA methylation CpG island array. Lung tumor incidence in 45-week old mice initiated with BaP was 32%, much lower than that of the DBC-exposed offspring at 96%. Also, male offspring appeared more susceptible to BaP as compared to females. Distinct patterns of DNA methylation were associated with non-exposed, normal adjacent and adenocarcinoma lung tissues, as determined by principal components, hierarchical clustering and gene ontology analyses. From these methylation profiles, a set of genes of interest was identified that includes potential important targets for epigenetic modification during the process of lung tumorigenesis in animals exposed to environmental PAHs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Maternal androgen excess and obesity induce sexually dimorphic anxiety-like behavior in the offspring.

    PubMed

    Manti, Maria; Fornes, Romina; Qi, Xiaojuan; Folmerz, Elin; Lindén Hirschberg, Angelica; de Castro Barbosa, Thais; Maliqueo, Manuel; Benrick, Anna; Stener-Victorin, Elisabet

    2018-03-22

    Maternal polycystic ovary syndrome (PCOS), a condition associated with hyperandrogenism, is suggested to increase anxiety-like behavior in the offspring. Because PCOS is closely linked to obesity, we investigated the impact of an adverse hormonal or metabolic maternal environment and offspring obesity on anxiety in the offspring. The obese PCOS phenotype was induced by chronic high-fat-high-sucrose (HFHS) consumption together with prenatal dihydrotestosterone exposure in mouse dams. Anxiety-like behavior was assessed in adult offspring with the elevated-plus maze and open-field tests. The influence of maternal androgens and maternal and offspring diet on genes implicated in anxiety were analyzed in the amygdala and hypothalamus with real-time PCR ( n = 47). Independent of diet, female offspring exposed to maternal androgens were more anxious and displayed up-regulation of adrenoceptor α 1B in the amygdala and up-regulation of hypothalamic corticotropin-releasing hormone ( Crh). By contrast, male offspring exposed to a HFHS maternal diet had increased anxiety-like behavior and showed up-regulation of epigenetic markers in the amygdala and up-regulation of hypothalamic Crh. Overall, there were substantial sex differences in gene expression in the brain. These findings provide novel insight into how maternal androgens and obesity exert sex-specific effects on behavior and gene expression in the offspring of a PCOS mouse model.-Manti, M., Fornes, R., Qi, X., Folmerz, E., Lindén Hirschberg, A., de Castro Barbosa, T., Maliqueo, M., Benrick, A., Stener-Victorin, E. Maternal androgen excess and obesity induce sexually dimorphic anxiety-like behavior in the offspring.

  2. The renal consequences of maternal obesity in offspring are overwhelmed by postnatal high fat diet

    PubMed Central

    Glastras, Sarah J.; Chen, Hui; Tsang, Michael; Teh, Rachel; McGrath, Rachel T.; Zaky, Amgad; Chen, Jason; Wong, Muh Geot; Pollock, Carol A.; Saad, Sonia

    2017-01-01

    Aims/Hypothesis Developmental programming induced by maternal obesity influences the development of chronic disease in offspring. In the present study, we aimed to determine whether maternal obesity exaggerates obesity-related kidney disease. Methods Female C57BL/6 mice were fed high-fat diet (HFD) for six weeks prior to mating, during gestation and lactation. Male offspring were weaned to normal chow or HFD. At postnatal Week 8, HFD-fed offspring were administered one dose streptozotocin (STZ, 100 mg/kg i.p.) or vehicle control. Metabolic parameters and renal functional and structural changes were observed at postnatal Week 32. Results HFD-fed offspring had increased adiposity, glucose intolerance and hyperlipidaemia, associated with increased albuminuria and serum creatinine levels. Their kidneys displayed structural changes with increased levels of fibrotic, inflammatory and oxidative stress markers. STZ administration did not potentiate the renal effects of HFD. Though maternal obesity had a sustained effect on serum creatinine and oxidative stress markers in lean offspring, the renal consequences of maternal obesity were overwhelmed by the powerful effect of diet-induced obesity. Conclusion Maternal obesity portends significant risks for metabolic and renal health in adult offspring. However, diet-induced obesity is an overwhelming and potent stimulus for the development of CKD that is not potentiated by maternal obesity. PMID:28225809

  3. The renal consequences of maternal obesity in offspring are overwhelmed by postnatal high fat diet.

    PubMed

    Glastras, Sarah J; Chen, Hui; Tsang, Michael; Teh, Rachel; McGrath, Rachel T; Zaky, Amgad; Chen, Jason; Wong, Muh Geot; Pollock, Carol A; Saad, Sonia

    2017-01-01

    Developmental programming induced by maternal obesity influences the development of chronic disease in offspring. In the present study, we aimed to determine whether maternal obesity exaggerates obesity-related kidney disease. Female C57BL/6 mice were fed high-fat diet (HFD) for six weeks prior to mating, during gestation and lactation. Male offspring were weaned to normal chow or HFD. At postnatal Week 8, HFD-fed offspring were administered one dose streptozotocin (STZ, 100 mg/kg i.p.) or vehicle control. Metabolic parameters and renal functional and structural changes were observed at postnatal Week 32. HFD-fed offspring had increased adiposity, glucose intolerance and hyperlipidaemia, associated with increased albuminuria and serum creatinine levels. Their kidneys displayed structural changes with increased levels of fibrotic, inflammatory and oxidative stress markers. STZ administration did not potentiate the renal effects of HFD. Though maternal obesity had a sustained effect on serum creatinine and oxidative stress markers in lean offspring, the renal consequences of maternal obesity were overwhelmed by the powerful effect of diet-induced obesity. Maternal obesity portends significant risks for metabolic and renal health in adult offspring. However, diet-induced obesity is an overwhelming and potent stimulus for the development of CKD that is not potentiated by maternal obesity.

  4. The Spiritual Journey: Black Female Adult Learners in Higher Education

    ERIC Educational Resources Information Center

    Jones Tinner, LaShanta Y.

    2013-01-01

    This study explored the experience of Black female adult learners and how spirituality influenced their academic journeys. Research concerning Black female adult learners in higher education is ostensibly partial. These data offered an extended understanding of Black female adult learners' academic experiences, while also investigating common…

  5. Implications of temporal variation in maternal care for the prediction of neurobiological and behavioral outcomes in offspring

    PubMed Central

    Peña, Catherine Jensen; Champagne, Frances A.

    2014-01-01

    Previous studies in Long-Evans rats demonstrated a significant relationship between variation in pup licking/grooming and arched-back nursing (LG-ABN) and offspring development. However, maternal care is dynamic and exhibits significant temporal variation. In the current study, we assessed temporal variation in LG and ABN in lactating rats across the circadian cycle and determined the impact of these behaviors for the prediction of offspring hypothalamic gene expression, anxiety-like behavior, and responsiveness to high fat diet (HFD). We find that distinguishing between dams that engage in stable individual differences in maternal behavior (Low, Mid, High) requires assessment across the light-dark phases of the light cycle and across multiple postpartum days. Amongst juvenile female offspring, we find a positive correlation between maternal LG and mRNA levels of estrogen receptor alpha and beta and the oxytocin receptor (when LG is assessed across the light-dark cycle or in the dark phase). In young adults, we find sex-specific effects, with female High LG offspring exhibiting increased exploration of a novel environment and increased latency to approach HFD and male High LG offspring displaying increased activity in a novel environment and reduced HFD consumption. Importantly, these effects on behavior were primarily evident when LG was assessed across the light-dark cycle and ABN was not associated with these measures. Overall, our findings illustrate the dissociation between the effects of LG and ABN on offspring development and provide critical insights into the temporal characteristics of maternal behavior that have methodological implications for the study of maternal effects. PMID:23398440

  6. Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring: Implication of glutamate excitotoxicity and oxidative stress.

    PubMed

    Cattani, Daiane; Cesconetto, Patrícia Acordi; Tavares, Mauren Kruger; Parisotto, Eduardo Benedetti; De Oliveira, Paulo Alexandre; Rieg, Carla Elise Heinz; Leite, Marina Concli; Prediger, Rui Daniel Schröder; Wendt, Nestor Cubas; Razzera, Guilherme; Filho, Danilo Wilhelm; Zamoner, Ariane

    2017-07-15

    We have previously demonstrated that maternal exposure to glyphosate-based herbicide (GBH) leads to glutamate excitotoxicity in 15-day-old rat hippocampus. The present study was conducted in order to investigate the effects of subchronic exposure to GBH on some neurochemical and behavioral parameters in immature and adult offspring. Rats were exposed to 1% GBH in drinking water (corresponding to 0.36% of glyphosate) from gestational day 5 until postnatal day (PND)-15 or PND60. Results showed that GBH exposure during both prenatal and postnatal periods causes oxidative stress, affects cholinergic and glutamatergic neurotransmission in offspring hippocampus from immature and adult rats. The subchronic exposure to the pesticide decreased L-[ 14 C]-glutamate uptake and increased 45 Ca 2+ influx in 60-day-old rat hippocampus, suggesting a persistent glutamate excitotoxicity from developmental period (PND15) to adulthood (PND60). Moreover, GBH exposure alters the serum levels of the astrocytic protein S100B. The effects of GBH exposure were associated with oxidative stress and depressive-like behavior in offspring on PND60, as demonstrated by the prolonged immobility time and decreased time of climbing observed in forced swimming test. The mechanisms underlying the GBH-induced neurotoxicity involve the NMDA receptor activation, impairment of cholinergic transmission, astrocyte dysfunction, ERK1/2 overactivation, decreased p65 NF-κB phosphorylation, which are associated with oxidative stress and glutamate excitotoxicity. These neurochemical events may contribute, at least in part, to the depressive-like behavior observed in adult offspring. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effects of in utero exposure to Tityus bahiensis scorpion venom in adult rats.

    PubMed

    Dorce, Ana Leticia Coronado; Dorce, Valquiria Abrão Coronado; Nencioni, Ana Leonor Abrahão

    2010-01-01

    The toxicity of Tityus bahiensis scorpion venom is well known, but there are little data about the damage in offspring of dams that were exposed to the venom during pregnancy. The objective of this work was to determine the toxic effects of venom in adult offspring of Wistar rats exposed to venom in utero. Dams were divided into a control group, subcutaneously injected with saline solution on the 10th (GD10) and 16th (GD16) days, and two experimental groups, subcutaneously injected with venom (2.5mg/kg) on GD10 or GD16, respectively. Adult offspring were evaluated according to behavioral development and neuronal integrity in the hippocampus. Tests performed in the activity box and in the enriched environment demonstrated that males from GD10 had motor decrease. Females from GD10 showed a depressive-like state and were more anxious, as demonstrated by the forced swimming test and social interaction. The plus-maze discriminative avoidance task demonstrated that GD16 males had lower levels of anxiety. The number of neuronal cells was decreased in CA1, CA3 and CA4 hippocampal areas of males and females from GD10 group and in CA1 of females and CA4 of males from GD16 group. Thus, we conclude that venom exposure in pregnant dams causes subtle alteration in the behavioral and neuronal development of offspring in adult life in a gender-dependent manner. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  8. Maternal high-fat diet and offspring expression levels of vitamin K-dependent proteins.

    PubMed

    Lanham, S A; Cagampang, F R; Oreffo, R O C

    2014-12-01

    Studies suggest that bone growth and development and susceptibility to vascular disease in later life are influenced by maternal nutrition during intrauterine and early postnatal life. There is evidence for a role of vitamin K-dependent proteins (VKDPs) including osteocalcin, matrix Gla protein, periostin, and growth-arrest specific- protein 6, in both bone and vascular development. We have examined whether there are alterations in these VKDPs in bone and vascular tissue from offspring of mothers subjected to a nutritional challenge: a high-fat diet during pregnancy and postnatally, using 6-week-old mouse offspring. Bone site-specific and sex-specific differences across femoral and vertebral bone in male and female offspring were observed. Overall a high-fat maternal diet and offspring diet exacerbated the bone changes observed. Sex-specific differences and tissue-specific differences were observed in VKDP levels in aorta tissue from high-fat diet-fed female offspring from high-fat diet-fed mothers displaying increased levels of Gas6 and Ggcx compared with those of female controls. In contrast, differences were seen in VKDP levels in femoral bone of female offspring with lower expression levels of Mgp in offspring of mothers fed a high-fat diet compared with those of controls. We observed a significant correlation in Mgp expression levels within the femur to measures of bone structure of the femur and vertebra, particularly in the male offspring cohort. In summary, the current study has highlighted the importance of maternal nutrition on offspring bone development and the correlation of VKDPs to bone structure.

  9. Effects of age and sex ratios on offspring recruitment rates in translocated black rhinoceros.

    PubMed

    Gedir, Jay V; Law, Peter R; du Preez, Pierre; Linklater, Wayne L

    2018-06-01

    Success of animal translocations depends on improving postrelease demographic rates toward establishment and subsequent growth of released populations. Short-term metrics for evaluating translocation success and its drivers, like postrelease survival and fecundity, are unlikely to represent longer-term outcomes. We used information theory to investigate 25 years of data on black rhinoceros (Diceros bicornis) translocations. We used the offspring recruitment rate (ORR) of translocated females-a metric integrating survival, fecundity, and offspring recruitment at sexual maturity-to detect determinants of success. Our unambiguously best model (AICω = 0.986) predicted that ORR increases with female age at release as a function of lower postrelease adult rhinoceros sex ratio (males:females). Delay of first postrelease reproduction and failure of some females to recruit any calves to sexual maturity most influenced the pattern of ORRs, and the leading causes of recruitment failure were postrelease female death (23% of all females) and failure to calve (24% of surviving females). We recommend translocating older females (≥6 years old) because they do not exhibit the reproductive delay and low ORRs of juveniles (<4 years old) or the higher rates of recruitment failure of juveniles and young adults (4-5.9 years old). Where translocation of juveniles is necessary, they should be released into female-biased populations, where they have higher ORRs. Our study offers the unique advantage of a long-term analysis across a large number of replicate populations-a science-by-management experiment as a proxy for a manipulative experiment, and a rare opportunity, particularly for a large, critically endangered taxon such as the black rhinoceros. Our findings differ from previous recommendations, reinforce the importance of long-term data sets and comprehensive metrics of translocation success, and suggest attention be shifted from ecological to social constraints on population

  10. Sex and age-dependent effects of a maternal junk food diet on the mu-opioid receptor in rat offspring.

    PubMed

    Gugusheff, Jessica R; Bae, Sung Eun; Rao, Alexandra; Clarke, Iain J; Poston, Lucilla; Taylor, Paul D; Coen, Clive W; Muhlhausler, Beverly S

    2016-03-15

    Perinatal junk food exposure increases the preference for palatable diets in juvenile and adult rat offspring. Previous studies have implicated reduced sensitivity of the opioid pathway in the programming of food preferences; however it is not known when during development these changes in opioid signalling first emerge. This study aimed to determine the impact of a maternal junk food (JF) diet on mu-opioid receptor (MuR) expression and ligand binding in two key regions of the reward pathway, the nucleus accumbens (NAc) and the ventral tegmental area (VTA) in rats during the early suckling (postnatal day (PND) 1 and 7) and late suckling/early post-weaning (PND 21 and 28) periods. Female rats were fed either a JF or a control diet for two weeks prior to mating and throughout pregnancy and lactation. MuR expression in the VTA was significantly reduced in female JF offspring on PND 21 and 28 (by 32% and 57% respectively, P<0.05), but not at earlier time points (PND 1 and 7). MuR ligand binding was also reduced (by 22%, P<0.05) in the VTA of female JF offspring on PND 28. No effects of perinatal junk food exposure on MuR mRNA expression or binding were detected at these time points in male offspring. These findings provide evidence that the opioid signalling system is a target of developmental programming by the end of the third postnatal week in females, but not in males. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Increased renal sympathetic nerve activity leads to hypertension and renal dysfunction in offspring from diabetic mothers.

    PubMed

    de Almeida Chaves Rodrigues, Aline Fernanda; de Lima, Ingrid Lauren Brites; Bergamaschi, Cássia Toledo; Campos, Ruy Ribeiro; Hirata, Aparecida Emiko; Schoorlemmer, Guus Hermanus Maria; Gomes, Guiomar Nascimento

    2013-01-15

    The exposure of the fetus to a hyperglycemic environment promotes the development of hypertension and renal dysfunction in the offspring at adult age. We evaluated the role of renal nerves in the hypertension and renal changes seen in offspring of diabetic rats. Diabetes was induced in female Wistar rats (streptozotocin, 60 mg/kg ip) before mating. Male offspring from control and diabetic dams were studied at an age of 3 mo. Systolic blood pressure measured by tail cuff was increased in offspring of diabetic dams (146 ± 1.6 mmHg, n = 19, compared with 117 ± 1.4 mmHg, n = 18, in controls). Renal function, baseline renal sympathetic nerve activity (rSNA), and arterial baroreceptor control of rSNA were analyzed in anesthetized animals. Glomerular filtration rate, fractional sodium excretion, and urine flow were significantly reduced in offspring of diabetic dams. Two weeks after renal denervation, blood pressure and renal function in offspring from diabetic dams were similar to control, suggesting that renal nerves contribute to sodium retention in offspring from diabetic dams. Moreover, basal rSNA was increased in offspring from diabetic dams, and baroreceptor control of rSNA was impaired, with blunted responses to infusion of nitroprusside and phenylephrine. Thus, data from this study indicate that in offspring from diabetic mothers, renal nerves have a clear role in the etiology of hypertension; however, other factors may also contribute to this condition.

  12. Effects of mother's dietary exposure to acesulfame-K in Pregnancy or lactation on the adult offspring's sweet preference.

    PubMed

    Zhang, Gen-Hua; Chen, Meng-Ling; Liu, Si-Si; Zhan, Yue-Hua; Quan, Ying; Qin, Yu-Mei; Deng, Shao-Ping

    2011-11-01

    This study investigates whether mother's exposure to the artificial sweetener acesulfame-K (AK) during pregnancy or lactation affected her adult offspring's sweet preference. It was found that mother's dietary exposure to AK in pregnancy or lactation decreased the preference thresholds for AK and sucrose solutions in the adult offspring, whereas the preference pattern and the most preferred concentration for AK or sucrose solution were unchanged. Furthermore, the preference scores in the exposure groups were increased significantly when compared with the control group at a range of concentrations for AK or sucrose solution. The existence of AK and its dynamic changes within 24 h in amniotic fluid during pregnancy or in mother's milk during lactation after a single oral infusion of AK solution were revealed by the methods of reversed-phase high-performance liquid chromatography and mass spectrometry. Our data suggest that AK can be ingested by the prenatal or postnatal mice through their mother's amniotic fluid or breast milk, producing a long-dated function on the adult's sweet preference.

  13. Variable Variation: Annual and Seasonal Changes in Offspring Sex Ratio in a Bat

    PubMed Central

    Barclay, Robert M. R.

    2012-01-01

    Many organisms produce offspring with sex-ratios that deviate from equal numbers of males and females, and numerous adaptive explanations have been proposed. In some species, offspring sex-ratio varies across the reproductive season, again with several explanations as to why this might be adaptive. However, patterns for birds and mammals are inconsistent, and multiple factors are likely involved. Long-term studies on a variety of species may help untangle the complexity. I analyzed a long-term data set on the variation in offspring sex-ratio of the big brown bat, Eptesicus fuscus, a temperate-zone, insectivorous species. Sex ratio varied seasonally, but only in some years. Births early in the season were significantly female biased in years in which parturition occurred relatively early, but not in years with late parturition. Survival of female pups increased with earlier median birth date for the colony, and early-born females were more likely to survive and reproduce as one-year olds, compared to later-born pups. I argue that, due to the unusual timing of reproductive activities in male and female bats that hibernate, producing female offspring early in the year increases their probability of reproducing as one year olds, but this is not the case for male offspring. Thus, mothers that can give birth early in the year, benefit most by producing a female pup. The relative benefit of producing female or male offspring varies depending on the length of the growing season and thus the time available for female pups to reach sexual maturity. This suggests that not only does sex-ratio vary seasonally and among years, depending on the condition of the mother and the environment, but also likely varies geographically due to differences in season length. PMID:22570704

  14. Associations of Maternal Pre-Pregnancy Body Mass Index and Gestational Weight Gain with Adult Offspring Cardio-Metabolic Risk Factors: The Jerusalem Perinatal Family Follow-up Study

    PubMed Central

    Hochner, Hagit; Friedlander, Yechiel; Calderon-Margalit, Ronit; Meiner, Vardiella; Sagy, Yael; Avgil-Tsadok, Meytal; Burger, Ayala; Savitsky, Bella; Siscovick, David S.; Manor, Orly

    2012-01-01

    Background Accumulating evidence demonstrates that both maternal pre-pregnancy body mass index (mppBMI) and gestational weight gain (GWG) are associated with adult offspring adiposity. However, whether these maternal attributes are related to other cardio-metabolic risk factors in adulthood has not been comprehensively studied. Methods and Results We used a birth cohort of 1400 young adults born in Jerusalem, with extensive archival data as well as clinical information at age 32, to prospectively examine the associations of mppBMI and GWG with adiposity and related cardio-metabolic outcomes. Greater mppBMI, independent of GWG and confounders, was significantly associated with higher offspring BMI, waist circumference (WC), systolic and diastolic BP, insulin and triglycerides and with lower HDL-C. For example, the effect sizes were translated to nearly 5kg/m2 higher mean BMI, 8.4cm higher WC, 0.13mmol/L (11.4mg/dL) higher triglycerides and 0.10mmol/L (3.8mg/dL) lower HDL-C among offspring of mothers within the upper mppBMI quartile (BMI>26.4kg/m2) compared to the lower (BMI<21.0kg/m2). GWG, independent of mppBMI, was positively associated with offspring adiposity; differences of 1.6kg/m2 in BMI and 2.4cm in waist were observed when offspring of mothers in the upper (GWG>14kg) and lower (GWG<9kg) quartiles of GWG were compared. Further adjustment for offspring adiposity attenuated to null the observed associations. Conclusions Maternal size both before and during pregnancy are associated with cardio-metabolic risk factors in young adult offspring. The associations appear to be driven mainly by offspring adiposity. Future studies that explore mechanisms underlying the intergenerational cycle of obesity are warranted to identify potentially novel targets for cardio-metabolic risk-reduction interventions. PMID:22344037

  15. Sexual conflict and consistency of offspring desertion in Eurasian penduline tit Remiz pendulinus.

    PubMed

    Pogány, Akos; Szentirmai, István; Komdeur, Jan; Székely, Tamás

    2008-09-01

    The trade-off between current and future parental investment is often different between males and females. This difference may lead to sexual conflict between parents over care provisioning in animals that breed with multiple mates. One of the most obvious manifestations of sexual conflict over care is offspring desertion whereby one parent deserts the young to increase its reproductive success at the expense of its mate. Offspring desertion is a wide-spread behavior, and its frequency often varies within populations. We studied the consistency of offspring desertion in a small passerine bird, the Eurasian penduline tit Remiz pendulinus, that has an extremely variable breeding system. Both males and females are sequentially polygamous, and a single parent (either the male or the female) incubates the eggs and rears the young. About 28-40% of offspring are abandoned by both parents, and these offspring perish. Here we investigate whether the variation in offspring desertion in a population emerges either by each individual behaving consistently between different broods, or it is driven by the environment. Using a three-year dataset from Southern Hungary we show that offspring desertion by females is consistent between nests. Male desertion, however, depends on ambient environment, because all males desert their nests early in the season and some of them care late in the season. Therefore, within-population variation in parental care emerges by sexually different mechanisms; between-individual variation was responsible for the observed pattern of offspring desertion in females, whereas within-individual variation was responsible for the observed pattern in males. To our knowledge, our study is the first that investigates repeatability of offspring desertion behavior in nature. The contrasting strategies of the sexes imply complex evolutionary trajectories in breeding behavior of penduline tits. Our results raise an intriguing question whether the sexual difference in

  16. Sexual conflict and consistency of offspring desertion in Eurasian penduline tit Remiz pendulinus

    PubMed Central

    2008-01-01

    Background The trade-off between current and future parental investment is often different between males and females. This difference may lead to sexual conflict between parents over care provisioning in animals that breed with multiple mates. One of the most obvious manifestations of sexual conflict over care is offspring desertion whereby one parent deserts the young to increase its reproductive success at the expense of its mate. Offspring desertion is a wide-spread behavior, and its frequency often varies within populations. We studied the consistency of offspring desertion in a small passerine bird, the Eurasian penduline tit Remiz pendulinus, that has an extremely variable breeding system. Both males and females are sequentially polygamous, and a single parent (either the male or the female) incubates the eggs and rears the young. About 28–40% of offspring are abandoned by both parents, and these offspring perish. Here we investigate whether the variation in offspring desertion in a population emerges either by each individual behaving consistently between different broods, or it is driven by the environment. Results Using a three-year dataset from Southern Hungary we show that offspring desertion by females is consistent between nests. Male desertion, however, depends on ambient environment, because all males desert their nests early in the season and some of them care late in the season. Therefore, within-population variation in parental care emerges by sexually different mechanisms; between-individual variation was responsible for the observed pattern of offspring desertion in females, whereas within-individual variation was responsible for the observed pattern in males. Conclusion To our knowledge, our study is the first that investigates repeatability of offspring desertion behavior in nature. The contrasting strategies of the sexes imply complex evolutionary trajectories in breeding behavior of penduline tits. Our results raise an intriguing question

  17. Paternal stress prior to conception alters DNA methylation and behaviour of developing rat offspring.

    PubMed

    Mychasiuk, R; Harker, A; Ilnytskyy, S; Gibb, R

    2013-06-25

    Although there has been an abundance of research focused on offspring outcomes associated with maternal experiences, there has been limited examination of the relationship between paternal experiences and offspring brain development. As spermatogenesis is a continuous process, experiences that have the ability to alter epigenetic regulation in fathers may actually change developmental trajectories of offspring. The purpose of this study was to examine the effects of paternal stress prior to conception on behaviour and the epigenome of both male and female developing rat offspring. Male Long-Evans rats were stressed for 27 consecutive days and then mated with control female rats. Early behaviour was tested in offspring using the negative geotaxis task and the open field. At P21 offspring were sacrificed and global DNA methylation levels in the hippocampus and frontal cortex were analysed. Paternal stress prior to conception altered behaviour of all offspring on the negative geotaxis task, delaying acquisition of the task. In addition, male offspring demonstrated a reduction in stress reactivity in the open field paradigm spending more time than expected in the centre of the open field. Paternal stress also altered DNA methylation patterns in offspring at P21, global methylation was reduced in the frontal cortex of female offspring, but increased in the hippocampus of both male and female offspring. The results from this study clearly demonstrate that paternal stress during spermatogenesis can influence offspring behaviour and DNA methylation patterns, and these affects occur in a sex-dependent manner. Development takes place in the centre of a complex interaction between maternal, paternal, and environmental influences, which combine to produce the various phenotypes and individual differences that we perceive. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Chronic Sleep Restriction during Pregnancy - Repercussion on Cardiovascular and Renal Functioning of Male Offspring

    PubMed Central

    Lima, Ingrid L. B.; Rodrigues, Aline F. A. C.; Bergamaschi, Cássia T.; Campos, Ruy R.; Hirata, Aparecida E.; Tufik, Sergio; Xylaras, Beatriz D. P.; Visniauskas, Bruna; Chagas, Jair R.; Gomes, Guiomar N.

    2014-01-01

    Changes in the maternal environment can induce fetal adaptations that result in the progression of chronic diseases in the offspring. The objective of the present study was to evaluate the effects of maternal chronic sleep restriction on blood pressure, renal function and cardiac baroreflex response on male offspring at adult age. Female 3-month-old Wistar rats were divided in two experimental groups: control (C) and chronic sleep restricted (CSR). Pregnancy was confirmed by vaginal smear. Chronic sleep restricted females were subjected to sleep restriction by the multiple platform technique for 20 h daily, between the 1st and 20th day of pregnancy. After birth, the litters were reduced to 6 rats per mother, and were designated as offspring from control (OC) and offspring from chronic sleep restricted (OCSR). Indirect blood pressure (BPi – tail cuff) was measured by plethysmography in male offspring at 3 months old. Following, the renal function and cardiac baroreflex response were analyzed. Values of BPi in OCSR were significantly higher compared to OC [OC: 127±2.6 (19); OCSR: 144±2.5 (17) mmHg]. The baroreflex sensitivity to the increase of blood pressure was reduced in OCSR [Slope: OC: −2.6±0.15 (9); OCRS: −1.6±0.13 (9)]. Hypothalamic activity of ACE2 was significantly reduced in OCSR compared to OC [OC: 97.4±15 (18); OSR: 60.2±3.6 (16) UAF/min/protein mg]. Renal function alteration was noticed by the increase in glomerular filtration rate (GFR) observed in OCSR [OC: 6.4±0.2 (10); OCSR: 7.4±0.3 (7)]. Chronic sleep restriction during pregnancy caused in the offspring hypertension, altered cardiac baroreflex response, reduced ACE-2 activity in the hypothalamus and renal alterations. Our data suggest that the reduction of sleeping time along the pregnancy is able to modify maternal homeostasis leading to functional alterations in offspring. PMID:25405471

  19. Chronic sleep restriction during pregnancy--repercussion on cardiovascular and renal functioning of male offspring.

    PubMed

    Lima, Ingrid L B; Rodrigues, Aline F A C; Bergamaschi, Cássia T; Campos, Ruy R; Hirata, Aparecida E; Tufik, Sergio; Xylaras, Beatriz D P; Visniauskas, Bruna; Chagas, Jair R; Gomes, Guiomar N

    2014-01-01

    Changes in the maternal environment can induce fetal adaptations that result in the progression of chronic diseases in the offspring. The objective of the present study was to evaluate the effects of maternal chronic sleep restriction on blood pressure, renal function and cardiac baroreflex response on male offspring at adult age. Female 3-month-old Wistar rats were divided in two experimental groups: control (C) and chronic sleep restricted (CSR). Pregnancy was confirmed by vaginal smear. Chronic sleep restricted females were subjected to sleep restriction by the multiple platform technique for 20 h daily, between the 1st and 20th day of pregnancy. After birth, the litters were reduced to 6 rats per mother, and were designated as offspring from control (OC) and offspring from chronic sleep restricted (OCSR). Indirect blood pressure (BPi - tail cuff) was measured by plethysmography in male offspring at 3 months old. Following, the renal function and cardiac baroreflex response were analyzed. Values of BPi in OCSR were significantly higher compared to OC [OC: 127 ± 2.6 (19); OCSR: 144 ± 2.5 (17) mmHg]. The baroreflex sensitivity to the increase of blood pressure was reduced in OCSR [Slope: OC: -2.6 ± 0.15 (9); OCRS: -1.6 ± 0.13 (9)]. Hypothalamic activity of ACE2 was significantly reduced in OCSR compared to OC [OC: 97.4 ± 15 (18); OSR: 60.2 ± 3.6 (16) UAF/min/protein mg]. Renal function alteration was noticed by the increase in glomerular filtration rate (GFR) observed in OCSR [OC: 6.4 ± 0.2 (10); OCSR: 7.4 ± 0.3 (7)]. Chronic sleep restriction during pregnancy caused in the offspring hypertension, altered cardiac baroreflex response, reduced ACE-2 activity in the hypothalamus and renal alterations. Our data suggest that the reduction of sleeping time along the pregnancy is able to modify maternal homeostasis leading to functional alterations in offspring.

  20. Epigenetic Patterns Modulate the Connection Between Developmental Dynamics of Parenting and Offspring Psychosocial Adjustment.

    PubMed

    Naumova, Oksana Yu; Hein, Sascha; Suderman, Matthew; Barbot, Baptiste; Lee, Maria; Raefski, Adam; Dobrynin, Pavel V; Brown, Pamela J; Szyf, Moshe; Luthar, Suniya S; Grigorenko, Elena L

    2016-01-01

    This study attempted to establish and quantify the connections between parenting, offspring psychosocial adjustment, and the epigenome. The participants, 35 African American young adults (19 females and 16 males; age = 17-29.5 years), represented a subsample of a 3-wave longitudinal 15-year study on the developmental trajectories of low-income urban mother-offspring dyads. Mothers were assessed on their perceptions of maternal stress at each wave. Offspring were assessed on their perceptions of maternal parenting at each wave and on their adaptive and maladaptive behavior at the last wave. Genome-wide DNA methylation in peripheral T lymphocytes at the third wave was assayed using Methyl Binding Domain(MBD) sequencing. Statistically significant associations were identified between the change in offspring's perception of parenting from middle childhood to adulthood and the DNA methylation in offspring's adult genomes. Specifically, the slope of perceived parental rejection across the 3 time points was related to an increase in methylation, or a potential downregulation, of 565 genes thought to be involved in the control of a broad spectrum of biological functions generally related to cellular signaling. A subset of these epigenetic marks, clustered in 23 genes, some of which participate in the development and functioning of the CNS, were in turn associated with psychosocial adjustment as captured by interpersonal relationships and emotional self-evaluation. This appears to be one of the first investigations of the modulating role of the methylome in associations between developmental dynamics of parenting throughout the formative years of child and adolescent development and psychosocial adjustment in adulthood. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  1. Tumors and Proliferative Lesions in Adult Offspring After Maternal Exposure to Methylarsonous Acid During Gestation in CDl Mice.

    EPA Science Inventory

    Inorganic arsenic exposure is carcinogenic in humans and rodents. When pregnant mice are exposed to inorganic arsenic in the drinking water their offspring, when adults, develop tumors and proliferative lesions at several sites, such as lung, liver, adrenal, uterus, ovary and ovi...

  2. Opposing Effects of Maternal Hypo- and Hyperthyroidism on the Stability of Thalamocortical Synapses in the Visual Cortex of Adult Offspring.

    PubMed

    Strobl, Marie-Therese J; Freeman, Daniel; Patel, Jenica; Poulsen, Ryan; Wendler, Christopher C; Rivkees, Scott A; Coleman, Jason E

    2017-05-01

    Insufficient or excessive thyroid hormone (TH) levels during fetal development can cause long-term neurological and cognitive problems. Studies in animal models of perinatal hypo- and hyperthyroidism suggest that these problems may be a consequence of the formation of maladaptive circuitry in the cerebral cortex, which can persist into adulthood. Here we used mouse models of maternal hypo- and hyperthyroidism to investigate the long-term effects of altering thyroxine (T4) levels during pregnancy (corresponding to embryonic days 6.5-18.5) on thalamocortical (TC) axon dynamics in adult offspring. Because perinatal hypothyroidism has been linked to visual processing deficits in humans, we performed chronic two-photon imaging of TC axons and boutons in primary visual cortex (V1). We found that a decrease or increase in maternal serum T4 levels was associated with atypical steady-state dynamics of TC axons and boutons in V1 of adult offspring. Hypothyroid offspring exhibited axonal branch and bouton dynamics indicative of an abnormal increase in TC connectivity, whereas changes in hyperthyroid offspring were indicative of an abnormal decrease in TC connectivity. Collectively, our data suggest that alterations to prenatal T4 levels can cause long-term synaptic instability in TC circuits, which could impair early stages of visual processing. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring

    PubMed Central

    de Castro Barbosa, Thais; Ingerslev, Lars R.; Alm, Petter S.; Versteyhe, Soetkin; Massart, Julie; Rasmussen, Morten; Donkin, Ida; Sjögren, Rasmus; Mudry, Jonathan M.; Vetterli, Laurène; Gupta, Shashank; Krook, Anna; Zierath, Juleen R.; Barrès, Romain

    2015-01-01

    Objectives Chronic and high consumption of fat constitutes an environmental stress that leads to metabolic diseases. We hypothesized that high-fat diet (HFD) transgenerationally remodels the epigenome of spermatozoa and metabolism of the offspring. Methods F0-male rats fed either HFD or chow diet for 12 weeks were mated with chow-fed dams to generate F1 and F2 offspring. Motile spermatozoa were isolated from F0 and F1 breeders to determine DNA methylation and small non-coding RNA (sncRNA) expression pattern by deep sequencing. Results Newborn offspring of HFD-fed fathers had reduced body weight and pancreatic beta-cell mass. Adult female, but not male, offspring of HFD-fed fathers were glucose intolerant and resistant to HFD-induced weight gain. This phenotype was perpetuated in the F2 progeny, indicating transgenerational epigenetic inheritance. The epigenome of spermatozoa from HFD-fed F0 and their F1 male offspring showed common DNA methylation and small non-coding RNA expression signatures. Altered expression of sperm miRNA let-7c was passed down to metabolic tissues of the offspring, inducing a transcriptomic shift of the let-7c predicted targets. Conclusion Our results provide insight into mechanisms by which HFD transgenerationally reprograms the epigenome of sperm cells, thereby affecting metabolic tissues of offspring throughout two generations. PMID:26977389

  4. Changes in behavioural parameters, oxidative stress and neurotrophins in the brain of adult offspring induced to an animal model of schizophrenia: The effects of FA deficient or FA supplemented diet during the neurodevelopmental phase.

    PubMed

    Canever, L; Freire, T G; Mastella, G A; Damázio, L; Gomes, S; Fachim, I; Michels, C; Carvalho, G; Godói, A K; Peterle, B R; Gava, F F; Valvassori, S S; Budni, J; Quevedo, J; Zugno, A I

    2018-05-18

    A deficiency of maternal folic acid (FA) can compromise the function and development of the brain, and may produce a susceptibility to diseases such as schizophrenia (SZ) in the later life of offspring. The aim of this study was to evaluate the effects of both FA deficient and FA supplemented diets during gestation and lactation on behavioural parameters, the markers of oxidative stress and neurotrophic factors in adult offspring which had been subjected to an animal model of SZ. Female mother rats (Dam's) were separated into experimental maternal groups, which began receiving a special diet (food) consisting of the AIN-93 diet, a control diet, or an FA deficient diet during the periods of pregnancy and lactation. Dam's receiving the control diet were further subdivided into four groups: one group received only control diet, while three groups to receive supplementation with FA at different doses (5, 10 and 50 mg/kg). Adult offspring bred from the Dam's were divided into ten groups for induction of the animal model of SZ through the administration of ketamine (Ket) (25 mg/kg). After the last administration of the drug, the animals were subjected to the behavioural tests and were then euthanized. The frontal cortex (FC) and hippocampus (Hip) were then dissected for later biochemical analysis. Our data demonstrates that Ket induced the model of SZ by altering the behavioural parameters (e.g. hyperlocomotion, social impairment, deficits in the sensory-motor profile and memory damage in the adult animals); and also caused changes in the parameters of oxidative stress (lipid hydroperoxide - LPO; 8-isoprostane - 8-ISO; 4-hydroxynonenal - 4-HNE; protein carbonyl content; superoxide dismutase - SOD and catalase - CAT) as well as in the levels of neurotrophic factors (brain-derived neurotrophic factor - BDNF and nerve growth factor - NGF) particularly within the FC of adult offspring. A deficiency in maternal FA, alone or in combination with ket, was able to induce

  5. Landscape Simplification Constrains Adult Size in a Native Ground-Nesting Bee.

    PubMed

    Renauld, Miles; Hutchinson, Alena; Loeb, Gregory; Poveda, Katja; Connelly, Heather

    2016-01-01

    Bees provide critical pollination services to 87% of angiosperm plants; however, the reliability of these services may become threatened as bee populations decline. Agricultural intensification, resulting in the simplification of environments at the landscape scale, greatly changes the quality and quantity of resources available for female bees to provision their offspring. These changes may alter or constrain the tradeoffs in maternal investment allocation between offspring size, number and sex required to maximize fitness. Here we investigate the relationship between landscape scale agricultural intensification and the size and number of individuals within a wild ground nesting bee species, Andrena nasonii. We show that agricultural intensification at the landscape scale was associated with a reduction in the average size of field collected A. nasonii adults in highly agricultural landscapes but not with the number of individuals collected. Small females carried significantly smaller (40%) pollen loads than large females, which is likely to have consequences for subsequent offspring production and fitness. Thus, landscape simplification is likely to constrain allocation of resources to offspring through a reduction in the overall quantity, quality and distribution of resources.

  6. Effects of prenatal chronic mild stress exposure on hippocampal cell proliferation, expression of GSK-3α, β and NR2B in adult offspring during fear extinction in rats.

