Science.gov

Sample records for adult hair follicle

  1. SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells.

    PubMed

    Biernaskie, Jeffrey; Paris, Maryline; Morozova, Olena; Fagan, B Matthew; Marra, Marco; Pevny, Larysa; Miller, Freda D

    2009-12-01

    Despite the remarkable regenerative capacity of mammalian skin, an adult dermal stem cell has not yet been identified. Here, we investigated whether skin-derived precursors (SKPs) might fulfill such a role. We show that SKPs derive from Sox2(+) hair follicle dermal cells and that these two cell populations are similar with regard to their transcriptome and functional properties. Both clonal SKPs and endogenous Sox2(+) cells induce hair morphogenesis, differentiate into dermal cell types, and home to a hair follicle niche upon transplantation. Moreover, hair follicle-derived SKPs self-renew, maintain their multipotency, and serially reconstitute hair follicles. Finally, grafting experiments show that follicle-associated dermal cells move out of their niche to contribute cells for dermal maintenance and wound-healing. Thus, SKPs derive from Sox2(+) follicle-associated dermal precursors and display functional properties predicted of a dermal stem cell, contributing to dermal maintenance, wound-healing, and hair follicle morphogenesis.

  2. Ion beam microanalysis of human hair follicles

    NASA Astrophysics Data System (ADS)

    Kertész, Zs.; Szikszai, Z.; Pelicon, P.; Simčič, J.; Telek, A.; Bíró, T.

    2007-07-01

    Hair follicle is an appendage organ of the skin which is of importance to the survival of mammals and still maintains significance for the human race - not just biologically, but also through cosmetic and commercial considerations. However data on composition of hair follicles are scarce and mostly limited to the hair shaft. In this study we provide detailed information on the elemental distribution in human hair follicles in different growth phases (anagen and catagen) using a scanning proton microprobe. The analysis of skin samples obtained from human adults undergoing plastic surgery and of organ-cultured human hair follicles may yield a new insight into the function, development and cyclic activity of the hair follicle.

  3. [Hair follicle regeneration].

    PubMed

    Itami, Satoshi

    2008-05-01

    Hair growth cycle is coordinated with complex processes that are dependent on the interactions of follicular stem cells and dermal papilla cells (DPCs). For the past 10 years, the developmental mechanism of hair follicles has been extensively studied, and spatial and temporal expressions of many molecules are required for the hair morphogenesis. These molecules are also required for hair cycle progression. Androgen receptor, which is a ligand dependent transcription factor, plays an important role in human hair cycle. Frontal scalp DPCs from androgenetic alopecia (AGA) are the target cells of androgen action. Minoxidil and Finasteride were recently introduced for the treatment of AGA, and cell therapy using DPCs is a next strategy for the innovative treatment. PMID:18464507

  4. Macrophages Contribute to the Cyclic Activation of Adult Hair Follicle Stem Cells

    PubMed Central

    Castellana, Donatello; Paus, Ralf; Perez-Moreno, Mirna

    2014-01-01

    Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in number because of apoptosis before the onset of epithelial hair follicle stem cell activation during the murine hair cycle. This process is linked to distinct gene expression, including Wnt transcription. Interestingly, by mimicking this event through the selective induction of macrophage apoptosis in early telogen, we identify a novel involvement of macrophages in stem cell activation in vivo. Importantly, the macrophage-specific pharmacological inhibition of Wnt production delays hair follicle growth. Thus, perifollicular macrophages contribute to the activation of skin epithelial stem cells as a novel, additional cue that regulates their regenerative activity. This finding may have translational implications for skin repair, inflammatory skin diseases and cancer. PMID:25536657

  5. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling

    PubMed Central

    Sennett, Rachel; Rendl, Michael

    2012-01-01

    Embryonic hair follicle induction and formation are regulated by mesenchymal-epithelial interactions between specialized dermal cells and epidermal stem cells that switch to a hair fate. Similarly, during postnatal hair growth, communication between mesenchymal dermal papilla cells and surrounding epithelial matrix cells coordinates hair shaft production. Adult hair follicle regeneration in the hair cycle again is thought to be controlled by activating signals originating from the mesenchymal compartment and acting on hair follicle stem cells. Although many signaling pathways are implicated in hair follicle formation and growth, the precise nature, timing, and intersection of these inductive and regulatory signals remains elusive. The goal of this review is to summarize our current understanding and to discuss recent new insights into mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. PMID:22960356

  6. Integral hair lipid in human hair follicle.

    PubMed

    Lee, Won-Soo

    2011-12-01

    Integral hair lipid (IHL) is bound to the keratinized cell surface to make an environmentally resistant lipid envelope. It is mainly positioned on the hair cuticle and inner root sheath. IHL in the hair follicle may regard as hair barrier to be similar to the epidermal lipid layer functioning as skin barrier. Major constituents of IHL are fatty acid, phytosphingosine, ceramide in decreasing order. Minor constituents of IHL are cholesterol, cholesterol sulfate and cholesterol oleate. Cuticle or cortical cell surface in hair are abundant in fatty acids unlike the keratinized area of epidermis or sebaceous gland, and about 30-40% of such fatty acids are composed of 18-methyl-eicosanoic acid which is known to be bound to proteins by ester or thioester bond. Various factors including moisture, solvent, oxidative damage during bleaching or permanent waving affect IHL. Photochemical changes also can occur in IHL as well as in hair protein and hair pigment. Lipid metabolism is thought to play an essential role in lipid envelope of hair, but also involvement in hair development and function.

  7. Immunohistochemical study of hair follicle stem cells in regenerated hair follicles induced by Wnt10b

    PubMed Central

    Zhang, Yiming; Xing, Yizhan; Guo, Haiying; Ma, Xiaogen; Li, Yuhong

    2016-01-01

    The regulation of the periodic regeneration of hair follicles is complicated. Although Wnt10b has been reported to induce hair follicle regeneration, the characteristics of induced hair follicles, especially the target cells of Wnt10b, have not yet been clearly elucidated. Thus, we systematically evaluated the expression and proliferation patterns of Wnt10b-induced hair follicles. We found that Wnt10b promoted the proliferation of hair follicle stem cells from 24 hours after AdWnt10b injection. Seventy-two hours after AdWnt10b injection, cells outside of bulge area began to proliferate. When the induced hair follicle entered full anagen, although the hair follicle stem cells were normal, canonical Wnt signaling was maintained in the hair precortex cells. Our results reveal that the target cells that overexpressed Wnt10b included hair follicle stem cells, hair precortex cells, and matrix cells. PMID:27766026

  8. Reflectance spectroscopy for evaluating hair follicle cycle

    NASA Astrophysics Data System (ADS)

    Liu, Caihua; Guan, Yue; Wang, Jianru; Zhu, Dan

    2014-02-01

    Hair follicle, as a mini-organ with perpetually cycling of telogen, anagen and catagen, provides a valuable experimental model for studying hair and organ regeneration. The transition of hair follicle from telogen to anagen is a significant sign for successful regeneration. So far discrimination of the hair follicle stage is mostly based on canonical histological examination and empirical speculation based on skin color. Hardly a method has been proposed to quantitatively evaluate the hair follicle stage. In this work, a commercial optical fiber spectrometer was applied to monitor diffuse reflectance of mouse skin with hair follicle cycling, and then the change of reflectance was obtained. Histological examination was used to verify the hair follicle stage. In comparison with the histological examination, the skin diffuse reflectance was relatively high for mouse with telogen hair follicles; it decreased once hair follicles transited to anagen stage; then it increased reversely at catagen stage. This study provided a new method to quantitatively evaluate the hair follicle stage, and should be valuable for the basic and therapeutic investigations on hair regeneration.

  9. Proteomic Analysis of Hair Follicles

    NASA Astrophysics Data System (ADS)

    Ishioka, Noriaki; Terada, Masahiro; Yamada, Shin; Seki, Masaya; Takahashi, Rika; Majima, Hideyuki J.; Higashibata, Akira; Mukai, Chiaki

    2013-02-01

    Hair root cells actively divide in a hair follicle, and they sensitively reflect physical conditions. By analyzing the human hair, we can know stress levels on the human body and metabolic conditions caused by microgravity environment and cosmic radiation. The Japan Aerospace Exploration Agency (JAXA) has initiated a human research study to investigate the effects of long-term space flight on gene expression and mineral metabolism by analyzing hair samples of astronauts who stayed in the International Space Station (ISS) for 6 months. During long-term flights, the physiological effects on astronauts include muscle atrophy and bone calcium loss. Furthermore, radiation and psychological effects are important issue to consider. Therefore, an understanding of the effects of the space environment is important for developing countermeasures against the effects experienced by astronauts. In this experiment, we identify functionally important target proteins that integrate transcriptome, mineral metabolism and proteome profiles from human hair. To compare the protein expression data with the gene expression data from hair roots, we developed the protein processing method. We extracted the protein from five strands of hair using ISOGEN reagents. Then, these extracted proteins were analyzed by LC-MS/MS. These collected profiles will give us useful physiological information to examine the effect of space flight.

  10. Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type.

    PubMed

    Rahmani, Waleed; Abbasi, Sepideh; Hagner, Andrew; Raharjo, Eko; Kumar, Ranjan; Hotta, Akitsu; Magness, Scott; Metzger, Daniel; Biernaskie, Jeff

    2014-12-01

    The dermal papilla (DP) provide instructive signals required to activate epithelial progenitors and initiate hair follicle regeneration. DP cell numbers fluctuate over the hair cycle, and hair loss is associated with gradual depletion/atrophy of DP cells. How DP cell numbers are maintained in healthy follicles remains unclear. We performed in vivo fate mapping of adult hair follicle dermal sheath (DS) cells to determine their lineage relationship with DP and found that a subset of DS cells are retained following each hair cycle, exhibit self-renewal, and repopulate the DS and the DP with new cells. Ablating these hair follicle dermal stem cells and their progeny retarded hair regrowth and altered hair type specification, suggesting that they function to modulate normal DP function. This work identifies a bipotent stem cell within the adult hair follicle mesenchyme and has important implications toward restoration of hair growth after injury, disease, and aging.

  11. Isolation and Culture of Neural Crest Stem Cells from Human Hair Follicles.

    PubMed

    Yang, Ruifeng; Xu, Xiaowei

    2016-01-01

    The hair follicle undergoes lifelong cycling and growth. Previous studies have been focused on epithelial stem cells in the hair follicles. Neural crest stem cells (NCSCs) are pluripotent cells that can persist in adult tissues. We have previously demonstrated that human NCSCs can be isolated from hair follicles. Here, we present a protocol to isolate NCSCs from human hair follicles based on their specific surface-marker expression of CD271/HNK1 or CD271/CD49D (alpha4 integrin). NCSCs can be expanded in the culture as neural spheres or attached cells.

  12. The advantages of hair follicle pluripotent stem cells over embryonic stem cells and induced pluripotent stem cells for regenerative medicine.

    PubMed

    Amoh, Yasuyuki; Katsuoka, Kensei; Hoffman, Robert M

    2010-12-01

    Multipotent adult stem cells have many potential therapeutic applications. Our recent findings suggest that hair follicles are a promising source of easily accessible multipotent stem cells. Stem cells in the hair follicle area express the neural stem cell marker nestin, suggesting that hair-follicle stem cells and neural stem cells have common features. Nestin-expressing hair follicle stem cells can form neurons and other cell types, and thus adult hair follicle stem cells could have important therapeutic applications, particularly for neurologic diseases. Transplanted hair follicle stem cells promote the functional recovery of injured peripheral nerve and spinal cord. Recent findings suggest that direct transplantation of hair-follicle stem cells without culture can promote nerve repair, which makes them potentially clinically practical. Human hair follicle stem cells as well as mouse hair follicle stem cells promote nerve repair and can be applied to test the hypothesis that human hair follicle stem cells can provide a readily available source of neurologically therapeutic stem cells. The use of hair follicle stem cells for nerve regeneration overcomes critical problems of embryonic stem cells or induced pluripotent stem cells in that the hair follicle stem cells are multipotent, readily accessible, non-oncogenic, and are not associated with ethical issues.

  13. Putting the Human Hair Follicle Cycle on the Map.

    PubMed

    Panteleyev, Andrey A

    2016-01-01

    A detailed characterization of the normal (in situ) human hair follicle cycle, supplemented with expressional data on specific hair follicle markers, has been awaited by basic hair researchers and dermatologists. Combining this hair cycle guide, together with a thorough analysis of the human-on-mouse hair xenograft model, provides solid ground for examining human hair cycle biology and pathology and for hair cycle-related pharmacological testing.

  14. A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin.

    PubMed

    Hunt, David P J; Morris, Paul N; Sterling, Jane; Anderson, Jane A; Joannides, Alexis; Jahoda, Colin; Compston, Alastair; Chandran, Siddharthan

    2008-01-01

    Skin-derived precursor cells (SKPs) are multipotent neural crest-related stem cells that grow as self-renewing spheres and are capable of generating neurons and myelinating glial cells. SKPs are of clinical interest because they are accessible and potentially autologous. However, although spheres can be readily isolated from embryonic and neonatal skin, SKP frequency falls away sharply in adulthood, and primary sphere generation from adult human skin is more problematic. In addition, the culture-initiating cell population is undefined and heterogeneous, limiting experimental studies addressing important aspects of these cells such as the behavior of endogenous precursors in vivo and the molecular mechanisms of neural generation. Using a combined fate-mapping and microdissection approach, we identified and characterized a highly enriched niche of neural crest-derived sphere-forming cells within the dermal papilla of the hair follicle of adult skin. We demonstrated that the dermal papilla of the rodent vibrissal follicle is 1,000-fold enriched for sphere-forming neural crest-derived cells compared with whole facial skin. These "papillaspheres" share a phenotypic and developmental profile similar to that of SKPs, can be readily expanded in vitro, and are able to generate both neuronal and glial cells in response to appropriate cues. We demonstrate that papillaspheres can be efficiently generated and expanded from adult human facial skin by microdissection of a single hair follicle. This strategy of targeting a highly enriched niche of sphere-forming cells provides a novel and efficient method for generating neuronal and glial cells from an accessible adult somatic source that is both defined and minimally invasive.

  15. A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin.

    PubMed

    Hunt, David P J; Morris, Paul N; Sterling, Jane; Anderson, Jane A; Joannides, Alexis; Jahoda, Colin; Compston, Alastair; Chandran, Siddharthan

    2008-01-01

    Skin-derived precursor cells (SKPs) are multipotent neural crest-related stem cells that grow as self-renewing spheres and are capable of generating neurons and myelinating glial cells. SKPs are of clinical interest because they are accessible and potentially autologous. However, although spheres can be readily isolated from embryonic and neonatal skin, SKP frequency falls away sharply in adulthood, and primary sphere generation from adult human skin is more problematic. In addition, the culture-initiating cell population is undefined and heterogeneous, limiting experimental studies addressing important aspects of these cells such as the behavior of endogenous precursors in vivo and the molecular mechanisms of neural generation. Using a combined fate-mapping and microdissection approach, we identified and characterized a highly enriched niche of neural crest-derived sphere-forming cells within the dermal papilla of the hair follicle of adult skin. We demonstrated that the dermal papilla of the rodent vibrissal follicle is 1,000-fold enriched for sphere-forming neural crest-derived cells compared with whole facial skin. These "papillaspheres" share a phenotypic and developmental profile similar to that of SKPs, can be readily expanded in vitro, and are able to generate both neuronal and glial cells in response to appropriate cues. We demonstrate that papillaspheres can be efficiently generated and expanded from adult human facial skin by microdissection of a single hair follicle. This strategy of targeting a highly enriched niche of sphere-forming cells provides a novel and efficient method for generating neuronal and glial cells from an accessible adult somatic source that is both defined and minimally invasive. PMID:17901404

  16. Epidermal stem cells and skin tissue engineering in hair follicle regeneration.

    PubMed

    Balañá, María Eugenia; Charreau, Hernán Eduardo; Leirós, Gustavo José

    2015-05-26

    The reconstitution of a fully organized and functional hair follicle from dissociated cells propagated under defined tissue culture conditions is a challenge still pending in tissue engineering. The loss of hair follicles caused by injuries or pathologies such as alopecia not only affects the patients' psychological well-being, but also endangers certain inherent functions of the skin. It is then of great interest to find different strategies aiming to regenerate or neogenerate the hair follicle under conditions proper of an adult individual. Based upon current knowledge on the epithelial and dermal cells and their interactions during the embryonic hair generation and adult hair cycling, many researchers have tried to obtain mature hair follicles using different strategies and approaches depending on the causes of hair loss. This review summarizes current advances in the different experimental strategies to regenerate or neogenerate hair follicles, with emphasis on those involving neogenesis of hair follicles in adult individuals using isolated cells and tissue engineering. Most of these experiments were performed using rodent cells, particularly from embryonic or newborn origin. However, no successful strategy to generate human hair follicles from adult cells has yet been reported. This review identifies several issues that should be considered to achieve this objective. Perhaps the most important challenge is to provide three-dimensional culture conditions mimicking the structure of living tissue. Improving culture conditions that allow the expansion of specific cells while protecting their inductive properties, as well as methods for selecting populations of epithelial stem cells, should give us the necessary tools to overcome the difficulties that constrain human hair follicle neogenesis. An analysis of patent trends shows that the number of patent applications aimed at hair follicle regeneration and neogenesis has been increasing during the last decade. This

  17. Epidermal stem cells and skin tissue engineering in hair follicle regeneration

    PubMed Central

    Balañá, María Eugenia; Charreau, Hernán Eduardo; Leirós, Gustavo José

    2015-01-01

    The reconstitution of a fully organized and functional hair follicle from dissociated cells propagated under defined tissue culture conditions is a challenge still pending in tissue engineering. The loss of hair follicles caused by injuries or pathologies such as alopecia not only affects the patients’ psychological well-being, but also endangers certain inherent functions of the skin. It is then of great interest to find different strategies aiming to regenerate or neogenerate the hair follicle under conditions proper of an adult individual. Based upon current knowledge on the epithelial and dermal cells and their interactions during the embryonic hair generation and adult hair cycling, many researchers have tried to obtain mature hair follicles using different strategies and approaches depending on the causes of hair loss. This review summarizes current advances in the different experimental strategies to regenerate or neogenerate hair follicles, with emphasis on those involving neogenesis of hair follicles in adult individuals using isolated cells and tissue engineering. Most of these experiments were performed using rodent cells, particularly from embryonic or newborn origin. However, no successful strategy to generate human hair follicles from adult cells has yet been reported. This review identifies several issues that should be considered to achieve this objective. Perhaps the most important challenge is to provide three-dimensional culture conditions mimicking the structure of living tissue. Improving culture conditions that allow the expansion of specific cells while protecting their inductive properties, as well as methods for selecting populations of epithelial stem cells, should give us the necessary tools to overcome the difficulties that constrain human hair follicle neogenesis. An analysis of patent trends shows that the number of patent applications aimed at hair follicle regeneration and neogenesis has been increasing during the last decade. This

  18. Epidermal stem cells and skin tissue engineering in hair follicle regeneration.

    PubMed

    Balañá, María Eugenia; Charreau, Hernán Eduardo; Leirós, Gustavo José

    2015-05-26

    The reconstitution of a fully organized and functional hair follicle from dissociated cells propagated under defined tissue culture conditions is a challenge still pending in tissue engineering. The loss of hair follicles caused by injuries or pathologies such as alopecia not only affects the patients' psychological well-being, but also endangers certain inherent functions of the skin. It is then of great interest to find different strategies aiming to regenerate or neogenerate the hair follicle under conditions proper of an adult individual. Based upon current knowledge on the epithelial and dermal cells and their interactions during the embryonic hair generation and adult hair cycling, many researchers have tried to obtain mature hair follicles using different strategies and approaches depending on the causes of hair loss. This review summarizes current advances in the different experimental strategies to regenerate or neogenerate hair follicles, with emphasis on those involving neogenesis of hair follicles in adult individuals using isolated cells and tissue engineering. Most of these experiments were performed using rodent cells, particularly from embryonic or newborn origin. However, no successful strategy to generate human hair follicles from adult cells has yet been reported. This review identifies several issues that should be considered to achieve this objective. Perhaps the most important challenge is to provide three-dimensional culture conditions mimicking the structure of living tissue. Improving culture conditions that allow the expansion of specific cells while protecting their inductive properties, as well as methods for selecting populations of epithelial stem cells, should give us the necessary tools to overcome the difficulties that constrain human hair follicle neogenesis. An analysis of patent trends shows that the number of patent applications aimed at hair follicle regeneration and neogenesis has been increasing during the last decade. This

  19. Gene and stem cell therapy of the hair follicle.

    PubMed

    Hoffman, Robert M

    2005-01-01

    The hair follicle is a highly complex appendage of the skin containing a multiplicity of cell types. The follicle undergoes constant cycling through the life of the organism including growth and resorption with growth dependent on specific stem cells. The targeting of the follicle by genes and stem cells to change its properties, in particular, the nature of the hair shaft is discussed. Hair follicle delivery systems are described such as liposomes and viral vectors for gene therapy. The nature of the hair follicle stem cells is discussed, in particular, its pluripotency.

  20. Reflectance spectroscopy for noninvasive evaluation of hair follicle stage

    NASA Astrophysics Data System (ADS)

    Liu, Caihua; Guan, Yue; Wang, Jianru; Zhong, Xiewei; Liu, Xiuli; Zhu, Dan

    2015-05-01

    Hair follicle offers an excellent model for systems biology and regenerative medicine. So far, the stages of hair follicle growth have been evaluated by histological examination. In this work, a noninvasive spectroscopy was proposed by measuring the diffuse reflectance of mouse skin and analyzing the melanin value. Results show that the skin diffuse reflectance was relatively high when hair follicles were at the telogen stage and at the beginning of the anagen stage, and decreased with the progression of the anagen stage. When the hair follicle entered into the catagen stage, the diffuse reflectance gradually increased. The changes in the melanin content of skin had contrary dynamics. Substages of the hair follicle cycle could be distinguished by comparing the changes in melanin value with the histological examination. This study provided a new method for noninvasive evaluation of the hair follicle stage, and should be valuable for basic and therapeutic investigations on hair regeneration.

  1. Reflectance spectroscopy for noninvasive evaluation of hair follicle stage.

    PubMed

    Liu, Caihua; Guan, Yue; Wang, Jianru; Zhong, Xiewei; Liu, Xiuli; Zhu, Dan

    2015-05-01

    Hair follicle offers an excellent model for systems biology and regenerative medicine. So far, the stages of hair follicle growth have been evaluated by histological examination. In this work, a noninvasive spectroscopy was proposed by measuring the diffuse reflectance of mouse skin and analyzing the melanin value. Results show that the skin diffuse reflectance was relatively high when hair follicles were at the telogen stage and at the beginning of the anagen stage, and decreased with the progression of the anagen stage. When the hair follicle entered into the catagen stage, the diffuse reflectance gradually increased. The changes in the melanin content of skin had contrary dynamics. Substages of the hair follicle cycle could be distinguished by comparing the changes in melanin value with the histological examination. This study provided a new method for noninvasive evaluation of the hair follicle stage, and should be valuable for basic and therapeutic investigations on hair regeneration. PMID:25428579

  2. The hair follicle as a target for gene therapy.

    PubMed

    Gupta, S; Domashenko, A; Cotsarelis, G

    2001-01-01

    The hair follicle possesses progenitor cells for continued hair follicle cycling and for epidermal keratinocytes, melanocytes and Langerhans cells. These different cell types can be targeted by topical gene delivery to mouse skin. Using a combination of liposomes and DNA, we demonstrated the feasibility of targeting hair follicle cells in human scalp xenografts as well. We defined liposome composition and stage of the hair cycle as important parameters influencing transfection of human hair follicles. Transfection occurred only during anagen onset. Considerations and obstacles for using gene therapy to treat alopecias and skin disease are discussed. A theoretical framework for future gene therapy treatments for cutaneous and systemic disorders is presented.

  3. Limitations of human occipital scalp hair follicle organ culture for studying the effects of minoxidil as a hair growth enhancer.

    PubMed

    Magerl, Markus; Paus, Ralf; Farjo, Nilofer; Müller-Röver, Sven; Peters, Eva M J; Foitzik, Kerstin; Tobin, Desmond J

    2004-10-01

    Minoxidil induces new hair growth in approximately one-third of patients with androgenetic alopecia after 1 year of treatment. With several conflicting reports in the literature based on small-scale studies, the current study aimed to clarify whether organ culture of human scalp anagen VI hair follicles is a suitable in vitro test system for reproducing, and experimentally dissecting, the recognized in vivo hair-growth-promoting capacity of minoxidil. Hair shaft elongation was studied in terminal anagen VI hair follicles microdissected from the occipital scalp of 36 healthy adults. A total of 2300 hair follicles, approximately 65 per individual, were tested using modifications of a basic organ culture protocol. It is shown here that minoxidil does not significantly increase hair shaft elongation or the duration of anagen VI in ex vivo culture despite several enhancements on the conventional methodology. This disparity to what is seen clinically in minoxidil responders may be explained by the following: (i) use of occipital (rather than frontotemporal or vertex) hair follicles; (ii) use of, already maximally growing, anagen VI hair follicles; (iii) a predominance of hair follicles from minoxidil unresponsive-donors; (iv) use of minoxidil rather than its sulfate metabolite; and/or (v) use of a suboptimal minoxidil dosage. This disparity questions the usefulness of standard human hair follicle organ culture in minoxidil research. Unexpectedly, minoxidil even inhibited hair shaft elongation in the absence of insulin, which may indicate that the actual hair-growth-modulatory effects of minoxidil depend on the concomitant local presence/absence of other growth modulators.

  4. Foxi3 Deficiency Compromises Hair Follicle Stem Cell Specification and Activation.

    PubMed

    Shirokova, Vera; Biggs, Leah C; Jussila, Maria; Ohyama, Takahiro; Groves, Andrew K; Mikkola, Marja L

    2016-07-01

    The hair follicle is an ideal system to study stem cell specification and homeostasis due to its well characterized morphogenesis and stereotypic cycles of stem cell activation upon each hair cycle to produce a new hair shaft. The adult hair follicle stem cell niche consists of two distinct populations, the bulge and the more activation-prone secondary hair germ (HG). Hair follicle stem cells are set aside during early stages of morphogenesis. This process is known to depend on the Sox9 transcription factor, but otherwise the establishment of the hair follicle stem cell niche is poorly understood. Here, we show that that mutation of Foxi3, a Forkhead family transcription factor mutated in several hairless dog breeds, compromises stem cell specification. Further, loss of Foxi3 impedes hair follicle downgrowth and progression of the hair cycle. Genome-wide profiling revealed a number of downstream effectors of Foxi3 including transcription factors with a recognized function in hair follicle stem cells such as Lhx2, Runx1, and Nfatc1, suggesting that the Foxi3 mutant phenotype results from simultaneous downregulation of several stem cell signature genes. We show that Foxi3 displays a highly dynamic expression pattern during hair morphogenesis and cycling, and identify Foxi3 as a novel secondary HG marker. Absence of Foxi3 results in poor hair regeneration upon hair plucking, and a sparse fur phenotype in unperturbed mice that exacerbates with age, caused by impaired secondary HG activation leading to progressive depletion of stem cells. Thus, Foxi3 regulates multiple aspects of hair follicle development and homeostasis. Stem Cells 2016;34:1896-1908.

  5. Cryopreservation of the Hair Follicle Maintains Pluripotency of Nestin-Expressing Hair Follicle-Associated Pluripotent Stem Cells.

    PubMed

    Kajiura, Satoshi; Mii, Sumiyuki; Aki, Ryoichi; Hamada, Yuko; Arakawa, Nobuko; Kawahara, Katsumasa; Li, Lingna; Katsuoka, Kensei; Hoffman, Robert M; Amoh, Yasuyuki

    2015-08-01

    Hair follicles contain nestin-expressing pluripotent stem cells, the origin of which is above the bulge area, below the sebaceous gland. We have termed these cells hair follicle-associated pluripotent (HAP) stem cells. In the present study, we established efficient cryopreservation methods of the hair follicle that maintained the pluripotency of HAP stem cells. We cryopreserved the whole hair follicle from green fluorescent protein transgenic mice by slow-rate cooling in TC-Protector medium and storage in liquid nitrogen. After thawing, the upper part of the hair follicle was isolated and cultured in Dulbecco's Modified Eagle's Medium (DMEM) with fetal bovine serum (FBS). After 4 weeks of culture, cells from the upper part of the hair follicle grew out. The growing cells were transferred to DMEM/F12 without FBS. After 1 week of culture, the growing cells formed hair spheres, each containing ∼1×10(2) HAP stem cells. The hair spheres contained cells that differentiated to neurons, glial cells, and other cell types. The thawed and cultured upper part of the hair follicle produced almost as many pluripotent hair spheres as fresh follicles. The hair spheres derived from slow-cooling cryopreserved hair follicles were as pluripotent as hair spheres from fresh hair follicles. In contrast, rapid-cooling (vitrification) cryopreservation poorly preserved the pluripotency of the hair follicle stem cells. Stem cell marker genes (nestin, Sox2, and SSEA-1) were as highly expressed in slow-rate cooled cryopreserved follicles, after thawing, as in fresh follicles. However, in the vitrification cryopreserved follicles, the expression of the stem cell marker genes was greatly reduced. Direct cryopreservation of hair spheres by either the rapid-cooling, or slow-cooling method, resulted in loss of pluripotency. These results suggest that the slow-rate cooling cryopreservation of the whole hair follicle is effective to store HAP stem cells. Stored HAP stem cells would be very useful

  6. Runx1 modulates developmental, but not injury-driven, hair follicle stem cell activation.

    PubMed

    Osorio, Karen M; Lee, Song Eun; McDermitt, David J; Waghmare, Sanjeev K; Zhang, Ying V; Woo, Hyun Nyun; Tumbar, Tudorita

    2008-03-01

    Aml1/Runx1 controls developmental aspects of several tissues, is a master regulator of blood stem cells, and plays a role in leukemia. However, it is unclear whether it functions in tissue stem cells other than blood. Here, we have investigated the role of Runx1 in mouse hair follicle stem cells by conditional ablation in epithelial cells. Runx1 disruption affects hair follicle stem cell activation, but not their maintenance, proliferation or differentiation potential. Adult mutant mice exhibit impaired de novo production of hair shafts and all temporary hair cell lineages, owing to a prolonged quiescent phase of the first hair cycle. The lag of stem cell activity is reversed by skin injury. Our work suggests a degree of functional overlap in Runx1 regulation of blood and hair follicle stem cells at an equivalent time point in the development of these two tissues. PMID:18256199

  7. Runx1 modulates developmental, but not injury-driven, hair follicle stem cell activation.

    PubMed

    Osorio, Karen M; Lee, Song Eun; McDermitt, David J; Waghmare, Sanjeev K; Zhang, Ying V; Woo, Hyun Nyun; Tumbar, Tudorita

    2008-03-01

    Aml1/Runx1 controls developmental aspects of several tissues, is a master regulator of blood stem cells, and plays a role in leukemia. However, it is unclear whether it functions in tissue stem cells other than blood. Here, we have investigated the role of Runx1 in mouse hair follicle stem cells by conditional ablation in epithelial cells. Runx1 disruption affects hair follicle stem cell activation, but not their maintenance, proliferation or differentiation potential. Adult mutant mice exhibit impaired de novo production of hair shafts and all temporary hair cell lineages, owing to a prolonged quiescent phase of the first hair cycle. The lag of stem cell activity is reversed by skin injury. Our work suggests a degree of functional overlap in Runx1 regulation of blood and hair follicle stem cells at an equivalent time point in the development of these two tissues.

  8. Extensive Hair Shaft Growth after Mouse Whisker Follicle Isolation, Cryopreservation and Transplantation in Nude Mice.

    PubMed

    Cao, Wenluo; Li, Lingna; Tran, Benjamin; Kajiura, Satoshi; Amoh, Yasuyuki; Liu, Fang; Hoffman, Robert M

    2015-01-01

    We previously demonstrated that whole hair follicles could be cryopreserved to maintain their stem-cells differentation potential. In the present study, we demonstrated that cryopreserved mouse whisker hair follicles maintain their hair growth potential. DMSO better cryopreserved mouse whisker follicles compared to glycerol. Cryopreserved hair follicles also maintained the hair follicle-associated-pluripotent (HAP) stem cells, evidenced by P75NTR expression. Subcutaneous transplantation of DMSO-cryopreserved hair follicles in nude mice resulted in extensive hair fiber growth over 8 weeks, indicating the functional recovery of hair shaft growth of cryopreserved hair follicles.

  9. Extensive Hair Shaft Growth after Mouse Whisker Follicle Isolation, Cryopreservation and Transplantation in Nude Mice.

    PubMed

    Cao, Wenluo; Li, Lingna; Tran, Benjamin; Kajiura, Satoshi; Amoh, Yasuyuki; Liu, Fang; Hoffman, Robert M

    2015-01-01

    We previously demonstrated that whole hair follicles could be cryopreserved to maintain their stem-cells differentation potential. In the present study, we demonstrated that cryopreserved mouse whisker hair follicles maintain their hair growth potential. DMSO better cryopreserved mouse whisker follicles compared to glycerol. Cryopreserved hair follicles also maintained the hair follicle-associated-pluripotent (HAP) stem cells, evidenced by P75NTR expression. Subcutaneous transplantation of DMSO-cryopreserved hair follicles in nude mice resulted in extensive hair fiber growth over 8 weeks, indicating the functional recovery of hair shaft growth of cryopreserved hair follicles. PMID:26716690

  10. Introduction to Hair-Follicle-Associated Pluripotent Stem Cells.

    PubMed

    Hoffman, Robert M

    2016-01-01

    Nestin-expressing stem cells of the hair follicle, discovered by our laboratory, have been shown to be able to form outer-root sheaths of the follicle as well as neurons and many other non-follicle cell types. We have termed the nestin-expressing stem cells of the hair follicle as hair-follicle-associated pluripotent (HAP) stem cells. We have shown that the HAP stem cells from the hair follicle can effect the repair of peripheral nerve and spinal cord injury. The hair follicle stem cells differentiate into neuronal and glial cells after transplantation to the injured peripheral nerve and spinal cord, and enhance injury repair and locomotor recovery. When the excised hair follicle with its nerve stump was placed in Gelfoam(®) 3D histoculture, HAP stem cells grew and extended the hair follicle nerve which consisted of βIII-tubulin-positive fibers with F-actin expression at the tip. These findings indicate that βIII-tubulin-positive fibers elongating from the whisker follicle sensory nerve stump were growing axons. The growing whisker sensory nerve was highly enriched in HAP stem cells, which appeared to play a major role in its elongation and interaction with other nerves in 3D Gelfoam(®) histoculture, including the sciatic nerve, the trigeminal nerve, and the trigeminal nerve ganglion. These results suggest that a major function of the HAP stem cells in the hair follicle is for growth of the follicle sensory nerve. Recently, we have shown that HAP stem cells can differentiate into beating cardiac muscle cells. HAP stem cells have critical advantages for regenerative medicine over embryonic stem (ES) cells and induced pluripotent stem (iPS) cells in that they are highly accessible from each patient, thereby eliminating immunological issues since they are autologous, require no genetic manipulation, are non-tumorigenic, and do not present ethical issues.

  11. Regenerative metamorphosis in hairs and feathers: follicle as a programmable biological printer

    PubMed Central

    Oh, Ji Won; Lin, Sung-Jan; Plikus, Maksim V.

    2015-01-01

    Present-day hairs and feathers are marvels of biological engineering perfected over 200 million years of convergent evolution. Prominently, both follicle types coevolved regenerative cycling, wherein active filament making (anagen) is intermitted by a phase of relative quiescence (telogen). Such regenerative cycling enables follicles to “reload” their morphogenetic program and make qualitatively different filaments in the consecutive cycles. Indeed, many species of mammals and birds undergo regenerative metamorphosis, prominently changing their integument between juvenile and adult forms. This phenomenon is inconspicuous in mice, which led to the conventional perception that hair type is hardwired during follicle morphogenesis and cannot switch. A series of recent works by Chi and Morgan change this perception, and show that many mouse follicles naturally switch hair morphologies, for instance from “wavy” zigzag to straight awl, in the second growth cycle. A series of observations and genetic experiments show that back and forth hair type switching depends on the number of cells in the follicle's dermal papilla, with the critical threshold being around 40-50 cells. Pigmentation is another parameter that hair and feather follicles can reload between cycles, and even midway through anagen. Recent works show that hair and feather pigmentation “printing” programs coevolved to rely on pulsed expression of Agouti, a melanocortin receptor-1 antagonist, in the follicular mesenchyme. Here, we discuss broader implications of hair and feather regenerative plasticity. PMID:25557541

  12. [The hair follicle as a target for gene therapy].

    PubMed

    Cotsarelis, G

    2002-05-01

    The hair follicle possesses progenitor cells required for continuous hair follicle cycling and for epidermal keratinocytes, melanocytes and Langerhans cells. These different cell types can be the target of topical gene delivery in the skin of the mouse. Using a combination of liposomes and DNA, we demonstrate the feasibility of targeting hair follicle cells in human scalp xenografts. We consider liposome composition and stage of the hair cycle as important parameters influencing transfection of human hair follicles. Transfection is possible only during the early anagen phase. Factors and obstacles for the use of gene therapy in treating alopecia and skin diseases are discussed. A theoretical framework for future treatment of cutaneous and systemic disorders using gene therapy is presented.

  13. The Hair Follicle: A Comparative Review of Canine Hair Follicle Anatomy and Physiology.

    PubMed

    Welle, Monika M; Wiener, Dominique J

    2016-06-01

    The hair follicle (HF) has a wide range of functions including thermoregulation, physical and immunological protection against external insults, sensory perception, social interactions, and camouflage. One of the most characteristic features of HFs is that they self-renew during hair cycle (HC) throughout the entire life of an individual to continuously produce new hair. HC disturbances are common in humans and comparable to some alopecic disorders in dogs. A normal HC is maintained by follicular stem cells (SCs), which are predominately found in an area known as the bulge. Due to similar morphological characteristics of the human and canine bulge area, the particularity of compound HFs in humans and dogs as well as similarities in follicular biomarker expression, the dog might be a promising model to study human HC and SC disorders. In this review, we give an overview of normal follicular anatomy, the HC, and follicular SCs and discuss the possible pathogenetic mechanisms of noninflammatory alopecia. PMID:27000375

  14. Protocols for Cryopreservation of Intact Hair Follicle That Maintain Pluripotency of Nestin-Expressing Hair-Follicle-Associated Pluripotent (HAP) Stem Cells.

    PubMed

    Kajiura, Satoshi; Mii, Sumiyuki; Aki, Ryoichi; Hamada, Yuko; Arakawa, Nobuko; Kawahara, Katsumasa; Li, Lingna; Katsuoka, Kensei; Hoffman, Robert M; Amoh, Yasuyuki

    2016-01-01

    Hair follicles contain nestin-expressing pluripotent stem cells, the origin of which is above the bulge area, below the sebaceous gland. We have termed these cells hair-follicle-associated pluripotent (HAP) stem cells. Cryopreservation methods of the hair follicle that maintain the pluripotency of HAP stem cells are described in this chapter. Intact hair follicles from green fluorescent protein (GFP) transgenic mice were cryopreserved by slow-rate cooling in TC-Protector medium and storage in liquid nitrogen. After thawing, the upper part of the hair follicle was isolated and cultured in DMEM with fetal bovine serum (FBS). After 4 weeks culture, cells from the upper part of the hair follicles grew out. The growing cells were transferred to DMEM/F12 without FBS. After 1 week culture, the growing cells formed hair spheres, each containing approximately 1 × 10(2) HAP stem cells. The hair spheres contained cells which could differentiate to neurons, glial cells, and other cell types. The formation of hair spheres by the thawed and cultured upper part of the hair follicle produced almost as many pluripotent hair spheres as fresh follicles. The hair spheres derived from cryopreserved hair follicles were as pluripotent as hair spheres from fresh hair follicles. These results suggest that the cryopreservation of the whole hair follicle is an effective way to store HAP stem cells for personalized regenerative medicine, enabling any individual to maintain a bank of pluripotent stem cells for future clinical use. PMID:27431257

  15. Foxp1 maintains hair follicle stem cell quiescence through regulation of Fgf18

    PubMed Central

    Leishman, Erin; Howard, Jeffrey M.; Garcia, Gloria E.; Miao, Qi; Ku, Amy T.; Dekker, Joseph D.; Tucker, Haley; Nguyen, Hoang

    2013-01-01

    Hair follicles cyclically degenerate and regenerate throughout adult life and require regular stem cell activation to drive the cycle. In the resting phase of the hair cycle, hair follicle stem cells are maintained in a quiescent state until they receive signals to proliferate. We found that the forkhead transcription factor Foxp1 is crucial for maintaining the quiescence of hair follicle stem cells. Loss of Foxp1 in skin epithelial cells leads to precocious stem cell activation, resulting in drastic shortening of the quiescent phase of the hair cycle. Conversely, overexpression of Foxp1 in keratinocytes prevents cell proliferation by promoting cell cycle arrest. Finally, through both gain- and loss-of-function studies, we identify fibroblast growth factor 18 (Fgf18) as the key downstream target of Foxp1. We show that exogenously supplied FGF18 can prevent the hair follicle stem cells of Foxp1 null mice from being prematurely activated. As Fgf18 controls the length of the quiescent phase and is a key downstream target of Foxp1, our data strongly suggest that Foxp1 regulates the quiescent stem cell state in the hair follicle stem cell niche by controlling Fgf18 expression. PMID:23946441

  16. Panax ginseng prevents apoptosis in hair follicles and accelerates recovery of hair medullary cells in irradiated mice.

    PubMed

    Kim, S H; Jeong, K S; Ryu, S Y; Kim, T H

    1998-01-01

    We studied the effect of the water fraction of Panax ginseng, one of traditional oriental medicine herbs on apoptosis and the formation of medullary cell in the hair follicles of irradiated mice. The hair follicle or its differentiated product, the hair, which represents a linear historical record of follicular proliferative activity, could provide a biological indicator of the effect of radioprotective drugs. Adult N:GP(s) mice with hair follicles synchronously in the middle of the hair growth cycle received whole-body doses of gamma-radiation. The hair follicles were analysed either 12 hours after irradiation with 2 Gy in the experiment on the apoptosis, or 3 days after irradiation with 3 Gy in the experiment on the forming medulla. The number of medullary cells per unit length (100 microns) were measured by H and E staining. Apoptosis was detected by a nonisotopic in situ DNA end-labeling (ISEL) technique and H and E stain applied to the serial histologic sections. Ginseng administration before irradiation resulted in a suppression of apoptosis, as shown by a reduced number of cells stained with ISEL for fragmented DNA, both i.p. (0.3 mg/head, p < 0.05) and p.o. (2 mg/ml of drinking water, p < 0.05) treatment. In addition, ginseng treatment was associated with an increase in the number of medullary cell per unit length as compared with the vehicle treated mice (p < 0.001, i.p.; p < 0.05, p.o.). These results indicate that the water fraction of ginseng can exert a potent effect on the recovery of the hair follicles by its combined effects on proliferation and apoptosis of the cells in the hair follicle. PMID:9627805

  17. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge.

    PubMed

    Liu, Yaping; Lyle, Stephen; Yang, Zaixin; Cotsarelis, George

    2003-11-01

    Putative epithelial stem cells in the hair follicle bulge are thought to play pivotal roles in the homeostasis, aging, and carcinogenesis of the cutaneous epithelium. Elucidating the role of bulge cells in these processes has been hampered by the lack of gene promoters that target this area with specificity. Here we describe the isolation of the mouse keratin 15 (K15) promoter and demonstrate its utility for preferentially targeting hair follicle bulge cells in adult K15/lacZ transgenic mice. We found that patterns of K15 expression and promoter activity changed with age and correlated with levels of differentiation within the cutaneous epithelium; less differentiated keratinocytes in the epidermis of the neonatal mouse and in the bulge area of the adult mouse preferentially expressed K15. These findings demonstrate the utility of the K15 promoter for targeting epithelial stem cells in the hair follicle bulge and set the stage for elucidating the role of bulge cells in skin biology.

  18. Potassium channel conductance as a control mechanism in hair follicles.

    PubMed

    Buhl, A E; Conrad, S J; Waldon, D J; Brunden, M N

    1993-07-01

    The opening of intracellular potassium channels is a common mechanism of action for a set of anti-hypertensive drugs that includes the hair-growth-inducing agent minoxidil. Recent work suggests potassium channel openers (PCOs) also influence hair growth. Correlative studies demonstrate that a series of PCOs including minoxidil, pinacidil, P-1075, an active pinacidil analog, RP-49,356, cromakalim, and nicorandil maintain hair growth in cultured vibrissa follicles. Studies using balding stumptail macaques verify that minoxidil, P-1075, and cromakalim but not RP-49,356 stimulate hair growth. The definition of potassium channels and documentation of drug effects on these channels is classically done using electrophysiologic techniques. Such studies require the identification and isolation of target cells. Both these are among the unsolved problems in the area of hair biology. Estimating K+ flux using 86Rb+ as a K+ tracer is an accepted method of assessing potassium channel conductance in other organ systems. Both pinacidil and RP-49,356 induce measurable Rb+ flux in isolated vibrissa follicles and a hair epithelial cell line whereas neither minoxidil nor minoxidil sulfate had measurable effects. Potassium channels have been studied successfully in other organ systems using specific pharmacologic blockers for the various channel subtypes. Blockers including glyburide, tetraethylammonium, and procaine failed to inhibit minoxidil stimulation of cultured follicles. The current explosion of knowledge on potassium channel biology, cloning of channels, and continued progress in hair biology promise to clarify the role of K+ ions in the control of hair follicles.

  19. Fgf9 from dermal γδ T cells induces hair follicle neogenesis after wounding

    PubMed Central

    Gay, Denise; Kwon, Ohsang; Zhang, Zhikun; Spata, Michelle; Plikus, Maksim V; Holler, Phillip D; Ito, Mayumi; Yang, Zaixin; Treffeisen, Elsa; Kim, Chang D; Nace, Arben; Zhang, Xiaohong; Baratono, Sheena; Wang, Fen; Ornitz, David M; Millar, Sarah E; Cotsarelis, George

    2014-01-01

    Understanding molecular mechanisms for regeneration of hair follicles provides new opportunities for developing treatments for hair loss and other skin disorders. Here we show that fibroblast growth factor 9 (Fgf9), initially secreted by γδ T cells, modulates hair follicle regeneration after wounding the skin of adult mice. Reducing Fgf9 expression decreases this wound-induced hair neogenesis (WIHN). Conversely, overexpression of Fgf9 results in a two- to threefold increase in the number of neogenic hair follicles. We found that Fgf9 from γδ T cells triggers Wnt expression and subsequent Wnt activation in wound fibroblasts. Through a unique feedback mechanism, activated fibroblasts then express Fgf9, thus amplifying Wnt activity throughout the wound dermis during a crucial phase of skin regeneration. Notably, humans lack a robust population of resident dermal γδ T cells, potentially explaining their inability to regenerate hair after wounding. These findings highlight the essential relationship between the immune system and tissue regeneration. The importance of Fgf9 in hair follicle regeneration suggests that it could be used therapeutically in humans. PMID:23727932

  20. Human hair follicle: reservoir function and selective targeting.

    PubMed

    Blume-Peytavi, U; Vogt, A

    2011-10-01

    Penetration of topically applied compounds may occur via the stratum corneum, skin appendages and hair follicles. The follicular infundibulum increases the surface area, disrupts the epidermal barrier towards the lower parts of the follicle, and serves as a reservoir. Topical delivery of active compounds to specific targets within the skin, especially to distinct hair follicle compartments or cell populations, may help to treat local inflammatory reactions selectively, with reduced systemic side-effects. Various in vitro and in vivo methods exist for studying the hair follicle structure and follicular penetration pathways. These include cyanoacrylate skin surface stripping, confocal microscopy and cyanoacrylate scalp follicle biopsy. The complex anatomical structure as well as the cyclical activity of the hair follicle must be taken into consideration when designing delivery systems. In addition, delivery into and retention inside the infundibular reservoir are controlled by, for example, molecule or particle size, their polarity and the type of preparation. Preferred penetration depth and storage time must also be considered. Particles with release mechanisms should be preferred; however, the release of drugs from nanoparticles still requires further investigations. PMID:21919898

  1. Human hair follicle: reservoir function and selective targeting.

    PubMed

    Blume-Peytavi, U; Vogt, A

    2011-10-01

    Penetration of topically applied compounds may occur via the stratum corneum, skin appendages and hair follicles. The follicular infundibulum increases the surface area, disrupts the epidermal barrier towards the lower parts of the follicle, and serves as a reservoir. Topical delivery of active compounds to specific targets within the skin, especially to distinct hair follicle compartments or cell populations, may help to treat local inflammatory reactions selectively, with reduced systemic side-effects. Various in vitro and in vivo methods exist for studying the hair follicle structure and follicular penetration pathways. These include cyanoacrylate skin surface stripping, confocal microscopy and cyanoacrylate scalp follicle biopsy. The complex anatomical structure as well as the cyclical activity of the hair follicle must be taken into consideration when designing delivery systems. In addition, delivery into and retention inside the infundibular reservoir are controlled by, for example, molecule or particle size, their polarity and the type of preparation. Preferred penetration depth and storage time must also be considered. Particles with release mechanisms should be preferred; however, the release of drugs from nanoparticles still requires further investigations.

  2. Targeted expression of GFP in the hair follicle using ex vivo viral transduction.

    PubMed

    Hoffman, Robert M; Li, Lingna

    2008-01-01

    There are many cell types in the hair follicle, including hair matrix cells which form the hair shaft and stem cells which can initiate the hair shaft during early anagen, the growth phase of the hair cycle, as well as pluripotent stem cells that play a role in hair follicle growth but have the potential to differentiate to non-follicle cells such as neurons. These properties of the hair follicle are discussed. The various cell types of the hair follicle are potential targets for gene therapy. Gene delivery system for the hair follicle using viral vectors or liposomes for gene targeting to the various cell types in the hair follicle and the results obtained are also discussed [corrected]. PMID:19066571

  3. Targeted expression of GFP in the hair follicle using ex vivo viral transduction.

    PubMed

    Hoffman, Robert M; Li, Lingna

    2008-03-17

    There are many cell types in the hair follicle, including hair matrix cells which form the hair shaft and stem cells which can initiate the hair shaft during early anagen, the growth phase of the hair cycle, as well as pluripotent stem cells that play a role in hair follicle growth but have the potential to differentiate to non-follicle cells such as neurons. These properties of the hair follicle are discussed. The various cell types of the hair follicle are potential targets for gene therapy. Gene delivery system for the hair follicle using viral vectors or liposomes for gene targeting to the various cell types in the hair follicle and the results obtained are also discussed [corrected].

  4. Intravital imaging of hair follicle regeneration in the mouse

    PubMed Central

    Pineda, Cristiana M; Park, Sangbum; Mesa, Kailin R; Wolfel, Markus; Gonzalez, David G; Haberman, Ann M; Rompolas, Panteleimon; Greco, Valentina

    2015-01-01

    Hair follicles are mammalian skin organs that periodically and stereotypically regenerate from a small pool of stem cells. Hence, hair follicles are a widely studied model for stem cell biology and regeneration. This protocol describes the use of two-photon laser-scanning microscopy (TPLSM) to study hair regeneration within a living, uninjured mouse. TPLSM provides advantages over conventional approaches, including enabling time-resolved imaging of single hair follicle stem cells. Thus, it is possible to capture behaviors including apoptosis, proliferation and migration, and to revisit the same cells for in vivo lineage tracing. In addition, a wide range of fluorescent reporter mouse lines facilitates TPLSM in the skin. This protocol also describes TPLSM laser ablation, which can spatiotemporally manipulate specific cellular populations of the hair follicle or microenvironment to test their regenerative contributions. The preparation time is variable depending on the goals of the experiment, but it generally takes 30–60 min. Imaging time is dependent on the goals of the experiment. Together, these components of TPLSM can be used to develop a comprehensive understanding of hair regeneration during homeostasis and injury. PMID:26110716

  5. Hair follicle transcriptome profiles during the transition from anagen to catagen in Cashmere goat (Capra hircus).

    PubMed

    Fan, Y X; Wu, R B; Qiao, X; Zhang, Y J; Wang, R J; Su, R; Wu, J H; Dong, Y; Li, J Q

    2015-12-22

    Previous molecular genetic studies of the goat hair life cycle have focused primarily on a limited number of genes and proteins. To identify additional genes that may play important roles in hair follicle cycle regulation, Illumina sequencing technology was used to catalog differential gene expression profiles in the hair growth cycle (anagen to catagen) of goat, comparing the primary hair follicle with the secondary hair follicle. There were 13,769 and 12,240 unigenes assembled from the reads obtained from primary hair follicle and secondary hair follicle, respectively. Genes encoding keratin proteins and keratin-associated proteins were the most highly expressed. A total of 5899 genes were differentially expressed in anagen vs catagen primary hair follicles, with 532 genes up-regulated and 5367 genes down-regulated. A total of 5208 genes were differentially expressed in anagen vs catagen secondary hair follicle, including 545 genes that were up-regulated and 4663 genes that were down-regulated. Numerous hair growth genes are expressed in the goat hair follicle, of which 73 genes showed co-up-regulation in both hair follicles during the anagen stage. Many of these up-regulated genes, such as STC2, VEGFR, and ROR2, are known to be transfactors in the process of cell differentiation and in the cell cycle. The differential gene expression profiles between primary hair follicles and secondary hair follicles obtained provide a foundation for future studies examining the network of gene expression controlling hair growth cycle in Cashmere goat.

  6. Morphometry of human terminal and vellus hair follicles.

    PubMed

    Vogt, Annika; Hadam, Sabrina; Heiderhoff, Marc; Audring, Heike; Lademann, Juergen; Sterry, Wolfram; Blume-Peytavi, Ulrike

    2007-11-01

    Previous studies suggest that drug delivery systems based on particles can be used to deposit active compounds in hair follicles and to target hair follicle-associated cell populations. The development of application protocols is complicated by the fact that there is no information available on the size and the position of key target structures in the different hair follicle types and their intra- and interindividual variation. Therefore, we performed morphometric measurements on histological sections of human terminal (THF) and vellus hair follicles (VHF) from the scalp and the retroauricular region. With 3864 +/- 605 microm and 580 +/- 84 microm in THF compared to 646 +/- 140 microm and 225 +/- 34 microm in VHF, the total length and the length of the infundibulum differed significantly as determined by paired t-test (P < 0.0001). The same level of significance was observed for the position and the length of the bulge region. The thickness of the epithelial lining was lowest in VHF (45 +/- 14 microm at 100 microm from skin surface) compared to 65 +/- 20 microm at 150 microm in THF, while the thickness of the interfollicular epidermis ranged between 64 +/- 12 microm and 99 +/- 18 microm in VHF-bearing skin and 72 +/- 16 microm and 136 +/- 37 microm in THF-bearing skin. In addition, the diameter of the hair follicle opening was determined at 50 microm intervals from the skin surface. Our data suggest that hair follicle types in defined body regions represent rather homogenous groups and that particle-based drug delivery may be a feasible approach, also in larger numbers of individuals. We provide precise information on the size and the position of key target structures in VHF and THF.

  7. 7-Phloroeckol promotes hair growth on human follicles in vitro.

    PubMed

    Bak, Soon-Sun; Sung, Young Kwan; Kim, Se-Kwon

    2014-08-01

    7-Phloroeckol, phloroglucinol derivative isolated from marine brown algae, has anti-oxidative, anti-inflammatory responses and MMP inhibitory activities. In this study, we evaluated the hair growth-promoting effects of 7-phloroeckol in human hair follicles. To investigate cell viability of human dermal papilla cells (DPCs) and outer root sheath (ORS) cells in the presence or absence of 7-phloroeckol treatment, MTT assay was employed. Moreover, gene expression and protein concentration of insulin-like growth factor (IGF)-1 was measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. 7-Phloroeckol induced an increase in proliferation of DPCs and ORS cells. In addition, hair shaft growth was measured using the hair-follicle organ culture system. 7-Phloroeckol resulted in elongation of the hair shaft in cultured human hair follicles. 7-Phloroeckol induced an IGF-1 mRNA expression and protein concentration in DPCs and conditioned media, respectively. These results suggest that 7-phloroeckol promotes hair growth through stimulation of DPCs and ORS cells.

  8. Rat hair follicle stem cells differentiate and promote recovery following spinal cord injury.

    PubMed

    Najafzadeh, Nowruz; Nobakht, Maliheh; Pourheydar, Bagher; Golmohammadi, Mohammad Ghasem

    2013-12-25

    Emerging studies of treating spinal cord injury (SCI) with adult stem cells led us to evaluate the effects of transplantation of hair follicle stem cells in rats with a compression-induced spinal cord lesion. Here, we proposed a hypothesis that rat hair follicle stem cell transplantation can promote the recovery of injured spinal cord. Compression-induced spinal cord injury was induced in Wistar rats in this study. The bulge area of the rat vibrissa follicles was isolated, cultivated and characterized with nestin as a stem cell marker. 5-Bromo-2'-deoxyuridine (BrdU) labeled bulge stem cells were transplanted into rats with spinal cord injury. Immunohistochemical staining results showed that some of the grafted cells could survive and differentiate into oligodendrocytes (receptor-interacting protein positive cells) and neuronal-like cells (βIII-tubulin positive cells) at 3 weeks after transplantation. In addition, recovery of hind limb locomotor function in spinal cord injury rats at 8 weeks following cell transplantation was assessed using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. The results demonstrate that the grafted hair follicle stem cells can survive for a long time period in vivo and differentiate into neuronal- and glial-like cells. These results suggest that hair follicle stem cells can promote the recovery of spinal cord injury.

