Science.gov

Sample records for adult germline stem

  1. Visualization of adult stem cells within their niches using the Drosophila germline as a model system.

    PubMed

    König, Annekatrin; Shcherbata, Halyna R

    2013-01-01

    The germaria of the fruit fly Drosophila melanogaster present an excellent model to study germline stem cell-niche interactions. Two to three adult stem cells are surrounded by a number of somatic cells that form the niche. Here we describe how Drosophilae germaria can be dissected and specifically immuno-stained to allow for identification and analysis of both the adult stem cells and their somatic niche cells.

  2. Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles.

    PubMed

    Lei, Lei; Spradling, Allan C

    2013-05-21

    Whether or not mammalian females generate new oocytes during adulthood from germ-line stem cells to sustain the ovarian follicle pool has recently generated controversy. We used a sensitive lineage-labeling system to determine whether stem cells are needed in female adult mice to compensate for follicular losses and to directly identify active germ-line stem cells. Primordial follicles generated during fetal life are highly stable, with a half-life during adulthood of 10 mo, and thus are sufficient to sustain adult oogenesis without a source of renewal. Moreover, in normal mice or following germ-cell depletion with Busulfan, only stable, single oocytes are lineage-labeled, rather than cell clusters indicative of new oocyte formation. Even one germ-line stem cell division per 2 wk would have been detected by our method, based on the kinetics of fetal follicle formation. Thus, adult female mice neither require nor contain active germ-line stem cells or produce new oocytes in vivo.

  3. Somatic stem cells express Piwi and Vasa genes in an adult ctenophore: ancient association of "germline genes" with stemness.

    PubMed

    Alié, Alexandre; Leclère, Lucas; Jager, Muriel; Dayraud, Cyrielle; Chang, Patrick; Le Guyader, Hervé; Quéinnec, Eric; Manuel, Michaël

    2011-02-01

    Stem cells are essential for animal development and adult tissue homeostasis, and the quest for an ancestral gene fingerprint of stemness is a major challenge for evolutionary developmental biology. Recent studies have indicated that a series of genes, including the transposon silencer Piwi and the translational activator Vasa, specifically involved in germline determination and maintenance in classical bilaterian models (e.g., vertebrates, fly, nematode), are more generally expressed in adult multipotent stem cells in other animals like flatworms and hydras. Since the progeny of these multipotent stem cells includes both somatic and germinal derivatives, it remains unclear whether Vasa, Piwi, and associated genes like Bruno and PL10 were ancestrally linked to stemness, or to germinal potential. We have investigated the expression of Vasa, two Piwi paralogues, Bruno and PL10 in Pleurobrachia pileus, a member of the early-diverging phylum Ctenophora, the probable sister group of cnidarians. These genes were all expressed in the male and female germlines, and with the exception of one of the Piwi paralogues, they showed similar expression patterns within somatic territories (tentacle root, comb rows, aboral sensory complex). Cytological observations and EdU DNA-labelling and long-term retention experiments revealed concentrations of stem cells closely matching these gene expression areas. These stem cell pools are spatially restricted, and each specialised in the production of particular types of somatic cells. These data unveil important aspects of cell renewal within the ctenophore body and suggest that Piwi, Vasa, Bruno, and PL10 belong to a gene network ancestrally acting in two distinct contexts: (i) the germline and (ii) stem cells, whatever the nature of their progeny.

  4. The posterior determinant gene nanos is required for the maintenance of the adult germline stem cells during Drosophila oogenesis.

    PubMed

    Bhat, K M

    1999-04-01

    In a variety of tissues in eukaryotes, multipotential stem cells are responsible for maintaining a germinal population and generating a differentiated progeny. The Drosophila germline is one such tissue where a continuous supply of eggs or sperm relies on the normal functioning of stem cells. Recent studies have implicated a possible role for the posterior determinant gene nanos (nos) in stem cells. Here, I report that nanos is required in the Drosophila female germline as well as in the male germline. In the female, nos is required for the functioning of stem cells. In nos mutants, while the stem cells are specified, these cells divide only a few times at the most and then degenerate. The loss of germline stem cells in nos mutant mothers appears to be due to a progressive degeneration of the plasma membrane. Furthermore, following germ cell loss, the germaria in the nos mutant mothers appear to carry on massive mitochondrial biogenesis activity. Thus, the syncytia of such germaria are filled with mitochondria. In the male germline, the male fertility assay indicates that nos appears to be also required for the maintenance of stem cells. In these mutant males, spermatogenesis is progressively affected and these males eventually become sterile. These results indicate novel requirements for nos in the Drosophila germline.

  5. Germline and Pluripotent Stem Cells.

    PubMed

    Reik, Wolf; Surani, M Azim

    2015-11-02

    Epigenetic mechanisms play an essential role in the germline and imprinting cycle. Germ cells show extensive epigenetic programming in preparation for the generation of the totipotent state, which in turn leads to the establishment of pluripotent cells in blastocysts. The latter are the cells from which pluripotent embryonic stem cells are derived and maintained in culture. Following blastocyst implantation, postimplantation epiblast cells develop, which give rise to all somatic cells as well as primordial germ cells, the precursors of sperm and eggs. Pluripotent stem cells in culture can be induced to undergo differentiation into somatic cells and germ cells in culture. Understanding the natural cycles of epigenetic reprogramming that occur in the germline will allow the generation of better and more versatile stem cells for both therapeutic and research purposes.

  6. Dietary restriction enhances germline stem cell maintenance

    PubMed Central

    Mair, William; McLeod, Catherine J.; Wang, Lei; Jones, D. Leanne

    2010-01-01

    Summary Dietary restriction (DR) increases lifespan in species ranging from yeast to primates, maintaining tissues in a youthful state and delaying reproductive senescence. However, little is known about the mechanisms by which this occurs. Here we demonstrate that, concurrent with extending lifespan, DR attenuates the age-related decline in male germline stem cell (GSC) number in Drosophila. These data support a model whereby DR enhances maintenance of GSCs to extend the reproductive period of animals subjected to adverse nutritional conditions. This represents the first example of DR maintaining an adult stem cell pool and suggests a potential mechanism by which DR might delay aging in the tissues of higher organisms. PMID:20569233

  7. Enhancer of polycomb coordinates multiple signaling pathways to promote both cyst and germline stem cell differentiation in the Drosophila adult testis.

    PubMed

    Feng, Lijuan; Shi, Zhen; Chen, Xin

    2017-02-01

    Stem cells reside in a particular microenvironment known as a niche. The interaction between extrinsic cues originating from the niche and intrinsic factors in stem cells determines their identity and activity. Maintenance of stem cell identity and stem cell self-renewal are known to be controlled by chromatin factors. Herein, we use the Drosophila adult testis which has two adult stem cell lineages, the germline stem cell (GSC) lineage and the cyst stem cell (CySC) lineage, to study how chromatin factors regulate stem cell differentiation. We find that the chromatin factor Enhancer of Polycomb [E(Pc)] acts in the CySC lineage to negatively control transcription of genes associated with multiple signaling pathways, including JAK-STAT and EGF, to promote cellular differentiation in the CySC lineage. E(Pc) also has a non-cell-autonomous role in regulating GSC lineage differentiation. When E(Pc) is specifically inactivated in the CySC lineage, defects occur in both germ cell differentiation and maintenance of germline identity. Furthermore, compromising Tip60 histone acetyltransferase activity in the CySC lineage recapitulates loss-of-function phenotypes of E(Pc), suggesting that Tip60 and E(Pc) act together, consistent with published biochemical data. In summary, our results demonstrate that E(Pc) plays a central role in coordinating differentiation between the two adult stem cell lineages in Drosophila testes.

  8. Enhancer of polycomb coordinates multiple signaling pathways to promote both cyst and germline stem cell differentiation in the Drosophila adult testis

    PubMed Central

    Feng, Lijuan; Shi, Zhen; Chen, Xin

    2017-01-01

    Stem cells reside in a particular microenvironment known as a niche. The interaction between extrinsic cues originating from the niche and intrinsic factors in stem cells determines their identity and activity. Maintenance of stem cell identity and stem cell self-renewal are known to be controlled by chromatin factors. Herein, we use the Drosophila adult testis which has two adult stem cell lineages, the germline stem cell (GSC) lineage and the cyst stem cell (CySC) lineage, to study how chromatin factors regulate stem cell differentiation. We find that the chromatin factor Enhancer of Polycomb [E(Pc)] acts in the CySC lineage to negatively control transcription of genes associated with multiple signaling pathways, including JAK-STAT and EGF, to promote cellular differentiation in the CySC lineage. E(Pc) also has a non-cell-autonomous role in regulating GSC lineage differentiation. When E(Pc) is specifically inactivated in the CySC lineage, defects occur in both germ cell differentiation and maintenance of germline identity. Furthermore, compromising Tip60 histone acetyltransferase activity in the CySC lineage recapitulates loss-of-function phenotypes of E(Pc), suggesting that Tip60 and E(Pc) act together, consistent with published biochemical data. In summary, our results demonstrate that E(Pc) plays a central role in coordinating differentiation between the two adult stem cell lineages in Drosophila testes. PMID:28196077

  9. Adipocyte amino acid sensing controls adult germline stem cell number via the amino acid response pathway and independently of Target of Rapamycin signaling in Drosophila.

    PubMed

    Armstrong, Alissa R; Laws, Kaitlin M; Drummond-Barbosa, Daniela

    2014-12-01

    How adipocytes contribute to the physiological control of stem cells is a critical question towards understanding the link between obesity and multiple diseases, including cancers. Previous studies have revealed that adult stem cells are influenced by whole-body physiology through multiple diet-dependent factors. For example, nutrient-dependent pathways acting within the Drosophila ovary control the number and proliferation of germline stem cells (GSCs). The potential role of nutrient sensing by adipocytes in modulating stem cells in other organs, however, remains largely unexplored. Here, we report that amino acid sensing by adult adipocytes specifically modulates the maintenance of GSCs through a Target of Rapamycin-independent mechanism. Instead, reduced amino acid levels and the consequent increase in uncoupled tRNAs trigger activation of the GCN2-dependent amino acid response pathway within adipocytes, causing increased rates of GSC loss. These studies reveal a new step in adipocyte-stem cell crosstalk.

  10. Glial cell line-derived neurotrophic factor alters the growth characteristics and genomic imprinting of mouse multipotent adult germline stem cells

    SciTech Connect

    Jung, Yoon Hee

    2010-03-10

    This study evaluated the essentiality of glial cell line-derived neurotrophic factor (GDNF) for in vitro culture of established mouse multipotent adult germline stem (maGS) cell lines by culturing them in the presence of GDNF, leukemia inhibitory factor (LIF) or both. We show that, in the absence of LIF, GDNF slows the proliferation of maGS cells and result in smaller sized colonies without any change in distribution of cells to different cell-cycle stages, expression of pluripotency genes and in vitro differentiation potential. Furthermore, in the absence of LIF, GDNF increased the expression of male germ-line genes and repopulated the empty seminiferous tubule of W/W{sup v} mutant mouse without the formation of teratoma. GDNF also altered the genomic imprinting of Igf2, Peg1, and H19 genes but had no effect on DNA methylation of Oct4, Nanog and Stra8 genes. However, these effects of GDNF were masked in the presence of LIF. GDNF also did not interfere with the multipotency of maGS cells if they are cultured in the presence of LIF. In conclusion, our results suggest that, in the absence of LIF, GDNF alters the growth characteristics of maGS cells and partially impart them some of the germline stem (GS) cell-like characteristics.

  11. The development of germline stem cells in Drosophila.

    PubMed

    Dansereau, David A; Lasko, Paul

    2008-01-01

    Germline stem cells (GSCs) in Drosophila are a valuable model to explore of how adult stem cells are regulated in vivo. Genetic dissection of this system has shown that stem cell fate is determined and maintained by the stem cell's somatic microenvironment or niche. In Drosophila gonads, the stem cell niche -- the cap cell cluster in females and the hub in males -- acts as a signaling center to recruit GSCs from among a small population of undifferentiated primordial germ cells (PGCs). Short-range signals from the niche specify and regulate stem cell fate by maintaining the undifferentiated state of the PGCs next to the niche. Germline cells that do not receive the niche signals because of their location assume the default fate and differentiate. Once GSCs are specified, adherens junctions maintain close association between the stem cells and their niche and help to orient stem cell division so that one daughter is displaced from the niche and differentiates. In females, stem cell fate depends on bone morphogenetic protein (BMP) signals from the cap cells; in males, hub cells express the cytokine-like ligand Unpaired, which activates the Janus kinase-signal transducers and activators of transcription (Jak-Stat) pathway in stem cells. Although the signaling pathways operating between the niche and stem cells are different, there are common general features in both males and females, including the arrangement of cell types, many of the genes used, and the logic of the system that maintains stem cell fate.

  12. Life-long in vivo cell-lineage tracing shows that no oogenesis originates from putative germline stem cells in adult mice.

    PubMed

    Zhang, Hua; Liu, Lian; Li, Xin; Busayavalasa, Kiran; Shen, Yan; Hovatta, Outi; Gustafsson, Jan-Åke; Liu, Kui

    2014-12-16

    Whether or not oocyte regeneration occurs in adult life has been the subject of much debate. In this study, we have traced germ-cell lineages over the life spans of three genetically modified mouse models and provide direct evidence that oogenesis does not originate from any germline stem cells (GSCs) in adult mice. By selective ablation of all existing oocytes in a Gdf9-Cre;iDTR mouse model, we have demonstrated that no new germ cells were ever regenerated under pathological conditions. By in vivo tracing of oocytes and follicles in the Sohlh1-CreER(T2);R26R and Foxl2-CreER(T2);mT/mG mouse models, respectively, we have shown that the initial pool of oocytes is the only source of germ cells throughout the life span of the mice and that no adult oogenesis ever occurs under physiological conditions. Our findings clearly show that there are no GSCs that contribute to adult oogenesis in mice and that the initial pool of oocytes formed in early life is the only source of germ cells throughout the entire reproductive life span.

  13. The Development of Germline Stem Cells in Drosophila

    PubMed Central

    Dansereau, David A.; Lasko, Paul

    2009-01-01

    Summary Germline stem cells (GSCs) in Drosophila are a valuable model to explore of how adult stem cells are regulated in vivo. Genetic dissection of this system has shown that stem cell fate is determined and maintained by the stem cell’s somatic microenvironment or niche. In Drosophila gonads, the stem cell niche—the cap cell cluster in females and the hub in males—acts as a signaling center to recruit GSCs from among a small population of undifferentiated primordial germ cells (PGCs). Short-range signals from the niche specify and regulate stem cell fate by maintaining the undifferentiated state of the PGCs next to the niche. Germline cells that do not receive the niche signals because of their location assume the default fate and differentiate. Once GSCs are specified, adherens junctions maintain close association between the stem cells and their niche and help to orient stem cell division so that one daughter is displaced from the niche and differentiates. In females, stem cell fate depends on bone morphogenetic protein (BMP) signals from the cap cells; in males, hub cells express the cytokine-like ligand Unpaired, which activates the Janus kinase-signal transducers and activators of transcription (Jak-Stat) pathway in stem cells. Although the signaling pathways operating between the niche and stem cells are different, there are common general features in both males and females, including the arrangement of cell types, many of the genes used, and the logic of the system that maintains stem cell fate. PMID:18370048

  14. The Tumorigenicity of Multipotent Adult Germline Stem Cells Transplanted into the Heart Is Affected by Natural Killer Cells and by Cyclosporine A Independent of Its Immunosuppressive Effects

    PubMed Central

    Hübscher, Daniela; Kaiser, Diana; Elsner, Leslie; Monecke, Sebastian; Dressel, Ralf; Guan, Kaomei

    2017-01-01

    Transplantation of stem cells represents an upcoming therapy for many degenerative diseases. For clinical use, transplantation of pluripotent stem cell-derived cells should lead to integration of functional grafts without immune rejection or teratoma formation. Our previous studies showed that the risk of teratoma formation is highly influenced by the immune system of the recipients. In this study, we have observed a higher teratoma formation rate when undifferentiated so-called multipotent adult germline stem cells (maGSCs) were transplanted into the heart of T, B, and natural killer (NK) cell-deficient RAG2−/−γc−/− mice than in RAG2−/− mice, which still have NK cells. Notably, in both strains, the teratoma formation rate was significantly reduced by the immunosuppressive drug cyclosporine A (CsA). Thus, CsA had a profound effect on teratoma formation independent of its immunosuppressive effects. The transplantation into RAG2−/− mice led to an activation of NK cells, which reached the maximum 14 days after transplantation and was not affected by CsA. The in vivo-activated NK cells efficiently killed YAC-1 and also maGSC target cells. This NK cell activation was confirmed in C57BL/6 wild-type mice whether treated with CsA or not. Sham operations in wild-type mice indicated that the inflammatory response to open heart surgery rather than the transplantation of maGSCs activated the NK cell system. An activation of NK cells during the transplantation of stem cell-derived in vitro differentiated grafts might be clinically beneficial by reducing the risk of teratoma formation by residual pluripotent cells. PMID:28220117

  15. Isolation of Undifferentiated Female Germline Cells from Adult Drosophila Ovaries.

    PubMed

    Lim, Robyn Su May; Osato, Motomi; Kai, Toshie

    2015-08-03

    This unit describes a method for isolating undifferentiated, stem cell-like germline cells from adult Drosophila ovaries. Here, we demonstrate that this population of cells can be effectively purified from hand-dissected ovaries in considerably large quantities. Tumor ovaries with expanded populations of undifferentiated germline cells are first removed from fly abdomens and dissociated into a cell suspension with the aid of protease treatment. The target cells, which express Vasa-green fluorescent protein (GFP) fusion protein under the control of the germline-specific vasa promoter, are specifically selected from the suspension via fluorescence-activated cell sorting (FACS). These protocols can be adapted to isolate other cell types from fly ovaries, such as somatic follicle cells or escort cells, by driving GFP expression in the respective target cells.

  16. Generation of pluripotent stem cells from adult human testis.

    PubMed

    Conrad, Sabine; Renninger, Markus; Hennenlotter, Jörg; Wiesner, Tina; Just, Lothar; Bonin, Michael; Aicher, Wilhelm; Bühring, Hans-Jörg; Mattheus, Ulrich; Mack, Andreas; Wagner, Hans-Joachim; Minger, Stephen; Matzkies, Matthias; Reppel, Michael; Hescheler, Jürgen; Sievert, Karl-Dietrich; Stenzl, Arnulf; Skutella, Thomas

    2008-11-20

    Human primordial germ cells and mouse neonatal and adult germline stem cells are pluripotent and show similar properties to embryonic stem cells. Here we report the successful establishment of human adult germline stem cells derived from spermatogonial cells of adult human testis. Cellular and molecular characterization of these cells revealed many similarities to human embryonic stem cells, and the germline stem cells produced teratomas after transplantation into immunodeficient mice. The human adult germline stem cells differentiated into various types of somatic cells of all three germ layers when grown under conditions used to induce the differentiation of human embryonic stem cells. We conclude that the generation of human adult germline stem cells from testicular biopsies may provide simple and non-controversial access to individual cell-based therapy without the ethical and immunological problems associated with human embryonic stem cells.

  17. Cell-cycle quiescence maintains Caenorhabditis elegans germline stem cells independent of GLP-1/Notch.

    PubMed

    Seidel, Hannah S; Kimble, Judith

    2015-11-09

    Many types of adult stem cells exist in a state of cell-cycle quiescence, yet it has remained unclear whether quiescence plays a role in maintaining the stem cell fate. Here we establish the adult germline of Caenorhabditis elegans as a model for facultative stem cell quiescence. We find that mitotically dividing germ cells--including germline stem cells--become quiescent in the absence of food. This quiescence is characterized by a slowing of S phase, a block to M-phase entry, and the ability to re-enter M phase rapidly in response to re-feeding. Further, we demonstrate that cell-cycle quiescence alters the genetic requirements for stem cell maintenance: The signaling pathway required for stem cell maintenance under fed conditions--GLP-1/Notch signaling--becomes dispensable under conditions of quiescence. Thus, cell-cycle quiescence can itself maintain stem cells, independent of the signaling pathway otherwise essential for such maintenance.

  18. Lineage tracing quantification reveals symmetric stem cell division in Drosophila male germline stem cells.

    PubMed

    Salzmann, Viktoria; Inaba, Mayu; Cheng, Jun; Yamashita, Yukiko M

    2013-12-01

    In the homeostatic state, adult stem cells divide either symmetrically to increase the stem cell number to compensate stem cell loss, or asymmetrically to maintain the population while producing differentiated cells. We have investigated the mode of stem cell division in the testes of Drosophila melanogaster by lineage tracing and confirm the presence of symmetric stem cell division in this system. We found that the rate of symmetric division is limited to 1-2% of total germline stem cell (GSC) divisions, but it increases with expression of a cell adhesion molecule, E-cadherin, or a regulator of the actin cytoskeleton, Moesin, which may modulate adhesiveness of germ cells to the stem cell niche. Our results indicate that the decision regarding asymmetric vs. symmetric division is a dynamically regulated process that contributes to tissue homeostasis, responding to the needs of the tissue.

  19. Ovarian Germline Stem Cells: An Unlimited Source of Oocytes?

    PubMed Central

    Hanna, Carol; Hennebold, Jon

    2014-01-01

    While there has been progress in directing the development of embryonic stem cells and induced pluripotent stem cells toward a germ cell state, their ability to serve as a source of functional oocytes in a clinically relevant model or situation has yet to be established. Recent studies suggest the adult mammalian ovary is not endowed with a finite number of oocytes, but instead possesses stem cells that contribute to their renewal. The ability to isolate and promote the growth and development of such ovarian germline stem cells (GSCs) would provide a novel means to treat infertility in women. While such ovarian GSCs are well-characterized in non-mammalian model organisms, the findings that support the existence of adult ovarian GSCs in mammals have been met with considerable evidence that disputes their existence. Thus, this review details the lessons provided by model organisms that successfully utilize ovarian GSCs to allow for a continual and high level of female germ cell production throughout their life, with a specific focus on the cellular mechanisms involved in GSC self-renewal and oocyte development. Such an overview of the role oogonial stem cells play in maintaining fertility in non-mammalian species serves as a backdrop for the data generated to-date that supports or disputes the existence of GSCs in mammals as well as the future of this area of research in terms of its potential for any application in reproductive medicine. PMID:24382341

  20. Boss/Sev signaling from germline to soma restricts germline-stem-cell-niche formation in the anterior region of Drosophila male gonads.

    PubMed

    Kitadate, Yu; Shigenobu, Shuji; Arita, Kayo; Kobayashi, Satoru

    2007-07-01

    Drosophila germline stem cells are regulated by the somatic microenvironment, or "niche," which ensures that the stem cells can both self-renew and produce functional gametes throughout adult life. However, despite its prime importance, little is known about how niche formation is regulated during gonadal development. Here, we demonstrate that a receptor tyrosine kinase, Sevenless (Sev), is required to ensure that the niche develops in the anterior region of the male embryonic gonads. Sev is expressed in somatic cells within the posterior region of the gonads. Sev is activated by a ligand, Bride of sevenless (Boss), which is expressed by the germline, to prevent ectopic niche differentiation in the posterior gonadal somatic cells. Thus, we propose that signal transduction from germline to soma restricts expansion of the germline-stem-cell niche in the gonads.

  1. Dynamic Hedgehog signalling pathway activity in germline stem cells.

    PubMed

    Sahin, Z; Szczepny, A; McLaughlin, E A; Meistrich, M L; Zhou, W; Ustunel, I; Loveland, K L

    2014-03-01

    Although the contribution of Hedgehog (Hh) signalling to stem cell development and oncogenesis is well recognised, its importance for spermatogonial stem cells (SSCs) has not been established. Here we interrogate adult rat SSCs using an established model in which only undifferentiated spermatogonial cells remain in the testis at 15 weeks following irradiation, and spermatogonial differentiation is induced within 4 weeks by gonadotrophin-releasing hormone antagonist (GnRH-ant) administration. Synthesis of Hh pathway components in untreated adult rat testes was compared with that in irradiated testes prior to and after GnRH-ant exposure using in situ hybridization. In adult testes with complete spermatogenesis, the Desert Hedgehog ligand transcript, Dhh, was detected in Sertoli cells, some spermatogonia and in spermatocytes by in situ hybridization. Spermatogenic cells were identified as sites of Hh signalling through detection of transcripts encoding the Hh receptor, Ptc2 transcripts and proteins for the key downstream target of Hh signalling, Gli1 and the Hh transcriptional activator, Gli2. Remarkably, the undifferentiated spermatogonia present in irradiated adult rat testes contained Dhh in addition to Ptc2, Gli1 and Gli2, revealing the potential for an autocrine Hh signalling loop to sustain undifferentiated spermatogonial cells. These transcripts became undetectable by in situ hybridization following GnRH-ant induction of spermatogonial differentiation, however, detection of Gli1 protein in spermatogonia in all groups indicates that Hh signalling is sustained. This is the first evidence of active Hh signalling in mammalian male germline stem cells, as has been documented for some cancer stem cells.

  2. Uniting Germline and Stem Cells: the Function of Piwi Proteins and the piRNA Pathway in Diverse Organisms

    PubMed Central

    Juliano, Celina; Wang, Jianquan; Lin, Haifan

    2013-01-01

    The topipotency of the germline is the full manifestation of the pluri- and multipotency of embryonic and adult stem cells, thus the germline and stem cells must share common mechanisms that guarantee their multipotentials in development. One of the few such known shared mechanisms is represented by Piwi proteins, which constitute one of the two subfamilies of the Argonaute protein family. Piwi proteins bind to Piwi-interacting RNAs (piRNAs) that are generally 26–31 nucleotides in length. Both Piwi proteins and piRNAs are most abundantly expressed in the germline. Moreover, Piwi proteins are expressed broadly in certain types of somatic stem/progenitor cells and other somatic cells across animal phylogeny. Recent studies indicate that the Piwi-piRNA pathway mediates epigenetic programming and post-transcriptional regulation, which may be responsible for its function in germline specification, gametogenesis, stem cell maintenance, transposon silencing, and genome integrity in diverse organisms. PMID:21942366

  3. Bam and Bgcn in Drosophila germline stem cell differentiation.

    PubMed

    Perinthottathil, Sreejith; Kim, Changsoo

    2011-01-01

    The female Drosophila reproductive organ, the ovary, has provided researchers with an incisive genetic system with which principle regulation of stem cell maintenance and differentiation has been delineated. An environmental niche regulates a stem cell's asymmetric self-renewal division that produces a daughter stem cell and a differentiated daughter cell, which further differentiate into eggs. A number of extrinsic and intrinsic factors have been identified that are required either for stem cell maintenance or differentiation. Bam/Bgcn complex plays a pivotal role in promoting stem cell differentiation. Recent papers suggest that Bam/Bgcn complex regulates translation of important maintenance factors and is also involved in the regulation of microRNA-dependent translational repression. Here, we focus on Bam and Bgcn repression of stem cell maintenance factors in the differentiation of germline stem cells (GSCs).

  4. Drosophila germline stem cells for in vitro analyses of PIWI-mediated RNAi.

    PubMed

    Niki, Yuzo; Sato, Takuya; Yamaguchi, Takafumi; Saisho, Ayaka; Uetake, Hiroshi; Watanabe, Hidenori

    2014-01-01

    The Drosophila piwi gene has multiple functions in soma and germ cells. An in vitro system provides a powerful tool for elucidating PIWI function in each cell type using stable cell lines originating from germline stem cells (GSCs) and ovarian soma of adult ovaries. We have described methods for the maintenance and expansion of GSCs in an established cell line (fGS/OSS) and an in situ hybridization method for analyzing piwi.

  5. Culture of rodent spermatogonial stem cells, male germline stem cells of the postnatal animal.

    PubMed

    Kubota, Hiroshi; Brinster, Ralph L

    2008-01-01

    Spermatogonial stem cells (SSCs), postnatal male germline stem cells, are the foundation of spermatogenesis, during which an enormous number of spermatozoa is produced daily by the testis throughout life of the male. SSCs are unique among stem cells in the adult body because they are the only cells that undergo self-renewal and transmit genes to subsequent generations. In addition, SSCs provide an excellent and powerful model to study stem cell biology because of the availability of a functional assay that unequivocally identifies the stem cell. Development of an in vitro culture system that allows an unlimited supply of SSCs is a crucial technique to manipulate genes of the SSC to generate valuable transgenic animals, to study the self-renewal mechanism, and to develop new therapeutic strategies for infertility. In this chapter, we describe a detailed protocol for the culture of mouse and rat SSCs. A key factor for successful development of the SSC culture system was identification of in vitro growth factor requirements for the stem cell using a defined serum-free medium. Because transplantation assays using immunodeficient mice demonstrated that extrinsic factors for self-renewal of SSCs appear to be conserved among many mammalian species, culture techniques for SSCs of other species, including farm animals and humans, are likely to be developed in the coming 5-10 years.

  6. Cell-cycle quiescence maintains Caenorhabditis elegans germline stem cells independent of GLP-1/Notch

    PubMed Central

    Seidel, Hannah S; Kimble, Judith

    2015-01-01

    Many types of adult stem cells exist in a state of cell-cycle quiescence, yet it has remained unclear whether quiescence plays a role in maintaining the stem cell fate. Here we establish the adult germline of Caenorhabditis elegans as a model for facultative stem cell quiescence. We find that mitotically dividing germ cells—including germline stem cells—become quiescent in the absence of food. This quiescence is characterized by a slowing of S phase, a block to M-phase entry, and the ability to re-enter M phase rapidly in response to re-feeding. Further, we demonstrate that cell-cycle quiescence alters the genetic requirements for stem cell maintenance: The signaling pathway required for stem cell maintenance under fed conditions—GLP-1/Notch signaling—becomes dispensable under conditions of quiescence. Thus, cell-cycle quiescence can itself maintain stem cells, independent of the signaling pathway otherwise essential for such maintenance. DOI: http://dx.doi.org/10.7554/eLife.10832.001 PMID:26551561

  7. Assessing in vivo microRNA function in the germline stem cells of the Drosophila ovary.

    PubMed

    Chan, Kin; Ruohola-Baker, Hannele

    2010-01-01

    A more complete understanding of the biology of adult stem cells could yield important insights toward devising effective cell-based regenerative therapies to treat disease. The germline stem cells (GSCs) in the fruit fly Drosophila melanogaster are an excellent in vivo model for the study of adult stem cell biology. There is increasing evidence from a growing field that microRNAs (miRNAs) play important roles in controlling many aspects of stem-cell biology. Using straightforward genetic manipulations combined with well-established cell biological analysis techniques, we and others have found that the miRNA pathway regulates the cell division rate of Drosophila GSCs as well as the maintenance of the GSCs in their niche. In this chapter, we offer a detailed, self-contained description of a general method to assess the in vivo functions of miRNAs in the GSCs of the Drosophila ovary.

  8. The Controversy, Challenges, and Potential Benefits of Putative Female Germline Stem Cells Research in Mammals

    PubMed Central

    Pan, Zezheng; Sun, Mengli; Liang, Xia; Li, Jia; Zhou, Fangyue; Zhong, Zhisheng; Zheng, Yuehui

    2016-01-01

    The conventional view is that female mammals lose their ability to generate new germ cells after birth. However, in recent years, researchers have successfully isolated and cultured a type of germ cell from postnatal ovaries in a variety of mammalian species that have the abilities of self-proliferation and differentiation into oocytes, and this finding indicates that putative germline stem cells maybe exist in the postnatal mammalian ovaries. Herein, we review the research history and discovery of putative female germline stem cells, the concept that putative germline stem cells exist in the postnatal mammalian ovary, and the research progress, challenge, and application of putative germline stem cells in recent years. PMID:26788065

  9. The Controversy, Challenges, and Potential Benefits of Putative Female Germline Stem Cells Research in Mammals.

    PubMed

    Pan, Zezheng; Sun, Mengli; Liang, Xia; Li, Jia; Zhou, Fangyue; Zhong, Zhisheng; Zheng, Yuehui

    2016-01-01

    The conventional view is that female mammals lose their ability to generate new germ cells after birth. However, in recent years, researchers have successfully isolated and cultured a type of germ cell from postnatal ovaries in a variety of mammalian species that have the abilities of self-proliferation and differentiation into oocytes, and this finding indicates that putative germline stem cells maybe exist in the postnatal mammalian ovaries. Herein, we review the research history and discovery of putative female germline stem cells, the concept that putative germline stem cells exist in the postnatal mammalian ovary, and the research progress, challenge, and application of putative germline stem cells in recent years.

  10. Biased DNA segregation in Drosophila male germline stem cells.

    PubMed

    Yamashita, Yukiko M

    2013-01-01

    The immortal strand hypothesis, which emerged four decades ago, proposes that certain cells retain a template copy of chromosomal DNA to protect against replication-induced mutations. As the interest in stem cells rose in recent years, researchers speculated that stem cells, which must maintain proliferative capacity throughout the life of the organism, may be the population that most needs the strong protection afforded by immortal strand segregation. Alternative hypotheses have also been proposed to explain observed non-random sister chromatid segregation. We recently found that Drosophila male germline stem cells segregate sister chromatids non-randomly, but such bias was limited to the sex chromosomes. Interestingly, the biased segregation does not lead to immortal strand segregation. We will discuss the implications of this observation and molecular mechanisms, which might be applicable to non-random sister chromatid segregation in other systems as well.

  11. Germline-competent stem cell in avian species and its application

    PubMed Central

    Han, Jae Yong; Lee, Hyung Chul; Park, Tae Sub

    2015-01-01

    Germ cells are the only cell type in the body that can transfer genetic information to the next generation. Germline-competent stem cells can self-renew and contribute to the germ cell lineage giving rise to pluripotent stem cells under specific conditions. Hence far, studies on germline-competent stem cells have contributed to the generation of avian model systems and the conservation of avian genetic resources. In this review, we focus on previous studies on germline-competent stem cells from avian species, mainly chicken germline-competent stem cells, which have been well established and characterized. We discuss different sources of germline-competent stem cells and recent advances for the future applications in birds. PMID:25677135

  12. An Aminopeptidase in the Drosophila Testicular Niche Acts in Germline Stem Cell Maintenance and Spermatogonial Dedifferentiation.

    PubMed

    Lim, Cindy; Gandhi, Shiv; Biniossek, Martin L; Feng, Lijuan; Schilling, Oliver; Urban, Siniša; Chen, Xin

    2015-10-13

    Extrinsic cues from the niche are known to regulate adult stem cell self-renewal versus differentiation. Here, we report that an aminopeptidase Slamdance (Sda) acts in the Drosophila testicular niche to maintain germline stem cells (GSCs) and regulate progenitor germ cell dedifferentiation. Mutations in sda lead to dramatic testicular niche deterioration and stem cell loss. Recombinant Sda has specific aminopeptidase activity in vitro, and the in vivo function of Sda requires an intact aminopeptidase domain. Sda is required for accumulation of mature DE-cadherin, and overexpression of DE-cadherin rescues most sda mutant phenotypes, suggesting that DE-cadherin is an important target of Sda. Finally, Sda is both necessary and sufficient to promote dedifferentiation during aging and recovery from genetically manipulated depletion of GSCs. Together, our results suggest that a niche factor promotes both stem cell maintenance and progenitor cell dedifferentiation.

  13. Live imaging of the Drosophila spermatogonial stem cell niche reveals novel mechanisms regulating germline stem cell output.

    PubMed

    Sheng, X Rebecca; Matunis, Erika

    2011-08-01

    Adult stem cells modulate their output by varying between symmetric and asymmetric divisions, but have rarely been observed in living intact tissues. Germline stem cells (GSCs) in the Drosophila testis are anchored to somatic hub cells and were thought to exclusively undergo oriented asymmetric divisions, producing one stem cell that remains hub-anchored and one daughter cell displaced out of the stem cell-maintaining micro-environment (niche). We developed extended live imaging of the Drosophila testis niche, allowing us to track individual germline cells. Surprisingly, new wild-type GSCs are generated in the niche during steady-state tissue maintenance by a previously undetected event we term 'symmetric renewal', where interconnected GSC-daughter cell pairs swivel such that both cells contact the hub. We also captured GSCs undergoing direct differentiation by detaching from the hub. Following starvation-induced GSC loss, GSC numbers are restored by symmetric renewals. Furthermore, upon more severe (genetically induced) GSC loss, both symmetric renewal and de-differentiation (where interconnected spermatogonia fragment into pairs while moving towards then establishing contact with the hub) occur simultaneously to replenish the GSC pool. Thus, stereotypically oriented stem cell divisions are not always correlated with an asymmetric outcome in cell fate, and changes in stem cell output are governed by altered signals in response to tissue requirements.

  14. E-cadherin is required for centrosome and spindle orientation in Drosophila male germline stem cells.

    PubMed

    Inaba, Mayu; Yuan, Hebao; Salzmann, Viktoria; Fuller, Margaret T; Yamashita, Yukiko M

    2010-08-31

    Many adult stem cells reside in a special microenvironment known as the niche, where they receive essential signals that specify stem cell identity. Cell-cell adhesion mediated by cadherin and integrin plays a crucial role in maintaining stem cells within the niche. In Drosophila melanogaster, male germline stem cells (GSCs) are attached to niche component cells (i.e., the hub) via adherens junctions. The GSC centrosomes and spindle are oriented toward the hub-GSC junction, where E-cadherin-based adherens junctions are highly concentrated. For this reason, adherens junctions are thought to provide a polarity cue for GSCs to enable proper orientation of centrosomes and spindles, a critical step toward asymmetric stem cell division. However, understanding the role of E-cadherin in GSC polarity has been challenging, since GSCs carrying E-cadherin mutations are not maintained in the niche. Here, we tested whether E-cadherin is required for GSC polarity by expressing a dominant-negative form of E-cadherin. We found that E-cadherin is indeed required for polarizing GSCs toward the hub cells, an effect that may be mediated by Apc2. We also demonstrated that E-cadherin is required for the GSC centrosome orientation checkpoint, which prevents mitosis when centrosomes are not correctly oriented. We propose that E-cadherin orchestrates multiple aspects of stem cell behavior, including polarization of stem cells toward the stem cell-niche interface and adhesion of stem cells to the niche supporting cells.

  15. Molecular Evolution of Drosophila Germline Stem Cell and Neural Stem Cell Regulating Genes.

    PubMed

    Choi, Jae Young; Aquadro, Charles F

    2015-10-27

    Here, we study the molecular evolution of a near complete set of genes that had functional evidence in the regulation of the Drosophila germline and neural stem cell. Some of these genes have previously been shown to be rapidly evolving by positive selection raising the possibility that stem cell genes as a group have elevated signatures of positive selection. Using recent Drosophila comparative genome sequences and population genomic sequences of Drosophila melanogaster, we have investigated both long- and short-term evolution occurring across these two different stem cell systems, and compared them with a carefully chosen random set of genes to represent the background rate of evolution. Our results showed an excess of genes with evidence of a recent selective sweep in both germline and neural stem cells in D. melanogaster. However compared with their control genes, both stem cell systems had no significant excess of genes with long-term recurrent positive selection in D. melanogaster, or across orthologous sequences from the melanogaster group. The evidence of long-term positive selection was limited to a subset of genes with specific functions in both the germline and neural stem cell system.

  16. Evidence for chromatin-remodeling complex PBAP-controlled maintenance of the Drosophila ovarian germline stem cells.

    PubMed

    He, Jie; Xuan, Tao; Xin, Tianchi; An, Hongbo; Wang, Jinye; Zhao, Gengchun; Li, Mingfa

    2014-01-01

    In the Drosophila oogenesis, germline stem cells (GSCs) continuously self-renew and differentiate into daughter cells for consecutive germline lineage commitment. This developmental process has become an in vivo working platform for studying adult stem cell fate regulation. An increasing number of studies have shown that while concerted actions of extrinsic signals from the niche and intrinsic regulatory machineries control GSC self-renewal and germline differentiation, epigenetic regulation is implicated in the process. Here, we report that Brahma (Brm), the ATPase subunit of the Drosophila SWI/SNF chromatin-remodeling complexes, is required for maintaining GSC fate. Removal or knockdown of Brm function in either germline or niche cells causes a GSC loss, but does not disrupt normal germline differentiation within the germarium evidenced at the molecular and morphological levels. There are two Drosophila SWI/SNF complexes: the Brm-associated protein (BAP) complex and the polybromo-containing BAP (PBAP) complex. More genetic studies reveal that mutations in polybromo/bap180, rather than gene encoding Osa, the BAP complex-specific subunit, elicit a defect in GSC maintenance reminiscent of the brm mutant phenotype. Further genetic interaction test suggests a functional association between brm and polybromo in controlling GSC self-renewal. Taken together, studies in this paper provide the first demonstration that Brm in the form of the PBAP complex functions in the GSC fate regulation.

  17. Drosophila male germline stem cells do not asymmetrically segregate chromosome strands.

    PubMed

    Yadlapalli, Swathi; Cheng, Jun; Yamashita, Yukiko M

    2011-03-15

    Adult stem cells continuously supply differentiated cells throughout the life of organisms. This increases the risk of replicative senescence or neoplastic transformation due to mutations that accumulate over many rounds of DNA replication. The immortal strand hypothesis proposes that stem cells reduce the accumulation of replication-induced mutations by retaining the older template DNA strands. Other models have also been proposed in which stem cells asymmetrically segregate chromosome strands for other reasons, such as retention of epigenetic memories. Recently, the idea has emerged that the mother centrosome, which is stereotypically retained within some asymmetrically dividing stem cells, might be utilized as a means of asymmetrically segregating chromosome strands. We have tested this hypothesis in germline stem cells (GSCs) from Drosophila melanogaster testis, which undergo asymmetric divisions marked by the asymmetric segregation of centrosomes and the acquisition of distinct daughter cell fates (stem cell self-renewal versus differentiation). Using 5-bromo-2-deoxyuridine labeling combined with direct visualization of GSC-gonialblast (differentiating daughter) pairs, we directly scored the outcome of chromosome strand segregation. Our data show that, in male GSCs in the Drosophila testis, chromosome strands are not asymmetrically segregated, despite asymmetrically segregating centrosomes. Our data demonstrate that asymmetric centrosome segregation in stem cells does not necessarily lead to asymmetric chromosome strand segregation.

  18. The receptor tyrosine phosphatase Lar regulates adhesion between Drosophila male germline stem cells and the niche.

    PubMed

    Srinivasan, Shrividhya; Mahowald, Anthony P; Fuller, Margaret T

    2012-04-01

    The stem cell niche provides a supportive microenvironment to maintain adult stem cells in their undifferentiated state. Adhesion between adult stem cells and niche cells or the local basement membrane ensures retention of stem cells in the niche environment. Drosophila male germline stem cells (GSCs) attach to somatic hub cells, a component of their niche, through E-cadherin-mediated adherens junctions, and orient their centrosomes toward these localized junctional complexes to carry out asymmetric divisions. Here we show that the transmembrane receptor tyrosine phosphatase Leukocyte-antigen-related-like (Lar), which is best known for its function in axonal migration and synapse morphogenesis in the nervous system, helps maintain GSCs at the hub by promoting E-cadherin-based adhesion between hub cells and GSCs. Lar is expressed in GSCs and early spermatogonial cells and localizes to the hub-GSC interface. Loss of Lar function resulted in a reduced number of GSCs at the hub. Lar function was required cell-autonomously in germ cells for proper localization of Adenomatous polyposis coli 2 and E-cadherin at the hub-GSC interface and for the proper orientation of centrosomes in GSCs. Ultrastructural analysis revealed that in Lar mutants the adherens junctions between hub cells and GSCs lack the characteristic dense staining seen in wild-type controls. Thus, the Lar receptor tyrosine phosphatase appears to polarize and retain GSCs through maintenance of localized E-cadherin-based adherens junctions.

  19. Germline self-renewal requires cyst stem cells and stat regulates niche adhesion in Drosophila testes.

    PubMed

    Leatherman, Judith L; Dinardo, Stephen

    2010-08-01

    Adults maintain tissue-specific stem cells through niche signals. A model for niche function is the Drosophila melanogaster testis, where a small cluster of cells called the hub produce locally available signals that allow only adjacent cells to self-renew. We show here that the principal signalling pathway implicated in this niche, chemokine activation of STAT, does not primarily regulate self-renewal of germline stem cells (GSCs), but rather governs GSC adhesion to hub cells. In fact, GSC renewal does not require hub cell contact, as GSCs can be renewed solely by contact with the second resident stem cell population, somatic cyst stem cells (CySCs), and this involves BMP signalling. These data suggest a modified paradigm whereby the hub cells function as architects of the stem cell environment, drawing into proximity cellular components necessary for niche function. Self-renewal functions are shared by the hub cells and the CySCs. This work also reconciles key differences in GSC renewal between Drosophila testis and ovary niches, and highlights how a niche can coordinate the production of distinct lineages by having one stem cell type rely on a second.

  20. The Wnt pathway limits BMP signaling outside of the germline stem cell niche in Drosophila ovaries.

    PubMed

    Mottier-Pavie, Violaine I; Palacios, Victor; Eliazer, Susan; Scoggin, Shane; Buszczak, Michael

    2016-09-01

    The mechanisms that modulate and limit the signaling output of adult stem cell niches remain poorly understood. To gain further insights into how these microenvironments are regulated in vivo, we performed a candidate gene screen designed to identify factors that restrict BMP signal production to the cap cells that comprise the germline stem cell (GSC) niche of Drosophila ovaries. Through these efforts, we found that disruption of Wnt4 and components of the canonical Wnt pathway results in a complex germ cell phenotype marked by an expansion of GSC-like cells, pre-cystoblasts and cystoblasts in young females. This phenotype correlates with an increase of decapentaplegic (dpp) mRNA levels within escort cells and varying levels of BMP responsiveness in the germline. Further genetic experiments show that Wnt4, which exhibits graded expression in somatic cells of germaria, activates the Wnt pathway in posteriorly positioned escort cells. The activation of the Wnt pathway appears to be limited by the BMP pathway itself, as loss of Mad in escort cells results in the expansion of Wnt pathway activation. Wnt pathway activity changes within germaria during the course of aging, coincident with changes in dpp production. These data suggest that mutual antagonism between the BMP and Wnt pathways in somatic cells helps to regulate germ cell differentiation.

  1. S6K links cell fate, cell cycle and nutrient response in C. elegans germline stem/progenitor cells.

    PubMed

    Korta, Dorota Z; Tuck, Simon; Hubbard, E Jane Albert

    2012-03-01

    Coupling of stem/progenitor cell proliferation and differentiation to organismal physiological demands ensures the proper growth and homeostasis of tissues. However, in vivo mechanisms underlying this control are poorly characterized. We investigated the role of ribosomal protein S6 kinase (S6K) at the intersection of nutrition and the establishment of a stem/progenitor cell population using the C. elegans germ line as a model. We find that rsks-1 (which encodes the worm homolog of mammalian p70S6K) is required germline-autonomously for proper establishment of the germline progenitor pool. In the germ line, rsks-1 promotes cell cycle progression and inhibits larval progenitor differentiation, promotes growth of adult tumors and requires a conserved TOR phosphorylation site. Loss of rsks-1 and ife-1 (eIF4E) together reduces the germline progenitor pool more severely than either single mutant and similarly to reducing the activity of let-363 (TOR) or daf-15 (RAPTOR). Moreover, rsks-1 acts in parallel with the glp-1 (Notch) and daf-2 (insulin-IGF receptor) pathways, and does not share the same genetic dependencies with its role in lifespan control. We show that overall dietary restriction and amino acid deprivation cause germline defects similar to a subset of rsks-1 mutant phenotypes. Consistent with a link between diet and germline proliferation via rsks-1, loss of rsks-1 renders the germ line largely insensitive to the effects of dietary restriction. Our studies establish the C. elegans germ line as an in vivo model to understand TOR-S6K signaling in proliferation and differentiation and suggest that this pathway is a key nutrient-responsive regulator of germline progenitors.

  2. Drosophila piwi mutants exhibit germline stem cell tumors that are sustained by elevated Dpp signaling.

    PubMed

    Jin, Zhigang; Flynt, Alex S; Lai, Eric C

    2013-08-05

    Drosophila Piwi is the founding member of a gonadal clade of Argonaute proteins that serve as silencing effectors for ∼26-32 nt Piwi-interacting RNAs (piRNAs) [1], and piwi mutants exhibit dramatically rudimentary ovaries [2]. It was proposed that somatic Piwi maintains germline stem cells (GSCs) by promoting Dpp signaling, presumably via cap cells that form the somatic niche for GSCs [3-5]. However, we unexpectedly observed that piwi mutants exhibit high-frequency GSC-like tumors that persist throughout adult life. Multiple readouts demonstrated hyperactive Dpp signaling in piwi mutants, including the failure to express the germline differentiation factor bag-of-marbles (bam), and restoration of bam expression relieved piwi GSC-like tumors. Tissue-specific rescue and knockdown experiments indicate that Piwi is not required in cap cells, the source of niche Dpp, but instead is required in gonadal intermingled cells (ICs, the progenitor cells of escort cells). Adult-specific knockdown of dpp in escort cells substantially rescued piwi tumors, demonstrating that they are driven by excess Dpp signaling. However, the temporal requirement for piwi to restrict GSC numbers was much earlier, during the wandering third-instar larval stage. Indeed, piwi mutant larval gonads exhibited defective morphology and loss of Bam. Our data indicate that loss of Piwi causes defects in ICs and escort cells, leading to ectopic Dpp signaling and consequent blockage of GSC differentiation.

  3. Maintenance of Drosophila germline stem cell sexual identity in oogenesis and tumorigenesis.

    PubMed

    Shapiro-Kulnane, Laura; Smolko, Anne Elizabeth; Salz, Helen Karen

    2015-03-15

    Adult stem cells maintain tissue homeostasis by balancing self-renewal and differentiation. In Drosophila females, germline stem cells (GSCs) require Sex lethal (Sxl) to exit the stem cell state and to enter the differentiation pathway. Without Sxl GSCs do not differentiate and instead form tumors. Previous studies have shown that these tumors are not caused by a failure in the self-renewal/differentiation switch. Here, we show that Sxl is also necessary for the cell-autonomous maintenance of germ cell female identity and demonstrate that tumors are caused by the acquisition of male characteristics. Germ cells without Sxl protein exhibit a global derepression of testis genes, including Phf7, a male germline sexual identity gene. Phf7 is a key effector of the tumor-forming pathway, as it is both necessary and sufficient for tumor formation. In the absence of Sxl protein, inappropriate Phf7 expression drives tumor formation through a cell-autonomous mechanism that includes sex-inappropriate activation of Jak/Stat signaling. Remarkably, tumor formation requires a novel response to external signals emanating from the GSC niche, highlighting the importance of interactions between mutant cells and the surrounding normal cells that make up the tumor microenvironment. Derepression of testis genes, and inappropriate Phf7 expression, is also observed in germ cell tumors arising from the loss of bag of marbles (bam), demonstrating that maintenance of female sexual identity requires the concerted actions of Sxl and bam. Our work reveals that GSCs must maintain their sexual identity as they are reprogrammed into a differentiated cell, or risk tumorigenesis.

  4. The effect of the immune system on ovarian function and features of ovarian germline stem cells.

    PubMed

    Ye, Haifeng; Li, Xiaoyan; Zheng, Tuochen; Liang, Xia; Li, Jia; Huang, Jian; Pan, Zezheng; Zheng, Yuehui

    2016-01-01

    In addition to its role in maintaining organism homeostasis, the immune system also plays a crucial role in the modulation of ovarian function, as it regulates ovarian development, follicular maturation, ovulation and the formation of the corpus luteum. Ovarian germline stem cells are pluripotent stem cells derived from the ovarian cortex that can differentiate into ovarian germ cells and primary granulosa cells. Recent work has demonstrated that the proliferation and differentiation of ovarian germline stem cells is regulated in part by immune cells and their secreted factors. This paper reviews the role of the immune system in the regulation of ovarian function, the relationship between immune components and ovarian germline stem cells and current research efforts in this field.

  5. Wolbachia enhance Drosophila stem cell proliferation and target the germline stem cell niche.

    PubMed

    Fast, Eva M; Toomey, Michelle E; Panaram, Kanchana; Desjardins, Danielle; Kolaczyk, Eric D; Frydman, Horacio M

    2011-11-18

    Wolbachia are widespread maternally transmitted intracellular bacteria that infect most insect species and are able to alter the reproduction of innumerous hosts. The cellular bases of these alterations remain largely unknown. Here, we report that Drosophila mauritiana infected with a native Wolbachia wMau strain produces about four times more eggs than the noninfected counterpart. Wolbachia infection leads to an increase in the mitotic activity of germline stem cells (GSCs), as well as a decrease in programmed cell death in the germarium. Our results suggest that up-regulation of GSC division is mediated by a tropism of Wolbachia for the GSC niche, the cellular microenvironment that supports GSCs.

  6. Whole-animal genome-wide RNAi screen identifies networks regulating male germline stem cells in Drosophila

    PubMed Central

    Liu, Ying; Ge, Qinglan; Chan, Brian; Liu, Hanhan; Singh, Shree Ram; Manley, Jacob; Lee, Jae; Weideman, Ann Marie; Hou, Gerald; Hou, Steven X.

    2016-01-01

    Stem cells are regulated both intrinsically and externally, including by signals from the local environment and distant organs. To identify genes and pathways that regulate stem-cell fates in the whole organism, we perform a genome-wide transgenic RNAi screen through ubiquitous gene knockdowns, focusing on regulators of adult Drosophila testis germline stem cells (GSCs). Here we identify 530 genes that regulate GSC maintenance and differentiation. Of these, we further knock down 113 selected genes using cell-type-specific Gal4s and find that more than half were external regulators, that is, from the local microenvironment or more distal sources. Some genes, for example, versatile (vers), encoding a heterochromatin protein, regulates GSC fates differentially in different cell types and through multiple pathways. We also find that mitosis/cytokinesis proteins are especially important for male GSC maintenance. Our findings provide valuable insights and resources for studying stem cell regulation at the organismal level. PMID:27484291

  7. Persistent competition among stem cells and their daughters in the Drosophila ovary germline niche.

    PubMed

    Rhiner, Christa; Díaz, Begoña; Portela, Marta; Poyatos, Juan F; Fernández-Ruiz, Irene; López-Gay, Jesús M; Gerlitz, Offer; Moreno, Eduardo

    2009-03-01

    Cell competition is a short-range cell-cell interaction leading to the proliferation of winner cells at the expense of losers, although either cell type shows normal growth in homotypic environments. Drosophila Myc (dMyc; Dm-FlyBase) is a potent inducer of cell competition in wing epithelia, but its role in the ovary germline stem cell niche is unknown. Here, we show that germline stem cells (GSCs) with relative lower levels of dMyc are replaced by GSCs with higher levels of dMyc. By contrast, dMyc-overexpressing GSCs outcompete wild-type stem cells without affecting total stem cell numbers. We also provide evidence for a naturally occurring cell competition border formed by high dMyc-expressing stem cells and low dMyc-expressing progeny, which may facilitate the concentration of the niche-provided self-renewal factor BMP/Dpp in metabolically active high dMyc stem cells. Genetic manipulations that impose uniform dMyc levels across the germline produce an extended Dpp signaling domain and cause uncoordinated differentiation events. We propose that dMyc-induced competition plays a dual role in regulating optimal stem cell pools and sharp differentiation boundaries, but is potentially harmful in the case of emerging dmyc duplications that facilitate niche occupancy by pre-cancerous stem cells. Moreover, competitive interactions among stem cells may be relevant for the successful application of stem cell therapies in humans.

  8. Genetic Basis for Developmental Homeostasis of Germline Stem Cell Niche Number: A Network of Tramtrack-Group Nuclear BTB Factors

    PubMed Central

    Chalvet, Fabienne; Netter, Sophie; Dos Santos, Nicolas; Poisot, Emilie; Paces-Fessy, Mélanie; Cumenal, Delphine; Peronnet, Frédérique; Pret, Anne-Marie; Théodore, Laurent

    2012-01-01

    The potential to produce new cells during adult life depends on the number of stem cell niches and the capacity of stem cells to divide, and is therefore under the control of programs ensuring developmental homeostasis. However, it remains generally unknown how the number of stem cell niches is controlled. In the insect ovary, each germline stem cell (GSC) niche is embedded in a functional unit called an ovariole. The number of ovarioles, and thus the number of GSC niches, varies widely among species. In Drosophila, morphogenesis of ovarioles starts in larvae with the formation of terminal filaments (TFs), each made of 8–10 cells that pile up and sort in stacks. TFs constitute organizers of individual germline stem cell niches during larval and early pupal development. In the Drosophila melanogaster subgroup, the number of ovarioles varies interspecifically from 8 to 20. Here we show that pipsqueak, Trithorax-like, batman and the bric-à-brac (bab) locus, all encoding nuclear BTB/POZ factors of the Tramtrack Group, are involved in limiting the number of ovarioles in D. melanogaster. At least two different processes are differentially perturbed by reducing the function of these genes. We found that when the bab dose is reduced, sorting of TF cells into TFs was affected such that each TF contains fewer cells and more TFs are formed. In contrast, psq mutants exhibited a greater number of TF cells per ovary, with a normal number of cells per TF, thereby leading to formation of more TFs per ovary than in the wild type. Our results indicate that two parallel genetic pathways under the control of a network of nuclear BTB factors are combined in order to negatively control the number of germline stem cell niches. PMID:23185495

  9. Genetic basis for developmental homeostasis of germline stem cell niche number: a network of Tramtrack-Group nuclear BTB factors.

    PubMed

    Bartoletti, Mathieu; Rubin, Thomas; Chalvet, Fabienne; Netter, Sophie; Dos Santos, Nicolas; Poisot, Emilie; Paces-Fessy, Mélanie; Cumenal, Delphine; Peronnet, Frédérique; Pret, Anne-Marie; Théodore, Laurent

    2012-01-01

    The potential to produce new cells during adult life depends on the number of stem cell niches and the capacity of stem cells to divide, and is therefore under the control of programs ensuring developmental homeostasis. However, it remains generally unknown how the number of stem cell niches is controlled. In the insect ovary, each germline stem cell (GSC) niche is embedded in a functional unit called an ovariole. The number of ovarioles, and thus the number of GSC niches, varies widely among species. In Drosophila, morphogenesis of ovarioles starts in larvae with the formation of terminal filaments (TFs), each made of 8-10 cells that pile up and sort in stacks. TFs constitute organizers of individual germline stem cell niches during larval and early pupal development. In the Drosophila melanogaster subgroup, the number of ovarioles varies interspecifically from 8 to 20. Here we show that pipsqueak, Trithorax-like, batman and the bric-à-brac (bab) locus, all encoding nuclear BTB/POZ factors of the Tramtrack Group, are involved in limiting the number of ovarioles in D. melanogaster. At least two different processes are differentially perturbed by reducing the function of these genes. We found that when the bab dose is reduced, sorting of TF cells into TFs was affected such that each TF contains fewer cells and more TFs are formed. In contrast, psq mutants exhibited a greater number of TF cells per ovary, with a normal number of cells per TF, thereby leading to formation of more TFs per ovary than in the wild type. Our results indicate that two parallel genetic pathways under the control of a network of nuclear BTB factors are combined in order to negatively control the number of germline stem cell niches.

  10. Piwi Is a Key Regulator of Both Somatic and Germline Stem Cells in the Drosophila Testis.

    PubMed

    Gonzalez, Jacob; Qi, Hongying; Liu, Na; Lin, Haifan

    2015-07-07

    The Piwi-piRNA pathway is well known for its germline function, yet its somatic role remains elusive. We show here that Piwi is required autonomously not only for germline stem cell (GSC) but also for somatic cyst stem cell (CySC) maintenance in the Drosophila testis. Reducing Piwi activity in the testis caused defects in CySC differentiation. Accompanying this, GSC daughters expanded beyond the vicinity of the hub but failed to differentiate further. Moreover, Piwi deficient in nuclear localization caused similar defects in somatic and germ cell differentiation, which was rescued by somatic Piwi expression. To explore the underlying molecular mechanism, we identified Piwi-bound piRNAs that uniquely map to a gene key for gonadal development, Fasciclin 3, and demonstrate that Piwi regulates its expression in somatic cyst cells. Our work reveals the cell-autonomous function of Piwi in both somatic and germline stem cell types, with somatic function possibly via its epigenetic mechanism.

  11. Somatic cell encystment promotes abscission in germline stem cells following a regulated block in cytokinesis.

    PubMed

    Lenhart, Kari F; DiNardo, Stephen

    2015-07-27

    In many tissues, the stem cell niche must coordinate behavior across multiple stem cell lineages. How this is achieved is largely unknown. We have identified delayed completion of cytokinesis in germline stem cells (GSCs) as a mechanism that regulates the production of stem cell daughters in the Drosophila testis. Through live imaging, we show that a secondary F-actin ring is formed through regulation of Cofilin activity to block cytokinesis progress after contractile ring disassembly. The duration of this block is controlled by Aurora B kinase. Additionally, we have identified a requirement for somatic cell encystment of the germline in promoting GSC abscission. We suggest that this non-autonomous role promotes coordination between stem cell lineages. These findings reveal the mechanisms by which cytokinesis is inhibited and reinitiated in GSCs and why such complex regulation exists within the stem cell niche.

  12. Male and female Drosophila germline stem cells: two versions of immortality.

    PubMed

    Fuller, Margaret T; Spradling, Allan C

    2007-04-20

    Drosophila male and female germline stem cells (GSCs) are sustained by niches and regulatory pathways whose common principles serve as models for understanding mammalian stem cells. Despite striking cellular and genetic similarities that suggest a common evolutionary origin, however, male and female GSCs also display important differences. Comparing these two stem cells and their niches in detail is likely to reveal how a common heritage has been adapted to the differing requirements of male and female gamete production.

  13. Germline stem cells are critical for sexual fate decision of germ cells

    PubMed Central

    2016-01-01

    Egg or sperm? The mechanism of sexual fate decision in germ cells has been a long‐standing issue in biology. A recent analysis identified foxl3 as a gene that determines the sexual fate decision of germ cells in the teleost fish, medaka. foxl3/Foxl3 acts in female germline stem cells to repress commitment into male fate (spermatogenesis), indicating that the presence of mitotic germ cells in the female is critical for continuous sexual fate decision of germ cells in medaka gonads. Interestingly, foxl3 is found in most vertebrate genomes except for mammals. This provides the interesting possibility that the sexual fate of germ cells in mammals is determined in a different way compared to foxl3‐possessing vertebrates. Considering the fact that germline stem cells are the cells where foxl3 begins to express and sexual fate decision initiates and mammalian ovary does not have typical germline stem cells, the mechanism in mammals may have been co‐evolved with germline stem cell loss in mammalian ovary. PMID:27699806

  14. Zfh-1 controls somatic stem cell self-renewal in the Drosophila testis and nonautonomously influences germline stem cell self-renewal.

    PubMed

    Leatherman, Judith L; Dinardo, Stephen

    2008-07-03

    The ability of adult stem cells to maintain their undifferentiated state depends upon residence in their niche. While simple models of a single self-renewal signal are attractive, niche-stem cell interactions are likely to be more complex. Many niches have multiple cell types, and the Drosophila testis is one such complex niche with two stem cell types, germline stem cells (GSCs) and somatic cyst progenitor cells (CPCs). These stem cells require chemokine activation of Jak/STAT signaling for self-renewal. We identified the transcriptional repressor Zfh-1 as a presumptive somatic target of Jak/STAT signaling, demonstrating that it is necessary and sufficient to maintain CPCs. Surprisingly, sustained zfh-1 expression or intrinsic STAT activation in somatic cells caused neighboring germ cells to self-renew outside their niche. In contrast, germline-intrinsic STAT activation was insufficient for GSC renewal. These data reveal unexpected complexity in cell interactions in the niche, implicating CPCs in GSC self-renewal.

  15. Evaluation of the Asymmetric Division of Drosophila Male Germline Stem Cells.

    PubMed

    Inaba, Mayu; Yamashita, Yukiko M

    2017-01-01

    Asymmetric cell division (ACD) is utilized in many stem cell systems to produce two daughter cells with different cell fates. Despite the fundamental importance of ACD during development and tissue homeostasis, the nature of ACD is far from being fully understood. Step-by-step observation of events during ACD allows us to understand processes that lead to ACD. Here we describe examples of how we evaluate ACD in vivo using the Drosophila male germline stem cell system.

  16. Ecdysone response gene E78 controls ovarian germline stem cell niche formation and follicle survival in Drosophila.

    PubMed

    Ables, Elizabeth T; Bois, Kelly E; Garcia, Caroline A; Drummond-Barbosa, Daniela

    2015-04-01

    Nuclear hormone receptors have emerged as important regulators of mammalian and Drosophila adult physiology, affecting such seemingly diverse processes as adipogenesis, carbohydrate metabolism, circadian rhythm, stem cell function, and gamete production. Although nuclear hormone receptors Ecdysone Receptor (EcR) and Ultraspiracle (Usp) have multiple known roles in Drosophila development and regulate key processes during oogenesis, the adult function of the majority of nuclear hormone receptors remains largely undescribed. Ecdysone-induced protein 78C (E78), a nuclear hormone receptor closely related to Drosophila E75 and to mammalian Rev-Erb and Peroxisome Proliferator Activated Receptors, was originally identified as an early ecdysone target; however, it has remained unclear whether E78 significantly contributes to adult physiology or reproductive function. To further explore the biological function of E78 in oogenesis, we used available E78 reporters and created a new E78 loss-of-function allele. We found that E78 is expressed throughout the germline during oogenesis, and is important for proper egg production and for the maternal control of early embryogenesis. We showed that E78 is required during development to establish the somatic germline stem cell (GSC) niche, and that E78 function in the germline promotes the survival of developing follicles. Consistent with its initial discovery as an ecdysone-induced target, we also found significant genetic interactions between E78 and components of the ecdysone-signaling pathway. Taken together with the previously described roles of EcR, Usp, and E75, our results suggest that nuclear hormone receptors are critical for the broad transcriptional control of a wide variety of cellular processes during oogenesis.

  17. Long-term proliferation in culture and germline transmission of mouse male germline stem cells.

    PubMed

    Kanatsu-Shinohara, Mito; Ogonuki, Narumi; Inoue, Kimiko; Miki, Hiromi; Ogura, Atsuo; Toyokuni, Shinya; Shinohara, Takashi

    2003-08-01

    Spermatogenesis is a complex process that originates in a small population of spermatogonial stem cells. Here we report the in vitro culture of spermatogonial stem cells that proliferate for long periods of time. In the presence of glial cell line-derived neurotrophic factor, epidermal growth factor, basic fibroblast growth factor, and leukemia inhibitory factor, gonocytes isolated from neonatal mouse testis proliferated over a 5-month period (>10(14)-fold) and restored fertility to congenitally infertile recipient mice following transplantation into seminiferous tubules. Long-term spermatogonial stem cell culture will be useful for studying spermatogenesis mechanism and has important implications for developing new technology in transgenesis or medicine.

  18. How can female germline stem cells contribute to the physiological neo-oogenesis in mammals and why menopause occurs?

    PubMed

    Bukovsky, Antonin

    2011-08-01

    At the beginning of the last century, reproductive biologists have discussed whether in mammalian species the fetal oocytes persist or are replaced by neo-oogenesis during adulthood. Currently the prevailing view is that neo-oogenesis is functional in lower vertebrates but not in mammalian species. However, contrary to the evolutionary rules, this suggests that females of lower vertebrates have a better opportunity to provide healthy offspring compared to mammals with oocytes subjected to environmental threats for up to several decades. During the last 15 years, a new effort has been made to determine whether the oocyte pool in adult mammals is renewed as well. Most recently, Ji Wu and colleagues reported a production of offspring from female germline stem cells derived from neonatal and adult mouse ovaries. This indicates that both neonatal and adult mouse ovaries carry stem cells capable of producing functional oocytes. However, it is unclear whether neo-oogenesis from ovarian somatic stem cells is physiologically involved in follicular renewal and why menopause occurs. Here we review observations that indicate an involvement of immunoregulation in physiological neo-oogenesis and follicular renewal from ovarian stem cells during the prime reproductive period and propose why menopause occurs in spite of persisting ovarian stem cells.

  19. Bällchen is required for self-renewal of germline stem cells in Drosophila melanogaster.

    PubMed

    Herzig, Bettina; Yakulov, Toma A; Klinge, Kathrin; Günesdogan, Ufuk; Jäckle, Herbert; Herzig, Alf

    2014-05-29

    Self-renewing stem cells are pools of undifferentiated cells, which are maintained in cellular niche environments by distinct tissue-specific signalling pathways. In Drosophila melanogaster, female germline stem cells (GSCs) are maintained in a somatic niche of the gonads by BMP signalling. Here we report a novel function of the Drosophila kinase Bällchen (BALL), showing that its cell autonomous role is to maintain the self-renewing capacity of female GSCs independent of BMP signalling. ball mutant GSCs are eliminated from the niche and subsequently differentiate into mature eggs, indicating that BALL is largely dispensable for differentiation. Similar to female GSCs, BALL is required to maintain self-renewal of male GSCs, suggesting a tissue independent requirement of BALL for self-renewal of germline stem cells.

  20. Gcn5 determines the fate of Drosophila germline stem cells through degradation of Cyclin A.

    PubMed

    Liu, Tianqi; Wang, Qi; Li, Wenqing; Mao, Feiyu; Yue, Shanshan; Liu, Sun; Liu, Xiaona; Xiao, Shan; Xia, Laixin

    2017-02-10

    The fluctuating CDK-CYCLIN complex plays a general role in cell-cycle control. Many types of stem cells use unique features of the cell cycle to facilitate asymmetric division. However, the manner in which these features are established remains poorly understood. The cell cycle of Drosophila female germline stem cells (GSCs) is characterized by short G1 and very long G2 phases, making it an excellent model for the study of cell cycle control in stem cell fate determination. Using a Drosophila female GSCs model, we found Gcn5, the first discovered histone acetyltransferase, to maintain germline stem cells in Drosophila ovaries. Results showed that Gcn5 is dispensable for the transcriptional silencing of bam, but interacts with Cyclin A to facilitate proper turnover in GSCs. Results also showed that Gcn5 promotes Cyclin A ubiquitination, which is dependent on its acetylating activity. Finally, results showed that knockdown of Cyclin A rescued the GSC-loss phenotype caused by lack of Gcn5. Collectively, these findings support the conclusion that Gcn5 acts through acetylation to facilitate Cyclin A ubiquitination and proper turnover, thereby determining the fate of GSCs.-Liu, T., Wang, Q., Li, W., Mao, F., Yue, S., Liu, S., Liu, X., Xiao, S., Xia, L. Gcn5 determines the fate of Drosophila germline stem cells through degradation of Cyclin A.

  1. The Drosophila putative histone acetyltransferase Enok maintains female germline stem cells through regulating Bruno and the niche.

    PubMed

    Xin, Tianchi; Xuan, Tao; Tan, Jieqiong; Li, Mengjie; Zhao, Gengchun; Li, Mingfa

    2013-12-01

    Maintenance of adult stem cells is largely dependent on the balance between their self-renewal and differentiation. The Drosophila ovarian germline stem cells (GSCs) provide a powerful in vivo system for studying stem cell fate regulation. It has been shown that maintaining the GSC population involves both genetic and epigenetic mechanisms. Although the role of epigenetic regulation in this process is evident, the underlying mechanisms remain to be further explored. In this study, we find that Enoki mushroom (Enok), a Drosophila putative MYST family histone acetyltransferase controls GSC maintenance in the ovary at multiple levels. Removal or knockdown of Enok in the germline causes a GSC maintenance defect. Further studies show that the cell-autonomous role of Enok in maintaining GSCs is not dependent on the BMP/Bam pathway. Interestingly, molecular studies reveal an ectopic expression of Bruno, an RNA binding protein, in the GSCs and their differentiating daughter cells elicited by the germline Enok deficiency. Misexpression of Bruno in GSCs and their immediate descendants results in a GSC loss that can be exacerbated by incorporating one copy of enok mutant allele. These data suggest a role for Bruno in Enok-controlled GSC maintenance. In addition, we observe that Enok is required for maintaining GSCs non-autonomously. Compromised expression of enok in the niche cells impairs the niche maintenance and BMP signal output, thereby causing defective GSC maintenance. This is the first demonstration that the niche size control requires an epigenetic mechanism. Taken together, studies in this paper provide new insights into the GSC fate regulation.

  2. Germline transmission of a novel rat embryonic stem cell line derived from transgenic rats.

    PubMed

    Men, Hongsheng; Bauer, Beth A; Bryda, Elizabeth C

    2012-09-20

    Germline-competent rat embryonic stem (ES) cell lines are important resources for the creation of mutant rat models using ES-cell-based gene targeting technology. The ability to isolate germline-competent ES cell lines from any rat strain, including genetically modified strains, would allow for more sophisticated genetic manipulations without extensive breeding. Sprague Dawley (SD) males carrying an enhanced green fluorescent protein (EGFP) transgene were used as the founder animals for the derivation of ES cell lines. A number of ES cell lines were established and subjected to rigorous quality control testing that included assessment of pluripotency factor expression, karyotype analysis, and pathogen/sterility testing. Two male ES cell lines, SD-Tg.EC1/Rrrc and SD-Tg.EC8/Rrrc, were injected into blastocysts recovered from a cross of Dark Agouti (DA) males with SD females. Resulting chimeric animals were bred with wild-type SD mates to verify the germline transmissibility of the ES cell lines by identifying pups carrying the ES cell line-derived EGFP transgene. While both ES cell lines gave rise to chimeric animals, only SD-Tg.EC1 was germline competent. This confirms the feasibility of deriving germline-competent ES cell lines from transgenic rat strains and provides a novel ES cell line with a stable green fluorescent protein (GFP) reporter for future genetic manipulations to create new rat models.