    PubMed

    Li, Min; Li, Xiaobai; Zhang, Xinxin; Ren, Jintao; Jiang, Han; Wang, Yan; Ma, Yuchao; Cheng, Wenwen

    2014-06-01

    Stress during pregnancy has been implicated as a risk factor for the development of many mental disorders; however, the influence of prenatal stress on the fear or anxiety-related behaviors, especially the fear extinction in adult offspring has been little investigated. In order to investigate how prenatal stress affects fear extinction, which is regarded as a form of new learning that counteracts the expression of Pavlovian's conditioned fear, a rat model of prenatal chronic mild stress (PNS) was used to evaluate the effects of PNS on fear extinction in adult offspring. The expression of hippocampal glycogen synthase kinase-3s (GSK-3α, β), N-methyl-d-aspartic acid receptors (NMDARs)-2B and the hippocampal cell proliferation in dentate gyrus in the adult offspring during fear extinction were studied. Our results showed that PNS significantly reduced body weight of pups, indicating PNS might induce growth retardation in offspring. Moreover, PNS significantly enhanced the freezing behavior of offspring at the phase of extinction, suggesting PNS impaired the abilities of fear extinction learning. In addition, PNS significantly increased the levels of GSK-3α, β and NR2B, but reduced hippocampal cell proliferation during fear extinction. Taken together, our findings suggest that maternal stress during pregnancy can impair the fear extinction of adult offspring, probably by affecting the neural plasticity of brain. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

  7. Influence of parental care on offspring hippocampal volume in young adults varies as a function of overprotection

    PubMed Central

    Wang, Yinan; Song, Yiying; Li, Xueting; Zhang, Lin; Liu, Jia

    2017-01-01

    Parental care results in increased hippocampal volumes through adaptive stress responses in developing animals. However, human studies have not yet provided consistent findings analogous to the animal literature, possibly because parental care in humans is likely intermingled with parental overprotection, as suggested by the optimal parenting theory. Here, we tested the hypothesis that the effect of parental care on offspring hippocampal volume varies as a function of parental overprotection with a large cohort of young adult participants (N = 257). Consistent with some previous human studies, we found that parental care in childhood alone had little association with the hippocampal volume in adulthood. However, when parental overprotection was low, parental care was positively correlated with offspring hippocampal volume, whereas there was no association between parental care and offspring hippocampal volume when parental overprotection was high. Thus, an interaction exists between parental care and overprotection in human’s hippocampal development, which contributes to the elucidation of the complex relationship between brain structure and environmental factors. PMID:28401913

  8. Influence of parental care on offspring hippocampal volume in young adults varies as a function of overprotection.

    PubMed

    Wang, Yinan; Song, Yiying; Li, Xueting; Zhang, Lin; Liu, Jia

    2017-04-12

    Parental care results in increased hippocampal volumes through adaptive stress responses in developing animals. However, human studies have not yet provided consistent findings analogous to the animal literature, possibly because parental care in humans is likely intermingled with parental overprotection, as suggested by the optimal parenting theory. Here, we tested the hypothesis that the effect of parental care on offspring hippocampal volume varies as a function of parental overprotection with a large cohort of young adult participants (N = 257). Consistent with some previous human studies, we found that parental care in childhood alone had little association with the hippocampal volume in adulthood. However, when parental overprotection was low, parental care was positively correlated with offspring hippocampal volume, whereas there was no association between parental care and offspring hippocampal volume when parental overprotection was high. Thus, an interaction exists between parental care and overprotection in human's hippocampal development, which contributes to the elucidation of the complex relationship between brain structure and environmental factors.

  9. Developmental programming of vascular dysfunction by prenatal and postnatal zinc deficiency in male and female rats.

    PubMed

    Mendes Garrido Abregú, Facundo; Gobetto, María Natalia; Juriol, Lorena Vanesa; Caniffi, Carolina; Elesgaray, Rosana; Tomat, Analía Lorena; Arranz, Cristina

    2018-06-01

    Micronutrient malnutrition during intrauterine and postnatal growth may program cardiovascular diseases in adulthood. We examined whether moderate zinc restriction in male and female rats throughout fetal life, lactation and/or postweaning growth induces alterations that can predispose to the onset of vascular dysfunction in adulthood. Female Wistar rats were fed low- or control zinc diets from pregnancy to offspring weaning. After weaning, offspring were fed either a low- or a control zinc diet until 81 days. We evaluated systolic blood pressure (SBP), thoracic aorta morphology, nitric oxide (NO) system and vascular reactivity in 6- and/or 81-day-old offspring. At day 6, zinc-deficient male and female offspring showed a decrease in aortic NO synthase (NOS) activity accompanied by an increase in oxidative stress. Zinc-deficient 81-day-old male rats exhibited an increase in collagen deposition in tunica media, as well as lower activity of endothelial NOS (eNOS) that could not be reversed with an adequate zinc diet during postweaning life. Zinc deficiency programmed a reduction in eNOS protein expression and higher SBP only in males. Adult zinc-deficient rats of both sexes showed reduced vasodilator response dependent on eNOS activity and impaired aortic vasoconstrictor response to angiotensin-II associated with alterations in intracellular calcium mobilization. Female rats were less sensitive to the effects of zinc deficiency and exhibited higher eNOS activity and/or expression than males, without alterations in SBP or aortic histology. This work strengthens the importance of a balanced intake of micronutrients during perinatal growth to ensure adequate vascular function in adult life. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Elevated androstenedione in young adult but not early adolescent prenatally androgenized female rats.

    PubMed

    Shah, Ami B; Nivar, Isaac; Speelman, Diana L

    2018-01-01

    Elevated testosterone (T) is routinely reported as a marker of hyperandrogenemia in rodent models for polycystic ovary syndrome (PCOS). In women with PCOS, elevated serum androstenedione (A4) is associated with more severe phenotypes, including a positive correlation with serum T, DHEAS, free androgen index (FAI), LH, and LH/FSH ratio. Furthermore, A4, along with calculated free T and FAI, was identified as one of the best predictors of PCOS in adult women of all ages (18 to > 50 y). The objective of this study was to investigate serum A4 levels in early adolescent and young adult prenatally androgenized (PNA) female rats, a model for PCOS. Pregnant rats were injected with 5 mg T daily during gestational days 16-19 (PNA rats, experimental group) or an equal volume of vehicle (control group). Female offspring of both groups had tail vein blood drawn for serum analysis at 8 and 16 weeks of age. ELISAs were used to quantify serum A4 and T levels. Serum A4 and T were elevated in 16-week-old PNA rats compared to controls. There was no significant difference in either hormone at 8 weeks of age. The PNA rats demonstrated elevated serum A4 and T in young adulthood, as has been observed in women with PCOS, further validating this as a model for PCOS and underscoring the importance of serum A4 elevation as a parameter inherent to PCOS and a rodent model for the disorder. Significant A4 elevation develops between early adolescence and early adulthood in this PNA rat model.

  11. Adiposity, Dysmetabolic Traits, and Earlier Onset of Female Puberty in Adolescent Offspring of Women With Gestational Diabetes Mellitus: A Clinical Study Within the Danish National Birth Cohort.

    PubMed

    Grunnet, Louise G; Hansen, Susanne; Hjort, Line; Madsen, Camilla M; Kampmann, Freja B; Thuesen, Anne Cathrine B; Granstrømi, Charlotta; Strøm, Marin; Maslova, Ekaterina; Frikke-Schmidt, Ruth; Damm, Peter; Chavarro, Jorge E; Hu, Frank B; Olsen, Sjurdur F; Vaag, Allan

    2017-12-01

    Offspring of pregnancies affected by gestational diabetes mellitus (GDM) are at increased risk of the development of type 2 diabetes. However, the extent to which these dysmetabolic traits may be due to offspring and/or maternal adiposity is unknown. We examined body composition and associated cardiometabolic traits in 561 9- to 16-year-old offspring of mothers with GDM and 597 control offspring. We measured anthropometric characteristics; puberty status; blood pressure; and fasting glucose, insulin, C-peptide, and lipid levels; and conducted a DEXA scan in a subset of the cohort. Differences in the outcomes between offspring of mothers with GDM and control subjects were examined using linear and logistic regression models. After adjustment for age and sex, offspring of mothers with GDM displayed higher weight, BMI, waist-to-hip ratio (WHR), systolic blood pressure, and resting heart rate and lower height. Offspring of mothers with GDM had higher total and abdominal fat percentages and lower muscle mass percentages, but these differences disappeared after correction for offspring BMI. The offspring of mothers with GDM displayed higher fasting plasma glucose, insulin, C-peptide, HOMA-insulin resistance (IR), and plasma triglyceride levels, whereas fasting plasma HDL cholesterol levels were decreased. Female offspring of mothers with GDM had an earlier onset of puberty than control offspring. Offspring of mothers with GDM had significantly higher BMI, WHR, fasting glucose, and HOMA-IR levels after adjustment for maternal prepregnancy BMI, and glucose and HOMA-IR remained elevated in the offspring of mothers with GDM after correction for both maternal and offspring BMIs. In summary, adolescent offspring of women with GDM show increased adiposity, an adverse cardiometabolic profile, and earlier onset of puberty among girls. Increased fasting glucose and HOMA-IR levels among the offspring of mothers with GDM may be explained by the programming effects of hyperglycemia

  12. Understanding the Burden of Adult Female Acne

    PubMed Central

    Kawata, Ariane K.; Daniels, Selena R.; Yeomans, Karen; Burk, Caroline T.; Callender, Valerie D.

    2014-01-01

    Objective: Typically regarded as an adolescent condition, acne among adult females is also prevalent. Limited data are available on the clinical characteristics and burden of adult female acne. The study objective was to describe clinical characteristics and psychosocial impact of acne in adult women. Design: Cross-sectional, web-based survey. Setting: Data were collected from a diverse sample of United States females. Participants: Women ages 25 to 45 years with facial acne (≥25 visible lesions). Measurements: Outcomes included sociodemographic and clinical characteristics, perceptions, coping behaviors, psychosocial impact of acne (health-related quality of life using acne-specific Quality of Life questionnaire and psychological status using Patient Health Questionnaire), and work/productivity. Results: A total of 208 women completed the survey (mean age 35±6 years), comprising White/Caucasian (51.4%), Black/African American (24.5%), Hispanic/Latino (11.1%), Asian (7.7%), and Other (5.3%). Facial acne presented most prominently on cheeks, chin, and forehead and was characterized by erythema, postinflammatory hyperpigmentation, and scarring. Average age of adult onset was 25±6 years, and one-third (33.7%) were diagnosed with acne as an adult. The majority (80.3%) had 25 to 49 visible facial lesions. Acne was perceived as troublesome and impacted self-confidence. Makeup was frequently used to conceal acne. Facial acne negatively affected health-related quality of life, was associated with mild/moderate symptoms of depression and/or anxiety, and impacted ability to concentrate on work or school. Conclusion: Results highlight the multifaceted impact of acne and provide evidence that adult female acne is under-recognized and burdensome. PMID:24578779

  13. Survival of spectacled eider adult females and ducklings during brood rearing

    USGS Publications Warehouse

    Flint, Paul L.; Grand, James B.

    1997-01-01

    We studied survival of adult female and duckling spectacled eiders (Somateria fischeri) during brood rearing on the Yukon-Kuskokwim Delta, Alaska from 1993 to 1995. Duckling survival to 30 days of age averaged 34% with a 95% confidence interval from 25 to 47%. Half (49%) of radiomarked adult females had lost all their ducklings by 30 days after hatch. Most (74%) duckling mortality occurred in the first 10 days. Adult female survival during the first 30 days of brood rearing was 93 ± 3% (SE). Females died from lead poisoning, as a result of ingesting lead shot, and predation. Mortality of adult females during brood rearing is probably higher than during other times of the year. Low adult female survival during the breeding season may be contributing to the overall population decline of spectacled eiders.

  14. Face-Emotion Processing in Offspring at Risk for Panic Disorder.

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Klein, Rachel G.; Mannuzza, Salvatore; Moulton, John L., III; Lissek, Shmuel; Guardino, Mary; Woldehawariat, Girma

    2005-01-01

    Objective: Panic disorder (PD) has been linked to perturbed processing of threats. This study tested the hypotheses that offspring of parents with PD and offspring with anxiety disorders display relatively greater sensitivity and attention allocation to fear provocation. Method: Offspring of adults with PD, major depressive disorder (MDD), or no…

  15. Egg-laying environment modulates offspring responses to predation risk in an amphibian.

    PubMed

    Tóth, Zoltán; Hettyey, Attila

    2018-05-01

    Predator-induced plasticity has been in the focus of evolutionary ecological research in the last decades, but the consequences of temporal variation in the presence of cues predicting offspring environment have remained controversial. This is partly due to the fact that the role of early environmental effects has scarcely been scrutinized in this context while also controlling for potential maternal effects. In this study, we investigated how past environmental conditions, that is different combinations of risky or safe adult (prenatal) and oviposition (early post-natal) environments, affected offspring's plastic responses in hatching time and locomotor activity to predation risk during development in the smooth newt (Lissotriton vulgaris). We found that females did not adjust their reproductive investment to the perceived level of risk in the adult environment, and this prenatal environment had generally negligible effect on offspring phenotype. However, when predator cues were absent during oviposition, larvae raised in the presence of predator cues delayed their hatching and exhibited a decreased activity compared to control larvae developing without predator cues, which responses are advantageous when predators pose a threat to hatched larvae. In the presence of predator cues during oviposition, the difference in hatching time persisted, but the difference in general locomotor activity disappeared between risk-exposed and control larvae. Our findings provide clear experimental evidence that fine-scale temporal variation in a predictive cue during and after egg-laying interactively affects offspring phenotype, and highlight the importance of the early post-natal environment, which may exert a substantial influence on progeny's phenotype also under natural conditions. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  16. Male Facial Appearance and Offspring Mortality in Two Traditional Societies

    PubMed Central

    Boothroyd, Lynda G.; Gray, Alan W.; Headland, Thomas N.; Uehara, Ray T.; Waynforth, David; Burt, D. Michael; Pound, Nicholas

    2017-01-01

    It has been hypothesised that facial traits such as masculinity and a healthy appearance may indicate heritable qualities in males (e.g. immunocompetence) and that, consequently, female preferences for such traits may function to increase offspring viability and health. However, the putative link between paternal facial features and offspring health has not previously been tested empirically in humans. Here we present data from two traditional societies with little or no access to modern medicine and family planning technologies. Data on offspring number and offspring survival were analysed for the Agta of the Philippines and the Maya of Belize, and archive facial photographs were assessed by observers for attractiveness and masculinity. While there was no association between attractiveness and offspring survival in either population, a quadratic relationship was observed between masculinity and offspring survival in both populations, such that intermediate levels of masculinity were associated with the lowest offspring mortality, with both high and low levels of masculinity being associated with increased mortality. Neither attractiveness nor masculinity were related to fertility (offspring number) in either population. We consider how these data may or may not reconcile with current theories of female preferences for masculinity in male faces and argue that further research and replication in other traditional societies should be a key priority for the field. PMID:28081562

  17. Maternal effects on male weaponry: female dung beetles produce major sons with longer horns when they perceive higher population density

    PubMed Central

    2012-01-01

    Background Maternal effects are environmental influences on the phenotype of one individual that are due to the expression of genes in its mother, and are expected to evolve whenever females are better capable of assessing the environmental conditions that their offspring will experience than the offspring themselves. In the dung beetle Onthophagus taurus, conditional male dimorphism is associated with alternative reproductive tactics: majors fight and guard females whereas minors sneak copulations. Furthermore, variation in dung beetle population density has different fitness consequences for each male morph, and theory predicts that higher population density might select for a higher frequency of minors and/or greater expenditure on weaponry in majors. Because adult dung beetles provide offspring with all the nutritional resources for their development, maternal effects strongly influence male phenotype. Results Here we tested whether female O. taurus are capable of perceiving population density, and responding by changing the phenotype of their offspring. We found that mothers who were reared with other conspecifics in their pre-mating period produced major offspring that had longer horns across a wider range of body sizes than the major offspring of females that were reared in isolation in their pre-mating period. Moreover, our results indicate that this maternal effect on male weaponry does not operate through the amount of dung provided by females to their offspring, but is rather transmitted through egg or brood mass composition. Finally, although theory predicts that females experiencing higher density might produce more minor males, we found no support for this, rather the best fitting models were equivocal as to whether fewer or the same proportions of minors were produced. Conclusions Our study describes a new type of maternal effect in dung beetles, which probably allows females to respond to population density adaptively, preparing at least their major

  18. Maternal effects on male weaponry: female dung beetles produce major sons with longer horns when they perceive higher population density.

    PubMed

    Buzatto, Bruno A; Tomkins, Joseph L; Simmons, Leigh W

    2012-07-23

    Maternal effects are environmental influences on the phenotype of one individual that are due to the expression of genes in its mother, and are expected to evolve whenever females are better capable of assessing the environmental conditions that their offspring will experience than the offspring themselves. In the dung beetle Onthophagus taurus, conditional male dimorphism is associated with alternative reproductive tactics: majors fight and guard females whereas minors sneak copulations. Furthermore, variation in dung beetle population density has different fitness consequences for each male morph, and theory predicts that higher population density might select for a higher frequency of minors and/or greater expenditure on weaponry in majors. Because adult dung beetles provide offspring with all the nutritional resources for their development, maternal effects strongly influence male phenotype. Here we tested whether female O. taurus are capable of perceiving population density, and responding by changing the phenotype of their offspring. We found that mothers who were reared with other conspecifics in their pre-mating period produced major offspring that had longer horns across a wider range of body sizes than the major offspring of females that were reared in isolation in their pre-mating period. Moreover, our results indicate that this maternal effect on male weaponry does not operate through the amount of dung provided by females to their offspring, but is rather transmitted through egg or brood mass composition. Finally, although theory predicts that females experiencing higher density might produce more minor males, we found no support for this, rather the best fitting models were equivocal as to whether fewer or the same proportions of minors were produced. Our study describes a new type of maternal effect in dung beetles, which probably allows females to respond to population density adaptively, preparing at least their major offspring for the sexual

  19. In utero exposure to female hormones and germ cell tumors in children.

    PubMed

    Shankar, Sadhna; Davies, Stella; Giller, Roger; Krailo, Mark; Davis, Mary; Gardner, Kathleen; Cai, Hui; Robison, Leslie; Shu, Xiao-Ou

    2006-03-01

    Maternal exposure to exogenous female hormones during pregnancy has been implicated as a risk factor for malignant germ cell tumors (GCTs) in the offspring in some epidemiologic studies of testicular and ovarian carcinoma in adults. From 1996 to 2002, 278 children younger than 15 years of age with malignant GCTs and 423 healthy controls, frequency-matched for geographic location, age, and sex were enrolled in a case-control study to investigate whether in utero exposure to female hormones is associated with the risk of malignant GCT in children. Cases were recruited from 84 institutions in the U.S. and controls were enrolled through random digit dialing. Information was obtained through telephone interview with the biological mothers of the subjects and through blinded review of the mothers' medical records. Neither self-reported (odds ratio [OR] = 1.15; 95% confidence interval [CI], 0.63, 2.12) nor medical chart based (OR = 1.14; 95% CI, 0.75, 1.73) maternal exposure to exogenous female hormones was related to malignant GCT risk. Pregnancy-related conditions that may have altered serum levels of circulating female hormones were also unrelated to the risk of GCT in the offspring. This study failed to provide strong evidence to support the hypothesis that maternal exposure to exogenous female hormones during pregnancy increases the risk of GCT in the offspring.

  20. The Transmission of Values to School-Age and Young Adult Offspring: Race and Gender Differences in Parenting

    ERIC Educational Resources Information Center

    Pagano, Maria E.; Hirsch, Barton J.; Deutsch, Nancy L.; McAdams, Dan P.

    2003-01-01

    The current study explores parental socialization practices and the values transmitted to school-aged and young adult off-spring, focusing on race and gender issues involved in parental teachings. A community sample of 187 black and white mothers and fathers were interviewed with regards to their parenting practices using both quantitative and…

  1. Differences in sperm storage and remating propensity between adult females of two morphotypes of the Anastrepha fraterculus (Diptera: Tephritidae) cryptic species complex.

    PubMed

    Abraham, S; Rull, J; Mendoza, M; Liendo, M C; Devescovi, F; Roriz, A K; Kovaleski, A; Segura, D F; Vera, M T

    2014-06-01

    The South American fruit fly, Anastrepha fraterculus, is a complex of cryptic species composed of at least seven morphotypes. Some of them, such as the Peruvian and Brazilian 1 morphotypes (which include Argentinean populations), exhibit strong pre-copulatory isolation, yet it is possible to obtain heterotypic crosses when forcing copulation of adults under laboratory conditions. The cross involving Peruvian males and Argentinean females produces F1 offspring with reduced viability in terms of egg hatch. This low hatchability could be caused by a reduced amount of sperm transferred to and stored by females mated with heterotypic males, which in turn could affect their post-copulatory behaviour. To test these hypotheses, we investigated sperm transfer and female mating and remating behaviour for homotypic and heterotypic crosses between adults of two morphotypes (Brazilian 1 [Argentina] and Peruvian [Peru]) of the A. fraterculus cryptic species complex. As reported before, Argentinean males and females mated earlier in the day than the other three mating combinations. Peruvian females engaged in shorter copulation times than Argentinean females. Peruvian females tended to store smaller quantities of sperm than Argentinean females, and almost a half of the crosses involving Argentinean males and Peruvian females were unsuccessful (no sperm transfer). However, there was no evidence that the cross between Peruvian males and Argentinean females resulted in storage of a critically small amount of sperm (posing risk of sperm shortage). Argentinean females were more willing to remate than Peruvian females, irrespective of male morphotype, but latency to remating was not affected by male or female morphotype. This study shows that mating behaviour differs between some of the A. fraterculus complex morphotypes, with female but not male morphotype determining female likelihood to remate.

  2. Maternal eNOS deficiency determines a fatty liver phenotype of the offspring in a sex dependent manner

    PubMed Central

    Hocher, Berthold; Haumann, Hannah; Rahnenführer, Jan; Reichetzeder, Christoph; Kalk, Philipp; Pfab, Thiemo; Tsuprykov, Oleg; Winter, Stefan; Hofmann, Ute; Li, Jian; Püschel, Gerhard P.; Lang, Florian; Schuppan, Detlef; Schwab, Matthias; Schaeffeler, Elke

    2016-01-01

    ABSTRACT Maternal environmental factors can impact on the phenotype of the offspring via the induction of epigenetic adaptive mechanisms. The advanced fetal programming hypothesis proposes that maternal genetic variants may influence the offspring's phenotype indirectly via epigenetic modification, despite the absence of a primary genetic defect. To test this hypothesis, heterozygous female eNOS knockout mice and wild type mice were bred with male wild type mice. We then assessed the impact of maternal eNOS deficiency on the liver phenotype of wild type offspring. Birth weight of male wild type offspring born to female heterozygous eNOS knockout mice was reduced compared to offspring of wild type mice. Moreover, the offspring displayed a sex specific liver phenotype, with an increased liver weight, due to steatosis. This was accompanied by sex specific differences in expression and DNA methylation of distinct genes. Liver global DNA methylation was significantly enhanced in both male and female offspring. Also, hepatic parameters of carbohydrate metabolism were reduced in male and female offspring. In addition, male mice displayed reductions in various amino acids in the liver. Maternal genetic alterations, such as partial deletion of the eNOS gene, can affect liver metabolism of wild type offspring without transmission of the intrinsic defect. This occurs in a sex specific way, with more detrimental effects in females. This finding demonstrates that a maternal genetic defect can epigenetically alter the phenotype of the offspring, without inheritance of the defect itself. Importantly, these acquired epigenetic phenotypic changes can persist into adulthood. PMID:27175980

  3. Positive modulation of α5 GABAA receptors in preadolescence prevents reduced locomotor response to amphetamine in adult female but not male rats prenatally exposed to lipopolysaccharide.

    PubMed

    Batinić, Bojan; Santrač, Anja; Jančić, Ivan; Li, Guanguan; Vidojević, Aleksandra; Marković, Bojan; Cook, James M; Savić, Miroslav M

    2017-10-01

    We previously demonstrated that lipopolysaccharide (LPS) administered intraperitoneally (i.p.) to pregnant Wistar rat dams, at embryonic days 15 and 16 (E15/16), induced a decrease of baseline locomotor activity and diminished reactivity to amphetamine in adult female offspring. In the present study we aimed to assess the duration of LPS-induced maternal immune activation (MIA) and investigate possible changes in levels of main neurotransmitters in fetal brain during MIA. We hypothesized that the observed behavioral changes may be linked with MIA-induced disturbance of prenatal GABAergic system development, especially with α5 GABA A receptors (α5GABA A Rs), expression of which takes place between E14 and E17. Thereafter, we set to investigate if later potentiation of α5GABA A Rs in offspring's preadolescence (from postnatal day 22-28) could prevent the deficit in locomotor reactivity to amphetamine observed in adulthood, at postnatal day P60. The elevation of IL-6 in amniotic fluid 6h after LPS treatment (100μg/kg, i.p.) at E15 was concurrent with a significant increase of GABA and decrease of glutamate concentration in fetal brain. Moreover, repeated administration of MP-III-022, a selective positive allosteric modulator of α5GABA A Rs, at a dose (2mg/kg daily, i.p.) derived from a separate pharmacokinetic study, prevented the LPS-induced decrease in locomotor reactivity to amphetamine (0.5mg/kg, i.p.) in adult females. These results were not mirrored in the parallel set of experiments with male offspring from LPS-treated rats. The results suggest that pharmacological potentiation of α5GABA A Rs activity in preadolescence may ameliorate at least some of adverse consequences of exposure to MIA in utero. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  4. Autonomic and Renal Alterations in the Offspring of Sleep-Restricted Mothers During Late Pregnancy.

    PubMed

    Raimundo, Joyce R S; Bergamaschi, Cassia T; Campos, Ruy R; Palma, Beatriz D; Tufik, Sergio; Gomes, Guiomar N

    2016-09-01

    Considering that changes in the maternal environment may result in changes in progeny, the aim of this study was to investigate the influence of sleep restriction during the last week of pregnancy on renal function and autonomic responses in male descendants at an adult age. After confirmation of pregnancy, female Wistar rats were randomly assigned to either a control or a sleep restriction group. The sleep-restricted rats were subjected to sleep restriction using the multiple platforms method for over 20 hours per day between the 14th and 20th day of pregnancy. After delivery, the litters were limited to 6 offspring that were designated as offspring from control and offspring from sleep-restricted mothers. Indirect measurements of systolic blood pressure (BPi), renal plasma flow, glomerular filtration rate, glomerular area and number of glomeruli per field were evaluated at three months of age. Direct measurements of cardiovascular function (heart rate and mean arterial pressure), cardiac sympathetic tone, cardiac parasympathetic tone, and baroreflex sensitivity were evaluated at four months of age. The sleep-restricted offspring presented increases in BPi, glomerular filtration rate and glomerular area compared with the control offspring. The sleep-restricted offspring also showed higher basal heart rate, increased mean arterial pressure, increased sympathetic cardiac tone, decreased parasympathetic cardiac tone and reduced baroreflex sensitivity. Our data suggest that reductions in sleep during the last week of pregnancy lead to alterations in cardiovascular autonomic regulation and renal morpho-functional changes in offspring, triggering increases in blood pressure.

  5. Parental longevity and offspring's home blood pressure: the Ohasama study.

    PubMed

    Watanabe, Yumiko; Metoki, Hirohito; Ohkubo, Takayoshi; Hirose, Takuo; Kikuya, Masahiro; Asayama, Kei; Inoue, Ryusuke; Hara, Azusa; Obara, Taku; Hoshi, Haruhisa; Totsune, Kazuhito; Imai, Yutaka

    2010-02-01

    Longevity is clustered in particular families. Some studies using conventional blood pressure (BP) reported an association between parental longevity and offspring's BP. No study has used self-measurement of BP at home (home BP). We examined the association between parental longevity and home BP values of adult Japanese offspring. Home and conventional BPs were measured in 1961 residents aged 40 years and over in the general population of Ohasama, Japan. Information about the ages of offspring's parents (age at death or current age) was obtained from a standardized questionnaire. The mean +/- SD values of systolic/diastolic home BP in offspring whose mothers died at less than 69 years of age, at 69-84 years of age, and in offspring whose mothers were alive at age 84 years were 127.4 +/- 13.2/76.2 +/- 9.1, 124.8 +/- 15.0/74.4 +/- 10.0, and 123.4 +/- 15.2/74.4 +/- 10.3 mmHg (P = 0.0002/0.009), respectively. Corresponding values in offspring whose fathers died at less than 66 years of age, at 66-80 years of age, and in offspring whose fathers were alive at age 80 years were 125.7 +/- 15.2/75.6 +/- 10.6, 124.7 +/- 14.1/75.0 +/- 9.2 and 122.4 +/- 14.6/73.6 +/- 9.5 mmHg (P = 0.001/0.003), respectively. Multivariate analysis demonstrated associations that were only weakly observed for conventional BP values (conventional BP: P = 0.3/0.4 for maternal and P = 0.3/0.3 for paternal longevity; home BP: P = 0.05/0.2 for maternal and P = 0.0004/0.007 for paternal longevity). Parental premature death was significantly associated with higher home BP levels in adult offspring, suggesting that parental longevity might be a useful additional marker for screening adult offspring at higher risk of hypertension.

  6. Parental body mass index and blood pressure are associated with higher body mass index and blood pressure in their adult offspring: a cross-sectional study in a resource-limited setting in northern Peru.

    PubMed

    Carrillo-Larco, Rodrigo M; Bernabé-Ortiz, Antonio; Sal Y Rosas, Víctor G; Sacksteder, Katherine A; Diez-Canseco, Francisco; Cárdenas, María K; Gilman, Robert H; Miranda, J Jaime

    2018-05-01

    High body mass index (BMI) and blood pressure (BP) are major contributors to the high burden of non-communicable diseases in adulthood. Individual high-risk and population approaches for prevention require newer strategies to target these risk factors and focusing on the family to introduce prevention initiatives appears as a promising scenario. Characterisation of the relationship between BMI and BP among the adult members of a given family merits evaluation. We conducted a secondary analysis of an implementation study in Tumbes, Peru, benefiting from data derived from families with at least one adult offspring. The exposures of interest were the BMI, systolic BP (SBP) and diastolic BP (DBP) of the mother and father. The outcomes were the BMI, SBP and DBP of the offspring. Mixed-effects linear regression models were conducted. The mean age of the offspring, mothers and fathers was 29 (SD: 9.5), 54 (SD: 11.8) and 59 (SD: 11.6) years, respectively. Father's BMI was associated with a quarter-point increase in offspring BMI, regardless of the sex of the offspring. Mother's BMI had a similar effect on the BMI of her sons, but had no significant effect on her daughters'. Mother's SBP was associated with almost one-tenth of mmHg increase in the SBP of the adult offspring. There was no evidence of an association for DBP. In families with adult members, the higher the parents' BMI and SBP, the higher their adult offspring's levels will be. © 2018 The Authors. Tropical Medicine & International Health Published by John Wiley & Sons Ltd.

  7. Dietary sodium manipulation during critical periods in development sensitize adult offspring to amphetamines

    PubMed Central

    McBride, Shawna M.; Culver, Bruce; Flynn, Francis W.

    2008-01-01

    This study examined critical periods in development to determine when offspring were most susceptible to dietary sodium manipulation leading to amphetamine sensitization. Wistar dams (n = 6–8/group) were fed chow containing low (0.12% NaCl; LN), normal (1% NaCl; NN), or high sodium (4% NaCl; HN) during the prenatal or early postnatal period (birth to 5 wk). Offspring were fed normal chow thereafter until testing at 6 mo. Body weight (BW), blood pressure (BP), fluid intake, salt preference, response to amphetamine, open field behavior, plasma adrenocorticotropin hormone (ACTH), plasma corticosterone (Cort), and adrenal gland weight were measured. BW was similar for all offspring. Offspring from the prenatal and postnatal HN group had increased BP, NaCl intake, and salt preference and decreased water intake relative to NN offspring. Prenatal HN offspring had greater BP than postnatal HN offspring. In response to amphetamine, both prenatal and postnatal LN and HN offspring had increased locomotor behavior compared with NN offspring. In a novel open field environment, locomotion was also increased in prenatal and postnatal LN and HN offspring compared with NN offspring. ACTH and Cort levels 30 min after restraint stress and adrenal gland weight measurement were greater in LN and HN offspring compared with NN offspring. These results indicate that early life experience with low- and high-sodium diets, during the prenatal or early postnatal period, is a stress that produces long-term changes in responsiveness to amphetamines and to subsequent stressors. PMID:18614766

  8. The effects of feeding rats diets deficient in folic acid and related methyl donors on the blood pressure and glucose tolerance of the offspring.

    PubMed

    Maloney, Christopher A; Hay, Susan M; Rees, William D

    2009-05-01

    In humans poor maternal folate status is associated with a decrease in infant birth weight. As low birth weight increases the risk of cardiovascular and metabolic disease in adults, an inadequate supply of folic acid in the mother's diet may increase the susceptibility of the offspring to disease. We have fed laboratory rats diets deficient in folic acid and the related methyl donors methionine and choline to examine the effects on growth, blood pressure and insulin action in the offspring. Poor folate status transiently increased fetal growth but did not produce a long-term change in body weight. There were, however, small changes in the hearts of the female offspring. When folate deficiency was combined with low intakes of methionine and choline, the kidneys of the male offspring were proportionately smaller, probably because of the limited availability of methionine. There was no effect on the blood pressure of either the male or female offspring. The pancreatic insulin content of fetuses from animals fed the folate-deficient diets were higher than those of the controls. Following an oral glucose challenge, there was a weak trend for glucose-stimulated insulin release to be increased in the offspring of dams fed the folate-deficient diet. The changes in insulin concentrations were, however, much smaller than the corresponding changes observed in the offspring of animals fed protein-deficient diets. These results suggest that folate deficiency during gestation causes modest changes to the insulin axis of the fetus.

  9. Kidney Dysfunction in Adult Offspring Exposed In Utero to Type 1 Diabetes Is Associated with Alterations in Genome-Wide DNA Methylation

    PubMed Central

    Gautier, Jean-François; Porcher, Raphaël; Abi Khalil, Charbel; Bellili-Munoz, Naima; Fetita, Lila Sabrina; Travert, Florence; Choukem, Simeon-Pierre; Riveline, Jean-Pierre; Hadjadj, Samy; Larger, Etienne; Boudou, Philippe; Blondeau, Bertrand; Roussel, Ronan; Ferré, Pascal; Ravussin, Eric; Rouzet, François; Marre, Michel

    2015-01-01

    Background Fetal exposure to hyperglycemia impacts negatively kidney development and function. Objective Our objective was to determine whether fetal exposure to moderate hyperglycemia is associated with epigenetic alterations in DNA methylation in peripheral blood cells and whether those alterations are related to impaired kidney function in adult offspring. Design Twenty nine adult, non-diabetic offspring of mothers with type 1 diabetes (T1D) (case group) were matched with 28 offspring of T1D fathers (control group) for the study of their leukocyte genome-wide DNA methylation profile (27,578 CpG sites, Human Methylation 27 BeadChip, Illumina Infinium). In a subset of 19 cases and 18 controls, we assessed renal vascular development by measuring Glomerular Filtration Rate (GFR) and Effective Renal Plasma Flow (ERPF) at baseline and during vasodilatation produced by amino acid infusion. Results Globally, DNA was under-methylated in cases vs. controls. Among the 87 CpG sites differently methylated, 74 sites were less methylated and 13 sites more methylated in cases vs. controls. None of these CpG sites were located on a gene known to be directly involved in kidney development and/or function. However, the gene encoding DNA methyltransferase 1 (DNMT1)—a key enzyme involved in gene expression during early development–was under-methylated in cases. The average methylation of the 74 under-methylated sites differently correlated with GFR in cases and controls. Conclusion Alterations in methylation profile imprinted by the hyperglycemic milieu of T1D mothers during fetal development may impact kidney function in adult offspring. The involved pathways seem to be a nonspecific imprinting process rather than specific to kidney development or function. PMID:26258530

  10. Kidney Dysfunction in Adult Offspring Exposed In Utero to Type 1 Diabetes Is Associated with Alterations in Genome-Wide DNA Methylation.

    PubMed

    Gautier, Jean-François; Porcher, Raphaël; Abi Khalil, Charbel; Bellili-Munoz, Naima; Fetita, Lila Sabrina; Travert, Florence; Choukem, Simeon-Pierre; Riveline, Jean-Pierre; Hadjadj, Samy; Larger, Etienne; Boudou, Philippe; Blondeau, Bertrand; Roussel, Ronan; Ferré, Pascal; Ravussin, Eric; Rouzet, François; Marre, Michel

    2015-01-01

    Fetal exposure to hyperglycemia impacts negatively kidney development and function. Our objective was to determine whether fetal exposure to moderate hyperglycemia is associated with epigenetic alterations in DNA methylation in peripheral blood cells and whether those alterations are related to impaired kidney function in adult offspring. Twenty nine adult, non-diabetic offspring of mothers with type 1 diabetes (T1D) (case group) were matched with 28 offspring of T1D fathers (control group) for the study of their leukocyte genome-wide DNA methylation profile (27,578 CpG sites, Human Methylation 27 BeadChip, Illumina Infinium). In a subset of 19 cases and 18 controls, we assessed renal vascular development by measuring Glomerular Filtration Rate (GFR) and Effective Renal Plasma Flow (ERPF) at baseline and during vasodilatation produced by amino acid infusion. Globally, DNA was under-methylated in cases vs. controls. Among the 87 CpG sites differently methylated, 74 sites were less methylated and 13 sites more methylated in cases vs. controls. None of these CpG sites were located on a gene known to be directly involved in kidney development and/or function. However, the gene encoding DNA methyltransferase 1 (DNMT1)--a key enzyme involved in gene expression during early development--was under-methylated in cases. The average methylation of the 74 under-methylated sites differently correlated with GFR in cases and controls. Alterations in methylation profile imprinted by the hyperglycemic milieu of T1D mothers during fetal development may impact kidney function in adult offspring. The involved pathways seem to be a nonspecific imprinting process rather than specific to kidney development or function.

  11. The association between parental history of diagnosed mood/anxiety disorders and psychiatric symptoms and disorders in young adult offspring

    PubMed Central

    2012-01-01

    Background Parental history of mood or anxiety disorders is one of the strongest and most consistent risk factors for the development of these disorders in offspring. Gaps remain however in our knowledge of whether maternal or paternal disorders are more strongly associated with offspring disorders, and whether the association exists in non-clinical samples. This study uses a large population-based sample to test if maternal or paternal history of mood and/or anxiety disorders increases the risk of mood and/or anxiety disorders, or symptoms of specific anxiety disorders, in offspring. Methods Data were drawn from the Nicotine Dependence in Teens Study, a prospective cohort investigation of 1293 grade 7 students. Data on mental health outcomes were collected in mailed self-report questionnaires when participants were aged 20.4 (0.7) years on average. Parental data were collected in mailed self-report questionnaires. This current analysis pertains to 564 participants with maternal and/or paternal data. The association between maternal and paternal history and each of diagnosed anxiety disorder, diagnosed mood disorder, and symptoms of specific anxiety disorders in offspring was studied in multivariate logistic regression. Results A higher proportion of mothers than fathers had a diagnosed mood/anxiety disorder (23% versus 12%). Similarly, 14% of female offspring had a diagnosed mood/anxiety disorder, compared to 6% of male offspring. The adjusted odds ratio (95% confidence interval) for maternal history was 2.2 (1.1, 4.5) for diagnosed mood disorders, 4.0 (2.1, 7.8) for diagnosed anxiety disorders, and 2.2 (1.2, 4.0) for social phobia symptoms. Paternal history was not associated with any of the mental health outcomes in offspring. Conclusion Maternal, but not paternal mood/anxiety disorders were associated with diagnosed psychiatric disorders, as well as symptoms of specific anxiety disorders, in offspring. Efforts to detect mood and anxiety disorders in offspring

  12. Later Life Impacts of Social Participation on Parents of Adult Offspring with and without Intellectual and Developmental Disabilities

    ERIC Educational Resources Information Center

    Olsen, Darren L.

    2018-01-01

    Social participation is an important resource for parents in old age, and may be particularly important for parents living with adult offspring with intellectual and developmental disabilities. To evaluate whether socializing with friends and family and participating in social organizations protects against depression in old age, this study…

  13. Programming of maternal and offspring disease: impact of growth restriction, fetal sex and transmission across generations

    PubMed Central

    Cheong, Jean N.; Moritz, Karen M.; Cuffe, James S. M.

    2016-01-01

    Abstract Babies born small are at an increased risk of developing myriad adult diseases. While growth restriction increases disease risk in all individuals, often a second hit is required to unmask ‘programmed’ impairments in physiology. Programmed disease outcomes are demonstrated more commonly in male offspring compared with females, with these sex‐specific outcomes partly attributed to different placenta‐regulated growth strategies of the male and female fetus. Pregnancy is known to be a major risk factor for unmasking a number of conditions and can be considered a ‘second hit’ for women who were born small. As such, female offspring often develop impairments of physiology for the first time during pregnancy that present as pregnancy complications. Numerous maternal stressors can further increase the risk of developing a maternal complication during pregnancy. Importantly, these maternal complications can have long‐term consequences for both the mother after pregnancy and the developing fetus. Conditions such as preeclampsia, gestational diabetes and hypertension as well as thyroid, liver and kidney diseases are all conditions that can complicate pregnancy and have long‐term consequences for maternal and offspring health. Babies born to mothers who develop these conditions are often at a greater risk of developing disease in adulthood. This has implications as a mechanism for transmission of disease across generations. In this review, we discuss the evidence surrounding long‐term intergenerational implications of being born small and/or experiencing stress during pregnancy on programming outcomes. PMID:26970222

  14. Psychological Sequelae in Adult Females Reporting Childhood Ritualistic Abuse.

    ERIC Educational Resources Information Center

    Lawrence, Kathy J.; And Others

    1995-01-01

    Comparison of 19 adult females reporting childhood ritualistic sexual abuse with 27 adult females reporting sexual abuse without ritualism found that women reporting ritualistic abuse scored significantly higher on measures of childhood sexual and physical abuse severity. Neither posttraumatic stress disorder (PTSD) diagnostic status nor PTSD…

  15. Resveratrol Intake During Pregnancy and Lactation Modulates the Early Metabolic Effects of Maternal Nutrition Differently in Male and Female Offspring.