  9. Rat hair follicle stem cells differentiate and promote recovery following spinal cord injury

    PubMed Central

    Najafzadeh, Nowruz; Nobakht, Maliheh; Pourheydar, Bagher; Golmohammadi, Mohammad Ghasem

    2013-01-01

    Emerging studies of treating spinal cord injury (SCI) with adult stem cells led us to evaluate the effects of transplantation of hair follicle stem cells in rats with a compression-induced spinal cord lesion. Here, we proposed a hypothesis that rat hair follicle stem cell transplantation can promote the recovery of injured spinal cord. Compression-induced spinal cord injury was induced in Wistar rats in this study. The bulge area of the rat vibrissa follicles was isolated, cultivated and characterized with nestin as a stem cell marker. 5-Bromo-2′-deoxyuridine (BrdU) labeled bulge stem cells were transplanted into rats with spinal cord injury. Immunohistochemical staining results showed that some of the grafted cells could survive and differentiate into oligodendrocytes (receptor-interacting protein positive cells) and neuronal-like cells (βIII-tubulin positive cells) at 3 weeks after transplantation. In addition, recovery of hind limb locomotor function in spinal cord injury rats at 8 weeks following cell transplantation was assessed using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. The results demonstrate that the grafted hair follicle stem cells can survive for a long time period in vivo and differentiate into neuronal- and glial-like cells. These results suggest that hair follicle stem cells can promote the recovery of spinal cord injury. PMID:25206658

  10. Principles and mechanisms of regeneration in the mouse model for wound‐induced hair follicle neogenesis

    PubMed Central

    Wang, Xiaojie; Hsi, Tsai‐Ching; Guerrero‐Juarez, Christian Fernando; Pham, Kim; Cho, Kevin; McCusker, Catherine D.; Monuki, Edwin S.; Cho, Ken W.Y.; Gay, Denise L.

    2015-01-01

    Abstract Wound‐induced hair follicle neogenesis (WIHN) describes a regenerative phenomenon in adult mammalian skin wherein fully functional hair follicles regenerate de novo in the center of large excisional wounds. Originally described in rats, rabbits, sheep, and humans in 1940−1960, the WIHN phenomenon was reinvestigated in mice only recently. The process of de novo hair regeneration largely duplicates the morphological and signaling features of normal embryonic hair development. Similar to hair development, WIHN critically depends on the activation of canonical WNT signaling. However, unlike hair development, WNT activation in WIHN is dependent on fibroblast growth factor 9 signaling generated by the immune system's γδ T cells. The cellular bases of WIHN remain to be fully characterized; however, the available evidence leaves open the possibility for a blastema‐like mechanism wherein epidermal and/or dermal wound cells undergo epigenetic reprogramming toward a more plastic, embryonic‐like state. De novo hair follicles do not regenerate from preexisting hair‐fated bulge stem cells. This suggests that hair neogenesis is not driven by preexisting lineage‐restricted progenitors, as is the case for amputation‐induced mouse digit tip regeneration, but rather may require a blastema‐like mechanism. The WIHN model is characterized by several intriguing features, which await further explanation. These include (1) the minimum wound size requirement for activating neogenesis, (2) the restriction of hair neogenesis to the wound's center, and (3) imperfect patterning outcomes, both in terms of neogenic hair positioning within the wound and in terms of their orientation. Future enquiries into the WIHN process, made possible by a wide array of available skin‐specific genetic tools, will undoubtedly expand our understanding of the regeneration mechanisms in adult mammals. PMID:26504521

  11. Neural Stem Cells Restore Hair Growth Through Activation of the Hair Follicle Niche.

    PubMed

    Hwang, Insik; Choi, Kyung-Ah; Park, Hang-Soo; Jeong, Hyesun; Kim, Jeong-Ok; Seol, Ki-Cheon; Kwon, Han-Jin; Park, In-Hyun; Hong, Sunghoi

    2016-01-01

    Several types of hair loss result from the inability of hair follicles to initiate the anagen phase of the hair regeneration cycle. Modulating signaling pathways in the hair follicle niche can stimulate entry into the anagen phase. Despite much effort, stem cell-based or pharmacological therapies to activate the hair follicle niche have not been successful. Here, we set out to test the effect of neural stem cell (NSC) extract on the hair follicle niche for hair regrowth. NSC extracts were applied to the immortalized cell lines HaCaT keratinocytes and dermal papilla cells (DPCs) and the shaven dorsal skin of mice. Treatment with NSC extract dramatically improved the growth of HaCaT keratinocytes and DPCs. In addition, NSC extract enhanced the hair growth of the shaven dorsal skin of mice. In order to determine the molecular signaling pathways regulated by NSCs, we evaluated the expression levels of multiple growth and signaling factors, such as insulin-like growth factor-1 (IGF-1), hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), vascular endothelial growth factor (VEGF), transforming growth factor-β (TGF-β), and bone morphogenetic protein (BMP) family members. We found that treatment with an NSC extract enhanced hair growth by activating hair follicle niches via coregulation of TGF-β and BMP signaling pathways in the telogen phase. We also observed activation and differentiation of intrafollicular hair follicle stem cells, matrix cells, and extrafollicular DPCs in vivo and in vitro. We tested whether activation of growth factor pathways is a major effect of NSC treatment on hair growth by applying the growth factors to mouse skin. Combined growth factors, including TGF-β, significantly increased the hair shaft length and growth rate. DNA damage and cell death were not observed in skin cells of mice treated with the NSC extract for a prolonged period. Overall, our data demonstrate that NSC extract provides an effective approach for promoting

  12. Detection of Bim and Puma in mouse hair follicles using immunofluorescence and TUNEL assay double staining.

    PubMed

    Vesela, B; Matalova, E

    2015-01-01

    Apoptosis in hair follicles often is studied under pathological conditions; little is known about apoptotic mechanisms during normal hair follicle formation and maintenance. We investigated proteins of intrinsic apoptotic pathway, Bim and Puma, during hair follicle development and the first catagen stage using immunofluorescence to describe their expression patterns and to correlate them with apoptosis as determined by TUNEL assay. Both proteins were found in developing follicles. Bim and Puma overlapped apoptosis only partially during physiological apoptotic stage and they were present in non-apoptotic parts of the follicles. Our findings suggest that these primary apoptotic molecules participate in postnatal development and maintenance of hair follicles.

  13. Topical liposome targeting of dyes, melanins, genes, and proteins selectively to hair follicles.

    PubMed

    Hoffman, R M

    1998-01-01

    For therapeutic and cosmetic modification of hair, we have developed a hair-follicle-selective macromolecule and small molecule targeting system with topical application of phosphatidylcholine-based liposomes. Liposome-entrapped melanins, proteins, genes, and small-molecules have been selectively targeted to the hair follicle and hair shafts of mice. Liposomal delivery of these molecules is time dependent. Negligible amounts of delivered molecules enter the dermis, epidermis, or bloodstream thereby demonstrating selective follicle delivery. Naked molecules are trapped in the stratum corneum and are unable to enter the follicle. The potential of the hair-follicle liposome delivery system for therapeutic use for hair disease as well as for cosmesis has been demonstrated in 3-dimensional histoculture of hair-growing skin and mouse in vivo models. Topical liposome selective delivery to hair follicles has demonstrated the ability to color hair with melanin, the delivery of the active lac-Z gene to hair matrix cells and delivery of proteins as well. Liposome-targeting of molecules to hair follicles has also been achieved in human scalp in histoculture. Liposomes thus have high potential in selective hair follicle targeting of large and small molecules, including genes, opening the field of gene therapy and other molecular therapy of the hair process to restore hair growth, physiologically restore or alter hair pigment, and to prevent or accelerate hair loss.

  14. Observing Cells in Plucked Hair Follicles.

    ERIC Educational Resources Information Center

    Wells, John

    1991-01-01

    A simple technique is described by which the cells attached to plucked hair can be observed and used to demonstrate dividing and differentiating cell populations. The necessary equipment and the procedure are listed. (Author/KR)

  15. The hair follicle and its stem cells as drug delivery targets.

    PubMed

    Hoffman, Robert M

    2006-05-01

    The hair follicle is a skin appendage with a complex structure containing many cell types that produce highly specialised proteins. The hair follicle is in a continuous cycle: anagen is the hair growth phase, catagen the involution phase and telogen is the resting phase. The follicle offers many potential therapeutic targets. Hoffman and colleagues have pioneered hair-follicle-specific targeting using liposomes to deliver small and large molecules, including genes. They have also pioneered ex vivo hair-follicle targeting with continued expression of the introduced gene following transplantation. Recently, it has been discovered that hair follicle stem cells are highly pluripotent and can form neurons, glial cells and other cell types, and this has suggested that hair follicle stem cells may serve as gene therapy targets for regenerative medicine.

  16. Effects of in utero retinoic acid exposure on mouse pelage hair follicle development.

    PubMed

    García-Fernández, Rosa A; Pérez-Martínez, Claudia; Escudero-Diez, Alfredo; García-Iglesias, Maria J

    2002-06-01

    We investigated in vivo the histological and immunohistochemical responses of mouse hair pelage follicle morphogenesis to prenatal exposure to a potentially nonteratogenic dose of all-trans-retinoic acid (RA), as a basis studying the preventive effect of RA on adult mouse skin carcinogenesis. In pregnant mice, a single oral dose of RA at 30 mg kg-1 body weight given on day 11.5 of gestation caused no RA-induced changes in the morphology or temporal expression patterns of keratins during pelage hair follicle morphogenesis. The only differential effect of RA was a statistically significant increase in the number of BrdU-positive nuclei in hair bulbs from RA exposed fetuses compared with nonexposed mice. The absence of adverse RA effects suggests that this experimental design may represent a valuable protocol for use in studies on the in vivo effects of this retinoid on different skin diseases.

  17. A Guide to Studying Human Hair Follicle Cycling In Vivo.

    PubMed

    Oh, Ji Won; Kloepper, Jennifer; Langan, Ewan A; Kim, Yongsoo; Yeo, Joongyeub; Kim, Min Ji; Hsi, Tsai-Ching; Rose, Christian; Yoon, Ghil Suk; Lee, Seok-Jong; Seykora, John; Kim, Jung Chul; Sung, Young Kwan; Kim, Moonkyu; Paus, Ralf; Plikus, Maksim V

    2016-01-01

    Hair follicles (HFs) undergo lifelong cyclical transformations, progressing through stages of rapid growth (anagen), regression (catagen), and relative "quiescence" (telogen). Given that HF cycling abnormalities underlie many human hair growth disorders, the accurate classification of individual cycle stages within skin biopsies is clinically important and essential for hair research. For preclinical human hair research purposes, human scalp skin can be xenografted onto immunocompromised mice to study human HF cycling and manipulate long-lasting anagen in vivo. Although available for mice, a comprehensive guide on how to recognize different human hair cycle stages in vivo is lacking. In this article, we present such a guide, which uses objective, well-defined, and reproducible criteria, and integrates simple morphological indicators with advanced, (immuno)-histochemical markers. This guide also characterizes human HF cycling in xenografts and highlights the utility of this model for in vivo hair research. Detailed schematic drawings and representative micrographs provide examples of how best to identify human HF stages, even in suboptimally sectioned tissue, and practical recommendations are given for designing human-on-mouse hair cycle experiments. Thus, this guide seeks to offer a benchmark for human hair cycle stage classification, for both hair research experts and newcomers to the field. PMID:26763421

  18. A guide to studying human hair follicle cycling in vivo

    PubMed Central

    Oh, Ji Won; Kloepper, Jennifer; Langan, Ewan A.; Kim, Yongsoo; Yeo, Joongyeub; Kim, Min Ji; Hsi, Tsai-Ching; Rose, Christian; Yoon, Ghil Suk; Lee, Seok-Jong; Seykora, John; Kim, Jung Chul; Sung, Young Kwan

    2015-01-01

    Hair follicles (HFs) undergo life-long cyclical transformations, progressing through stages of rapid growth (anagen), regression (catagen), and relative “quiescence” (telogen). Since HF cycling abnormalities underlie many human hair growth disorders, the accurate classification of individual cycle stages within skin biopsies is clinically important and essential for hair research. For preclinical human hair research purposes, human scalp skin can be xenografted onto immunocompromised mice to study human HF cycling and manipulate long-lasting anagen in vivo. While available for mice, a comprehensive guide on how to recognize different human hair cycle stages in vivo is lacking. Here, we present such a guide, which uses objective, well-defined, and reproducible criteria and integrates simple morphological indicators with advanced, (immuno)-histochemical markers. This guide also characterizes human HF cycling in xenografts and highlights the utility of this model for in vivo hair research. Detailed schematic drawings and representative micrographs provide examples of how best to identify human HF stages, even in sub-optimally sectioned tissue, and practical recommendations are given for designing human-on-mouse hair cycle experiments. Thus, this guide seeks to offer a benchmark for human hair cycle stage classification, for both hair research experts and newcomers to the field. PMID:26763421

  19. A Guide to Studying Human Hair Follicle Cycling In Vivo.

    PubMed

    Oh, Ji Won; Kloepper, Jennifer; Langan, Ewan A; Kim, Yongsoo; Yeo, Joongyeub; Kim, Min Ji; Hsi, Tsai-Ching; Rose, Christian; Yoon, Ghil Suk; Lee, Seok-Jong; Seykora, John; Kim, Jung Chul; Sung, Young Kwan; Kim, Moonkyu; Paus, Ralf; Plikus, Maksim V

    2016-01-01

    Hair follicles (HFs) undergo lifelong cyclical transformations, progressing through stages of rapid growth (anagen), regression (catagen), and relative "quiescence" (telogen). Given that HF cycling abnormalities underlie many human hair growth disorders, the accurate classification of individual cycle stages within skin biopsies is clinically important and essential for hair research. For preclinical human hair research purposes, human scalp skin can be xenografted onto immunocompromised mice to study human HF cycling and manipulate long-lasting anagen in vivo. Although available for mice, a comprehensive guide on how to recognize different human hair cycle stages in vivo is lacking. In this article, we present such a guide, which uses objective, well-defined, and reproducible criteria, and integrates simple morphological indicators with advanced, (immuno)-histochemical markers. This guide also characterizes human HF cycling in xenografts and highlights the utility of this model for in vivo hair research. Detailed schematic drawings and representative micrographs provide examples of how best to identify human HF stages, even in suboptimally sectioned tissue, and practical recommendations are given for designing human-on-mouse hair cycle experiments. Thus, this guide seeks to offer a benchmark for human hair cycle stage classification, for both hair research experts and newcomers to the field.

  20. Wnt10b promotes differentiation of mouse hair follicle melanocytes.

    PubMed

    Ye, Jixing; Yang, Tian; Guo, Haiying; Tang, Yinhong; Deng, Fang; Li, Yuhong; Xing, Yizhan; Yang, Li; Yang, Ke

    2013-01-01

    Previous research has revealed that Wnt10b activates canonical Wnt signaling, which is integral to melanocyte differentiation in hair follicles (HFs). However, the function of Wnt10b in HF melanocytes remains poorly understood. We determined using Dct-LacZ transgenic mice that Wnt10b is mainly expressed near and within melanocytes of the hair bulbs during the anagen stage of the hair cycle. We also found that Wnt10b promotes an increase in melanocyte maturation and pigmentation in the hair bulbs of the mouse HF. To further explore the potential functions of Wnt10b in mouse HF melanocytes, we infected iMC23 cells with Ad-Wnt10b to overexpress Wnt10b. We demonstrated that Wnt10b promotes the differentiation of melanocytes by activating canonical Wnt signaling in melanocytes.

  1. Androgen actions on the human hair follicle: perspectives.

    PubMed

    Inui, Shigeki; Itami, Satoshi

    2013-03-01

    Androgens stimulate beard growth but suppress hair growth in androgenetic alopecia (AGA). This condition is known as 'androgen paradox'. Human pilosebaceous units possess enough enzymes to form the active androgens testosterone and dihydrotestosterone. In hair follicles, 5α-reductase type 1 and 2, androgen receptors (AR) and AR coactivators can regulate androgen sensitivity of dermal papillae (DP). To regulate hair growth, androgens stimulate production of IGF-1 as positive mediators from beard DP cells and of TGF-β1, TGF-β2, dickkopf1 and IL-6 as negative mediators from balding DP cells. In addition, androgens enhance inducible nitric oxide synthase from occipital DP cells and stem cell factor for positive regulation of hair growth in beard and negative regulation of balding DP cells. Moreover, AGA involves crosstalk between androgen and Wnt/β-catenin signalling. Finally, recent data on susceptibility genes have provided us with the impetus to investigate the molecular pathogenesis of AGA. PMID:23016593

  2. Ovine Hair Follicle Stem Cells Derived from Single Vibrissae Reconstitute Haired Skin.

    PubMed

    Zhang, Huishan; Zhang, Shoubing; Zhao, Huashan; Qiao, Jingqiao; Liu, Shuang; Deng, Zhili; Lei, Xiaohua; Ning, Lina; Cao, Yujing; Zhao, Yong; Duan, Enkui

    2015-01-01

    Hair follicle stem cells (HFSCs) possess fascinating self-renewal capacity and multipotency, which play important roles in mammalian hair growth and skin wound repair. Although HFSCs from other mammalian species have been obtained, the characteristics of ovine HFSCs, as well as the methods to isolate them have not been well addressed. Here, we report an efficient strategy to obtain multipotent ovine HFSCs. Through microdissection and organ culture, we obtained keratinocytes that grew from the bulge area of vibrissa hair follicles, and even abundant keratinocytes were harvested from a single hair follicle. These bulge-derived keratinocytes are highly positive for Krt15, Krt14, Tp63, Krt19 and Itga6; in addition to their strong proliferation abilities in vitro, these keratinocytes formed new epidermis, hair follicles and sebaceous glands in skin reconstitution experiments, showing that these are HFSCs from the bulge outer root sheath. Taken together, we developed an efficient in vitro system to enrich ovine HFSCs, providing enough HFSCs for the investigations about the ovine hair cycle, aiming to promote wool production in the future.

  3. Ovine Hair Follicle Stem Cells Derived from Single Vibrissae Reconstitute Haired Skin

    PubMed Central

    Zhang, Huishan; Zhang, Shoubing; Zhao, Huashan; Qiao, Jingqiao; Liu, Shuang; Deng, Zhili; Lei, Xiaohua; Ning, Lina; Cao, Yujing; Zhao, Yong; Duan, Enkui

    2015-01-01

    Hair follicle stem cells (HFSCs) possess fascinating self-renewal capacity and multipotency, which play important roles in mammalian hair growth and skin wound repair. Although HFSCs from other mammalian species have been obtained, the characteristics of ovine HFSCs, as well as the methods to isolate them have not been well addressed. Here, we report an efficient strategy to obtain multipotent ovine HFSCs. Through microdissection and organ culture, we obtained keratinocytes that grew from the bulge area of vibrissa hair follicles, and even abundant keratinocytes were harvested from a single hair follicle. These bulge-derived keratinocytes are highly positive for Krt15, Krt14, Tp63, Krt19 and Itga6; in addition to their strong proliferation abilities in vitro, these keratinocytes formed new epidermis, hair follicles and sebaceous glands in skin reconstitution experiments, showing that these are HFSCs from the bulge outer root sheath. Taken together, we developed an efficient in vitro system to enrich ovine HFSCs, providing enough HFSCs for the investigations about the ovine hair cycle, aiming to promote wool production in the future. PMID:26247934

  4. Hair follicle melanocyte precursors are awoken by ultraviolet radiation via a cell extrinsic mechanism.

    PubMed

    Ferguson, Blake; Kunisada, Takahiro; Aoki, Hitomi; Handoko, Herlina Y; Walker, Graeme J

    2015-06-01

    Melanocyte stem cells (MCSCs) in the upper portion of the hair follicle periodically supply melanocytes (MCs) that migrate downward into the hair bulb during anagen, the growth phase of the hair cycle. However MCs can also migrate upwards. We previously observed an increase in epidermal MC density in the mouse epidermis after a single ultraviolet radiation (UVR) exposure in neonatal, but not adult mice. To better understand MCSC activation by UVR we methodically studied the response of MCs to narrow band UVB (since UVA does not invoke this response) exposure in neonatal mice, and in adults at different stages of the hair cycle. We found that a single exposure of adult mice did not induce activation of MCSCs, in any stage of the hair cycle. When adult mice MCSCs were isolated in telogen, multiple UVB exposures resulted in their activation and production of daughter cells, which migrated upwards to the epidermis. Importantly, the MCSCs produced new progeny without themselves having incurred DNA damage after UVB exposure. This, together with examination of MC localisation in the skin of mice overexpressing stem cell factor in their keratinocytes, leads us to conclude that MCSC activation by UVB is driven via paracrine production of either SCF and/or other keratinocyte cytokines. We re-examined the increase in epidermal MC density in neonatal mouse skin. This effect was much more profound after only a single exposure than that of even multiple exposures to adult skin, and we show that in this setting also, the epidermal MCs mostly derive from activation of MC precursors in the upper hair follicle, and most likely via a cell extrinsic mechanism. Hence, although adaptive changes in the skin induced by repetitive UVB exposures are necessary in adult mice, in both the adult and neonatal context the division and migration upwards of follicular MCSCs is the major mode by which epidermal MC numbers increase after UVR exposure.

  5. Therapeutic strategy for hair regeneration: Hair cycle activation, niche environment modulation, wound-induced follicle neogenesis and stem cell engineering

    PubMed Central

    Chueh, Shan-Chang; Lin, Sung-Jan; Chen, Chih-Chiang; Lei, Mingxing; Wang, Ling Mei; Widelitz, Randall B.; Hughes, Michael W.; Jiang, Ting-Xing; Chuong, Cheng Ming

    2013-01-01

    Introduction There are major new advancements in the fields of stem cell biology, developmental biology, regenerative hair cycling, and tissue engineering. The time is ripe to integrate, translate and apply these findings to tissue engineering and regenerative medicine. Readers will learn about new progress in cellular and molecular aspects of hair follicle development, regeneration and potential therapeutic opportunities these advances may offer. Areas covered Here we use hair follicle formation to illustrate this progress and to identify targets for potential strategies in therapeutics. Hair regeneration is discussed in four different categories. (1) Intra-follicle regeneration (or renewal) is the basic production of hair fibers from hair stem cells and dermal papillae in existing follicles. (2) Chimeric follicles via epithelial-mesenchymal recombination to identify stem cells and signaling centers. (3) Extra-follicular factors including local dermal and systemic factors can modulate the regenerative behavior of hair follicles, and may be relatively easy therapeutic targets. (4) Follicular neogenesis means the de novo formation of new follicles. In addition, scientists are working to engineer hair follicles, which require hair forming competent epidermal cells and hair inducing dermal cells. Expert opinion Ideally self-organizing processes similar to those occurring during embryonic development should be elicited with some help from biomaterials. PMID:23289545

  6. Targeting to the hair follicles: current status and potential.

    PubMed

    Wosicka, Hanna; Cal, Krzysztof

    2010-02-01

    The pilosebaceous unit is a complex structure that undergoes a specific growth cycle and comprises a few important drug targeting sites. For example, drugs can be targeted to the bulge region with stem cells or to the sebaceous glands. Interest in pilosebaceous units is directed towards their utilization as reservoirs for localized therapy and also as a transport pathway for systemic drug delivery. Improved investigative methods, such as differential stripping, are being developed in order to determine follicular penetration. This article reviews relevant aspects of effective follicle-targeting formulations and delivery systems as well as the activity status of hair follicles, and variations in follicle size and distribution throughout various body regions. Each of these factors strongly affects follicular permeation. We provide examples of improved penetration of particle-based formulations and of a size-dependent manner of follicular penetration. Contradictions are also discussed, indicating the need for detailed future investigations. PMID:20060268

  7. Targeting to the hair follicles: current status and potential.

    PubMed

    Wosicka, Hanna; Cal, Krzysztof

    2010-02-01

    The pilosebaceous unit is a complex structure that undergoes a specific growth cycle and comprises a few important drug targeting sites. For example, drugs can be targeted to the bulge region with stem cells or to the sebaceous glands. Interest in pilosebaceous units is directed towards their utilization as reservoirs for localized therapy and also as a transport pathway for systemic drug delivery. Improved investigative methods, such as differential stripping, are being developed in order to determine follicular penetration. This article reviews relevant aspects of effective follicle-targeting formulations and delivery systems as well as the activity status of hair follicles, and variations in follicle size and distribution throughout various body regions. Each of these factors strongly affects follicular permeation. We provide examples of improved penetration of particle-based formulations and of a size-dependent manner of follicular penetration. Contradictions are also discussed, indicating the need for detailed future investigations.

  8. Gab1 and Mapk Signaling Are Essential in the Hair Cycle and Hair Follicle Stem Cell Quiescence.

    PubMed

    Akilli Öztürk, Özlem; Pakula, Hubert; Chmielowiec, Jolanta; Qi, Jingjing; Stein, Simone; Lan, Linxiang; Sasaki, Yoshiteru; Rajewsky, Klaus; Birchmeier, Walter

    2015-10-20

    Gab1 is a scaffold protein that acts downstream of receptor tyrosine kinases. Here, we produced conditional Gab1 mutant mice (by K14- and Krox20-cre) and show that Gab1 mediates crucial signals in the control of both the hair cycle and the self-renewal of hair follicle stem cells. Remarkably, mutant hair follicles do not enter catagen, the destructive phase of the hair cycle. Instead, hair follicle stem cells lose quiescence and become exhausted, and thus no stem cell niches are established in the bulges. Moreover, conditional sustained activation of Mapk signaling by expression of a gain-of-function Mek1(DD) allele (by Krox20-cre) rescues hair cycle deficits and restores quiescence of the stem cells. Our data thus demonstrate an essential role of Gab1 downstream of receptor tyrosine kinases and upstream of Shp2 and Mapk in the regulation of the hair cycle and the self-renewal of hair follicle stem cells.

  9. Effects of Wnt-10b on hair shaft growth in hair follicle cultures

    SciTech Connect

    Ouji, Yukiteru . E-mail: oujix@naramed-u.ac.jp; Yoshikawa, Masahide; Moriya, Kei; Ishizaka, Shigeaki

    2007-08-03

    Wnts are deeply involved in the proliferation and differentiation of skin epithelial cells. We previously reported the differentiation of cultured primary skin epithelial cells toward hair shaft and inner root sheath (IRS) of the hair follicle via {beta}-catenin stabilization caused by Wnt-10b, however, the effects of Wnt-10b on cultured hair follicles have not been reported. In the present study, we examined the effects of Wnt-10b on shaft growth using organ cultures of whisker hair follicles in serum-free conditions. No hair shaft growth was observed in the absence of Wnt-10b, whereas its addition to the culture promoted elongation of the hair shaft, intensive incorporation of BrdU in matrix cells flanking the dermal papilla (DP), and {beta}-catenin stabilization in DP and IRS cells. These results suggest a promoting effect of Wnt-10b on hair shaft growth that is involved with stimulation of the DP via Wnt-10b/{beta}-catenin signalling, proliferation of matrix cells next to the DP, and differentiation of IRS cells by Wnt-10b.

  10. Signaling Involved in Hair Follicle Morphogenesis and Development

    PubMed Central

    Rishikaysh, Pisal; Dev, Kapil; Diaz, Daniel; Qureshi, Wasay Mohiuddin Shaikh; Filip, Stanislav; Mokry, Jaroslav

    2014-01-01

    Hair follicle morphogenesis depends on Wnt, Shh, Notch, BMP and other signaling pathways interplay between epithelial and mesenchymal cells. The Wnt pathway plays an essential role during hair follicle induction, Shh is involved in morphogenesis and late stage differentiation, Notch signaling determines stem cell fate while BMP is involved in cellular differentiation. The Wnt pathway is considered to be the master regulator during hair follicle morphogenesis. Wnt signaling proceeds through EDA/EDAR/NF-κB signaling. NF-κB regulates the Wnt pathway and acts as a signal mediator by upregulating the expression of Shh ligand. Signal crosstalk between epithelial and mesenchymal cells takes place mainly through primary cilia. Primary cilia formation is initiated with epithelial laminin-511 interaction with dermal β-1 integrin, which also upregulates expression of downstream effectors of Shh pathway in dermal lineage. PDGF signal transduction essential for crosstalk is mediated through epithelial PDGF-A and PDGFRα expressed on the primary cilia. Dermal Shh and PDGF signaling up-regulates dermal noggin expression; noggin is a potent inhibitor of BMP signaling which helps in counteracting BMP mediated β-catenin inhibition. This interplay of signaling between the epithelial and dermal lineage helps in epithelial Shh signal amplification. The dermal Wnt pathway helps in upregulation of epithelial Notch expression. Dysregulation of these pathways leads to certain abnormalities and in some cases even tumor outgrowth. PMID:24451143

  11. The feasibility of targeted selective gene therapy of the hair follicle.

    PubMed

    Li, L; Hoffman, R M

    1995-07-01

    Loss of hair and hair colour is associated with ageing, and when it involves the scalp hair, it can be distressing to both sexes. Hair loss resulting from cancer chemotherapy is particularly distressing. However, safe, effective therapies directed to hair have only just started to be developed. The hair follicle is a complex skin appendage composed of epidermal and dermal tissue, with specialized keratinocytes, the hair matrix cells, forming the hair shaft. Specific therapy of the hair follicle depends on selective targeting of specific cells of the hair follicle. We have developed the histoculture of intact hair-growing skin on sponge-gel matrices. We have recently found in histocultured skin that liposomes can selectively target hair follicles to deliver both small and large molecules. That liposomes can target the hair follicle for delivery has been confirmed independently. Two decades ago we introduced the technique of entrapping DNA in liposomes for use in gene therapy. In this report we describe the selective targeting of the lacZ reporter gene to the hair follicles in mice after topical application of the gene entrapped in liposomes. These results demonstrate that highly selective, safe gene therapy for the hair process is feasible.

  12. Palmitoylation Regulates Epidermal Homeostasis and Hair Follicle Differentiation

    PubMed Central

    Fukata, Yuko; Tsutsumi, Ryouhei; Fukata, Masaki; Keighren, Margaret; Porter, Rebecca M.; McKie, Lisa; Smyth, Ian; Jackson, Ian J.

    2009-01-01

    Palmitoylation is a key post-translational modification mediated by a family of DHHC-containing palmitoyl acyl-transferases (PATs). Unlike other lipid modifications, palmitoylation is reversible and thus often regulates dynamic protein interactions. We find that the mouse hair loss mutant, depilated, (dep) is due to a single amino acid deletion in the PAT, Zdhhc21, resulting in protein mislocalization and loss of palmitoylation activity. We examined expression of Zdhhc21 protein in skin and find it restricted to specific hair lineages. Loss of Zdhhc21 function results in delayed hair shaft differentiation, at the site of expression of the gene, but also leads to hyperplasia of the interfollicular epidermis (IFE) and sebaceous glands, distant from the expression site. The specific delay in follicle differentiation is associated with attenuated anagen propagation and is reflected by decreased levels of Lef1, nuclear β-catenin, and Foxn1 in hair shaft progenitors. In the thickened basal compartment of mutant IFE, phospho-ERK and cell proliferation are increased, suggesting increased signaling through EGFR or integrin-related receptors, with a parallel reduction in expression of the key differentiation factor Gata3. We show that the Src-family kinase, Fyn, involved in keratinocyte differentiation, is a direct palmitoylation target of Zdhhc21 and is mislocalized in mutant follicles. This study is the first to demonstrate a key role for palmitoylation in regulating developmental signals in mammalian tissue homeostasis. PMID:19956733

  13. Syndecan-1 is strongly expressed in the anagen hair follicle outer root sheath and in the dermal papilla but expression diminishes with involution of the hair follicle.

    PubMed

    Bayer-Garner, Ilene B; Sanderson, Ralph D; Smoller, Bruce R

    2002-12-01

    Syndecan-1 is the prototypic member of a family of heparan sulfate-bearing cell surface proteoglycans that function in adhesion, cell-extracellular matrix interactions, migration, and proliferation. During embryogenesis, syndecan-1 expression in the epithelium is downregulated when the epithelium gives rise to motile mesenchymal cells, whereas mesenchymal syndecan-1 expression is upregulated during organ formation. In aggressive basal cell carcinomas, syndecan-1 expression is evident in the stroma. Some neoplastic cells induce stroma to meet needs for growth, and it may be the mesenchymal cells that produce and shed syndecan-1 into the stroma. The physiologic mechanism by which the hair follicle undergoes its cyclic process of involution and formation of a new active hair follicle is not well understood. Sixty scalp biopsies and a large scalp resection were evaluated for syndecan-1 expression within hair follicles in the growing (anagen), involuting (catagen), and resting (telogen) phases. Strong syndecan-1 immunoreactivity was evident in the outer root sheath (ORS) of the anagen hair follicle, but this expression diminished in intensity with the involution and resting stages in the hair follicle cycle. The diminution of syndecan-1 immunoreactivity in the ORS of involuting and resting hair follicles may be a result of terminal keratinocyte differentiation. Syndecan-1 was also present in the dermal papilla of the anagen hair follicle, where it may promote growth factor-mediated cell signaling that induces and maintains growth of the hair shaft and the inner root sheath.

  14. Exogenous R-Spondin1 Induces Precocious Telogen-to-Anagen Transition in Mouse Hair Follicles

    PubMed Central

    Li, Na; Liu, Shu; Zhang, Hui-Shan; Deng, Zhi-Li; Zhao, Hua-Shan; Zhao, Qian; Lei, Xiao-Hua; Ning, Li-Na; Cao, Yu-Jing; Wang, Hai-Bin; Liu, Shuang; Duan, En-Kui

    2016-01-01

    R-spondin proteins are novel Wnt/β-catenin agonists, which signal through their receptors leucine-rich repeat-containing G-protein coupled receptor (LGR) 4/5/6 and substantially enhance Wnt/β-catenin activity. R-spondins are reported to function in embryonic development. They also play important roles in stem cell functions in adult tissues, such as the intestine and mammary glands, which largely rely on Wnt/β-catenin signaling. However, in the skin epithelium and hair follicles, the information about R-spondins is deficient, although the expressions and functions of their receptors, LGR4/5/6, have already been studied in detail. In the present study, highly-enriched expression of the R-spondin family genes (Rspo1/2/3/4) in the hair follicle dermal papilla is revealed. Expression of Rspo1 in the dermal papilla is specifically and prominently upregulated before anagen entry, and exogenous recombinant R-spondin1 protein injection in mid-telogen leads to precocious anagen entry. Moreover, R-spondin1 activates Wnt/β-catenin signaling in cultured bulge stem cells in vitro, changing their fate determination without altering the cell proliferation. Our pioneering study uncovers a role of R-spondin1 in the activation of cultured hair follicle stem cells and the regulation of hair cycle progression, shedding new light on the governance of Wnt/β-catenin signaling in skin biology and providing helpful clues for future treatment of hair follicle disorders. PMID:27104524

  15. Exogenous R-Spondin1 Induces Precocious Telogen-to-Anagen Transition in Mouse Hair Follicles.

    PubMed

    Li, Na; Liu, Shu; Zhang, Hui-Shan; Deng, Zhi-Li; Zhao, Hua-Shan; Zhao, Qian; Lei, Xiao-Hua; Ning, Li-Na; Cao, Yu-Jing; Wang, Hai-Bin; Liu, Shuang; Duan, En-Kui

    2016-01-01

    R-spondin proteins are novel Wnt/β-catenin agonists, which signal through their receptors leucine-rich repeat-containing G-protein coupled receptor (LGR) 4/5/6 and substantially enhance Wnt/β-catenin activity. R-spondins are reported to function in embryonic development. They also play important roles in stem cell functions in adult tissues, such as the intestine and mammary glands, which largely rely on Wnt/β-catenin signaling. However, in the skin epithelium and hair follicles, the information about R-spondins is deficient, although the expressions and functions of their receptors, LGR4/5/6, have already been studied in detail. In the present study, highly-enriched expression of the R-spondin family genes (Rspo1/2/3/4) in the hair follicle dermal papilla is revealed. Expression of Rspo1 in the dermal papilla is specifically and prominently upregulated before anagen entry, and exogenous recombinant R-spondin1 protein injection in mid-telogen leads to precocious anagen entry. Moreover, R-spondin1 activates Wnt/β-catenin signaling in cultured bulge stem cells in vitro, changing their fate determination without altering the cell proliferation. Our pioneering study uncovers a role of R-spondin1 in the activation of cultured hair follicle stem cells and the regulation of hair cycle progression, shedding new light on the governance of Wnt/β-catenin signaling in skin biology and providing helpful clues for future treatment of hair follicle disorders. PMID:27104524

  16. Analysis of the expression pattern of involucrin in human scalp skin and hair follicles: hair cycle-associated alterations.

    PubMed

    Adly, Mohamed A; Assaf, Hanan A

    2012-10-01

    Involucrin is a structural component of the keratinocyte cornified envelope that is expressed early in the keratinocyte differentiation process. It is a component of the initial envelope scaffolding and considered as a marker for keratinocyte terminal differentiation. The expression pattern of involucrin in human scalp skin and hair follicle cycle stages is not fully explored. This study addresses this issue and tests the hypothesis that "the expression of involucrin undergoes hair follicle cycle-dependent changes". A total of 50 normal human scalp skin biopsies were examined (healthy females, 51-62 years) using immunofluorescence staining methods and real-time PCR analysis. In each case, 50 hair follicles were analyzed (35, 10 and 5 follicles in anagen, catagen and telogen, respectively). Involucrin was prominently expressed in the human scalp skin and hair follicles, on both gene and protein levels. The protein expression showed hair follicle cycle-associated changes i.e. a very strong expression during early and mature anagen, intermediate to strong expression during catagen and prominent decline in the telogen phase. The expression value of involucrin in both anagen and catagen was statistically significantly higher than that of telogen hair follicles (p < 0.001). This study provides the first morphologic indication that involucrin is differentially expressed in the human scalp skin and hair follicles and reports that involucrin expression pattern undergoes hair cycle-dependent changes. The clinical ramifications of these findings are open for further investigations.

  17. Activin B promotes initiation and development of hair follicles in mice.

    PubMed

    Jia, Qin; Zhang, Min; Kong, Yanan; Chen, Shixuan; Chen, Yinghua; Wang, Xueer; Zhang, Lei; Lang, Weiya; Zhang, Lu; Zhang, Lin

    2013-01-01

    Activin B has been reported to promote the regeneration of hair follicles during wound healing. However, its role in the development and life cycle of hair follicles has not been elucidated. In our study, the effect of activin B on mouse hair follicles of cultured and neonatal mouse skin was investigated. In these models, PBS or activin B (5, 10 or 50 ng/ml) was applied, and hair follicle development was monitored. Hair follicle initiation and development was examined using hematoxylin and eosin staining, alkaline phosphatase activity staining, Oil Red O+ staining, and the detection of TdT-mediated dUTP-biotin nick end-labeling cell apoptosis. Activin B was found to efficiently induce the initiation of hair follicles in the skin of both cultured and neonatal mice and to promote the development of hair follicles in neonatal mouse skin. Moreover, activin-B-treated hair follicles were observed to enter the anagen stage from the telogen stage and to remain in the anagen stage. These results demonstrate that activin B promotes the initiation and development of hair follicles in mice.

  18. Red ginseng extract promotes the hair growth in cultured human hair follicles.

    PubMed

    Park, Gyeong-Hun; Park, Ki-young; Cho, Hong-il; Lee, Sang-Min; Han, Ji Su; Won, Chong Hyun; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan; Shin, Hyoseung; Kang, Yong Jung; Lee, Dong Hun

    2015-03-01

    Ginseng has been shown to promote hair growth in several recent studies. However, its effects on human hair follicles and its mechanisms of action have not been sufficiently elucidated. This study aimed to investigate the hair growth-promoting effects of red ginseng extract (RGE) and its ginsenosides. The proliferative activities of cultured human hair follicles treated with RGE and ginsenoside-Rb1 were assessed using Ki-67 immunostaining. Their effects on isolated human dermal papilla cells (hDPCs) were evaluated using cytotoxicity assays, immunoblot analysis of signaling proteins, and the determination of associated growth factors. We examined the ability of RGE and ginsenosides to protect hair matrix keratinocyte proliferation against dihydrotestosterone (DHT)-induced suppression and their effects on the expression of androgen receptor. The in vivo hair growth-promoting effect of RGE was also investigated in C57BL/6 mice. Both RGE and ginsenoside-Rb1 enhanced the proliferation of hair matrix keratinocytes. hDPCs treated with RGE or ginsenoside-Rb1 exhibited substantial cell proliferation and the associated phosphorylation of ERK and AKT. Moreover, RGE, ginsenoside-Rb1, and ginsenoside-Rg3 abrogated the DHT-induced suppression of hair matrix keratinocyte proliferation and the DHT-induced upregulation of the mRNA expression of androgen receptor in hDPCs. Murine experiments revealed that the subcutaneous injection of 3% RGE resulted in more rapid hair growth than the negative control. In conclusion, RGE and its ginsenosides may enhance hDPC proliferation, activate ERK and AKT signaling pathways in hDPCs, upregulate hair matrix keratinocyte proliferation, and inhibit the DHT-induced androgen receptor transcription. These results suggest that red ginseng may promote hair growth in humans.

  19. Red Ginseng Extract Promotes the Hair Growth in Cultured Human Hair Follicles

    PubMed Central

    Park, Gyeong-Hun; Park, Ki-young; Cho, Hong-il; Lee, Sang-Min; Han, Ji Su; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan; Shin, Hyoseung; Kang, Yong Jung; Lee, Dong Hun

    2015-01-01

    Abstract Ginseng has been shown to promote hair growth in several recent studies. However, its effects on human hair follicles and its mechanisms of action have not been sufficiently elucidated. This study aimed to investigate the hair growth-promoting effects of red ginseng extract (RGE) and its ginsenosides. The proliferative activities of cultured human hair follicles treated with RGE and ginsenoside-Rb1 were assessed using Ki-67 immunostaining. Their effects on isolated human dermal papilla cells (hDPCs) were evaluated using cytotoxicity assays, immunoblot analysis of signaling proteins, and the determination of associated growth factors. We examined the ability of RGE and ginsenosides to protect hair matrix keratinocyte proliferation against dihydrotestosterone (DHT)-induced suppression and their effects on the expression of androgen receptor. The in vivo hair growth-promoting effect of RGE was also investigated in C57BL/6 mice. Both RGE and ginsenoside-Rb1 enhanced the proliferation of hair matrix keratinocytes. hDPCs treated with RGE or ginsenoside-Rb1 exhibited substantial cell proliferation and the associated phosphorylation of ERK and AKT. Moreover, RGE, ginsenoside-Rb1, and ginsenoside-Rg3 abrogated the DHT-induced suppression of hair matrix keratinocyte proliferation and the DHT-induced upregulation of the mRNA expression of androgen receptor in hDPCs. Murine experiments revealed that the subcutaneous injection of 3% RGE resulted in more rapid hair growth than the negative control. In conclusion, RGE and its ginsenosides may enhance hDPC proliferation, activate ERK and AKT signaling pathways in hDPCs, upregulate hair matrix keratinocyte proliferation, and inhibit the DHT-induced androgen receptor transcription. These results suggest that red ginseng may promote hair growth in humans. PMID:25396716

  20. Red ginseng extract promotes the hair growth in cultured human hair follicles.

    PubMed

    Park, Gyeong-Hun; Park, Ki-young; Cho, Hong-il; Lee, Sang-Min; Han, Ji Su; Won, Chong Hyun; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Moon, Kee Chan; Shin, Hyoseung; Kang, Yong Jung; Lee, Dong Hun

    2015-03-01

    Ginseng has been shown to promote hair growth in several recent studies. However, its effects on human hair follicles and its mechanisms of action have not been sufficiently elucidated. This study aimed to investigate the hair growth-promoting effects of red ginseng extract (RGE) and its ginsenosides. The proliferative activities of cultured human hair follicles treated with RGE and ginsenoside-Rb1 were assessed using Ki-67 immunostaining. Their effects on isolated human dermal papilla cells (hDPCs) were evaluated using cytotoxicity assays, immunoblot analysis of signaling proteins, and the determination of associated growth factors. We examined the ability of RGE and ginsenosides to protect hair matrix keratinocyte proliferation against dihydrotestosterone (DHT)-induced suppression and their effects on the expression of androgen receptor. The in vivo hair growth-promoting effect of RGE was also investigated in C57BL/6 mice. Both RGE and ginsenoside-Rb1 enhanced the proliferation of hair matrix keratinocytes. hDPCs treated with RGE or ginsenoside-Rb1 exhibited substantial cell proliferation and the associated phosphorylation of ERK and AKT. Moreover, RGE, ginsenoside-Rb1, and ginsenoside-Rg3 abrogated the DHT-induced suppression of hair matrix keratinocyte proliferation and the DHT-induced upregulation of the mRNA expression of androgen receptor in hDPCs. Murine experiments revealed that the subcutaneous injection of 3% RGE resulted in more rapid hair growth than the negative control. In conclusion, RGE and its ginsenosides may enhance hDPC proliferation, activate ERK and AKT signaling pathways in hDPCs, upregulate hair matrix keratinocyte proliferation, and inhibit the DHT-induced androgen receptor transcription. These results suggest that red ginseng may promote hair growth in humans. PMID:25396716

  1. Mast cells as modulators of hair follicle cycling.

    PubMed

    Maurer, M; Paus, R; Czarnetzki, B M

    1995-08-01

    While the central role of mast cells (MC) in allergy and inflammation is well-appreciated, much less is known about their physiological functions. The impressive battery of potent growth modulatory MC products, and increasing evidence of MC involvement in hyperproliferative and fibrotic disorders suggest that tissue remodelling may be one of those, namely in the skin. Here, we delineate why this may best be studied by analysing the potential role of MC in hair growth regulation. On the background of numerous, yet widely under-appreciated hints from the older literature, we summarize and discuss our recent observations from the C57BL/6 mouse model for hair research which support the concept that MC are functionally important modulators of hair follicle cycling, specifically during anagen development. This invites to exploit the murine hair cycle as a model for dissecting the physiological growth modulatory functions of MC and encourages the exploration of MC-targeting pharmaceutical strategies for the treatment of hair growth disorders.

  2. Embryonic attenuated Wnt/β-catenin signaling defines niche location and long-term stem cell fate in hair follicle.

    PubMed

    Xu, Zijian; Wang, Wenjie; Jiang, Kaiju; Yu, Zhou; Huang, Huanwei; Wang, Fengchao; Zhou, Bin; Chen, Ting

    2015-12-14

    Long-term adult stem cells sustain tissue regeneration throughout the lifetime of an organism. They were hypothesized to originate from embryonic progenitor cells that acquire long-term self-renewal ability and multipotency at the end of organogenesis. The process through which this is achieved often remains unclear. Here, we discovered that long-term hair follicle stem cells arise from embryonic progenitor cells occupying a niche location that is defined by attenuated Wnt/β-catenin signaling. Hair follicle initiation is marked by placode formation, which depends on the activation of Wnt/β-catenin signaling. Soon afterwards, a region with attenuated Wnt/β-catenin signaling emerges in the upper follicle. Embryonic progenitor cells residing in this region gain expression of adult stem cell markers and become definitive long-term hair follicle stem cells at the end of organogenesis. Attenuation of Wnt/β-catenin signaling is a prerequisite for hair follicle stem cell specification because it suppresses Sox9, which is required for stem cell formation.

  3. Embryonic attenuated Wnt/β-catenin signaling defines niche location and long-term stem cell fate in hair follicle

    PubMed Central

    Xu, Zijian; Wang, Wenjie; Jiang, Kaiju; Yu, Zhou; Huang, Huanwei; Wang, Fengchao; Zhou, Bin; Chen, Ting

    2015-01-01

    Long-term adult stem cells sustain tissue regeneration throughout the lifetime of an organism. They were hypothesized to originate from embryonic progenitor cells that acquire long-term self-renewal ability and multipotency at the end of organogenesis. The process through which this is achieved often remains unclear. Here, we discovered that long-term hair follicle stem cells arise from embryonic progenitor cells occupying a niche location that is defined by attenuated Wnt/β-catenin signaling. Hair follicle initiation is marked by placode formation, which depends on the activation of Wnt/β-catenin signaling. Soon afterwards, a region with attenuated Wnt/β-catenin signaling emerges in the upper follicle. Embryonic progenitor cells residing in this region gain expression of adult stem cell markers and become definitive long-term hair follicle stem cells at the end of organogenesis. Attenuation of Wnt/β-catenin signaling is a prerequisite for hair follicle stem cell specification because it suppresses Sox9, which is required for stem cell formation. DOI: http://dx.doi.org/10.7554/eLife.10567.001 PMID:26653852

  4. Effect of helium-neon laser irradiation on hair follicle growth cycle of Swiss albino mice.

    PubMed

    Shukla, S; Sahu, K; Verma, Y; Rao, K D; Dube, A; Gupta, P K

    2010-01-01

    We report the results of a study carried out to investigate the effect of helium-neon (He-Ne) laser (632.8 nm) irradiation on the hair follicle growth cycle of testosterone-treated and untreated mice. Both histology and optical coherence tomography (OCT) were used for the measurement of hair follicle length and the relative percentage of hair follicles in different growth phases. A positive correlation (R = 0.96) was observed for the lengths of hair follicles measured by both methods. Further, the ratios of the lengths of hair follicles in the anagen and catagen phases obtained by both methods were nearly the same. However, the length of the hair follicles measured by both methods differed by a factor of 1.6, with histology showing smaller lengths. He-Ne laser irradiation (at approximately 1 J/cm(2)) of the skin of both the control and the testosterone-treated mice was observed to lead to a significant increase (p < 0.05) in % anagen, indicating stimulation of hair growth. The study also demonstrates that OCT can be used to monitor the hair follicle growth cycle, and thus hair follicle disorders or treatment efficacy during alopecia. PMID:20016249

  5. Mutant laboratory mice with abnormalities in hair follicle morphogenesis, cycling, and/or structure: an update.

    PubMed

    Nakamura, Motonobu; Schneider, Marlon R; Schmidt-Ullrich, Ruth; Paus, Ralf

    2013-01-01

    Human hair disorders comprise a number of different types of alopecia, atrichia, hypotrichosis, distinct hair shaft disorders as well as hirsutism and hypertrichosis. Their causes vary from genodermatoses (e.g. hypotrichoses) via immunological disorders (e.g. alopecia areata, autoimmune cicatrical alopecias) to hormone-dependent abnormalities (e.g. androgenetic alopecia). A large number of spontaneous mouse mutants and genetically engineered mice develop abnormalities in hair follicle morphogenesis, cycling, and/or hair shaft formation, whose analysis has proven invaluable to define the molecular regulation of hair growth, ranging from hair follicle development, and cycling to hair shaft formation and stem cell biology. Also, the accumulating reports on hair phenotypes of mouse strains provide important pointers to better understand the molecular mechanisms underlying human hair growth disorders. Since numerous new mouse mutants with a hair phenotype have been reported since the publication of our earlier review on this matter a decade ago, we present here an updated, tabulated mini-review. The updated annotated tables list a wide selection of mouse mutants with hair growth abnormalities, classified into four categories: Mutations that affect hair follicle (1) morphogenesis, (2) cycling, (3) structure, and (4) mutations that induce extrafollicular events (for example immune system defects) resulting in secondary hair growth abnormalities. This synthesis is intended to provide a useful source of reference when studying the molecular controls of hair follicle growth and differentiation, and whenever the hair phenotypes of a newly generated mouse mutant need to be compared with existing ones.

  6. Differentiating the stem cell pool of human hair follicle outer root sheath into functional melanocytes.

    PubMed

    Schneider, Marie; Dieckmann, Christina; Rabe, Katrin; Simon, Jan-Christoph; Savkovic, Vuk

    2014-01-01

    Bench-to-Bedside concepts for regenerative therapy place significant weight on noninvasive approaches, with harvesting of the starting material as a header. This is particularly important in autologous treatments, which use one's bodily constituents for therapy. Precisely the stretch between obtaining therapeutic elements invasively and noninvasively places non-intrusive "sampling" rather than "biopsy" in the center of the road map of developing an autologous regenerative therapy. We focus on such a noninvasively available source of adult stem cells that we carry with us throughout our life, available at our fingertips-or shall we say hair roots, by a simple plucking of hair: the human hair follicle. This chapter describes an explant procedure for cultivating melanocytes differentiated from the stem cell pool of the hair follicle Outer Root Sheath (ORS). In vivo, the most abundant derivatives of the heterogeneous ORS stem cell pool are epidermal cells-melanocytes and keratinocytes which complete their differentiation-either spontaneously or upon picking up regenerative cues from damaged skin-and migrate from the ORS towards the adjacent regenerating area of the epidermis. We have taken advantage of the ORS developmental potential by optimizing explant primary culture, expansion and melanogenic differentiation of resident ORS stem cells towards end-stage melanocytes in order to obtain functional melanocytes noninvasively for the purposes of transplantation and use them for the treatment of depigmentation disorders. Our protocol specifies sampling of hair with their ORS, follicle medium-air interface primary culture, stimulation of cell outgrowth, adherent culture and differentiation of ORS stem cells and precursors towards fully functional melanocytes. Along with cultivation, we describe selection techniques for establishing and maintaining a pure melanocyte population and methods suitable for determining melanocyte identity.

  7. Triggering of drug release of particles in hair follicles.

    PubMed

    Mak, Wing Cheung; Patzelt, Alexa; Richter, Heike; Renneberg, Reinhardt; Lai, Kwok Kei; Rühl, Eckart; Sterry, Wolfram; Lademann, Jürgen

    2012-06-28

    Particulate drug delivery via hair follicles represents a promising concept, although requirements are high. This process must be realized at the desired depth and at the appropriate time, due to the fact that the particles themselves are not able to overcome the follicular skin barrier. In the present study, a novel triggering concept for the release of a model drug from the delivering particles is presented based on the application of two different particle types of the same size, where one particle type is the drug carrier, and the second one is loaded with a protease. The latter particle type is supposed to interact with the drug-carrying particles to trigger the drug release. A mixture of both particles was applied onto porcine skin samples, followed by follicular analysis. As a control, the particles were applied unaided without protease, whereas one skin area remained untreated. The investigations revealed that the protease was able to release the model drug from the delivering particles in significant depths within the hair follicle (866±62nm). Additionally, an uptake of the model drug in the sebaceous gland was observed after release providing a promising novel approach for the development of treatment strategies for different skin diseases. PMID:22516090

  8. Combination of infrared thermography and reflectance spectroscopy for precise classification of hair follicle stage

    NASA Astrophysics Data System (ADS)

    Wang, Jianru; Guan, Yue; Liu, Caihua; Zhu, Dan

    2015-03-01

    Hair follicles enjoy continual cycle of anagen, catagen and telogen all life. They not only provide a unique opportunity to study the physiological mechanism of organ regeneration, but also benefit to guide the treatment of organ repair in regenerative medicine. Usually, the histological examination as a gold standard has been applied to determine the stage of hair follicle cycle, but noninvasive classification of hair cycle in vivo remains unsolved. In this study, the thermal infrared imager was applied to measure the temperature change of mouse dorsal skin with hair follicle cycle, and the change of diffuse reflectance was monitored by the optical fiber spectrometer. Histological examination was used to verify the hair follicle stages. The results indicated that the skin temperature increased at the beginning of anagen. After having stayed a high value for several days, the temperature began to decrease. At the same time, the skin diffuse reflectance decreased until the end of this period. Then the temperature increased gradually after slightly decreased when the hair follicle entered into catagen stage, and the diffuse reflectance increased at this time. In telogen, both the temperature and the diffuse reflectance went back to a steady state all the time. Sub-stages of hair follicle cycle could be distinguished based on the joint curves. This study provided a new method to noninvasively recognize the hair follicle stage, and should be valuable for the basic and therapeutic investigations on hair regeneration.

  9. In-vitro and in-vivo study of dye diffusion into the human skin and hair follicles

    NASA Astrophysics Data System (ADS)

    Genina, Elina A.; Bashkatov, Alexey N.; Sinichkin, Yurii P.; Kochubey, Vyacheslav I.; Lakodina, Nina A.; Perpelitzina, Olga A.; Altshuler, Gregory B.; Tuchin, Valery V.

    2000-11-01

    We present experimental results on in vitro and in vivo investigation of dye diffusion into the human skin and hair follicles. It was shown that dyeing as a method of enhancement of the absorption coefficient of hair follicle tissue components can be used for selective photodestruction of hair follicle and surrounding tissues. Strength and depth of hair follicle dyeing inside the skin were determined for various dyes.