  3. Male germline stem cell division and spermatocyte growth require insulin signaling in Drosophila.

    PubMed

    Ueishi, Satoru; Shimizu, Hanako; H Inoue, Yoshihiro

    2009-01-01

    Spermatogenesis in Drosophila commences with cell division of germline stem cells (GSCs) to produce male germline cells at the tip of the testis. However, molecular mechanisms inducing division of male GSCs have not been reported. Insulin-like peptides are known to play an essential role in stimulation of proliferation and growth of somatic cells, and it has recently been reported that such peptides promote cell division in female Drosophila GSCs. However, their effects on male germline cells have not been characterized. We found that inhibition of insulin production and insulin signaling mutations resulted in decreased numbers of germline cells in Drosophila testes. GSC numbers were maintained in young mutant males, with a gradual decrease in abundance of GSCs with age. Furthermore, in mutants, fewer germline cysts originated from GSCs and a lower frequency of GSC division was seen. Insulin signaling was found to promote cell cycle progression of the male GSCs at the G(2)/M phase. The cell volume of spermatocytes increases up to 25 times before initiation of meiosis in Drosophila. We examined whether insulin signaling extrinsically induces the greatest cell growth in Drosophila diploid cells and found that spermatocyte growth was affected in mutants. The results indicate that in addition to its function in somatic cells, insulin signaling plays an essential role in cell proliferation and growth during male Drosophila gametogenesis and that sperm production is regulated by hormonal control via insulin-like peptides.

  4. Structural characterization and primary in vitro cell culture of locust male germline stem cells and their niche.

    PubMed

    Dorn, David C; Dorn, August

    2011-03-01

    The establishment of in vitro culture systems to expand stem cells and to elucidate the niche/stem cell interaction is among the most sought-after culture systems of our time. To further investigate niche/stem cell interactions, we evaluated in vitro cultures of isolated intact male germline-niche complexes (i.e., apical complexes), complexes with empty niche spaces, and completely empty niches (i.e., isolated apical cells) from the testes of Locusta migratoria and the interaction of these complexes with isolated germline stem cells, spermatogonia (of transit-amplifying stages), cyst progenitor cells, cyst progenitor cell-like cells, cyst cells, and follicle envelope cells. The structural characteristics of these cell types allow the identification of the different cell types in primary cultures, which we studied in detail by light and electron microscopy. In intact testes germline stem cells strongly adhere to their niche (the apical cell), but emigrate from their niche and form filopodia if the apical complex is put into culture with "standard media." The lively movements of the long filopodia of isolated germline stem cells and spermatogonia may be indicative of their search for specific signals to home to their niche. All other incubated cell types (except for follicle envelope cells) expressed rhizopodia and lobopodia. Nevertheless isolated germline stem cells in culture do not migrate to empty niche spaces of nearby apical cells. This could indicate that apical cells lose their germline stem cell attracting ability in vitro, although apical cells devoid of germline stem cells either by emigration of germline stem cells or by mechanical removal of germline stem cells are capable of surviving in vitro up to 56 days, forming many small lobopodia and performing amoeboid movements. We hypothesize that the breakdown of the apical complex in vitro with standard media interrupts the signaling between the germline stem cells and the niche (and conceivably the cyst

  5. Klp10A, a stem cell centrosome-enriched kinesin, balances asymmetries in Drosophila male germline stem cell division.

    PubMed

    Chen, Cuie; Inaba, Mayu; Venkei, Zsolt G; Yamashita, Yukiko M

    2016-11-25

    Asymmetric stem cell division is often accompanied by stereotypical inheritance of the mother and daughter centrosomes. However, it remains unknown whether and how stem cell centrosomes are uniquely regulated and how this regulation may contribute to stem cell fate. Here we identify Klp10A, a microtubule-depolymerizing kinesin of the kinesin-13 family, as the first protein enriched in the stem cell centrosome in Drosophila male germline stem cells (GSCs). Depletion of klp10A results in abnormal elongation of the mother centrosomes in GSCs, suggesting the existence of a stem cell-specific centrosome regulation program. Concomitant with mother centrosome elongation, GSCs form asymmetric spindle, wherein the elongated mother centrosome organizes considerably larger half spindle than the other. This leads to asymmetric cell size, yielding a smaller differentiating daughter cell. We propose that klp10A functions to counteract undesirable asymmetries that may result as a by-product of achieving asymmetries essential for successful stem cell divisions.

  6. Somatic cell lineage is required for differentiation and not maintenance of germline stem cells in Drosophila testes.

    PubMed

    Lim, Jaclyn G Y; Fuller, Margaret T

    2012-11-06

    Adult stem cells are believed to be maintained by a specialized microenvironment, the niche, which provides short-range signals that either instruct stem cells to self-renew or inhibit execution of preprogrammed differentiation pathways. In Drosophila testes, somatic cyst stem cells (CySCs) and the apical hub form the niche for neighboring germline stem cells (GSCs), with CySCs as the proposed source of instructive self-renewal signals [Leatherman JL, Dinardo S (2010) Nat Cell Biol 12(8):806-811]. In contrast to this model, we show that early germ cells with GSC characteristics can be maintained over time after ablation of CySCs and their cyst cell progeny. Without CySCs and cyst cells, early germ cells away from the hub failed to initiate differentiation. Our results suggest that CySCs do not have a necessary instructive role in specifying GSC self-renewal and that the differentiated progeny of CySCs provide an environment necessary to trigger GSC differentiation. This work highlights the complex interaction between different stem cell populations in the same niche and how the state of one stem cell population can influence the fate of the other.

  7. Germline stem cells: the first guards of heredity.

    PubMed

    Barroca, Vilma; Fouchet, Pierre

    2008-02-07

    The genes involved in the cellular response to DNA damage are crucial for ensuring DNA integrity during spermatogenesis. In this issue of Cell Stem Cell, Takubo et al. (2008) show that ATM, a key kinase of the DNA damage response, is also involved in maintaining the stem cell potential of undifferentiated spermatogonia.

  8. Centrosome-dependent asymmetric inheritance of the midbody ring in Drosophila germline stem cell division.

    PubMed

    Salzmann, Viktoria; Chen, Cuie; Chiang, C-Y Ason; Tiyaboonchai, Amita; Mayer, Michael; Yamashita, Yukiko M

    2014-01-01

    Many stem cells, including Drosophila germline stem cells (GSCs), divide asymmetrically, producing one stem cell and one differentiating daughter. Cytokinesis is often asymmetric, in that only one daughter cell inherits the midbody ring (MR) upon completion of abscission even in apparently symmetrically dividing cells. However, whether the asymmetry in cytokinesis correlates with cell fate or has functional relevance has been poorly explored. Here we show that the MR is asymmetrically segregated during GSC divisions in a centrosome age-dependent manner: male GSCs, which inherit the mother centrosome, exclude the MR, whereas female GSCs, which we here show inherit the daughter centrosome, inherit the MR. We further show that stem cell identity correlates with the mode of MR inheritance. Together our data suggest that the MR does not inherently dictate stem cell identity, although its stereotypical inheritance is under the control of stemness and potentially provides a platform for asymmetric segregation of certain factors.

  9. Sex-lethal enables germline stem cell differentiation by down-regulating Nanos protein levels during Drosophila oogenesis.

    PubMed

    Chau, Johnnie; Kulnane, Laura Shapiro; Salz, Helen K

    2012-06-12

    Drosophila ovarian germ cells require Sex-lethal (Sxl) to exit from the stem cell state and to enter the differentiation pathway. Sxl encodes a female-specific RNA binding protein and in somatic cells serves as the developmental switch gene for somatic sex determination and X-chromosome dosage compensation. None of the known Sxl target genes are required for germline differentiation, leaving open the question of how Sxl promotes the transition from stem cell to committed daughter cell. We address the mechanism by which Sxl regulates this transition through the identification of nanos as one of its target genes. Previous studies have shown that Nanos protein is necessary for GSC self-renewal and is rapidly down-regulated in the daughter cells fated to differentiate in the adult ovary. We find that this dynamic expression pattern is limited to female germ cells and is under Sxl control. In the absence of Sxl, or in male germ cells, Nanos protein is continuously expressed. Furthermore, this female-specific expression pattern is dependent on the presence of canonical Sxl binding sites located in the nanos 3' untranslated region. These results, combined with the observation that nanos RNA associates with the Sxl protein in ovarian extracts and loss and gain of function studies, suggest that Sxl enables the switch from germline stem cell to committed daughter cell by posttranscriptional down-regulation of nanos expression. These findings connect sexual identity to the stem cell self-renewal/differentiation decision and highlight the importance of posttranscriptional gene regulatory networks in controlling stem cell behavior.

  10. Stem cells are units of natural selection for tissue formation, for germline development, and in cancer development.

    PubMed

    Weissman, Irving L

    2015-07-21

    It is obvious that natural selection operates at the level of individuals and collections of individuals. Nearly two decades ago we showed that in multi-individual colonies of protochordate colonial tunicates sharing a blood circulation, there exists an exchange of somatic stem cells and germline stem cells, resulting in somatic chimeras and stem cell competitions for gonadal niches. Stem cells are unlike other cells in the body in that they alone self-renew, so that they form clones that are perpetuated for the life of the organism. Stem cell competitions have allowed the emergence of competitive somatic and germline stem cell clones. Highly successful germline stem cells usually outcompete less successful competitors both in the gonads of the genotype partner from which they arise and in the gonads of the natural parabiotic partners. Therefore, natural selection also operates at the level of germline stem cell clones. In the colonial tunicate Botryllus schlosseri the formation of natural parabionts is prevented by a single-locus highly polymorphic histocompatibility gene called Botryllus histocompatibility factor. This limits germline stem cell predation to kin, as the locus has hundreds of alleles. We show that in mice germline stem cells compete for gonad niches, and in mice and humans, blood-forming stem cells also compete for bone marrow niches. We show that the clonal progression from blood-forming stem cells to acute leukemias by successive genetic and epigenetic events in blood stem cells also involves competition and selection between clones and propose that this is a general theme in cancer.

  11. Transcriptional and post-transcriptional regulation of Drosophila germline stem cells and their differentiating progeny.

    PubMed

    White-Cooper, Helen; Caporilli, Simona

    2013-01-01

    In this chapter we will concentrate on the transcriptional and translational regulations that govern the development and differentiation of male germline cells. Our focus will be on the processes that occur during differentiation, that distinguish the differentiating population of cells from their stem cell parents. We discuss how these defining features are established as cells transit from a stem cell character to that of a fully committed differentiating cell. The focus will be on how GSCs differentiate, via spermatogonia, to spermatocytes. We will achieve this by first describing the transcriptional activity in the differentiating spermatocytes, cataloguing the known transcriptional regulators in these cells and then investigating how the transcription programme is set up by processes in the progentior cells. This process is particularly interesting to study from a stem cell perspective as the male GSCs are unipotent, so lineage decisions in differentiating progeny of stem cells, which occurs in many other stem cell systems, do not impinge on the behaviour of these cells.

  12. Insulin-independent role of adiponectin receptor signaling in Drosophila germline stem cell maintenance.

    PubMed

    Laws, Kaitlin M; Sampson, Leesa L; Drummond-Barbosa, Daniela

    2015-03-15

    Adipocytes have key endocrine roles, mediated in large part by secreted protein hormones termed adipokines. The adipokine adiponectin is well known for its role in sensitizing peripheral tissues to insulin, and several lines of evidence suggest that adiponectin might also modulate stem cells/precursors. It remains unclear, however, how adiponectin signaling controls stem cells and whether this role is secondary to its insulin-sensitizing effects or distinct. Drosophila adipocytes also function as an endocrine organ and, although no obvious adiponectin homolog has been identified, Drosophila AdipoR encodes a well-conserved homolog of mammalian adiponectin receptors. Here, we generate a null AdipoR allele and use clonal analysis to demonstrate an intrinsic requirement for AdipoR in germline stem cell (GSC) maintenance in the Drosophila ovary. AdipoR null GSCs are not fully responsive to bone morphogenetic protein ligands from the niche and have a slight reduction in E-cadherin levels at the GSC-niche junction. Conversely, germline-specific overexpression of AdipoR inhibits natural GSC loss, suggesting that reduction in adiponectin signaling might contribute to the normal decline in GSC numbers observed over time in wild-type females. Surprisingly, AdipoR is not required for insulin sensitization of the germline, leading us to speculate that insulin sensitization is a more recently acquired function than stem cell regulation in the evolutionary history of adiponectin signaling. Our findings establish Drosophila female GSCs as a new system for future studies addressing the molecular mechanisms whereby adiponectin receptor signaling modulates stem cell fate.

  13. Piwi maintains germline stem cells and oogenesis in Drosophila through negative regulation of Polycomb group proteins.

    PubMed

    Peng, Jamy C; Valouev, Anton; Liu, Na; Lin, Haifan

    2016-03-01

    The Drosophila melanogaster Piwi protein regulates both niche and intrinsic mechanisms to maintain germline stem cells, but its underlying mechanism remains unclear. Here we report that Piwi interacts with Polycomb group complexes PRC1 and PRC2 in niche and germline cells to regulate ovarian germline stem cells and oogenesis. Piwi physically interacts with the PRC2 subunits Su(z)12 and Esc in the ovary and in vitro. Chromatin coimmunoprecipitation of Piwi, the PRC2 enzymatic subunit E(z), histone H3 trimethylated at lysine 27 (H3K27me3) and RNA polymerase II in wild-type and piwi mutant ovaries demonstrates that Piwi binds a conserved DNA motif at ∼ 72 genomic sites and inhibits PRC2 binding to many non-Piwi-binding genomic targets and H3K27 trimethylation. Moreover, Piwi influences RNA polymerase II activities in Drosophila ovaries, likely via inhibiting PRC2. We hypothesize that Piwi negatively regulates PRC2 binding by sequestering PRC2 in the nucleoplasm, thus reducing PRC2 binding to many targets and influencing transcription during oogenesis.

  14. Germline stem cells: Towards the regeneration of spermatogenesis

    PubMed Central

    Valli, Hanna; Phillips, Bart T.; Shetty, Gunapala; Byrne, James A.; Clark, Amander T.; Meistrich, Marvin L.; Orwig, Kyle E.

    2013-01-01

    Improved therapies for cancer and other conditions have resulted in a growing population of long-term survivors. Infertility is an unfortunate side effect of some cancer therapies that impacts the quality of life of survivors who are in their reproductive or pre-reproductive years. Some of these patients have the opportunity to preserve their fertility using standard technologies that include sperm, egg or embryo banking, followed by in vitro fertilization and/or embryo transfer. However, these options are not available to all patients, especially the prepubertal patients who are not yet producing mature gametes. For these patients, there are several stem cell technologies in the research pipeline that may give rise to new fertility options and allow infertile patients to have their own biological children. We will review the role of stem cells in normal spermatogenesis as well as experimental stem cell based techniques that may have potential to generate or regenerate spermatogenesis and sperm. We will present these technologies in the context of the fertility preservation paradigm, but we anticipate that they will have broad implications for the assisted reproduction field. PMID:24314923

  15. Loss of MAX results in meiotic entry in mouse embryonic and germline stem cells.

    PubMed

    Suzuki, Ayumu; Hirasaki, Masataka; Hishida, Tomoaki; Wu, Jun; Okamura, Daiji; Ueda, Atsushi; Nishimoto, Masazumi; Nakachi, Yutaka; Mizuno, Yosuke; Okazaki, Yasushi; Matsui, Yasuhisa; Izpisua Belmonte, Juan Carlos; Okuda, Akihiko

    2016-03-30

    Meiosis is a unique process that allows the generation of reproductive cells. It remains largely unknown how meiosis is initiated in germ cells and why non-germline cells do not undergo meiosis. We previously demonstrated that knockdown of Max expression, a gene encoding a partner of MYC family proteins, strongly activates expression of germ cell-related genes in ESCs. Here we find that complete ablation of Max expression in ESCs results in profound cytological changes reminiscent of cells undergoing meiotic cell division. Furthermore, our analyses uncovers that Max expression is transiently attenuated in germ cells undergoing meiosis in vivo and its forced reduction induces meiosis-like cytological changes in cultured germline stem cells. Mechanistically, Max depletion alterations are, in part, due to impairment of the function of an atypical PRC1 complex (PRC1.6), in which MAX is one of the components. Our data highlight MAX as a new regulator of meiotic onset.

  16. Loss of MAX results in meiotic entry in mouse embryonic and germline stem cells

    PubMed Central

    Suzuki, Ayumu; Hirasaki, Masataka; Hishida, Tomoaki; Wu, Jun; Okamura, Daiji; Ueda, Atsushi; Nishimoto, Masazumi; Nakachi, Yutaka; Mizuno, Yosuke; Okazaki, Yasushi; Matsui, Yasuhisa; Belmonte, Juan Carlos Izpisua; Okuda, Akihiko

    2016-01-01

    Meiosis is a unique process that allows the generation of reproductive cells. It remains largely unknown how meiosis is initiated in germ cells and why non-germline cells do not undergo meiosis. We previously demonstrated that knockdown of Max expression, a gene encoding a partner of MYC family proteins, strongly activates expression of germ cell-related genes in ESCs. Here we find that complete ablation of Max expression in ESCs results in profound cytological changes reminiscent of cells undergoing meiotic cell division. Furthermore, our analyses uncovers that Max expression is transiently attenuated in germ cells undergoing meiosis in vivo and its forced reduction induces meiosis-like cytological changes in cultured germline stem cells. Mechanistically, Max depletion alterations are, in part, due to impairment of the function of an atypical PRC1 complex (PRC1.6), in which MAX is one of the components. Our data highlight MAX as a new regulator of meiotic onset. PMID:27025988

  17. Histone H1-mediated epigenetic regulation controls germline stem cell self-renewal by modulating H4K16 acetylation

    PubMed Central

    Sun, Jin; Wei, Hui-Min; Xu, Jiang; Chang, Jian-Feng; Yang, Zhihao; Ren, Xingjie; Lv, Wen-Wen; Liu, Lu-Ping; Pan, Li-Xia; Wang, Xia; Qiao, Huan-Huan; Zhu, Bing; Ji, Jun-Yuan; Yan, Dong; Xie, Ting; Sun, Fang-Lin; Ni, Jian-Quan

    2015-01-01

    Epigenetics plays critical roles in controlling stem cell self-renewal and differentiation. Histone H1 is one of the most critical chromatin regulators, but its role in adult stem cell regulation remains unclear. Here we report that H1 is intrinsically required in the regulation of germline stem cells (GSCs) in the Drosophila ovary. The loss of H1 from GSCs causes their premature differentiation through activation of the key GSC differentiation factor bam. Interestingly, the acetylated H4 lysine 16 (H4K16ac) is selectively augmented in the H1-depleted GSCs. Furthermore, overexpression of mof reduces H1 association on chromatin. In contrast, the knocking down of mof significantly rescues the GSC loss phenotype. Taken together, these results suggest that H1 functions intrinsically to promote GSC self-renewal by antagonizing MOF function. Since H1 and H4K16 acetylation are highly conserved from fly to human, the findings from this study might be applicable to stem cells in other systems. PMID:26581759

  18. Local BMP receptor activation at adherens junctions in the Drosophila germline stem cell niche.

    PubMed

    Michel, Marcus; Raabe, Isabel; Kupinski, Adam P; Pérez-Palencia, Raquel; Bökel, Christian

    2011-08-02

    According to the stem cell niche synapse hypothesis postulated for the mammalian haematopoietic system, spatial specificity of niche signals is maximized by subcellularly restricting signalling to cadherin-based adherens junctions between individual niche and stem cells. However, such a synapse has never been observed directly, in part, because tools to detect active growth factor receptors with subcellular resolution were not available. Here we describe a novel fluorescence-based reporter that directly visualizes bone morphogenetic protein (BMP) receptor activation and show that in the Drosophila testis a BMP niche signal is transmitted preferentially at adherens junctions between hub and germline stem cells, resembling the proposed synapse organization. Ligand secretion involves the exocyst complex and the Rap activator Gef26, both of which are also required for Cadherin trafficking towards adherens junctions. We, therefore, propose that local generation of the BMP signal is achieved through shared use of the Cadherin transport machinery.

  19. Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution.

    PubMed

    Tran, Vuong; Lim, Cindy; Xie, Jing; Chen, Xin

    2012-11-02

    Stem cells can self-renew and generate differentiating daughter cells. It is not known whether these cells maintain their epigenetic information during asymmetric division. Using a dual-color method to differentially label "old" versus "new" histones in Drosophila male germline stem cells (GSCs), we show that preexisting canonical H3, but not variant H3.3, histones are selectively segregated to the GSC, whereas newly synthesized histones incorporated during DNA replication are enriched in the differentiating daughter cell. The asymmetric histone distribution occurs in GSCs but not in symmetrically dividing progenitor cells. Furthermore, if GSCs are genetically manipulated to divide symmetrically, this asymmetric mode is lost. This work suggests that stem cells retain preexisting canonical histones during asymmetric cell divisions, probably as a mechanism to maintain their unique molecular properties.

  20. Germline Stem Cell Competition, Mutation Hot Spots, Genetic Disorders, and Older Fathers.

    PubMed

    Arnheim, Norman; Calabrese, Peter

    2016-08-31

    Some de novo human mutations arise at frequencies far exceeding the genome average mutation rate. Examples include the common mutations at one or a few sites in the genes that cause achondroplasia, Apert syndrome, multiple endocrine neoplasia type 2B, and Noonan syndrome. These mutations are recurrent, provide a gain of function, are paternally derived, and are more likely to be transmitted as the father ages. Recent experiments have tested whether the high mutation frequencies are due to an elevated mutation rate per cell division, as expected, or to an advantage of the mutant spermatogonial stem cells over wild-type stem cells. The evidence, which includes the surprising discovery of testis mutation clusters, rules out the former model but not the latter. We propose how the mutations might alter spermatogonial stem cell function and discuss how germline selection contributes to the paternal age effect, the human mutational load, and adaptive evolution.

  1. A regulatory network of Drosophila germline stem cell self-renewal.

    PubMed

    Yan, Dong; Neumüller, Ralph A; Buckner, Michael; Ayers, Kathleen; Li, Hua; Hu, Yanhui; Yang-Zhou, Donghui; Pan, Lei; Wang, Xiaoxi; Kelley, Colleen; Vinayagam, Arunachalam; Binari, Richard; Randklev, Sakara; Perkins, Lizabeth A; Xie, Ting; Cooley, Lynn; Perrimon, Norbert

    2014-02-24

    Stem cells possess the capacity to generate two cells of distinct fate upon division: one cell retaining stem cell identity and the other cell destined to differentiate. These cell fates are established by cell-type-specific genetic networks. To comprehensively identify components of these networks, we performed a large-scale RNAi screen in Drosophila female germline stem cells (GSCs) covering ∼25% of the genome. The screen identified 366 genes that affect GSC maintenance, differentiation, or other processes involved in oogenesis. Comparison of GSC regulators with neural stem cell self-renewal factors identifies common and cell-type-specific self-renewal genes. Importantly, we identify the histone methyltransferase Set1 as a GSC-specific self-renewal factor. Loss of Set1 in neural stem cells does not affect cell fate decisions, suggesting a differential requirement of H3K4me3 in different stem cell lineages. Altogether, our study provides a resource that will help to further dissect the networks underlying stem cell self-renewal.

  2. A regulatory network of Drosophila germline stem cell self-renewal

    PubMed Central

    Yan, Dong; Neumüller, Ralph A.; Buckner, Michael; Ayers, Kathleen; Li, Hua; Hu, Yanhui; Yang-Zhou, Donghui; Pan, Lei; Wang, Xiaoxi; Kelley, Colleen; Vinayagam, Arunachalam; Binari, Richard; Randklev, Sakara; Perkins, Lizabeth A.; Xie, Ting; Cooley, Lynn; Perrimon, Norbert

    2014-01-01

    Summary Stem cells possess the capacity to generate two cells of distinct fate upon division; one cell retaining stem cell identity and the other cell destined to differentiate. These cell fates are established by cell-type-specific genetic networks. To comprehensively identify components of these networks, we performed a large-scale RNAi screen in Drosophila female germline stem cells (GSCs) covering ~25% of the genome. The screen identified 366 genes that affect GSC maintenance, differentiation or other processes involved in oogenesis. Comparison of GSC regulators with neural stem cell self-renewal factors identifies common and cell-type-specific self-renewal genes. Importantly, we identify the histone methyltransferase Set1 as a GSC specific self-renewal factor. Loss of Set1 in neural stem cells does not affect cell fate decisions, suggesting a differential requirement of H3K4me3 in different stem cell lineages. Altogether, our study provides a resource that will help to further dissect the networks underlying stem cell self-renewal. PMID:24576427

  3. Insulin signals control the competence of the Drosophila female germline stem cell niche to respond to Notch ligands.

    PubMed

    Hsu, Hwei-Jan; Drummond-Barbosa, Daniela

    2011-02-15

    Adult stem cells reside in specialized microenvironments, or niches, that are essential for their function in vivo. Stem cells are physically attached to the niche, which provides secreted factors that promote their self-renewal and proliferation. Despite intense research on the role of the niche in regulating stem cell function, much less is known about how the niche itself is controlled. We previously showed that insulin signals directly stimulate germline stem cell (GSC) division and indirectly promote GSC maintenance via the niche in Drosophila. Insulin-like peptides are required for maintenance of cap cells (a major component of the niche) via modulation of Notch signaling, and they also control attachment of GSCs to cap cells and E-cadherin levels at the cap cell-GSC junction. Here, we further dissect the molecular and cellular mechanisms underlying these processes. We show that insulin and Notch ligands directly stimulate cap cells to maintain their numbers and indirectly promote GSC maintenance. We also report that insulin signaling, via phosphoinositide 3-kinase and FOXO, intrinsically controls the competence of cap cells to respond to Notch ligands and thereby be maintained. Contrary to a previous report, we also find that Notch ligands originated in GSCs are not required either for Notch activation in the GSC niche, or for cap cell or GSC maintenance. Instead, the niche itself produces ligands that activate Notch signaling within cap cells, promoting stability of the GSC niche. Finally, insulin signals control cap cell-GSC attachment independently of their role in Notch signaling. These results are potentially relevant to many systems in which Notch signaling modulates stem cells and demonstrate that complex interactions between local and systemic signals are required for proper stem cell niche function.

  4. Adaptive evolution of genes involved in the regulation of germline stem cells in Drosophila melanogaster and D. simulans.

    PubMed

    Flores, Heather A; DuMont, Vanessa L Bauer; Fatoo, Aalya; Hubbard, Diana; Hijji, Mohammed; Barbash, Daniel A; Aquadro, Charles F

    2015-02-09

    Population genetic and comparative analyses in diverse taxa have shown that numerous genes involved in reproduction are adaptively evolving. Two genes involved in germline stem cell regulation, bag of marbles (bam) and benign gonial cell neoplasm (bgcn), have been shown previously to experience recurrent, adaptive evolution in both Drosophila melanogaster and D. simulans. Here we report a population genetic survey on eight additional genes involved in germline stem cell regulation in D. melanogaster and D. simulans that reveals all eight of these genes reject a neutral model of evolution in at least one test and one species after correction for multiple testing using a false-discovery rate of 0.05. These genes play diverse roles in the regulation of germline stem cells, suggesting that positive selection in response to several evolutionary pressures may be acting to drive the adaptive evolution of these genes.

  5. Klp10A, a stem cell centrosome-enriched kinesin, balances asymmetries in Drosophila male germline stem cell division

    PubMed Central

    Chen, Cuie; Inaba, Mayu; Venkei, Zsolt G; Yamashita, Yukiko M

    2016-01-01

    Asymmetric stem cell division is often accompanied by stereotypical inheritance of the mother and daughter centrosomes. However, it remains unknown whether and how stem cell centrosomes are uniquely regulated and how this regulation may contribute to stem cell fate. Here we identify Klp10A, a microtubule-depolymerizing kinesin of the kinesin-13 family, as the first protein enriched in the stem cell centrosome in Drosophila male germline stem cells (GSCs). Depletion of klp10A results in abnormal elongation of the mother centrosomes in GSCs, suggesting the existence of a stem cell-specific centrosome regulation program. Concomitant with mother centrosome elongation, GSCs form asymmetric spindle, wherein the elongated mother centrosome organizes considerably larger half spindle than the other. This leads to asymmetric cell size, yielding a smaller differentiating daughter cell. We propose that klp10A functions to counteract undesirable asymmetries that may result as a by-product of achieving asymmetries essential for successful stem cell divisions. DOI: http://dx.doi.org/10.7554/eLife.20977.001 PMID:27885983

  6. Piwi is required in multiple cell types to control germline stem cell lineage development in the Drosophila ovary.

    PubMed

    Ma, Xing; Wang, Su; Do, Trieu; Song, Xiaoqing; Inaba, Mayu; Nishimoto, Yoshiya; Liu, Lu-ping; Gao, Yuan; Mao, Ying; Li, Hui; McDowell, William; Park, Jungeun; Malanowski, Kate; Peak, Allison; Perera, Anoja; Li, Hua; Gaudenz, Karin; Haug, Jeff; Yamashita, Yukiko; Lin, Haifan; Ni, Jian-quan; Xie, Ting

    2014-01-01

    The piRNA pathway plays an important role in maintaining genome stability in the germ line by silencing transposable elements (TEs) from fly to mammals. As a highly conserved piRNA pathway component, Piwi is widely expressed in both germ cells and somatic cells in the Drosophila ovary and is required for piRNA production in both cell types. In addition to its known role in somatic cap cells to maintain germline stem cells (GSCs), this study has demonstrated that Piwi has novel functions in somatic cells and germ cells of the Drosophila ovary to promote germ cell differentiation. Piwi knockdown in escort cells causes a reduction in escort cell (EC) number and accumulation of undifferentiated germ cells, some of which show active BMP signaling, indicating that Piwi is required to maintain ECs and promote germ cell differentiation. Simultaneous knockdown of dpp, encoding a BMP, in ECs can partially rescue the germ cell differentiation defect, indicating that Piwi is required in ECs to repress dpp. Consistent with its key role in piRNA production, TE transcripts increase significantly and DNA damage is also elevated in the piwi knockdown somatic cells. Germ cell-specific knockdown of piwi surprisingly causes depletion of germ cells before adulthood, suggesting that Piwi might control primordial germ cell maintenance or GSC establishment. Finally, Piwi inactivation in the germ line of the adult ovary leads to gradual GSC loss and germ cell differentiation defects, indicating the intrinsic role of Piwi in adult GSC maintenance and differentiation. This study has revealed new germline requirement of Piwi in controlling GSC maintenance and lineage differentiation as well as its new somatic function in promoting germ cell differentiation. Therefore, Piwi is required in multiple cell types to control GSC lineage development in the Drosophila ovary.

  7. Nonrandom sister chromatid segregation of sex chromosomes in Drosophila male germline stem cells.

    PubMed

    Yamashita, Yukiko M

    2013-05-01

    Sister chromatids are the product of DNA replication, which is assumed to be a very precise process. Therefore, sister chromatids should be exact copies of each other. However, reports have indicated that sister chromatids are segregated nonrandomly during cell division, suggesting that sister chromatids are not the same, although their DNA sequences are the same. Researchers have speculated that stem cells may retain template strands to avoid replication-induced mutations. An alternative proposal is that cells may segregate distinct epigenetic information carried on sister chromatids. Recently, we found that Drosophila male germline stem cells segregate sister chromatids of X and Y chromosomes with a strong bias. We discuss this finding in relation to existing models for nonrandom sister chromatid segregation.

  8. Asymmetric distribution of histones during Drosophila male germline stem cell asymmetric divisions.

    PubMed

    Tran, Vuong; Feng, Lijuan; Chen, Xin

    2013-05-01

    It has long been known that epigenetic changes are inheritable. However, except for DNA methylation, little is known about the molecular mechanisms of epigenetic inheritance. Many types of stem cells undergo asymmetric cell divisions to generate self-renewed stem cells and daughter cells committed for differentiation. Still, whether and how stem cells retain their epigenetic memory remain questions to be elucidated. During the asymmetric division of Drosophila male germline stem cell (GSC), our recent studies revealed that the preexisting histone 3 (H3) are selectively segregated to the GSC, whereas newly synthesized H3 deposited during DNA replication are enriched in the differentiating daughter cell. We propose a two-step model to explain this asymmetric histone distribution. First, prior to mitosis, preexisting histones and newly synthesized histones are differentially distributed at two sets of sister chromatids. Next, during mitosis, the set of sister chromatids that mainly consist of preexisting histones are segregated to GSCs, while the other set of sister chromatids enriched with newly synthesized histones are partitioned to the daughter cell committed for differentiation. In this review, we apply current knowledge about epigenetic inheritance and asymmetric cell division to inform our discussion of potential molecular mechanisms and the cellular basis underlying this asymmetric histone distribution pattern. We will also discuss whether this phenomenon contributes to the maintenance of stem cell identity and resetting chromatin structure in the other daughter cell for differentiation.

  9. Plasticity of male germline stem cells and their applications in reproductive and regenerative medicine.

    PubMed

    Chen, Zheng; Li, Zheng; He, Zuping

    2015-01-01

    Spermatogonial stem cells (SSCs), also known as male germline stem cells, are a small subpopulation of type A spermatogonia with the potential of self-renewal to maintain stem cell pool and differentiation into spermatids in mammalian testis. SSCs are previously regarded as the unipotent stem cells since they can only give rise to sperm within the seminiferous tubules. However, this concept has recently been challenged because numerous studies have demonstrated that SSCs cultured with growth factors can acquire pluripotency to become embryonic stem-like cells. The in vivo and in vitro studies from peers and us have clearly revealed that SSCs can directly transdifferentiate into morphologic, phenotypic, and functional cells of other lineages. Direct conversion to the cells of other tissues has important significance for regenerative medicine. SSCs from azoospermia patients could be induced to differentiate into spermatids with fertilization and developmental potentials. As such, SSCs could have significant applications in both reproductive and regenerative medicine due to their unique and great potentials. In this review, we address the important plasticity of SSCs, with focuses on their self-renewal, differentiation, dedifferentiation, transdifferentiation, and translational medicine studies.

  10. Isolation and cultivation of stem cells from adult mouse testes.

    PubMed

    Guan, Kaomei; Wolf, Frieder; Becker, Alexander; Engel, Wolfgang; Nayernia, Karim; Hasenfuss, Gerd

    2009-01-01

    The successful isolation and cultivation of spermatogonial stem cells (SSCs) as well as induction of SSCs into pluripotent stem cells will allow us to study their biological characteristics and their applications in therapeutic approaches. Here we provide step-by-step procedures on the basis of previous work in our laboratory for: the isolation of testicular cells from adolescent mice by a modified enzymatic procedure; the enrichment of undifferentiated spermatogonia by laminin selection or genetic selection using Stra8-EGFP (enhanced green fluorescent protein) transgenic mice; the cultivation and conversion of undifferentiated spermatogonia into embryonic stem-like cells, so-called multipotent adult germline stem cells (maGSCs); and characterization of these cells. Normally, it will take about 16 weeks to obtain stable maGSC lines starting from the isolation of testicular cells.

  11. Smurf-mediated differential proteolysis generates dynamic BMP signaling in germline stem cells during Drosophila testis development.

    PubMed

    Chang, Yi-Jie; Pi, Haiwei; Hsieh, Chang-Che; Fuller, Margaret T

    2013-11-01

    Germline stem cells (GSCs) produce gametes throughout the reproductive life of many animals, and intensive studies have revealed critical roles of BMP signaling to maintain GSC self-renewal in Drospophila adult gonads. Here, we show that BMP signaling is downregulated as testes develop and this regulation controls testis growth, stem cell number, and the number of spermatogonia divisions. Phosphorylated Mad (pMad), the activated Drosophila Smad in germ cells, was restricted from anterior germ cells to GSCs and hub-proximal cells during early larval development. pMad levels in GSCs were then dramatically downregulated from early third larval instar (L3) to late L3, and maintained at low levels in pupal and adult GSCs. The spatial restriction and temporal down-regulation of pMad, reflecting the germ cell response to BMP signaling activity, required action in germ cells of E3 ligase activity of HECT domain protein Smurf. Analyses of Smurf mutant testes and dosage-dependent genetic interaction between Smurf and mad indicated that pMad downregulation was required for both the normal decrease in stem cell number during testis maturation in the pupal stage, and for normal limit of four rounds of spermatogonia cell division for control of germ cell numbers and testis size. Smurf protein was expressed at a constant low level in GSCs and spermatogonia during development. Rescue experiments showed that expression of exogenous Smurf protein in early germ cells promoted pMad downregulation in GSCs in a stage-dependent but concentration-independent manner, suggesting that the competence of Smurf to attenuate response to BMP signaling may be regulated during development. Taken together, our work reveals a critical role for differential attenuation of the response to BMP signaling in GSCs and early germ cells for control of germ cell number and gonad growth during development.

  12. Cytoneme-mediated delivery of hedgehog regulates the expression of bone morphogenetic proteins to maintain germline stem cells in Drosophila.

    PubMed

    Rojas-Ríos, Patricia; Guerrero, Isabel; González-Reyes, Acaimo

    2012-01-01

    Stem cells reside in specialised microenvironments, or niches, which often contain support cells that control stem cell maintenance and proliferation. Hedgehog (Hh) proteins mediate homeostasis in several adult niches, but a detailed understanding of Hh signalling in stem cell regulation is lacking. Studying the Drosophila female germline stem cell (GSC) niche, we show that Hh acts as a critical juxtacrine signal to maintain the normal GSC population of the ovary. Hh production in cap cells, a type of niche support cells, is regulated by the Engrailed transcription factor. Hh is then secreted to a second, adjacent population of niche cells, the escort cells, where it activates transcription of the GSC essential factors Decapentaplegic (Dpp) and Glass bottom boat (Gbb). In wild-type niches, Hh protein decorates short filopodia that originate in the support cap cells and that are functionally relevant, as they are required to transduce the Hh pathway in the escort cells and to maintain a normal population of GSCs. These filopodia, reminiscent of wing disc cytonemes, grow several fold in length if Hh signalling is impaired within the niche. Because these long cytonemes project directionally towards the signalling-deficient region, cap cells sense and react to the strength of Hh pathway transduction in the niche. Thus, the GSC niche responds to insufficient Hh signalling by increasing the range of Hh spreading. Although the signal(s) perceived by the cap cells and the receptor(s) involved are still unknown, our results emphasise the integration of signals necessary to maintain a functional niche and the plasticity of cellular niches to respond to challenging physiological conditions.

  13. The Drosophila female germline stem cell lineage acts to spatially restrict DPP function within the niche.

    PubMed

    Liu, Ming; Lim, Tit Meng; Cai, Yu

    2010-07-27

    Maintenance of stem cells requires spatially restricted, niche-associated signals. In the Drosophila female germline stem cell (GSC) niche, Decapentaplegic (DPP) is the primary niche-associated factor and functions over a short range to promote GSC self-renewal rather than differentiation. Here, we show that the GSC lineage and, more specifically, the stem cells themselves participate in the spatial restriction of DPP function by activating epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) signaling in the surrounding somatic cells. EGFR-MAPK signaling in somatic cells repressed the expression of dally, which encodes a glypican required for DPP movement and stability. Consequently, only GSCs close to the DPP source (the somatic cells in the niche) showed high signal activation and were maintained as stem cells, whereas cystoblasts outside the niche showed low signal activation and initiated differentiation. Thus, our data reveal that the reciprocal crosstalk between the GSCs and the somatic cells defines the spatial limits of DPP action and therefore the extent of the GSC niche.

  14. Heparan sulfate regulates the number and centrosome positioning of Drosophila male germline stem cells.

    PubMed

    Levings, Daniel C; Arashiro, Takeshi; Nakato, Hiroshi

    2016-03-15

    Stem cell division is tightly controlled via secreted signaling factors and cell adhesion molecules provided from local niche structures. Molecular mechanisms by which each niche component regulates stem cell behaviors remain to be elucidated. Here we show that heparan sulfate (HS), a class of glycosaminoglycan chains, regulates the number and asymmetric division of germline stem cells (GSCs) in the Drosophila testis. We found that GSC number is sensitive to the levels of 6-O sulfate groups on HS. Loss of 6-O sulfation also disrupted normal positioning of centrosomes, a process required for asymmetric division of GSCs. Blocking HS sulfation specifically in the niche, termed the hub, led to increased GSC numbers and mispositioning of centrosomes. The same treatment also perturbed the enrichment of Apc2, a component of the centrosome-anchoring machinery, at the hub-GSC interface. This perturbation of the centrosome-anchoring process ultimately led to an increase in the rate of spindle misorientation and symmetric GSC division. This study shows that specific HS modifications provide a novel regulatory mechanism for stem cell asymmetric division. The results also suggest that HS-mediated niche signaling acts upstream of GSC division orientation control.

  15. Heparan sulfate regulates the number and centrosome positioning of Drosophila male germline stem cells

    PubMed Central

    Levings, Daniel C.; Arashiro, Takeshi; Nakato, Hiroshi

    2016-01-01

    Stem cell division is tightly controlled via secreted signaling factors and cell adhesion molecules provided from local niche structures. Molecular mechanisms by which each niche component regulates stem cell behaviors remain to be elucidated. Here we show that heparan sulfate (HS), a class of glycosaminoglycan chains, regulates the number and asymmetric division of germline stem cells (GSCs) in the Drosophila testis. We found that GSC number is sensitive to the levels of 6-O sulfate groups on HS. Loss of 6-O sulfation also disrupted normal positioning of centrosomes, a process required for asymmetric division of GSCs. Blocking HS sulfation specifically in the niche, termed the hub, led to increased GSC numbers and mispositioning of centrosomes. The same treatment also perturbed the enrichment of Apc2, a component of the centrosome-anchoring machinery, at the hub–GSC interface. This perturbation of the centrosome-anchoring process ultimately led to an increase in the rate of spindle misorientation and symmetric GSC division. This study shows that specific HS modifications provide a novel regulatory mechanism for stem cell asymmetric division. The results also suggest that HS-mediated niche signaling acts upstream of GSC division orientation control. PMID:26792837

  16. Intestinal stem cells in the adult Drosophila midgut

    SciTech Connect

    Jiang, Huaqi; Edgar, Bruce A.

    2011-11-15

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: Black-Right-Pointing-Pointer The homeostasis and regeneration of adult fly midguts are mediated by ISCs. Black-Right-Pointing-Pointer Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). Black-Right-Pointing-Pointer EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. Black-Right-Pointing-Pointer Notch signaling regulates ISC self-renewal and differentiation.

  17. The function of Msx1 gene in promoting meiosis of dairy goat male germline stem cells (mGSCs).

    PubMed

    Mu, Hailong; Wu, Jiang; Zhu, Haijing; Li, Na; Tang, Furong; Yao, Xi; Yang, Churong; Peng, Sha; Li, Guangpeng; Hua, Jinlian

    2013-12-01

    During sequential stages of meiosis, numerous cytoplasmic and nuclear events take place in which many germline and non-germline genes involved. It is demonstrated that the germline gene Stra8 and synaptonemal complex protein 3 (Scp3) play an important role in the meiosis. Recently, studies showed Msx1, a DNA-binding protein taking part in the skeletal development, also having a functional attractive factor to Stra8 and Scp3 in the meiosis. In this study, we cloned the gene Msx1 then transfected the Msx1 constructed recombination plasmid, pMsx1-Ires2-AcGFP, into the dairy goat germline stem cells (male germline stem cells) and analysed the effects of Msx1 on the expression of Stra8 and Scp3. The results showed that Msx1 could enhance the expression of Stra8 and Scp3 and promote the meiosis in goat testicular cells. Bmp4 activated the expression of Msx1 and Stra8. This study suggests that Msx1 plays an important role in spermatogenesis and meiosis.

  18. Germline transmission of an embryonic stem cell line derived from BALB/c cataract mice.

    PubMed

    Peng, Xinrong; Liu, Tao; Shi, Chuanyin; Zhang, Liqing; Wang, Ying; Zhao, Wuyang; Jiang, Lihua; Wu, Mengchao; Zhang, Yong; Qian, Qijun

    2014-01-01

    Mice embryonic stem (ES) cells have enabled the generation of mouse strains with defined mutation(s) in their genome for putative disease loci analysis. In the study of cataract, the complex genetic background of this disease and lack of long-term self-renewal ES cells have hampered the functional researches of cataract-related genes. In this study, we aimed to establish ES cells from inherited cataract mice (BALB/CCat/Cat). Embryos of cataract mice were cultured in chemical-defined N2B27 medium with the presence of two small molecules PD0325901 and CHIR99021 (2i) and an ES cell line (named EH-BES) was successfully established. EH-BES showed long-term self-renewal in 2i medium and maintained capacity of germline transmission. Most importantly, the produced chimera and offspring developed congenital cataract as well. Flow cytometry assay revealed that EH-BES are homogeneous in expression of Oct4 and Rex1in 2i medium, which may account for their self-renewal ability. With long-term self-renewal ability and germline-competent, EH-BES cell line can facilitate genetic and functional researches of cataract-related genes and better address mechanisms of cataract.

  19. LIN-28 balances longevity and germline stem cell number in Caenorhabditis elegans through let-7/AKT/DAF-16 axis.

    PubMed

    Wang, Dan; Hou, Lei; Nakamura, Shuhei; Su, Ming; Li, Fang; Chen, Weiyang; Yan, Yizhen; Green, Christopher D; Chen, Di; Zhang, Hong; Antebi, Adam; Han, Jing-Dong J

    2017-02-01

    The RNA-binding protein LIN-28 was first found to control developmental timing in Caenorhabditis elegans. Later, it was found to play important roles in pluripotency, metabolism, and cancer in mammals. Here we report that a low dosage of lin-28 enhanced stress tolerance and longevity, and reduced germline stem/progenitor cell number in C. elegans. The germline LIN-28-regulated microRNA let-7 was required for these effects by targeting akt-1/2 and decreasing their protein levels. AKT-1/2 and the downstream DAF-16 transcription factor were both required for the lifespan and germline stem cell effects of lin-28. The pathway also mediated dietary restriction induced lifespan extension and reduction in germline stem cell number. Thus, the LIN-28/let-7/AKT/DAF-16 axis we delineated here is a program that plays an important role in balancing reproduction and somatic maintenance and their response to the environmental energy level-a central dogma of the 'evolutionary optimization' of resource allocation that modulates aging.

  20. Abscission is regulated by the ESCRT-III protein shrub in Drosophila germline stem cells.

    PubMed

    Matias, Neuza Reis; Mathieu, Juliette; Huynh, Jean-René

    2015-02-01

    Abscission is the final event of cytokinesis that leads to the physical separation of the two daughter cells. Recent technical advances have allowed a better understanding of the cellular and molecular events leading to abscission in isolated yeast or mammalian cells. However, how abscission is regulated in different cell types or in a developing organism remains poorly understood. Here, we characterized the function of the ESCRT-III protein Shrub during cytokinesis in germ cells undergoing a series of complete and incomplete divisions. We found that Shrub is required for complete abscission, and that levels of Shrub are critical for proper timing of abscission. Loss or gain of Shrub delays abscission in germline stem cells (GSCs), and leads to the formation of stem-cysts, where daughter cells share the same cytoplasm as the mother stem cell and cannot differentiate. In addition, our results indicate a negative regulation of Shrub by the Aurora B kinase during GSC abscission. Finally, we found that Lethal giant discs (lgd), known to be required for Shrub function in the endosomal pathway, also regulates the duration of abscission in GSCs.

  1. Protein synthesis and degradation are essential to regulate germline stem cell homeostasis in Drosophila testes.

    PubMed

    Yu, Jun; Lan, Xiang; Chen, Xia; Yu, Chao; Xu, Yiwen; Liu, Yujuan; Xu, Lingna; Fan, Heng-Yu; Tong, Chao

    2016-08-15

    The homeostasis of self-renewal and differentiation in stem cells is controlled by intrinsic signals and their niche. We conducted a large-scale RNA interference (RNAi) screen in Drosophila testes and identified 221 genes required for germline stem cell (GSC) maintenance or differentiation. Knockdown of these genes in transit-amplifying spermatogonia and cyst cells further revealed various phenotypes. Complex analysis uncovered that many of the identified genes are involved in key steps of protein synthesis and degradation. A group of genes that are required for mRNA splicing and protein translation contributes to both GSC self-renewal and early germ cell differentiation. Loss of genes in the protein degradation pathway in cyst cells leads to testis tumors consisting of overproliferated germ cells. Importantly, in the Cullin 4-RING E3 ubiquitin ligase (CRL4) complex, we identified multiple proteins that are crucial to GSC self-renewal: pic/DDB1, a CRL4 linker protein, is not only required for GSC self-renewal in flies but also for maintenance of spermatogonial stem cells (SSCs) in mice.

  2. Structural polarity and dynamics of male germline stem cells in the milkweed bug (Oncopeltus fasciatus).

    PubMed

    Schmidt, Esther D; Dorn, August

    2004-11-01

    The male germline stem cells (GSCs) of the milkweed bug present an extraordinary structural polarity that is, to our knowledge, unequalled by any other type of stem cells. They consist of a perikaryon and numerous projections arising from the cell pole directed toward the apical cells, the proposed niche of the GSCs. The projections can traverse a considerable distance until their terminals touch the apical cells. From hatching until death, the GSC projections undergo conspicuous changes, the sequence of which has been deduced from observations of all developmental stages. Projection formation starts from lobular cell protrusions showing trabecular ingrowths of the cell membrane. Finger-like projections result from a process of growth and "carving out". The newly formed projections contain mostly only free ribosomes other than a few mitochondria. A stereotyped degradation process commences in the projection terminals: profiles of circular, often concentric, cisternae of rough endoplasmic reticulum appear and turn into myelin bodies, whereas mitochondria become more numerous. The cytoplasm vesiculates, lysosomal bodies appear, and mitochondria become swollen. At the same time, the projection terminals are segregated by transverse ingrowths of the cell membrane. Finally, autophagic vacuoles and myelin bodies fill the segregated terminals, which then rupture. Simultaneously, new projections seem to sprout from the perikaryon of the GSCs. These dynamics, which are not synchronized among the GSCs, indicate that a novel type of signal exchange and transduction between the stem cells and their niche is involved in the regulation of asymmetric versus symmetric division of GSCs.

  3. Non-autonomous DAF-16/FOXO activity antagonizes age-related loss of C. elegans germline stem/progenitor cells

    PubMed Central

    Qin, Zhao; Hubbard, E. Jane Albert

    2015-01-01

    Stem cells maintain tissues and organs over the lifespan of individuals. How aging influences this process is unclear. Here we investigate the effects of aging on C. elegans germline stem/progenitor cells and show that the progenitor pool is depleted over time in a manner dependent on inhibition of DAF-16/FOXO by insulin/IGF-1 signalling (IIS). Our data indicate that DAF-16/FOXO activity in certain somatic gonad cells is required for germline progenitor maintenance, and that this role is separable from the effect of DAF-16/FOXO on organismal aging. In addition, blocking germ cell flux, similar to reducing IIS, maintains germline progenitors. This effect is partially dependent on gonadal DAF-16/FOXO activity. Our results imply that (1) longevity pathways can regulate aging stem cells through anatomically separable mechanisms, (2) stem cell maintenance is not necessarily prioritized and (3) stem cell regulation can occur at the level of an entire organ system such as the reproductive system. PMID:25960195

  4. From Embryo to Adult: piRNA-Mediated Silencing throughout Germline Development in Drosophila

    PubMed Central

    Marie, Pauline P.; Ronsseray, Stéphane; Boivin, Antoine

    2016-01-01

    In metazoan germ cells, transposable element activity is repressed by small noncoding PIWI-associated RNAs (piRNAs). Numerous studies in Drosophila have elucidated the mechanism of this repression in the adult germline. However, when and how transposable element repression is established during germline development has not been addressed. Here, we show that homology-dependent trans silencing is active in female primordial germ cells from late embryogenesis through pupal stages, and that genes related to the adult piRNA pathway are required for silencing during development. In larval gonads, we detect rhino-dependent piRNAs indicating de novo biogenesis of functional piRNAs during development. Those piRNAs exhibit the molecular signature of the “ping-pong” amplification step. Moreover, we show that Heterochromatin Protein 1a is required for the production of piRNAs coming from telomeric transposable elements. Furthermore, as in adult ovaries, incomplete, bimodal, and stochastic repression resembling variegation can occur at all developmental stages. Clonal analysis indicates that the repression status established in embryonic germ cells is maintained until the adult stage, suggesting the implication of a cellular memory mechanism. Taken together, data presented here show that piRNAs and their associated proteins are epigenetic components of a continuous repression system throughout germ cell development. PMID:27932388

  5. From Embryo to Adult: piRNA-Mediated Silencing throughout Germline Development in Drosophila.

    PubMed

    Marie, Pauline P; Ronsseray, Stéphane; Boivin, Antoine

    2017-02-09

    In metazoan germ cells, transposable element activity is repressed by small noncoding PIWI-associated RNAs (piRNAs). Numerous studies in Drosophila have elucidated the mechanism of this repression in the adult germline. However, when and how transposable element repression is established during germline development has not been addressed. Here, we show that homology-dependent trans silencing is active in female primordial germ cells from late embryogenesis through pupal stages, and that genes related to the adult piRNA pathway are required for silencing during development. In larval gonads, we detect rhino-dependent piRNAs indicating de novo biogenesis of functional piRNAs during development. Those piRNAs exhibit the molecular signature of the "ping-pong" amplification step. Moreover, we show that Heterochromatin Protein 1a is required for the production of piRNAs coming from telomeric transposable elements. Furthermore, as in adult ovaries, incomplete, bimodal, and stochastic repression resembling variegation can occur at all developmental stages. Clonal analysis indicates that the repression status established in embryonic germ cells is maintained until the adult stage, suggesting the implication of a cellular memory mechanism. Taken together, data presented here show that piRNAs and their associated proteins are epigenetic components of a continuous repression system throughout germ cell development.

  6. Pluripotent male germline stem cells from goat fetal testis and their survival in mouse testis.

    PubMed

    Hua, Jinlian; Zhu, Haijing; Pan, Shaohui; Liu, Chao; Sun, Junwei; Ma, Xiaoling; Dong, Wuzi; Liu, Weishuai; Li, Wei

    2011-04-01

    Male germline stem cells (mGSCs) are stem cells present in male testis responsible for spermatogenesis during their whole life. Studies have shown that mGSCs can be derived in vitro and resemble embryonic stem cells (ESCs) properties both in the mouse and humans. However, little is know about these cells in domestic animals. Here we report the first successful establishment of goat GSCs derived from 2-5-month fetal testis, and developmental potential assay of these cells both in vitro and in vivo. These cells express pluripotent markers such as Oct4, Sox2, C-myc, and Tert when cultured as human ESCs conditions. Embryoid bodies (EBs) formed by goat mGSCs were induced with 2 × 10(-6) M retinoic acid (RA). Immunofluorescence analysis showed that some cells inside of the EBs were positive for meiosis marker-SCP3, STRA8, and germ cell marker-VASA, and haploid marker-FE-J1, PRM1, indicating their germ cell lineage differentiation. Some cells become elongated sperm-like cells after induction. Approximately 34.88% (30/86) embryos showed cleavage and four embryos were cultured on murine fibroblast feeder and formed small embryonic stem like colonies. However, most stalled at four-cell stage after intracytoplasmic sperm injection (ICSI) of these cells. Transplantation of DAPI labeled mGSCs into the seminiferous tubules of busulfan-treated mice, and showed that mGSCs can colonize, self-renew, and differentiate into germ cells. Thus, we have established a goat GSC cell line and these cells could be differentiated into sperm-like cells in vivo and sperms in vitro, providing a promising platform for generation of transgenic goat for production of specific humanized proteins.

  7. Transposon Dysregulation Modulates dWnt4 Signaling to Control Germline Stem Cell Differentiation in Drosophila.

    PubMed

    Upadhyay, Maitreyi; Martino Cortez, Yesenia; Wong-Deyrup, SiuWah; Tavares, Leticia; Schowalter, Sean; Flora, Pooja; Hill, Corinne; Nasrallah, Mohamad Ali; Chittur, Sridar; Rangan, Prashanth

    2016-03-01

    Germline stem cell (GSC) self-renewal and differentiation are required for the sustained production of gametes. GSC differentiation in Drosophila oogenesis requires expression of the histone methyltransferase dSETDB1 by the somatic niche, however its function in this process is unknown. Here, we show that dSETDB1 is required for the expression of a Wnt ligand, Drosophila Wingless type mouse mammary virus integration site number 4 (dWnt4) in the somatic niche. dWnt4 signaling acts on the somatic niche cells to facilitate their encapsulation of the GSC daughter, which serves as a differentiation cue. dSETDB1 is known to repress transposable elements (TEs) to maintain genome integrity. Unexpectedly, we found that independent upregulation of TEs also downregulated dWnt4, leading to GSC differentiation defects. This suggests that dWnt4 expression is sensitive to the presence of TEs. Together our results reveal a chromatin-transposon-Wnt signaling axis that regulates stem cell fate.

  8. The Drosophila nuclear lamina protein otefin is required for germline stem cell survival.

    PubMed

    Barton, Lacy J; Pinto, Belinda S; Wallrath, Lori L; Geyer, Pamela K

    2013-06-24

    LEM domain (LEM-D) proteins are components of an extensive protein network that assembles beneath the inner nuclear envelope. Defects in LEM-D proteins cause tissue-restricted human diseases associated with altered stem cell homeostasis. Otefin (Ote) is a Drosophila LEM-D protein that is intrinsically required for female germline stem cell (GSC) maintenance. Previous studies linked Ote loss with transcriptional activation of the key differentiation gene bag-of-marbles (bam), leading to the model in which Ote tethers the bam gene to the nuclear periphery for gene silencing. Using genetic and phenotypic analyses of multiple ote(-/-) backgrounds, we obtained evidence that is inconsistent with this model. We show that bam repression is maintained in ote(-/-) GSCs and that germ cell loss persists in ote(-/-), bam(-/-) mutants, together demonstrating that GSC loss is independent of bam transcription. We show that the primary defect in ote(-/-) GSCs is a block of differentiation, which ultimately leads to germ cell death.

  9. Long Term Liver Engraftment of Functional Hepatocytes Obtained from Germline Cell-Derived Pluripotent Stem Cells

    PubMed Central

    Fagoonee, Sharmila; Famulari, Elvira Smeralda; Silengo, Lorenzo; Tolosano, Emanuela; Altruda, Fiorella

    2015-01-01

    One of the major hurdles in liver gene and cell therapy is availability of ex vivo-expanded hepatocytes. Pluripotent stem cells are an attractive alternative. Here, we show that hepatocyte precursors can be isolated from male germline cell-derived pluripotent stem cells (GPSCs) using the hepatoblast marker, Liv2, and induced to differentiate into hepatocytes in vitro. These cells expressed hepatic-specific genes and were functional as demonstrated by their ability to secrete albumin and produce urea. When transplanted in the liver parenchyma of partially hepatectomised mice, Liv2-sorted cells showed regional and heterogeneous engraftment in the injected lobe. Moreover, approximately 50% of Y chromosome-positive, GPSC-derived cells were found in the female livers, in the region of engraftment, even one month after cell injection. This is the first study showing that Liv2-sorted GPSCs-derived hepatocytes can undergo long lasting engraftment in the mouse liver. Thus, GPSCs might offer promise for regenerative medicine. PMID:26323094

  10. Transposon Dysregulation Modulates dWnt4 Signaling to Control Germline Stem Cell Differentiation in Drosophila

    PubMed Central

    Upadhyay, Maitreyi; Martino Cortez, Yesenia; Wong-Deyrup, SiuWah; Tavares, Leticia; Schowalter, Sean; Flora, Pooja; Hill, Corinne; Nasrallah, Mohamad Ali; Chittur, Sridar; Rangan, Prashanth

    2016-01-01

    Germline stem cell (GSC) self-renewal and differentiation are required for the sustained production of gametes. GSC differentiation in Drosophila oogenesis requires expression of the histone methyltransferase dSETDB1 by the somatic niche, however its function in this process is unknown. Here, we show that dSETDB1 is required for the expression of a Wnt ligand, Drosophila Wingless type mouse mammary virus integration site number 4 (dWnt4) in the somatic niche. dWnt4 signaling acts on the somatic niche cells to facilitate their encapsulation of the GSC daughter, which serves as a differentiation cue. dSETDB1 is known to repress transposable elements (TEs) to maintain genome integrity. Unexpectedly, we found that independent upregulation of TEs also downregulated dWnt4, leading to GSC differentiation defects. This suggests that dWnt4 expression is sensitive to the presence of TEs. Together our results reveal a chromatin-transposon-Wnt signaling axis that regulates stem cell fate. PMID:27019121

  11. Adult stem cell therapy: dream or reality?

    PubMed

    Moraleda, Jose M; Blanquer, Miguel; Bleda, Patricia; Iniesta, Paqui; Ruiz, Francisco; Bonilla, Sonia; Cabanes, Carmen; Tabares, Lucía; Martinez, Salvador

    2006-12-01

    Adult stem cells may be an invaluable source of plastic cells for tissue regeneration. The bone marrow contains different subpopulations of adult stem cells easily accessible for transplantation. However the therapeutic value of adult stem cell is a question of debate in the scientific community. We have investigated the potential benefits of adult hematopoietic stem cell transplantation in animal models of demyelinating and motor neuron diseases. Our results suggest that transplantation of HSC have direct and indirect neuroregenerative and neuroprotective effects.

  12. Vertebrate female germline--the acquisition of femaleness.

    PubMed

    Tanaka, Minoru

    2014-01-01

    The cellular and molecular characteristics of female germ cells have primarily been studied in the mammalian ovary. In most female mammals, all primordial germ cells (PGCs) develop into oocytes early during ovary formation, and germline stem cells are few in number or absent in postnatal ovaries (Lei L, Spradling AC. Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles. Proc Natl Acad Sci USA 2013, 110:8585-8590). Research efforts in the field have largely focused on meiosis and follicular development, but a fundamental question regarding establishment of femaleness, which is very important to understand the 'female' germline, has not been discussed sufficiently. Recent work has revealed the presence of germline stem cells in the vertebrate ovary, using the teleost fish, medaka (Oryzias latipes) (Nakamura S, Kobayashi K, Nishimura T, Higashijima S, Tanaka, M. Identification of germline stem cells in the ovary of teleost medaka. Science 2010, 328:1561-1563). This discovery allows direct comparison between female and male germline stem cells and raises an interesting and heretofore unaddressed issue regarding femaleness of germline stem cells. In this article, the germ cell behavior in the ovaries of different species is reviewed and compared, the molecular mechanisms underlying the generation of female germ cells are discussed, and the relationship between female germ cells and the surrounding somatic cells is examined.

  13. Drosophila male and female germline stem cell niches require the nuclear lamina protein Otefin.

    PubMed

    Barton, Lacy J; Lovander, Kaylee E; Pinto, Belinda S; Geyer, Pamela K

    2016-07-01

    The nuclear lamina is an extensive protein network that underlies the inner nuclear envelope. This network includes the LAP2-emerin-MAN1-domain (LEM-D) protein family, proteins that share an association with the chromatin binding protein Barrier-to-autointegration factor (BAF). Loss of individual LEM-D proteins causes progressive, tissue-restricted diseases, known as laminopathies. Mechanisms associated with laminopathies are not yet understood. Here we present our studies of one of the Drosophila nuclear lamina LEM-D proteins, Otefin (Ote), a homologue of emerin. Previous studies have shown that Ote is autonomously required for the survival of female germline stem cells (GSCs). We demonstrate that Ote is also required for survival of somatic cells in the ovarian niche, with loss of Ote causing a decrease in cap cell number and altered signal transduction. We show germ cell-restricted expression of Ote rescues these defects, revealing a non-autonomous function for Ote in niche maintenance and emphasizing that GSCs contribute to the maintenance of their own niches. Further, we investigate the requirement of Ote in the male fertility. We show that ote mutant males become prematurely sterile as they age. Parallel to observations in females, this sterility is associated with GSC loss and changes in somatic cells of the niche, phenotypes that are largely rescued by germ cell-restricted Ote expression. Taken together, our studies demonstrate that Ote is required autonomously for survival of two stem cell populations, as well as non-autonomously for maintenance of two somatic niches. Finally, our data add to growing evidence that LEM-D proteins have critical roles in stem cell survival and tissue homeostasis.

  14. [The role of Piwi nuclear localization in the differentiation and proliferation of germline stem cells].

    PubMed

    Yakushev, E Y; Mikhaleva, E A; Abramov, Y A; Sokolova, O A; Zyrianova, I M; Gvozdev, V A; Klenov, M S

    2016-01-01

    The Piwi protein and its orthologs are considered as the key components of the piRNA machinery implicated in transcriptional silencing of transposons. Неre, we show that nuclear localization of the Piwi protein is required not only for transposon repression, but also for proper differentiation of germline stem cells (GSCs). piwi^(Nt) mutation that causes loss of nuclear Piwi and its retention in the cytoplasm leads to the accumulation of undifferentiated GSC-like cells. The analysis of piwi^(Nt) mutation in combination with a bam gene mutation blocking GSC differentiation shows that the loss of nuclear Piwi decreases GSC proliferation rate. This is accompanied by the accumulation of DNA double-strand breaks in GSCs that may be caused by transposition events. Here, for the first time a set of transposons repressed by Piwi in GSCs and surrounding niche cells has been identified. The present study together with our previous data show that nuclear and cytoplasmic Piwi can regulate different stages of the functioning of germinal cells: cytoplasmic Piwi is sufficient to maintain GSCs, while nuclear Piwi localization is necessary for their proper proliferation and differentiation.

  15. Silver nanoparticles disrupt germline stem cell maintenance in the Drosophila testis

    NASA Astrophysics Data System (ADS)

    Ong, Cynthia; Lee, Qian Ying; Cai, Yu; Liu, Xiaoli; Ding, Jun; Yung, Lin-Yue Lanry; Bay, Boon-Huat; Baeg, Gyeong-Hun

    2016-02-01

    Silver nanoparticles (AgNPs), one of the most popular nanomaterials, are commonly used in consumer products and biomedical devices, despite their potential toxicity. Recently, AgNP exposure was reported to be associated with male reproductive toxicity in mammalian models. However, there is still a limited understanding of the effects of AgNPs on spermatogenesis. The fruit fly Drosophila testis is an excellent in vivo model to elucidate the mechanisms underlying AgNP-induced defects in spermatogenesis, as germ lineages can be easily identified and imaged. In this study, we evaluated AgNP-mediated toxicity on spermatogenesis by feeding Drosophila with AgNPs at various concentrations. We first observed a dose-dependent uptake of AgNPs in vivo. Concomitantly, AgNP exposure caused a significant decrease in the viability and delay in the development of Drosophila in a dose-dependent manner. Furthermore, AgNP-treated male flies showed a reduction in fecundity, and the resulting testes contained a decreased number of germline stem cells (GSCs) compared to controls. Interestingly, testes exposed to AgNPs exhibited a dramatic increase in reactive oxygen species levels and showed precocious GSC differentiation. Taken together, our study suggests that AgNP exposure may increase ROS levels in the Drosophila testis, leading to a reduction of GSC number by promoting premature GSC differentiation.

  16. Mating-Induced Increase in Germline Stem Cells via the Neuroendocrine System in Female Drosophila

    PubMed Central

    Ameku, Tomotsune

    2016-01-01

    Mating and gametogenesis are two essential components of animal reproduction. Gametogenesis must be modulated by the need for gametes, yet little is known of how mating, a process that utilizes gametes, may modulate the process of gametogenesis. Here, we report that mating stimulates female germline stem cell (GSC) proliferation in Drosophila melanogaster. Mating-induced increase in GSC number is not simply owing to the indirect effect of emission of stored eggs, but rather is stimulated by a male-derived Sex Peptide (SP) and its receptor SPR, the components of a canonical neuronal pathway that induces a post-mating behavioral switch in females. We show that ecdysteroid, the major insect steroid hormone, regulates mating-induced GSC proliferation independently of insulin signaling. Ovarian ecdysteroid level increases after mating and transmits its signal directly through the ecdysone receptor expressed in the ovarian niche to increase the number of GSCs. Impairment of ovarian ecdysteroid biosynthesis disrupts mating-induced increase in GSCs as well as egg production. Importantly, feeding of ecdysteroid rescues the decrease in GSC number caused by impairment of neuronal SP signaling. Our study illustrates how female GSC activity is coordinately regulated by the neuroendocrine system to sustain reproductive success in response to mating. PMID:27310920

  17. Silver nanoparticles disrupt germline stem cell maintenance in the Drosophila testis.

    PubMed

    Ong, Cynthia; Lee, Qian Ying; Cai, Yu; Liu, Xiaoli; Ding, Jun; Yung, Lin-Yue Lanry; Bay, Boon-Huat; Baeg, Gyeong-Hun

    2016-02-05

    Silver nanoparticles (AgNPs), one of the most popular nanomaterials, are commonly used in consumer products and biomedical devices, despite their potential toxicity. Recently, AgNP exposure was reported to be associated with male reproductive toxicity in mammalian models. However, there is still a limited understanding of the effects of AgNPs on spermatogenesis. The fruit fly Drosophila testis is an excellent in vivo model to elucidate the mechanisms underlying AgNP-induced defects in spermatogenesis, as germ lineages can be easily identified and imaged. In this study, we evaluated AgNP-mediated toxicity on spermatogenesis by feeding Drosophila with AgNPs at various concentrations. We first observed a dose-dependent uptake of AgNPs in vivo. Concomitantly, AgNP exposure caused a significant decrease in the viability and delay in the development of Drosophila in a dose-dependent manner. Furthermore, AgNP-treated male flies showed a reduction in fecundity, and the resulting testes contained a decreased number of germline stem cells (GSCs) compared to controls. Interestingly, testes exposed to AgNPs exhibited a dramatic increase in reactive oxygen species levels and showed precocious GSC differentiation. Taken together, our study suggests that AgNP exposure may increase ROS levels in the Drosophila testis, leading to a reduction of GSC number by promoting premature GSC differentiation.

  18. Improved serum- and feeder-free culture of mouse germline stem cells.

    PubMed

    Kanatsu-Shinohara, Mito; Ogonuki, Narumi; Matoba, Shogo; Morimoto, Hiroko; Ogura, Atsuo; Shinohara, Takashi

    2014-10-01

    Spermatogonial stem cells (SSCs) undergo self-renewal division, which can be recapitulated in vitro. Attempts to establish serum-free culture conditions for SSCs have met with limited success. Although we previously reported that SSCs can be cultured without serum on laminin-coated plates, the growth rate and SSC concentration were relatively low, which made it inefficient for culturing large numbers of SSCs. In this study, we report on a novel culture medium that showed improved SSC maintenance. We used Iscove modified Dulbecco medium, supplemented with lipid mixture, fetuin, and knockout serum replacement. In the presence of glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2), SSCs cultured on laminin-coated plates could proliferate for more than 5 mo and maintained normal karyotype and androgenetic DNA methylation patterns in imprinted genes. Germ cell transplantation showed that SSCs in the serum-free medium proliferated more actively than those in the serum-supplemented medium and that the frequency of SSCs was comparable between the two culture media. Cultured cells underwent germline transmission. Development of a new serum- and feeder-free culture method for SSCs will facilitate studies into the effects of microenvironments on self-renewal and will stimulate further improvements to derive SSC cultures from different animal species.

  19. Human reproductive cloning, embryo stem cells and germline gene intervention: an Israeli perspective.

    PubMed

    Revel, Michel

    2003-01-01

    The perspectives of applying the cloning technology to human reproduction have generated much controversy. Israel was one of the first countries to adopt (in 1998) a Law that prohibits reproductive cloning. This is a moratorium for 5 years during which neither cloning of an entire human being nor genetic changes affecting human reproductive cells will be allowed. An aim of the Law is to allow the examination of the moral, legal, and social aspects of these technologies and their implications for human dignity. With the intention of not being an obstacle to the advancement of medical genetics, the Law provides for a yearly report to the Israel Health Minister on the state of scientific knowledge in these technologies. This article reflects the 2002-3 report, relating to scientific issues and bioethical opinions in Israel and in the world on human reproductive cloning, embryonic stem cell research and germline gene manipulation. In the Jewish tradition, the primary importance of saving lives and helping suffering patients can take precedence over the fears generated by modern genetic and reproductive research. Provided that new technologies are applied for medical indications and respecting human rights and human dignity, it is legitimate to explore their beneficial potential.

  20. Germline Stem Cell Gene PIWIL2 Mediates DNA Repair through Relaxation of Chromatin

    PubMed Central

    Yin, De-Tao; Wang, Qien; Chen, Li; Liu, Meng-Yao; Han, Chunhua; Yan, Qingtao; Shen, Rulong; He, Gang; Duan, Wenrui; Li, Jian-Jian; Wani, Altaf; Gao, Jian-Xin

    2011-01-01

    DNA damage response (DDR) is an intrinsic barrier of cell to tumorigenesis initiated by genotoxic agents. However, the mechanisms underlying the DDR are not completely understood despite of extensive investigation. Recently, we have reported that ectopic expression of germline stem cell gene PIWIL2 is associated with tumor stem cell development, although the underlying mechanisms are largely unknown. Here we show that PIWIL2 is required for the repair of DNA-damage induced by various types of genotoxic agents. Upon ultraviolet (UV) irradiation, silenced PIWIL2 gene in normal human fibroblasts was transiently activated after treatment with UV light. This activation was associated with DNA repair, because Piwil2-deficienct mouse embryonic fibroblasts (mili-/- MEFs) were defective in cyclobutane pyrimidine dimers (CPD) repair after UV treatment. As a result, the UV-treated mili-/- MEFs were more susceptible to apoptosis, as characterized by increased levels of DNA damage-associated apoptotic proteins, such as active caspase-3, cleaved Poly (ADP-ribose) polymerase (PARP) and Bik. The impaired DNA repair in the mili-/- MEFs was associated with the reductions of histone H3 acetylation and chromatin relaxation, although the DDR pathway downstream chromatin relaxation appeared not to be directly affected by Piwil2. Moreover, guanine–guanine (Pt-[GG]) and double strand break (DSB) repair were also defective in the mili-/- MEFs treated by genotoxic chemicals Cisplatin and ionizing radiation (IR), respectively. The results indicate that Piwil2 can mediate DNA repair through an axis of Piwil2 → histone acetylation → chromatin relaxation upstream DDR pathways. The findings reveal a new role for Piwil2 in DNA repair and suggest that Piwil2 may act as a gatekeeper against DNA damage-mediated tumorigenesis. PMID:22110608

  1. Reduction of Cullin-2 in somatic cells disrupts differentiation of germline stem cells in the Drosophila ovary.

    PubMed

    Ayyub, Champakali; Banerjee, Kushal Kr; Joti, Prakash

    2015-09-15

    Signaling from a niche consisting of somatic cells is essential for maintenance of germline stem cells (GSCs) in the ovary of Drosophila. Decapentaplegic (Dpp), a type of bone morphogenetic protein (BMP) signal, emanating from the niche, is the most important signal for this process. Cullin proteins constitute the core of a multiprotein E3-ligase important for their functions viz. degradation or modification of proteins necessary for different cellular processes. We have found that a Cullin protein called Cullin-2 (Cul-2) expresses in both somatic and germline cells of the Drosophila ovary. Reduction of Cul-2 in somatic cells causes upregulation of Dpp signal and produces accumulation of extra GSC-like cells inside germarium, the anteriormost structure of the ovary. Our results suggest that Cullin-2 protein present in the somatic cells is involved in a non cell-autonomous regulation of the extent of Dpp signaling and thus controls the differentiation of GSCs to cystoblasts (CBs).