    PubMed

    Ros, Purificación; Díaz, Francisca; Freire-Regatillo, Alejandra; Argente-Arizón, Pilar; Barrios, Vicente; Argente, Jesús; Chowen, Julie A

    2018-02-01

    Poor maternal nutrition can have detrimental long-term consequences on energy homeostasis in the offspring. Resveratrol exerts antioxidant and antiobesity actions, but its impact during development remains largely unknown. We hypothesized that resveratrol intake during pregnancy and lactation could improve the effects of poor maternal nutrition on offspring metabolism. Wistar rats received a low-fat diet (LFD; 10.2% kcal from fat) or high-fat diet (HFD; 61.6% kcal from fat), with half of each group receiving resveratrol in their drinking water (50 mg/L) during pregnancy and lactation. Body weight (BW) of dams was measured at treatment onset and weaning [postnatal day (PND) 21] and of pups at birth and PND21, at which time dams and pups were euthanized. Although HFD dams consumed more energy, their BW at the end of lactation was unaffected. Mean litter size was not modified by maternal diet or resveratrol. At birth, male offspring from HFD and resveratrol (HFD + R) dams weighed less than those from LFD and resveratrol (LFD + R) dams. On PND21, pups of both sexes from HFD dams weighed more, had more visceral adipose tissue (VAT) and subcutaneous adipose tissue (SCAT), and had higher serum leptin levels than those from LFD dams. Resveratrol reduced BW, leptin, VAT, and SCAT, with females being more affected, but increased glycemia. Neuropeptide levels were unaffected by resveratrol. In conclusion, resveratrol intake during pregnancy and lactation decreased BW and adipose tissue content in offspring of dams on an HFD but did not affect offspring from LFD-fed dams, suggesting that the potential protective effects of resveratrol during gestation/lactation are diet dependent. Copyright © 2018 Endocrine Society.

  16. Competing for the benefit of offspring eliminates the gender gap in competitiveness.

    PubMed

    Cassar, Alessandra; Wordofa, Feven; Zhang, Y Jane

    2016-05-10

    Recent advances have highlighted the evolutionary significance of female competition, with the sexes pursuing different competitive strategies and women reserving their most intense competitive behaviors for the benefit of offspring. Influential economic experiments using cash incentives, however, have found evidence suggesting that women have a lower desire to compete than men. We hypothesize that the estimated gender differences critically depend on how we elicit them, especially on the incentives used. We test this hypothesis through an experiment with adults in China (n = 358). Data show that, once the incentives are switched from monetary to child-benefitting, gender differences disappear. This result suggests that female competition can be just as intense as male competition given the right goals, indicating important implications for policies designed to promote gender equality.

  17. Parental effects alter the adaptive value of an adult behavioural trait.

    PubMed

    Kilner, Rebecca M; Boncoraglio, Giuseppe; Henshaw, Jonathan M; Jarrett, Benjamin J M; De Gasperin, Ornela; Attisano, Alfredo; Kokko, Hanna

    2015-09-22

    The parents' phenotype, or the environment they create for their young, can have long-lasting effects on their offspring, with profound evolutionary consequences. Yet, virtually no work has considered how such parental effects might change the adaptive value of behavioural traits expressed by offspring upon reaching adulthood. To address this problem, we combined experiments on burying beetles (Nicrophorus vespilloides) with theoretical modelling and focussed on one adult behavioural trait in particular: the supply of parental care. We manipulated the early-life environment and measured the fitness payoffs associated with the supply of parental care when larvae reached maturity. We found that (1) adults that received low levels of care as larvae were less successful at raising larger broods and suffered greater mortality as a result: they were low-quality parents. Furthermore, (2) high-quality males that raised offspring with low-quality females subsequently suffered greater mortality than brothers of equivalent quality, which reared larvae with higher quality females. Our analyses identify three general ways in which parental effects can change the adaptive value of an adult behavioural trait: by influencing the associated fitness benefits and costs; by consequently changing the evolutionary outcome of social interactions; and by modifying the evolutionarily stable expression of behavioural traits that are themselves parental effects.

  18. Experimental evidence that corticosterone affects offspring sex ratios in quail

    PubMed Central

    Pike, Thomas W; Petrie, Marion

    2006-01-01

    Recent studies have shown that some species of birds have a remarkable degree of control over the sex ratio of offspring they produce. However, the mechanism by which they achieve this feat is unknown. Hormones circulating in the breeding female are particularly sensitive to environmental perturbations, and so could provide a mechanism for her to bias the sex ratio of her offspring in favour of the sex that would derive greatest benefit from the prevailing environmental conditions. Here, we present details of an experiment in which we manipulated levels of testosterone, 17β-oestradiol and corticosterone in breeding female Japanese quail (Coturnix coturnix japonica) using Silastic implants and looked for effects on the sex ratio of offspring produced. Offspring sex ratio in this species was significantly correlated with faecal concentrations of the principal avian stress hormone, corticosterone, and artificially elevated levels of corticosterone resulted in significantly female-biased sex ratios at laying. Varying testosterone and 17β-oestradiol had no effect on sex ratio alone, and faecal levels of these hormones did not vary in response to corticosterone. Our results suggest that corticosterone may be part of the sex-biasing process in birds. PMID:16600886

  19. Maternal Stress and Effects of Prenatal Air Pollution on Offspring Mental Health Outcomes in Mice

    PubMed Central

    Huff, Nicole C.; Smith, Susan H.; Mason, S. Nicholas; Foster, W. Michael; Auten, Richard L.; Bilbo, Staci D.

    2013-01-01

    Background: Low socioeconomic status is consistently associated with reduced physical and mental health, but the mechanisms remain unclear. Increased levels of urban air pollutants interacting with parental stress have been proposed to explain health disparities in respiratory disease, but the impact of such interactions on mental health is unknown. Objectives: We aimed to determine whether prenatal air pollution exposure and stress during pregnancy act synergistically on offspring to induce a neuroinflammatory response and subsequent neurocognitive disorders in adulthood. Methods: Mouse dams were intermittently exposed via oropharyngeal aspiration to diesel exhaust particles (DEP; 50 μg × 6 doses) or vehicle throughout gestation. This exposure was combined with standard housing or nest material restriction (NR; a novel model of maternal stress) during the last third of gestation. Results: Adult (postnatal day 60) offspring of dams that experienced both stressors (DEP and NR) displayed increased anxiety, but only male offspring of this group had impaired cognition. Furthermore, maternal DEP exposure increased proinflammatory interleukin (IL)-1β levels within the brains of adult males but not females, and maternal DEP and NR both decreased anti-inflammatory IL-10 in male, but not female, brains. Similarly, only DEP/NR males showed increased expression of the innate immune recognition gene toll-like receptor 4 (Tlr4) and its downstream effector, caspase-1. Conclusions: These results show that maternal stress during late gestation increases the susceptibility of offspring—particularly males—to the deleterious effects of prenatal air pollutant exposure, which may be due to a synergism of these factors acting on innate immune recognition genes and downstream neuroinflammatory cascades within the developing brain. Citation: Bolton JL, Huff NC, Smith SH, Mason SN, Foster WM, Auten RL, Bilbo SD. 2013. Maternal stress and effects of prenatal air pollution on

  20. Tumors and Proliferative Lesions in Adult Offspring After Maternal Exposure to Methylarsonous Acid During Gestation in CD1 Mice

    EPA Science Inventory

    Developmental exposure to inorganic arsenic is carcinogenic in humans and mice, and adult offspring of mice exposed to inorganic arsenic can develop tumors of the lung, liver, adrenal, uterus, and ovary. It has been suggested that methylarsonous acid (MMA3+), a product of the bi...

  1. (Meta)cognitive beliefs in posttraumatic stress disorder following forced displacement at the end of the Second World War in older adults and their offspring.

    PubMed

    Jelinek, Lena; Wittekind, Charlotte E; Kellner, Michael; Moritz, Steffen; Muhtz, Christoph

    2013-01-01

    The aim of the present study was to investigate (meta)cognitive beliefs related to posttraumatic stress disorder (PTSD) in a sample of individuals displaced as children at the end of the Second World War as well as transgenerational effects of trauma and PTSD on the offspring. Displaced individuals with (n=20) and without PTSD (n=24) and nondisplaced healthy controls (n=11), as well as one of their adult offspring, were assessed with the Metacognitions Questionnaire (MCQ-30). Older adults, formerly displaced in childhood, were additionally assessed with the Posttraumatic Cognitions Inventory (PTCI). Dysfunctional beliefs (MCQ-30, PTCI) were particularly pronounced in formerly displaced individuals with PTSD, but not in the offspring generation. The findings suggest that in an aging group of displaced individuals with PTSD dysfunctional beliefs are associated with the disorder. Bias modification may help to attenuate symptomatology. No evidence was found for a transgenerational effect.

  2. Sexual orientation of male mouse offspring prenatally exposed to ethanol.

    PubMed

    Watabe, T; Endo, A

    1994-01-01

    Pregnant mice were intubated with either low (2 g/kg) or high (4 g/kg) dose of ethanol twice daily throughout the last third of the gestational period (from dg14 to dg18: gestational day; plug positive = dg 0). Ninety days after birth, the sexual orientation test was conducted on male offspring. This test was designed to observe a two-choice preference for either male or female partners in a setting in which the test animal could move freely between the two incentive compartments within which a stud male and an estrous female had been placed. We found that young adult males that had been exposed to ethanol prenatally have a decreased preference for the opposite sex and an increased preference for the same sex as a partner, although their physical development was apparently unaffected.

  3. Parental Smoking and Adult Offspring's Smoking Behaviors in Ethnic Minority Groups: An Intergenerational Analysis in the HELIUS Study.

    PubMed

    Ikram, Umar Z; Snijder, Marieke B; Derks, Eske M; Peters, Ron J G; Kunst, Anton E; Stronks, Karien

    2018-05-03

    To understand smoking behaviors among ethnic minority groups, studies have largely focused on societal factors, with little attention to family influences. Yet studies among majority groups have identified parental smoking as an important risk factor. It is unknown whether this applies to ethnic minority groups. We investigated the association between parental smoking and adult offspring's smoking behaviors among ethnic minority groups with an immigrant background. We used data from the Healthy Life in an Urban Setting study from Amsterdam (the Netherlands) from January 2011 to December 2015. The sample consisted of 2184 parent-offspring pairs from South-Asian Surinamese, African Surinamese, Turkish, Moroccan, and Ghanaian origin. We collected self-reported smoking data: current status, duration of exposure to parental smoking, number of daily cigarettes, heavy smoking ( > 10 cigarettes/day), and nicotine dependency (using the Fagerström Test). Analyses were stratified by offspring's age, cohabitation with parent, education (parent/offspring), offspring's cultural orientation, and gender concordance within pairs. Logistic regression was used. Overall, parental smoking was associated with offspring's smoking behaviors (eg, current smoking: odds ratio 2.33; 95% confidence interval 1.79-3.03), with little ethnic variation. We found dose-response associations between exposure to parental smoking and offspring's smoking. The associations were similar across different strata but stronger in gender-concordant pairs (3.16; 2.12-4.51 vs. 1.73; 1.15-2.59 in gender-discordant pairs; p-value for interaction .017). Parental smoking is associated with offspring's smoking behaviors in ethnic minority groups across different strata but particularly in gender-concordant pairs. Similar to majority groups, family influences matter to smoking behaviors in ethnic minority groups. Our findings have deepened our understanding of smoking behaviors among ethnic minority groups. Future

  4. Adverse metabolic phenotype of female offspring exposed to preeclampsia in utero: a characterization of the BPH/5 mouse in postnatal life

    PubMed Central

    Sutton, Elizabeth F.; Lob, Heinrich E.; Song, Jiunn; Xia, YunWei; Butler, Scott; Liu, Chin-Chi; Redman, Leanne M.

    2017-01-01

    Preeclampsia (PE) is a devastating disorder of pregnancy that classically presents with maternal hypertension and proteinuria after 20 wk of gestation. In addition to being a leading cause of maternal and fetal morbidity/mortality, epidemiological and prospective studies have revealed long-term consequences for both the mother and baby of preeclamptic pregnancies, including chronic hypertension as well as other cardiovascular diseases and metabolic derangements. To better understand the effect of in utero exposure of PE on offspring, we utilized the BPH/5 mouse, a spontaneous model of the maternal and fetal PE syndrome. We hypothesized that young BPH/5 offspring would have altered metabolic and cardiovascular phenotypes. Indeed, BPH/5 growth-restricted offspring showed excess catch-up growth by early adulthood due to hyperphagia and increased white adipose tissue (WAT) accumulation, with inflammation markers isolated to the reproductive WAT depot only. Both excessive WAT accumulation and the inflammatory WAT phenotype were corrected by pair-feeding young BPH/5 female mice. We also found that young BPH/5 female mice showed evidence of leptin resistance. Indeed, chronic hyperleptinemia has been shown to characterize other rodent models of PE; however, the maternal metabolic profile before pregnancy has not been fully understood. Furthermore, we found that these mice show signs of cardiovascular anomalies (hypertension and cardiomegaly) and altered signaling within the reproductive axis in early life. Future studies will involve challenging the physiological metabolic state of BPH/5 mice through pair-feeding to reduce WAT before pregnancy and determining its causal role in adverse pregnancy outcomes. PMID:28122721

  5. Adverse metabolic phenotype of female offspring exposed to preeclampsia in utero: a characterization of the BPH/5 mouse in postnatal life.

    PubMed

    Sutton, Elizabeth F; Lob, Heinrich E; Song, Jiunn; Xia, YunWei; Butler, Scott; Liu, Chin-Chi; Redman, Leanne M; Sones, Jenny L

    2017-04-01

    Preeclampsia (PE) is a devastating disorder of pregnancy that classically presents with maternal hypertension and proteinuria after 20 wk of gestation. In addition to being a leading cause of maternal and fetal morbidity/mortality, epidemiological and prospective studies have revealed long-term consequences for both the mother and baby of preeclamptic pregnancies, including chronic hypertension as well as other cardiovascular diseases and metabolic derangements. To better understand the effect of in utero exposure of PE on offspring, we utilized the BPH/5 mouse, a spontaneous model of the maternal and fetal PE syndrome. We hypothesized that young BPH/5 offspring would have altered metabolic and cardiovascular phenotypes. Indeed, BPH/5 growth-restricted offspring showed excess catch-up growth by early adulthood due to hyperphagia and increased white adipose tissue (WAT) accumulation, with inflammation markers isolated to the reproductive WAT depot only. Both excessive WAT accumulation and the inflammatory WAT phenotype were corrected by pair-feeding young BPH/5 female mice. We also found that young BPH/5 female mice showed evidence of leptin resistance. Indeed, chronic hyperleptinemia has been shown to characterize other rodent models of PE; however, the maternal metabolic profile before pregnancy has not been fully understood. Furthermore, we found that these mice show signs of cardiovascular anomalies (hypertension and cardiomegaly) and altered signaling within the reproductive axis in early life. Future studies will involve challenging the physiological metabolic state of BPH/5 mice through pair-feeding to reduce WAT before pregnancy and determining its causal role in adverse pregnancy outcomes. Copyright © 2017 the American Physiological Society.

  6. Dysfunctional Cognitions among Offspring of Individuals with Bipolar Disorder.

    PubMed

    Ruggero, Camilo J; Bain, Kathleen M; Smith, Patrick M; Kilmer, Jared N

    2015-07-01

    Individuals with bipolar disorder often endorse dysfunctional beliefs consistent with cognitive models of bipolar disorder (Beck, 1976; Mansell, 2007). The present study sought to assess whether young adult offspring of those with bipolar disorder would also endorse these beliefs, independent of their own mood episode history. Participants (N = 89) were young adult college students with a parent with bipolar disorder (n = 27), major depressive disorder (MDD; n = 30), or no mood disorder (n = 32). Semi-structured interviews of the offspring were used to assess diagnoses. Dysfunctional beliefs related to Beck and colleagues' (2006) and Mansell's (2007) cognitive models were assessed. Unlike offspring of parents with MDD or no mood disorder, those with a parent with bipolar disorder endorsed significantly more dysfunctional cognitions associated with extreme appraisal of mood states, even after controlling for their own mood diagnosis. Once affected by a bipolar or depressive disorder, offspring endorsed dysfunctional cognitions across measures. Dysfunctional cognitions, particularly those related to appraisals of mood states and their potential consequences, are evident in young adults with a parent who has bipolar disorder and may represent targets for psychotherapeutic intervention.

  7. Sex-specific Effects of Exercise Ancestry on Metabolic, Morphological, and Gene Expression Phenotypes in Multiple Generations of Mouse Offspring

    PubMed Central

    Guth, Lisa M.; Ludlow, Andrew T.; Witkowski, Sarah; Marshall, Mallory R.; Lima, Laila C. J.; Venezia, Andrew C.; Xiao, Tao; Lee, Mei-Ling Ting; Spangenburg, Espen E.; Roth, Stephen M.

    2013-01-01

    Early life and pre-conception environmental stimuli can affect adult health-related phenotypes. Exercise training is an environmental stimulus affecting many systems throughout the body and appears to alter offspring phenotypes. The aim of this study was to examine the influence of parental exercise training, or “exercise ancestry,” on morphological and metabolic phenotypes in two generations of mouse offspring. F0 C57BL/6 mice were exposed to voluntary exercise or sedentary lifestyle and bred with like-exposed mates to produce an F1 generation. F1 mice of both ancestries were sedentary and sacrificed at 8 wk or bred with littermates to produce an F2 generation, which was also sedentary and sacrificed at 8 wk. Small, but broad generation- and sex-specific effects of exercise ancestry were observed for body mass, fat and muscle mass, serum insulin, glucose tolerance, and muscle gene expression. F1 EX females were lighter than F1 SED females, and had lower absolute tibialis anterior and omental fat masses. Serum insulin was higher in F1 EX females compared to F1 SED females. F2 EX females had impaired glucose tolerance compared to F2 SED females. Analysis of skeletal muscle mRNA levels revealed several generation- and sex-specific differences in mRNA levels for multiple genes, especially those related to metabolic genes (e.g., F1 EX males had lower mRNA levels of Hk2, Ppard, Ppargc1α, Adipoq, and Scd1 than F1 SED males). These results provide preliminary evidence that parental exercise training can influence health-related phenotypes in mouse offspring. PMID:23771910

  8. The effects of maternal corticosterone levels on offspring behavior in fast- and slow-growth garter snakes (Thamnophis elegans).

    PubMed

    Robert, Kylie A; Vleck, Carol; Bronikowski, Anne M

    2009-01-01

    During embryonic development, viviparous offspring are exposed to maternally circulating hormones. Maternal stress increases offspring exposure to corticosterone and this hormonal exposure has the potential to influence developmental, morphological and behavioral traits of the resulting offspring. We treated pregnant female garter snakes (Thamnophis elegans) with low levels of corticosterone after determining both natural corticosterone levels in the field and pre-treatment levels upon arrival in the lab. Additional measurements of plasma corticosterone were taken at days 1, 5, and 10 during the 10-day exposure, which occurred during the last third of gestation (of 4-month gestation). These pregnant snakes were from replicate populations of fast- and slow-growth ecotypes occurring in Northern California, with concomitant short and long lifespans. Field corticosterone levels of pregnant females of the slow-growth ecotype were an order of magnitude higher than fast-growth dams. In the laboratory, corticosterone levels increased over the 10 days of corticosterone manipulation for animals of both ecotypes, and reached similar plateaus for both control and treated dams. Despite similar plasma corticosterone levels in treated and control mothers, corticosterone-treated dams produced more stillborn offspring and exhibited higher total reproductive failure than control dams. At one month of age, offspring from fast-growth females had higher plasma corticosterone levels than offspring from slow-growth females, which is opposite the maternal pattern. Offspring from corticosterone-treated mothers, although unaffected in their slither speed, exhibited changes in escape behaviors and morphology that were dependent upon maternal ecotype. Offspring from corticosterone-treated fast-growth females exhibited less anti-predator reversal behavior; offspring from corticosterone-treated slow-growth females exhibited less anti-predator tail lashing behavior.

  9. Maternal smoking during pregnancy and risk of alcohol use disorders among adult offspring.

    PubMed

    Nomura, Yoko; Gilman, Stephen E; Buka, Stephen L

    2011-03-01

    The aim of this study was to evaluate the association between maternal smoking during pregnancy (MSP) and lifetime risk for alcohol use disorder (AUD) and to explore possible mechanisms through which MSP may be related to neurobehavioral conditions during infancy and childhood, which could, in turn, lead to increased risk for AUD. A sample of 1,625 individuals was followed from pregnancy for more than 40 years. Capitalizing on the long follow-up time, we used survival analysis to examine lifetime risks of AUD (diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition) in relation to levels of MSP (none, <20 cigarettes/day, and ≥20 cigarettes/day). We then used structural equation modeling to test hypotheses regarding potential mechanisms, including lower birth weight, neurological abnormalities, poorer academic functioning, and behavioral dysregulation. Relative to unexposed offspring, offspring of mothers who smoked 20 cigarettes per day or more exhibited greater risks for AUD (hazard ratio = 1.31, 95% CI [1.08, 1.59]). However, no differences were observed among offspring exposed to fewer than 20 cigarettes per day. In structural equation models, MSP was associated with neurobehavioral problems during infancy and childhood, which, in turn, were associated with an increased risk for adult AUD. MSP was associated with an increased lifetime risk for AUD. Adverse consequences were evident from birth to adulthood. A two-pronged remedial intervention targeted at both the mother (to reduce smoking during pregnancy) and child (to improve academic functioning) may reduce the risk for subsequent AUD.

  10. Landscape Simplification Constrains Adult Size in a Native Ground-Nesting Bee

    PubMed Central

    Renauld, Miles; Hutchinson, Alena; Loeb, Gregory; Poveda, Katja; Connelly, Heather

    2016-01-01

    Bees provide critical pollination services to 87% of angiosperm plants; however, the reliability of these services may become threatened as bee populations decline. Agricultural intensification, resulting in the simplification of environments at the landscape scale, greatly changes the quality and quantity of resources available for female bees to provision their offspring. These changes may alter or constrain the tradeoffs in maternal investment allocation between offspring size, number and sex required to maximize fitness. Here we investigate the relationship between landscape scale agricultural intensification and the size and number of individuals within a wild ground nesting bee species, Andrena nasonii. We show that agricultural intensification at the landscape scale was associated with a reduction in the average size of field collected A. nasonii adults in highly agricultural landscapes but not with the number of individuals collected. Small females carried significantly smaller (40%) pollen loads than large females, which is likely to have consequences for subsequent offspring production and fitness. Thus, landscape simplification is likely to constrain allocation of resources to offspring through a reduction in the overall quantity, quality and distribution of resources. PMID:26943127

  11. Adaptive variation in offspring size in the terrestrial isopod, Armadillidium vulgare

    USGS Publications Warehouse

    Brody, M.S.; Lawlor, L.R.

    1984-01-01

    Variation in the birth size of offspring of the terrestrial isopod, Armadillidium vulgare, was observed in laboratory experiments and in field populations. In the laboratory, larger offspring were produced when the mother's food supply was reduced. In field populations, larger offspring were produced during the summer, a period of reduced food availability. Smaller offspring are produced in the spring, when food is readily available. Females may be making larger young to increase survival during the more severe conditions of the summer breeding period.

  12. Maternal Western diet increases adiposity even in male offspring of obesity-resistant rat dams: early endocrine risk markers.

    PubMed

    Frihauf, Jennifer B; Fekete, Éva M; Nagy, Tim R; Levin, Barry E; Zorrilla, Eric P

    2016-12-01

    Maternal overnutrition or associated complications putatively mediate the obesogenic effects of perinatal high-fat diet on developing offspring. Here, we tested the hypothesis that a Western diet developmental environment increases adiposity not only in male offspring from obesity-prone (DIO) mothers, but also in those from obesity-resistant (DR) dams, implicating a deleterious role for the Western diet per se. Selectively bred DIO and DR female rats were fed chow (17% kcal fat) or Western diet (32%) for 54 days before mating and, thereafter, through weaning. As intended, despite chow-like caloric intake, Western diet increased prepregnancy weight gain and circulating leptin levels in DIO, but not DR, dams. Yet, in both genotypes, maternal Western diet increased the weight and adiposity of preweanlings, as early as in DR offspring, and increased plasma leptin, insulin, and adiponectin of weanlings. Although body weight normalized with chow feeding during adolescence, young adult Western diet offspring subsequently showed decreased energy expenditure and, in DR offspring, decreased lipid utilization as a fuel substrate. By mid-adulthood, maternal Western diet DR offspring ate more chow, weighed more, and were fatter than controls. Thus, maternal Western diet covertly programmed increased adiposity in childhood and adulthood, disrupted relations of energy regulatory hormones with body fat, and decreased energy expenditure in offspring of lean, genetically obesity-resistant mothers. Maternal Western diet exposure alone, without maternal obesity or overnutrition, can promote offspring weight gain. Copyright © 2016 Frihauf et al.

  13. Maternal Western diet increases adiposity even in male offspring of obesity-resistant rat dams: early endocrine risk markers

    PubMed Central

    Frihauf, Jennifer B.; Fekete, Éva M.; Nagy, Tim R.; Levin, Barry E.

    2016-01-01

    Maternal overnutrition or associated complications putatively mediate the obesogenic effects of perinatal high-fat diet on developing offspring. Here, we tested the hypothesis that a Western diet developmental environment increases adiposity not only in male offspring from obesity-prone (DIO) mothers, but also in those from obesity-resistant (DR) dams, implicating a deleterious role for the Western diet per se. Selectively bred DIO and DR female rats were fed chow (17% kcal fat) or Western diet (32%) for 54 days before mating and, thereafter, through weaning. As intended, despite chow-like caloric intake, Western diet increased prepregnancy weight gain and circulating leptin levels in DIO, but not DR, dams. Yet, in both genotypes, maternal Western diet increased the weight and adiposity of preweanlings, as early as in DR offspring, and increased plasma leptin, insulin, and adiponectin of weanlings. Although body weight normalized with chow feeding during adolescence, young adult Western diet offspring subsequently showed decreased energy expenditure and, in DR offspring, decreased lipid utilization as a fuel substrate. By mid-adulthood, maternal Western diet DR offspring ate more chow, weighed more, and were fatter than controls. Thus, maternal Western diet covertly programmed increased adiposity in childhood and adulthood, disrupted relations of energy regulatory hormones with body fat, and decreased energy expenditure in offspring of lean, genetically obesity-resistant mothers. Maternal Western diet exposure alone, without maternal obesity or overnutrition, can promote offspring weight gain. PMID:27654396

  14. Photoperiodism of Male Offspring Production in the Water Flea Daphnia pulex.

    PubMed

    Toyota, Kenji; Sato, Tomomi; Tatarazako, Norihisa; Iguchi, Taisen

    2017-08-01

    Photoperiodism is a biological seasonal timing system utilized to regulate development and reproduction in organisms. The freshwater micro-crustacean Daphnia pulex displays environmental sex determination, the precise physiological mechanisms of which are largely unknown due to the lack of an experimental system to induce female or male offspring production by alterations of the rearing environment. We recently found that D. pulex, WTN6 strain, produces female or male offspring in response to long-day or short-day conditions, respectively. Taking advantage of this system, here we report the photoperiodic response curve for male offspring production, showing 12 hours as natural critical daylength (50% incidence of male-producing mothers), and that male offspring inducibility is highly sensitive to photoperiodic alterations. By using monochromatic light emitting diode (LED) devices, we found that the effective wavelength is red-light (627 nm), which stably induces male offspring production. This suggests that the red-light photoreceptor may be decisive in the primary step of sex determination process in this strain. Our findings provide the first insights into photoperiodism and red-light as key factors in triggering male offspring production in daphnids.

  15. Emerging Issues in Adult Female Acne

    PubMed Central

    Baldwin, Hillary E.; Cook-Bolden, Fran E.; Eichenfield, Lawrence F.; Friedlander, Sheila F.; Rodriguez, David A.

    2017-01-01

    Acne vulgaris (acne) is a common affliction in adolescence and is a growing problem in adult women. Despite an increasing awareness of acne in the adult female population, there is a lack of good prospective studies assessing the severity, distribution, and differential response to treatment in this group. The long-held dogma that acne in adult women develops on the lower one-third of the face has been recently challenged, and here the authors critically review data from available literature. Moreover, while adult female acne has traditionally been defined as disease in women over age 25, it is the authors’ experience that this group is subdivided into women ages 25 to 44 years, separate from perimenopausal patients, ages 45 years and up. While there is no data specifically comparing these two groups, the authors will review the existing data and provide practical recommendations based on our experience in treating these groups of patients. Finally, while there is a lack of data on this subject, it is the group’s opinion that adherence to medication regimens is likely higher in women than men, which influences therapeutic outcomes. PMID:28210380

  16. Mediators and moderators of parental alcoholism effects on offspring self-esteem.

    PubMed

    Rangarajan, Sripriya

    2008-01-01

    The goal of the proposed study was fourfold: (i) to examine the effects of parental alcoholism on adult offspring's self-esteem; (ii) to identify and test possible mediators and moderators of parental alcoholism effects on the self-esteem of adult offspring; (iii) to examine the utility and relevance of attachment theory (Bowlby J. (1969) Attachment and Loss: Vol. 1. Attachment. New York: Basic Books) in explaining parental alcoholism effects on self-esteem and (iv) to address some of the methodological limitations identified in past research on adult children of alcoholics (ACOA). Participants (N = 515) completed retrospective reports of parental alcoholism, family stressors, family communication patterns, parental attachment and a current measure of self-esteem. The results showed support for the detrimental effects of parental alcoholism on offspring self-esteem and offered partial support for family stressors as a mediator of parental alcoholism effects on parental attachment and parental attachment as a mediator of parental alcoholism effects on offspring self-esteem, respectively. Finally, support was found for family communication patterns as a moderator of the effects of family stressors on attachment. The study findings offer preliminary support for the utility of attachment theory in explicating parental alcoholism effects on the self-esteem of adult offspring. Findings from the present study make salient the need to consider factors beyond the identification of parental alcohol abuse when explicating individual differences in offspring self-esteem in adulthood. The identification of protective and risk factors can contribute to the development of optimal intervention strategies to help ACOAs better than simply the knowledge of family drinking patterns.

  17. Geographical differences in maternal basking behaviour and offspring growth rate in a climatically widespread viviparous reptile.

    PubMed

    Cadby, Chloé D; Jones, Susan M; Wapstra, Erik

    2014-04-01

    In reptiles, the thermal environment during embryonic development affects offspring phenotypic traits and potentially offspring fitness. In viviparous species, mothers can potentially manipulate the embryonic thermal environment through their basking behaviour and, thus, may be able to manipulate offspring phenotype and increase offspring fitness. One way in which mothers can maximise offspring phenotype (and thus potentially affect offspring fitness) is by fine-tuning their basking behaviour to the environment in order to buffer the embryo from deleterious developmental temperatures. In widespread species, it is unclear whether populations that have evolved under different climatic conditions will exhibit different maternal behaviours and/or thermal effects on offspring phenotype. To test this, we provided extended or reduced basking opportunity to gravid spotted skinks (Niveoscincus ocellatus) and their offspring from two populations at the climatic extremes of the species' distribution. Gravid females fine-tuned their basking behaviour to the basking opportunity, which allowed them to buffer their embryos from potentially negative thermal effects. This fine-tuning of female basking behaviour appears to have led to the expression of geographical differences in basking behaviour, with females from the cold alpine regions being more opportunistic in their basking behaviour than females from the warmer regions. However, those differences in maternal behaviour did not preclude the evolution of geographic differences in thermal effects: offspring growth varied between populations, potentially suggesting local adaptation to basking conditions. Our results demonstrate that maternal effects and phenotypic plasticity can play a significant role in allowing species to cope in changing environmental conditions, which is particularly relevant in the context of climate change.

  18. Dietary choline supplementation to dams during pregnancy and lactation mitigates the effects of in utero stress exposure on adult anxiety-related behaviors.

    PubMed

    Schulz, Kalynn M; Pearson, Jennifer N; Gasparrini, Mary E; Brooks, Kayla F; Drake-Frazier, Chakeer; Zajkowski, Megan E; Kreisler, Alison D; Adams, Catherine E; Leonard, Sherry; Stevens, Karen E

    2014-07-15

    Brain cholinergic dysfunction is associated with neuropsychiatric illnesses such as depression, anxiety, and schizophrenia. Maternal stress exposure is associated with these same illnesses in adult offspring, yet the relationship between prenatal stress and brain cholinergic function is largely unexplored. Thus, using a rodent model, the current study implemented an intervention aimed at buffering the potential effects of prenatal stress on the developing brain cholinergic system. Specifically, control and stressed dams were fed choline-supplemented or control chow during pregnancy and lactation, and the anxiety-related behaviors of adult offspring were assessed in the open field, elevated zero maze and social interaction tests. In the open field test, choline supplementation significantly increased center investigation in both stressed and nonstressed female offspring, suggesting that choline-supplementation decreases female anxiety-related behavior irrespective of prenatal stress exposure. In the elevated zero maze, prenatal stress increased anxiety-related behaviors of female offspring fed a control diet (normal choline levels). However, prenatal stress failed to increase anxiety-related behaviors in female offspring receiving supplemental choline during gestation and lactation, suggesting that dietary choline supplementation ameliorated the effects of prenatal stress on anxiety-related behaviors. For male rats, neither prenatal stress nor diet impacted anxiety-related behaviors in the open field or elevated zero maze. In contrast, perinatal choline supplementation mitigated prenatal stress-induced social behavioral deficits in males, whereas neither prenatal stress nor choline supplementation influenced female social behaviors. Taken together, these data suggest that perinatal choline supplementation ameliorates the sex-specific effects of prenatal stress. Published by Elsevier B.V.

  19. Dietary choline supplementation to dams during pregnancy and lactation mitigates the effects of in utero stress exposure on adult anxiety-related behaviors

    PubMed Central

    Schulz, Kalynn M.; Pearson, Jennifer N.; Gasparrini, Mary E.; Brooks, Kayla F.; Drake-Frazier, Chakeer; Zajkowski, Megan E.; Kreisler, Alison D.; Adams, Catherine E.; Leonard, Sherry; Stevens, Karen E.

    2014-01-01

    Brain cholinergic dysfunction is associated with neuropsychiatric illnesses such as depression, anxiety, and schizophrenia. Maternal stress exposure is associated with these same illnesses in adult offspring, yet the relationship between prenatal stress and brain cholinergic function is largely unexplored. Thus, using a rodent model, the current study implemented an intervention aimed at buffering the potential effects of prenatal stress on the developing brain cholinergic system. Specifically, control and stressed dams were fed choline-supplemented or control chow during pregnancy and lactation, and the anxiety-related behaviors of adult offspring were assessed in the open field, elevated zero maze and social interaction tests. In the open field test, choline supplementation significantly increased center investigation in both stressed and nonstressed female offspring, suggesting that choline-supplementation decreases female anxiety-related behavior irrespective of prenatal stress exposure. In the elevated zero maze, prenatal stress increased anxiety-related behaviors of female offspring fed a control diet (normal choline levels). However, prenatal stress failed to increase anxiety-related behaviors in female offspring receiving supplemental choline during gestation and lactation, suggesting that dietary choline supplementation ameliorated the effects of prenatal stress on anxiety-related behaviors. For male rats, neither prenatal stress nor diet impacted anxiety-related behaviors in the open field or elevated zero maze. In contrast, perinatal choline supplementation mitigated prenatal stress-induced social behavioral deficits in males, whereas neither prenatal stress nor choline supplementation influenced female social behaviors. Taken together, these data suggest that perinatal choline supplementation ameliorates the sex-specific effects of prenatal stress. PMID:24675162

  20. Duloxetine prevents the effects of prenatal stress on depressive-like and anxiety-like behavior and hippocampal expression of pro-inflammatory cytokines in adult male offspring rats.

    PubMed

    Zhang, Xiaosong; Wang, Qi; Wang, Yan; Hu, Jingmin; Jiang, Han; Cheng, Wenwen; Ma, Yuchao; Liu, Mengxi; Sun, Anji; Zhang, Xinxin; Li, Xiaobai

    2016-12-01

    Stress during pregnancy may cause neurodevelopmental and psychiatric disorders. However, the mechanisms are largely unknown. Currently, pro-inflammatory cytokines have been identified as a risk factor for depression and anxiety disorder. Unfortunately, there is very little research on the long-term effects of prenatal stress on the neuroinflammatory system of offspring. Moreover, the relationship between antidepressant treatment and cytokines in the central nervous system, especially in the hippocampus, an important emotion modulation center, is unclear. Therefore, the aim of this study was to determine the effects of prenatal chronic mild stress during development on affective-like behaviors and hippocampal cytokines in adult offspring, and to verify whether antidepressant (duloxetine) administration from early adulthood could prevent the harmful consequences. To do so, prenatally stressed and non-stressed Sprague-Dawley rats were treated with either duloxetine (10mg/kg/day) or vehicle from postnatal day 60 for 21days. Adult offspring were divided into four groups: 1) prenatal stress+duloxetine treatment, 2) prenatal stress+vehicle, 3) duloxetine treatment alone, and 4) vehicle alone. Adult offspring were assessed for anxiety-like behavior using the open field test and depression-like behavior using the forced swim test. Brains were analyzed for pro-inflammatory cytokine markers in the hippocampus via real-time PCR. Results demonstrate that prenatal stress-induced anxiety- and depression-like behaviors are associated with an increase in hippocampal inflammatory mediators, and duloxetine administration prevents the increased hippocampal pro-inflammatory cytokine interleukin-6 and anxiety- and depression-like behavior in prenatally stressed adult offspring. This research provides important evidence on the long-term effect of PNS exposure during development in a model of maternal adversity to study the pathogenesis of depression and its therapeutic interventions

  1. How multiple mating by females affects sexual selection

    PubMed Central

    Shuster, Stephen M.; Briggs, William R.; Dennis, Patricia A.

    2013-01-01

    Multiple mating by females is widely thought to encourage post-mating sexual selection and enhance female fitness. We show that whether polyandrous mating has these effects depends on two conditions. Condition 1 is the pattern of sperm utilization by females; specifically, whether, among females, male mating number, m (i.e. the number of times a male mates with one or more females) covaries with male offspring number, o. Polyandrous mating enhances sexual selection only when males who are successful at multiple mating also sire most or all of each of their mates' offspring, i.e. only when Cov♂(m,o), is positive. Condition 2 is the pattern of female reproductive life-history; specifically, whether female mating number, m, covaries with female offspring number, o. Only semelparity does not erode sexual selection, whereas iteroparity (i.e. when Cov♀(m,o), is positive) always increases the variance in offspring numbers among females, which always decreases the intensity of sexual selection on males. To document the covariance between mating number and offspring number for each sex, it is necessary to assign progeny to all parents, as well as identify mating and non-mating individuals. To document significant fitness gains by females through iteroparity, it is necessary to determine the relative magnitudes of male as well as female contributions to the total variance in relative fitness. We show how such data can be collected, how often they are collected, and we explain the circumstances in which selection favouring multiple mating by females can be strong or weak. PMID:23339237

  2. Prenatal Stress Disrupts Social Behavior, Cortical Neurobiology and Commensal Microbes in Adult Male Offspring.

    PubMed

    Gur, Tamar L; Palkar, Aditi Vadodkar; Rajasekera, Therese; Allen, Jacob; Niraula, Anzela; Godbout, Jonathan; Bailey, Michael T

    2018-06-24

    In utero and early neonatal exposure to maternal stress is linked with psychiatric disorders, and the underlying mechanisms are currently being elucidated. We used a prenatal stressor in pregnant mice to examine novel relationships between prenatal stress exposure, changes in the gut microbiome, and social behavior. Here, we show that males exposed to prenatal stress had a significant reduction in social behavior in adulthood, with increased corticosterone release following social interaction. Male offspring exposed to prenatal stress also had neuroinflammation, decreased oxytocin receptor, and decreased serotonin metabolism in their cortex in adulthood, which are linked to decreased social behavior. Finally, we found a significant difference in commensal microbes, including decreases in Bacteroides and Parabacteroides, in adult male offspring exposed to prenatal stress when compared to non-stressed controls. Our findings indicate that gestation is a critical window where maternal stress contributes to the development of aberrant social behaviors and alterations in cortical neurobiology, and that prenatal stress is sufficient to disrupt the male gut-brain axis into adulthood. Copyright © 2018. Published by Elsevier B.V.

  3. EXPOSURE TO DEXAMETHASONE DURING LATE GESTATION CAUSES FEMALE-SPECIFIC DECREASES IN CORE BODY TEMPERATURE AND PREPRO-THYROTROPIN-RELEASING HORMONE EXPRESSION IN THE PARAVENTRICULAR NUCLEUS OF THE HYPOTHALAMUS IN RATS

    PubMed Central

    Carbone, David L.; Zuloaga, Damian G.; Lacagnina, Anthony F.; McGivern, Robert F.; Handa, Robert J.