  10. Wnt7b is an important intrinsic regulator of hair follicle stem cell homeostasis and hair follicle cycling.

    PubMed

    Kandyba, Eve; Kobielak, Krzysztof

    2014-04-01

    The hair follicle (HF) is an exceptional mini-organ to study the mechanisms which regulate HF morphogenesis, cycling, hair follicle stem cell (hfSCs) homeostasis, and progeny differentiation. During morphogenesis, Wnt signaling is well-characterized in the initiation of HF patterning but less is known about which particular Wnt ligands are required and whether individual Wnt ligands act in an indispensable or redundant manner during postnatal hfSCs anagen onset and HF cycle progression. Previously, we described the function of the bone morphogenetic protein (BMP) signaling target gene WNT7a in intrinsic regulation of hfSCs homeostasis in vivo. Here, we investigated the role of Wnt7b, which was also intrinsically upregulated in hfSCs during physiological and precocious anagen after BMP inhibition in vivo. We demonstrated Wnt7b to be a direct target of canonical BMP signaling in hfSCs and using Wnt7b conditional gene targeting during HF morphogenesis revealed disrupted HF cycling including a shorter anagen, premature catagen onset with overall shorter hair production, and diminished HF differentiation marker expression. Additionally, we observed that postnatal ablation of Wnt7b resulted in delayed HF activation, affecting both the hair germ and bulge hfSCs but still maintaining a two-step sequence of HF stimulation. Interestingly, Wnt7b cKO hfSCs participated in reformation of the new HF bulge, but with slower self-renewal. These findings demonstrate the importance of intrinsic Wnt7b expression in hfSCs regulation and normal HF cycling and surprisingly reveal a nonredundant role for Wnt7b in the control of HF anagen length and catagen entry which was not compensated by other Wnt ligands. PMID:24222445

  11. Wnt7b is an important intrinsic regulator of hair follicle stem cell homeostasis and hair follicle cycling.

    PubMed

    Kandyba, Eve; Kobielak, Krzysztof

    2014-04-01

    The hair follicle (HF) is an exceptional mini-organ to study the mechanisms which regulate HF morphogenesis, cycling, hair follicle stem cell (hfSCs) homeostasis, and progeny differentiation. During morphogenesis, Wnt signaling is well-characterized in the initiation of HF patterning but less is known about which particular Wnt ligands are required and whether individual Wnt ligands act in an indispensable or redundant manner during postnatal hfSCs anagen onset and HF cycle progression. Previously, we described the function of the bone morphogenetic protein (BMP) signaling target gene WNT7a in intrinsic regulation of hfSCs homeostasis in vivo. Here, we investigated the role of Wnt7b, which was also intrinsically upregulated in hfSCs during physiological and precocious anagen after BMP inhibition in vivo. We demonstrated Wnt7b to be a direct target of canonical BMP signaling in hfSCs and using Wnt7b conditional gene targeting during HF morphogenesis revealed disrupted HF cycling including a shorter anagen, premature catagen onset with overall shorter hair production, and diminished HF differentiation marker expression. Additionally, we observed that postnatal ablation of Wnt7b resulted in delayed HF activation, affecting both the hair germ and bulge hfSCs but still maintaining a two-step sequence of HF stimulation. Interestingly, Wnt7b cKO hfSCs participated in reformation of the new HF bulge, but with slower self-renewal. These findings demonstrate the importance of intrinsic Wnt7b expression in hfSCs regulation and normal HF cycling and surprisingly reveal a nonredundant role for Wnt7b in the control of HF anagen length and catagen entry which was not compensated by other Wnt ligands.

  12. Bald scalp in men with androgenetic alopecia retains hair follicle stem cells but lacks CD200-rich and CD34-positive hair follicle progenitor cells

    PubMed Central

    Garza, Luis A.; Yang, Chao-Chun; Zhao, Tailun; Blatt, Hanz B.; Lee, Michelle; He, Helen; Stanton, David C.; Carrasco, Lee; Spiegel, Jeffrey H.; Tobias, John W.; Cotsarelis, George

    2011-01-01

    Androgenetic alopecia (AGA), also known as common baldness, is characterized by a marked decrease in hair follicle size, which could be related to the loss of hair follicle stem or progenitor cells. To test this hypothesis, we analyzed bald and non-bald scalp from AGA individuals for the presence of hair follicle stem and progenitor cells. Cells expressing cytokeratin15 (KRT15), CD200, CD34, and integrin, α6 (ITGA6) were quantitated via flow cytometry. High levels of KRT15 expression correlated with stem cell properties of small cell size and quiescence. These KRT15hi stem cells were maintained in bald scalp samples. However, CD200hiITGA6hi and CD34hi cell populations — which both possessed a progenitor phenotype, in that they localized closely to the stem cell–rich bulge area but were larger and more proliferative than the KRT15hi stem cells — were markedly diminished. In functional assays, analogous CD200hiItga6hi cells from murine hair follicles were multipotent and generated new hair follicles in skin reconstitution assays. These findings support the notion that a defect in conversion of hair follicle stem cells to progenitor cells plays a role in the pathogenesis of AGA. PMID:21206086

  13. Isolation of Mouse Hair Follicle Bulge Stem Cells and Their Functional Analysis in a Reconstitution Assay.

    PubMed

    Zheng, Ying; Hsieh, Jen-Chih; Escandon, Julia; Cotsarelis, George

    2016-01-01

    The hair follicle (HF) is a dynamic structure readily accessible within the skin, and contains various pools of stem cells that have a broad regenerative potential during normal homeostasis and in response to injury. Recent discoveries demonstrating the multipotent capabilities of hair follicle stem cells and the easy access to skin tissue make the HF an attractive source for isolating stem cells and their subsequent application in tissue engineering and regenerative medicine. Here, we describe the isolation and purification of hair follicle bulge stem cells from mouse skin, and hair reconstitution assays that allows the functional analysis of multipotent stem cells. PMID:27431247

  14. Wnt/β-catenin signaling in dermal condensates is required for hair follicle formation

    PubMed Central

    Tsai, Su-Yi; Sennett, Rachel; Rezza, Amélie; Clavel, Carlos; Grisanti, Laura; Zemla, Roland; Najam, Sara; Rendl, Michael

    2014-01-01

    Broad dermal Wnt signaling is required for patterned induction of hair follicle placodes and subsequent Wnt signaling in placode stem cells is essential for induction of dermal condensates, cell clusters of precursors for the hair follicle dermal papilla (DP). Progression of hair follicle formation then requires coordinated signal exchange between dermal condensates and placode stem cells. However, it remains unknown whether continued Wnt signaling in DP precursor cells plays a role in this process, largely due to the long-standing inability to specifically target dermal condensates for gene ablation. Here we use the Tbx18Cre knockin mouse line to ablate the Wnt-responsive transcription factor β-catenin specifically in these cells at E14.5 during the first wave of guard hair follicle formation. In the absence of β-catenin, canonical Wnt signaling is effectively abolished in these cells. Sox2+ dermal condensates initiate normally, however by E16.5 guard hair follicle numbers are strongly reduced and by E18.5 most whiskers and guard hair follicles are absent, suggesting that active Wnt signaling in dermal condensates is important for hair follicle formation to proceed after induction. To explore the molecular mechanisms by which Wnt signaling in dermal condensates regulates hair follicle formation, we analyze genome-wide the gene expression changes in embryonic β-catenin null DP precursor cells. We find altered expression of several signaling pathway genes, including Fgfs and Activin, both previously implicated in hair follicle formation. In summary, these data reveal a functional role of Wnt signaling in DP precursors for embryonic hair follicle formation and identify Fgf and Activin signaling as potential effectors of Wnt signaling-regulated events. PMID:24309208

  15. Wnt/β-catenin signaling in dermal condensates is required for hair follicle formation.

    PubMed

    Tsai, Su-Yi; Sennett, Rachel; Rezza, Amélie; Clavel, Carlos; Grisanti, Laura; Zemla, Roland; Najam, Sara; Rendl, Michael

    2014-01-15

    Broad dermal Wnt signaling is required for patterned induction of hair follicle placodes and subsequent Wnt signaling in placode stem cells is essential for induction of dermal condensates, cell clusters of precursors for the hair follicle dermal papilla (DP). Progression of hair follicle formation then requires coordinated signal exchange between dermal condensates and placode stem cells. However, it remains unknown whether continued Wnt signaling in DP precursor cells plays a role in this process, largely due to the long-standing inability to specifically target dermal condensates for gene ablation. Here we use the Tbx18(Cre) knockin mouse line to ablate the Wnt-responsive transcription factor β-catenin specifically in these cells at E14.5 during the first wave of guard hair follicle formation. In the absence of β-catenin, canonical Wnt signaling is effectively abolished in these cells. Sox2(+) dermal condensates initiate normally; however by E16.5 guard hair follicle numbers are strongly reduced and by E18.5 most whiskers and guard hair follicles are absent, suggesting that active Wnt signaling in dermal condensates is important for hair follicle formation to proceed after induction. To explore the molecular mechanisms by which Wnt signaling in dermal condensates regulates hair follicle formation, we analyze genome-wide the gene expression changes in embryonic β-catenin null DP precursor cells. We find altered expression of several signaling pathway genes, including Fgfs and Activin, both previously implicated in hair follicle formation. In summary, these data reveal a functional role of Wnt signaling in DP precursors for embryonic hair follicle formation and identify Fgf and Activin signaling as potential effectors of Wnt signaling-regulated events.

  16. Candidate genes for the development of hair follicles in Hu sheep.

    PubMed

    Lv, X Y; Ni, R; Sun, W; Su, R; Musa, H H; Yin, J F; Wang, Q Z; Gao, W; Chen, L

    2016-01-01

    The aim of this study was to detect candidate genes for the development of hair follicles in the Hu sheep breed. Seven genes have been detected in large, medium, and small wave follicles of Hu sheep using gene chip technology. The histological features of the follicles of newborn Hu-lambs were combined with fluorescence quantitative PCR technology to detect the correlation between the expression of the seven genes and hair follicle development. Among the genes studied, matrix metalloproteinase 2 (MMP2), bone morphogenetic protein-7 (BMP7), and sideroflexin 1 (SFXN1) showed a significantly different pattern of expression in large, medium, and small wave follicles (P < 0.05). The expression of MMP2 had a significant positive correlation with secondary follicles in large waves (P < 0.05), while the expression of BMP7 had a significant correlation with primary follicle diameter in small wave follicles, and a highly significant positive correlation with the number of secondary follicles in the small waves (P < 0.01). The expression of SFXN1 was significantly and positively correlated with the diameters of small wave primary follicles; it also showed a highly significant positive correlation with secondary follicle diameters. Although other genes are associated with hair follicles, their expression in large, medium, and small wave follicles was not significant. We propose that BMP7, MMP2, and SFXN1 genes could be important candidate genes for use in breeding Hu lambs with early coat development. PMID:27525902

  17. Hair Follicle Nevus With Features of Comedo Nevus: An Expanding Spectrum.

    PubMed

    Nagarajan, Priyadharsini; Bartholomew, Timothy S; Allen, Carl M; Peters, Sara B

    2016-06-01

    Hair follicle nevus (HFN) is a rare hamartomatous lesion of the folliculosebaceous unit, with or without admixed fibroadipose or muscular tissue. It typically has a congenital presentation in the preauricular area of infants and is frequently confused with an accessory tragus. Acquired tumors with similar histopathologic features have been described infrequently during adolescence and adult life. We report yet another unique presentation of this unusual lesion in a 4-year-old girl who had a long-standing tumor of the nasal columella that started growing rapidly after trauma. Histopathologic examination revealed increased numbers of hair follicles, some of which were associated with diminutive sebaceous glands, with no associated central cystic structure. In addition, the infundibula of the follicles were dilated and filled with keratinous debris. Although these hamartomas are common in the head and neck region, to our knowledge, this is the first report of a HFN at this anatomic location. In addition, this tumor has an overall architecture of a HFN but is accompanied by features of a comedo nevus. We also present a review of the literature and summarize the current diagnostic criteria for HFN. PMID:26844616

  18. Targeted expression of SV40 T antigen in the hair follicle of transgenic mice produces an aberrant hair phenotype.

    PubMed

    Keough, R; Powell, B; Rogers, G

    1995-03-01

    Directed expression of SV40 large T antigen (TAg) in transgenic mice can induce tissue-specific tumorigenesis and useful cell lines exhibiting differentiated characteristics can be established from resultant tumor cells. In an attempt to produce an immortalised mouse hair follicle cortical cell line for the study of hair keratin gene control, SV40 TAg expression was targeted to the hair follicles of transgenic mice using a sheep hair gene promoter. Expression of SV40 TAg in the follicle cortex disrupted normal fiber ultrastructure, producing a marked phenotypic effect. Affected hairs were wavy or severely kinked (depending on the severity of the phenotype) producing an appearance ranging from a ruffled coat to a stubble covering the back of the mouse. The transgenic hairs appeared to be weakened at the base of the fibers, leading to premature hair-loss and a thinner pelage, or regions of temporary nudity. No follicle tumors or neoplasia were apparent and immortalisation of cortical cells could not be established in culture. In situ hybridisation studies in the hair follicle using histone H3 as a cell proliferation marker suggested that cell proliferation had ceased prior to commencement of K2.10-TAg expression and was not re-established in the differentiating cortical cells. Hence, TAg was unable to induce cell immortalisation at that stage of cortical cell differentiation. However, transgenic mice developed various other abnormalities including vertebral abnormalities and bladder, liver and intestinal tumors, which resulted in reduced life expectancy.

  19. Targeted expression of SV40 T antigen in the hair follicle of transgenic mice produces an aberrant hair phenotype.

    PubMed

    Keough, R; Powell, B; Rogers, G

    1995-03-01

    Directed expression of SV40 large T antigen (TAg) in transgenic mice can induce tissue-specific tumorigenesis and useful cell lines exhibiting differentiated characteristics can be established from resultant tumor cells. In an attempt to produce an immortalised mouse hair follicle cortical cell line for the study of hair keratin gene control, SV40 TAg expression was targeted to the hair follicles of transgenic mice using a sheep hair gene promoter. Expression of SV40 TAg in the follicle cortex disrupted normal fiber ultrastructure, producing a marked phenotypic effect. Affected hairs were wavy or severely kinked (depending on the severity of the phenotype) producing an appearance ranging from a ruffled coat to a stubble covering the back of the mouse. The transgenic hairs appeared to be weakened at the base of the fibers, leading to premature hair-loss and a thinner pelage, or regions of temporary nudity. No follicle tumors or neoplasia were apparent and immortalisation of cortical cells could not be established in culture. In situ hybridisation studies in the hair follicle using histone H3 as a cell proliferation marker suggested that cell proliferation had ceased prior to commencement of K2.10-TAg expression and was not re-established in the differentiating cortical cells. Hence, TAg was unable to induce cell immortalisation at that stage of cortical cell differentiation. However, transgenic mice developed various other abnormalities including vertebral abnormalities and bladder, liver and intestinal tumors, which resulted in reduced life expectancy. PMID:7542671

  20. Thyroid hormone signaling controls hair follicle stem cell function.

    PubMed

    Contreras-Jurado, Constanza; Lorz, Corina; García-Serrano, Laura; Paramio, Jesus M; Aranda, Ana

    2015-04-01

    Observations in thyroid patients and experimental animals show that the skin is an important target for the thyroid hormones. We previously showed that deletion in mice of the thyroid hormone nuclear receptors TRα1 and TRβ (the main thyroid hormone-binding isoforms) results in impaired epidermal proliferation, hair growth, and wound healing. Stem cells located at the bulges of the hair follicles are responsible for hair cycling and contribute to the regeneration of the new epidermis after wounding. Therefore a reduction in the number or function of the bulge stem cells could be responsible for this phenotype. Bulge cells show increased levels of epigenetic repressive marks, can retain bromodeoxyuridine labeling for a long time, and have colony-forming efficiency (CFE) in vitro. Here we demonstrate that mice lacking TRs do not have a decrease of the bulge stem cell population. Instead, they show an increase of label-retaining cells (LRCs) in the bulges and enhanced CFE in vitro. Reduced activation of stem cells leading to their accumulation in the bulges is indicated by a strongly reduced response to mobilization by 12-O-tetradecanolyphorbol-13-acetate. Altered function of the bulge stem cells is associated with aberrant activation of Smad signaling, leading to reduced nuclear accumulation of β-catenin, which is crucial for stem cell proliferation and mobilization. LRCs of TR-deficient mice also show increased levels of epigenetic repressive marks. We conclude that thyroid hormone signaling is an important determinant of the mobilization of stem cells out of their niche in the hair bulge. These findings correlate with skin defects observed in mice and alterations found in human thyroid disorders.

  1. Shh expression is required for embryonic hair follicle but not mammary gland development.

    PubMed

    Michno, Kinga; Boras-Granic, Kata; Mill, Pleasantine; Hui, C C; Hamel, Paul A

    2003-12-01

    The embryonic mammary gland and hair follicle are both derived from the ventral ectoderm, and their development depends on a number of common fundamental developmental pathways. While the Hedgehog (Hh) signaling pathway is required for hair follicle morphogenesis, the role of this pathway during embryonic mammary gland development remains undetermined. We demonstrate here that, unlike the hair follicle, both Shh and Ihh are expressed in the developing embryonic mouse mammary rudiment as early as E12.5. In Shh(-/-) embryos, hair follicle development becomes arrested at an early stage, while the mammary rudiment, which continues to express Ihh, develops in a manner indistinguishable from that of wild-type littermates. The five pairs of mammary buds in Shh(-/-) female embryos exhibit normal branching morphogenesis at E16.5, forming a rudimentary ductal structure identical to wild-type embryonic mammary glands. We further demonstrate that loss of Hh signaling causes altered cyclin D1 expression in the embryonic dermal mesenchyme. Specifically, cyclin D1 is expressed at E14.5 principally in the condensed mesenchymal cells of the presumptive hair follicles and in both mesenchymal and epithelial cells of the mammary rudiments in wild-type and Shh-deficient embryos. By E18.5, robust cyclin D1 expression is maintained in mammary rudiments of both wild-type and Shh-deficient embryos. In hair follicles of wild-type embryos by E18.5, cyclin D1 expression switches to follicular epithelial cells. In contrast, strong cyclin D1 expression is observed principally in the mesenchymal cells of arrested hair follicles in Shh(-/-) embryos at E18.5. These data reveal that, despite the common embryonic origin of hair follicles and mammary glands, distinct patterns of Hh-family expression occur in these two tissues. Furthermore, these data suggest that cyclin D1 expression in the embryonic hair follicle is mediated by both Hh-independent and Hh-dependent mechanisms.

  2. Delineating immune-mediated mechanisms underlying hair follicle destruction in the mouse mutant defolliculated.

    PubMed

    Ruge, Fiona; Glavini, Aikaterini; Gallimore, Awen M; Richards, Hannah E; Thomas, Christopher P; O'Donnell, Valerie B; Philpott, Michael P; Porter, Rebecca M

    2011-03-01

    Defolliculated (Gsdma3(Dfl)/+) mice have a hair loss phenotype that involves an aberrant hair cycle, altered sebaceous gland differentiation with reduced sebum production, chronic inflammation, and ultimately the loss of the hair follicle. Hair loss in these mice is similar to that seen in primary cicatricial, or scarring alopecias in which immune targeting of hair follicle stem cells has been proposed as a key factor resulting in permanent hair follicle destruction. In this study we examine the mechanism of hair loss in GsdmA3(Dfl)/+ mice. Aberrant expression patterns of stem cell markers during the hair cycle, in addition to aberrant behavior of the melanocytes leading to ectopic pigmentation of the hair follicle and epidermis, indicated the stem cell niche was not maintained. An autoimmune mechanism was excluded by crossing the mice with rag1-/- mice. However, large numbers of macrophages and increased expression of ICAM-1 were still present and may be involved either directly or indirectly in the hair loss. Reverse transcriptase-PCR (RT-PCR) and immunohistochemistry of sebaceous gland differentiation markers revealed reduced peroxisome proliferator-activated receptor-γ (PPARγ), a potential cause of reduced sebum production, as well as the potential involvement of the innate immune system in the hair loss. As reduced PPARγ expression has recently been implicated as a cause for lichen planopilaris, these mice may be useful for testing therapies. PMID:21160494

  3. Delineating immune-mediated mechanisms underlying hair follicle destruction in the mouse mutant defolliculated.

    PubMed

    Ruge, Fiona; Glavini, Aikaterini; Gallimore, Awen M; Richards, Hannah E; Thomas, Christopher P; O'Donnell, Valerie B; Philpott, Michael P; Porter, Rebecca M

    2011-03-01

    Defolliculated (Gsdma3(Dfl)/+) mice have a hair loss phenotype that involves an aberrant hair cycle, altered sebaceous gland differentiation with reduced sebum production, chronic inflammation, and ultimately the loss of the hair follicle. Hair loss in these mice is similar to that seen in primary cicatricial, or scarring alopecias in which immune targeting of hair follicle stem cells has been proposed as a key factor resulting in permanent hair follicle destruction. In this study we examine the mechanism of hair loss in GsdmA3(Dfl)/+ mice. Aberrant expression patterns of stem cell markers during the hair cycle, in addition to aberrant behavior of the melanocytes leading to ectopic pigmentation of the hair follicle and epidermis, indicated the stem cell niche was not maintained. An autoimmune mechanism was excluded by crossing the mice with rag1-/- mice. However, large numbers of macrophages and increased expression of ICAM-1 were still present and may be involved either directly or indirectly in the hair loss. Reverse transcriptase-PCR (RT-PCR) and immunohistochemistry of sebaceous gland differentiation markers revealed reduced peroxisome proliferator-activated receptor-γ (PPARγ), a potential cause of reduced sebum production, as well as the potential involvement of the innate immune system in the hair loss. As reduced PPARγ expression has recently been implicated as a cause for lichen planopilaris, these mice may be useful for testing therapies.

  4. Human hair follicle organ culture: theory, application and perspectives.

    PubMed

    Langan, Ewan A; Philpott, Michael P; Kloepper, Jennifer E; Paus, Ralf

    2015-12-01

    For almost a quarter of a century, ex vivo studies of human scalp hair follicles (HFs) have permitted major advances in hair research, spanning diverse fields such as chronobiology, endocrinology, immunology, metabolism, mitochondrial biology, neurobiology, pharmacology, pigmentation and stem cell biology. Despite this, a comprehensive methodological guide to serum-free human HF organ culture (HFOC) that facilitates the selection and analysis of standard HF biological parameters and points out both research opportunities and pitfalls to newcomers to the field is still lacking. The current methods review aims to close an important gap in the literature and attempts to promote standardisation of human HFOC. We provide basic information outlining the establishment of HFOC through to detailed descriptions of the analysis of standard read-out parameters alongside practical examples. The guide closes by pointing out how serum-free HFOC can be utilised optimally to obtain previously inaccessible insights into human HF biology and pathology that are of interest to experimental dermatologists, geneticists, developmental biologists and (neuro-) endocrinologists alike and by highlighting novel applications of the model, including gene silencing and gene expression profiling of defined, laser capture-microdissected HF compartments. PMID:26284830

  5. Stem Cell-Associated Marker Expression in Canine Hair Follicles.

    PubMed

    Gerhards, Nora M; Sayar, Beyza S; Origgi, Francesco C; Galichet, Arnaud; Müller, Eliane J; Welle, Monika M; Wiener, Dominique J

    2016-03-01

    Functional hair follicle (HF) stem cells (SCs) are crucial to maintain the constant recurring growth of hair. In mice and humans, SC subpopulations with different biomarker expression profiles have been identified in discrete anatomic compartments of the HF. The rare studies investigating canine HF SCs have shown similarities in biomarker expression profiles to that of mouse and human SCs. The aim of our study was to broaden the current repertoire of SC-associated markers and their expression patterns in the dog. We combined analyses on the expression levels of CD34, K15, Sox9, CD200, Nestin, LGR5 and LGR6 in canine skin using RT-qPCR, the corresponding proteins in dog skin lysates, and their expression patterns in canine HFs using immunohistochemistry. Using validated antibodies, we were able to define the location of CD34, Sox9, Keratin15, LGR5 and Nestin in canine HFs and confirm that all tested biomarkers are expressed in canine skin. Our results show similarities between the expression profile of canine, human and mouse HF SC markers. This repertoire of biomarkers will allow us to conduct functional studies and investigate alterations in the canine SC compartment of different diseases, like alopecia or skin cancer with the possibility to extend relevant findings to human patients.

  6. Stem Cell-Associated Marker Expression in Canine Hair Follicles.

    PubMed

    Gerhards, Nora M; Sayar, Beyza S; Origgi, Francesco C; Galichet, Arnaud; Müller, Eliane J; Welle, Monika M; Wiener, Dominique J

    2016-03-01

    Functional hair follicle (HF) stem cells (SCs) are crucial to maintain the constant recurring growth of hair. In mice and humans, SC subpopulations with different biomarker expression profiles have been identified in discrete anatomic compartments of the HF. The rare studies investigating canine HF SCs have shown similarities in biomarker expression profiles to that of mouse and human SCs. The aim of our study was to broaden the current repertoire of SC-associated markers and their expression patterns in the dog. We combined analyses on the expression levels of CD34, K15, Sox9, CD200, Nestin, LGR5 and LGR6 in canine skin using RT-qPCR, the corresponding proteins in dog skin lysates, and their expression patterns in canine HFs using immunohistochemistry. Using validated antibodies, we were able to define the location of CD34, Sox9, Keratin15, LGR5 and Nestin in canine HFs and confirm that all tested biomarkers are expressed in canine skin. Our results show similarities between the expression profile of canine, human and mouse HF SC markers. This repertoire of biomarkers will allow us to conduct functional studies and investigate alterations in the canine SC compartment of different diseases, like alopecia or skin cancer with the possibility to extend relevant findings to human patients. PMID:26739040

  7. Human hair follicle organ culture: theory, application and perspectives.

    PubMed

    Langan, Ewan A; Philpott, Michael P; Kloepper, Jennifer E; Paus, Ralf

    2015-12-01

    For almost a quarter of a century, ex vivo studies of human scalp hair follicles (HFs) have permitted major advances in hair research, spanning diverse fields such as chronobiology, endocrinology, immunology, metabolism, mitochondrial biology, neurobiology, pharmacology, pigmentation and stem cell biology. Despite this, a comprehensive methodological guide to serum-free human HF organ culture (HFOC) that facilitates the selection and analysis of standard HF biological parameters and points out both research opportunities and pitfalls to newcomers to the field is still lacking. The current methods review aims to close an important gap in the literature and attempts to promote standardisation of human HFOC. We provide basic information outlining the establishment of HFOC through to detailed descriptions of the analysis of standard read-out parameters alongside practical examples. The guide closes by pointing out how serum-free HFOC can be utilised optimally to obtain previously inaccessible insights into human HF biology and pathology that are of interest to experimental dermatologists, geneticists, developmental biologists and (neuro-) endocrinologists alike and by highlighting novel applications of the model, including gene silencing and gene expression profiling of defined, laser capture-microdissected HF compartments.

  8. Protection against chemotherapy-induced alopecia: targeting ATP-binding cassette transporters in the hair follicle?

    PubMed

    Haslam, Iain S; Pitre, Aaron; Schuetz, John D; Paus, Ralf

    2013-11-01

    Currently, efficacious treatments for chemotherapy-induced alopecia (hair loss) are lacking, and incidences of permanent hair loss following high-dose chemotherapy are on the increase. In this article, we describe mechanisms by which the pharmacological defense status of the hair follicle might be enhanced, thereby reducing the accumulation of cytotoxic cancer drugs and preventing or reducing hair loss and damage. We believe this could be achieved via the selective increase in ATP-binding cassette (ABC) transporter expression within the hair follicle epithelium, following application of topical agonists for regulatory nuclear receptors. Clinical application would require the development of hair follicle-targeted formulations, potentially utilizing nanoparticle technology. This novel approach has the potential to yield entirely new therapeutic options for the treatment and management of chemotherapy-induced alopecia, providing significant psychological and physical benefit to cancer patients. PMID:24100054

  9. Protection against chemotherapy-induced alopecia: targeting ATP-binding cassette transporters in the hair follicle?

    PubMed

    Haslam, Iain S; Pitre, Aaron; Schuetz, John D; Paus, Ralf

    2013-11-01

    Currently, efficacious treatments for chemotherapy-induced alopecia (hair loss) are lacking, and incidences of permanent hair loss following high-dose chemotherapy are on the increase. In this article, we describe mechanisms by which the pharmacological defense status of the hair follicle might be enhanced, thereby reducing the accumulation of cytotoxic cancer drugs and preventing or reducing hair loss and damage. We believe this could be achieved via the selective increase in ATP-binding cassette (ABC) transporter expression within the hair follicle epithelium, following application of topical agonists for regulatory nuclear receptors. Clinical application would require the development of hair follicle-targeted formulations, potentially utilizing nanoparticle technology. This novel approach has the potential to yield entirely new therapeutic options for the treatment and management of chemotherapy-induced alopecia, providing significant psychological and physical benefit to cancer patients.

  10. Regenerative medicine and hair loss: how hair follicle culture has advanced our understanding of treatment options for androgenetic alopecia.

    PubMed

    Higgins, Claire A; Christiano, Angela M

    2014-01-01

    Many of the current drug therapies for androgenetic alopecia were discovered serendipitously, with hair growth observed as an off-target effect when drugs were used to treat a different disorder. Subsequently, several studies using cultured cells have enabled identification of hair growth modulators with similar properties to the currently available drugs, which may also provide clinical benefit. In situations where the current therapeutics do not work, follicular unit transplantation is an alternative surgical option. More recently, the concept of follicular cell implantation, or hair follicle neogenesis, has been attempted, exploiting the inherent properties of cultured hair follicle cells to induce de novo hair growth in balding scalp. In this review, we discuss both the advances in cell culture techniques that have led to a wider range of potential therapeutics to promote hair growth, in addition to detailing current knowledge on follicular cell implantation, and the challenges in making this approach a reality.

  11. Sgk3 links growth factor signaling to maintenance of progenitor cells in the hair follicle.

    PubMed

    Alonso, Laura; Okada, Hitoshi; Pasolli, Hilda Amalia; Wakeham, Andrew; You-Ten, Annick Itie; Mak, Tak W; Fuchs, Elaine

    2005-08-15

    Tyrosine kinase growth factor receptor signaling influences proliferation, survival, and apoptosis. Hair follicles undergo cycles of proliferation and apoptotic regression, offering an excellent paradigm to study how this transition is governed. Several factors are known to affect the hair cycle, but it remains a mystery whether Akt kinases that are downstream of growth factor signaling impact this equilibrium. We now show that an Akt relative, Sgk (serum and glucocorticoid responsive kinase) 3, plays a critical role in this process. Hair follicles of mice lacking Sgk3 fail to mature normally. Proliferation is reduced, apoptosis is increased, and follicles prematurely regress. Maintenance of the pool of transiently amplifying matrix cells is impaired. Intriguingly, loss of Sgk3 resembles the gain of function of epidermal growth factor signaling. Using cultured primary keratinocytes, we find that Sgk3 functions by negatively regulating phosphatidylinositol 3 kinase signaling. Our results reveal a novel and important function for Sgk3 in controlling life and death in the hair follicle.

  12. Nestin-expressing hair follicle-accessible pluripotent stem cells for nerve and spinal cord repair.

    PubMed

    Hoffman, Robert M

    2014-01-01

    Nestin-expressing stem cells of the hair follicle, discovered by our laboratory, have been shown to be able to form neurons and other nonfollicle cell types. We have shown that the nestin-expressing stem cells from the hair follicle can effect the repair of peripheral nerve and spinal cord injury. The hair follicle stem cells differentiate into neuronal and glial cells after transplantation to the injured peripheral nerve and spinal cord, and enhance injury repair and locomotor recovery. We have termed these cells hair follicle-accessible pluripotent (HAP) stem cells. When the excised hair follicle with its nerve stump was placed in Gelfoam 3D histoculture, HAP stem cells grew and extended the hair follicle nerve which consisted of βIII-tubulin-positive fibers with F-actin expression at the tip. These findings indicate that βIII-tubulin-positive fibers elongating from the whisker follicle sensory nerve stump were growing axons. The growing whisker sensory nerve was highly enriched in HAP stem cells, which appeared to play a major role in its elongation and interaction with other nerves in 3D Gelfoam histoculture, including the sciatic nerve, the trigeminal nerve, and the trigeminal nerve ganglion. Our results suggest that a major function of the HAP stem cells in the hair follicle is for growth of the follicle sensory nerve. HAP stem cells have critical advantages over embryonic stem cells and induced pluripotent stem cells in that they are highly accessible, require no genetic manipulation, are nontumorigenic, and do not present ethical issues for regenerative medicine.

  13. Decoction and Fermentation of Selected Medicinal Herbs Promote Hair Regrowth by Inducing Hair Follicle Growth in Conjunction with Wnts Signaling.

    PubMed

    Jang, Su Kil; Kim, Seung Tae; Lee, Do Ik; Park, Jun Sub; Jo, Bo Ram; Park, Jung Youl; Heo, Jong; Joo, Seong Soo

    2016-01-01

    It is well recognized that regulating the hair follicle cycle in association with Wnt signaling is one of the most interesting targets for promoting hair regrowth. In this study, we examined whether selected herbal medicines processed by decoction and fermentation promote hair growth by upregulating the number and size of hair follicles and Wnt signaling, including activation of β-catenin and Akt in telogen-synchronized C57BL/6N mice. The results revealed that the fermented extract after decoction (FDE) more effectively promoted hair growth than that of a nonfermented extract (DE). Notably, FDE effectively enhanced formation of hair follicles with clearer differentiation between the inner and outer root sheath, which is observed during the anagen phase. Mechanistic evidence was found for increased β-catenin and Akt phosphorylation levels in dorsal skin tissue along with elevated expression of hair regrowth-related genes, such as Wnt3/10a/10b, Lef1, and fibroblast growth factor 7. In conclusion, our findings suggest that FDE plays an important role in regulating the hair cycle by increasing expression of hair regrowth-related genes and activating downstream Wnt signaling targets. PMID:27110266

  14. Decoction and Fermentation of Selected Medicinal Herbs Promote Hair Regrowth by Inducing Hair Follicle Growth in Conjunction with Wnts Signaling

    PubMed Central

    Jang, Su Kil; Kim, Seung Tae; Lee, Do Ik; Park, Jun Sub; Jo, Bo Ram; Park, Jung Youl; Heo, Jong; Joo, Seong Soo

    2016-01-01

    It is well recognized that regulating the hair follicle cycle in association with Wnt signaling is one of the most interesting targets for promoting hair regrowth. In this study, we examined whether selected herbal medicines processed by decoction and fermentation promote hair growth by upregulating the number and size of hair follicles and Wnt signaling, including activation of β-catenin and Akt in telogen-synchronized C57BL/6N mice. The results revealed that the fermented extract after decoction (FDE) more effectively promoted hair growth than that of a nonfermented extract (DE). Notably, FDE effectively enhanced formation of hair follicles with clearer differentiation between the inner and outer root sheath, which is observed during the anagen phase. Mechanistic evidence was found for increased β-catenin and Akt phosphorylation levels in dorsal skin tissue along with elevated expression of hair regrowth-related genes, such as Wnt3/10a/10b, Lef1, and fibroblast growth factor 7. In conclusion, our findings suggest that FDE plays an important role in regulating the hair cycle by increasing expression of hair regrowth-related genes and activating downstream Wnt signaling targets. PMID:27110266

  15. Analysis of the penetration of a caffeine containing shampoo into the hair follicles by in vivo laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Lademann, J.; Richter, H.; Schanzer, S.; Klenk, A.; Sterry, W.; Patzelt, A.

    2010-02-01

    In previous in vitro investigations, it was demonstrated that caffeine is able to stimulate the hair growth. Therefore, a penetration of caffeine into the hair follicle is necessary. In the present study, in vivo laser scanning microscopy (LSM) was used to investigate the penetration and storage of a caffeine containing shampoo into the hair follicles. It was shown that a 2-min contact time of the shampoo with the skin was enough to accumulate significant parts of the shampoo in the hair follicles. A penetration of the shampoo up to a depth of approx. 200 μm could be detected, which represents the detection limit of the LSM. At this depth, the close network of the blood capillaries surrounding the hair follicles commences. Even after 24 h, the substance was still detectable in the hair follicles. This demonstrates the long-term reservoir function of the hair follicles for topically applied substances such as caffeine.

  16. Ex vivo organ culture of human hair follicles: a model epithelial-neuroectodermal-mesenchymal interaction system.

    PubMed

    Tobin, Desmond J

    2011-01-01

    The development of hair follicle organ culture techniques is a significant milestone in cutaneous biology research. The hair follicle, or more accurately the "pilo-sebaceous unit", encapsulates all the important physiologic processes found in the human body; controlled cell growth/death, interactions between cells of different histologic type, cell differentiation and migration, and hormone responsitivity to name a few. Thus, the value of the hair follicle as a model for biological scientific research goes way beyond its scope for cutaneous biology or dermatology alone. Indeed, the recent and dramatic upturn in interest in hair follicle biology has focused principally on the pursuit of two of biology's holy grails; post-embryonic morphogenesis and control of cyclical tissue activity. The hair follicle organ culture model, pioneered by Philpott and colleagues, ushered in an exceptionally accessible way to assess how cells of epithelial (e.g., keratinocytes), mesenchymal (e.g., fibroblasts), and neuroectodermal (e.g., melanocytes) origin interact in a three-dimensional manner. Moreover, this assay system allows us to assess how various natural and pharmacologic agents affect complex tissues for growth modulation. In this article, I focus on the culture of the human hair follicle mini-organ, discussing both the practical issues involved and some possible research applications of this assay.

  17. Protease activity, localization and inhibition in the human hair follicle

    PubMed Central

    Bhogal, R K; Mouser, P E; Higgins, C A; Turner, G A

    2014-01-01

    Synopsis Objective In humans, the process of hair shedding, referred to as exogen, is believed to occur independently of the other hair cycle phases. Although the actual mechanisms involved in hair shedding are not fully known, it has been hypothesized that the processes leading to the final step of hair shedding may be driven by proteases and/or protease inhibitor activity. In this study, we investigated the presence of proteases and protease activity in naturally shed human hairs and assessed enzyme inhibition activity of test materials. Methods We measured enzyme activity using a fluorescence-based assay and protein localization by indirect immunohistochemistry (IHC). We also developed an ex vivo skin model for measuring the force required to pull hair fibres from skin. Results Our data demonstrate the presence of protease activity in the tissue material surrounding club roots. We also demonstrated the localization of specific serine protease protein expression in human hair follicle by IHC. These data provide evidence demonstrating the presence of proteases around the hair club roots, which may play a role during exogen. We further tested the hypothesis that a novel protease inhibitor system (combination of Trichogen® and climbazole) could inhibit protease activity in hair fibre club root extracts collected from a range of ethnic groups (UK, Brazil, China, first-generation Mexicans in the USA, Thailand and Turkey) in both males and females. Furthermore, we demonstrated that this combination is capable of increasing the force required to remove hair in an ex vivo skin model system. Conclusion These studies indicate the presence of proteolytic activity in the tissue surrounding the human hair club root and show that it is possible to inhibit this activity with a combination of Trichogen® and climbazole. This technology may have potential to reduce excessive hair shedding. Résumé Objectif Chez l'homme, le processus de perte de cheveux, désigné comme exog

  18. An Essential Role for Dermal Primary Cilia in Hair Follicle Morphogenesis

    PubMed Central

    Lehman, Jonathan; Laag, Essam; Michaud, Edward J.; Yoder, Bradley K.

    2009-01-01

    The primary cilium is a microtubule-based organelle implicated as an essential component of a number of signaling pathways. It is present on cells throughout the mammalian body; however, its functions in most tissues remain largely unknown. Herein we demonstrate that primary cilia are present on cells in murine skin and hair follicles throughout morphogenesis and during hair follicle cycling in postnatal life. Using the Cre-lox system, we disrupted cilia assembly in the ventral dermis and evaluated the effects on hair follicle development. Mice with disrupted dermal cilia have severe hypotrichosis (lack of hair) in affected areas. Histological analyses reveal that most follicles in the mutants arrest at stage 2 of hair development and have small or absent dermal condensates. This phenotype is reminiscent of that seen in the skin of mice lacking Shh or Gli2. In situ hybridization and quantitative RT-PCR analysis indicates that the hedgehog pathway is downregulated in the dermis of the cilia mutant hair follicles. Thus, these data establish cilia as a critical signaling component required for normal hair morphogenesis and suggest that this organelle is needed on cells in the dermis for reception of signals such as sonic hedgehog. PMID:18987668

  19. Proanthocyanidins from grape seeds promote proliferation of mouse hair follicle cells in vitro and convert hair cycle in vivo.

    PubMed

    Takahashi, T; Kamiya, T; Yokoo, Y

    1998-11-01

    For the purpose of discovering natural products which possess hair growing activity, we examined about 1000 kinds of plant extracts concerning growth-promoting activity with respect to hair follicle cells. After an extensive search, we discovered that proanthocyanidins extracted from grape seeds promote proliferation of hair follicle cells isolated from mice by about 230% relative to controls (100%); and that proanthocyanidins possess remarkable hair-cycle-converting activity from the telogen phase to the anagen phase in C3H mice in vivo test systems. The profile of the active fraction of the proanthocyanidins was elucidated by thiolytic degradation and tannase hydrolysis. We found that the constitutive monomers were epicatechin and catechin; and that the degree of polymerization was 3.5. We demonstrated the possibility of using the proanthocyanidins extracted from grape seeds as agents inducing hair growth.

  20. Spatial Distribution of Stem Cell-Like Keratinocytes in Dissected Compound Hair Follicles of the Dog.

    PubMed

    Wiener, Dominique J; Doherr, Marcus G; Müller, Eliane J; Welle, Monika M

    2016-01-01

    Hair cycle disturbances are common in dogs and comparable to some alopecic disorders in humans. A normal hair cycle is maintained by follicular stem cells which are predominately found in an area known as the bulge. Due to similar morphological characteristics of the bulge area in humans and dogs, the shared particularity of compound hair follicles as well as similarities in follicular biomarker expression, the dog is a promising model to study human hair cycle and stem cell disorders. To gain insight into the spatial distribution of follicular keratinocytes with stem cell potential in canine compound follicles, we microdissected hair follicles in anagen and telogen from skin samples of freshly euthanized dogs. The keratinocytes isolated from different locations were investigated for their colony forming efficiency, growth and differentiation potential as well as clonal growth. Our results indicate that i) compound and single hair follicles exhibit a comparable spatial distribution pattern with respect to cells with high growth potential and stem cell-like characteristics, ii) the lower isthmus (comprising the bulge) harbors most cells with high growth potential in both, the anagen and the telogen hair cycle stage, iii) unlike in other species, colonies with highest growth potential are rather small with an irregular perimeter and iv) the keratinocytes derived from the bulbar region exhibit characteristics of actively dividing transit amplifying cells. Our results now provide the basis to conduct comparative studies of normal dogs and those with hair cycle disorders with the possibility to extend relevant findings to human patients.

  1. Spatial Distribution of Stem Cell-Like Keratinocytes in Dissected Compound Hair Follicles of the Dog

    PubMed Central

    Wiener, Dominique J.; Doherr, Marcus G.; Müller, Eliane J.; Welle, Monika M.

    2016-01-01

    Hair cycle disturbances are common in dogs and comparable to some alopecic disorders in humans. A normal hair cycle is maintained by follicular stem cells which are predominately found in an area known as the bulge. Due to similar morphological characteristics of the bulge area in humans and dogs, the shared particularity of compound hair follicles as well as similarities in follicular biomarker expression, the dog is a promising model to study human hair cycle and stem cell disorders. To gain insight into the spatial distribution of follicular keratinocytes with stem cell potential in canine compound follicles, we microdissected hair follicles in anagen and telogen from skin samples of freshly euthanized dogs. The keratinocytes isolated from different locations were investigated for their colony forming efficiency, growth and differentiation potential as well as clonal growth. Our results indicate that i) compound and single hair follicles exhibit a comparable spatial distribution pattern with respect to cells with high growth potential and stem cell-like characteristics, ii) the lower isthmus (comprising the bulge) harbors most cells with high growth potential in both, the anagen and the telogen hair cycle stage, iii) unlike in other species, colonies with highest growth potential are rather small with an irregular perimeter and iv) the keratinocytes derived from the bulbar region exhibit characteristics of actively dividing transit amplifying cells. Our results now provide the basis to conduct comparative studies of normal dogs and those with hair cycle disorders with the possibility to extend relevant findings to human patients. PMID:26788850

  2. GENE EXPRESSION IN HEAD HAIR FOLLICLES PLUCKED FROM MEN AND WOMEN

    EPA Science Inventory

    Characterizing gene expression in hair follicles can help to elucidate the hair growth cycle by delineating the genes and pathways involved in follicular growth and degeneration. The objectives of this study were to determine whether intact RNA could be extracted from a small num...

  3. The Lysosomal Protease Cathepsin L Is an Important Regulator of Keratinocyte and Melanocyte Differentiation During Hair Follicle Morphogenesis and Cycling

    PubMed Central

    Tobin, Desmond J.; Foitzik, Kerstin; Reinheckel, Thomas; Mecklenburg, Lars; Botchkarev, Vladimir A.; Peters, Christoph; Paus, Ralf

    2002-01-01

    We have previously shown that the ubiquitously expressed lysosomal cysteine protease, cathepsin L (CTSL), is essential for skin and hair follicle homeostasis. Here we examine the effect of CTSL deficiency on hair follicle development and cycling in ctsl−/− mice by light and electron microscopy, Ki67/terminal dUTP nick-end labeling, and trichohyalin immunofluorescence. Hair follicle morphogenesis in ctsl−/− mice was associated with several abnormalities. Defective terminal differentiation of keratinocytes occurred during the formation of the hair canal, resulting in disruption of hair shaft outgrowth. Both proliferation and apoptosis levels in keratinocytes and melanocytes were higher in ctsl−/− than in ctsl+/+ hair follicles. The development of the hair follicle pigmentary unit was disrupted by vacuolation of differentiating melanocytes. Hair cycling was also abnormal in ctsl−/− mice. Final stages of hair follicle morphogenesis and the induction of hair follicle cycling were retarded. Thereafter, these follicles exhibited a truncated resting phase (telogen) and a premature entry into the first growth phase. Further abnormalities of telogen development included the defective anchoring of club hairs in the skin, which resulted in their abnormal shedding. Melanocyte vacuolation was again apparent during the hair cycle-associated reconstruction of the hair pigmentary unit. A hallmark of these ctsl−/− mice was the severe disruption in the exiting of hair shafts to the skin surface. This was mostly because of a failure of the inner root sheath (keratinocyte layer next to the hair shaft) to fully desquamate. These changes resulted in a massive dilation of the hair canal and the abnormal routing of sebaceous gland products to the skin surface. In summary, this study suggests novel roles for cathepsin proteases in skin, hair, and pigment biology. Principal target tissues that may contain protein substrate(s) for this cysteine protease include the

  4. Wnt5a Suppresses β-catenin Signaling during Hair Follicle Regeneration

    PubMed Central

    Xing, Yizhan; Ma, Xiaogen; Guo, Haiying; Deng, Fang; Yang, Jin; Li, Yuhong

    2016-01-01

    Hair follicles display periodic growth. Wnt signaling is a critical regulator for hair follicle regeneration. Previously, we reported that Wnt5a inhibits the telogen-to-anagen transition of hair follicles, but the mechanism by which this process occurs has not yet been reported. Here, we determined the expression patterns of Wnt signaling pathway molecules by quantitative reverse transcription polymerase chain reaction, western blot, and immunohistochemistry and found that β-catenin signaling was suppressed by Wnt5a. We then compared the phenotypes and expression patterns following β-catenin knockdown and Wnt5a overexpression during hair follicle regeneration induced by hair depilation and observed similar patterns. In addition, we performed a rescue experiment in the JB6 cell line and found that the inhibitory effect of Wnt5a on cell proliferation could be rescued by the addition of Wnt3a. Our data reveal that Wnt5a suppresses the activation of β-catenin signaling during hair follicle regeneration. PMID:27499692

  5. Comparative characterization of hair follicle dermal stem cells and bone marrow mesenchymal stem cells.

    PubMed

    Hoogduijn, Martin J; Gorjup, Erwin; Genever, Paul G

    2006-02-01

    We compared the growth and differentiation characteristics of hair follicle-derived dermal stem cells with bone marrow mesenchymal stem cells (MSCs). Follicular dermal cells were isolated from whisker hairs of Wistar rats and bone marrow MSCs were isolated from femora of the same animals. The adherent hair follicle dermal cells showed a fibroblastic morphology in serum-containing culture medium, were CD44(+), CD73(+), CD90(+), and CD34(), and had a population doubling time of 27 h. MSCs isolated from the bone marrow showed a similar morphology and population doubling time and expressed the same cell-surface markers. Following exposure to appropriate induction stimuli, both cell populations had the capacity to differentiate into various mesenchymal lineages, such as osteoblasts, adipocytes, chondrocytes, and myocytes and expressed neuroprogenitor cell markers. The rate and extent of differentiation were remarkably similar for both hair follicleand bone marrow-derived cells, whereas interfollicular dermal cells failed to differentiate. We identified telomerase activity in follicle dermal stem cells and marrow MSCs and demonstrated that they were capable of clonal expansion. In ex vivo analyses, we identified the presence of putative dermal stem cells in the dermal sheath and dermal papillae of the hair follicle. Consequently, the hair follicle may represent a suitable, accessible source for MSCs.

  6. The Dermal Papilla: An Instructive Niche for Epithelial Stem and Progenitor Cells in Development and Regeneration of the Hair Follicle

    PubMed Central

    Morgan, Bruce A.

    2014-01-01

    The dermal papilla (DP) of the hair follicle is both a chemical and physical niche for epithelial progenitor cells that regenerate the cycling portion of the hair follicle and generate the hair shaft. Here, we review experiments that revealed the importance of the DP in regulating the characteristics of the hair shaft and frequency of hair follicle regeneration. More recent work showed that the size of this niche is dynamic and actively regulated and reduction in DP cell number per follicle is sufficient to cause hair thinning and loss. The formation of the DP during follicle neogenesis provides a context to contemplate the mechanisms that maintain DP size and the potential to exploit these processes for hair preservation or restoration. PMID:24985131

  7. Trps1 deficiency inhibits the morphogenesis of secondary hair follicles via decreased Noggin expression

    SciTech Connect

    Sun, Yujing; Nakanishi, Masako; Sato, Fuyuki; Oikawa, Kosuke; Muragaki, Yasuteru; Zhou, Gengyin

    2015-01-16

    Highlights: • The number of secondary hair follicles is reduced by half in Trps1 KO embryonic skin compared to wild-type skin. • Noggin expression is significantly decreased and BMP signaling is promoted in Trps1 KO embryonic skin. • Treatment with a Noggin or BMP inhibitor rescued the decreased number of hair follicles in Trps1 KO skin graft cultures. • Cell proliferation and apoptosis of the epidermis were normalized by Noggin treatment. - Abstract: A representative phenotype of patients with tricho-rhino-phalangeal syndrome (TRPS) is sparse hair. To understand the developmental defects of these patient’s hair follicles, we analyzed the development of hair follicles histologically and biochemically using Trps1 deficient (KO) mice. First, we compared the numbers of primary hair follicles in wild-type (WT) and KO embryos at different developmental stages. No differences were observed in the E14.5 skins of WT and KO mice. However, at later time points, KO fetal skin failed to properly develop secondary hair follicles, and the number of secondary hair follicles present in E18.5 KO skin was approximately half compared to that of WT skin. Sonic hedgehog expression was significantly decreased in E17.5 KO skin, whereas no changes were observed in Eda/Edar expression in E14.5 or E17.5 skins. In addition, Noggin expression was significantly decreased in E14.5 and E17.5 KO skin compared to WT skin. In parallel with the suppression of Noggin expression, BMP signaling was promoted in the epidermal cells of KO skins compared to WT skins as determined by immunohistochemistry for phosphorylated Smad1/5/8. The reduced number of secondary hair follicles was restored in skin graft cultures treated with a Noggin and BMP inhibitor. Furthermore, decreased cell proliferation, and increased apoptosis in KO skin was rescued by Noggin treatment. Taken together, we conclude that hair follicle development in Trps1 KO embryos is impaired directly or indirectly by decreased Noggin

  8. Aqueous extract of red deer antler promotes hair growth by regulating the hair cycle and cell proliferation in hair follicles.

    PubMed

    Li, Jing-jie; Li, Zheng; Gu, Li-juan; Wang, Yun-bo; Lee, Mi-ra; Sung, Chang-keun

    2014-01-01

    Deer antlers are the only mammalian appendage capable of regeneration. We aimed to investigate the effect of red deer antler extract in regulating hair growth, using a mouse model. The backs of male mice were shaved at eight weeks of age. Crude aqueous extracts of deer antler were prepared at either 4 °C or 100 °C and injected subcutaneously to two separate groups of mice (n = 9) at 1 mL/day for 10 consecutive days, with water as a vehicle control group. The mice skin quantitative hair growth parameters were measured and 5-bromo-2-deoxyuridine was used to identify label-retaining cells. We found that, in both the 4 °C and the 100 °C deer antler aqueous extract-injection groups, the anagen phase was extended, while the number of BrdU-incorporated cells was dramatically increased. These results indicate that deer antler aqueous extract promotes hair growth by extending the anagen phase and regulating cell proliferation in the hair follicle region. PMID:24695964

  9. Fgf20 governs formation of primary and secondary dermal condensations in developing hair follicles

    PubMed Central

    Huh, Sung-Ho; Närhi, Katja; Lindfors, Päivi H.; Häärä, Otso; Yang, Lu; Ornitz, David M.; Mikkola, Marja L.

    2013-01-01

    In hair follicle development, a placode-derived signal is believed to induce formation of the dermal condensation, an essential component of ectodermal organs. However, the identity of this signal is unknown. Furthermore, although induction and patterning of hair follicles are intimately linked, it is not known whether the mesenchymal condensation is necessary for inducing the initial epithelial pattern. Here, we show that fibroblast growth factor 20 (Fgf20) is expressed in hair placodes and is induced by and functions downstream from epithelial ectodysplasin (Eda)/Edar and Wnt/β-Catenin signaling to initiate formation of the underlying dermal condensation. Fgf20 governs formation of primary and secondary dermal condensations in developing hair follicles and subsequent formation of guard, awl, and auchene hairs. Although primary dermal condensations are absent in Fgf20 mutant mice, a regular array of hair placodes is formed, demonstrating that the epithelial patterning process is independent of known histological and molecular markers of underlying mesenchymal patterns during the initial stages of hair follicle development. PMID:23431057

  10. THE ELECTRON MICROSCOPY OF THE HUMAN HAIR FOLLICLE

    PubMed Central

    Birbeck, M. S. C.; Mercer, E. H.

    1957-01-01

    1. The presumptive cortical cells of hair in the undifferentiated matrix of the bulb contain mitochondria, agranular vesicles, and many small dense R.N.P. particles, but no keratin, pigment granules, or endoplasmic reticulum. 2. In the mid-bulb region intercellular adhesion is limited to small localised areas. Intercellular gaps are common and the cell surfaces are irregularly convoluted. The melanocyte processes penetrate the cell gaps. The relation between their pigment-bearing tips and the involutions of the cell membranes suggests an active phagocytosis of the tips. 3. Fibrous keratin first appears in loose parallel strands of fine filaments (ca. 60 A diameter) in the mid-bulb. The filaments, the long mitochondria, and elongated nucleus are all parallel to the long axis of the cell and the axis of the follicle. 4. At the level of the constriction of the bulb and above, a dense amorphous substance appears between the fine filaments and apparently acts as adhesive cement. The bundles of filaments now form well defined fibrils. The packing of the filaments within the fibrils is in places hexagonal and elsewhere in the form of "whorls." 5. At higher levels further filaments and interfilamentous cement are added together and the whole cytoplasmic space becomes packed with fibrils which finally condense to massive blocks of keratin. The residual cellular material occupies the interstices. 6. The addition of the interfilamentous substance is regarded as an essential factor in keratinisation. Keratin is considered to be a complex made of fine filaments (α-filaments) embedded in an amorphous substance (γ-keratin) which has the higher cystine content. 7. The wide-angle fibre-type x-ray pattern is thought to be due to scattering by the fine α-filaments and some low angle lateral spacings to the filament-plus-cement structure. PMID:13438903

  11. Complex changes in the apoptotic and cell differentiation programs during initiation of the hair follicle response to chemotherapy.

    PubMed

    Sharova, Tatyana Y; Poterlowicz, Krzysztof; Botchkareva, Natalia V; Kondratiev, Nikita A; Aziz, Ahmar; Spiegel, Jeffrey H; Botchkarev, Vladimir A; Sharov, Andrey A

    2014-12-01

    Chemotherapy has severe side effects in normal rapidly proliferating organs, such as hair follicles, and causes massive apoptosis in hair matrix keratinocytes followed by hair loss. To define the molecular signature of hair follicle response to chemotherapy, human scalp hair follicles cultured ex vivo were treated with doxorubicin (DXR), and global microarray analysis was performed 3 hours after treatment. Microarray data revealed changes in expression of 504 genes in DXR-treated hair follicles versus controls. Among these genes, upregulations of several tumor necrosis factor family of apoptotic receptors (FAS, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) receptors 1/2), as well as of a large number of keratin-associated protein genes, were seen after DXR treatment. Hair follicle apoptosis induced by DXR was significantly inhibited by either TRAIL-neutralizing antibody or caspase-8 inhibitor, thus suggesting a previously unreported role for TRAIL receptor signaling in mediating DXR-induced hair loss. These data demonstrate that the early phase of the hair follicle response to DXR includes upregulation of apoptosis-associated markers, as well as substantial reorganization of the terminal differentiation programs in hair follicle keratinocytes. These data provide an important platform for further studies toward the design of effective approaches for the management of chemotherapy-induced hair loss.