  2. Structural polarity and dynamics of male germline stem cells in an insect (milkweed bug Oncopeltus fasciatus).

    PubMed

    Dorn, David C; Dorn, August

    2008-01-01

    Knowing the structure opens a door for a better understanding of function because there is no function without structure. Male germline stem cells (GSCs) of the milkweed bug (Oncopeltus fasciatus) exhibit a very extraordinary structure and a very special relationship with their niche, the apical cells. This structural relationship is strikingly different from that known in the fruit fly (Drosophila melanogaster) -- the most successful model system, which allowed deep insights into the signaling interactions between GSCs and niche. The complex structural polarity of male GSCs in the milkweed bug combined with their astonishing dynamics suggest that cell morphology and dynamics are causally related with the most important regulatory processes that take place between GSCs and niche and ensure maintenance, proliferation, and differentiation of GSCs in accordance with the temporal need of mature sperm. The intricate structure of the GSCs of the milkweed bug (and probably of some other insects, i.e., moths) is only accessible by electron microscopy. But, studying singular sections through the apical complex (i.e., GSCs and apical cells) is not sufficient to obtain a full picture of the GSCs; especially, the segregation of projection terminals is not tangible. Only serial sections and their overlay can establish whether membrane ingrowths merely constrict projections or whether a projection terminal is completely cut off. To sequence the GSC dynamics, it is necessary to include juvenile stages, when the processes start and the GSCs occur in small numbers. The fine structural analysis of segregating projection terminals suggests that these terminals undergo autophagocytosis. Autophagosomes can be labeled by markers. We demonstrated acid phosphatase and thiamine pyrophosphatase (TPPase). Both together are thought to identify autophagosomes. Using the appropriate substrate of the enzymes and cerium chloride, the precipitation of electron-dense cerium phosphate granules

  3. gone early, a novel germline factor, ensures the proper size of the stem cell precursor pool in the Drosophila ovary.

    PubMed

    Matsuoka, Shinya; Gupta, Swati; Suzuki, Emiko; Hiromi, Yasushi; Asaoka, Miho

    2014-01-01

    In order to sustain lifelong production of gametes, many animals have evolved a stem cell-based gametogenic program. In the Drosophila ovary, germline stem cells (GSCs) arise from a pool of primordial germ cells (PGCs) that remain undifferentiated even after gametogenesis has initiated. The decision of PGCs to differentiate or remain undifferentiated is regulated by somatic stromal cells: specifically, epidermal growth factor receptor (EGFR) signaling activated in the stromal cells determines the fraction of germ cells that remain undifferentiated by shaping a Decapentaplegic (Dpp) gradient that represses PGC differentiation. However, little is known about the contribution of germ cells to this process. Here we show that a novel germline factor, Gone early (Goe), limits the fraction of PGCs that initiate gametogenesis. goe encodes a non-peptidase homologue of the Neprilysin family metalloendopeptidases. At the onset of gametogenesis, Goe was localized on the germ cell membrane in the ovary, suggesting that it functions in a peptidase-independent manner in cell-cell communication at the cell surface. Overexpression of Goe in the germline decreased the number of PGCs that enter the gametogenic pathway, thereby increasing the proportion of undifferentiated PGCs. Inversely, depletion of Goe increased the number of PGCs initiating differentiation. Excess PGC differentiation in the goe mutant was augmented by halving the dose of argos, a somatically expressed inhibitor of EGFR signaling. This increase in PGC differentiation resulted in a massive decrease in the number of undifferentiated PGCs, and ultimately led to insufficient formation of GSCs. Thus, acting cooperatively with a somatic regulator of EGFR signaling, the germline factor goe plays a critical role in securing the proper size of the GSC precursor pool. Because goe can suppress EGFR signaling activity and is expressed in EGF-producing cells in various tissues, goe may function by attenuating EGFR signaling

  4. magu is required for germline stem cell self-renewal through BMP signaling in the Drosophila testis.

    PubMed

    Zheng, Qi; Wang, Yiwen; Vargas, Eric; DiNardo, Stephen

    2011-09-01

    Understanding how stem cells are maintained in their microenvironment (the niche) is vital for their application in regenerative medicine. Studies of Drosophila male germline stem cells (GSCs) have served as a paradigm in niche-stem cell biology. It is known that the BMP and JAK-STAT pathways are necessary for the maintenance of GSCs in the testis (Kawase et al., 2004; Kiger et al., 2001; Schulz et al., 2004; Shivdasani and Ingham, 2003; Tulina and Matunis, 2001). However, our recent work strongly suggests that BMP signaling is the primary pathway leading to GSC self-renewal (Leatherman and DiNardo, 2010). Here we show that magu controls GSC maintenance by modulating the BMP pathway. We found that magu was specifically expressed from hub cells, and accumulated at the testis tip. Testes from magu mutants exhibited a reduced number of GSCs, yet maintained a normal population of somatic stem cells and hub cells. Additionally, BMP pathway activity was reduced, whereas JAK-STAT activation was retained in mutant testes. Finally, GSC loss caused by the magu mutation could be suppressed by overactivating the BMP pathway in the germline.

  5. C. elegans GLP-1/Notch activates transcription in a probability gradient across the germline stem cell pool

    PubMed Central

    Lee, ChangHwan; Sorensen, Erika B; Lynch, Tina R; Kimble, Judith

    2016-01-01

    C. elegans Notch signaling maintains a pool of germline stem cells within their single-celled mesenchymal niche. Here we investigate the Notch transcriptional response in germline stem cells using single-molecule fluorescence in situ hybridization coupled with automated, high-throughput quantitation. This approach allows us to distinguish Notch-dependent nascent transcripts in the nucleus from mature mRNAs in the cytoplasm. We find that Notch-dependent active transcription sites occur in a probabilistic fashion and, unexpectedly, do so in a steep gradient across the stem cell pool. Yet these graded nuclear sites create a nearly uniform field of mRNAs that extends beyond the region of transcriptional activation. Therefore, active transcription sites provide a precise view of where the Notch-dependent transcriptional complex is productively engaged. Our findings offer a new window into the Notch transcriptional response and demonstrate the importance of assaying nascent transcripts at active transcription sites as a readout for canonical signaling. DOI: http://dx.doi.org/10.7554/eLife.18370.001 PMID:27705743

  6. Expression of vasa(vas)-related genes in germline cells and totipotent somatic stem cells of planarians.

    PubMed

    Shibata, N; Umesono, Y; Orii, H; Sakurai, T; Watanabe, K; Agata, K

    1999-02-01

    Planarians are known for their strong regenerative ability. This ability has been considered to reside in the totipotent somatic stem cell called the "neoblast." Neoblasts contain a unique cytoplasmic structure called the "chromatoid body," which has similar characteristics to the germline granules of germline cells of other animals. The chromatoid bodies decrease in number and size during cytodifferentiation and disappear in completely differentiated cells during regeneration. However, germ cells maintain the chromatoid body during their differentiation from neoblasts. These observations suggest that the chromatoid body is concerned with the totipotency of cells. To understand the molecular nature of the chromatoid body in the neoblast, we focused on vasa (vas)-related genes, since VAS and VAS-related proteins are known to be components of the germline granules in Drosophila and Caenorhabditis elegans. By PCR, two vas-related genes (Dugesia japonica vasa-like gene, DjvlgA and DjvlgB) were isolated, and they were shown to be expressed in germ cells. Interestingly, DjvlgA was also expressed in a number of somatic cells in the mesenchymal space. In regenerating planarians, accumulation of DjvlgA-expressing cells was observed in both the blastema and the blastema-proximal region. In X-ray-irradiated planarians, which had lost regenerative capacity, the number of DjvlgA-expressing cells decreased drastically. These results suggest that the product of DjvlgA may be a component of the chromatoid body and may be involved in the totipotency of the neoblast.

  7. RNA helicase Belle (DDX3) is essential for male germline stem cell maintenance and division in Drosophila.

    PubMed

    Kotov, Alexei A; Olenkina, Oxana M; Kibanov, Mikhail V; Olenina, Ludmila V

    2016-06-01

    The present study showed that RNA helicase Belle (DDX3) was required intrinsically for mitotic progression and survival of germline stem cells (GSCs) and spermatogonial cells in the Drosophila melanogaster testes. We found that deficiency of Belle in the male germline resulted in a strong germ cell loss phenotype. Early germ cells are lost through cell death, whereas somatic hub and cyst cell populations are maintained. The observed phenotype is related to that of the human Sertoli Cell-Only Syndrome caused by the loss of DBY (DDX3) expression in the human testes and results in a complete lack of germ cells with preservation of somatic Sertoli cells. We found the hallmarks of mitotic G2 delay in early germ cells of the larval testes of bel mutants. Both mitotic cyclins, A and B, are markedly reduced in the gonads of bel mutants. Transcription levels of cycB and cycA decrease significantly in the testes of hypomorph bel mutants. Overexpression of Cyclin B in the germline partially rescues germ cell survival, mitotic progression and fertility in the bel-RNAi knockdown testes. Taken together, these results suggest that a role of Belle in GSC maintenance and regulation of early germ cell divisions is associated with the expression control of mitotic cyclins.

  8. Selection for Mitochondrial Quality Drives Evolution of the Germline

    PubMed Central

    Radzvilavicius, Arunas L.; Hadjivasiliou, Zena; Pomiankowski, Andrew; Lane, Nick

    2016-01-01

    The origin of the germline–soma distinction is a fundamental unsolved question. Plants and basal metazoans do not have a germline but generate gametes from pluripotent stem cells in somatic tissues (somatic gametogenesis). In contrast, most bilaterians sequester a dedicated germline early in development. We develop an evolutionary model which shows that selection for mitochondrial quality drives germline evolution. In organisms with low mitochondrial replication error rates, segregation of mutations over multiple cell divisions generates variation, allowing selection to optimize gamete quality through somatic gametogenesis. Higher mutation rates promote early germline sequestration. We also consider how oogamy (a large female gamete packed with mitochondria) alters selection on the germline. Oogamy is beneficial as it reduces mitochondrial segregation in early development, improving adult fitness by restricting variation between tissues. But it also limits variation between early-sequestered oocytes, undermining gamete quality. Oocyte variation is restored through proliferation of germline cells, producing more germ cells than strictly needed, explaining the random culling (atresia) of precursor cells in bilaterians. Unlike other models of germline evolution, selection for mitochondrial quality can explain the stability of somatic gametogenesis in plants and basal metazoans, the evolution of oogamy in all plants and animals with tissue differentiation, and the mutational forces driving early germline sequestration in active bilaterians. The origins of predation in motile bilaterians in the Cambrian explosion is likely to have increased rates of tissue turnover and mitochondrial replication errors, in turn driving germline evolution and the emergence of complex developmental processes. PMID:27997535

  9. The Modification of Tet1 in Male Germline Stem Cells and Interact with PCNA, HDAC1 to promote their Self-renewal and Proliferation

    PubMed Central

    Zheng, Liming; Zhai, Yuanxin; Li, Na; Ma, Fanglin; Zhu, Haijing; Du, Xiaomin; Li, Guangpeng; Hua, Jinlian

    2016-01-01

    Epigenetic modification plays key roles in spermatogenesis, especially DNA methylation dynamic is important in sustaining normal spermatogenesis. Ten-eleven translocation 1 (Tet1) is not only a key demethylase, which works in specific gene regions, but also crosstalks with partners to regulate epigenetic progress as protein complexes. Dairy goat is an important livestock in China, while the unstable culture system in vitro inhibits optimization of new dairy goat species. The study of epigenetic modification in male germline stem cells (mGSCs) is beneficial to the optimization of adult stem cell culture system in vitro, and the improvement of sperm quality and breeding of selected livestock. In our study, we not only analyzed the morphology, gene expression, DNA methylation and histone methylation dynamic in mouse Tet1 (mTet1) modified mGSCs, we also analyzed the stemness ability by in vivo transplantation and explored the functional mechanism of Tet1 in dairy goat mGSCs. The results showed mTet1 modified mGSCs had better self-renewal and proliferation ability than wild-type mGSCs, mTet1 could also up-regulate JMJD3 to decrease H3K27me3, which also showed to suppress the MEK-ERK pathway. Furthermore, Co-IP analysis demonstrated that TET1 interact with PCNA and HDAC1 by forming protein complexes to comprehensively regulate dairy goat mGSCs and spermatogenesis. PMID:27857213

  10. Effete-mediated degradation of Cyclin A is essential for the maintenance of germline stem cells in Drosophila.

    PubMed

    Chen, Dongsheng; Wang, Qi; Huang, Haidong; Xia, Laixin; Jiang, Xiaoyong; Kan, Lijuan; Sun, Qinmiao; Chen, Dahua

    2009-12-01

    Increasing evidence supports the idea that the regulation of stem cells requires both extrinsic and intrinsic mechanisms. However, much less is known about how intrinsic signals regulate the fate of stem cells. Studies on germline stem cells (GSCs) in the Drosophila ovary have provided novel insights into the regulatory mechanisms of stem cell maintenance. In this study, we demonstrate that a ubiquitin-dependent pathway mediated by the Drosophila eff gene, which encodes the E2 ubiquitin-conjugating enzyme Effete (Eff), plays an essential role in GSC maintenance. We show that Eff both physically and genetically interacts with dAPC2, a key component of the anaphase-promoting complex (APC), which acts as a multisubunit E3 ligase and plays an essential role in targeting mitotic regulators for degradation during exit from mitosis. This interaction indicates that Eff regulates the APC/C-mediated proteolysis pathway in GSCs. Moreover, we show that expression of a stable form of Cyclin A, but not full-length Cyclin A, results in GSC loss. Finally we show that, in common with APC2, Eff is required for the ubiquitylation of Cyclin A, and overexpression of full-length Cyclin A accelerates the loss of GSCs in the eff mutant background. Collectively, our data support the idea that Effete/APC-mediated degradation of Cyclin A is essential for the maintenance of germline stem cells in Drosophila. Given that the regulation of mitotic Cyclins is evolutionarily conserved between flies and mammals, our study also implies that a similar mechanism may be conserved in mammals.

  11. Generalized Potential of Adult Neural Stem Cells

    NASA Astrophysics Data System (ADS)

    Clarke, Diana L.; Johansson, Clas B.; Wilbertz, Johannes; Veress, Biborka; Nilsson, Erik; Karlström, Helena; Lendahl, Urban; Frisén, Jonas

    2000-06-01

    The differentiation potential of stem cells in tissues of the adult has been thought to be limited to cell lineages present in the organ from which they were derived, but there is evidence that some stem cells may have a broader differentiation repertoire. We show here that neural stem cells from the adult mouse brain can contribute to the formation of chimeric chick and mouse embryos and give rise to cells of all germ layers. This demonstrates that an adult neural stem cell has a very broad developmental capacity and may potentially be used to generate a variety of cell types for transplantation in different diseases.

  12. Pesticide methoxychlor promotes the epigenetic transgenerational inheritance of adult-onset disease through the female germline.

    PubMed

    Manikkam, Mohan; Haque, M Muksitul; Guerrero-Bosagna, Carlos; Nilsson, Eric E; Skinner, Michael K

    2014-01-01

    Environmental compounds including fungicides, plastics, pesticides, dioxin and hydrocarbons can promote the epigenetic transgenerational inheritance of adult-onset disease in future generation progeny following ancestral exposure during the critical period of fetal gonadal sex determination. This study examined the actions of the pesticide methoxychlor to promote the epigenetic transgenerational inheritance of adult-onset disease and associated differential DNA methylation regions (i.e. epimutations) in sperm. Gestating F0 generation female rats were transiently exposed to methoxychlor during fetal gonadal development (gestation days 8 to 14) and then adult-onset disease was evaluated in adult F1 and F3 (great-grand offspring) generation progeny for control (vehicle exposed) and methoxychlor lineage offspring. There were increases in the incidence of kidney disease, ovary disease, and obesity in the methoxychlor lineage animals. In females and males the incidence of disease increased in both the F1 and the F3 generations and the incidence of multiple disease increased in the F3 generation. There was increased disease incidence in F4 generation reverse outcross (female) offspring indicating disease transmission was primarily transmitted through the female germline. Analysis of the F3 generation sperm epigenome of the methoxychlor lineage males identified differentially DNA methylated regions (DMR) termed epimutations in a genome-wide gene promoters analysis. These epimutations were found to be methoxychlor exposure specific in comparison with other exposure specific sperm epimutation signatures. Observations indicate that the pesticide methoxychlor has the potential to promote the epigenetic transgenerational inheritance of disease and the sperm epimutations appear to provide exposure specific epigenetic biomarkers for transgenerational disease and ancestral environmental exposures.

  13. Three RNA binding proteins form a complex to promote differentiation of germline stem cell lineage in Drosophila.

    PubMed

    Chen, Di; Wu, Chan; Zhao, Shaowei; Geng, Qing; Gao, Yu; Li, Xin; Zhang, Yang; Wang, Zhaohui

    2014-11-01

    In regenerative tissues, one of the strategies to protect stem cells from genetic aberrations, potentially caused by frequent cell division, is to transiently expand the stem cell daughters before further differentiation. However, failure to exit the transit amplification may lead to overgrowth, and the molecular mechanism governing this regulation remains vague. In a Drosophila mutagenesis screen for factors involved in the regulation of germline stem cell (GSC) lineage, we isolated a mutation in the gene CG32364, which encodes a putative RNA-binding protein (RBP) and is designated as tumorous testis (tut). In tut mutant, spermatogonia fail to differentiate and over-amplify, a phenotype similar to that in mei-P26 mutant. Mei-P26 is a TRIM-NHL tumor suppressor homolog required for the differentiation of GSC lineage. We found that Tut binds preferentially a long isoform of mei-P26 3'UTR, and is essential for the translational repression of mei-P26 reporter. Bam and Bgcn are both RBPs that have also been shown to repress mei-P26 expression. Our genetic analyses indicate that tut, bam, or bgcn is required to repress mei-P26 and to promote the differentiation of GSCs. Biochemically, we demonstrate that Tut, Bam, and Bgcn can form a physical complex in which Bam holds Tut on its N-terminus and Bgcn on its C-terminus. Our in vivo and in vitro evidence illustrate that Tut acts with Bam, Bgcn to accurately coordinate proliferation and differentiation in Drosophila germline stem cell lineage.

  14. Three RNA Binding Proteins Form a Complex to Promote Differentiation of Germline Stem Cell Lineage in Drosophila

    PubMed Central

    Zhao, Shaowei; Geng, Qing; Gao, Yu; Li, Xin; Zhang, Yang; Wang, Zhaohui

    2014-01-01

    In regenerative tissues, one of the strategies to protect stem cells from genetic aberrations, potentially caused by frequent cell division, is to transiently expand the stem cell daughters before further differentiation. However, failure to exit the transit amplification may lead to overgrowth, and the molecular mechanism governing this regulation remains vague. In a Drosophila mutagenesis screen for factors involved in the regulation of germline stem cell (GSC) lineage, we isolated a mutation in the gene CG32364, which encodes a putative RNA-binding protein (RBP) and is designated as tumorous testis (tut). In tut mutant, spermatogonia fail to differentiate and over-amplify, a phenotype similar to that in mei-P26 mutant. Mei-P26 is a TRIM-NHL tumor suppressor homolog required for the differentiation of GSC lineage. We found that Tut binds preferentially a long isoform of mei-P26 3′UTR, and is essential for the translational repression of mei-P26 reporter. Bam and Bgcn are both RBPs that have also been shown to repress mei-P26 expression. Our genetic analyses indicate that tut, bam, or bgcn is required to repress mei-P26 and to promote the differentiation of GSCs. Biochemically, we demonstrate that Tut, Bam, and Bgcn can form a physical complex in which Bam holds Tut on its N-terminus and Bgcn on its C-terminus. Our in vivo and in vitro evidence illustrate that Tut acts with Bam, Bgcn to accurately coordinate proliferation and differentiation in Drosophila germline stem cell lineage. PMID:25412508

  15. Notch signaling mediates the age-associated decrease in adhesion of germline stem cells to the niche.

    PubMed

    Tseng, Chen-Yuan; Kao, Shih-Han; Wan, Chih-Ling; Cho, Yueh; Tung, Shu-Yun; Hsu, Hwei-Jan

    2014-12-01

    Stem cells have an innate ability to occupy their stem cell niche, which in turn, is optimized to house stem cells. Organ aging is associated with reduced stem cell occupancy in the niche, but the mechanisms involved are poorly understood. Here, we report that Notch signaling is increased with age in Drosophila female germline stem cells (GSCs), and this results in their removal from the niche. Clonal analysis revealed that GSCs with low levels of Notch signaling exhibit increased adhesiveness to the niche, thereby out-competing their neighbors with higher levels of Notch; adhesiveness is altered through regulation of E-cadherin expression. Experimental enhancement of Notch signaling in GSCs hastens their age-dependent loss from the niche, and such loss is at least partially mediated by Sex lethal. However, disruption of Notch signaling in GSCs does not delay GSC loss during aging, and nor does it affect BMP signaling, which promotes self-renewal of GSCs. Finally, we show that in contrast to GSCs, Notch activation in the niche (which maintains niche integrity, and thus mediates GSC retention) is reduced with age, indicating that Notch signaling regulates GSC niche occupancy both intrinsically and extrinsically. Our findings expose a novel role of Notch signaling in controlling GSC-niche adhesion in response to aging, and are also of relevance to metastatic cancer cells, in which Notch signaling suppresses cell adhesion.

  16. Centrosome misorientation mediates slowing of the cell cycle under limited nutrient conditions in Drosophila male germline stem cells.

    PubMed

    Roth, Therese M; Chiang, C-Y Ason; Inaba, Mayu; Yuan, Hebao; Salzmann, Viktoria; Roth, Caitlin E; Yamashita, Yukiko M

    2012-04-01

    Drosophila male germline stem cells (GSCs) divide asymmetrically, balancing self-renewal and differentiation. Although asymmetric stem cell division balances between self-renewal and differentiation, it does not dictate how frequently differentiating cells must be produced. In male GSCs, asymmetric GSC division is achieved by stereotyped positioning of the centrosome with respect to the stem cell niche. Recently we showed that the centrosome orientation checkpoint monitors the correct centrosome orientation to ensure an asymmetric outcome of the GSC division. When GSC centrosomes are not correctly oriented with respect to the niche, GSC cell cycle is arrested/delayed until the correct centrosome orientation is reacquired. Here we show that induction of centrosome misorientation upon culture in poor nutrient conditions mediates slowing of GSC cell proliferation via activation of the centrosome orientation checkpoint. Consistently, inactivation of the centrosome orientation checkpoint leads to lack of cell cycle slowdown even under poor nutrient conditions. We propose that centrosome misorientation serves as a mediator that transduces nutrient information into stem cell proliferation, providing a previously unappreciated mechanism of stem cell regulation in response to nutrient conditions.

  17. Diet controls normal and tumorous germline stem cells via insulin-dependent and -independent mechanisms in Drosophila.

    PubMed

    Hsu, Hwei-Jan; LaFever, Leesa; Drummond-Barbosa, Daniela

    2008-01-15

    The external environment influences stem cells, but this process is poorly understood. Our previous work showed that germline stem cells (GSCs) respond to diet via neural insulin-like peptides (DILPs) that act directly on the germ line to upregulate stem cell division and cyst growth under a protein-rich diet in Drosophila. Here, we report that DILPs specifically control the G2 phase of the GSC cell cycle via phosphoinositide-3 kinase (PI3K) and dFOXO, and that a separate diet mediator regulates the G1 phase. Furthermore, GSC tumors, which escape the normal stem cell regulatory microenvironment, or niche, still respond to diet via both mechanisms, indicating that niche signals are not required for GSCs to sense or respond to diet. Our results document the effects of diet and insulin-like signals on the cell cycle of stem cells within an intact organism and demonstrate that the response to diet requires multiple signals. Moreover, the retained ability of GSC tumors to respond to diet parallels the long known connections between diet, insulin signaling, and cancer risk in humans.

  18. Jak/Stat signalling in niche support cells regulates dpp transcription to control germline stem cell maintenance in the Drosophila ovary.

    PubMed

    López-Onieva, Lourdes; Fernández-Miñán, Ana; González-Reyes, Acaimo

    2008-02-01

    The existence of specialised regulatory microenvironments or niches that sustain stable stem cell populations is well documented in many tissues. However, the specific mechanisms by which niche support (or stromal) cells govern stem cell maintenance remain largely unknown. Here we demonstrate that removal of the Jak/Stat pathway in support cells of the Drosophila ovarian niche leads to germline stem cell loss by differentiation. Conversely, ectopic Jak/Stat activation in support cells induces stem cell tumours, implying the presence of a signal relay between the stromal compartment and the stem cell population. We further show that ectopic Jak/Stat signalling in support cells augments dpp mRNA levels and increases the range of Dpp signalling, a Bmp2 orthologue known to act as a niche extrinsic factor required for female germline stem cell survival and division. Our results provide strong evidence for a model in which Jak/Stat signalling in somatic support cells regulates dpp transcription to define niche size and to maintain the adjacent germline stem cells in an undifferentiated state.

  19. Differences in chimera formation and germline transmission between E14 and C2J embryonic stem cells in mice.

    PubMed

    Zhu, Yan; Li, Dun-Gao; Sun, Zhao-Gui; Chen, Xue-Jin; Jiang, Man-Xi

    2014-05-01

    Summary The goal of this project was to determine whether the originating strain of mouse embryonic stem (ES) cells affects the maintenance of their pluripotency under uniform culture conditions. ES cells from two strains of mice, E14 and C2J, were tested. Both ES cell lines were cultured in KOSR + 2i medium and then injected into C57BL/6J blastocysts. Our results demonstrate that this medium could support both E14 and C2J ES cells to keep their pluripotency, though E14 ES cells were found to have a higher chimeric rate than C2J ES cells. However, analysis by backcrossing revealed that C2J and E14 ES cells have the same ability for germline transmission. Our results demonstrate that ES cells derived from E14 and C2J cells have the same capacity for germline transmission when injected into C57BL/6J blastocysts; however, due to the limitation of mixed genetic background between E14 cells and host C57BL/6J embryos, C2J ES cells are preferable to E14 ES cells for use in gene-targeting and should become the cell line of choice for the generation of genetically engineered mutant mouse lines.

  20. Spermatogonial stem cell autotransplantation and germline genomic editing: a future cure for spermatogenic failure and prevention of transmission of genomic diseases

    PubMed Central

    Mulder, Callista L.; Zheng, Yi; Jan, Sabrina Z.; Struijk, Robert B.; Repping, Sjoerd; Hamer, Geert; van Pelt, Ans M.M.

    2016-01-01

    BACKGROUND Subfertility affects approximately 15% of all couples, and a severe male factor is identified in 17% of these couples. While the etiology of a severe male factor remains largely unknown, prior gonadotoxic treatment and genomic aberrations have been associated with this type of subfertility. Couples with a severe male factor can resort to ICSI, with either ejaculated spermatozoa (in case of oligozoospermia) or surgically retrieved testicular spermatozoa (in case of azoospermia) to generate their own biological children. Currently there is no direct treatment for azoospermia or oligozoospermia. Spermatogonial stem cell (SSC) autotransplantation (SSCT) is a promising novel clinical application currently under development to restore fertility in sterile childhood cancer survivors. Meanwhile, recent advances in genomic editing, especially the clustered regulatory interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) system, are likely to enable genomic rectification of human SSCs in the near future. OBJECTIVE AND RATIONALE The objective of this review is to provide insights into the prospects of the potential clinical application of SSCT with or without genomic editing to cure spermatogenic failure and to prevent transmission of genetic diseases. SEARCH METHODS We performed a narrative review using the literature available on PubMed not restricted to any publishing year on topics of subfertility, fertility treatments, (molecular regulation of) spermatogenesis and SSCT, inherited (genetic) disorders, prenatal screening methods, genomic editing and germline editing. For germline editing, we focussed on the novel CRISPR-Cas9 system. We included papers written in English only. OUTCOMES Current techniques allow propagation of human SSCs in vitro, which is indispensable to successful transplantation. This technique is currently being developed in a preclinical setting for childhood cancer survivors who have stored a testis biopsy prior to cancer

  1. Cellular and molecular dissection of pluripotent adult somatic stem cells in planarians.

    PubMed

    Shibata, Norito; Rouhana, Labib; Agata, Kiyokazu

    2010-01-01

    Freshwater planarians, Plathelminthes, have been an intriguing model animal of regeneration studies for more than 100 years. Their robust regenerative ability is one of asexual reproductive capacity, in which complete animals develop from tiny body fragments within a week. Pluripotent adult somatic stem cells, called neoblasts, assure this regenerative ability. Neoblasts give rise to not only all types of somatic cells, but also germline cells. During the last decade, several experimental techniques for the analysis of planarian neoblasts at the molecular level, such as in situ hybridization, RNAi and fluorescence activated cell sorting, have been established. Moreover, information about genes involved in maintenance and differentiation of neoblasts has been accumulated. One of the molecular features of neoblasts is the expression of many RNA regulators, which are involved in germline development in other animals, such as vasa and piwi family genes. In this review, we introduce physiological and molecular features of the neoblast, and discuss how germline genes regulate planarian neoblasts and what differences exist between neoblasts and germline cells.

  2. A Non-Cell-Autonomous Role of BEC-1/BECN1/Beclin1 in Coordinating Cell-Cycle Progression and Stem Cell Proliferation during Germline Development.

    PubMed

    Ames, Kristina; Da Cunha, Dayse S; Gonzalez, Brenda; Konta, Marina; Lin, Feng; Shechter, Gabriel; Starikov, Lev; Wong, Sara; Bülow, Hannes E; Meléndez, Alicia

    2017-03-20

    The decision of stem cells to proliferate and differentiate is finely controlled. The Caenorhabditis elegans germline provides a tractable system for studying the mechanisms that control stem cell proliferation and homeostasis [1-4]. Autophagy is a conserved cellular recycling process crucial for cellular homeostasis in many different contexts [5], but its function in germline stem cell proliferation remains poorly understood. Here, we describe a function for autophagy in germline stem cell proliferation. We found that autophagy genes such as bec-1/BECN1/Beclin1, atg-16.2/ATG16L, atg-18/WIPI1/2, and atg-7/ATG7 are required for the late larval expansion of germline stem cell progenitors in the C. elegans gonad. We further show that BEC-1/BECN1/Beclin1 acts independently of the GLP-1/Notch or DAF-7/TGF-β pathways but together with the DAF-2/insulin IGF-1 receptor (IIR) signaling pathway to promote germline stem cell proliferation. Similar to DAF-2/IIR, BEC-1/BECN1/Beclin1, ATG-18/WIPI1/2, and ATG-16.2/ATG16L all promote cell-cycle progression and are negatively regulated by the phosphatase and tensin homolog DAF-18/PTEN. However, whereas BEC-1/BECN1/Beclin1 acts through the transcriptional regulator SKN-1/Nrf1, ATG-18/WIPI1/2 and ATG-16.2/ATG16L exert their function through the DAF-16/FOXO transcription factor. In contrast, ATG-7 functions in concert with the DAF-7/TGF-β pathway to promote germline proliferation and is not required for cell-cycle progression. Finally, we report that BEC-1/BECN1/Beclin1 functions non-cell-autonomously to facilitate cell-cycle progression and stem cell proliferation. Our findings demonstrate a novel non-autonomous role for BEC-1/BECN1/Beclin1 in the control of stem cell proliferation and cell-cycle progression, which may have implications for the understanding and development of therapies against malignant cell growth in the future.

  3. The centrosome orientation checkpoint is germline stem cell specific and operates prior to the spindle assembly checkpoint in Drosophila testis.

    PubMed

    Venkei, Zsolt G; Yamashita, Yukiko M

    2015-01-01

    Asymmetric cell division is utilized by a broad range of cell types to generate two daughter cells with distinct cell fates. In stem cell populations asymmetric cell division is believed to be crucial for maintaining tissue homeostasis, failure of which can lead to tissue degeneration or hyperplasia/tumorigenesis. Asymmetric cell divisions also underlie cell fate diversification during development. Accordingly, the mechanisms by which asymmetric cell division is achieved have been extensively studied, although the check points that are in place to protect against potential perturbation of the process are poorly understood. Drosophila melanogaster male germline stem cells (GSCs) possess a checkpoint, termed the centrosome orientation checkpoint (COC), that monitors correct centrosome orientation with respect to the component cells of the niche to ensure asymmetric stem cell division. To our knowledge, the COC is the only checkpoint mechanism identified to date that specializes in monitoring the orientation of cell division in multicellular organisms. Here, by establishing colcemid-induced microtubule depolymerization as a sensitive assay, we examined the characteristics of COC activity and find that it functions uniquely in GSCs but not in their differentiating progeny. We show that the COC operates in the G2 phase of the cell cycle, independently of the spindle assembly checkpoint. This study may provide a framework for identifying and understanding similar mechanisms that might be in place in other asymmetrically dividing cell types.

  4. Ci antagonizes Hippo signaling in the somatic cells of the ovary to drive germline stem cell differentiation.

    PubMed

    Li, Chaoyi; Kan, Lijuan; Chen, Yan; Zheng, Xiudeng; Li, Weini; Zhang, Wenxin; Cao, Lei; Lin, Xiaohui; Ji, Shanming; Huang, Shoujun; Zhang, Guoqiang; Liu, Xiaohui; Tao, Yi; Wu, Shian; Chen, Dahua

    2015-10-01

    Many stem cell populations are tightly regulated by their local microenvironment (niche), which comprises distinct types of stromal cells. However, little is known about mechanisms by which niche subgroups coordinately determine the stem cell fate. Here we identify that Yki, the key Hippo pathway component, is essential for escort cell (EC) function in promoting germline differentiation in Drosophila ovary. We found that Hedgehog (Hh) signals emanating primarily from cap cells support the function of ECs, where Cubitus interruptus (Ci), the Hh signaling effector, acts to inhibit Hippo kinase cascade activity. Mechanistically, we found that Ci competitively interacts with Hpo and impairs the Hpo-Wts signaling complex formation, thereby promoting Yki nuclear localization. The actions of Ci ensure effective Yki signaling to antagonize Sd/Tgi/Vg-mediated default repression in ECs. This study uncovers a mechanism explaining how subgroups of niche cells coordinate to determine the stem cell fate via Hh-Hippo signaling crosstalk, and enhances our understanding of mechanistic regulations of the oncogenic Yki/YAP signaling.

  5. CSN maintains the germline cellular microenvironment and controls the level of stem cell genes via distinct CRLs in testes of Drosophila melanogaster.

    PubMed

    Qian, Yue; Ng, Chun L; Schulz, Cordula

    2015-02-01

    Stem cells and their daughters are often associated with and depend on cues from their cellular microenvironment. In Drosophila testes, each Germline Stem Cell (GSC) contacts apical hub cells and is enclosed by cytoplasmic extensions from two Cyst Stem Cells (CySCs). Each GSC daughter becomes enclosed by cytoplasmic extensions from two CySC daughters, called cyst cells. CySC fate depends on an Unpaired (Upd) signal from the hub cells, which activates the Janus Kinase and Signal Transducer and Activator of Transcription (Jak/STAT) pathway in the stem cells. Germline enclosure depends on Epidermal Growth Factor (EGF) signals from the germline to the somatic support cells. Expression of RNA-hairpins against subunits of the COnstitutively Photomorphogenic-9- (COP9-) signalosome (CSN) in somatic support cells disrupted germline enclosure. Furthermore, CSN-depleted somatic support cells in the CySC position next to the hub had reduced levels of the Jak/STAT effectors Zinc finger homeotic-1 (Zfh-1) and Chronologically inappropriate morphogenesis (Chinmo). Knockdown of CSN in the somatic support cells does not disrupt EGF and Upd signal transduction as downstream signal transducers, phosphorylated STAT (pSTAT) and phosphorylated Mitogen Activated Protein Kinase (pMAPK), were still localized to the somatic support cell nuclei. The CSN modifies fully formed Cullin RING ubiquitin ligase (CRL) complexes to regulate selective proteolysis. Reducing cullin2 (cul2) from the somatic support cells disrupted germline enclosure, while reducing cullin1 (cul1) from the somatic support cells led to a low level of Chinmo. We propose that different CRLs enable the responses of somatic support cells to Upd and EGF.

  6. The actin-binding protein profilin is required for germline stem cell maintenance and germ cell enclosure by somatic cyst cells.

    PubMed

    Shields, Alicia R; Spence, Allyson C; Yamashita, Yukiko M; Davies, Erin L; Fuller, Margaret T

    2014-01-01

    Specialized microenvironments, or niches, provide signaling cues that regulate stem cell behavior. In the Drosophila testis, the JAK-STAT signaling pathway regulates germline stem cell (GSC) attachment to the apical hub and somatic cyst stem cell (CySC) identity. Here, we demonstrate that chickadee, the Drosophila gene that encodes profilin, is required cell autonomously to maintain GSCs, possibly facilitating localization or maintenance of E-cadherin to the GSC-hub cell interface. Germline specific overexpression of Adenomatous Polyposis Coli 2 (APC2) rescued GSC loss in chic hypomorphs, suggesting an additive role of APC2 and F-actin in maintaining the adherens junctions that anchor GSCs to the niche. In addition, loss of chic function in the soma resulted in failure of somatic cyst cells to maintain germ cell enclosure and overproliferation of transit-amplifying spermatogonia.

  7. Adult Stem Cells and Diseases of Aging

    PubMed Central

    Boyette, Lisa B.; Tuan, Rocky S.

    2014-01-01

    Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan. PMID:24757526

  8. Expression pattern of Boule in dairy goat testis and its function in promoting the meiosis in male germline stem cells (mGSCs).

    PubMed

    Li, Mingzhao; Liu, Chao; Zhu, Haijing; Sun, Junwei; Yu, Meng; Niu, Zhiwei; Liu, Weishuai; Peng, Sha; Hua, Jinlian

    2013-02-01

    Boule is a conserved gene in meiosis, which encodes RNA binding protein required for spermatocyte meiosis. Deletion of Boule was found to block meiosis in spermatogenesis, which contributes to infertility. Up to date, the expression and function of Boule in the goat testis are not known. The objectives of this study were to investigate the expression pattern of Boule in dairy goat testis and their function in male germline stem cells (mGSCs). The results first revealed that the expression level of Boule in adult testes was significantly higher than younger and immature goats, and azoospermia and male intersex testis. Over-expression of Boule promoted the expression of meiosis-related genes in dairy goat mGSCs. The expression of Stra8 was up-regulated by over-expression of Boule analyzed by Western blotting and Luciferase reporter assay. While, Cdc25a, the downstream regulator of Boule, was found not to affect the expression of Stra8, and our data illustrated that Cdc25a did not regulate meiosis via Stra8. The expression of Stra8 and Boule was up-regulated by RA induction. Taken together, results suggest the Boule plays an important role in dairy goat spermatogenesis and that over-expression of Boule may promote spermatogenesis and meiosis in dairy goat.

  9. The bantam microRNA is associated with drosophila fragile X mental retardation protein and regulates the fate of germline stem cells.

    PubMed

    Yang, Yingyue; Xu, Shunliang; Xia, Laixin; Wang, Jun; Wen, Shengmei; Jin, Peng; Chen, Dahua

    2009-04-01

    Fragile X syndrome, a common form of inherited mental retardation, is caused by the loss of fragile X mental retardation protein (FMRP). We have previously demonstrated that dFmr1, the Drosophila ortholog of the fragile X mental retardation 1 gene, plays a role in the proper maintenance of germline stem cells in Drosophila ovary; however, the molecular mechanism behind this remains elusive. In this study, we used an immunoprecipitation assay to reveal that specific microRNAs (miRNAs), particularly the bantam miRNA (bantam), are physically associated with dFmrp in ovary. We show that, like dFmr1, bantam is not only required for repressing primordial germ cell differentiation, it also functions as an extrinsic factor for germline stem cell maintenance. Furthermore, we find that bantam genetically interacts with dFmr1 to regulate the fate of germline stem cells. Collectively, our results support the notion that the FMRP-mediated translation pathway functions through specific miRNAs to control stem cell regulation.

  10. [Application prospect of adult stem cells in male infertility].

    PubMed

    Yang, Rui-Feng; Xiong, Cheng-Liang

    2013-05-01

    The study on stem cells is a hot field in biomedical science in recent years, and has furthered from laboratory to clinical application. Stem cells, according to their developmental stage and differential properties, can be divided into embryonic stem cells, induced PS cells and adult stem cells, among which, adult stem cells have already been applied to the clinical treatment of many systemic diseases. Currently, the study of spermatogonial stem cells and adult stem cells is in the front of the basic researches on the treatment of male infertility, but the time has not yet arrived for their clinical application. This paper outlines the application prospect of adult stem cells in male infertility.

  11. Identification of a germ-line pro-B cell subset that distinguishes the fetal/neonatal from the adult B cell development pathway.

    PubMed

    Lu, Li-Sheng; Tung, James; Baumgarth, Nicole; Herman, Ometa; Gleimer, Michael; Herzenberg, Leonard A; Herzenberg, Leonore A

    2002-03-05

    Studies presented here show that the expression of CD4, MHC class II (Ia,) and B220 cleanly resolves a major and a minor subset within the earliest pro-B cell population (germ-line pro-B) in adult bone marrow (BM). The major subset expresses intermediate B220 and low CD4 levels. The minor subset, which constitutes roughly 20% of the adult germ-line pro-B, expresses very low B220 levels and does not express CD4. Ia is clearly detectable at low levels on the major germ-line pro-B subset, both in wild-type adult mice and in gene-targeted mice (RAG2-/- and microMT), in which B cell development terminates before the pre-B cell stage. A small proportion of cells in the more mature pro-B cell subsets (Hardy Fractions B and C) also express Ia at this level. In contrast, Ia levels on the minor subset are barely above (or equal to) background. Surprisingly, the major germ-line pro-B cell subset found in adults is missing in fetal and neonatal animals. All of the germ-line pro-B in these immature animals express a phenotype (very low B220, no CD4, or Ia) similar to that of the minor pro-B cell subset in adult BM. Because B cell development in fetal/neonatal animals principally results in B-1 cells, these findings demonstrate that the B-1 development pathway does not include the major germ-line pro-B subset found in adult BM and hence identify a very early difference between the B-1 and -2 development pathways.

  12. Embryonic origin of adult stem cells required for tissue homeostasis and regeneration.

    PubMed

    Davies, Erin L; Lei, Kai; Seidel, Christopher W; Kroesen, Amanda E; McKinney, Sean A; Guo, Longhua; Robb, Sofia Mc; Ross, Eric J; Gotting, Kirsten; Alvarado, Alejandro Sánchez

    2017-01-10

    Planarian neoblasts are pluripotent, adult somatic stem cells and lineage-primed progenitors that are required for the production and maintenance of all differentiated cell types, including the germline. Neoblasts, originally defined as undifferentiated cells residing in the adult parenchyma, are frequently compared to embryonic stem cells yet their developmental origin remains obscure. We investigated the provenance of neoblasts during Schmidtea mediterranea embryogenesis, and report that neoblasts arise from an anarchic, cycling piwi-1+ population wholly responsible for production of all temporary and definitive organs during embryogenesis. Early embryonic piwi-1+ cells are molecularly and functionally distinct from neoblasts: they express unique cohorts of early embryo enriched transcripts and behave differently than neoblasts in cell transplantation assays. Neoblast lineages arise as organogenesis begins and are required for construction of all major organ systems during embryogenesis. These subpopulations are continuously generated during adulthood, where they act as agents of tissue homeostasis and regeneration.

  13. COP9-Hedgehog axis regulates the function of the germline stem cell progeny differentiation niche in the Drosophila ovary.

    PubMed

    Lu, Tinglin; Wang, Su; Gao, Yuan; Mao, Ying; Yang, Zhihao; Liu, Luping; Song, Xiaoqing; Ni, Jianquan; Xie, Ting

    2015-12-15

    Both stem cell self-renewal and lineage differentiation are controlled extrinsically as well as intrinsically. Germline stem cells (GSCs) in the Drosophila ovary provide an attractive model in which to study both stem cell self-renewal and lineage differentiation at the molecular and cellular level. Recently, we have proposed that escort cells (ECs) form a differentiation niche to control GSC lineage specification extrinsically. However, it remains poorly understood how the maintenance and function of the differentiation niche are regulated at the molecular level. Here, this study reveals a new role of COP9 in the differentiation niche to modulate autocrine Hedgehog (Hh) signaling, thereby promoting GSC lineage differentiation. COP9, which is a highly conserved protein complex composed of eight CSN subunits, catalyzes the removal of Nedd8 protein modification from target proteins. Our genetic results have demonstrated that all the COP9 components and the hh pathway components, including hh itself, are required in ECs to promote GSC progeny differentiation. Interestingly, COP9 is required in ECs to maintain Hh signaling activity, and activating Hh signaling in ECs can partially bypass the requirement for COP9 in GSC progeny differentiation. Finally, both COP9 and Hh signaling in ECs promote GSC progeny differentiation partly by preventing BMP signaling and maintaining cellular processes. Therefore, this study has demonstrated that the COP9-Hh signaling axis operates in the differentiation niche to promote GSC progeny differentiation partly by maintaining EC cellular processes and preventing BMP signaling. This provides new insight into how the function of the differentiation niche is regulated at the molecular level.

  14. Long-term live imaging provides new insight into stem cell regulation and germline-soma coordination in the Drosophila ovary.

    PubMed

    Morris, Lucy X; Spradling, Allan C

    2011-06-01

    The Drosophila ovariole tip produces new ovarian follicles on a 12-hour cycle by controlling niche-based germline and follicle stem cell divisions and nurturing their developing daughters. Static images provide a thumbnail view of folliculogenesis but imperfectly capture the dynamic cellular interactions that underlie follicle production. We describe a live-imaging culture system that supports normal ovarian stem cell activity, cyst movement and intercellular interaction over 14 hours, which is long enough to visualize all the steps of follicle generation. Our results show that live imaging has unique potential to address diverse aspects of stem cell biology and gametogenesis. Stem cells in cultured tissue respond to insulin and orient their mitotic spindles. Somatic escort cells, the glial-like partners of early germ cells, do not adhere to and migrate along with germline stem cell daughters as previously proposed. Instead, dynamic, microtubule-rich cell membranes pass cysts from one escort cell to the next. Additionally, escort cells are not replenished by the regular division of escort stem cells as previously suggested. Rather, escort cells remain quiescent and divide only to maintain a constant germ cell:escort cell ratio.

  15. Long-term live imaging provides new insight into stem cell regulation and germline-soma coordination in the Drosophila ovary

    PubMed Central

    Morris, Lucy X.; Spradling, Allan C.

    2011-01-01

    The Drosophila ovariole tip produces new ovarian follicles on a 12-hour cycle by controlling niche-based germline and follicle stem cell divisions and nurturing their developing daughters. Static images provide a thumbnail view of folliculogenesis but imperfectly capture the dynamic cellular interactions that underlie follicle production. We describe a live-imaging culture system that supports normal ovarian stem cell activity, cyst movement and intercellular interaction over 14 hours, which is long enough to visualize all the steps of follicle generation. Our results show that live imaging has unique potential to address diverse aspects of stem cell biology and gametogenesis. Stem cells in cultured tissue respond to insulin and orient their mitotic spindles. Somatic escort cells, the glial-like partners of early germ cells, do not adhere to and migrate along with germline stem cell daughters as previously proposed. Instead, dynamic, microtubule-rich cell membranes pass cysts from one escort cell to the next. Additionally, escort cells are not replenished by the regular division of escort stem cells as previously suggested. Rather, escort cells remain quiescent and divide only to maintain a constant germ cell:escort cell ratio. PMID:21558370

  16. Immunostaining of germline stem cells and the niche in Drosophila ovaries.

    PubMed

    Luo, Lichao; Chai, Phing Chian; Cai, Yu

    2013-01-01

    Stem cells have the ability to switch between proliferative (self-renewal) and differentiation modes. The Drosophila germarium is a well-established in vivo model for the study of communication between stem cells and their niche. One commonly used technique for such study is immunostaining that allows examination of protein localization at a fixed time point. This chapter provides a detailed protocol for immunofluorescence staining of Drosophila ovaries. This protocol has been optimized to enable explicit visualization of the niche structure, as well as to maximize the degree of multiplexing for protein labeling and detection.

  17. LET-418/Mi2 and SPR-5/LSD1 cooperatively prevent somatic reprogramming of C. elegans germline stem cells.

    PubMed

    Käser-Pébernard, Stéphanie; Müller, Fritz; Wicky, Chantal

    2014-04-08

    Throughout their journey to forming new individuals, germline stem cells must remain totipotent, particularly by maintaining a specific chromatin structure. However, the place epigenetic factors occupy in this process remains elusive. So far, "sensitization" of chromatin by modulation of histone arrangement and/or content was believed to facilitate transcription-factor-induced germ cell reprogramming. Here, we demonstrate that the combined reduction of two epigenetic factors suffices to reprogram C. elegans germ cells. The histone H3K4 demethylase SPR-5/LSD1 and the chromatin remodeler LET-418/Mi2 function together in an early process to maintain germ cell status and act as a barrier to block precocious differentiation. This epigenetic barrier is capable of limiting COMPASS-mediated H3K4 methylation, because elevated H3K4me3 levels correlate with germ cell reprogramming in spr-5; let-418 mutants. Interestingly, germ cells deficient for spr-5 and let-418 mainly reprogram as neurons, suggesting that neuronal fate might be the first to be derepressed in early embryogenesis.

  18. Translational research of adult stem cell therapy.

    PubMed

    Suzuki, Gen

    2015-11-26

    Congestive heart failure (CHF) secondary to chronic coronary artery disease is a major cause of morbidity and mortality world-wide. Its prevalence is increasing despite advances in medical and device therapies. Cell based therapies generating new cardiomyocytes and vessels have emerged as a promising treatment to reverse functional deterioration and prevent the progression to CHF. Functional efficacy of progenitor cells isolated from the bone marrow and the heart have been evaluated in preclinical large animal models. Furthermore, several clinical trials using autologous and allogeneic stem cells and progenitor cells have demonstrated their safety in humans yet their clinical relevance is inconclusive. This review will discuss the clinical therapeutic applications of three specific adult stem cells that have shown particularly promising regenerative effects in preclinical studies, bone marrow derived mesenchymal stem cell, heart derived cardiosphere-derived cell and cardiac stem cell. We will also discuss future therapeutic approaches.

  19. Dicer-1-dependent Dacapo suppression acts downstream of Insulin receptor in regulating cell division of Drosophila germline stem cells

    PubMed Central

    Yu, Jenn-Yah; Reynolds, Steven H.; Hatfield, Steve D.; Shcherbata, Halyna R.; Fischer, Karin A.; Ward, Ellen J.; Long, Dang; Ding, Ye; Ruohola-Baker, Hannele

    2009-01-01

    Summary It is important to understand the regulation of stem cell division because defects in this process can cause altered tissue homeostasis or cancer. The cyclin-dependent kinase inhibitor Dacapo (Dap), a p21/p27 homolog, acts downstream of the microRNA (miRNA) pathway to regulate the cell cycle in Drosophila melanogaster germline stem cells (GSCs). Tissue-extrinsic signals, including insulin, also regulate cell division of GSCs. We report that intrinsic and extrinsic regulators intersect in GSC division control; the Insulin receptor (InR) pathway regulates Dap levels through miRNAs, thereby controlling GSC division. Using GFP-dap 3′UTR sensors in vivo, we show that in GSCs the dap 3′UTR is responsive to Dicer-1, an RNA endonuclease III required for miRNA processing. Furthermore, the dap 3′UTR can be directly targeted by miR-7, miR-278 and miR-309 in luciferase assays. Consistent with this, miR-278 and miR-7 mutant GSCs are partially defective in GSC division and show abnormal cell cycle marker expression, respectively. These data suggest that the GSC cell cycle is regulated via the dap 3′UTR by multiple miRNAs. Furthermore, the GFP-dap 3′UTR sensors respond to InR but not to TGF-β signaling, suggesting that InR signaling utilizes Dap for GSC cell cycle regulation. We further demonstrate that the miRNA-based Dap regulation may act downstream of InR signaling; Dcr-1 and Dap are required for nutrition-dependent cell cycle regulation in GSCs and reduction of dap partially rescues the cell cycle defect of InR-deficient GSCs. These data suggest that miRNA- and Dap-based cell cycle regulation in GSCs can be controlled by InR signaling. PMID:19336466

  20. Dicer-1-dependent Dacapo suppression acts downstream of Insulin receptor in regulating cell division of Drosophila germline stem cells.

    PubMed

    Yu, Jenn-Yah; Reynolds, Steven H; Hatfield, Steve D; Shcherbata, Halyna R; Fischer, Karin A; Ward, Ellen J; Long, Dang; Ding, Ye; Ruohola-Baker, Hannele

    2009-05-01

    It is important to understand the regulation of stem cell division because defects in this process can cause altered tissue homeostasis or cancer. The cyclin-dependent kinase inhibitor Dacapo (Dap), a p21/p27 homolog, acts downstream of the microRNA (miRNA) pathway to regulate the cell cycle in Drosophila melanogaster germline stem cells (GSCs). Tissue-extrinsic signals, including insulin, also regulate cell division of GSCs. We report that intrinsic and extrinsic regulators intersect in GSC division control; the Insulin receptor (InR) pathway regulates Dap levels through miRNAs, thereby controlling GSC division. Using GFP-dap 3'UTR sensors in vivo, we show that in GSCs the dap 3'UTR is responsive to Dicer-1, an RNA endonuclease III required for miRNA processing. Furthermore, the dap 3'UTR can be directly targeted by miR-7, miR-278 and miR-309 in luciferase assays. Consistent with this, miR-278 and miR-7 mutant GSCs are partially defective in GSC division and show abnormal cell cycle marker expression, respectively. These data suggest that the GSC cell cycle is regulated via the dap 3'UTR by multiple miRNAs. Furthermore, the GFP-dap 3'UTR sensors respond to InR but not to TGF-beta signaling, suggesting that InR signaling utilizes Dap for GSC cell cycle regulation. We further demonstrate that the miRNA-based Dap regulation may act downstream of InR signaling; Dcr-1 and Dap are required for nutrition-dependent cell cycle regulation in GSCs and reduction of dap partially rescues the cell cycle defect of InR-deficient GSCs. These data suggest that miRNA- and Dap-based cell cycle regulation in GSCs can be controlled by InR signaling.

  1. Aging and insulin signaling differentially control normal and tumorous germline stem cells.

    PubMed

    Kao, Shih-Han; Tseng, Chen-Yuan; Wan, Chih-Ling; Su, Yu-Han; Hsieh, Chang-Che; Pi, Haiwei; Hsu, Hwei-Jan

    2015-02-01

    Aging influences stem cells, but the processes involved remain unclear. Insulin signaling, which controls cellular nutrient sensing and organismal aging, regulates the G2 phase of Drosophila female germ line stem cell (GSC) division cycle in response to diet; furthermore, this signaling pathway is attenuated with age. The role of insulin signaling in GSCs as organisms age, however, is also unclear. Here, we report that aging results in the accumulation of tumorous GSCs, accompanied by a decline in GSC number and proliferation rate. Intriguingly, GSC loss with age is hastened by either accelerating (through eliminating expression of Myt1, a cell cycle inhibitory regulator) or delaying (through mutation of insulin receptor (dinR) GSC division, implying that disrupted cell cycle progression and insulin signaling contribute to age-dependent GSC loss. As flies age, DNA damage accumulates in GSCs, and the S phase of the GSC cell cycle is prolonged. In addition, GSC tumors (which escape the normal stem cell regulatory microenvironment, known as the niche) still respond to aging in a similar manner to normal GSCs, suggesting that niche signals are not required for GSCs to sense or respond to aging. Finally, we show that GSCs from mated and unmated females behave similarly, indicating that female GSC-male communication does not affect GSCs with age. Our results indicate the differential effects of aging and diet mediated by insulin signaling on the stem cell division cycle, highlight the complexity of the regulation of stem cell aging, and describe a link between ovarian cancer and aging.

  2. Aging and insulin signaling differentially control normal and tumorous germline stem cells

    PubMed Central

    Kao, Shih-Han; Tseng, Chen-Yuan; Wan, Chih-Ling; Su, Yu-Han; Hsieh, Chang-Che; Pi, Haiwei; Hsu, Hwei-Jan

    2015-01-01

    Aging influences stem cells, but the processes involved remain unclear. Insulin signaling, which controls cellular nutrient sensing and organismal aging, regulates the G2 phase of Drosophila female germ line stem cell (GSC) division cycle in response to diet; furthermore, this signaling pathway is attenuated with age. The role of insulin signaling in GSCs as organisms age, however, is also unclear. Here, we report that aging results in the accumulation of tumorous GSCs, accompanied by a decline in GSC number and proliferation rate. Intriguingly, GSC loss with age is hastened by either accelerating (through eliminating expression of Myt1, a cell cycle inhibitory regulator) or delaying (through mutation of insulin receptor (dinR) GSC division, implying that disrupted cell cycle progression and insulin signaling contribute to age-dependent GSC loss. As flies age, DNA damage accumulates in GSCs, and the S phase of the GSC cell cycle is prolonged. In addition, GSC tumors (which escape the normal stem cell regulatory microenvironment, known as the niche) still respond to aging in a similar manner to normal GSCs, suggesting that niche signals are not required for GSCs to sense or respond to aging. Finally, we show that GSCs from mated and unmated females behave similarly, indicating that female GSC–male communication does not affect GSCs with age. Our results indicate the differential effects of aging and diet mediated by insulin signaling on the stem cell division cycle, highlight the complexity of the regulation of stem cell aging, and describe a link between ovarian cancer and aging. PMID:25470527

  3. Stem Cells in Mammalian Gonads.

    PubMed

    Wu, Ji; Ding, Xinbao; Wang, Jian

    Stem cells have great value in clinical application because of their ability to self-renew and their potential to differentiate into many different cell types. Mammalian gonads, including testes for males and ovaries for females, are composed of germline and somatic cells. In male mammals, spermatogonial stem cells maintain spermatogenesis which occurs continuously in adult testis. Likewise, a growing body of evidence demonstrated that female germline stem cells could be found in mammalian ovaries. Meanwhile, prior studies have shown that somatic stem cells exist in both testes and ovaries. In this chapter, we focus on mammalian gonad stem cells and discuss their characteristics as well as differentiation potentials.

  4. Adult Stem Cell Therapy for Stroke: Challenges and Progress

    PubMed Central

    Bang, Oh Young; Kim, Eun Hee; Cha, Jae Min; Moon, Gyeong Joon

    2016-01-01

    Stroke is one of the leading causes of death and physical disability among adults. It has been 15 years since clinical trials of stem cell therapy in patients with stroke have been conducted using adult stem cells like mesenchymal stem cells and bone marrow mononuclear cells. Results of randomized controlled trials showed that adult stem cell therapy was safe but its efficacy was modest, underscoring the need for new stem cell therapy strategies. The primary limitations of current stem cell therapies include (a) the limited source of engraftable stem cells, (b) the presence of optimal time window for stem cell therapies, (c) inherited limitation of stem cells in terms of growth, trophic support, and differentiation potential, and (d) possible transplanted cell-mediated adverse effects, such as tumor formation. Here, we discuss recent advances that overcome these hurdles in adult stem cell therapy for stroke. PMID:27733032

  5. A Drosophila chromatin factor interacts with the Piwi-interacting RNA mechanism in niche cells to regulate germline stem cell self-renewal.

    PubMed

    Smulders-Srinivasan, Tora K; Szakmary, Akos; Lin, Haifan

    2010-10-01

    Stem cell research has been focused on niche signaling and epigenetic programming of stem cells. However, epigenetic programming of niche cells remains unexplored. We showed previously that Piwi plays a crucial role in Piwi-interacting RNA-mediated epigenetic regulation and functions in the niche cells to maintain germline stem cells (GSCs) in the Drosophila ovary. To investigate the epigenetic programming of niche cells by Piwi, we screened mutations in the Polycomb and trithorax group genes, and an enhancer of Polycomb and trithorax called corto, for their potential genetic interaction with piwi. corto encodes a chromatin protein. corto mutations restored GSC division in mutants of piwi and fs(1)Yb (Yb), a gene that regulates piwi expression in niche cells to maintain GSCs. Consistent with this, corto appears to be expressed in the niche cells and is not required in the germline. Furthermore, in corto-suppressed Yb mutants, the expression of hedgehog (hh) is restored in niche cells, which is likely responsible for corto suppression of the GSC and somatic stem cell defects of Yb mutants. These results reveal a novel epigenetic mechanism involving Corto and Piwi that defines the fate and signaling function of niche cells in maintaining GSCs.

  6. Adult Mammalian Neural Stem Cells and Neurogenesis: Five Decades Later

    PubMed Central

    Bond, Allison M.; Ming, Guo-li; Song, Hongjun

    2015-01-01

    Summary Adult somatic stem cells in various organs maintain homeostatic tissue regeneration and enhance plasticity. Since its initial discovery five decades ago, investigations of adult neurogenesis and neural stem cells have led to an established and expanding field that has significantly influenced many facets of neuroscience, developmental biology and regenerative medicine. Here we review recent progress and focus on questions related to adult mammalian neural stem cells that also apply to other somatic stem cells. We further discuss emerging topics that are guiding the field toward better understanding adult neural stem cells and ultimately applying these principles to improve human health. PMID:26431181

  7. Transcription and imprinting dynamics in developing postnatal male germline stem cells

    PubMed Central

    Hammoud, Saher Sue; Low, Diana H.P.; Yi, Chongil; Lee, Chee Leng; Oatley, Jon M.; Payne, Christopher J.; Carrell, Douglas T.; Guccione, Ernesto; Cairns, Bradley R.

    2015-01-01

    Postnatal spermatogonial stem cells (SSCs) progress through proliferative and developmental stages to populate the testicular niche prior to productive spermatogenesis. To better understand, we conducted extensive genomic profiling at multiple postnatal stages on subpopulations enriched for particular markers (THY1, KIT, OCT4, ID4, or GFRa1). Overall, our profiles suggest three broad populations of spermatogonia in juveniles: (1) epithelial-like spermatogonia (THY1+; high OCT4, ID4, and GFRa1), (2) more abundant mesenchymal-like spermatogonia (THY1+; moderate OCT4 and ID4; high mesenchymal markers), and (3) (in older juveniles) abundant spermatogonia committing to gametogenesis (high KIT+). Epithelial-like spermatogonia displayed the expected imprinting patterns, but, surprisingly, mesenchymal-like spermatogonia lacked imprinting specifically at paternally imprinted loci but fully restored imprinting prior to puberty. Furthermore, mesenchymal-like spermatogonia also displayed developmentally linked DNA demethylation at meiotic genes and also at certain monoallelic neural genes (e.g., protocadherins and olfactory receptors). We also reveal novel candidate receptor–ligand networks involving SSCs and the developing niche. Taken together, neonates/juveniles contain heterogeneous epithelial-like or mesenchymal-like spermatogonial populations, with the latter displaying extensive DNA methylation/chromatin dynamics. We speculate that this plasticity helps SSCs proliferate and migrate within the developing seminiferous tubule, with proper niche interaction and membrane attachment reverting mesenchymal-like spermatogonial subtype cells back to an epithelial-like state with normal imprinting profiles. PMID:26545815

  8. Model-based analysis for qualitative data: an application in Drosophila germline stem cell regulation.

    PubMed

    Pargett, Michael; Rundell, Ann E; Buzzard, Gregery T; Umulis, David M

    2014-03-01

    Discovery in developmental biology is often driven by intuition that relies on the integration of multiple types of data such as fluorescent images, phenotypes, and the outcomes of biochemical assays. Mathematical modeling helps elucidate the biological mechanisms at play as the networks become increasingly large and complex. However, the available data is frequently under-utilized due to incompatibility with quantitative model tuning techniques. This is the case for stem cell regulation mechanisms explored in the Drosophila germarium through fluorescent immunohistochemistry. To enable better integration of biological data with modeling in this and similar situations, we have developed a general parameter estimation process to quantitatively optimize models with qualitative data. The process employs a modified version of the Optimal Scaling method from social and behavioral sciences, and multi-objective optimization to evaluate the trade-off between fitting different datasets (e.g. wild type vs. mutant). Using only published imaging data in the germarium, we first evaluated support for a published intracellular regulatory network by considering alternative connections of the same regulatory players. Simply screening networks against wild type data identified hundreds of feasible alternatives. Of these, five parsimonious variants were found and compared by multi-objective analysis including mutant data and dynamic constraints. With these data, the current model is supported over the alternatives, but support for a biochemically observed feedback element is weak (i.e. these data do not measure the feedback effect well). When also comparing new hypothetical models, the available data do not discriminate. To begin addressing the limitations in data, we performed a model-based experiment design and provide recommendations for experiments to refine model parameters and discriminate increasingly complex hypotheses.

  9. Model-Based Analysis for Qualitative Data: An Application in Drosophila Germline Stem Cell Regulation

    PubMed Central

    Pargett, Michael; Rundell, Ann E.; Buzzard, Gregery T.; Umulis, David M.

    2014-01-01

    Discovery in developmental biology is often driven by intuition that relies on the integration of multiple types of data such as fluorescent images, phenotypes, and the outcomes of biochemical assays. Mathematical modeling helps elucidate the biological mechanisms at play as the networks become increasingly large and complex. However, the available data is frequently under-utilized due to incompatibility with quantitative model tuning techniques. This is the case for stem cell regulation mechanisms explored in the Drosophila germarium through fluorescent immunohistochemistry. To enable better integration of biological data with modeling in this and similar situations, we have developed a general parameter estimation process to quantitatively optimize models with qualitative data. The process employs a modified version of the Optimal Scaling method from social and behavioral sciences, and multi-objective optimization to evaluate the trade-off between fitting different datasets (e.g. wild type vs. mutant). Using only published imaging data in the germarium, we first evaluated support for a published intracellular regulatory network by considering alternative connections of the same regulatory players. Simply screening networks against wild type data identified hundreds of feasible alternatives. Of these, five parsimonious variants were found and compared by multi-objective analysis including mutant data and dynamic constraints. With these data, the current model is supported over the alternatives, but support for a biochemically observed feedback element is weak (i.e. these data do not measure the feedback effect well). When also comparing new hypothetical models, the available data do not discriminate. To begin addressing the limitations in data, we performed a model-based experiment design and provide recommendations for experiments to refine model parameters and discriminate increasingly complex hypotheses. PMID:24626201

  10. Adult stem cell-based apexogenesis

    PubMed Central

    Li, Yao; Shu, Li-Hong; Yan, Ming; Dai, Wen-Yong; Li, Jun-Jun; Zhang, Guang-Dong; Yu, Jin-Hua

    2014-01-01

    Generally, the dental pulp needs to be removed when it is infected, and root canal therapy (RCT) is usually required in which infected dental pulp is replaced with inorganic materials (paste and gutta percha). This treatment approach ultimately brings about a dead tooth. However, pulp vitality is extremely important to the tooth itself, since it provides nutrition and acts as a biosensor to detect the potential pathogenic stimuli. Despite the reported clinical success rate, RCT-treated teeth are destined to be devitalized, brittle and susceptible to postoperative fracture. Recently, the advances and achievements in the field of stem cell biology and regenerative medicine have inspired novel biological approaches to apexogenesis in young patients suffering from pulpitis or periapical periodontitis. This review mainly focuses on the benchtop and clinical regeneration of root apex mediated by adult stem cells. Moreover, current strategies for infected pulp therapy are also discussed here. PMID:25332909

  11. Loss of DNA mismatch repair imparts a selective advantage in planarian adult stem cells.

    PubMed

    Hollenbach, Jessica P; Resch, Alissa M; Palakodeti, Dasaradhi; Graveley, Brenton R; Heinen, Christopher D

    2011-01-01

    Lynch syndrome (LS) leads to an increased risk of early-onset colorectal and other types of cancer and is caused by germline mutations in DNA mismatch repair (MMR) genes. Loss of MMR function results in a mutator phenotype that likely underlies its role in tumorigenesis. However, loss of MMR also results in the elimination of a DNA damage-induced checkpoint/apoptosis activation barrier that may allow damaged cells to grow unchecked. A fundamental question is whether loss of MMR provides pre-cancerous stem cells an immediate selective advantage in addition to establishing a mutator phenotype. To test this hypothesis in an in vivo system, we utilized the planarian Schmidtea mediterranea which contains a significant population of identifiable adult stem cells. We identified a planarian homolog of human MSH2, a MMR gene which is mutated in 38% of LS cases. The planarian Smed-msh2 is expressed in stem cells and some progeny. We depleted Smed-msh2 mRNA levels by RNA-interference and found a striking survival advantage in these animals treated with a cytotoxic DNA alkylating agent compared to control animals. We demonstrated that this tolerance to DNA damage is due to the survival of mitotically active, MMR-deficient stem cells. Our results suggest that loss of MMR provides an in vivo survival advantage to the stem cell population in the presence of DNA damage that may have implications for tumorigenesis.

  12. The glypican Dally is required in the niche for the maintenance of germline stem cells and short-range BMP signaling in the Drosophila ovary.

    PubMed

    Guo, Zheng; Wang, Zhaohui

    2009-11-01

    The Drosophila ovary is an excellent system with which to study germline stem cell (GSC) biology. Two or three female GSCs are maintained in a structure called a niche at the anterior tip of the ovary. The somatic niche cells surrounding the GSCs include terminal filament cells, cap cells and escort stem cells. Mounting evidence has demonstrated that BMP-like morphogens are the immediate upstream signals to promote GSC fate by preventing the expression of Bam, a key differentiation factor. In contrast to their morphogenic long-range action in imaginal epithelia, BMP molecules in the ovarian niche specify GSC fate at single-cell resolution. How this steep gradient of BMP response is achieved remains elusive. In this study, we found that the glypican Dally is essential for maintaining GSC identity. Dally is highly expressed in cap cells. Cell-specific Dally-RNAi, mutant clonal analysis and cell-specific rescue of the GSC-loss phenotype suggest that Dally acts in the cap cells adjacent to the GSCs. We confirmed that Dally facilitated BMP signaling in GSCs by examining its downstream targets in various dally mutants. Conversely, when we overexpressed Dally in somatic cells outside the niche, we increased the number of GSC-like cells apparently by expanding the pro-GSC microenvironment. Furthermore, in a genetic setting we revealed a BMP-sensitivity distinction between germline and somatic cells, namely that Dally is required for short-range BMP signaling in germline but not in somatic cells. We propose that Dally ensures high-level BMP signaling in the ovarian niche and thus female GSC determination.

  13. Regulation of cyclin A localization downstream of Par-1 function is critical for the centrosome orientation checkpoint in Drosophila male germline stem cells.

    PubMed

    Yuan, Hebao; Chiang, C-Y Ason; Cheng, Jun; Salzmann, Viktoria; Yamashita, Yukiko M

    2012-01-01

    Male germline stem cells (GSCs) in Drosophila melanogaster divide asymmetrically by orienting the mitotic spindle with respect to the niche, a microenvironment that specifies stem cell identity. The spindle orientation is prepared during interphase through stereotypical positioning of the centrosomes. We recently demonstrated that GSCs possess a checkpoint ("the centrosome orientation checkpoint") that monitors correct centrosome orientation prior to mitosis to ensure an oriented spindle and thus asymmetric outcome of the division. Here, we show that Par-1, a serine/threonine kinase that regulates polarity in many systems, is involved in this checkpoint. Par-1 shows a cell cycle-dependent localization to the spectrosome, a germline-specific, endoplasmic reticulum-like organelle. Furthermore, the localization of cyclin A, which is normally localized to the spectrosome, is perturbed in par-1 mutant GSCs. Interestingly, overexpression of mutant cyclin A that does not localize to the spectrosome and mutation in hts, a core component of the spectrosome, both lead to defects in the centrosome orientation checkpoint. We propose that the regulation of cyclin A localization via Par-1 function plays a critical role in the centrosome orientation checkpoint.

  14. The polarity protein Baz forms a platform for the centrosome orientation during asymmetric stem cell division in the Drosophila male germline.

    PubMed

    Inaba, Mayu; Venkei, Zsolt G; Yamashita, Yukiko M

    2015-03-20

    Many stem cells divide asymmetrically in order to balance self-renewal with differentiation. The essence of asymmetric cell division (ACD) is the polarization of cells and subsequent division, leading to unequal compartmentalization of cellular/extracellular components that confer distinct cell fates to daughter cells. Because precocious cell division before establishing cell polarity would lead to failure in ACD, these two processes must be tightly coupled; however, the underlying mechanism is poorly understood. In Drosophila male germline stem cells, ACD is prepared by stereotypical centrosome positioning. The centrosome orientation checkpoint (COC) further serves to ensure ACD by preventing mitosis upon centrosome misorientation. In this study, we show that Bazooka (Baz) provides a platform for the correct centrosome orientation and that Baz-centrosome association is the key event that is monitored by the COC. Our work provides a foundation for understanding how the correct cell polarity may be recognized by the cell to ensure productive ACD.