    2012-01-01

    Synthetic glucocorticoids (GC) have been used to promote lung development in preterm infants, thereby decreasing respiratory distress syndrome and mortality, yet, concern has arisen from reports that such treatment predisposes individuals to disease in adulthood. Given the variety of preclinical studies that show metabolic and behavioral abnormalities in adulthood following fetal exposure to synthetic GC, we examined the effect of in utero exposure to the synthetic GC, dexamethasone (DEX), on hypothalamic expression of thyrotropin-releasing hormone (TRH) a central neuropeptide involved in mediating behavior and metabolic balance. Pregnant Sprague-Dawley rats were administered 0.4 mg/kg DEX on gestational days 18–21. As adults (postnatal day (PD) 60), the offspring were fitted with temperature sensing transmitters allowing real-time monitoring of core body temperature (CBT) across the 24 hr light dark period. This revealed a significant decrease in CBT throughout the day in prenatal DEX-treated females on estrus and diestrus, but not in male offspring. The reduction in CBT by prenatal DEX exposure was accompanied by a significant decrease in the expression of Trh transcript in the paraventricular nucleus of the hypothalamus (PVN) of female rats at PD 60 and this effect was also present on PD7. There was also a female-specific reduction in the number of preproTRH -immunoreactive (ir) neurons in the PVN, with ppTRH-ir nerve fibers decreases that were present in both male and female offspring. No changes in thyroid hormone (triiodothyronine, T3; thyroxine, T4) were observed in adult offspring, but during development, both males and females (PD14) had lower T3 and T4 levels. These data indicate abnormal expression of TRH results from fetal DEX exposure during late gestation, possibly explaining the decreased CBT observed in the female offspring. PMID:22884559

  4. Maternal depression in childhood and aggression in young adulthood: evidence for mediation by offspring amygdala-hippocampal volume ratio.

    PubMed

    Gilliam, Mary; Forbes, Erika E; Gianaros, Peter J; Erickson, Kirk I; Brennan, Lauretta M; Shaw, Daniel S

    2015-10-01

    There is abundant evidence that offspring of depressed mothers are at increased risk for persistent behavior problems related to emotion regulation, but the mechanisms by which offspring incur this risk are not entirely clear. Early adverse caregiving experiences have been associated with structural alterations in the amygdala and hippocampus, which parallel findings of cortical regions altered in adults with behavior problems related to emotion regulation. This study examined whether exposure to maternal depression during childhood might predict increased aggression and/or depression in early adulthood, and whether offspring amygdala:hippocampal volume ratio might mediate this relationship. Participants were 258 mothers and sons at socioeconomic risk for behavior problems. Sons' trajectories of exposure to maternal depression were generated from eight reports collected prospectively from offspring ages 18 months to 10 years. Offspring brain structure, aggression, and depression were assessed at age 20 (n = 170). Persistent, moderately high trajectories of maternal depression during childhood predicted increased aggression in adult offspring. In contrast, stable and very elevated trajectories of maternal depression during childhood predicted depression in adult offspring. Increased amygdala: hippocampal volume ratios at age 20 were significantly associated with concurrently increased aggression, but not depression, in adult offspring. Offspring amygdala: hippocampal volume ratio mediated the relationship found between trajectories of moderately elevated maternal depression during childhood and aggression in adult offspring. Alterations in the relative size of brain structures implicated in emotion regulation may be one mechanism by which offspring of depressed mothers incur increased risk for the development of aggression. © 2014 Association for Child and Adolescent Mental Health.

  5. Moral dilemmas in females: children are more utilitarian than adults

    PubMed Central

    Bucciarelli, Monica

    2015-01-01

    Influential theories on moral judgments propose that they rely either on emotions or on innate moral principles. In contrast, the mental model theory postulates that moral judgments rely on reasoning, either intuition or deliberation. The theory allows for the possibility that intuitions lead to utilitarian judgments. This paper reports two experiments involving fifth-grade children, adolescents, and adults; the results revealed that children reason intuitively to resolve moral dilemmas in which action and inaction lead to different outcomes. In particular, the results showed female children to be more utilitarian than female adults in resolving classical moral dilemmas: they preferred an action that achieved a good outcome for a greater number of people. Within the mental model theory's framework there is no reason to expect that females and males differ in their ability to reason, but at the moment the results for females cannot be generalized to males who were not properly represented in the adults groups of the two experiments. The result revealing that (female) children are more utilitarian than (female) adults, which is hard to explain via many current theories, was predicted by the mental model theory. PMID:26441722

  6. Undernutrition during pregnancy in mice leads to dysfunctional cardiac muscle respiration in adult offspring.

    PubMed

    Beauchamp, Brittany; Thrush, A Brianne; Quizi, Jessica; Antoun, Ghadi; McIntosh, Nathan; Al-Dirbashi, Osama Y; Patti, Mary-Elizabeth; Harper, Mary-Ellen

    2015-04-10

    Intrauterine growth restriction (IUGR) is associated with an increased risk of developing obesity, insulin resistance and cardiovascular disease. However, its effect on energetics in heart remains unknown. In the present study, we examined respiration in cardiac muscle and liver from adult mice that were undernourished in utero. We report that in utero undernutrition is associated with impaired cardiac muscle energetics, including decreased fatty acid oxidative capacity, decreased maximum oxidative phosphorylation rate and decreased proton leak respiration. No differences in oxidative characteristics were detected in liver. We also measured plasma acylcarnitine levels and found that short-chain acylcarnitines are increased with in utero undernutrition. Results reveal the negative impact of suboptimal maternal nutrition on adult offspring cardiac energy metabolism, which may have life-long implications for cardiovascular function and disease risk. © 2015 Authors.

  7. Competing for the benefit of offspring eliminates the gender gap in competitiveness

    PubMed Central

    Cassar, Alessandra; Wordofa, Feven; Zhang, Y. Jane

    2016-01-01

    Recent advances have highlighted the evolutionary significance of female competition, with the sexes pursuing different competitive strategies and women reserving their most intense competitive behaviors for the benefit of offspring. Influential economic experiments using cash incentives, however, have found evidence suggesting that women have a lower desire to compete than men. We hypothesize that the estimated gender differences critically depend on how we elicit them, especially on the incentives used. We test this hypothesis through an experiment with adults in China (n = 358). Data show that, once the incentives are switched from monetary to child-benefitting, gender differences disappear. This result suggests that female competition can be just as intense as male competition given the right goals, indicating important implications for policies designed to promote gender equality. PMID:27114513

  8. Immunocompetence of breeding females is sensitive to cortisol levels but not to communal rearing in the degu (Octodon degus).

    PubMed

    Ebensperger, Luis A; León, Cecilia; Ramírez-Estrada, Juan; Abades, Sebastian; Hayes, Loren D; Nova, Esteban; Salazar, Fabián; Bhattacharjee, Joydeep; Becker, María Inés

    2015-03-01

    One hypothesis largely examined in social insects is that cooperation in the context of breeding benefits individuals through decreasing the burden of immunocompetence and provide passive immunity through social contact. Similarly, communal rearing in social mammals may benefit adult female members of social groups by reducing the cost of immunocompetence, and through the transfer of immunological compounds during allonursing. Yet, these benefits may come at a cost to breeders in terms of a need to increase investment in individual immunocompetence. We examined how these potential immunocompetence costs and benefits relate to reproductive success and survival in a natural population of the communally rearing rodent, Octodon degus. We related immunocompetence (based on ratios of white blood cell counts, total and specific immunoglobulins of G isotype titers) and fecal glucocorticoid metabolite (FGC) levels of adults immunized with hemocyanin from the mollusk Concholepas concholepas to measures of sociality (group size) and communal rearing (number of breeding females). Offspring immunocompetence was quantified based on circulating levels of the same immune parameters. Neither female nor offspring immunocompetence was influenced by communal rearing or sociality. These findings did not support that communal rearing and sociality enhance the ability of females to respond to immunological challenges during lactation, or contribute to enhance offspring condition (based on immunocompetence) or early survival (i.e., to 3months of age). Instead, levels of humoral and cellular components of immunocompetence were associated with variation in glucorcorticoid levels of females. We hypothesize that this covariation is driven by physiological (life-history) adjustments needed to sustain breeding. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Effects of nutritional supplementation during pregnancy on early adult disease risk: follow up of offspring of participants in a randomised controlled trial investigating effects of supplementation on infant birth weight.

    PubMed

    Macleod, John; Tang, Lie; Hobbs, F D Richard; Wharton, Brian; Holder, Roger; Hussain, Shakir; Nichols, Linda; Stewart, Paul; Clark, Penny; Luzio, Steve; Holly, Jeff; Smith, George Davey

    2013-01-01

    Observational evidence suggests that improving fetal growth may improve adult health. Experimental evidence from nutritional supplementation trials undertaken amongst pregnant women in the less developed world does not show strong or consistent effects on adult disease risk and no trials from the more developed world have previously been reported. To test the hypothesis that nutritional supplementation during pregnancy influences offspring disease risk in adulthood. Clinical assessment of a range of established diseases risk markers in young adult offspring of 283 South Asian mothers who participated in two trials of nutritional supplementation during pregnancy (protein/energy/vitamins; energy/vitamins or vitamins only) at Sorrento Maternity Hospital in Birmingham UK either unselected or selected on the basis of nutritional status. 236 (83%) offspring were traced and 118 (50%) of these were assessed in clinic. Protein/energy/vitamins supplementation amongst undernourished mothers was associated with increased infant birthweight. Nutritional supplementation showed no strong association with any one of a comprehensive range of markers of adult disease risk and no consistent pattern of association with risk across markers in offspring of either unselected or undernourished mothers. We found no evidence that nutritional supplements given to pregnant women are an important influence on adult disease risk however our study lacked power to estimate small effects. Our findings do not provide support for a policy of nutritional supplementation for pregnant women as an effective means to improve adult health in more developed societies.

  10. Within-female plasticity in sex allocation is associated with a behavioural polyphenism in house wrens.

    PubMed

    Bowers, E K; Thompson, C F; Sakaluk, S K

    2016-03-01

    Sex allocation theory assumes individual plasticity in maternal strategies, but few studies have investigated within-individual changes across environments. In house wrens, differences between nests in the degree of hatching synchrony of eggs represent a behavioural polyphenism in females, and its expression varies with seasonal changes in the environment. Between-nest differences in hatching asynchrony also create different environments for offspring, and sons are more strongly affected than daughters by sibling competition when hatching occurs asynchronously over several days. Here, we examined variation in hatching asynchrony and sex allocation, and its consequences for offspring fitness. The number and condition of fledglings declined seasonally, and the frequency of asynchronous hatching increased. In broods hatched asynchronously, sons, which are over-represented in the earlier-laid eggs, were in better condition than daughters, which are over-represented in the later-laid eggs. Nonetheless, asynchronous broods were more productive later within seasons. The proportion of sons in asynchronous broods increased seasonally, whereas there was a seasonal increase in the production of daughters by mothers hatching their eggs synchronously, which was characterized by within-female changes in offspring sex and not by sex-biased mortality. As adults, sons from asynchronous broods were in better condition and produced more broods of their own than males from synchronous broods, and both males and females from asynchronous broods had higher lifetime reproductive success than those from synchronous broods. In conclusion, hatching patterns are under maternal control, representing distinct strategies for allocating offspring within broods, and are associated with offspring sex ratios and differences in offspring reproductive success. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  11. Discrepancy in reports of support exchanges between parents and adult offspring: within- and between-family differences.

    PubMed

    Kim, Kyungmin; Zarit, Steven H; Birditt, Kira S; Fingerman, Karen L

    2014-04-01

    Using data from 929 parent-child dyads nested in 458 three-generation families (aged 76 for the oldest generation, 50 for the middle generation, and 24 for the youngest generation), this study investigated how discrepancies in reports of support that parents and their adult offspring exchanged with one another vary both within and between families, and what factors explain variations in dyadic discrepancies. We found substantial within- and between-family differences in dyadic discrepancies in reports of support exchanges. For downward exchanges (from parents to offspring), both dyad-specific characteristics within a family (e.g., gender composition, relative levels of relationship quality, and family obligation) and shared family characteristics (e.g., average levels of relationship quality) showed significant effects on dyadic discrepancies. For upward exchanges (from offspring to parents), however, only dyad-specific characteristics (e.g., gender composition, coresidence, relative levels of positive relationship quality, and family obligation) were significantly associated with discrepancies. Discrepancies in support exchanges were mainly associated with dyad-specific characteristics, but they also appeared to be influenced by family emotional environments. The use of multiple informants revealed that families differ in discrepancies in reports of exchanges, which has implications for quality of family life as well as future exchanges. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  12. Discrepancy in Reports of Support Exchanges between Parents and Adult Offspring: Within- and Between-Family Differences

    PubMed Central

    Kim, Kyungmin; Zarit, Steven H.; Birditt, Kira S.; Fingerman, Karen L.

    2014-01-01

    Using data from 929 parent-child dyads nested in 458 three-generation families (aged 76 for the oldest generation, 50 for the middle generation, and 24 for the youngest generation), this study investigated how discrepancies in reports of support that parents and their adult offspring exchanged with one another vary both within and between families, and what factors explain variations in dyadic discrepancies. We found substantial within- and between-family differences in dyadic discrepancies in reports of support exchanges. For downward exchanges (from parents to offspring), both dyad-specific characteristics within a family (e.g., gender composition, relative levels of relationship quality, and family obligation) and shared family characteristics (e.g., average levels of relationship quality) showed significant effects on dyadic discrepancies. For upward exchanges (from offspring to parents), however, only dyad-specific characteristics (e.g., gender composition, coresidence, relative levels of positive relationship quality, and family obligation) were significantly associated with discrepancies. Discrepancies in support exchanges were mainly associated with dyad-specific characteristics, but they also appeared to be influenced by family emotional environments. The use of multiple informants revealed that families differ in discrepancies in reports of exchanges, which has implications for quality of family life as well as future exchanges. PMID:24548009

  13. Prenatal centrifugation: A model for fetal programming of adult weight?

    NASA Astrophysics Data System (ADS)

    Baer, Lisa A.; Rushing, Linda; Wade, Charles E.; Ronca, April E.

    2005-08-01

    'Fetal programming' is a newly emerging field that is revealing astounding insights into the prenatal origins of adult disease, including metabolic, endocrine, and cardiovascular pathophysiology. In the present study, we tested the hypothesis that rat pups conceived, gestated and born at 2-g have significantly reduced birth weights and increased adult body weights as compared to 1-g controls. Offspring were produced by mating young adult male and female rats that were adapted to 2-g centrifugation. Female rats underwent conception, pregnancy and birth at 2-g. Newborn pups in the 2-g condition were removed from the centrifuge and fostered to non-manipulated, newly parturient dams maintained at 1-g. Comparisons were made with 1-g stationary controls, also cross- fostered at birth. As compared to 1-g controls, birth weights of pups gestated and born at 2-g were significantly reduced. Pup body weights were significantly reduced until Postnatal day (P)12. Beginning on P63, body weights of 2-g-gestated offspring exceeded those of 1-g controls by 7-10%. Thus, prenatal rearing at 2-g restricts neonatal growth and increases adult body weight. Collectively, these data support the hypothesis that 2-g centrifugation alters the intrauterine milieu, thereby inducing persistent changes in adult phenotype.

  14. Adrenocortical responses to offspring-directed threats in two open-nesting birds.

    PubMed

    Butler, Luke K; Bisson, Isabelle-Anne; Hayden, Timothy J; Wikelski, Martin; Romero, L Michael

    2009-07-01

    Dependent young are often easy targets for predators, so for many parent vertebrates, responding to offspring-directed threats is a fundamental part of reproduction. We tested the parental adrenocortical response of the endangered black-capped vireo (Vireo atricapilla) and the common white-eyed vireo (V. griseus) to acute and chronic threats to their offspring. Like many open-nesting birds, our study species experience high offspring mortality. Parents responded behaviorally to a predator decoy or human 1-2m from their nests, but, in contrast to similar studies of cavity-nesting birds, neither these acute threats nor chronic offspring-directed threats altered plasma corticosterone concentrations of parents. Although parents in this study showed no corticosterone response to offspring-directed threats, they always increased corticosterone concentrations in response to capture. To explain these results, we propose that parents perceive their risk of nest-associated death differently depending on nest type, with cavity-nesting adults perceiving greater risk to themselves than open-nesters that can readily detect and escape from offspring-directed threats. Our results agree with previous studies suggesting that the hypothalamic-pituitary-adrenal axis, a major physiological mechanism for coping with threats to survival, probably plays no role in coping with threats to offspring when risks to parents and offspring are not correlated. We extend that paradigm by demonstrating that nest style may influence how adults perceive the correlation between offspring-directed and self-directed threats.

  15. Parental effects alter the adaptive value of an adult behavioural trait

    PubMed Central

    Kilner, Rebecca M; Boncoraglio, Giuseppe; Henshaw, Jonathan M; Jarrett, Benjamin JM; De Gasperin, Ornela; Attisano, Alfredo; Kokko, Hanna

    2015-01-01

    The parents' phenotype, or the environment they create for their young, can have long-lasting effects on their offspring, with profound evolutionary consequences. Yet, virtually no work has considered how such parental effects might change the adaptive value of behavioural traits expressed by offspring upon reaching adulthood. To address this problem, we combined experiments on burying beetles (Nicrophorus vespilloides) with theoretical modelling and focussed on one adult behavioural trait in particular: the supply of parental care. We manipulated the early-life environment and measured the fitness payoffs associated with the supply of parental care when larvae reached maturity. We found that (1) adults that received low levels of care as larvae were less successful at raising larger broods and suffered greater mortality as a result: they were low-quality parents. Furthermore, (2) high-quality males that raised offspring with low-quality females subsequently suffered greater mortality than brothers of equivalent quality, which reared larvae with higher quality females. Our analyses identify three general ways in which parental effects can change the adaptive value of an adult behavioural trait: by influencing the associated fitness benefits and costs; by consequently changing the evolutionary outcome of social interactions; and by modifying the evolutionarily stable expression of behavioural traits that are themselves parental effects. DOI: http://dx.doi.org/10.7554/eLife.07340.001 PMID:26393686

  16. Evaluation of a Group Intervention to Assist Aging Parents with Permanency Planning for an Adult Offspring with Special Needs

    ERIC Educational Resources Information Center

    Botsford, Anne L.; Rule, David

    2004-01-01

    More than three-fourths of older adults with developmental disabilities and mental illness live in the community with aging parents, the majority of whom do not complete plans for the residential, financial, and legal future of their offspring. The authors used a true experimental design to evaluate the effectiveness of a six-week…

  17. Comparison of growth-related traits and gene expression profiles between the offspring of neomale (XX) and normal male (XY) rainbow trout.

    PubMed

    Kocmarek, Andrea L; Ferguson, Moira M; Danzmann, Roy G

    2015-04-01

    All-female lines of fish are created by crossing sex reversed (XX genotype) males with normal females. All-female lines avoid the deleterious phenotypic effects that are typical of precocious maturation in males. To determine whether all-female and mixed sex populations of rainbow trout (Oncorhynchus mykiss) differ in performance, we compared the growth and gene expression profiles in progeny groups produced by crossing a XX male and a XY male to the same five females. Body weight and length were measured in the resulting all-female (XX) and mixed sex (XX/XY) offspring groups. Microarray experiments with liver and white muscle were used to determine if the gene expression profiles of large and small XX offspring differ from those in large and small XX/XY offspring. We detected no significant differences in body length and weight between offspring groups but XX offspring were significantly less variable in the value of these traits. A large number of upregulated genes were shared between the large XX and large XX/XY offspring; the small XX and small XX/XY offspring also shared similar expression profiles. No GO category differences were seen in the liver or between the large XX and large XX/XY offspring in the muscle. The greatest differences between the small XX and small XX/XY offspring were in the genes assigned to the "small molecule metabolic process" and "cellular metabolic process" GO level 3 categories. Similarly, genes within these categories as well as the category "macromolecule metabolic process" were more highly expressed in small compared to large XX fish.

  18. Effects of chronic prenatal MK-801 treatment on object recognition, cognitive flexibility, and drug-induced locomotor activity in juvenile and adult rat offspring.

    PubMed

    Gallant, S; Welch, L; Martone, P; Shalev, U

    2017-06-15

    Patients with schizophrenia display impaired cognitive functioning and increased sensitivity to psychomimetic drugs. The neurodevelopmental hypothesis of schizophrenia posits that disruption of the developing brain predisposes neural networks to lasting structural and functional abnormalities resulting in the emergence of such symptoms in adulthood. Given the critical role of the glutamatergic system in early brain development, we investigated whether chronic prenatal exposure to the glutamate NMDA receptor antagonist, MK-801, induces schizophrenia-like behavioural and neurochemical changes in juvenile and adult rats. Pregnant Long-Evans rats were administered saline or MK-801 (0.1mg/kg; s.c.) at gestation day 7-19. Object recognition memory and cognitive flexibility were assessed in the male offspring using a novel object preference task and a maze-based set-shifting procedure, respectively. Locomotor-activating effects of acute amphetamine and MK-801 were also assessed. Adult, but not juvenile, prenatally MK-801-treated rats failed to show novel object preference after a 90min delay, suggesting that object recognition memory may have been impaired. In addition, the set-shifting task revealed impaired acquisition of a new rule in adult prenatally MK-801-treated rats compared to controls. This deficit appeared to be driven by regression to the previously learned behaviour. There were no significant differences in drug-induced locomotor activity in juvenile offspring or in adult offspring following acute amphetamine challenges. Unexpectedly, MK-801-induced locomotor activity in adult prenatally MK-801-treated rats was lower compared to controls. Glutamate transmission dysfunction during early development may modify behavioural parameters in adulthood, though these parameters do not appear to model deficits observed in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The influence of parental divorce and alcohol abuse on adult offspring risk of lifetime suicide attempt in the United States.

    PubMed

    Alonzo, Dana; Thompson, Ronald G; Stohl, Mahlki; Hasin, Deborah

    2014-05-01

    The influences of parental divorce and alcohol abuse on adult offspring lifetime suicide attempt have not been examined in national data. This study analyzed data from the 2001-2002 NESARC to estimate main and interaction effects of parental divorce and alcohol abuse on lifetime suicide attempt. Adjusted for controls, parental divorce and parental alcohol abuse independently increased odds of lifetime suicide attempt. The effect of parental divorce was not significantly moderated by parental alcohol abuse. Further research is needed to examine whether additional parental and offspring psychiatric and substance use covariates attenuate the association between parental divorce and lifetime suicide attempt. PsycINFO Database Record (c) 2014 APA, all rights reserved

  20. Resource Transfers and Evolution: Helpful Offspring and Sex Allocation

    PubMed Central

    Stubblefield, J. William; Orzack, Steven Hecht

    2012-01-01

    In some vertebrates, offspring help their parents produce additional offspring. Often individuals of only one sex become “helpers at the nest”. We analyze how such sex-biased offspring helping can influence sex ratio evolution. It is essential to account for age-structure because the sex ratios of early broods influence how much help is available for later broods; previous authors have not correctly accounted for this fact. When each female produces the same sex ratio in all broods (as assumed in all previous analyses of sex-biased helping), the optimal investment strategy is biased towards the more-helpful sex. When a female has facultative control over the sex ratio in each brood and each helper of a given sex increases the resource available for offspring production by a fixed amount, the optimal strategy is to produce only the more-helpful sex in early broods and only the less-helpful sex in later broods. When there are nonlinear returns from helping, i.e., each helper increases the amount of resource available for reproduction by an amount dependent upon the number of helpers, the optimal strategy is to maximize resource accrual from helping in early broods (which may involve the production of both sexes) and then switch to the exclusive production of the less-helpful sex in later broods. The population sex ratio is biased towards the more helpful sex regardless of whether the sex ratio is fixed or age-dependent. When fitness returns from helping exhibit environmental patchiness, females are selected to produce only males on some patches and only females on others, and the population sex ratio may be biased in either direction. We discuss our results in light of empirical information on offspring helping, and we show via meta-analysis that there is no support for the claim of that parents produce more of the helpful sex when that sex is rare or absent. PMID:23164634

  1. Maternal immunomodulation of the offspring's immunological system.

    PubMed

    Campos, Sylvia M N; de Oliveira, Vivian L; Lessa, Leonardo; Vita, Melissa; Conceição, Marcia; Andrade, Luiz Antonio Botelho; Teixeira, Gerlinde Agate Platais Brasil

    2014-11-01

    The mother's and the offspring's immunological system are closely related thus one can influence the other. This hypothesis drove our aim to study the impact of the mother's immunological status over the immunological response of their offspring. For this, female mice tolerant or allergic to peanuts were exposed or not to a challenge diet containing peanuts during the gestation-lactation period (TEP/AEP; TNEP/ANEP, respectively). After weaning the offspring was submitted to the peanut allergy or peanut tolerization protocol and then challenged with a peanut diet. Our results showed that when the offspring is submitted to the allergy induction protocol, they behave differently depending on their mother's immunological status. Offspring born to TEP mothers produced the lowest antibody titters while those born to AEP mothers produced the highest antibody titters compared to mice born to TNEP and ANEP. On the other hand when the offspring was submitted to the tolerization protocol all groups presented low antibody titers with no significant difference between groups, independent of the mothers immunological status and/or contact with peanuts during the gestation-lactation period. The analysis of the histological profile of the offspring correlates well to the serological response. In other words, offspring born to TEP mothers and submitted to the allergy induction protocol presented a normal histological profile, while the offspring born to AEP mothers produced the worst gut inflammation. These results indicate that mothers, exposed to the antigen (by the oral route) during gestation, actively influence the immune response of their offspring. This work sheds some light on the importance of the immunomodulation induced by dietary antigens during gestation and their influence on the immunological response of their offspring. However, more work is needed to elucidate the molecular and cellular components of this regulatory phenomenon. Copyright © 2014 Elsevier GmbH. All

  2. Insect parents improve the anti-parasitic and anti-bacterial defence of their offspring by priming the expression of immune-relevant genes.

    PubMed

    Trauer-Kizilelma, Ute; Hilker, Monika

    2015-09-01

    Insect parents that experienced an immune challenge are known to prepare (prime) the immune activity of their offspring for improved defence. This phenomenon has intensively been studied by analysing especially immunity-related proteins. However, it is unknown how transgenerational immune priming affects transcript levels of immune-relevant genes of the offspring upon an actual threat. Here, we investigated how an immune challenge of Manduca sexta parents affects the expression of immune-related genes in their eggs that are attacked by parasitoids. Furthermore, we addressed the question whether the transgenerational immune priming of expression of genes in the eggs is still traceable in adult offspring. Our study revealed that a parental immune challenge did not affect the expression of immune-related genes in unparasitised eggs. However, immune-related genes in parasitised eggs of immune-challenged parents were upregulated to a higher level than those in parasitised eggs of unchallenged parents. Hence, this transgenerational immune priming of the eggs was detected only "on demand", i.e. upon parasitoid attack. The priming effects were also traceable in adult female progeny of immune-challenged parents which showed higher transcript levels of several immune-related genes in their ovaries than non-primed progeny. Some of the primed genes showed enhanced expression even when the progeny was left unchallenged, whereas other genes were upregulated to a greater extent in primed female progeny than non-primed ones only when the progeny itself was immune-challenged. Thus, the detection of transgenerational immune priming strongly depends on the analysed genes and the presence or absence of an actual threat for the offspring. We suggest that M. sexta eggs laid by immune-challenged parents "afford" to upregulate the transcription of immunity-related genes only upon attack, because they have the chance to be endowed by parentally directly transferred protective proteins

  3. Developmental cigarette smoke exposure II: Hippocampus proteome and metabolome profiles in adult offspring.

    PubMed

    Neal, Rachel E; Jagadapillai, Rekha; Chen, Jing; Webb, Cindy; Stocke, Kendall; Greene, Robert M; Pisano, M Michele

    2016-10-01

    Exposure to cigarette smoke during development is linked to neurodevelopmental delays and cognitive impairment including impulsivity, attention deficit disorder, and lower IQ. Utilizing a murine experimental model of "active" inhalation exposure to cigarette smoke spanning the entirety of gestation and through human third trimester equivalent hippocampal development [gestation day 1 (GD1) through postnatal day 21 (PD21)], we examined hippocampus proteome and metabolome alterations present at a time during which developmental cigarette smoke exposure (CSE)-induced behavioral and cognitive impairments are evident in adult animals from this model system. At six month of age, carbohydrate metabolism and lipid content in the hippocampus of adult offspring remained impacted by prior exposure to cigarette smoke during the critical period of hippocampal ontogenesis indicating limited glycolysis. These findings indicate developmental CSE-induced systemic glucose availability may limit both organism growth and developmental trajectory, including the capacity for learning and memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Parental history of lupus and rheumatoid arthritis and risk in offspring in a nationwide cohort study: does sex matter?

    PubMed

    Somers, Emily C; Antonsen, Sussie; Pedersen, Lars; Sørensen, Henrik Toft

    2013-04-01

    To examine the familial risk of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), including juvenile rheumatoid/idiopathic arthritis (JRA), in a population-based setting; and to determine whether patterns of transmission differ according to the sex of the parent or offspring, in order to provide insight into the potential impact of X-chromosomal factors on sex disparities in these autoimmune diseases. A population-based cohort of parent-offspring triads from Denmark (1977-2010) was established. SLE and RA incidence rates among offspring were calculated, and Cox regression was performed to assess the sex-specific risk of disease in offspring according to maternal or paternal disease history. Among 3 513 817 parent-offspring triads, there were 1258 SLE cases among offspring (1095 female, 163 male) and 9118 cases of RA/JRA (6086 female, 3032 male). Among female offspring, SLE risk was nearly the same according to maternal (HR 14.1) or paternal (HR 14.5) history (p=NS); likewise among male offspring, risk according to maternal (HR 5.5) and paternal (no cases) history were similar (p=NS). For RA, all risk estimates were similar, regardless of the sex of the offspring or parent (HR 2.6-2.9; p=NS). The authors quantified the familial risk of SLE and RA in a nationwide cohort study. For both diseases, transmission was comparable among both female and male offspring of maternal and paternal cases. These data provide evidence at the population level that X-chromosomal factors do not play a major role in sex disparities associated with the risk of SLE and RA.

  5. Maternal high-fat diet during pregnancy and lactation reduces the appetitive behavioral component in female offspring tested in a brief-access taste procedure.

    PubMed

    Treesukosol, Yada; Sun, Bo; Moghadam, Alexander A; Liang, Nu-Chu; Tamashiro, Kellie L; Moran, Timothy H

    2014-04-01

    Maternal high-fat diet appears to disrupt several energy balance mechanisms in offspring. Here, female offspring from dams fed a high-fat diet (HF) did not significantly differ in body weight compared with those fed chow (CHOW), when weaned onto chow diet. Yet when presented with both a chow and a high-fat diet, high-fat intake was significantly higher in HF compared with CHOW offspring. To assess taste-based responsiveness, offspring (12 wk old) were tested in 30-min sessions (10-s trials) to a sucrose concentration series in a brief-access taste test. Compared with CHOW, the HF offspring initiated significantly fewer trials but did not significantly differ in the amount of concentration-dependent licking. Thus, rather than affect lick response (consummatory), maternal diet affects spout approach (appetitive), which may be attributed to motivation-related mechanisms. Consistent with this possibility, naltrexone, an opioid receptor antagonist, further reduced trial initiation, but not licking in both groups. With naltrexone administration, the group difference in trial initiation was no longer evident, suggesting differences in endogenous opioid activity between the two groups. Relative expression of μ-opioid receptor in the ventral tegmental area was significantly lower in HF rats. When trial initiation was not required in one-bottle intake tests, no main effect of maternal diet on the intake of sucrose and corn oil emulsions was observed. Thus, the maternal high-fat diet-induced difference in diet preference is not likely due to changes in the sensory orosensory component of the taste stimulus but may depend on alterations in satiety signals or absorptive mechanisms.

  6. Viviparous placentotrophy in reptiles and the parent-offspring conflict.

    PubMed

    Blackburn, Daniel G

    2015-09-01

    In placentotrophic viviparous reptiles, pregnant females deliver nutrients to their developing fetuses by diverse morphological specializations that reflect independent evolutionary origins. A survey of these specializations reveals a major emphasis on histotrophy (uterine secretion and fetal absorption) rather than hemotrophy (transfer between maternal and fetal blood streams). Of available hypotheses for the prevalence of histotrophic transfer, the most promising derives insights from the theoretical parent-offspring conflict over nutrient investment. I suggest that histotrophy gives pregnant females greater control over nutrient synthesis, storage, and delivery than hemotrophic transfer, reflecting maternal preeminence in any potential parent-offspring competition over nutrient investment. One lizard species shows invasive ovo-implantation and direct contact between fetal tissues and maternal blood vessels, potentially conferring control over nutrient transfer to the embryo. Future research on squamates will benefit from application of parent-offspring conflict theory to the transition from incipient to substantial matrotrophy, as well as by testing theory-derived predictions on both facultatively and highly placentotrophic forms. © 2015 Wiley Periodicals, Inc.

  7. Parenting styles and emerging adult drug use in Cebu, the Philippines.

    PubMed

    Hock, Rebecca S; Hindin, Michelle J; Bass, Judith K; Surkan, Pamela J; Bradshaw, Catherine P; Mendelson, Tamar

    Parenting style is a potent and malleable influence on emerging adult substance use. Most of the parenting-substance use literature has been conducted in Western populations and it is unknown whether findings are generalizable to other cultures and contexts. We extended the parenting-substance use literature to a cohort of emerging adults in the Philippines using the Cebu Longitudinal Health and Nutrition Survey. We assessed associations between mothers' and fathers' parenting styles (authoritative, permissive, authoritarian, and neglectful) reported by offspring at age 18 and odds of offspring-reported drug use three years later, adjusted for a range of offspring- and parent/household-level characteristics. Females were dropped from analyses due to low prevalence of drug users. We found that many emerging adults in Cebu reported having used drugs, particularly methamphetamine-a dangerous drug with high abuse potential. Authoritative (warm, firm) mothering was significantly associated with sons' reduced odds of drug use and neglectful fathering was related at a trend level with sons' increased odds of having tried drugs. Findings underscore the relation of parenting styles to emerging adults' drug use and add to the literature on cross-cultural variability in parenting styles.

  8. Offspring sex ratio in women with android body fat distribution.

    PubMed

    Singh, D; Zambarano, R J

    1997-08-01

    The relationship between waist-to-hip ratio (WHR), several behavioral factors, and the number of male and female offspring was examined in a sample of 69 women. Two questions were examined: (1) Are hormonal differences, as indicated by differences in the WHR, associated with offspring sex ratio? and (2) are there any behavioral factors, such as coital frequency or orgasm, that are associated with offspring sex ratio? After statistically controlling for subject's age, socioeconomic status, and total number of offspring, we found that women with a higher WHR tended to have more sons than daughters. In addition, women who reported greater ease of having multiple orgasms also tended to have more sons than daughters. The results thus support both a hormonal and a behavioral influence on offspring sex ratio.

  9. Impact of maternal immune activation on maternal care behavior, offspring emotionality and intergenerational transmission in C3H/He mice.

    PubMed

    Berger, Stefanie; Ronovsky, Marianne; Horvath, Orsolya; Berger, Angelika; Pollak, Daniela D

    2018-05-01

    Maternal immune activation (MIA) is a well-established model for the investigation of the deleterious effects of gestational infection on offspring mental health later in life. Hence, MIA represents a critical environmental variable determining brain development and the depending neural and behavioral functions in the progeny. Transgenerational transmission of some of the effects of MIA has been recently reported using the Polyinosinic:polycytidylic acid (Poly (I:C)) MIA model in C57BL/6 (C57) inbred mice. However, little is known about the underlying molecular mechanisms and the possible relevance of the specific genetic make-up of the inbred mouse strain used. Here we set out to characterize the effects of gestational Poly (I:C) treatment in C3H/HeNCrl mice (C3H), focusing on maternal care and offspring depression-like behavior and its intergenerational potential. miRNA expression in the offspring hippocampus in the F1 and F2 generations was examined as possible mechanism contributing to the observed behavioral effects. The impact of MIA on maternal care and its transmission to F1 females was previously observed in C57 mice was also found in C3H mice. Depression-like behavior in the adult offspring in C3H F1 and F2 females differed from reports of the C57 strain in the literature, suggesting a potential modulating role of the genetic background in the Poly(I:C) MIA mouse model. As the pattern of expression of selected candidate miRNAs in the F1 and F2 offspring hippocampus was not conserved between the two generations, it is unlikely to be a direct consequence of altered maternal care, or to be an immediate determinant of offspring emotionality. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Prenatal Exposure to Unconventional Oil and Gas Operation Chemical Mixtures Altered Mammary Gland Development in Adult Female Mice.

    PubMed

    Sapouckey, Sarah A; Kassotis, Christopher D; Nagel, Susan C; Vandenberg, Laura N

    2018-03-01

    Unconventional oil and gas (UOG) operations, which combine hydraulic fracturing (fracking) and directional drilling, involve the use of hundreds of chemicals, including many with endocrine-disrupting properties. Two previous studies examined mice exposed during early development to a 23-chemical mixture of UOG compounds (UOG-MIX) commonly used or produced in the process. Both male and female offspring exposed prenatally to one or more doses of UOG-MIX displayed alterations to endocrine organ function and serum hormone concentrations. We hypothesized that prenatal UOG-MIX exposure would similarly disrupt development of the mouse mammary gland. Female C57Bl/6 mice were exposed to ~3, ~30, ~ 300, or ~3000 μg/kg/d UOG-MIX from gestational day 11 to birth. Although no effects were observed on the mammary glands of these females before puberty, in early adulthood, females exposed to 300 or 3000 μg/kg/d UOG-MIX developed more dense mammary epithelial ducts; females exposed to 3 μg/kg/d UOG-MIX had an altered ratio of apoptosis to proliferation in the mammary epithelium. Furthermore, adult females from all UOG-MIX-treated groups developed intraductal hyperplasia that resembled terminal end buds (i.e., highly proliferative structures typically seen at puberty). These results suggest that the mammary gland is sensitive to mixtures of chemicals used in UOG production at exposure levels that are environmentally relevant. The effect of these findings on the long-term health of the mammary gland, including its lactational capacity and its risk of cancer, should be evaluated in future studies. Copyright © 2018 Endocrine Society.

  11. Maternally Administered Sustained-Release Naltrexone in Rats Affects Offspring Neurochemistry and Behaviour in Adulthood

    PubMed Central

    Krstew, Elena V.; Tait, Robert J.; Hulse, Gary K.

    2012-01-01

    Naltrexone is not recommended during pregnancy. However, sustained-release naltrexone implant use in humans has resulted in cases of inadvertent foetal exposure. Here, we used clinically relevant dosing to examine the effects of maternally administered sustained-release naltrexone on the rat brain by examining offspring at birth and in adulthood. Maternal treatment (naltrexone or placebo implant) started before conception and ceased during gestation, birth or weaning. Morphometry was assessed in offspring at birth and adulthood. Adult offspring were evaluated for differences in locomotor behaviour (basal and morphine-induced, 10 mg/kg, s.c.) and opioid neurochemistry, propensity to self-administer morphine and cue-induced drug-seeking after abstinence. Blood analysis confirmed offspring exposure to naltrexone during gestation, birth and weaning. Naltrexone exposure increased litter size and reduced offspring birth-weight but did not alter brain morphometry. Compared to placebo, basal motor activity of naltrexone-exposed adult offspring was lower, yet they showed enhanced development of psychomotor sensitization to morphine. Developmental naltrexone exposure was associated with resistance to morphine-induced down-regulation of striatal preproenkephalin mRNA expression in adulthood. Adult offspring also exhibited greater operant responding for morphine and, in addition, cue-induced drug-seeking was enhanced. Collectively, these data show pronounced effects of developmental naltrexone exposure, some of which persist into adulthood, highlighting the need for follow up of humans that were exposed to naltrexone in utero. PMID:23300784

  12. Protective role of taurine in developing offspring affected by maternal alcohol consumption

    PubMed Central

    Ananchaipatana-Auitragoon, Pilant; Ananchaipatana-Auitragoon, Yutthana; Siripornpanich, Vorasith; Kotchabhakdi, Naiphinich

    2015-01-01

    Maternal alcohol consumption is known to affect offspring growth and development, including growth deficits, physical anomalies, impaired brain functions and behavioral disturbances. Taurine, a sulfur-containing amino acid, is essential during development, and continually found to be protective against neurotoxicity and various tissue damages including those from alcohol exposure. However, it is still unknown whether taurine can exert its protection during development of central nervous system and whether it can reverse alcohol damages on developed brain later in life. This study aims to investigate protective roles of taurine against maternal alcohol consumption on growth and development of offspring. The experimental protocol was conducted using ICR-outbred pregnant mice given 10 % alcohol, with or without maternal taurine supplementation during gestation and lactation. Pregnancy outcomes, offspring mortality and successive bodyweight until adult were monitored. Adult offspring is supplemented taurine to verify its ability to reverse damages on learning and memory through a water maze task performance. Our results demonstrate that offspring of maternal alcohol exposure, together with maternal taurine supplementation show conserved learning and memory, while that of offspring treated taurine later in life are disturbed. Taurine provides neuroprotective effects and preserves learning and memory processes when given together with maternal alcohol consumption, but not shown such effects when given exclusively in offspring. PMID:26648819

  13. Maternal influence on susceptibility of offspring to Brugia malayi infection in a murine model of filariasis.

    PubMed

    Rajan, T V; Bailis, J M; Yates, J A; Shultz, L D; Greiner, D L; Nelson, F K

    1994-12-01

    We have used the severe combined immunodeficient C.B-17-scid/scid mouse to investigate the influences of maternal immune status and parasite burden on the susceptibility (or resistance) of offspring to infection with the human filarial parasite, Brugia malayi. C.B-17-scid/scid mice are permissive for infection while immunocompetent C.B-17(-)+/+ mice are uniformly resistant. Reciprocal matings of C.B-17-scid/scid and C.B-17(-)+/+ mice were performed. The C.B-17-scid/scid females were either naive or infected with Brugia malayi. The resulting immunocompetent C.B-17-scid/+ and C.B-17(-)+/scid progeny were challenged at weaning with an intraperitoneal injection of Brugia malayi third stage larvae known to produce patent infection in > 95% of C.B-17-scid/scid mice. We observed that 40.0%l (34/85) of the immunocompetent offspring of C.B-17-scid/scid females x C.B-17(-)+/+ males were permissive for the growth and development of Brugia malayi larvae to adults. No difference was observed in susceptibility to infection between the progeny of infected or uninfected C.B-17-scid/scid mothers mated with C.B-17(-)+/+ fathers, arguing against acquired immunological tolerance to the parasite in the former. In marked contrast, only 4.8% (2/42) of the heterozygous progeny of wild type C.B-17(-)+/+ females mated with C.B-17-scid/scid males were permissive. These observations document conversion of a 'resistant' phenotype to a 'susceptible' phenotype by manipulation of maternal immune status and provide clear evidence of maternal influence on offspring susceptibility to infection with Brugia malayi.