  12. Tbx18 targets dermal condensates for labeling, isolation, and gene ablation during embryonic hair follicle formation.

    PubMed

    Grisanti, Laura; Clavel, Carlos; Cai, Xiaoqiang; Rezza, Amelie; Tsai, Su-Yi; Sennett, Rachel; Mumau, Melanie; Cai, Chen-Leng; Rendl, Michael

    2013-02-01

    How cell fate decisions of stem and progenitor cells are regulated by their microenvironment or niche is a central question in stem cell and regenerative biology. Although functional analysis of hair follicle epithelial stem cells by gene targeting is well established, the molecular and genetic characterization of the dermal counterpart during embryonic morphogenesis has been lacking because of the absence of cell type-specific drivers. Here, we report that T-box transcription factor Tbx18 specifically marks dermal papilla (DP) precursor cells during embryonic hair follicle morphogenesis. With Tbx18(LacZ), Tbx18(H2BGFP), and Tbx18(Cre) knock-in mouse models, we demonstrate LacZ and H2BGFP (nuclear green fluorescent protein) expression and Cre activity in dermal condensates of nascent first-wave hair follicles at E14.5. As Tbx18 expression becomes more widespread throughout the dermis at later developmental stages, we use tamoxifen-inducible Cre-expressing mice, Tbx18(MerCreMer), to exclusively target DP precursor cells and their progeny. Finally, we ablate Tbx18 in full knockout mice, but find no perturbations in hair follicle formation, suggesting that Tbx18 is dispensable for normal DP function. In summary, our study establishes Tbx18 as a genetic driver to target for the first time embryonic DP precursors for labeling, isolation, and gene ablation that will greatly enhance investigations into their molecular functions during hair follicle morphogenesis. PMID:22992803

  13. Tbx18 targets dermal condensates for labeling, isolation, and gene ablation during embryonic hair follicle formation.

    PubMed

    Grisanti, Laura; Clavel, Carlos; Cai, Xiaoqiang; Rezza, Amelie; Tsai, Su-Yi; Sennett, Rachel; Mumau, Melanie; Cai, Chen-Leng; Rendl, Michael

    2013-02-01

    How cell fate decisions of stem and progenitor cells are regulated by their microenvironment or niche is a central question in stem cell and regenerative biology. Although functional analysis of hair follicle epithelial stem cells by gene targeting is well established, the molecular and genetic characterization of the dermal counterpart during embryonic morphogenesis has been lacking because of the absence of cell type-specific drivers. Here, we report that T-box transcription factor Tbx18 specifically marks dermal papilla (DP) precursor cells during embryonic hair follicle morphogenesis. With Tbx18(LacZ), Tbx18(H2BGFP), and Tbx18(Cre) knock-in mouse models, we demonstrate LacZ and H2BGFP (nuclear green fluorescent protein) expression and Cre activity in dermal condensates of nascent first-wave hair follicles at E14.5. As Tbx18 expression becomes more widespread throughout the dermis at later developmental stages, we use tamoxifen-inducible Cre-expressing mice, Tbx18(MerCreMer), to exclusively target DP precursor cells and their progeny. Finally, we ablate Tbx18 in full knockout mice, but find no perturbations in hair follicle formation, suggesting that Tbx18 is dispensable for normal DP function. In summary, our study establishes Tbx18 as a genetic driver to target for the first time embryonic DP precursors for labeling, isolation, and gene ablation that will greatly enhance investigations into their molecular functions during hair follicle morphogenesis.

  14. Characterization and quantification of wound-induced hair follicle neogenesis using in vivo confocal scanning laser microscopy

    PubMed Central

    Fan, Chengxiang; Luedtke, Michael A.; Prouty, Stephen M.; Burrows, Michelle; Kollias, Nikiforos

    2011-01-01

    Background In vivo confocal scanning laser microscopy (CSLM) is a recently-developed non-invasive technique for visualizing microscopic structures with the skin. CSLM has been used to characterize proliferative and inflammatory skin diseases, neoplastic skin lesions and pigmented lesions. Objective Here, we assessed the ability of CSLM to evaluate the formation of neogenic hair follicles after a full thickness wound in mice. Methods Full-thickness wounds were made on the dorsal skin of 3-week old mice. After scab detachment (SD), the number, width, length, space and volume of neogenic hair follicles were analyzed using CSLM. The results were compared with those from conventional methods, including staining for alkaline phosphatase (AP) and keratin 17 (K17) as well as histology. Results Quantification of neogenic hair follicles using CSLM compared favorably with results from direct measurements on isolated epidermal tissue after immunostaining for K17, a marker for the epithelial portion of new hair follicles. CSLM detected 89% of K17-stained follicles. CSLM more accurately quantitated the number of new follicles compared to AP staining, which detects the dermal portion of the new follicle. The width and length measurement from CSLM and histology were very close and correlated with each other. The minimum length of a neogenic hair follicle that could be detected by CSLM was 21 μm. The space between neogenic hair follicles was decreased in histological sections compared to CSLM. Conclusions CSLM is an accurate and valuable method for counting and measuring neogenic hair follicles non-invasively. CSLM produces images similar to histology in mice. Measurements of microstructures using CSLM more accurately reflect actual sizes since this technique avoids fixation artifact. In vivo visualization of developing follicles with CSLM permits detection of serial changes in hair follicle formation, thus conserving numbers of mice required for studies and improving detection of

  15. Effects of a Closed Space Environment on Gene Expression in Hair Follicles of Astronauts in the International Space Station

    PubMed Central

    Terada, Masahiro; Seki, Masaya; Takahashi, Rika; Yamada, Shin; Higashibata, Akira; Majima, Hideyuki J.; Sudoh, Masamichi; Mukai, Chiaki; Ishioka, Noriaki

    2016-01-01

    Adaptation to the space environment can sometimes pose physiological problems to International Space Station (ISS) astronauts after their return to earth. Therefore, it is important to develop healthcare technologies for astronauts. In this study, we examined the feasibility of using hair follicles, a readily obtained sample, to assess gene expression changes in response to spaceflight adaptation. In order to investigate the gene expression changes in human hair follicles during spaceflight, hair follicles of 10 astronauts were analyzed by microarray and real time qPCR analyses. We found that spaceflight alters human hair follicle gene expression. The degree of changes in gene expression was found to vary among individuals. In some astronauts, genes related to hair growth such as FGF18, ANGPTL7 and COMP were upregulated during flight, suggesting that spaceflight inhibits cell proliferation in hair follicles. PMID:27029003

  16. Effects of a Closed Space Environment on Gene Expression in Hair Follicles of Astronauts in the International Space Station.

    PubMed

    Terada, Masahiro; Seki, Masaya; Takahashi, Rika; Yamada, Shin; Higashibata, Akira; Majima, Hideyuki J; Sudoh, Masamichi; Mukai, Chiaki; Ishioka, Noriaki

    2016-01-01

    Adaptation to the space environment can sometimes pose physiological problems to International Space Station (ISS) astronauts after their return to earth. Therefore, it is important to develop healthcare technologies for astronauts. In this study, we examined the feasibility of using hair follicles, a readily obtained sample, to assess gene expression changes in response to spaceflight adaptation. In order to investigate the gene expression changes in human hair follicles during spaceflight, hair follicles of 10 astronauts were analyzed by microarray and real time qPCR analyses. We found that spaceflight alters human hair follicle gene expression. The degree of changes in gene expression was found to vary among individuals. In some astronauts, genes related to hair growth such as FGF18, ANGPTL7 and COMP were upregulated during flight, suggesting that spaceflight inhibits cell proliferation in hair follicles.

  17. Effects of a Closed Space Environment on Gene Expression in Hair Follicles of Astronauts in the International Space Station.

    PubMed

    Terada, Masahiro; Seki, Masaya; Takahashi, Rika; Yamada, Shin; Higashibata, Akira; Majima, Hideyuki J; Sudoh, Masamichi; Mukai, Chiaki; Ishioka, Noriaki

    2016-01-01

    Adaptation to the space environment can sometimes pose physiological problems to International Space Station (ISS) astronauts after their return to earth. Therefore, it is important to develop healthcare technologies for astronauts. In this study, we examined the feasibility of using hair follicles, a readily obtained sample, to assess gene expression changes in response to spaceflight adaptation. In order to investigate the gene expression changes in human hair follicles during spaceflight, hair follicles of 10 astronauts were analyzed by microarray and real time qPCR analyses. We found that spaceflight alters human hair follicle gene expression. The degree of changes in gene expression was found to vary among individuals. In some astronauts, genes related to hair growth such as FGF18, ANGPTL7 and COMP were upregulated during flight, suggesting that spaceflight inhibits cell proliferation in hair follicles. PMID:27029003

  18. Morphological analysis of the growth stages of in-vivo mouse hair follicles by using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jha, Rakesh Kumar; Kim, Kanghae; Jeon, Mansik; Kim, Jeehyun; Kang, Minyoung; Han, Insook; Kim, Moonkyu

    2016-09-01

    Swept-source optical coherence tomography (SS-OCT), a bio-photonic imaging modality, was used to demonstrate an initial feasibility experiment for detecting morphological variations of in-vivo mouse hair follicles for the anagen and the telogen growth stages. Two C57BL/6 adult male mice, one undergoing the anagen stage and the other undergoing the telogen stage of the hair follicle growth cycle, were selected for the experiment. The OCT cross-sectional images of mice skin were acquired in-vivo within an interval of 15 days, and the observed morphological changes were analyzed. The micro-structural features of mice skin on the 15th experimental day were further compared with corresponding histological observations. The preliminary result of this study provides clear insights into the structural details of mouse skin, confirming the resemblance of the OCT images with the corresponding histological measurements, and ensures the suitability of SS-OCT for non-invasive analysis of hair follicle conditions.

  19. Restorative effect of hair follicular dermal cells on injured human hair follicles in a mouse model.

    PubMed

    Yamao, Mikaru; Inamatsu, Mutsumi; Okada, Taro; Ogawa, Yuko; Ishida, Yuji; Tateno, Chise; Yoshizato, Katsutoshi

    2015-03-01

    No model is available for examining whether in vivo-damaged human hair follicles (hu-HFs) are rescued by transplanting cultured hu-HF dermal cells (dermal papilla and dermal sheath cells). Such a model might be valuable for examining whether in vivo-damaged hu-HFs such as miniaturized hu-HFs in androgenic alopecia are improvable by auto-transplanting hu-HF dermal cells. In this study, we first developed mice with humanized skin composed of hu-keratinocytes and hu-dermal fibroblasts. Then, a 'humanized scalp model mouse' was generated by transplanting hu-scalp HFs into the humanized skin. To demonstrate the usability of the model, the lower halves of the hu-HFs in the model were amputated in situ, and cultured hu-HF dermal cells were injected around the amputated area. The results demonstrated that the transplanted cells contributed to the restoration of the damaged HFs. This model could be used to explore clinically effective technologies for hair restoration therapy by autologous cell transplantation.

  20. Identification and localization of insulin-like growth factor-binding protein (IGFBP) messenger RNAs in human hair follicle dermal papilla.

    PubMed

    Batch, J A; Mercuri, F A; Werther, G A

    1996-03-01

    The role of the insulin-like growth factors (IGFs) in hair follicle biology has recently been recognized, although their actions, sites of production, and modulation by the insulin-like growth factor-binding proteins (IGFBPs) have not to date been defined. IGF-I is essential for normal hair growth and development, and may be important in regulation of the hair growth cycle. In many culture systems, IGF-I actions are modulated by the IGFBPs. Thus, if IGFBPs are produced in the human hair follicle, they may play a role in targeting IGF-I to its receptor or may modulate IGF-I action by interaction with matrix proteins. We have used in situ hybridization to localize messenger RNA for the six IGFBPs in anagen hair follicles. Anti-sense and sense RNA probes for the IGFBPs (IGFBP-1 to -6) were produced, and 5-micrometer sections of adult facial skin were probed. Messenger RNA for IGFBP-3, -4, and -5 were identified, with predominantly IGFBP-3 and -5 mRNA found in the dermal papilla, and to a lesser extent IGFBP-4 mRNA. IGFBP-4 mRNA was also found at the dermal papilla/epithelial matrix border. Messenger RNAs for both IGFBP-4 and -5 were also demonstrated in the dermal sheath surrounding the hair follicle. Messenger RNAs for IGFBP-1, -2, and -6 were not identified. These studies demonstrate specific localization of IGFBP mRNAs in hair follicles, suggesting that they each play specific roles in the local modulation of IGF action during the hair growth cycle.

  1. Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle.

    PubMed

    Mardaryev, Andrei N; Ahmed, Mohammed I; Vlahov, Nikola V; Fessing, Michael Y; Gill, Jason H; Sharov, Andrey A; Botchkareva, Natalia V

    2010-10-01

    The hair follicle is a cyclic biological system that progresses through stages of growth, regression, and quiescence, which involves dynamic changes in a program of gene regulation. Micro-RNAs (miRNAs) are critically important for the control of gene expression and silencing. Here, we show that global miRNA expression in the skin markedly changes during distinct stages of the hair cycle in mice. Furthermore, we show that expression of miR-31 markedly increases during anagen and decreases during catagen and telogen. Administration of antisense miR-31 inhibitor into mouse skin during the early- and midanagen phases of the hair cycle results in accelerated anagen development, and altered differentiation of hair matrix keratinocytes and hair shaft formation. Microarray, qRT-PCR and Western blot analyses revealed that miR-31 negatively regulates expression of Fgf10, the components of Wnt and BMP signaling pathways Sclerostin and BAMBI, and Dlx3 transcription factor, as well as selected keratin genes, both in vitro and in vivo. Using luciferase reporter assay, we show that Krt16, Krt17, Dlx3, and Fgf10 serve as direct miR-31 targets. Thus, by targeting a number of growth regulatory molecules and cytoskeletal proteins, miR-31 is involved in establishing an optimal balance of gene expression in the hair follicle required for its proper growth and hair fiber formation. PMID:20522784

  2. Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle.

    PubMed

    Mardaryev, Andrei N; Ahmed, Mohammed I; Vlahov, Nikola V; Fessing, Michael Y; Gill, Jason H; Sharov, Andrey A; Botchkareva, Natalia V

    2010-10-01

    The hair follicle is a cyclic biological system that progresses through stages of growth, regression, and quiescence, which involves dynamic changes in a program of gene regulation. Micro-RNAs (miRNAs) are critically important for the control of gene expression and silencing. Here, we show that global miRNA expression in the skin markedly changes during distinct stages of the hair cycle in mice. Furthermore, we show that expression of miR-31 markedly increases during anagen and decreases during catagen and telogen. Administration of antisense miR-31 inhibitor into mouse skin during the early- and midanagen phases of the hair cycle results in accelerated anagen development, and altered differentiation of hair matrix keratinocytes and hair shaft formation. Microarray, qRT-PCR and Western blot analyses revealed that miR-31 negatively regulates expression of Fgf10, the components of Wnt and BMP signaling pathways Sclerostin and BAMBI, and Dlx3 transcription factor, as well as selected keratin genes, both in vitro and in vivo. Using luciferase reporter assay, we show that Krt16, Krt17, Dlx3, and Fgf10 serve as direct miR-31 targets. Thus, by targeting a number of growth regulatory molecules and cytoskeletal proteins, miR-31 is involved in establishing an optimal balance of gene expression in the hair follicle required for its proper growth and hair fiber formation.

  3. Ginsenosides Rb₁ and Rd regulate proliferation of mature keratinocytes through induction of p63 expression in hair follicles.

    PubMed

    Li, Zheng; Li, Jing-Jie; Gu, Li-Juan; Zhang, Dong-Liang; Wang, Yun-Bo; Sung, Chang-Keun

    2013-07-01

    Ginsenosides Rb₁ and Rd are the two main types of ginsenosides in Panax ginseng and have been used as an additive to against alopecia. However, the mechanisms involved are largely unknown. To determine how ginsenosides prevent hair loss, we topically applied protopanaxadiol-type ginsenosides Rb₁ and Rd over the shaved skin of B57CL/6 mice, and monitored and assessed them for 35 days. We then investigated the effects of ginsenosides on cell genesis in different phases of adult hair follicles (HFs), using 5-bromo-2'-deoxyuridine as a marker for dividing cells. Moreover, p63, a specific marker and a major regulator of keratinocyte progenitor cells of the multi-layered epithelia, was detected in epidermis. Results indicated that treatment with ginsenosides Rb₁ and Rd increased cell proliferation in both anagen and telogen of HFs. However, it had no significant effect on the survival of cells in the bulge and upper follicle region. Investigation of p63 demonstrated that up-regulation of p63 expression in the matrix and outer root sheath might be one of the mechanisms by which ginsenosides Rb₁ and Rd promote cell proliferation in HFs. Our study reveals a novel mechanism by which ginsenoside promotes hair growth through p63 induction in follicular keratinocytes and indicates that ginsenosides Rb₁ and Rd might be developed as a therapeutic agent for the prevention of hair loss. PMID:23007914

  4. Inhibition of β-catenin signalling in dermal fibroblasts enhances hair follicle regeneration during wound healing.

    PubMed

    Rognoni, Emanuel; Gomez, Celine; Pisco, Angela Oliveira; Rawlins, Emma L; Simons, Ben D; Watt, Fiona M; Driskell, Ryan R

    2016-07-15

    New hair follicles (HFs) do not form in adult mammalian skin unless epidermal Wnt signalling is activated genetically or within large wounds. To understand the postnatal loss of hair forming ability we monitored HF formation at small circular (2 mm) wound sites. At P2, new HFs formed in back skin, but HF formation was markedly decreased by P21. Neonatal tail also formed wound-associated HFs, albeit in smaller numbers. Postnatal loss of HF neogenesis did not correlate with wound closure rate but with a reduction in Lrig1-positive papillary fibroblasts in wounds. Comparative gene expression profiling of back and tail dermis at P1 and dorsal fibroblasts at P2 and P50 showed a correlation between loss of HF formation and decreased expression of genes associated with proliferation and Wnt/β-catenin activity. Between P2 and P50, fibroblast density declined throughout the dermis and clones of fibroblasts became more dispersed. This correlated with a decline in fibroblasts expressing a TOPGFP reporter of Wnt activation. Surprisingly, between P2 and P50 there was no difference in fibroblast proliferation at the wound site but Wnt signalling was highly upregulated in healing dermis of P21 compared with P2 mice. Postnatal β-catenin ablation in fibroblasts promoted HF regeneration in neonatal and adult mouse wounds, whereas β-catenin activation reduced HF regeneration in neonatal wounds. Our data support a model whereby postnatal loss of hair forming ability in wounds reflects elevated dermal Wnt/β-catenin activation in the wound bed, increasing the abundance of fibroblasts that are unable to induce HF formation. PMID:27287810

  5. Inhibition of β-catenin signalling in dermal fibroblasts enhances hair follicle regeneration during wound healing

    PubMed Central

    Gomez, Celine; Pisco, Angela Oliveira; Rawlins, Emma L.; Simons, Ben D.

    2016-01-01

    New hair follicles (HFs) do not form in adult mammalian skin unless epidermal Wnt signalling is activated genetically or within large wounds. To understand the postnatal loss of hair forming ability we monitored HF formation at small circular (2 mm) wound sites. At P2, new HFs formed in back skin, but HF formation was markedly decreased by P21. Neonatal tail also formed wound-associated HFs, albeit in smaller numbers. Postnatal loss of HF neogenesis did not correlate with wound closure rate but with a reduction in Lrig1-positive papillary fibroblasts in wounds. Comparative gene expression profiling of back and tail dermis at P1 and dorsal fibroblasts at P2 and P50 showed a correlation between loss of HF formation and decreased expression of genes associated with proliferation and Wnt/β-catenin activity. Between P2 and P50, fibroblast density declined throughout the dermis and clones of fibroblasts became more dispersed. This correlated with a decline in fibroblasts expressing a TOPGFP reporter of Wnt activation. Surprisingly, between P2 and P50 there was no difference in fibroblast proliferation at the wound site but Wnt signalling was highly upregulated in healing dermis of P21 compared with P2 mice. Postnatal β-catenin ablation in fibroblasts promoted HF regeneration in neonatal and adult mouse wounds, whereas β-catenin activation reduced HF regeneration in neonatal wounds. Our data support a model whereby postnatal loss of hair forming ability in wounds reflects elevated dermal Wnt/β-catenin activation in the wound bed, increasing the abundance of fibroblasts that are unable to induce HF formation. PMID:27287810

  6. Polymeric nanoparticles-embedded organogel for roxithromycin delivery to hair follicles.

    PubMed

    Główka, Eliza; Wosicka-Frąckowiak, Hanna; Hyla, Kinga; Stefanowska, Justyna; Jastrzębska, Katarzyna; Klapiszewski, Łukasz; Jesionowski, Teofil; Cal, Krzysztof

    2014-09-01

    Drug delivery into hair follicles with the use of nanoparticles (NPs) is gaining more importance as drug-loaded NPs may accumulate in hair follicle openings. The aim was to develop and evaluate a pluronic lecithin organogel (PLO) with roxithromycin (ROX)-loaded NPs for follicular targeting. Polymeric NPs were evaluated in terms of particle shape, size, zeta potential, suspension stability, encapsulation efficiency and in vitro drug release. Lyophilized NPs were incorporated into the PLO and rheological measurements of the nanoparticles-embedded organogels were done. The fate of the NPs in the skin was traced by incorporation of a fluorescent dye into the NPs. As a result, ROX was efficiently incorporated into polymeric NPs characterized by the appropriate size (approximately 300 nm) allowing drug delivery to hair follicles. In ex vivo human skin penetration studies, horizontal skin sections revealed fluorescence deep in the hair follicles. Although the organogel has higher affinity to the lipidic follicular area than an aqueous suspension of NPs, it did not seem to improve penetration of the NPs along the hair shaft. The results proved that it was possible to achieve preferential targeting to the pilosebaceous unit using polymeric NPs formulated either into the aqueous suspension or semisolid topical formulation. PMID:25014763

  7. Polymeric nanoparticles-embedded organogel for roxithromycin delivery to hair follicles.

    PubMed

    Główka, Eliza; Wosicka-Frąckowiak, Hanna; Hyla, Kinga; Stefanowska, Justyna; Jastrzębska, Katarzyna; Klapiszewski, Łukasz; Jesionowski, Teofil; Cal, Krzysztof

    2014-09-01

    Drug delivery into hair follicles with the use of nanoparticles (NPs) is gaining more importance as drug-loaded NPs may accumulate in hair follicle openings. The aim was to develop and evaluate a pluronic lecithin organogel (PLO) with roxithromycin (ROX)-loaded NPs for follicular targeting. Polymeric NPs were evaluated in terms of particle shape, size, zeta potential, suspension stability, encapsulation efficiency and in vitro drug release. Lyophilized NPs were incorporated into the PLO and rheological measurements of the nanoparticles-embedded organogels were done. The fate of the NPs in the skin was traced by incorporation of a fluorescent dye into the NPs. As a result, ROX was efficiently incorporated into polymeric NPs characterized by the appropriate size (approximately 300 nm) allowing drug delivery to hair follicles. In ex vivo human skin penetration studies, horizontal skin sections revealed fluorescence deep in the hair follicles. Although the organogel has higher affinity to the lipidic follicular area than an aqueous suspension of NPs, it did not seem to improve penetration of the NPs along the hair shaft. The results proved that it was possible to achieve preferential targeting to the pilosebaceous unit using polymeric NPs formulated either into the aqueous suspension or semisolid topical formulation.

  8. Protocols for Ectopic Hair Growth from Transplanted Whisker Follicles on the Spinal Cord of Mice.

    PubMed

    Cao, Wenluo; Liu, Fang; Amoh, Yasuyuki; Hoffman, Robert M

    2016-01-01

    Isolated whisker follicles from nestin-driven green fluorescent protein (ND-GFP) mice, containing hair-associated pluripotent (HAP) stem cells, were histocultured in three dimensions on Gelfoam(®) for 3 weeks for subsequent transplantation to the spinal cord in order to heal an induced injury with the HAP stem cells. The hair shafts were removed from Gelfoam(®)-histocultured whisker follicles, and the remaining parts of the whisker follicles, containing GFP-nestin-expressing (HAP) stem cells, were transplanted into the injured spinal cord of nude mice, along with the Gelfoam(®). After 90 days, the mice were sacrificed and the spinal cord injuries were observed to have healed. ND-GFP expression was intense at the healed area of the spinal cord, as observed by fluorescence microscopy, demonstrating that the HAP stem cells were involved in healing the spinal cord. The transplanted whisker follicles produced remarkably long hair shafts in the spinal cord over 90 days and curved and enclosed the spinal cord. This result changes our concept of hair growth, demonstrating it is not limited to the skin and that hair growth appears related to HAP stem cells as both increased in tandem on the spinal cord.

  9. Mitochondrial aerobic respiration is activated during hair follicle stem cell differentiation, and its dysfunction retards hair regeneration.

    PubMed

    Tang, Yan; Luo, Binping; Deng, Zhili; Wang, Ben; Liu, Fangfen; Li, Jinmao; Shi, Wei; Xie, Hongfu; Hu, Xingwang; Li, Ji

    2016-01-01

    Background. Emerging research revealed the essential role of mitochondria in regulating stem/progenitor cell differentiation of neural progenitor cells, mesenchymal stem cells and other stem cells through reactive oxygen species (ROS), Notch or other signaling pathway. Inhibition of mitochondrial protein synthesis results in hair loss upon injury. However, alteration of mitochondrial morphology and metabolic function during hair follicle stem cells (HFSCs) differentiation and how they affect hair regeneration has not been elaborated upon. Methods. We compared the difference in mitochondrial morphology and activity between telogen bulge cells and anagen matrix cells. Expression levels of mitochondrial ROS and superoxide dismutase 2 (SOD2) were measured to evaluate redox balance. In addition, the level of pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase (PDH) were estimated to present the change in energetic metabolism during differentiation. To explore the effect of the mitochondrial metabolism on regulating hair regeneration, hair growth was observed after application of a mitochondrial respiratory inhibitor upon hair plucking. Results. During HFSCs differentiation, mitochondria became elongated with more abundant organized cristae and showed higher activity in differentiated cells. SOD2 was enhanced for redox balance with relatively stable ROS levels in differentiated cells. PDK increased in HFSCs while differentiated cells showed enhanced PDH, indicating that respiration switched from glycolysis to oxidative phosphorylation during differentiation. Inhibiting mitochondrial respiration in differentiated hair follicle cells upon hair plucking repressed hair regeneration in vivo. Conclusions. Upon HFSCs differentiation, mitochondria are elongated with more abundant cristae and show higher activity, accompanying with activated aerobic respiration in differentiated cells for higher energy supply. Also, dysfunction of mitochondrial respiration delays hair

  10. Mitochondrial aerobic respiration is activated during hair follicle stem cell differentiation, and its dysfunction retards hair regeneration

    PubMed Central

    Tang, Yan; Luo, Binping; Deng, Zhili; Wang, Ben; Liu, Fangfen; Li, Jinmao; Shi, Wei; Xie, Hongfu; Hu, Xingwang

    2016-01-01

    Background. Emerging research revealed the essential role of mitochondria in regulating stem/progenitor cell differentiation of neural progenitor cells, mesenchymal stem cells and other stem cells through reactive oxygen species (ROS), Notch or other signaling pathway. Inhibition of mitochondrial protein synthesis results in hair loss upon injury. However, alteration of mitochondrial morphology and metabolic function during hair follicle stem cells (HFSCs) differentiation and how they affect hair regeneration has not been elaborated upon. Methods. We compared the difference in mitochondrial morphology and activity between telogen bulge cells and anagen matrix cells. Expression levels of mitochondrial ROS and superoxide dismutase 2 (SOD2) were measured to evaluate redox balance. In addition, the level of pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase (PDH) were estimated to present the change in energetic metabolism during differentiation. To explore the effect of the mitochondrial metabolism on regulating hair regeneration, hair growth was observed after application of a mitochondrial respiratory inhibitor upon hair plucking. Results. During HFSCs differentiation, mitochondria became elongated with more abundant organized cristae and showed higher activity in differentiated cells. SOD2 was enhanced for redox balance with relatively stable ROS levels in differentiated cells. PDK increased in HFSCs while differentiated cells showed enhanced PDH, indicating that respiration switched from glycolysis to oxidative phosphorylation during differentiation. Inhibiting mitochondrial respiration in differentiated hair follicle cells upon hair plucking repressed hair regeneration in vivo. Conclusions. Upon HFSCs differentiation, mitochondria are elongated with more abundant cristae and show higher activity, accompanying with activated aerobic respiration in differentiated cells for higher energy supply. Also, dysfunction of mitochondrial respiration delays hair

  11. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin

    PubMed Central

    Nagao, Keisuke; Kobayashi, Tetsuro; Moro, Kazuyo; Ohyama, Manabu; Adachi, Takeya; Kitashima, Daniela Y; Ueha, Satoshi; Horiuchi, Keisuke; Tanizaki, Hideaki; Kabashima, Kenji; Kubo, Akiharu; Cho, Young-hun; Clausen, Björn E; Matsushima, Kouji; Suematsu, Makoto; Furtado, Glaucia C; Lira, Sergio A; Farber, Joshua M; Udey, Mark C; Amagai, Masayuki

    2014-01-01

    Langerhans cells (LCs) are epidermal dendritic cells with incompletely understood origins that associate with hair follicles for unknown reasons. Here we show that in response to external stress, mouse hair follicles recruited Gr-1hi monocyte-derived precursors of LCs whose epidermal entry was dependent on the chemokine receptors CCR2 and CCR6, whereas the chemokine receptor CCR8 inhibited the recruitment of LCs. Distinct hair-follicle regions had differences in their expression of ligands for CCR2 and CCR6. The isthmus expressed the chemokine CCL2; the infundibulum expressed the chemokine CCL20; and keratinocytes in the bulge produced the chemokine CCL8, which is the ligand for CCR8. Thus, distinct hair-follicle keratinocyte subpopulations promoted or inhibited repopulation with LCs via differences in chemokine production, a feature also noted in humans. Pre-LCs failed to enter hairless skin in mice or humans, which establishes hair follicles as portals for LCs. PMID:22729248

  12. A genetic basis of variation in eccrine sweat gland and hair follicle density.

    PubMed

    Kamberov, Yana G; Karlsson, Elinor K; Kamberova, Gerda L; Lieberman, Daniel E; Sabeti, Pardis C; Morgan, Bruce A; Tabin, Clifford J

    2015-08-11

    Among the unique features of humans, one of the most salient is the ability to effectively cool the body during extreme prolonged activity through the evapotranspiration of water on the skin's surface. The evolution of this novel physiological ability required a dramatic increase in the density and distribution of eccrine sweat glands relative to other mammals and a concomitant reduction of body hair cover. Elucidation of the genetic underpinnings for these adaptive changes is confounded by a lack of knowledge about how eccrine gland fate and density are specified during development. Moreover, although reciprocal changes in hair cover and eccrine gland density are required for efficient thermoregulation, it is unclear if these changes are linked by a common genetic regulation. To identify pathways controlling the relative patterning of eccrine glands and hair follicles, we exploited natural variation in the density of these organs between different strains of mice. Quantitative trait locus mapping identified a large region on mouse Chromosome 1 that controls both hair and eccrine gland densities. Differential and allelic expression analysis of the genes within this interval coupled with subsequent functional studies demonstrated that the level of En1 activity directs the relative numbers of eccrine glands and hair follicles. These findings implicate En1 as a newly identified and reciprocal determinant of hair follicle and eccrine gland density and identify a pathway that could have contributed to the evolution of the unique features of human skin. PMID:26195765

  13. Selective activation of the versican promoter by epithelial- mesenchymal interactions during hair follicle development.

    PubMed

    Kishimoto, J; Ehama, R; Wu, L; Jiang, S; Jiang, N; Burgeson, R E

    1999-06-22

    Interaction between the epithelium and the mesenchyme is an essential feature of organogenesis, including hair follicle formation. The dermal papilla (DP), a dense aggregate of specialized dermis-derived stromal cells located at the bottom of the follicle, is a major component of hair that signals the follicular epithelial cells to prolong the hair growth process. However, little is known about DP-specific gene activation with regard to hair induction. In this study we demonstrate that a short fragment (839 bp) of the human versican (a core protein of one of the matrix chondroitin sulfate proteoglycans) promoter is sufficient to activate lacZ reporter gene expression in the DP of postnatal transgenic mice and also in the condensed mesenchyme (the origin of the DP) beneath the hair placode during hair follicle embryogenesis. Using the same versican promoter with green fluorescent protein (GFP), large numbers of fresh pelage DP cells were isolated from newborn transgenic skin by high-speed cell sorting. These GFP-positive DP cells showed abundant versican mRNA, confirming that the reporter molecules reflected endogenous versican gene expression. These sorted GFP-positive cells showed DP-like morphology in culture, but both GFP and versican expression was lost during primary culture. In vivo hair growth assays showed that GFP-positive cells could induce hair when grafted with epithelial cells, whereas GFP-negative cells grafted with epithelium or GFP-positive cells alone did not. These results suggest that versican may play an essential role both in mesenchymal condensation and in hair induction.

  14. Telomerase activity concentrates in the mitotically active segments of human hair follicles.

    PubMed

    Ramirez, R D; Wright, W E; Shay, J W; Taylor, R S

    1997-01-01

    Telomerase is a ribonucleoprotein enzyme capable of adding hexanucleotide repeats onto the ends of linear chromosomal DNA. Whereas normal somatic cells with a limited replicative capacity fail to express telomerase activity, most immortal eukaryotic cells do. Cells of renewal tissues (e.g., skin, intestine, blood) require an extensive proliferative capacity. Some cells in such renewal tissues also express telomerase activity, most likely to prevent rapid erosion of their telomeres during cell proliferation. In this study, we measured the levels of telomerase activity in dissected compartments of the human hair follicle: hair shaft, gland-containing fragment, upper intermediate fragment (where it is thought undifferentiated stem cells reside), lower intermediate fragment, and in the bulb-containing fragment (an area with high mitotic activity containing a more differentiated pool of keratinocytes). In anagen follicles, high levels of telomerase activity were found almost exclusively in the bulb-containing fragment of the follicles, with low levels of telomerase in the bulge area (intermediate fragments) and gland-containing fragment. In comparison, catagen follicles had low levels of telomerase activity in the bulb-containing fragments as well as in other compartments. Such observations indicate that, in anagen hair follicles, the fragments containing cells actively dividing (e.g., transient amplifying cells) express telomerase activity, whereas fragments containing cells with low mitotic activity, for example, quiescent stem cells, express low levels of telomerase activity. PMID:8980299

  15. Secrets of the Hair Follicle: Now on Your iPhone.

    PubMed

    Millar, Sarah E

    2015-09-14

    Skin development requires communication between epithelial and mesenchymal cells, melanocytes, and neurons. In this issue of Developmental Cell, Sennett et al. (2015) shed new light on these mechanisms by simultaneously profiling multiple different cell types in embryonic mouse skin at the onset of hair follicle formation.

  16. Paracrine crosstalk between human hair follicle dermal papilla cells and microvascular endothelial cells.

    PubMed

    Bassino, Eleonora; Gasparri, Franco; Giannini, Valentina; Munaron, Luca

    2015-05-01

    Human follicle dermal papilla cells (FDPC) are a specialized population of mesenchymal cells located in the skin. They regulate hair follicle (HF) development and growth, and represent a reservoir of multipotent stem cells. Growing evidence supports the hypothesis that HF cycling is associated with vascular remodeling. Follicular keratinocytes release vascular endothelial growth factor (VEGF) that sustains perifollicular angiogenesis leading to an increase of follicle and hair size. Furthermore, several human diseases characterized by hair loss, including Androgenetic Alopecia, exhibit alterations of skin vasculature. However, the molecular mechanisms underlying HF vascularization remain largely unknown. In vitro coculture approaches can be successfully employed to greatly improve our knowledge and shed more light on this issue. Here we used Transwell-based co-cultures to show that FDPC promote survival, proliferation and tubulogenesis of human microvascular endothelial cells (HMVEC) more efficiently than fibroblasts. Accordingly, FDPC enhance the endothelial release of VEGF and IGF-1, two well-known proangiogenic growth factors. Collectively, our data suggest a key role of papilla cells in vascular remodeling of the hair follicle.

  17. Secrets of the Hair Follicle: Now on Your iPhone.

    PubMed

    Millar, Sarah E

    2015-09-14

    Skin development requires communication between epithelial and mesenchymal cells, melanocytes, and neurons. In this issue of Developmental Cell, Sennett et al. (2015) shed new light on these mechanisms by simultaneously profiling multiple different cell types in embryonic mouse skin at the onset of hair follicle formation. PMID:26374762

  18. Rhythmic expression of circadian clock genes in human leukocytes and beard hair follicle cells.

    PubMed

    Watanabe, Makiko; Hida, Akiko; Kitamura, Shingo; Enomoto, Minori; Ohsawa, Yosuke; Katayose, Yasuko; Nozaki, Kentaro; Moriguchi, Yoshiya; Aritake, Sayaka; Higuchi, Shigekazu; Tamura, Miyuki; Kato, Mie; Mishima, Kazuo

    2012-09-01

    Evaluating individual circadian rhythm traits is crucial for understanding the human biological clock system. The present study reports characterization of physiological and molecular parameters in 13 healthy male subjects under a constant routine condition, where interfering factors were kept to minimum. We measured hormonal secretion levels and examined temporal expression profiles of circadian clock genes in peripheral leukocytes and beard hair follicle cells. All 13 subjects had prominent daily rhythms in melatonin and cortisol secretion. Significant circadian rhythmicity was found for PER1 in 9 subjects, PER2 in 3 subjects, PER3 in all 13 subjects, and BMAL1 in 8 subjects in leukocytes. Additionally, significant circadian rhythmicity was found for PER1 in 5 of 8 subjects tested, PER2 in 2 subjects, PER3 in 6 subjects, and BMAL1 in 3 subjects in beard hair follicle cells. The phase of PER1 and PER3 rhythms in leukocytes correlated significantly with that of physiological rhythms. Our results demonstrate that leukocytes and beard hair follicle cells possess an endogenous circadian clock and suggest that PER1 and PER3 expression would be appropriate biomarkers and hair follicle cells could be a useful tissue source for the evaluation of biological clock traits in individuals. PMID:22902636

  19. Neural Potential of a Stem Cell Population in the Hair Follicle

    PubMed Central

    Mignone, John L.; Roig-Lopez, Jose L.; Fedtsova, Natalia; Schones, Dustin E.; Manganas, Louis N.; Maletic-Savatic, Mirjana; Keyes, William M.; Mills, Alea A.; Gleiberman, Anatoli; Zhang, Michael Q.; Enikolopov, Grigori

    2013-01-01

    The bulge region of the hair follicle serves as a repository for epithelial stem cells that can regenerate the follicle in each hair growth cycle and contribute to epidermis regeneration upon injury. Here we describe a population of multipotential stem cells in the hair follicle bulge region; these cells can be identified by fluorescence in transgenic nestin-GFP mice. The morphological features of these cells suggest that they maintain close associations with each other and with the surrounding niche. Upon explantation, these cells can give rise to neurosphere-like structures in vitro. When these cells are permitted to differentiate, they produce several cell types, including cells with neuronal, astrocytic, oligodendrocytic, smooth muscle, adipocytic, and other phenotypes. Furthermore, upon implantation into the developing nervous system of chick, these cells generate neuronal cells in vivo. We used transcriptional profiling to assess the relationship between these cells and embryonic and postnatal neural stem cells and to compare them with other stem cell populations of the bulge. Our results show that nestin-expressing cells in the bulge region of the hair follicle have stem cell-like properties, are multipotent, and can effectively generate cells of neural lineage in vitro and in vivo. PMID:17873521

  20. Interaction of minoxidil with pigment in cells of the hair follicle: an example of binding without apparent biological effects.

    PubMed

    Buhl, A E; Kawabe, T T; MacCallum, D K; Waldon, D J; Knight, K A; Johnson, G A

    1992-01-01

    To identify minoxidil target cells in hair follicles we followed the uptake of radiolabeled drug in mouse vibrissae follicles both in vitro and in vivo. Autoradiography showed that both 3H-minoxidil and 3H-minoxidil sulfate accumulated in the differentiating epithelial matrix cells superior to the dermal papilla, a distribution similar to that of pigment. Minoxidil localized in melanocytes, melanocyte processes, and areas of greater melanin concentrations within the epithelial cells. Although uptake of minoxidil was significantly less in unpigmented follicles, the drug stimulated proliferation and differentiation of both pigmented and unpigmented follicles. Labeled minoxidil bound to Sepia melanin and was displaced with unlabeled minoxidil and other electron donor drugs. This interaction with melanin acts as a targeting mechanism of minoxidil to pigmented hair follicles but has no apparent functional significance in hair growth. This work illustrates how measurement of drugs in hair may be biased by pigmentation.

  1. Differential Expression of Proteins Associated with the Hair Follicle Cycle - Proteomics and Bioinformatics Analyses

    PubMed Central

    Tian, Tian; Yang, Mifang; Li, Zhongming; Ping, Fengfeng; Fan, Weixin

    2016-01-01

    Hair follicle cycling can be divided into the following three stages: anagen, catagen, and telogen. The molecular signals that orchestrate the follicular transition between phases are still unknown. To better understand the detailed protein networks controlling this process, proteomics and bioinformatics analyses were performed to construct comparative protein profiles of mouse skin at specific time points (0, 8, and 20 days). Ninety-five differentially expressed protein spots were identified by MALDI-TOF/TOF as 44 proteins, which were found to change during hair follicle cycle transition. Proteomics analysis revealed that these changes in protein expression are involved in Ca2+-regulated biological processes, migration, and regulation of signal transduction, among other processes. Subsequently, three proteins were selected to validate the reliability of expression patterns using western blotting. Cluster analysis revealed three expression patterns, and each pattern correlated with specific cell processes that occur during the hair cycle. Furthermore, bioinformatics analysis indicated that the differentially expressed proteins impacted multiple biological networks, after which detailed functional analyses were performed. Taken together, the above data may provide insight into the three stages of mouse hair follicle morphogenesis and provide a solid basis for potential therapeutic molecular targets for this hair disease. PMID:26752403

  2. Differential Expression of Proteins Associated with the Hair Follicle Cycle - Proteomics and Bioinformatics Analyses.

    PubMed

    Wang, Lei; Xu, Wenrong; Cao, Lei; Tian, Tian; Yang, Mifang; Li, Zhongming; Ping, Fengfeng; Fan, Weixin

    2016-01-01

    Hair follicle cycling can be divided into the following three stages: anagen, catagen, and telogen. The molecular signals that orchestrate the follicular transition between phases are still unknown. To better understand the detailed protein networks controlling this process, proteomics and bioinformatics analyses were performed to construct comparative protein profiles of mouse skin at specific time points (0, 8, and 20 days). Ninety-five differentially expressed protein spots were identified by MALDI-TOF/TOF as 44 proteins, which were found to change during hair follicle cycle transition. Proteomics analysis revealed that these changes in protein expression are involved in Ca2+-regulated biological processes, migration, and regulation of signal transduction, among other processes. Subsequently, three proteins were selected to validate the reliability of expression patterns using western blotting. Cluster analysis revealed three expression patterns, and each pattern correlated with specific cell processes that occur during the hair cycle. Furthermore, bioinformatics analysis indicated that the differentially expressed proteins impacted multiple biological networks, after which detailed functional analyses were performed. Taken together, the above data may provide insight into the three stages of mouse hair follicle morphogenesis and provide a solid basis for potential therapeutic molecular targets for this hair disease.

  3. Differential Expression of Proteins Associated with the Hair Follicle Cycle - Proteomics and Bioinformatics Analyses.

    PubMed

    Wang, Lei; Xu, Wenrong; Cao, Lei; Tian, Tian; Yang, Mifang; Li, Zhongming; Ping, Fengfeng; Fan, Weixin

    2016-01-01

    Hair follicle cycling can be divided into the following three stages: anagen, catagen, and telogen. The molecular signals that orchestrate the follicular transition between phases are still unknown. To better understand the detailed protein networks controlling this process, proteomics and bioinformatics analyses were performed to construct comparative protein profiles of mouse skin at specific time points (0, 8, and 20 days). Ninety-five differentially expressed protein spots were identified by MALDI-TOF/TOF as 44 proteins, which were found to change during hair follicle cycle transition. Proteomics analysis revealed that these changes in protein expression are involved in Ca2+-regulated biological processes, migration, and regulation of signal transduction, among other processes. Subsequently, three proteins were selected to validate the reliability of expression patterns using western blotting. Cluster analysis revealed three expression patterns, and each pattern correlated with specific cell processes that occur during the hair cycle. Furthermore, bioinformatics analysis indicated that the differentially expressed proteins impacted multiple biological networks, after which detailed functional analyses were performed. Taken together, the above data may provide insight into the three stages of mouse hair follicle morphogenesis and provide a solid basis for potential therapeutic molecular targets for this hair disease. PMID:26752403

  4. Long-Term Extensive Ectopic Hair Growth on the Spinal Cord of Mice from Transplanted Whisker Follicles.

    PubMed

    Cao, Wenluo; Li, Lingna; Mii, Sumiyuki; Amoh, Yasuyuki; Liu, Fang; Hoffman, Robert M

    2015-01-01

    We have previously demonstrated that hair follicles contain nestin-expressing pluripotent stem cells that can effect nerve and spinal cord repair upon transplantation. In the present study, isolated whisker follicles from nestin-driven green fluorescent protein (ND-GFP) mice were histocultured on Gelfoam for 3 weeks for the purpose of transplantation to the spinal cord to heal an induced injury. The hair shaft was cut off from Gelfoam-histocultured whisker follicles, and the remaining part of the whisker follicles containing GFP-nestin expressing pluripotent stem cells were transplanted into the injured spinal cord of nude mice, along with the Gelfoam. After 90 days, the mice were sacrificed and the spinal cord lesion was observed to have healed. ND-GFP expression was intense at the healed area of the spinal cord, as observed by fluorescence microscopy, demonstrating that the hair follicle stem cells were involved in healing the spinal cord. Unexpectedly, the transplanted whisker follicles sprouted out remarkably long hair shafts in the spinal cord during the 90 days after transplantation of Gelfoam whisker histocultures to the injured spine. The pigmented hair fibers, grown from the transplanted whisker histocultures, curved and enclosed the spinal cord. The unanticipated results demonstrate the great potential of hair growth after transplantation of Gelfoam hair follicle histocultures, even at an ectopic site.

  5. Foxc1 reinforces quiescence in self-renewing hair follicle stem cells.

    PubMed

    Wang, Li; Siegenthaler, Julie A; Dowell, Robin D; Yi, Rui

    2016-02-01

    Stem cell quiescence preserves the cell reservoir by minimizing cell division over extended periods of time. Self-renewal of quiescent stem cells (SCs) requires the reentry into the cell cycle. In this study, we show that murine hair follicle SCs induce the Foxc1 transcription factor when activated. Deleting Foxc1 in activated, but not quiescent, SCs causes failure of the cells to reestablish quiescence and allows premature activation. Deleting Foxc1 in the SC niche of gene-targeted mice leads to loss of the old hair without impairing quiescence. In self-renewing SCs, Foxc1 activates Nfatc1 and bone morphogenetic protein (BMP) signaling, two key mechanisms that govern quiescence. These findings reveal a dynamic, cell-intrinsic mechanism used by hair follicle SCs to reinforce quiescence upon self-renewal and suggest a unique ability of SCs to maintain cell identity.

  6. Foxc1 reinforces quiescence in self-renewing hair follicle stem cells.

    PubMed

    Wang, Li; Siegenthaler, Julie A; Dowell, Robin D; Yi, Rui

    2016-02-01

    Stem cell quiescence preserves the cell reservoir by minimizing cell division over extended periods of time. Self-renewal of quiescent stem cells (SCs) requires the reentry into the cell cycle. In this study, we show that murine hair follicle SCs induce the Foxc1 transcription factor when activated. Deleting Foxc1 in activated, but not quiescent, SCs causes failure of the cells to reestablish quiescence and allows premature activation. Deleting Foxc1 in the SC niche of gene-targeted mice leads to loss of the old hair without impairing quiescence. In self-renewing SCs, Foxc1 activates Nfatc1 and bone morphogenetic protein (BMP) signaling, two key mechanisms that govern quiescence. These findings reveal a dynamic, cell-intrinsic mechanism used by hair follicle SCs to reinforce quiescence upon self-renewal and suggest a unique ability of SCs to maintain cell identity. PMID:26912704

  7. Development of a Model for Chemotherapy-Induced Alopecia: Profiling of Histological Changes in Human Hair Follicles after Chemotherapy.

    PubMed

    Yoon, Ji-Seon; Choi, Mira; Shin, Chang Yup; Paik, Seung Hwan; Kim, Kyu Han; Kwon, Ohsang

    2016-03-01

    Optimized research models are required to further understand the pathogenesis and prophylaxis of chemotherapy-induced alopecia. Our aim was to develop a mouse model for chemotherapy-induced alopecia by follicular unit transplantation of human hair follicles onto immunodeficient mice. Twenty-two weeks after transplantation, a single dose of cyclophosphamide (Cph) was administered to mice in the Cph100 (100 mg/kg) and Cph150 (150 mg/kg) groups. On day 6, hair follicles showed dystrophic changes, with swollen dermal papilla and ectopic melanin clumping in the hair bulb. In addition, upregulated expression of apoptotic regulators [P53, Fas/Fas-ligand, tumor necrosis factor-related apoptosis-inducing ligand/tumor necrosis factor-related apoptosis-inducing ligand receptor (TRAIL/TRAIL receptor), and Bax], increased apoptotic matrix keratinocytes, downregulated Ki67 expression, and decreased melanogenic protein in the hair bulb were noted in both groups. After 12 treatment days, hair follicles in Cph100 mice appeared to diminish dystrophic changes. In contrast, hair follicles of Cph150 mice prematurely entered a dystrophic catagen phase after 9 treatment days, and immunofluorescence staining for Ki67 and melanogenic protein expressions was barely visible. Two hair follicle damage response pathways were observed in this model, namely dystrophic anagen (Cph100) and catagen (Cph150) pathways. Our model might be useful for further understanding the impact of chemotherapy on human hair follicles.

  8. Development of a Model for Chemotherapy-Induced Alopecia: Profiling of Histological Changes in Human Hair Follicles after Chemotherapy.

    PubMed

    Yoon, Ji-Seon; Choi, Mira; Shin, Chang Yup; Paik, Seung Hwan; Kim, Kyu Han; Kwon, Ohsang

    2016-03-01

    Optimized research models are required to further understand the pathogenesis and prophylaxis of chemotherapy-induced alopecia. Our aim was to develop a mouse model for chemotherapy-induced alopecia by follicular unit transplantation of human hair follicles onto immunodeficient mice. Twenty-two weeks after transplantation, a single dose of cyclophosphamide (Cph) was administered to mice in the Cph100 (100 mg/kg) and Cph150 (150 mg/kg) groups. On day 6, hair follicles showed dystrophic changes, with swollen dermal papilla and ectopic melanin clumping in the hair bulb. In addition, upregulated expression of apoptotic regulators [P53, Fas/Fas-ligand, tumor necrosis factor-related apoptosis-inducing ligand/tumor necrosis factor-related apoptosis-inducing ligand receptor (TRAIL/TRAIL receptor), and Bax], increased apoptotic matrix keratinocytes, downregulated Ki67 expression, and decreased melanogenic protein in the hair bulb were noted in both groups. After 12 treatment days, hair follicles in Cph100 mice appeared to diminish dystrophic changes. In contrast, hair follicles of Cph150 mice prematurely entered a dystrophic catagen phase after 9 treatment days, and immunofluorescence staining for Ki67 and melanogenic protein expressions was barely visible. Two hair follicle damage response pathways were observed in this model, namely dystrophic anagen (Cph100) and catagen (Cph150) pathways. Our model might be useful for further understanding the impact of chemotherapy on human hair follicles. PMID:26774950

  9. Analysis of the expression pattern of the carrier protein transthyretin and its receptor megalin in the human scalp skin and hair follicles: hair cycle-associated changes.

    PubMed

    Adly, Mohamed A

    2010-12-01

    Transthyretin is a serum and cerebrospinal fluid protein synthesized early in development by the liver, choroid plexus and several other tissues. It is a carrier protein for the antioxidant vitamins, retinol, and thyroid hormones. Transthyretin helps internalize thyroxine and retinol-binding protein into cells by binding to megalin, which is a multi-ligand receptor expressed on the luminal surface of various epithelia. We investigated the expression of transthyretin and its receptor megalin in the human skin; however, their expression pattern in the hair follicle is still to be elucidated. This study addresses this issue and tests the hypothesis that "the expression of transthyretin and megalin undergoes hair follicle cycle-dependent changes." A total of 50 normal human scalp skin biopsies were examined (healthy females, 53-62 years) using immunofluorescence staining methods and real-time PCR. In each case, 50 hair follicles were analyzed (35, 10, and 5 follicles in anagen, catagen, and telogen, respectively). Transthyretin and megalin were prominently expressed in the human scalp skin and hair follicles, on both gene and protein levels. The concentrations of transthyretin and megalin were 0.12 and 0.03 Ul/ml, respectively, as indicated by PCR. The expression showed hair follicle cycle-associated changes i.e., strong expression during early and mature anagen, very weak expression during catagen and moderate expression during telogen. The expression values of these proteins in the anagen were statistically significantly higher than those of either catagen or telogen hair follicles (P ≤ 0.001). This study provides the first morphologic indication that transthyretin and megalin are variably expressed in the human scalp skin and hair follicles. It also reports variations in the expression of these proteins during hair follicle cycling. The clinical ramifications of these findings are open for further investigations.

  10. Delivery and targeting of nanoparticles into hair follicles.

    PubMed

    Fang, Chia-Lang; Aljuffali, Ibrahim A; Li, Yi-Ching; Fang, Jia-You

    2014-01-01

    It has been demonstrated that nanoparticles used for follicular delivery provide some advantages over conventional pathways, including improved skin bioavailability, enhanced penetration depth, prolonged residence duration, fast transport into the skin and tissue targeting. This review describes recent developments using nanotechnology approaches for drug delivery into the follicles. Different types of nanosystems may be employed for management of follicular permeation, such as polymeric nanoparticles, metallic nanocrystals, liposomes, and lipid nanoparticles. This review systematically introduces the mechanisms of follicles for nanoparticulate penetration, highlighting the therapeutic potential of drug-loaded nanoparticles for treating skin diseases. Special attention is paid to the use of nanoparticles in treating appendage-related disorders, in particular, nanomedical strategies for treating alopecia, acne, and transcutaneous immunization. PMID:25375342

  11. Delivery and targeting of nanoparticles into hair follicles.

    PubMed

    Fang, Chia-Lang; Aljuffali, Ibrahim A; Li, Yi-Ching; Fang, Jia-You

    2014-01-01

    It has been demonstrated that nanoparticles used for follicular delivery provide some advantages over conventional pathways, including improved skin bioavailability, enhanced penetration depth, prolonged residence duration, fast transport into the skin and tissue targeting. This review describes recent developments using nanotechnology approaches for drug delivery into the follicles. Different types of nanosystems may be employed for management of follicular permeation, such as polymeric nanoparticles, metallic nanocrystals, liposomes, and lipid nanoparticles. This review systematically introduces the mechanisms of follicles for nanoparticulate penetration, highlighting the therapeutic potential of drug-loaded nanoparticles for treating skin diseases. Special attention is paid to the use of nanoparticles in treating appendage-related disorders, in particular, nanomedical strategies for treating alopecia, acne, and transcutaneous immunization.