  15. Drosophila Rbp6 is an orthologue of vertebrate Msi-1 and Msi-2, but does not function redundantly with dMsi to regulate germline stem cell behaviour.

    PubMed

    Siddall, Nicole A; Kalcina, Marina; Johanson, Timothy M; Monk, Adrian C; Casagranda, Franca; Been, Reeva P; McLaughlin, Eileen A; Hime, Gary R

    2012-01-01

    The vertebrate RNA-binding proteins, Musashi-1 (Msi-1) and Musashi-2 (Msi-2) are expressed in multiple stem cell populations. A role for Musashi proteins in preventing stem cell differentiation has been suggested from genetic analysis of the Drosophila family member, dMsi, and both vertebrate Msi proteins function co-operatively to regulate neural stem cell behaviour. Here we have identified a second Drosophila Msi family member, Rbp6, which shares more amino acid identity with vertebrate Msi-1 and Msi-2 than dMsi. We generated an antibody that detects most Rbp6 splice isoforms and show that Rbp6 is expressed in multiple tissues throughout development. However, Rbp6 deletion mutants generated in this study are viable and fertile, and show only minor defects. We used Drosophila spermatogonial germline stem cells (GSC's) as a model to test whether Drosophila Msi proteins function redundantly to regulate stem cell behaviour. However, like vertebrate Msi-1 and Msi-2, Rbp6 and Msi do not appear to be co-expressed in spermatogenic GSC's and do not function co-operatively in the regulation of GSC maintenance. Thus while two Msi family members are present in Drosophila, the function of the family members have diverged.

  16. AluY-mediated germline deletion, duplication and somatic stem cell reversion in UBE2T defines a new subtype of Fanconi anemia.

    PubMed

    Virts, Elizabeth L; Jankowska, Anna; Mackay, Craig; Glaas, Marcel F; Wiek, Constanze; Kelich, Stephanie L; Lottmann, Nadine; Kennedy, Felicia M; Marchal, Christophe; Lehnert, Erik; Scharf, Rüdiger E; Dufour, Carlo; Lanciotti, Marina; Farruggia, Piero; Santoro, Alessandra; Savasan, Süreyya; Scheckenbach, Kathrin; Schipper, Jörg; Wagenmann, Martin; Lewis, Todd; Leffak, Michael; Farlow, Janice L; Foroud, Tatiana M; Honisch, Ellen; Niederacher, Dieter; Chakraborty, Sujata C; Vance, Gail H; Pruss, Dmitry; Timms, Kirsten M; Lanchbury, Jerry S; Alpi, Arno F; Hanenberg, Helmut

    2015-09-15

    Fanconi anemia (FA) is a rare inherited disorder clinically characterized by congenital malformations, progressive bone marrow failure and cancer susceptibility. At the cellular level, FA is associated with hypersensitivity to DNA-crosslinking genotoxins. Eight of 17 known FA genes assemble the FA E3 ligase complex, which catalyzes monoubiquitination of FANCD2 and is essential for replicative DNA crosslink repair. Here, we identify the first FA patient with biallelic germline mutations in the ubiquitin E2 conjugase UBE2T. Both mutations were aluY-mediated: a paternal deletion and maternal duplication of exons 2-6. These loss-of-function mutations in UBE2T induced a cellular phenotype similar to biallelic defects in early FA genes with the absence of FANCD2 monoubiquitination. The maternal duplication produced a mutant mRNA that could encode a functional protein but was degraded by nonsense-mediated mRNA decay. In the patient's hematopoietic stem cells, the maternal allele with the duplication of exons 2-6 spontaneously reverted to a wild-type allele by monoallelic recombination at the duplicated aluY repeat, thereby preventing bone marrow failure. Analysis of germline DNA of 814 normal individuals and 850 breast cancer patients for deletion or duplication of UBE2T exons 2-6 identified the deletion in only two controls, suggesting aluY-mediated recombinations within the UBE2T locus are rare and not associated with an increased breast cancer risk. Finally, a loss-of-function germline mutation in UBE2T was detected in a high-risk breast cancer patient with wild-type BRCA1/2. Cumulatively, we identified UBE2T as a bona fide FA gene (FANCT) that also may be a rare cancer susceptibility gene.

  17. Localization of early germ cells in a stony coral, Euphyllia ancora: potential implications for a germline stem cell system in coral gametogenesis

    NASA Astrophysics Data System (ADS)

    Shikina, Shinya; Chung, Yi-Jou; Wang, Hsiang-Ming; Chiu, Yi-Ling; Shao, Zih-Fang; Lee, Yan-Horn; Chang, Ching-Fong

    2015-06-01

    Most corals exhibit annual or multiple gametogenic cycles. Thus far, coral gametogenesis has been studied in many species and locations during the past three decades; however, currently, only a few papers exist that describe the origin of germ cells, such as germline stem cells (GSCs), which support the continuous production of gametes in every reproductive cycle. To address this issue, in this study, we focused on and identified piwi gene, which has been used as a marker of germline cells, including GSCs, in various metazoans, in a scleractinian coral, Euphyllia ancora. Reverse-transcription PCR and Western blotting analyses revealed that E. ancora piwi-like ( Eapiwi) is expressed in mesentery tissues where the sites of gametogenesis are located for both sexes. Immunohistochemistry with a specific antibody against Eapiwi revealed strong immunoreactivity in the spermatogonia in males and in the oogonia and early oocytes in females, demonstrating that Eapiwi could be used as an early germ cell marker in E. ancora. Subsequent immunohistochemical analyses regarding the spatial and temporal distribution patterns of early germ cells in mesentery tissues revealed that early germ cells were present throughout the year in the mesentery tissue we examined, regardless of the sexual reproductive cycle. In particular, small numbers of early germ cells were observed in specific sites of mesentery tissues with fully matured gonads in both sexes. These early germ cells were not released together with mature gametes during the spawning period and remained in the mesentery tissues. These results suggested that these early germ cells most likely serve as a reservoir of germline cells and that some of these cells would produce differentiated germ cells for the upcoming sexual reproduction period; hence, these cells would function as GSCs. Our data provide new information for understanding continuous gamete production in corals.

  18. Platelet-derived growth factor receptor-alpha positive cardiac progenitor cells derived from multipotent germline stem cells are capable of cardiomyogenesis in vitro and in vivo.

    PubMed

    Kim, Bang-Jin; Kim, Yong-Hee; Lee, Yong-An; Jung, Sang-Eun; Hong, Yeong Ho; Lee, Eun-Ju; Kim, Byung-Gak; Hwang, Seongsoo; Do, Jeong Tae; Pang, Myung-Geol; Ryu, Buom-Yong

    2017-03-31

    Cardiac cell therapy has the potential to revolutionize treatment of heart diseases, but its success hinders on the development of a stem cell therapy capable of efficiently producing functionally differentiated cardiomyocytes. A key to unlocking the therapeutic application of stem cells lies in understanding the molecular mechanisms that govern the differentiation process. Here we report that a population of platelet-derived growth factor receptor alpha (PDGFRA) cells derived from mouse multipotent germline stem cells (mGSCs) were capable of undergoing cardiomyogenesis in vitro. Cells derived in vitro from PDGFRA positive mGSCs express significantly higher levels of cardiac marker proteins compared to PDGFRA negative mGSCs. Using Pdgfra shRNAs to investigate the dependence of Pdgfra on cardiomyocyte differentiation, we observed that Pdgfra silencing inhibited cardiac differentiation. In a rat myocardial infarction (MI) model, transplantation of a PDGFRAenriched cell population into the rat heart readily underwent functional differentiation into cardiomyocytes and reduced areas of fibrosis associated with MI injury. Together, these results suggest that mGSCs may provide a unique source of cardiac stem/progenitor cells for future regenerative therapy of damaged heart tissue.

  19. Inhibitor of DNA binding 4 is expressed selectively by single spermatogonia in the male germline and regulates the self-renewal of spermatogonial stem cells in mice.

    PubMed

    Oatley, Melissa J; Kaucher, Amy V; Racicot, Karen E; Oatley, Jon M

    2011-08-01

    Continual spermatogenesis at a quantitatively normal level is required to sustain male fertility. The foundation of this process relies on maintenance of an undifferentiated spermatogonial population consisting of spermatogonial stem cells (SSCs) that self-renew as well as transient amplifying progenitors produced by differentiation. In mammals, type A(single) spermatogonia form the SSC population, but molecular markers distinguishing these from differentiating progenitors are undefined and knowledge of mechanisms regulating their functions is limited. We show that in the mouse male germline the transcriptional repressor ID4 is expressed by a subpopulation of undifferentiated spermatogonia and selectively marks A(single) spermatogonia. In addition, we found that ID4 expression is up-regulated in isolated SSC-enriched fractions by stimulation from GDNF, a key growth factor driving self-renewal. In mice lacking ID4 expression, quantitatively normal spermatogenesis was found to be impaired due to progressive loss of the undifferentiated spermatogonial population during adulthood. Moreover, reduction of ID4 expression by small interfering RNA treatment abolished the ability of wild-type SSCs to expand in vitro during long-term culture without affecting their survival. Collectively, these results indicate that ID4 is a distinguishing marker of SSCs in the mammalian germline and plays an important role in the regulation of self-renewal.

  20. Adult stem cells: hopes and hypes of regenerative medicine.

    PubMed

    Dulak, Józef; Szade, Krzysztof; Szade, Agata; Nowak, Witold; Józkowicz, Alicja

    2015-01-01

    Stem cells are self-renewing cells that can differentiate into specialized cell type(s). Pluripotent stem cells, i.e. embryonic stem cells (ESC) or induced pluripotent stem cells (iPSC) differentiate into cells of all three embryonic lineages. Multipotent stem cells, like hematopoietic stem cells (HSC), can develop into multiple specialized cells in a specific tissue. Unipotent cells differentiate only into one cell type, like e.g. satellite cells of skeletal muscle. There are many examples of successful clinical applications of stem cells. Over million patients worldwide have benefited from bone marrow transplantations performed for treatment of leukemias, anemias or immunodeficiencies. Skin stem cells are used to heal severe burns, while limbal stem cells can regenerate the damaged cornea. Pluripotent stem cells, especially the patient-specific iPSC, have a tremendous therapeutic potential, but their clinical application will require overcoming numerous drawbacks. Therefore, the use of adult stem cells, which are multipotent or unipotent, can be at present a more achievable strategy. Noteworthy, some studies ascribed particular adult stem cells as pluripotent. However, despite efforts, the postulated pluripotency of such events like "spore-like cells", "very small embryonic-like stem cells" or "multipotent adult progenitor cells" have not been confirmed in stringent independent studies. Also plasticity of the bone marrow-derived cells which were suggested to differentiate e.g. into cardiomyocytes, has not been positively verified, and their therapeutic effect, if observed, results rather from the paracrine activity. Here we discuss the examples of recent studies on adult stem cells in the light of current understanding of stem cell biology.

  1. The CCR4 deadenylase acts with Nanos and Pumilio in the fine-tuning of Mei-P26 expression to promote germline stem cell self-renewal.

    PubMed

    Joly, Willy; Chartier, Aymeric; Rojas-Rios, Patricia; Busseau, Isabelle; Simonelig, Martine

    2013-01-01

    Translational regulation plays an essential role in Drosophila ovarian germline stem cell (GSC) biology. GSC self-renewal requires two translational repressors, Nanos (Nos) and Pumilio (Pum), which repress the expression of differentiation factors in the stem cells. The molecular mechanisms underlying this translational repression remain unknown. Here, we show that the CCR4 deadenylase is required for GSC self-renewal and that Nos and Pum act through its recruitment onto specific mRNAs. We identify mei-P26 mRNA as a direct and major target of Nos/Pum/CCR4 translational repression in the GSCs. mei-P26 encodes a protein of the Trim-NHL tumor suppressor family that has conserved functions in stem cell lineages. We show that fine-tuning Mei-P26 expression by CCR4 plays a key role in GSC self-renewal. These results identify the molecular mechanism of Nos/Pum function in GSC self-renewal and reveal the role of CCR4-NOT-mediated deadenylation in regulating the balance between GSC self-renewal and differentiation.

  2. Control of germline stem cell self-renewal and differentiation in the Drosophila ovary: concerted actions of niche signals and intrinsic factors.

    PubMed

    Xie, Ting

    2013-01-01

    In the Drosophila ovary, germline stem cells (GSCs) physically interact with their niche composed of terminal filament cells, cap cells, and possibly GSC-contacting escort cells (ECs). A GSC divides to generate a self-renewing stem cell that remains in the niche and a differentiating daughter that moves away from the niche. The GSC niche provides a bone morphogenetic protein (BMP) signal that maintains GSC self-renewal by preventing stem cell differentiation via repression of the differentiation-promoting gene bag of marbles (bam). In addition, it expresses E-cadherin, which mediates cell adhesion for anchoring GSCs in the niche, enabling continuous self-renewal. GSCs themselves also express different classes of intrinsic factors, including signal transducers, transcription factors, chromatin remodeling factors, translation regulators, and miRNAs, which control self-renewal by strengthening interactions with the niche and repressing various differentiation pathways. Differentiated GSC daughters, known as cystoblasts (CBs), also express distinct classes of intrinsic factors to inhibit self-renewal and promote germ cell differentiation. Surprisingly, GSC progeny are also dependent on their surrounding ECs for proper differentiation at least partly by preventing BMP from diffusing to the differentiated germ cell zone and by repressing ectopic BMP expression. Therefore, both GSC self-renewal and CB differentiation are controlled by collaborative actions of extrinsic signals and intrinsic factors.

  3. Embryonic origin of adult stem cells required for tissue homeostasis and regeneration

    PubMed Central

    Davies, Erin L; Lei, Kai; Seidel, Christopher W; Kroesen, Amanda E; McKinney, Sean A; Guo, Longhua; Robb, Sofia MC; Ross, Eric J; Gotting, Kirsten; Alvarado, Alejandro Sánchez

    2017-01-01

    Planarian neoblasts are pluripotent, adult somatic stem cells and lineage-primed progenitors that are required for the production and maintenance of all differentiated cell types, including the germline. Neoblasts, originally defined as undifferentiated cells residing in the adult parenchyma, are frequently compared to embryonic stem cells yet their developmental origin remains obscure. We investigated the provenance of neoblasts during Schmidtea mediterranea embryogenesis, and report that neoblasts arise from an anarchic, cycling piwi-1+ population wholly responsible for production of all temporary and definitive organs during embryogenesis. Early embryonic piwi-1+ cells are molecularly and functionally distinct from neoblasts: they express unique cohorts of early embryo enriched transcripts and behave differently than neoblasts in cell transplantation assays. Neoblast lineages arise as organogenesis begins and are required for construction of all major organ systems during embryogenesis. These subpopulations are continuously generated during adulthood, where they act as agents of tissue homeostasis and regeneration. DOI: http://dx.doi.org/10.7554/eLife.21052.001 PMID:28072387

  4. Exome sequencing reveals germline gain-of-function EGFR mutation in an adult with Lhermitte–Duclos disease

    PubMed Central

    Colby, Samantha; Yehia, Lamis; Niazi, Farshad; Chen, JinLian; Ni, Ying

    2016-01-01

    Lhermitte–Duclos disease (LDD) is a rare cerebellar disorder believed to be pathognomonic for Cowden syndrome. Presently, the only known etiology is germline PTEN mutation. We report a 41-yr-old white female diagnosed with LDD and wild-type for PTEN. Exome sequencing revealed a germline heterozygous EGFR mutation that breaks a disulfide bond in the receptor's extracellular domain, resulting in constitutive activation. Functional studies demonstrate activation of ERK/AKT signaling pathways, mimicking PTEN loss-of-function downstream effects. The identification of EGFR as a candidate LDD susceptibility gene contributes to advancement of molecular diagnosis and targeted therapy for this rare condition with limited treatment options. PMID:27900366

  5. Cyclin E controls Drosophila female germline stem cell maintenance independently of its role in proliferation by modulating responsiveness to niche signals.

    PubMed

    Ables, Elizabeth T; Drummond-Barbosa, Daniela

    2013-02-01

    Stem cells must proliferate while maintaining 'stemness'; however, much remains to be learned about how factors that control the division of stem cells influence their identity. Multiple stem cell types display cell cycles with short G1 phases, thought to minimize susceptibility to differentiation factors. Drosophila female germline stem cells (GSCs) have short G1 and long G2 phases, and diet-dependent systemic factors often modulate G2. We previously observed that Cyclin E (CycE), a known G1/S regulator, is atypically expressed in GSCs during G2/M; however, it remained unclear whether CycE has cell cycle-independent roles in GSCs or whether it acts exclusively by modulating the cell cycle. In this study, we detected CycE activity during G2/M, reflecting its altered expression pattern, and showed that CycE and its canonical partner, Cyclin-dependent kinase 2 (Cdk2), are required not only for GSC proliferation, but also for GSC maintenance. In genetic mosaics, CycE- and Cdk2-deficient GSCs are rapidly lost from the niche, remain arrested in a G1-like state, and undergo excessive growth and incomplete differentiation. However, we found that CycE controls GSC maintenance independently of its role in the cell cycle; GSCs harboring specific hypomorphic CycE mutations are not efficiently maintained despite normal proliferation rates. Finally, CycE-deficient GSCs have an impaired response to niche bone morphogenetic protein signals that are required for GSC self-renewal, suggesting that CycE modulates niche-GSC communication. Taken together, these results show unequivocally that the roles of CycE/Cdk2 in GSC division cycle regulation and GSC maintenance are separable, and thus potentially involve distinct sets of phosphorylation targets.

  6. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration.

    PubMed

    Liu, Shan; Zhou, Jingli; Zhang, Xuan; Liu, Yang; Chen, Jin; Hu, Bo; Song, Jinlin; Zhang, Yuanyuan

    2016-06-21

    Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.

  7. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration

    PubMed Central

    Liu, Shan; Zhou, Jingli; Zhang, Xuan; Liu, Yang; Chen, Jin; Hu, Bo; Song, Jinlin; Zhang, Yuanyuan

    2016-01-01

    Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications. PMID:27338364

  8. A misexpression screen reveals effects of bag-of-marbles and TGF beta class signaling on the Drosophila male germ-line stem cell lineage.

    PubMed Central

    Schulz, Cordula; Kiger, Amy A; Tazuke, Salli I; Yamashita, Yukiko M; Pantalena-Filho, Luiz C; Jones, D Leanne; Wood, Cricket G; Fuller, Margaret T

    2004-01-01

    Male gametes are produced throughout reproductive life by a classic stem cell mechanism. However, little is known about the molecular mechanisms for lineage production that maintain male germ-line stem cell (GSC) populations, regulate mitotic amplification divisions, and ensure germ cell differentiation. Here we utilize the Drosophila system to identify genes that cause defects in the male GSC lineage when forcibly expressed. We conducted a gain-of-function screen using a collection of 2050 EP lines and found 55 EP lines that caused defects at early stages of spermatogenesis upon forced expression either in germ cells or in surrounding somatic support cells. Most strikingly, our analysis of forced expression indicated that repression of bag-of-marbles (bam) expression in male GSC is important for male GSC survival, while activity of the TGF beta signal transduction pathway may play a permissive role in maintenance of GSCs in Drosophila testes. In addition, forced activation of the TGF beta signal transduction pathway in germ cells inhibits the transition from the spermatogonial mitotic amplification program to spermatocyte differentiation. PMID:15238523

  9. The polarity protein Baz forms a platform for the centrosome orientation during asymmetric stem cell division in the Drosophila male germline

    PubMed Central

    Inaba, Mayu; Venkei, Zsolt G; Yamashita, Yukiko M

    2015-01-01

    Many stem cells divide asymmetrically in order to balance self-renewal with differentiation. The essence of asymmetric cell division (ACD) is the polarization of cells and subsequent division, leading to unequal compartmentalization of cellular/extracellular components that confer distinct cell fates to daughter cells. Because precocious cell division before establishing cell polarity would lead to failure in ACD, these two processes must be tightly coupled; however, the underlying mechanism is poorly understood. In Drosophila male germline stem cells, ACD is prepared by stereotypical centrosome positioning. The centrosome orientation checkpoint (COC) further serves to ensure ACD by preventing mitosis upon centrosome misorientation. In this study, we show that Bazooka (Baz) provides a platform for the correct centrosome orientation and that Baz-centrosome association is the key event that is monitored by the COC. Our work provides a foundation for understanding how the correct cell polarity may be recognized by the cell to ensure productive ACD. DOI: http://dx.doi.org/10.7554/eLife.04960.001 PMID:25793442

  10. REST regulation of gene networks in adult neural stem cells

    PubMed Central

    Mukherjee, Shradha; Brulet, Rebecca; Zhang, Ling; Hsieh, Jenny

    2016-01-01

    Adult hippocampal neural stem cells generate newborn neurons throughout life due to their ability to self-renew and exist as quiescent neural progenitors (QNPs) before differentiating into transit-amplifying progenitors (TAPs) and newborn neurons. The mechanisms that control adult neural stem cell self-renewal are still largely unknown. Conditional knockout of REST (repressor element 1-silencing transcription factor) results in precocious activation of QNPs and reduced neurogenesis over time. To gain insight into the molecular mechanisms by which REST regulates adult neural stem cells, we perform chromatin immunoprecipitation sequencing and RNA-sequencing to identify direct REST target genes. We find REST regulates both QNPs and TAPs, and importantly, ribosome biogenesis, cell cycle and neuronal genes in the process. Furthermore, overexpression of individual REST target ribosome biogenesis or cell cycle genes is sufficient to induce activation of QNPs. Our data define novel REST targets to maintain the quiescent neural stem cell state. PMID:27819263

  11. REST regulation of gene networks in adult neural stem cells.

    PubMed

    Mukherjee, Shradha; Brulet, Rebecca; Zhang, Ling; Hsieh, Jenny

    2016-11-07

    Adult hippocampal neural stem cells generate newborn neurons throughout life due to their ability to self-renew and exist as quiescent neural progenitors (QNPs) before differentiating into transit-amplifying progenitors (TAPs) and newborn neurons. The mechanisms that control adult neural stem cell self-renewal are still largely unknown. Conditional knockout of REST (repressor element 1-silencing transcription factor) results in precocious activation of QNPs and reduced neurogenesis over time. To gain insight into the molecular mechanisms by which REST regulates adult neural stem cells, we perform chromatin immunoprecipitation sequencing and RNA-sequencing to identify direct REST target genes. We find REST regulates both QNPs and TAPs, and importantly, ribosome biogenesis, cell cycle and neuronal genes in the process. Furthermore, overexpression of individual REST target ribosome biogenesis or cell cycle genes is sufficient to induce activation of QNPs. Our data define novel REST targets to maintain the quiescent neural stem cell state.

  12. Brain stem auditory evoked responses in human infants and adults

    NASA Technical Reports Server (NTRS)

    Hecox, K.; Galambos, R.

    1974-01-01

    Brain stem evoked potentials were recorded by conventional scalp electrodes in infants (3 weeks to 3 years of age) and adults. The latency of one of the major response components (wave V) is shown to be a function both of click intensity and the age of the subject; this latency at a given signal strength shortens postnatally to reach the adult value (about 6 msec) by 12 to 18 months of age. The demonstrated reliability and limited variability of these brain stem electrophysiological responses provide the basis for an optimistic estimate of their usefulness as an objective method for assessing hearing in infants and adults.

  13. Expansion of Multipotent Stem Cells from the Adult Human Brain

    PubMed Central

    Murrell, Wayne; Palmero, Emily; Bianco, John; Stangeland, Biljana; Joel, Mrinal; Paulson, Linda; Thiede, Bernd; Grieg, Zanina; Ramsnes, Ingunn; Skjellegrind, Håvard K.; Nygård, Ståle; Brandal, Petter; Sandberg, Cecilie; Vik-Mo, Einar; Palmero, Sheryl; Langmoen, Iver A.

    2013-01-01

    The discovery of stem cells in the adult human brain has revealed new possible scenarios for treatment of the sick or injured brain. Both clinical use of and preclinical research on human adult neural stem cells have, however, been seriously hampered by the fact that it has been impossible to passage these cells more than a very few times and with little expansion of cell numbers. Having explored a number of alternative culturing conditions we here present an efficient method for the establishment and propagation of human brain stem cells from whatever brain tissue samples we have tried. We describe virtually unlimited expansion of an authentic stem cell phenotype. Pluripotency proteins Sox2 and Oct4 are expressed without artificial induction. For the first time multipotency of adult human brain-derived stem cells is demonstrated beyond tissue boundaries. We characterize these cells in detail in vitro including microarray and proteomic approaches. Whilst clarification of these cells’ behavior is ongoing, results so far portend well for the future repair of tissues by transplantation of an adult patient’s own-derived stem cells. PMID:23967194

  14. Potential of adult neural stem cells in stroke therapy.

    PubMed

    Andres, Robert H; Choi, Raymond; Steinberg, Gary K; Guzman, Raphael

    2008-11-01

    Despite state-of-the-art therapy, clinical outcome after stroke remains poor, with many patients left permanently disabled and dependent on care. Stem cell therapy has evolved as a promising new therapeutic avenue for the treatment of stroke in experimental studies, and recent clinical trials have proven its feasibility and safety in patients. Replacement of damaged cells and restoration of function can be accomplished by transplantation of different cell types, such as embryonic, fetal or adult stem cells, human fetal tissue and genetically engineered cell lines. Adult neural stem cells offer the advantage of avoiding the ethical problems associated with embryonic or fetal stem cells and can be harvested as autologous grafts from the individual patients. Furthermore, stimulation of endogenous adult stem cell-mediated repair mechanisms in the brain might offer new avenues for stroke therapy without the necessity of transplantation. However, important scientific issues need to be addressed to advance our understanding of the molecular mechanisms underlying the critical steps in cell-based repair to allow the introduction of these experimental techniques into clinical practice. This review describes up-to-date experimental concepts using adult neural stem cells for the treatment of stroke.

  15. A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking

    PubMed Central

    Ratajczak, M Z

    2015-01-01

    This review presents a novel view and working hypothesis about the hierarchy within the adult bone marrow stem cell compartment and the still-intriguing question of whether adult bone marrow contains primitive stem cells from early embryonic development, such as cells derived from the epiblast, migrating primordial germ cells or yolk sac-derived hemangioblasts. It also presents a novel view of the mechanisms that govern stem cell mobilization and homing, with special emphasis on the role of the complement cascade as a trigger for egress of hematopoietic stem cells from bone marrow into blood as well as the emerging role of novel homing factors and priming mechanisms that support stromal-derived factor 1-mediated homing of hematopoietic stem/progenitor cells after transplantation. PMID:25486871

  16. Stable generation of serum- and feeder-free embryonic stem cell-derived mice with full germline-competency by using a GSK3 specific inhibitor.

    PubMed

    Sato, Hiromu; Amagai, Keiko; Shimizukawa, Rie; Tamai, Yoshitaka

    2009-06-01

    C57BL/6 (B6)-derived embryonic stem (ES) cells are not widely used to generate knockout mice despite the advantage of a well-defined genetic background because of poor developmental potential. We newly established serum- and feeder-free B6 ES cells with full developmental potential by using leukemia inhibitory factor (LIF) and 6-bromoindirubin-3'-oxime (BIO), a glycogen synthase kinase-3 (GSK3) inhibitor. BIO treatment significantly increased the expression levels of 364 genes including pluripotency markers such as Nanog and Klf family. Unexpectedly, by aggregating or microinjecting those ES cells to each eight-cell-stage diploid embryo, we stably generated germline-competent ES-derived mice. Furthermore, founder mice completely derived from female XO, heterozygous, or homozygous mutant B6 ES cells were directly available for intercross breeding and phenotypic analysis. We hereby propose that serum- and feeder-free B6 ES cells stimulated with LIF plus GSK3 inhibitor are valuable for generating mouse models on B6 background.

  17. Muscle Stem Cells: A Model System for Adult Stem Cell Biology.

    PubMed

    Cornelison, Ddw; Perdiguero, Eusebio

    2017-01-01

    Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.

  18. Adult stem cells underlying lung regeneration.

    PubMed

    Xian, Wa; McKeon, Frank

    2012-03-01

    Despite the massive toll in human suffering imparted by degenerative lung disease, including COPD, idiopathic pulmonary fibrosis and ARDS, the scientific community has been surprisingly agnostic regarding the potential of lung tissue, and in particular the alveoli, to regenerate. However, there is circumstantial evidence in humans and direct evidence in mice that ARDS triggers robust regeneration of lung tissue rather than irreversible fibrosis. The stem cells responsible for this remarkable regenerative process has garnered tremendous attention, most recently yielding a defined set of cloned human airway stem cells marked by p63 expression but with distinct commitment to differentiated cell types typical of the upper or lower airways, the latter of which include alveoli-like structures in vitro and in vivo. These recent advances in lung regeneration and distal airway stem cells and the potential of associated soluble factors in regeneration must be harnessed for therapeutic options in chronic lung disease.

  19. The coevolutionary period of Wolbachia pipientis infecting Drosophila ananassae and its impact on the evolution of the host germline stem cell regulating genes.

    PubMed

    Choi, Jae Young; Aquadro, Charles F

    2014-09-01

    The endosymbiotic bacteria Wolbachia pipientis is known to infect a wide range of arthropod species yet less is known about the coevolutionary history it has with its hosts. Evidence of highly identical W. pipientis strains in evolutionary divergent hosts suggests horizontal transfer between hosts. For example, Drosophila ananassae is infected with a W. pipientis strain that is nearly identical in sequence to a strain that infects both D. simulans and D. suzukii, suggesting recent horizontal transfer among these three species. However, it is unknown whether the W. pipientis strain had recently invaded all three species or a more complex infectious dynamic underlies the horizontal transfers. Here, we have examined the coevolutionary history of D. ananassae and its resident W. pipientis to infer its period of infection. Phylogenetic analysis of D. ananassae mitochondrial DNA and W. pipientis DNA sequence diversity revealed the current W. pipientis infection is not recent. In addition, we examined the population genetics and molecular evolution of several germline stem cell (GSC) regulating genes of D. ananassae. These studies reveal significant evidence of recent and long-term positive selection at stonewall in D. ananassae, whereas pumillio showed patterns of variation consistent with only recent positive selection. Previous studies had found evidence for adaptive evolution of two key germline differentiation genes, bag of marbles (bam) and benign gonial cell neoplasm (bgcn), in D. melanogaster and D. simulans and proposed that the adaptive evolution at these two genes was driven by arms race between the host GSC and W. pipientis. However, we did not find any statistical departures from a neutral model of evolution for bam and bgcn in D. ananassae despite our new evidence that this species has been infected with W. pipientis for a period longer than the most recent infection in D. melanogaster. In the end, analyzing the GSC regulating genes individually showed two

  20. The Coevolutionary Period of Wolbachia pipientis Infecting Drosophila ananassae and Its Impact on the Evolution of the Host Germline Stem Cell Regulating Genes

    PubMed Central

    Choi, Jae Young; Aquadro, Charles F.

    2014-01-01

    The endosymbiotic bacteria Wolbachia pipientis is known to infect a wide range of arthropod species yet less is known about the coevolutionary history it has with its hosts. Evidence of highly identical W. pipientis strains in evolutionary divergent hosts suggests horizontal transfer between hosts. For example, Drosophila ananassae is infected with a W. pipientis strain that is nearly identical in sequence to a strain that infects both D. simulans and D. suzukii, suggesting recent horizontal transfer among these three species. However, it is unknown whether the W. pipientis strain had recently invaded all three species or a more complex infectious dynamic underlies the horizontal transfers. Here, we have examined the coevolutionary history of D. ananassae and its resident W. pipientis to infer its period of infection. Phylogenetic analysis of D. ananassae mitochondrial DNA and W. pipientis DNA sequence diversity revealed the current W. pipientis infection is not recent. In addition, we examined the population genetics and molecular evolution of several germline stem cell (GSC) regulating genes of D. ananassae. These studies reveal significant evidence of recent and long-term positive selection at stonewall in D. ananassae, whereas pumillio showed patterns of variation consistent with only recent positive selection. Previous studies had found evidence for adaptive evolution of two key germline differentiation genes, bag of marbles (bam) and benign gonial cell neoplasm (bgcn), in D. melanogaster and D. simulans and proposed that the adaptive evolution at these two genes was driven by arms race between the host GSC and W. pipientis. However, we did not find any statistical departures from a neutral model of evolution for bam and bgcn in D. ananassae despite our new evidence that this species has been infected with W. pipientis for a period longer than the most recent infection in D. melanogaster. In the end, analyzing the GSC regulating genes individually showed two

  1. Stem cell sources for clinical islet transplantation in type 1 diabetes: embryonic and adult stem cells.

    PubMed

    Miszta-Lane, Helena; Mirbolooki, Mohammadreza; James Shapiro, A M; Lakey, Jonathan R T

    2006-01-01

    Lifelong immunosuppressive therapy and inadequate sources of transplantable islets have led the islet transplantation benefits to less than 0.5% of type 1 diabetics. Whereas the potential risk of infection by animal endogenous viruses limits the uses of islet xeno-transplantation, deriving islets from stem cells seems to be able to overcome the current problems of islet shortages and immune compatibility. Both embryonic (derived from the inner cell mass of blastocysts) and adult stem cells (derived from adult tissues) have shown controversial results in secreting insulin in vitro and normalizing hyperglycemia in vivo. ESCs research is thought to have much greater developmental potential than adult stem cells; however it is still in the basic research phase. Existing ESC lines are not believed to be identical or ideal for generating islets or beta-cells and additional ESC lines have to be established. Research with ESCs derived from humans is controversial because it requires the destruction of a human embryo and/or therapeutic cloning, which some believe is a slippery slope to reproductive cloning. On the other hand, adult stem cells are already in some degree specialized, recipients may receive their own stem cells. They are flexible but they have shown mixed degree of availability. Adult stem cells are not pluripotent. They may not exist for all organs. They are difficult to purify and they cannot be maintained well outside the body. In order to draw the future avenues in this field, existent discrepancies between the results need to be clarified. In this study, we will review the different aspects and challenges of using embryonic or adult stem cells in clinical islet transplantation for the treatment of type 1 diabetes.

  2. Cell proliferation dynamics of somatic and germline tissues during zooidal life span in the colonial tunicate Botryllus primigenus.

    PubMed

    Kawamura, Kazuo; Tachibana, Miki; Sunanaga, Takeshi

    2008-07-01

    Botryllus primigenus is a colonial tunicate in which three successive generations develop synchronously. To identify proliferation centers and possible adult stem cells during asexual reproduction, somatic and germline cells were labeled with 5-bromo-2'-deoxyuridine (BrdU). In the youngest generation, multipotent epithelial cells exhibited an average labeling index (LI) of 30% 24 hr after BrdU injection. In the middle generation, the LI of organ rudiments decreased gradually and reached zero by the beginning of the eldest generation. Exceptionally, cells of specialized tissues such as the pharyngeal inner longitudinal vessel and the posterior end of the endostyle continued DNA synthesis and mitosis even in the eldest generation. Proliferating somatic and germline cells of younger generations expressed a Botryllus myc homolog (BpMyc), but adult tissues did not. This result strongly suggests that in B. primigenus undifferentiated progenitor cells are discernible from possible adult stem cells by the presence or absence of BpMyc.

  3. Comparative aspects of adult neural stem cell activity in vertebrates.

    PubMed

    Grandel, Heiner; Brand, Michael

    2013-03-01

    At birth or after hatching from the egg, vertebrate brains still contain neural stem cells which reside in specialized niches. In some cases, these stem cells are deployed for further postnatal development of parts of the brain until the final structure is reached. In other cases, postnatal neurogenesis continues as constitutive neurogenesis into adulthood leading to a net increase of the number of neurons with age. Yet, in other cases, stem cells fuel neuronal turnover. An example is protracted development of the cerebellar granular layer in mammals and birds, where neurogenesis continues for a few weeks postnatally until the granular layer has reached its definitive size and stem cells are used up. Cerebellar growth also provides an example of continued neurogenesis during adulthood in teleosts. Again, it is the granular layer that grows as neurogenesis continues and no definite adult cerebellar size is reached. Neuronal turnover is most clearly seen in the telencephalon of male canaries, where projection neurons are replaced in nucleus high vocal centre each year before the start of a new mating season--circuitry reconstruction to achieve changes of the song repertoire in these birds? In this review, we describe these and other examples of adult neurogenesis in different vertebrate taxa. We also compare the structure of the stem cell niches to find common themes in their organization despite different functions adult neurogenesis serves in different species. Finally, we report on regeneration of the zebrafish telencephalon after injury to highlight similarities and differences of constitutive neurogenesis and neuronal regeneration.

  4. Adult stem cells and their ability to differentiate.

    PubMed

    Tarnowski, Maciej; Sieron, Aleksander L

    2006-08-01

    This is a review of the current status of knowledge on adult stem cells as well as the criteria and evidence for their potential to transform into different cell types and cell lineages. Reports on stem cell sources, focusing on tissues from adult subjects, were also investigated. Numerous reports have been published on the search for early markers of both stem cells and the precursors of various cell lineages. The question is still open about the characteristics of the primary stem cell. The existing proofs and hypotheses have not yielded final solutions to this problem. From a practical point of view it is also crucial to find a minimal set of markers determining the phenotypes of the precursor cells of a particular cell lineage. Several lines of evidence seem to bring closer the day when we will be able to detect the right stem cell niche and successfully isolate precursor cells that are needed for the treatment of a particular disorder. Recent reports on cases of cancer in patients subjected to stem cell therapy are yet another controversial issue looked into in this review, although the pros and cons emerging from the results of published studies still do not provide satisfying evidence to fully understand this issue.

  5. Adherent neural stem (NS) cells from fetal and adult forebrain.

    PubMed

    Pollard, Steven M; Conti, Luciano; Sun, Yirui; Goffredo, Donato; Smith, Austin

    2006-07-01

    Stable in vitro propagation of central nervous system (CNS) stem cells would offer expanded opportunities to dissect basic molecular, cellular, and developmental processes and to model neurodegenerative disease. CNS stem cells could also provide a source of material for drug discovery assays and cell replacement therapies. We have recently reported the generation of adherent, symmetrically expandable, neural stem (NS) cell lines derived both from mouse and human embryonic stem cells and from fetal forebrain (Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, Biella G, Sun Y, Sanzone S, Ying QL, Cattaneo E, Smith A. 2005. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 3(9):e283). These NS cells retain neuronal and glial differentiation potential after prolonged passaging and are transplantable. NS cells are likely to comprise the resident stem cell population within heterogeneous neurosphere cultures. Here we demonstrate that similar NS cell cultures can be established from the adult mouse brain. We also characterize the growth factor requirements for NS cell derivation and self-renewal. We discuss our current understanding of the relationship of NS cell lines to physiological progenitor cells of fetal and adult CNS.

  6. DND1 maintains germline stem cells via recruitment of the CCR4-NOT complex to target mRNAs.

    PubMed

    Yamaji, Masashi; Jishage, Miki; Meyer, Cindy; Suryawanshi, Hemant; Der, Evan; Yamaji, Misaki; Garzia, Aitor; Morozov, Pavel; Manickavel, Sudhir; McFarland, Hannah L; Roeder, Robert G; Hafner, Markus; Tuschl, Thomas

    2017-03-23

    The vertebrate-conserved RNA-binding protein DND1 is required for the survival of primordial germ cells (PGCs), as well as the suppression of germ cell tumours in mice. Here we show that in mice DND1 binds a UU(A/U) trinucleotide motif predominantly in the 3' untranslated regions of mRNA, and destabilizes target mRNAs through direct recruitment of the CCR4-NOT deadenylase complex. Transcriptomic analysis reveals that the extent of suppression is dependent on the number of DND1-binding sites. This DND1-dependent mRNA destabilization is required for the survival of mouse PGCs and spermatogonial stem cells by suppressing apoptosis. The spectrum of target RNAs includes positive regulators of apoptosis and inflammation, and modulators of signalling pathways that regulate stem-cell pluripotency, including the TGFβ superfamily, all of which are aberrantly elevated in DND1-deficient PGCs. We propose that the induction of the post-transcriptional suppressor DND1 synergizes with concurrent transcriptional changes to ensure precise developmental transitions during cellular differentiation and maintenance of the germ line.

  7. Heterogeneity of chromatoid bodies in adult pluripotent stem cells of planarian Dugesia japonica.

    PubMed

    Kashima, Makoto; Kumagai, Nobuyoshi; Agata, Kiyokazu; Shibata, Norito

    2016-02-01

    The robust regenerative ability of planarians is known to be dependent on adult pluripotent stem cells called neoblasts. One of the morphological features of neoblasts is cytoplasmic ribonucleoprotein granules (chromatoid bodies: CBs), which resemble germ granules present in germline cells in other animals. Previously, we showed by immuno-electron microscopic analysis that DjCBC-1, a planarian Me31B/Dhh1/DDX6 homologue, which is a component of ribonucleoprotein granules, was localized in CBs in the planarian Dugesia japonica. Also, recently it was reported using another planarian species that Y12 antibody recognizing symmetrical dimethylarginine (sDMA) specifically binds to CBs in which histone mRNA is co-localized. Here, we showed by double immunostaining and RNA interference (RNAi) that DjCBC-1-containing CBs and Y12-immunoreactive CBs are distinct structures, suggesting that CBs are composed of heterogeneous populations. We also found that the Y12-immunoreactive CBs specifically contained a cytoplasmic type of planarian PIWI protein (DjPiwiC). We revealed by RNAi experiments that Y12-immunoreactive CBs may have anti-transposable element activity involving the DjPiwiC protein in the neoblasts.

  8. Small molecule-based approaches to adult stem cell therapies.

    PubMed

    Lairson, Luke L; Lyssiotis, Costas A; Zhu, Shoutian; Schultz, Peter G

    2013-01-01

    There is considerable interest in the development of stem cell-based strategies for the treatment of a broad range of human diseases, including neurodegenerative, autoimmune, cardiovascular, and musculoskeletal diseases. To date, such regenerative approaches have focused largely on the development of cell transplantation therapies using cells derived from pluripotent embryonic stem cells (ESCs). Although there have been exciting preliminary reports describing the efficacy of ESC-derived replacement therapies, approaches involving ex vivo manipulated ESCs are hindered by issues of mutation, immune rejection, and ethical controversy. An alternative approach involves direct in vivo modulation or ex vivo expansion of endogenous adult stem cell populations using drug-like small molecules. Here we describe chemical approaches to the regulation of somatic stem cell biology that are yielding new biological insights and that may ultimately lead to innovative new medicines.

  9. Isolation, genetic manipulation, and transplantation of canine spermatogonial stem cells: progress toward transgenesis through the male germ-line.

    PubMed

    Harkey, Michael A; Asano, Atsushi; Zoulas, Mary Ellen; Torok-Storb, Beverly; Nagashima, Jennifer; Travis, Alexander

    2013-07-01

    The dog is recognized as a highly predictive model for preclinical research. Its size, life span, physiology, and genetics more closely match human parameters than do those of the mouse model. Investigations of the genetic basis of disease and of new regenerative treatments have frequently taken advantage of canine models. However, full utility of this model has not been realized because of the lack of easy transgenesis. Blastocyst-mediated transgenic technology developed in mice has been very slow to translate to larger animals, and somatic cell nuclear transfer remains technically challenging, expensive, and low yield. Spermatogonial stem cell (SSC) transplantation, which does not involve manipulation of ova or blastocysts, has proven to be an effective alternative approach for generating transgenic offspring in rodents and in some large animals. Our recent demonstration that canine testis cells can engraft in a host testis, and generate donor-derived sperm, suggests that SSC transplantation may offer a similar avenue to transgenesis in the canine model. Here, we explore the potential of SSC transplantation in dogs as a means of generating canine transgenic models for preclinical models of genetic diseases. Specifically, we i) established markers for identification and tracking canine spermatogonial cells; ii) established methods for enrichment and genetic manipulation of these cells; iii) described their behavior in culture; and iv) demonstrated engraftment of genetically manipulated SSC and production of transgenic sperm. These findings help to set the stage for generation of transgenic canine models via SSC transplantation.

  10. Mesenchymal to Epithelial Transition Mediated by CDH1 Promotes Spontaneous Reprogramming of Male Germline Stem Cells to Pluripotency.

    PubMed

    An, Junhui; Zheng, Yu; Dann, Christina Tenenhaus

    2017-02-14

    Cultured spermatogonial stem cells (GSCs) can spontaneously form pluripotent cells in certain culture conditions. However, GSC reprogramming is a rare event that is largely unexplained. We show GSCs have high expression of mesenchymal to epithelial transition (MET) suppressors resulting in a developmental barrier inhibiting GSC reprogramming. Either increasing OCT4 or repressing transforming growth factor β (TGF-β) signaling promotes GSC reprogramming by upregulating CDH1 and boosting MET. Reducing ZEB1 also enhances GSC reprogramming through its direct effect on CDH1. RNA sequencing shows that rare GSCs, identified as CDH1(+) after trypsin digestion, are epithelial-like cells. CDH1(+) GSCs exhibit enhanced reprogramming and become more prevalent during the course of reprogramming. Our results provide a mechanistic explanation for the spontaneous emergence of pluripotent cells from GSC cultures; namely, rare GSCs upregulate CDH1 and initiate MET, processes normally kept in check by ZEB1 and TGF-β signaling, thereby ensuring germ cells are protected from aberrant acquisition of pluripotency.

  11. Haploidentical Stem Cell Transplantation in Adult Haematological Malignancies

    PubMed Central

    Parmesar, Kevon; Raj, Kavita

    2016-01-01

    Haematopoietic stem cell transplantation is a well-established treatment option for both hematological malignancies and nonmalignant conditions such as aplastic anemia and haemoglobinopathies. For those patients lacking a suitable matched sibling or matched unrelated donor, haploidentical donors are an alternative expedient donor pool. Historically, haploidentical transplantation led to high rates of graft rejection and GVHD. Strategies to circumvent these issues include T cell depletion and management of complications thereof or T replete transplants with GVHD prophylaxis. This review is an overview of these strategies and contemporaneous outcomes for hematological malignancies in adult haploidentical stem cell transplant recipients. PMID:27313619

  12. Stem Cell-Mediated Regeneration of the Adult Brain

    PubMed Central

    Jessberger, Sebastian

    2016-01-01

    Acute or chronic injury of the adult mammalian brain is often associated with persistent functional deficits as its potential for regeneration and capacity to rebuild lost neural structures is limited. However, the discovery that neural stem cells (NSCs) persist throughout life in discrete regions of the brain, novel approaches to induce the formation of neuronal and glial cells, and recently developed strategies to generate tissue for exogenous cell replacement strategies opened novel perspectives how to regenerate the adult brain. Here, we will review recently developed approaches for brain repair and discuss future perspectives that may eventually allow for developing novel treatment strategies in acute and chronic brain injury. PMID:27781019

  13. DNA methylation of the Fthl17 5’-upstream region regulates differential Fthl17 expression in lung cancer cells and germline stem cells

    PubMed Central

    Aoki, Nana; Matsui, Yasuhisa

    2017-01-01

    The Ferritin heavy polypeptide-like 17 (Fthl17) gene is a member of the cancer/testis antigen gene family, and is preferentially expressed in cancer cells and in testis. Although DNA methylation has been linked to the regulation of human FTHL17 gene expression, detailed epigenetic regulation of its expression has not been investigated. To address this, we assessed the epigenetic regulation of murine Fthl17 gene expression in cancer cells and germ cells. Fthl17 was more highly expressed in testis, a murine lung cancer cell line, KLN205, and in germline stem cells (GSCs) than in normal lung tissues. Furthermore, the Fthl17 expression level in GSCs was significantly higher than in KLN205 cells. We performed bisulfite-sequencing and luciferase (luc) reporter assays to examine the role of DNA methylation of the Fthl17 promoter in the regulation of Fthl17 expression. In KLN205 cells, testis, and GSCs, the Fthl17 5’-upstream region was hypo-methylated compared with normal lung tissues. Luc reporter assays indicated that hypo-methylation of the -0.6 kb to 0 kb region upstream from the transcription start site (TSS) was involved in the up-regulation of Fthl17 expression in KLN205 cells and GSCs. Because the -0.6 kb to -0.3 kb or the -0.3 kb to 0 kb region were relatively more hypo-methylated in KLN205 cells and in GSCs, respectively, compared with other regions between -0.6 kb to 0 kb, those regions may contribute to Fthl17 up-regulation in each cell type. Following treatment with 5-Azacytidine, the -0.3 kb to 0 kb region became hypo-methylated, and Fthl17 expression was up-regulated in KLN205 cells to a level comparable to that in GSCs. Together, the results suggest that hypo-methylation of different but adjacent regions immediately upstream of the Fthl17 gene contribute to differential expression levels in lung cancer cells and GSCs, and hypo-methylation of the TSS-proximal region may be critical for high level expression. PMID:28207785

  14. Pericytes, integral components of adult hematopoietic stem cell niches.

    PubMed

    Sá da Bandeira, D; Casamitjana, J; Crisan, M

    2017-03-01

    The interest in perivascular cells as a niche for adult hematopoietic stem cells (HSCs) is significantly growing. In the adult bone marrow (BM), perivascular cells and HSCs cohabit. Among perivascular cells, pericytes are precursors of mesenchymal stem/stromal cells (MSCs) that are capable of differentiating into osteoblasts, adipocytes and chondrocytes. In situ, pericytes are recognised by their localisation to the abluminal side of the blood vessel wall and closely associated with endothelial cells, in combination with the expression of markers such as CD146, neural glial 2 (NG2), platelet derived growth factor receptor β (PDGFRβ), α-smooth muscle actin (α-SMA), nestin (Nes) and/or leptin receptor (LepR). However, not all pericytes share a common phenotype: different immunophenotypes can be associated with distinct mesenchymal features, including hematopoietic support. In adult BM, arteriolar and sinusoidal pericytes control HSC behaviour, maintenance, quiescence and trafficking through paracrine effects. Different groups identified and characterized hematopoietic supportive pericyte subpopulations using various markers and mouse models. In this review, we summarize recent work performed by others to understand the role of the perivascular niche in the biology of HSCs in adults, as well as their importance in the development of therapies.

  15. dBre1/dSet1-dependent pathway for histone H3K4 trimethylation has essential roles in controlling germline stem cell maintenance and germ cell differentiation in the Drosophila ovary.

    PubMed

    Xuan, Tao; Xin, Tianchi; He, Jie; Tan, Jieqiong; Gao, Yin; Feng, Shiyun; He, Lin; Zhao, Gengchun; Li, Mingfa

    2013-07-15

    The Drosophila ovarian germline stem cells (GSCs) constantly experience self-renewal and differentiation, ensuring the female fertility throughout life. The balance between GSC self-renewal and differentiation is exquisitely regulated by the stem cell niche, the stem cells themselves and systemic factors. Increasing evidence has shown that the GSC regulation also involves epigenetic mechanisms including chromatin remodeling and histone modification. Here, we find that dBre1, an E3 ubiquitin ligase, functions in controlling GSC self-renewal and germ cell differentiation via distinct mechanisms. Removal or knock down of dBre1 function in the germline or somatic niche cell lineage leads to a gradual GSC loss and disruption of H3K4 trimethylation in the Drosophila ovary. Further studies suggest that the defective GSC maintenance is attributable to compromised BMP signaling emitted from the stem cell niche and impaired adhesion of GSCs to their niche. On the other hand, dBre1-RNAi expression in escort cells causes a loss of H3K4 trimethylation and accumulation of spectrosome-containing single germ cells in the germarium. Reducing dpp or dally levels suppresses the germ cell differentiation defects, indicating that dBre1 limits BMP signaling activities for the differentiation control. Strikingly, all phenotypes observed in dBre1 mutant ovaries can be mimicked by RNAi-based reduced expression of dSet1, a Drosophila H3K4 trimethylase. Moreover, genetic studies favor that dBre1 interacts with dSet1 in controlling GSC maintenance and germ cell differentiation. Taken together, we identify a dBre1/dSet1-dependent pathway for the H3K4 methylation involved in the cell fate regulation in the Drosophila ovary.

  16. Isolation and Characterization of Pluripotent Human Spermatogonial Stem Cell-Derived Cells

    PubMed Central

    Kossack, Nina; Meneses, Juanito; Shefi, Shai; Nguyen, Ha Nam; Chavez, Shawn; Nicholas, Cory; Gromoll, Joerg; Turek, Paul J; Reijo-Pera, Renee A

    2009-01-01

    Several reports have documented the derivation of pluripotent cells (multipotent germline stem cells) from spermatogonial stem cells obtained from the adult mouse testis. These spermatogonia-derived stem cells express embryonic stem cell markers and differentiate to the three primary germ layers, as well as the germline. Data indicate that derivation may involve reprogramming of endogenous spermatogonia in culture. Here, we report the derivation of human multipotent germline stem cells (hMGSCs) from a testis biopsy. The cells express distinct markers of pluripotency, form embryoid bodies that contain derivatives of all three germ layers, maintain a normal XY karyotype, are hypomethylated at the H19 locus, and express high levels of telomerase. Teratoma assays indicate the presence of human cells 8 weeks post-transplantation but limited teratoma formation. Thus, these data suggest the potential to derive pluripotent cells from human testis biopsies but indicate a need for novel strategies to optimize hMGSC culture conditions and reprogramming. PMID:18927477

  17. Estrogenic Exposure Alters the Spermatogonial Stem Cells in the Developing Testis, Permanently Reducing Crossover Levels in the Adult

    PubMed Central

    Vrooman, Lisa A.; Oatley, Jon M.; Griswold, Jodi E.; Hassold, Terry J.; Hunt, Patricia A.

    2015-01-01

    Bisphenol A (BPA) and other endocrine disrupting chemicals have been reported to induce negative effects on a wide range of physiological processes, including reproduction. In the female, BPA exposure increases meiotic errors, resulting in the production of chromosomally abnormal eggs. Although numerous studies have reported that estrogenic exposures negatively impact spermatogenesis, a direct link between exposures and meiotic errors in males has not been evaluated. To test the effect of estrogenic chemicals on meiotic chromosome dynamics, we exposed male mice to either BPA or to the strong synthetic estrogen, ethinyl estradiol during neonatal development when the first cells initiate meiosis. Although chromosome pairing and synapsis were unperturbed, exposed outbred CD-1 and inbred C3H/HeJ males had significantly reduced levels of crossovers, or meiotic recombination (as defined by the number of MLH1 foci in pachytene cells) by comparison with placebo. Unexpectedly, the effect was not limited to cells exposed at the time of meiotic entry but was evident in all subsequent waves of meiosis. To determine if the meiotic effects induced by estrogen result from changes to the soma or germline of the testis, we transplanted spermatogonial stem cells from exposed males into the testes of unexposed males. Reduced recombination was evident in meiocytes derived from colonies of transplanted cells. Taken together, our results suggest that brief exogenous estrogenic exposure causes subtle changes to the stem cell pool that result in permanent alterations in spermatogenesis (i.e., reduced recombination in descendent meiocytes) in the adult male. PMID:25615633

  18. Immune Influence on Adult Neural Stem Cell Regulation and Function

    PubMed Central

    Carpentier, Pamela A.; Palmer, Theo D.

    2009-01-01

    Neural stem cells (NSCs) lie at the heart of central nervous system development and repair, and deficiency or dysregulation of NSCs or their progeny can have significant consequences at any stage of life. Immune signaling is emerging as one of the influential variables that define resident NSC behavior. Perturbations in local immune signaling accompany virtually every injury or disease state and signaling cascades that mediate immune activation, resolution, or chronic persistence influence resident stem and progenitor cells. Some aspects of immune signaling are beneficial, promoting intrinsic plasticity and cell replacement, while others appear to inhibit the very type of regenerative response that might restore or replace neural networks lost in injury or disease. Here we review known and speculative roles that immune signaling plays in the postnatal and adult brain, focusing on how environments encountered in disease or injury may influence the activity and fate of endogenous or transplanted NSCs. PMID:19840551

  19. Differential regulation of DNA damage response activation between somatic and germline cells in Caenorhabditis elegans

    PubMed Central

    Vermezovic, J; Stergiou, L; Hengartner, M O; d'Adda di Fagagna, F

    2012-01-01

    The germline of Caenorhabditis elegans is a well-established model for DNA damage response (DDR) studies. However, the molecular basis of the observed cell death resistance in the soma of these animals remains unknown. We established a set of techniques to study ionizing radiation-induced DNA damage generation and DDR activation in a whole intact worm. Our single-cell analyses reveal that, although germline and somatic cells show similar levels of inflicted DNA damage, somatic cells, differently from germline cells, do not activate the crucial apical DDR kinase ataxia-telengiectasia mutated (ATM). We also show that DDR signaling proteins are undetectable in all somatic cells and this is due to transcriptional repression. However, DNA repair genes are expressed and somatic cells retain the ability to efficiently repair DNA damage. Finally, we demonstrate that germline cells, when induced to transdifferentiate into somatic cells within the gonad, lose the ability to activate ATM. Overall, these observations provide a molecular mechanism for the known, but hitherto unexplained, resistance to DNA damage-induced cell death in C. elegans somatic cells. We propose that the observed lack of signaling and cell death but retention of DNA repair functions in the soma is a Caenorhabditis-specific evolutionary-selected strategy to cope with its lack of adult somatic stem cell pools and regenerative capacity. PMID:22705849

  20. Retentive multipotency of adult dorsal root ganglia stem cells.

    PubMed

    Singh, Rabindra P; Cheng, Ying-Hua; Nelson, Paul; Zhou, Feng C

    2009-01-01

    Preservation of neural stem cells (NSCs) in the adult peripheral nervous system (PNS) has recently been confirmed. However, it is not clear whether peripheral NSCs possess predestined, bona fide phenotypes or a response to innate developmental cues. In this study, we first demonstrated the longevity, multipotency, and high fidelity of sensory features of postmigrating adult dorsal root ganglia (aDRG) stem cells. Derived from aDRG and after 4-5 years in culture without dissociating, the aDRG NSCs were found capable of proliferation, expressing neuroepithelial, neuronal, and glial markers. Remarkably, these aDRG NSCs expressed sensory neuronal markers vesicular glutamate transporter 2 (VGluT2--glutamate terminals), transient receptor potential vanilloid 1 (TrpV1--capsaicin sensitive), phosphorylated 200 kDa neurofilaments (pNF200--capsaicin insensitive, myelinated), and the serotonin transporter (5-HTT), which normally is transiently expressed in developing DRG. Furthermore, in response to neurotrophins, the aDRG NSCs enhanced TrpV1 expression upon exposure to nerve growth factor (NGF), but not to brain-derived neurotrophic factor (BDNF). On the contrary, BDNF increased the expression of NeuN. Third, the characterization of aDRG NSCs was demonstrated by transplantation of red fluorescent-expressing aDRG NSCs into injured spinal cord. These cells expressed nestin, Hu, and beta-III-tubulin (immature neuronal markers), GFAP (astrocyte marker) as well as sensory neural marker TrpV1 (capsaicin sensitive) and pNF200 (mature, capsaicin insensitive, myelinated). Our results demonstrated that the postmigrating neural crest adult DRG stem cells not only preserved their multipotency but also were retentive in sensory potency despite the age and long-term ex vivo status.

  1. Novel Adult Stem Cells for Peripheral Nerve Regeneration

    DTIC Science & Technology

    2012-09-01

    Circulation 103, 882–888 (2001). 52. Biernaskie, J. et al. SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells...3). * indicates significant difference between indicated groups using Holm’s t- test . (P < 0.01). (l–s) Immunostaining of isolated sm-mHC − cells...and the tissue from which the cells were derived using student’s t- test (P < 0.05). † indicates significant difference between inferior vena cava and

  2. Differentiated human stem cells resemble fetal, not adult, β cells.

    PubMed

    Hrvatin, Sinisa; O'Donnell, Charles W; Deng, Francis; Millman, Jeffrey R; Pagliuca, Felicia Walton; DiIorio, Philip; Rezania, Alireza; Gifford, David K; Melton, Douglas A

    2014-02-25

    Human pluripotent stem cells (hPSCs) have the potential to generate any human cell type, and one widely recognized goal is to make pancreatic β cells. To this end, comparisons between differentiated cell types produced in vitro and their in vivo counterparts are essential to validate hPSC-derived cells. Genome-wide transcriptional analysis of sorted insulin-expressing (INS(+)) cells derived from three independent hPSC lines, human fetal pancreata, and adult human islets points to two major conclusions: (i) Different hPSC lines produce highly similar INS(+) cells and (ii) hPSC-derived INS(+) (hPSC-INS(+)) cells more closely resemble human fetal β cells than adult β cells. This study provides a direct comparison of transcriptional programs between pure hPSC-INS(+) cells and true β cells and provides a catalog of genes whose manipulation may convert hPSC-INS(+) cells into functional β cells.

  3. Positional identity of adult stem cells in salamander limb regeneration.

    PubMed

    Kumar, Anoop; Gates, Phillip B; Brockes, Jeremy P

    2007-01-01

    Limb regeneration in larval and adult salamanders proceeds from a mound of mesenchymal stem cells called the limb blastema. The blastema gives rise just to those structures distal to its level of origin, and this property of positional identity is reset to more proximal values by treatment with retinoic acid. We have identified a cell surface protein, called Prod1/CD59, which appears to be a determinant of proximodistal identity. Prod1 is expressed in an exponential gradient in an adult limb as determined by detection of both mRNA and immunoreactive protein. Prod1 protein is up-regulated after treatment of distal blastemas with RA and this is particularly marked in cells of the dermis. These cells have previously been implicated in pattern formation during limb regeneration.

  4. The longest telomeres: a general signature of adult stem cell compartments

    PubMed Central

    Flores, Ignacio; Canela, Andres; Vera, Elsa; Tejera, Agueda; Cotsarelis, George; Blasco, María A.

    2008-01-01

    Identification of adult stem cells and their location (niches) is of great relevance for regenerative medicine. However, stem cell niches are still poorly defined in most adult tissues. Here, we show that the longest telomeres are a general feature of adult stem cell compartments. Using confocal telomere quantitative fluorescence in situ hybridization (telomapping), we find gradients of telomere length within tissues, with the longest telomeres mapping to the known stem cell compartments. In mouse hair follicles, we show that cells with the longest telomeres map to the known stem cell compartments, colocalize with stem cell markers, and behave as stem cells upon treatment with mitogenic stimuli. Using K15-EGFP reporter mice, which mark hair follicle stem cells, we show that GFP-positive cells have the longest telomeres. The stem cell compartments in small intestine, testis, cornea, and brain of the mouse are also enriched in cells with the longest telomeres. This constitutes the description of a novel general property of adult stem cell compartments. Finally, we make the novel finding that telomeres shorten with age in different mouse stem cell compartments, which parallels a decline in stem cell functionality, suggesting that telomere loss may contribute to stem cell dysfunction with age. PMID:18283121

  5. Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells.

    PubMed

    Ye, Lei; Haider, Husnain Kh; Sim, Eugene K W

    2006-01-01

    The real promise of a stem cell-based approach for cardiac regeneration and repair lies in the promotion of myogenesis and angiogenesis at the site of the cell graft to achieve both structural and functional benefits. Despite all of the progress and promise in this field, many unanswered questions remain; the answers to these questions will provide the much-needed breakthrough to harness the real benefits of cell therapy for the heart in the clinical perspective. One of the major issues is the choice of donor cell type for transplantation. Multiple cell types with varying potentials have been assessed for their ability to repopulate the infarcted myocardium; however, only the adult stem cells, that is, skeletal myoblasts (SkM) and bone marrow-derived stem cells (BMC), have been translated from the laboratory bench to clinical use. Which of these two cell types will provide the best option for clinical application in heart cell therapy remains arguable. With results pouring in from the long-term follow-ups of previously conducted phase I clinical studies, and with the onset of phase II clinical trials involving larger population of patients, transplantation of stem cells as a sole therapy without an adjunct conventional revascularization procedure will provide a deeper insight into the effectiveness of this approach. The present article discusses the pros and cons of using SkM and BMC individually or in combination for cardiac repair, and critically analyzes the progress made with each cell type.

  6. From adult stem cells to cancer stem cells: Oct-4 Gene, cell-cell communication, and hormones during tumor promotion.

    PubMed

    Trosko, James E

    2006-11-01

    Carcinogenesis is characterized by "initiation," "promotion," and "progression" phases. The "stem cell theory" and "de-differentiation" theories are used to explain the origin of cancer. Growth control for stem cells, which lack functional gap junctional intercellular communication (GJIC), involves negative soluble or niche factors, while for progenitor cells, it involves GJIC. Tumor promoters, hormones, and growth factors inhibit GJIC reversibly. Oncogenes stably inhibit GJIC. Cancer cells, which lack growth control and the ability to terminally differentiate and to apoptose, lack GJIC. The Oct3/4 gene, a POU (Pit-Oct-Unc) family of transcription factors was thought to be expressed only in embryonic stem cells and in tumor cells. With the availability of normal adult human stem cells, tests for the expression of Oct3/4 gene and the stem cell theory in human carcinogenesis became possible. Human breast, liver, pancreas, kidney, mesenchyme, and gastric stem cells, HeLa and MCF-7 cells, and canine tumors were tested with antibodies and polymerase chain reaction (PCR) primers for Oct3/4. Adult human breast stem cells, immortalized nontumorigenic and tumor cell lines, but not the normal differentiated cells, expressed Oct3/4. Adult human differentiated cells lose their Oct-4 expression. Oct3/4 is expressed in a few cells found in the basal layer of human skin epidermis. The data demonstrate that normal adult stem cells and cancer stem cells maintain expression of Oct3/4, consistent with the stem cell hypothesis of carcinogenesis. These Oct-4 positive cells might represent the "cancer stem cells." A strategy to target "cancer stem cells" is to suppress the Oct-4 gene in order to cause the cells to differentiate.

  7. Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis.

    PubMed

    Tai, Mei-Hui; Chang, Chia-Cheng; Kiupel, Matti; Webster, Joshua D; Olson, L Karl; Trosko, James E

    2005-02-01

    The Oct3/4 gene, a POU family transcription factor, has been noted as being specifically expressed in embryonic stem cells and in tumor cells but not in cells of differentiated tissues. With the ability to isolate adult human stem cells it became possible to test for the expression of Oct3/4 gene in adult stem cells and to test the stem cell theory of carcinogenesis. Using antibodies and PCR primers we tested human breast, liver, pancreas, kidney, mesenchyme and gastric stem cells, the cancer cell lines HeLa and MCF-7 and human, dog and rat tumors for Oct4 expression. The results indicate that adult human stem cells, immortalized non-tumorigenic cells and tumor cells and cell lines, but not differentiated cells, express Oct4. Oct4 is expressed in a few cells found in the basal layer of human skin epidermis. The data demonstrate that adult stem cells maintain expression of Oct4, consistent with the stem cell hypothesis of carcinogenesis.

  8. Catalog of gene expression in adult neural stem cells and their in vivo microenvironment

    SciTech Connect

    Williams, Cecilia; Wirta, Valtteri; Meletis, Konstantinos; Wikstroem, Lilian; Carlsson, Leif; Frisen, Jonas; Lundeberg, Joakim . E-mail: joakim.lundeberg@biotech.kth.se

    2006-06-10

    Stem cells generally reside in a stem cell microenvironment, where cues for self-renewal and differentiation are present. However, the genetic program underlying stem cell proliferation and multipotency is poorly understood. Transcriptome analysis of stem cells and their in vivo microenvironment is one way of uncovering the unique stemness properties and provides a framework for the elucidation of stem cell function. Here, we characterize the gene expression profile of the in vivo neural stem cell microenvironment in the lateral ventricle wall of adult mouse brain and of in vitro proliferating neural stem cells. We have also analyzed an Lhx2-expressing hematopoietic-stem-cell-like cell line in order to define the transcriptome of a well-characterized and pure cell population with stem cell characteristics. We report the generation, assembly and annotation of 50,792 high-quality 5'-end expressed sequence tag sequences. We further describe a shared expression of 1065 transcripts by all three stem cell libraries and a large overlap with previously published gene expression signatures for neural stem/progenitor cells and other multipotent stem cells. The sequences and cDNA clones obtained within this framework provide a comprehensive resource for the analysis of genes in adult stem cells that can accelerate future stem cell research.

  9. Axonal control of the adult neural stem cell niche.

    PubMed

    Tong, Cheuk Ka; Chen, Jiadong; Cebrián-Silla, Arantxa; Mirzadeh, Zaman; Obernier, Kirsten; Guinto, Cristina D; Tecott, Laurence H; García-Verdugo, Jose Manuel; Kriegstein, Arnold; Alvarez-Buylla, Arturo

    2014-04-03

    The ventricular-subventricular zone (V-SVZ) is an extensive germinal niche containing neural stem cells (NSCs) in the walls of the lateral ventricles of the adult brain. How the adult brain's neural activity influences the behavior of adult NSCs remains largely unknown. We show that serotonergic (5HT) axons originating from a small group of neurons in the raphe form an extensive plexus on most of the ventricular walls. Electron microscopy revealed intimate contacts between 5HT axons and NSCs (B1) or ependymal cells (E1) and these cells were labeled by a transsynaptic viral tracer injected into the raphe. B1 cells express the 5HT receptors 2C and 5A. Electrophysiology showed that activation of these receptors in B1 cells induced small inward currents. Intraventricular infusion of 5HT2C agonist or antagonist increased or decreased V-SVZ proliferation, respectively. These results indicate that supraependymal 5HT axons directly interact with NSCs to regulate neurogenesis via 5HT2C.

  10. Live Imaging of Adult Neural Stem Cells in Rodents

    PubMed Central

    Ortega, Felipe; Costa, Marcos R.

    2016-01-01

    The generation of cells of the neural lineage within the brain is not restricted to early development. New neurons, oligodendrocytes, and astrocytes are produced in the adult brain throughout the entire murine life. However, despite the extensive research performed in the field of adult neurogenesis during the past years, fundamental questions regarding the cell biology of adult neural stem cells (aNSCs) remain to be uncovered. For instance, it is crucial to elucidate whether a single aNSC is capable of differentiating into all three different macroglial cell types in vivo or these distinct progenies constitute entirely separate lineages. Similarly, the cell cycle length, the time and mode of division (symmetric vs. asymmetric) that these cells undergo within their lineage progression are interesting questions under current investigation. In this sense, live imaging constitutes a valuable ally in the search of reliable answers to the previous questions. In spite of the current limitations of technology new approaches are being developed and outstanding amount of knowledge is being piled up providing interesting insights in the behavior of aNSCs. Here, we will review the state of the art of live imaging as well as the alternative models that currently offer new answers to critical questions. PMID:27013941

  11. Axonal Control of the Adult Neural Stem Cell Niche

    PubMed Central

    Tong, Cheuk Ka; Chen, Jiadong; Cebrián-Silla, Arantxa; Mirzadeh, Zaman; Obernier, Kirsten; Guinto, Cristina D.; Tecott, Laurence H.; García-Verdugo, Jose Manuel; Kriegstein, Arnold; Alvarez-Buylla, Arturo

    2014-01-01

    SUMMARY The ventricular-subventricular zone (V-SVZ) is an extensive germinal niche containing neural stem cells (NSC) in the walls of the lateral ventricles of the adult brain. How the adult brain’s neural activity influences the behavior of adult NSCs remains largely unknown. We show that serotonergic (5HT) axons originating from a small group of neurons in the raphe form an extensive plexus on most of the ventricular walls. Electron microscopy revealed intimate contacts between 5HT axons and NSCs (B1) or ependymal cells (E1) and these cells were labeled by a transsynaptic viral tracer injected into the raphe. B1 cells express the 5HT receptors 2C and 5A. Electrophysiology showed that activation of these receptors in B1 cells induced small inward currents. Intraventricular infusion of 5HT2C agonist or antagonist increased or decreased V-SVZ proliferation, respectively. These results indicate that supraependymal 5HT axons directly interact with NSCs to regulate neurogenesis via 5HT2C. PMID:24561083

  12. When stem cells grow old: phenotypes and mechanisms of stem cell aging

    PubMed Central

    Schultz, Michael B.; Sinclair, David A.

    2016-01-01

    All multicellular organisms undergo a decline in tissue and organ function as they age. An attractive theory is that a loss in stem cell number and/or activity over time causes this decline. In accordance with this theory, aging phenotypes have been described for stem cells of multiple tissues, including those of the hematopoietic system, intestine, muscle, brain, skin and germline. Here, we discuss recent advances in our understanding of why adult stem cells age and how this aging impacts diseases and lifespan. With this increased understanding, it is feasible to design and test interventions that delay stem cell aging and improve both health and lifespan. PMID:26732838

  13. Growth and long-term somatic and germline chimerism following fusion of juvenile Botryllus schlosseri.

    PubMed

    Carpenter, Meredith A; Powell, John H; Ishizuka, Katherine J; Palmeri, Karla J; Rendulic, Snjezana; De Tomaso, Anthony W

    2011-02-01

    The colonial ascidian Botryllus schlosseri undergoes a histocompatibility reaction that can result in vascular fusion of distinct genotypes, creating a chimera. Chimerism has both potential benefits, such as an immediate increase in size that may enhance growth rates, and costs. For the latter, the presence of multiple genotypes in a chimera can lead to competition between genetically distinct stem cell lineages, resulting in complete replacement of somatic and germline tissues by a single genotype. Although fusion can occur at any point after metamorphosis, previous studies have focused on chimeras created from sexually mature adults, where no benefit to chimerism has been documented. Here we focus on the costs and benefits of fusion between juveniles, characterizing growth rates and patterns of somatic and germline chimerism after natural and controlled fusion events. We also compared outcomes between low- and high-density growth conditions, the latter more likely representative of what occurs in natural populations. We found that growth rates were density-dependent, and that only chimeras grew under high-density conditions. We also observed a positional component to a post-fusion event called resorption, indicating that extrinsic factors were important in this process. Patterns of germline and somatic chimerism and dominance in chimeras made from fused juveniles were equivalent to those after fusion of sexually mature adults, and there were no age-related differences in these processes. Finally, by using genetic markers that could retrospectively assign genotypes, we also found that the majority of individual testes in a chimera were clonally derived.