  14. The effects of prenatal and early postnatal tocotrienol-rich fraction supplementation on cognitive function development in male offspring rats.

    PubMed

    Nagapan, Gowri; Meng Goh, Yong; Shameha Abdul Razak, Intan; Nesaretnam, Kalanithi; Ebrahimi, Mahdi

    2013-07-31

    Recent findings suggest that the intake of specific nutrients during the critical period in early life influence cognitive and behavioural development profoundly. Antioxidants such as vitamin E have been postulated to be pivotal in this process, as vitamin E is able to protect the growing brain from oxidative stress. Currently tocotrienols are gaining much attention due to their potent antioxidant and neuroprotective properties. It is thus compelling to look at the effects of prenatal and early postnatal tocotrienols supplementation, on cognition and behavioural development among offsprings of individual supplemented with tocotrienols. Therefore, this study is aimed to investigate potential prenatal and early postnatal influence of Tocotrienol-Rich Fraction (TRF) supplementation on cognitive function development in male offspring rats. Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus vehicle (VHCL), base diet plus docosahexanoic acid (DHA), base diet plus Tocotrienol-Rich fraction (TRF), and base diet plus both docosahexaenoic acid, and tocotrienol rich fraction (DTRF) diets for 2 weeks prior to mating. The females (F0 generation) were maintained on their respective treatment diets throughout the gestation and lactation periods. Pups (F1 generation) derived from these dams were raised with their dams from birth till four weeks post natal. The male pups were weaned at 8 weeks postnatal, after which they were grouped into five groups of 10 animals each, and fed with the same diets as their dams for another eight weeks. Learning and behavioural experiments were conducted only in male off-spring rats using the Morris water maze. Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus

  15. MitoQ supplementation prevent long-term impact of maternal smoking on renal development, oxidative stress and mitochondrial density in male mice offspring.

    PubMed

    Sukjamnong, Suporn; Chan, Yik Lung; Zakarya, Razia; Nguyen, Long The; Anwer, Ayad G; Zaky, Amgad A; Santiyanont, Rachana; Oliver, Brian G; Goldys, Ewa; Pollock, Carol A; Chen, Hui; Saad, Sonia

    2018-04-26

    To investigate the effect of maternal MitoQ treatment on renal disorders caused by maternal cigarette smoke exposure (SE). We have demonstrated that maternal SE during pregnancy increases the risk of developing chronic kidney disease (CKD) in adult offspring. Mitochondrial oxidative damage contributes to the adverse effects of maternal smoking on renal disorders. MitoQ is a mitochondria-targeted antioxidant that has been shown to protect against oxidative damage-related pathologies in many diseases. Female Balb/c mice (8 weeks) were divided into Sham (exposed to air), SE (exposed to cigarette smoke) and SEMQ (exposed to cigarette smoke with MitoQ supplemented from mating) groups. Kidneys from the mothers were collected when the pups weaned and those from the offspring were collected at 13 weeks. Maternal MitoQ supplementation during gestation and lactation significantly reversed the adverse impact of maternal SE on offspring's body weight, kidney mass and renal pathology. MitoQ administration also significantly reversed the impact of SE on the renal cellular mitochondrial density and renal total reactive oxygen species in both the mothers and their offspring in adulthood. Our results suggested that MitoQ supplementation can mitigate the adverse impact of maternal SE on offspring's renal pathology, renal oxidative stress and mitochondrial density in mice offspring.

  16. Gestational Protein Restriction Increases Cardiac Connexin 43 mRNA levels in male adult rat offspring.

    PubMed

    Rossini, Kamila Fernanda; Oliveira, Camila Andrea de; Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Catisti, Rosana

    2017-07-01

    The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Pregnant Wistar rats were fed a normal-protein (NP, 17% casein) or low-protein (LP, 6% casein) diet. Blood pressure (BP) values from 60-day-old male offspring were measured by an indirect tail-cuff method using an electro sphygmomanometer. Hearts (d60) were collected for assessment of connexin 43 (Cx43) mRNA expression and morphological and morphometric analysis. LP offspring showed no difference in body weight, although they were born lighter than NP offspring. BP levels were significantly higher in the LP group. We observed a significant increase in the area occupied by collagen fibers, a decrease in the number of cardiomyocytes by 104 µm2, and an increase in cardiomyocyte area associated with an increased Cx43 expression. GPR changes myocardial levels of Cx43 mRNA in male young adult rats, suggesting that this mechanism aims to compensate the fibrotic process by the accumulation of collagen fibers in the heart interstitium. A limitação dietética durante a gravidez influencia o crescimento e desenvolvimento do feto e da prole e sua saúde na vida adulta. Os mecanismos subjacentes dos efeitos adversos da restrição proteica gestacional (RPG) no desenvolvimento dos corações da prole não são bem compreendidos. Avaliar os efeitos da RPG sobre a estrutura cardíaca em filhotes machos de ratas aos 60 dias após o nascimento (d60). Ratos fêmeas Wistar grávidas foram alimentadas com uma dieta de proteína normal (PN, 17% caseína) ou de baixa proteína (BP, caseína 6%). Os valores de pressão arterial (PA) de descendentes do sexo masculino de

  17. Quantitative trait loci for maternal performance for offspring survival in mice.

    PubMed Central

    Peripato, Andréa C; De Brito, Reinaldo A; Vaughn, Ty T; Pletscher, L Susan; Matioli, Sergio R; Cheverud, James M

    2002-01-01

    Maternal performance refers to the effect that the environment provided by mothers has on their offspring's phenotypes, such as offspring survival and growth. Variations in maternal behavior and physiology are responsible for variations in maternal performance, which in turn affects offspring survival. In our study we found females that failed to nurture their offspring and showed abnormal maternal behaviors. The genetic architecture of maternal performance for offspring survival was investigated in 241 females of an F(2) intercross of the SM/J and LG/J inbred mouse strains. Using interval-mapping methods we found two quantitative trait loci (QTL) affecting maternal performance at D2Mit17 + 6 cM and D7Mit21 + 2 cM on chromosomes 2 and 7, respectively. In a two-way genome-wide epistasis scan we found 15 epistatic interactions involving 23 QTL distributed across all chromosomes except 12, 16, and 17. These loci form several small sets of interacting QTL, suggesting a complex set of mechanisms operating to determine maternal performance for offspring survival. Taken all together and correcting for the large number of significant factors, QTL and their interactions explain almost 35% of the phenotypic variation for maternal performance for offspring survival in this cross. This study allowed the identification of many possible candidate genes, as well as the relative size of gene effects and patterns of gene action affecting maternal performance in mice. Detailed behavior observation of mothers from later generations suggests that offspring survival in the first week is related to maternal success in building nests, grooming their pups, providing milk, and/or manifesting aggressive behavior against intruders. PMID:12454078

  18. [Streptozotocin-induced maternal intrauterine hyperglycemia environment and its influence on development and metabolic in adult offspring with high birth weight in rats].

    PubMed

    Li, Xin; Luo, Shu-jing; Zhang, Kai; Yang, Hui-xia

    2012-10-01

    To establish and assess the high-birth-weight offspring model of the diabetic rat induced by stueptozotocin, and the long-term metabolic impact of maternal hyperglycemia of those offsprings. Streptozotocin (STZ, 25 mg/kg) was given to Wistar rats (G group, n = 14) once intraperitoneally to induce maternal hyperglycemia model (blood glucose between 10 - 20 mmol/L), and there still had a number of rats defined as severe hyperglycemia model group (SG group, n = 5). The Control group (C group, n = 7) were given the same volume citrate buffer solution. The body weight and blood glucose were recorded, and the lavaging glucose tolerance test (LGTT) was performed by a glucose meter in the gestation. The offsprings were corresponding allocated into 2 groups, and the birth weight were recorded. All the offsprings were observated body weight, blood glucose blood pressure (male rats only), and so on. (1) The blood glucose of G group (16.8 ± 5.4 mmol/L) and SG group (20.5 ± 5.6 mmol/L) were increased significantly as compared with C group (7.0 ± 1.4 mmol/L) 5 days after the model was established (P < 0.01); and the average blood glucose of G group (16.6 ± 3.4 mmol/L) and SG group (23.8 ± 1.5 mmol/L) increased too as comparede with C group (5.8 ± 1.1 mmol/L), the difference was significance according to statistics (P < 0.01). (2) According to the LGTT result, which operationed on generation day 4 and day 10, the blood glucose of every time point of G group were increased significantly as compared with C group (P < 0.01). (3) The male and female birth weight of G group was remarkably higher than the C group and the SG group (P < 0.05), and the blood glucose of SG/G/C group was (6.5 ± 1.2) mmol/L, (4.1 ± 0.8) mmol/L, (4.1 ± 0.8) mmol/L respectively, according to the statistics results, the difference between SG group and G/C group respectively both remarkable (P < 0.05). (4) The body weight, Lee's index, fat weight, and the fat weight of mass ratio in C group mother rats

  19. Effects of maternal cortisol treatment on offspring size, responses to stress, and anxiety-related behavior in wild largemouth bass (Micropterus salmoides).

    PubMed

    Redfern, Julia C; Cooke, Steven J; Lennox, Robert J; Nannini, Michael A; Wahl, David H; Gilmour, Kathleen M

    2017-10-15

    Cortisol, the main glucocorticoid stress hormone in teleost fish, is of interest as a mediator of maternal stress on offspring characteristics because it plays an organizational role during early development. The present study tested the hypothesis that maternal exposure to cortisol treatment prior to spawn affects offspring phenotype using wild largemouth bass (Micropterus salmoides). Baseline and stress-induced cortisol concentrations, body size (i.e. length and mass), and behavior (i.e. anxiety, exploration, boldness, and aggression) were assessed at different offspring life-stages and compared between offspring of control and cortisol-treated females. Cortisol administration did not affect spawning success or timing, nor were whole-body cortisol concentrations different between embryos from cortisol-treated and control females. However, maternal cortisol treatment had significant effects on offspring stress responsiveness, mass, and behavior. Compared to offspring of control females, offspring of cortisol-treated females exhibited larger mass right after hatch, and young-of-the-year mounted an attenuated cortisol response to an acute stressor, and exhibited less thigmotaxic anxiety, exploratory behavior, boldness and aggression. Thus, offspring phenotype was affected by elevated maternal cortisol levels despite the absence of a significant increase in embryo cortisol concentrations, suggesting that a mechanism other than the direct deposition of cortisol into eggs mediates effects on offspring. The results of the present raise questions about the mechanisms through which maternal stress influences offspring behavior and physiology, as well as the impacts of such phenotypic changes on offspring fitness. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Effects of paternal obesity on growth and adiposity of male rat offspring.

    PubMed

    Lecomte, Virginie; Maloney, Christopher A; Wang, Kristy W; Morris, Margaret J

    2017-02-01

    Emerging evidence suggests that paternal obesity plays an important role in offspring health. Our previous work using a rodent model of diet-induced paternal obesity showed that female offspring from high-fat diet (HFD)-fed fathers develop glucose intolerance due to impairment of pancreatic insulin secretion. Here, we focused on the health outcomes of male offspring from HFD-fed fathers. Male Sprague-Dawley rats (3 wk old) were fed control (CD-F0) or HFD (HFD-F0) for 12 wk before mating with control-fed females. Male offspring were fed control diets for up to 8 wk or 6 mo. Although male offspring from HFD-F0 did not develop any obvious glucose metabolism defects in this study, surprisingly, a growth deficit phenotype was observed from birth to 6 mo of age. Male offspring from HFD-F0 had reduced birth weight compared with CD-F0, followed by reduced postweaning growth from 9 wk of age. This resulted in 10% reduction in body weight at 6 mo with significantly smaller fat pads and skeletal muscles. Reduced circulating levels of growth hormone (GH) and IGF-I were detected at 8 wk and 6 mo, respectively. Expression of adipogenesis markers was decreased in adipose tissue of HFD-F0 offspring at 8 wk and 6 mo, and expression of growth markers was decreased in muscle of HFD-F0 offspring at 8 wk. We propose that the reduced GH secretion at 8 wk of age altered the growth of male offspring from HFD-F0, resulting in smaller animals from 9 wk to 6 mo of age. Furthermore, increased muscle triglyceride content and expression of lipogenic genes were observed in HFD-F0 offspring, potentially increasing their metabolic risk. Copyright © 2017 the American Physiological Society.

  1. Maternal corticosterone exposure in the mouse programs sex-specific renal adaptations in the renin-angiotensin-aldosterone system in 6-month offspring.

    PubMed

    Cuffe, James S M; Burgess, Danielle J; O'Sullivan, Lee; Singh, Reetu R; Moritz, Karen M

    2016-04-01

    Short-term maternal corticosterone (Cort) administration at mid-gestation in the mouse reduces nephron number in both sexes while programming renal and cardiovascular dysfunction in 12-month male but not female offspring. The renal renin-angiotensin-aldosterone system (RAAS), functions in a sexually dimorphic manner to regulate both renal and cardiovascular physiology. This study aimed to identify if there are sex-specific differences in basal levels of the intrarenal RAAS and to determine the impact of maternal Cort exposure on the RAAS in male and female offspring at 6 months of age. While intrarenal renin concentrations were higher in untreated females compared to untreated males, renal angiotensin II concentrations were higher in males than females. Furthermore, basal plasma aldosterone concentrations were greater in females than males. Cort exposed male but not female offspring had reduced water intake and urine excretion. Cort exposure increased renal renin concentrations and elevated mRNA expression of Ren1, Ace2, and Mas1 in male but not female offspring. In addition, male Cort exposed offspring had increased expression of the aldosterone receptor, Nr3c2 and renal sodium transporters. In contrast, Cort exposure increased Agtr1a mRNA levels in female offspring only. This study demonstrates that maternal Cort exposure alters key regulators of renal function in a sex-specific manner at 6 months of life. These finding likely contribute to the disease outcomes in male but not female offspring in later life and highlights the importance of renal factors other than nephron number in the programming of renal and cardiovascular disease. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  2. Maternal high-fat diet associated with altered gene expression, DNA methylation, and obesity risk in mouse offspring.

    PubMed

    Keleher, Madeline Rose; Zaidi, Rabab; Shah, Shyam; Oakley, M Elsa; Pavlatos, Cassondra; El Idrissi, Samir; Xing, Xiaoyun; Li, Daofeng; Wang, Ting; Cheverud, James M

    2018-01-01

    We investigated maternal obesity in inbred SM/J mice by assigning females to a high-fat diet or a low-fat diet at weaning, mating them to low-fat-fed males, cross-fostering the offspring to low-fat-fed SM/J nurses at birth, and weaning the offspring onto a high-fat or low-fat diet. A maternal high-fat diet exacerbated obesity in the high-fat-fed daughters, causing them to weigh more, have more fat, and have higher serum levels of leptin as adults, accompanied by dozens of gene expression changes and thousands of DNA methylation changes in their livers and hearts. Maternal diet particularly affected genes involved in RNA processing, immune response, and mitochondria. Between one-quarter and one-third of differentially expressed genes contained a differentially methylated region associated with maternal diet. An offspring high-fat diet reduced overall variation in DNA methylation, increased body weight and organ weights, increased long bone lengths and weights, decreased insulin sensitivity, and changed the expression of 3,908 genes in the liver. Although the offspring were more affected by their own diet, their maternal diet had epigenetic effects lasting through adulthood, and in the daughters these effects were accompanied by phenotypic changes relevant to obesity and diabetes.

  3. Maternal high-fat diet associated with altered gene expression, DNA methylation, and obesity risk in mouse offspring

    PubMed Central

    Zaidi, Rabab; Shah, Shyam; Oakley, M. Elsa; Pavlatos, Cassondra; El Idrissi, Samir; Xing, Xiaoyun; Li, Daofeng; Wang, Ting; Cheverud, James M.

    2018-01-01

    We investigated maternal obesity in inbred SM/J mice by assigning females to a high-fat diet or a low-fat diet at weaning, mating them to low-fat-fed males, cross-fostering the offspring to low-fat-fed SM/J nurses at birth, and weaning the offspring onto a high-fat or low-fat diet. A maternal high-fat diet exacerbated obesity in the high-fat-fed daughters, causing them to weigh more, have more fat, and have higher serum levels of leptin as adults, accompanied by dozens of gene expression changes and thousands of DNA methylation changes in their livers and hearts. Maternal diet particularly affected genes involved in RNA processing, immune response, and mitochondria. Between one-quarter and one-third of differentially expressed genes contained a differentially methylated region associated with maternal diet. An offspring high-fat diet reduced overall variation in DNA methylation, increased body weight and organ weights, increased long bone lengths and weights, decreased insulin sensitivity, and changed the expression of 3,908 genes in the liver. Although the offspring were more affected by their own diet, their maternal diet had epigenetic effects lasting through adulthood, and in the daughters these effects were accompanied by phenotypic changes relevant to obesity and diabetes. PMID:29447215

  4. Maternal exposure to predator scents: offspring phenotypic adjustment and dispersal

    PubMed Central

    Bestion, Elvire; Teyssier, Aimeric; Aubret, Fabien; Clobert, Jean; Cote, Julien

    2014-01-01

    Predation is a strong selective pressure generating morphological, physiological and behavioural responses in organisms. As predation risk is often higher during juvenile stages, antipredator defences expressed early in life are paramount to survival. Maternal effects are an efficient pathway to produce such defences. We investigated whether maternal exposure to predator cues during gestation affected juvenile morphology, behaviour and dispersal in common lizards (Zootoca vivipara). We exposed 21 gravid females to saurophagous snake cues for one month while 21 females remained unexposed (i.e. control). We measured body size, preferred temperature and activity level for each neonate, and released them into semi-natural enclosures connected to corridors in order to measure dispersal. Offspring from exposed mothers grew longer tails, selected lower temperatures and dispersed thrice more than offspring from unexposed mothers. Because both tail autotomy and altered thermoregulatory behaviour are common antipredator tactics in lizards, these results suggest that mothers adjusted offspring phenotype to risky natal environments (tail length) or increased risk avoidance (dispersal). Although maternal effects can be passive consequences of maternal stress, our results strongly militate for them to be an adaptive antipredator response that may increase offspring survival prospects. PMID:25122225

  5. Male rank affects reproductive success and offspring performance in bank voles.

    PubMed

    Kruczek, Małgorzata; Zatorska, Magdalena

    2008-07-05

    Laboratory studies reveal that in several rodent species the females prefer dominant males as mating partners. Here we investigate the correlation between males' social rank and their reproductive success. Similar numbers of females mating with relatively more dominant or relatively more subordinate males produced a litter, and parturition took place 19-21 days after mating. Relatively more dominant males tended to sire more pups than did relatively more subordinates, but the mean number of offspring per litter did not differ significantly between the two groups. Significantly more pups fathered by relatively more dominant males survived to weaning than those sired by relatively more subordinate fathers. Dominance had a long-term effect on the reproductive activity of the offspring: their rate of sexual maturation was increased. In pups sired by a relatively more dominant father, the uteruses of females, and the testes and accessory sex glands of males, were significantly heavier than those of offspring born to relatively more subordinate males. Our results suggest that social rank is an important determinant of the reproductive success of bank vole males.

  6. Parental antagonism and parent–offspring co-adaptation interact to shape family life

    PubMed Central

    Meunier, Joël; Kölliker, Mathias

    2012-01-01

    The family is an arena for conflicts between offspring, mothers and fathers that need resolving to promote the evolution of parental care and the maintenance of family life. Co-adaptation is known to contribute to the resolution of parent–offspring conflict over parental care by selecting for combinations of offspring demand and parental supply that match to maximize the fitness of family members. However, multiple paternity and differences in the level of care provided by mothers and fathers can generate antagonistic selection on offspring demand (mediated, for example, by genomic imprinting) and possibly hamper co-adaptation. While parent–offspring co-adaptation and parental antagonism are commonly considered two major processes in the evolution of family life, their co-occurrence and the evolutionary consequences of their joint action are poorly understood. Here, we demonstrate the simultaneous and entangled effects of these two processes on outcomes of family interactions, using a series of breeding experiments in the European earwig, Forficula auricularia, an insect species with uniparental female care. As predicted from parental antagonism, we show that paternally inherited effects expressed in offspring influence both maternal care and maternal investment in future reproduction. However, and as expected from the entangled effects of parental antagonism and co-adaptation, these effects critically depended on postnatal interactions with caring females and maternally inherited effects expressed in offspring. Our results demonstrate that parent–offspring co-adaptation and parental antagonism are entangled key drivers in the evolution of family life that cannot be fully understood in isolation. PMID:22810433

  7. Are mothers' and fathers' parenting characteristics associated with emerging adults' academic engagement?

    PubMed

    Waterman, Emily A; Lefkowitz, Eva S

    2017-06-01

    Although parenting is clearly linked to academic engagement in adolescence, less is known about links between parenting and academic engagement in emerging adulthood. A diverse sample of college students ( N = 633; 53.1% female, 45.7% White/European American, 28.3% Asian American/Hawaiian/Pacific Islander, 26.4% Hispanic/Latino American, 21.6% Black/African American, and 2.8% Native American/American Indian) answered surveys about mothers' and fathers' parenting style, parent-offspring relationship quality, academic attitudes, academic behaviors, and academic performance. Emerging adults with more permissive mothers viewed grades as less important than emerging adults with less permissive mothers. Mothers' authoritarian parenting, mothers' permissive parenting, and relationship quality with father were differentially related to academic engagement depending on emerging adults' gender. Both mothers' and fathers' parenting characteristics may impact the academic engagement of emerging adults via past parenting behaviors and current quality of the parent-offspring relationship, despite decreased physical proximity of emerging adults and their parents.

  8. Maternal high-fat diet during pregnancy and lactation reduces the appetitive behavioral component in female offspring tested in a brief-access taste procedure

    PubMed Central

    Sun, Bo; Moghadam, Alexander A.; Liang, Nu-Chu; Tamashiro, Kellie L.; Moran, Timothy H.

    2014-01-01

    Maternal high-fat diet appears to disrupt several energy balance mechanisms in offspring. Here, female offspring from dams fed a high-fat diet (HF) did not significantly differ in body weight compared with those fed chow (CHOW), when weaned onto chow diet. Yet when presented with both a chow and a high-fat diet, high-fat intake was significantly higher in HF compared with CHOW offspring. To assess taste-based responsiveness, offspring (12 wk old) were tested in 30-min sessions (10-s trials) to a sucrose concentration series in a brief-access taste test. Compared with CHOW, the HF offspring initiated significantly fewer trials but did not significantly differ in the amount of concentration-dependent licking. Thus, rather than affect lick response (consummatory), maternal diet affects spout approach (appetitive), which may be attributed to motivation-related mechanisms. Consistent with this possibility, naltrexone, an opioid receptor antagonist, further reduced trial initiation, but not licking in both groups. With naltrexone administration, the group difference in trial initiation was no longer evident, suggesting differences in endogenous opioid activity between the two groups. Relative expression of μ-opioid receptor in the ventral tegmental area was significantly lower in HF rats. When trial initiation was not required in one-bottle intake tests, no main effect of maternal diet on the intake of sucrose and corn oil emulsions was observed. Thus, the maternal high-fat diet-induced difference in diet preference is not likely due to changes in the sensory orosensory component of the taste stimulus but may depend on alterations in satiety signals or absorptive mechanisms. PMID:24500433

  9. Depot- and sex-specific effects of maternal obesity in offspring's adipose tissue.

    PubMed

    Lecoutre, Simon; Deracinois, Barbara; Laborie, Christine; Eberlé, Delphine; Guinez, Céline; Panchenko, Polina E; Lesage, Jean; Vieau, Didier; Junien, Claudine; Gabory, Anne; Breton, Christophe

    2016-07-01

    According to the Developmental Origin of Health and Disease (DOHaD) concept, alterations of nutrient supply in the fetus or neonate result in long-term programming of individual body weight (BW) setpoint. In particular, maternal obesity, excessive nutrition, and accelerated growth in neonates have been shown to sensitize offspring to obesity. The white adipose tissue may represent a prime target of metabolic programming induced by maternal obesity. In order to unravel the underlying mechanisms, we have developed a rat model of maternal obesity using a high-fat (HF) diet (containing 60% lipids) before and during gestation and lactation. At birth, newborns from obese dams (called HF) were normotrophs. However, HF neonates exhibited a rapid weight gain during lactation, a key period of adipose tissue development in rodents. In males, increased BW at weaning (+30%) persists until 3months of age. Nine-month-old HF male offspring was normoglycemic but showed mild glucose intolerance, hyperinsulinemia, and hypercorticosteronemia. Despite no difference in BW and energy intake, HF adult male offspring was predisposed to fat accumulation showing increased visceral (gonadal and perirenal) depots weights and hyperleptinemia. However, only perirenal adipose tissue depot exhibited marked adipocyte hypertrophy and hyperplasia with elevated lipogenic (i.e. sterol-regulated element binding protein 1 (Srebp1), fatty acid synthase (Fas), and leptin) and diminished adipogenic (i.e. peroxisome proliferator-activated receptor gamma (Pparγ), 11β-hydroxysteroid dehydrogenase type 1 (11β-Hds1)) mRNA levels. By contrast, very few metabolic variations were observed in HF female offspring. Thus, maternal obesity and accelerated growth during lactation program offspring for higher adiposity via transcriptional alterations of visceral adipose tissue in a depot- and sex-specific manner. © 2016 Society for Endocrinology.

  10. Enhanced GABA action on the substantia gelatinosa neurons of the medullary dorsal horn in the offspring of streptozotocin-injected mice.

    PubMed

    Nguyen, Hoang Thi Thanh; Bhattarai, Janardhan Prasad; Park, Soo Joung; Lee, Jeong Chae; Cho, Dong Hyu; Han, Seong Kyu

    2015-07-01

    Peripheral neuropathy is a frequent complication of diabetes mellitus and a common symptom of neuropathic pain, the mechanism of which is complex and involves both peripheral and central components of the sensory system. The lamina II of the medullary dorsal horn, called the substantia gelatinosa (SG), is well known to be a critical site for processing of orofacial nociceptive information. Although there have been a number of studies done on diabetic neuropathy related to the orofacial region, the action of neurotransmitter receptors on SG neurons in the diabetic state is not yet fully understood. Therefore, we used the whole-cell patch clamp technique to investigate this alteration on SG neurons in both streptozotocin (STZ)-induced diabetic mice and offspring from diabetic female mice. STZ (200 mg/kg)-injected mice showed a small decrease in body weight and a significant increase in blood glucose level when compared with their respective control group. However, application of different concentrations of glycine, gamma-aminobutyric acid (GABA) and glutamate on SG neurons from STZ-injected mice did not induce any significant differences in inward currents when compared to their control counterparts. On the other hand, the offspring of diabetic female mice (induced by multiple injections of STZ (40 mg/kg) for 5 consecutive days) led to a significant decrease in both body weight and blood glucose level compared to the control offspring. Glycine and glutamate responses in the SG neurons of the offspring from diabetic female mice were similar to those of control offspring. However, the GABA response in SG neurons of offspring from diabetic female mice was greater than that of control offspring. Furthermore, the GABA-mediated responses in offspring from diabetic and control mice were examined at different concentrations ranging from 3 to 1,000 μM. At each concentration, the GABA-induced mean inward currents in the SG neurons of offspring from diabetic female mice were

  11. Prenatal glucocorticoid exposure in rats: programming effects on stress reactivity and cognition in adult offspring.

    PubMed

    Zeng, Yan; Brydges, Nichola M; Wood, Emma R; Drake, Amanda J; Hall, Jeremy

    2015-01-01

    Human epidemiological studies have provided compelling evidence that prenatal exposure to stress is associated with significantly increased risks of developing psychiatric disorders in adulthood. Exposure to excessive maternal glucocorticoids may underlie this fetal programming effect. In the current study, we assessed how prenatal dexamethasone administration during the last week of gestation affects stress reactivity and cognition in adult offspring. Stress reactivity was assessed by evaluating anxiety-like behavior on an elevated plus maze and in an open field. In addition, to characterize the long-term cognitive outcomes of prenatal exposure to glucocorticoids, animals were assessed on two cognitive tasks, a spatial reference memory task with reversal learning and a delayed matching to position (DMTP) task. Our results suggest that prenatal exposure to dexamethasone had no observable effect on anxiety-like behavior, but affected cognition in the adult offspring. Prenatally dexamethasone-exposed animals showed a transient deficit in the spatial reference memory task and a trend to faster acquisition during the reversal-learning phase. Furthermore, prenatally dexamethasone-treated animals also showed faster learning of new platform positions in the DMTP task. These results suggest that fetal overexposure to glucocorticoids programs a phenotype characterized by cognitive flexibility and adaptability to frequent changes in environmental circumstances. This can be viewed as an attempt to increase the fitness of survival in a potentially hazardous postnatal environment, as predicted by intrauterine adversity. Collectively, our data suggest that prenatal exposure to dexamethasone in rats could be used as an animal model for studying some cognitive components of related psychiatric disorders.

  12. Ectoparasites and fitness of female Columbian ground squirrels

    PubMed Central

    Raveh, Shirley; Neuhaus, Peter; Dobson, F. Stephen

    2015-01-01

    Parasites play an important role in the evolution of host traits via natural selection, coevolution and sexually selected ornaments used in mate choice. These evolutionary scenarios assume fitness costs for hosts. To test this assumption, we conducted an ectoparasite removal experiment in free-living Columbian ground squirrels (Urocittelus columbianus) in four populations over three years. Adult females were randomly chosen to be either experimentally treated with anti-parasite treatments (spot-on solution and flea powder, N = 61) or a sham treatment (control, N = 44). We expected that experimental females would show better body condition, increased reproductive success and enhanced survival. Contrary to our expectations, body mass was not significantly different between treatments at mating, birth of litter or weaning of young. Further, neither number nor size of young at weaning differed significantly between the two treatments. Survival to the next spring for adult females and juveniles was not significantly different between experimental and control treatments. Finally, annual fitness was not affected by the treatments. We concluded that females and their offspring were able compensate for the presence of ectoparasites, suggesting little or no fitness costs of parasites for females in the different colonies and during the years of our experiments. PMID:25870399

  13. Transcriptome sequencing of newly molted adult female cattle ticks, Rhipicephalus microplus: Raw Illumina reads.

    USDA-ARS?s Scientific Manuscript database

    Illumina paired end oligo-dT sequencing technology was used to sequence the transcriptome from newly molted adult females from the cattle tick, Rhipicephalus microplus. These samples include newly molted unfed whole adult females, newly molted whole adult females feeding for 2 hours on a bovine host...

  14. Effects of Paternal Predation Risk and Rearing Environment on Maternal Investment and Development of Defensive Responses in the Offspring

    PubMed Central

    Bauer, Jessica

    2016-01-01

    Abstract Detecting past experiences with predators of a potential mate informs a female about prevailing ecological threats, in addition to stress-induced phenotypes that may be disseminated to offspring. We examined whether prior exposure of a male rat to a predator (cat) odor influences the attraction of a female toward a male, subsequent mother–infant interactions and the development of defensive (emotional) responses in the offspring. Females displayed less interest in males that had experienced predator odor. Mothers that reared young in larger, seminaturalistic housing provided more licking and grooming and active arched back-nursing behavior toward their offspring compared with dams housed in standard housing, although some effects interacted with paternal experience. Paternal predation risk and maternal rearing environment revealed sex-dependent differences in offspring wean weight, juvenile social interactions, and anxiety-like behavior in adolescence. Additionally, paternal predator experience and maternal housing independently affected variations in crf gene promoter acetylation and crf gene expression in response to an acute stressor in offspring. Our results show for the first time in mammals that variation among males in their predator encounters may contribute to stable behavioral variation among females in preference for mates and maternal care, even when the females are not directly exposed to predator threat. Furthermore, when offspring were exposed to the same threat experienced by the father, hypothalamic crf gene regulation was influenced by paternal olfactory experience and early housing. These results, together with our previous findings, suggest that paternal stress exposure and maternal rearing conditions can influence maternal behavior and the development of defensive responses in offspring. PMID:27896313

  15. Intraovarian Transplantation of Female Germline Stem Cells Rescue Ovarian Function in Chemotherapy-Injured Ovaries.

    PubMed

    Xiong, Jiaqiang; Lu, Zhiyong; Wu, Meng; Zhang, Jinjin; Cheng, Jing; Luo, Aiyue; Shen, Wei; Fang, Li; Zhou, Su; Wang, Shixuan

    2015-01-01

    Early menopause and infertility often occur in female cancer patients after chemotherapy (CTx). For these patients, oocyte/embryo cryopreservation or ovarian tissue cryopreservation is the current modality for fertility preservation. However, the above methods are limited in the long-term protection of ovarian function, especially for fertility preservation (very few females with cancer have achieved pregnancy with cryopreserved ovarian tissue or eggs until now). In addition, the above methods are subject to their scope (females with no husband or prepubertal females with no mature oocytes). Thus, many females who suffer from cancers would not adopt the above methods pre- and post-CTx due to their uncertainty, safety and cost-effectiveness. Therefore, millions of women have achieved long-term survival after thorough CTx treatment and have desired to rescue their ovarian function and fertility with economic, durable and reliable methods. Recently, some studies showed that mice with infertility caused by CTx can produce normal offspring through intraovarian injection of exogenous female germline stem cells (FGSCs). Though exogenous FGSC can be derived from mice without immune rejection in the same strain, it is difficult to obtain human female germline stem cells (hFGSCs), and immune rejection could occur between different individuals. In this study, infertility in mice was caused by CTx, and the ability of FGSCs to restore ovarian function or even produce offspring was assessed. We had successfully isolated and purified the FGSCs from adult female mice two weeks after CTx. After infection with GFP-carrying virus, the FGSCs were transplanted into ovaries of mice with infertility caused by CTx. Finally, ovarian function was restored and the recipients produced offspring long-term. These findings showed that mice with CTx possessed FGSCs, restoring ovarian function and avoiding immune rejection from exogenous germline stem cells.

  16. Perinatal maternal high-fat diet induces early obesity and sex-specific alterations of the endocannabinoid system in white and brown adipose tissue of weanling rat offspring.

    PubMed

    Almeida, Mariana M; Dias-Rocha, Camilla P; Souza, André S; Muros, Mariana F; Mendonca, Leonardo S; Pazos-Moura, Carmen C; Trevenzoli, Isis H

    2017-11-01

    Perinatal maternal high-fat (HF) diet programmes offspring obesity. Obesity is associated with overactivation of the endocannabinoid system (ECS) in adult subjects, but the role of the ECS in the developmental origins of obesity is mostly unknown. The ECS consists of endocannabinoids, cannabinoid receptors (cannabinoid type-1 receptor (CB1) and cannabinoid type-2 receptor (CB2)) and metabolising enzymes. We hypothesised that perinatal maternal HF diet would alter the ECS in a sex-dependent manner in white and brown adipose tissue of rat offspring at weaning in parallel to obesity development. Female rats received standard diet (9 % energy content from fat) or HF diet (29 % energy content from fat) before mating, during pregnancy and lactation. At weaning, male and female offspring were killed for tissue harvest. Maternal HF diet induced early obesity, white adipocyte hypertrophy and increased lipid accumulation in brown adipose tissue associated with sex-specific changes of the ECS's components in weanling rats. In male pups, maternal HF diet decreased CB1 and CB2 protein in subcutaneous adipose tissue. In female pups, maternal HF diet increased visceral and decreased subcutaneous CB1. In brown adipose tissue, maternal HF diet increased CB1 regardless of pup sex. In addition, maternal HF diet differentially changed oestrogen receptor across the adipose depots in male and female pups. The ECS and oestrogen signalling play an important role in lipogenesis, adipogenesis and thermogenesis, and we observed early changes in their targets in adipose depots of the offspring. The present findings provide insights into the involvement of the ECS in the developmental origins of metabolic disease induced by inadequate maternal nutrition in early life.

  17. Paternal Body Mass Index (BMI) Is Associated with Offspring Intrauterine Growth in a Gender Dependent Manner

    PubMed Central

    Chen, You-Peng; Xiao, Xiao-Min; Li, Jian; Reichetzeder, Christoph; Wang, Zi-Neng; Hocher, Berthold

    2012-01-01

    Background Environmental alternations leading to fetal programming of cardiovascular diseases in later life have been attributed to maternal factors. However, animal studies showed that paternal obesity may program cardio-metabolic diseases in the offspring. In the current study we tested the hypothesis that paternal BMI may be associated with fetal growth. Methods and Results We analyzed the relationship between paternal body mass index (BMI) and birth weight, ultrasound parameters describing the newborn's body shape as well as parameters describing the newborns endocrine system such as cortisol, aldosterone, renin activity and fetal glycated serum protein in a birth cohort of 899 father/mother/child triplets. Since fetal programming is an offspring sex specific process, male and female offspring were analyzed separately. Multivariable regression analyses considering maternal BMI, paternal and maternal age, hypertension during pregnancy, maternal total glycated serum protein, parity and either gestational age (for birth weight) or time of ultrasound investigation (for ultrasound parameters) as confounding showed that paternal BMI is associated with growth of the male but not female offspring. Paternal BMI correlated with birth parameters of male offspring only: birth weight; biparietal diameter, head circumference; abdominal diameter, abdominal circumference; and pectoral diameter. Cortisol was likewise significantly correlated with paternal BMI in male newborns only. Conclusions Paternal BMI affects growth of the male but not female offspring. Paternal BMI may thus represent a risk factor for cardiovascular diseases of male offspring in later life. It remains to be demonstrated whether this is linked to an offspring sex specific paternal programming of cortisol secretion. PMID:22570703

  18. Fitness consequences of female multiple mating: A direct test of indirect benefits

    PubMed Central

    2012-01-01

    Background The observation that females mate multiply when males provide nothing but sperm - which sexual selection theory suggests is unlikely to be limiting - continues to puzzle evolutionary biologists. Here we test the hypothesis that multiple mating is prevalent under such circumstances because it enhances female fitness. We do this by allowing female Trinidadian guppies to mate with either a single male or with multiple males, and then tracking the consequences of these matings across two generations. Results Overall, multiply mated females produced 67% more F2 grand-offspring than singly mated females. These offspring, however, did not grow or mature faster, nor were they larger at birth, than F2 grand-offspring of singly mated females. Our results, however, show that multiple mating yields benefits to females in the form of an increase in the production of F1. The higher fecundity among multiply mated mothers was driven by greater production of sons but not daughters. However, contrary to expectation, individually, the offspring of multiply mated females do not grow at different rates than offspring of singly mated females, nor do any indirect fitness benefits or costs accrue to second-generation offspring. Conclusions The study provides strong evidence that multiple mating is advantageous to females, even when males contribute only sperm. This benefit is achieved through an increase in fecundity in the first generation, rather than through other fitness correlates such as size at birth, growth rate, time to sexual maturation and survival. Considered alongside previous work that female guppies can choose to mate with multiple partners, our results provide compelling evidence that direct fitness benefits underpin these mating decisions. PMID:22978442

  19. Maternal antibodies protect offspring from severe influenza infection and do not lead to detectable interference with subsequent offspring immunization.

    PubMed

    van der Lubbe, Joan E M; Vreugdenhil, Jessica; Damman, Sarra; Vaneman, Joost; Klap, Jaco; Goudsmit, Jaap; Radošević, Katarina; Roozendaal, Ramon

    2017-06-26

    Various studies have shown that infants under the age of 6 months are especially vulnerable for complications due to influenza. Currently there are no vaccines licensed for use in this age group. Vaccination of pregnant women during the last trimester, recommended by the WHO as protective measure for this vulnerable female population, may provide protection of newborns at this early age. Although it has been observed that maternal vaccination can passively transfer protection, maternal antibodies could possibly also interfere with subsequent active vaccination of the offspring. Using a mouse model, we evaluated in depth the ability of maternal influenza vaccination to protect offspring and the effect of maternal immunization on the subsequent influenza vaccination of the offspring. By varying the regimen of maternal immunization we explored the impact of different levels of maternal antibodies on the longevity of these antibodies in their progeny. We subsequently assessed to what extent maternal antibodies can mediate direct protection against influenza in their offspring, and whether these antibodies interfere with protection induced by active vaccination of the offspring. The number of immunizations of pregnant mice correlates to the level and longevity of maternal antibodies in the offspring. When these antibodies are present at time of influenza challenge they protect offspring against lethal influenza challenge, even in the absence of detectable HAI titers. Moreover, no detectable interference of passively-transferred maternal antibodies on the subsequent vaccination of the offspring was observed. In the absence of a licensed influenza vaccine for young children, vaccination of pregnant women is a promising measure to provide protection of young infants against severe influenza infection.