  12. Fiber growth initiation in hair follicles of goats treated with melatonin.

    PubMed

    Nixon, A J; Choy, V J; Parry, A L; Pearson, A J

    1993-09-15

    The sequence of structural changes in goat hair follicles was investigated using melatonin implants to advance and synchronize spring hair growth. Ten pasture fed cashmere wethers each received a controlled release formulation of 70 mg of melatonin on September 1 1989, and showed plasma melatonin elevated above physiological levels over 14 days post-treatment (914 +/- 154 pg/ml [mean +/- SEM] on day 14). In ten untreated animals, daytime plasma melatonin was 19.9 +/- 4.7 pg/ml. Histological examination of skin biopsies taken over the 14 days from the start of the experiment showed that primary hair follicles of goats with manipulated hormone levels had initiated fiber growth (entered proanagen), whereas primary follicles of untreated goats largely remained in the quiescent phase (telogen). A standardized terminology was used to describe the sequence of events during induced proanagen. Structural reorganization of follicles began in treated animals between days 6 and 12 post-treatment, and emergent fibers grew by day 24. Advancement of spring fiber growth was associated with a suppression of the normal rise in plasma prolactin concentration. Prolactin levels in untreated goats increased from 7.4 +/- 1.8 ng/ml on day 1 to 12.8 +/- 1.6 ng/ml on day 14, but declined in treated goats from 6.3 +/- 2.3 ng/ml to 2.2 +/- 0.8 ng/ml over the same period. PMID:8376951

  13. A review of adipocyte lineage cells and dermal papilla cells in hair follicle regeneration

    PubMed Central

    Zhang, Peipei; Kling, Russell E; Ravuri, Sudheer K; Kokai, Lauren E; Rubin, J Peter; Chai, Jia-ke

    2014-01-01

    Alopecia is an exceedingly prevalent problem effecting men and women of all ages. The standard of care for alopecia involves either transplanting existing hair follicles to bald areas or attempting to stimulate existing follicles with topical and/or oral medication. Yet, these treatment options are fraught with problems of cost, side effects, and, most importantly, inadequate long-term hair coverage. Innovative cell-based therapies have focused on the dermal papilla cell as a way to grow new hair in previously bald areas. However, despite this attention, many obstacles exist, including retention of dermal papilla inducing ability and maintenance of dermal papilla productivity after several passages of culture. The use of adipocyte lineage cells, including adipose-derived stem cells, has shown promise as a cell-based solution to regulate hair regeneration and may help in maintaining or increasing dermal papilla cells inducing hair ability. In this review, we highlight recent advances in the understanding of the cellular contribution and regulation of dermal papilla cells and summarize adipocyte lineage cells in hair regeneration. PMID:25383178

  14. Genetically null mice reveal a central role for epidermal growth factor receptor in the differentiation of the hair follicle and normal hair development.

    PubMed Central

    Hansen, L. A.; Alexander, N.; Hogan, M. E.; Sundberg, J. P.; Dlugosz, A.; Threadgill, D. W.; Magnuson, T.; Yuspa, S. H.

    1997-01-01

    Mice harboring a targeted disruption of the epidermal growth factor receptor (EGFR) allele exhibit a severely disorganized hair follicle phenotype, fuzzy coat, and systemic disease resulting in death before 3 weeks. This skin phenotype was reproduced in whole skin grafts and in grafts of EGFR null hair follicle buds onto nude mice, providing a model to evaluate the natural evolution of skin lacking the EGFR. Hair follicles in grafts of null skin did not progress from anagen to telogen and scanning electron micrografts revealed wavy, flattened hair fibers with cuticular abnormalities. Many of the EGFR null hair follicles in the grafted skin were consumed by an inflammatory reaction resulting in complete hair loss in 67% of the grafts by 10 weeks. Localization of follicular differentiation markers including keratin 6, transglutaminase, and the hair keratins mHa2 and hacl-1 revealed a pattern of premature differentiation within the null hair follicles. In intact EGFR null mice, proliferation in the interfollicular epidermis, but not hair follicles, was greatly decreased in the absence of EGFR. In contrast, grafting of EGFR null skin resulted in a hyperplastic response in the epidermis that did not resolve even after 10 weeks, although the wound-induced hyperplasia in EGFR wild-type grafts had resolved within 3 to 4 weeks. Thus, epithelial expression of the EGFR has complex functions in the skin. It is important in delaying follicular differentiation, may serve to protect the hair follicle from immunological reactions, and modifies both normal and wound-induced epidermal proliferation but seems dispensable for follicular proliferation. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:9176390

  15. Population estimate of the preantral follicles and frequency of multioocyte follicles in prepubertal and adult bitches.

    PubMed

    Lunardon, N T; Silva-Santos, K C; Justino, R C; Dessunti, G T; Seneda, M M; Martins, M I M

    2015-04-01

    Oocytes from preantral follicles could be an alternative for in vitro maturation because most follicles are at the preantral stage. There are few studies that have sought to estimate the number of preantral follicles in bitches. Therefore, the aims of this study were to estimate the population of preantral follicles in the ovaries of small- and medium-sized prepubertal and adult bitches and compare the population of preantral follicles between the right and left ovaries and evaluate the frequency of multioocyte follicles (MOF). Eighty ovaries were collected by elective ovariohysterectomy from 40 healthy bitches. The bitches were divided into four groups: small-size prepubertal bitches (<10 kg, n = 20), medium-size prepubertal bitches (10-20 kg, n = 20), small-size adult bitches (<10 kg, n = 20), and medium-size adult bitches (10-20 kg, n = 20). Immediately after surgery, the ovaries were fixed in Bouin's solution and processed for histology. For each specimen, 70 histologic sections were cut and mounted on slides; then, the number of preantral follicles was estimated using a correction factor. The preantral follicles were classified according to the developmental stage. The data were analyzed using the Kruskal-Wallis test followed by Dunn's test for comparison between groups, and Fisher's exact test was used to evaluate the frequency of MOF (P ≤ 0.05). Considering the population of preantral follicles from the pair of ovaries, medium-size prepubertal bitches had the highest (P < 0.05) population of preantral follicles compared with the small and medium-size adult groups. There was a large variation in the numbers of preantral follicles among individuals of the same weight and within each group. There were differences between medium-size prepubertal and adult bitches regarding the population of preantral follicles in the right ovaries (145,482 ± 110,712 vs. 49,500 ± 44,821; P = 0.02); however, no differences were observed between the

  16. Keratin network modifications lead to the mechanical stiffening of the hair follicle fiber.

    PubMed

    Bornschlögl, Thomas; Bildstein, Lucien; Thibaut, Sébastien; Santoprete, Roberto; Fiat, Françoise; Luengo, Gustavo S; Doucet, Jean; Bernard, Bruno A; Baghdadli, Nawel

    2016-05-24

    The complex mechanical properties of biomaterials such as hair, horn, skin, or bone are determined by the architecture of the underlying fibrous bionetworks. Although much is known about the influence of the cytoskeleton on the mechanics of isolated cells, this has been less studied in tridimensional tissues. We used the hair follicle as a model to link changes in the keratin network composition and architecture to the mechanical properties of the nascent hair. We show using atomic force microscopy that the soft keratinocyte matrix at the base of the follicle stiffens by a factor of ∼360, from 30 kPa to 11 MPa along the first millimeter of the follicle. The early mechanical stiffening is concomitant to an increase in diameter of the keratin macrofibrils, their continuous compaction, and increasingly parallel orientation. The related stiffening of the material follows a power law, typical of the mechanics of nonthermal bending-dominated fiber networks. In addition, we used X-ray diffraction to monitor changes in the (supra)molecular organization within the keratin fibers. At later keratinization stages, the inner mechanical properties of the macrofibrils dominate the stiffening due to the progressive setting up of the cystine network. Our findings corroborate existing models on the sequence of biological and structural events during hair keratinization. PMID:27162354

  17. Targeted disruption of the protein kinase SGK3/CISK impairs postnatal hair follicle development.

    PubMed

    McCormick, James A; Feng, Yuxi; Dawson, Kevin; Behne, Martin J; Yu, Benjamin; Wang, Jian; Wyatt, Amanda W; Henke, Guido; Grahammer, Florian; Mauro, Theodora M; Lang, Florian; Pearce, David

    2004-09-01

    Members of the serum- and glucocorticoid-regulated kinase (SGK) family are important mediators of growth factor and hormone signaling that, like their close relatives in the Akt family, are regulated by lipid products of phosphatidylinositol-3-kinase. SGK3 has been implicated in the control of cell survival and regulation of ion channel activity in cultured cells. To begin to dissect the in vivo functions of SGK3, we generated and characterized Sgk3 null mice. These mice are viable and fertile, and in contrast to mice lacking SGK1 or Akt2, respectively, display normal sodium handling and glucose tolerance. However, although normal at birth, by postpartum day 4 they have begun to display an unexpected defect in hair follicle morphogenesis. The abnormality in hair follicle development is preceded by a defect in proliferation and nuclear accumulation of beta-catenin in hair bulb keratinocytes. Furthermore, in cultured keratinocytes, heterologous expression of SGK3 potently modulates activation of beta-catenin/Lef-1-mediated gene transcription. These data establish a role for SGK3 in normal postnatal hair follicle development, possibly involving effects on beta-catenin/Lef-1-mediated gene transcription.

  18. Keratin network modifications lead to the mechanical stiffening of the hair follicle fiber

    PubMed Central

    Bornschlögl, Thomas; Bildstein, Lucien; Thibaut, Sébastien; Santoprete, Roberto; Fiat, Françoise; Luengo, Gustavo S.; Doucet, Jean; Bernard, Bruno A.; Baghdadli, Nawel

    2016-01-01

    The complex mechanical properties of biomaterials such as hair, horn, skin, or bone are determined by the architecture of the underlying fibrous bionetworks. Although much is known about the influence of the cytoskeleton on the mechanics of isolated cells, this has been less studied in tridimensional tissues. We used the hair follicle as a model to link changes in the keratin network composition and architecture to the mechanical properties of the nascent hair. We show using atomic force microscopy that the soft keratinocyte matrix at the base of the follicle stiffens by a factor of ∼360, from 30 kPa to 11 MPa along the first millimeter of the follicle. The early mechanical stiffening is concomitant to an increase in diameter of the keratin macrofibrils, their continuous compaction, and increasingly parallel orientation. The related stiffening of the material follows a power law, typical of the mechanics of nonthermal bending-dominated fiber networks. In addition, we used X-ray diffraction to monitor changes in the (supra)molecular organization within the keratin fibers. At later keratinization stages, the inner mechanical properties of the macrofibrils dominate the stiffening due to the progressive setting up of the cystine network. Our findings corroborate existing models on the sequence of biological and structural events during hair keratinization. PMID:27162354

  19. Methods in hair research: how to objectively distinguish between anagen and catagen in human hair follicle organ culture.

    PubMed

    Kloepper, Jennifer Elisabeth; Sugawara, Koji; Al-Nuaimi, Yusur; Gáspár, Erzsébet; van Beek, Nina; Paus, Ralf

    2010-03-01

    The organ culture of human scalp hair follicles (HFs) is the best currently available assay for hair research in the human system. In order to determine the hair growth-modulatory effects of agents in this assay, one critical read-out parameter is the assessment of whether the test agent has prolonged anagen duration or induced catagen in vitro. However, objective criteria to distinguish between anagen VI HFs and early catagen in human HF organ culture, two hair cycle stages with a deceptively similar morphology, remain to be established. Here, we develop, document and test an objective classification system that allows to distinguish between anagen VI and early catagen in organ-cultured human HFs, using both qualitative and quantitative parameters that can be generated by light microscopy or immunofluorescence. Seven qualitative classification criteria are defined that are based on assessing the morphology of the hair matrix, the dermal papilla and the distribution of pigmentary markers (melanin, gp100). These are complemented by ten quantitative parameters. We have tested this classification system by employing the clinically used topical hair growth inhibitor, eflornithine, and show that eflornithine indeed produces the expected premature catagen induction, as identified by the novel classification criteria reported here. Therefore, this classification system offers a standardized, objective and reproducible new experimental method to reliably distinguish between human anagen VI and early catagen HFs in organ culture.

  20. Dynamics of Lgr6+ Progenitor Cells in the Hair Follicle, Sebaceous Gland, and Interfollicular Epidermis

    PubMed Central

    Füllgrabe, Anja; Joost, Simon; Are, Alexandra; Jacob, Tina; Sivan, Unnikrishnan; Haegebarth, Andrea; Linnarsson, Sten; Simons, Benjamin D.; Clevers, Hans; Toftgård, Rune; Kasper, Maria

    2015-01-01

    Summary The dynamics and interactions between stem cell pools in the hair follicle (HF), sebaceous gland (SG), and interfollicular epidermis (IFE) of murine skin are still poorly understood. In this study, we used multicolor lineage tracing to mark Lgr6-expressing basal cells in the HF isthmus, SG, and IFE. We show that these Lgr6+ cells constitute long-term self-renewing populations within each compartment in adult skin. Quantitative analysis of clonal dynamics revealed that the Lgr6+ progenitor cells compete neutrally in the IFE, isthmus, and SG, indicating population asymmetry as the underlying mode of tissue renewal. Transcriptional profiling of Lgr6+ and Lgr6− cells did not reveal a distinct Lgr6-associated gene expression signature, raising the question of whether Lgr6 expression requires extrinsic niche signals. Our results elucidate the interrelation and behavior of Lgr6+ populations in the IFE, HF, and SG and suggest population asymmetry as a common mechanism for homeostasis in several epithelial skin compartments. PMID:26607954

  1. Lack of the vitamin D receptor is associated with reduced epidermal differentiation and hair follicle growth.

    PubMed

    Xie, Zhongjion; Komuves, László; Yu, Qian-Chun; Elalieh, Hashem; Ng, Dean C; Leary, Colin; Chang, Sandra; Crumrine, Debra; Yoshizawa, Tatsuya; Kato, Shigeaki; Bikle, Daniel D

    2002-01-01

    The active vitamin D metabolite, 1,25-dihydroxyvitamin D, acting through the vitamin D receptor, regulates the expression of genes in a variety of vitamin D-responsive tissues, including the epidermis. To investigate the role of the vitamin D receptor in mediating epidermal differentiation, we examined the histomorphology and expression of differentiation markers in the epidermis of vitamin D receptor knockout mice generated by gene targeting. The homozygous knockout mouse displayed a phenotype that closely resembles vitamin D-dependent rickets type II in humans, including the development of rickets and alopecia. Hair loss developed by 3 mo after birth and gradually led to nearly total hair loss by 8 mo. Histologic analysis of the skin of homozygous knockout mice revealed dilation of the hair follicles with the formation of dermal cysts starting at the age of 3 wk. These cysts increased in size and number with age. Epidermal differentiation markers, including involucrin, profilaggrin, and loricrin, detected by immunostaining and in situ hybridization, showed decreased expression levels in homozygous knockout mice from birth until 3 wk, preceding the morphologic changes observed in the hair follicles. Keratin 10 levels, however, were not reduced. At the ultrastructural level, homozygous knockout mice showed increased numbers of small dense granules in the granular layer with few or no surrounding keratin bundles and a loss of keratohyalin granules. Thus, both the interfollicular epidermis and the hair follicle appear to require the vitamin D receptor for normal differentiation. The temporal abnormalities between the two processes reflect the apparent lack of requirement for the vitamin D receptor during the anagen phase of the first (developmental) hair cycle, but with earlier effects on the terminal differentiation of the interfollicular epidermis.

  2. Cyclosporine A stimulated hair growth from mouse vibrissae follicles in an organ culture model

    PubMed Central

    Xu, Wenrong; Fan, Weixin; Yao, Kun

    2012-01-01

    Hypertrichosis is one of the most common side effects of systemic cyclosporine A therapy. It has been previously shown that cyclosporine A induces anagen and inhibits catagen development in mice. In the present study, to explore the mechanisms of cyclosporine A, we investigated the effects of cyclosporine A on hair shaft elongation, hair follicle cell proliferation, apoptosis, and mRNA expression of selected growth factors using an organ culture model of mouse vibrissae. In this model, cyclosporine A stimulated hair growth of normal mouse vibrissae follicles by inhibiting catagen-like development and promoting matrix cell proliferation. In addition, cyclosporine A caused an increase in the expression of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and nerve growth factor (NGF), and inhibited follistatin expression. Our findings provide an explanation for the clinically observed effects of cyclosporine A on hair growth. The mouse vibrissae organ culture offers an attractive model for identifying factors involved in the modulation of hair growth. PMID:23554774

  3. Transcriptome Sequencing Reveals Differences between Primary and Secondary Hair Follicle-derived Dermal Papilla Cells of the Cashmere Goat (Capra hircus)

    PubMed Central

    Yuan, Jianlong; Guo, Xudong; Liu, Dongjun

    2013-01-01

    The dermal papilla is thought to establish the character and control the size of hair follicles. Inner Mongolia Cashmere goats (Capra hircus) have a double coat comprising the primary and secondary hair follicles, which have dramatically different sizes and textures. The Cashmere goat is rapidly becoming a potent model for hair follicle morphogenesis research. In this study, we established two dermal papilla cell lines during the anagen phase of the hair growth cycle from the primary and secondary hair follicles and clarified the similarities and differences in their morphology and growth characteristics. High-throughput transcriptome sequencing was used to identify gene expression differences between the two dermal papilla cell lines. Many of the differentially expressed genes are involved in vascularization, ECM-receptor interaction and Wnt/β-catenin/Lef1 signaling pathways, which intimately associated with hair follicle morphogenesis. These findings provide valuable information for research on postnatal morphogenesis of hair follicles. PMID:24069460

  4. Post-tyrosinase inhibition of melanogenesis by melatonin in hair follicles in vitro.

    PubMed

    Logan, A; Weatherhead, B

    1980-01-01

    In short-term (48 hr) culture hair follicles of the Siberian hamster retain both tyrosinase activity and the capacity to produce melanin. The addition of melatonin to such cultures at concentrations between 10-6 M and 10-10 M brings about a dose-related inhibition of melanogenesis but tyrosinase activity is unaffected. The use of a series of melatonin analogues and blockers suggests that the hair follicle melanocytes possess melatonin receptors, although their location remains to be determined. Melatonin also inhibits the increase in melanogenesis brought about by alpha-melanocyte-stimulating hormone (MSH) but again it has no effect upon the increased levels of tyrosinase which accompany this MSH response. It is suggested that melatonin inhibits melanogenesis through a mechanism which operates at some post-tyrosinase step in the melanin biosynthetic pathway. PMID:6766170

  5. Permeation of topically applied Magnesium ions through human skin is facilitated by hair follicles.

    PubMed

    Chandrasekaran, Navin Chandrakanth; Sanchez, Washington Y; Mohammed, Yousuf H; Grice, Jeffrey E; Roberts, Michael S; Barnard, Ross T

    2016-06-01

    Magnesium is an important micronutrient essential for various biological processes and its deficiency has been linked to several inflammatory disorders in humans. Topical magnesium delivery is one of the oldest forms of therapy for skin diseases, for example Dead Sea therapy and Epsom salt baths. Some anecdotal evidence and a few published reports have attributed amelioration of inflammatory skin conditions to the topical application of magnesium. On the other hand, transport of magnesium ions across the protective barrier of skin, the stratum corneum, is contentious. Our primary aim in this study was to estimate the extent of magnesium ion permeation through human skin and the role of hair follicles in facilitating the permeation. Upon topical application of magnesium solution, we found that magnesium penetrates through human stratum corneum and it depends on concentration and time of exposure. We also found that hair follicles make a significant contribution to magnesium penetration. PMID:27624531

  6. Expression of mesenchymal stem cell marker CD90 on dermal sheath cells of the anagen hair follicle in canine species

    PubMed Central

    Mercati, F.; Pascucci, L.; Ceccarelli, P.; Dall’Aglio, C.; Pedini, V.; Gargiulo, A.M.

    2009-01-01

    The dermal sheath (DS) of the hair follicle is comprised by fibroblast-like cells and extends along the follicular epithelium, from the bulb up to the infundibulum. From this structure, cells with stem characteristics were isolated: they have a mesenchymal origin and express CD90 protein, a typical marker of mesenchymal stem cells. It is not yet really clear in which region of hair follicle these cells are located but some experimental evidence suggests that dermal stem cells are localized prevalently in the lower part of the anagen hair follicle. As there are no data available regarding DS stem cells in dog species, we carried out a morphological analysis of the hair follicle DS and performed both an immunohistochemical and an immunocytochemical investigation to identify CD90+ cells. We immunohistochemically evidenced a clear and abundant positivity to CD90 protein in the DS cells located in the lower part of anagen hair follicle. The positive cells showed a typical fibroblast-like morphology. They were flat and elongated and inserted among bundles of collagen fibres.The whole structure formed a close and continuous sleeve around the anagen hair follicle. Our immunocytochemical study allowed us to localize CD90 protein at the cytoplasmic membrane level.

  7. The effect of parathyroid hormones on hair follicle physiology: implications for treatment of chemotherapy-induced alopecia.

    PubMed

    Skrok, Anna; Bednarczuk, Tomasz; Skwarek, Agata; Popow, Michał; Rudnicka, Lidia; Olszewska, Małgorzata

    2015-01-01

    Parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) influence hair follicles through paracrine and intracrine routes. There is significant evidence that PTH and PTHrP influence the proliferation and differentiation of hair follicle cells. The PTH/PTHrP receptor signalling plays an important role in the hair follicle cycle and may induce premature catagen-telogen transition. Transgenic mice with an overexpression or blockade (PTH/PTHrP receptor knockout mice) of PTHrP activity revealed impaired or increased hair growth, respectively. Some findings also suggest that PTHrP may additionally influence the hair cycle by inhibiting angiogenesis. Antagonists of the PTH/PTHrP receptor have been shown to stimulate proliferation of hair follicle cells and hair growth. A hair-stimulating effect of a PTH/PTHrP receptor antagonist applied topically to the skin has been observed in hairless mice, as well as in mice treated with cyclophosphamide. These data indicate that the PTH/PTHrP receptor may serve as a potential target for new (topical) hair growth-stimulating drugs, especially for chemotherapy-induced alopecia.

  8. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis.

    PubMed

    Matsumura, Hiroyuki; Mohri, Yasuaki; Binh, Nguyen Thanh; Morinaga, Hironobu; Fukuda, Makoto; Ito, Mayumi; Kurata, Sotaro; Hoeijmakers, Jan; Nishimura, Emi K

    2016-02-01

    Hair thinning and loss are prominent aging phenotypes but have an unknown mechanism. We show that hair follicle stem cell (HFSC) aging causes the stepwise miniaturization of hair follicles and eventual hair loss in wild-type mice and in humans. In vivo fate analysis of HFSCs revealed that the DNA damage response in HFSCs causes proteolysis of type XVII collagen (COL17A1/BP180), a critical molecule for HFSC maintenance, to trigger HFSC aging, characterized by the loss of stemness signatures and by epidermal commitment. Aged HFSCs are cyclically eliminated from the skin through terminal epidermal differentiation, thereby causing hair follicle miniaturization. The aging process can be recapitulated by Col17a1 deficiency and prevented by the forced maintenance of COL17A1 in HFSCs, demonstrating that COL17A1 in HFSCs orchestrates the stem cell-centric aging program of the epithelial mini-organ.

  9. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis.

    PubMed

    Matsumura, Hiroyuki; Mohri, Yasuaki; Binh, Nguyen Thanh; Morinaga, Hironobu; Fukuda, Makoto; Ito, Mayumi; Kurata, Sotaro; Hoeijmakers, Jan; Nishimura, Emi K

    2016-02-01

    Hair thinning and loss are prominent aging phenotypes but have an unknown mechanism. We show that hair follicle stem cell (HFSC) aging causes the stepwise miniaturization of hair follicles and eventual hair loss in wild-type mice and in humans. In vivo fate analysis of HFSCs revealed that the DNA damage response in HFSCs causes proteolysis of type XVII collagen (COL17A1/BP180), a critical molecule for HFSC maintenance, to trigger HFSC aging, characterized by the loss of stemness signatures and by epidermal commitment. Aged HFSCs are cyclically eliminated from the skin through terminal epidermal differentiation, thereby causing hair follicle miniaturization. The aging process can be recapitulated by Col17a1 deficiency and prevented by the forced maintenance of COL17A1 in HFSCs, demonstrating that COL17A1 in HFSCs orchestrates the stem cell-centric aging program of the epithelial mini-organ. PMID:26912707

  10. Chitosan nanoparticles for targeting and sustaining minoxidil sulphate delivery to hair follicles.

    PubMed

    Matos, Breno Noronha; Reis, Thaiene Avila; Gratieri, Taís; Gelfuso, Guilherme Martins

    2015-04-01

    This work developed minoxidil sulphate-loaded chitosan nanoparticles (MXS-NP) for targeted delivery to hair follicles, which could sustain drug release and improve the topical treatment of alopecia. Chitosan nanoparticles were obtained using low-molecular weight chitosan and tripolyphosphate as crosslink agent. MXS-NP presented a monomodal distribution with hydrodynamic diameter of 235.5 ± 99.9 nm (PDI of 0.31 ± 0.01) and positive zeta potential (+38.6 ± 6.0 mV). SEM analysis confirmed nanoparticles average size and spherical shape. A drug loading efficiency of 73.0 ± 0.3% was obtained with polymer:drug ratio of 1:1 (w/w). Drug release through cellulose acetate membranes from MXS-NP was sustained in about 5 times in comparison to the diffusion rate of MXS from the solution (188.9 ± 6.0 μg/cm(2)/h and 35.4 ± 1.8 μg/cm(2)/h). Drug permeation studies through the skin in vitro, followed by selective recovery of MXS from the hair follicles, showed that MXS-NP application resulted in a two-fold MXS increase into hair follicles after 6h in comparison to the control solution (5.9 ± 0.6 μg/cm(2) and 2.9 ± 0.8 μg/cm(2)). MXS-loading in nanoparticles appears as a promising and easy strategy to target and sustain drug delivery to hair follicles, which may improve the topical treatment of alopecia. PMID:25647618

  11. Chitosan nanoparticles for targeting and sustaining minoxidil sulphate delivery to hair follicles.

    PubMed

    Matos, Breno Noronha; Reis, Thaiene Avila; Gratieri, Taís; Gelfuso, Guilherme Martins

    2015-04-01

    This work developed minoxidil sulphate-loaded chitosan nanoparticles (MXS-NP) for targeted delivery to hair follicles, which could sustain drug release and improve the topical treatment of alopecia. Chitosan nanoparticles were obtained using low-molecular weight chitosan and tripolyphosphate as crosslink agent. MXS-NP presented a monomodal distribution with hydrodynamic diameter of 235.5 ± 99.9 nm (PDI of 0.31 ± 0.01) and positive zeta potential (+38.6 ± 6.0 mV). SEM analysis confirmed nanoparticles average size and spherical shape. A drug loading efficiency of 73.0 ± 0.3% was obtained with polymer:drug ratio of 1:1 (w/w). Drug release through cellulose acetate membranes from MXS-NP was sustained in about 5 times in comparison to the diffusion rate of MXS from the solution (188.9 ± 6.0 μg/cm(2)/h and 35.4 ± 1.8 μg/cm(2)/h). Drug permeation studies through the skin in vitro, followed by selective recovery of MXS from the hair follicles, showed that MXS-NP application resulted in a two-fold MXS increase into hair follicles after 6h in comparison to the control solution (5.9 ± 0.6 μg/cm(2) and 2.9 ± 0.8 μg/cm(2)). MXS-loading in nanoparticles appears as a promising and easy strategy to target and sustain drug delivery to hair follicles, which may improve the topical treatment of alopecia.

  12. Microdissection and visualization of individual hair follicles for lineage tracing studies.

    PubMed

    Sequeira, Inês; Legué, Emilie; Capgras, Suzanne; Nicolas, Jean-François

    2014-01-01

    In vivo lineage tracing is a valuable technique to study cellular behavior. Our lab developed a lineage tracing method, based on the Cre/lox system, to genetically induce clonal labelling of cells and follow their progeny. Here we describe a protocol for temporally controlled clonal labelling and for microdissection of individual mouse hair follicles. We further present staining and visualization techniques used in our lab to analyze clones issued from genetically induced labelling. PMID:24281870

  13. Foxp1 Regulates the Proliferation of Hair Follicle Stem Cells in Response to Oxidative Stress during Hair Cycling.

    PubMed

    Zhao, Jianzhi; Li, Hanjun; Zhou, Rujiang; Ma, Gang; Dekker, Joseph D; Tucker, Haley O; Yao, Zhengju; Guo, Xizhi

    2015-01-01

    Hair follicle stem cells (HFSCs) in the bugle circularly generate outer root sheath (ORS) through linear proliferation within limited cycles during anagen phases. However, the mechanisms controlling the pace of HFSC proliferation remain unclear. Here we revealed that Foxp1, a transcriptional factor, was dynamically relocated from the nucleus to the cytoplasm of HFSCs in phase transitions from anagen to catagen, coupled with the rise of oxidative stress. Mass spectrum analyses revealed that the S468 phosphorylation of Foxp1 protein was responsive to oxidative stress and affected its nucleocytoplasmic translocation. Foxp1 deficiency in hair follicles led to compromised ROS accrual and increased HFSC proliferation. And more, NAC treatment profoundly elongated the anagen duration and HFSC proliferation in Foxp1-deficient background. Molecularly, Foxp1 augmented ROS levels through suppression of Trx1-mediated reductive function, thereafter imposing the cell cycle arrest by modulating the activity of p19/p53 pathway. Our findings identify a novel role for Foxp1 in controlling HFSC proliferation with cellular dynamic location in response to oxidative stress during hair cycling.

  14. Foxp1 Regulates the Proliferation of Hair Follicle Stem Cells in Response to Oxidative Stress during Hair Cycling

    PubMed Central

    Zhao, Jianzhi; Li, Hanjun; Zhou, Rujiang; Ma, Gang; Dekker, Joseph D.; Tucker, Haley O.; Yao, Zhengju; Guo, Xizhi

    2015-01-01

    Hair follicle stem cells (HFSCs) in the bugle circularly generate outer root sheath (ORS) through linear proliferation within limited cycles during anagen phases. However, the mechanisms controlling the pace of HFSC proliferation remain unclear. Here we revealed that Foxp1, a transcriptional factor, was dynamically relocated from the nucleus to the cytoplasm of HFSCs in phase transitions from anagen to catagen, coupled with the rise of oxidative stress. Mass spectrum analyses revealed that the S468 phosphorylation of Foxp1 protein was responsive to oxidative stress and affected its nucleocytoplasmic translocation. Foxp1 deficiency in hair follicles led to compromised ROS accrual and increased HFSC proliferation. And more, NAC treatment profoundly elongated the anagen duration and HFSC proliferation in Foxp1-deficient background. Molecularly, Foxp1 augmented ROS levels through suppression of Trx1-mediated reductive function, thereafter imposing the cell cycle arrest by modulating the activity of p19/p53 pathway. Our findings identify a novel role for Foxp1 in controlling HFSC proliferation with cellular dynamic location in response to oxidative stress during hair cycling. PMID:26171970

  15. Hair Follicle Dermal Sheath Derived Cells Improve Islet Allograft Survival without Systemic Immunosuppression

    PubMed Central

    Wang, Xiaojie; Hao, Jianqiang; Leung, Gigi; Breitkopf, Trisia; Wang, Eddy; Kwong, Nicole; Akhoundsadegh, Noushin; Warnock, Garth L.; Shapiro, Jerry; McElwee, Kevin J.

    2015-01-01

    Immunosuppressive drugs successfully prevent rejection of islet allografts in the treatment of type I diabetes. However, the drugs also suppress systemic immunity increasing the risk of opportunistic infection and cancer development in allograft recipients. In this study, we investigated a new treatment for autoimmune diabetes using naturally immune privileged, hair follicle derived, autologous cells to provide localized immune protection of islet allotransplants. Islets from Balb/c mouse donors were cotransplanted with syngeneic hair follicle dermal sheath cup cells (DSCC, group 1) or fibroblasts (FB, group 2) under the kidney capsule of immune-competent, streptozotocin induced, diabetic C57BL/6 recipients. Group 1 allografts survived significantly longer than group 2 (32.2 ± 12.2 versus 14.1 ± 3.3 days, P < 0.001) without administration of any systemic immunosuppressive agents. DSCC reduced T cell activation in the renal lymph node, prevented graft infiltrates, modulated inflammatory chemokine and cytokine profiles, and preserved better beta cell function in the islet allografts, but no systemic immunosuppression was observed. In summary, DSCC prolong islet allograft survival without systemic immunosuppression by local modulation of alloimmune responses, enhancing of beta cell survival, and promoting of graft revascularization. This novel finding demonstrates the capacity of easily accessible hair follicle cells to be used as local immunosuppression agents in islet transplantation. PMID:26000314

  16. Hair follicle dermal sheath derived cells improve islet allograft survival without systemic immunosuppression.

    PubMed

    Wang, Xiaojie; Hao, Jianqiang; Leung, Gigi; Breitkopf, Trisia; Wang, Eddy; Kwong, Nicole; Akhoundsadegh, Noushin; Warnock, Garth L; Shapiro, Jerry; McElwee, Kevin J

    2015-01-01

    Immunosuppressive drugs successfully prevent rejection of islet allografts in the treatment of type I diabetes. However, the drugs also suppress systemic immunity increasing the risk of opportunistic infection and cancer development in allograft recipients. In this study, we investigated a new treatment for autoimmune diabetes using naturally immune privileged, hair follicle derived, autologous cells to provide localized immune protection of islet allotransplants. Islets from Balb/c mouse donors were cotransplanted with syngeneic hair follicle dermal sheath cup cells (DSCC, group 1) or fibroblasts (FB, group 2) under the kidney capsule of immune-competent, streptozotocin induced, diabetic C57BL/6 recipients. Group 1 allografts survived significantly longer than group 2 (32.2 ± 12.2 versus 14.1 ± 3.3 days, P < 0.001) without administration of any systemic immunosuppressive agents. DSCC reduced T cell activation in the renal lymph node, prevented graft infiltrates, modulated inflammatory chemokine and cytokine profiles, and preserved better beta cell function in the islet allografts, but no systemic immunosuppression was observed. In summary, DSCC prolong islet allograft survival without systemic immunosuppression by local modulation of alloimmune responses, enhancing of beta cell survival, and promoting of graft revascularization. This novel finding demonstrates the capacity of easily accessible hair follicle cells to be used as local immunosuppression agents in islet transplantation.

  17. Apoptosis of hair follicle cells in the second-degree burn wound unders hypernatremic conditions.

    PubMed

    Harada, T; Izaki, S; Tsutsumi, H; Kobayashi, M; Kitamura, K

    1998-08-01

    Progressive burn wound necrosis is an important factor as a cause of delayed healing during clinical therapy of burns. Among the causes of progressive necrosis have been attributed an insufficient blood supply or a dehydration at the zone of stasis just beneath the zone of coagulation. In a previous study evidence was presented that hypernatremia, an osmotic injury, may act to promote progressive tissue or cell death of the superficial dermal wound resulting from a heat injury. To test this hypothesis pathological features of cell death in the second-degree burn wound in the rat with hypernatremia were investigated and evidence for apoptosis in hair follicle cells was observed. Rats in the hypernatremic group were administered 10 ml of hypertonic sodium solution (850 meq 1(-1)) and the control rats were treated with 10 ml of hyponatremic solution (100 meq 1(-1)) to prevent hypernatremia. After 24 h postburn the average incidence of hair follicles (ratio to the normal skin) in the hypernatremic group was 30.1 +/-11.6 per cent and significantly lower when compared with the control group (87.6+/-6.0 per cent). The numbers of hair follicles were studied by haematoxylin and eosin stain, and the apoptotic process was investigated by an immunochemical assay and electron microscopy.

  18. Reflections on how wound healing-promoting effects of the hair follicle can be translated into clinical practice.

    PubMed

    Jimenez, Francisco; Poblet, Enrique; Izeta, Ander

    2015-02-01

    Clinicians have long reported that hair-bearing areas tend to heal more rapidly than those lacking hair follicles. In the past decade, numerous scientific studies have corroborated clinical evidence, showing a direct nexus between the human hair follicle and the wound healing process. The migration of epithelial follicular stem cells to the skin surface to help in the wound re-epithelialization and the effect of the hair cycle on the wound healing rate underline the influence of the hair follicle in the healing process. In clinical practice, non-healing wounds are pathologies of high prevalence with significant associated burden costs for the healthcare system. As the population ages, the prevalence of this pathology is expected to increase in future years. The recent advances in understanding the biology of hair follicle stem cells have created the challenges of using this newly acquired knowledge in practical therapeutic applications. Chronic leg ulcers are an example of the targeted pathologies that urgently need better therapies. In this essay, our aim is to raise interest in this question, reviewing what is known in relation to the connections between hair follicles and wound healing, and elaborating on future directions that the field might take, including implications for clinical practice.

  19. Mutations in TSPEAR, Encoding a Regulator of Notch Signaling, Affect Tooth and Hair Follicle Morphogenesis

    PubMed Central

    Samuelov, Liat; Bertolini, Marta; Weissglas-Volkov, Daphna; Eskin-Schwartz, Marina; Malchin, Natalia; Bochner, Ron; Fainberg, Gilad; Goldberg, Ilan; Sugawara, Koji; Tsuruta, Daisuke; Morasso, Maria; Shalev, Stavit; Gallo, Richard L.; Shomron, Noam; Paus, Ralf; Sprecher, Eli

    2016-01-01

    Despite recent advances in our understanding of the pathogenesis of ectodermal dysplasias (EDs), the molecular basis of many of these disorders remains unknown. In the present study, we aimed at elucidating the genetic basis of a new form of ED featuring facial dysmorphism, scalp hypotrichosis and hypodontia. Using whole exome sequencing, we identified 2 frameshift and 2 missense mutations in TSPEAR segregating with the disease phenotype in 3 families. TSPEAR encodes the thrombospondin-type laminin G domain and EAR repeats (TSPEAR) protein, whose function is poorly understood. TSPEAR knock-down resulted in altered expression of genes known to be regulated by NOTCH and to be involved in murine hair and tooth development. Pathway analysis confirmed that down-regulation of TSPEAR in keratinocytes is likely to affect Notch signaling. Accordingly, using a luciferase-based reporter assay, we showed that TSPEAR knock-down is associated with decreased Notch signaling. In addition, NOTCH1 protein expression was reduced in patient scalp skin. Moreover, TSPEAR silencing in mouse hair follicle organ cultures was found to induce apoptosis in follicular epithelial cells, resulting in decreased hair bulb diameter. Collectively, these observations indicate that TSPEAR plays a critical, previously unrecognized role in human tooth and hair follicle morphogenesis through regulation of the Notch signaling pathway. PMID:27736875

  20. Molecular genetics of the hair follicle: the state of the art.

    PubMed

    Van Steensel, M A; Happle, R; Steijlen, P M

    2000-01-01

    For those who are interested in the biology of skin and its derivatives, these are interesting times indeed. In a mere 5 years, the field has been revolutionized by the application of molecular genetics to human congenital skin disorders. Where dermatology first was limited to observation and empirics, there are now DNA-diagnostics, rational drug design, and perhaps even gene therapy available soon. In particular, the study of rare human syndromes involving abnormalities of hair growth and structure has yielded new insights into the regulation of cell growth and differentiation in the hair follicle. As this structure shows a cyclic pattern of differentiation, it may give new information concerning the regulation of cell differentiation in general. This review covers the recent developments in this fast-moving field. First, we will give a short introduction to (structural) hair biology. Next, we will try to fit these data into the framework of what is already known and attempt to present a unified model for hair follicle growth and differentiation.

  1. Cathepsin L deficiency as molecular defect of furless: hyperproliferation of keratinocytes and pertubation of hair follicle cycling.

    PubMed

    Roth, W; Deussing, J; Botchkarev, V A; Pauly-Evers, M; Saftig, P; Hafner, A; Schmidt, P; Schmahl, W; Scherer, J; Anton-Lamprecht, I; Von Figura, K; Paus, R; Peters, C

    2000-10-01

    Lysosomal cysteine proteinases of the papain family are involved in lysosomal bulk proteolysis, major histocompatibility complex class II mediated antigen presentation, prohormone processing, and extracellular matrix remodeling. Cathepsin L (CTSL) is a ubiquitously expressed major representative of the papain-like family of cysteine proteinases. To investigate CTSL in vivo functions, the gene was inactivated by gene targeting in embryonic stem cells. CTSL-deficient mice develop periodic hair loss and epidermal hyperplasia, acanthosis, and hyperkeratosis. The hair loss is due to alterations of hair follicle morphogenesis and cycling, dilatation of hair follicle canals, and disturbed club hair formation. Hyperproliferation of hair follicle epithelial cells and basal epidermal keratinocytes-both of ectodermal origin-are the primary characteristics underlying the mutant phenotype. Pathological inflammatory responses have been excluded as a putative cause of the skin and hair disorder. The phenotype of CTSL-deficient mice is reminiscent of the spontaneous mouse mutant furless (fs). Analyses of the ctsl gene of fs mice revealed a G149R mutation inactivating the proteinase activity. CTSL is the first lysosomal proteinase shown to be essential for epidermal homeostasis and regular hair follicle morphogenesis and cycling.

  2. Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma.

    PubMed

    Adachi, Takeya; Kobayashi, Tetsuro; Sugihara, Eiji; Yamada, Taketo; Ikuta, Koichi; Pittaluga, Stefania; Saya, Hideyuki; Amagai, Masayuki; Nagao, Keisuke

    2015-11-01

    The skin harbors a variety of resident leukocyte subsets that must be tightly regulated to maintain immune homeostasis. Hair follicles are unique structures in the skin that contribute to skin dendritic cell homeostasis through chemokine production. We demonstrate that CD4(+) and CD8(+) skin-resident memory T cells (TRM cells), which are responsible for long-term skin immunity, reside predominantly within the hair follicle epithelium of the unperturbed epidermis. TRM cell tropism for the epidermis and follicles is herein termed epidermotropism. Hair follicle expression of IL-15 was required for CD8(+) TRM cells, and IL-7 for CD8(+) and CD4(+) TRM cells, to exert epidermotropism. A lack of either cytokine in the skin led to impaired hapten-induced contact hypersensitivity responses. In a model of cutaneous T cell lymphoma, epidermotropic CD4(+) TRM lymphoma cell localization depended on the presence of hair follicle-derived IL-7. These findings implicate hair follicle-derived cytokines as regulators of malignant and non-malignant TRM cell tissue residence, and they suggest that the cytokines may be targeted therapeutically in inflammatory skin diseases and lymphoma.

  3. Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma

    PubMed Central

    Adachi, Takeya; Kobayashi, Tetsuro; Sugihara, Eiji; Yamada, Taketo; Ikuta, Koichi; Pittaluga, Stefania; Saya, Hideyuki; Amagai, Masayuki; Nagao, Keisuke

    2015-01-01

    The skin harbors a variety of resident leukocyte subsets that must be tightly regulated to maintain immune homeostasis. Hair follicles are unique structures in the skin that contribute to skin dendritic cell homeostasis via chemokine production. We demonstrate that CD4+ and CD8+ skin resident memory T cells (TRM), responsible for long-term skin immunity, resided predominantly within the hair follicle epithelium of unperturbed epidermis. TRM tropism for the epidermis and follicles was herein termed epidermotropism. Hair follicle-derived IL-15 was required for CD8+ TRM, and IL-7 for CD8+ and CD4+ TRM, to exert epidermotropism. The lack of either cytokine impaired hapten-induced contact hypersensitivity responses. In a model of cutaneous T cell lymphoma, epidermotropic CD4+ TRM lymphoma cell localization depended on hair follicle-derived IL-7. These findings implicate hair follicle-derived cytokines as regulators of malignant and non-malignant TRM cell tissue residence and suggest they may be targeted therapeutically in inflammatory skin disease and lymphoma. PMID:26479922

  4. Treatment of MSCs with Wnt1a-conditioned medium activates DP cells and promotes hair follicle regrowth.

    PubMed

    Dong, Liang; Hao, Haojie; Xia, Lei; Liu, Jiejie; Ti, Dongdong; Tong, Chuan; Hou, Qian; Han, Qingwang; Zhao, Yali; Liu, Huiling; Fu, Xiaobing; Han, Weidong

    2014-01-01

    Hair loss (alopecia) is a common problem for people. The dermal papilla is the key signaling center that regulates hair growth and it engage in crosstalk with the microenvironment, including Wnt signaling and stem cells. In this study, we explored the effects of bone marrow mesenchymal stem cell overexpression of Wnt1a on mouse hair follicle regeneration. Wnt-CM accelerated hair follicle progression from telogen to anagen and enhanced the ALP expression in the DP area. Moreover, the hair induction-related genes were upregulated, as demonstrated by qRT-PCR. Wnt-CM treatment restored and increased DP cell expression of genes downregulated by dihydrotestosterone treatment, as demonstrated by qRT-PCR assays. Our study reveals that BM-MSC-generated Wnt1a promotes the DP's ability to induce hair cycling and regeneration.

  5. miR-24 affects hair follicle morphogenesis targeting Tcf-3.

    PubMed

    Amelio, I; Lena, A M; Bonanno, E; Melino, G; Candi, E

    2013-01-01

    During embryonic development, hair follicles (HFs) develop from an epidermal-mesenchymal cross talk between the ectoderm progenitor layer and the underlying dermis. Epidermal stem cell activation represents a crucial point both for HF morphogenesis and for hair regeneration. miR-24 is an anti-proliferative microRNA (miRNA), which is induced during differentiation of several cellular systems including the epidermis. Here, we show that miR-24 is expressed in the HF and has a role in hair morphogenesis. We generated transgenic mice ectopically expressing miR-24 under the K5 promoter. The K5::miR-24 animals display a marked defect in HF morphogenesis, with thinning of hair coat and altered HF structure. Expression of miR-24 alters the normal process of hair keratinocyte differentiation, leading to altered expression of differentiation markers. MiR-24 directly represses the hair keratinocyte stemness regulator Tcf-3. These results support the notion that microRNAs, and among them miR-24, have an important role in postnatal epidermal homeostasis. PMID:24232098

  6. miR-24 affects hair follicle morphogenesis targeting Tcf-3.

    PubMed

    Amelio, I; Lena, A M; Bonanno, E; Melino, G; Candi, E

    2013-11-14

    During embryonic development, hair follicles (HFs) develop from an epidermal-mesenchymal cross talk between the ectoderm progenitor layer and the underlying dermis. Epidermal stem cell activation represents a crucial point both for HF morphogenesis and for hair regeneration. miR-24 is an anti-proliferative microRNA (miRNA), which is induced during differentiation of several cellular systems including the epidermis. Here, we show that miR-24 is expressed in the HF and has a role in hair morphogenesis. We generated transgenic mice ectopically expressing miR-24 under the K5 promoter. The K5::miR-24 animals display a marked defect in HF morphogenesis, with thinning of hair coat and altered HF structure. Expression of miR-24 alters the normal process of hair keratinocyte differentiation, leading to altered expression of differentiation markers. MiR-24 directly represses the hair keratinocyte stemness regulator Tcf-3. These results support the notion that microRNAs, and among them miR-24, have an important role in postnatal epidermal homeostasis.

  7. Structural and Functional Analysis of Intact Hair Follicles and Pilosebaceous Units by Volumetric Multispectral Optoacoustic Tomography.

    PubMed

    Ford, Steven J; Bigliardi, Paul L; Sardella, Thomas C P; Urich, Alexander; Burton, Neal C; Kacprowicz, Marcin; Bigliardi, Mei; Olivo, Malini; Razansky, Daniel

    2016-04-01

    Visualizing anatomical and functional features of hair follicle development in their unperturbed environment is key in understanding complex mechanisms of hair pathophysiology and in discovery of novel therapies. Of particular interest is in vivo visualization of the intact pilosebaceous unit, vascularization of the hair bulb, and evaluation of the hair cycle, particularly in humans. Furthermore, noninvasive visualization of the sebaceous glands could offer crucial insight into the pathophysiology of follicle-related diseases and dry or seborrheic skin, in particular by combining in vivo imaging with other phenotyping, genotyping, and microbial analyses. The available imaging techniques are limited in their ability for deep tissue in vivo imaging of hair follicles and lipid-rich sebaceous glands in their entirety without biopsy. We developed a noninvasive, painless, and risk-free volumetric multispectral optoacoustic tomography method for deep tissue three-dimensional visualization of whole hair follicles and surrounding structures with high spatial resolution below 80 μm. Herein we demonstrate on-the-fly assessment of key morphometric parameters of follicles and lipid content as well as functional oxygenation parameters of the associated capillary bed. The ease of handheld operation and versatility of the newly developed approach poise it as an indispensable tool for early diagnosis of disorders of the pilosebaceous unit and surrounding structures, and for monitoring the efficacy of cosmetic and therapeutic interventions. PMID:26743603

  8. Structural changes in hair follicles and sebaceous glands of hairless mice following exposure to sulfur mustard.

    PubMed

    Joseph, Laurie B; Heck, Diane E; Cervelli, Jessica A; Composto, Gabriella M; Babin, Michael C; Casillas, Robert P; Sinko, Patrick J; Gerecke, Donald R; Laskin, Debra L; Laskin, Jeffrey D

    2014-06-01

    Sulfur mustard (SM) is a bifunctional alkylating agent causing skin inflammation, edema and blistering. A hallmark of SM-induced toxicity is follicular and interfollicular epithelial damage. In the present studies we determined if SM-induced structural alterations in hair follicles and sebaceous glands were correlated with cell damage, inflammation and wound healing. The dorsal skin of hairless mice was treated with saturated SM vapor. One to seven days later, epithelial cell karyolysis within the hair root sheath, infundibulum and isthmus was apparent, along with reduced numbers of sebocytes. Increased numbers of utriculi, some with connections to the skin surface, and engorged dermal cysts were also evident. This was associated with marked changes in expression of markers of DNA damage (phospho-H2A.X), apoptosis (cleaved caspase-3), and wound healing (FGFR2 and galectin-3) throughout pilosebaceous units. Conversely, fatty acid synthase and galectin-3 were down-regulated in sebocytes after SM. Decreased numbers of hair follicles and increased numbers of inflammatory cells surrounding the utriculi and follicular cysts were noted within the wound 3-7 days post-SM exposure. Expression of phospho-H2A.X, cleaved caspase-3, FGFR2 and galectin-3 was decreased in dysplastic follicular epidermis. Fourteen days after SM, engorged follicular cysts which expressed galectin-3 were noted within hyperplastic epidermis. Galectin-3 was also expressed in basal keratinocytes and in the first few layers of suprabasal keratinocytes in neoepidermis formed during wound healing indicating that this lectin is important in the early stages of keratinocyte differentiation. These data indicate that hair follicles and sebaceous glands are targets for SM in the skin.

  9. Promotion of hair follicle development and trichogenesis by Wnt-10b in cultured embryonic skin and in reconstituted skin

    SciTech Connect

    Ouji, Yukiteru . E-mail: oujix@naramed-u.ac.jp; Yoshikawa, Masahide; Shiroi, Akira; Ishizaka, Shigeaki

    2006-06-30

    We previously showed that Wnt-10b promoted the differentiation of primary skin epithelial cells (MPSEC) toward hair shaft and inner root sheath of the hair follicle (IRS) cells in vitro. In the present study, we found that Wnt-10b promotes the development of hair follicles using a culture of mouse embryonic skin tissue and trichogenesis using a reconstitution experiment with nude mice. Hair follicle development was observed in skin taken from mouse embryos on embryonic day 10.5 following a 2-day culture with recombinant Wnt-10b (rWnt-10b), however, not without rWnt-10b. Brown hair growth was observed at the site of reconstituted skin in Balb/c nude mice where dermal fibroblasts and keratinocytes, derived from C3H/HeN new born mice, were transplanted with Wnt-10b-producing COS cells (Wnt-COS). Without the co-transplantation of Wnt-COS, no hair growth was observed. Our results suggest an important role of Wnt-10b in the initiation of hair follicle development and following trichogenesis.

  10. From hair to heart: nestin-expressing hair-follicle-associated pluripotent (HAP) stem cells differentiate to beating cardiac muscle cells.

    PubMed

    Yashiro, Masateru; Mii, Sumiyuki; Aki, Ryoichi; Hamada, Yuko; Arakawa, Nobuko; Kawahara, Katsumasa; Hoffman, Robert M; Amoh, Yasuyuki

    2015-01-01

    We have previously demonstrated that the neural stem-cell marker nestin is expressed in hair follicle stem cells located in the bulge area which are termed hair-follicle-associated pluripotent (HAP) stem cells. HAP stem cells from mouse and human could form spheres in culture, termed hair spheres, which are keratin 15-negative and CD34-positive and could differentiate to neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. Subsequently, we demonstrated that nestin-expressing stem cells could effect nerve and spinal cord regeneration in mouse models. In the present study, we demonstrated that HAP stem cells differentiated to beating cardiac muscle cells. We separated the mouse vibrissa hair follicle into 3 parts (upper, middle, and lower), and suspended each part separately in DMEM containing 10% FBS. All three parts of hair follicle differentiated to beating cardiac muscle cells as well as neurons, glial cells, keratinocytes and smooth muscle cells. The differentiation potential to cardiac muscle is greatest in the upper part of the follicle. The beat rate of the cardiac muscle cells was stimulated by isoproterenol and inhibited by propanolol. HAP stem cells have potential for regenerative medicine for heart disease as well as nerve and spinal cord repair.

  11. Mapping the expression of epithelial hair follicle stem cell-related transcription factors LHX2 and SOX9 in the human hair follicle.

    PubMed

    Purba, Talveen S; Haslam, Iain S; Shahmalak, Asim; Bhogal, Ranjit K; Paus, Ralf

    2015-06-01

    In the murine hair follicle (HF), the transcription factors LHX2 and SOX9 are implicated in epithelial hair follicle stem cell (eHFSC) self-renewal and the maintenance of eHFSC niche characteristics. However, the exact expression patterns of LHX2 and SOX9 in the human HF are unclear. Therefore, we have quantitatively mapped the localisation of known human eHFSC markers keratin 15 (K15) and keratin 19 (K19) in the outer root sheath (ORS) of male occipital scalp anagen HFs and related this to the localisation of LHX2 and SOX9 protein expression. As expected, K15(+) and K19(+) cells represented two distinct progenitor cell populations in the bulge and in the proximal bulb ORS (pbORS). Interestingly, cell fluorescence for K19 was significantly stronger within the pbORS versus the bulge, and vice versa for K15, describing a hitherto unrecognised differential expression pattern. LHX2 and SOX9 expressing cells were distributed throughout the ORS, including the bulge, but were not restricted to it. SOX9 expression was most prominent in the ORS immediately below the human bulge, whereas LHX2(+) cells were similarly distributed between the sub-bulge and pbORS, that is compartments not enriched with quiescent eHFSCs. During catagen development, the intensity of LHX2 and SOX9 protein expression increased in the proximal HF epithelium. Double immunostaining showed that the majority of SOX9(+) cells in the human anagen HF epithelium did not co-express K15, K19 or LHX2. This expression profile suggests that LHX2 and SOX9 highlight distinct epithelial progenitor cell populations, in addition to K15(+) or K19(+) cells, that could play an important role in the maintenance of the human HF epithelium.

  12. A primer for studying cell cycle dynamics of the human hair follicle.

    PubMed

    Purba, Talveen S; Brunken, Lars; Hawkshaw, Nathan J; Peake, Michael; Hardman, Jonathan; Paus, Ralf

    2016-09-01

    The cell cycle is of major importance to human hair follicle (HF) biology. Not only is continuously active cell cycling required to facilitate healthy hair growth in anagen VI HFs, but perturbations in the cell cycle are likely to be of significance in HF pathology (i.e. in scarring, non-scarring, chemotherapy-induced and androgenic alopecias). However, cell cycle dynamics of the human hair follicle (HF) are poorly understood in contrast to what is known in mouse. The current Methods Review aims at helping to close this gap by presenting a primer that introduces immunohistological/immunofluorescent techniques to study the cell cycle in the human HF. Moreover, this primer encourages the exploitation of the human HF as a powerful and clinically relevant tool to investigate mammalian cell cycle biology in situ. To achieve this, we describe methods to study markers of general 'proliferation' (nuclei count, Ki-67 expression), apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labelling, cleaved caspase 3), mitosis (phospho-histone H3, 'pS780'), DNA synthesis (5-ethynyl-2'-deoxyuridine) and cell cycle regulation (cyclins) in the human HF. In addition, we provide specific examples of dual immunolabelling for instructive cell cycle analyses and for investigating the cell cycle behaviour of specific HF keratinocyte subpopulations, such as keratin 15+ stem/progenitor cells.

  13. Permeant lipophilicity and vehicle composition influence accumulation of dyes in hair follicles of human skin.

    PubMed

    Grams, Ylva Y; Alaruikka, Soile; Lashley, Lisa; Caussin, Julia; Whitehead, Lynne; Bouwstra, Joke A

    2003-04-01

    In skin and hair research drug targeting to the hair follicle is of great interest. Therefore the influence of permeant lipophilicity and vehicle composition on local accumulation has been examined using confocal laser scanning microscopy (CLSM). Formulations saturated with either Oregon Green 488, Bodipy FL C(5) or Bodipy 564/570 C(5) were prepared. The dyes were applied in citric acid buffer, 8% (w/v) surfactants in citric acid buffer or 8% (w/v) surfactants/20% (w/v) propylene glycol in citric acid buffer. Flow-through diffusion experiments were performed with fresh human scalp skin, after which the skin was imaged using CLSM. Diffusion studies showed for Oregon Green 488 (low lipophilicity) a higher flux when applied in citric acid buffer compared to surfactants. In contrast the fluxes of the more lipophilic dyes (Bodipy FL C(5) and Bodipy 564/570 C(5)) are highest when applied in surfactants/propylene glycol. CLSM studies revealed that follicular accumulation increased with (i) a lipophilic dye and (ii) application of lipophilic dyes in surfactants-propylene glycol. Therefore we conclude that targeting to the hair follicle can be increased by the use of lipophilic drugs in combination with surfactant solutions and propylene glycol.