  14. Regulation of seminiferous tubule-associated stem Leydig cells in adult rat testes.

    PubMed

    Li, Xiaoheng; Wang, Zhao; Jiang, Zhenming; Guo, Jingjing; Zhang, Yuxi; Li, Chenhao; Chung, Jinyong; Folmer, Janet; Liu, June; Lian, Qingquan; Ge, Renshan; Zirkin, Barry R; Chen, Haolin

    2016-03-08

    Testicular Leydig cells are the primary source of testosterone in males. Adult Leydig cells have been shown to arise from stem cells present in the neonatal testis. Once established, adult Leydig cells turn over only slowly during adult life, but when these cells are eliminated experimentally from the adult testis, new Leydig cells rapidly reappear. As in the neonatal testis, stem cells in the adult testis are presumed to be the source of the new Leydig cells. As yet, the mechanisms involved in regulating the proliferation and differentiation of these stem cells remain unknown. We developed a unique in vitro system of cultured seminiferous tubules to assess the ability of factors from the seminiferous tubules to regulate the proliferation of the tubule-associated stem cells, and their subsequent entry into the Leydig cell lineage. The proliferation of the stem Leydig cells was stimulated by paracrine factors including Desert hedgehog (DHH), basic fibroblast growth factor (FGF2), platelet-derived growth factor (PDGF), and activin. Suppression of proliferation occurred with transforming growth factor β (TGF-β). The differentiation of the stem cells was regulated positively by DHH, lithium- induced signaling, and activin, and negatively by TGF-β, PDGFBB, and FGF2. DHH functioned as a commitment factor, inducing the transition of stem cells to the progenitor stage and thus into the Leydig cell lineage. Additionally, CD90 (Thy1) was found to be a unique stem cell surface marker that was used to obtain purified stem cells by flow cytometry.

  15. Multipotent (adult) and pluripotent stem cells for heart regeneration: what are the pros and cons?

    PubMed

    Liao, Song-Yan; Tse, Hung-Fat

    2013-12-24

    Heart failure after myocardial infarction is the leading cause of mortality and morbidity worldwide. Existing medical and interventional therapies can only reduce the loss of cardiomyocytes during myocardial infarction but are unable to replenish the permanent loss of cardiomyocytes after the insult, which contributes to progressive pathological left ventricular remodeling and progressive heart failure. As a result, cell-based therapies using multipotent (adult) stem cells and pluripotent stem cells (embryonic stem cells or induced pluripotent stem cells) have been explored as potential therapeutic approaches to restore cardiac function in heart failure. Nevertheless, the optimal cell type with the best therapeutic efficacy and safety for heart regeneration is still unknown. In this review, the potential pros and cons of different types of multipotent (adult) stem cells and pluripotent stem cells that have been investigated in preclinical and clinical studies are reviewed, and the future perspective of stem cell-based therapy for heart regeneration is discussed.

  16. Neurodevelopment. Live imaging of adult neural stem cell behavior in the intact and injured zebrafish brain.

    PubMed

    Barbosa, Joana S; Sanchez-Gonzalez, Rosario; Di Giaimo, Rossella; Baumgart, Emily Violette; Theis, Fabian J; Götz, Magdalena; Ninkovic, Jovica

    2015-05-15

    Adult neural stem cells are the source for restoring injured brain tissue. We used repetitive imaging to follow single stem cells in the intact and injured adult zebrafish telencephalon in vivo and found that neurons are generated by both direct conversions of stem cells into postmitotic neurons and via intermediate progenitors amplifying the neuronal output. We observed an imbalance of direct conversion consuming the stem cells and asymmetric and symmetric self-renewing divisions, leading to depletion of stem cells over time. After brain injury, neuronal progenitors are recruited to the injury site. These progenitors are generated by symmetric divisions that deplete the pool of stem cells, a mode of neurogenesis absent in the intact telencephalon. Our analysis revealed changes in the behavior of stem cells underlying generation of additional neurons during regeneration.

  17. Sox10(+) adult stem cells contribute to biomaterial encapsulation and microvascularization.

    PubMed

    Wang, Dong; Wang, Aijun; Wu, Fan; Qiu, Xuefeng; Li, Ye; Chu, Julia; Huang, Wen-Chin; Xu, Kang; Gong, Xiaohua; Li, Song

    2017-01-10

    Implanted biomaterials and biomedical devices generally induce foreign body reaction and end up with encapsulation by a dense avascular fibrous layer enriched in extracellular matrix. Fibroblasts/myofibroblasts are thought to be the major cell type involved in encapsulation, but it is unclear whether and how stem cells contribute to this process. Here we show, for the first time, that Sox10(+) adult stem cells contribute to both encapsulation and microvessel formation. Sox10(+) adult stem cells were found sparsely in the stroma of subcutaneous loose connective tissues. Upon subcutaneous biomaterial implantation, Sox10(+) stem cells were activated and recruited to the biomaterial scaffold, and differentiated into fibroblasts and then myofibroblasts. This differentiation process from Sox10(+) stem cells to myofibroblasts could be recapitulated in vitro. On the other hand, Sox10(+) stem cells could differentiate into perivascular cells to stabilize newly formed microvessels. Sox10(+) stem cells and endothelial cells in three-dimensional co-culture self-assembled into microvessels, and platelet-derived growth factor had chemotactic effect on Sox10(+) stem cells. Transplanted Sox10(+) stem cells differentiated into smooth muscle cells to stabilize functional microvessels. These findings demonstrate the critical role of adult stem cells in tissue remodeling and unravel the complexity of stem cell fate determination.

  18. Sox10+ adult stem cells contribute to biomaterial encapsulation and microvascularization

    PubMed Central

    Wang, Dong; Wang, Aijun; Wu, Fan; Qiu, Xuefeng; Li, Ye; Chu, Julia; Huang, Wen-Chin; Xu, Kang; Gong, Xiaohua; Li, Song

    2017-01-01

    Implanted biomaterials and biomedical devices generally induce foreign body reaction and end up with encapsulation by a dense avascular fibrous layer enriched in extracellular matrix. Fibroblasts/myofibroblasts are thought to be the major cell type involved in encapsulation, but it is unclear whether and how stem cells contribute to this process. Here we show, for the first time, that Sox10+ adult stem cells contribute to both encapsulation and microvessel formation. Sox10+ adult stem cells were found sparsely in the stroma of subcutaneous loose connective tissues. Upon subcutaneous biomaterial implantation, Sox10+ stem cells were activated and recruited to the biomaterial scaffold, and differentiated into fibroblasts and then myofibroblasts. This differentiation process from Sox10+ stem cells to myofibroblasts could be recapitulated in vitro. On the other hand, Sox10+ stem cells could differentiate into perivascular cells to stabilize newly formed microvessels. Sox10+ stem cells and endothelial cells in three-dimensional co-culture self-assembled into microvessels, and platelet-derived growth factor had chemotactic effect on Sox10+ stem cells. Transplanted Sox10+ stem cells differentiated into smooth muscle cells to stabilize functional microvessels. These findings demonstrate the critical role of adult stem cells in tissue remodeling and unravel the complexity of stem cell fate determination. PMID:28071739

  19. Characteristics of Germline and Non-germline Retinoblastomas

    PubMed Central

    Ghassemi, Fariba; Chams, Hormoz; Sabour, Siamak; Karkhaneh, Reza; Farzbod, Farzad; Khodaparast, Mehdi; Vosough, Parvaneh

    2014-01-01

    Purpose To discuss the clinical characteristics, treatment and outcomes of germline and non-germline retinoblastoma tumors. Methods A retrospective study was performed on retinoblastoma cases from 1979 to 2007. General characteristics of the patients, treatment modalities, histopathological findings and survival were compared in germline versus non-germline cases. Results We analyzed 557 cases of retinoblastoma with mean age of 32.2±22.0 months including 177 and 380 patients with germline and non-germline tumors, respectively. Germline cases were significantly different from non-germline counterparts in terms of mean age (24.7±17.7 vs 35.7±23.0 months), symptoms (leukocoria in 49.4% vs 62.9%), and outcomes (death in 40.1% vs 13.9%), respectively (P<0.001). In the germline group 66.5% and in non-germline group over 97% of patients had stage Va or higher (ICRB D-E disease). Disease-free survival was 48.6% for germlines cases versus 80.9% for non-germline patients (with mean follow up of 61.9 months, P<0.001). Histopathologically, more invasions to intraocular and extraocular tissues were seen with non-germline tumors of (66% vs 39.8%). Mortality rates in germline cases and non-germline were 40.1% and 13.9%, respectively (P<0.001). Conclusion Despite higher tumor staging in nongermline cases at the time of diagnosis and therefore more aggressive behavior of the tumor, germline cases had a higher rate of mortality during the follow up period. PMID:25279120

  20. The development of a malignant tumor is due to a desperate asexual self-cloning process in which cancer stem cells develop the ability to mimic the genetic program of germline cells

    PubMed Central

    Vinnitsky, Vladimir

    2014-01-01

    To date there is no explanation why the development of almost all types of solid tumors occurs sharing a similar scenario: (1) creation of a cancer stem cell (CSC), (2) CSC multiplication and formation of a multicellular tumor spheroid (TS), (3) vascularization of the TS and its transformation into a vascularized primary tumor, (4) metastatic spreading of CSCs, (5) formation of a metastatic TSs and its transformation into metastatic tumors, and (6) potentially endless repetition of this cycle of events. The above gaps in our knowledge are related to the biology of cancer and specifically to tumorigenesis, which covers the process from the creation of a CSC to the formation of a malignant tumor and the development of metastases. My Oncogerminative Theory of Tumorigenesis considers tumor formation as a dynamic self-organizing process that mimics a self-organizing process of early embryo development. In the initial step in that process, gene mutations combined with epigenetic dysregulation cause somatic cells to be reprogrammed into CSCs, which are immortal pseudo-germline cells. Mimicking the behavior of fertilized germline cells, the CSC achieves immortality by passing through the stages of its life-cycle and developing into a pseudo-blastula-stage embryo, which manifests in the body as a malignant tumor. In this view, the development of a malignant tumor from a CSC is a phenomenon of developmental biology, which we named a desperate asexual self-cloning event. The theory explains seven core characteristics of malignant tumors: (1) CSC immortality, (2) multistep development of a malignant tumor from a single CSC, (3) heterogeneity of malignant tumor cell populations, (4) metastatic spread of CSCs, (5) invasive growth, (6) malignant progression, and (7) selective immune tolerance toward cancer cells. The Oncogerminative Theory of Tumorigenesis suggests new avenues for discovery of revolutionary therapies to treat, prevent, and eradicate cancer. PMID:28232878

  1. Transcriptional profiling of adult neural stem-like cells from the human brain.

    PubMed

    Sandberg, Cecilie Jonsgar; Vik-Mo, Einar O; Behnan, Jinan; Helseth, Eirik; Langmoen, Iver A

    2014-01-01

    There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33-60). Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate). We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6), foetal human neural stem cells (n = 1) and human brain tissues (n = 12). The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular fate.

  2. Adult stem cel diferentiation and trafficking and their implications in disease.

    PubMed

    Zhuge, Ying; Liu, Zhao-Jun; Velazquez, Omaida C

    2010-01-01

    Stem cells are unspecialized precursor cells that mainly reside in the bone marrow and have important roles in the establishment of embryonic tissue. They also have critical functions during adulthood, where they replenish short-lived mature effector cells and regeneration of injured tissue. They have three main characteristics: self-renewal, differentiation and homeostatic control. In order to maintain a pool of stem cells that support the production of blood cells, stromal elements and connective tissue, stem cells must be able to constantly replenish their own number. They must also possess the ability to differentiate and give rise to a heterogeneous group of functional cells. Finally, stem cells must possess the ability to modulate and balance differentiation and self-renewal according to environmental stimuli and whole-organ needs to prevent the production of excessive number of effector cells.(1) In addition to formation of these cells, regulated movement of stem cells is critical for organogenesis, homeostasis and repair in adulthood. Stem cells require specific inputs from particular environments in order to perform their various functions. Some similar trafficking mechanisms are shared by leukocytes, adult and fetal stem cells, as well as cancer stem cells.(1,2) Achieving proper trafficking of stem cells will allow increased efficiency of targeted cell therapy and drug delivery.(2) In addition, understanding similarities and differences in homing and migration of malignant cancer stem cells will also clarify molecular events of tumor progression and metastasis.(2) This chapter focuses on the differentiation, trafficking and homing of the major types of adult bone marrow stem cells: hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) and the term"stem cell" will refer to "adult stem cells" unless otherwise specified.

  3. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    SciTech Connect

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun; Fu, Yinghui

    2014-07-18

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1{sup +} or nestin{sup +} stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU{sup +} cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU{sup +} cells, very few are mash1{sup +} or nestin{sup +} stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1{sup +} microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition.

  4. The role of CD44 in fetal and adult hematopoietic stem cell regulation.

    PubMed

    Cao, Huimin; Heazlewood, Shen Y; Williams, Brenda; Cardozo, Daniela; Nigro, Julie; Oteiza, Ana; Nilsson, Susan K

    2016-01-01

    Throughout development, hematopoietic stem cells migrate to specific microenvironments, where their fate is, in part, extrinsically controlled. CD44 standard as a member of the cell adhesion molecule family is extensively expressed within adult bone marrow and has been previously reported to play important roles in adult hematopoietic regulation via CD44 standard-ligand interactions. In this manuscript, CD44 expression and function are further assessed and characterized on both fetal and adult hematopoietic stem cells. Using a CD44(-/-) mouse model, conserved functional roles of CD44 are revealed throughout development. CD44 is critical in the maintenance of hematopoietic stem and progenitor pools, as well as in hematopoietic stem cell migration. CD44 expression on hematopoietic stem cells as well as other hematopoietic cells within the bone marrow microenvironment is important in the homing and lodgment of adult hematopoietic stem cells isolated from the bone/bone marrow interface. CD44 is also involved in fetal hematopoietic stem cell migration out of the liver, via a process involving stromal cell-derived factor-1α. The absence of CD44 in neonatal bone marrow has no impact on the size of the long-term reconstituting hematopoietic stem cell pool, but results in an enhanced long-term engraftment potential of hematopoietic stem cells.

  5. The role of CD44 in fetal and adult hematopoietic stem cell regulation

    PubMed Central

    Cao, Huimin; Heazlewood, Shen Y.; Williams, Brenda; Cardozo, Daniela; Nigro, Julie; Oteiza, Ana; Nilsson, Susan K.

    2016-01-01

    Throughout development, hematopoietic stem cells migrate to specific microenvironments, where their fate is, in part, extrinsically controlled. CD44 standard as a member of the cell adhesion molecule family is extensively expressed within adult bone marrow and has been previously reported to play important roles in adult hematopoietic regulation via CD44 standard-ligand interactions. In this manuscript, CD44 expression and function are further assessed and characterized on both fetal and adult hematopoietic stem cells. Using a CD44−/− mouse model, conserved functional roles of CD44 are revealed throughout development. CD44 is critical in the maintenance of hematopoietic stem and progenitor pools, as well as in hematopoietic stem cell migration. CD44 expression on hematopoietic stem cells as well as other hematopoietic cells within the bone marrow microenvironment is important in the homing and lodgment of adult hematopoietic stem cells isolated from the bone/bone marrow interface. CD44 is also involved in fetal hematopoietic stem cell migration out of the liver, via a process involving stromal cell-derived factor-1α. The absence of CD44 in neonatal bone marrow has no impact on the size of the long-term reconstituting hematopoietic stem cell pool, but results in an enhanced long-term engraftment potential of hematopoietic stem cells. PMID:26546504

  6. The Yin and Yang of chromatin dynamics in adult stem cell fate selection

    PubMed Central

    Adam, Rene C.; Fuchs, Elaine

    2015-01-01

    Adult organisms rely on tissue stem cells for maintenance and repair. During homeostasis, the concerted action of local niche signals and epigenetic regulators establish stable gene expression patterns to ensure that stem cells are not lost over time. However, stem cells also provide host tissues with a remarkable plasticity to respond to perturbations. How adult stem cells choose and acquire new fates is unknown, but the genome-wide mapping of epigenetic landscapes suggests a critical role for chromatin remodeling in these processes. Here, we explore the emerging role of chromatin modifiers and pioneer transcription factors in adult stem cell fate decisions and plasticity, which ensure that selective lineage choices are only made when environmentally cued. PMID:26689127

  7. Roles of neural stem cells and adult neurogenesis in adolescent alcohol use disorders.

    PubMed

    Nixon, Kimberly; Morris, Stephanie A; Liput, Daniel J; Kelso, Matthew L

    2010-02-01

    This review discusses the contributions of a newly considered form of plasticity, the ongoing production of new neurons from neural stem cells, or adult neurogenesis, within the context of neuropathologies that occur with excessive alcohol intake in the adolescents. Neural stem cells and adult neurogenesis are now thought to contribute to the structural integrity of the hippocampus, a limbic system region involved in learning, memory, behavioral control, and mood. In adolescents with alcohol use disorders (AUDs), the hippocampus appears to be particularly vulnerable to the neurodegenerative effects of alcohol, but the role of neural stem cells and adult neurogenesis in alcoholic neuropathology has only recently been considered. This review encompasses a brief overview of neural stem cells and the processes involved in adult neurogenesis, how neural stem cells are affected by alcohol, and possible differences in the neurogenic niche between adults and adolescents. Specifically, what is known about developmental differences in adult neurogenesis between the adult and adolescent is gleaned from the literature, as well as how alcohol affects this process differently among the age groups. Finally, this review suggests differences that may exist in the neurogenic niche between adults and adolescents and how these differences may contribute to the susceptibility of the adolescent hippocampus to damage. However, many more studies are needed to discern whether these developmental differences contribute to the vulnerability of the adolescent to developing an AUD.

  8. A conserved germline multipotency program

    PubMed Central

    Juliano, Celina E.; Swartz, S. Zachary; Wessel, Gary M.

    2010-01-01

    The germline of multicellular animals is segregated from somatic tissues, which is an essential developmental process for the next generation. Although certain ecdysozoans and chordates segregate their germline during embryogenesis, animals from other taxa segregate their germline after embryogenesis from multipotent progenitor cells. An overlapping set of genes, including vasa, nanos and piwi, operate in both multipotent precursors and in the germline. As we propose here, this conservation implies the existence of an underlying germline multipotency program in these cell types that has a previously underappreciated and conserved function in maintaining multipotency. PMID:21098563

  9. Adult stem cells in neural repair: Current options, limitations and perspectives.

    PubMed

    Mariano, Eric Domingos; Teixeira, Manoel Jacobsen; Marie, Suely Kazue Nagahashi; Lepski, Guilherme

    2015-03-26

    Stem cells represent a promising step for the future of regenerative medicine. As they are able to differentiate into any cell type, tissue or organ, these cells are great candidates for treatments against the worst diseases that defy doctors and researchers around the world. Stem cells can be divided into three main groups: (1) embryonic stem cells; (2) fetal stem cells; and (3) adult stem cells. In terms of their capacity for proliferation, stem cells are also classified as totipotent, pluripotent or multipotent. Adult stem cells, also known as somatic cells, are found in various regions of the adult organism, such as bone marrow, skin, eyes, viscera and brain. They can differentiate into unipotent cells of the residing tissue, generally for the purpose of repair. These cells represent an excellent choice in regenerative medicine, every patient can be a donor of adult stem cells to provide a more customized and efficient therapy against various diseases, in other words, they allow the opportunity of autologous transplantation. But in order to start clinical trials and achieve great results, we need to understand how these cells interact with the host tissue, how they can manipulate or be manipulated by the microenvironment where they will be transplanted and for how long they can maintain their multipotent state to provide a full regeneration.

  10. Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms.

    PubMed

    Prockop, Darwin J

    2009-06-01

    Research on stem cells has progressed at a rapid pace and, as might be anticipated, the results have generated several controversies, a few myths and a change in a major paradigm. Some of these issues will be reviewed in this study with special emphasis on how they can be applied to the adult stem/progenitor cells from bone marrow, referred to as MSCs.

  11. Epistatic adult plant resistance in wheat to stem rust cosegregates with Sr12 seedling resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat adult plant resistance (APR) to stem rust is desirable. Researchers have characterized the inheritance of APR in cultivar Thatcher as complex. In order to identify the loci providing APR in Thatcher, we evaluated 160 RILs derived from Thatcher/McNeal for stem rust reaction in the field in Keny...

  12. Lin-28 promotes symmetric stem cell division and drives adaptive growth in the adult Drosophila intestine.

    PubMed

    Chen, Ching-Huan; Luhur, Arthur; Sokol, Nicholas

    2015-10-15

    Stem cells switch between asymmetric and symmetric division to expand in number as tissues grow during development and in response to environmental changes. The stem cell intrinsic proteins controlling this switch are largely unknown, but one candidate is the Lin-28 pluripotency factor. A conserved RNA-binding protein that is downregulated in most animals as they develop from embryos to adults, Lin-28 persists in populations of adult stem cells. Its function in these cells has not been previously characterized. Here, we report that Lin-28 is highly enriched in adult intestinal stem cells in the Drosophila intestine. lin-28 null mutants are homozygous viable but display defects in this population of cells, which fail to undergo a characteristic food-triggered expansion in number and have reduced rates of symmetric division as well as reduced insulin signaling. Immunoprecipitation of Lin-28-bound mRNAs identified Insulin-like Receptor (InR), forced expression of which completely rescues lin-28-associated defects in intestinal stem cell number and division pattern. Furthermore, this stem cell activity of lin-28 is independent of one well-known lin-28 target, the microRNA let-7, which has limited expression in the intestinal epithelium. These results identify Lin-28 as a stem cell intrinsic factor that boosts insulin signaling in intestinal progenitor cells and promotes their symmetric division in response to nutrients, defining a mechanism through which Lin-28 controls the adult stem cell division patterns that underlie tissue homeostasis and regeneration.

  13. Enhanced ex vivo expansion of adult mesenchymal stem cells by fetal mesenchymal stem cell ECM.

    PubMed

    Ng, Chee Ping; Sharif, Abdul Rahim Mohamed; Heath, Daniel E; Chow, John W; Zhang, Claire B Y; Chan-Park, Mary B; Hammond, Paula T; Chan, Jerry K Y; Griffith, Linda G

    2014-04-01

    Large-scale expansion of highly functional adult human mesenchymal stem cells (aMSCs) remains technologically challenging as aMSCs lose self renewal capacity and multipotency during traditional long-term culture and their quality/quantity declines with donor age and disease. Identification of culture conditions enabling prolonged expansion and rejuvenation would have dramatic impact in regenerative medicine. aMSC-derived decellularized extracellular matrix (ECM) has been shown to provide such microenvironment which promotes MSC self renewal and "stemness". Since previous studies have demonstrated superior proliferation and osteogenic potential of human fetal MSCs (fMSCs), we hypothesize that their ECM may promote expansion of clinically relevant aMSCs. We demonstrated that aMSCs were more proliferative (∼ 1.6 ×) on fMSC-derived ECM than aMSC-derived ECMs and traditional tissue culture wares (TCPS). These aMSCs were smaller and more uniform in size (median ± interquartile range: 15.5 ± 4.1 μm versus 17.2 ± 5.0 μm and 15.5 ± 4.1 μm for aMSC ECM and TCPS respectively), exhibited the necessary biomarker signatures, and stained positive for osteogenic, adipogenic and chondrogenic expressions; indications that they maintained multipotency during culture. Furthermore, fMSC ECM improved the proliferation (∼ 2.2 ×), size (19.6 ± 11.9 μm vs 30.2 ± 14.5 μm) and differentiation potential in late-passaged aMSCs compared to TCPS. In conclusion, we have established fMSC ECM as a promising cell culture platform for ex vivo expansion of aMSCs.

  14. Elevated germline mutation rate in teenage fathers.

    PubMed

    Forster, Peter; Hohoff, Carsten; Dunkelmann, Bettina; Schürenkamp, Marianne; Pfeiffer, Heidi; Neuhuber, Franz; Brinkmann, Bernd

    2015-03-22

    Men age and die, while cells in their germline are programmed to be immortal. To elucidate how germ cells maintain viable DNA despite increasing parental age, we analysed DNA from 24 097 parents and their children, from Europe, the Middle East and Africa. We chose repetitive microsatellite DNA that mutates (unlike point mutations) only as a result of cellular replication, providing us with a natural 'cell-cycle counter'. We observe, as expected, that the overall mutation rate for fathers is seven times higher than for mothers. Also as expected, mothers have a low and lifelong constant DNA mutation rate. Surprisingly, however, we discover that (i) teenage fathers already set out from a much higher mutation rate than teenage mothers (potentially equivalent to 77-196 male germline cell divisions by puberty); and (ii) ageing men maintain sperm DNA quality similar to that of teenagers, presumably by using fresh batches of stem cells known as 'A-dark spermatogonia'.

  15. Adult bone marrow-derived stem cells for organ regeneration and repair.

    PubMed

    Tögel, Florian; Westenfelder, Christof

    2007-12-01

    Stem cells have been recognized as a potential tool for the development of innovative therapeutic strategies. There are in general two types of stem cells, embryonic and adult stem cells. While embryonic stem cell therapy has been riddled with problems of allogeneic rejection and ethical concerns, adult stem cells have long been used in the treatment of hematological malignancies. With the recognition of additional, potentially therapeutic characteristics, bone marrow-derived stem cells have become a tool in regenerative medicine. The bone marrow is an ideal source of stem cells because it is easily accessible and harbors two types of stem cells. Hematopoietic stem cells give rise to all blood cell types and have been shown to exhibit plasticity, while multipotent marrow stromal cells are the source of osteocytes, chondrocytes, and fat cells and have been shown to support and generate a large number of different cell types. This review describes the general characteristics of these stem cell populations and their current and potential future applications in regenerative medicine.

  16. Isolation, cultivation, and characterization of adult murine prostate stem cells

    PubMed Central

    Lukacs, Rita U.; Goldstein, Andrew S.; Lawson, Devon A.; Cheng, Donghui; Witte, Owen N.

    2010-01-01

    ABSTRACT/SUMMARY The successful isolation and cultivation of prostate stem cells will allow us to study their unique biological properties and their application in therapeutic approaches. Here we provide step-by-step procedures on the basis of previous work in our laboratory for: the harvesting of primary prostate cells from adolescent male mice by a modified enzymatic procedure; the isolation of an enriched population of prostate stem cells through cell sorting; the cultivation of prostate stem cells in vitro; and characterization of these cells and their stem-like activity, including in vivo tubule regeneration. Normally it will take approximately 8 hours to harvest prostate cells, isolate the stem cell enriched population, and set up the in vitro sphere assay. It will take up to 8 weeks to analyze the unique properties of the stem cells, including their regenerative capacity in vivo. PMID:20360765

  17. Isolation, cultivation and characterization of adult murine prostate stem cells.

    PubMed

    Lukacs, Rita U; Goldstein, Andrew S; Lawson, Devon A; Cheng, Donghui; Witte, Owen N

    2010-04-01

    The successful isolation and cultivation of prostate stem cells will allow us to study their unique biological properties and their application in therapeutic approaches. Here we describe step-by-step procedures on the basis of previous work in our laboratory for the harvesting of primary prostate cells from adolescent male mice by a modified enzymatic procedure; the isolation of an enriched population of prostate stem cells through cell sorting; and the cultivation of prostate stem cells in vitro and characterization of these cells and their stem-like activity, including in vivo tubule regeneration. Normally, it will take approximately 8 h to harvest prostate cells, isolate the stem cell-enriched population and set up the in vitro sphere assay. It will take up to 8 weeks to analyze the unique properties of the stem cells, including their regenerative capacity in vivo.

  18. Immune physiology and oogenesis in fetal and adult humans, ovarian infertility, and totipotency of adult ovarian stem cells.

    PubMed

    Bukovsky, Antonin; Caudle, Michael R; Virant-Klun, Irma; Gupta, Satish K; Dominguez, Roberto; Svetlikova, Marta; Xu, Fei

    2009-03-01

    It is still widely believed that while oocytes in invertebrates and lower vertebrates are periodically renewed throughout life, oocytes in humans and higher vertebrates are formed only during the fetal/perinatal period. However, this dogma is questioned, and clashes with Darwinian evolutionary theory. Studies of oogenesis and follicular renewal from ovarian stem cells (OSCs) in adult human ovaries, and of the role of third-party bone marrow-derived cells (monocyte-derived tissue macrophages and T lymphocytes) could help provide a better understanding of the causes of ovarian infertility, its prevention, and potential treatment. We have reported differentiation of distinct cell types from OSC and the production of new eggs in cultures derived from premenopausal and postmenopausal human ovaries. OSCs are also capable of producing neural/neuronal cells in vitro after sequential stimulation with sex steroid combinations. Hence, OSC represent a unique type of totipotent adult stem cells, which could be utilized for autologous treatment of premature ovarian failure and also for autologous stem cell therapy of neurodegenerative diseases without use of allogeneic embryonic stem cells or somatic cell nuclear transfer. The in vivo application of sex steroid combinations may augment the proliferation of existing neural stem cells and their differentiation into mature neuronal cells (systemic regenerative therapy). Such treatment may also stimulate the transdifferentiation of autologous neural stem cell precursors into neural stem cells useful for topical or systemic regenerative treatment.

  19. Competitiveness for the niche and mutual dependence of the germline and somatic stem cells in the Drosophila testis are regulated by the JAK/STAT signaling.

    PubMed

    Singh, Shree Ram; Zheng, Zhiyu; Wang, Hong; Oh, Su-Wan; Chen, Xiu; Hou, Steven X

    2010-05-01

    In many tissues, two or more types of stem cells share a niche, and how the stem cells coordinate their self-renewal and differentiation is poorly understood. In the Drosophila testis, germ line stem cells (GSCs) and somatic cyst progenitor cells (CPCs) contact each other and share a niche (the hub). The hub expresses a growth factor unpaired (Upd) that activates the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway in GSCs to regulate the stem cell self-renewal. Here, we demonstrate that the JAK/STAT signaling also regulates CPCs self-renewal. We also show that a negative regulator, the suppressor of cytokine signaling 36E (SOCS36E), suppresses JAK/STAT signaling in somatic cells, preventing them from out-competing the GSCs. Furthermore, through selectively manipulating the JAK/STAT signaling level in either CPCs or GSCs, we demonstrate that the somatic JAK/STAT signaling is essential for self-renewal and maintenance of both CPCs and GSCs. These data suggest that a single JAK/STAT signal from the niche orchestrate the competitive and dependent co-existence of GSCs and CPCs in the Drosophila testis niche.

  20. RNA-Seq Reveals the Angiogenesis Diversity between the Fetal and Adults Bone Mesenchyme Stem Cell.

    PubMed

    Zhao, Xin; Han, Yingmin; Liang, Yu; Nie, Chao; Wang, Jian

    2016-01-01

    In this research, we used RNA sequencing (RNA-seq) to analyze 23 single cell samples and 2 bulk cells sample from human adult bone mesenchyme stem cell line and human fetal bone mesenchyme stem cell line. The results from the research demonstrated that there were big differences between two cell lines. Adult bone mesenchyme stem cell lines showed a strong trend on the blood vessel differentiation and cell motion, 48/49 vascular related differential expressed genes showed higher expression in adult bone mesenchyme stem cell lines (Abmsc) than fetal bone mesenchyme stem cell lines (Fbmsc). 96/106 cell motion related genes showed the same tendency. Further analysis showed that genes like ANGPT1, VEGFA, FGF2, PDGFB and PDGFRA showed higher expression in Abmsc. This work showed cell heterogeneity between human adult bone mesenchyme stem cell line and human fetal bone mesenchyme stem cell line. Also the work may give an indication that Abmsc had a better potency than Fbmsc in the future vascular related application.

  1. CRIPTO/GRP78 Signaling Maintains Fetal and Adult Mammary Stem Cells Ex Vivo

    PubMed Central

    Spike, Benjamin T.; Kelber, Jonathan A.; Booker, Evan; Kalathur, Madhuri; Rodewald, Rose; Lipianskaya, Julia; La, Justin; He, Marielle; Wright, Tracy; Klemke, Richard; Wahl, Geoffrey M.; Gray, Peter C.

    2014-01-01

    Summary Little is known about the extracellular signaling factors that govern mammary stem cell behavior. Here, we identify CRIPTO and its cell-surface receptor GRP78 as regulators of stem cell behavior in isolated fetal and adult mammary epithelial cells. We develop a CRIPTO antagonist that promotes differentiation and reduces self-renewal of mammary stem cell-enriched populations cultured ex vivo. By contrast, CRIPTO treatment maintains the stem cell phenotype in these cultures and yields colonies with enhanced mammary gland reconstitution capacity. Surface expression of GRP78 marks CRIPTO-responsive, stem cell-enriched fetal and adult mammary epithelial cells, and deletion of GRP78 from adult mammary epithelial cells blocks their mammary gland reconstitution potential. Together, these findings identify the CRIPTO/GRP78 pathway as a developmentally conserved regulator of fetal and adult mammary stem cell behavior ex vivo, with implications for the stem-like cells found in many cancers. PMID:24749068

  2. Adipose-derived adult stem cells: available technologies for potential clinical regenerative applications in dentistry.

    PubMed

    Catalano, Enrico; Cochis, Andrea; Varoni, Elena; Rimondini, Lia; Carrassi, Antonio; Azzimonti, Barbara

    2013-01-01

    Tissue homeostasis depends closely on the activity and welfare of adult stem cells. These cells represent a promising tool for biomedical research since they can aid in treatment and promote the regeneration of damaged organs in many human disorders. Adult stem cells indefinitely preserve their ability to self-renew and differentiate into various phenotypes; this capacity could be promoted in vitro by particular culture conditions (differentiation media) or spontaneously induced in vivo by exploiting the biochemical and mechanical properties of the tissue in which the stem cells are implanted. Among the different sources of adult stem cells, adipose tissue is an attractive possibility thanks to its ready availability and the standard extraction techniques at our disposal today. This review discusses the isolation, characterization, and differentiation of human adipose-derived adult stem cells, as well as regeneration strategies, therapeutic uses, and adverse effects of their delivery. In particular, since oral disorders (e.g., trauma, erosion, and chronic periodontitis) often cause the loss of dental tissue along with functional, phonetic, and aesthetic impairment, this review focuses on the application of human adipose-derived adult stem cells, alone or in combination with biomaterials, in treating oral diseases.

  3. Does the adult human ciliary body epithelium contain "true" retinal stem cells?

    PubMed

    Frøen, Rebecca; Johnsen, Erik O; Nicolaissen, Bjørn; Facskó, Andrea; Petrovski, Goran; Moe, Morten C

    2013-01-01

    Recent reports of retinal stem cells being present in several locations of the adult eye have sparked great hopes that they may be used to treat the millions of people worldwide who suffer from blindness as a result of retinal disease or injury. A population of proliferative cells derived from the ciliary body epithelium (CE) has been considered one of the prime stem cell candidates, and as such they have received much attention in recent years. However, the true nature of these cells in the adult human eye has still not been fully elucidated, and the stem cell claim has become increasingly controversial in light of new and conflicting reports. In this paper, we will try to answer the question of whether the available evidence is strong enough for the research community to conclude that the adult human CE indeed harbors stem cells.

  4. A somatic permeability barrier around the germline is essential for Drosophila spermatogenesis.

    PubMed

    Fairchild, Michael J; Smendziuk, Christopher M; Tanentzapf, Guy

    2015-01-15

    Interactions between the soma and germline are essential for gametogenesis. In the Drosophila testis, differentiating germ cells are encapsulated by two somatic cells that surround the germline throughout spermatogenesis. chickadee (chic), the fly ortholog of Profilin, mediates soma-germline interactions. Knockdown of Chic in the soma results in sterility and severely disrupted spermatogenesis due to defective encapsulation. To study this defect further, we developed a permeability assay to analyze whether the germline is isolated from the surrounding environment by the soma. We find that germline encapsulation by the soma is, by itself, insufficient for the formation of a permeability barrier, but that such a barrier gradually develops during early spermatogenesis. Thus, germline stem cells, gonialblasts and early spermatogonia are not isolated from the outside environment. By late spermatocyte stages, however, a permeability barrier is formed by the soma. Furthermore, we find that, concomitant with formation of the permeability barrier, septate junction markers are expressed in the soma and localize to junctional sites connecting the two somatic cells that surround the germline. Importantly, knockdown of septate junction components also disrupts the permeability barrier. Finally, we show that germline differentiation is delayed when the permeability barrier is compromised. We propose that the permeability barrier around the germline serves an important regulatory function during spermatogenesis by shaping the signaling events that take place between the soma and the germline.

  5. Stem Cells

    MedlinePlus

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  6. Acute myeloid leukemia of donor origin after allogeneic stem cell transplantation from a sibling who harbors germline XPD and XRCC3 homozygous polymorphisms

    PubMed Central

    2011-01-01

    A 54-year-old woman was diagnosed with infiltrative ductal breast carcinoma. Two years after treatment, the patient developed an acute myeloid leukemia (AML) which harbored del(11q23) in 8% of the blast cells. The patient was submitted for allogeneic stem cell transplantation (aSCT) from her HLA-compatible sister. Ten months after transplantation, she relapsed with an AML with basophilic maturation characterized by CD45low CD33high, CD117+, CD13-/+, HLA Drhigh, CD123high, and CD203c+ blast cells lacking expression of CD7, CD10, CD34, CD15, CD14, CD56, CD36, CD64, and cytoplasmic tryptase. Karyotype analysis showed the emergence of a new clone with t(2;14) and FISH analysis indicated the presence of MLL gene rearrangement consistent with del(11q23). Interestingly, AML blast cell DNA tested with microsatellite markers showed the same pattern as the donor's, suggesting that this AML emerged from donor cells. Additionally, polymorphisms of the XPA, XPD, XRCC1, XRCC3 and RAD51 DNA repair genes revealed three unfavorable alleles with low DNA repair capacity. In summary, we report the first case of AML involving XPD and XRCC3 polymorphisms from donor origin following allogeneic stem cell transplantation and highlight the potential need for careful analysis of DNA repair gene polymorphisms in selecting candidate donors prior to allogeneic stem cell transplantation. PMID:21951951

  7. Evolutionary origins of germline segregation in Metazoa: evidence for a germ stem cell lineage in the coral Orbicella faveolata (Cnidaria, Anthozoa).

    PubMed

    Barfield, Sarah; Aglyamova, Galina V; Matz, Mikhail V

    2016-01-13

    The ability to segregate a committed germ stem cell (GSC) lineage distinct from somatic cell lineages is a characteristic of bilaterian Metazoans. However, the occurrence of GSC lineage specification in basally branching Metazoan phyla, such as Cnidaria, is uncertain. Without an independently segregated GSC lineage, germ cells and their precursors must be specified throughout adulthood from continuously dividing somatic stem cells, generating the risk of propagating somatic mutations within the individual and its gametes. To address the potential for existence of a GSC lineage in Anthozoa, the sister-group to all remaining Cnidaria, we identified moderate- to high-frequency somatic mutations and their potential for gametic transfer in the long-lived coral Orbicella faveolata (Anthozoa, Cnidaria) using a 2b-RAD sequencing approach. Our results demonstrate that somatic mutations can drift to high frequencies (up to 50%) and can also generate substantial intracolonial genetic diversity. However, these somatic mutations are not transferable to gametes, signifying the potential for an independently segregated GSC lineage in O. faveolata. In conjunction with previous research on germ cell development in other basally branching Metazoan species, our results suggest that the GSC system may be a Eumetazoan characteristic that evolved in association with the emergence of greater complexity in animal body plan organization and greater specificity of stem cell functions.

  8. Evolutionary origins of germline segregation in Metazoa: evidence for a germ stem cell lineage in the coral Orbicella faveolata (Cnidaria, Anthozoa)

    PubMed Central

    Barfield, Sarah; Aglyamova, Galina V.; Matz, Mikhail V.

    2016-01-01

    The ability to segregate a committed germ stem cell (GSC) lineage distinct from somatic cell lineages is a characteristic of bilaterian Metazoans. However, the occurrence of GSC lineage specification in basally branching Metazoan phyla, such as Cnidaria, is uncertain. Without an independently segregated GSC lineage, germ cells and their precursors must be specified throughout adulthood from continuously dividing somatic stem cells, generating the risk of propagating somatic mutations within the individual and its gametes. To address the potential for existence of a GSC lineage in Anthozoa, the sister-group to all remaining Cnidaria, we identified moderate- to high-frequency somatic mutations and their potential for gametic transfer in the long-lived coral Orbicella faveolata (Anthozoa, Cnidaria) using a 2b-RAD sequencing approach. Our results demonstrate that somatic mutations can drift to high frequencies (up to 50%) and can also generate substantial intracolonial genetic diversity. However, these somatic mutations are not transferable to gametes, signifying the potential for an independently segregated GSC lineage in O. faveolata. In conjunction with previous research on germ cell development in other basally branching Metazoan species, our results suggest that the GSC system may be a Eumetazoan characteristic that evolved in association with the emergence of greater complexity in animal body plan organization and greater specificity of stem cell functions. PMID:26763699

  9. ADULT NEURAL STEM CELLS: RESPONSE TO STROKE INJURY AND POTENTIAL FOR THERAPEUTIC APPLICATIONS

    PubMed Central

    Barkho, Basam Z.; Zhao, Xinyu

    2011-01-01

    The plasticity of neural stem/progenitor cells allows a variety of different responses to many environmental cues. In the past decade, significant research has gone into understanding the regulation of neural stem/progenitor cell properties, because of their promise for cell replacement therapies in adult neurological diseases. Both endogenous and grafted neural stem/progenitor cells are known to have the ability to migrate long distances to lesioned sites after brain injury and differentiate into new neurons. Several chemokines and growth factors, including stromal cell-derived factor-1 and vascular endothelial growth factor, have been shown to stimulate the proliferation, differentiation, and migration of neural stem/progenitor cells, and investigators have now begun to identify the critical downstream effectors and signaling mechanisms that regulate these processes. Both our own lab and others have shown that the extracellular matrix and matrix remodeling factors play a critical role in directing cell differentiation and migration of adult neural stem/progenitor cells within injured sites. Identification of these and other molecular pathways involved in stem cell homing into ischemic areas is vital for the development of new treatments. To ensure the best functional recovery, regenerative therapy may require the application of a combination approach that includes cell replacement, trophic support, and neural protection. Here we review the current state of our knowledge about endogenous adult and exogenous neural stem/progenitor cells as potential therapeutic agents for central nervous system injuries. PMID:21466483

  10. Great promise of tissue-resident adult stem/progenitor cells in transplantation and cancer therapies.

    PubMed

    Mimeault, Murielle; Batra, Surinder K

    2012-01-01

    Recent progress in tissue-resident adult stem/progenitor cell research has inspired great interest because these immature cells from your own body can act as potential, easily accessible cell sources for cell transplantation in regenerative medicine and cancer therapies. The use of adult stem/progenitor cells endowed with a high self-renewal ability and multilineage differentiation potential, which are able to regenerate all the mature cells in the tissues from their origin, offers great promise in replacing non-functioning or lost cells and regenerating diseased and damaged tissues. The presence of a small subpopulation of adult stem/progenitor cells in most tissues and organs provides the possibility of stimulating their in vivo differentiation, or of using their ex vivo expanded progenies for cell-replacement and gene therapies with multiple applications in humans without a high-risk of graft rejection and major side effects. Among the diseases that could be treated by adult stem cell-based therapies are hematopoietic and immune disorders, multiple degenerative disorders such as Parkinson's and Alzheimer's diseases, Types 1 and 2 diabetes mellitus as well as skin, eye, liver, lung, tooth and cardiovascular disorders. In addition, a combination of the current cancer treatments with an adjuvant treatment consisting of an autologous or allogeneic adult stem/progenitor cell transplantation also represents a promising strategy for treating and even curing diverse aggressive, metastatic, recurrent and lethal cancers. In this chapter, we reviewed the most recent advancements on the characterization of phenotypic and functional properties of adult stem/progenitor cell types found in bone marrow, heart, brain and other tissues and discussed their therapeutic implications in the stem cell-based transplantation therapy.

  11. Wildtype adult stem cells, unlike tumor cells, are resistant to cellular damages in Drosophila.

    PubMed

    Ma, Meifang; Zhao, Hang; Zhao, Hanfei; Binari, Richard; Perrimon, Norbert; Li, Zhouhua

    2016-03-15

    Adult stem cells or residential progenitor cells are critical to maintain the structure and function of adult tissues (homeostasis) throughout the lifetime of an individual. Mis-regulation of stem cell proliferation and differentiation often leads to diseases including cancer, however, how wildtype adult stem cells and cancer cells respond to cellular damages remains unclear. We find that in the adult Drosophila midgut, intestinal stem cells (ISCs), unlike tumor intestinal cells, are resistant to various cellular damages. Tumor intestinal cells, unlike wildtype ISCs, are easily eliminated by apoptosis. Further, their proliferation is inhibited upon autophagy induction, and autophagy-mediated tumor inhibition is independent of caspase-dependent apoptosis. Interestingly, inhibition of tumorigenesis by autophagy is likely through the sequestration and degradation of mitochondria, as compromising mitochondria activity in these tumor models mimics the induction of autophagy and increasing the production of mitochondria alleviates the tumor-suppression capacity of autophagy. Together, these data demonstrate that wildtype adult stem cells and tumor cells show dramatic differences in sensitivity to cellular damages, thus providing potential therapeutic implications targeting tumorigenesis.

  12. Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells.

    PubMed

    Yamada, Mitsutoshi; Johannesson, Bjarki; Sagi, Ido; Burnett, Lisa Cole; Kort, Daniel H; Prosser, Robert W; Paull, Daniel; Nestor, Michael W; Freeby, Matthew; Greenberg, Ellen; Goland, Robin S; Leibel, Rudolph L; Solomon, Susan L; Benvenisty, Nissim; Sauer, Mark V; Egli, Dieter

    2014-06-26

    The transfer of somatic cell nuclei into oocytes can give rise to pluripotent stem cells that are consistently equivalent to embryonic stem cells, holding promise for autologous cell replacement therapy. Although methods to induce pluripotent stem cells from somatic cells by transcription factors are widely used in basic research, numerous differences between induced pluripotent stem cells and embryonic stem cells have been reported, potentially affecting their clinical use. Because of the therapeutic potential of diploid embryonic stem-cell lines derived from adult cells of diseased human subjects, we have systematically investigated the parameters affecting efficiency of blastocyst development and stem-cell derivation. Here we show that improvements to the oocyte activation protocol, including the use of both kinase and translation inhibitors, and cell culture in the presence of histone deacetylase inhibitors, promote development to the blastocyst stage. Developmental efficiency varied between oocyte donors, and was inversely related to the number of days of hormonal stimulation required for oocyte maturation, whereas the daily dose of gonadotropin or the total number of metaphase II oocytes retrieved did not affect developmental outcome. Because the use of concentrated Sendai virus for cell fusion induced an increase in intracellular calcium concentration, causing premature oocyte activation, we used diluted Sendai virus in calcium-free medium. Using this modified nuclear transfer protocol, we derived diploid pluripotent stem-cell lines from somatic cells of a newborn and, for the first time, an adult, a female with type 1 diabetes.

  13. A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages.

    PubMed

    Pearson, Bret J; Sánchez Alvarado, Alejandro

    2010-01-01

    The functions of adult stem cells and tumor suppressor genes are known to intersect. However, when and how tumor suppressors function in the lineages produced by adult stem cells is unknown. With a large population of stem cells that can be manipulated and studied in vivo, the freshwater planarian is an ideal system with which to investigate these questions. Here, we focus on the tumor suppressor p53, homologs of which have no known role in stem cell biology in any invertebrate examined thus far. Planaria have a single p53 family member, Smed-p53, which is predominantly expressed in newly made stem cell progeny. When Smed-p53 is targeted by RNAi, the stem cell population increases at the expense of progeny, resulting in hyper-proliferation. However, ultimately the stem cell population fails to self-renew. Our results suggest that prior to the vertebrates, an ancestral p53-like molecule already had functions in stem cell proliferation control and self-renewal.

  14. Diversity of Epithelial Stem Cell Types in Adult Lung

    PubMed Central

    Li, Feng; He, Jinxi; Wei, Jun; Cho, William C.; Liu, Xiaoming

    2015-01-01

    Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local epithelial stem cell niches in the specification of lung stem/progenitor cells has been recently identified. Studies using cell differentiating and lineage tracing assays, in vitro and/or ex vivo models, and genetically engineered mice have suggested that these local epithelial stem/progenitor cells within spatially distinct regions along the pulmonary tree contribute to the injury repair of epithelium adjacent to their respective niches. This paper reviews recent findings in the identification and isolation of region-specific epithelial stem/progenitor cells and local niches along the airway tree and the potential link of epithelial stem cells for the development of lung cancer. PMID:25810726

  15. Quantitative analysis of male germline stem cell differentiation reveals a role for the p53-mTORC1 pathway in spermatogonial maintenance.

    PubMed

    Xiong, Mulin; Ferder, Ianina C; Ohguchi, Yasuyo; Wang, Ning

    2015-01-01

    p53 protects cells from DNA damage by inducing cell-cycle arrest upon encountering genomic stress. Among other pathways, p53 elicits such an effect by inhibiting mammalian target of rapamycin complex 1 (mTORC1), the master regulator of cell proliferation and growth. Although recent studies have indicated roles for both p53 and mTORC1 in stem cell maintenance, it remains unclear whether the p53-mTORC1 pathway is conserved to mediate this process under normal physiological conditions. Spermatogenesis is a classic stem cell-dependent process in which undifferentiated spermatogonia undergo self-renewal and differentiation to maintain the lifelong production of spermatozoa. To better understand this process, we have developed a novel flow cytometry (FACS)-based approach that isolates spermatogonia at consecutive differentiation stages. By using this as a tool, we show that genetic loss of p53 augments mTORC1 activity during early spermatogonial differentiation. Functionally, loss of p53 drives spermatogonia out of the undifferentiated state and causes a consistent expansion of early differentiating spermatogonia until the stage of preleptotene (premeiotic) spermatocyte. The frequency of early meiotic spermatocytes is, however, dramatically decreased. Thus, these data suggest that p53-mTORC1 pathway plays a critical role in maintaining the homeostasis of early spermatogonial differentiation. Moreover, our FACS approach could be a valuable tool in understanding spermatogonial differentiation.

  16. Germline modification of domestic animals

    PubMed Central

    Tang, L.; González, R.; Dobrinski, I.

    2016-01-01

    Genetically-modified domestic animal models are of increasing significance in biomedical research and agriculture. As authentic ES cells derived from domestic animals are not yet available, the prevailing approaches for engineering genetic modifications in those animals are pronuclear microinjection and somatic cell nuclear transfer (SCNT, also known as cloning). Both pronuclear microinjection and SCNT are inefficient, costly, and time-consuming. In animals produced by pronuclear microinjection, the exogenous transgene is usually inserted randomly into the genome, which results in highly variable expression patterns and levels in different founders. Therefore, significant efforts are required to generate and screen multiple founders to obtain animals with optimal transgene expression. For SCNT, specific genetic modifications (both gain-of-function and loss-of-function) can be engineered and carefully selected in the somatic cell nucleus before nuclear transfer. SCNT has been used to generate a variety of genetically modified animals such as goats, pigs, sheep and cattle; however, animals resulting from SCNT frequently suffer from developmental abnormalities associated with incomplete nuclear reprogramming. Other strategies to generate genetically-modified animals rely on the use of the spermatozoon as a natural vector to introduce genetic material into the female gamete. This sperm mediated DNA transfer (SMGT) combined with intracytoplasmatic sperm injection (ICSI) has relatively high efficiency and allows the insertion of large DNA fragments, which, in turn, enhance proper gene expression. An approach currently being developed to complement SCNT for producing genetically modified animals is germ cell transplantation using genetically modified male germline stem cells (GSCs). This approach relies on the ability of GSCs that are genetically modified in vitro to colonize the recipient testis and produce donor derived sperm upon transplantation. As the genetic change

  17. Germline modification of domestic animals.

    PubMed

    Tang, L; González, R; Dobrinski, I

    2015-01-01

    Genetically-modified domestic animal models are of increasing significance in biomedical research and agriculture. As authentic ES cells derived from domestic animals are not yet available, the prevailing approaches for engineering genetic modifications in those animals are pronuclear microinjection and somatic cell nuclear transfer (SCNT, also known as cloning). Both pronuclear microinjection and SCNT are inefficient, costly, and time-consuming. In animals produced by pronuclear microinjection, the exogenous transgene is usually inserted randomly into the genome, which results in highly variable expression patterns and levels in different founders. Therefore, significant efforts are required to generate and screen multiple founders to obtain animals with optimal transgene expression. For SCNT, specific genetic modifications (both gain-of-function and loss-of-function) can be engineered and carefully selected in the somatic cell nucleus before nuclear transfer. SCNT has been used to generate a variety of genetically modified animals such as goats, pigs, sheep and cattle; however, animals resulting from SCNT frequently suffer from developmental abnormalities associated with incomplete nuclear reprogramming. Other strategies to generate genetically-modified animals rely on the use of the spermatozoon as a natural vector to introduce genetic material into the female gamete. This sperm mediated DNA transfer (SMGT) combined with intracytoplasmatic sperm injection (ICSI) has relatively high efficiency and allows the insertion of large DNA fragments, which, in turn, enhance proper gene expression. An approach currently being developed to complement SCNT for producing genetically modified animals is germ cell transplantation using genetically modified male germline stem cells (GSCs). This approach relies on the ability of GSCs that are genetically modified in vitro to colonize the recipient testis and produce donor derived sperm upon transplantation. As the genetic change

  18. Fetal and adult liver stem cells for liver regeneration and tissue engineering.

    PubMed

    Fiegel, H C; Lange, Claudia; Kneser, U; Lambrecht, W; Zander, A R; Rogiers, X; Kluth, D

    2006-01-01

    For the development of innovative cell-based liver directed therapies, e.g. liver tissue engineering, the use of stem cells might be very attractive to overcome the limitation of donor liver tissue. Liver specific differentiation of embryonic, fetal or adult stem cells is currently under investigation. Different types of fetal liver (stem) cells during development were identified, and their advantageous growth potential and bipotential differentiation capacity were shown. However, ethical and legal issues have to be addressed before using fetal cells. Use of adult stem cells is clinically established, e.g. transplantation of hematopoietic stem cells. Other bone marrow derived liver stem cells might be mesenchymal stem cells (MSC). However, the transdifferentiation potential is still in question due to the observation of cellular fusion in several in vivo experiments. In vitro experiments revealed a crucial role of the environment (e.g. growth factors and extracellular matrix) for specific differentiation of stem cells. Co-cultured liver cells also seemed to be important for hepatic gene expression of MSC. For successful liver cell transplantation, a novel approach of tissue engineering by orthotopic transplantation of gel-immobilized cells could be promising, providing optimal environment for the injected cells. Moreover, an orthotopic tissue engineering approach using bipotential stem cells could lead to a repopulation of the recipients liver with healthy liver and biliary cells, thus providing both hepatic functions and biliary excretion. Future studies have to investigate, which stem cell and environmental conditions would be most suitable for the use of stem cells for liver regeneration or tissue engineering approaches.

  19. Typography manipulations can affect priming of word stem completion in older and younger adults.

    PubMed

    Gibson, J M; Brooks, J O; Friedman, L; Yesavage, J A

    1993-12-01

    The experiments reported here investigated whether changes of typography affected priming of word stem completion performance in older and younger adults. Across all experiments, the typeface in which a word appeared at presentation either did or did not match that of its 3-letter stem at test. In Experiment 1, no significant evidence of a typography effect was found when words were presented with a sentence judgment or letter judgment task. However, subsequent experiments revealed that, in both older and younger adults, only words presented with a syllable judgment task gave rise to the typography effect (Experiments 2-4). Specifically, performance was greater, when the presentation and test typeface matched than when they did not. Experiment 5, which used stem-cued recall, did not reveal a difference between syllable and letter judgment tasks. These findings highlight the complex nature of word stem completion performance.

  20. Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance

    PubMed Central

    West, John D; Dorà, Natalie J; Collinson, J Martin

    2015-01-01

    In this review we evaluate evidence for three different hypotheses that explain how the corneal epithelium is maintained. The limbal epithelial stem cell (LESC) hypothesis is most widely accepted. This proposes that stem cells in the basal layer of the limbal epithelium, at the periphery of the cornea, maintain themselves and also produce transient (or transit) amplifying cells (TACs). TACs then move centripetally to the centre of the cornea in the basal layer of the corneal epithelium and also replenish cells in the overlying suprabasal layers. The LESCs maintain the corneal epithelium during normal homeostasis and become more active to repair significant wounds. Second, the corneal epithelial stem cell (CESC) hypothesis postulates that, during normal homeostasis, stem cells distributed throughout the basal corneal epithelium, maintain the tissue. According to this hypothesis, LESCs are present in the limbus but are only active during wound healing. We also consider a third possibility, that the corneal epithelium is maintained during normal homeostasis by proliferation of basal corneal epithelial cells without any input from stem cells. After reviewing the published evidence, we conclude that the LESC and CESC hypotheses are consistent with more of the evidence than the third hypothesis, so we do not consider this further. The LESC and CESC hypotheses each have difficulty accounting for one main type of evidence so we evaluate the two key lines of evidence that discriminate between them. Finally, we discuss how lineage-tracing experiments have begun to resolve the debate in favour of the LESC hypothesis. Nevertheless, it also seems likely that some basal corneal epithelial cells can act as long-term progenitors if limbal stem cell function is compromised. Thus, this aspect of the CESC hypothesis may have a lasting impact on our understanding of corneal epithelial maintenance, even if it is eventually shown that stem cells are restricted to the limbus as proposed

  1. An essential and evolutionarily conserved role of protein arginine methyltransferase 1 for adult intestinal stem cells during postembryonic development.

    PubMed

    Matsuda, Hiroki; Shi, Yun-Bo

    2010-11-01

    Organ-specific adult stem cells are critical for the homeostasis of adult organs and organ repair and regeneration. Unfortunately, it has been difficult to investigate the origins of these stem cells and the mechanisms of their development, especially in mammals. Intestinal remodeling during frog metamorphosis offers a unique opportunity for such studies. During the transition from an herbivorous tadpole to a carnivorous frog, the intestine is completely remodeled as the larval epithelial cells undergo apoptotic degeneration and are replaced by adult epithelial cells developed de novo. The entire metamorphic process is under the control of thyroid hormone, making it possible to control the development of the adult intestinal stem cells. Here, we show that the thyroid hormone receptor-coactivator protein arginine methyltransferase 1 (PRMT1) is upregulated in a small number of larval epithelial cells and that these cells dedifferentiate to become the adult stem cells. More importantly, transgenic overexpression of PRMT1 leads to increased adult stem cells in the intestine, and conversely, knocking down the expression of endogenous PRMT1 reduces the adult stem cell population. In addition, PRMT1 expression pattern during zebrafish and mouse development suggests that PRMT1 may play an evolutionally conserved role in the development of adult intestinal stem cells throughout vertebrates. These findings are not only important for the understanding of organ-specific adult stem cell development but also have important implications in regenerative medicine of the digestive tract.

  2. Chemokine-mobilized adult stem cells; defining a better hematopoietic graft.

    PubMed

    Pelus, L M; Fukuda, S

    2008-03-01

    Stem cell research is currently focused on totipotent stem cells and their therapeutic potential, however adult stem cells, while restricted to differentiation within their tissue or origin, also have therapeutic utility. Transplantation with bone marrow hematopoietic stem cells (HSC) has been used for curative therapy for decades. More recently, alternative sources of HSC, particularly those induced to exit marrow or mobilize to peripheral blood by G-CSF, have become the most widely used hematopoietic graft and show significant superiority to marrow HSC. The chemokine/chemokine receptor axis also mobilizes HSC that occurs more rapidly than with G-CSF. In mice, the HSC and progenitor cells (HPC) mobilized by the CXCR2 receptor agonist GRObeta can be harvested within minutes of administration and show significantly lower levels of apoptosis, enhanced homing to marrow, expression of more activated integrin receptors and superior repopulation kinetics and more competitive engraftment than the equivalent cells mobilized by G-CSF. These characteristics suggest that chemokine axis-mobilized HSC represent a population of adult stem cells distinct from those mobilized by G-CSF, with superior therapeutic potential. It remains to be determined if the chemokine mobilization axis can be harnessed to mobilize other populations of unique adult stem cells with clinical utility.

  3. Concise Review: Quiescence in Adult Stem Cells: Biological Significance and Relevance to Tissue Regeneration.

    PubMed

    Rumman, Mohammad; Dhawan, Jyotsna; Kassem, Moustapha

    2015-10-01

    Adult stem cells (ASCs) are tissue resident stem cells responsible for tissue homeostasis and regeneration following injury. In uninjured tissues, ASCs exist in a nonproliferating, reversibly cell cycle-arrested state known as quiescence or G0. A key function of the quiescent state is to preserve stemness in ASCs by preventing precocious differentiation, and thus maintaining a pool of undifferentiated ASCs. Recent evidences suggest that quiescence is an actively maintained state and that excessive or defective quiescence may lead to compromised tissue regeneration or tumorigenesis. The aim of this review is to provide an update regarding the biological mechanisms of ASC quiescence and their role in tissue regeneration.

  4. In Vitro Differentiation of Embryonic and Adult Stem Cells into Hepatocytes: State of the Art

    PubMed Central

    Snykers, Sarah; De Kock, Joery; Rogiers, Vera; Vanhaecke, Tamara

    2009-01-01

    Stem cells are a unique source of self-renewing cells within the human body. Before the end of the last millennium, adult stem cells, in contrast to their embryonic counterparts, were considered to be lineage-restricted cells or incapable of crossing lineage boundaries. However, the unique breakthrough of muscle and liver regeneration by adult bone marrow stem cells at the end of the 1990s ended this long-standing paradigm. Since then, the number of articles reporting the existence of multipotent stem cells in skin, neuronal tissue, adipose tissue, and bone marrow has escalated, giving rise, both in vivo and in vitro, to cell types other than their tissue of origin. The phenomenon of fate reprogrammation and phenotypic diversification remains, though, an enigmatic and rare process. Understanding how to control both proliferation and differentiation of stem cells and their progeny is a challenge in many fields, going from preclinical drug discovery and development to clinical therapy. In this review, we focus on current strategies to differentiate embryonic, mesenchymal(-like), and liver stem/progenitor cells into hepatocytes in vitro. Special attention is paid to intracellular and extracellular signaling, genetic modification, and cell-cell and cell-matrix interactions. In addition, some recommendations are proposed to standardize, optimize, and enrich the in vitro production of hepatocyte-like cells out of stem/progenitor cells. PMID:19056906

  5. Endothelial juxtaposition of distinct adult stem cells activates angiogenesis signaling molecules in endothelial cells.

    PubMed

    Mohammadi, Elham; Nassiri, Seyed Mahdi; Rahbarghazi, Reza; Siavashi, Vahid; Araghi, Atefeh

    2015-12-01

    Efficacy of therapeutic angiogenesis needs a comprehensive understanding of endothelial cell (EC) function and biological factors and cells that interplay with ECs. Stem cells are considered the key components of pro- and anti-angiogenic milieu in a wide variety of physiopathological states, and interactions of EC-stem cells have been the subject of controversy in recent years. In this study, the potential effects of three tissue-specific adult stem cells, namely rat marrow-derived mesenchymal stem cells (rBMSCs), rat adipose-derived stem cells (rADSCs) and rat muscle-derived satellite cells (rSCs), on the endothelial activation of key angiogenic signaling molecules, including VEGF, Ang-2, VEGFR-2, Tie-2, and Tie2-pho, were investigated. Human umbilical vein endothelial cells (HUVECs) and rat lung microvascular endothelial cells (RLMECs) were cocultured with the stem cells or incubated with the stem cell-derived conditioned media on Matrigel. Following HUVEC-stem cell coculture, CD31-positive ECs were flow sorted and subjected to western blotting to analyze potential changes in the expression of the pro-angiogenic signaling molecules. Elongation and co-alignment of the stem cells were seen along the EC tubes in the EC-stem cell cocultures on Matrigel, with cell-to-cell dye communication in the EC-rBMSC cocultures. Moreover, rBMSCs and rADSCs significantly improved endothelial tubulogenesis in both juxtacrine and paracrine manners. These two latter stem cells dynamically up-regulated VEGF, Ang-2, VREGR-2, and Tie-2 but down-regulated Tie2-pho and the Tie2-pho/Tie-2 ratio in HUVECs. Induction of pro-angiogenic signaling in ECs by marrow- and adipose-derived MSCs further indicates the significance of stem cell milieu in angiogenesis dynamics.

  6. Phases I–III Clinical Trials Using Adult Stem Cells

    PubMed Central

    Sanz-Ruiz, Ricardo; Gutiérrez Ibañes, Enrique; Arranz, Adolfo Villa; Fernández Santos, María Eugenia; Fernández, Pedro L. Sánchez; Fernández-Avilés, Francisco

    2010-01-01

    First randomized clinical trials have demonstrated that stem cell therapy can improve cardiac recovery after the acute phase of myocardial ischemia and in patients with chronic ischemic heart disease. Nevertheless, some trials have shown that conflicting results and uncertainties remain in the case of mechanisms of action and possible ways to improve clinical impact of stem cells in cardiac repair. In this paper we will examine the evidence available, analyze the main phase I and II randomized clinical trials and their limitations, discuss the key points in the design of future trials, and depict new directions of research in this fascinating field. PMID:21076533

  7. Pluripotency of adult stem cells derived from human and rat pancreas

    NASA Astrophysics Data System (ADS)

    Kruse, C.; Birth, M.; Rohwedel, J.; Assmuth, K.; Goepel, A.; Wedel, T.

    Adult stem cells are undifferentiated cells found within fully developed tissues or organs of an adult individuum. Until recently, these cells have been considered to bear less self-renewal ability and differentiation potency compared to embryonic stem cells. In recent studies an undifferentiated cell type was found in primary cultures of isolated acini from exocrine pancreas termed pancreatic stellate cells. Here we show that pancreatic stellate-like cells have the capacity of extended self-renewal and are able to differentiate spontaneously into cell types of all three germ layers expressing markers for smooth muscle cells, neurons, glial cells, epithelial cells, chondrocytes and secretory cells (insulin, amylase). Differentiation and subsequent formation of three-dimensional cellular aggregates (organoid bodies) were induced by merely culturing pancreatic stellate-like cells in hanging drops. These cells were developed into stable, long-term, in vitro cultures of both primary undifferentiated cell lines as well as organoid cultures. Thus, evidence is given that cell lineages of endodermal, mesodermal, and ectodermal origin arise spontaneously from a single adult undifferentiated cell type. Based on the present findings it is assumed that pancreatic stellate-like cells are a new class of lineage uncommitted pluripotent adult stem cells with a remarkable self-renewal ability and differentiation potency. The data emphasize the versatility of adult stem cells and may lead to a reappraisal of their use for the treatment of inherited disorders or acquired degenerative diseases.

  8. Empowering Adult Stem Cells for Myocardial Regeneration V2.0: Success in Small Steps

    PubMed Central

    Broughton, Kathleen; Sussman, Mark A.

    2016-01-01

    Much has changed since our survey of the landscape for myocardial regeneration powered by adult stem cells four years ago (Mohsin et al., Empowering adult stem cells for myocardial regeneration. Circ Res. 2011; 109(12):1415–1428) [1]. The intervening years since that first review has witnessed an explosive expansion of studies that advance both understanding and implementation of adult stem cells in promoting myocardial repair. Painstaking research from innumerable laboratories throughout the world is prying open doors that may lead to restoration of myocardial structure and function in the wake of pathologic injury. This global effort has produced deeper mechanistic comprehension coupled with an evolving appreciation for the complexity of myocardial regeneration in the adult context. Undaunted by both known and (as yet) unknown challenges, pursuit of myocardial regenerative medicine mediated by adult stem cell therapy has gathered momentum fueled by tantalizing clues and visionary goals. This concise review takes a somewhat different perspective than our initial treatise, taking stock of the business sector that has become an integral part of the field while concurrently updating “state of affairs” in cutting edge research. Looking retrospectively at advancement over the years as all reviews eventually must, the fundamental lesson to be learned is best explained by Jonatan Mårtensson: “Success will never be a big step in the future. Success is a small step taken just now.” PMID:26941423

  9. Origins of adult pigmentation: diversity in pigment stem cell lineages and implications for pattern evolution

    PubMed Central

    Spiewak, Jessica E.

    2014-01-01

    Summary Teleosts comprise about half of all vertebrate species and exhibit an extraordinary diversity of adult pigment patterns that function in shoaling, camouflage and mate choice and have played important roles in speciation. Here, we review recent studies that have identified several distinct neural crest lineages, with distinct genetic requirements, that give rise to adult pigment cells in fishes. These lineages include post-embryonic, peripheral nerve associated stem cells that generate black melanophores and iridescent iridophores, cells derived directly from embryonic neural crest cells that generate yellow-orange xanthophores, and bipotent stem cells that generate both melanophores and xanthophores. This complexity in adult chromatophore lineages has implications for our understanding of adult traits, melanoma, and the evolutionary diversification of pigment cell lineages and patterns. PMID:25421288

  10. Mitochondria modify exercise-induced development of stem cell-derived neurons in the adult brain.

    PubMed

    Steib, Kathrin; Schäffner, Iris; Jagasia, Ravi; Ebert, Birgit; Lie, D Chichung

    2014-05-07

    Neural stem cells in the adult mammalian hippocampus continuously generate new functional neurons, which modify the hippocampal network and significantly contribute to cognitive processes and mood regulation. Here, we show that the development of new neurons from stem cells in adult mice is paralleled by extensive changes to mitochondrial mass, distribution, and shape. Moreover, exercise-a strong modifier of adult hippocampal neurogenesis-accelerates neuronal maturation and induces a profound increase in mitochondrial content and the presence of mitochondria in dendritic segments. Genetic inhibition of the activity of the mitochondrial fission factor dynamin-related protein 1 (Drp1) inhibits neurogenesis under basal and exercise conditions. Conversely, enhanced Drp1 activity furthers exercise-induced acceleration of neuronal maturation. Collectively, these results indicate that adult hippocampal neurogenesis requires adaptation of the mitochondrial compartment and suggest that mitochondria are targets for enhancing neurogenesis-dependent hippocampal plasticity.

  11. Origins of adult pigmentation: diversity in pigment stem cell lineages and implications for pattern evolution.

    PubMed

    Parichy, David M; Spiewak, Jessica E

    2015-01-01

    Teleosts comprise about half of all vertebrate species and exhibit an extraordinary diversity of adult pigment patterns that function in shoaling, camouflage, and mate choice and have played important roles in speciation. Here, we review studies that have identified several distinct neural crest lineages, with distinct genetic requirements, that give rise to adult pigment cells in fishes. These lineages include post-embryonic, peripheral nerve-associated stem cells that generate black melanophores and iridescent iridophores, cells derived directly from embryonic neural crest cells that generate yellow-orange xanthophores, and bipotent stem cells that generate both melanophores and xanthophores. This complexity in adult chromatophore lineages has implications for our understanding of adult traits, melanoma, and the evolutionary diversification of pigment cell lineages and patterns.

  12. The role of DNA damage repair in aging of adult stem cells.

    PubMed

    Kenyon, Jonathan; Gerson, Stanton L

    2007-01-01

    DNA repair maintains genomic stability and the loss of DNA repair capacity results in genetic instability that may lead to a decline of cellular function. Adult stem cells are extremely important in the long-term maintenance of tissues throughout life. They regenerate and renew tissues in response to damage and replace senescent terminally differentiated cells that no longer function. Oxidative stress, toxic byproducts, reduced mitochondrial function and external exposures all damage DNA through base modification or mis-incorporation and result in DNA damage. As in most cells, this damage may limit the survival of the stem cell population affecting tissue regeneration and even longevity. This review examines the hypothesis that an age-related loss of DNA damage repair pathways poses a significant threat to stem cell survival and longevity. Normal stem cells appear to have strict control of gene expression and DNA replication whereas stem cells with loss of DNA repair may have altered patterns of proliferation, quiescence and differentiation. Furthermore, stem cells with loss of DNA repair may be susceptible to malignant transformation either directly or through the emergence of cancer-prone stem cells. Human diseases and animal models of loss of DNA repair provide longitudinal analysis of DNA repair processes in stem cell populations and may provide links to the physiology of aging.

  13. Neural stem cells in the adult ciliary epithelium express GFAP and are regulated by Wnt signaling

    SciTech Connect

    Das, Ani V.; Zhao Xing; James, Jackson; Kim, Min; Cowan, Kenneth H.; Ahmad, Iqbal . E-mail: iahmad@unmc.edu

    2006-01-13

    The identification of neural stem cells with retinal potential in the ciliary epithelium (CE) of the adult mammals is of considerable interest because of their potential for replacing or rescuing degenerating retinal neurons in disease or injury. The evaluation of such a potential requires characterization of these cells with regard to their phenotypic properties, potential, and regulatory mechanisms. Here, we demonstrate that rat CE stem cells/progenitors in neurosphere culture display astrocytic nature in terms of expressing glial intermediate neurofilament protein, GFAP. The GFAP-expressing CE stem cells/progenitors form neurospheres in proliferating conditions and generate neurons when shifted to differentiating conditions. These cells express components of the canonical Wnt pathway and its activation promotes their proliferation. Furthermore, we demonstrate that the activation of the canonical Wnt pathway influences neuronal differentiation of CE stem cells/progenitors in a context dependent manner. Our observations suggest that CE stem cells/progenitors share phenotypic properties and regulatory mechanism(s) with neural stem cells elsewhere in the adult CNS.