  20. Maternal Age at Holocaust Exposure and Maternal PTSD Independently Influence Urinary Cortisol Levels in Adult Offspring

    PubMed Central

    Bader, Heather N.; Bierer, Linda M.; Lehrner, Amy; Makotkine, Iouri; Daskalakis, Nikolaos P.; Yehuda, Rachel

    2014-01-01

    Background: Parental traumatization has been associated with increased risk for the expression of psychopathology in offspring, and maternal posttraumatic stress disorder (PTSD) appears to increase the risk for the development of offspring PTSD. In this study, Holocaust-related maternal age of exposure and PTSD were evaluated for their association with offspring ambient cortisol and PTSD-associated symptom expression. Method: Ninety-five Holocaust offspring and Jewish comparison subjects received diagnostic and psychological evaluations, and 24 h urinary cortisol was assayed by RIA. Offspring completed the parental PTSD questionnaire to assess maternal PTSD status. Maternal Holocaust exposure was identified as having occurred in childhood, adolescence, or adulthood and examined in relation to offspring psychobiology. Results: Urinary cortisol levels did not differ for Holocaust offspring and comparison subjects but differed significantly in offspring based on maternal age of exposure and maternal PTSD status. Increased maternal age of exposure and maternal PTSD were each associated with lower urinary cortisol in offspring, but did not exhibit a significant interaction. In addition, offspring PTSD-associated symptom severity increased with maternal age at exposure and PTSD diagnosis. A regression analysis of correlates of offspring cortisol indicated that both maternal age of exposure and maternal PTSD were significant predictors of lower offspring urinary cortisol, whereas childhood adversity and offspring PTSD symptoms were not. Conclusion: Offspring low cortisol and PTSD-associated symptom expression are related to maternal age of exposure, with the greatest effects associated with increased age at exposure. These effects are relatively independent of the negative consequences of being raised by a trauma survivor. These observations highlight the importance of maternal age of exposure in determining a psychobiology in offspring that is consistent with increased

  1. Effects of paternal high-fat diet and rearing environment on maternal investment and development of defensive responses in the offspring.

    PubMed

    Korgan, Austin C; O'Leary, Elizabeth; King, Jillian L; Weaver, Ian C G; Perrot, Tara S

    2018-05-01

    Paternal preconception risk factors (e.g. stress, diet, drug use) correlate with metabolic dysfunction in offspring, which is often comorbid with depressive and anxiety-like phenotypes. Detection of these risk factors or deleterious phenotypes informs a female about prevailing ecological demands, in addition to potential adverse environment-induced phenotypes that may be disseminated to her offspring. We examined whether a F 0 male rat's prior exposure to an obesogenic high-fat diet (HFD) influences a female's attraction towards a male, subsequent mother-infant interactions and the development of defensive (emotional) responses in the F 1 offspring. Females displayed less interest in the HFD exposed F 0 males relative to control diet-exposed F 0 males. Dams that reared F 1 offspring in larger, semi-naturalistic housing provided more licking and grooming and active arched-back-nursing behavior. However, some of these effects interacted with paternal experience. F 0 HFD and maternal rearing environment revealed sex-dependent, between group differences in F 1 offspring wean weight, juvenile social interactions and anxiety-like behavior in adolescence. Our results show for the first time in mammals that male exposure to HFD may contribute to stable behavioral variation among females in courtship, maternal care, even when the females are not directly exposed to a HFD, and anxiety-like behavior in F 1 offspring. Furthermore, when offspring were exposed to a predatory threat, hypothalamic Crf gene regulation was influenced by early housing. These results, together with our previous findings, suggest that paternal experience and maternal rearing conditions can influence maternal behavior and development of defensive responses of offspring. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Coping in old age with extreme childhood trauma: aging Holocaust survivors and their offspring facing new challenges.

    PubMed

    Fridman, Ayala; Bakermans-Kranenburg, Marian J; Sagi-Schwartz, Abraham; Van IJzendoorn, Marinus H

    2011-03-01

    The Holocaust has become an iconic example of immense human-made catastrophes, and survivors are now coping with normal aging processes. Childhood trauma may leave the survivors more vulnerable when they are facing stress related to old age, whereas their offspring might have a challenging role of protecting their own parents from further pain. Here we examine the psychological adaptation of Holocaust survivors and their offspring in light of these new challenges, examining satisfaction with life, mental health, cognitive abilities, dissociative symptoms, and physical health. Careful matching of female Holocaust survivors and comparison subjects living in Israel was employed to form a case-control study design with two generations, including four groups: 32 elderly female Holocaust survivors and 47 daughters, and 33 elderly women in the comparison group, and 32 daughters (total N = 174). Participants completed several measures of mental and physical health, and their cognitive functioning was examined. The current study is a follow-up of a previous study conducted 11 years ago with the same participants. Holocaust survivors showed more dissociative symptomatology (odds = 2.39) and less satisfaction with their life (odds = 2.79) as compared to a matched group. Nonetheless, adult offspring of Holocaust survivors showed no differences in their physical, psychological, and cognitive functioning as compared to matched controls. Holocaust survivors still display posttraumatic stress symptoms almost 70 years after the trauma, whereas no intergenerational transmission of trauma was found among the second generation.

  3. Sex-biased terminal investment in offspring induced by maternal immune challenge in the house wren (Troglodytes aedon).

    PubMed

    Bowers, E Keith; Smith, Rebecca A; Hodges, Christine J; Zimmerman, Laura M; Thompson, Charles F; Sakaluk, Scott K

    2012-07-22

    The reproductive costs associated with the upregulation of immunity have been well-documented and constitute a fundamental trade-off between reproduction and self-maintenance. However, recent experimental work suggests that parents may increase their reproductive effort following immunostimulation as a form of terminal parental investment as prospects for future reproduction decline. We tested the trade-off and terminal investment hypotheses in a wild population of house wrens (Troglodytes aedon) by challenging the immune system of breeding females with lipopolysaccharide, a potent but non-lethal antigen. Immunized females showed no evidence of reproductive costs; instead, they produced offspring of higher phenotypic quality, but in a sex-specific manner. Relative to control offspring, sons of immunized females had increased body mass and their sisters exhibited higher cutaneous immune responsiveness to phytohaemagglutinin injection, constituting an adaptive strategy of sex-biased allocation by immune-challenged females to enhance the reproductive value of their offspring. Thus, our results are consistent with the terminal investment hypothesis, and suggest that maternal immunization can induce pronounced transgenerational effects on offspring phenotypes.

  4. Obesity causes weight increases in prepubertal and pubertal male offspring and is related to changes in spermatogenesis and sperm production in rats.

    PubMed

    Navya, Harish; Yajurvedi, Hanumant Narasinhacharya

    2017-04-01

    The effect of obesity on testicular activity in prepubertal and pubertal rats was investigated in the present study. Obesity was induced in adult females by feeding a high-calorie diet (HCD). These females were mated with normal males and were fed an HCD during pregnancy and lactation. The male offspring born to obese mothers and fed an HCD after weaning were found to be obese. Seminiferous tubules of offspring from control mothers (OCM) and offspring from HCD-fed mothers (OHCDM) had the same set of germ cells at different age intervals, namely spermatogonia, leptotene spermatocytes, zygotene spermatocytes, pachytene spermatocytes and round and elongated spermatids on postnatal days (PND) 7, 13, 17, 24 and 36, and on the day of preputial separation, respectively. However, there was a significant decrease in round and elongated spermatids and the epididymal sperm count, coupled with a significant decrease in testosterone and an increase in leptin serum concentrations in OHCDM compared with OCM. These results show that obesity in prepubertal rats does not affect the age-dependent appearance of germ cells according to developmental hierarchy, but it does interfere with spermatid formation, resulting in a reduced sperm count, which may be due to a deficiency of testosterone mediated by hyperleptinaemia.

  5. Selection and constraints on offspring size-number trade-offs in sand lizards (Lacerta agilis).

    PubMed

    Ljungström, G; Stjernstedt, M; Wapstra, E; Olsson, M

    2016-05-01

    The trade-off between offspring size and number is a central component of life-history theory, postulating that larger investment into offspring size inevitably decreases offspring number. This trade-off is generally discussed in terms of genetic, physiological or morphological constraints; however, as among-individual differences can mask individual trade-offs, the underlying mechanisms may be difficult to reveal. In this study, we use multivariate analyses to investigate whether there is a trade-off between offspring size and number in a population of sand lizards by separating among- and within-individual patterns using a 15-year data set collected in the wild. We also explore the ecological and evolutionary causes and consequences of this trade-off by investigating how a female's resource (condition)- vs. age-related size (snout-vent length) influences her investment into offspring size vs. number (OSN), whether these traits are heritable and under selection and whether the OSN trade-off has a genetic component. We found a negative correlation between offspring size and number within individual females and physical constraints (size of body cavity) appear to limit the number of eggs that a female can produce. This suggests that the OSN trade-off occurs due to resource constraints as a female continues to grow throughout life and, thus, produces larger clutches. In contrast to the assumptions of classic OSN theory, we did not detect selection on offspring size; however, there was directional selection for larger clutch sizes. The repeatabilities of both offspring size and number were low and we did not detect any additive genetic variance in either trait. This could be due to strong selection (past or current) on these life-history traits, or to insufficient statistical power to detect significant additive genetic effects. Overall, the findings of this study are an important illustration of how analyses of within-individual patterns can reveal trade-offs and

  6. Salt intake during pregnancy alters offspring's myocardial structure.

    PubMed

    Alves-Rodrigues, E N; Veras, M M; Rosa, K T; de Castro, I; Furukawa, L N S; Oliveira, I B; Souza, R M; Heimann, J C

    2013-05-01

    To evaluate the effects of low or high salt intake during pregnancy on left ventricle of adult male offspring. Low- (LS, 0.15%), normal- (NS, 1.3%) or high-salt (HS, 8% NaCl) diet was given to Wistar rats during pregnancy. During lactation all dams received NS as well as the offspring after weaning. To evaluate cardiac response to salt overload, 50% of each offspring group was fed a high-salt (hs, 4% NaCl) diet from the 21st to the 36th week of age (LShs, NShs, HShs). The remaining 50% was maintained on NS (LSns, NSns and HSns). Echocardiography was done at 20 and 30 weeks of age. Mean blood pressure (MBP), histology and left ventricular angiotensin II content (AII) were analyzed at 36 weeks of age. Interventricular septum, left ventricular posterior wall and relative wall thickness increased from the 20th to the 30th week of age only in HShs, cardiomyocyte mean volume was higher in HShs compared to NShs, LShs and HSns. AII and left ventricular fibrosis were not different among groups. HS during pregnancy programs adult male offspring to a blood pressure and angiotensin II independent concentric left ventricular hypertrophy, with no fibrosis, in response to a chronic high-salt intake. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Ecdysteroid receptors in Drosophila melanogaster adult females

    USDA-ARS?s Scientific Manuscript database

    Ecdysteroid receptors were identified and partially characterized from total cell extracts of whole animals and dissected tissues from Drosophila melanogaster adult females. Binding studies indicated the presence of two ecdysteroid binding components having high affinity and specificity consistent w...

  8. Parenting styles and emerging adult drug use in Cebu, the Philippines

    PubMed Central

    Hock, Rebecca S.; Hindin, Michelle J.; Bass, Judith K.; Surkan, Pamela J.; Bradshaw, Catherine P.; Mendelson, Tamar

    2016-01-01

    Parenting style is a potent and malleable influence on emerging adult substance use. Most of the parenting-substance use literature has been conducted in Western populations and it is unknown whether findings are generalizable to other cultures and contexts. We extended the parenting-substance use literature to a cohort of emerging adults in the Philippines using the Cebu Longitudinal Health and Nutrition Survey. We assessed associations between mothers’ and fathers’ parenting styles (authoritative, permissive, authoritarian, and neglectful) reported by offspring at age 18 and odds of offspring-reported drug use three years later, adjusted for a range of offspring- and parent/household-level characteristics. Females were dropped from analyses due to low prevalence of drug users. We found that many emerging adults in Cebu reported having used drugs, particularly methamphetamine—a dangerous drug with high abuse potential. Authoritative (warm, firm) mothering was significantly associated with sons’ reduced odds of drug use and neglectful fathering was related at a trend level with sons’ increased odds of having tried drugs. Findings underscore the relation of parenting styles to emerging adults’ drug use and add to the literature on cross-cultural variability in parenting styles. PMID:27330559

  9. Trajectories of maternal leisure-time physical activity and sedentary behavior during adolescence to young adulthood and offspring birthweight.

    PubMed

    Badon, Sylvia E; Littman, Alyson J; Chan, Kwun Chuen Gary; Williams, Michelle A; Enquobahrie, Daniel A

    2017-11-01

    The objectives of the study were to determine the extent to which trajectories of maternal preconception leisure-time physical activity (LTPA) and leisure-time sedentary behavior (LTSB) during adolescence and young adulthood are associated with offspring birth weight (BW) and to test if these associations differ by offspring sex or maternal pre-pregnancy overweight-obese status. Participants with one or more birth (n = 1408) were identified from the National Longitudinal Study of Adolescent to Adult Health. Group-based trajectory modeling was used to characterize trajectories of LTPA (frequency/week) and LTSB (hours/week) which were measured, on average, over 7 years between age 15 and 22 years. Weighted regression and Wald tests were used to estimate and test mean differences and odds ratios for BW, small for gestational age, and large for gestational age (LGA). Three trajectories were identified for LTPA and five for LTSB. Associations differed by offspring sex for continuous BW and LGA (interaction P = .10 and .008, respectively). Among female offspring, participants with high followed by decreasing LTPA delivered offspring with 90 g greater BW (95% confidence interval [CI]: -4 to 184) and 72% greater risk of LGA (95% CI: 0.94-3.14), compared with participants with low LTPA. Among male offspring, LTPA patterns were not associated with BW. A pattern of high then decreasing LTPA among normal weight, but not overweight-obese women, was associated with 2.03 times greater risk of LGA (95% CI: 1.06-3.88). LTSB trajectories were not associated with BW. Associations of preconception trajectories of LTPA with offspring BW may differ by offspring sex and maternal pre-pregnancy overweight-obese status. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Production of Zebrafish Offspring from Cultured Female Germline Stem Cells

    PubMed Central

    Wong, Ten-Tsao; Tesfamichael, Abraham; Collodi, Paul

    2013-01-01

    Zebrafish female germline stem cell (FGSC) cultures were generated from a transgenic line of fish that expresses Neo and DsRed under the control of the germ cell specific promoter, ziwi [Tg(ziwi:neo);Tg(ziwi:DsRed)]. Homogeneous FGSC cultures were established by G418 selection and continued to express ziwi for more than 6 weeks along with the germ cell markers nanos3, dnd, dazl and vasa. A key component of the cell culture system was the use of a feeder cell line that was initiated from ovaries of a transgenic line of fish [Tg(gsdf:neo)] that expresses Neo controlled by the zebrafish gonadal soma derived factor (gsdf) promoter. The feeder cell line was selected in G418 and engineered to express zebrafish leukemia inhibitory factor (Lif), basic fibroblast growth factor (Fgf2) and glial-cell-line derived neurotrophic factor (Gdnf). These factors were shown to significantly enhance FGSC growth, survival and germline competency in culture. Results from cell transplantation experiments revealed that the cultured FGSCs were able to successfully colonize the gonad of sterile recipient fish and generate functional gametes. Up to 20% of surviving recipient fish that were injected with the cultured FGSCs were fertile and generated multiple batches of normal offspring for at least 6 months. The FGSC cultures will provide an in vitro system for studies of zebrafish germ cell growth and differentiation and their high frequency of germline transmission following transplantation could form the basis of a stem cell-mediated strategy for gene transfer and manipulation of the zebrafish genome. PMID:23671620

  11. Developmental programming of aging of isolated pancreatic islet glucose-stimulated insulin secretion in female offspring of mothers fed low-protein diets in pregnancy and/or lactation.

    PubMed

    Morimoto, S; Sosa, T C; Calzada, L; Reyes-Castro, L A; Díaz-Díaz, E; Morales, A; Nathanielsz, P W; Zambrano, E

    2012-12-01

    Diabetes predisposition is determined by pancreatic islet insulin secretion and insulin resistance. We studied female rat offspring exposed to low-protein maternal diet (50% control protein diet) in pregnancy and/or lactation at postnatal days 36, 110 and 450. Rats were fed either control 20% casein diet (C) or restricted diet (R - 10% casein) during pregnancy. After delivery, mothers received either C or R diet until weaning to provide four offspring groups: CC, RR, CR and RC (first letter denoting maternal pregnancy diet and the second lactation diet). Serum glucose, insulin and homeostatic model assessment (HOMA) were measured. Pancreatic islets were isolated and in vitro insulin secretion quantified in low glucose (5 mM) and high glucose (11 mM). Serum glucose, insulin and HOMA were similar in all groups at 36 and 110 postnatal days. HOMA was only higher in RR at 450 postnatal days. Only CC demonstrated differences in glucose sensitivity of β-cells to high and low doses at the three ages studied. At 36 days, RR, CR and RC and at 450 days RR and RC groups did not show glucose-stimulated insulin secretion differences between low and high glucose. Aging-associated glucose-stimulated insulin secretion loss was affected by maternal dietary history, indicating that developmental programming must be considered a major factor in aging-related development of predisposition to later-life dysfunctional insulin metabolism. Female offspring islets' insulin secretion was higher than previously reported in males.

  12. Intravenous Prenatal Nicotine Exposure Alters METH-Induced Hyperactivity, Conditioned Hyperactivity, and BDNF in Adult Rat Offspring.

    PubMed

    Lacy, Ryan T; Brown, Russell W; Morgan, Amanda J; Mactutus, Charles F; Harrod, Steven B

    2016-01-01

    In the USA, approximately 15% of women smoke tobacco cigarettes during pregnancy. In utero tobacco smoke exposure produces somatic growth deficits like intrauterine growth restriction and low birth weight in offspring, but it can also negatively influence neurodevelopmental outcomes in later stages of life, such as an increased incidence of obesity and drug abuse. Animal models demonstrate that prenatal nicotine (PN) alters the development of the mesocorticolimbic system, which is important for organizing goal-directed behavior. In the present study, we determined whether intravenous (IV) PN altered the initiation and/or expression of methamphetamine (METH)-induced locomotor sensitization as a measure of mesocorticolimbic function in adult rat offspring. We also determined whether PN and/or METH exposure altered protein levels of BDNF (brain-derived neurotrophic factor) in the nucleus accumbens, the dorsal striatum, and the prefrontal cortex of adult offspring. BDNF was of interest because of its role in the development and maintenance of the mesocorticolimbic pathway and its ability to modulate neural processes that contribute to drug abuse, such as sensitization of the dopamine system. Dams were injected with IV nicotine (0.05 mg/kg/injection) or saline, 3×/day on gestational days 8-21. Testing was conducted when offspring reached adulthood (around postnatal day 90). Following 3 once daily habituation sessions the animals received a saline injection and baseline locomotor activity was measured. PN and prenatal saline (PS)-exposed offspring then received 10 once daily injections of METH (0.3 mg/kg) to induce locomotor sensitization. The animals received a METH injection (0.3 mg/kg) to assess the expression of sensitization following a 14-day period of no injections. A day later, all animals were injected with saline and conditioned hyperactivity was assessed. Brain tissue was harvested 24 h later. PN animals habituated more slowly to the activity chambers

  13. Effects of Unpredictable Variable Prenatal Stress (UVPS) on Bdnf DNA Methylation and Telomere Length in the Adult Rat Brain

    NASA Technical Reports Server (NTRS)

    Blaze, Jennifer; Asok, A.; Moyer, E. L.; Roth, T. L.; Ronca, A. E.

    2015-01-01

    In utero exposure to stress can shape neurobiological and behavioral outcomes in offspring, producing vulnerability to psychopathology later in life. Animal models of prenatal stress likewise have demonstrated long-­-term alterations in brain function and behavioral deficits in offspring. For example, using a rodent model of unpredictable variable prenatal stress (UVPS), in which dams are exposed to unpredictable, variable stress across pregnancy, we have found increased body weight and anxiety-­-like behavior in adult male, but not female, offspring. DNA methylation (addition of methyl groups to cytosines which normally represses gene transcription) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could be responsible for the long-­-term effects of UVPS. Here, we measured methylation of brain-­-derived neurotrophic factor (bdnf), a gene important in development and plasticity, and telomere length in the brains of adult offspring from the UVPS model. Results indicate that prenatally stressed adult males have greater methylation in the medial prefrontal cortex (mPFC) compared to non-­-stressed controls, while females have greater methylation in the ventral hippocampus compared to controls. Further, prenatally stressed males had shorter telomeres than controls in the mPFC. These findings demonstrate the ability of UVPS to produce epigenetic alterations and changes in telomere length across behaviorally-­-relevant brain regions, which may have linkages to the phenotypic outcomes.

  14. Altered amygdala-prefrontal response to facial emotion in offspring of parents with bipolar disorder.

    PubMed

    Manelis, Anna; Ladouceur, Cecile D; Graur, Simona; Monk, Kelly; Bonar, Lisa K; Hickey, Mary Beth; Dwojak, Amanda C; Axelson, David; Goldstein, Benjamin I; Goldstein, Tina R; Bebko, Genna; Bertocci, Michele A; Hafeman, Danella M; Gill, Mary Kay; Birmaher, Boris; Phillips, Mary L

    2015-09-01

    This study aimed to identify neuroimaging measures associated with risk for, or protection against, bipolar disorder by comparing youth offspring of parents with bipolar disorder versus youth offspring of non-bipolar parents versus offspring of healthy parents in (i) the magnitude of activation within emotional face processing circuitry; and (ii) functional connectivity between this circuitry and frontal emotion regulation regions. The study was conducted at the University of Pittsburgh Medical Centre. Participants included 29 offspring of parents with bipolar disorder (mean age = 13.8 years; 14 females), 29 offspring of non-bipolar parents (mean age = 13.8 years; 12 females) and 23 healthy controls (mean age = 13.7 years; 11 females). Participants were scanned during implicit processing of emerging happy, sad, fearful and angry faces and shapes. The activation analyses revealed greater right amygdala activation to emotional faces versus shapes in offspring of parents with bipolar disorder and offspring of non-bipolar parents than healthy controls. Given that abnormally increased amygdala activation during emotion processing characterized offspring of both patient groups, and that abnormally increased amygdala activation has often been reported in individuals with already developed bipolar disorder and those with major depressive disorder, these neuroimaging findings may represent markers of increased risk for affective disorders in general. The analysis of psychophysiological interaction revealed that offspring of parents with bipolar disorder showed significantly more negative right amygdala-anterior cingulate cortex functional connectivity to emotional faces versus shapes, but significantly more positive right amygdala-left ventrolateral prefrontal cortex functional connectivity to happy faces (all P-values corrected for multiple tests) than offspring of non-bipolar parents and healthy controls. Taken together with findings of increased amygdala

  15. Association of Maternal Exposure to Childhood Abuse With Elevated Risk for Attention Deficit Hyperactivity Disorder in Offspring.

    PubMed

    Roberts, Andrea L; Liew, Zeyan; Lyall, Kristen; Ascherio, Alberto; Weisskopf, Marc G

    2018-05-14

    Children whose mothers experienced childhood abuse are more likely to suffer various neurodevelopmental deficits. Whether an association exists specifically for attention deficit hyperactivity disorder (ADHD) is unknown. We examined the association of maternal experience of childhood abuse with ADHD in offspring, assessed by maternal report of diagnosis and validated with the ADHD Rating Scale-IV in a subsample, in the Nurses' Health Study II (n = 49,497 mothers, N offspring cases = 7,607, N offspring controls = 102,151). We examined whether ten adverse perinatal circumstances (e.g., prematurity, smoking) or socioeconomic factors accounted for a possible association. Exposure to abuse was associated with greater prevalence of ADHD in offspring (8.7% of offspring of women exposed to severe abuse vs. 5.5% of offspring of women not abused, P = 0.0001) and with greater risk for ADHD adjusted for demographic factors (male offspring, risk ratio (RR) = 1.6; 95% CI: 1.3, 1.9; female offspring, RR = 2.3, 95% CI: 1.7, 3.0). Adjusted for perinatal factors, the association of maternal childhood abuse with ADHD in offspring was slightly attenuated (male offspring, RR = 1.5; 95% CI: 1.2, 1.8; female offspring, RR = 2.1, 95% CI: 1.6, 2.8). We identified an association between maternal experience of childhood abuse and risk for ADHD in offspring, which was not explained by several important perinatal risk factors or socioeconomic status.

  16. Reproductive ecology of Emperor Geese: Survival of adult females

    USGS Publications Warehouse

    Petersen, Margaret R.

    1992-01-01

    Life history theory predicts a decrease in survival with increased reproductive effort of individuals. This relationship, however, is highly variable among and within species. I studied the nesting success and survival of adult female Emperor Geese during 1982-1986 and found no direct evidence that differential reproductive effort as measured by the number of eggs laid or hatching success had a significant negative effect on survival to the next breeding season. Incubated clutch size, hatched clutch size, number of parasitic eggs, nest initiation date, hatch date, and mass at hatch were not related to subsequent survival. Of the factors I examined, only an attempt to nest the previous season was related to survival of a female. I suggest that the higher probability of survival among non-nesting adult female Emperor Geese was primarily related to hunting pressure on the nesting area between spring and fall migration. The probability of survival was increased for females with larger clutches, suggesting a positive relationship between brood size and survival.

  17. Effects of pre-reproductive maternal enrichment on maternal care, offspring's play behavior and oxytocinergic neurons.

    PubMed

    Cutuli, Debora; Berretta, Erica; Caporali, Paola; Sampedro-Piquero, Patricia; De Bartolo, Paola; Laricchiuta, Daniela; Gelfo, Francesca; Pesoli, Matteo; Foti, Francesca; Farioli Vecchioli, Stefano; Petrosini, Laura

    2018-02-17

    Potentiating social, cognitive, and sensorimotor stimulations the Environmental Enrichment (EE) increases levels of novelty and complexity experienced by individuals. Growing evidence demonstrates that parental EE experience, even occurring in the pre-reproductive phase, affects behavioral and neural developmental trajectories of the offspring. To discover how the accumulation of early maternal complex experiences may inform and shape the social behavior of the following generation, we examined the effects of pre-reproductive enrichment of dams (post-natal days 21-72) on the play performances of their male and female adolescent offspring. Furthermore, we examined the effects of pre-reproductive enrichment on maternal behavior (during post-partum days 1-10) and male intruder aggression (on post-partum day 11). Since oxytocin modulates maternal care, social bonding, and agonistic behavior, the number of oxytocinergic neurons of the paraventricular (PVN) and supraoptic (SON) nuclei was examined in both dams and offspring. Results revealed that enriched females exhibited higher levels of pup-oriented behaviors, especially Crouching, and initiated pup-retrieval more quickly than standard females after the maternal aggression test. Such behavioral peculiarities were accompanied by increased levels of oxytocinergic neurons in PVN and SON. Moreover, pre-reproductive maternal EE cross-generationally influenced the offspring according to sex. Indeed, male pups born to enriched females exhibited a reduced play fighting associated with a higher number of oxytocinergic neurons in SON in comparison to male pups born to standard-housed females. In conclusion, pre-reproductive EE to the mothers affects their maternal care and has a cross-generational impact on the social behavior of their offspring that do not directly experiences EE. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Parental investment matters for maternal and offspring immune defense in the mouthbrooding cichlid Astatotilapia burtoni.

    PubMed

    Keller, Isabel S; Salzburger, Walter; Roth, Olivia

    2017-12-20

    Parental care, while increasing parental fitness through offspring survival, also bears cost to the care-giving parent. Consequentially, trade offs between parental care and other vitally important traits, such as the immune system seem evident. In co-occurring phases of parental care and immunological challenges negative consequences through a resource allocation trade off on both the parental and the offspring conditions can be predicted. While the immune system reflects parental stress conditions, parental immunological investments also boost offspring survival via the transfer of immunological substances (trans-generational immune priming). We investigated this relationship in the mouthbrooding East African cichlid Astotatilapia burtoni. Prior to mating, females were exposed to an immunological activation, while others remained immunologically naïve. Correspondingly, the immunological status of females was either examined directly after reproduction or after mouthbrooding had ceased. Offspring from both groups were exposed to immunological challenges to assess the extent of trans-generational immune priming. As proxy for immune status, cellular immunological activity and gene expression were determined. Both reproducing and mouthbrooding females allocate their resources towards reproduction. While upon reproduction the innate immune system was impeded, mouthbrooding females showed an attenuation of inflammatory components. Juveniles from immune challenged mouthbrooding females showed downregulation of immune and life history candidate genes, implying a limitation of trans-generational plasticity when parents experience stress during the costly reproductive phase. Our results provide evidence that both parental investment via mouthbrooding and the rise of the immunological activity upon an immune challenge are costly traits. If applied simultaneously, not only mothers seem to be impacted in their performance, but also offspring are impeded in their ability to

  19. Parental Divorce and Interpersonal Trust in Adult Offspring.

    ERIC Educational Resources Information Center

    King, Valarie

    2002-01-01

    Examines whether parental divorce is associated with offspring trust in parents, intimate partners, and others. Results reveal that although parental divorce is negatively associated with trust, these effects largely disappear once the quality of the past parent-teen relationship is taken into account. (Contains 48 references and 4 tables.) (GCP)

  20. Cross-generational environmental effects and the evolution of offspring size in the Trinidadian guppy Poecilia reticulata.

    PubMed

    Bashey, Farrah

    2006-02-01

    The existence of adaptive phenotypic plasticity demands that we study the evolution of reaction norms, rather than just the evolution of fixed traits. This approach requires the examination of functional relationships among traits not only in a single environment but across environments and between traits and plasticity itself. In this study, I examined the interplay of plasticity and local adaptation of offspring size in the Trinidadian guppy, Poecilia reticulata. Guppies respond to food restriction by growing and reproducing less but also by producing larger offspring. This plastic difference in offspring size is of the same order of magnitude as evolved genetic differences among populations. Larger offspring sizes are thought to have evolved as an adaptation to the competitive environment faced by newborn guppies in some environments. If plastic responses to maternal food limitation can achieve the same fitness benefit, then why has guppy offspring size evolved at all? To explore this question, I examined the plastic response to food level of females from two natural populations that experience different selective environments. My goals were to examine whether the plastic responses to food level varied between populations, test the consequences of maternal manipulation of offspring size for offspring fitness, and assess whether costs of plasticity exist that could account for the evolution of mean offspring size across populations. In each population, full-sib sisters were exposed to either a low- or high-food treatment. Females from both populations produced larger, leaner offspring in response to food limitation. However, the population that was thought to have a history of selection for larger offspring was less plastic in its investment per offspring in response to maternal mass, maternal food level, and fecundity than the population under selection for small offspring size. To test the consequences of maternal manipulation of offspring size for offspring

  1. The effects of prenatal and early postnatal tocotrienol-rich fraction supplementation on cognitive function development in male offspring rats

    PubMed Central

    2013-01-01

    Background Recent findings suggest that the intake of specific nutrients during the critical period in early life influence cognitive and behavioural development profoundly. Antioxidants such as vitamin E have been postulated to be pivotal in this process, as vitamin E is able to protect the growing brain from oxidative stress. Currently tocotrienols are gaining much attention due to their potent antioxidant and neuroprotective properties. It is thus compelling to look at the effects of prenatal and early postnatal tocotrienols supplementation, on cognition and behavioural development among offsprings of individual supplemented with tocotrienols. Therefore, this study is aimed to investigate potential prenatal and early postnatal influence of Tocotrienol-Rich Fraction (TRF) supplementation on cognitive function development in male offspring rats. Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus vehicle (VHCL), base diet plus docosahexanoic acid (DHA), base diet plus Tocotrienol-Rich fraction (TRF), and base diet plus both docosahexaenoic acid, and tocotrienol rich fraction (DTRF) diets for 2 weeks prior to mating. The females (F0 generation) were maintained on their respective treatment diets throughout the gestation and lactation periods. Pups (F1 generation) derived from these dams were raised with their dams from birth till four weeks post natal. The male pups were weaned at 8 weeks postnatal, after which they were grouped into five groups of 10 animals each, and fed with the same diets as their dams for another eight weeks. Learning and behavioural experiments were conducted only in male off-spring rats using the Morris water maze.Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base

  2. Neonatal Overfeeding in Female Mice Predisposes the Development of Obesity in their Male Offspring via Altered Central Leptin Signalling.

    PubMed

    Wang, H; Ji, J; Yu, Y; Wei, X; Chai, S; Liu, D; Huang, D; Li, Q; Dong, Z; Xiao, X

    2015-07-01

    The prevalence of obesity among child-bearing women has increased significantly. The adverse consequences of maternal obesity on the descendants have been well accepted, although few studies have examined the underlying mechanisms. We investigated whether neonatal overfeeding in female mice alters metabolic phenotypes in the offspring and whether hypothalamic leptin signalling is involved. Neonatal overfeeding was induced by reducing the litter size to three pups per litter, in contrast to normal litter size of 10 pups per litter. Normal and neonatally overfed female mice were bred with normal male mice, and offspring of overfeeding mothers (OOM) and control mothers (OCM) were generated. We examined body weight, daily food intake, leptin responsiveness and the number of positive neurones for phosphorylated-signal transducer and activator of transcription 3 (pSTAT3) along with neuropeptide Y (NPY) in the arcuate nucleus of the hypothalamus (ARH) and NPY in the nucleus tractus solitarius (NTS) of the brain stem. The body weight and daily food intake of OOM were significantly higher than those of OCM. Leptin significantly reduced food intake and increased the number of pSTAT3 positive neurones in the ARH of OCM mice, whereas no significant changes in food intake and pSTAT3 neurones were found in leptin-treated OOM mice. The number of NPY neurones in the ARH and NTS of the OOM mice was significantly higher than that of OCM mice. The results of the present study indicate that the obese phenotype from mothers can be passed onto the subsequent generation, which is possibly associated with hypothalamic leptin resistance. © 2015 British Society for Neuroendocrinology.

  3. A mouse model of pre-pregnancy maternal obesity combined with offspring exposure to a high-fat diet resulted in cognitive impairment in male offspring.

    PubMed

    Zhu, Chen; Han, Ting-Li; Zhao, Yalan; Zhou, Xiaobo; Mao, Xun; Qi, Hongbo; Baker, Philip N; Zhang, Hua

    2018-04-23

    Cognitive impairment is a brain dysfunction characterized by neuropsychological deficits in attention, working memory, and executive function. Maternal obesity and consumption of a high-fat diet (HFD) in the offspring has been suggested to have detrimental consequences for offspring cognitive function through its effect on the hippocampus and prefrontal cortex. Therefore, our study aimed to investigate the effects of maternal obesity and offspring HFD exposure on the brain metabolome of the offspring. In our pilot study, a LepRdb/+ mouse model was used to model pre-pregnancy maternal obesity and the c57bl/6 wildtype was used as a control group. Offspring were fed either a HFD or a low-fat control diet (LFD) after weaning (between 8 and 10 weeks). The Mirrors water maze was performed between 28 and 30 weeks to measure cognitive function. Fatty acid metabolomic profiles of the prefrontal cortex and hippocampus from the offspring at 30-32 weeks were analyzed using gas chromatography-mass spectrometry. The memory of male offspring from obese maternal mice, consuming a HFD post-weaning, was significantly impaired when compared to the control offspring mice. No significant differences were observed in female offspring. In male mice, the fatty acid metabolites in the prefrontal cortex were most affected by maternal obesity, whereas, the fatty acid metabolites in the hippocampus were most affected by the offspring's diet. Hexadecanoic acid and octadecanoic acid were significantly affected in both the hippocampus and pre-frontal cortex, as a result of maternal obesity and a HFD in the offspring. Our findings suggest that the combination of maternal obesity and HFD in the offspring can result in spatial cognitive deficiency in the male offspring, by influencing the fatty acid metabolite profiles in the prefrontal cortex and hippocampus. Further research is needed to validate the results of our pilot study. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Prenatal nicotine exposure enhances Cx43 and Panx1 unopposed channel activity in brain cells of adult offspring mice fed a high-fat/cholesterol diet

    PubMed Central

    Orellana, Juan A.; Busso, Dolores; Ramírez, Gigliola; Campos, Marlys; Rigotti, Attilio; Eugenín, Jaime; von Bernhardi, Rommy

    2014-01-01

    Nicotine, the most important neuroteratogen of tobacco smoke, can reproduce brain and cognitive disturbances per se when administered prenatally. However, it is still unknown if paracrine signaling among brain cells participates in prenatal nicotine-induced brain impairment of adult offspring. Paracrine signaling is partly mediated by unopposed channels formed by connexins hemichannels (HCs) and pannexins serving as aqueous pores permeable to ions and small signaling molecules, allowing exchange between the intra- and extracellular milieus. Our aim was to address whether prenatal nicotine exposure changes the activity of those channels in adult mice offspring under control conditions or subjected to a second challenge during young ages: high-fat/cholesterol (HFC) diet. To induce prenatal exposure to nicotine, osmotic minipumps were implanted in CF1 pregnant mice at gestational day 5 to deliver nicotine bitartrate or saline (control) solutions. After weaning, offspring of nicotine-treated or untreated pregnant mice were fed ad libitum with chow or HFC diets for 8 weeks. The functional state of connexin 43 (Cx43) and pannexin 1 (Panx1) unopposed channels was evaluated by dye uptake experiments in hippocampal slices from 11-week-old mice. We found that prenatal nicotine increased the opening of Cx43 HCs in astrocytes, and Panx1 channels in microglia and neurons only if offspring mice were fed with HFC diet. Blockade of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2) and prostaglandin E receptor 1 (EP1), ionotropic ATP receptor type 7 (P2X7) and NMDA receptors, showed differential inhibition of prenatal nicotine-induced channel opening in glial cells and neurons. Importantly, inhibition of the above mentioned enzymes and receptors, or blockade of Cx43 and Panx1 unopposed channels greatly reduced adenosine triphosphate (ATP) and glutamate release from hippocampal slices of prenatally nicotine-exposed offspring. We propose that unregulated gliotransmitter

  5. Attractiveness Modulates Neural Processing of Infant Faces Differently in Males and Females.

    PubMed

    Yin, Lijun; Fan, Mingxia; Lin, Lijia; Sun, Delin; Wang, Zhaoxin

    2017-01-01

    Consistent attention and proper processing of infant faces by adults are essential for infant survival. Previous behavioral studies showed gender differences in processing infant cues (e.g., crying, laughing or facial attractiveness) and more importantly, the efforts invested in nurturing offspring. The underlying neural mechanisms of processing unknown infant faces provide hints for understanding behavioral differences. This functional magnetic resonance imaging (fMRI) study recruited 32 unmarried adult (16 females and 16 males) participants to view unfamiliar infant faces and rate the attractiveness. Adult faces were also included. Behaviorally, despite that females and males showed no differences in attractiveness ratings of infant faces, a positive correlation was found between female's (but not male's) subjective liking for infants and attractiveness ratings of the infant faces. Functionally, brain activations to infant faces were modulated by attractiveness differently in males and females. Specifically, in female participants, activities in the ventromedial prefrontal cortex (vmPFC) and striatum/Nucleus Accumbens (NAcc) were positively modulated by infant facial attractiveness, and the modulation coefficients of these two regions were positively correlated. In male participants, infant facial attractiveness negatively modulated the activity in the dorsomedial prefrontal cortex (dmPFC). Our findings reveal that different neural mechanisms are involved in the processing of infant faces, which might lead to observed behavioral differences between males and females towards the baby.

  6. No evidence for sex-specific effects of the maternal social environment on offspring development in Japanese quail (Coturnix japonica).