  14. Requirement of NF-kappaB/Rel for the development of hair follicles and other epidermal appendices.

    PubMed

    Schmidt-Ullrich, R; Aebischer, T; Hülsken, J; Birchmeier, W; Klemm, U; Scheidereit, C

    2001-10-01

    NF-kappaB/Rel transcription factors and IkappaB kinases (IKK) are essential for inflammation and immune responses, but also for bone-morphogenesis, skin proliferation and differentiation. Determining their other functions has previously been impossible, owing to embryonic lethality of NF-kappaB/Rel or IKK-deficient animals. Using a gene targeting approach we have ubiquitously expressed an NF-kappaB super-repressor to investigate NF-kappaB functions in the adult. Mice with suppressed NF-kappaB revealed defective early morphogenesis of hair follicles, exocrine glands and teeth, identical to Eda (tabby) and Edar (downless) mutant mice. These affected epithelial appendices normally display high NF-kappaB activity, suppression of which resulted in increased apoptosis, indicating that NF-kappaB acts as a survival factor downstream of the tumor necrosis factor receptor family member EDAR. Furthermore, NF-kappaB is required for peripheral lymph node formation and macrophage function.

  15. Assembling Composite Dermal Papilla Spheres with Adipose-derived Stem Cells to Enhance Hair Follicle Induction.

    PubMed

    Huang, Chin-Fu; Chang, Ya-Ju; Hsueh, Yuan-Yu; Huang, Chia-Wei; Wang, Duo-Hsiang; Huang, Tzu-Chieh; Wu, Yi-Ting; Su, Fong-Chin; Hughes, Michael; Chuong, Cheng-Ming; Wu, Chia-Ching

    2016-01-01

    Intradermal adipose tissue plays an essential role for hair follicles (HFs) regeneration by regulating hair cycles. However, the effect of reconstruction of HFs and the involvement of adipose-related cells are poorly understood. We investigated assembly strategies for the interactions of dermal papilla (DP) cells with adipose-derived stem cells (ASCs) in promoting hair formation. DP cells lose DP traits during adherent culture, but preserved DP markers with a unified sphere diameter by seeding on chitosan-coated microenvironments. Next, ASCs isolated from rats were co-cultured with DP spheres by different assembling approaches to determine their interactions; a mixed sphere of ASCs with DP cells (MA-DPS), or a core-shell structure, outer ASCs shell and an inner DP core (CSA-DPS). CSA-DPS exhibited superior DP characteristics compared to MA-DPS. Conditional medium from ASCs, but not differentiated adipocytes, promoted DP markers and functional alkaline phosphatase activity from the DP cells. In vivo patch assay showed the core-shell assembling of CSA-DPS can reconstruct cellular arrangements and microenvironmental niches as dominated by PPARα signal in ASCs to induce the greater hair induction than MA-DPS or DP spheres alone. Therefore, the assembling of a core-shell sphere for DP with ASCs could reconstruct the HF cellular arrangement for hair formation. This paper set the groundwork for further evaluation of the input of other cell types. PMID:27210831

  16. Assembling Composite Dermal Papilla Spheres with Adipose-derived Stem Cells to Enhance Hair Follicle Induction

    PubMed Central

    Huang, Chin-Fu; Chang, Ya-Ju; Hsueh, Yuan-Yu; Huang, Chia-Wei; Wang, Duo-Hsiang; Huang, Tzu-Chieh; Wu, Yi-Ting; Su, Fong-Chin; Hughes, Michael; Chuong, Cheng-Ming; Wu, Chia-Ching

    2016-01-01

    Intradermal adipose tissue plays an essential role for hair follicles (HFs) regeneration by regulating hair cycles. However, the effect of reconstruction of HFs and the involvement of adipose-related cells are poorly understood. We investigated assembly strategies for the interactions of dermal papilla (DP) cells with adipose-derived stem cells (ASCs) in promoting hair formation. DP cells lose DP traits during adherent culture, but preserved DP markers with a unified sphere diameter by seeding on chitosan-coated microenvironments. Next, ASCs isolated from rats were co-cultured with DP spheres by different assembling approaches to determine their interactions; a mixed sphere of ASCs with DP cells (MA-DPS), or a core-shell structure, outer ASCs shell and an inner DP core (CSA-DPS). CSA-DPS exhibited superior DP characteristics compared to MA-DPS. Conditional medium from ASCs, but not differentiated adipocytes, promoted DP markers and functional alkaline phosphatase activity from the DP cells. In vivo patch assay showed the core-shell assembling of CSA-DPS can reconstruct cellular arrangements and microenvironmental niches as dominated by PPARα signal in ASCs to induce the greater hair induction than MA-DPS or DP spheres alone. Therefore, the assembling of a core-shell sphere for DP with ASCs could reconstruct the HF cellular arrangement for hair formation. This paper set the groundwork for further evaluation of the input of other cell types. PMID:27210831

  17. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA.

    PubMed

    Kobielak, Krzysztof; Pasolli, H Amalia; Alonso, Laura; Polak, Lisa; Fuchs, Elaine

    2003-11-10

    Using conditional gene targeting in mice, we show that BMP receptor IA is essential for the differentiation of progenitor cells of the inner root sheath and hair shaft. Without BMPRIA activation, GATA-3 is down-regulated and its regulated control of IRS differentiation is compromised. In contrast, Lef1 is up-regulated, but its regulated control of hair differentiation is still blocked, and BMPRIA-null follicles fail to activate Lef1/beta-catenin-regulated genes, including keratin genes. Wnt-mediated transcriptional activation can be restored by transfecting BMPRIA-null keratinocytes with a constitutively activated beta-catenin. This places the block downstream from Lef1 expression but upstream from beta-catenin stabilization. Because mice lacking the BMP inhibitor Noggin fail to express Lef1, our findings support a model, whereby a sequential inhibition and then activation of BMPRIA is necessary to define a band of hair progenitor cells, which possess enough Lef1 and stabilized beta-catenin to activate the hair specific keratin genes and generate the hair shaft.

  18. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA

    PubMed Central

    Kobielak, Krzysztof; Pasolli, H. Amalia; Alonso, Laura; Polak, Lisa; Fuchs, Elaine

    2003-01-01

    Using conditional gene targeting in mice, we show that BMP receptor IA is essential for the differentiation of progenitor cells of the inner root sheath and hair shaft. Without BMPRIA activation, GATA-3 is down-regulated and its regulated control of IRS differentiation is compromised. In contrast, Lef1 is up-regulated, but its regulated control of hair differentiation is still blocked, and BMPRIA-null follicles fail to activate Lef1/β-catenin–regulated genes, including keratin genes. Wnt-mediated transcriptional activation can be restored by transfecting BMPRIA-null keratinocytes with a constitutively activated β-catenin. This places the block downstream from Lef1 expression but upstream from β-catenin stabilization. Because mice lacking the BMP inhibitor Noggin fail to express Lef1, our findings support a model, whereby a sequential inhibition and then activation of BMPRIA is necessary to define a band of hair progenitor cells, which possess enough Lef1 and stabilized β-catenin to activate the hair specific keratin genes and generate the hair shaft. PMID:14610062

  19. Assembling Composite Dermal Papilla Spheres with Adipose-derived Stem Cells to Enhance Hair Follicle Induction.

    PubMed

    Huang, Chin-Fu; Chang, Ya-Ju; Hsueh, Yuan-Yu; Huang, Chia-Wei; Wang, Duo-Hsiang; Huang, Tzu-Chieh; Wu, Yi-Ting; Su, Fong-Chin; Hughes, Michael; Chuong, Cheng-Ming; Wu, Chia-Ching

    2016-05-23

    Intradermal adipose tissue plays an essential role for hair follicles (HFs) regeneration by regulating hair cycles. However, the effect of reconstruction of HFs and the involvement of adipose-related cells are poorly understood. We investigated assembly strategies for the interactions of dermal papilla (DP) cells with adipose-derived stem cells (ASCs) in promoting hair formation. DP cells lose DP traits during adherent culture, but preserved DP markers with a unified sphere diameter by seeding on chitosan-coated microenvironments. Next, ASCs isolated from rats were co-cultured with DP spheres by different assembling approaches to determine their interactions; a mixed sphere of ASCs with DP cells (MA-DPS), or a core-shell structure, outer ASCs shell and an inner DP core (CSA-DPS). CSA-DPS exhibited superior DP characteristics compared to MA-DPS. Conditional medium from ASCs, but not differentiated adipocytes, promoted DP markers and functional alkaline phosphatase activity from the DP cells. In vivo patch assay showed the core-shell assembling of CSA-DPS can reconstruct cellular arrangements and microenvironmental niches as dominated by PPARα signal in ASCs to induce the greater hair induction than MA-DPS or DP spheres alone. Therefore, the assembling of a core-shell sphere for DP with ASCs could reconstruct the HF cellular arrangement for hair formation. This paper set the groundwork for further evaluation of the input of other cell types.

  20. Transcription Factor CTIP2 Maintains Hair Follicle Stem Cell Pool and Contributes to Altered Expression of LHX2 and NFATC1.

    PubMed

    Bhattacharya, Shreya; Wheeler, Heather; Leid, Mark; Ganguli-Indra, Gitali; Indra, Arup K

    2015-11-01

    Transcription factor CTIP2 (chicken ovalbumin upstream promoter transcription factor-interacting protein 2), also known as BCL11B, is expressed in hair follicles (HFs) of embryonic and adult skin. Ctip2-null mice exhibit reduced HF density during embryonic development. In contrast, conditional inactivation of Ctip2 in the epidermis (Ctip2(ep-/-) mice) leads to a shorter telogen and a premature entry into anagen during the second phase of hair cycling without a detectable change in the number of HFs. Keratinocytes of the bulge stem cells (SCs) niche of Ctip2(ep-/-) mice proliferate more and undergo reduced apoptosis compared with the corresponding cells of wild-type mice. However, premature activation of follicular SCs in mice lacking CTIP2 leads to the exhaustion of this SC compartment in comparison with Ctip2(L2/L2) mice, which retained quiescent follicle SCs. CTIP2 modulates expression of genes encoding EGFR and NOTCH1 during formation of HFs and those encoding nuclear factor of activated T-cells cytoplasmic calcineurin-dependent 1 and LIM homeobox 2 during normal hair cycling in adult skin. The expression of most of these genes is disrupted in mice lacking CTIP2, and these alterations may underlie the phenotype of Ctip2-null and Ctip2(ep-/-) mice. CTIP2 appears to serve as a transcriptional organizer that integrates input from multiple signaling cues during HF morphogenesis and hair cycling.

  1. Transcription Factor CTIP2 Maintains Hair Follicle Stem Cell Pool and Contributes to Altered Expression of LHX2 and NFATC1.

    PubMed

    Bhattacharya, Shreya; Wheeler, Heather; Leid, Mark; Ganguli-Indra, Gitali; Indra, Arup K

    2015-11-01

    Transcription factor CTIP2 (chicken ovalbumin upstream promoter transcription factor-interacting protein 2), also known as BCL11B, is expressed in hair follicles (HFs) of embryonic and adult skin. Ctip2-null mice exhibit reduced HF density during embryonic development. In contrast, conditional inactivation of Ctip2 in the epidermis (Ctip2(ep-/-) mice) leads to a shorter telogen and a premature entry into anagen during the second phase of hair cycling without a detectable change in the number of HFs. Keratinocytes of the bulge stem cells (SCs) niche of Ctip2(ep-/-) mice proliferate more and undergo reduced apoptosis compared with the corresponding cells of wild-type mice. However, premature activation of follicular SCs in mice lacking CTIP2 leads to the exhaustion of this SC compartment in comparison with Ctip2(L2/L2) mice, which retained quiescent follicle SCs. CTIP2 modulates expression of genes encoding EGFR and NOTCH1 during formation of HFs and those encoding nuclear factor of activated T-cells cytoplasmic calcineurin-dependent 1 and LIM homeobox 2 during normal hair cycling in adult skin. The expression of most of these genes is disrupted in mice lacking CTIP2, and these alterations may underlie the phenotype of Ctip2-null and Ctip2(ep-/-) mice. CTIP2 appears to serve as a transcriptional organizer that integrates input from multiple signaling cues during HF morphogenesis and hair cycling. PMID:26176759

  2. FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential.

    PubMed

    Lay, Kenneth; Kume, Tsutomu; Fuchs, Elaine

    2016-03-15

    Adult tissue stem cells (SCs) reside in niches, which orchestrate SC behavior. SCs are typically used sparingly and exist in quiescence unless activated for tissue growth. Whether parsimonious SC use is essential to conserve long-term tissue-regenerating potential during normal homeostasis remains poorly understood. Here, we examine this issue by conditionally ablating a key transcription factor Forkhead box C1 (FOXC1) expressed in hair follicle SCs (HFSCs). FOXC1-deficient HFSCs spend less time in quiescence, leading to markedly shortened resting periods between hair cycles. The enhanced hair cycling accelerates HFSC expenditure, and impacts hair regeneration in aging mice. Interestingly, although FOXC1-deficient HFs can still form a new bulge that houses HFSCs for the next hair cycle, the older bulge is left unanchored. As the new hair emerges, the entire old bulge, including its reserve HFSCs and SC-inhibitory inner cell layer, is lost. We trace this mechanism first, to a marked increase in cell cycle-associated transcripts upon Foxc1 ablation, and second, to a downstream reduction in E-cadherin-mediated inter-SC adhesion. Finally, we show that when the old bulge is lost with each hair cycle, overall levels of SC-inhibitory factors are reduced, further lowering the threshold for HFSC activity. Taken together, our findings suggest that HFSCs have restricted potential in vivo, which they conserve by coupling quiescence to adhesion-mediated niche maintenance, thereby achieving long-term tissue homeostasis.

  3. FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential.

    PubMed

    Lay, Kenneth; Kume, Tsutomu; Fuchs, Elaine

    2016-03-15

    Adult tissue stem cells (SCs) reside in niches, which orchestrate SC behavior. SCs are typically used sparingly and exist in quiescence unless activated for tissue growth. Whether parsimonious SC use is essential to conserve long-term tissue-regenerating potential during normal homeostasis remains poorly understood. Here, we examine this issue by conditionally ablating a key transcription factor Forkhead box C1 (FOXC1) expressed in hair follicle SCs (HFSCs). FOXC1-deficient HFSCs spend less time in quiescence, leading to markedly shortened resting periods between hair cycles. The enhanced hair cycling accelerates HFSC expenditure, and impacts hair regeneration in aging mice. Interestingly, although FOXC1-deficient HFs can still form a new bulge that houses HFSCs for the next hair cycle, the older bulge is left unanchored. As the new hair emerges, the entire old bulge, including its reserve HFSCs and SC-inhibitory inner cell layer, is lost. We trace this mechanism first, to a marked increase in cell cycle-associated transcripts upon Foxc1 ablation, and second, to a downstream reduction in E-cadherin-mediated inter-SC adhesion. Finally, we show that when the old bulge is lost with each hair cycle, overall levels of SC-inhibitory factors are reduced, further lowering the threshold for HFSC activity. Taken together, our findings suggest that HFSCs have restricted potential in vivo, which they conserve by coupling quiescence to adhesion-mediated niche maintenance, thereby achieving long-term tissue homeostasis. PMID:26912458

  4. FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential

    PubMed Central

    Lay, Kenneth; Kume, Tsutomu; Fuchs, Elaine

    2016-01-01

    Adult tissue stem cells (SCs) reside in niches, which orchestrate SC behavior. SCs are typically used sparingly and exist in quiescence unless activated for tissue growth. Whether parsimonious SC use is essential to conserve long-term tissue-regenerating potential during normal homeostasis remains poorly understood. Here, we examine this issue by conditionally ablating a key transcription factor Forkhead box C1 (FOXC1) expressed in hair follicle SCs (HFSCs). FOXC1-deficient HFSCs spend less time in quiescence, leading to markedly shortened resting periods between hair cycles. The enhanced hair cycling accelerates HFSC expenditure, and impacts hair regeneration in aging mice. Interestingly, although FOXC1-deficient HFs can still form a new bulge that houses HFSCs for the next hair cycle, the older bulge is left unanchored. As the new hair emerges, the entire old bulge, including its reserve HFSCs and SC-inhibitory inner cell layer, is lost. We trace this mechanism first, to a marked increase in cell cycle-associated transcripts upon Foxc1 ablation, and second, to a downstream reduction in E-cadherin–mediated inter-SC adhesion. Finally, we show that when the old bulge is lost with each hair cycle, overall levels of SC-inhibitory factors are reduced, further lowering the threshold for HFSC activity. Taken together, our findings suggest that HFSCs have restricted potential in vivo, which they conserve by coupling quiescence to adhesion-mediated niche maintenance, thereby achieving long-term tissue homeostasis. PMID:26912458

  5. Modulatory Role of Sensory Innervation on Hair Follicle Stem Cell Progeny during Wound Healing of the Rat Skin

    PubMed Central

    Martínez-Martínez, Eduardo; Galván-Hernández, Claudio I.; Toscano-Márquez, Brenda; Gutiérrez-Ospina, Gabriel

    2012-01-01

    Background The bulge region of the hair follicle contains resident epithelial stem cells (SCs) that are activated and mobilized during hair growth and after epidermal wounding. However, little is known about the signals that modulate these processes. Clinical and experimental observations show that a reduced supply of sensory innervation is associated with delayed wound healing. Since axon terminals of sensory neurons are among the components of the bulge SC niche, we investigated whether these neurons are involved in the activation and mobilization of the hair stem cells during wound healing. Methodology/Principal Findings We used neonatal capsaicin treatment to reduce sensory terminals in the rat skin and performed morphometric analyses using design-based stereological methods. Epithelial proliferation was analyzed by quantifying the number of bromodeoxyuridine-labeled (BrdU+) nuclei in the epidermis and hair follicles. After wounding, the epidermis of capsaicin-treated rats presented fewer BrdU+ nuclei than in control rats. To assess SC progeny migration, we employed a double labeling protocol with iododeoxyuridine and chlorodeoxyuridine (IdU+/CldU+). The proportion of double-labeled cells was similar in the hair follicles of both groups at 32 h postwounding. IdU+/CldU+ cell proportion increased in the epidermis of control rats and decreased in treated rats at 61 h postwounding. The epidermal volume immunostained for keratin 6 was greater in treated rats at 61 h. Confocal microscopy analysis revealed that substance P (SP) and calcitonin gene-related peptide (CGRP) receptor immunoreactivity were both present in CD34+ and BrdU-retaining cells of the hair follicles. Conclusions/Significance Our results suggest that capsaicin denervation impairs SC progeny egress from the hair follicles, a circumstance associated with a greater epidermal activation. Altogether, these phenomena would explain the longer times for healing in denervated skin. Thus, sensory innervation

  6. Extracted hair follicle outer root sheath cell suspension for pigment cell restoration in vitiligo.

    PubMed

    Kumar, Anil; Mohanty, Sujata; Sahni, Kanika; Kumar, Rajesh; Gupta, Somesh

    2013-04-01

    Vitiligo surgery has come up a long way from punch skin grafts to epidermal cell suspension and latest to the extracted hair follicle outer root sheath cell suspension (EHF-ORS-CS) transplantation. The progressive development from one technique to the other is always in a quest for the best. In the latest development- EHF-ORS-CS, which is an enriched source of follicular inactive melanocyte (melanocyte stem cells), seems to be a good addition to the prevailing cell-based therapies for vitiligo; however, need to be explored further in larger, and preferably randomized blinded studies. This review discusses the principle, technical details, and stem cell composition of hair follicular outer root sheath cell suspension. PMID:24023440

  7. Hairless Streaks in Cattle Implicate TSR2 in Early Hair Follicle Formation.

    PubMed

    Murgiano, Leonardo; Shirokova, Vera; Welle, Monika Maria; Jagannathan, Vidhya; Plattet, Philippe; Oevermann, Anna; Pienkowska-Schelling, Aldona; Gallo, Daniele; Gentile, Arcangelo; Mikkola, Marja; Drögemüller, Cord

    2015-07-01

    Four related cows showed hairless streaks on various parts of the body with no correlation to the pigmentation pattern. The stripes occurred in a consistent pattern resembling the lines of Blaschko. The non-syndromic hairlessness phenotype observed occurred across three generations of a single family and was compatible with an X-linked mode of inheritance. Linkage analysis and subsequent whole genome sequencing of one affected female identified two perfectly associated non-synonymous sequence variants in the critical interval on bovine chromosome X. Both variants occurred in complete linkage disequilibrium and were absent in more than 3900 controls. An ERCC6L missense mutation was predicted to cause an amino acid substitution of a non-conserved residue. Analysis in mice showed no specific Ercc6l expression pattern related to hair follicle development and therefore ERCC6L was not considered as causative gene. A point mutation at the 5'-splice junction of exon 5 of the TSR2, 20S rRNA accumulation, homolog (S. cerevisiae), gene led to the production of two mutant transcripts, both of which contain a frameshift and generate a premature stop codon predicted to truncate approximately 25% of the protein. Interestingly, in addition to the presence of both physiological TSR2 transcripts, the two mutant transcripts were predominantly detected in the hairless skin of the affected cows. Immunohistochemistry, using an antibody against the N-terminal part of the bovine protein demonstrated the specific expression of the TSR2 protein in the skin and the hair of the affected and the control cows as well as in bovine fetal skin and hair. The RNA hybridization in situ showed that Tsr2 was expressed in pre- and post-natal phases of hair follicle development in mice. Mammalian TSR2 proteins are highly conserved and are known to be broadly expressed, but their precise in vivo functions are poorly understood. Thus, by dissecting a naturally occurring mutation in a domestic animal

  8. Hairless Streaks in Cattle Implicate TSR2 in Early Hair Follicle Formation

    PubMed Central

    Murgiano, Leonardo; Shirokova, Vera; Welle, Monika Maria; Jagannathan, Vidhya; Plattet, Philippe; Oevermann, Anna; Pienkowska-Schelling, Aldona; Gallo, Daniele; Gentile, Arcangelo; Mikkola, Marja; Drögemüller, Cord

    2015-01-01

    Four related cows showed hairless streaks on various parts of the body with no correlation to the pigmentation pattern. The stripes occurred in a consistent pattern resembling the lines of Blaschko. The non-syndromic hairlessness phenotype observed occurred across three generations of a single family and was compatible with an X-linked mode of inheritance. Linkage analysis and subsequent whole genome sequencing of one affected female identified two perfectly associated non-synonymous sequence variants in the critical interval on bovine chromosome X. Both variants occurred in complete linkage disequilibrium and were absent in more than 3900 controls. An ERCC6L missense mutation was predicted to cause an amino acid substitution of a non-conserved residue. Analysis in mice showed no specific Ercc6l expression pattern related to hair follicle development and therefore ERCC6L was not considered as causative gene. A point mutation at the 5'-splice junction of exon 5 of the TSR2, 20S rRNA accumulation, homolog (S. cerevisiae), gene led to the production of two mutant transcripts, both of which contain a frameshift and generate a premature stop codon predicted to truncate approximately 25% of the protein. Interestingly, in addition to the presence of both physiological TSR2 transcripts, the two mutant transcripts were predominantly detected in the hairless skin of the affected cows. Immunohistochemistry, using an antibody against the N-terminal part of the bovine protein demonstrated the specific expression of the TSR2 protein in the skin and the hair of the affected and the control cows as well as in bovine fetal skin and hair. The RNA hybridization in situ showed that Tsr2 was expressed in pre- and post-natal phases of hair follicle development in mice. Mammalian TSR2 proteins are highly conserved and are known to be broadly expressed, but their precise in vivo functions are poorly understood. Thus, by dissecting a naturally occurring mutation in a domestic animal

  9. Transcriptional Profiling in Rat Hair Follicles following Simulated Blast Insult: A New Diagnostic Tool for Traumatic Brain Injury

    PubMed Central

    Zhang, Jing; Carnduff, Lisa; Norman, Grant; Josey, Tyson; Wang, Yushan; Sawyer, Thomas W.; Martyniuk, Christopher J.; Langlois, Valerie S.

    2014-01-01

    With wide adoption of explosive-dependent weaponry during military activities, Blast-induced neurotrauma (BINT)-induced traumatic brain injury (TBI) has become a significant medical issue. Therefore, a robust and accessible biomarker system is in demand for effective and efficient TBI diagnosis. Such systems will also be beneficial to studies of TBI pathology. Here we propose the mammalian hair follicles as a potential candidate. An Advanced Blast Simulator (ABS) was developed to generate shock waves simulating traumatic conditions on brains of rat model. Microarray analysis was performed in hair follicles to identify the gene expression profiles that are associated with shock waves. Gene set enrichment analysis (GSEA) and sub-network enrichment analysis (SNEA) were used to identify cell processes and molecular signaling cascades affected by simulated bomb blasts. Enrichment analyses indicated that genes with altered expression levels were involved in central nervous system (CNS)/peripheral nervous system (PNS) responses as well as signal transduction including Ca2+, K+-transportation-dependent signaling, Toll-Like Receptor (TLR) signaling and Mitogen Activated Protein Kinase (MAPK) signaling cascades. Many of the pathways identified as affected by shock waves in the hair follicles have been previously reported to be TBI responsive in other organs such as brain and blood. The results suggest that the hair follicle has some common TBI responsive molecular signatures to other tissues. Moreover, various TBI-associated diseases were identified as preferentially affected using a gene network approach, indicating that the hair follicle may be capable of reflecting comprehensive responses to TBI conditions. Accordingly, the present study demonstrates that the hair follicle is a potentially viable system for rapid and non-invasive TBI diagnosis. PMID:25136963

  10. Transcriptional profiling in rat hair follicles following simulated Blast insult: a new diagnostic tool for traumatic brain injury.

    PubMed

    Zhang, Jing; Carnduff, Lisa; Norman, Grant; Josey, Tyson; Wang, Yushan; Sawyer, Thomas W; Martyniuk, Christopher J; Langlois, Valerie S

    2014-01-01

    With wide adoption of explosive-dependent weaponry during military activities, Blast-induced neurotrauma (BINT)-induced traumatic brain injury (TBI) has become a significant medical issue. Therefore, a robust and accessible biomarker system is in demand for effective and efficient TBI diagnosis. Such systems will also be beneficial to studies of TBI pathology. Here we propose the mammalian hair follicles as a potential candidate. An Advanced Blast Simulator (ABS) was developed to generate shock waves simulating traumatic conditions on brains of rat model. Microarray analysis was performed in hair follicles to identify the gene expression profiles that are associated with shock waves. Gene set enrichment analysis (GSEA) and sub-network enrichment analysis (SNEA) were used to identify cell processes and molecular signaling cascades affected by simulated bomb blasts. Enrichment analyses indicated that genes with altered expression levels were involved in central nervous system (CNS)/peripheral nervous system (PNS) responses as well as signal transduction including Ca2+, K+-transportation-dependent signaling, Toll-Like Receptor (TLR) signaling and Mitogen Activated Protein Kinase (MAPK) signaling cascades. Many of the pathways identified as affected by shock waves in the hair follicles have been previously reported to be TBI responsive in other organs such as brain and blood. The results suggest that the hair follicle has some common TBI responsive molecular signatures to other tissues. Moreover, various TBI-associated diseases were identified as preferentially affected using a gene network approach, indicating that the hair follicle may be capable of reflecting comprehensive responses to TBI conditions. Accordingly, the present study demonstrates that the hair follicle is a potentially viable system for rapid and non-invasive TBI diagnosis. PMID:25136963

  11. Changes after irradiation in the number of mitotic cells and apoptotic fragments in growing mouse hair follicles and in the width of their hairs

    SciTech Connect

    Geng, L.; Potten, C.S. )

    1990-07-01

    The hair follicle or its differentiated product, the hair, which represents the linear historical record of the follicular proliferative activity, could provide a biological dosimeter of value for dose distribution determinations after accidental exposure. Here we present some further studies on irradiated mouse hair follicles and hair, and discuss the difficulties in obtaining similar data for humans. The incidence of cell death in the follicles has been shown elsewhere to be maximum 12 h after irradiation, and it increases with dose. Here we confirm that doses of 0.2-0.4 Gy can be readily detected. We show here that there is only a little more cell death in the larger follicles even though they contain many more cells and mitotic figures. About one-third of all the dead cell fragments in a follicle can be seen in a good longitudinal follicle section. Mitotic activity declines progressively with dose in the large follicles, which start with more mitotic cells, showing the dose-dependent changes most readily. The dead cells are morphologically identical to apoptotic cells at the level of the light microscope, and they fragment into several bodies, the number of which increases with dose. The total number of apoptotic bodies or fragments in whole large follicles increases almost 100-fold over a range of 1.3 Gy (from 0.2 to 1.5 Gy) and about tenfold over the range 0.2-0.5 Gy. The estimated number of dead (apoptotic) cells increases about sevenfold over the same 1.3-Gy range. The width of the middle portion of the broadest, awl, hairs measured 12 days after irradiation decreases with increasing dose. About 80% of the hairs show an obvious reduction in width after 2 Gy and the effects of a dose of about 1 Gy can be detected. The width of the hair is reduced by 10-14% per Gy. A comparison has been made between BDF1 (black) and BALB-c (albino) mice.

  12. TR3 is preferentially expressed by bulge epithelial stem cells in human hair follicles.

    PubMed

    Xie, Lin; Yang, Ruifeng; Liu, Shujing; Lyle, Stephen; Cotsarelis, George; Xiang, Leihong; Zhang, Litao; Li, Bin; Wan, Miaojian; Xu, Xiaowei

    2016-01-01

    TR3 is an orphan member of the steroid/thyroid/retinoid nuclear receptor superfamily of transcription factors and it plays a pivotal role in regulating cell growth and apoptosis. The expression and function of TR3 in skin have not been well investigated. Using a cDNA expression assay, we discover that TR3 is significantly enriched in human telogen bulge compared with anagen bulb. Immunohistochemical staining confirms that TR3 is highly expressed in the bulge region of human hair follicles and it colocalizes with cytokeratin 15 (K15), an epithelial stem cell marker. To study the function of TR3 in the effect of androgens in keratinocytes, we treat HaCaT keratinocytes and primary human keratinocytes with dihydrotestosterone (DHT) and testosterone (T). The treated keratinocytes show a dose-dependent growth reduction to DHT and T. DHT increases the expression of TR3 in keratinocytes, associated with a concomitant increase of BAD and decrease of Bcl-2 expression. Knockdown TR3 expression by siRNA blocks the inhibitory effect of DHT on keratinocyte proliferation. Our results demonstrate that TR3 is localized to the stem cell compartment in the human hair follicles. Androgen increases TR3 expression in cultured keratinocytes. Our data suggest that TR3 mediates at least part of the inhibitory effect of androgens on keratinocytes.

  13. Dataset on gene expression profiling of multiple murine hair follicle populations.

    PubMed

    Gunnarsson, Anders Patrik; Christensen, Rikke; Li, Jian; Jensen, Uffe Birk

    2016-12-01

    The murine hair follicle contains several different keratinocyte progenitor populations within its compartments. By using antibodies against CD34, Itgα6, Sca-1 and Plet-1, we have isolated eight populations and compared their Krt10 and Krt14 expressions using fluorescence microscopy. This improved panel was used in our associated article doi:10.1016/j.scr.2016.06.002 (A.P. Gunnarsson, R. Christensen, J. Li, U.B. Jensen, 2016) [1] and the present dataset describes the basic controls for the FACS. We also used imaging flow cytometry to visualize the identified populations as control. A more detailed analysis of the global gene expression profiling is presented, focusing on the pilosebaceous unit. Murine whole-mounts were stained for heat shock protein Hspa2, which is exclusively expressed by keratinocytes with low or no expression of the four selection markers (IRK). Whole-mount labeling was also conducted to visualize Krt79 and Plet-1 coexpression within the hair follicle and quantification on the distribution of Krt79 positive keratinocytes is presented. PMID:27672671

  14. Gorab Is Required for Dermal Condensate Cells to Respond to Hedgehog Signals during Hair Follicle Morphogenesis.

    PubMed

    Liu, Ying; Snedecor, Elizabeth R; Choi, Yeon Ja; Yang, Ning; Zhang, Xu; Xu, Yuhuan; Han, Yunlin; Jones, Evan C; Shroyer, Kenneth R; Clark, Richard A; Zhang, Lianfeng; Qin, Chuan; Chen, Jiang

    2016-02-01

    GORAB is a golgin that localizes predominantly at the Golgi apparatus and physically interacts with small guanosine triphosphatases. GORAB is ubiquitously expressed in mammalian tissues, including the skin. However, the biological function of this golgin in skin is unknown. Here, we report that disrupting the expression of the Gorab gene in mice results in hair follicle morphogenesis defects that were characterized by impaired follicular keratinocyte differentiation. This hair follicle phenotype was associated with markedly suppressed hedgehog (Hh) signaling pathway in dermal condensates in vivo. Gorab-deficient dermal mesenchymal cells also displayed a significantly reduced capability to respond to Hh pathway activation in vitro. Furthermore, we found that the formation of the primary cilium, a cellular organelle that is essential for the Hh pathway, was impaired in mutant dermal condensate cells, suggesting that Gorab may be required for the Hh pathway through facilitating the formation of primary cilia. Thus, data obtained from this study provided insight into the biological functions of Gorab during embryonic morphogenesis of the skin in which Hh signaling and primary cilia exert important functions. PMID:26967474

  15. Gorab is required for dermal condensate cells to respond to hedgehog signals during hair follicle morphogenesis

    PubMed Central

    Liu, Ying; Snedecor, Elizabeth R.; Choi, Yeon Ja; Yang, Ning; Zhang, Xu; Xu, Yuhuan; Han, Yunlin; Jones, Evan C.; Shroyer, Kenneth R.; Clark, Richard A.; Zhang, Lianfeng; Qin, Chuan; Chen, Jiang

    2015-01-01

    GORAB is a golgin that localizes predominantly at the Golgi apparatus and physically interacts with small GTPases. GORAB is ubiquitously expressed in mammalian tissues, including the skin. However, the biological function of this golgin in skin is unknown. Here, we report that disrupting the expression of the Gorab gene in mice results in hair follicle morphogenesis defects that were characterized by impaired follicular keratinocyte differentiation. This hair follicle phenotype was associated with markedly suppressed hedgehog (Hh) signaling pathway in dermal condensates in vivo. Gorab-deficient dermal mesenchymal cells also displayed significantly reduced capability to respond to Hh pathway activation in vitro. Furthermore, we found that the formation of primary cilium, a cellular organelle that is essential for the Hh pathway, was impaired in mutant dermal papilla cells, suggesting that Gorab may be required for the Hh pathway through facilitating the formation of primary cilia. Thus, data obtained from this study provided insight onto the biological functions of Gorab during embryonic morphogenesis of skin in which Hh signaling and primary cilia exert important functions. PMID:26967474

  16. Protopanaxatirol type ginsenoside Re promotes cyclic growth of hair follicles via inhibiting transforming growth factor β signaling cascades.

    PubMed

    Li, Zheng; Ryu, Seung-Wook; Lee, Jungsul; Choi, Kyungsun; Kim, Sunchang; Choi, Chulhee

    2016-02-19

    Ginsenosides, the major bio-active ingredients included in Panax ginseng, have been known for the hair growth activity and used to treat patients who suffer from hair loss; however, the detailed mechanisms of this action are still largely unknown. This study was conducted to investigate the molecular and cellular mechanisms responsible for hair growth promoting effect of ginsenoside Re (GRe) in vitro and in vivo. Different doses of minoxidil and GRe were administered topically to the back regions of nude mice for up to 45 days, and hair shaft length and hair cycles were determined for hair promoting activities. Topical treatment of GRe significantly increased the hair shaft length and hair existent time, which was comparable to the action of minoxidil. We also demonstrated that GRe stimulated hair shaft elongation in the ex vivo cultures of vibrissa hair follicles isolated from C57BL/6 mouse. Systemic transcriptome analysis by next generation sequencing demonstrated that TGF-β-pathway related genes were selectively down-regulated by treatment of GRe in vivo, and the same treatment suppressed TGF-β-induced phosphorylation of ERK in HeLa cells. The results clearly indicated that GRe is the effective constituent in the ginseng on hair promotion via selective inhibition of the hair growth phase transition related signaling pathways, TGF-β signaling cascades.

  17. Protopanaxatirol type ginsenoside Re promotes cyclic growth of hair follicles via inhibiting transforming growth factor β signaling cascades.

    PubMed

    Li, Zheng; Ryu, Seung-Wook; Lee, Jungsul; Choi, Kyungsun; Kim, Sunchang; Choi, Chulhee

    2016-02-19

    Ginsenosides, the major bio-active ingredients included in Panax ginseng, have been known for the hair growth activity and used to treat patients who suffer from hair loss; however, the detailed mechanisms of this action are still largely unknown. This study was conducted to investigate the molecular and cellular mechanisms responsible for hair growth promoting effect of ginsenoside Re (GRe) in vitro and in vivo. Different doses of minoxidil and GRe were administered topically to the back regions of nude mice for up to 45 days, and hair shaft length and hair cycles were determined for hair promoting activities. Topical treatment of GRe significantly increased the hair shaft length and hair existent time, which was comparable to the action of minoxidil. We also demonstrated that GRe stimulated hair shaft elongation in the ex vivo cultures of vibrissa hair follicles isolated from C57BL/6 mouse. Systemic transcriptome analysis by next generation sequencing demonstrated that TGF-β-pathway related genes were selectively down-regulated by treatment of GRe in vivo, and the same treatment suppressed TGF-β-induced phosphorylation of ERK in HeLa cells. The results clearly indicated that GRe is the effective constituent in the ginseng on hair promotion via selective inhibition of the hair growth phase transition related signaling pathways, TGF-β signaling cascades. PMID:26820528

  18. Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth.

    PubMed

    Higgins, Claire A; Chen, James C; Cerise, Jane E; Jahoda, Colin A B; Christiano, Angela M

    2013-12-01

    De novo organ regeneration has been observed in several lower organisms, as well as rodents; however, demonstrating these regenerative properties in human cells and tissues has been challenging. In the hair follicle, rodent hair follicle-derived dermal cells can interact with local epithelia and induce de novo hair follicles in a variety of hairless recipient skin sites. However, multiple attempts to recapitulate this process in humans using human dermal papilla cells in human skin have failed, suggesting that human dermal papilla cells lose key inductive properties upon culture. Here, we performed global gene expression analysis of human dermal papilla cells in culture and discovered very rapid and profound molecular signature changes linking their transition from a 3D to a 2D environment with early loss of their hair-inducing capacity. We demonstrate that the intact dermal papilla transcriptional signature can be partially restored by growth of papilla cells in 3D spheroid cultures. This signature change translates to a partial restoration of inductive capability, and we show that human dermal papilla cells, when grown as spheroids, are capable of inducing de novo hair follicles in human skin.

  19. The Modulatable Stem Cell Niche: Tissue Interactions during Hair and Feather Follicle Regeneration.

    PubMed

    Chen, Chih-Chiang; Plikus, Maksim V; Tang, Pin-Chi; Widelitz, Randall B; Chuong, Cheng Ming

    2016-04-10

    Hair and feathers are unique because (1) their stem cells are contained within a follicle structure, (2) they undergo cyclic regeneration repetitively throughout life, (3) regeneration occurs physiologically in healthy individuals and (4) regeneration is also induced in response to injury. Precise control of this cyclic regeneration process is essential for maintaining the homeostasis of living organisms. While stem cells are regulated by the intra-follicle-adjacent micro-environmental niche, this niche is also modulated dynamically by extra-follicular macro-environmental signals, allowing stem cells to adapt to a larger changing environment and physiological needs. Here we review several examples of macro-environments that communicate with the follicles: intradermal adipose tissue, innate immune system, sex hormones, aging, circadian rhythm and seasonal rhythms. Related diseases are also discussed. Unveiling the mechanisms of how stem cell niches are modulated provides clues for regenerative medicine. Given that stem cells are hard to manipulate, focusing translational therapeutic applications at the environments appears to be a more practical approach.

  20. Signaling Networks among Stem Cell Precursors, Transit-Amplifying Progenitors, and their Niche in Developing Hair Follicles.

    PubMed

    Rezza, Amélie; Wang, Zichen; Sennett, Rachel; Qiao, Wenlian; Wang, Dongmei; Heitman, Nicholas; Mok, Ka Wai; Clavel, Carlos; Yi, Rui; Zandstra, Peter; Ma'ayan, Avi; Rendl, Michael

    2016-03-29

    The hair follicle (HF) is a complex miniorgan that serves as an ideal model system to study stem cell (SC) interactions with the niche during growth and regeneration. Dermal papilla (DP) cells are required for SC activation during the adult hair cycle, but signal exchange between niche and SC precursors/transit-amplifying cell (TAC) progenitors that regulates HF morphogenetic growth is largely unknown. Here we use six transgenic reporters to isolate 14 major skin and HF cell populations. With next-generation RNA sequencing, we characterize their transcriptomes and define unique molecular signatures. SC precursors, TACs, and the DP niche express a plethora of ligands and receptors. Signaling interaction network analysis reveals a bird's-eye view of pathways implicated in epithelial-mesenchymal interactions. Using a systematic tissue-wide approach, this work provides a comprehensive platform, linked to an interactive online database, to identify and further explore the SC/TAC/niche crosstalk regulating HF growth. PMID:27009580

  1. Identification of a novel fibroblast growth factor, FGF-22, preferentially expressed in the inner root sheath of the hair follicle.

    PubMed

    Nakatake, Y; Hoshikawa, M; Asaki, T; Kassai, Y; Itoh, N

    2001-02-16

    We isolated cDNA encoding a novel fibroblast growth factor (FGF-22) (170 amino acids) from human placenta. Of the FGF family members, FGF-22, which appears to be a secreted protein, is most similar to FGF-10 and FGF-7 (approximately 46% and approximately 40% amino acid identities, respectively). The human FGF-22 gene was localized on chromosome 19p13.3. We also isolated mouse cDNA encoding FGF-22 (162 amino acids) from the skin. Mouse FGF-22 shows high homology (87% amino acid identity) to human FGF-22. Mouse FGF-22 mRNA was found to be preferentially expressed in the skin among the mouse adult tissues examined by Northern blotting analysis. By in situ hybridization, FGF-22 mRNA in the skin was found to be preferentially expressed in the inner root sheath of the hair follicle. Therefore, FGF-22 is expected to be a unique FGF that plays a role in hair development.

  2. Signalling couples hair follicle stem cell quiescence with reduced histone H3 K4/K9/K27me3 for proper tissue homeostasis

    PubMed Central

    Lee, Jayhun; Kang, Sangjo; Lilja, Karin C.; Colletier, Keegan J.; Scheitz, Cornelia Johanna Franziska; Zhang, Ying V.; Tumbar, Tudorita

    2016-01-01

    Mechanisms of plasticity to acquire different cell fates are critical for adult stem cell (SC) potential, yet are poorly understood. Reduced global histone methylation is an epigenetic state known to mediate plasticity in cultured embryonic SCs and T-cell progenitors. Here we find histone H3 K4/K9/K27me3 levels actively reduced in adult mouse skin and hair follicle stem cells (HFSCs) during G0 quiescence. The level of marks over specific gene promoters did not correlate to mRNA level changes in quiescent HFSCs. Skin hypomethylation during quiescence was necessary for subsequent progression of hair homeostasis (cycle). Inhibiting BMP signal, a known HFSC anti-proliferative factor, elevated HFSC methylation in vivo during quiescence prior to proliferation onset. Furthermore, removal of proliferation factors and addition of BMP4 reduced histone methylases and increased demethylases mRNAs in cultured skin epithelial cells. We conclude that signalling couples hair follicle stem cell quiescence with reduced H3 K4/K9/K27me3 levels for proper tissue homeostasis. PMID:27080563

  3. Signalling couples hair follicle stem cell quiescence with reduced histone H3 K4/K9/K27me3 for proper tissue homeostasis.

    PubMed

    Lee, Jayhun; Kang, Sangjo; Lilja, Karin C; Colletier, Keegan J; Scheitz, Cornelia Johanna Franziska; Zhang, Ying V; Tumbar, Tudorita

    2016-04-15

    Mechanisms of plasticity to acquire different cell fates are critical for adult stem cell (SC) potential, yet are poorly understood. Reduced global histone methylation is an epigenetic state known to mediate plasticity in cultured embryonic SCs and T-cell progenitors. Here we find histone H3 K4/K9/K27me3 levels actively reduced in adult mouse skin and hair follicle stem cells (HFSCs) during G0 quiescence. The level of marks over specific gene promoters did not correlate to mRNA level changes in quiescent HFSCs. Skin hypomethylation during quiescence was necessary for subsequent progression of hair homeostasis (cycle). Inhibiting BMP signal, a known HFSC anti-proliferative factor, elevated HFSC methylation in vivo during quiescence prior to proliferation onset. Furthermore, removal of proliferation factors and addition of BMP4 reduced histone methylases and increased demethylases mRNAs in cultured skin epithelial cells. We conclude that signalling couples hair follicle stem cell quiescence with reduced H3 K4/K9/K27me3 levels for proper tissue homeostasis.

  4. Signalling couples hair follicle stem cell quiescence with reduced histone H3 K4/K9/K27me3 for proper tissue homeostasis.

    PubMed

    Lee, Jayhun; Kang, Sangjo; Lilja, Karin C; Colletier, Keegan J; Scheitz, Cornelia Johanna Franziska; Zhang, Ying V; Tumbar, Tudorita

    2016-01-01

    Mechanisms of plasticity to acquire different cell fates are critical for adult stem cell (SC) potential, yet are poorly understood. Reduced global histone methylation is an epigenetic state known to mediate plasticity in cultured embryonic SCs and T-cell progenitors. Here we find histone H3 K4/K9/K27me3 levels actively reduced in adult mouse skin and hair follicle stem cells (HFSCs) during G0 quiescence. The level of marks over specific gene promoters did not correlate to mRNA level changes in quiescent HFSCs. Skin hypomethylation during quiescence was necessary for subsequent progression of hair homeostasis (cycle). Inhibiting BMP signal, a known HFSC anti-proliferative factor, elevated HFSC methylation in vivo during quiescence prior to proliferation onset. Furthermore, removal of proliferation factors and addition of BMP4 reduced histone methylases and increased demethylases mRNAs in cultured skin epithelial cells. We conclude that signalling couples hair follicle stem cell quiescence with reduced H3 K4/K9/K27me3 levels for proper tissue homeostasis. PMID:27080563

  5. Post-transcriptional Regulation of Keratinocyte Progenitor Cell Expansion, Differentiation and Hair Follicle Regression by miR-22.

    PubMed

    Yuan, Shukai; Li, Feifei; Meng, Qingyong; Zhao, Yiqiang; Chen, Lei; Zhang, Hongquan; Xue, Lixiang; Zhang, Xiuqing; Lengner, Christopher; Yu, Zhengquan

    2015-05-01

    Hair follicles (HF) undergo precisely regulated recurrent cycles of growth, cessation, and rest. The transitions from anagen (growth), to catagen (regression), to telogen (rest) involve a physiological involution of the HF. This process is likely coordinated by a variety of mechanisms including apoptosis and loss of growth factor signaling. However, the precise molecular mechanisms underlying follicle involution after hair keratinocyte differentiation and hair shaft assembly remain poorly understood. Here we demonstrate that a highly conserved microRNA, miR-22 is markedly upregulated during catagen and peaks in telogen. Using gain- and loss-of-function approaches in vivo, we find that miR-22 overexpression leads to hair loss by promoting anagen-to-catagen transition of the HF, and that deletion of miR-22 delays entry to catagen and accelerates the transition from telogen to anagen. Ectopic activation of miR-22 results in hair loss due to the repression a hair keratinocyte differentiation program and keratinocyte progenitor expansion, as well as promotion of apoptosis. At the molecular level, we demonstrate that miR-22 directly represses numerous transcription factors upstream of phenotypic keratin genes, including Dlx3, Foxn1, and Hoxc13. We conclude that miR-22 is a critical post-transcriptional regulator of the hair cycle and may represent a novel target for therapeutic modulation of hair growth.

  6. The spatio-temporal domains of Frizzled6 action in planar polarity control of hair follicle orientation.

    PubMed

    Chang, Hao; Smallwood, Philip M; Williams, John; Nathans, Jeremy

    2016-01-01

    In mammals, hair follicles cover most of the body surface and exhibit precise and stereotyped orientations relative to the body axes. Follicle orientation is controlled by the planar cell polarity (PCP; or, more generally, tissue polarity) system, as determined by the follicle mis-orientation phenotypes observed in mice with PCP gene mutations. The present study uses conditional knockout alleles of the PCP genes Frizzled6 (Fz6), Vangl1, and Vangl2, together with a series of Cre drivers to interrogate the spatio-temporal domains of PCP gene action in the developing mouse epidermis required for follicle orientation. Fz6 is required starting between embryonic day (E)11.5 and E12.5. Eliminating Fz6 in either the anterior or the posterior halves of the embryo or in either the feet or the torso leads to follicle mis-orientation phenotypes that are limited to the territories associated with Fz6 loss, implying either that PCP signaling is required for communicating polarity information on a local but not a global scale, or that there are multiple independent sources of global polarity information. Eliminating Fz6 in most hair follicle cells or in the inter-follicular epidermis at E15.5 suggests that PCP signaling in developing follicles is not required to maintain their orientation. The asymmetric arrangement of Merkel cells around the base of each guard hair follicle dependents on Fz6 expression in the epidermis but not in differentiating Merkel cells. These experiments constrain current models of PCP signaling and the flow of polarity information in mammalian skin.

  7. Dynamics Between Stem Cells, Niche and Progeny in the Hair Follicle

    PubMed Central

    Hsu, Ya-Chieh; Pasolli, H. Amalia; Fuchs, Elaine

    2011-01-01

    Summary Here, we exploit the hair follicle to define the point at which stem cells become irreversibly committed along a differentiation lineage. Employing histone and nucleotide double-pulse-chase and lineage tracing, we show that the early SC descendents en route to becoming transit-amplifying cells retain stemness and slow-cycling properties and home back to the bulge niche when hair growth stops. These become the primary SCs for the next hair cycle, while initial bulge SCs become reserves for injury. Proliferating descendents further en route irreversibly lose their stemness, although they retain many SC markers and survive, unlike their transit-amplifying progeny. Remarkably, these progeny also home back to the bulge. Combining purification and gene expression analysis with differential ablation and functional experiments, we define critical functions for these non-SC niche residents, and unveil the intriguing concept that an irreversibly committed cell in an SC lineage can become an essential contributor to the niche microenvironment. PMID:21215372

  8. Advanced chemical imaging and comparison of human and porcine hair follicles for drug delivery by confocal Raman microscopy

    NASA Astrophysics Data System (ADS)

    Franzen, Lutz; Mathes, Christiane; Hansen, Steffi; Windbergs, Maike

    2013-06-01

    Hair follicles have recently gained a lot of interest for dermal drug delivery. They provide facilitated penetration into the skin and a high potential to serve as a drug depot. In this area of research, excised pig ear is a widely accepted in vitro model to evaluate penetration of drug delivery into hair follicles. However, a comparison of human and porcine follicles in terms of chemical composition has not been performed so far. In this study, we applied confocal Raman microscopy as a chemically selective imaging technique to compare human and porcine follicle composition and to visualize component distribution within follicle cross-sections. Based on the evaluation of human and porcine Raman spectra optical similarity for both species was successfully confirmed. Furthermore, cyanoacrylate skin surface biopsies, which are generally used to determine the extent of follicular penetration, were imaged by a novel complementary analytical approach combining confocal Raman microscopy and optical profilometry. This all-encompassing analysis allows investigation of intactness and component distribution of the excised hair bulb in three dimensions. Confocal Raman microscopy shows a high potential as a noninvasive and chemically selective technique for the analysis of trans-follicular drug delivery.

  9. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis.

    PubMed

    Ito, Mayumi; Liu, Yaping; Yang, Zaixin; Nguyen, Jane; Liang, Fan; Morris, Rebecca J; Cotsarelis, George

    2005-12-01

    The discovery of long-lived epithelial stem cells in the bulge region of the hair follicle led to the hypothesis that epidermal renewal and epidermal repair after wounding both depend on these cells. To determine whether bulge cells are necessary for epidermal renewal, here we have ablated these cells by targeting them with a suicide gene encoding herpes simplex virus thymidine kinase (HSV-TK) using a Keratin 1-15 (Krt1-15) promoter. We show that ablation leads to complete loss of hair follicles but survival of the epidermis. Through fate-mapping experiments, we find that stem cells in the hair follicle bulge do not normally contribute cells to the epidermis which is organized into epidermal proliferative units, as previously predicted. After epidermal injury, however, cells from the bulge are recruited into the epidermis and migrate in a linear manner toward the center of the wound, ultimately forming a marked radial pattern. Notably, although the bulge-derived cells acquire an epidermal phenotype, most are eliminated from the epidermis over several weeks, indicating that bulge stem cells respond rapidly to epidermal wounding by generating short-lived 'transient amplifying' cells responsible for acute wound repair. Our findings have implications for both gene therapy and developing treatments for wounds because it will be necessary to consider epidermal and hair follicle stem cells as distinct populations.

  10. Which skin model is the most appropriate for the investigation of topically applied substances into the hair follicles?

    PubMed

    Lademann, J; Richter, H; Meinke, M; Sterry, W; Patzelt, A

    2010-01-01

    It has recently been demonstrated by the utilization of different techniques, such as differential stripping and laser scanning microscopy, that the hair follicles represent an efficient long-term reservoir for topically applied substances. In the present paper, the different in vivo techniques are compared to those of in vitro analysis. It was found that in vitro measurements on pig ear skin are highly superior for the analysis of follicular penetration, as compared to in vitro investigations on excised human skin, mainly due to the fact that the human skin contracts after removal. Restretching of the skin to its original size mainly stretches the interfollicular fibres, whereas the fibres around the hair follicles remain contracted. In contrast to excised human skin, pig ear tissue does not contract when the cartilage is not removed. Moreover, it has an intact barrier on both sides of the ear. Regardless of the fact that the hair follicles on pig ear skin are larger than those of humans, the porcine ear skin represents a more suitable in vitro model for the analysis of the penetration and storage of topically applied substances in the hair follicles than excised human skin. PMID:20090408

  11. RBM28, a protein deficient in ANE syndrome, regulates hair follicle growth via miR-203 and p63.

    PubMed

    Warshauer, Emily; Samuelov, Liat; Sarig, Ofer; Vodo, Dan; Bindereif, Albrecht; Kanaan, Moien; Gat, Uri; Fuchs-Telem, Dana; Shomron, Noam; Farberov, Luba; Pasmanik-Chor, Metsada; Nardini, Gil; Winkler, Eyal; Meilik, Benjamin; Petit, Isabelle; Aberdam, Daniel; Paus, Ralf; Sprecher, Eli; Nousbeck, Janna

    2015-08-01

    Alopecia-neurological defects-endocrinopathy (ANE) syndrome is a rare inherited hair disorder, which was shown to result from decreased expression of the RNA-binding motif protein 28 (RBM28). In this study, we attempted to delineate the role of RBM28 in hair biology. First, we sought to obtain evidence for the direct involvement of RBM28 in hair growth. When RBM28 was downregulated in human hair follicle (HF) organ cultures, we observed catagen induction and HF growth arrest, indicating that RBM28 is necessary for normal hair growth. We also aimed at identifying molecular targets of RBM28. Given that an RBM28 homologue was recently found to regulate miRNA biogenesis in C. elegans and given the known pivotal importance of miRNAs for proper hair follicle development, we studied global miRNA expression profile in cells knocked down for RBM28. This analysis revealed that RBM28 controls the expression of miR-203. miR-203 was found to regulate in turn TP63, encoding the transcription factor p63, which is critical for hair morphogenesis. In conclusion, RBM28 contributes to HF growth regulation through modulation of miR-203 and p63 activity.

  12. Discrimination between basal cell carcinoma and hair follicles in skin tissue sections by Raman micro-spectroscopy

    NASA Astrophysics Data System (ADS)

    Larraona-Puy, M.; Ghita, A.; Zoladek, A.; Perkins, W.; Varma, S.; Leach, I. H.; Koloydenko, A. A.; Williams, H.; Notingher, I.

    2011-05-01

    Skin cancer is the most common human malignancy and basal cell carcinoma (BCC) represents approximately 80% of the non-melanoma cases. Current methods of treatment require histopathological evaluation of the tissues by qualified personnel. However, this method is subjective and in some cases BCC can be confused with other structures in healthy skin, including hair follicles. In this preliminary study, we investigated the potential of Raman micro-spectroscopy (RMS) to discriminate between hair follicles and BCC in skin tissue sections excised during Mohs micrographic surgery (MMS). Imaging and diagnosis of skin sections was automatically generated using ' a priori'-built spectral model based on LDA. This model had 90 ± 9% sensitivity and 85 ± 9% specificity for discrimination of BCC from dermis and epidermis. The model used selected Raman bands corresponding to the largest spectral differences between the Raman spectra of BCC and the normal skin regions, associated mainly with nucleic acids and collagen type I. Raman spectra corresponding to the epidermis regions of the hair follicles were found to be closer to those of healthy epidermis rather than BCC. Comparison between Raman spectral images and the gold standard haematoxylin and eosin (H&E) histopathology diagnosis showed good agreement. Some hair follicle regions were misclassified as BCC; regions corresponded mainly to the outermost layer of hair follicle (basal cells) which are expected to have higher nucleic acid concentration. This preliminary study shows the ability of RMS to distinguish between BCC and other tissue structures associated to healthy skin which can be confused with BCC due to their similar morphology.

  13. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches.