  14. Identification of multipotent stem cells from adult dog periodontal ligament.

    PubMed

    Wang, Wen-Jun; Zhao, Yu-Ming; Lin, Bi-Chen; Yang, Jie; Ge, Li-Hong

    2012-08-01

    Periodontal diseases, which are characterized by destruction of the connective tissues responsible for restraining the teeth within the jaw, are the main cause of tooth loss. Periodontal regeneration mediated by human periodontal ligament stem cells (hPDLSCs) may offer an alternative strategy for the treatment of periodontal disease. Dogs are a widely used large-animal model for the study of periodontal-disease progression, tissue regeneration, and dental implants, but little attention has been paid to the identification of the cells involved in this species. This study aimed to characterize stem cells isolated from canine periodontal ligament (cPDLSCs). The cPDLSCs, like hPDLSCs, showed clonogenic capability and expressed the mesenchymal stem cell markers STRO-1, CD146, and CD105, but not CD34. After induction of osteogenesis, cPDLSCs showed calcium accumulation in vitro. Moreover, cPDLSCs also showed both adipogenic and chondrogenic potential. Compared with cell-free controls, more cementum/periodontal ligament-like structures were observed in CB-17/SCID mice into which cPDLSCs had been transplanted. These results suggest that cPDLSCs are clonogenic, highly proliferative, and have multidifferentiation potential, and that they could be used as a new cellular therapeutic approach to facilitate successful and more predictable regeneration of periodontal tissue using a canine model of periodontal disease.

  15. Mesenchymal stem cells from the outer ear: a novel adult stem cell model system for the study of adipogenesis.

    PubMed

    Rim, Jong-Seop; Mynatt, Randall L; Gawronska-Kozak, Barbara

    2005-07-01

    Adipocytes arise from multipotent stem cells of mesodermal origin, which also give rise to the muscle, bone, and cartilage lineages. However, signals and early molecular events that commit multipotent stem cells into the adipocyte lineage are not well established mainly due to lack of an adequate model system. We have identified a novel source of adult stem cells from the external murine ears referred to here as an ear mesenchymal stem cells (EMSC). EMSC have been isolated from several standard and mutant strains of mice. They are self-renewing, clonogenic, and multipotent, since they give rise to osteocytes, chondrocytes, and adipocytes. The in vitro characterization of EMSC indicates very facile adipogenic differentiation. Morphological, histochemical, and molecular analysis after the induction of differentiation showed that EMSC maintain adipogenic potentials up to fifth passage. A comparison of EMSC to the stromal-vascular (S-V) fraction of fat depots, under identical culture conditions (isobutyl-methylxanthine, dexamethasone, and insulin), revealed much more robust and consistent adipogenesis in EMSC than in the S-V fraction. In summary, we show that EMSC can provide a novel, easily obtainable, primary culture model for the study of adipogenesis.

  16. Genomic selection for quantitative adult plant stem rust resistance in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative adult plant resistance (APR) to stem rust (Puccinia graminis f. sp. tritici) is an important breeding target in wheat (Triticum aestivum L.) and a potential target for genomic selection (GS). To evaluate the relative importance of known APR loci in applying genomic selection, we charact...

  17. zebraflash transgenic lines for in vivo bioluminescence imaging of stem cells and regeneration in adult zebrafish.

    PubMed

    Chen, Chen-Hui; Durand, Ellen; Wang, Jinhu; Zon, Leonard I; Poss, Kenneth D

    2013-12-01

    The zebrafish has become a standard model system for stem cell and tissue regeneration research, based on powerful genetics, high tissue regenerative capacity and low maintenance costs. Yet, these studies can be challenged by current limitations of tissue visualization techniques in adult animals. Here we describe new imaging methodology and present several ubiquitous and tissue-specific luciferase-based transgenic lines, which we have termed zebraflash, that facilitate the assessment of regeneration and engraftment in freely moving adult zebrafish. We show that luciferase-based live imaging reliably estimates muscle quantity in an internal organ, the heart, and can longitudinally follow cardiac regeneration in individual animals after major injury. Furthermore, luciferase-based detection enables visualization and quantification of engraftment in live recipients of transplanted hematopoietic stem cell progeny, with advantages in sensitivity and gross spatial resolution over fluorescence detection. Our findings present a versatile resource for monitoring and dissecting vertebrate stem cell and regeneration biology.

  18. Strategies to enhance umbilical cord blood stem cell engraftment in adult patients

    PubMed Central

    Delaney, Colleen; Ratajczak, Mariusz Z; Laughlin, Mary J

    2010-01-01

    Umbilical cord blood (UCB) has been used successfully as a source of hematopoietic stem cells (HSCs) for allogeneic transplantation in children and adults in the treatment of hematologic diseases. However, compared with marrow or mobilized peripheral blood stem cell grafts from adult donors, significant delays in the rates and kinetics of neutrophil and platelet engraftment are noted after UCB transplant. These differences relate in part to the reduced numbers of HSCs in UCB grafts. To improve the rates and kinetics of engraftment of UCB HSC, several strategies have been proposed, including ex vivo expansion of UCB HSCs, addition of third-party mesenchymal cells, intrabone delivery of HSCs, modulation of CD26 expression, and infusion of two UCB grafts. This article will focus on ex vivo expansion of UCB HSCs and strategies to enhance UCB homing as potential solutions to overcome the problem of low stem cell numbers in a UCB graft. PMID:20835351

  19. Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells.

    PubMed

    Kilcoyne, Karen R; Smith, Lee B; Atanassova, Nina; Macpherson, Sheila; McKinnell, Chris; van den Driesche, Sander; Jobling, Matthew S; Chambers, Thomas J G; De Gendt, Karel; Verhoeven, Guido; O'Hara, Laura; Platts, Sophie; Renato de Franca, Luiz; Lara, Nathália L M; Anderson, Richard A; Sharpe, Richard M

    2014-05-06

    Fetal growth plays a role in programming of adult cardiometabolic disorders, which in men, are associated with lowered testosterone levels. Fetal growth and fetal androgen exposure can also predetermine testosterone levels in men, although how is unknown, because the adult Leydig cells (ALCs) that produce testosterone do not differentiate until puberty. To explain this conundrum, we hypothesized that stem cells for ALCs must be present in the fetal testis and might be susceptible to programming by fetal androgen exposure during masculinization. To address this hypothesis, we used ALC ablation/regeneration to identify that, in rats, ALCs derive from stem/progenitor cells that express chicken ovalbumin upstream promoter transcription factor II. These stem cells are abundant in the fetal testis of humans and rodents, and lineage tracing in mice shows that they develop into ALCs. The stem cells also express androgen receptors (ARs). Reduction in fetal androgen action through AR KO in mice or dibutyl phthalate (DBP) -induced reduction in intratesticular testosterone in rats reduced ALC stem cell number by ∼40% at birth to adulthood and induced compensated ALC failure (low/normal testosterone and elevated luteinizing hormone). In DBP-exposed males, this failure was probably explained by reduced testicular steroidogenic acute regulatory protein expression, which is associated with increased histone methylation (H3K27me3) in the proximal promoter. Accordingly, ALCs and ALC stem cells immunoexpressed increased H3K27me3, a change that was also evident in ALC stem cells in fetal testes. These studies highlight how a key component of male reproductive development can fundamentally reprogram adult hormone production (through an epigenetic change), which might affect lifetime disease risk.

  20. Stroke Increases Neural Stem Cells and Angiogenesis in the Neurogenic Niche of the Adult Mouse

    PubMed Central

    Zhang, Rui Lan; Chopp, Michael; Roberts, Cynthia; Liu, Xianshuang; Wei, Min; Nejad-Davarani, Siamak P.; Wang, Xinli; Zhang, Zheng Gang

    2014-01-01

    The unique cellular and vascular architecture of the adult ventricular-subventricular zone (V/SVZ) neurogenic niche plays an important role in regulating neural stem cell function. However, the in vivo identification of neural stem cells and their relationship to blood vessels within this niche in response to stroke remain largely unknown. Using whole-mount preparation of the lateral ventricle wall, we examined the architecture of neural stem cells and blood vessels in the V/SVZ of adult mouse over the course of 3 months after onset of focal cerebral ischemia. Stroke substantially increased the number of glial fibrillary acidic protein (GFAP) positive neural stem cells that are in contact with the cerebrospinal fluid (CSF) via their apical processes at the center of pinwheel structures formed by ependymal cells residing in the lateral ventricle. Long basal processes of these cells extended to blood vessels beneath the ependymal layer. Moreover, stroke increased V/SVZ endothelial cell proliferation from 2% in non-ischemic mice to 12 and 15% at 7 and 14 days after stroke, respectively. Vascular volume in the V/SVZ was augmented from 3% of the total volume prior to stroke to 6% at 90 days after stroke. Stroke-increased angiogenesis was closely associated with neuroblasts that expanded to nearly encompass the entire lateral ventricular wall in the V/SVZ. These data indicate that stroke induces long-term alterations of the neural stem cell and vascular architecture of the adult V/SVZ neurogenic niche. These post-stroke structural changes may provide insight into neural stem cell mediation of stroke-induced neurogenesis through the interaction of neural stem cells with proteins in the CSF and their sub-ependymal neurovascular interaction. PMID:25437857

  1. The novel steroidal alkaloids dendrogenin A and B promote proliferation of adult neural stem cells

    SciTech Connect

    Khalifa, Shaden A.M.; Medina, Philippe de; Erlandsson, Anna; El-Seedi, Hesham R.; Silvente-Poirot, Sandrine; Poirot, Marc

    2014-04-11

    Highlights: • Dendrogenin A and B are new aminoalkyl oxysterols. • Dendrogenins stimulated neural stem cells proliferation. • Dendrogenins induce neuronal outgrowth from neurospheres. • Dendrogenins provide new therapeutic options for neurodegenerative disorders. - Abstract: Dendrogenin A (DDA) and dendrogenin B (DDB) are new aminoalkyl oxysterols which display re-differentiation of tumor cells of neuronal origin at nanomolar concentrations. We analyzed the influence of dendrogenins on adult mice neural stem cell proliferation, sphere formation and differentiation. DDA and DDB were found to have potent proliferative effects in neural stem cells. Additionally, they induce neuronal outgrowth from neurospheres during in vitro cultivation. Taken together, our results demonstrate a novel role for dendrogenins A and B in neural stem cell proliferation and differentiation which further increases their likely importance to compensate for neuronal cell loss in the brain.

  2. Large-scale live imaging of adult neural stem cells in their endogenous niche.

    PubMed

    Dray, Nicolas; Bedu, Sébastien; Vuillemin, Nelly; Alunni, Alessandro; Coolen, Marion; Krecsmarik, Monika; Supatto, Willy; Beaurepaire, Emmanuel; Bally-Cuif, Laure

    2015-10-15

    Live imaging of adult neural stem cells (aNSCs) in vivo is a technical challenge in the vertebrate brain. Here, we achieve long-term imaging of the adult zebrafish telencephalic neurogenic niche and track a population of >1000 aNSCs over weeks, by taking advantage of fish transparency at near-infrared wavelengths and of intrinsic multiphoton landmarks. This methodology enables us to describe the frequency, distribution and modes of aNSCs divisions across the entire germinal zone of the adult pallium, and to highlight regional differences in these parameters.

  3. How electromagnetic fields can influence adult stem cells: positive and negative impacts.

    PubMed

    Maziarz, Aleksandra; Kocan, Beata; Bester, Mariusz; Budzik, Sylwia; Cholewa, Marian; Ochiya, Takahiro; Banas, Agnieszka

    2016-04-18

    The electromagnetic field (EMF) has a great impact on our body. It has been successfully used in physiotherapy for the treatment of bone disorders and osteoarthritis, as well as for cartilage regeneration or pain reduction. Recently, EMFs have also been applied in in vitro experiments on cell/stem cell cultures. Stem cells reside in almost all tissues within the human body, where they exhibit various potential. These cells are of great importance because they control homeostasis, regeneration, and healing. Nevertheless, stem cells when become cancer stem cells, may influence the pathological condition. In this article we review the current knowledge on the effects of EMFs on human adult stem cell biology, such as proliferation, the cell cycle, or differentiation. We present the characteristics of the EMFs used in miscellaneous assays. Most research has so far been performed during osteogenic and chondrogenic differentiation of mesenchymal stem cells. It has been demonstrated that the effects of EMF stimulation depend on the intensity and frequency of the EMF and the time of exposure to it. However, other factors may affect these processes, such as growth factors, reactive oxygen species, and so forth. Exploration of this research area may enhance the development of EMF-based technologies used in medical applications and thereby improve stem cell-based therapy and tissue engineering.

  4. A mystery unraveled: nontumorigenic pluripotent stem cells in human adult tissues

    PubMed Central

    Simerman, Ariel A; Perone, Marcelo J; Gimeno, María L; Dumesic, Daniel A; Chazenbalk, Gregorio D

    2014-01-01

    Introduction: Embryonic stem cells and induced pluripotent stem cells have emerged as the gold standard of pluripotent stem cells and the class of stem cell with the highest potential for contribution to regenerative and therapeutic application; however, their translational use is often impeded by teratoma formation, commonly associated with pluripotency. We discuss a population of nontumorigenic pluripotent stem cells, termed Multilineage Differentiating Stress Enduring (Muse) cells, which offer an innovative and exciting avenue of exploration for the potential treatment of various human diseases. Areas covered: This review discusses the origin of Muse cells, describes in detail their various unique characteristics, and considers future avenues of their application and investigation with respect to what is currently known of adult pluripotent stem cells in scientific literature. We begin by defining cell potency, then discuss both mesenchymal and various reported populations of pluripotent stem cells, and finally delve into Muse cells and the characteristics that set them apart from their contemporaries. Expert opinion: Muse cells derived from adipose tissue (Muse-AT) are efficiently, routinely and painlessly isolated from human lipoaspirate material, exhibit tripoblastic differentiation both spontaneously and under media-specific induction, and do not form teratomas. We describe qualities specific to Muse-AT cells and their potential impact on the field of regenerative medicine and cell therapy. PMID:24745973

  5. Isolating intestinal stem cells from adult Drosophila midguts by FACS to study stem cell behavior during aging.

    PubMed

    Tauc, Helen M; Tasdogan, Alpaslan; Pandur, Petra

    2014-12-16

    Aging tissue is characterized by a continuous decline in functional ability. Adult stem cells are crucial in maintaining tissue homeostasis particularly in tissues that have a high turnover rate such as the intestinal epithelium. However, adult stem cells are also subject to aging processes and the concomitant decline in function. The Drosophila midgut has emerged as an ideal model system to study molecular mechanisms that interfere with the intestinal stem cells' (ISCs) ability to function in tissue homeostasis. Although adult ISCs can be easily identified and isolated from midguts of young flies, it has been a major challenge to study endogenous molecular changes of ISCs during aging. This is due to the lack of a combination of molecular markers suitable to isolate ISCs from aged intestines. Here we propose a method that allows for successful dissociation of midgut tissue into living cells that can subsequently be separated into distinct populations by FACS. By using dissociated cells from the esg-Gal4, UAS-GFP fly line, in which both ISCs and the enteroblast (EB) progenitor cells express GFP, two populations of cells are distinguished based on different GFP intensities. These differences in GFP expression correlate with differences in cell size and granularity and represent enriched populations of ISCs and EBs. Intriguingly, the two GFP-positive cell populations remain distinctly separated during aging, presenting a novel technique for identifying and isolating cell populations enriched for either ISCs or EBs at any time point during aging. The further analysis, for example transcriptome analysis, of these particular cell populations at various time points during aging is now possible and this will facilitate the examination of endogenous molecular changes that occur in these cells during aging.

  6. Essential elements for translation: the germline factor Vasa functions broadly in somatic cells

    PubMed Central

    Yajima, Mamiko; Wessel, Gary M.

    2015-01-01

    ABSTRACT Vasa is a conserved RNA-helicase found in the germ lines of all metazoans tested. Whereas Vasa presence is often indicated as a metric for germline determination in animals, it is also expressed in stem cells of diverse origin. Recent research suggests, however, that Vasa has a much broader function, including a significant role in cell cycle regulation. Results herein indicate that Vasa is utilized widely, and often induced transiently, during development in diverse somatic cells and adult precursor tissues. We identified that Vasa in the sea urchin is essential for: (1) general mRNA translation during embryogenesis, (2) developmental re-programming upon manipulations to the embryo and (3) larval wound healing. We also learned that Vasa interacted with mRNAs in the perinuclear area and at the spindle in an Importin-dependent manner during cell cycle progression. These results suggest that, when present, Vasa functions are essential to contributing to developmental regulation. PMID:25977366

  7. Essential elements for translation: the germline factor Vasa functions broadly in somatic cells.

    PubMed

    Yajima, Mamiko; Wessel, Gary M

    2015-06-01

    Vasa is a conserved RNA-helicase found in the germ lines of all metazoans tested. Whereas Vasa presence is often indicated as a metric for germline determination in animals, it is also expressed in stem cells of diverse origin. Recent research suggests, however, that Vasa has a much broader function, including a significant role in cell cycle regulation. Results herein indicate that Vasa is utilized widely, and often induced transiently, during development in diverse somatic cells and adult precursor tissues. We identified that Vasa in the sea urchin is essential for: (1) general mRNA translation during embryogenesis, (2) developmental re-programming upon manipulations to the embryo and (3) larval wound healing. We also learned that Vasa interacted with mRNAs in the perinuclear area and at the spindle in an Importin-dependent manner during cell cycle progression. These results suggest that, when present, Vasa functions are essential to contributing to developmental regulation.

  8. Apple ethanol extract promotes proliferation of human adult stem cells, which involves the regenerative potential of stem cells.

    PubMed

    Lee, Jienny; Shin, Moon Sam; Kim, Mi Ok; Jang, Sunghee; Oh, Sae Woong; Kang, Mingyeong; Jung, Kwangseon; Park, Yong Seek; Lee, Jongsung

    2016-09-01

    Tissue regeneration using adult stem cells (ASCs) has significant potential as a novel treatment for many degenerative diseases. Previous studies have established that age negatively affects the proliferation status and differentiation potential of ASCs, suggesting a possible limitation in their potential therapeutic use. Therefore, we hypothesized that apple extract might exert beneficial effects on ASCs. The specific objectives were to investigate the proliferative effect of apple ethanol extract on human adipose tissue-derived mesenchymal stem cells (ADSCs) and human cord blood-derived mesenchymal stem cells (CB-MSCs), and identify the possible molecular mechanisms. Apple extract promoted proliferation of ADSCs and CB-MSCs as determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Click-iT 5-ethynyl-2'-deoxyuridine flow cytometry assays. In addition, phosphorylation of p44/42 MAPK (ERK), mammalian target of rapamycin (mTOR), p70 S6 kinase (p70S6K), S6 ribosomal protein (S6RP), eukaryotic initiation factor (eIF) 4B and eIF4E was induced stepwise in ADSCs. Furthermore, apple extract significantly induced the production of vascular endothelial growth factor and interleukin-6 in both ADSCs and CB-MSCs. Similarly, apple extract-induced phosphorylation of the mTOR/p70S6K/S6RP/eIF4B/eIF4E pathway was blocked by pretreatment with PD98059, a specific ERK inhibitor. These results indicate that apple extract-induced proliferation of ADSCs under serum-free conditions is mediated by ERK-dependent cytokine production. Moreover, the beneficial effect of apple extract on proliferation of ASCs may overcome the limitation in therapeutic use of stem cells in tissue regeneration and maintenance of stem cell homeostasis.

  9. A hypothesis for an embryonic origin of pluripotent Oct-4(+) stem cells in adult bone marrow and other tissues.

    PubMed

    Ratajczak, M Z; Machalinski, B; Wojakowski, W; Ratajczak, J; Kucia, M

    2007-05-01

    Accumulating evidence demonstrates that adult tissues contain a population of stem cells that express early developmental markers such as stage-specific embryonic antigen and transcription factors Oct-4 and Nanog. These are the markers characteristic for embryonic stem cells, epiblast stem cells and primordial germ cells. The presence of these stem cells in adult tissues including bone marrow, epidermis, bronchial epithelium, myocardium, pancreas and testes supports the concept that adult tissues contain some population of pluripotent stem cells that is deposited in embryogenesis during early gastrulation. In this review we will discuss these data and present a hypothesis that these cells could be direct descendants of the germ lineage. The germ lineage in order to pass genes on to the next generations creates soma and thus becomes a 'mother lineage' for all somatic cell lineages present in the adult body.

  10. Micropatterning control of tubular commitment in human adult renal stem cells.

    PubMed

    Sciancalepore, Anna G; Portone, Alberto; Moffa, Maria; Persano, Luana; De Luca, Maria; Paiano, Aurora; Sallustio, Fabio; Schena, Francesco P; Bucci, Cecilia; Pisignano, Dario

    2016-07-01

    The treatment of renal injury by autologous, patient-specific adult stem cells is still an unmet need. Unsolved issues remain the spatial integration of stem cells into damaged areas of the organ, the commitment in the required cell type and the development of improved bioengineered devices. In this respect, biomaterials and architectures have to be specialized to control stem cell differentiation. Here, we perform an extensive study on micropatterned extracellular matrix proteins, which constitute a simple and non-invasive approach to drive the differentiation of adult renal progenitor/stem cells (ARPCs) from human donors. ARPCs are interfaced with fibronectin (FN) micropatterns, in the absence of exogenous chemicals or cellular reprogramming. We obtain the differentiation towards tubular cells of ARPCs cultured in basal medium conditions, the tubular commitment thus being specifically induced by micropatterned substrates. We characterize the stability of the tubular differentiation as well as the induction of a polarized phenotype in micropatterned ARPCs. Thus, the developed cues, driving the functional commitment of ARPCs, offer a route to recreate the microenvironment of the stem cell niche in vitro, that may serve, in perspective, for the development of ARPC-based bioengineered devices.

  11. Comparative analysis of mesenchymal stem cells from adult mouse adipose, muscle, and fetal muscle.

    PubMed

    Lei, Hulong; Yu, Bing; Huang, Zhiqing; Yang, Xuerong; Liu, Zehui; Mao, Xiangbing; Tian, Gang; He, Jun; Han, Guoquan; Chen, Hong; Mao, Qian; Chen, Daiwen

    2013-02-01

    Recently, increasing evidence supports that adult stem cells are the part of a natural system for tissue growth and repair. This study focused on the differences of mesenchymal stem cells from adult adipose (ADSCs), skeletal muscle (MDSCs) and fetal muscle (FMSCs) in biological characteristics, which is the key to cell therapy success. Stem cell antigen 1 (Sca-1) expression of MDSCs and FMSCs at passage 3 was two times more than that at passage 1 (P < 0.0001). After 28-day myogenic induction, higher expression levels of skeletal muscle-specific genes were observed in MDSCs than FMSCs (P < 0.01), and the lowest expression levels were demonstrated in ADSCs among three cells (P < 0.01). Besides, M-Cad and MyHC expressions in ADSCs were not detected by immunofluorescence or real-time quantitative PCR. Furthermore, after 14 days adipogenic induction, PPARγ2, LPL and aP2 mRNA expressions were higher in ADSCs vs. MDSCs (P < 0.01). Besides, MSCs from adult or fetal muscle expressed higher OCN and OPN than ADSCs after 28 days osteogenic induction (P < 0.01). Taken together, our results suggested that cell source and developmental stage had great impacts on biological properties of mesenchymal stem cells, and proper consideration of all the issues is necessary.

  12. Profiling of Sox4-dependent transcriptome in skin links tumour suppression and adult stem cell activation.

    PubMed

    Foronda, Miguel; Morgado-Palacin, Lucia; Gómez-López, Gonzalo; Domínguez, Orlando; Pisano, David G; Blasco, Maria A

    2015-12-01

    Adult stem cells (ASCs) reside in specific niches in a quiescent state in adult mammals. Upon specific cues they become activated and respond by self-renewing and differentiating into newly generated specialised cells that ensure appropriate tissue fitness. ASC quiescence also serves as a tumour suppression mechanism by hampering cellular transformation and expansion (White AC et al., 2014). Some genes restricted to early embryonic development and adult stem cell niches are often potent modulators of stem cell quiescence, and derailed expression of these is commonly associated to cancer (Vervoort SJ et al., 2013). Among them, it has been shown that recommissioned Sox4 expression facilitates proliferation, survival and migration of malignant cells. By generating a conditional Knockout mouse model in stratified epithelia (Sox4 (cKO) mice), we demonstrated a delayed plucking-induced Anagen in the absence of Sox4. Skin global transcriptome analysis revealed a prominent defect in the induction of transcriptional networks that control hair follicle stem cell (HFSC) activation such as those regulated by Wnt/Ctnnb1, Shh, Myc or Sox9, cell cycle and DNA damage response-associated pathways. Besides, Sox4 (cKO) mice are resistant to skin carcinogenesis, thus linking Sox4 to both normal and pathological HFSC activation (Foronda M et al., 2014). Here we provide additional details on the analysis of Sox4-regulated transcriptome in Telogen and Anagen skin. The raw and processed microarray data is deposited in GEO under GSE58155.

  13. Differentiation and characteristics of undifferentiated mesenchymal stem cells originating from adult premolar periodontal ligaments

    PubMed Central

    Kwon, Dae-Woo; Im, Insook; Kim, Yong-Deok; Hwang, Dae-Seok; Holliday, L Shannon; Donatelli, Richard E; Son, Woo-Sung; Jun, Eun-Sook

    2012-01-01

    Objective The purpose of this study was to investigate the isolation and characterization of multipotent human periodontal ligament (PDL) stem cells and to assess their ability to differentiate into bone, cartilage, and adipose tissue. Methods PDL stem cells were isolated from 7 extracted human premolar teeth. Human PDL cells were expanded in culture, stained using anti-CD29, -CD34, -CD44, and -STRO-1 antibodies, and sorted by fluorescent activated cell sorting (FACS). Gingival fibroblasts (GFs) served as a positive control. PDL stem cells and GFs were cultured using standard conditions conducive for osteogenic, chondrogenic, or adipogenic differentiation. Results An average of 152.8 ± 27.6 colony-forming units was present at day 7 in cultures of PDL stem cells. At day 4, PDL stem cells exhibited a significant increase in proliferation (p < 0.05), reaching nearly double the proliferation rate of GFs. About 5.6 ± 4.5% of cells in human PDL tissues were strongly STRO-1-positive. In osteogenic cultures, calcium nodules were observed by day 21 in PDL stem cells, which showed more intense calcium staining than GF cultures. In adipogenic cultures, both cell populations showed positive Oil Red O staining by day 21. Additionally, in chondrogenic cultures, PDL stem cells expressed collagen type II by day 21. Conclusions The PDL contains multipotent stem cells that have the potential to differentiate into osteoblasts, chondrocytes, and adipocytes. This adult PDL stem cell population can be utilized as potential sources of PDL in tissue engineering applications. PMID:23323245

  14. Inflammatory cues acting on the adult intestinal stem cells and the early onset of cancer (Review)

    PubMed Central

    DE LERMA BARBARO, A.; PERLETTI, G.; BONAPACE, I.M.; MONTI, E.

    2014-01-01

    The observation that cancer often arises at sites of chronic inflammation has prompted the idea that carcinogenesis and inflammation are deeply interwoven. In fact, the current literature highlights a role for chronic inflammation in virtually all the steps of carcinogenesis, including tumor initiation, promotion and progression. The aim of the present article is to review the current literature on the involvement of chronic inflammation in the initiation step and in the very early phases of tumorigenesis, in a type of cancer where adult stem cells are assumed to be the cells of origin of neoplasia. Since the gastrointestinal tract is regarded as the best-established model system to address the liaison between chronic inflammation and neoplasia, the focus of this article will be on intestinal cancer. In fact, the anatomy of the intestinal epithelial lining is uniquely suited to study adult stem cells in their niche, and the bowel crypt is an ideal developmental biology system, as proliferation, differentiation and cell migration are all distributed linearly along the long axis of the crypt. Moreover, crypt stem cells are regarded today as the most likely targets of neoplastic transformation in bowel cancer. More specifically, the present review addresses the molecular mechanisms whereby a state of chronic inflammation could trigger the neoplastic process in the intestine, focusing on the generation of inflammatory cues evoking enhanced proliferation in cells not initiated but at risk of neoplastic transformation because of their stemness. Novel experimental approaches, based on triggering an inflammatory stimulus in the neighbourhood of adult intestinal stem cells, are warranted to address some as yet unanswered questions. A possible approach, the targeted transgenesis of Paneth cells, may be aimed at ‘hijacking’ the crypt stem cell niche from a status characterized by the maintenance of homeostasis to local chronic inflammation, with the prospect of initiating

  15. Potential Germline Competition in Animals and Its Evolutionary Implications

    PubMed Central

    Hastings, I. M.

    1989-01-01

    Mutation, mitotic crossing over and mitotic gene conversion can create genetic diversity in otherwise uniform diploid cell lineages. In the germline this diversification may result in competition between diploid germline phenotypes, with subsequent biases in the frequency of alleles transmitted to the offspring. Sperm competition is a well documented feature of many higher organisms and a model is developed to quantify this process. Competition, and hence selection, can also occur by differential survival of diploid lineages before meiosis. It is concluded that under certain circumstances germline selection is an efficient means of eliminating unfavorable alleles from the population. This does not require differences in adult fertility or viability which is the usual mechanism cited as causing changes in gene frequency in a population. It is proposed that such competition may play a role in maintaining the efficiency of basic metabolic pathways. PMID:2806882

  16. Evolutionary dynamics of adult stem cells: Comparison of random and immortal-strand segregation mechanisms

    NASA Astrophysics Data System (ADS)

    Tannenbaum, Emmanuel; Sherley, James L.; Shakhnovich, Eugene I.

    2005-04-01

    This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell and (2) “immortal DNA strand” co-segregation, for which the stem cell retains the daughter chromosomes with the oldest parent strands. Immortal strand co-segregation is a mechanism, originally proposed by [Cairns Nature (London) 255, 197 (1975)], by which stem cells preserve the integrity of their genomes. For random segregation, we develop an ordered strand pair formulation of the dynamics, analogous to the ordered strand pair formalism developed for quasispecies dynamics involving semiconservative replication with imperfect lesion repair (in this context, lesion repair is taken to mean repair of postreplication base-pair mismatches). Interestingly, a similar formulation is possible with immortal strand co-segregation, despite the fact that this segregation mechanism is age dependent. From our model we are able to mathematically show that, when lesion repair is imperfect, then immortal strand co-segregation leads to better preservation of the stem cell lineage than random chromosome segregation. Furthermore, our model allows us to estimate the optimal lesion repair efficiency for preserving an adult stem cell population for a given period of time. For human stem cells, we obtain that mispaired bases still present after replication and cell division should be left untouched, to avoid potentially fixing a mutation in both DNA strands.

  17. Adult stem cell therapy and heart failure, 2000 to 2016: a systematic review

    PubMed Central

    Nguyen, Patricia K.; Rhee, June-Wha; Wu, Joseph C.

    2017-01-01

    Importance Stem cell therapy is a promising treatment strategy for patients with heart failure, which accounts for over 10% of deaths in the U.S. annually. Despite over a decade of research, further investigation is still needed to determine whether stem cell regenerative therapy is clinically effective and can be routinely implemented in clinical practice. Objective The purpose of this review is to describe the current progress in cardiac stem cell regenerative therapy using adult stem cells and highlight the merits and limitations of clinical trials performed to date. Evidence Review Information for this review was obtained through a search of PubMed and the Cochrane database for English language studies published between January 1, 2000 and April 20, 2016. Twenty-nine randomized clinical trials and 7 systematic reviews and meta-analyses were included in this review. Findings Although adult stem cells were once believed to have the ability to create new heart tissue or grow blood vessels, preclinical studies suggest instead that these cells release cardio-protective paracrine factors that activate endogenous pathways, leading to myocardial repair. Subsequent randomized controlled clinical trials, the majority of which used autologous bone marrow mononuclear cells, have found only a modest benefit in patients receiving stem cell therapy. The lack of a significant benefit may result from variations in trial methodology, discrepancies in reporting, and an over-reliance on surrogate endpoints. Conclusions and Relevance Although stem cell therapy for cardiovascular disease is not yet ready for routine clinical application, significant progress continues to be made. Physicians should be aware of the current status of this treatment so that they can better inform their patients who may be in search of alternative therapies. PMID:27557438

  18. Quiescent adult neural stem cells are exceptionally sensitive to cosmic radiation

    PubMed Central

    Encinas, Juan M.; Vazquez, Marcelo E.; Switzer, Robert C.; Chamberland, Dennis W.; Nick, Harry; Levine, Howard G.; Scarpa, Philip J.; Enikolopov, Grigori; Steindler, Dennis A.

    2012-01-01

    Generation of new neurons in the adult brain, a process that is likely to be essential for learning, memory, and mood regulation, is impaired by radiation. Therefore, radiation exposure might have not only such previously expected consequences as increased probability of developing cancer, but might also impair cognitive function and emotional stability. Radiation exposure is encountered in settings ranging from cancer therapy to space travel; evaluating the neurogenic risks of radiation requires identifying the at-risk populations of stem and progenitor cells in the adult brain. Here we have used a novel reporter mouse line to find that early neural progenitors are selectively affected by conditions simulating the space radiation environment. This is reflected both in a decrease in the number of these progenitors in the neurogenic regions and in an increase in the number of dying cells in these regions. Unexpectedly, we found that quiescent neural stem cells, rather than their rapidly dividing progeny, are most sensitive to radiation. Since these stem cells are responsible for adult neurogenesis, their death would have a profound impact on the production of new neurons in the irradiated adult brain. Our finding raises an important concern about cognitive and emotional risks associated with radiation exposure. PMID:18076878

  19. Plastic adult stem cells: will they graduate from the school of hard knocks?

    PubMed

    Alison, Malcolm R; Poulsom, Richard; Otto, William R; Vig, Pamela; Brittan, Mairi; Direkze, Natalie C; Preston, Sean L; Wright, Nicholas A

    2003-02-15

    Notwithstanding the fact that adult bone marrow cell engraftment to epithelial organs seems a somewhat uncommon event, there is no doubt it does occur, and under appropriate conditions of a strong and positive selection pressure these cells will expand clonally and make a significant contribution to tissue replacement. Likewise, bone-marrow-derived cells can be amplified in vitro and differentiated into a multitude of tissues. These in essence are the goals of regenerative medicine using any source of stem cells, be it embryonic or adult. Despite such irrefutable evidence of what is possible, a veritable chorus of detractors of adult stem cell plasticity has emerged, some doubting its very existence, motivated perhaps by more than a little self-interest. The issues that have led to this state of affairs have included the inability to reproduce certain widely quoted data, one case where the apparent transdifferentiation was due to contamination of the donor tissue with haematopoietic cells and, most notoriously, extrapolating from the behaviour of embryonic stem cells to suggest that adult bone marrow cells simply fuse with other cells and adopt their phenotype. While these issues need resolving, slamming this whole new field because not everything is crystal clear is not good science. The fact that a phenomenon is quite rare in no way mitigates against its very existence: asteroid collisions with the Earth are rare, but try telling the dinosaurs they do not occur! When such events do occur (transdifferentiation or collision), they certainly can make an impact.

  20. Empowering Adult Stem Cells for Myocardial Regeneration V2.0: Success in Small Steps.

    PubMed

    Broughton, Kathleen M; Sussman, Mark A

    2016-03-04

    Much has changed since our survey of the landscape for myocardial regeneration powered by adult stem cells 4 years ago.(1) The intervening years since that first review has witnessed an explosive expansion of studies that advance both understanding and implementation of adult stem cells in promoting myocardial repair. Painstaking research from innumerable laboratories throughout the world is prying open doors that may lead to restoration of myocardial structure and function in the wake of pathological injury. This global effort has produced deeper mechanistic comprehension coupled with an evolving appreciation for the complexity of myocardial regeneration in the adult context. Undaunted by both known and (as yet) unknown challenges, pursuit of myocardial regenerative medicine mediated by adult stem cell therapy has gathered momentum fueled by tantalizing clues and visionary goals. This concise review takes a somewhat different perspective than our initial treatise, taking stock of the business sector that has become an integral part of the field while concurrently updating state of affairs in cutting edge research. Looking retrospectively at advancement over the years as all reviews eventually must, the fundamental lesson to be learned is best explained by Jonatan Mårtensson: "Success will never be a big step in the future. Success is a small step taken just now."

  1. The sexual identity of adult intestinal stem cells controls organ size and plasticity

    PubMed Central

    Hudry, Bruno; Khadayate, Sanjay; Miguel-Aliaga, Irene

    2016-01-01

    SUMMARY Sex differences in physiology and disease susceptibility are commonly attributed to developmental and/or hormonal factors, but there is increasing realisation that cell-intrinsic mechanisms play important and persistent roles1,2. Here we use the Drosophila melanogaster intestine to investigate the nature and significance of cellular sex in an adult somatic organ in vivo. We find that the adult intestinal epithelium is a cellular mosaic of different sex differentiation pathways, and displays extensive sex differences in expression of genes with roles in growth and metabolism. Cell-specific reversals of the sexual identity of adult intestinal stem cells uncover its key roles in controlling organ size, its reproductive plasticity and its response to genetically induced tumours. Unlike previous examples of sexually dimorphic somatic stem cell activity, the sex differences in intestinal stem cell behaviour arise from intrinsic mechanisms, which control cell cycle duration and involve a new doublesex- and fruitless-independent branch of the sex differentiation pathway downstream of transformer. Together, our findings indicate that the plasticity of an adult somatic organ is reversibly controlled by its sexual identity, imparted by a new mechanism that may be active in more tissues than previously recognised. PMID:26887495

  2. Myf5 haploinsufficiency reveals distinct cell fate potentials for adult skeletal muscle stem cells.

    PubMed

    Gayraud-Morel, Barbara; Chrétien, Fabrice; Jory, Aurélie; Sambasivan, Ramkumar; Negroni, Elisa; Flamant, Patricia; Soubigou, Guillaume; Coppée, Jean-Yves; Di Santo, James; Cumano, Ana; Mouly, Vincent; Tajbakhsh, Shahragim

    2012-04-01

    Skeletal muscle stem cell fate in adult mice is regulated by crucial transcription factors, including the determination genes Myf5 and Myod. The precise role of Myf5 in regulating quiescent muscle stem cells has remained elusive. Here we show that most, but not all, quiescent satellite cells express Myf5 protein, but at varying levels, and that resident Myf5 heterozygous muscle stem cells are more primed for myogenic commitment compared with wild-type satellite cells. Paradoxically however, heterotypic transplantation of Myf5 heterozygous cells into regenerating muscles results in higher self-renewal capacity compared with wild-type stem cells, whereas myofibre regenerative capacity is not altered. By contrast, Pax7 haploinsufficiency does not show major modifications by transcriptome analysis. These observations provide a mechanism linking Myf5 levels to muscle stem cell heterogeneity and fate by exposing two distinct and opposing phenotypes associated with Myf5 haploinsufficiency. These findings have important implications for how stem cell fates can be modulated by crucial transcription factors while generating a pool of responsive heterogeneous cells.

  3. Identifying endogenous neural stem cells in the adult brain in vitro and in vivo: novel approaches.

    PubMed

    Rueger, Maria Adele; Androutsellis-Theotokis, Andreas

    2013-01-01

    In the 1960s, Joseph Altman reported that the adult mammalian brain is capable of generating new neurons. Today it is understood that some of these neurons are derived from uncommitted cells in the subventricular zone lining the lateral ventricles, and the dentate gyrus of the hippocampus. The first area generates new neuroblasts which migrate to the olfactory bulb, whereas hippocampal neurogenesis seems to play roles in particular types of learning and memory. A part of these uncommitted (immature) cells is able to divide and their progeny can generate all three major cell types of the nervous system: neurons, astrocytes, and oligodendrocytes; these properties define such cells as neural stem cells. Although the roles of these cells are not yet clear, it is accepted that they affect functions including olfaction and learning/memory. Experiments with insults to the central nervous system also show that neural stem cells are quickly mobilized due to injury and in various disorders by proliferating, and migrating to injury sites. This suggests a role of endogenous neural stem cells in disease. New pools of stem cells are being discovered, suggesting an even more important role for these cells. To understand these cells and to coax them to contribute to tissue repair it would be very useful to be able to image them in the living organism. Here we discuss advances in imaging approaches as well as new concepts that emerge from stem cell biology with emphasis on the interface between imaging and stem cells.

  4. The Drosophila cyst stem cell lineage

    PubMed Central

    Zoller, Richard; Schulz, Cordula

    2012-01-01

    In all animals, germline cells differentiate in intimate contact with somatic cells and interactions between germline and soma are particularly important for germline development and function. In the male gonad of Drosophila melanogaster, the developing germline cells are enclosed by somatic cyst cells. The cyst cells are derived from cyst stem cells (CySCs) of somatic origin and codifferentiate with the germline cells. The fast generation cycle and the genetic tractability of Drosophila has made the Drosophila testis an excellent model for studying both the roles of somatic cells in guiding germline development and the interdependence of two separate stem cell lineages. This review focuses on our current understanding of CySC specification, CySC self-renewing divisions, cyst cell differentiation, and soma-germline interactions. Many of the mechanisms guiding these processes in Drosophila testes are similarly essential for the development and function of tissues in other organisms, most importantly for gametogenesis in mammals. PMID:23087834

  5. Stem cells are differentially regulated during development, regeneration and homeostasis in flatworms.

    PubMed

    De Mulder, Katrien; Pfister, Daniela; Kuales, Georg; Egger, Bernhard; Salvenmoser, Willi; Willems, Maxime; Steger, Jessica; Fauster, Katja; Micura, Ronald; Borgonie, Gaetan; Ladurner, Peter

    2009-10-01

    The flatworm stem cell system is exceptional within the animal kingdom, as totipotent stem cells (neoblasts) are the only dividing cells within the organism. In contrast to most organisms, piwi-like gene expression in flatworms is extended from germ cells to somatic stem cells. We describe the isolation and characterization of the piwi homologue macpiwi in the flatworm Macrostomum lignano. We use in situ hybridization, antibody staining and RNA interference to study macpiwi expression and function in adults, during postembryonic development, regeneration and upon starvation. We found novelties regarding piwi function and observed differences to current piwi functions in flatworms. First, macpiwi was essential for the maintenance of somatic stem cells in adult animals. A knock-down of macpiwi led to a complete elimination of stem cells and death of the animals. Second, the regulation of stem cells was different in adults and regenerates compared to postembryonic development. Third, sexual reproduction of M. lignano allowed to follow germline formation during postembryonic development, regeneration, and starvation. Fourth, piwi expression in hatchlings further supports an embryonic formation of the germline in M. lignano. Our findings address new questions in flatworm stem cell research and provide a basis for comparison with higher organisms.

  6. Tie-mediated signal from apoptotic cells protects stem cells in Drosophila melanogaster

    PubMed Central

    Xing, Yalan; Su, Tin Tin; Ruohola-Baker, Hannele

    2015-01-01

    Many types of normal and cancer stem cells are resistant to killing by genotoxins, but the mechanism for this resistance is poorly understood. Here we show that adult stem cells in Drosophila melanogaster germline and midgut are resistant to ionizing radiation (IR) or chemically induced apoptosis and dissect the mechanism for this protection. We find that upon IR the receptor tyrosine kinase Tie/Tie-2 is activated, leading to the upregulation of microRNA bantam that represses FOXO-mediated transcription of pro-apoptotic Smac/DIA-BLO orthologue, Hid in germline stem cells. Knockdown of the IR-induced putative Tie ligand, Pvf1, a functional homologue of human Angiopoietin, in differentiating daughter cells renders germline stem cells sensitive to IR, suggesting that the dying daughters send a survival signal to protect their stem cells for future repopulation of the tissue. If conserved in cancer stem cells, this mechanism may provide therapeutic options for the eradication of cancer. PMID:25959206

  7. Adult Adipose-Derived Stem Cell Attachment to Biomaterials

    PubMed Central

    Prichard, Heather L; Reichert, William M; Klitzman, Bruce

    2007-01-01

    Attachment of adipose-derived stem cells (ASC) to biomaterials prior to implantation is a possible strategy for mediating inflammation and wound healing. In this study, the ASC percent coverage was measured on common medical grade biosensor materials subjected to different surface treatments. Cell coverage on silicone elastomer (poly dimethylsiloxane) was below 20% for all surface treatments. Polyimide (Kapton), polyurethane (Pellethane) and tissue culture polystyrene all exhibited >50% coverage for surfaces treated with fibronectin (Fn), fibronectin plus avidin/biotin (dual ligand), and oxygen plasma plus fibronectin treatments (Fn O2). The fibronectin treatment performed as well or better on polyimide, polyurethane, and tissue culture polystyrene compared to the dual ligand and fibronectin oxygen plasma treated surfaces. Cell detachment with increasing shear stresses was <25% for each attachment method on both polyimide and polyurethane. The effects of attachment methods on the basic cell functions of proliferation, metabolism, ATP concentration, and caspase-3 activity were analyzed yielding proliferation profiles that were very similar among all of the materials. No significant differences in metabolism, intracellular ATP, or intracellular caspase-3 activity were observed for any of the attachment methods on either polyimide or polyurethane. PMID:17074385

  8. A reverse transfection technology to genetically engineer adult stem cells.

    PubMed

    Okazaki, Arimichi; Jo, Jun-Ichiro; Tabata, Yasuhiko

    2007-02-01

    A new non-viral method of gene transfection was designed to enhance the level of gene expression for rat mesenchymal stem cells (MSCs). Pullulan was cationized using chemical introduction of spermine to prepare cationized pullulan of non-viral carrier (spermine-pullulan). The spermine-pullulan was complexed with a plasmid deoxyribonucleic acid (DNA) of luciferase and coated on the surface of culture substrate together with Pronectin of artificial cell adhesion protein. MSCs were cultured and transfected on the complex-coated substrate (reverse transfection), and the level and duration of gene expression were compared with those of MSCs transfected by culturing in the medium containing the plasmid DNA-spermine-pullulan complex (conventional method). The reverse transfection method enhanced and prolonged gene expression significantly more than did the conventional method. The reverse method permitted the transfection culture of MSCs in the presence of serum, in contrast to the conventional method, which gave cells a good culture condition to lower cytotoxicity. The reverse transfection was carried out for a non-woven fabric of polyethylene terephthalate (PET) coated with the complex and Pronectin using agitation and stirring culture methods. The two methods enhanced the level and duration of gene expression for MSCs significantly more than did the static method. It is possible that medium circulation improves the culture conditions of cells in terms of oxygen and nutrition supply and waste excretion, resulting in enhanced gene expression.

  9. Effects of addictive drugs on adult neural stem/progenitor cells

    PubMed Central

    Xu, Chi; Loh, Horace H.; Law, Ping-Yee

    2015-01-01

    Neural stem/progenitor cells (NSPCs) undergo a series of developmental processes before giving rise to newborn neurons, astrocytes and oligodendrocytes in adult neurogenesis. During the past decade, the role of NSPCs has been highlighted by studies on adult neurogenesis modulated by addictive drugs. It has been proven that these drugs regulate the proliferation, differentiation and survival of adult NSPCs in different manners, which results in the varying consequences of adult neurogenesis. The effects of addictive drugs on NSPCs are exerted via a variety of different mechanisms and pathways, which interact with one another and contribute to the complexity of NSPC regulation. Here, we review the effects of different addictive drugs on NSPCs, and the related experimental methods and paradigms. We also discuss the current understanding of major signaling molecules, especially the putative common mechanisms, underlying such effects. Finally, we review the future directions of research in this area. PMID:26468052

  10. Mobilized adult pituitary stem cells contribute to endocrine regeneration in response to physiological demand.

    PubMed

    Rizzoti, Karine; Akiyama, Haruhiko; Lovell-Badge, Robin

    2013-10-03

    Pituitary hormone deficiencies, with Growth Hormone deficiency being most frequent (1 in 3,500-10,000 births), cause significant morbidity. Regeneration of missing endocrine cells would be a significant improvement over hormone replacement therapies, which incur side effects and do not mimic physiological secretion patterns. Recent in vitro studies have identified a population of adult pituitary progenitors that express the HMG box transcription factors SOX2 and SOX9. Here, we apply cell-lineage tracing analysis to demonstrate that SOX2- and SOX9-expressing progenitors can self-renew and give rise to endocrine cells in vivo, suggesting that they are tissue stem cells. Moreover, we show that they can become mobilized and differentiate into the appropriate endocrine cell types in response to physiological stress. Our results highlight the pituitary as a model for exploring how physiological changes influence stem cell behavior and suggest that manipulation of endogenous pituitary stem cells is a potential therapeutic strategy for pituitary deficiencies.

  11. Muscle regeneration by adipose tissue-derived adult stem cells attached to injectable PLGA spheres.

    PubMed

    Kim, MiJung; Choi, Yu Suk; Yang, Seung Hye; Hong, Hea-Nam; Cho, Sung-Woo; Cha, Sang Myun; Pak, Jhang Ho; Kim, Chan Wha; Kwon, Seog Woon; Park, Chan Jeoung

    2006-09-22

    The [corrected] use of adult stem cells for cell-based tissue engineering and regeneration strategies represents a promising approach for skeletal muscle repair. We have evaluated the combination of adipose tissue-derived adult stem cells (ADSCs) obtained from autologous liposuction and injectable poly(lactic-co-glycolic acid) (PLGA) spheres for muscle regeneration. ADSCs attached to PLGA spheres and PLGA spheres alone were cultured in myogenic medium for 21 days and injected subcutaneously into the necks of nude mice. After 30 and 60 days, the mice were sacrificed, and newly formed tissues were analyzed by immunostaining, H and E staining, and RT-PCR. We found that ADSCs attached to PLGA spheres, but not PLGA spheres alone, were able to generate muscle tissue. These findings suggest that ADSCs and PLGA spheres are useful materials for muscle tissue engineering and that their combination can be used in clinical settings for muscle regeneration.

  12. The Par complex and integrins direct asymmetric cell division in adult intestinal stem cells.

    PubMed

    Goulas, Spyros; Conder, Ryan; Knoblich, Juergen A

    2012-10-05

    The adult Drosophila midgut is maintained by intestinal stem cells (ISCs) that generate both self-renewing and differentiating daughter cells. How this asymmetry is generated is currently unclear. Here, we demonstrate that asymmetric ISC division is established by a unique combination of extracellular and intracellular polarity mechanisms. We show that Integrin-dependent adhesion to the basement membrane induces cell-intrinsic polarity and results in the asymmetric segregation of the Par proteins Par-3, Par-6, and aPKC into the apical daughter cell. Cell-specific knockdown and overexpression experiments suggest that increased activity of aPKC enhances Delta/Notch signaling in one of the two daughter cells to induce terminal differentiation. Perturbing this mechanism or altering the orientation of ISC division results in the formation of intestinal tumors. Our data indicate that mechanisms for intrinsically asymmetric cell division can be adapted to allow for the flexibility in lineage decisions that is required in adult stem cells.

  13. Organoids from adult liver and pancreas: Stem cell biology and biomedical utility.

    PubMed

    Hindley, Christopher J; Cordero-Espinoza, Lucía; Huch, Meritxell

    2016-12-15

    The liver and pancreas are critical organs maintaining whole body metabolism. Historically, the expansion of adult-derived cells from these organs in vitro has proven challenging and this in turn has hampered studies of liver and pancreas stem cell biology, as well as being a roadblock to disease modelling and cell replacement therapies for pathologies in these organs. Recently, defined culture conditions have been described which allow the in vitro culture and manipulation of adult-derived liver and pancreatic material. Here we review these systems and assess their physiological relevance, as well as their potential utility in biomedicine.

  14. Notch signaling induces retinal stem-like properties in perinatal neural retina progenitors and promotes symmetric divisions in adult retinal stem cells.

    PubMed

    Balenci, Laurent; van der Kooy, Derek

    2014-02-01

    Understanding the mechanisms regulating retinal stem cell (RSC) activity is fundamental for future stem cell-based therapeutic purposes. By combining gain and loss of function approaches, we addressed whether Notch signaling may play a selective role in retinal stem versus retinal progenitor cells in both developing and adult eyes. Inhibition of either Notch or fibroblast growth factor signaling reduced proliferation of retinal stem and retinal progenitor cells, and inhibited RSC self-renewal. Conversely, exogenous Delta-like 3 and direct intrinsic Notch activation stimulated expansionary symmetric divisions in adult RSCs with the concomitant upregulation of Hes5. Knocking down Hes5 expression specifically decreased the numbers, but not the diameters, of adult RSC primary spheres, indicating that HES5 is the downstream effector of Notch receptor in controlling adult RSC proliferation. In addition, constitutive Notch activation induced retinal stem-like asymmetric self-renewal properties, with no expansion (no symmetrical division) in perinatal neural retina progenitor cells. These findings highlight central roles of Notch signaling activity in regulating the modes of division of retinal stem and retinal progenitor cells.

  15. Comparative transcriptome analysis of embryonic and adult stem cells with extended and limited differentiation capacity

    PubMed Central

    Ulloa-Montoya, Fernando; Kidder, Benjamin L; Pauwelyn, Karen A; Chase, Lucas G; Luttun, Aernout; Crabbe, Annelies; Geraerts, Martine; Sharov, Alexei A; Piao, Yulan; Ko, Minoru SH; Hu, Wei-Shou; Verfaillie, Catherine M

    2007-01-01

    Background Recently, several populations of postnatal stem cells, such as multipotent adult progenitor cells (MAPCs), have been described that have broader differentiation ability than classical adult stem cells. Here we compare the transcriptome of pluripotent embryonic stem cells (ESCs), MAPCs, and lineage-restricted mesenchymal stem cells (MSCs) to determine their relationship. Results Applying principal component analysis, non-negative matrix factorization and k-means clustering algorithms to the gene-expression data, we identified a unique gene-expression profile for MAPCs. Apart from the ESC-specific transcription factor Oct4 and other ESC transcripts, some of them associated with maintaining ESC pluripotency, MAPCs also express transcripts characteristic of early endoderm and mesoderm. MAPCs do not, however, express Nanog or Sox2, two other key transcription factors involved in maintaining ESC properties. This unique molecular signature was seen irrespective of the microarray platform used and was very similar for both mouse and rat MAPCs. As MSC-like cells isolated under MAPC conditions are virtually identical to MSCs, and MSCs cultured in MAPC conditions do not upregulate MAPC-expressed transcripts, the MAPC signature is cell-type specific and not merely the result of differing culture conditions. Conclusion Multivariate analysis techniques clustered stem cells on the basis of their expressed gene profile, and the genes determining this clustering reflected the stem cells' differentiation potential in vitro. This comparative transcriptome analysis should significantly aid the isolation and culture of MAPCs and MAPC-like cells, and form the basis for studies to gain insights into genes that confer on these cells their greater developmental potency. PMID:17683608

  16. Co-expressed Cyclin D variants cooperate to regulate proliferation of germline nuclei in a syncytium.

    PubMed

    Subramaniam, Gunasekaran; Campsteijn, Coen; Thompson, Eric M

    2015-01-01

    The role of the G1-phase Cyclin D-CDK 4/6 regulatory module in linking germline stem cell (GSC) proliferation to nutrition is evolutionarily variable. In invertebrate Drosophila and C. elegans GSC models, G1 is nearly absent and Cyclin E is expressed throughout the cell cycle, whereas vertebrate spermatogonial stem cells have a distinct G1 and Cyclin D1 plays an important role in GSC renewal. In the invertebrate, chordate, Oikopleura, where germline nuclei proliferate asynchronously in a syncytium, we show a distinct G1-phase in which 2 Cyclin D variants are co-expressed. Cyclin Dd, present in both somatic endocycling cells and the germline, localized to germline nuclei during G1 before declining at G1/S. Cyclin Db, restricted to the germline, remained cytoplasmic, co-localizing in foci with the Cyclin-dependent Kinase Inhibitor, CKIa. These foci showed a preferential spatial distribution adjacent to syncytial germline nuclei at G1/S. During nutrient-restricted growth arrest, upregulated CKIa accumulated in arrested somatic endoreduplicative nuclei but did not do so in germline nuclei. In the latter context, Cyclin Dd levels gradually decreased. In contrast, the Cyclin Dbβ splice variant, lacking the Rb-interaction domain and phosphodegron, was specifically upregulated and the number of cytoplasmic foci containing this variant increased. This upregulation was dependent on stress response MAPK p38 signaling. We conclude that under favorable conditions, Cyclin Dbβ-CDK6 sequesters CKIa in the cytoplasm to cooperate with Cyclin Dd-CDK6 in promoting germline nuclear proliferation. Under nutrient-restriction, this sequestration function is enhanced to permit continued, though reduced, cycling of the germline during somatic growth arrest.

  17. Adult marrow-derived very small embryonic-like stem cells and tissue engineering.

    PubMed

    Kucia, Magda; Zuba-Surma, Ewa K; Wysoczynski, Marcin; Wu, Wan; Ratajczak, Janina; Machalinski, Boguslaw; Ratajczak, Mariusz Z

    2007-10-01

    A population of CXCR4(+) lin(-) CD45(-) cells that express SSEA, Oct-4 and Nanog has been identified in adult bone marrow. These cells are very small and display several features typical for primary embryonic stem cells such as: i) a large nuclei surrounded by a narrow rim of cytoplasm; ii) open-type chromatin (euchromatin); and iii) high telomerase activity. These cells were named very small embryonic-like stem cells (VSEL-SC). The authors hypothesized that they are direct descendants of the germ lineage. Germ lineage, in order to pass genes on to the next generation, has to create soma and thus becomes a 'mother lineage' for all somatic cell lineages present in the adult body. Germ potential is established after conception in a totipotent zygote and retained subsequently during development in blastomers of morula, cells form the inner cell mass of blastocyst, epiblast and population of primordial germ cells. The authors envision that VSEL-SC are epiblast-derived pluripotent stem cells and could potentially become a less-controversial source of stem cells for regeneration.

  18. Spontaneous transformation of adult mesenchymal stem cells from cynomolgus macaques in vitro

    SciTech Connect

    Ren, Zhenhua; Wang, Jiayin; Zhu, Wanwan; Guan, Yunqian; Zou, Chunlin; Chen, Zhiguo; Zhang, Y. Alex

    2011-12-10

    Mesenchymal stem cells (MSCs) have shown potential clinical utility in cell therapy and tissue engineering, due to their ability to proliferate as well as to differentiate into multiple lineages, including osteogenic, adipogenic, and chondrogenic specifications. Therefore, it is crucial to assess the safety of MSCs while extensive expansion ex vivo is a prerequisite to obtain the cell numbers for cell transplantation. Here we show that MSCs derived from adult cynomolgus monkey can undergo spontaneous transformation following in vitro culture. In comparison with MSCs, the spontaneously transformed mesenchymal cells (TMCs) display significantly different growth pattern and morphology, reminiscent of the characteristics of tumor cells. Importantly, TMCs are highly tumorigenic, causing subcutaneous tumors when injected into NOD/SCID mice. Moreover, no multiple differentiation potential of TMCs is observed in vitro or in vivo, suggesting that spontaneously transformed adult stem cells may not necessarily turn into cancer stem cells. These data indicate a direct transformation of cynomolgus monkey MSCs into tumor cells following long-term expansion in vitro. The spontaneous transformation of the cultured cynomolgus monkey MSCs may have important implications for ongoing clinical trials and for models of oncogenesis, thus warranting a more strict assessment of MSCs prior to cell therapy. -- Highlights: Black-Right-Pointing-Pointer Spontaneous transformation of cynomolgus monkey MSCs in vitro. Black-Right-Pointing-Pointer Transformed mesenchymal cells lack multipotency. Black-Right-Pointing-Pointer Transformed mesenchymal cells are highly tumorigenic. Black-Right-Pointing-Pointer Transformed mesenchymal cells do not have the characteristics of cancer stem cells.

  19. Autologous Transplantation of Bone Marrow Adult Stem Cells for the Treatment of Idiopathic Dilated Cardiomyopathy

    PubMed Central

    Westphal, Ricardo João; Bueno, Ronaldo Rocha Loures; Galvão, Paulo Bezerra de Araújo; Zanis Neto, José; Souza, Juliano Mendes; Guérios, Ênio Eduardo; Senegaglia, Alexandra Cristina; Brofman, Paulo Roberto; Pasquini, Ricardo; da Cunha, Claudio Leinig Pereira

    2014-01-01

    Background Morbimortality in patients with dilated idiopathic cardiomyopathy is high, even under optimal medical treatment. Autologous infusion of bone marrow adult stem cells has shown promising preliminary results in these patients. Objective Determine the effectiveness of autologous transplantation of bone marrow adult stem cells on systolic and diastolic left ventricular function, and on the degree of mitral regurgitation in patients with dilated idiopathic cardiomyopathy in functional classes NYHA II and III. Methods We administered 4,54 x 108 ± 0,89 x 108 bone marrow adult stem cells into the coronary arteries of 24 patients with dilated idiopathic cardiomyopathy in functional classes NYHA II and III. Changes in functional class, systolic and diastolic left ventricular function and degree of mitral regurgitation were assessed after 3 months, 6 months and 1 year. Results During follow-up, six patients (25%) improved functional class and eight (33.3%) kept stable. Left ventricular ejection fraction improved 8.9%, 9.7% e 13.6%, after 3, 6 and 12 months (p = 0.024; 0.017 and 0.018), respectively. There were no significant changes neither in diastolic left ventricular function nor in mitral regurgitation degree. A combined cardiac resynchronization and implantable cardioversion defibrillation was implanted in two patients (8.3%). Four patients (16.6%) had sudden death and four patients died due to terminal cardiac failure. Average survival of these eight patients was 2.6 years. Conclusion Intracoronary infusion of bone marrow adult stem cells was associated with an improvement or stabilization of functional class and an improvement in left ventricular ejection fraction, suggesting the efficacy of this intervention. There were no significant changes neither in left ventricular diastolic function nor in the degree of mitral regurgitation. PMID:25590932

  20. A Hyaluronic Acid-Rich Node and Duct System in Which Pluripotent Adult Stem Cells Circulate.

    PubMed

    Rai, Rajani; Chandra, Vishal; Kwon, Byoung S

    2015-10-01

    Regenerative medicine is in demand of adult pluripotent stem cells (PSCs). The "Bonghan System (BHS)" was discovered and suggested to contain cells with regenerative capacity in the early 1960s. It had been ignored for a long time due to the lack of sufficient details of experiments, but about 37 years after the initial report, the BHS was rediscovered and named as the "primo vascular system." Recently, we have discovered a similar structure, which contained a high level of hyaluronic acid, and hence, named the structure as hyaluronic acid-rich node and duct system (HAR-NDS). Here we discuss the HAR-NDS concept starting from the discovery of BHS, and findings pointing to its importance in regenerative medicine. This HAR-NDS contained adult PSCs, called node and duct stem cells (NDSCs), which appeared to circulate in it. We describe the evidence that NDSCs can differentiate into hemangioblasts that further produced differentiated blood cells. The NDSCs had a potential to differentiate into neuronal cells and hepatocytes; thus, NDSCs had a capability to become cells from all three germ layers. This system appears to be a promising alternative source of adult stem cells that can be easily delivered to their target tissues and participate in tissue regeneration.

  1. Regulatory System for Stem/Progenitor Cell Niches in the Adult Rodent Pituitary

    PubMed Central

    Yoshida, Saishu; Kato, Takako; Kato, Yukio

    2016-01-01

    The anterior lobe of the pituitary gland is a master endocrine tissue composed of five types of endocrine cells. Although the turnover rate of pituitary endocrine cells is as low as about 1.6% per day, recent studies have demonstrated that Sex-determining region Y-box 2 (SOX2)+-cells exist as pituitary stem/progenitor cells in the adult anterior lobe and contribute to cell regeneration. Notably, SOX2+-pituitary stem/progenitor cells form two types of niches in this tissue: the marginal cell layer (MCL-niche) and the dense cell clusters scattering in the parenchyma (parenchymal-niche). However, little is known about the mechanisms and factors for regulating the pituitary stem/progenitor cell niches, as well as the functional differences between the two types of niches. Elucidation of the regulatory mechanisms in the niches might enable us to understand the cell regeneration system that acts in accordance with physiological demands in the adult pituitary. In this review, so as to reveal the regulatory mechanisms of the two types of niche, we summarize the regulatory factors and their roles in the adult rodent pituitary niches by focusing on three components: soluble factors, cell surface proteins and extracellular matrixes. PMID:26761002

  2. Adult neurogenesis, neural stem cells and Alzheimer's disease: developments, limitations, problems and promises.

    PubMed

    Taupin, Philippe

    2009-12-01

    Alzheimer's disease (AD) is an irreversible progressive neurodegenerative disease, leading to severe incapacity and death. It is the most common form of dementia among older people. AD is characterized in the brain by amyloid plaques, neurofibrillary tangles, neuronal degeneration, aneuploidy and enhanced neurogenesis and by cognitive, behavioral and physical impairments. Inherited mutations in several genes and genetic, acquired and environmental risk factors have been reported as causes for developing the disease, for which there is currently no cure. Current treatments for AD involve drugs and occupational therapies, and future developments involve early diagnosis and stem cell therapy. In this manuscript, we will review and discuss the recent developments, limitations, problems and promises on AD, particularly related to aneuploidy, adult neurogenesis, neural stem cells (NSCs) and cellular therapy. Though adult neurogenesis may be beneficial for regeneration of the nervous system, it may underly the pathogenesis of AD. Cellular therapy is a promising strategy for AD. Limitations in protocols to establish homogeneous populations of neural progenitor and stem cells and niches for neurogenesis need to be resolved and unlocked, for the full potential of adult NSCs to be realized for therapy.

  3. Lymphatic Reprogramming of Adult Endothelial Stem Cells for a Cell-Based Therapy for Lymphedema in Breast Cancer Patients

    DTIC Science & Technology

    2008-09-01

    Therapy for Lymphedema inBreast Cancer Patients PRINCIPAL INVESTIGATOR: Young Kwon Hong, Ph.D. CONTRACTING ORGANIZATION...5a. CONTRACT NUMBER 4. TITLE AND SUBTITLE Lymphatic Reprogramming of Adult Endothelial Stem Cells for a Cell-Based Therapy for Lymphedema in... lymphedema patients. The key significance of our proposal is to utilize the elusive circulating adult stem cells to avoid the ethical and immunological

  4. Pituitary Cell Turnover: From Adult Stem Cell Recruitment through Differentiation to Death.

    PubMed

    Garcia-Lavandeira, Montserrat; Diaz-Rodriguez, Esther; Bahar, Dilek; Garcia-Rendueles, Angela R; Rodrigues, Joana S; Dieguez, Carlos; Alvarez, Clara V

    2015-01-01

    The recent demonstration using genetic tracing that in the adult pituitary stem cells are normally recruited from the niche in the marginal zone and differentiate into secretory cells in the adenopituitary has elegantly confirmed the proposal made when the pituitary stem cell niche was first discovered 5 years ago. Some of the early controversies have also been resolved. However, many questions remain, such as which are the markers that make a pituitary stem cell truly unique and the exact mechanisms that trigger recruitment from the niche. Little is known about the processes of commitment and differentiation once a stem cell has left the niche. Moreover, the acceptance that pituitary cells are renewed by stem cells implies the existence of regulated mechanisms of cell death in differentiated cells which must themselves be explained. The demonstration of an apoptotic pathway mediated by RET/caspase 3/Pit-1/Arf/p53 in normal somatotrophs is therefore an important step towards understanding how pituitary cell number is regulated. Further work will elucidate how the rates of the three processes of cell renewal, differentiation and apoptosis are balanced in tissue homeostasis after birth, but altered in pituitary hyperplasia in response to physiological stimuli such as puberty and lactation. Thus, we can aim to understand the mechanisms underlying human disease due to insufficient (hypopituitarism) or excess (pituitary tumor) cell numbers.

  5. Potential for a pluripotent adult stem cell treatment for acute radiation sickness

    PubMed Central

    Rodgerson, Denis O; Reidenberg, Bruce E; Harris, Alan G; Pecora, Andrew L

    2012-01-01

    Accidental radiation exposure and the threat of deliberate radiation exposure have been in the news and are a public health concern. Experience with acute radiation sickness has been gathered from atomic blast survivors of Hiroshima and Nagasaki and from civilian nuclear accidents as well as experience gained during the development of radiation therapy for cancer. This paper reviews the medical treatment reports relevant to acute radiation sickness among the survivors of atomic weapons at Hiroshima and Nagasaki, among the victims of Chernobyl, and the two cases described so far from the Fukushima Dai-Ichi disaster. The data supporting the use of hematopoietic stem cell transplantation and the new efforts to expand stem cell populations ex vivo for infusion to treat bone marrow failure are reviewed. Hematopoietic stem cells derived from bone marrow or blood have a broad ability to repair and replace radiation induced damaged blood and immune cell production and may promote blood vessel formation and tissue repair. Additionally, a constituent of bone marrow-derived, adult pluripotent stem cells, very small embryonic like stem cells, are highly resistant to ionizing radiation and appear capable of regenerating radiation damaged tissue including skin, gut and lung. PMID:24520532

  6. The lipolysis pathway sustains normal and transformed stem cells in adult Drosophila.

    PubMed

    Singh, Shree Ram; Zeng, Xiankun; Zhao, Jiangsha; Liu, Ying; Hou, Gerald; Liu, Hanhan; Hou, Steven X

    2016-10-06

    Cancer stem cells (CSCs) may be responsible for tumour dormancy, relapse and the eventual death of most cancer patients. In addition, these cells are usually resistant to cytotoxic conditions. However, very little is known about the biology behind this resistance to therapeutics. Here we investigated stem-cell death in the digestive system of adult Drosophila melanogaster. We found that knockdown of the coat protein complex I (COPI)-Arf79F (also known as Arf1) complex selectively killed normal and transformed stem cells through necrosis, by attenuating the lipolysis pathway, but spared differentiated cells. The dying stem cells were engulfed by neighbouring differentiated cells through a draper-myoblast city-Rac1-basket (also known as JNK)-dependent autophagy pathway. Furthermore, Arf1 inhibitors reduced CSCs in human cancer cell lines. Thus, normal or cancer stem cells may rely primarily on lipid reserves for energy, in such a way that blocking lipolysis starves them to death. This finding may lead to new therapies that could help to eliminate CSCs in human cancers.

  7. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division.

    PubMed

    Rocheteau, Pierre; Gayraud-Morel, Barbara; Siegl-Cachedenier, Irene; Blasco, Maria A; Tajbakhsh, Shahragim

    2012-01-20

    Satellite cells are adult skeletal muscle stem cells that are quiescent and constitute a poorly defined heterogeneous population. Using transgenic Tg:Pax7-nGFP mice, we show that Pax7-nGFP(Hi) cells are less primed for commitment and have a lower metabolic status and delayed first mitosis compared to Pax7-nGFP(Lo) cells. Pax7-nGFP(Hi) can give rise to Pax7-nGFP(Lo) cells after serial transplantations. Proliferating Pax7-nGFP(Hi) cells exhibit lower metabolic activity, and the majority performs asymmetric DNA segregation during cell division, wherein daughter cells retaining template DNA strands express stem cell markers. Using chromosome orientation-fluorescence in situ hybridization, we demonstrate that all chromatids segregate asymmetrically, whereas Pax7-nGFP(Lo) cells perform random DNA segregation. Therefore, quiescent Pax7-nGFP(Hi) cells represent a reversible dormant stem cell state, and during muscle regeneration, Pax7-nGFP(Hi) cells generate distinct daughter cell fates by asymmetrically segregating template DNA strands to the stem cell. These findings provide major insights into the biology of stem cells that segregate DNA asymmetrically.

  8. Ependymal cells of chordate larvae are stem-like cells that form the adult nervous system.

    PubMed

    Horie, Takeo; Shinki, Ryoko; Ogura, Yosuke; Kusakabe, Takehiro G; Satoh, Nori; Sasakura, Yasunori

    2011-01-27

    In ascidian tunicates, the metamorphic transition from larva to adult is accompanied by dynamic changes in the body plan. For instance, the central nervous system (CNS) is subjected to extensive rearrangement because its regulating larval organs are lost and new adult organs are created. To understand how the adult CNS is reconstructed, we traced the fate of larval CNS cells during ascidian metamorphosis by using transgenic animals and imaging technologies with photoconvertible fluorescent proteins. Here we show that most parts of the ascidian larval CNS, except for the tail nerve cord, are maintained during metamorphosis and recruited to form the adult CNS. We also show that most of the larval neurons disappear and only a subset of cholinergic motor neurons and glutamatergic neurons are retained. Finally, we demonstrate that ependymal cells of the larval CNS contribute to the construction of the adult CNS and that some differentiate into neurons in the adult CNS. An unexpected role of ependymal cells highlighted by this study is that they serve as neural stem-like cells to reconstruct the adult nervous network during chordate metamorphosis. Consequently, the plasticity of non-neuronal ependymal cells and neuronal cells in chordates should be re-examined by future studies.

  9. Human germline gene therapy reconsidered.

    PubMed

    Resnik, D B; Langer, P J

    2001-07-20

    This paper reevaluates the notion of human germline gene therapy (HGLGT) in light of developments in biomedicine, biotechnology, and ethical and policy analysis. The essay makes the following key points. First, because the distinction among "therapy," "prevention," and "enhancement" is not clear in human genetics, "gene therapy" is an inadequate descriptor of the process and goals of germline genetic alterations. The alternate use of the phrase "human germline genome modification" (HGLGM) could avoid a misleading label. Second, procedures that could be construed as genetic "enhancement" may not be as morally problematic as some have supposed, once one understands that the boundaries between therapy, prevention, and enhancement are not obvious in genetic medicine. Third, HGLGM might be the medically and morally most appropriate way of avoiding the birth of a child with a genetic disease in only a small range of cases. Fourth, there are still many ethical and scientific problems relating to the safety and efficacy of HGLGM.

  10. Adult neural stem cells: Long-term self-renewal, replenishment by the immune system, or both?

    PubMed

    Beltz, Barbara S; Cockey, Emily L; Li, Jingjing; Platto, Jody F; Ramos, Kristina A; Benton, Jeanne L

    2015-05-01

    The current model of adult neurogenesis in mammals suggests that adult-born neurons are generated by stem cells that undergo long-term self-renewal, and that a lifetime supply of stem cells resides in the brain. In contrast, it has recently been demonstrated that adult-born neurons in crayfish are generated by precursors originating in the immune system. This is particularly interesting because studies done many years ago suggest that a similar mechanism might exist in rodents and humans, with bone marrow providing stem cells that can generate neurons. However, the relevance of these findings for natural mechanisms underlying adult neurogenesis in mammals is not clear, because of uncertainties at many levels. We argue here that the recent findings in crayfish send a strong signal to re-examine existing data from rodents and humans, and to design new experiments that will directly test the contributions of the immune system to adult neurogenesis in mammals.