    PubMed

    Langen, Esther M A; von Engelhardt, Nikolaus; Goerlich-Jansson, Vivian C

    2018-07-01

    The social environment of reproducing females can cause physiological changes, with consequences for reproductive investment and offspring development. These prenatal maternal effects are often found to be sex-specific and may have evolved as adaptations, maximizing fitness of male and female offspring for their future environment. Female hormone levels during reproduction are considered a potential mechanism regulating sex allocation in vertebrates: high maternal androgens have repeatedly been linked to increased investment in sons, whereas high glucocorticoid levels are usually related to increased investment in daughters. However, results are not consistent across studies and therefore still inconclusive. In Japanese quail (Coturnix japonica), we previously found that pair-housed females had higher plasma androgen levels and tended to have higher plasma corticosterone levels than group-housed females. In the current study we investigate whether these differences in maternal social environment and physiology affect offspring sex allocation and physiology. Counter to our expectations, we find no effects of the maternal social environment on offspring sex ratio, sex-specific mortality, growth, circulating androgen or corticosterone levels. Also, maternal corticosterone or androgen levels do not correlate with offspring sex ratio or mortality. The social environment during reproduction therefore does not necessarily modify sex allocation and offspring physiology, even if it causes differences in maternal physiology. We propose that maternal effects of the social environment strongly depend upon the type of social stimuli and the timing of changes in the social environment and hormones with respect to the reproductive cycle and meiosis. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Maternal depression during pregnancy and offspring depression in adulthood: role of child maltreatment

    PubMed Central

    Plant, Dominic T.; Pariante, Carmine M.; Sharp, Deborah; Pawlby, Susan

    2015-01-01

    Background Studies have shown that maternal depression during pregnancy predicts offspring depression in adolescence. Child maltreatment is also a risk factor for depression. Aims To investigate (a) whether there is an association between offspring exposure to maternal depression in pregnancy and depression in early adulthood, and (b) whether offspring child maltreatment mediates this association. Method Prospectively collected data on maternal clinical depression in pregnancy, offspring child maltreatment and offspring adulthood (18–25 years) DSM-IV depression were analysed in 103 mother–offspring dyads of the South London Child Development Study. Results Adult offspring exposed to maternal depression in pregnancy were 3.4 times more likely to have a DSM-IV depressive disorder, and 2.4 times more likely to have experienced child maltreatment, compared with non-exposed offspring. Path analysis revealed that offspring experience of child maltreatment mediated the association between exposure to maternal depression in pregnancy and depression in adulthood. Conclusions Maternal depression in pregnancy is a key vulnerability factor for offspring depression in early adulthood. PMID:26045352

  8. Nutritional Programming of Bone Structure in Male Offspring by Maternal Consumption of Citrus Flavanones.

    PubMed

    Sacco, Sandra M; Saint, Caitlin; LeBlanc, Paul J; Ward, Wendy E

    2018-06-01

    Maternal exposure to hesperidin (HSP) and naringin (NAR) during pregnancy and lactation transiently compromised bone mineral density (BMD) and bone structure at the proximal tibia in female CD-1 offspring. We examined whether maternal consumption of HSP + NAR during pregnancy and lactation compromises BMD, bone structure, and bone strength in male CD-1 offspring. Male CD-1 offspring, from mothers fed a control diet (CON, n = 10) or a 0.5% HSP + 0.25% NAR diet (HSP + NAR, n = 8) for 5 weeks before mating and throughout pregnancy and lactation, were weaned and fed CON until 6 months of age. In vivo micro-computed tomography (µCT) measured tibia BMD and structure at 2, 4, and 6 months of age. Ex vivo µCT measured femur and lumbar vertebrae (LV) structure at age 6 months. Ex vivo BMD (femur, LV) and biomechanical strength (femur and tibia midpoint, femur neck) were assessed at age 6 months by dual energy x-ray absorptiometry and strength testing, respectively. At all ages, HSP + NAR offspring had greater (p < 0.05) proximal tibia cortical structure compared to CON offspring. At age 4 months, proximal tibia trabecular structure was greater (p < 0.05) than CON offspring. At age 6 months, femur neck and LV trabecular structure were greater (p < 0.05) than CON offspring. Our results demonstrate that unlike our previous study of female offspring, maternal consumption of HSP + NAR resulted in greater bone structure at the proximal tibia in male CD-1 offspring that persisted to 6 months of age. Thus, maternal programming of offspring BMD and bone structure from consumption of HSP + NAR occurred as a sex-specific response.

  9. Prenatal diethylstilbestrol induces malformation of the external genitalia of male and female mice and persistent second-generation developmental abnormalities of the external genitalia in two mouse strains

    PubMed Central

    Mahawong, Phitsanu; Sinclair, Adriane; Li, Yi; Schlomer, Bruce; Rodriguez, Esequiel; Max, Ferretti M.; Liu, Baomei; Baskin, Laurence S.; Cunha, Gerald R.

    2014-01-01

    Potential trans-generational influence of diethylstilbestrol (DES) exposure emerged with reports of effects in grandchildren of DES-treated pregnant women and of reproductive tract tumors in offspring of mice exposed in utero to DES. Accordingly, we examined the trans-generational influence of DES on development of external genitalia (ExG) and compared effects of in utero DES exposure in CD-1 and C57BL/6 mice injected with oil or DES every other day from gestational days 12 to 18. Mice were examined at birth, and on 5 to 120 days postnatal to evaluate ExG malformations. Of 23 adult (≥60 days) prenatally DES-exposed males, features indicative of urethral meatal hypospadias (see text for definitions) ranged from 18 to 100% in prenatally DES-exposed CD-1 males and 31 to 100% in prenatally DES-exposed C57BL/6 males. Thus, the strains differed in the incidence of male urethral hypospadias. Ninety-one percent of DES-exposed CD-1 females and 100% of DES-exposed C57BL/6 females had urethral-vaginal fistula. All DES-exposed CD-1 and C57BL/6 females lacked an os clitoris. None of the prenatally oil-treated CD-1 and C57BL/6 male and female mice had ExG malformations. For the second-generation study, 10 adult CD-1 males and females, from oil- and DES-exposed groups, respectively, were paired with untreated CD-1 mice for 30 days, and their offspring evaluated for ExG malformations. None of the F1 DES-treated females were fertile. Nine of 10 prenatally DES-exposed CD-1 males sired offspring with untreated females, producing 55 male and 42 female pups. Of the F2 DES-lineage adult males, 20% had exposed urethral flaps, a criterion of urethral meatal hypospadias. Five of 42 (11.9%) F2 DES lineage females had urethral-vaginal fistula. In contrast, all F2 oil-lineage males and all oil-lineage females were normal. Thus, prenatal DES exposure induces malformations of ExG in both sexes and strains of mice, and certain malformations are transmitted to the second-generation. PMID

  10. Early Life Exposure to Undernutrition Induces ER Stress, Apoptosis, and Reduced Vascularization in Ovaries of Adult Rat Offspring1

    PubMed Central

    Chan, Kaitlyn A.; Bernal, Angelica B.; Vickers, Mark H.; Gohir, Wajiha; Petrik, Jim J.; Sloboda, Deborah M.

    2015-01-01

    ABSTRACT Maternal nutritional restriction has been shown to induce impairments in a number of organ systems including the ovary. We have previously shown that maternal undernutrition induces fetal growth restriction and low birth weight, and results in an offspring ovarian phenotype characteristic of premature ovarian aging with reduced ovarian reserve. In the present study, we set out to investigate the underlying mechanisms that lead offspring of undernourished mothers to premature ovarian aging. Pregnant dams were randomized to 1) a standard diet throughout pregnancy and lactation (control), 2) a calorie-restricted (50% of control) diet during pregnancy, 3) a calorie-restricted (50% of control) diet during pregnancy and lactation, or 4) a calorie-restricted (50% of control) diet during lactation alone. The present study shows that early life undernutrition-induced reduction of adult ovarian follicles may be mediated by increased ovarian endoplasmic reticulum stress in a manner that increased follicular apoptosis but not autophagy. These changes were associated with a loss of ovarian vessel density and are consistent with an accelerated ovarian aging phenotype. Whether these changes are mediated specifically by a reduction in the local antioxidant environment is unclear, although our data suggest the possibility that ovarian melatonin may play a part in early life nutritional undernutrition and impaired offspring folliculogenesis. PMID:25810471

  11. Buprenorphine, methadone, and morphine treatment during pregnancy: behavioral effects on the offspring in rats.

    PubMed

    Chen, Hwei-Hsien; Chiang, Yao-Chang; Yuan, Zung Fan; Kuo, Chung-Chih; Lai, Mei-Dan; Hung, Tsai-Wei; Ho, Ing-Kang; Chen, Shao-Tsu

    2015-01-01

    Methadone and buprenorphine are widely used for treating people with opioid dependence, including pregnant women. Prenatal exposure to opioids has devastating effects on the development of human fetuses and may induce long-term physical and neurobehavioral changes during postnatal maturation. This study aimed at comparing the behavioral outcomes of young rats prenatally exposed to buprenorphine, methadone, and morphine. Pregnant Sprague-Dawley rats were administered saline, morphine, methadone, and buprenorphine during embryonic days 3-20. The cognitive function, social interaction, anxiety-like behaviors, and locomotor activity of offsprings were examined by novel object recognition test, social interaction test, light-dark transition test, elevated plus-maze, and open-field test between 6 weeks and 10 weeks of age. Prenatal exposure to methadone and buprenorphine did not affect locomotor activity, but significantly impaired novel object recognition and social interaction in both male and female offsprings in the same manner as morphine. Although prenatal exposure to methadone or buprenorphine increased anxiety-like behaviors in the light-dark transition in both male and female offsprings, the effects were less pronounced as compared to that of morphine. Methadone affected elevated plus-maze in both sex, but buprenorphine only affected the female offsprings. These findings suggest that buprenorphine and methadone maintenance therapy for pregnant women, like morphine, produced detrimental effects on cognitive function and social behaviors, whereas the offsprings of such women might have a lower risk of developing anxiety disorders.

  12. Buprenorphine, methadone, and morphine treatment during pregnancy: behavioral effects on the offspring in rats

    PubMed Central

    Chen, Hwei-Hsien; Chiang, Yao-Chang; Yuan, Zung Fan; Kuo, Chung-Chih; Lai, Mei-Dan; Hung, Tsai-Wei; Ho, Ing-kang; Chen, Shao-Tsu

    2015-01-01

    Methadone and buprenorphine are widely used for treating people with opioid dependence, including pregnant women. Prenatal exposure to opioids has devastating effects on the development of human fetuses and may induce long-term physical and neurobehavioral changes during postnatal maturation. This study aimed at comparing the behavioral outcomes of young rats prenatally exposed to buprenorphine, methadone, and morphine. Pregnant Sprague-Dawley rats were administered saline, morphine, methadone, and buprenorphine during embryonic days 3–20. The cognitive function, social interaction, anxiety-like behaviors, and locomotor activity of offsprings were examined by novel object recognition test, social interaction test, light–dark transition test, elevated plus-maze, and open-field test between 6 weeks and 10 weeks of age. Prenatal exposure to methadone and buprenorphine did not affect locomotor activity, but significantly impaired novel object recognition and social interaction in both male and female offsprings in the same manner as morphine. Although prenatal exposure to methadone or buprenorphine increased anxiety-like behaviors in the light–dark transition in both male and female offsprings, the effects were less pronounced as compared to that of morphine. Methadone affected elevated plus-maze in both sex, but buprenorphine only affected the female offsprings. These findings suggest that buprenorphine and methadone maintenance therapy for pregnant women, like morphine, produced detrimental effects on cognitive function and social behaviors, whereas the offsprings of such women might have a lower risk of developing anxiety disorders. PMID:25834439

  13. Current Parental Depression and Offspring Perceived Self-Competence: A Quasi-Experimental Examination

    PubMed Central

    Class, Quetzal A.; D’Onofrio, Brian M.; Singh, Amber L.; Ganiban, Jody M.; Spotts, E. L.; Lichtenstein, Paul; Reiss, David; Neiderhiser, Jenae M.

    2013-01-01

    A genetically-informed, quasi-experimental design was used to examine the genetic and environmental processes underlying associations between current parental depressive symptoms and offspring perceived self-competence. Participants, drawn from a population-based Swedish sample, were 852 twin pairs and their male (52%) and female offspring aged 15.7 ± 2.4 years. Parental depressive symptoms were measured using the Center for Epidemiological Studies Depression scale. Offspring perceived self-competence was measured using a modified Harter Perceived Competence Scale. Cousin comparisons and Children of Twins (CoT) designs suggested that associations between maternal depressive symptoms and offspring perceived self-competence were due to shared genetic/environmental liability. The mechanism responsible for father-offspring associations, however, was independent of genetic factors and of extended-family environmental factors, supporting a causal inference. Thus, mothers and fathers may impact offspring perceived self-competence via different mechanisms and unmeasured genetic and environmental selection factors must be considered when studying the intergenerational transmission of cognitive vulnerabilities for depression. PMID:22692226

  14. Current parental depression and offspring perceived self-competence: a quasi-experimental examination.

    PubMed

    Class, Quetzal A; D'Onofrio, Brian M; Singh, Amber L; Ganiban, Jody M; Spotts, E L; Lichtenstein, Paul; Reiss, David; Neiderhiser, Jenae M

    2012-09-01

    A genetically-informed, quasi-experimental design was used to examine the genetic and environmental processes underlying associations between current parental depressive symptoms and offspring perceived self-competence. Participants, drawn from a population-based Swedish sample, were 852 twin pairs and their male (52 %) and female offspring aged 15.7 ± 2.4 years. Parental depressive symptoms were measured using the Center for Epidemiological Studies Depression scale. Offspring perceived self-competence was measured using a modified Harter Perceived Competence Scale. Cousin comparisons and Children of Twins designs suggested that associations between maternal depressive symptoms and offspring perceived self-competence were due to shared genetic/environmental liability. The mechanism responsible for father-offspring associations, however, was independent of genetic factors and of extended family environmental factors, supporting a causal inference. Thus, mothers and fathers may impact offspring perceived self-competence via different mechanisms and unmeasured genetic and environmental selection factors must be considered when studying the intergenerational transmission of cognitive vulnerabilities for depression.

  15. High maternal sodium intake alters sex-specific renal renin-angiotensin system components in newborn Wistar offspring.

    PubMed

    Maia, D R R; Lopes, K L; Heimann, J C; Furukawa, L N S

    2016-01-28

    This study aimed to evaluate the systemic and renal renin-angiotensin-aldosterone system (RAAS) at birth in male and female offspring and in mothers fed a high sodium diet (HSD) before and during gestation. Female Wistar rats were fed a HSD (8.0% NaCl) or a normal sodium diet (1.3% NaCl) from 8 weeks of age until delivery of their first litter. Maternal body weight, tail blood pressure, and food and water intake were evaluated. The litter sizes were assessed, and the body and kidney weights of the offspring were measured. Both mothers and offspring were euthanized immediately following the birth of the pups to evaluate plasma renin activity (PRA), renal renin content (RRC), renal angiotensin-converting enzyme (ACE) activity, renal angiotensin (Ang) II content, serum aldosterone (ALDO) levels, and renal cortical and medullary renin messenger RNA expression. In mothers in the HSD group, water intake and kidney mass were higher, whereas renal ACE activity, Ang II, PRA, ALDO and RRC were decreased. In the offspring of HSD-fed dams, the body and kidney mass were lower in both genders, renal ACE activity was lower in females and renal Ang II was lower in males. PRA, RRC, renin gene expression and ALDO levels did not differ between the groups of offspring. The data presented herein showed that a maternal HSD during pregnancy induces low birth weight and a sex-specific response in the RAAS in offspring.

  16. Appraisals of discriminatory events among adult offspring of Indian residential school survivors: the influences of identity centrality and past perceptions of discrimination.

    PubMed

    Bombay, Amy; Matheson, Kimberly; Anisman, Hymie

    2014-01-01

    As part of a government policy of assimilation beginning in the mid-1800s, a large proportion of Aboriginal children in Canada were forcibly removed from their homes to attend Indian Residential Schools (IRSs), a practice which continued into the 1990s. This traumatic experience had lasting negative effects not only on those who attended but also on their offspring, who were previously found to report higher levels of perceived discrimination and depressive symptoms compared with Aboriginal adults whose families were not directly affected by IRSs. In attempt to elucidate the processes involved in these previous findings, the current study (N = 399) revealed that greater levels of past perceptions of discrimination among IRS offspring, together with their greater likelihood of considering their Aboriginal heritage to be a central component of their self-concept (i.e., high identity centrality), were associated with an increased likelihood of appraising subsequent negative intergroup scenarios to be a result of discrimination and as threatening to their well-being. In turn, these altered appraisals of threat in response to the scenarios were associated with higher levels of depressive symptoms relative to non-IRS adults. The apparent reinforcing relationships between past discrimination, identity centrality, and appraisals of discrimination and threat in intergroup interactions highlight the need for interventions targeting this cycle that appears to contribute to heightened psychological distress among offspring of those who were directly victimized by collective race-based traumas.

  17. Intake of grape procyanidins during gestation and lactation impairs reverse cholesterol transport and increases atherogenic risk indexes in adult offspring.

    PubMed

    Del Bas, Josep Maria; Crescenti, Anna; Arola-Arnal, Anna; Oms-Oliu, Gemma; Arola, Lluís; Caimari, Antoni

    2015-12-01

    Cardiovascular disease (CVD) is one of the most prevalent noncommunicable diseases in humans. Different studies have identified dietary procyanidins as bioactive compounds with beneficial properties against CVD by improving lipid homeostasis, among other mechanisms. The aim of this work was to assess whether grape seed procyanidin consumption at a physiological dose during the perinatal period could influence the CVD risk of the offspring. Wistar rat dams were treated with a grape seed procyanidin extract (GSPE; 25mg/kg of body weight per day) or vehicle during gestation and lactation. The adult male offspring of GSPE-treated dams presented decreased high-density lipoprotein cholesterol (HDL-C) levels, increased total cholesterol-to-HDL-C ratios and an exacerbated fasting triglyceride-to-HDL-C ratios (atherogenic index of plasma) compared to the control group. Impaired reverse cholesterol transport (RCT) was evidenced by the accumulation of cholesterol in skeletal muscle and by decreased fecal excretion of cholesterol and bile acids, which was consistent with the observed mRNA down-regulation of the rate-limiting enzyme in the hepatic bile acid synthesis pathway Cyp7A1. Conversely, GSPE programming also resulted in up-regulated gene expression of different key components of the RCT process, such as hepatic Npc1, Abcg1, Abca1, Lxra, Srebp2, Lcat, Scarb1 and Pltp, and the repression of microRNA miR-33a expression, a key negative controller of hepatic RCT at the gene expression level. Our results show that maternal intake of grape procyanidins during the perinatal period impacts different components of the RCT process, resulting in increased CVD risk in the adult offspring. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Subclinical hypothyroidism in pregnant rats impaired learning and memory of their offspring by promoting the p75NTR signal pathway.

    PubMed

    Zhang, Fan; Chen, Jian; Lin, Xinyue; Peng, Shiqiao; Yu, Xiaohui; Shan, Zhongyan; Teng, Weiping

    2018-05-01

    Maternal hypothyroidism during pregnancy can affect the neurodevelopment of their offspring. This study aimed to investigate the effects of maternal subclinical hypothyroidism (SCH) on spatial learning and memory, and its relationship with the apoptotic factors in cerebral cortex of the offspring. Female adult Wistar rats were randomly divided into three groups ( n  = 15 per group): control (CON) group, SCH group and overt hypothyroidism (OH) group. Spatial learning and memory in the offspring were evaluated by long-term potentiation (LTP) and Morris water-maze (MWM) test. The protein expression of the p75 neurotrophin receptor (p75 NTR ), phospho-c-Jun N-terminal kinase (p-JNK), the pro-apoptotic protein p53 and Bax were detected by Western blotting. The Pups in the SCH and OH groups showed longer escape latencies in the MWM and decreased field-excitatory post synaptic potentials in LTP tests compared with those in the CON group. p75 NTR , p-JNK, p53 and Bax expression levels in the cerebral cortex increased in pups in the SCH and OH groups compared with those in the CON group. Maternal SCH during pregnancy may impair spatial learning and memory in the offspring and may be associated with the increased apoptosis in the cerebral cortex. © 2018 The authors.

  19. Contributions of maternal and paternal adiposity and smoking to adult offspring adiposity and cardiovascular risk: the Midspan Family Study

    PubMed Central

    Han, T S; Hart, C L; Haig, C; Logue, J; Upton, M N; Watt, G C M; Lean, M E J

    2015-01-01

    Objective Obesity has some genetic basis but requires interaction with environmental factors for phenotypic expression. We examined contributions of gender-specific parental adiposity and smoking to adiposity and related cardiovascular risk in adult offspring. Design Cross-sectional general population survey. Setting Scotland. Participants 1456 of the 1477 first generation families in the Midspan Family Study: 2912 parents (aged 45–64 years surveyed between 1972 and 1976) who had 1025 sons and 1283 daughters, aged 30–59 years surveyed in 1996. Main measures Offspring body mass index (BMI), waist circumference (WC), cardiometabolic risk (lipids, blood pressure and glucose) and cardiovascular disease as outcome measures, and parental BMI and smoking as determinants. All analyses adjusted for age, socioeconomic status and family clustering and offspring birth weight. Results Regression coefficients for BMI associations between father–son (0.30) and mother–daughter (0.33) were greater than father–daughter (0.23) or mother–son (0.22). Regression coefficient for the non-genetic, shared-environment or assortative-mating relationship between BMIs of fathers and mothers was 0.19. Heritability estimates for BMI were greatest among women with mothers who had BMI either <25 or ≥30 kg/m2. Compared with offspring without obese parents, offspring with two obese parents had adjusted OR of 10.25 (95% CI 6.56 to 13.93) for having WC ≥102 cm for men, ≥88 cm women, 2.46 (95% CI 1.33 to 4.57) for metabolic syndrome and 3.03 (95% CI 1.55 to 5.91) for angina and/or myocardial infarct (p<0.001). Neither parental adiposity nor smoking history determined adjusted offspring individual cardiometabolic risk factors, diabetes or stroke. Maternal, but not paternal, smoking had significant effects on WC in sons (OR=1.50; 95% CI 1.13 to 2.01) and daughters (OR=1.42; 95% CI 1.10 to 1.84) and metabolic syndrome OR=1.68; 95% CI 1.17 to 2.40) in sons. Conclusions There are

  20. Effects of prenatal and perinatal administration of phencyclidine on the behavioral development of rat offspring.

    PubMed

    Nabeshima, T; Yamaguchi, K; Hiramatsu, M; Ishikawa, K; Furukawa, H; Kameyama, T

    1987-11-01

    The effects of prenatal and perinatal administration of a nonteratogenic dose of phencyclidine (PCP) on the behavioral development of Sprague-Dawley rats were examined. In the offspring prenatally treated with PCP (10 mg/kg) between days 7 and 17 of gestation, a decrease in maternal body weight in the gestation period, a decrease in fetal body weight and body length, a decrease in viability of offsprings, and a decrease in the body weights of the offspring in the nursing period were observed. Furthermore, PCP pups had difficulty performing the rota-rod task at 4 weeks and exhibited a decrease in sensitivity to challenged PCP at 5 weeks (female). In the offspring prenatally treated with PCP between days 7 and 21 of gestation, a decrease in the body weights of dams, fetuses and offspring, and a decrease in the viability of offsprings were observed. PCP pups showed an increase in the score for head-twitch response (male), a delay in the development of ambulation, negative geotaxis (male), bar holding and rope-descending behavior (female). However, the PCP administration during prenatal (between days 17 and 21 of gestation) and nursing periods showed only a decrease in viability and body weight of offspring, and a delay in the development of the separation of eyelids. These results suggest that more attention should be given to the developmental toxicity of PCP.

  1. Contextual risks linking parents’ adolescent marijuana use to offspring onset

    PubMed Central

    Kerr, David C. R.; Tiberio, Stacey S.; Capaldi, Deborah M.

    2015-01-01

    Objective We studied the extent to which parent marijuana use in adolescence is associated with marijuana use onset in offspring through contextual family and peer risks. Method Fathers assessed (n = 93) since childhood, their 146 offspring (n = 83 girls), and offspring's mothers (n = 85) participated in a longitudinal study. Using discrete-time survival analysis, fathers’ (prospectively measured) and mothers’ (retrospective) adolescent marijuana use was used to predict offspring marijuana use onset through age 19 years. Parental monitoring, child exposure to marijuana use, peer deviance, peer marijuana use, and perceptions of parent disapproval of child use were measured before or concurrent with onset. Results Parents’ adolescent marijuana use was significantly associated with less monitoring, offspring alcohol use, the peer behaviors, exposure to adult marijuana use, and perceptions of less parent disapproval. Male gender and the two peer behaviors were positively associated with children's marijuana use onset, controlling for their alcohol use. Parents’ adolescent marijuana use had a significant indirect effect on child onset through children's deviant peer affiliations and a composite contextual risk score. Conclusions Parents’ histories of marijuana use may contribute indirectly to children's marijuana use onset through their influence on the social environments children encounter; specifically, those characterized by more liberal use norms, exposure to marijuana use and deviant and marijuana-using peers, and less adult supervision. Given that alcohol use onset was controlled, findings suggest that the contextual factors identified here confer unique risk for child marijuana use onset. PMID:26166667

  2. A cost of cryptic female choice in the yellow dung fly.

    PubMed

    Ward, Paul I; Wilson, Alastair J; Reim, Constanze

    2008-09-01

    Female dung flies Scathophaga stercoraria (L.) store sperm from several males in three or four spermathecae. Selection on the number of spermathecae was successful and the morphological intermediate stages in the evolution from three to four spermathecae are illustrated. The genetic quality of a male from a female's perspective depends on an interaction between their genotypes and the microhabitat in which the offspring will grow. Females influence the paternity pattern of their offspring, and do this differently in different microhabitats. Females with four spermathecae are better able to influence paternity than are those with three spermathecae. However, there must be a cost to building and maintaining an extra spermatheca. We estimate, using the animal model on pedigree data, that this cost is approximately five eggs per clutch, i.e. around 8% of the mean clutch size. This is a substantial cost and such costs should not be ignored in discussions of the benefits to females of assessing the genetic qualities of their mating partners. We suggest that the number of spermathecae in the study population is stable because the relative benefits in quality of offspring through cryptic female choice is balanced by the costs in total numbers of offspring.

  3. Parent-offspring conflict and the genetic trade-offs shaping parental investment.

    PubMed

    Kölliker, Mathias; Boos, Stefan; Wong, Janine W Y; Röllin, Lilian; Stucki, Dimitri; Raveh, Shirley; Wu, Min; Meunier, Joël

    2015-04-16

    The genetic conflict between parents and their offspring is a cornerstone of kin selection theory and the gene-centred view of evolution, but whether it actually occurs in natural systems remains an open question. Conflict operates only if parenting is driven by genetic trade-offs between offspring performance and the parent's ability to raise additional offspring, and its expression critically depends on the shape of these trade-offs. Here we investigate the occurrence and nature of genetic conflict in an insect with maternal care, the earwig Forficula auricularia. Specifically, we test for a direct response to experimental selection on female future reproduction and correlated responses in current offspring survival, developmental rate and growth. The results demonstrate genetic trade-offs that differ in shape before and after hatching. Our study not only provides direct evidence for parent-offspring conflict but also highlights that conflict is not inevitable and critically depends on the genetic trade-offs shaping parental investment.

  4. Tribulus terrestris Alters the Expression of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Rabbit Ovaries of Mothers and F1 Female Offspring.

    PubMed

    Abadjieva, Desislava; Kistanova, Elena

    2016-01-01

    Although previous research has demonstrated the key role of the oocyte-derived factors, bone morphogenetic protein (BMP) 15 and growth differentiation factor (GDF) 9, in follicular development and ovulation, there is a lack of knowledge on the impact of external factors, which females are exposed to during folliculogenesis, on their expression. The present study investigated the effect of the aphrodisiac Tribulus terrestris on the GDF9 and BMP15 expression in the oocytes and cumulus cells at mRNA and protein levels during folliculogenesis in two generations of female rabbits. The experiment was conducted with 28 New Zealand rabbits. Only the diet of the experimental mothers group was supplemented with a dry extract of T. terrestris for the 45 days prior to insemination. The expression of BMP15 and GDF9 genes in the oocytes and cumulus cells of mothers and F1 female offspring was analyzed using real-time polymerase chain reaction (RT-PCR). The localization of the GDF9 and BMP15 proteins in the ovary tissues was determined by immunohistochemical analysis. The BMP15 and GDF9 transcripts were detected in the oocytes and cumulus cells of rabbits from all groups. T. terrestris caused a decrease in the BMP15 mRNA level in the oocytes and an increase in the cumulus cells. The GDF9 mRNA level increased significantly in both oocytes and cumulus cells. The downregulated expression of BMP15 in the treated mothers' oocytes was inherited in the F1 female offspring born to treated mothers. BMP15 and GDF9 show a clearly expressed sensitivity to the bioactive compounds of T. terrestris.

  5. Tribulus terrestris Alters the Expression of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Rabbit Ovaries of Mothers and F1 Female Offspring

    PubMed Central

    2016-01-01

    Although previous research has demonstrated the key role of the oocyte-derived factors, bone morphogenetic protein (BMP) 15 and growth differentiation factor (GDF) 9, in follicular development and ovulation, there is a lack of knowledge on the impact of external factors, which females are exposed to during folliculogenesis, on their expression. The present study investigated the effect of the aphrodisiac Tribulus terrestris on the GDF9 and BMP15 expression in the oocytes and cumulus cells at mRNA and protein levels during folliculogenesis in two generations of female rabbits. The experiment was conducted with 28 New Zealand rabbits. Only the diet of the experimental mothers group was supplemented with a dry extract of T. terrestris for the 45 days prior to insemination. The expression of BMP15 and GDF9 genes in the oocytes and cumulus cells of mothers and F1 female offspring was analyzed using real-time polymerase chain reaction (RT-PCR). The localization of the GDF9 and BMP15 proteins in the ovary tissues was determined by immunohistochemical analysis. The BMP15 and GDF9 transcripts were detected in the oocytes and cumulus cells of rabbits from all groups. T. terrestris caused a decrease in the BMP15 mRNA level in the oocytes and an increase in the cumulus cells. The GDF9 mRNA level increased significantly in both oocytes and cumulus cells. The downregulated expression of BMP15 in the treated mothers’ oocytes was inherited in the F1 female offspring born to treated mothers. BMP15 and GDF9 show a clearly expressed sensitivity to the bioactive compounds of T. terrestris. PMID:26928288

  6. Hold on: females modulate sperm depletion from storage sites in the fly Drosophila melanogaster.

    PubMed

    Bloch Qazi, Margaret C; Hogdal, Leah

    2010-09-01

    Among many species of insects, females gain fitness benefits by producing numerous offspring. Yet actions related to producing numerous offspring such as mating with multiple males, producing oocytes and placing offspring in sub-optimal environments incur costs. Females can decrease the magnitude of these costs by retaining gametes when suitable oviposition sites are absent. We used the pomace fly, Drosophila melanogaster, to explore how the availability of fresh feeding/oviposition medium influenced female fitness via changes in offspring survivorship and the modulation of gamete release. Availability of fresh medium affected the absolute number and temporal production of offspring. This outcome was attributable to both decreased larval survival under crowded conditions and to female modulation of gamete release. Direct examination of the number of sperm retained among the different female storage organs revealed that females 'hold on' to sperm, retaining more sperm in storage, disproportionately within the spermathecae, when exposed infrequently to fresh medium. Despite this retention, females with lower rates of storage depletion exhibited decreased sperm use efficiency shortly after mating. This study provides direct evidence that females influence the rate of sperm depletion from specific storage sites in a way that can affect both female and male fitness. The possible adaptive significance of selective gamete utilization by female Drosophila includes lowering costs associated with frequent remating and larval overcrowding when oviposition sites are limiting, as well as potentially influencing paternity when females store sperm from multiple males.

  7. Dietary Chromium Restriction of Pregnant Mice Changes the Methylation Status of Hepatic Genes Involved with Insulin Signaling in Adult Male Offspring

    PubMed Central

    Zhang, Qian; Sun, Xiaofang; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2017-01-01

    Maternal undernutrition is linked with an elevated risk of diabetes mellitus in offspring regardless of the postnatal dietary status. This is also found in maternal micro-nutrition deficiency, especial chromium which is a key glucose regulator. We investigated whether maternal chromium restriction contributes to the development of diabetes in offspring by affecting DNA methylation status in liver tissue. After being mated with control males, female weanling 8-week-old C57BL mice were fed a control diet (CON, 1.19 mg chromium/kg diet) or a low chromium diet (LC, 0.14 mg chromium/kg diet) during pregnancy and lactation. After weaning, some offspring were shifted to the other diet (CON-LC, or LC-CON), while others remained on the same diet (CON-CON, or LC-LC) for 29 weeks. Fasting blood glucose, serum insulin, and oral glucose tolerance test was performed to evaluate the glucose metabolism condition. Methylation differences in liver from the LC-CON group and CON-CON groups were studied by using a DNA methylation array. Bisulfite sequencing was carried out to validate the results of the methylation array. Maternal chromium limitation diet increased the body weight, blood glucose, and serum insulin levels. Even when switched to the control diet after weaning, the offspring also showed impaired glucose tolerance and insulin resistance. DNA methylation profiling of the offspring livers revealed 935 differentially methylated genes in livers of the maternal chromium restriction diet group. Pathway analysis identified the insulin signaling pathway was the main process affected by hypermethylated genes. Bisulfite sequencing confirmed that some genes in insulin signaling pathway were hypermethylated in livers of the LC-CON and LC-LC group. Accordingly, the expression of genes in insulin signaling pathway was downregulated. There findings suggest that maternal chromium restriction diet results in glucose intolerance in male offspring through alterations in DNA methylation which

  8. Dietary Chromium Restriction of Pregnant Mice Changes the Methylation Status of Hepatic Genes Involved with Insulin Signaling in Adult Male Offspring.

    PubMed

    Zhang, Qian; Sun, Xiaofang; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2017-01-01

    Maternal undernutrition is linked with an elevated risk of diabetes mellitus in offspring regardless of the postnatal dietary status. This is also found in maternal micro-nutrition deficiency, especial chromium which is a key glucose regulator. We investigated whether maternal chromium restriction contributes to the development of diabetes in offspring by affecting DNA methylation status in liver tissue. After being mated with control males, female weanling 8-week-old C57BL mice were fed a control diet (CON, 1.19 mg chromium/kg diet) or a low chromium diet (LC, 0.14 mg chromium/kg diet) during pregnancy and lactation. After weaning, some offspring were shifted to the other diet (CON-LC, or LC-CON), while others remained on the same diet (CON-CON, or LC-LC) for 29 weeks. Fasting blood glucose, serum insulin, and oral glucose tolerance test was performed to evaluate the glucose metabolism condition. Methylation differences in liver from the LC-CON group and CON-CON groups were studied by using a DNA methylation array. Bisulfite sequencing was carried out to validate the results of the methylation array. Maternal chromium limitation diet increased the body weight, blood glucose, and serum insulin levels. Even when switched to the control diet after weaning, the offspring also showed impaired glucose tolerance and insulin resistance. DNA methylation profiling of the offspring livers revealed 935 differentially methylated genes in livers of the maternal chromium restriction diet group. Pathway analysis identified the insulin signaling pathway was the main process affected by hypermethylated genes. Bisulfite sequencing confirmed that some genes in insulin signaling pathway were hypermethylated in livers of the LC-CON and LC-LC group. Accordingly, the expression of genes in insulin signaling pathway was downregulated. There findings suggest that maternal chromium restriction diet results in glucose intolerance in male offspring through alterations in DNA methylation which

  9. Stress during pregnancy alters the offspring hypothalamic, pituitary, adrenal, and testicular response to isolation on the day of weaning.

    PubMed

    Williams, M T; Davis, H N; McCrea, A E; Hennessy, M B

    1999-01-01

    Subjecting pregnant female rats to situations that activate the hypothalamic-pituitary-adrenal (HPA) axis can have long-term effects on the development of the offspring. Restraint under bright lights is a common method of stressing pregnant females that results in consistent behavioral changes in the offspring. We investigated the effects of gestationally administered restraint, bright lights, and heat on the HPA axis response of 21-day-old offspring following exposure to isolation in a novel environment or under resting conditions. Corticotropin-releasing factor titers in the hypothalamus were unaffected following isolation. Nonetheless, adrenocorticotropin hormone (ACTH) was found to be lower in the gestationally stressed offspring prior to or following the isolation period. Corticosterone was attenuated in gestationally stressed offspring following the postnatal stressor and there was also a tendency for the gestationally stressed females to have lower concentrations of aldosterone. Plasmatic testosterone levels were higher in the gestationally stressed males following the period of isolation. The present data suggest that the HPA axis of the offspring is differentially affected by the gestational stress procedure, that is, it is attenuated at the level of the pituitary and adrenal, but not at the level of the hypothalamus. These data have implications for behavioral differences observed in gestationally stressed animals.

  10. Filial anxiety and sense of obligation among offspring of Holocaust survivors.

    PubMed

    Shrira, Amit; Menashe, Ravit; Bensimon, Moshe

    2018-03-13

    Much is known about adult children caring for their aging parents, yet the potentially unique experience of offspring caring for traumatized parents is underexplored. Therefore, the current studies assessed filial anxiety and sense of obligation among offspring of Holocaust survivors (OHS) in caring for their parents. In Study 1, we interviewed 10 OHS (mean age = 61.0) in order to extract themes of filial anxiety. Based on Study 1's data, a newly constructed scale of filial anxiety was administered in Study 2 to 59 adult offspring (mean age = 56.4): 28 OHS and 31 comparisons. Study 3 included 143 dyads of parents and offspring (mean age = 55.4 and 81.7, respectively): 86 Holocaust dyads and 57 comparison dyads. Parents reported posttraumatic stress disorder (PTSD) symptoms and offspring reported filial anxiety and sense of obligation. In Study 1, interviewees referred to concerns about parent experiencing decline alongside caregiving difficulties. In Study 2, OHS reported higher filial anxiety and sense of obligation relative to comparisons. This group difference was mediated by sense of obligation. In Study 3, OHS with parental PTSD reported higher filial anxiety and sense of obligation relative to comparisons. Once more, filial sense of obligation served as a mediator. In Studies 2-3, results remained significant after adjusting for offspring symptoms. Parental exposure to the Holocaust, and especially parental PTSD, related to higher filial obligation, which in turn was related to higher filial anxiety. These findings bear important implications for practitioners working with survivors' families.

  11. Does physical activity during pregnancy adversely influence markers of the metabolic syndrome in adult offspring? A prospective study over two decades.

    PubMed

    Danielsen, Inge; Granström, Charlotta; Rytter, Dorte; Hammer Bech, Bodil; Brink Henriksen, Tine; Vaag, Allan Arthur; Olsen, Sjurdur Frodi

    2013-08-01

    It is unknown whether physical activity during pregnancy (PA) has long-term impact on the metabolic profile of the offspring. We investigated associations of PA with markers of the metabolic syndrome (MS) in 20y old offspring. Longitudinal study where 965 pregnant women during 1988-1989 had four dimensions of PA assessed by questionnaires in gestation week 30: PA at work; leisure time PA, daily amount of walking-biking and sport participation. The following MS markers were assessed in the offspring (n=439): body mass index (BMI), waist circumference, blood pressure, homeostasis model assessment insulin resistance as well as fasting plasma glucose, triglycerides, cholesterol (high-density lipoprotein (HDL), low-density lipoprotein and total cholesterol), insulin and leptin levels. Walking-biking PA in pregnancy is associated with unchanged or subtle, adverse changes of distinct MS markers among offspring including lower levels of HDL cholesterol (ratio 0.95 (95% CI 0.92 to 0.98) per 1 h increment in walking-biking), a higher diastolic blood pressure (difference 1.12 (95% CI 0.03 to 2.20) mm Hg/1 h increment) and a higher BMI (ratio 1.03 (95% CI 1.01 to 1.05) per 1 h increment). In separate analyses in males, these associations persisted and additional adverse associations were found for triglycerides, systolic blood pressure, waist circumference and leptin. No associations were detected with other measures of PA. The study did not substantiate any protective effects of PA in pregnancy. In contrast, data suggested that high amounts of daily walking-biking in pregnancy may have adverse effects on levels of HDL cholesterol, diastolic blood pressure and BMI in young adult offspring.

  12. Attractiveness Modulates Neural Processing of Infant Faces Differently in Males and Females

    PubMed Central

    Yin, Lijun; Fan, Mingxia; Lin, Lijia; Sun, Delin; Wang, Zhaoxin

    2017-01-01

    Consistent attention and proper processing of infant faces by adults are essential for infant survival. Previous behavioral studies showed gender differences in processing infant cues (e.g., crying, laughing or facial attractiveness) and more importantly, the efforts invested in nurturing offspring. The underlying neural mechanisms of processing unknown infant faces provide hints for understanding behavioral differences. This functional magnetic resonance imaging (fMRI) study recruited 32 unmarried adult (16 females and 16 males) participants to view unfamiliar infant faces and rate the attractiveness. Adult faces were also included. Behaviorally, despite that females and males showed no differences in attractiveness ratings of infant faces, a positive correlation was found between female’s (but not male’s) subjective liking for infants and attractiveness ratings of the infant faces. Functionally, brain activations to infant faces were modulated by attractiveness differently in males and females. Specifically, in female participants, activities in the ventromedial prefrontal cortex (vmPFC) and striatum/Nucleus Accumbens (NAcc) were positively modulated by infant facial attractiveness, and the modulation coefficients of these two regions were positively correlated. In male participants, infant facial attractiveness negatively modulated the activity in the dorsomedial prefrontal cortex (dmPFC). Our findings reveal that different neural mechanisms are involved in the processing of infant faces, which might lead to observed behavioral differences between males and females towards the baby. PMID:29184490

  13. Maternal smoking during pregnancy and self-reported delinquency by offspring.

    PubMed

    Ellis, Lee; Widmayer, Alan; Das, Shyamal

    2012-12-01

    Several studies have reported significant positive correlations between smoking during pregnancy by mothers and the involvement of their offspring in criminal/delinquent behaviour later in life, but these findings have been described as modest and the criminality based on official conviction statistics. We sought to verify this relationship and probe for more details on the basis of self-reported offending among college students. Independently completed questionnaires were collected from 6332 students and their mothers. The students provided information about their delinquent acts, if any, according to eight categories. Their mothers provided retrospective reports of their smoking habits, if any, during pregnancy. Mothers who recalled having smoked during pregnancy were significantly more likely than non-smoking mothers to have offspring who self-reported engaging in some types of delinquency. This relationship was more evident for female offspring than for male offspring and was most pronounced for illegal drug use by the offspring. There was, however, no relationship between offspring offending and estimated number of cigarettes smoked by mothers, month of pregnancy when smoked or consistency of smoking throughout pregnancy. Overall, our study confirms that maternal smoking during pregnancy is associated with offspring involvement in delinquency, but the lack of critical timing or dose-response relationships between maternal smoking and later offspring delinquency cast doubt on the possibility that the associations are due to teratogenic effects of tobacco smoke. Copyright © 2012 John Wiley & Sons, Ltd.