    PubMed

    Peterson, Shelby C; Eberl, Markus; Vagnozzi, Alicia N; Belkadi, Abdelmadjid; Veniaminova, Natalia A; Verhaegen, Monique E; Bichakjian, Christopher K; Ward, Nicole L; Dlugosz, Andrzej A; Wong, Sunny Y

    2015-04-01

    Basal cell carcinoma (BCC) is characterized by frequent loss of PTCH1, leading to constitutive activation of the Hedgehog pathway. Although the requirement for Hedgehog in BCC is well established, the identity of disease-initiating cells and the compartments in which they reside remain controversial. By using several inducible Cre drivers to delete Ptch1 in different cell compartments in mice, we show here that multiple hair follicle stem cell populations readily develop BCC-like tumors. In contrast, stem cells within the interfollicular epidermis do not efficiently form tumors. Notably, we observed that innervated Gli1-expressing progenitors within mechanosensory touch dome epithelia are highly tumorigenic. Sensory nerves activate Hedgehog signaling in normal touch domes, while denervation attenuates touch dome-derived tumors. Together, our studies identify varying tumor susceptibilities among different stem cell populations in the skin, highlight touch dome epithelia as "hot spots" for tumor formation, and implicate cutaneous nerves as mediators of tumorigenesis.

  14. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches.

    PubMed

    Peterson, Shelby C; Eberl, Markus; Vagnozzi, Alicia N; Belkadi, Abdelmadjid; Veniaminova, Natalia A; Verhaegen, Monique E; Bichakjian, Christopher K; Ward, Nicole L; Dlugosz, Andrzej A; Wong, Sunny Y

    2015-04-01

    Basal cell carcinoma (BCC) is characterized by frequent loss of PTCH1, leading to constitutive activation of the Hedgehog pathway. Although the requirement for Hedgehog in BCC is well established, the identity of disease-initiating cells and the compartments in which they reside remain controversial. By using several inducible Cre drivers to delete Ptch1 in different cell compartments in mice, we show here that multiple hair follicle stem cell populations readily develop BCC-like tumors. In contrast, stem cells within the interfollicular epidermis do not efficiently form tumors. Notably, we observed that innervated Gli1-expressing progenitors within mechanosensory touch dome epithelia are highly tumorigenic. Sensory nerves activate Hedgehog signaling in normal touch domes, while denervation attenuates touch dome-derived tumors. Together, our studies identify varying tumor susceptibilities among different stem cell populations in the skin, highlight touch dome epithelia as "hot spots" for tumor formation, and implicate cutaneous nerves as mediators of tumorigenesis. PMID:25842978

  15. A Case of Basal Cell Carcinoma with Outer Hair Follicle Sheath Differentiation.

    PubMed

    Onishi, Masazumi; Takahashi, Kazuhiro; Maeda, Fumihiko; Akasaka, Toshihide

    2015-01-01

    A 70-year-old Japanese man presented at our hospital with an asymptomatic, blackish, irregularly shaped plaque with a gray nodule in the periphery on his left lower leg. The lesion had been present for 10 years and had recently enlarged, associated with bleeding. Histopathologically, the tumor consisted of three distinct parts: The first part showed massive aggregation of basophilic basaloid cells with peripheral palisading and abundant melanin granules, and was diagnosed as solid-type basal cell carcinoma. The second part showed aggregation of clear cells with squamous eddies, and was diagnosed as proliferating trichilemmal tumor. The third part showed reticular aggregation of basaloid cells with infundibular cysts in the papillary dermis, and was diagnosed as infundibulocystic basal cell carcinoma. We diagnosed this tumor as basal cell carcinoma with various forms of hair follicle differentiation, including differentiation into the outer root sheath. PMID:26955331

  16. In vivo alteration of the keratin 17 gene in hair follicles by oligonucleotide-directed gene targeting.

    PubMed

    Fan, W; Yoon, K

    2003-12-01

    Using intradermal injection of a chimeric RNA-DNA oligonucleotide (RDO) or a single-stranded oligonucleotide (ssODN) into murine skin, we attempted to make a dominant mutation (R94p) in the conserve alpha-helical domain of keratin 17 (K17), the same mutation found in pachyononychia congenichia type 2 (PC-2) patients with phenotypes ranging from twisted hair and multiple pilosebaceous cysts. Both K17A-RDO and -ssODN contained a single base mismatch (CGC to CCC) to alter the normal K17 sequence to cause an amino acid substitution (R94P). The complexes consisting of oligonucleotides and cationic liposomes were injected to C57B1/6 murine skin at 2 and 5 day after birth. Histological examination of skin biopsies at postnatal day 8 from several mice showed consistent twisted hair shafts or broken hair follicles at the sebaceous gland level and occasional rupture of the hair bulb or epidermal cyst-like changes. In the injected area, the number of full anagen hair follicles decrease by 50%. Injection of the control oligonucleotide, identical to K17A-RDO but containing no mismatch to the normal sequence, did not result in any detectable abnormality. The frequency of gene alteration was lower than 3%, according to the restriction fragment length polymorphism (RFLP) analysis of the genomic DNA isolated by dissection of hair follicles from slides. Although intradermal injection of K17A-RDO or K17-ssODN caused a dominant mutation in K17 affecting hair growth and morphology, these phenotypic changes were transient either due to the compensation of K17 by other keratins or the replacement of the mutated cells by normal surrounding cells during hair growth.

  17. A Study of Noncultured Extracted Hair Follicle Outer Root Sheath Cell Suspension for Transplantation in Vitiligo

    PubMed Central

    Shah, Aarti N; Marfatia, Ritu K; Saikia, Siddhartha S

    2016-01-01

    Context: Vitiligo surgeries have come a long way from tissue grafts to cultured and non cultured cell transplantation. Extracted hair follicle outer root sheath cell transplantation (EHF ORS) suspension is more enriched with melanocyte. In a hair bulb, there is one melanocyte for every five keratinocytes which is much higher than the epidermal melanin unit. Aims: To analyse the effectiveness of cultured EHF ORS and to perform objective evaluation based on clinical improvement & photographic evidence. To observe any untoward events or side effects. Settings and Design: The study was open and uncontrolled. All the patients were screened at preliminary visit. Reviews were done every two weeks. The endpoint selected was six months post procedure. Materials and Methods: Twenty five patients of stable Vitiligo were included in the study and follicular unit were harvested by Follicular Unit Extraction method. Outer root sheath cells were extracted by trypsinization. The solution was transplanted over dermabraded recipient site. Pressure dressing was given. Patients were followed up regularly. Statistical Analysis Used: Descriptive Statistics, Chi-Square. Results: Mean ± SD repigmentation was 80.15% ± 22.9% with excellent repigmentation (90-100%) in 60% of patients. Conclusions: This method is safe, effective, and simpler than the other methods involving cell culturing and requiring a laboratory set-up but selection of patients is crucial for the success of the outcome. PMID:27601859

  18. Expression of the orphan protein Plet-1 during trichilemmal differentiation of anagen hair follicles.

    PubMed

    Raymond, Karine; Richter, Anja; Kreft, Maaike; Frijns, Evelyne; Janssen, Hans; Slijper, Monique; Praetzel-Wunder, Silke; Langbein, Lutz; Sonnenberg, Arnoud

    2010-06-01

    The rat mAb 33A10 recognizes an antigen in a variety of mouse epithelial tissues. In this study, we investigated in detail the expression pattern of the 33A10-defined antigen in the hair follicle. We show that 33A10 reactivity is confined to the most differentiated keratinocytes of the outer root sheath (ORS), the companion layer (CL), and to cells of the sebaceous gland duct. In vitro, the 33A10-defined antigen is expressed in keratinocytes derived from the ORS and accumulates on induction of differentiation. Using microarray analysis and transient transfection approaches, we established that the 33A10-defined antigen is the orphan protein, Placenta-expressed transcript (Plet)-1. Biochemical data indicated that Plet-1 is a glycosylphosphatidylinositol-anchored glycoprotein with N-linked carbohydrates in addition to other posttranslational modifications. Although silencing of Plet-1 expression using stable RNA interference in ORS keratinocytes decreased cellular migration, it increased adhesion to collagens I and IV. Immunohistochemical analysis showed that Plet-1 was primarily localized at the leading edge of epidermal wounds, where keratinocytes contacted the eschar. The restricted localization in both differentiated ORS and CL cells contacting the hair fiber and epidermal wounds suggests a role for the Plet-1 protein in regulating the interaction of keratinocytes with inert tissues.

  19. Hedgehog signaling maintains hair follicle stem cell phenotype in young and aged human skin.

    PubMed

    Rittié, Laure; Stoll, Stefan W; Kang, Sewon; Voorhees, John J; Fisher, Gary J

    2009-12-01

    Skin hair follicles (HF) contain bulge stem cells (SC) that regenerate HFs during hair cycles, and repair skin epithelia following injury. As natural aging is associated with decreased skin repair capacity in humans, we have investigated the impact of age on human scalp HF bulge cell number and function. Here, we isolated human bulge cells, characterized as CD200+/KRT15+/KRT19+ cells of the HF, by dissection-combined CD200 selection in young and aged human skin. Targeted transcriptional profiling indicates that KRT15, KRT19, Dkk3, Dkk4, Tcf3, S100A4, Gas1, EGFR and CTGF/CCN2 are also preferentially expressed by human bulge cells, compared to differentiated HF keratinocytes (KC). Our results demonstrate that aging does not alter expression or localization of these HF SC markers. In addition, we could not detect significant differences in HF density or bulge cell number between young and aged human scalp skin. Interestingly, hedgehog (Hh) signaling is activated in human bulge cells in vivo, and down-regulated in differentiated HF KCs, both in young and aged skin. In addition, activation of Hh signaling by lentivirus-mediated overexpression of transcription factor Gli1 induces transcription of HF SC markers KRT15, KRT19, and Gas1, in cultured KCs. Together with previously reported knock-out mouse results, these data suggest a role for Hh signaling in maintaining bulge cell phenotype in young and aged human skin.

  20. A Study of Noncultured Extracted Hair Follicle Outer Root Sheath Cell Suspension for Transplantation in Vitiligo

    PubMed Central

    Shah, Aarti N; Marfatia, Ritu K; Saikia, Siddhartha S

    2016-01-01

    Context: Vitiligo surgeries have come a long way from tissue grafts to cultured and non cultured cell transplantation. Extracted hair follicle outer root sheath cell transplantation (EHF ORS) suspension is more enriched with melanocyte. In a hair bulb, there is one melanocyte for every five keratinocytes which is much higher than the epidermal melanin unit. Aims: To analyse the effectiveness of cultured EHF ORS and to perform objective evaluation based on clinical improvement & photographic evidence. To observe any untoward events or side effects. Settings and Design: The study was open and uncontrolled. All the patients were screened at preliminary visit. Reviews were done every two weeks. The endpoint selected was six months post procedure. Materials and Methods: Twenty five patients of stable Vitiligo were included in the study and follicular unit were harvested by Follicular Unit Extraction method. Outer root sheath cells were extracted by trypsinization. The solution was transplanted over dermabraded recipient site. Pressure dressing was given. Patients were followed up regularly. Statistical Analysis Used: Descriptive Statistics, Chi-Square. Results: Mean ± SD repigmentation was 80.15% ± 22.9% with excellent repigmentation (90-100%) in 60% of patients. Conclusions: This method is safe, effective, and simpler than the other methods involving cell culturing and requiring a laboratory set-up but selection of patients is crucial for the success of the outcome.

  1. Merkel cells in the vellus hair follicles of human facial skin: a study using confocal laser microscopy.

    PubMed

    Uchigasaki, Shuhko; Suzuki, Hiroyuki; Inoue, Kinji

    2004-03-01

    Many cases of Merkel cell carcinoma have recently been reported, and most of them have been localized on the facial skin. In this study, we investigated Merkel cells in the vellus hair follicles of facial region to characterize these cells in human subjects. Skin specimens doubly stained with cytokeratin (CK) 20 and either protein gene product (PGP) 9.5 or vasoreactive intestinal polypeptide (VIP) were examined by confocal laser microscopy. Many of the Merkel cells in the vellus hair follicles of the facial skin were localized in the bulge area. Some of these cells were attached to nerve terminals, although most of them were not associated with them. Our results suggest that there are two types of Merkel cells in the bulge area of the vellus hair follicles of facial skin: cells wholly unassociated with the nerve terminals and cells associated with thin nerve fibers. We postulate that the former cells may be undifferentiated (immature) and the latter differentiated (mature). If this is so, there is a chance that Merkel cell carcinoma originates from the undifferentiated Merkel cells in the bulge of the vellus hair with the formation of tumor masses in the dermis and no involvement of the epidermis. The Merkel cells connected with nerve fibers may secrete endocrine substances via a regulation of autonomic nerves.

  2. Dynamics of Lgr6⁺ Progenitor Cells in the Hair Follicle, Sebaceous Gland, and Interfollicular Epidermis.

    PubMed

    Füllgrabe, Anja; Joost, Simon; Are, Alexandra; Jacob, Tina; Sivan, Unnikrishnan; Haegebarth, Andrea; Linnarsson, Sten; Simons, Benjamin D; Clevers, Hans; Toftgård, Rune; Kasper, Maria

    2015-11-10

    The dynamics and interactions between stem cell pools in the hair follicle (HF), sebaceous gland (SG), and interfollicular epidermis (IFE) of murine skin are still poorly understood. In this study, we used multicolor lineage tracing to mark Lgr6⁺ -expressing basal cells in the HF isthmus, SG, and IFE.We show that these Lgr6⁺ cells constitute long-term self-renewing populations within each compartment in adult skin. Quantitative analysis of clonal dynamics revealed that the Lgr6⁺ progenitor cells compete neutrally in the IFE, isthmus, and SG, indicating population asymmetry as the underlying mode of tissue renewal. Transcriptional profiling of Lgr6⁺ and Lgr6⁺ cells did not reveal a distinct Lgr6⁺ -associated gene expression signature, raising the question of whether Lgr6⁺ expression requires extrinsic niche signals. Our results elucidate the interrelation and behavior of Lgr6⁺ populations in the IFE, HF, and SG and suggest population asymmetry as a common mechanism for homeostasis in several epithelial skin compartments. PMID:26607954

  3. A rapid screening method using DNA binding dyes to determine whether hair follicles have sufficient DNA for successful profiling.

    PubMed

    Haines, Alicia M; Linacre, Adrian

    2016-05-01

    We report a simple screening method to assess the viability of successful DNA profiling from single hair follicles. A total of 48 hair samples (shed and plucked) were collected from male and female donors and the root tips (0.5cm) were stained using one of three DNA binding dyes (EvaGreen™, Diamond™ Nucleic Acid Dye and RedSafe™) at 20× concentration. The hairs were subsequently viewed under a Nikon Optiphot fluorescent microscope to count the approximate number of nuclei in one plane of view. The hairs were then processed using either (1) a DNA extraction kit (QIAmp(®) Mini Kit) and then amplified using the AmpFLSTR(®) NGM™ kit, which amplifies 15 short tandem repeat (STR) loci plus the gender marker amelogenin, or (2) by direct PCR amplification using the same DNA profiling kit. Diamond™ dye had the lowest background signal and plucked hairs treated with this dye produced full DNA profiles when amplified directly and was chosen to screen a further 150 mixed hair samples. These hairs were separated into one of five categories (1, >100 nuclei; 1.5, 50-99 nuclei; 2, 1-49 nuclei; 2.5, no nuclei but high fluorescent signal; 3, no nuclei and very low fluorescent signal) from which 60 of the hairs were chosen to undergo direct amplification using the NGM™ kit. It was found that there was a direct correlation to the category designation and the ability to obtain a DNA profile up-loadable to the Australian DNA Database. Approximately 91% of category 1 hairs resulted in either a full or high partial (12-29 alleles) profile by direct PCR whereas about 78% of category 3 hairs exhibited no amplification. The results show that this method can be used to predict successful STR amplification from single hair follicles. It is a rapid, sensitive, cheap, non-destructive and easy to perform methodology applicable for screening multiple hairs in order to aid forensic investigators in predicting hairs that will yield DNA results. PMID:27038658

  4. Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells.

    PubMed

    Blazejewska, Ewa Anna; Schlötzer-Schrehardt, Ursula; Zenkel, Matthias; Bachmann, Björn; Chankiewitz, Erik; Jacobi, Christina; Kruse, Friedrich E

    2009-03-01

    The aim of this study was to investigate the transdifferentiation potential of murine vibrissa hair follicle (HF) stem cells into corneal epithelial-like cells through modulation by corneal- or limbus-specific microenvironmental factors. Adult epithelial stem cells were isolated from the HF bulge region by mechanical dissection or fluorescence-activated cell sorting using antibodies to alpha6 integrin, enriched by clonal expansion, and subcultivated on various extracellular matrices (type IV collagen, laminin-1, laminin-5, fibronectin) and in different conditioned media derived from central and peripheral corneal fibroblasts, limbal stromal fibroblasts, and 3T3 fibroblasts. Cellular phenotype and differentiation were evaluated by light and electron microscopy, real-time reverse transcription-polymerase chain reaction, immunocytochemistry, and Western blotting, using antibodies against putative stem cell markers (K15, alpha6 integrin) and differentiation markers characteristic for corneal epithelium (K12, Pax6) or epidermis (K10). Using laminin-5, a major component of the corneo-limbal basement membrane zone, and conditioned medium from limbal stromal fibroblasts, clonally enriched HF stem and progenitor cells adhered rapidly and formed regularly arranged stratified cell sheets. Conditioned medium derived from limbal fibroblasts markedly upregulated expression of cornea-specific K12 and Pax6 on the mRNA and protein level, whereas expression of the epidermal keratinocyte marker K10 was strongly downregulated. These findings suggest that adult HF epithelial stem cells are capable of differentiating into corneal epithelial-like cells in vitro when exposed to a limbus-specific microenvironment. Therefore, the HF may be an easily accessible alternative therapeutic source of autologous adult stem cells for replacement of the corneal epithelium and restoration of visual function in patients with ocular surface disorders. PMID:19074417

  5. Hair follicles as a niche of Staphylococcus aureus in the nose; is a more effective decolonisation strategy needed?

    PubMed

    Ten Broeke-Smits, N J P; Kummer, J A; Bleys, R L A W; Fluit, A C; Boel, C H E

    2010-11-01

    Staphylococcus aureus is the major cause of surgical site infections, and meticillin-resistant S. aureus (MRSA) is increasingly accounting for infections worldwide. Preventing surgical site infections by screening and decolonising positive patients reduces the number of infections, but does not completely eradicate the risk. A balance between prevention, costs and the chance of mupirocin-resistant S. aureus needs to be evaluated and decolonisation strategies optimised. It is essential to know the site of S. aureus during colonisation. In this study, for the first time the exact location of S. aureus in the human nose was determined using a histological approach. We showed the presence of S. aureus in the cornified layer of squamous epithelium, associated keratin and mucous debris and within hair follicles in the vestibulum nasi. The presence of S. aureus in hair follicles suggests that this could be the niche from which relapses occur after decolonisation. Decolonisation strategies might have to be reconsidered. PMID:20864209

  6. Ginsenoside Rg3 up-regulates the expression of vascular endothelial growth factor in human dermal papilla cells and mouse hair follicles.

    PubMed

    Shin, Dae Hyun; Cha, Youn Jeong; Yang, Kyeong Eun; Jang, Ik-Soon; Son, Chang-Gue; Kim, Bo Hyeon; Kim, Jung Min

    2014-07-01

    Crude Panax ginseng has been documented to possess hair growth activity and is widely used to treat alopecia, but the effects of ginsenoside Rg3 on hair growth have not to our knowledge been determined. The aim of the current study was to identify the molecules through which Rg3 stimulates hair growth. The thymidine incorporation for measuring cell proliferation was determined. We used DNA microarray analysis to measure gene expression levels in dermal papilla (DP) cells upon treatment with Rg3. The mRNA and protein expression levels of vascular endothelial growth factor (VEGF) in human DP cells were measured by real-time polymerase chain reaction and immunohistochemistry, respectively. We also used immunohistochemistry assays to detect in vivo changes in VEGF and 3-stemness marker expressions in mouse hair follicles. Reverse transcription polymerase chain reaction showed dose-dependent increases in VEGF mRNA levels on treatment with Rg3. Immunohistochemical analysis showed that expression of VEGF was significantly up-regulated by Rg3 in a dose-dependent manner in human DP cells and in mouse hair follicles. In addition, the CD8 and CD34 were also up-regulated by Rg3 in the mouse hair follicles. It may be concluded that Rg3 might increase hair growth through stimulation of hair follicle stem cells and it has the potential to be used in hair growth products.

  7. Thyroxine differentially modulates the peripheral clock: lessons from the human hair follicle.

    PubMed

    Hardman, Jonathan A; Haslam, Iain S; Farjo, Nilofer; Farjo, Bessam; Paus, Ralf

    2015-01-01

    The human hair follicle (HF) exhibits peripheral clock activity, with knock-down of clock genes (BMAL1 and PER1) prolonging active hair growth (anagen) and increasing pigmentation. Similarly, thyroid hormones prolong anagen and stimulate pigmentation in cultured human HFs. In addition they are recognized as key regulators of the central clock that controls circadian rhythmicity. Therefore, we asked whether thyroxine (T4) also influences peripheral clock activity in the human HF. Over 24 hours we found a significant reduction in protein levels of BMAL1 and PER1, with their transcript levels also decreasing significantly. Furthermore, while all clock genes maintained their rhythmicity in both the control and T4 treated HFs, there was a significant reduction in the amplitude of BMAL1 and PER1 in T4 (100 nM) treated HFs. Accompanying this, cell-cycle progression marker Cyclin D1 was also assessed appearing to show an induced circadian rhythmicity by T4 however, this was not significant. Contrary to short term cultures, after 6 days, transcript and/or protein levels of all core clock genes (BMAL1, PER1, clock, CRY1, CRY2) were up-regulated in T4 treated HFs. BMAL1 and PER1 mRNA was also up-regulated in the HF bulge, the location of HF epithelial stem cells. Together this provides the first direct evidence that T4 modulates the expression of the peripheral molecular clock. Thus, patients with thyroid dysfunction may also show a disordered peripheral clock, which raises the possibility that short term, pulsatile treatment with T4 might permit one to modulate circadian activity in peripheral tissues as a target to treat clock-related disease.

  8. Heparan Sulfate Regulates Hair Follicle and Sebaceous Gland Morphogenesis and Homeostasis*

    PubMed Central

    Coulson-Thomas, Vivien Jane; Gesteira, Tarsis Ferreira; Esko, Jeffrey; Kao, Winston

    2014-01-01

    Hair follicle (HF) morphogenesis and cycling are a result of intricate autonomous epithelial-mesenchymal interactions. Once the first HF cycle is complete it repeatedly undergoes cyclic transformations. Heparan sulfate (HS) proteoglycans are found on the cell surface and in the extracellular matrix where they influence a variety of biological processes by interacting with physiologically important proteins, such as growth factors. Inhibition of heparanase (an HS endoglycosidase) in in vitro cultured HFs has been shown to induce a catagen-like process. Therefore, this study aimed to elucidate the precise role of HS in HF morphogenesis and cycling. An inducible tetratransgenic mouse model was generated to excise exostosin glycosyltransferase 1 (Ext1) in keratin 14-positive cells from P21. Interestingly, EXT1StEpiΔ/StEpiΔ mice presented solely anagen HFs. Moreover, waxing the fur to synchronize the HFs revealed accelerated hair regrowth in the EXT1StEpiΔ/StEpiΔ mice and hindered cycling into catagen. The ablation of HS in the interfollicular epidermal cells of mature skin led to the spontaneous formation of new HFs and an increase in Sonic Hedgehog expression resembling wild-type mice at P0, thereby indicating that the HS/Sonic Hedgehog signaling pathway regulates HF formation during embryogenesis and prevents HF formation in mature skin. Finally, the knock-out of HS also led to the morphogenesis and hyperplasia of sebaceous glands and sweat glands in mature mice, leading to exacerbated sebum production and accumulation on the skin surface. Therefore, our findings clearly show that an intricate control of HS levels is required for HF, sebaceous gland, and sweat gland morphogenesis and HF cycling. PMID:25053416

  9. Penetration profile of microspheres in follicular targeting of terminal hair follicles.

    PubMed

    Toll, R; Jacobi, U; Richter, H; Lademann, J; Schaefer, H; Blume-Peytavi, U

    2004-07-01

    The transfollicular administration of pharmacologically active molecules is of current therapeutic interest, mainly with regard to delivery to specific sites of the hair follicle (HF) and the reduction of hepatic metabolism and systemic toxicity. HF are privileged pathways for specific molecules depending on formulations, which enter faster into these shunts than through the stratum corneum. The aim was to optimize the delivery of fluorescent microspheres into the HF, thereby, developing a standardized protocol for follicular targeting with microspheres. The number of HF showing penetration, as well as the depth of penetration, was determined. Freshly excised skin samples with terminal HF were divided into groups, with or without prior treatment with cyanoacrylate skin surface stripping-technique (CSSS). Thereafter microspheres at a size of 0.75-6.0 microm were applied according to the developed standardized protocol. Skin biopsies were obtained, shock-frozen, and sectioned in 5 microm slices. We demonstrated a selective penetration route of the microspheres into the HF. Optimal microsphere size proved to be approximately 1.5 microm, with a 55% rate of all HF, and with a maximum penetration depth of >2300 microm. Without previous CSSS treatment of the skin, the transfollicular microsphere penetration was below 27% with a maximum penetration depth of 1000 microm. Thus, the basis for follicular targeting of essential structures containing stem cells for keratinocytes, melanocytes, and mast cells has been laid. PMID:15191557

  10. Morphogenetic Mechanisms in the Cyclic Regeneration of Hair Follicles and Deer Antlers from Stem Cells

    PubMed Central

    Li, Chunyi; McMahon, Chris

    2013-01-01

    We have made comparisons between hair follicles (HFs) and antler units (AUs)—two seemingly unrelated mammalian organs. HFs are tiny and concealed within skin, whereas AUs are gigantic and grown externally for visual display. However, these two organs share some striking similarities. Both consist of permanent and cyclic/temporary components and undergo stem-cell-based organogenesis and cyclic regeneration. Stem cells of both organs reside in the permanent part and the growth centres are located in the temporary part of each respective organ. Organogenesis and regeneration of both organs depend on epithelial-mesenchymal interactions. Establishment of these interactions requires stem cells and reactive/niche cells (dermal papilla cells for HFs and epidermal cells for AUs) to be juxtaposed, which is achieved through destruction of the cyclic part to bring the reactive cells into close proximity to the respective stem cell niche. Developments of HFs and AUs are regulated by similar endocrine (particularly testosterone) and paracrine (particularly IGF1) factors. Interestingly, these two organs come to interplay during antlerogenesis. In conclusion, we believe that investigators from the fields of both HF and AU biology could greatly benefit from a comprehensive comparison between these two organs. PMID:24383056

  11. Differentiation of hepatocytes from induced pluripotent stem cells derived from human hair follicle mesenchymal stem cells.

    PubMed

    Shi, Xu; Lv, Shuang; He, Xia; Liu, Xiaomei; Sun, Meiyu; Li, Meiying; Chi, Guangfan; Li, Yulin

    2016-10-01

    Due to the limitations of organ donors and immune rejection in severe liver diseases, stem cell-based therapy presents a promising application for tissue repair and regeneration. As a novel cell source, mesenchymal stem cells separated from human hair follicles (HF-MSCs) are convenient to obtain and have no age limit. To date, the differentiation of HF-MSCs into hepatocytes has not been reported. In this study, we explored whether HF-MSCs and HF-MSC-derived-induced pluripotent stem cells (HF-iPS) could differentiate into hepatocytes in vitro. Flow cytometry, Oil Red O stain and Alizarin Red stain were used to identify the characteristics of HF-MSCs. The expression of liver-specific gene was detected by immunofluorescence and Quantitative Polymerase Chain Reaction. Periodic Acid-Schiff stain, Indocyanine Green stain and Low-Density Lipoprotein stain were performed to evaluate the functions of induced hepatocyte-like cells (HLCs). HF-MSCs were unable to differentiate into HLCs using previously reported procedures for MSCs from other tissues. However, HF-iPS efficiently induced the generation of HLCs that expressed hepatocyte markers and drug metabolism-related genes. HF-iPS can be used as novel and alternative cellular tools for inducing hepatocytes in vitro, simultaneously benefiting from utilizing HF-MSCs as a noninvasive and convenient cell source for reprogramming.

  12. A new hair follicle-derived human epidermal model for the evaluation of sunscreen genoprotection.

    PubMed

    Bacqueville, D; Douki, T; Duprat, L; Rebelo-Moreira, S; Guiraud, B; Dromigny, H; Perier, V; Bessou-Touya, S; Duplan, H

    2015-10-01

    Induction of skin cancer is the most deleterious effect of excessive exposure to sunlight. Accurate evaluation of sunscreens to protect the genome is thus of major importance. In particular, the ability of suncare products to prevent the formation of DNA damage should be evaluated more directly since the Sun Protection Factor is only related to erythema induction. For this purpose, we developed an in vitro approach using a recently characterized reconstituted human epidermis (RHE) model engineered from hair follicle. The relevance of this skin substitute in terms of UV-induced genotoxicity was compared to ex vivo explants exposed to solar-simulated radiation (SSR). The yield of bipyrimidine photoproducts, their rate of repair, and the induction of apoptosis were very similar in both types of skin samples. In order to evaluate the protection afforded by sunscreen against DNA damage, bipyrimidine photoproducts were quantified in tissue models following SSR exposure in the presence or absence of a SPF50+ formula. A rather high DNA protection factor of approximately 20 was found in RHE, very similar to that determined for explants. Thus, RHE is a good surrogate to human skin, and also a convenient and useful tool for investigation of the genoprotection of sunscreens.

  13. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches

    PubMed Central

    Peterson, Shelby C.; Eberl, Markus; Vagnozzi, Alicia N.; Belkadi, Abdelmadjid; Veniaminova, Natalia A.; Verhaegen, Monique E.; Bichakjian, Christopher K.; Ward, Nicole L.; Dlugosz, Andrzej A.; Wong, Sunny Y.

    2015-01-01

    SUMMARY Basal cell carcinoma (BCC) is characterized by frequent loss of PTCH1, leading to constitutive activation of the Hedgehog pathway. Although the requirement for Hedgehog in BCC is well-established, the identity of disease-initiating cells and the compartments in which they reside remain controversial. By using several inducible Cre drivers to delete Ptch1 in different cell compartments in mice, we show here that multiple hair follicle stem cell populations readily develop BCC-like tumors. In contrast, stem cells within the interfollicular epidermis do not efficiently form tumors. Notably, we observed that innervated Gli1-expressing progenitors within mechanosensory touch dome epithelia are highly tumorigenic. Sensory nerves activate Hedgehog signaling in normal touch domes, while denervation attenuates touch dome-derived tumors. Together, our studies identify varying tumor susceptibilities among different stem cell populations in the skin, highlight touch dome epithelia as “hot spots” for tumor formation, and implicate cutaneous nerves as mediators of tumorigenesis. PMID:25842978

  14. LGN plays distinct roles in oral epithelial stratification, filiform papilla morphogenesis and hair follicle development.

    PubMed

    Byrd, Kevin M; Lough, Kendall J; Patel, Jeet H; Descovich, Carlos Patiño; Curtis, T Anthony; Williams, Scott E

    2016-08-01

    Oral epithelia protect against constant challenges by bacteria, viruses, toxins and injury while also contributing to the formation of ectodermal appendages such as teeth, salivary glands and lingual papillae. Despite increasing evidence that differentiation pathway genes are frequently mutated in oral cancers, comparatively little is known about the mechanisms that regulate normal oral epithelial development. Here, we characterize oral epithelial stratification and describe multiple distinct functions for the mitotic spindle orientation gene LGN (Gpsm2) in promoting differentiation and tissue patterning in the mouse oral cavity. Similar to its function in epidermis, apically localized LGN directs perpendicular divisions that promote stratification of the palatal, buccogingival and ventral tongue epithelia. Surprisingly, however, in dorsal tongue LGN is predominantly localized basally, circumferentially or bilaterally and promotes planar divisions. Loss of LGN disrupts the organization and morphogenesis of filiform papillae but appears to be dispensable for embryonic hair follicle development. Thus, LGN has crucial tissue-specific functions in patterning surface ectoderm and its appendages by controlling division orientation. PMID:27317810

  15. Penetration profile of microspheres in follicular targeting of terminal hair follicles.

    PubMed

    Toll, R; Jacobi, U; Richter, H; Lademann, J; Schaefer, H; Blume-Peytavi, U

    2004-07-01

    The transfollicular administration of pharmacologically active molecules is of current therapeutic interest, mainly with regard to delivery to specific sites of the hair follicle (HF) and the reduction of hepatic metabolism and systemic toxicity. HF are privileged pathways for specific molecules depending on formulations, which enter faster into these shunts than through the stratum corneum. The aim was to optimize the delivery of fluorescent microspheres into the HF, thereby, developing a standardized protocol for follicular targeting with microspheres. The number of HF showing penetration, as well as the depth of penetration, was determined. Freshly excised skin samples with terminal HF were divided into groups, with or without prior treatment with cyanoacrylate skin surface stripping-technique (CSSS). Thereafter microspheres at a size of 0.75-6.0 microm were applied according to the developed standardized protocol. Skin biopsies were obtained, shock-frozen, and sectioned in 5 microm slices. We demonstrated a selective penetration route of the microspheres into the HF. Optimal microsphere size proved to be approximately 1.5 microm, with a 55% rate of all HF, and with a maximum penetration depth of >2300 microm. Without previous CSSS treatment of the skin, the transfollicular microsphere penetration was below 27% with a maximum penetration depth of 1000 microm. Thus, the basis for follicular targeting of essential structures containing stem cells for keratinocytes, melanocytes, and mast cells has been laid.

  16. The Role of Biodegradable Engineered Nanofiber Scaffolds Seeded with Hair Follicle Stem Cells for Tissue Engineering

    PubMed Central

    Beigom Hejazian, Leila; Esmaeilzade, Banafshe; Ghoroghi, Fatima Moghanni; Moradi, Fatemeh; Hejazian, Marzieh Beigom; Aslani, Anahita; Bakhtiari, Mehrdad; Soleimani, Masoud; Nobakht, Maliheh

    2012-01-01

    Background The aim of this study was to fabricate the poly caprolactone (PCL) aligned nanofiber scaffold and to evaluate the survival, adhesion, proliferation, and differentiation of rat hair follicle stem cells (HFSC) in the graft material using electrospun PCL nanofiber scaffold for tissue engineering applications. Methods The bulge region of rat whisker was isolated and cultured in DMEM: nutrient mixture F-12 supplemented with epidermal growth factor. The morphological and biological features of cultured bulge cells were observed by light microscopy using immunocytochemistry methods. Electrospinning was used for production of PCL nanofiber scaffolds. Scanning electron microscopy (SEM), 3-(4, 5-di-methylthiazol- 2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, and histology analysis were used to investigate the cell morphology, viability, attachment and infiltration of the HFSC on the PCL nanofiber scaffolds. Results The results of the MTT assay showed cell viability and cell proliferation of the HFSC on PCL nanofiber scaffolds. SEM microscopy images indicated that HFSC are attached, proliferated and spread on PCL nanofiber scaffolds. Also, immunocytochemical analysis showed cell infiltration and cell differentiation on the scaffolds. Conclusion The results of this study reveal that PCL nanofiber scaffolds are suitable for cell culture, proliferation, differentiation and attachment. Furthermore, HFSC are attached and proliferated on PCL nanofiber scaffolds. PMID:23183618

  17. Differentiation of hepatocytes from induced pluripotent stem cells derived from human hair follicle mesenchymal stem cells.

    PubMed

    Shi, Xu; Lv, Shuang; He, Xia; Liu, Xiaomei; Sun, Meiyu; Li, Meiying; Chi, Guangfan; Li, Yulin

    2016-10-01

    Due to the limitations of organ donors and immune rejection in severe liver diseases, stem cell-based therapy presents a promising application for tissue repair and regeneration. As a novel cell source, mesenchymal stem cells separated from human hair follicles (HF-MSCs) are convenient to obtain and have no age limit. To date, the differentiation of HF-MSCs into hepatocytes has not been reported. In this study, we explored whether HF-MSCs and HF-MSC-derived-induced pluripotent stem cells (HF-iPS) could differentiate into hepatocytes in vitro. Flow cytometry, Oil Red O stain and Alizarin Red stain were used to identify the characteristics of HF-MSCs. The expression of liver-specific gene was detected by immunofluorescence and Quantitative Polymerase Chain Reaction. Periodic Acid-Schiff stain, Indocyanine Green stain and Low-Density Lipoprotein stain were performed to evaluate the functions of induced hepatocyte-like cells (HLCs). HF-MSCs were unable to differentiate into HLCs using previously reported procedures for MSCs from other tissues. However, HF-iPS efficiently induced the generation of HLCs that expressed hepatocyte markers and drug metabolism-related genes. HF-iPS can be used as novel and alternative cellular tools for inducing hepatocytes in vitro, simultaneously benefiting from utilizing HF-MSCs as a noninvasive and convenient cell source for reprogramming. PMID:27053247

  18. Single transcription factor reprogramming of hair follicle dermal papilla cells to induced pluripotent stem cells.

    PubMed

    Tsai, Su-Yi; Bouwman, Britta Am; Ang, Yen-Sin; Kim, Soo Jeong; Lee, Dung-Fang; Lemischka, Ihor R; Rendl, Michael

    2011-06-01

    Reprogramming patient-specific somatic cells into induced pluripotent stem (iPS) cells has great potential to develop feasible regenerative therapies. However, several issues need to be resolved such as ease, efficiency, and safety of generation of iPS cells. Many different cell types have been reprogrammed, most conveniently even peripheral blood mononuclear cells. However, they typically require the enforced expression of several transcription factors, posing mutagenesis risks as exogenous genetic material. To reduce this risk, iPS cells were previously generated with Oct4 alone from rather inaccessible neural stem cells that endogenously express the remaining reprogramming factors and very recently from fibroblasts with Oct4 alone in combination with additional small molecules. Here, we exploit that dermal papilla (DP) cells from hair follicles in the skin express all but one reprogramming factors to show that these accessible cells can be reprogrammed into iPS cells with the single transcription factor Oct4 and without further manipulation. Reprogramming was already achieved after 3 weeks and with efficiencies similar to other cell types reprogrammed with four factors. Dermal papilla-derived iPS cells are comparable to embryonic stem cells with respect to morphology, gene expression, and pluripotency. We conclude that DP cells may represent a preferred cell type for reprogramming accessible cells with less manipulation and for ultimately establishing safe conditions in the future by replacing Oct4 with small molecules.

  19. The Transient Role for Calcium and Vitamin D during the Developmental Hair Follicle Cycle.

    PubMed

    Mady, Leila J; Ajibade, Dare V; Hsaio, Connie; Teichert, Arnaud; Fong, Chak; Wang, Yongmei; Christakos, Sylvia; Bikle, Daniel D

    2016-07-01

    The role for 1,25-dihydroxyvitamin D3 and/or calcium in hair follicle cycling is not clear despite their impact on keratinocyte differentiation. We found that calbindin-D9k null (knockout) pups generated from calbindin-D9k knockout females fed a vitamin D-deficient, low-calcium (0.47%) diet develop transient alopecia. The pups appear phenotypically normal until 13 days of age, after which the hair progressively sheds in a caudocephalic direction, resulting in truncal alopecia totalis by 20-23 days, with spontaneous recovery by 28 days. Histological studies showed markedly dystrophic hair follicles, loss of hair shafts with increased apoptosis, and hyperplastic epidermis during this time. Ha1 expression is lost during catagen in all mice but recovers more slowly in the knockout pups on the vitamin D-deficient, low-calcium diet. Keratin 1 expression is reduced throughout days 19-28. The expressions of involucrin, loricrin, and cathepsin L is initially increased by day 19 but subsequently falls below those of controls by day 23, as does that of desmoglein 3. Feeding the mothers a high-vitamin D/high-calcium (2%)/lactose (20%) diet lessens the phenotype, and knockout pups fostered to mothers fed a normal diet do not develop alopecia. Our results show that in calbindin-D9k knockout pups, a maternal vitamin D-deficient/low-calcium diet leads to transient noncicatricial alopecia. PMID:26994969

  20. In situ patch-clamp recordings from Merkel cells in rat whisker hair follicles, an experimental protocol for studying tactile transduction in tactile-end organs.

    PubMed

    Ikeda, Ryo; Ling, Jennifer; Cha, Myeounghoon; Gu, Jianguo G

    2015-01-01

    Mammals use tactile end-organs to perform sensory tasks such as environmental exploration, social interaction, and tactile discrimination. However, cellular and molecular mechanisms underlying tactile transduction in tactile end-organs remain poorly understood. The patch-clamp recording technique may be the most valuable approach for detecting and studying tactile transduction in tactile end-organs, but it is technically challenging because tactile transduction elements in an end-organ are normally inaccessible by patch-clamp recording electrodes. Here we describe an in situ patch-clamp recording protocol for the study of tactile transduction in Merkel cells of rat whisker hair follicles, one of the most sensitive tactile end-organs in mammals. This technique offers an opportunity to explore the identities and properties of ion channels that are involved in tactile transduction in whisker hair follicles, and it may also lend a useful tool for researchers to study other tactile end-organs. The experimental protocol describes procedures for 1) tissue dissection and whisker hair follicle preparation, 2) device setup and steps for performing patch-clamp recordings from Merkel cells in a whisker hair follicle, 3) methods of delivering mechanical stimuli, and 4) intra-follicle microinjection for receptor knockdown in whisker hair follicles. The main procedures in this protocol, from tissue preparation to whole-cell patch-clamp recordings, can be completed in a few hours. PMID:25907165

  1. Axin2 marks quiescent hair follicle bulge stem cells that are maintained by autocrine Wnt/β-catenin signaling.

    PubMed

    Lim, Xinhong; Tan, Si Hui; Yu, Ka Lou; Lim, Sophia Beng Hui; Nusse, Roeland

    2016-03-15

    How stem cells maintain their identity and potency as tissues change during growth is not well understood. In mammalian hair, it is unclear how hair follicle stem cells can enter an extended period of quiescence during the resting phase but retain stem cell potential and be subsequently activated for growth. Here, we use lineage tracing and gene expression mapping to show that the Wnt target gene Axin2 is constantly expressed throughout the hair cycle quiescent phase in outer bulge stem cells that produce their own Wnt signals. Ablating Wnt signaling in the bulge cells causes them to lose their stem cell potency to contribute to hair growth and undergo premature differentiation instead. Bulge cells express secreted Wnt inhibitors, including Dickkopf (Dkk) and secreted frizzled-related protein 1 (Sfrp1). However, the Dickkopf 3 (Dkk3) protein becomes localized to the Wnt-inactive inner bulge that contains differentiated cells. We find that Axin2 expression remains confined to the outer bulge, whereas Dkk3 continues to be localized to the inner bulge during the hair cycle growth phase. Our data suggest that autocrine Wnt signaling in the outer bulge maintains stem cell potency throughout hair cycle quiescence and growth, whereas paracrine Wnt inhibition of inner bulge cells reinforces differentiation.

  2. Axin2 marks quiescent hair follicle bulge stem cells that are maintained by autocrine Wnt/β-catenin signaling.

    PubMed

    Lim, Xinhong; Tan, Si Hui; Yu, Ka Lou; Lim, Sophia Beng Hui; Nusse, Roeland

    2016-03-15

    How stem cells maintain their identity and potency as tissues change during growth is not well understood. In mammalian hair, it is unclear how hair follicle stem cells can enter an extended period of quiescence during the resting phase but retain stem cell potential and be subsequently activated for growth. Here, we use lineage tracing and gene expression mapping to show that the Wnt target gene Axin2 is constantly expressed throughout the hair cycle quiescent phase in outer bulge stem cells that produce their own Wnt signals. Ablating Wnt signaling in the bulge cells causes them to lose their stem cell potency to contribute to hair growth and undergo premature differentiation instead. Bulge cells express secreted Wnt inhibitors, including Dickkopf (Dkk) and secreted frizzled-related protein 1 (Sfrp1). However, the Dickkopf 3 (Dkk3) protein becomes localized to the Wnt-inactive inner bulge that contains differentiated cells. We find that Axin2 expression remains confined to the outer bulge, whereas Dkk3 continues to be localized to the inner bulge during the hair cycle growth phase. Our data suggest that autocrine Wnt signaling in the outer bulge maintains stem cell potency throughout hair cycle quiescence and growth, whereas paracrine Wnt inhibition of inner bulge cells reinforces differentiation. PMID:26903625

  3. Axin2 marks quiescent hair follicle bulge stem cells that are maintained by autocrine Wnt/β-catenin signaling

    PubMed Central

    Lim, Xinhong; Tan, Si Hui; Yu, Ka Lou; Lim, Sophia Beng Hui; Nusse, Roeland

    2016-01-01

    How stem cells maintain their identity and potency as tissues change during growth is not well understood. In mammalian hair, it is unclear how hair follicle stem cells can enter an extended period of quiescence during the resting phase but retain stem cell potential and be subsequently activated for growth. Here, we use lineage tracing and gene expression mapping to show that the Wnt target gene Axin2 is constantly expressed throughout the hair cycle quiescent phase in outer bulge stem cells that produce their own Wnt signals. Ablating Wnt signaling in the bulge cells causes them to lose their stem cell potency to contribute to hair growth and undergo premature differentiation instead. Bulge cells express secreted Wnt inhibitors, including Dickkopf (Dkk) and secreted frizzled-related protein 1 (Sfrp1). However, the Dickkopf 3 (Dkk3) protein becomes localized to the Wnt-inactive inner bulge that contains differentiated cells. We find that Axin2 expression remains confined to the outer bulge, whereas Dkk3 continues to be localized to the inner bulge during the hair cycle growth phase. Our data suggest that autocrine Wnt signaling in the outer bulge maintains stem cell potency throughout hair cycle quiescence and growth, whereas paracrine Wnt inhibition of inner bulge cells reinforces differentiation. PMID:26903625

  4. SCF/c-kit signaling is required in 12-O-tetradecanoylphorbol-13-acetate-induced migration and differentiation of hair follicle melanocytes for epidermal pigmentation.

    PubMed

    Qiu, Weiming; Yang, Ke; Lei, Mingxing; Yan, Hongtao; Tang, Hui; Bai, Xiufeng; Yang, Guihong; Lian, Xiaohua; Wu, Jinjin

    2015-05-01

    Hair follicle melanocyte stem cells (McSCs) are responsible for hair pigmentation and also function as a major melanocyte reservoir for epidermal pigmentation. However, the molecular mechanism promoting McSCs for epidermal pigmentation remains elusive. 12-O-tetradecanoylphorbol-13-acetate (TPA) mimics key signaling involved in melanocyte growth, migration and differentiation. We therefore investigated the molecular basis for the contribution of hair follicle McSCs to epidermal pigmentation using the TPA induction model. We found that repetitive TPA treatment of female C57BL/6 mouse dorsal skin induced epidermal pigmentation by increasing the number of epidermal melanocytes. Particularly, TPA treatment induced McSCs to initiate proliferation, exit the stem cell niche and differentiate. We also demonstrated that TPA promotes melanoblast migration and differentiation in vitro. At the molecular level, TPA treatment induced robust expression of stem cell factor (SCF) in keratinocytes and c-kit in melanoblasts and melanocytes. Administration of ACK2, a neutralizing antibody against the Kit receptor, suppressed mouse epidermal pigmentation, decreased the number of epidermal melanocytes, and inhibited melanoblast migration. Taken together, our data demonstrate that TPA promotes the expansion, migration and differentiation of hair follicle McSCs for mouse epidermal pigmentation. SCF/c-kit signaling was required for TPA-induced migration and differentiation of hair follicle melanocytes. Our findings may provide an excellent model to investigate the signaling mechanisms regulating epidermal pigmentation from mouse hair follicle McSCs, and a potential therapeutic option for skin pigmentation disorders.

  5. Photoactivation of ROS production in situ transiently activates cell proliferation in mouse skin and in the hair follicle stem cell niche promoting hair growth and wound healing

    PubMed Central

    Carrasco, Elisa; Calvo, María I.; Blázquez-Castro, Alfonso; Vecchio, Daniela; Zamarrón, Alicia; de Almeida, Irma Joyce Dias; Stockert, Juan C.; Hamblin, Michael R.; Juarranz, Ángeles; Espada, Jesús

    2015-01-01

    The role of reactive oxygen species (ROS) in the regulation of hair follicle cycle and skin homeostasis is poorly characterized. ROS have been traditionally linked to human disease and ageing, but recent findings suggest that can also have beneficial physiological functions in vivo in mammals. To test this hypothesis, we transiently switched on in situ ROS production in mouse skin. This process activated cell proliferation in the tissue and, interestingly, in the bulge region of the hair follicle, a major reservoir of epidermal stem cells, promoting hair growth as well as stimulating tissue repair after severe burn injury. We further show that these effects were associated with a transient Src kinase phosphorylation at Tyr416 and with a strong transcriptional activation of the prolactin family 2 subfamily c of growth factors. Our results point to potentially relevant modes of skin homeostasis regulation and demonstrate that a local and transient ROS production can regulate stem cell and tissue function in the whole organism. PMID:26134949

  6. The Dog Mite, Demodex canis: Prevalence, Fungal Co-Infection, Reactions to Light, and Hair Follicle Apoptosis

    PubMed Central

    Tsai, Yu-Jen; Chung, Wen-Cheng; Wang, Lian-Chen; Ju, Yu-Ten; Hong, Chin-Lin; Tsai, Yu-Yang; Li, Yi-Hung; Wu, Ying-Ling

    2011-01-01

    Infection rate, reaction to light, and hair follicle apoptosis are examined in the dogmite, Demodex canis Leydig (Prostigmata: Demodicidae), in dogs from the northern area of Taiwan. An analysis of relevant samples revealed 7.2% (73/1013) prevalence of D. canis infection. Infection during the investigation peaked each winter, with an average prevalence of 12.5% (32/255). The infection rates significantly varied in accordance with month, sex, age, and breed (p < 0.05). Most of the lesions were discovered on the backs of the infected animals, where the infection rate was 52.1% (38/73) (P < 0.05). The epidemiologic analysis of infection based on landscape area factor, found that employing a map-overlapping method showed a higher infection rate in the eastern distribution of Taiwan's northern area than other areas. Isolation tests for Microsporum canis Bodin (Onygenales: Arthrodermataceae) and Trichophyton mentagrophyte Robin (Blanchard) on the D. canis infected dogs revealed prevalence rates of 4.4% (2/45) and 2.2% (1/45), respectively. Observations demonstrated that D. canis slowly moved from a light area to a dark area. Skin samples were examined for cellular apoptosis by activated caspase3 immunohistochemical staining. Cells that surrounded the infected hair follicles were activated caspase3-positive, revealing cell apoptosis in infected follicles via the activation of caspase3. PMID:21867442

  7. The dog mite, Demodex canis: prevalence, fungal co-infection, reactions to light, and hair follicle apoptosis.

    PubMed

    Tsai, Yu-Jen; Chung, Wen-Cheng; Wang, Lian-Chen; Ju, Yu-Ten; Hong, Chin-Lin; Tsai, Yu-Yang; Li, Yi-Hung; Wu, Ying-Ling

    2011-01-01

    Infection rate, reaction to light, and hair follicle apoptosis are examined in the dogmite, Demodex canis Leydig (Prostigmata: Demodicidae), in dogs from the northern area of Taiwan. An analysis of relevant samples revealed 7.2% (73/1013) prevalence of D. canis infection. Infection during the investigation peaked each winter, with an average prevalence of 12.5% (32/255). The infection rates significantly varied in accordance with month, sex, age, and breed (p < 0.05). Most of the lesions were discovered on the backs of the infected animals, where the infection rate was 52.1% (38/73) (P < 0.05). The epidemiologic analysis of infection based on landscape area factor, found that employing a map-overlapping method showed a higher infection rate in the eastern distribution of Taiwan's northern area than other areas. Isolation tests for Microsporum canis Bodin (Onygenales: Arthrodermataceae) and Trichophyton mentagrophyte Robin (Blanchard) on the D. canis infected dogs revealed prevalence rates of 4.4% (2/45) and 2.2% (1/45), respectively. Observations demonstrated that D. canis slowly moved from a light area to a dark area. Skin samples were examined for cellular apoptosis by activated caspase3 immunohistochemical staining. Cells that surrounded the infected hair follicles were activated caspase3-positive, revealing cell apoptosis in infected follicles via the activation of caspase3.

  8. Quantification of nanoparticle uptake into hair follicles in pig ear and human forearm.

    PubMed

    Raber, A S; Mittal, A; Schäfer, J; Bakowsky, U; Reichrath, J; Vogt, T; Schaefer, U F; Hansen, S; Lehr, C-M

    2014-04-10

    Drug delivery via the hair follicle (HF) especially with nanoparticles (NP) recently gained attention due to a depot effect and facilitated absorption conditions within the lower HF. With the prospect of transdermal drug delivery, it is of interest to optimize the follicular uptake of NP. In this study, a method was developed to quantify NP uptake into HF and applied in vitro in a pig ear model and in vivo in human volunteers. The influence of NP material on HF uptake was investigated using fluorescence-labeled NP based on poly(D,L-lactide-co-glycolide) (PLGA). All NP had similar hydrodynamic sizes (163-170 nm) but different surface modifications: (i) plain PLGA, (ii) chitosan-coated PLGA (Chit.-PLGA), and (iii) Chit.-PLGA coated with different phospholipids (PL) (DPPC (100), DPPC:Chol (85:15), and DPPC:DOTAP (92:8). Differential stripping was performed, including complete mass balance. The samples were extracted for fluorescence quantification. An effect of the PL coating on follicular uptake was observed as DPPC (100) and DPPC:DOTAP (92:8) penetrated into HF to a higher extent than the other tested NP. The effect was observed both in the pig ear model as well as in human volunteers, although it was statistically significant only in the in vitro model. An excellent in vitro-in vivo correlation (IVIVC, r(2)=0.987) between both models was demonstrated, further supporting the suitability of the pig ear model as a surrogate for the in vivo situation in humans for quantifying NP uptake into HF. These findings may help to optimize NP for targeting the HF and to improve transdermal delivery. PMID:24486055

  9. Quantification of nanoparticle uptake into hair follicles in pig ear and human forearm.

    PubMed

    Raber, A S; Mittal, A; Schäfer, J; Bakowsky, U; Reichrath, J; Vogt, T; Schaefer, U F; Hansen, S; Lehr, C-M

    2014-04-10

    Drug delivery via the hair follicle (HF) especially with nanoparticles (NP) recently gained attention due to a depot effect and facilitated absorption conditions within the lower HF. With the prospect of transdermal drug delivery, it is of interest to optimize the follicular uptake of NP. In this study, a method was developed to quantify NP uptake into HF and applied in vitro in a pig ear model and in vivo in human volunteers. The influence of NP material on HF uptake was investigated using fluorescence-labeled NP based on poly(D,L-lactide-co-glycolide) (PLGA). All NP had similar hydrodynamic sizes (163-170 nm) but different surface modifications: (i) plain PLGA, (ii) chitosan-coated PLGA (Chit.-PLGA), and (iii) Chit.-PLGA coated with different phospholipids (PL) (DPPC (100), DPPC:Chol (85:15), and DPPC:DOTAP (92:8). Differential stripping was performed, including complete mass balance. The samples were extracted for fluorescence quantification. An effect of the PL coating on follicular uptake was observed as DPPC (100) and DPPC:DOTAP (92:8) penetrated into HF to a higher extent than the other tested NP. The effect was observed both in the pig ear model as well as in human volunteers, although it was statistically significant only in the in vitro model. An excellent in vitro-in vivo correlation (IVIVC, r(2)=0.987) between both models was demonstrated, further supporting the suitability of the pig ear model as a surrogate for the in vivo situation in humans for quantifying NP uptake into HF. These findings may help to optimize NP for targeting the HF and to improve transdermal delivery.

  10. Hypothalamic-pituitary-thyroid axis hormones stimulate mitochondrial function and biogenesis in human hair follicles.

    PubMed

    Vidali, Silvia; Knuever, Jana; Lerchner, Johannes; Giesen, Melanie; Bíró, Tamás; Klinger, Matthias; Kofler, Barbara; Funk, Wolfgang; Poeggeler, Burkhard; Paus, Ralf

    2014-01-01

    Thyroid hormones regulate mitochondrial function. As other hypothalamic-pituitary-thyroid (HPT) axis hormones, i.e., thyrotropin-releasing hormone (TRH) and thyrotropin (TSH), are expressed in human hair follicles (HFs) and regulate mitochondrial function in human epidermis, we investigated in organ-cultured human scalp HFs whether TRH (30 nM), TSH (10 mU ml(-1)), thyroxine (T4) (100 nM), and triiodothyronine (T3) (100 pM) alter intrafollicular mitochondrial energy metabolism. All HPT-axis members increased gene and protein expression of mitochondrial-encoded subunit 1 of cytochrome c oxidase (MTCO1), a subunit of respiratory chain complex IV, mitochondrial transcription factor A (TFAM), and Porin. All hormones also stimulated intrafollicular complex I/IV activity and mitochondrial biogenesis. The TSH effects on MTCO1, TFAM, and porin could be abolished by K1-70, a TSH-receptor antagonist, suggesting a TSH receptor-mediated action. Notably, as measured by calorimetry, T3 and TSH increased follicular heat production, whereas T3/T4 and TRH stimulated ATP production in cultured HF keratinocytes. HPT-axis hormones did not increase reactive oxygen species (ROS) production. Rather, T3 and T4 reduced ROS formation, and all tested HPT-axis hormones increased the transcription of ROS scavengers (catalase, superoxide dismutase 2) in HF keratinocytes. Thus, mitochondrial biology, energy metabolism, and redox state of human HFs are subject to profound (neuro-)endocrine regulation by HPT-axis hormones. The neuroendocrine control of mitochondrial biology in a complex human mini-organ revealed here may be therapeutically exploitable. PMID:23949722

  11. Aging changes in hair and nails

    MedlinePlus

    ... Hair color is due to a pigment called melanin , which hair follicles produce. Follicles are structures in ... grow hair. With aging, the follicles make less melanin, and this causes gray hair. Graying often begins ...