  11. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland.

    PubMed

    Pyczek, Joanna; Buslei, Rolf; Schult, David; Hölsken, Annett; Buchfelder, Michael; Heß, Ina; Hahn, Heidi; Uhmann, Anja

    2016-04-25

    Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2(+) and Sox9(+) adult pituitary stem cells and to elevated expression levels of adrenocorticotropic hormone (Acth), growth hormone (Gh) and prolactin (Prl) in the adult gland. Inhibition of the pathway by cyclopamine reversed these effects indicating that active Hh signaling positively regulates proliferative processes of adult pituitary stem cells and hormone production in the anterior pituitary. Since hormone producing cells of the adenohypophysis as well as ACTH-, GH- and PRL-immunopositive adenomas express SHH and its target GLI1, we furthermore propose that excess HH signaling is involved in the development/maintenance of hormone-producing pituitary adenomas. These findings advance the understanding of physiological hormone regulation and may open new treatment options for pituitary tumors.

  12. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland

    PubMed Central

    Pyczek, Joanna; Buslei, Rolf; Schult, David; Hölsken, Annett; Buchfelder, Michael; Heß, Ina; Hahn, Heidi; Uhmann, Anja

    2016-01-01

    Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2+ and Sox9+ adult pituitary stem cells and to elevated expression levels of adrenocorticotropic hormone (Acth), growth hormone (Gh) and prolactin (Prl) in the adult gland. Inhibition of the pathway by cyclopamine reversed these effects indicating that active Hh signaling positively regulates proliferative processes of adult pituitary stem cells and hormone production in the anterior pituitary. Since hormone producing cells of the adenohypophysis as well as ACTH-, GH- and PRL-immunopositive adenomas express SHH and its target GLI1, we furthermore propose that excess HH signaling is involved in the development/maintenance of hormone-producing pituitary adenomas. These findings advance the understanding of physiological hormone regulation and may open new treatment options for pituitary tumors. PMID:27109116

  13. Postnatal stem/progenitor cells derived from the dental pulp of adult chimpanzee

    PubMed Central

    Cheng, Pei-Hsun; Snyder, Brooke; Fillos, Dimitri; Ibegbu, Chris C; Huang, Anderson Hsien-Cheng; Chan, Anthony WS

    2008-01-01

    Background Chimpanzee dental pulp stem/stromal cells (ChDPSCs) are very similar to human bone marrow derived mesenchymal stem/stromal cells (hBMSCs) as demonstrated by the expression pattern of cell surface markers and their multipotent differentiation capability. Results ChDPSCs were isolated from an incisor and a canine of a forty-seven year old female chimpanzee. A homogenous population of ChDPSCs was established in early culture at a high proliferation rate and verified by the expression pattern of thirteen cell surface markers. The ChDPSCs are multipotent and were capable of differentiating into osteogenic, adipogenic and chondrogenic lineages under appropriate in vitro culture conditions. ChDPSCs also express stem cell (Sox-2, Nanog, Rex-1, Oct-4) and osteogenic (Osteonectin, osteocalcin, osteopontin) markers, which is comparable to reported results of rhesus monkey BMSCs (rBMSCs), hBMSCs and hDPSCs. Although ChDPSCs vigorously proliferated during the initial phase and gradually decreased in subsequent passages, the telomere length indicated that telomerase activity was not significantly reduced. Conclusion These results demonstrate that ChDPSCs can be efficiently isolated from post-mortem teeth of adult chimpanzees and are multipotent. Due to the almost identical genome composition of humans and chimpanzees, there is an emergent need for defining the new role of chimpanzee modeling in comparative medicine. Teeth are easy to recover at necropsy and easy to preserve prior to the retrieval of dental pulp for stem/stromal cells isolation. Therefore, the establishment of ChDPSCs would preserve and maximize the applications of such a unique and invaluable animal model, and could advance the understanding of cellular functions and differentiation control of adult stem cells in higher primates. PMID:18430234

  14. Simultaneous control of stemness and differentiation by the transcription factor Escargot in adult stem cells: How can we tease them apart?

    PubMed Central

    Loza-Coll, Mariano A.; Jones, D. Leanne

    2016-01-01

    ABSTRACT The homeostatic turnover of adult organs and their regenerative capacity following injury depend on a careful balance between stem cell self-renewal (to maintain or enlarge the stem cell pool) and differentiation (to replace lost tissue). We have recently characterized the role of the Drosophila Snail family transcription factor escargot (esg) in testis cyst stem cells (CySCs)1,2 and intestinal stem cells (ISCs). 3,4 CySCs mutant for esg are not maintained as stem cells, but they remain capable of differentiating normally along the cyst cell lineage. In contrast, esg mutant CySCs that give rise to a closely related lineage, the apical hub cells, cannot maintain hub cell identity. Similarly, Esg maintains stemness of ISCs while regulating the terminal differentiation of progenitor cells into absorptive enterocytes or secretory enteroendocrine cells. Therefore, our findings suggest that Esg may play a conserved and pivotal regulatory role in adult stem cells, controlling both their maintenance and terminal differentiation. Here we propose that this dual regulatory role is due to simultaneous control by Esg of overlapping genetic programs and discuss the exciting challenges and opportunities that lie ahead to explore the underlying mechanisms experimentally. PMID:27077690

  15. Isolated Rat Epididymal Basal Cells Share Common Properties with Adult Stem Cells1

    PubMed Central

    Mandon, Marion; Hermo, Louis; Cyr, Daniel G.

    2015-01-01

    There is little information on the function of epididymal basal cells. These cells secrete prostaglandins, can metabolize radical oxygen species, and have apical projections that are components of the blood-epididymis barrier. The objective of this study was to develop a reproducible protocol to isolate rat epididymal basal cells and to characterize their function by gene expression profiling. Integrin-alpha6 was used to isolate a highly purified population of basal cells. Microarray analysis indicated that expression levels of 552 genes were enriched in basal cells relative to other cell types. Among these genes, 45 were expressed at levels of 5-fold or greater. These highly expressed genes coded for proteins implicated in cell adhesion, cytoskeletal function, ion transport, cellular signaling, and epidermal function, and included proteases and antiproteases, signal transduction, and transcription factors. Several highly expressed genes have been reported in adult stem cells, suggesting that basal cells may represent an epididymal stem cell population. A basal cell culture was established that showed that these basal cells can differentiate in vitro from keratin (KRT) 5-positive cells to cells that express KRT8 and connexin 26, a marker of columnar cells. These data provide novel information on epididymal basal cell gene expression and suggest that these cells can act as adult stem cells. PMID:26400399

  16. Adult stem cells in the small intestine are intrinsically programmed with their location-specific function.

    PubMed

    Middendorp, Sabine; Schneeberger, Kerstin; Wiegerinck, Caroline L; Mokry, Michal; Akkerman, Ronald D L; van Wijngaarden, Simone; Clevers, Hans; Nieuwenhuis, Edward E S

    2014-05-01

    Differentiation and specialization of epithelial cells in the small intestine are regulated in two ways. First, there is differentiation along the crypt-villus axis of the intestinal stem cells into absorptive enterocytes, Paneth, goblet, tuft, enteroendocrine, or M cells, which is mainly regulated by WNT. Second, there is specialization along the cephalocaudal axis with different absorptive and digestive functions in duodenum, jejunum, and ileum that is controlled by several transcription factors such as GATA4. However, so far it is unknown whether location-specific functional properties are intrinsically programmed within stem cells or if continuous signaling from mesenchymal cells is necessary to maintain the location-specific identity of the small intestine. Using the pure epithelial organoid technique, we show that region-specific gene expression profiles are conserved throughout long-term cultures of both mouse and human intestinal stem cells and correlated with differential Gata4 expression. Furthermore, the human organoid culture system demonstrates that Gata4-regulated gene expression is only allowed in absence of WNT signaling. These data show that location-specific function is intrinsically programmed in the adult stem cells of the small intestine and that their differentiation fate is independent of location-specific extracellular signals. In light of the potential future clinical application of small intestine-derived organoids, our data imply that it is important to generate GATA4-positive and GATA4-negative cultures to regenerate all essential functions of the small intestine.

  17. Growth and differentiation of adult hippocampal arctic ground squirrel neural stem cells.

    PubMed

    Drew, Kelly L; McGee, Rebecca C; Wells, Matthew S; Kelleher-Andersson, Judith A

    2011-01-07

    Arctic ground squirrels (Urocitellus parryii, AGS) are unique in their ability to hibernate with a core body temperature near or below freezing. These animals also resist ischemic injury to the brain in vivo and oxygen-glucose deprivation in vitro. These unique qualities provided the impetus to isolate AGS neurons to examine inherent neuronal characteristics that could account for the capacity of AGS neurons to resist injury and cell death caused by ischemia and extremely cold temperatures. Identifying proteins or gene targets that allow for the distinctive properties of these cells could aid in the discovery of effective therapies for a number of ischemic indications and for the study of cold tolerance. Adult AGS hippocampus contains neural stem cells that continue to proliferate, allowing for easy expansion of these stem cells in culture. We describe here methods by which researchers can utilize these stem cells and differentiated neurons for any number of purposes. By closely following these steps the AGS neural stem cells can be expanded through two passages or more and then differentiated to a culture high in TUJ1-positive neurons (~50%) without utilizing toxic chemicals to minimize the number of dividing cells. Ischemia induces neurogenesis and neurogenesis which proceeds via MEK/ERK and PI3K/Akt survival signaling pathways contributes to ischemia resistance in vivo and in vitro (Kelleher-Anderson, Drew et al., in preparation). Further characterization of these unique neural cells can advance on many fronts, using some or all of these methods.

  18. An RbAp48-like gene regulates adult stem cells in planarians.

    PubMed

    Bonuccelli, Lucia; Rossi, Leonardo; Lena, Annalisa; Scarcelli, Vittoria; Rainaldi, Giuseppe; Evangelista, Monica; Iacopetti, Paola; Gremigni, Vittorio; Salvetti, Alessandra

    2010-03-01

    Retinoblastoma-associated proteins 46 and 48 (RbAp46 and RbAp48) are factors that are components of different chromatin-modelling complexes, such as polycomb repressive complex 2, the activity of which is related to epigenetic gene regulation in stem cells. To date, no direct findings are available on the in vivo role of RbAp48 in stem-cell biology. We recently identified DjRbAp48 - a planarian (Dugesia japonica) homologue of human RBAP48 - expression of which is restricted to the neoblasts, the adult stem cells of planarians. In vivo silencing of DjRbAp48 induces lethality and inability to regenerate, even though neoblasts proliferate and accumulate after wounding. Despite a partial reduction in neoblast number, we were always able to detect a significant number of these cells in DjRbAp48 RNAi animals. Parallel to the decrease in neoblasts, a reduction in the number of differentiated cells and the presence of apoptotic-like neoblasts were detectable in RNAi animals. These findings suggest that DjRbAp48 is not involved in neoblast maintenance, but rather in the regulation of differentiation of stem-cell progeny. We discuss our data, taking into account the possibility that DjRbAp48 might control the expression of genes necessary for cell differentiation by influencing chromatin architecture.

  19. Mutation rates and the evolution of germline structure

    PubMed Central

    2016-01-01

    Genome sequencing studies of de novo mutations in humans have revealed surprising incongruities in our understanding of human germline mutation. In particular, the mutation rate observed in modern humans is substantially lower than that estimated from calibration against the fossil record, and the paternal age effect in mutations transmitted to offspring is much weaker than expected from our long-standing model of spermatogenesis. I consider possible explanations for these discrepancies, including evolutionary changes in life-history parameters such as generation time and the age of puberty, a possible contribution from undetected post-zygotic mutations early in embryo development, and changes in cellular mutation processes at different stages of the germline. I suggest a revised model of stem-cell state transitions during spermatogenesis, in which ‘dark’ gonial stem cells play a more active role than hitherto envisaged, with a long cycle time undetected in experimental observations. More generally, I argue that the mutation rate and its evolution depend intimately on the structure of the germline in humans and other primates. This article is part of the themed issue ‘Dating species divergences using rocks and clocks'. PMID:27325834

  20. Lessons for inductive germline determination.

    PubMed

    Seervai, Riyad N H; Wessel, Gary M

    2013-08-01

    Formation of the germline in an embryo marks a fresh round of reproductive potential, yet the developmental stage and location within the embryo where the primordial germ cells (PGCs) form differs wildly among species. In most animals, the germline is formed either by an inherited mechanism, in which maternal provisions within the oocyte drive localized germ-cell fate once acquired in the embryo, or an inductive mechanism that involves signaling between cells that directs germ-cell fate. The inherited mechanism has been widely studied in model organisms such as Drosophila melanogaster, Caenorhabditis elegans, Xenopus laevis, and Danio rerio. Given the rapid generation time and the effective adaptation for laboratory research of these organisms, it is not coincidental that research on these organisms has led the field in elucidating mechanisms for germline specification. The inductive mechanism, however, is less well understood and is studied primarily in the mouse (Mus musculus). In this review, we compare and contrast these two fundamental mechanisms for germline determination, beginning with the key molecular determinants that play a role in the formation of germ cells across all animal taxa. We next explore the current understanding of the inductive mechanism of germ-cell determination in mice, and evaluate the hypotheses for selective pressures on these contrasting mechanisms. We then discuss the hypothesis that the transition between these determination mechanisms, which has happened many times in phylogeny, is more of a continuum than a binary change. Finally, we propose an analogy between germline determination and sex determination in vertebrates-two of the milestones of reproduction and development-in which animals use contrasting strategies to activate similar pathways.

  1. Lessons for Inductive Germline Determination

    PubMed Central

    Seervai, Riyad N.H.; Wessel, Gary M.

    2015-01-01

    SUMMARY Formation of the germline in an embryo marks a fresh round of reproductive potential, yet the developmental stage and location within the embryo where the primordial germ cells (PGCs) form differs wildly among species. In most animals, the germline is formed either by an inherited mechanism, in which maternal provisions within the oocyte drive localized germ-cell fate once acquired in the embryo, or an inductive mechanism that involves signaling between cells that directs germ-cell fate. The inherited mechanism has been widely studied in model organisms such as Drosophila melanogaster, Caenorhabditis elegans, Xenopus laevis, and Danio rerio. Given the rapid generation time and the effective adaptation for laboratory research of these organisms, it is not coincidental that research on these organisms has led the field in elucidating mechanisms for germline specification. The inductive mechanism, however, is less well understood and is studied primarily in the mouse (Mus musculus). In this review, we compare and contrast these two fundamental mechanisms for germline determination, beginning with the key molecular determinants that play a role in the formation of germ cells across all animal taxa. We next explore the current understanding of the inductive mechanism of germ-cell determination in mice, and evaluate the hypotheses for selective pressures on these contrasting mechanisms. We then discuss the hypothesis that the transition between these determination mechanisms, which has happened many times in phylogeny, is more of a continuum than a binary change. Finally, we propose an analogy between germline determination and sex determination in vertebrates—two of the milestones of reproduction and development—in which animals use contrasting strategies to activate similar pathways. PMID:23450642

  2. The postnatal origin of adult neural stem cells and the effects of glucocorticoids on their genesis.

    PubMed

    Ortega-Martínez, Sylvia; Trejo, José L

    2015-02-15

    The relevance of adult neurogenesis in hippocampal function is well documented, as is the potential impact stress has on the adult neurogenic niche. Adult born neurons are generated from neural precursors in the dentate gyrus (DG), although the point in postnatal development that these cell precursors originate is not known. This is particularly relevant if we consider the effects stress may have on the development of neural precursors, and whether such effects on adult neurogenesis and behavior may persist in the long-term. We have analyzed the proportion of neural precursors in the adult murine hippocampus born on specific days during postnatal development using a dual birth-dating analysis, and we assessed their sensitivity to dexamethasone (DEX) on the peak day of cell generation. We also studied the consequences of postnatal DEX administration on adult hippocampal-dependent behavior. Postnatal day 6 (P6) is a preferred period for proliferating neural stem cells (NSCs) to become the precursors that remain in a proliferative state throughout adulthood. This window is independent of gender, the cell's location in the DG granule cell layer or their rostro-caudal position. DEX administration at P6 reduces the size of the adult NSC pool in the DG, which is correlated with poor learning/memory capacity and increased anxiety-like behavior. These results indicate that aNSCs are generated non-uniformly during postnatal development, with peak generation on day P6, and that stress receptor activation during the key period of postnatal NSC generation has a profound impact on both adult hippocampal neurogenesis and behavior.

  3. Harnessing the potential of adult cardiac stem cells: lessons from haematopoiesis, the embryo and the niche.

    PubMed

    Balmer, Gemma M; Riley, Paul R

    2012-10-01

    Across biomedicine, there is a major drive to develop stem cell (SC) treatments for debilitating diseases. Most effective treatments restore an embryonic phenotype to adult SCs. This has led to two emerging paradigms in SC biology: the application of developmental biology studies and the manipulation of the SC niche. Developmental studies can reveal how SCs are orchestrated to build organs, the understanding of which is important in order to instigate tissue repair in the adult. SC niche studies can reveal cues that maintain SC 'stemness' and how SCs may be released from the constraints of the niche to differentiate and repopulate a 'failing' organ. The haematopoietic system provides an exemplar whereby characterisation of the blood lineages during development and the bone marrow niche has resulted in therapeutics now routinely used in the clinic. Ischaemic heart disease is a major cause of morbidity and mortality in humans and the question remains as to whether these principles can be applied to the heart, in order to exploit the potential of adult SCs for use in cardiovascular repair and regeneration.

  4. Endometrial adult/progenitor stem cells: pathogenetic theory and new antiangiogenic approach for endometriosis therapy.

    PubMed

    Pittatore, G; Moggio, A; Benedetto, C; Bussolati, B; Revelli, A

    2014-03-01

    The cyclical arrival of endometrial cells into the abdominal cavity through retrograde flux at menstruation represents the etiopathogenetic basis of endometriosis. The endometrium has peculiar regenerative properties linked to the presence of adult stem cells similar to mesenchymal stem cells (MSCs). Once in the abdominal cavity, these MSCs could proliferate, invade, and differentiate into endometrial cells, finally generating ectopic implants. As only differentiated endometrial cells, and not endometrial MSCs, possess steroid hormone receptors, MSCs could be responsible for the high rate of persistence/recurrence of the disease after hypoestrogenism-inducing therapies. Even angiogenesis promoted by MSCs could play an important role, as survival and proliferation of endometriotic tissue depend on the formation of new blood vessels. Inhibition of angiogenesis represents, in fact, a new, promising therapeutic approach for the disease. Further, medications directly targeting endometriosis MSCs could be effective, alone or in association with hormonal treatments, in increasing the success of medical treatment.

  5. Adult stem cells, scaffolds for in vivo and in vitro myocardial tissue engineering.

    PubMed

    Di Felice, Valentina; De Luca, Angela; Serradifalco, Claudia; Di Marco, Patrizia; Verin, Lucia; Motta, Antonella; Guercio, Annalisa; Zummo, Giovanni

    2010-01-01

    The main goal in the last few years in cardiac research has been to isolate cardiac potential stem cells from adult myocardium and to demonstrate their differentiation potential. We have previously demonstrated that c-Kit positive cardiac stem cells are able to organize themselves into a tissue-like cell mass. In this 3D mass, they can produce a high concentration of natural extracellular matrix, can create vessels, a capsule and, with the help of an Open-pore Polylactic Acid scaffold, many cells can organize an elementary myocardium. Drawing from this background, we decided to design and use poly-lactic scaffolds and the model of the athymic Nude-Foxn1(nu) mouse to evaluate the extent of the myogenic vs endothelial differentiation in vivo, and to evaluate the presence or the absence of a foreign body reaction.

  6. Inductive interactions mediated by interplay of asymmetric signalling underlie development of adult haematopoietic stem cells

    PubMed Central

    Souilhol, Céline; Gonneau, Christèle; Lendinez, Javier G.; Batsivari, Antoniana; Rybtsov, Stanislav; Wilson, Heather; Morgado-Palacin, Lucia; Hills, David; Taoudi, Samir; Antonchuk, Jennifer; Zhao, Suling; Medvinsky, Alexander

    2016-01-01

    During embryonic development, adult haematopoietic stem cells (HSCs) emerge preferentially in the ventral domain of the aorta in the aorta–gonad–mesonephros (AGM) region. Several signalling pathways such as Notch, Wnt, Shh and RA are implicated in this process, yet how these interact to regulate the emergence of HSCs has not previously been described in mammals. Using a combination of ex vivo and in vivo approaches, we report here that stage-specific reciprocal dorso–ventral inductive interactions and lateral input from the urogenital ridges are required to drive HSC development in the aorta. Our study strongly suggests that these inductive interactions in the AGM region are mediated by the interplay between spatially polarized signalling pathways. Specifically, Shh produced in the dorsal region of the AGM, stem cell factor in the ventral and lateral regions, and BMP inhibitory signals in the ventral tissue are integral parts of the regulatory system involved in the development of HSCs. PMID:26952187

  7. Small RNA in situ hybridization in Caenorhabditis elegans, combined with RNA-seq, identifies germline-enriched microRNAs☆

    PubMed Central

    Yun, Sijung; Lee, Chin-Yung; Bennett, Karen L.

    2016-01-01

    Over four hundred different microRNAs (miRNAs) have been identified in the genome of the model organism the nematode Caenorhabditis elegans. As the germline is dedicated to the preservation of each species, and almost half of all the cells in an adult nematode are germline, it is likely that regulatory miRNAs are important for germline development and maintenance. In C. elegans the miR35 family has strong maternal effects, contributing to normal embryogenesis and to adult fecundity. To determine whether any particular miRNAs are greatly enriched in the C. elegans germline we used RNA-seq to compare the miRNA populations in several germline-defective strains of adult C. elegans worms, including glp-4(germline proliferation-4), glh-1(germline helicase-1) and dcr-1(dicer-1). Statistical analyses of RNA-seq comparisons identified 13 miRNAs that are germline-enriched, including seven members of the well-studied miR35 family that were reduced as much as 1000-fold in TaqMan qRT PCR miRNA assays. Along with the miR35s, six others: miR-56 (a member of the miR51 family),−70, −244, −260 , −788 and −4813, none of which previously considered as such, were also identified by RNA-seq as germline-enriched candidates. We went on to develop a successful miRNA in situ hybridization protocol for C. elegans, revealing miR35s specifically concentrate during oogenesis in the pachytene region of the gonad, and persist throughout early embryogenesis, while in adult animals neither let-7 nor miR-228 has a germline-bias. PMID:27521456

  8. Fragile x mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells.

    PubMed

    Luo, Yuping; Shan, Ge; Guo, Weixiang; Smrt, Richard D; Johnson, Eric B; Li, Xuekun; Pfeiffer, Rebecca L; Szulwach, Keith E; Duan, Ranhui; Barkho, Basam Z; Li, Wendi; Liu, Changmei; Jin, Peng; Zhao, Xinyu

    2010-04-08

    Fragile X syndrome (FXS), the most common form of inherited mental retardation, is caused by the loss of functional fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that can regulate the translation of specific mRNAs. Adult neurogenesis, a process considered important for neuroplasticity and memory, is regulated at multiple molecular levels. In this study, we investigated whether Fmrp deficiency affects adult neurogenesis. We show that in a mouse model of fragile X syndrome, adult neurogenesis is indeed altered. The loss of Fmrp increases the proliferation and alters the fate specification of adult neural progenitor/stem cells (aNPCs). We demonstrate that Fmrp regulates the protein expression of several components critical for aNPC function, including CDK4 and GSK3beta. Dysregulation of GSK3beta led to reduced Wnt signaling pathway activity, which altered the expression of neurogenin1 and the fate specification of aNPCs. These data unveil a novel regulatory role for Fmrp and translational regulation in adult neurogenesis.

  9. Multipotent stem cells isolated from the adult mouse retina are capable of producing functional photoreceptor cells.

    PubMed

    Li, Tianqing; Lewallen, Michelle; Chen, Shuyi; Yu, Wei; Zhang, Nian; Xie, Ting

    2013-06-01

    Various stem cell types have been tested for their potential application in treating photoreceptor degenerative diseases, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Only embryonic stem cells (ESCs) have so far been shown to generate functional photoreceptor cells restoring light response of photoreceptor-deficient mice, but there is still some concern of tumor formation. In this study, we have successfully cultured Nestin(+)Sox2(+)Pax6(+) multipotent retinal stem cells (RSCs) from the adult mouse retina, which are capable of producing functional photoreceptor cells that restore the light response of photoreceptor-deficient rd1 mutant mice following transplantation. After they have been expanded for over 35 passages in the presence of FGF and EGF, the cultured RSCs still maintain stable proliferation and differentiation potential. Under proper differentiation conditions, they can differentiate into all the major retinal cell types found in the adult retina. More importantly, they can efficiently differentiate into photoreceptor cells under optimized differentiation conditions. Following transplantation into the subretinal space of slowly degenerating rd7 mutant eyes, RSC-derived photoreceptor cells integrate into the retina, morphologically resembling endogenous photoreceptors and forming synapases with resident retinal neurons. When transplanted into eyes of photoreceptor-deficient rd1 mutant mice, a RP model, RSC-derived photoreceptors can partially restore light response, indicating that those RSC-derived photoreceptors are functional. Finally, there is no evidence for tumor formation in the photoreceptor-transplanted eyes. Therefore, this study has demonstrated that RSCs isolated from the adult retina have the potential of producing functional photoreceptor cells that can potentially restore lost vision caused by loss of photoreceptor cells in RP and AMD.

  10. Allogeneic hematopoietic stem-cell transplantation for adult and adolescent hemophagocytic lymphohistiocytosis: a single center analysis.

    PubMed

    Fu, Li; Wang, Jingshi; Wei, Na; Wu, Lin; Wang, Yini; Huang, Wenqiu; Zhang, Jia; Liu, Jinli; Wang, Zhao

    2016-11-01

    Myeloablative conditioning-based allogeneic hematopoietic stem-cell transplantation (allo-HSCT) in the treatment of adult and adolescent hemophagocytic lymphohistiocytosis (HLH) is rarely reported. We conducted a retrospective study of 30 adult and adolescent HLH transplanted for primary HLH (n = 4), tumor-HLH (n = 8), EBV-HLH (n = 14), and underlying disease-unknown (UDU)-HLH (n = 4). Peripheral blood stem cells (PBSCs) were the stem-cell source in all patients. Twenty-three patients were transplanted from HLA-haploidentical family donors, six from HLA-identical sibling donors, and one from a matched unrelated donor. Four patients appeared with mixed chimerism (MC), and no patient presented with graft failure. There was a high risk for EBV reactivation with an incidence of 47 %. Two patients developed post-transplant lymphoproliferative disorder (PTLD) and three were considered primary disease recurrent. With a median follow-up of 26 months, 19 patients survived and 11 patients died. The estimated 2-year overall survival (OS) was 63.3 ± 8.8 % in all patients, 100 % in primary HLH, 64.3 ± 12.8 % in EBV-HLH, 50.0 ± 17.7 % in tumor-HLH, and 50.0 ± 25.0 % in UDU-HLH. Myeloablative conditioning-based allo-HSCT is an effective treatment for adult and adolescent HLH to achieve complete remission and long-term survival.

  11. Development and specification of cerebellar stem and progenitor cells in zebrafish: from embryo to adult

    PubMed Central

    2013-01-01

    Background Teleost fish display widespread post-embryonic neurogenesis originating from many different proliferative niches that are distributed along the brain axis. During the development of the central nervous system (CNS) different cell types are produced in a strict temporal order from increasingly committed progenitors. However, it is not known whether diverse neural stem and progenitor cell types with restricted potential or stem cells with broad potential are maintained in the teleost fish brain. Results To study the diversity and output of neural stem and progenitor cell populations in the zebrafish brain the cerebellum was used as a model brain region, because of its well-known architecture and development. Transgenic zebrafish lines, in vivo imaging and molecular markers were used to follow and quantify how the proliferative activity and output of cerebellar progenitor populations progress. This analysis revealed that the proliferative activity and progenitor marker expression declines in juvenile zebrafish before they reach sexual maturity. Furthermore, this correlated with the diminished repertoire of cell types produced in the adult. The stem and progenitor cells derived from the upper rhombic lip were maintained into adulthood and they actively produced granule cells. Ventricular zone derived progenitor cells were largely quiescent in the adult cerebellum and produced a very limited number of glia and inhibitory inter-neurons. No Purkinje or Eurydendroid cells were produced in fish older than 3 months. This suggests that cerebellar cell types are produced in a strict temporal order from distinct pools of increasingly committed stem and progenitor cells. Conclusions Our results in the zebrafish cerebellum show that neural stem and progenitor cell types are specified and they produce distinct cell lineages and sub-types of brain cells. We propose that only specific subtypes of brain cells are continuously produced throughout life in the teleost fish

  12. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells.

    PubMed

    Barker, Nick; Clevers, Hans

    2010-05-01

    Molecular markers are used to characterize and track adult stem cells. Colon cancer research has led to the identification of 2 related receptors, leucine-rich repeat-containing, G-protein-coupled receptors (Lgr)5 and Lgr6, that are expressed by small populations of cells in a variety of adult organs. Genetic mouse models have allowed the visualization, isolation, and genetic marking of Lgr5(+ve) and Lgr6(+ve) cells and provided evidence that they are stem cells. The Lgr5(+ve) cells were found to occupy locations not commonly associated with stem cells in the stomach, small intestine, colon, and hair follicles. A multipotent population of skin stem cells express Lgr6. Single Lgr5(+ve) stem cells from the small intestine and the stomach can be cultured into long-lived organoids. Further studies of these markers might reveal adult stem cell populations in additional tissues. Identification of the ligands for Lgr5 and 6 will help elucidate stem cell functions and modes of intracellular signaling.

  13. Defining a developmental path to neural fate by global expression profiling of mouse embryonic stem cells and adult neural stem/progenitor cells.

    PubMed

    Aiba, Kazuhiro; Sharov, Alexei A; Carter, Mark G; Foroni, Chiara; Vescovi, Angelo L; Ko, Minoru S H

    2006-04-01

    To understand global features of gene expression changes during in vitro neural differentiation, we carried out the microarray analysis of embryonic stem cells (ESCs), embryonal carcinoma cells, and adult neural stem/progenitor (NS) cells. Expression profiling of ESCs during differentiation in monolayer culture revealed three distinct phases: undifferentiated ESCs, primitive ectoderm-like cells, and neural progenitor cells. Principal component (PC) analysis revealed that these cells were aligned on PC1 over the course of 6 days. This PC1 represents approximately 4,000 genes, the expression of which increased with neural commitment/differentiation. Furthermore, NS cells derived from adult brain and their differentiated cells were positioned along this PC axis further away from undifferentiated ESCs than embryonic stem-derived neural progenitors. We suggest that this PC1 defines a path to neural fate, providing a scale for the degree of commitment/differentiation.

  14. Preparation of adult muscle fiber-associated stem/precursor cells.

    PubMed

    Conboy, Michael J; Conboy, Irina M

    2010-01-01

    In our studies of muscle regeneration we have developed, modified, and optimized techniques to isolate and study the stem and precursor cells to muscle tissue. Our goals have been to obtain for study muscle fibers in bulk, or the fiber-associated cells, separately from the other cells found in muscle. Using these techniques, myofiber-associated cells may be isolated from neonatal through adult muscle, from resting or from regenerating muscle, thus allowing one to investigate the cellular populations participating during the time course of these events. The protocol is applicable to any age and condition of muscle and may be adapted for other tissues.

  15. Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration.

    PubMed

    Wagner, Daniel E; Wang, Irving E; Reddien, Peter W

    2011-05-13

    Pluripotent cells in the embryo can generate all cell types, but lineage-restricted cells are generally thought to replenish adult tissues. Planarians are flatworms and regenerate from tiny body fragments, a process requiring a population of proliferating cells (neoblasts). Whether regeneration is accomplished by pluripotent cells or by the collective activity of multiple lineage-restricted cell types is unknown. We used ionizing radiation and single-cell transplantation to identify neoblasts that can form large descendant-cell colonies in vivo. These clonogenic neoblasts (cNeoblasts) produce cells that differentiate into neuronal, intestinal, and other known postmitotic cell types and are distributed throughout the body. Single transplanted cNeoblasts restored regeneration in lethally irradiated hosts. We conclude that broadly distributed, adult pluripotent stem cells underlie the remarkable regenerative abilities of planarians.

  16. The ventral hippocampus is the embryonic origin for adult neural stem cells in the dentate gyrus.

    PubMed

    Li, Guangnan; Fang, Li; Fernández, Gloria; Pleasure, Samuel J

    2013-05-22

    Adult neurogenesis represents a unique form of plasticity in the dentate gyrus requiring the presence of long-lived neural stem cells (LL-NSCs). However, the embryonic origin of these LL-NSCs remains unclear. The prevailing model assumes that the dentate neuroepithelium throughout the longitudinal axis of the hippocampus generates both the LL-NSCs and embryonically produced granule neurons. Here we show that the NSCs initially originate from the ventral hippocampus during late gestation and then relocate into the dorsal hippocampus. The descendants of these cells are the source for the LL-NSCs in the subgranular zone (SGZ). Furthermore, we show that the origin of these cells and their maintenance in the dentate are controlled by distinct sources of Sonic Hedgehog (Shh). The revelation of the complexity of both the embryonic origin of hippocampal LL-NSCs and the sources of Shh has important implications for the functions of LL-NSCs in the adult hippocampus.

  17. Current protocols in the generation of pluripotent stem cells: theoretical, methodological and clinical considerations

    PubMed Central

    Swelstad, Brad B; Kerr, Candace L

    2010-01-01

    Pluripotent stem cells have been derived from various embryonic, fetal and adult sources. Embryonic stem cells (ESCs) and parthenogenic ESCs (pESCs) are derived from the embryo proper while embryonic germ cells (EGCs), embryonal carcinoma cells (ECCs), and germ-line stem cells (GSC) are produced from germ cells. ECCs were the first pluripotent stem cell lines established from adult testicular tumors while EGCs are generated in vitro from primordial germ cells (PGCs) isolated in late embryonic development. More recently, studies have also demonstrated the ability to produce GSCs from adult germ cells, known as spermatogonial stem cells. Unlike ECCs, the source of GSCs are normal, non-cancerous adult tissue. The study of these unique cell lines has provided information that has led to the ability to reprogram somatic cells into an ESC-like state. These cells, called induced pluripotent stem cells (iPSCs), have been derived from a number of human fetal and adult origins. With the promises pluripotent stem cells bring to cell-based therapies there remain several considerations that need to be carefully studied prior to their clinical use. Many of these issues involve understanding key factors regulating their generation, including those which define pluripotency. In this regard, the following article discusses critical aspects of pluripotent stem cell derivation and current issues about their therapeutic potential. PMID:24198508

  18. Easy assessment of ES cell clone potency for chimeric development and germ-line competency by an optimized aggregation method.

    PubMed

    Kondoh, G; Yamamoto, Y; Yoshida, K; Suzuki, Y; Osuka, S; Nakano, Y; Morita, T; Takeda, J

    1999-05-13

    Production of germ-line competent chimeric mice from embryonic stem (ES) cells is an inevitable step in establishing gene-manipulated mouse lineages. A common method used for creating chimeric mice is the injection of ES cells into the blastocoelic cavity (blastocyst injection). The aggregation method is an alternative way to introduce ES cells to the host embryo which is less difficult than blastocyst injection. Here we re-examined the condition of embryo-ES cell coculture on the aggregation method and found improvement of germ-line competent chimeric production by a simple modification of the coculture medium. Moreover, R1 ES cell and its 10 gene-manipulated subclones were tested by this method. Although all ES cell clones showed good morphology and a normal karyotype, the efficiency of chimeric development and germ-line transmission varied among clones and were classified into three grades according to germ-line competency. In the first group (class A), both the incidence of chimera with high ES cell contribution and the rate of germ-line transmission were fairly high. Germ-line competent chimeras were obtained but with rather low efficiency in the second group (class B), while another group (class C) showed an absence of high ES cell-contributed chimeras and no germ-line transmission. These results suggest the usefulness of this modified aggregation method to predict the potency of ES cell clones for germ-line competency.

  19. In Vitro Derivation and Propagation of Spermatogonial Stem Cell Activity from Mouse Pluripotent Stem Cells.

    PubMed

    Ishikura, Yukiko; Yabuta, Yukihiro; Ohta, Hiroshi; Hayashi, Katsuhiko; Nakamura, Tomonori; Okamoto, Ikuhiro; Yamamoto, Takuya; Kurimoto, Kazuki; Shirane, Kenjiro; Sasaki, Hiroyuki; Saitou, Mitinori

    2016-12-06

    The in vitro derivation and propagation of spermatogonial stem cells (SSCs) from pluripotent stem cells (PSCs) is a key goal in reproductive science. We show here that when aggregated with embryonic testicular somatic cells (reconstituted testes), primordial germ cell-like cells (PGCLCs) induced from mouse embryonic stem cells differentiate into spermatogonia-like cells in vitro and are expandable as cells that resemble germline stem cells (GSCs), a primary cell line with SSC activity. Remarkably, GSC-like cells (GSCLCs), but not PGCLCs, colonize adult testes and, albeit less effectively than GSCs, contribute to spermatogenesis and fertile offspring. Whole-genome analyses reveal that GSCLCs exhibit aberrant methylation at vulnerable regulatory elements, including those critical for spermatogenesis, which may restrain their spermatogenic potential. Our study establishes a strategy for the in vitro derivation of SSC activity from PSCs, which, we propose, relies on faithful epigenomic regulation.

  20. The Influence of Modified Silica Nanomaterials on Adult Stem Cell Culture

    PubMed Central

    Tarpani, Luigi; Morena, Francesco; Gambucci, Marta; Zampini, Giulia; Massaro, Giuseppina; Argentati, Chiara; Emiliani, Carla; Martino, Sabata; Latterini, Loredana

    2016-01-01

    The preparation of tailored nanomaterials able to support cell growth and viability is mandatory for tissue engineering applications. In the present work, silica nanoparticles were prepared by a sol-gel procedure and were then functionalized by condensation of amino groups and by adsorption of silver nanoparticles. Transmission electron microscopy (TEM) imaging was used to establish the morphology and the average dimensions of about 130 nm, which were not affected by the functionalization. The three silica samples were deposited (1 mg/mL) on cover glasses, which were used as a substrate to culture adult human bone marrow-mesenchymal stem cells (hBM-MSCs) and human adipose-derived stem cells (hASCs). The good cell viability over the different silica surfaces was evaluated by monitoring the mitochondrial dehydrogenase activity. The analysis of the morphological parameters (aspect ratio, cell length, and nuclear shape Index) yielded information about the interactions of stem cells with the surface of three different nanoparticles. The data are discussed in terms of chemical properties of the surface of silica nanoparticles.

  1. Effects of ECM protein micropatterns on the migration and differentiation of adult neural stem cells.

    PubMed

    Joo, Sunghoon; Kim, Joo Yeon; Lee, Eunsoo; Hong, Nari; Sun, Woong; Nam, Yoonkey

    2015-08-12

    The migration and differentiation of adult neural stem cells (aNSCs) are believed to be strongly influenced by the spatial distribution of extracellular matrix (ECM) proteins in the stem cell niche. In vitro culture platform, which involves the specific spatial distribution of ECM protein, could offer novel tools for better understanding of aNSC behavior in the spatial pattern of ECM proteins. In this work, we applied soft-lithographic technique to design simple and reproducible laminin (LN)-polylysine cell culture substrates and investigated how aNSCs respond to the various spatial distribution of laminin, one of ECM proteins enriched in the aNSC niche. We found that aNSC preferred to migrate and attach to LN stripes, and aNSC-derived neurons and astrocytes showed significant difference in motility towards LN stripes. By changing the spacing of LN stripes, we were able to control the alignment of neurons and astrocytes. To the best of our knowledge, this is the first time to investigate the differential cellular responses of aNSCs on ECM protein (LN) and cell adhesive synthetic polymer (PDL) using surface micropatterns. Our findings would provide a deeper understanding in astrocyte-neuron interactions as well as ECM-stem cell interactions.

  2. Xenobiotic effects on intestinal stem cell proliferation in adult honey bee (Apis mellifera L) workers.

    PubMed

    Forkpah, Cordelia; Dixon, Luke R; Fahrbach, Susan E; Rueppell, Olav

    2014-01-01

    The causes of the current global decline in honey bee health are unknown. One major group of hypotheses invokes the pesticides and other xenobiotics to which this important pollinator species is often exposed. Most studies have focused on mortality or behavioral deficiencies in exposed honey bees while neglecting other biological functions and target organs. The midgut epithelium of honey bees presents an important interface between the insect and its environment. It is maintained by proliferation of intestinal stem cells throughout the adult life of honey bees. We used caged honey bees to test multiple xenobiotics for effects on the replicative activity of the intestinal stem cells under laboratory conditions. Most of the tested compounds did not alter the replicative activity of intestinal stem cells. However, colchicine, methoxyfenozide, tetracycline, and a combination of coumaphos and tau-fluvalinate significantly affected proliferation rate. All substances except methoxyfenozide decreased proliferation rate. Thus, the results indicate that some xenobiotics frequently used in apiculture and known to accumulate in honey bee hives may have hitherto unknown physiological effects. The nutritional status and the susceptibility to pathogens of honey bees could be compromised by the impacts of xenobiotics on the maintenance of the midgut epithelium. This study contributes to a growing body of evidence that more comprehensive testing of xenobiotics may be required before novel or existing compounds can be considered safe for honey bees and other non-target species.

  3. Xenobiotic Effects on Intestinal Stem Cell Proliferation in Adult Honey Bee (Apis mellifera L) Workers

    PubMed Central

    Forkpah, Cordelia; Dixon, Luke R.; Fahrbach, Susan E.; Rueppell, Olav

    2014-01-01

    The causes of the current global decline in honey bee health are unknown. One major group of hypotheses invokes the pesticides and other xenobiotics to which this important pollinator species is often exposed. Most studies have focused on mortality or behavioral deficiencies in exposed honey bees while neglecting other biological functions and target organs. The midgut epithelium of honey bees presents an important interface between the insect and its environment. It is maintained by proliferation of intestinal stem cells throughout the adult life of honey bees. We used caged honey bees to test multiple xenobiotics for effects on the replicative activity of the intestinal stem cells under laboratory conditions. Most of the tested compounds did not alter the replicative activity of intestinal stem cells. However, colchicine, methoxyfenozide, tetracycline, and a combination of coumaphos and tau-fluvalinate significantly affected proliferation rate. All substances except methoxyfenozide decreased proliferation rate. Thus, the results indicate that some xenobiotics frequently used in apiculture and known to accumulate in honey bee hives may have hitherto unknown physiological effects. The nutritional status and the susceptibility to pathogens of honey bees could be compromised by the impacts of xenobiotics on the maintenance of the midgut epithelium. This study contributes to a growing body of evidence that more comprehensive testing of xenobiotics may be required before novel or existing compounds can be considered safe for honey bees and other non-target species. PMID:24608542

  4. Heterochromatin protein 1 promotes self-renewal and triggers regenerative proliferation in adult stem cells.

    PubMed

    Zeng, An; Li, Yong-Qin; Wang, Chen; Han, Xiao-Shuai; Li, Ge; Wang, Jian-Yong; Li, Dang-Sheng; Qin, Yong-Wen; Shi, Yufang; Brewer, Gary; Jing, Qing

    2013-04-29

    Adult stem cells (ASCs) capable of self-renewal and differentiation confer the potential of tissues to regenerate damaged parts. Epigenetic regulation is essential for driving cell fate decisions by rapidly and reversibly modulating gene expression programs. However, it remains unclear how epigenetic factors elicit ASC-driven regeneration. In this paper, we report that an RNA interference screen against 205 chromatin regulators identified 12 proteins essential for ASC function and regeneration in planarians. Surprisingly, the HP1-like protein SMED-HP1-1 (HP1-1) specifically marked self-renewing, pluripotent ASCs, and HP1-1 depletion abrogated self-renewal and promoted differentiation. Upon injury, HP1-1 expression increased and elicited increased ASC expression of Mcm5 through functional association with the FACT (facilitates chromatin transcription) complex, which consequently triggered proliferation of ASCs and initiated blastema formation. Our observations uncover an epigenetic network underlying ASC regulation in planarians and reveal that an HP1 protein is a key chromatin factor controlling stem cell function. These results provide important insights into how epigenetic mechanisms orchestrate stem cell responses during tissue regeneration.

  5. Adverse Late and Long-Term Treatment Effects in Adult Allogeneic Hematopoietic Stem Cell Transplant Survivors.

    PubMed

    Mosesso, Kara

    2015-11-01

    Hematopoietic stem cell transplantation (HSCT) has become the standard of care for many malignant and nonmalignant hematologic diseases that don't respond to traditional therapy. There are two types: autologous transplantation (auto-HSCT), in which an individual's stem cells are collected, stored, and infused back into that person; and allogeneic transplantation (allo-HSCT), in which healthy donor stem cells are infused into a recipient whose bone marrow has been damaged or destroyed. There have been numerous advancements in this field, leading to marked increases in the number of transplants performed annually. This article--the first of several on cancer survivorship--focuses on the care of adult allo-HSCT survivors because of the greater complexity of their posttransplant course. The author summarizes potential adverse late and long-term treatment-related effects, with special focus on the evaluation and management of several cardiovascular disease risk factors that can occur either independently or concurrently as part of the metabolic syndrome. These risk factors are potentially modifiable with appropriate nursing interventions and lifestyle modifications.

  6. β-Cell neogenesis: experimental considerations in adult stem cell differentiation.

    PubMed

    Iskovich, Svetlana; Goldenberg-Cohen, Nitza; Stein, Jerry; Yaniv, Isaac; Farkas, Daniel L; Askenasy, Nadir

    2011-04-01

    The contribution of stem cells derived from adult tissues to the recovery of pancreatic islets from chemical injury is controversial. Analysis of nonhematopoietic differentiation of bone marrow-derived cells has yielded positive and negative results under different experimental conditions. Using the smallest subset of bone marrow cells lacking immuno-hematopoietic lineage markers, we have detected incorporation and conversion into insulin-producing cells. Donor cells identified by genomic markers silence green fluorescent protein (GFP) expression as a feature of differentiation, in parallel to expressing PDX-1 and proinsulin. Here we elaborate potential experimental difficulties that might result in false-negative results. The use of GFP as a reporter protein is suboptimal for differentiation experiments: (a) the bone marrow of GFP donors partially expresses the reporter protein, (b) differentiating bone marrow cells silence GFP expression, and (c) the endocrine pancreas is constitutively negative for GFP. In addition, design of the experiments, data analysis, and interpretation encounter numerous objective and subjective difficulties. Rigorous evaluation under optimized experimental conditions confirms the capacity of adult bone marrow-derived stem cells to adopt endocrine developmental traits, and demonstrates that GFP downregulation and silencing is a feature of differentiation.

  7. Physiological Control of Germline Development

    PubMed Central

    Hubbard, E. Jane Albert; Korta, Dorota Z.; Dalfó, Diana

    2013-01-01

    The intersection between developmental programs and environmental conditions that alter physiology is a growing area of research interest. The C. elegans germ line is emerging as a particularly sensitive and powerful model for these studies. The germ line is subject to environmentally regulated diapause points that allow worms to withstand harsh conditions both prior to and after reproduction commences. It also responds to more subtle changes in physiological conditions. Recent studies demonstrate that different aspects of germ line development are sensitive to environmental and physiological changes and that conserved signaling pathways such as the AMPK, Insulin/IGF, TGFβ, and TOR-S6K, and nuclear hormone receptor pathways mediate this sensitivity. Some of these pathways genetically interact with but appear distinct from previously characterized mechanisms of germline cell fate control such as Notch signaling. Here, we review several aspects of hermaphrodite germline development in the context of “feasting,” “food-limited,” and “fasting” conditions. We also consider connections between lifespan, metabolism and the germ line, and we comment on special considerations for examining germline development under altered environmental and physiological conditions. Finally, we summarize the major outstanding questions in the field. PMID:22872476

  8. The effect of substrate stiffness on adult neural stem cell behavior.

    PubMed

    Leipzig, Nic D; Shoichet, Molly S

    2009-12-01

    Adult stem cells reside in unique niches that provide vital cues for their survival, self-renewal and differentiation. In order to better understand the contribution of substrate stiffness to neural stem/progenitor cell (NSPC) differentiation and proliferation, a photopolymerizable methacrylamide chitosan (MAC) biomaterial was developed. Photopolymerizable MAC is particularly compelling for the study of the central nervous system stem cell niche because Young's elastic modulus (E(Y)) can be tuned from less than 1 kPa to greater than 30 kPa. Additionally, the numerous free amine functional groups enable inclusion of biochemical signaling molecules that, together with the mechanical environment, influence cell behavior. Herein, NSPCs proliferated on MAC substrates with Young's elastic moduli below 10 kPa and exhibited maximal proliferation on 3.5 kPa surfaces. Neuronal differentiation was favored on the soft est surfaces with E(Y) < 1 kPa as confirmed by both immunohistochemistry and qRT-PCR. Oligodendrocyte differentiation was favored on stiffer scaffolds (> 7 kPa); however, myelin oligodendrocyte glycoprotein (MOG) gene expression suggested that oligodendrocyte maturation and myelination was best on < 1 kPa scaffolds where more mature neurons were present. Astrocyte differentiation was only observed on < 1 and 3.5 kPa surfaces and represented less than 2% of the total cell population. This work demonstrates the importance of substrate stiffness to the proliferation and differentiation of adult NSPCs and highlights the importance of mechanical properties to the success of scaffolds designed to engineer central nervous system tissue.

  9. Autologous Transplantation of Adult Mice Spermatogonial Stem Cells into Gamma Irradiated Testes

    PubMed Central

    Koruji, Morteza; Movahedin, Mansoureh; Mowla, Seyed Javad; Gourabi, Hamid; Pour-Beiranvand, Shahram; Jabbari Arfaee, Ali

    2012-01-01

    Objective: We evaluated structural and functional changes of fresh and frozen-thawed adult mouse spermatogonial stem cells following auto-transplantation into gamma-irradiated testes. Materials and Methods: In this experimental research, the right testes from adult mice (n=25) were collected, then Sertoli and spermatogonial cells were isolated using two-step enzymatic digestion, lectin immobilization and differential plating. Three weeks after cultivation, the Bromodeoxyuridine (BrdU)-labeled spermatogonial cells were transplanted, via rete testis, into the other testis of the same mouse, which had been irradiated with 14Gy. The mice were transplanted with: fresh cells (control 1), fresh cells co-cultured with Sertoli cells (control 2), the frozen-thawed cells (experimental 1) and frozen-thawed cells co-cultured with Sertoli cells (experimental 2). The morphological changes between different transplanted testes groups were compared in 8 weeks after transplantation. The statistical significance between mean values was determined by Kruskal Wallis and one-way analysis of variance in efficiency of transplantation. Results: The statistical analysis revealed significant increases in the mean percentage of testis weight and normal seminiferous tubules following spermatogonial stem cells transplantation in the recipient'fs testes. The normal seminiferous tubules percentage in the co-culture system with fresh cells and frozen-thawed groups were more than those in non-transplanted and fresh cell transplanted groups (p≤0.001). Conclusion: Our results demonstrated that spermatogonial stem cells in the colonies could result sperm production in the recipient’s testes after autologous transplantation. PMID:23507977

  10. The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling.

    PubMed

    Takashima, Shigeo; Mkrtchyan, Marianna; Younossi-Hartenstein, Amelia; Merriam, John R; Hartenstein, Volker

    2008-07-31

    The intestinal tract maintains proper function by replacing aged cells with freshly produced cells that arise from a population of self-renewing intestinal stem cells (ISCs). In the mammalian intestine, ISC self renewal, amplification and differentiation take place along the crypt-villus axis, and are controlled by the Wnt and hedgehog (Hh) signalling pathways. However, little is known about the mechanisms that specify ISCs within the developing intestinal epithelium, or about the signalling centres that help maintain them in their self-renewing stem cell state. Here we show that in adult Drosophila melanogaster, ISCs of the posterior intestine (hindgut) are confined to an anterior narrow segment, which we name the hindgut proliferation zone (HPZ). Within the HPZ, self renewal of ISCs, as well as subsequent proliferation and differentiation of ISC descendants, are controlled by locally emanating Wingless (Wg, a Drosophila Wnt homologue) and Hh signals. The anteriorly restricted expression of Wg in the HPZ acts as a niche signal that maintains cells in a slow-cycling, self-renewing mode. As cells divide and move posteriorly away from the Wg source, they enter a phase of rapid proliferation. During this phase, Hh signal is required for exiting the cell cycle and the onset of differentiation. The HPZ, with its characteristic proliferation dynamics and signalling properties, is set up during the embryonic phase and becomes active in the larva, where it generates all adult hindgut cells including ISCs. The mechanism and genetic control of cell renewal in the Drosophila HPZ exhibits a large degree of similarity with what is seen in the mammalian intestine. Our analysis of the Drosophila HPZ provides an insight into the specification and control of stem cells, highlighting the way in which the spatial pattern of signals that promote self renewal, growth and differentiation is set up within a genetically tractable model system.

  11. Nephrotoxicity of high-dose ifosfamide/carboplatin/etoposide in adults undergoing autologous stem cell transplantation.

    PubMed

    Agaliotis, D P; Ballester, O F; Mattox, T; Hiemenz, J W; Fields, K K; Zorsky, P E; Goldstein, S C; Perkins, J B; Rosen, R M; Elfenbein, G J

    1997-11-01

    The objective of this study was to evaluate nephrotoxicity in adult patients treated with high-dose ifosfamide, carboplatin, and etoposide followed by autologous stem cell transplantation. We conducted a retrospective analysis of clinical and laboratory data from 131 patients with various malignancies who received treatment with escalating doses of ifosfamide, carboplatin, and etoposide followed by autologous stem cell transplantation as part of a phase I/II therapeutic trial. Abnormalities in glomerular filtration were evaluated by measuring peak creatinine levels and tubular dysfunction by the lowest recorded serum levels of potassium, magnesium, and bicarbonate, at different time periods after administration of ifosfamide, carboplatin, and etoposide, and after autologous stem cell transplantation. For the entire group of 131 patients, peak creatinine levels were > 1.5 mg/dL but < 3.0 mg/dL in 37% and levels were > 3.0 mg/dL in 11% at some time during their hospital stay. At the time of discharge, creatinine levels were 1.6 mg/dL to 3.0 mg/dL in 25% of patients and were > 3 mg/dL in 5%. Immediately after high-dose therapy, peak creatinine levels were significantly higher in patients receiving higher doses of ifosfamide compared to those receiving lower doses (P < 0.00001) and those receiving intermediate doses (P < 0.005). There was a dramatic decrease in serum bicarbonate, potassium, and magnesium levels immediately after chemotherapy, and they remained significantly decreased throughout the patient's hospital stay, despite massive replacement efforts (P ranging between < 0.008 and < 0.001). This is the largest adult population study documenting the incidence and severity of ifosfamide/carboplatin/etoposide-associated acute nephrotoxicity. Renal dysfunction was dose related and reversible in the majority of patients.

  12. Sox9 modulates cell survival and adipogenic differentiation of multipotent adult rat mesenchymal stem cells.

    PubMed

    Stöckl, Sabine; Bauer, Richard J; Bosserhoff, Anja K; Göttl, Claudia; Grifka, Joachim; Grässel, Susanne

    2013-07-01

    Sox9 is a key transcription factor in early chondrogenesis with distinct roles in differentiation processes and during embryonic development. Here, we report that Sox9 modulates cell survival and contributes to the commitment of mesenchymal stem cells (MSC) to adipogenic or osteogenic differentiation lineages. We found that the Sox9 activity level affects the expression of the key transcription factor in adipogenic differentiation, C/EBPβ, and that cyclin D1 mediates the expression of the osteogenic marker osteocalcin in undifferentiated adult bone-marrow-derived rat MSC. Introducing a stable Sox9 knockdown into undifferentiated rat MSC resulted in a marked decrease in proliferation rate and an increase in apoptotic activity. This was linked to a profound upregulation of p21 and cyclin D1 gene and protein expression accompanied by an induction of caspase 3/7 activity and an inhibition of Bcl-2. We observed that Sox9 silencing provoked a delayed S-phase progression and an increased nuclear localization of p21. The protein stability of cyclin D1 was induced in the absence of Sox9 presumably as a function of altered p38 signalling. In addition, the major transcription factor for adipogenic differentiation, C/EBPβ, was repressed after silencing Sox9. The nearly complete absence of C/EBPβ protein as a result of increased destabilization of the C/EBPβ mRNA and the impact on osteocalcin gene expression and protein synthesis, suggests that a delicate balance of Sox9 level is not only imperative for proper chondrogenic differentiation of progenitor cells, but also affects the adipogenic and probably osteogenic differentiation pathways of MSC. Our results identified Sox9 as an important link between differentiation, proliferation and apoptosis in undifferentiated adult rat mesenchymal stem cells, emphasizing the importance of the delicate balance of a precisely regulated Sox9 activity in MSC not only for proper skeletal development during embryogenesis but probably also

  13. The Jak-STAT target Chinmo prevents sex transformation of adult stem cells in the Drosophila testis niche

    PubMed Central

    Ma, Qing; Wawersik, Matthew; Matunis, Erika L.

    2014-01-01

    Local signals maintain adult stem cells in many tissues. Whether the sexual identity of adult stem cells must also be maintained was not known. In the adult Drosophila testis niche, local Jak-STAT signaling promotes somatic cyst stem cell (CySC) renewal through several effectors, including the putative transcription factor Chronologically inappropriate morphogenesis (Chinmo). Here, we find that Chinmo also prevents feminization of CySCs. Chinmo promotes expression of the canonical male sex determination factor DoublesexM (DsxM) within CySCs and their progeny, and ectopic expression of DsxM in the CySC lineage partially rescues the chinmo sex transformation phenotype, placing Chinmo upstream of DsxM. The Dsx homologue DMRT1 prevents the male-to female conversion of differentiated somatic cells in the adult mammalian testis, but its regulation is not well understood. Our work indicates that sex maintenance occurs in adult somatic stem cells, and that this highly conserved process is governed by effectors of niche signals. PMID:25453558

  14. GPCRs Direct Germline Development and Somatic Gonad Function in Planarians

    PubMed Central

    Saberi, Amir; Beets, Isabel; Schoofs, Liliane; Newmark, Phillip A.

    2016-01-01

    Planarians display remarkable plasticity in maintenance of their germline, with the ability to develop or dismantle reproductive tissues in response to systemic and environmental cues. Here, we investigated the role of G protein-coupled receptors (GPCRs) in this dynamic germline regulation. By genome-enabled receptor mining, we identified 566 putative planarian GPCRs and classified them into conserved and phylum-specific subfamilies. We performed a functional screen to identify NPYR-1 as the cognate receptor for NPY-8, a neuropeptide required for sexual maturation and germ cell differentiation. Similar to NPY-8, knockdown of this receptor results in loss of differentiated germ cells and sexual maturity. NPYR-1 is expressed in neuroendocrine cells of the central nervous system and can be activated specifically by NPY-8 in cell-based assays. Additionally, we screened the complement of GPCRs with expression enriched in sexually reproducing planarians, and identified an orphan chemoreceptor family member, ophis, that controls differentiation of germline stem cells (GSCs). ophis is expressed in somatic cells of male and female gonads, as well as in accessory reproductive tissues. We have previously shown that somatic gonadal cells are required for male GSC specification and maintenance in planarians. However, ophis is not essential for GSC specification or maintenance and, therefore, defines a secondary role for planarian gonadal niche cells in promoting GSC differentiation. Our studies uncover the complement of planarian GPCRs and reveal previously unappreciated roles for these receptors in systemic and local (i.e., niche) regulation of germ cell development. PMID:27163480

  15. Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells

    PubMed Central

    Ables, Jessica L.; DeCarolis, Nathan A.; Johnson, Madeleine A.; Rivera, Phillip D.; Gao, Zhengliang; Cooper, Don C.; Radtke, Freddy; Hsieh, Jenny; Eisch, Amelia J.

    2010-01-01

    Notch1 regulates neural stem cell (NSC) number during development, but its role in adult neurogenesis is unclear. We generated nestin-CreERT2/R26R-YFP/Notch1loxP/loxP (Notch1 iKO) mice to allow tamoxifen (TAM)-inducible elimination of Notch1 and concomitant expression of yellow fluorescent protein (YFP) in nestin-expressing Type-1 NSCs and their progeny in the adult hippocampal subgranular zone (SGZ). Consistent with previous research, YFP+ cells in all stages of neurogenesis were evident in the subgranular zone (SGZ) of wild type mice (WT; nestin-CreERT2/R26R-YFP/Notch1wt/wt) after tamoxifen (post-TAM), producing adult-generated YFP+ dentate gyrus neurons. Compared to WT littermates, Notch1 iKO mice had similar numbers of total SGZ YFP+ cells 13 and 30 days post-TAM but had significantly fewer SGZ YFP+ cells 60 and 90 days post-TAM. Significantly fewer YFP+ Type-1 NSCs and transiently-amplifying progenitors (TAPs) resulted in generation of fewer YFP+ granule neurons in Notch1 iKO mice. Strikingly, 30 days of running rescued this deficit, as the total YFP+ cell number in Notch iKO mice was equivalent to WT levels. This was even more notable given the persistent deficits in the Type-1 NSC and TAP reservoirs. Our data show that Notch1 signaling is required to maintain a reservoir of undifferentiated cells and ensure continuity of adult hippocampal neurogenesis, but that alternative Notch1- and Type-1 NSC-independent pathways compensate in response to physical activity. These data shed light on the complex relationship between Type-1 NSCs, adult neurogenesis, the neurogenic niche, and environmental stimuli. PMID:20685991

  16. Isolation of pluripotent neural crest-derived stem cells from adult human tissues by connexin-43 enrichment.

    PubMed

    Pelaez, Daniel; Huang, Chun-Yuh Charles; Cheung, Herman S

    2013-11-01

    Identification and isolation of pluripotent stem cells in adult tissues represent an important advancement in the fields of stem cell biology and regenerative medicine. For several years, research has been performed on the identification of biomarkers that can isolate stem cells residing in neural crest (NC)-derived adult tissues. The NC is considered a good model in stem cell biology as cells from it migrate extensively and contribute to the formation of diverse tissues in the body during organogenesis. Migration of these cells is modulated, in part, by gap junction communication among the cell sheets. Here we present a study in which, selection of connexin 43 (Cx43) expressing cells from human adult periodontal ligament yields a novel pluripotent stem cell population. Cx43⁺ periodontal ligament stem cells express pluripotency-associated transcription factors OCT4, Nanog, and Sox2, as well as NC-specific markers Sox10, p75, and Nestin. When injected in vivo into an immunodeficient mouse model, these cells were capable of generating teratomas with tissues from the three embryological germ layers: endoderm, mesoderm, and ectoderm. Furthermore, the cells formed mature structures of tissues normally arising from the NC during embryogenesis such as eccrine sweat glands of the human skin, muscle, neuronal tissues, cartilage, and bone. Immunohistochemical analysis confirmed the human origin of the neoplastic cells as well as the ectodermal and endodermal nature of some of the structures found in the tumors. These results suggest that Cx43 may be used as a biomarker to select and isolate the remnant NC pluripotent stem cells from adult human tissues arising from this embryological structure. The isolation of these cells through routine medical procedures such as wisdom teeth extraction further enhances their applicability to the regenerative medicine field.

  17. Existence of reserve quiescent stem cells in adults, from amphibians to humans.

    PubMed

    Young, H E

    2004-01-01

    Several theories have been proposed to explain the phenomenon of tissue restoration in amphibians and higher order animals. These theories include dedifferentiation of damaged tissues, transdifferentiation of lineage-committed stem cells, and activation of quiescent stem cells. Young and colleagues demonstrated that connective tissues throughout the body contain multiple populations of quiescent lineage-committed progenitor stem cells and lineage-uncommitted pluripotent stem cells. Subsequent cloning and cell sorting studies identified quiescent lineage-uncommitted pluripotent mesenchymal stem cells, capable of forming any mesodermal cell type, and pluripotent epiblastic-like stem cells, capable of forming any somatic cell type. Based on their studies, they propose at least 11 categories of quiescent reserve stem cells resident within postnatal animals, including humans. These categories are pluripotent epiblastic-like stem cells, pluripotent ectodermal stem cells, pluripotent epidermal stem cells, pluripotent neuronal stem cells, pluripotent neural crest stem cells, pluripotent mesenchymal (mesodermal) stem cells, pluripotent endodermal stem cells, multipotent progenitor stem cells, tripotent progenitor stem cells, bipotent progenitor stem cells, and unipotent progenitor stem cells. Thus, activation of quiescent reserve stem cells, i.e., lineage-committed progenitor stem cells and lineage-uncommitted pluripotent stem cells, resident within the connective tissues could provide for the continual maintenance and repair of the postnatal organism after birth.

  18. Wnts are dispensable for differentiation and self-renewal of adult murine hematopoietic stem cells

    PubMed Central

    Kabiri, Zahra; Numata, Akihiko; Kawasaki, Akira; Tenen, Daniel G.

    2015-01-01

    Wnt signaling controls early embryonic hematopoiesis and dysregulated β-catenin is implicated in leukemia. However, the role of Wnts and their source in adult hematopoiesis is still unclear, and is clinically important as upstream Wnt inhibitors enter clinical trials. We blocked Wnt secretion in hematopoietic lineages by targeting Porcn, a membrane-bound O-acyltransferase that is indispensable for the activity and secretion of all vertebrate Wnts. Surprisingly, deletion of Porcn in Rosa-CreERT2/PorcnDel, MX1-Cre/PorcnDel, and Vav-Cre/PorcnDel mice had no effects on proliferation, differentiation, or self-renewal of adult hematopoietic stem cells. Targeting Wnt secretion in the bone marrow niche by treatment with a PORCN inhibitor, C59, similarly had no effect on hematopoiesis. These results exclude a role for hematopoietic PORCN-dependent Wnts in adult hematopoiesis. Clinical use of upstream Wnt inhibitors is not likely to be limited by effects on hematopoiesis. PMID:26089398

  19. Brain Cancer Stem Cells in Adults and Children: Cell Biology and Therapeutic Implications.

    PubMed

    Abou-Antoun, Tamara J; Hale, James S; Lathia, Justin D; Dombrowski, Stephen M

    2017-04-03

    Brain tumors represent some of the most malignant cancers in both children and adults. Current treatment options target the majority of tumor cells but do not adequately target self-renewing cancer stem cells (CSCs). CSCs have been reported to resist the most aggressive radiation and chemotherapies, and give rise to recurrent, treatment-resistant secondary malignancies. With advancing technologies, we now have a better understanding of the genetic, epigenetic and molecular signatures and microenvironmental influences which are useful in distinguishing between distinctly different tumor subtypes. As a result, efforts are now underway to identify and target CSCs within various tumor subtypes based on this foundation. This review discusses progress in CSC biology as it relates to targeted therapies which may be uniquely different between pediatric and adult brain tumors. Studies to date suggest that pediatric brain tumors may benefit more from genetic and epigenetic targeted therapies, while combination treatments aimed specifically at multiple molecular pathways may be more effective in treating adult brain tumors which seem to have a greater propensity towards microenvironmental interactions. Ultimately, CSC targeting approaches in combination with current clinical therapies have the potential to be more effective owing to their ability to compromise CSCs maintenance and the mechanisms which underlie their highly aggressive and deadly nature.

  20. Role of allogeneic stem cell transplantation in adult patients with Ph-negative acute lymphoblastic leukemia.

    PubMed

    Dhédin, Nathalie; Huynh, Anne; Maury, Sébastien; Tabrizi, Reza; Beldjord, Kheira; Asnafi, Vahid; Thomas, Xavier; Chevallier, Patrice; Nguyen, Stéphanie; Coiteux, Valérie; Bourhis, Jean-Henri; Hichri, Yosr; Escoffre-Barbe, Martine; Reman, Oumedaly; Graux, Carlos; Chalandon, Yves; Blaise, Didier; Schanz, Urs; Lhéritier, Véronique; Cahn, Jean-Yves; Dombret, Hervé; Ifrah, Norbert

    2015-04-16

    Because a pediatric-inspired Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) protocol yielded a markedly improved outcome in adults with Philadelphia chromosome-negative ALL, we aimed to reassess the role of allogeneic stem cell transplantation (SCT) in patients treated in the GRAALL-2003 and GRAALL-2005 trials. In all, 522 patients age 15 to 55 years old and presenting with at least 1 conventional high-risk factor were candidates for SCT in first complete remission. Among these, 282 (54%) received a transplant in first complete remission. At 3 years, posttransplant cumulative incidences of relapse, nonrelapse mortality, and relapse-free survival (RFS) were estimated at 19.5%, 15.5%, and 64.7%, respectively. Time-dependent analysis did not reveal a significant difference in RFS between SCT and no-SCT cohorts. However, SCT was associated with longer RFS in patients with postinduction minimal residual disease (MRD) ≥10(-3) (hazard ratio, 0.40) but not in good MRD responders. In B-cell precursor ALL, SCT also benefitted patients with focal IKZF1 gene deletion (hazard ratio, 0.42). This article shows that poor early MRD response, in contrast to conventional ALL risk factors, is an excellent tool to identify patients who may benefit from allogeneic SCT in the context of intensified adult ALL therapy. Trial GRAALL-2003 was registered at www.clinicaltrials.gov as #NCT00222027; GRAALL-2005 was registered as #NCT00327678.

  1. NGF induces adult stem Leydig cells to proliferate and differentiate during Leydig cell regeneration

    SciTech Connect

    Zhang, Lei; Wang, Huaxi; Yang, Yan; Liu, Hui; Zhang, Qihao; Xiang, Qi; Ge, Renshan; Su, Zhijian; Huang, Yadong

    2013-06-28

    Highlights: •Nerve growth factor has shown significant changes on mRNA levels during Adult Leydig cells regeneration. •We established the organ culture model of rat seminiferous tubules with ethane dimethyl sulphonate (EDS) treatment. •Nerve growth factor has shown proliferation and differentiation-promoting effects on Adult stem Leydig cells. •Nerve growth factor induces progenitor Leydig cells to proliferate and differentiate and immature Leydig cells to proliferate. -- Abstract: Nerve growth factor (NGF) has been reported to be involved in male reproductive physiology. However, few reports have described the activity of NGF during Leydig cell development. The objective of the present study was to examine the role of NGF during stem-Leydig-cell (SLC) regeneration. We investigated the effects of NGF on Leydig-cell (LC) regeneration by measuring mRNA levels in the adult rat testis after ethane dimethanesulfonate (EDS) treatment. Furthermore, we used the established organ culture model of rat seminiferous tubules to examine the regulation of NGF during SLC proliferation and differentiation using EdU staining, real-time PCR and western blotting. Progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs) were also used to investigate the effects of NGF on LCs at different developmental stages. NGF mRNA levels changed significantly during Leydig-cell regeneration in vivo. In vitro, NGF significantly promoted the proliferation of stem Leydig cells and also induced steroidogenic enzyme gene expression and 3β-HSD protein expression. The data from PLCs and ILCs showed that NGF could increase Cyclin D1 and Hsd 17b3 mRNA levels in PLCs and Cyclin D1 mRNA levels in ILCs. These results indicate that NGF may play an important role during LC regeneration by regulating the proliferation and differentiation of LCs at different developmental stages, from SLCs to PLCs and from PLCs to ILCs. The discovery of this effect of NGF on Leydig cells will provide useful

  2. CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells.

    PubMed

    Pfenninger, Cosima V; Roschupkina, Teona; Hertwig, Falk; Kottwitz, Denise; Englund, Elisabet; Bengzon, Johan; Jacobsen, Sten Eirik; Nuber, Ulrike A

    2007-06-15

    Human brain tumor stem cells have been enriched using antibodies against the surface protein CD133. An antibody recognizing CD133 also served to isolate normal neural stem cells from fetal human brain, suggesting a possible lineage relationship between normal neural and brain tumor stem cells. Whether CD133-positive brain tumor stem cells can be derived from CD133-positive neural stem or progenitor cells still requires direct experimental evidence, and an important step toward such investigations is the identification and characterization of normal CD133-presenting cells in neurogenic regions of the embryonic and adult brain. Here, we present evidence that CD133 is a marker for embryonic neural stem cells, an intermediate radial glial/ependymal cell type in the early postnatal stage, and for ependymal cells in the adult brain, but not for neurogenic astrocytes in the adult subventricular zone. Our findings suggest two principal possibilities for the origin of brain tumor stem cells: a derivation from CD133-expressing cells, which are normally not present in the adult brain (embryonic neural stem cells and an early postnatal intermediate radial glial/ependymal cell type), or from CD133-positive ependymal cells in the adult brain, which are, however, generally regarded as postmitotic. Alternatively, brain tumor stem cells could be derived from proliferative but CD133-negative neurogenic astrocytes in the adult brain. In the latter case, brain tumor development would involve the production of CD133.

  3. Is There Any Reason to Prefer Cord Blood Instead of Adult Donors for Hematopoietic Stem Cell Transplants?

    PubMed Central

    Beksac, Meral

    2016-01-01

    As cord blood (CB) enables rapid access and tolerance to HLA mismatches, a number of unrelated CB transplants have reached 30,000. Such transplant activity has been the result of international accreditation programs maintaining highly qualified cord blood units (CBUs) reaching more than 600,000 CBUs stored worldwide. Efforts to increase stem cell content or engraftment rate of the graft by ex vivo expansion, modulation by molecules such as fucose, prostaglandin E2 derivative, complement CD26 inhibitors, or CXCR4/CXCL12 axis have been able to accelerate engraftment speed and rate. Furthermore, introduction of reduced intensity conditioning protocols, better HLA matching, and recognition of the importance of HLA-C have improved CB transplants success by decreasing transplant-related mortality. CB progenitor/stem cell content has been compared with adult stem cells revealing higher long-term repopulating capacity compared to bone marrow–mesenchymal stromal cells and lesser oncogenic potential than progenitor-induced stem cells. This chapter summarizes the advantages and disadvantages of CB compared to adult stem cells within the context of stem cell biology and transplantation. PMID:26793711

  4. Adult stem cell theory of the multi-stage, multi-mechanism theory of carcinogenesis: role of inflammation on the promotion of initiated stem cells.