  14. The role of maternal age and context-dependent maternal effects in the offspring provisioning of a long-lived marine teleost

    PubMed Central

    Smith, Wade D.; Spencer, Paul D.; Evans, Allison N.; Heppell, Scott A.; Heppell, Selina S.

    2018-01-01

    Despite evidence of maternal age effects in a number of teleost species, there have been challenges to the assertion that maternal age intrinsically influences offspring quality. From an evolutionary perspective, maternal age effects result in young females paradoxically investing in less fit offspring despite a greater potential fitness benefit that might be gained by allocating this energy to individual somatic growth. Although a narrow range of conditions could lead to a maternal fitness benefit via the production of lower quality offspring, evolutionary theorists suggest these conditions are seldom met and that the reported maternal age effects are more likely products of the environmental context. Our goal was to determine if maternal effects operated on offspring provisioning in a long-lived rockfish (genus Sebastes), and to evaluate any such effects as an intrinsic function of maternal age or a context-dependent effect of the offspring release environment. We found that offspring provisioning is a function of both maternal age and the timing of offspring release; older females exhibit increased provisioning over younger females throughout the spawning season despite a decrease in provisioning across all maternal ages as the season progresses. These findings suggest a role for both maternal age effects and a potential context-dependent maternal effect in population productivity, carrying important implications when modelling population persistence and resilience. PMID:29410808

  15. Type I diabetes among children and young adults: the role of country of birth, socioeconomic position and sex.

    PubMed

    Hussen, Hozan Ismael; Yang, Dong; Cnattingius, Sven; Moradi, Tahereh

    2013-03-01

    To investigate associations between country of birth, parental country of birth, and education with respect to incidence rate and time trends of type 1 diabetes mellitus (T1DM) among children and young adults. We followed a nation-wide cohort of 4 469 671 males and 4 231 680 females aged 0-30 years between 1969 and 2008. Incidence rate ratios (IRRs) with 95% confidence intervals (CIs) for T1DM were calculated using Poisson regression models. We further calculated age-standardized rates (ASRs) of T1DM, using the world population as standard. During the study period, the ASR of T1DM increased among children younger than 15 years, but not among young adults (15-30 years). Compared with Swedish-born children, male and female immigrant children had 44 and 42% lower IRR of TIDM, respectively. Among offspring to immigrants, corresponding decreases in IRRs were 27 and 24%, respectively. Compared with children to parents with high education, male children to parents with low education had a 10% decreased IRR of T1DM, while no effect was observed among females. The IRR of T1DM increased with increasing age and calendar time of follow-up in both sexes (p-for trend <0.0001). In young adults, the IRR among immigrants decreased by 32% in males and 22% in females, while corresponding reductions in IRRs were less in offspring to immigrants. We found a lower IRR of T1DM among offspring to immigrants, but especially among young immigrants compared with Sweden-born individuals. The findings show that environmental factors are important in the etiology of T1DM. © 2012 John Wiley & Sons A/S.

  16. Survival of adult female elk in yellowstone following wolf restoration

    USGS Publications Warehouse

    Evans, S.B.; Mech, L.D.; White, P.J.; Sargeant, G.A.

    2006-01-01

    Counts of northern Yellowstone elk (Cervus elaphus) in northwestern Wyoming and adjacent Montana, USA, have decreased at an average rate of 6-8% per year since wolves (Canis lupus) were reintroduced in 1995. Population growth rates of elk are typically sensitive to variations in adult female survival; populations that are stable or increasing exhibit high adult female survival. We used survival records for 85 radiocollared adult female elk 1-19 years old to estimate annual survival from March 2000 to February 2004. Weighted average annual survival rates were approximately 0.83 (95% CI = 0.77-0.89) for females 1-15 years old and 0.80 (95% CI = 0.73-0.86) for all females. Our estimates were much lower than the rate of 0.99 observed during 1969-1975 when fewer elk were harvested by hunters, wolves were not present, and other predators were less numerous. Of 33 documented deaths included in our analysis, we attributed 11 to hunter harvest, 14 to predation (10 wolf, 2 unknown, 1 cougar [Puma concolor], and 1 bear [Ursus sp.]), 6 to unknown causes, and 2 to winter-kill. Most deaths occurred from December through March. Estimates of cause-specific annual mortality rates were 0.09 (0.05-0.14) for all predators, 0.08 (0.04-0.13) for hunting, and 0.07 (0.03-0.11) for wolves specifically. Wolf-killed elk were typically older (median = 12 yr) than hunter-killed elk (median = 9 yr, P = 0.03). However, elk that winter outside the park where they were exposed to hunting were also younger (median = 7 yr) than elk that we did not observe outside the park (median = 9 yr, P < 0.01). Consequently, differences in ages of elk killed by wolves and hunters may reflect characteristics of elk exposed to various causes of mortality, as well as differences in susceptibility. Unless survival rates of adult females increase, elk numbers are likely to continue declining. Hunter harvest is the only cause of mortality that is amenable to management at the present time.

  17. Effect of prenatal restraint stress and morphine co-administration on plasma vasopressin concentration and anxiety behaviors in adult rat offspring.

    PubMed

    Nakhjiri, Elnaz; Saboory, Ehsan; Roshan-Milani, Shiva; Rasmi, Yousef; Khalafkhani, Davod

    2017-03-01

    Stressful events and exposure to opiates during gestation have important effects on the later mental health of the offspring. Anxiety is among the most common mental disorders. The present study aimed to identify effects of prenatal restraint stress and morphine co-administration on plasma vasopressin concentration (PVC) and anxiety behaviors in rats. Pregnant rats were divided into four groups (n = 6, each): saline, morphine, stress + saline and stress + morphine treatment. The stress procedure consisted of restraint twice per day, two hours per session, for three consecutive days starting on day 15 of pregnancy. Rats in the saline and morphine groups received either 0.9% saline or morphine intraperitoneally on the same days. In the morphine/saline + stress groups, rats were exposed to restraint stress and received either morphine or saline intraperitoneally. All offspring were tested in an elevated plus maze (EPM) on postnatal day 90 (n = 6, each sex), and anxiety behaviors of each rat were recorded. Finally, blood samples were collected to determine PVC. Prenatal morphine exposure reduced anxiety-like behaviors. Co-administration of prenatal stress and morphine increased locomotor activity (LA) and PVC. PVC was significantly lower in female offspring of the morphine and morphine + stress groups compared with males in the same group, but the opposite was seen in the saline + stress group. These data emphasize the impact of prenatal stress and morphine on fetal neuroendocrine development, with long-term changes in anxiety-like behaviors and vasopressin secretion. These changes are sex specific, indicating differential impact of prenatal stress and morphine on fetal neuroendocrine system development. Lay Summary Pregnant women are sometimes exposed to stressful and painful conditions which may lead to poor outcomes for offspring. Opiates may provide pain and stress relief to these mothers. In this study, we used an experimental model of

  18. Effect of administration of lead nitrate to pregnant rats on the lungs in their offspring.

    PubMed

    Lebed'ko, O A; Ryzhavskii, B Ya

    2005-06-01

    Lead nitrate in a dose of 200 mg/kg was administered to female rats via a gartric tube on days 5 and 12 of pregnancy. The lungs of their offspring were examined on day 40 of life. We found a decrease in the ratio between the specific volumes of alveolar lumens and interalveolar septa and hypertrophy of lymphoid tissue in the bronchial wall (compared to the offspring of intact females). Chemiluminescent analysis revealed activation of lipid peroxidation and decrease in antioxidant antiradical activity of the lungs.

  19. Adult females and pubic bone growth.

    PubMed

    Fuller, K

    1998-07-01

    Previous research (Tague [1994] Am. J. Phys. Anthropol. 95:27-40) has shown an age effect in pubic bone length among adult women. Tague found that in three prehistoric Native American skeletal samples, women aged 18-24 had a significantly shorter linea terminalis than did women aged 25 and older. The purpose of this research is to determine whether such a difference can be discerned in other female skeletal samples. Three female skeletal samples were used in this analysis: 75 African-American and 42 European-American females aged 18-39 from the Hamann-Todd Collection (collected between 1893 and 1938; Iscan, 1990) and 99 African-American females aged 18-39 from the Terry Collection (collected between 1914 and 1965; Cobb, 1933; Iscan, 1990). Several chord measurements of pubic bone length along the linea terminalis were analyzed by one-tailed t-tests of the separate samples subdivided into two age groups: 18-24 and 25-39 years. Of 15 comparisons between age groups, none differed significantly by age group within each sample. It is concluded that the observed significant difference in pubic bone length in the Native American female skeletal samples cannot be replicated in other samples and that there is no age effect on pubic bone length in the samples tested in this analysis. Tague's findings reflect either the occurrence of late menarche in prehistoric populations or differential survivorship.

  20. Paternal alcoholism and offspring ADHD problems: a children of twins design.

    PubMed

    Knopik, Valerie S; Jacob, Theodore; Haber, Jon Randolph; Swenson, Lance P; Howell, Donelle N

    2009-02-01

    A recent Children-of-Female-Twin design suggests that the association between maternal alcohol use disorder and offspring ADHD is due to a combination of genetic and environmental factors, such as prenatal nicotine exposure. We present here a complementary analysis using a Children-of-Male-Twin design examining the association between paternal alcoholism and offspring attention deficit hyperactivity problems (ADHP). Children-of-twins design: offspring were classified into 4 groups of varying genetic and environmental risk based on father and co-twin's alcohol dependence status. Univariate results are suggestive of a genetic association between paternal alcohol dependence and broadly defined offspring ADHP. Specifically, offspring of male twins with a history of DSM-III-R alcohol dependence, as well as offspring of non-alcohol dependent monozygotic twins whose co-twin was alcohol dependent, were significantly more likely to exhibit ADHP than control offspring. However, multivariate models show maternal variables independently predicting increased risk for offspring ADHP and significantly decreased support for a genetic mechanism of parent-to-child transmission. In support of earlier work, maternal variables (i.e., maternal ADHD and prenatal exposure) were strongly associated with child ADHP; however, the role of paternal alcohol dependence influences was not definitive. While genetic transmission may be important, the association between paternal alcohol dependence and child ADHP is more likely to be indirect and a result of several pathways.

  1. Adult nutrition and butterfly fitness: effects of diet quality on reproductive output, egg composition, and egg hatching success

    PubMed Central

    Geister, Thorin L; Lorenz, Matthias W; Hoffmann, Klaus H; Fischer, Klaus

    2008-01-01

    Background In the Lepidoptera it was historically believed that adult butterflies rely primarily on larval-derived nutrients for reproduction and somatic maintenance. However, recent studies highlight the complex interactions between storage reserves and adult income, and that the latter may contribute significantly to reproduction. Effects of adult diet were commonly assessed by determining the number and/or size of the eggs produced, whilst its consequences for egg composition and offspring viability were largely neglected (as is generally true for insects). We here specifically focus on these latter issues by using the fruit-feeding tropical butterfly Bicyclus anynana, which is highly dependent on adult-derived carbohydrates for reproduction. Results Adult diet of female B. anynana had pronounced effects on fecundity, egg composition and egg hatching success, with butterflies feeding on the complex nutrition of banana fruit performing best. Adding vitamins and minerals to a sucrose-based diet increased fecundity, but not offspring viability. All other groups (plain sucrose solution, sucrose solution enriched with lipids or yeast) had a substantially lower fecundity and egg hatching success compared to the banana group. Differences were particularly pronounced later in life, presumably indicating the depletion of essential nutrients in sucrose-fed females. Effects of adult diet on egg composition were not straightforward, indicating complex interactions among specific compounds. There was some evidence that total egg energy and water content were related to hatching success, while egg protein, lipid, glycogen and free carbohydrate content did not seem to limit successful development. Conclusion The patterns shown here exemplify the complexity of reproductive resource allocation in B. anynana, and the need to consider egg composition and offspring viability when trying to estimate the effects of adult nutrition on fitness in this butterfly and other insects. PMID

  2. Maternal exposure to diets containing high fructose and saturated fats, low B vitamins, or their combination programs growth, adiposity, and insulin sensitivity in adult offspring

    USDA-ARS?s Scientific Manuscript database

    Early exposure to unfavorable nutrition programs increases risk of adult-onset diseases. In this rat study, we investigate morphological, metabolic and endocrinal phenotypes of offspring born to dams consuming isocaloric diets containing 30% fructose, 9.9% coconut fat and 0.5% cholesterol (F+SFA), m...

  3. The effects of prenatal exposure to a 'junk food' diet on offspring food preferences and fat deposition can be mitigated by improved nutrition during lactation.

    PubMed

    Gugusheff, J R; Vithayathil, M; Ong, Z Y; Muhlhausler, B S

    2013-10-01

    Exposure to a maternal junk food (JF) diet in utero and during the suckling period has been demonstrated to increase the preference for palatable food and increase the susceptibility to diet-induced obesity in adult offspring. We aimed to determine whether the effects of prenatal exposure to JF could be ameliorated by cross-fostering offspring onto dams consuming a standard rodent chow during the suckling period. We report here that when all offspring were given free access to the JF diet for 7 weeks from 10 weeks of age, male offspring of control (C) or JF dams that were cross-fostered at birth onto JF dams (C-JF, JF-JF), exhibited higher fat (C-C: 12.3 ± 0.34 g/kg/day; C-JF: 14.7 ± 1.04 g/kg/day; JF-C: 11.5 ± 0.41 g/kg/day; JF-JF: 14.0 ± 0.44 g/kg/day; P < 0.05) and overall energy intake (C-C: 930.1 ± 18.56 kJ/kg/day; C-JF: 1029.0 ± 82.9 kJ/kg/day; JF-C: 878.3 ± 19.5 kJ/kg/day; JF-JF: 1003.4 ± 25.97 kJ/kg/day; P < 0.05) than offspring exposed to the JF diet only before birth (JF-C) or not at all (C-C). Female offspring suckled by JF dams, despite no differences in food intake, had increased fat mass as percentage of body weight (C-C: 19.9 ± 1.33%; C-JF: 22.8 ± 1.57%; JF-C: 17.4 ± 1.03%; JF-JF: 22.0 ± 1.0%; P < 0.05) after 3 weeks on the JF diet. No difference in fat mass was observed in male offspring. These findings suggest that the effects of prenatal exposure to a JF diet on food preferences in females and susceptibility to diet-induced obesity in males can be prevented by improved nutrition during the suckling period.

  4. Intergenerational Influence of Paternal Obesity on Metabolic and Reproductive Health Parameters of the Offspring: Male-Preferential Impact and Involvement of Kiss1-Mediated Pathways.

    PubMed

    Sanchez-Garrido, Miguel Angel; Ruiz-Pino, Francisco; Velasco, Inmaculada; Barroso, Alexia; Fernandois, Daniela; Heras, Violeta; Manfredi-Lozano, Maria; Vazquez, Maria Jesus; Castellano, Juan Manuel; Roa, Juan; Pinilla, Leonor; Tena-Sempere, Manuel

    2018-02-01

    Obesity and its comorbidities are reaching epidemic proportions worldwide. Maternal obesity is known to predispose the offspring to metabolic disorders, independently of genetic inheritance. This intergenerational transmission has also been suggested for paternal obesity, with a potential negative impact on the metabolic and, eventually, reproductive health of the offspring, likely via epigenetic changes in spermatozoa. However, the neuroendocrine component of such phenomenon and whether paternal obesity sensitizes the offspring to the disturbances induced by high-fat diet (HFD) remain poorly defined. We report in this work the metabolic and reproductive impact of HFD in the offspring from obese fathers, with attention to potential sex differences and alterations of hypothalamic Kiss1 system. Lean and obese male rats were mated with lean virgin female rats; male and female offspring were fed HFD from weaning onward and analyzed at adulthood. The increases in body weight and leptin levels, but not glucose intolerance, induced by HFD were significantly augmented in the male, but not female, offspring from obese fathers. Paternal obesity caused a decrease in luteinizing hormone (LH) levels and exacerbated the drop in circulating testosterone and gene expression of its key biosynthetic enzymes caused by HFD in the male offspring. LH responses to central kisspeptin-10 administration were also suppressed in HFD males from obese fathers. In contrast, paternal obesity did not significantly alter gonadotropin levels in the female offspring fed HFD, although these females displayed reduced LH responses to kisspeptin-10. Our findings suggest that HFD-induced metabolic and reproductive disturbances are exacerbated by paternal obesity preferentially in males, whereas kisspeptin effects are affected in both sexes. Copyright © 2018 Endocrine Society.

  5. Giving offspring a head start in life: field and experimental evidence for selection on maternal basking behaviour in lizards.

    PubMed

    Wapstra, E; Uller, T; While, G M; Olsson, M; Shine, R

    2010-03-01

    The timing of birth is often correlated with offspring fitness in animals, but experimental studies that disentangle direct effects of parturition date and indirect effects mediated via variation in female traits are rare. In viviparous ectotherms, parturition date is largely driven by female thermal conditions, particularly maternal basking strategies. Our field and laboratory studies of a viviparous lizard (Niveoscincus ocellatus) show that earlier-born offspring are more likely to survive through their first winter and are larger following that winter, than are later-born conspecifics. Thus, the association between parturition date and offspring fitness is causal, rather than reflecting an underlying correlation between parturition date and maternal attributes. Survival selection on offspring confers a significant advantage for increased maternal basking in this species, mediated through fitness advantages of earlier parturition. We discuss the roles of environmentally imposed constraints and parent-offspring conflict in the evolution of maternal effects on parturition date.

  6. Prenatal choline supplementation alters the timing, emotion, and memory performance (TEMP) of adult male and female rats as indexed by differential reinforcement of low-rate schedule behavior

    PubMed Central

    Cheng, Ruey-Kuang; MacDonald, Christopher J.; Williams, Christina L.; Meck, Warren H.

    2008-01-01

    Choline availability in the maternal diet has a lasting effect on brain and behavior of the offspring. To further delineate the impact of early nutritional status, we examined effects of prenatal-choline supplementation on timing, emotion, and memory performance of adult male and female rats. Rats that were given sufficient choline (CON: 1.1 g/kg) or supplemental choline (SUP: 5.0 g/kg) during embryonic days (ED) 12–17 were trained with a differential reinforcement of low-rate (DRL) schedule that was gradually transitioned through 5-, 10-, 18-, 36-, and 72-sec criterion times. We observed that SUP-females emitted more reinforced responses than CON-females, which were more efficient than both groups of males. In addition, SUP-males and SUP-females exhibited a reduction in burst responding (response latencies <2 sec) compared with both groups of CON rats. Furthermore, despite a reduced level of burst responding, the SUP-males made more nonreinforced responses prior to the DRL criterion as a result of maintaining the previous DRL criterion following transition to a new criterion. In summary, long-lasting effects of prenatal-choline supplementation were exhibited by reduced frustrative DRL responding in conjunction with the persistence of temporal memory in SUP-males and enhanced temporal exploration and response efficiency in SUP-females. PMID:18323570

  7. Effects of Chronic Social Stress and Maternal Intranasal Oxytocin and Vasopressin on Offspring Interferon-γ and Behavior

    PubMed Central

    Murgatroyd, Christopher A.; Hicks-Nelson, Alexandria; Fink, Alexandria; Beamer, Gillian; Gurel, Kursat; Elnady, Fawzy; Pittet, Florent; Nephew, Benjamin C.

    2016-01-01

    Recent studies support the hypothesis that the adverse effects of early-life adversity and transgenerational stress on neural plasticity and behavior are mediated by inflammation. The objective of the present study was to investigate the immune and behavioral programing effects of intranasal (IN) vasopressin (AVP) and oxytocin (OXT) treatment of chronic social stress (CSS)-exposed F1 dams on F2 juvenile female offspring. It was hypothesized that maternal AVP and OXT treatment would have preventative effects on social stress-induced deficits in offspring anxiety and social behavior and that these effects would be associated with changes in interferon-γ (IFNγ). Control and CSS-exposed F1 dams were administered IN saline, AVP, or OXT during lactation and the F2 juvenile female offspring were assessed for basal plasma IFNγ and perseverative, anxiety, and social behavior. CSS F2 female juvenile offspring had elevated IFNγ levels and exhibited increased repetitive/perseverative and anxiety behaviors and deficits in social behavior. These effects were modulated by AVP and OXT in a context- and behavior-dependent manner, with OXT exhibiting preventative effects on repetitive and anxiety behaviors and AVP possessing preventative effects on social behavior deficits and anxiety. Basal IFNγ levels were elevated in the F2 offspring of OXT-treated F1 dams, but IFNγ was not correlated with the behavioral effects. These results support the hypothesis that maternal AVP and OXT treatment have context- and behavior-specific effects on peripheral IFNγ levels and perseverative, anxiety, and social behaviors in the female offspring of early-life social stress-exposed dams. Both maternal AVP and OXT are effective at preventing social stress-induced increases in self-directed measures of anxiety, and AVP is particularly effective at preventing impairments in overall social contact. OXT is specifically effective at preventing repetitive/perseverative behaviors, yet is ineffective at

  8. A Children of Twins Study of parental divorce and offspring psychopathology

    PubMed Central

    D'Onofrio, Brian M.; Turkheimer, Eric; Emery, Robert E.; Maes, Hermine H.; Silberg, Judy; Eaves, Lindon J.

    2010-01-01

    Background Although parental divorce is associated with increased substance use and internalizing problems, experiencing the separation of one's parents may not cause these outcomes. The relations may be due to genetic or environmental selection factors, characteristics that lead to both marital separation and offspring functioning. Method We used the Children of Twins (CoT) Design to explore whether unmeasured genetic or environmental factors related to the twin parent, and measured characteristics of both parents, account for the association between parental divorce and offspring substance use and internalizing problems. Results The association between parental divorce and offspring substance use problems remained robust when controlling for genetic and environmental risk from the twin parent associated with parental divorce, and measured characteristics of both parents. The results do not prove, but are consistent with, a causal connection. In contrast, the analyses suggest that shared genetic liability in parents and their offspring accounts for the increased risk of internalizing problems in adult offspring from divorced families. Conclusions The study illustrates that unmeasured genetic and environmental selection factors must be considered when studying parental divorce. In explaining associations between parental divorce and young-adult adjustment, our evidence suggests that selection versus causal mechanisms may operate differently for substance abuse (a causal relation) and internalizing problems (an artifact of selection). The CoT design only controls for the genetic and environmental characteristics of one parent; thus, additional genetically informed analyses are needed. PMID:17593147

  9. A Children of Twins Study of parental divorce and offspring psychopathology.

    PubMed

    D'Onofrio, Brian M; Turkheimer, Eric; Emery, Robert E; Maes, Hermine H; Silberg, Judy; Eaves, Lindon J

    2007-07-01

    Although parental divorce is associated with increased substance use and internalizing problems, experiencing the separation of one's parents may not cause these outcomes. The relations may be due to genetic or environmental selection factors, characteristics that lead to both marital separation and offspring functioning. We used the Children of Twins (CoT) Design to explore whether unmeasured genetic or environmental factors related to the twin parent, and measured characteristics of both parents, account for the association between parental divorce and offspring substance use and internalizing problems. The association between parental divorce and offspring substance use problems remained robust when controlling for genetic and environmental risk from the twin parent associated with parental divorce, and measured characteristics of both parents. The results do not prove, but are consistent with, a causal connection. In contrast, the analyses suggest that shared genetic liability in parents and their offspring accounts for the increased risk of internalizing problems in adult offspring from divorced families. The study illustrates that unmeasured genetic and environmental selection factors must be considered when studying parental divorce. In explaining associations between parental divorce and young-adult adjustment, our evidence suggests that selection versus causal mechanisms may operate differently for substance abuse (a causal relation) and internalizing problems (an artifact of selection). The CoT design only controls for the genetic and environmental characteristics of one parent; thus, additional genetically informed analyses are needed.

  10. Age at Onset of Type 1 Diabetes in Parents and Recurrence Risk in Offspring

    PubMed Central

    Harjutsalo, Valma; Lammi, Niina; Karvonen, Marjatta; Groop, Per-Henrik

    2010-01-01

    OBJECTIVE Our aim was to study the recurrence risk of type 1 diabetes in the offspring of parents with adult-onset (15–39 years) type 1 diabetes and to evaluate the transmission of diabetes within a continuum of parental age at onset of diabetes from childhood to adulthood. RESEARCH DESIGN AND METHODS Diabetes status of all offspring (n = 9,636) in two Finnish cohorts of parents with type 1 diabetes was defined until the end of year 2007. Cumulative incidences of type 1 diabetes among the offspring were estimated, and several factors contributing to the risk were assessed. RESULTS During 137,455 person-years, a total of 413 offspring were diagnosed with type 1 diabetes. The cumulative incidence by 20 years was 4.0% (95% CI 3.1–4.8) for the offspring of parents with adult-onset diabetes. The risk was equal according to the sex of the parents. The cumulative incidence decreased in parallel with the increase in age at onset of diabetes in the fathers. In the offspring of diabetic mothers, the risk was equal regardless of the age at onset of diabetes. However, the reduced risk in the maternal offspring was most pronounced in the daughters of the mothers with a diagnosis age <10 years. CONCLUSIONS Type 1 diabetes transmission ratio distortion is strongly related to the sex and age at onset of diabetes in the diabetic parents. PMID:19833881

  11. Contributions of maternal and paternal adiposity and smoking to adult offspring adiposity and cardiovascular risk: the Midspan Family Study.

    PubMed

    Han, T S; Hart, C L; Haig, C; Logue, J; Upton, M N; Watt, G C M; Lean, M E J

    2015-11-02

    Obesity has some genetic basis but requires interaction with environmental factors for phenotypic expression. We examined contributions of gender-specific parental adiposity and smoking to adiposity and related cardiovascular risk in adult offspring. Cross-sectional general population survey. Scotland. 1456 of the 1477 first generation families in the Midspan Family Study: 2912 parents (aged 45-64 years surveyed between 1972 and 1976) who had 1025 sons and 1283 daughters, aged 30-59 years surveyed in 1996. Offspring body mass index (BMI), waist circumference (WC), cardiometabolic risk (lipids, blood pressure and glucose) and cardiovascular disease as outcome measures, and parental BMI and smoking as determinants. All analyses adjusted for age, socioeconomic status and family clustering and offspring birth weight. Regression coefficients for BMI associations between father-son (0.30) and mother-daughter (0.33) were greater than father-daughter (0.23) or mother-son (0.22). Regression coefficient for the non-genetic, shared-environment or assortative-mating relationship between BMIs of fathers and mothers was 0.19. Heritability estimates for BMI were greatest among women with mothers who had BMI either <25 or ≥30 kg/m(2). Compared with offspring without obese parents, offspring with two obese parents had adjusted OR of 10.25 (95% CI 6.56 to 13.93) for having WC ≥102 cm for men, ≥88 cm women, 2.46 (95% CI 1.33 to 4.57) for metabolic syndrome and 3.03 (95% CI 1.55 to 5.91) for angina and/or myocardial infarct (p<0.001). Neither parental adiposity nor smoking history determined adjusted offspring individual cardiometabolic risk factors, diabetes or stroke. Maternal, but not paternal, smoking had significant effects on WC in sons (OR=1.50; 95% CI 1.13 to 2.01) and daughters (OR=1.42; 95% CI 1.10 to 1.84) and metabolic syndrome OR=1.68; 95% CI 1.17 to 2.40) in sons. There are modest genetic/epigenetic influences on the environmental factors behind adverse

  12. Maternal programming of sex-specific responses to predator odor stress in adult rats.

    PubMed

    St-Cyr, Sophie; Abuaish, Sameera; Sivanathan, Shathveekan; McGowan, Patrick O

    2017-08-01

    Prenatal stress mediated through the mother can lead to long-term adaptations in stress-related phenotypes in offspring. This study tested the long-lasting effect of prenatal exposure to predator odor, an ethologically relevant and psychogenic stressor, in the second half of pregnancy. As adults, the offspring of predator odor-exposed mothers showed increased anxiety-like behaviors in commonly used laboratory tasks assessing novelty-induced anxiety, increased defensive behavior in males and increased ACTH stress reactivity in females in response to predator odor. Female offspring from predator odor-exposed dams showed increased transcript abundance of glucocorticoid receptor (NR3C1) on the day of birth and FK506 binding protein 5 (FKBP5) in adulthood in the amygdala. The increase in FKBP5 expression was associated with decreased DNA methylation in Fkbp5 intron V. These results indicate a sex-specific response to maternal programming by prenatal predator odor exposure and a potential epigenetic mechanism linking these responses with modifications of the stress axis in females. These results are in accordance with the mismatch hypothesis stating that an animal's response to cues within its life history reflects environmental conditions anticipated during important developmental periods and should be adaptive when these conditions are concurring. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Paternal and maternal alcohol consumption: effects on offspring in two strains of rats.

    PubMed

    Abel, E L

    1989-08-01

    Long-Evans and Sprague-Dawley male rats were given liquid alcohol diets containing 35%, 17.5%, or 0% ethanol-derived calories (EDC). The latter two groups were pair fed to the higher alcohol diet group. A fourth group received lab chow and water ad libitum to assess the role of paternal undernutrition associated with alcohol consumption. After three or four weeks of diet consumption, these males were bred to females of the same strain. Pregnant females were divided into similarly treated alcohol groups and were fed these diets beginning on gestation Day 8, thus creating a factorial study with strain, paternal, and maternal alcohol consumption as main factors. Paternal alcohol consumption was associated with decreased litter size, decreased testosterone levels, and a strain-related effect on offspring activity. Offspring activity decreased for those sired by 35% and 17.5% EDC Long-Evans fathers. Activity also decreased for offspring sired by 17.5% EDC Sprague-Dawley fathers but increased for those sired by 35% EDC fathers. Paternal alcohol consumption did not affect postnatal mortality or passive avoidance learning of offspring. Maternal alcohol consumption was associated with lower birth weights, lower offspring weights at weaning, increased postnatal mortality, and poorer passive avoidance learning. However, offspring activity was not affected. In a separate study, levels of alcohol in the testes were found to be somewhat, but not significantly, lower than blood alcohol levels. DNA taken from sperm of Long-Evans males consuming alcohol, migrated farther under pulsed field electrophoresis than DNA from control fathers, suggestive of an alcohol-related effect on sperm DNA.

  14. Dietary intervention prior to pregnancy reverses metabolic programming in male offspring of obese rats

    PubMed Central

    Zambrano, E; Martínez-Samayoa, P M; Rodríguez-González, G L; Nathanielsz, P W

    2010-01-01

    Obesity involving women of reproductive years is increasing dramatically in both developing and developed nations. Maternal obesity and accompanying high energy obesogenic dietary (MO) intake prior to and throughout pregnancy and lactation program offspring physiological systems predisposing to altered carbohydrate and lipid metabolism. Whether maternal obesity-induced programming outcomes are reversible by altered dietary intake commencing before conception remains an unanswered question of physiological and clinical importance. We induced pre-pregnancy maternal obesity by feeding female rats with a high fat diet from weaning to breeding 90 days later and through pregnancy and lactation. A dietary intervention group (DINT) of MO females was transferred to normal chow 1 month before mating. Controls received normal chow throughout. Male offspring were studied. Offspring birth weights were similar. At postnatal day 21 fat mass, serum triglycerides, leptin and insulin were elevated in MO offspring and were normalized by DINT. At postnatal day 120 serum glucose, insulin and homeostasis model assessment (HOMA) were increased in MO offspring; glucose was restored, and HOMA partially reversed to normal by DINT. At postnatal day 150 fat mass was increased in MO and partially reversed in DINT. At postnatal day 150, fat cell size was increased by MO. DINT partially reversed these differences in fat cell size. We believe this is the first study showing reversibility of adverse metabolic effects of maternal obesity on offspring metabolic phenotype, and that outcomes and reversibility vary by tissue affected. PMID:20351043

  15. Post-mating interactions and their effects on fitness of female and male Echinothrips americanus (Thysanoptera: Thripidae), a new insect pest in China.

    PubMed

    Li, Xiao-Wei; Jiang, Hong-Xue; Zhang, Xiao-Chen; Shelton, Anthony M; Feng, Ji-Nian

    2014-01-01

    Post-mating, sexual interactions of opposite sexes differ considerably in different organisms. Post-mating interactions such as re-mating behavior and male harassment can affect the fitness of both sexes. Echinothrips americanus is a new insect pest in Mainland China, and little is known about its post-mating interactions. In this study, we observed re-mating frequency and male harassment frequency and their effects on fitness parameters and offspring sex ratios of E. americanus females. Furthermore, we tested the impact of mating and post-mating interactions on fitness parameters of males. Our results revealed that the re-mating frequency in female adults was extremely low during a 30-day period. However, post-mating interactions between females and males, consisting mainly of male harassment and female resistance, did occur and significantly reduced female longevity and fecundity. Interestingly, increased access to males did not affect the ratio of female offspring. For males, mating dramatically reduced their longevity. However, post-mating interactions with females had no effects on the longevity of mated males. These results enrich our basic knowledge about female and male mating and post-mating behaviors in this species and provide important information about factors that may influence population regulation of this important pest species.

  16. The maternal social environment shapes offspring growth, physiology, and behavioural phenotype in guinea pigs.

    PubMed

    von Engelhardt, Nikolaus; Kowalski, Gabriele J; Guenther, Anja

    2015-01-01

    Prenatal conditions influence offspring development in many species. In mammals, the effects of social density have traditionally been considered a detrimental form of maternal stress. Now their potential adaptive significance is receiving greater attention.Sex-specific effects of maternal social instability on offspring in guinea pigs (Cavia aperea f. porcellus) have been interpreted as adaptations to high social densities, while the effects of low social density are unknown. Hence, we compared morphological, behavioural and physiological development between offspring born to mothers housed either individually or in groups during the second half of pregnancy. Females housed individually and females housed in groups gave birth to litters of similar size and sex-ratios, and there were no differences in birth weight. Sons of individually-housed mothers grew faster than their sisters, whereas daughters ofgroup-housed females grew faster than their brothers, primarily due to an effect on growth of daughters. There were few effects on offspring behaviour. Baseline cortisol levels in saliva of pups on day 1 and day 7 were not affected, but we saw a blunted cortisol response to social separation on day 7 in sons of individually-housed females and daughters of group-housed females. The effects were consistent across two replicate experiments. The observed effects only partially support the adaptive hypothesis. Increased growth of daughters may be adaptive under high densities due to increasedfemale competition, but it is unclear why growth of sons is not increased under low social densities when males face less competition from older, dominant males. The differences in growth may be causally linked to sex-specific effects on cortisol response, although individual cortisol response and growth were not correlated, and various other mechanisms are possible. The observed sex-specific effects on early development are intriguing, yet the potential adaptive benefits and

  17. Maternal obesity characterized by gestational diabetes increases the susceptibility of rat offspring to hepatic steatosis via a disrupted liver metabolome

    PubMed Central

    Pereira, Troy J; Fonseca, Mario A; Campbell, Kristyn E; Moyce, Brittany L; Cole, Laura K; Hatch, Grant M; Doucette, Christine A; Klein, Julianne; Aliani, Michel; Dolinsky, Vernon W

    2015-01-01

    Maternal obesity is associated with a high risk for gestational diabetes mellitus (GDM), which is a common complication of pregnancy. The influence of maternal obesity and GDM on the metabolic health of the offspring is poorly understood. We hypothesize that GDM associated with maternal obesity will cause obesity, insulin resistance and hepatic steatosis in the offspring. Female Sprague-Dawley rats were fed a high-fat (45%) and sucrose (HFS) diet to cause maternal obesity and GDM. Lean control pregnant rats received low-fat (LF; 10%) diets. To investigate the interaction between the prenatal environment and postnatal diets, rat offspring were assigned to LF or HFS diets for 12 weeks, and insulin sensitivity and hepatic steatosis were evaluated. Pregnant GDM dams exhibited excessive gestational weight gain, hyperinsulinaemia and hyperglycaemia. Offspring of GDM dams gained more weight than the offspring of lean dams due to excess adiposity. The offspring of GDM dams also developed hepatic steatosis and insulin resistance. The postnatal consumption of a LF diet did not protect offspring of GDM dams against these metabolic disorders. Analysis of the hepatic metabolome revealed increased diacylglycerol and reduced phosphatidylethanolamine in the offspring of GDM dams compared to offspring of lean dams. Consistent with altered lipid metabolism, the expression of CTP:phosphoethanolamine cytidylyltransferase, and peroxisomal proliferator activated receptor-α mRNA was reduced in the livers of GDM offspring. GDM exposure programs gene expression and hepatic metabolite levels and drives the development of hepatic steatosis and insulin resistance in young adult rat offspring. Key points Gestational diabetes mellitus is a common complication of pregnancy, but its effects on the offspring are poorly understood. We developed a rat model of diet-induced gestational diabetes mellitus that recapitulates many of the clinical features of the disease, including excessive gestational

  18. Do Parental Stressors and Avoidance Coping Mediate between Parental Depression and Offspring Depression? A 23-Year Follow-Up

    ERIC Educational Resources Information Center

    Timko, Christine; Cronkite, Ruth C.; Moos, Rudolf H.

    2010-01-01

    We examined whether parents' stressors and avoidance coping when offspring were children helped to explain associations between parent depression at baseline and offspring's avoidance coping and depression in adulthood. Self-report data were collected at baseline and 1 year from parents (N = 326) and at 23 years from adult offspring (N = 326).…

  19. Paternal effects on offspring fitness in a multimale primate society

    PubMed Central

    Charpentier, M. J. E.; Van Horn, R. C.; Altmann, J.; Alberts, S. C.

    2008-01-01

    When females mate with multiple males, paternal care is generally expected to be negligible, because it may be difficult or impossible for males to discriminate their own offspring from those of other males, and because engaging in paternal care may reduce male mating opportunities. Consequently, males in multimale societies are not predicted to provide direct benefits to their offspring. We have recently demonstrated, however, that males in a typical multimale primate society (yellow baboons, Papio cynocephalus) discriminate their own offspring from those of other males and provide care to them in the form of repeated support during agonistic encounters. This observation raises the question of whether fathers enhance offspring fitness in this species. Here we use 30 years of data on age at maturity for 118 yellow baboons with known fathers. We show that the father's presence in the offspring's social group during the offspring's immature period accelerated the timing of physiological maturation in daughters. Sons also experienced accelerated maturation if their father was present during their immature period, but only if the father was high ranking at the time of their birth. Because age at reproductive maturity has a large impact on lifetime reproductive success, our results indicate a direct effect of paternal presence on offspring fitness. This relationship in turn suggests that the multiple roles that males play in multimale animal societies have not been sufficiently examined or appreciated and that paternal effects may be more pervasive than previously appreciated. PMID:18250308

  20. Female choice and the relatedness of mates in the guppy (Poecilia reticulata): mate choice and inbreeding depression.

    PubMed

    Pitcher, Trevor E; Rodd, F Helen; Rowe, Locke

    2008-09-01

    Several studies suggest that females may offset the costs of genetic incompatibility by exercising pre-copulatory or post-copulatory mate choice to bias paternity toward more compatible males. One source of genetic incompatibility is the degree of relatedness among mates; unrelated males are expected to be genetically more compatible with a female than her relatives. To address this idea, we investigated the potential for inbreeding depression and paternity biasing mechanisms (pre- and post-copulatory) of inbreeding avoidance in the guppy, Poecilia reticulata. Inbreeding resulted in a reduction in offspring number and quality. Females mated to siblings gave birth to significantly fewer offspring compared to females mated to non-siblings and inbred male offspring took longer to reach sexual maturity. There was no evidence of inbreeding avoidance in pre-copulatory behaviors of females or males. Sexual responsiveness of females to courting males and the number of sexual behaviors males directed at females did not decrease as a function of the relatedness of the two individuals. We also tested whether female guppies can use post-copulatory mechanisms to bias sperm usage toward unrelated males by comparing the number of offspring produced by females mated to two of their siblings (SS), two males unrelated to the female (NN), or to one unrelated male and a sibling male (NS). We found that NS females produced a number of offspring not significantly different than what would be expected if fertilization success were halfway between completely outbreeding (NN) and completely inbreeding (SS) females. This suggests that there is no significant improvement in the number of offspring produced by females mating to both related and unrelated males, relative to that which would be expected if sperm from both males were used equally. Our results suggest that female guppies do not discriminate against closely related males or their sperm.