    PubMed

    Trosko, James E; Tai, Mei-Hui

    2006-01-01

    Inflammation, induced by microbial agents, radiation, endogenous or exogenous chemicals, has been associated with chronic diseases, including cancer. Since carcinogenesis has been characterized as consisting of the 'initiation', 'promotion' and 'progression' phases, the inflammatory process could affect any or all three phases. The stem cell theory of carcinogenesis has been given a revival, in that isolated human adult stem cells have been isolated and shown to be 'targets' for neoplastic transformation. Oct4, a transcription factor, has been associated with adult stem cells, as well as their immortalized and tumorigenic derivatives, but not with the normal differentiated daughters. These data are consistent with the stem cell theory of carcinogenesis. In addition, Gap Junctional Intercellular Communication (GJIC) seems to play a major role in cell growth. Inhibition of GJIC by non-genotoxic chemicals or various oncogenes seems to be the mechanism for the tumor promotion and progression phases of carcinogenesis. Many of the toxins, synthetic non-genotoxicants, and endogenous inflammatory factors have been shown to inhibit GJIC and act as tumor promoters. The inhibition of GJIC might be the mechanism by which the inflammatory process affects cancer and that to intervene during tumor promotion with anti-inflammatory factors might be the most efficacious anti-cancer strategy.

  5. Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans.

    PubMed

    Mold, Jeff E; Venkatasubrahmanyam, Shivkumar; Burt, Trevor D; Michaëlsson, Jakob; Rivera, Jose M; Galkina, Sofiya A; Weinberg, Kenneth; Stoddart, Cheryl A; McCune, Joseph M

    2010-12-17

    Although the mammalian immune system is generally thought to develop in a linear fashion, findings in avian and murine species argue instead for the developmentally ordered appearance (or "layering") of distinct hematopoietic stem cells (HSCs) that give rise to distinct lymphocyte lineages at different stages of development. Here we provide evidence of an analogous layered immune system in humans. Our results suggest that fetal and adult T cells are distinct populations that arise from different populations of HSCs that are present at different stages of development. We also provide evidence that the fetal T cell lineage is biased toward immune tolerance. These observations offer a mechanistic explanation for the tolerogenic properties of the developing fetus and for variable degrees of immune responsiveness at birth.

  6. Pten is necessary for the quiescence and maintenance of adult muscle stem cells

    PubMed Central

    Yue, Feng; Bi, Pengpeng; Wang, Chao; Shan, Tizhong; Nie, Yaohui; Ratliff, Timothy L.; Gavin, Timothy P.; Kuang, Shihuan

    2017-01-01

    Satellite cells (SCs) are myogenic stem cells required for regeneration of adult skeletal muscles. A proper balance among quiescence, activation and differentiation is essential for long-term maintenance of SCs and their regenerative function. Here we show a function of Pten (phosphatase and tensin homologue) in quiescent SCs. Deletion of Pten in quiescent SCs leads to their spontaneous activation and premature differentiation without proliferation, resulting in depletion of SC pool and regenerative failure. However, prior to depletion, Pten-null activated SCs can transiently proliferate upon injury and regenerate injured muscles, but continually decline during regeneration, suggesting an inability to return to quiescence. Mechanistically, Pten deletion increases Akt phosphorylation, which induces cytoplasmic translocation of FoxO1 and suppression of Notch signalling. Accordingly, constitutive activation of Notch1 prevents SC depletion despite Pten deletion. Our findings delineate a critical function of Pten in maintaining SC quiescence and reveal an interaction between Pten and Notch signalling. PMID:28094257

  7. Adult Vascular Wall Resident Multipotent Vascular Stem Cells, Matrix Metalloproteinases, and Arterial Aneurysms

    PubMed Central

    Amato, Bruno; Compagna, Rita; Amato, Maurizio; Grande, Raffaele; Butrico, Lucia; Rossi, Alessio; Naso, Agostino; Ruggiero, Michele; de Franciscis, Stefano

    2015-01-01

    Evidences have shown the presence of multipotent stem cells (SCs) at sites of arterial aneurysms: they can differentiate into smooth muscle cells (SMCs) and are activated after residing in a quiescent state in the vascular wall. Recent studies have implicated the role of matrix metalloproteinases in the pathogenesis of arterial aneurysms: in fact the increased synthesis of MMPs by arterial SMCs is thought to be a pivotal mechanism in aneurysm formation. The factors and signaling pathways involved in regulating wall resident SC recruitment, survival, proliferation, growth factor production, and differentiation may be also related to selective expression of different MMPs. This review explores the relationship between adult vascular wall resident multipotent vascular SCs, MMPs, and arterial aneurysms. PMID:25866513

  8. Insights from a chimpanzee adipose stromal cell population: opportunities for adult stem cells to expand primate functional genomics.

    PubMed

    Pfefferle, Lisa W; Wray, Gregory A

    2013-01-01

    Comparisons between humans and chimpanzees are essential for understanding traits unique to each species. However, linking important phenotypic differences to underlying molecular changes is often challenging. The ability to generate, differentiate, and profile adult stem cells provides a powerful but underutilized opportunity to investigate the molecular basis for trait differences between species within specific cell types and in a controlled environment. Here, we characterize adipose stromal cells (ASCs) from Clint, the chimpanzee whose genome was first sequenced. Using imaging and RNA-Seq, we compare the chimpanzee ASCs with three comparable human cell lines. Consistent with previous studies on ASCs in humans, the chimpanzee cells have fibroblast-like morphology and express genes encoding components of the extracellular matrix at high levels. Differentially expressed genes are enriched for distinct functional classes between species: immunity and protein processing are higher in chimpanzees, whereas cell cycle and DNA processing are higher in humans. Although hesitant to draw definitive conclusions from these data given the limited sample size, we wish to stress the opportunities that adult stem cells offer for studying primate evolution. In particular, adult stem cells provide a powerful means to investigate the profound disease susceptibilities unique to humans and a promising tool for conservation efforts with nonhuman primates. By allowing for experimental perturbations in relevant cell types, adult stem cells promise to complement classic comparative primate genomics based on in vivo sampling.

  9. Complementary epistasis involving Sr12 explains adult plant resistance to stem rust in Thatcher wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult plant resistance (APR) in wheat (Triticum aestivum L.) to stem rust, caused by Puccinia graminis f. sp. tritici, is desirable because this resistance can be race non-specific. Resistance derived from cultivar Thatcher can confer high levels of APR to the virulent P. graminis f. sp. tritici rac...

  10. Plasmid-Based Generation of Induced Neural Stem Cells from Adult Human Fibroblasts

    PubMed Central

    Capetian, Philipp; Azmitia, Luis; Pauly, Martje G.; Krajka, Victor; Stengel, Felix; Bernhardi, Eva-Maria; Klett, Mariana; Meier, Britta; Seibler, Philip; Stanslowsky, Nancy; Moser, Andreas; Knopp, Andreas; Gillessen-Kaesbach, Gabriele; Nikkhah, Guido; Wegner, Florian; Döbrössy, Máté; Klein, Christine

    2016-01-01

    Direct reprogramming from somatic to neural cell types has become an alternative to induced pluripotent stem cells. Most protocols employ viral expression systems, posing the risk of random genomic integration. Recent developments led to plasmid-based protocols, lowering this risk. However, these protocols either relied on continuous presence of a variety of small molecules or were only able to reprogram murine cells. We therefore established a reprogramming protocol based on vectors containing the Epstein-Barr virus (EBV)-derived oriP/EBNA1 as well as the defined expression factors Oct3/4, Sox2, Klf4, L-myc, Lin28, and a small hairpin directed against p53. We employed a defined neural medium in combination with the neurotrophins bFGF, EGF and FGF4 for cultivation without the addition of small molecules. After reprogramming, cells demonstrated a temporary increase in the expression of endogenous Oct3/4. We obtained induced neural stem cells (iNSC) 30 days after transfection. In contrast to previous results, plasmid vectors as well as a residual expression of reprogramming factors remained detectable in all cell lines. Cells showed a robust differentiation into neuronal (72%) and glial cells (9% astrocytes, 6% oligodendrocytes). Despite the temporary increase of pluripotency-associated Oct3/4 expression during reprogramming, we did not detect pluripotent stem cells or non-neural cells in culture (except occasional residual fibroblasts). Neurons showed electrical activity and functional glutamatergic synapses. Our results demonstrate that reprogramming adult human fibroblasts to iNSC by plasmid vectors and basic neural medium without small molecules is possible and feasible. However, a full set of pluripotency-associated transcription factors may indeed result in the acquisition of a transient (at least partial) pluripotent intermediate during reprogramming. In contrast to previous reports, the EBV-based plasmid system remained present and active inside the cells at

  11. Clone-forming activity of embryonal stem hemopoietic cells after transplantation to newborn or adult sublethally irradiated mice.

    PubMed

    Drize, N I; Chertkov, I L

    2000-07-01

    Hemopoietic activity of stem hemopoietic cells from the liver of embryos was studied at different terms of intrauterine development. The fate of individual clones of hemopoietic cells marked by human adenosine deaminase gene was followed up in sublethally irradiated or newborn recipients. The efficiency of marker gene incorporation in primitive stem hemopoietic cells from the liver of 12-, 13-, and 17-day embryos was not high. Gene transfer was performed without cell prestimulation to division, and hence, these data show that primitive stem cells proliferate even in 17-day embryos. Cells from embryonal liver in all terms maintain hemopoiesis both in newborn and adult microenvironment, hemopoiesis being realized according to the clonal succession model, i. e. in the some way after transplantation of the bone marrow from adult mice.

  12. Immunomodulatory properties of human adult and fetal multipotent mesenchymal stem cells.

    PubMed

    Chen, Pei-Min; Yen, Men-Luh; Liu, Ko-Jiunn; Sytwu, Huey-Kang; Yen, B-Linju

    2011-07-18

    In recent years, a large number of studies have contributed to our understanding of the immunomodulatory mechanisms used by multipotent mesenchymal stem cells (MSCs). Initially isolated from the bone marrow (BM), MSCs have been found in many tissues but the strong immunomodulatory properties are best studied in BM MSCs. The immunomodulatory effects of BM MSCs are wide, extending to T lymphocytes and dendritic cells, and are therapeutically useful for treatment of immune-related diseases including graft-versus-host disease as well as possibly autoimmune diseases. However, BM MSCs are very rare cells and require an invasive procedure for procurement. Recently, MSCs have also been found in fetal-stage embryo-proper and extra-embryonic tissues, and these human fetal MSCs (F-MSCs) have a higher proliferative profile, and are capable of multilineage differentiation as well as exert strong immunomodulatory effects. As such, these F-MSCs can be viewed as alternative sources of MSCs. We review here the current understanding of the mechanisms behind the immunomodulatory properties of BM MSCs and F-MSCs. An increase in our understanding of MSC suppressor mechanisms will offer insights for prevalent clinical use of these versatile adult stem cells in the near future.

  13. Clinical trial perspective for adult and juvenile Huntington's disease using genetically-engineered mesenchymal stem cells.

    PubMed

    Deng, Peter; Torrest, Audrey; Pollock, Kari; Dahlenburg, Heather; Annett, Geralyn; Nolta, Jan A; Fink, Kyle D

    2016-05-01

    Progress to date from our group and others indicate that using genetically-engineered mesenchymal stem cells (MSC) to secrete brain-derived neurotrophic factor (BDNF) supports our plan to submit an Investigational New Drug application to the Food and Drug Administration for the future planned Phase 1 safety and tolerability trial of MSC/BDNF in patients with Huntington's disease (HD). There are also potential applications of this approach beyond HD. Our biological delivery system for BDNF sets the precedent for adult stem cell therapy in the brain and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), spinocerebellar ataxia (SCA), Alzheimer's disease, and some forms of Parkinson's disease. The MSC/BDNF product could also be considered for studies of regeneration in traumatic brain injury, spinal cord and peripheral nerve injury. This work also provides a platform for our future gene editing studies, since we will again use MSCs to deliver the needed molecules into the central nervous system.

  14. Adult neural stem cells from the subventricular zone: a review of the neurosphere assay.

    PubMed

    Gil-Perotín, Sara; Duran-Moreno, María; Cebrián-Silla, Arantxa; Ramírez, Mónica; García-Belda, Paula; García-Verdugo, José Manuel

    2013-09-01

    The possibility of obtaining large numbers of cells with potential to become functional neurons implies a great advance in regenerative medicine. A source of cells for therapy is the subventricular zone (SVZ) where adult neural stem cells (NSCs) retain the ability to proliferate, self-renew, and differentiate into several mature cell types. The neurosphere assay, a method to isolate, maintain, and expand these cells has been extensively utilized by research groups to analyze the biological properties of aNSCs and to graft into injured brains from animal models. In this review we briefly describe the neurosphere assay and its limitations, the methods to optimize culture conditions, the identity and the morphology of aNSC-derived neurospheres (including new ultrastructural data). The controversy regarding the identity and "stemness" of cells within the neurosphere is revised. The fine morphology of neurospheres, described thoroughly, allows for phenotypical characterization of cells in the neurospheres and may reveal slight changes that indirectly inform about cell integrity, cell damage, or oncogenic transformation. Along this review we largely highlight the critical points that researchers have to keep in mind before extrapolating results or translating experimental transplantation of neurosphere-derived cells to the clinical setting.

  15. Hhex is Required at Multiple Stages of Adult Hematopoietic Stem and Progenitor Cell Differentiation

    PubMed Central

    Goodings, Charnise; Smith, Elizabeth; Mathias, Elizabeth; Elliott, Natalina; Cleveland, Susan M.; Tripathi, Rati M.; Layer, Justin H.; Chen, Xi; Guo, Yan; Shyr, Yu; Hamid, Rizwan; Du, Yang; Davé, Utpal P.

    2015-01-01

    Hhex encodes a homeodomain transcription factor that is widely expressed in hematopoietic stem and progenitor cell populations. Its enforced expression induces T-cell leukemia and we have implicated it as an important oncogene in early T-cell precursor leukemias where it is immediately downstream of an LMO2-associated protein complex. Conventional Hhex knockouts cause embryonic lethality precluding analysis of adult hematopoiesis. Thus, we induced highly efficient conditional knockout (cKO) using vav-Cre transgenic mice. Hhex cKO mice were viable and born at normal litter sizes. At steady state, we observed a defect in B-cell development that we localized to the earliest B-cell precursor, the pro-B-cell stage. Most remarkably, bone marrow transplantation using Hhex cKO donor cells revealed a more profound defect in all hematopoietic lineages. In contrast, sublethal irradiation resulted in normal myeloid cell repopulation of the bone marrow but markedly impaired repopulation of T- and B-cell compartments. We noted that Hhex cKO stem and progenitor cell populations were skewed in their distribution and showed enhanced proliferation compared to WT cells. Our results implicate Hhex in the maintenance of LT-HSCs and in lineage allocation from multipotent progenitors especially in stress hematopoiesis. PMID:25968920

  16. Clinical trial perspective for adult and juvenile Huntington's disease using genetically-engineered mesenchymal stem cells

    PubMed Central

    Deng, Peter; Torrest, Audrey; Pollock, Kari; Dahlenburg, Heather; Annett, Geralyn; Nolta, Jan A.; Fink, Kyle D.

    2016-01-01

    Progress to date from our group and others indicate that using genetically-engineered mesenchymal stem cells (MSC) to secrete brain-derived neurotrophic factor (BDNF) supports our plan to submit an Investigational New Drug application to the Food and Drug Administration for the future planned Phase 1 safety and tolerability trial of MSC/BDNF in patients with Huntington's disease (HD). There are also potential applications of this approach beyond HD. Our biological delivery system for BDNF sets the precedent for adult stem cell therapy in the brain and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), spinocerebellar ataxia (SCA), Alzheimer's disease, and some forms of Parkinson's disease. The MSC/BDNF product could also be considered for studies of regeneration in traumatic brain injury, spinal cord and peripheral nerve injury. This work also provides a platform for our future gene editing studies, since we will again use MSCs to deliver the needed molecules into the central nervous system. PMID:27335539

  17. Transcription levels of sirtuin family in neural stem cells and brain tissues of adult mice.

    PubMed

    Wang, H F; Li, Q; Feng, R L; Wen, T Q

    2012-09-10

    Neural stem cells (NSCs) has been used as a well-known model to investigate apoptosis, differentiation, maintenance of stem cells status, and therapy of neurological disease. The C17.2 NSCs line was produced after v-myc transformation of neural progenitor from mouse cerebellar cortex. Sirtuin family plays important roles involved in neuronal differentiation, genomic stability, lifespan, cell survival. However, little is known about gene expression variation of sirtuin family in C17.2 NSCs, primary NSCs, and different brain tissues in adult mice. Here, we confirmed that the mRNA expression levels of sirt2, 3, 4, 5, and 7 in E14.5 NSCs were significantly higher than in C17.2 NSCs, whereas that sirt 6 displayed an opposing mode. Moreover, a higher mRNA level of sirtuin family was observed in the adult mouse brain compared to C17.2 NSCs. In addition, histone deacetylase (HDAC) inhibitors nicotinamide and Trichostatin A (TSA) were used to explore differential changes at the transcriptional level of sirtuins. Results indicated that the expression of sirt1, sirt5 and sirt6 was significant downregulated by nicotinamide treatment. Whereas, a significant downregulation in sirt1 and sirt3 and a significant upregulation in sirt2, sirt4, sirt6, and sirt7 were observed in the treatment of TSA. Thus our studies indicate different sirtuin mRNA expression profiles between C17.2 NSCs, E14.5 NSCs and brain tissues, suggesting the transcriptional regulation of sirtuin family could be mediated by different histone acetylation.

  18. Wnt Signaling Regulates Airway Epithelial Stem Cells in Adult Murine Submucosal Glands.

    PubMed

    Lynch, Thomas J; Anderson, Preston J; Xie, Weiliang; Crooke, Adrianne K; Liu, Xiaoming; Tyler, Scott R; Luo, Meihui; Kusner, David M; Zhang, Yulong; Neff, Traci; Burnette, Daniel C; Walters, Katherine S; Goodheart, Michael J; Parekh, Kalpaj R; Engelhardt, John F

    2016-06-24

    Wnt signaling is required for lineage commitment of glandular stem cells (SCs) during tracheal submucosal gland (SMG) morphogenesis from the surface airway epithelium (SAE). Whether similar Wnt-dependent processes coordinate SC expansion in adult SMGs following airway injury remains unknown. We found that two Wnt-reporters in mice (BAT-gal and TCF/Lef:H2B-GFP) are coexpressed in actively cycling SCs of primordial glandular placodes and in a small subset of adult SMG progenitor cells that enter the cell cycle 24 hours following airway injury. At homeostasis, these Wnt reporters showed nonoverlapping cellular patterns of expression in the SAE and SMGs. Following tracheal injury, proliferation was accompanied by dynamic changes in Wnt-reporter activity and the analysis of 56 Wnt-related signaling genes revealed unique temporal changes in expression within proximal (gland-containing) and distal (gland-free) portions of the trachea. Wnt stimulation in vivo and in vitro promoted epithelial proliferation in both SMGs and the SAE. Interestingly, slowly cycling nucleotide label-retaining cells (LRCs) of SMGs were spatially positioned near clusters of BAT-gal positive serous tubules. Isolation and culture of tet-inducible H2B-GFP LRCs demonstrated that SMG LRCs were more proliferative than SAE LRCs and culture expanded SMG-derived progenitor cells outcompeted SAE-derived progenitors in regeneration of tracheal xenograft epithelium using a clonal analysis competition assay. SMG-derived progenitors were also multipotent for cell types in the SAE and formed gland-like structures in xenografts. These studies demonstrate the importance of Wnt signals in modulating SC phenotypes within tracheal niches and provide new insight into phenotypic differences of SMG and SAE SCs. Stem Cells 2016.

  19. Effect of mesenchymal stem cells on induced skeletal muscle chemodenervation atrophy in adult male albino rats.

    PubMed

    Shehata, Azza S; Al-Ghonemy, Nabila M; Ahmed, Samah M; Mohamed, Samar R

    2017-04-01

    The present research was conducted to evaluate the effect of bone marrow derived mesenchymal stem cells (BM-MSCs) as a potential therapeutic tool for improvement of skeletal muscle recovery after induced chemodenervation atrophy by repeated local injection of botulinum toxin-A in the right tibialis anterior muscle of adult male albino rats. Forty five adult Wistar male albino rats were classified into control and experimental groups. Experimental group was further subdivided into 3 equal subgroups; induced atrophy, BM-MSCs treated and recovery groups. Biochemical analysis of serum LDH, CK and Real-time PCR for Bcl-2, caspase 3 and caspase 9 was measured. Skeletal muscle sections were stained with H and E, Mallory trichrome, and Immunohistochemical reaction for Bax and CD34. Improvement in the skeletal muscle histological structure was noticed in BM-MSCs treated group, however, in the recovery group, some sections showed apparent transverse striations and others still affected. Immunohistochemical reaction of Bax protein showed strong positive immunoreaction in the cytoplasm of muscle fibers in the induced atrophy group. BM-MSCs treated group showed weak positive reaction while the recovery group showed moderate reaction in the cytoplasm of muscle fibers. Immunohistochemical reaction for CD34 revealed occasional positive CD34 stained cells in the induced atrophy group. In BM-MSCs treated group, multiple positive CD34 stained cells were detected. However, recovery group showed some positive CD34 stained cells at the periphery of the muscle fibers. Marked improvement in the regenerative capacity of skeletal muscles after BM-MSCs therapy. Hence, stem cell therapy provides a new hope for patients suffering from myopathies and severe injuries.

  20. CSR-1 and P granules suppress sperm-specific transcription in the C. elegans germline.

    PubMed

    Campbell, Anne C; Updike, Dustin L

    2015-05-15

    Germ granules (P granules) in C. elegans are required for fertility and function to maintain germ cell identity and pluripotency. Sterility in the absence of P granules is often accompanied by the misexpression of soma-specific proteins and the initiation of somatic differentiation in germ cells. To investigate whether this is caused by the accumulation of somatic transcripts, we performed mRNA-seq on dissected germlines with and without P granules. Strikingly, we found that somatic transcripts do not increase in the young adult germline when P granules are impaired. Instead, we found that impairing P granules causes sperm-specific mRNAs to become highly overexpressed. This includes the accumulation of major sperm protein (MSP) transcripts in germ cells, a phenotype that is suppressed by feminization of the germline. A core component of P granules, the endo-siRNA-binding Argonaute protein CSR-1, has recently been ascribed with the ability to license transcripts for germline expression. However, impairing CSR-1 has very little effect on the accumulation of its mRNA targets. Instead, we found that CSR-1 functions with P granules to prevent MSP and sperm-specific mRNAs from being transcribed in the hermaphrodite germline. These findings suggest that P granules protect germline integrity through two different mechanisms, by (1) preventing the inappropriate expression of somatic proteins at the level of translational regulation, and by (2) functioning with CSR-1 to limit the domain of sperm-specific expression at the level of transcription.

  1. Developing Mentors: Adult participation, practices, and learning in an out-of-school time STEM program

    NASA Astrophysics Data System (ADS)

    Scipio, Deana Aeolani

    This dissertation examines learning within an out-of-school time (OST) Science, Technology, Engineering, and Mathematics (STEM) broadening participation program. The dissertation includes an introduction, three empirical chapters (written as individual articles), and a conclusion. The dissertation context is a chemical oceanography OST program for middle school students called Project COOL---Chemical Oceanography Outside the Lab. The program was a collaboration between middle school OST programming, a learning sciences research laboratory, and a chemical oceanography laboratory. Both labs were located at a research-based university in the Pacific Northwest of the United States. Participants include 34 youth, 12 undergraduates, and five professional scientists. The dissertation data corpus includes six years of ethnographic field notes across three field sites, 400 hours of video and audio recordings, 40 hours of semi-structured interviews, and more than 100 participant generated artifacts. Analysis methods include comparative case analysis, cognitive mapping, semiotic cluster analysis, video interaction analysis, and discourse analysis. The first empirical article focuses on synthesizing productive programmatic features from four years of design-based research.. The second article is a comparative case study of three STEM mentors from non-dominant communities in the 2011 COOL OST Program. The third article is a comparative case study of undergraduates learning to be mentors in the 2014 COOL OST Program. Findings introduce Deep Hanging as a theory of learning in practice. Deep Hanging entails authentic tasks in rich contexts, providing access, capitalizing on opportunity, and building interpersonal relationships. Taken together, these three chapters illuminate the process of designing a rich OST learning environment and the kinds of learning in practice that occurred for adult learners learning to be mentors through their participation in the COOL OST program. In

  2. Germline transmission in transgenic Huntington’s disease monkeys

    PubMed Central

    Moran, Sean; Chi, Tim; Prucha, Melinda S.; Ahn, Kwang Sung; Connor-Stroud, Fawn; Jean, Sherrie; Gould, Kenneth; Chan, Anthony W. S.

    2015-01-01

    Transgenic nonhuman primate models are increasingly popular model for neurological and neurodegenerative disease because their brain functions and neural anatomies closely resemble those of humans [1–6]. Transgenic Huntington’s disease monkeys (HD monkeys) developed clinical features similar to those seen in HD patients, making the monkeys suitable for preclinical study of HD [6–12]. However, until HD monkey colonies can be readily expanded, their use in preclinical studies will be limited [1, 13, 14]. In the present study, we confirmed germline transmission of the mutant huntingtin (mHTT) transgene in both embryonic stem cells (ESCs) generated from three male HD monkey founders (F0), as well as in second-generation offspring (F1) produced via artificial insemination by using intrauterine insemination (IUI) technique. A total of five offspring were produced from fifteen females that were inseminated by IUI using semen collected from the three HD founders (5/15; 33%). Thus far, sperm collected from HD founder (rHD8) has led to two F1 transgenic HD moenkys with germline transmission rate at 100% (2/2). mHTT expression was confirmed by quantitative real-time PCR (qPCR) using skin fibroblasts from the F1 HD monkeys, as well as induced pluripotent stem cells (iPSCs) established from one of the F1 HD monkeys (rHD8-2). Here we report the stable germline transmission and expression of the mHTT transgene in HD monkeys, which suggest possible expansion of HD monkey colonies for preclinical and biomedical researches. PMID:25917881

  3. Should deciduous teeth be preserved in adult patients? How about stem cells? Is it reasonable to preserve them?

    PubMed Central

    Consolaro, Alberto

    2016-01-01

    Abstract When seeking orthodontic treatment, many adolescents and adult patients present with deciduous teeth. Naturally, deciduous teeth will inevitably undergo exfoliation at the expected time or at a later time. Apoptosis is the biological trigger of root resorption. In adult patients, deciduous teeth should not be preserved, as they promote: infraocclusion, traumatic occlusion, occlusal trauma, diastemata and size as well as morphology discrepancy malocclusion. Orthodontic movement speeds root resorption up, and so do restoring or recontouring deciduous teeth in order to establish esthetics and function. Deciduous teeth cells are dying as a result of apoptosis, and their regeneration potential, which allows them to act as stem cells, is limited. On the contrary, adult teeth cells have a greater proliferative potential. All kinds of stem cell therapies are laboratory investigative non authorized trials. PMID:27275612

  4. Should deciduous teeth be preserved in adult patients? How about stem cells? Is it reasonable to preserve them?

    PubMed

    Consolaro, Alberto

    2016-01-01

    When seeking orthodontic treatment, many adolescents and adult patients present with deciduous teeth. Naturally, deciduous teeth will inevitably undergo exfoliation at the expected time or at a later time. Apoptosis is the biological trigger of root resorption. In adult patients, deciduous teeth should not be preserved, as they promote: infraocclusion, traumatic occlusion, occlusal trauma, diastemata and size as well as morphology discrepancy malocclusion. Orthodontic movement speeds root resorption up, and so do restoring or recontouring deciduous teeth in order to establish esthetics and function. Deciduous teeth cells are dying as a result of apoptosis, and their regeneration potential, which allows them to act as stem cells, is limited. On the contrary, adult teeth cells have a greater proliferative potential. All kinds of stem cell therapies are laboratory investigative non authorized trials.

  5. CD44 Transmembrane Receptor and Hyaluronan Regulate Adult Hippocampal Neural Stem Cell Quiescence and Differentiation.

    PubMed

    Su, Weiping; Foster, Scott C; Xing, Rubing; Feistel, Kerstin; Olsen, Reid H J; Acevedo, Summer F; Raber, Jacob; Sherman, Larry S

    2017-03-17

    Adult neurogenesis in the hippocampal subgranular zone (SGZ) is involved in learning and memory throughout life but declines with aging. Mice lacking the CD44 transmembrane receptor for the glycosaminoglycan hyaluronan (HA) demonstrate a number of neurological disturbances including hippocampal memory deficits, implicating CD44 in the processes underlying hippocampal memory encoding, storage, or retrieval. Here, we found that HA and CD44 play important roles in regulating adult neurogenesis, and we provide evidence that HA contributes to age-related reductions in neural stem cell (NSC) expansion and differentiation in the hippocampus. CD44-expressing NSCs isolated from the mouse SGZ are self-renewing and capable of differentiating into neurons, astrocytes, and oligodendrocytes. Mice lacking CD44 demonstrate increases in NSC proliferation in the SGZ. This increased proliferation is also observed in NSCs grown in vitro, suggesting that CD44 functions to regulate NSC proliferation in a cell-autonomous manner. HA is synthesized by NSCs and increases in the SGZ with aging. Treating wild type but not CD44-null NSCs with HA inhibits NSC proliferation. HA digestion in wild type NSC cultures or in the SGZ induces increased NSC proliferation, and CD44-null as well as HA-disrupted wild type NSCs demonstrate delayed neuronal differentiation. HA therefore signals through CD44 to regulate NSC quiescence and differentiation, and HA accumulation in the SGZ may contribute to reductions in neurogenesis that are linked to age-related decline in spatial memory.

  6. Mitochondria defects are involved in lead-acetate-induced adult hematopoietic stem cell decline.

    PubMed

    Liu, Jun; Jia, Dao-Yong; Cai, Shi-Zhong; Li, Cheng-Peng; Zhang, Meng-Si; Zhang, Yan-Yan; Yan, Chong-Huai; Wang, Ya-Ping

    2015-05-19

    Occupational high-grade lead exposure has been reduced in recent decades as a result of increased regulation. However, environmental lead exposure remains widespread, and is associated with severe toxicity implicated in human diseases. We performed oral intragastric administration of various dose lead acetate to adult Sprague Dawley rats to define the role of lead exposure in hematopoietic stem cells (HSCs) function, and to clarify its underlying mechanism. Lead acetate-exposed rats exhibited developmental abnormalities in myeloid and lymphoid lineages, and a significant decline in immune functions. It also showed HSCs functional decline associated with senescent phenotype with low grade lead acetate exposure or apoptotic phenotype with relative higher grade dose exposure. Mechanistic exploration showed a significant increase in reactive oxygen species (ROS) in the lead acetate-exposed CD90(+)CD45(-) compartment, which correlated with functional defects in cellular mitochondria. Furthermore, in vivo treatment with the antioxidant vitamin C led to reversion of the CD90(+)CD45(-) compartment functional decline. These results indicate that lead acetate perturbs the hematopoietic balance of adult HSCs, associated with cellular mitochondria defects, increased intracellular ROS generation.

  7. Serotonin Depletion Hampers Survival and Proliferation in Neurospheres Derived from Adult Neural Stem Cells

    PubMed Central

    Benninghoff, Jens; Gritti, Angela; Rizzi, Matteo; LaMorte, Giuseppe; Schloesser, Robert J; Schmitt, Angelika; Robel, Stefanie; Genius, Just; Moessner, Rainald; Riederer, Peter; Manji, Husseini K; Grunze, Heinz; Rujescu, Dan; Moeller, Hans-Juergen; Lesch, Klaus-Peter; Vescovi, Angelo Luigi

    2010-01-01

    Serotonin (5-HT) and the serotonergic system have recently been indicated as modulators of adult hippocampal neurogenesis. In this study, we evaluated the role of 5-HT on the functional features in neurospheres derived from adult neural stem cells (ANSC). We cultured neurospheres derived from mouse hippocampus in serum-free medium containing epidermal (EGF) and type-2 fibroblast growth factor (FGF2). Under these conditions ANSC expressed both isoforms of tryptophane-hydroxylase (TPH) and produced 5-HT. Blocking TPH function by para-chlorophenylalanine (PCPA) reduced ANSC proliferation, which was rescued by exogenous 5-HT. 5-HT action on ANSC was mediated predominantly by the serotonin receptor subtype 5-HT1A and, to a lesser extent, through the 5-HT2C (receptor) subtype, as shown by selectively antagonizing these receptors. Finally, we documented a 5-HT-induced increase of ANSC migration activity. In summary, we demonstrated a powerful serotonergic impact on ANSC functional features, which was mainly mediated by 5-HT1A receptors. PMID:20010549

  8. Serotonin depletion hampers survival and proliferation in neurospheres derived from adult neural stem cells.

    PubMed

    Benninghoff, Jens; Gritti, Angela; Rizzi, Matteo; Lamorte, Giuseppe; Schloesser, Robert J; Schmitt, Angelika; Robel, Stefanie; Genius, Just; Moessner, Rainald; Riederer, Peter; Manji, Husseini K; Grunze, Heinz; Rujescu, Dan; Moeller, Hans-Juergen; Lesch, Klaus-Peter; Vescovi, Angelo Luigi

    2010-03-01

    Serotonin (5-HT) and the serotonergic system have recently been indicated as modulators of adult hippocampal neurogenesis. In this study, we evaluated the role of 5-HT on the functional features in neurospheres derived from adult neural stem cells (ANSC). We cultured neurospheres derived from mouse hippocampus in serum-free medium containing epidermal (EGF) and type-2 fibroblast growth factor (FGF2). Under these conditions ANSC expressed both isoforms of tryptophane-hydroxylase (TPH) and produced 5-HT. Blocking TPH function by para-chlorophenylalanine (PCPA) reduced ANSC proliferation, which was rescued by exogenous 5-HT. 5-HT action on ANSC was mediated predominantly by the serotonin receptor subtype 5-HT1A and, to a lesser extent, through the 5-HT2C (receptor) subtype, as shown by selectively antagonizing these receptors. Finally, we documented a 5-HT-induced increase of ANSC migration activity. In summary, we demonstrated a powerful serotonergic impact on ANSC functional features, which was mainly mediated by 5-HT1A receptors.

  9. T-cell suicide gene therapy prompts thymic renewal in adults after hematopoietic stem cell transplantation.

    PubMed

    Vago, Luca; Oliveira, Giacomo; Bondanza, Attilio; Noviello, Maddalena; Soldati, Corrado; Ghio, Domenico; Brigida, Immacolata; Greco, Raffaella; Lupo Stanghellini, Maria Teresa; Peccatori, Jacopo; Fracchia, Sergio; Del Fiacco, Matteo; Traversari, Catia; Aiuti, Alessandro; Del Maschio, Alessandro; Bordignon, Claudio; Ciceri, Fabio; Bonini, Chiara

    2012-08-30

    The genetic modification of T cells with a suicide gene grants a mechanism of control of adverse reactions, allowing safe infusion after partially incompatible hematopoietic stem cell transplantation (HSCT). In the TK007 clinical trial, 22 adults with hematologic malignancies experienced a rapid and sustained immune recovery after T cell-depleted HSCT and serial infusions of purified donor T cells expressing the HSV thymidine kinase suicide gene (TK+ cells). After a first wave of circulating TK+ cells, the majority of T cells supporting long-term immune reconstitution did not carry the suicide gene and displayed high numbers of naive lymphocytes, suggesting the thymus-dependent development of T cells, occurring only upon TK+ -cell engraftment. Accordingly, after the infusions, we documented an increase in circulating TCR excision circles and CD31+ recent thymic emigrants and a substantial expansion of the active thymic tissue as shown by chest tomography scans. Interestingly, a peak in the serum level of IL-7 was observed after each infusion of TK+ cells, anticipating the appearance of newly generated T cells. The results of the present study show that the infusion of genetically modified donor T cells after HSCT can drive the recovery of thymic activity in adults, leading to immune reconstitution.

  10. [Is neo-oogenesis in the adult ovary, a realistic paradigm?].

    PubMed

    Gougeon, A

    2010-06-01

    It is a central dogma of female reproductive biology that oogenesis ceases around the time of birth in mammalian species. In 2004 and 2005, two studies were published by Johnson et al., in which they claimed that in the adult mouse ovary, neo-oogenesis takes place and originates from female germline stem cells that are present in either the ovarian surface epithelium or bone marrow. Following these publications, experiments showed that non-germinal stem cells could generate oocytes. However, in the mouse, ability of extra-ovarian stem cells to refurbish the ovary in new oocytes competent to ovulate, and subsequent existence of a spontaneous neo-oogenesis in the adult ovary in normal physiologic conditions, have been disputed. Morphologic studies performed in the adult mouse ovary showed that atresia of the immature follicle pool was strongly overestimated by Johnson et al., and that no intermediary stages of meiosis were seen. These observations led to the conclusion that adult female mice do not need neo-oogenesis for maintaining a normal reproductive function. However, a recent study have shown that female germline stem cells might be present in the ovarian surface epithelium in mice and humans. When sampled in GFP transgenic mice, cultured for a long period and transplanted into ovaries of sterilized mice, these cells underwent oogenesis and the mice produced offsprings. These new data support the possibility to experimentally restore fertility in women suffering from a premature ovarian failure.

  11. Transcriptional signatures of somatic neoblasts and germline cells in Macrostomum lignano.

    PubMed

    Grudniewska, Magda; Mouton, Stijn; Simanov, Daniil; Beltman, Frank; Grelling, Margriet; de Mulder, Katrien; Arindrarto, Wibowo; Weissert, Philipp M; van der Elst, Stefan; Berezikov, Eugene

    2016-12-20

    The regeneration-capable flatworm Macrostomum lignano is a powerful model organism to study the biology of stem cells in vivo. As a flatworm amenable to transgenesis, it complements the historically used planarian flatworm models, such as Schmidtea mediterranea. However, information on the transcriptome and markers of stem cells in M. lignano is limited. We generated a de novo transcriptome assembly and performed the first comprehensive characterization of gene expression in the proliferating cells of M. lignano, represented by somatic stem cells, called neoblasts, and germline cells. Knockdown of a selected set of neoblast genes, including Mlig-ddx39, Mlig-rrm1, Mlig-rpa3, Mlig-cdk1, and Mlig-h2a, confirmed their crucial role for the functionality of somatic neoblasts during homeostasis and regeneration. The generated M. lignano transcriptome assembly and gene expression signatures of somatic neoblasts and germline cells will be a valuable resource for future molecular studies in M. lignano.

  12. No evidence for neo-oogenesis may link to ovarian senescence in adult monkey.

    PubMed

    Yuan, Jihong; Zhang, Dongdong; Wang, Lei; Liu, Mengyuan; Mao, Jian; Yin, Yu; Ye, Xiaoying; Liu, Na; Han, Jihong; Gao, Yingdai; Cheng, Tao; Keefe, David L; Liu, Lin

    2013-11-01

    Female germline or oogonial stem cells transiently residing in fetal ovaries are analogous to the spermatogonial stem cells or germline stem cells (GSCs) in adult testes where GSCs and meiosis continuously renew. Oocytes can be generated in vitro from embryonic stem cells and induced pluripotent stem cells, but the existence of GSCs and neo-oogenesis in adult mammalian ovaries is less clear. Preliminary findings of GSCs and neo-oogenesis in mice and humans have not been consistently reproducible. Monkeys provide the most relevant model of human ovarian biology. We searched for GSCs and neo-meiosis in ovaries of adult monkeys at various ages, and compared them with GSCs from adult monkey testis, which are characterized by cytoplasmic staining for the germ cell marker DAZL and nuclear expression of the proliferative markers PCNA and KI67, and pluripotency-associated genes LIN28 and SOX2, and lack of nuclear LAMIN A, a marker for cell differentiation. Early meiocytes undergo homologous pairing at prophase I distinguished by synaptonemal complex lateral filaments with telomere perinuclear distribution. By exhaustive searching using comprehensive experimental approaches, we show that proliferative GSCs and neo-meiocytes by these specific criteria were undetectable in adult mouse and monkey ovaries. However, we found proliferative nongermline somatic stem cells that do not express LAMIN A and germ cell markers in the adult ovaries, notably in the cortex and granulosa cells of growing follicles. These data support the paradigm that adult ovaries do not undergo germ cell renewal, which may contribute significantly to ovarian senescence that occurs with age.

  13. Adult vascular smooth muscle cells in culture express neural stem cell markers typical of resident multipotent vascular stem cells.

    PubMed

    Kennedy, Eimear; Mooney, Ciaran J; Hakimjavadi, Roya; Fitzpatrick, Emma; Guha, Shaunta; Collins, Laura E; Loscher, Christine E; Morrow, David; Redmond, Eileen M; Cahill, Paul A

    2014-10-01

    Differentiation of resident multipotent vascular stem cells (MVSCs) or de-differentiation of vascular smooth muscle cells (vSMCs) might be responsible for the SMC phenotype that plays a major role in vascular diseases such as arteriosclerosis and restenosis. We examined vSMCs from three different species (rat, murine and bovine) to establish whether they exhibit neural stem cell characteristics typical of MVSCs. We determined their SMC differentiation, neural stem cell marker expression and multipotency following induction in vitro by using immunocytochemistry, confocal microscopy, fluorescence-activated cell sorting analysis and quantitative real-time polymerase chain reaction. MVSCs isolated from rat aortic explants, enzymatically dispersed rat SMCs and rat bone-marrow-derived mesenchymal stem cells served as controls. Murine carotid artery lysates and primary rat aortic vSMCs were both myosin-heavy-chain-positive but weakly expressed the neural crest stem cell marker, Sox10. Each vSMC line examined expressed SMC differentiation markers (smooth muscle α-actin, myosin heavy chain and calponin), neural crest stem cell markers (Sox10(+), Sox17(+)) and a glia marker (S100β(+)). Serum deprivation significantly increased calponin and myosin heavy chain expression and decreased stem cell marker expression, when compared with serum-rich conditions. vSMCs did not differentiate to adipocytes or osteoblasts following adipogenic or osteogenic inductive stimulation, respectively, or respond to transforming growth factor-β1 or Notch following γ-secretase inhibition. Thus, vascular SMCs in culture express neural stem cell markers typical of MVSCs, concomitant with SMC differentiation markers, but do not retain their multipotency. The ultimate origin of these cells might have important implications for their use in investigations of vascular proliferative disease in vitro.

  14. Why Adult Stem Cell Functionality Declines with Age? Studies from the Fruit Fly Drosophila Melanogaster Model Organism

    PubMed Central

    Gonen, Oren; Toledano, Hila

    2014-01-01

    Highly regenerative adult tissues are supported by rare populations of stem cells that continuously divide to self-renew and generate differentiated progeny. This process is tightly regulated by signals emanating from surrounding cells to fulfill the dynamic demands of the tissue. One of the hallmarks of aging is slow and aberrant tissue regeneration due to deteriorated function of stem and supporting cells. Several Drosophila regenerative tissues are unique in that they provide exact identification of stem and neighboring cells in whole-tissue anatomy. This allows for precise tracking of age-related changes as well as their targeted manipulation within the tissue. In this review we present the stem cell niche of Drosophila testis, ovary and intestine and describe the major changes and phenotypes that occur in the course of aging. Specifically we discuss changes in both intrinsic properties of stem cells and their microenvironment that contribute to the decline in tissue functionality. Understanding these mechanisms in adult Drosophila tissues will likely provide new paradigms in the field of aging. PMID:24955030

  15. Reserve stem cells: Differentiated cells reprogram to fuel repair, metaplasia, and neoplasia in the adult gastrointestinal tract.

    PubMed

    Mills, Jason C; Sansom, Owen J

    2015-07-14

    It has long been known that differentiated cells can switch fates, especially in vitro, but only recently has there been a critical mass of publications describing the mechanisms adult, postmitotic cells use in vivo to reverse their differentiation state. We propose that this sort of cellular reprogramming is a fundamental cellular process akin to apoptosis or mitosis. Because reprogramming can invoke regenerative cells from mature cells, it is critical to the long-term maintenance of tissues like the pancreas, which encounter large insults during adulthood but lack constitutively active adult stem cells to repair the damage. However, even in tissues with adult stem cells, like the stomach and intestine, reprogramming may allow mature cells to serve as reserve ("quiescent") stem cells when normal stem cells are compromised. We propose that the potential downside to reprogramming is that it increases risk for cancers that occur late in adulthood. Mature, long-lived cells may have years of exposure to mutagens. Mutations that affect the physiological function of differentiated, postmitotic cells may lead to apoptosis, but mutations in genes that govern proliferation might not be selected against. Hence, reprogramming with reentry into the cell cycle might unmask those mutations, causing an irreversible progenitor-like, proliferative state. We review recent evidence showing that reprogramming fuels irreversible metaplastic and precancerous proliferation in the stomach and pancreas. Finally, we illustrate how we think reprogrammed differentiated cells are likely candidates as cells of origin for cancers of the intestine.

  16. KCTD11 expression in medulloblastoma is lower than in adult cerebellum and higher than in neural stem cells.

    PubMed

    Zawlik, Izabela; Zakrzewska, Magdalena; Witusik, Monika; Golanska, Ewa; Kulczycka-Wojdala, Dominika; Szybka, Malgorzata; Piaskowski, Sylwester; Wozniak, Krystyna; Zakrzewski, Krzysztof; Papierz, Wielislaw; Liberski, Pawel P; Rieske, Piotr

    2006-10-01

    Medulloblastoma (MB) is the most common malignant brain tumor of childhood, and the most frequent associated genetic alteration is loss of heterozygosity on chromosome region 7p13. Two genes mapping to this region, KCTD11 (alias REN) and HIC1, have been proposed as involved in MB pathogenesis. We used real-time polymerase chain reaction in 20 tissue samples of primary MB to examine the transcriptional level of the two genes, with reference to two types of controls: adult cerebellum and fetal neural stem cells. A significant reduction of KCTD11 expression relative to adult normal cerebellum was detected in 14 of 20 (70%) of MB samples. Neural stem cells had even lower levels of KCTD11 expression than did MB. HIC1 gene expression was low ( approximately 100 times lower than KCTD11 expression) in MB, and low also in both adult cerebellum and neural stem cells. Hypermethylation of the 5'UTR or the central region of HIC1 (or both) was detected in a significant number of MB samples, as well as in cerebellum and neural stem cells. Our data suggest that KCTD11 may play an important role in MB tumorigenesis, but do not support the role of HIC1 in this tumor development. We argue that recognition of the gene or genes important in MB tumorigenesis depends in part on defining an appropriate control.

  17. Reserve stem cells: Reprogramming of differentiated cells fuels repair, metaplasia, and neoplasia in the adult gastrointestinal tract

    PubMed Central

    Mills, Jason C.; Sansom, Owen J.

    2016-01-01

    It has long been known that differentiated cells can switch fates, especially in vitro, but only recently has there been a critical mass of publications describing the mechanisms adult, post-mitotic cells use in vivo to reverse their differentiation state. We propose that this sort of cellular reprogramming is a fundamental cellular process akin to apoptosis or mitosis. Because reprogramming can invoke regenerative cells from mature cells, it is critical to the longterm maintenance of tissues like the pancreas, which encounter large insults during adulthood but lack constitutively active adult stem cells to repair the damage. However, even in tissues with adult stem cells, like stomach and intestine, reprogramming may allow mature cells to serve as reserve (“quiescent”) stem cells when normal stem cells are compromised. We propose that the potential downside to reprogramming is that it increases risk for cancers that occur late in adulthood. Mature, long-lived cells may have years of exposure to mutagens. Mutations that affect the physiological function of differentiated, post-mitotic cells may lead to apoptosis, but mutations in genes that govern proliferation might not be selected against. Hence, reprogramming with reentry into the cell cycle might unmask those mutations, causing an irreversible progenitor-like, proliferative state. We review recent evidence showing that reprogramming fuels irreversible metaplastic and precancerous proliferations in stomach and pancreas. Finally, we illustrate how we think reprogrammed differentiated cells are likely candidates as cells of origin for cancers of the intestine. PMID:26175494

  18. The adult pituitary shows stem/progenitor cell activation in response to injury and is capable of regeneration.

    PubMed

    Fu, Qiuli; Gremeaux, Lies; Luque, Raul M; Liekens, Daisy; Chen, Jianghai; Buch, Thorsten; Waisman, Ari; Kineman, Rhonda; Vankelecom, Hugo

    2012-07-01

    The pituitary gland constitutes, together with the hypothalamus, the regulatory core of the endocrine system. Whether the gland is capable of cell regeneration after injury, in particular when suffered at adult age, is unknown. To investigate the adult pituitary's regenerative capacity and the response of its stem/progenitor cell compartment to damage, we constructed a transgenic mouse model to conditionally destroy pituitary cells. GHCre/iDTR mice express diphtheria toxin (DT) receptor after transcriptional activation by Cre recombinase, which is driven by the GH promoter. Treatment with DT for 3 d leads to gradual GH(+) (somatotrope) cell obliteration with a final ablation grade of 80-90% 1 wk later. The stem/progenitor cell-clustering side population promptly expands after injury, concordant with the immediate increase in Sox2(+) stem/progenitor cells. In addition, folliculo-stellate cells, previously designated as pituitary stem/progenitor cells and significantly overlapping with Sox2(+) cells, also increase in abundance. In situ examination reveals expansion of the Sox2(+) marginal-zone niche and appearance of remarkable Sox2(+) cells that contain GH. When mice are left after the DT-provoked lesion, GH(+) cells considerably regenerate during the following months. Double Sox2(+)/GH(+) cells are observed throughout the regenerative period, suggesting recovery of somatotropes from stem/progenitor cells, as further supported by 5-ethynyl-2'-deoxyuridine (EdU) pulse-chase lineage tracing. In conclusion, our study demonstrates that the adult pituitary gland holds regenerative competence and that tissue repair follows prompt activation and plausible involvement of the stem/progenitor cells.

  19. Irradiation of juvenile, but not adult, mammary gland increases stem cell self-renewal and estrogen receptor negative tumors.

    PubMed

    Tang, Jonathan; Fernandez-Garcia, Ignacio; Vijayakumar, Sangeetha; Martinez-Ruis, Haydeliz; Illa-Bochaca, Irineu; Nguyen, David H; Mao, Jian-Hua; Costes, Sylvain V; Barcellos-Hoff, Mary Helen

    2014-03-01

    Children exposed to ionizing radiation have a substantially greater breast cancer risk than adults; the mechanism for this strong age dependence is not known. Here we show that pubertal murine mammary glands exposed to sparsely or densely ionizing radiation exhibit enrichment of mammary stem cell and Notch pathways, increased mammary repopulating activity indicative of more stem cells, and propensity to develop estrogen receptor (ER) negative tumors thought to arise from stem cells. We developed a mammary lineage agent-based model (ABM) to evaluate cell inactivation, self-renewal, or dedifferentiation via epithelial-mesenchymal transition (EMT) as mechanisms by which radiation could increase stem cells. ABM rejected cell inactivation and predicted increased self-renewal would only affect juveniles while dedifferentiation could act in both juveniles and adults. To further test self-renewal versus dedifferentiation, we used the MCF10A human mammary epithelial cell line, which recapitulates ductal morphogenesis in humanized fat pads, undergoes EMT in response to radiation and transforming growth factor β (TGFβ) and contains rare stem-like cells that are Let-7c negative or express both basal and luminal cytokeratins. ABM simulation of population dynamics of double cytokeratin cells supported increased self-renewal in irradiated MCF10A treated with TGFβ. Radiation-induced Notch concomitant with TGFβ was necessary for increased self-renewal of Let-7c negative MCF10A cells but not for EMT, indicating that these are independent processes. Consistent with these data, irradiating adult mice did not increase mammary repopulating activity or ER-negative tumors. These studies suggest that irradiation during puberty transiently increases stem cell self-renewal, which increases susceptibility to developing ER-negative breast cancer.

  20. Thyroid Hormone-Induced Activation of Notch Signaling is Required for Adult Intestinal Stem Cell Development During Xenopus Laevis Metamorphosis.

    PubMed

    Hasebe, Takashi; Fujimoto, Kenta; Kajita, Mitsuko; Fu, Liezhen; Shi, Yun-Bo; Ishizuya-Oka, Atsuko

    2016-11-21

    In Xenopus laevis intestine during metamorphosis, the larval epithelial cells are removed by apoptosis, and the adult epithelial stem (AE) cells appear concomitantly. They proliferate and differentiate to form the adult epithelium (Ep). Thyroid hormone (TH) is well established to trigger this remodeling by regulating the expression of various genes including Notch receptor. To study the role of Notch signaling, we have analyzed the expression of its components, including the ligands (DLL and Jag), receptor (Notch), and targets (Hairy), in the metamorphosing intestine by real-time reverse transcription-polymerase chain reaction and in situ hybridization or immunohistochemistry. We show that they are up-regulated during both natural and TH-induced metamorphosis in a tissue-specific manner. Particularly, Hairy1 is specifically expressed in the AE cells. Moreover, up-regulation of Hairy1 and Hairy2b by TH was prevented by treating tadpoles with a γ-secretase inhibitor (GSI), which inhibits Notch signaling. More importantly, TH-induced up-regulation of LGR5, an adult intestinal stem cell marker, was suppressed by GSI treatment. Our results suggest that Notch signaling plays a role in stem cell development by regulating the expression of Hairy genes during intestinal remodeling. Furthermore, we show with organ culture experiments that prolonged exposure of tadpole intestine to TH plus GSI leads to hyperplasia of secretory cells and reduction of absorptive cells. Our findings here thus provide evidence for evolutionarily conserved role of Notch signaling in intestinal cell fate determination but more importantly reveal, for the first time, an important role of Notch pathway in the formation of adult intestinal stem cells during vertebrate development. Stem Cells 2016.

  1. Oct-4 expression in adult human differentiated cells challenges its role as a pure stem cell marker.

    PubMed

    Zangrossi, Stefano; Marabese, Mirko; Broggini, Massimo; Giordano, Rosaria; D'Erasmo, Marco; Montelatici, Elisa; Intini, Daniela; Neri, Antonino; Pesce, Maurizio; Rebulla, Paolo; Lazzari, Lorenza

    2007-07-01

    The Oct-4 transcription factor, a member of the POU family that is also known as Oct-3 and Oct3/4, is expressed in totipotent embryonic stem cells (ES) and germ cells, and it has a unique role in development and in the determination of pluripotency. ES may have their postnatal counterpart in the adult stem cells, recently described in various mammalian tissues, and Oct-4 expression in putative stem cells purified from adult tissues has been considered a real marker of stemness. In this context, normal mature adult cells would not be expected to show Oct-4 expression. On the contrary, we demonstrated, using reverse transcription-polymerase chain reaction (PCR) (total RNA, Poly A+), real-time PCR, immunoprecipitation, Western blotting, band shift, and immunofluorescence, that human peripheral blood mononuclear cells, genetically stable and mainly terminally differentiated cells with well defined functions and a limited lifespan, express Oct-4. These observations raise the question as to whether the role of Oct-4 as a marker of pluripotency should be challenged. Our findings suggest that the presence of Oct-4 is not sufficient to define a cell as pluripotent, and that additional measures should be used to avoid misleading results in the case of an embryonic-specific gene with a large number of pseudogenes that may contribute to false identification of Oct-4 in adult stem cells. These unexpected findings may provide new insights into the role of Oct-4 in fully differentiated cells. Disclosure of potential conflicts of interest is found at the end of this article.

  2. How to mend a broken heart: adult and induced pluripotent stem cell therapy for heart repair and regeneration.

    PubMed

    Wegener, Marie; Bader, Augustinus; Giri, Shibashish

    2015-06-01

    The recently developed ability to differentiate primary adult stem cells and induced pluripotent stem cells (iPSCs) into cardiomyocytes is providing unprecedented opportunities to produce an unlimited supply of cardiomyocytes for use in patients with heart disease. Here, we examine the evidence for the preclinical use of such cells for successful heart regeneration. We also describe advances in the identification of new cardiac molecular and cellular targets to induce proliferation of cardiomyocytes for heart regeneration. Such new advances are paving the way for a new innovative drug development process for the treatment of heart disease.

  3. Expression of ezrin in subventricular zone neural stem cells and their progeny in adult and developing mice.

    PubMed

    Moon, Younghye; Kim, Joo Yeon; Choi, So Yoen; Cho, Hyo Min; Kim, Hyun; Sun, Woong

    2013-03-01

    Ezrin is a member of the ezrin-radixin-moesin (ERM) family of proteins, which link the cytoskeleton and cell membrane. ERM proteins are involved in pivotal cellular functions including cell-matrix recognition, cell-cell communication, and cell motility. Several recent studies have shown that ERM proteins are expressed in specific cell types of the adult rostral migratory stream (RMS). In this study, we found that ERM proteins are expressed highly in the early postnatal RMS and the ventricular zone of embryonic cerebral cortex, suggesting that these proteins may be expressed by neural progenitors. Furthermore, whereas ezrin previously was found to be expressed exclusively by astrocytes of the adult RMS, we found that ezrin-expressing cells also expressed the markers for indicating neuroblasts in vivo and in vitro, and that ezrin expression by neuroblasts decreases progressively as neuroblasts migrate. Using in vitro differentiation of adult neural stem cells, we found that ezrin is expressed by neural stem cells and their progeny (neuroblasts and astrocytes), but not by oligodendrocytic progeny. Collectively our findings demonstrate that adult neural stem cells and neuroblasts express ezrin and that ezrin may be involved in intracellular actin remodeling.

  4. Evidence of progenitor cells of glandular and myoepithelial cell lineages in the human adult female breast epithelium: a new progenitor (adult stem) cell concept.

    PubMed

    Boecker, Werner; Buerger, Horst

    2003-10-01

    Although experimental data clearly confirm the existence of self-renewing mammary stem cells, the characteristics of such progenitor cells have never been satisfactorily defined. Using a double immunofluorescence technique for simultaneous detection of the basal cytokeratin 5, the glandular cytokeratins 8/18 and the myoepithelial differentiation marker smooth muscle actin (SMA), we were able to demonstrate the presence of CK5+ cells in human adult breast epithelium. These cells have the potential to differentiate to either glandular (CK8/18+) or myoepithelial cells (SMA+) through intermediary cells (CK5+ and CK8/18+ or SMA+). We therefore proceeded on the assumption that the CK5+ cells are phenotypically and behaviourally progenitor (committed adult stem) cells of human breast epithelium. Furthermore, we furnish evidence that most of these progenitor cells are located in the luminal epithelium of the ductal lobular tree. Based on data obtained in extensive analyses of proliferative breast disease lesions, we have come to regard usual ductal hyperplasia as a progenitor cell-derived lesion, whereas most breast cancers seem to evolve from differentiated glandular cells. Double immunofluorescence experiments provide a new tool to characterize phenotypically progenitor (adult stem) cells and their progenies. This model has been shown to be of great value for a better understanding not only of normal tissue regeneration but also of proliferative breast disease. Furthermore, this model provides a new tool for unravelling further the regulatory mechanisms that govern normal and pathological cell growth.

  5. Designer Self-Assembling Peptide Nanofiber Scaffolds for Adult Mouse Neural Stem Cell 3-Dimensional Cultures

    PubMed Central

    Gelain, Fabrizio; Bottai, Daniele; Vescovi, Angleo; Zhang, Shuguang

    2006-01-01

    Biomedical researchers have become increasingly aware of the limitations of conventional 2-dimensional tissue cell culture systems, including coated Petri dishes, multi-well plates and slides, to fully address many critical issues in cell biology, cancer biology and neurobiology, such as the 3-D microenvironment, 3-D gradient diffusion, 3-D cell migration and 3-D cell-cell contact interactions. In order to fully understand how cells behave in the 3-D body, it is important to develop a well-controlled 3-D cell culture system where every single ingredient is known. Here we report the development of a 3-D cell culture system using a designer peptide nanofiber scaffold with mouse adult neural stem cells. We attached several functional motifs, including cell adhesion, differentiation and bone marrow homing motifs, to a self-assembling peptide RADA16 (Ac-RADARADARADARADA-COHN2). These functionalized peptides undergo self-assembly into a nanofiber structure similar to Matrigel. During cell culture, the cells were fully embedded in the 3-D environment of the scaffold. Two of the peptide scaffolds containing bone marrow homing motifs significantly enhanced the neural cell survival without extra soluble growth and neurotrophic factors to the routine cell culture media. In these designer scaffolds, the cell populations with β-Tubulin+, GFAP+ and Nestin+ markers are similar to those found in cell populations cultured on Matrigel. The gene expression profiling array experiments showed selective gene expression, possibly involved in neural stem cell adhesion and differentiation. Because the synthetic peptides are intrinsically pure and a number of desired function cellular motifs are easy to incorporate, these designer peptide nanofiber scaffolds provide a promising controlled 3-D culture system for diverse tissue cells, and are useful as well for general molecular and cell biology. PMID:17205123

  6. Ex-Vivo Tissues Engineering Modeling for Reconstructive Surgery Using Human Adult Adipose Stem Cells and Polymeric Nanostructured Matrix

    PubMed Central

    Morena, Francesco; Argentati, Chiara; Calzoni, Eleonora; Cordellini, Marino; Emiliani, Carla; D’Angelo, Francesco; Martino, Sabata

    2016-01-01

    The major challenge for stem cell translation regenerative medicine is the regeneration of damaged tissues by creating biological substitutes capable of recapitulating the missing function in the recipient host. Therefore, the current paradigm of tissue engineering strategies is the combination of a selected stem cell type, based on their capability to differentiate toward committed cell lineages, and a biomaterial, that, due to own characteristics (e.g., chemical, electric, mechanical property, nano-topography, and nanostructured molecular components), could serve as active scaffold to generate a bio-hybrid tissue/organ. Thus, effort has been made on the generation of in vitro tissue engineering modeling. Here, we present an in vitro model where human adipose stem cells isolated from lipoaspirate adipose tissue and breast adipose tissue, cultured on polymeric INTEGRA® Meshed Bilayer Wound Matrix (selected based on conventional clinical applications) are evaluated for their potential application for reconstructive surgery toward bone and adipose tissue. We demonstrated that human adipose stem cells isolated from lipoaspirate and breast tissue have similar stemness properties and are suitable for tissue engineering applications. Finally, the overall results highlighted lipoaspirate adipose tissue as a good source for the generation of adult adipose stem cells.

  7. Limited Ca2+ and PKA-pathway dependent neurogenic differentiation of human adult mesenchymal stem cells as compared to fetal neuronal stem cells.

    PubMed

    Lepski, Guilherme; Jannes, Cinthia Elim; Maciaczyk, Jaroslaw; Papazoglou, Anna; Mehlhorn, Alexander T; Kaiser, Stefan; Teixeira, Manoel Jacobsen; Marie, Suely K N; Bischofberger, Josef; Nikkhah, Guido

    2010-01-15

    The ability of mesenchymal stem cells to generate functional neurons in culture is still a matter of controversy. In order to assess this issue, we performed a functional comparison between neuronal differentiation of human MSCs and fetal-derived neural stem cells (NSCs) based on morphological, immunocytochemical, and electrophysiological criteria. Furthermore, possible biochemical mechanisms involved in this process were presented. NF200 immunostaining was used to quantify the yield of differentiated cells after exposure to cAMP. The addition of a PKA inhibitor and Ca(2+) blockers to the differentiation medium significantly reduced the yield of differentiated cells. Activation of CREB was also observed on MSCs during maturation. Na(+)-, K(+)-, and Ca(2+)-voltage-dependent currents were recorded from MSCs-derived cells. In contrast, significantly larger Na(+) currents, firing activity, and spontaneous synaptic currents were recorded from NSCs. Our results indicate that the initial neuronal differentiation of MSCs is induced by cAMP and seems to be dependent upon Ca(2+) and the PKA pathway. However, compared to fetal neural stem cells, adult mesenchymal counterparts are limited in their neurogenic potential. Despite the similar yield of neuronal cells, NSCs achieved a more mature functional state. Description of the underlying mechanisms that govern MSCs' differentiation toward a stable neuronal phenotype and their limitations provides a unique opportunity to enhance our understanding of stem cell plasticity.

  8. Adult Bone Marrow Neural Crest Stem Cells and Mesenchymal Stem Cells Are Not Able to Replace Lost Neurons in Acute MPTP-Lesioned Mice

    PubMed Central

    Neirinckx, Virginie; Marquet, Alice; Coste, Cécile

    2013-01-01

    Adult bone marrow stroma contains multipotent stem cells (BMSC) that are a mixed population of mesenchymal and neural-crest derived stem cells. Both cells are endowed with in vitro multi-lineage differentiation abilities, then constituting an attractive and easy-available source of material for cell therapy in neurological disorders. Whereas the in vivo integration and differentiation of BMSC in neurons into the central nervous system is currently matter of debate, we report here that once injected into the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, pure populations of either bone marrow neural crest stem cells (NCSC) or mesenchymal stem cells (MSC) survived only transiently into the lesioned brain. Moreover, they do not migrate through the brain tissue, neither modify their initial phenotype, while no recovery of the dopaminergic system integrity was observed. Consequently, we tend to conclude that MSC/NCSC are not able to replace lost neurons in acute MPTP-lesioned dopaminergic system through a suitable integration and/or differentiation process. Altogether with recent data, it appears that neuroprotective, neurotrophic and anti-inflammatory features characterizing BMSC are of greater interest as regards CNS lesions management. PMID:23741377

  9. Culture bag systems for clinical applications of adult human neural crest-derived stem cells

    PubMed Central

    2014-01-01

    Introduction Facing the challenging treatment of neurodegenerative diseases as well as complex craniofacial injuries such as those common after cancer therapy, the field of regenerative medicine increasingly relies on stem cell transplantation strategies. Here, neural crest-derived stem cells (NCSCs) offer many promising applications, although scale up of clinical-grade processes prior to potential transplantations is currently limiting. In this study, we aimed to establish a clinical-grade, cost-reducing cultivation system for NCSCs isolated from the adult human nose using cGMP-grade Afc-FEP bags. Methods We cultivated human neural crest-derived stem cells from inferior turbinate (ITSCs) in a cell culture bag system using Afc-FEP bags in human blood plasma-supplemented medium. Investigations of viability, proliferation and expression profile of bag-cultured ITSCs were followed by DNA-content and telomerase activity determination. Cultivated ITSCs were introduced to directed in vitro differentiation assays to assess their potential for mesodermal and ectodermal differentiation. Mesodermal differentiation was determined using an enzyme activity assay (alkaline phosphatase, ALP), respective stainings (Alizarin Red S, Von Kossa and Oil Red O), and RT-PCR, while immunocytochemistry and synaptic vesicle recycling were applied to assay neuroectodermal differentiation of ITSCs. Results When cultivated within Afc-FEP bags, ITSCs grew three-dimensionally in a human blood plasma-derived matrix, thereby showing unchanged morphology, proliferation capability, viability and expression profile in comparison to three dimensionally-cultured ITSCs growing in standard cell culture plastics. Genetic stability of bag-cultured ITSCs was further accompanied by unchanged telomerase activity. Importantly, ITSCs retained their potential to differentiate into mesodermal cell types, particularly including ALP-active, Alizarin Red S-, and Von Kossa-positive osteogenic cell types, as well as

  10. Hematopoietic stem cell transplantation from alternative sources in adults with high-risk acute leukemia.

    PubMed

    Aversa, Franco; Reisner, Yair; Martelli, Massimo F

    2004-01-01

    Since 75% of patients with high-risk acute leukemia do not have a human leukocyte antigen (HLA)-identical sibling, alternative sources for hematopoietic stem cell transplantation (HSCT) are matched unrelated donors (MUD), unrelated umbilical cord blood (UD-UCB) and one HLA haplotype mismatched family members (haploidentical). The chance of finding a suitable donor in the international voluntary donor registries is limited by frequency of the HLA phenotype and the time required to identify the right donor from a potential panel, to establish eligibility and to harvest the cells. In adult MUD recipients, event-free survival ranges up to 50% and refers only to patients who undergo transplant, without taking into account those who do not find a donor. Umbilical cord blood offers the advantages of easy procurement, the absence of risks to donors, the reduced risk of transmitting infections, immediate availability of cryopreserved samples and acceptance of mismatches at two of the six antigens. Although UD-UCB transplantation is a viable option for children, it is seldom considered for adults. The great divergency between body weight and the number of hematopoietic cells in a standard cord blood unit, particularly if associated with a two-antigen mismatch, increases the risk of graft failure and delays hematopoietic reconstitution. Work on full-haplotype mismatched transplants has been proceeding for over 20 years. Originally, outcome in leukemia patients was disappointing because of high incidence of severe graft-vs.-host disease in T-replete transplants and high rejection rates in T-cell-depleted transplants. The breakthrough came with the use of a megadose of T-cell-depleted progenitor cells after a high-intensity conditioning regimen. Treating end-stage patients inevitably confounded clinical outcome in the early pilot studies. Today, high-risk acute leukemia patients are treated at less advanced stages of disease, receive a reasonably well tolerated conditioning

  11. STEM?!?!

    ERIC Educational Resources Information Center

    Merrill, Jen

    2012-01-01

    The author's son has been an engineer since birth. He never asked "why" as a toddler, it was always "how's it work?" So that he wanted a STEM-based home education was no big surprise. In this article, the author considers what kind of curricula would work best for her complex kid.

  12. [Derivation of germ cells from mouse embryonic stem cells in culture].

    PubMed

    Fuhrmann, G

    2005-10-01

    Mouse embryonic stem cells derive from the inner cell mass of the blastocyst and give rise to the three primitive embryonic layers, which later will form all the different tissue types of an adult. Embryonic stem cells are thus defined as totipotent cells. In vitro, these cells can give rise to all the somatic cells. Different laboratories have now shown that cultured embryonic stem cells can also differentiate into germline cells. By using the transcription factor Oct-4 as a tool for the visualization of germ cells, it has been shown the derivation of oocytes from mouse embryonic stem cells. These works should contribute to various areas, including therapeutic cloning which associates nuclear transfer and selective production of a specific cell type.

  13. Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate.

    PubMed

    Ratajczak, M Z; Zuba-Surma, E; Wojakowski, W; Suszynska, M; Mierzejewska, K; Liu, R; Ratajczak, J; Shin, D M; Kucia, M

    2014-03-01

    The concept that adult tissue, including bone marrow (BM), contains early-development cells with broader differentiation potential has again been recently challenged. In response, we would like to review the accumulated evidence from several independent laboratories that adult tissues, including BM, harbor a population of very rare stem cells that may cross germ layers in their differentiation potential. Thus, the BM stem cell compartment hierarchy needs to be revisited. These dormant, early-development cells that our group described as very small embryonic-like stem cells (VSELs) most likely overlap with similar populations of stem cells that have been identified in adult tissues by other investigators as the result of various experimental strategies and have been given various names. As reported, murine VSELs have some pluripotent stem cell characteristics. Moreover, they display several epiblast/germline markers that suggest their embryonic origin and developmental deposition in adult BM. Moreover, at the molecular level, changes in expression of parentally imprinted genes (for example, Igf2-H19) and resistance to insulin/insulin-like growth factor signaling (IIS) regulates their quiescent state in adult tissues. In several emergency situations related to organ damage, VSELs can be activated and mobilized into peripheral blood, and in appropriate animal models they contribute to tissue organ/regeneration. Interestingly, their number correlates with lifespan in mice, and they may also be involved in some malignancies. VSELs have been successfully isolated in several laboratories; however, some investigators experience problems with their isolation.

  14. Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate

    PubMed Central

    Ratajczak, M Z; Zuba-Surma, E; Wojakowski, W; Suszynska, M; Mierzejewska, K; Liu, R; Ratajczak, J; Shin, D M; Kucia, M

    2014-01-01

    The concept that adult tissue, including bone marrow (BM), contains early-development cells with broader differentiation potential has again been recently challenged. In response, we would like to review the accumulated evidence from several independent laboratories that adult tissues, including BM, harbor a population of very rare stem cells that may cross germ layers in their differentiation potential. Thus, the BM stem cell compartment hierarchy needs to be revisited. These dormant, early-development cells that our group described as very small embryonic-like stem cells (VSELs) most likely overlap with similar populations of stem cells that have been identified in adult tissues by other investigators as the result of various experimental strategies and have been given various names. As reported, murine VSELs have some pluripotent stem cell characteristics. Moreover, they display several epiblast/germline markers that suggest their embryonic origin and developmental deposition in adult BM. Moreover, at the molecular level, changes in expression of parentally imprinted genes (for example, Igf2–H19) and resistance to insulin/insulin-like growth factor signaling (IIS) regulates their quiescent state in adult tissues. In several emergency situations related to organ damage, VSELs can be activated and mobilized into peripheral blood, and in appropriate animal models they contribute to tissue organ/regeneration. Interestingly, their number correlates with lifespan in mice, and they may also be involved in some malignancies. VSELs have been successfully isolated in several laboratories; however, some investigators experience problems with their isolation. PMID:24018851

  15. Histone H3 Threonine Phosphorylation Regulates Asymmetric Histone Inheritance in the Drosophila Male Germline

    PubMed Central

    Xie, Jing; Wooten, Matthew; Tran, Vuong; Chen, Bi-Chang; Pozmanter, Caitlin; Simbolon, Christine; Betzig, Eric; Chen, Xin

    2015-01-01

    SUMMARY A long-standing question concerns how stem cells maintain their identity through multiple divisions. Previously we reported that pre-existing and newly synthesized histone H3 are asymmetrically distributed during Drosophila male germline stem cell (GSC) asymmetric division. Here we show that phosphorylation at Threonine 3 of H3 (H3T3P) distinguishe