  12. A role of melatonin in neuroectodermal-mesodermal interactions: the hair follicle synthesizes melatonin and expresses functional melatonin receptors.

    PubMed

    Kobayashi, Hiromi; Kromminga, Arno; Dunlop, Thomas W; Tychsen, Birte; Conrad, Franziska; Suzuki, Naoto; Memezawa, Ai; Bettermann, Albrecht; Aiba, Setsuya; Carlberg, Carsten; Paus, Ralf

    2005-10-01

    Since mammalian skin expresses the enzymatic apparatus for melatonin synthesis, it may be an extrapineal site of melatonin synthesis. However, evidence is still lacking that this is really the case in situ. Here, we demonstrate melatonin-like immunoreactivity (IR) in the outer root sheath (ORS) of mouse and human hair follicles (HFs), which corresponds to melatonin, as shown by radioimmunoassay and liquid chromatography/tandem mass spectrometry (LC/MS/MS). The melatonin concentration in organ-cultured mouse skin, mouse vibrissae follicles, and human scalp HFs far exceeds the respective melatonin serum level and is significantly increased ex vivo by stimulation with norepinephrine (NE), the key stimulus for pineal melatonin synthesis. By real-time PCR, transcripts for the melatonin membrane receptor MT2 and for the nuclear mediator of melatonin signaling, retinoid orphan receptor alpha (ROR)alpha, are detectable in murine back skin. Transcript levels for these receptors fluctuate in a hair cycle-dependent manner, and are maximal during apoptosis-driven HF regression (catagen). Melatonin may play a role in hair cycle regulation, since its receptors (MT2 and RORalpha) are expressed in murine skin in a hair cycle-dependent manner, and because it inhibits keratinocyte apoptosis and down-regulates ERalpha expression. Therefore, the HF is both, a prominent extrapineal melatonin source, and an important peripheral melatonin target tissue. Regulated intrafollicular melatonin synthesis and signaling may play a previously unrecognized role in the endogenous controls of hair growth, for example, by modulating keratinocyte apoptosis during catagen and by desensitizing the HF to estrogen signaling. As a prototypic neuroectodermal-mesodermal interaction model, the HF can be exploited for dissecting the obscure role of melatonin in such interactions in peripheral tissues. PMID:16030176

  13. Sulfotransferase activity in plucked hair follicles predicts response to topical minoxidil in the treatment of female androgenetic alopecia.

    PubMed

    Roberts, Janet; Desai, Nisha; McCoy, John; Goren, Andy

    2014-01-01

    Two percent topical minoxidil is the only US Food and Drug Administration-approved drug for the treatment of female androgenetic alopecia (AGA). Its success has been limited by the low percentage of responders. Meta-analysis of several studies reporting the number of responders to 2% minoxidil monotherapy indicates moderate hair regrowth in only 13-20% of female patients. Five percent minoxidil solution, when used off-label, may increase the percentage of responders to as much as 40%. As such, a biomarker for predicting treatment response would have significant clinical utility. In a previous study, Goren et al. reported an association between sulfotransferase activity in plucked hair follicles and minoxidil response in a mixed cohort of male and female patients. The aim of this study was to replicate these findings in a well-defined cohort of female patients with AGA treated with 5% minoxidil daily for a period of 6 months. Consistent with the prior study, we found that sulfotransferase activity in plucked hair follicles predicts treatment response with 93% sensitivity and 83% specificity. Our study further supports the importance of minoxidil sulfation in eliciting a therapeutic response and provides further insight into novel targets for increasing minoxidil efficacy. PMID:24773771

  14. Unscheduled DNA synthesis in human hair follicles after in vitro exposure to 11 chemicals: comparison with unscheduled DNA synthesis in rat hepatocytes.

    PubMed

    van Erp, Y H; Koopmans, M J; Heirbaut, P R; van der Hoeven, J C; Weterings, P J

    1992-06-01

    A new method is described to investigate unscheduled DNA synthesis (UDS) in human tissue after exposure in vitro: the human hair follicle. A histological technique was applied to assess cytotoxicity and UDS in the same hair follicle cells. UDS induction was examined for 11 chemicals and the results were compared with literature findings for UDS in rat hepatocytes. Most chemicals inducing UDS in rat hepatocytes raised DNA repair at comparable concentrations in the hair follicle. However, 1 of 9 chemicals that gave a positive response in the rat hepatocyte UDS test, 2-acetylaminofluorene, failed to induce DNA repair in the hair follicle. Metabolizing potential of hair follicle cells was shown in experiments with indirectly acting compounds, i.e., benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene and dimethylnitrosamine. The results support the conclusion that the test in its present state is valuable as a screening assay for the detection of unscheduled DNA synthesis. Moreover, the use of human tissues may result in a better extrapolation to man.

  15. The in vitro use of the hair follicle closure technique to study the follicular and percutaneous permeation of topically applied drugs.

    PubMed

    Stahl, Jessica; Niedorf, Frank; Wohlert, Mareike; Kietzmann, Manfred

    2012-03-01

    Recent studies on follicular permeation emphasise the importance of hair follicles as diffusion pathways, but only a limited amount of data are available about the follicular permeation of topically applied drugs. This study examines the use of a hair follicle closure technique in vitro, to determine the participation of hair follicles in transdermal drug penetration. Various substances, with different lipophilicities, were tested: caffeine, diclofenac, flufenamic acid, ibuprofen, paracetamol, salicylic acid and testosterone. Diffusion experiments were conducted with porcine skin, the most common replacement material for human skin, in Franz-type diffusion cells over 28 hours. Different experimental settings allowed the differentiation between interfollicular and follicular permeation after topical application of the test compounds. A comparison of the apparent permeability coefficients of the drugs demonstrates that the percutaneous permeations of caffeine and flufenamic acid were significantly higher along the hair follicles. In the cases of paracetamol and testosterone, the follicular pathway appears to be of importance, while no difference was found between interfollicular and follicular permeation for diclofenac, ibuprofen and salicylic acid. Thus, the hair follicle closure technique represents an adequate in vitro method for gaining information about follicular or percutaneous permeation, and can replace in vivo testing in animals or humans.

  16. Photoactivation of ROS Production In Situ Transiently Activates Cell Proliferation in Mouse Skin and in the Hair Follicle Stem Cell Niche Promoting Hair Growth and Wound Healing.

    PubMed

    Carrasco, Elisa; Calvo, María I; Blázquez-Castro, Alfonso; Vecchio, Daniela; Zamarrón, Alicia; de Almeida, Irma Joyce Dias; Stockert, Juan C; Hamblin, Michael R; Juarranz, Ángeles; Espada, Jesús

    2015-11-01

    The role of reactive oxygen species (ROS) in the regulation of hair follicle (HF) cycle and skin homeostasis is poorly characterized. ROS have been traditionally linked to human disease and aging, but recent findings suggest that they can also have beneficial physiological functions in vivo in mammals. To test this hypothesis, we transiently switched on in situ ROS production in mouse skin. This process activated cell proliferation in the tissue and, interestingly, in the bulge region of the HF, a major reservoir of epidermal stem cells, promoting hair growth, as well as stimulating tissue repair after severe burn injury. We further show that these effects were associated with a transient Src kinase phosphorylation at Tyr416 and with a strong transcriptional activation of the prolactin family 2 subfamily c of growth factors. Our results point to potentially relevant modes of skin homeostasis regulation and demonstrate that a local and transient ROS production can regulate stem cell and tissue function in the whole organism.

  17. In vitro neural differentiation of CD34 (+) stem cell populations in hair follicles by three different neural induction protocols.

    PubMed

    Najafzadeh, Nowruz; Sagha, Mohsen; Heydari Tajaddod, Shirin; Golmohammadi, Mohammad Ghasem; Massahi Oskoui, Nasim; Deldadeh Moghaddam, Maryam

    2015-02-01

    Differentiation of hair follicle stem cells (HFSCs) into neurons and glial cells represents a promising cell-based therapy for neurodegenerative diseases. The hair follicle bulge area is reported as a putative source of new stem cell population for many years. In vitro studies have implicated neural differentiation of HFSCs. Here, we report the identification and purification of CD34 (+) cells from hair follicle by magnetic activated cell sorting (MACS). We next determined the cytotoxic effects of all-trans retinoic acid (RA) by using cell viability assays. Moreover, the neural differentiation potential of CD34 (+) cells was evaluated in the presence of RA, serum-free condition, and neural differentiation medium (NDM) treatments by using immunocytochemistry and reverse transcription polymerase chain reaction (RT-PCR). Our results showed that the isolated CD34 (+) stem cells were 12% of the total cells in the bulge area, and the neural cells derived from the stem cells expressed nestin, microtubule-associated protein 2 (MAP2), and glial fibrillary acidic protein (GFAP). Interestingly, all the neural induction media supported neuronal differentiation most effectively, but treatment with serum-free medium significantly increased the number of GFAP-positive glial cells. Moreover, increasing RA concentration (≥10 μM) leads to increased cell death in the cells, but a lower concentration of RA (1 μM) treatment results in a decrease in CD34-expressing stem cells. These findings show an instructive neuronal effect of three neural induction media in HFSCs, indicating the important role of this induction media in the specification of the stem cells toward a neural phenotype.

  18. VEGF induces proliferation of human hair follicle dermal papilla cells through VEGFR-2-mediated activation of ERK

    SciTech Connect

    Li, Wei; Man, Xiao-Yong; Li, Chun-Ming; Chen, Jia-Qi; Zhou, Jiong; Cai, Sui-Qing; Lu, Zhong-Fa; Zheng, Min

    2012-08-15

    Vascular endothelial growth factor (VEGF) is one of the strongest regulators of physiological and pathological angiogenesis. VEGF receptor 2 (VEGFR-2), the primary receptor for VEGF, is thought to mediate major functional effects of VEGF. Previously, we have localized both VEGF and VEGFR-2 in human hair follicles. In this study, we further defined the expression and roles of VEGFR-2 on human hair follicle dermal papilla (DP) cells. The expression of VEGFR-2 on DP cells was examined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis separately, and localization of VEGFR-2 was defined by immunofluorescence. The effect of VEGF on DP cells was analyzed by MTT assays and specific inhibitors. Finally, the role of VEGF involved in the signaling pathways was investigated by Western blot. RT-PCR and Western blot analysis demonstrated the expression of VEGFR-2 on DP cells. Immunostaining for VEGFR-2 showed strong signal on cultured human DP cells in vitro. Exogenous VEGF{sub 165} stimulated proliferation of DP cells in a dose-dependent manner. Furthermore, this stimulation was blocked by a VEGFR-2 neutralizing antibody (MAB3571) and an ERK inhibitor (PD98059). VEGF{sub 165}-induced phosphorylation of ERK1/2 was abolished by MAB3571 and PD98059, while the phosphorylation of p38, JNK and AKT were not changed by VEGF{sub 165}. Taken together, VEGFR-2 is expressed on primary human hair follicle DP cells and VEGF induces proliferation of DP cells through VEGFR-2/ERK pathway, but not p38, JNK or AKT signaling. -- Highlights: Black-Right-Pointing-Pointer We examine the expression of VEGFR-2 on cultured human dermal papilla (DP) cells. Black-Right-Pointing-Pointer VEGF{sub 165} stimulated proliferation of human DP cells in a dose-dependent manner. Black-Right-Pointing-Pointer This stimulation was through VEGFR-2-mediated activation of ERK.

  19. Utility of saliva and hair follicles in donor selection for hematopoietic stem cell transplantation and chimerism monitoring.

    PubMed

    Kaur, Gurvinder; Kumar, Neeraj; Nandakumar, Ramya; Rapthap, Chowphi C; Sharma, Gaurav; Neolia, Shekhar; Kumra, Heena; Mahalwar, Prateek; Garg, Abhinav; Kumar, Sunil; Kaur, Jasmeet; Hakim, Mrinali; Kumar, Lalit; Mehra, Narinder K

    2012-01-01

    Selection of an HLA identical donor is a critical pre-requisite for successful hematopoietic stem cell transplantation (HSCT). Most transplant centers utilize blood as the most common source of DNA for HLA testing. However, obtaining blood through phlebotomy is often challenging in patients with conditions like severe leucopenia or hemophilia, pediatric and elderly patients. We have used a simple in-house protocol and shown that HLA genotypes obtained on DNA extracted from saliva or hair are concordant with blood and hence can be used for selection of donors for HSCT or organ transplantation. Similarly, for post-HSCT chimerism monitoring, non-availability of pre-transplant DNA samples poses a major limitation of reference STR fingerprints. This study shows that DNA obtained post-HSCT from hair follicles can be used to generate pre-transplant patient specific fingerprints while the STR profiles obtained in saliva samples cannot as these display a mixed state of chimerism.

  20. Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death.

    PubMed

    Sotiropoulou, Panagiota A; Candi, Aurélie; Mascré, Guilhem; De Clercq, Sarah; Youssef, Khalil Kass; Lapouge, Gaelle; Dahl, Ellen; Semeraro, Claudio; Denecker, Geertrui; Marine, Jean-Christophe; Blanpain, Cédric

    2010-06-01

    Adult stem cells (SCs) are at high risk of accumulating deleterious mutations because they reside and self-renew in adult tissues for extended periods. Little is known about how adult SCs sense and respond to DNA damage within their natural niche. Here, using mouse epidermis as a model, we define the functional consequences and the molecular mechanisms by which adult SCs respond to DNA damage. We show that multipotent hair-follicle-bulge SCs have two important mechanisms for increasing their resistance to DNA-damage-induced cell death: higher expression of the anti-apoptotic gene Bcl-2 and transient stabilization of p53 after DNA damage in bulge SCs. The attenuated p53 activation is the consequence of a faster DNA repair activity, mediated by a higher non-homologous end joining (NHEJ) activity, induced by the key protein DNA-PK. Because NHEJ is an error-prone mechanism, this novel characteristic of adult SCs may have important implications in cancer development and ageing.

  1. Cxcr4 is transiently expressed in both epithelial and mesenchymal compartments of nascent hair follicles but is not required for follicle formation.

    PubMed

    Sennett, Rachel; Rezza, Amélie; Dauber, Katherine L; Clavel, Carlos; Rendl, Michael

    2014-10-01

    Hair follicle (HF) morphogenesis relies on the coordinated exchange of signals between mesenchymal and epithelial compartments of embryonic skin. Chemokine receptor Cxcr4 expression was recently identified in dermal condensates (DCs) of nascent HFs, but its role in promoting HF morphogenesis remains unknown. Our analyses confirmed Cxcr4 expression in condensate cells, and additionally revealed transient Cxcr4 expression in incipient epithelial hair placodes. Placodal Cxcr4 appeared prior to detection in DCs, representing a switch of expression between epithelial and mesenchymal compartments. To explore the functional role of this receptor in both compartments for early HF formation, we conditionally ablated Cxcr4 with condensate-targeting Tbx18(cre) knock-in and epidermis-targeting Krt14-cre transgenic mice. Conditional knockouts for both crosses were viable throughout embryogenesis and into adulthood. Morphological and biochemical marker analyses revealed comparable numbers of HFs forming in knockout embryos compared to wild-type littermate controls in both cases, suggesting that neither dermal nor epithelial Cxcr4 expression is required for early HF morphogenesis. We conclude that Cxcr4 expression and chemokine signaling through this receptor in embryonic mouse skin is dispensable for HF formation. PMID:25066162

  2. Cxcr4 is transiently expressed in both epithelial and mesenchymal compartments of nascent hair follicles but is not required for follicle formation.

    PubMed

    Sennett, Rachel; Rezza, Amélie; Dauber, Katherine L; Clavel, Carlos; Rendl, Michael

    2014-10-01

    Hair follicle (HF) morphogenesis relies on the coordinated exchange of signals between mesenchymal and epithelial compartments of embryonic skin. Chemokine receptor Cxcr4 expression was recently identified in dermal condensates (DCs) of nascent HFs, but its role in promoting HF morphogenesis remains unknown. Our analyses confirmed Cxcr4 expression in condensate cells, and additionally revealed transient Cxcr4 expression in incipient epithelial hair placodes. Placodal Cxcr4 appeared prior to detection in DCs, representing a switch of expression between epithelial and mesenchymal compartments. To explore the functional role of this receptor in both compartments for early HF formation, we conditionally ablated Cxcr4 with condensate-targeting Tbx18(cre) knock-in and epidermis-targeting Krt14-cre transgenic mice. Conditional knockouts for both crosses were viable throughout embryogenesis and into adulthood. Morphological and biochemical marker analyses revealed comparable numbers of HFs forming in knockout embryos compared to wild-type littermate controls in both cases, suggesting that neither dermal nor epithelial Cxcr4 expression is required for early HF morphogenesis. We conclude that Cxcr4 expression and chemokine signaling through this receptor in embryonic mouse skin is dispensable for HF formation.

  3. Stable transfection and identification of a hair follicle-specific expression vector of IGFBP-5 in goat fetal fibroblasts.

    PubMed

    Wang, X J; Su, H M; Liang, Y; Wang, Y F; Guo, X D; Wang, Z G; Liu, D J

    2014-03-17

    The insulin-like growth factor-binding protein-5 (IGFBP-5) is one of the 6 members of the IGFBP family and is involved in the regulation of cell growth, apoptosis, and other IGF-stimulated signaling pathways. To determine the significance of IGFBP-5 in the Inner Mongolia Cashmere goat (Capra hircus), a hair follicle-specific expression vector of IGFBP-5, pCDsRed2-K-IGFBP5 (6.7 kb), was constructed by cloning IGFBP-5 downstream of the keratin-association protein (KAP)6-1 promoter and inserting this fragment into pCDsRed2, which contains a red fluorescent protein (DsRed) expression unit. Inner Mongolia Cashmere goat fetal fibroblast (GFb) cells were transfected with the expression vector by using Lipofectamine(TM) 2000. Cell clones that stably expressed red fluorescence were obtained after selection with Geneticin (G418). The transgene in the cell clones was examined by polymerase chain reaction to verify that exogenous DNA (pKAP6-1 and IGFBP-5) had integrated stably into GFb cells. These data suggest that this method can be used for the construction of a hair follicle-specific expression vector for functional genetic analyses and for obtaining stable transfection donor cells for nuclear transfer.

  4. Engineered hair follicle mesenchymal stem cells overexpressing controlled-release insulin reverse hyperglycemia in mice with type L diabetes.

    PubMed

    Wu, Chunling; Liu, Feilin; Li, Pengdong; Zhao, Guifang; Lan, Shaowei; Jiang, Wenyue; Meng, Xiangwei; Tian, Lixing; Li, Gang; Li, Yulin; Liu, Jin Yu

    2015-01-01

    Genetically engineered stem cells that overexpress genes encoding therapeutic products can be exploited to correct metabolic disorders by repairing and regenerating diseased organs or restoring their function. Hair follicles are readily accessible and serve as a rich source of autologous stem cells for cell-based gene therapy. Here we isolated mesenchymal stem cells from human hair follicles (HF-MSCs) and engineered them to overexpress the human insulin gene and release human insulin in a time- and dose-dependent manner in response to rapamycin. The engineered HF-MSCs retained their characteristic cell surface markers and retained their potential to differentiate into adipocytes and osteoblasts. When mice with streptozotocin-induced type 1 diabetes were engrafted with these engineered HF-MSCs, these cells expressed and released a dose of human insulin, dramatically reversed hyperglycemia, and significantly reduced death rate. Moreover, the engineered HF-MSCs did not form detectable tumors throughout the 120-day animal tests in our experiment. Our results show that HF-MSCs can be used to safely and efficiently express therapeutic transgenes and therefore show promise for cell-based gene therapy of human disease.

  5. The targeted overexpression of a Claudin mutant in the epidermis of transgenic mice elicits striking epidermal and hair follicle abnormalities.

    PubMed

    Troy, Tammy-Claire; Turksen, Kursad

    2007-06-01

    Skin is one of the largest organs of the body, and is formed during development through a highly orchestrated process involving mesenchymal-epithelial interactions, cell commitment, and terminal differentiation. It protects against microorganism invasion and UV irradiation, inhibits water loss, regulates body temperature, and is an important part of the immune system. Using transgenic mouse technology, we have demonstrated that Claudin (Cldn)-containing tight junctions (TJs) are intricately involved in cell signaling during epidermal differentiation and that an epidermal suprabasal overexpression of Cldn6 results in a perturbed epidermal terminal differentiation program with distinct phenotypic abnormalities. To delineate the role of the Cldn cytoplasmic tail domain in epidermal differentiation, we engineered transgenic mice targeting the overexpression of a Cldn6 cytoplasmic tail-truncation mutant in the epidermis. Transgenic mice were characterized by a lethal barrier dysfunction in addition to the existence of hyperproliferative squamous invaginations/cysts replacing hair follicles. Immunohistochemical analysis revealed an epidermal cytoplasmic accumulation of Cldn6, Cldn11, Cldn12, and Cldn18, downregulation of Cldn1 and aberrant expression of various classical markers of epidermal differentiation; namely the basal keratins as well as K1, involucrin, loricrin, and filaggrin. Collectively these studies suggest an important role for Cldns in epidermal/hair follicle differentiation programs likely involving cross talk to signaling pathways (e.g., Notch) directing cell fate selection and differentiation.

  6. DNA profiling in peripheral blood, buccal swabs, hair follicles and semen from a patient following allogeneic hematopoietic stem cells transplantation

    PubMed Central

    LI, YA-TING; XIE, MING-KUN; WU, JIN

    2014-01-01

    Allogeneic peripheral blood stem cells transplantation (allo-PBSCT) or allogeneic bone marrow transplantation (allo-BMT) have been widely used to treat patients exhibiting certain severe illnesses. However, previous studies have shown that the biological materials of allo-PBSCT or allo-BMT recipients may not constitute credible materials for personal identification. In the present study, four types of commonly used samples were collected from a male individual following gender-matched allo-BMT. Autosomal short tandem repeat (STR) and Y-STR markers analysis, based on polymerase chain reaction, were used to evaluate the chimerism status. The results showed that the blood sample were all donor type, the buccal swab sample were mixed chimerism, and the sperm and hair follicle samples maintained a recipient origin of 100%. In conclusion, identical results were obtained by the two methods and it was confirmed that DNA extracted from hair follicles and sperm can be used as a reference for the pre-transplant genotype DNA profile of the recipient in the gender-match allo-BMT or -PBSCT. PMID:25279149

  7. The targeted overexpression of a Claudin mutant in the epidermis of transgenic mice elicits striking epidermal and hair follicle abnormalities.

    PubMed

    Troy, Tammy-Claire; Turksen, Kursad

    2007-06-01

    Skin is one of the largest organs of the body, and is formed during development through a highly orchestrated process involving mesenchymal-epithelial interactions, cell commitment, and terminal differentiation. It protects against microorganism invasion and UV irradiation, inhibits water loss, regulates body temperature, and is an important part of the immune system. Using transgenic mouse technology, we have demonstrated that Claudin (Cldn)-containing tight junctions (TJs) are intricately involved in cell signaling during epidermal differentiation and that an epidermal suprabasal overexpression of Cldn6 results in a perturbed epidermal terminal differentiation program with distinct phenotypic abnormalities. To delineate the role of the Cldn cytoplasmic tail domain in epidermal differentiation, we engineered transgenic mice targeting the overexpression of a Cldn6 cytoplasmic tail-truncation mutant in the epidermis. Transgenic mice were characterized by a lethal barrier dysfunction in addition to the existence of hyperproliferative squamous invaginations/cysts replacing hair follicles. Immunohistochemical analysis revealed an epidermal cytoplasmic accumulation of Cldn6, Cldn11, Cldn12, and Cldn18, downregulation of Cldn1 and aberrant expression of various classical markers of epidermal differentiation; namely the basal keratins as well as K1, involucrin, loricrin, and filaggrin. Collectively these studies suggest an important role for Cldns in epidermal/hair follicle differentiation programs likely involving cross talk to signaling pathways (e.g., Notch) directing cell fate selection and differentiation. PMID:17914196

  8. Malignant hair follicle tumors of the periorbital region: A review of literature and suggestion of a management guideline.

    PubMed

    Sia, Paul Ikgan; Figueira, Edwin; Allende, Alexandra; Selva, Dinesh

    2016-06-01

    Malignant hair follicle tumors are rare skin adnexal malignancies that have a predilection for the head and neck region. They can be categorized into a number of different subtypes. Histologically, they are distinct from their benign counterpart. To the best of our knowledge, there is no extensive review of these malignancies, especially in the periorbital region. We aim to provide a literature review and a guideline for management of these malignant tumors in the periorbital region. Database from Medline, PubMed, Embase, and Google Scholar were consulted. A total of 16 cases from the literature on hair follicle malignancies in the periorbital region were included in this review. The clinical presentations, diagnostic patterns, investigations used, and best management approach of these tumors are discussed. The American Joint Committee on Cancer (AJCC) 7(th) edition carcinoma of the eyelid staging system was used to describe their behaviors. We recommend wide excision surgery and a close follow-up for these tumors. Tumors presenting with a late stage require work-up for distant metastasis and consideration for exenteration procedures. The role of radiotherapy and chemotherapy in this context is still uncertain.

  9.  Neuronal Differentiation of Rat Hair Follicle Stem Cells: the Involvement of the Neuroprotective Factor Seladin-1 (DHCR24)

    PubMed Central

    Gilanchi, Samira; Esmaeilzade, Banafshe; Eidi, Akram; Barati, Mahmood; Mehrabi, Soraya; Moghani Ghoroghi, Fatima; Nobakht, Maliheh

    2014-01-01

    Background: The seladin-1 (selective Alzheimer disease indicator-1), also known as DHCR24, is a gene found to be down-regulated in brain region affected by Alzheimer disease (AD). Whereas, hair follicle stem cells (HFSC), which are affected in with neurogenic potential, it might to hypothesize that this multipotent cell compartment is the predominant source of seladin-1. Our aim was to evaluate seladin-1 gene expression in hair follicle stem cells. Methods: In this study, bulge area of male Wistar rat HFSC were cultured and then characterized with Seladin-1 immunocytochemistry and flow cytometry on days 8 to 14. Next, 9-11-day cells were evaluated for seladin-1 gene expression by real-time PCR. Results: Our results indicated that expression of the seladin-1 gene (DHCR24) on days 9, 10, and 11 may contribute to the development of HFSC. However, the expression of this gene on day 11 was more than day 10 and on 10th day was more than day 9. Also, we assessed HFSC on day 14 and demonstrated these cells were positive for β-ш tubulin, and seladin-1 was not expressed in this day. Conclusion: HFSC express seladin-1 and this result demonstrates that these cells might be used to cell therapy for AD in future. PMID:24842139

  10. Malignant hair follicle tumors of the periorbital region: A review of literature and suggestion of a management guideline.

    PubMed

    Sia, Paul Ikgan; Figueira, Edwin; Allende, Alexandra; Selva, Dinesh

    2016-06-01

    Malignant hair follicle tumors are rare skin adnexal malignancies that have a predilection for the head and neck region. They can be categorized into a number of different subtypes. Histologically, they are distinct from their benign counterpart. To the best of our knowledge, there is no extensive review of these malignancies, especially in the periorbital region. We aim to provide a literature review and a guideline for management of these malignant tumors in the periorbital region. Database from Medline, PubMed, Embase, and Google Scholar were consulted. A total of 16 cases from the literature on hair follicle malignancies in the periorbital region were included in this review. The clinical presentations, diagnostic patterns, investigations used, and best management approach of these tumors are discussed. The American Joint Committee on Cancer (AJCC) 7(th) edition carcinoma of the eyelid staging system was used to describe their behaviors. We recommend wide excision surgery and a close follow-up for these tumors. Tumors presenting with a late stage require work-up for distant metastasis and consideration for exenteration procedures. The role of radiotherapy and chemotherapy in this context is still uncertain. PMID:27171562

  11. CD133 expression correlates with membrane beta-catenin and E-cadherin loss from human hair follicle placodes during morphogenesis.

    PubMed

    Gay, Denise L; Yang, Chao-Chun; Plikus, Maksim V; Ito, Mayumi; Rivera, Charlotte; Treffeisen, Elsa; Doherty, Laura; Spata, Michelle; Millar, Sarah E; Cotsarelis, George

    2015-01-01

    Genetic studies suggest that the major events of human hair follicle development are similar to those in mice, but detailed analyses of this process are lacking. In mice, hair follicle placode "budding" is initiated by invagination of Wnt-induced epithelium into the underlying mesenchyme. Modification of adherens junctions (AJs) is clearly required for budding. Snail-mediated downregulation of AJ component E-cadherin is important for placode budding in mice. Beta-catenin, another AJ component, has been more difficult to study owing to its essential functions in Wnt signaling, a prerequisite for hair follicle placode induction. Here, we show that a subset of human invaginating hair placode cells expresses the stem cell marker CD133 during early morphogenesis. CD133 associates with membrane beta-catenin in early placodes, and its continued expression correlates with loss of beta-catenin and E-cadherin from the cell membrane at a time when E-cadherin transcriptional repressors Snail and Slug are not implicated. Stabilization of CD133 via anti-CD133 antibody treatment of human fetal scalp explants depresses beta-catenin and E-cadherin membrane localization. We discuss this unique correlation and suggest a hypothetical model whereby CD133 promotes morphogenesis in early hair follicle placodes through the localized removal of membrane beta-catenin proteins and subsequent AJ dissolution.

  12. CD133 expression correlates with membrane beta-catenin and e-cadherin loss from human hair follicle placodes during morphogenesis

    PubMed Central

    Gay, Denise; Yang, Chao-Chun; Plikus, Maksim; Ito, Mayumi; Rivera, Charlotte; Treffeisen, Elsa; Doherty, Laura; Spata, Michelle; Millar, Sarah E.; Cotsarelis, George

    2014-01-01

    Genetic studies suggest that the major events of human hair follicle development are similar to those in mice, but detailed analyses of this process are lacking. In mice, hair follicle placode ‘budding’ is initiated by invagination of Wnt-induced epithelium into the underlying mesenchyme. Modification of adherens junctions is clearly required for budding. Snail-mediated downregulation of adherens junction component E-cadherin is important for placode budding in mice. Beta-catenin, another adherens junction component, has been more difficult to study due to its essential functions in Wnt signaling, a prerequisite for hair follicle placode induction. Here, we show that a subset of human invaginating hair placode cells expresses the stem cell marker CD133 during early morphogenesis. CD133 associates with membrane beta-catenin in early placodes and its continued expression correlates with loss of beta-catenin and E-cadherin from the cell membrane at a time when E-cadherin transcriptional repressors Snail and Slug are not implicated. Stabilization of CD133 via anti-CD133 antibody treatment of human fetal scalp explants depresses beta-catenin and E-cadherin membrane localization. We discuss this unique correlation and suggest a hypothetical model whereby CD133 promotes morphogenesis in early hair follicle placodes through the localized removal of membrane beta-catenin proteins and subsequent adherens junction dissolution. PMID:25010141

  13. Comparative Transcriptome Analysis of Fetal Skin Reveals Key Genes Related to Hair Follicle Morphogenesis in Cashmere Goats

    PubMed Central

    Yan, Hailong; Zeng, Jie; Ma, Sen; Niu, Yiyuan; Zhou, Guangxian; Jiang, Yu; Chen, Yulin

    2016-01-01

    Cashmere goat skin contains two types of hair follicles (HF): primary hair follicles (PHF) and secondary hair follicles (SHF). Although multiple genetic determinants associated with HF formation have been identified, the molecules that determine the independent morphogenesis of HF in cashmere goats remain elusive. The growth and development of SHF directly influence the quantity and quality of cashmere production. Here, we report the transcriptome profiling analysis of nine skin samples from cashmere goats using 60- and 120-day-old embryos (E60 and E120, respectively), as well as newborns (NB), through RNA-sequencing (RNA-seq). HF morphological changes indicated that PHF were initiated at E60, with maturation from E120, while differentiation of SHF was identified at E120 until formation of cashmere occurred after birth (NB). The RNA-sequencing analysis generated over 20.6 million clean reads from each mRNA library. The number of differentially expressed genes (DEGs) in E60 vs. E120, E120 vs. NB, and E60 vs. NB were 1,024, 0 and 1,801, respectively, indicating that no significant differences were found at transcriptomic levels between E120 and NB. Key genes including B4GALT4, TNC, a-integrin, and FGFR1, were up-regulated and expressed in HF initiation from E60 to E120, while regulatory genes such as GPRC5D, PAD3, HOXC13, PRR9, VSIG8, LRRC15, LHX2, MSX-2, and FOXN1 were up-regulated and expressed in HF keratinisation and hair shaft differentiation from E120 and NB to E60. Several genes belonging to the KRT and KRTAP gene families were detected throughout the three HF developmental stages. The transcriptional trajectory analyses of all DEGs indicated that immune privilege, glycosaminoglycan biosynthesis, extracellular matrix receptor interaction, and growth factor receptors all played dominant roles in the epithelial-mesenchymal interface and HF formation. We found that the Wnt, transforming growth factor-beta/bone morphogenetic protein, and Notch family members

  14. Comparative Transcriptome Analysis of Fetal Skin Reveals Key Genes Related to Hair Follicle Morphogenesis in Cashmere Goats.

    PubMed

    Gao, Ye; Wang, Xiaolong; Yan, Hailong; Zeng, Jie; Ma, Sen; Niu, Yiyuan; Zhou, Guangxian; Jiang, Yu; Chen, Yulin

    2016-01-01

    Cashmere goat skin contains two types of hair follicles (HF): primary hair follicles (PHF) and secondary hair follicles (SHF). Although multiple genetic determinants associated with HF formation have been identified, the molecules that determine the independent morphogenesis of HF in cashmere goats remain elusive. The growth and development of SHF directly influence the quantity and quality of cashmere production. Here, we report the transcriptome profiling analysis of nine skin samples from cashmere goats using 60- and 120-day-old embryos (E60 and E120, respectively), as well as newborns (NB), through RNA-sequencing (RNA-seq). HF morphological changes indicated that PHF were initiated at E60, with maturation from E120, while differentiation of SHF was identified at E120 until formation of cashmere occurred after birth (NB). The RNA-sequencing analysis generated over 20.6 million clean reads from each mRNA library. The number of differentially expressed genes (DEGs) in E60 vs. E120, E120 vs. NB, and E60 vs. NB were 1,024, 0 and 1,801, respectively, indicating that no significant differences were found at transcriptomic levels between E120 and NB. Key genes including B4GALT4, TNC, a-integrin, and FGFR1, were up-regulated and expressed in HF initiation from E60 to E120, while regulatory genes such as GPRC5D, PAD3, HOXC13, PRR9, VSIG8, LRRC15, LHX2, MSX-2, and FOXN1 were up-regulated and expressed in HF keratinisation and hair shaft differentiation from E120 and NB to E60. Several genes belonging to the KRT and KRTAP gene families were detected throughout the three HF developmental stages. The transcriptional trajectory analyses of all DEGs indicated that immune privilege, glycosaminoglycan biosynthesis, extracellular matrix receptor interaction, and growth factor receptors all played dominant roles in the epithelial-mesenchymal interface and HF formation. We found that the Wnt, transforming growth factor-beta/bone morphogenetic protein, and Notch family members

  15. Inhibition of hair follicle growth by a laminin-1 G-domain peptide, RKRLQVQLSIRT, in an organ culture of isolated vibrissa rudiment.

    PubMed

    Hayashi, Kazuhiro; Mochizuki, Mayumi; Nomizu, Motoyoshi; Uchinuma, Eijyu; Yamashina, Shohei; Kadoya, Yuichi

    2002-04-01

    We established a serum-free organ culture system of isolated single vibrissa rudiments taken from embryonic day 13 mice. This system allowed us to test more than 30 laminin-derived cell adhesive peptides to determine their roles on the growth and differentiation of vibrissa hair follicles. We found that the RKRLQVQLSIRT sequence (designated AG-73), which mapped to the LG-4 module of the laminin-alpha1 chain carboxyl-terminal G domain, perturbed the growth of hair follicles in vitro. AG-73 is one of the cell-binding peptides identified from more than 600 systematically synthesized 12 amino acid peptides covering the whole amino acid sequence of the laminin-alpha1, -beta1, and -gamma1 chains, by cell adhesion assay. Other cell-adhesive laminin peptides and a control scrambled peptide, LQQRRSVLRTKI, however, failed to show any significant effects on the growth of hair follicles. The AG-73 peptide binds to syndecan-1, a transmembrane heparan-sulfate proteoglycan. Syndecan-1 was expressed in both the mesenchymal condensation and the epithelial hair peg of developing vibrissa, suggesting that AG-73 binding to the cell surface syndecan-1 perturbed the epithelial-mesenchymal interactions of developing vibrissa. The formation of hair bulbs was aberrant in the explants treated with AG-73. In addition, impaired basement membrane formation, an abnormal cytoplasmic bleb formation, and an unusual basal formation of actin bundles were noted in the AG-73-treated-hair matrix epithelium, indicating that AG-73 binding perturbs various steps of epithelial morphogenesis, including the basement membrane remodeling. We also found a region-specific loss of the laminin-alpha1 chain in the basement membrane at the distal region of the invading hair follicle epithelium, indicating that laminins play a part in hair morphogenesis.

  16. Protective effect of Korean Red Ginseng against chemotherapeutic drug-induced premature catagen development assessed with human hair follicle organ culture model

    PubMed Central

    Keum, Dong In; Pi, Long-Quan; Hwang, Sungjoo Tommy; Lee, Won-Soo

    2015-01-01

    Background Chemotherapy-induced alopecia (CIA) is one of the most distressing side effects for patients undergoing chemotherapy. This study evaluated the protective effect of Korean Red Ginseng (KRG) on CIA in a well-established in vitro human hair follicle organ culture model as it occurs in vivo. Methods We examined whether KRG can prevent premature hair follicle dystrophy in a human hair follicle organ culture model during treatment with a key cyclophosphamide metabolite, 4-hydroperoxycyclophosphamide (4-HC). Results 4-HC inhibited human hair growth, induced premature catagen development, and inhibited proliferation and stimulated apoptosis of hair matrix keratinocytes. In addition, 4-HC increased p53 and Bax protein expression and decreased Bcl2 protein expression. Pretreatment with KRG protected against 4-HC-induced hair growth inhibition and premature catagen development. KRG also suppressed 4-HC-induced inhibition of matrix keratinocyte proliferation and stimulation of matrix keratinocyte apoptosis. Moreover, KRG restored 4-HC-induced p53 and Bax/Bcl2 expression. Conclusion Overall, our results indicate that KRG may protect against 4-HC-induced premature catagen development through modulation of p53 and Bax/Bcl2 expression. PMID:27158238

  17. Discovery of cashmere goat (Capra hircus) microRNAs in skin and hair follicles by Solexa sequencing

    PubMed Central

    2013-01-01

    Background MicroRNAs (miRNAs) are a large family of endogenous, non-coding RNAs, about 22 nucleotides long, which regulate gene expression through sequence-specific base pairing with target mRNAs. Extensive studies have shown that miRNA expression in the skin changes remarkably during distinct stages of the hair cycle in humans, mice, goats and sheep. Results In this study, the skin tissues were harvested from the three stages of hair follicle cycling (anagen, catagen and telogen) in a fibre-producing goat breed. In total, 63,109,004 raw reads were obtained by Solexa sequencing and 61,125,752 clean reads remained for the small RNA digitalisation analysis. This resulted in the identification of 399 conserved miRNAs; among these, 326 miRNAs were expressed in all three follicular cycling stages, whereas 3, 12 and 11 miRNAs were specifically expressed in anagen, catagen, and telogen, respectively. We also identified 172 potential novel miRNAs by Mireap, 36 miRNAs were expressed in all three cycling stages, whereas 23, 29 and 44 miRNAs were specifically expressed in anagen, catagen, and telogen, respectively. The expression level of five arbitrarily selected miRNAs was analyzed by quantitative PCR, and the results indicated that the expression patterns were consistent with the Solexa sequencing results. Gene Ontology and KEGG pathway analyses indicated that five major biological pathways (Metabolic pathways, Pathways in cancer, MAPK signalling pathway, Endocytosis and Focal adhesion) accounted for 23.08% of target genes among 278 biological functions, indicating that these pathways are likely to play significant roles during hair cycling. Conclusions During all hair cycle stages of cashmere goats, a large number of conserved and novel miRNAs were identified through a high-throughput sequencing approach. This study enriches the Capra hircus miRNA databases and provides a comprehensive miRNA transcriptome profile in the skin of goats during the hair follicle cycle. PMID

  18. MicroRNA-214 controls skin and hair follicle development by modulating the activity of the Wnt pathway.

    PubMed

    Ahmed, Mohammed I; Alam, Majid; Emelianov, Vladimir U; Poterlowicz, Krzysztof; Patel, Ankit; Sharov, Andrey A; Mardaryev, Andrei N; Botchkareva, Natalia V

    2014-11-24

    Skin development is governed by complex programs of gene activation and silencing, including microRNA-dependent modulation of gene expression. Here, we show that miR-214 regulates skin morphogenesis and hair follicle (HF) cycling by targeting β-catenin, a key component of the Wnt signaling pathway. miR-214 exhibits differential expression patterns in the skin epithelium, and its inducible overexpression in keratinocytes inhibited proliferation, which resulted in formation of fewer HFs with decreased hair bulb size and thinner hair production. The inhibitory effects of miR-214 on HF development and cycling were associated with altered activities of multiple signaling pathways, including decreased expression of key Wnt signaling mediators β-catenin and Lef-1, and were rescued by treatment with pharmacological Wnt activators. Finally, we identify β-catenin as one of the conserved miR-214 targets in keratinocytes. These data provide an important foundation for further analyses of miR-214 as a key regulator of Wnt pathway activity and stem cell functions during normal tissue homeostasis, regeneration, and aging. PMID:25422376

  19. BMP Signaling and Its pSMAD1/5 Target Genes Differentially Regulate Hair Follicle Stem Cell Lineages

    PubMed Central

    Genander, Maria; Cook, Peter J.; Ramsköld, Daniel; Keyes, Brice E.; Mertz, Aaron F.; Sandberg, Rickard; Fuchs, Elaine

    2014-01-01

    Hair follicle stem cells (HFSCs) and their transit amplifying cell (TAC) progeny sense BMPs at defined stages of the hair cycle to control their proliferation and differentiation. Here, we exploit the distinct spatial and temporal localizations of these cells to selectively ablate BMP signaling in each compartment and examine its functional role. We find that BMP signaling is required for HFSC quiescence and to promote TAC differentiation along different lineages as the hair cycle progresses. We also combine in vivo genome-wide chromatin immunoprecipitation and deep-sequencing, transcriptional profiling, and loss-of-function genetics to define BMP-regulated genes. We show that some pSMAD1/5 targets, like Gata3, function specifically in TAC lineage-progression. Others, like Id1 and Id3, function in both HFSCs and TACs, but in distinct ways. Our study therefore illustrates the complex differential roles that a key signaling pathway can play in regulation of closely-related stem/progenitor cells within the context of their overall niche. PMID:25312496

  20. MicroRNA-214 controls skin and hair follicle development by modulating the activity of the Wnt pathway.

    PubMed

    Ahmed, Mohammed I; Alam, Majid; Emelianov, Vladimir U; Poterlowicz, Krzysztof; Patel, Ankit; Sharov, Andrey A; Mardaryev, Andrei N; Botchkareva, Natalia V

    2014-11-24

    Skin development is governed by complex programs of gene activation and silencing, including microRNA-dependent modulation of gene expression. Here, we show that miR-214 regulates skin morphogenesis and hair follicle (HF) cycling by targeting β-catenin, a key component of the Wnt signaling pathway. miR-214 exhibits differential expression patterns in the skin epithelium, and its inducible overexpression in keratinocytes inhibited proliferation, which resulted in formation of fewer HFs with decreased hair bulb size and thinner hair production. The inhibitory effects of miR-214 on HF development and cycling were associated with altered activities of multiple signaling pathways, including decreased expression of key Wnt signaling mediators β-catenin and Lef-1, and were rescued by treatment with pharmacological Wnt activators. Finally, we identify β-catenin as one of the conserved miR-214 targets in keratinocytes. These data provide an important foundation for further analyses of miR-214 as a key regulator of Wnt pathway activity and stem cell functions during normal tissue homeostasis, regeneration, and aging.

  1. Tyrosinase Depletion Prevents the Maturation of Melanosomes in the Mouse Hair Follicle

    PubMed Central

    Paterson, Elyse K.; Fielder, Thomas J.; MacGregor, Grant R.; Ito, Shosuke; Wakamatsu, Kazumasa; Gillen, Daniel L.; Eby, Victoria; Boissy, Raymond E.; Ganesan, Anand K.

    2015-01-01

    The mechanisms that lead to variation in human skin and hair color are not fully understood. To better understand the molecular control of skin and hair color variation, we modulated the expression of Tyrosinase (Tyr), which controls the rate-limiting step of melanogenesis, by expressing a single-copy, tetracycline-inducible shRNA against Tyr in mice. Moderate depletion of TYR was sufficient to alter the appearance of the mouse coat in black, agouti, and yellow coat color backgrounds, even though TYR depletion did not significantly inhibit accumulation of melanin within the mouse hair. Ultra-structural studies revealed that the reduction of Tyr inhibited the accumulation of terminal melanosomes, and inhibited the expression of genes that regulate melanogenesis. These results indicate that color in skin and hair is determined not only by the total amount of melanin within the hair, but also by the relative accumulation of mature melanosomes. PMID:26619124

  2. Tyrosinase Depletion Prevents the Maturation of Melanosomes in the Mouse Hair Follicle.

    PubMed

    Paterson, Elyse K; Fielder, Thomas J; MacGregor, Grant R; Ito, Shosuke; Wakamatsu, Kazumasa; Gillen, Daniel L; Eby, Victoria; Boissy, Raymond E; Ganesan, Anand K

    2015-01-01

    The mechanisms that lead to variation in human skin and hair color are not fully understood. To better understand the molecular control of skin and hair color variation, we modulated the expression of Tyrosinase (Tyr), which controls the rate-limiting step of melanogenesis, by expressing a single-copy, tetracycline-inducible shRNA against Tyr in mice. Moderate depletion of TYR was sufficient to alter the appearance of the mouse coat in black, agouti, and yellow coat color backgrounds, even though TYR depletion did not significantly inhibit accumulation of melanin within the mouse hair. Ultra-structural studies revealed that the reduction of Tyr inhibited the accumulation of terminal melanosomes, and inhibited the expression of genes that regulate melanogenesis. These results indicate that color in skin and hair is determined not only by the total amount of melanin within the hair, but also by the relative accumulation of mature melanosomes. PMID:26619124

  3. Dermal papilla cells improve the wound healing process and generate hair bud-like structures in grafted skin substitutes using hair follicle stem cells.

    PubMed

    Leirós, Gustavo José; Kusinsky, Ana Gabriela; Drago, Hugo; Bossi, Silvia; Sturla, Flavio; Castellanos, María Lía; Stella, Inés Yolanda; Balañá, María Eugenia

    2014-10-01

    Tissue-engineered skin represents a useful strategy for the treatment of deep skin injuries and might contribute to the understanding of skin regeneration. The use of dermal papilla cells (DPCs) as a dermal component in a permanent composite skin with human hair follicle stem cells (HFSCs) was evaluated by studying the tissue-engineered skin architecture, stem cell persistence, hair regeneration, and graft-take in nude mice. A porcine acellular dermal matrix was seeded with HFSCs alone and with HFSCs plus human DPCs or dermal fibroblasts (DFs). In vitro, the presence of DPCs induced a more regular and multilayered stratified epidermis with more basal p63-positive cells and invaginations. The DPC-containing constructs more accurately mimicked the skin architecture by properly stratifying the differentiating HFSCs and developing a well-ordered epithelia that contributed to more closely recapitulate an artificial human skin. This acellular dermal matrix previously repopulated in vitro with HFSCs and DFs or DPCs as the dermal component was grafted in nude mice. The presence of DPCs in the composite substitute not only favored early neovascularization, good assimilation and remodeling after grafting but also contributed to the neovascular network maturation, which might reduce the inflammation process, resulting in a better healing process, with less scarring and wound contraction. Interestingly, only DPC-containing constructs showed embryonic hair bud-like structures with cells of human origin, presence of precursor epithelial cells, and expression of a hair differentiation marker. Although preliminary, these findings have demonstrated the importance of the presence of DPCs for proper skin repair. PMID:25161315

  4. Dermal Papilla Cells Improve the Wound Healing Process and Generate Hair Bud-Like Structures in Grafted Skin Substitutes Using Hair Follicle Stem Cells

    PubMed Central

    Leirós, Gustavo José; Kusinsky, Ana Gabriela; Drago, Hugo; Bossi, Silvia; Sturla, Flavio; Castellanos, María Lía; Stella, Inés Yolanda

    2014-01-01

    Tissue-engineered skin represents a useful strategy for the treatment of deep skin injuries and might contribute to the understanding of skin regeneration. The use of dermal papilla cells (DPCs) as a dermal component in a permanent composite skin with human hair follicle stem cells (HFSCs) was evaluated by studying the tissue-engineered skin architecture, stem cell persistence, hair regeneration, and graft-take in nude mice. A porcine acellular dermal matrix was seeded with HFSCs alone and with HFSCs plus human DPCs or dermal fibroblasts (DFs). In vitro, the presence of DPCs induced a more regular and multilayered stratified epidermis with more basal p63-positive cells and invaginations. The DPC-containing constructs more accurately mimicked the skin architecture by properly stratifying the differentiating HFSCs and developing a well-ordered epithelia that contributed to more closely recapitulate an artificial human skin. This acellular dermal matrix previously repopulated in vitro with HFSCs and DFs or DPCs as the dermal component was grafted in nude mice. The presence of DPCs in the composite substitute not only favored early neovascularization, good assimilation and remodeling after grafting but also contributed to the neovascular network maturation, which might reduce the inflammation process, resulting in a better healing process, with less scarring and wound contraction. Interestingly, only DPC-containing constructs showed embryonic hair bud-like structures with cells of human origin, presence of precursor epithelial cells, and expression of a hair differentiation marker. Although preliminary, these findings have demonstrated the importance of the presence of DPCs for proper skin repair. PMID:25161315

  5. Dermal papilla cells improve the wound healing process and generate hair bud-like structures in grafted skin substitutes using hair follicle stem cells.

    PubMed

    Leirós, Gustavo José; Kusinsky, Ana Gabriela; Drago, Hugo; Bossi, Silvia; Sturla, Flavio; Castellanos, María Lía; Stella, Inés Yolanda; Balañá, María Eugenia

    2014-10-01

    Tissue-engineered skin represents a useful strategy for the treatment of deep skin injuries and might contribute to the understanding of skin regeneration. The use of dermal papilla cells (DPCs) as a dermal component in a permanent composite skin with human hair follicle stem cells (HFSCs) was evaluated by studying the tissue-engineered skin architecture, stem cell persistence, hair regeneration, and graft-take in nude mice. A porcine acellular dermal matrix was seeded with HFSCs alone and with HFSCs plus human DPCs or dermal fibroblasts (DFs). In vitro, the presence of DPCs induced a more regular and multilayered stratified epidermis with more basal p63-positive cells and invaginations. The DPC-containing constructs more accurately mimicked the skin architecture by properly stratifying the differentiating HFSCs and developing a well-ordered epithelia that contributed to more closely recapitulate an artificial human skin. This acellular dermal matrix previously repopulated in vitro with HFSCs and DFs or DPCs as the dermal component was grafted in nude mice. The presence of DPCs in the composite substitute not only favored early neovascularization, good assimilation and remodeling after grafting but also contributed to the neovascular network maturation, which might reduce the inflammation process, resulting in a better healing process, with less scarring and wound contraction. Interestingly, only DPC-containing constructs showed embryonic hair bud-like structures with cells of human origin, presence of precursor epithelial cells, and expression of a hair differentiation marker. Although preliminary, these findings have demonstrated the importance of the presence of DPCs for proper skin repair.

  6. Keratin-6 driven ODC expression to hair follicle keratinocytes enhances stemness and tumorigenesis by negatively regulating Notch

    SciTech Connect

    Arumugam, Aadithya; Weng, Zhiping; Chaudhary, Sandeep C.; Afaq, Farrukh; Elmets, Craig A.; Athar, Mohammad

    2014-08-29

    Highlights: • Targeting ODC to hair follicle augments skin carcinogenesis and invasive SCCs. • Hair follicle ODC expands stem cell compartment carrying CD34{sup +}/K15{sup +}/p63{sup +} keratinocytes. • Negatively regulated Notch1 is associated with expansion of stem cell compartment. - Abstract: Over-expression of ornithine decarboxylase (ODC) is known to be involved in the epidermal carcinogenesis. However, the mechanism by which it enhances skin carcinogenesis remains undefined. Recently, role of stem cells localized in various epidermal compartments has been shown in the pathogenesis of skin cancer. To direct ODC expression in distinct epidermal compartments, we have developed keratin 6 (K6)-ODC/SKH-1 and keratin 14 (K14)-ODC/SKH-1 mice and employed them to investigate the role of ODC directed to these epidermal compartments on UVB-induced carcinogenesis. K6-driven ODC over-expression directed to outer root sheath (ORS) of hair follicle was more effective in augmenting tumorigenesis as compared to mice where K14-driven ODC expression was directed to inter-follicular epidermal keratinocytes. Chronically UVB-irradiated K6-ODC/SKH-1 developed 15 ± 2.5 tumors/mouse whereas K14-ODC/SKH-1 developed only 6.8 ± 1.5 tumors/mouse. K6-ODC/SKH-1 showed augmented UVB-induced proliferation and much higher pro-inflammatory responses than K14-ODC/SKH-1 mice. Tumors induced in K6-ODC/SKH-1 were rapidly growing, invasive and ulcerative squamous cell carcinoma (SCC) showing decreased expression of epidermal polarity marker E-cadherin and enhanced mesenchymal marker, fibronectin. Interestingly, the number of CD34/CK15/p63 positive stem-like cells was significantly higher in chronically UVB-irradiated K6-ODC/SKH-1 as compared to K14-ODC/SKH-1 mice. Reduced Notch1 expression was correlated with the expansion of stem cell compartment in these animals. However, other signaling pathways such as DNA damage response or mTOR signaling pathways were not significantly different in

  7. On-line diffusion profile of a lipophilic model dye in different depths of a hair follicle in human scalp skin.

    PubMed

    Grams, Ylva Y; Whitehead, Lynne; Lamers, Gerda; Sturmann, Nico; Bouwstra, Joke A

    2005-10-01

    In skin and hair research, drug targeting to the hair follicle is of great interest in the treatment of skin diseases. The aim of this study is to visualize on-line the diffusion processes of a model fluorophore into the hair follicle at different depths using fresh human scalp skin and confocal laser scanning microscopy. Up to a depth of 500 microm in the skin, a fast increase of fluorescence is observed in the gap followed by accumulation of the dye in the hair cuticle. Penetration was also observed via the stratum corneum and the epidermis. Little label reached depths greater than 2000 microm. Fat cells accumulated the label fastest, followed by the cuticular area and the outer root sheath of the hair follicle. Sweat glands revealed very low staining, whereas the bulb at a depth of 4000 microm was visualized only by autofluorescence. From this study, we conclude that on-line visualization is a promising technique to access diffusion processes in deep skin layers even on a cellular level. Furthermore, we conclude that the gap and the cuticle play an important role in the initial diffusion period with the label in the cuticle originating from the gap.

  8. Optical Monitoring of Living Nerve Terminal Labeling in Hair Follicle Lanceolate Endings of the Ex Vivo Mouse Ear Skin

    PubMed Central

    Bewick, Guy S.; Banks, Robert W.

    2016-01-01

    A novel dissection and recording technique is described for optical monitoring staining and de-staining of lanceolate terminals surrounding hair follicles in the skin of the mouse pinna. The preparation is simple and relatively fast, reliably yielding extensive regions of multiple labeled units of living nerve terminals to study uptake and release of styryl pyridinium dyes extensively used in studies of vesicle recycling. Subdividing the preparations before labeling allows test vs. control comparisons in the same ear from a single individual. Helpful tips are given for improving the quality of the preparation, the labeling and the imaging parameters. This new system is suitable for assaying pharmacologically and mechanically-induced uptake and release of these vital dyes in lanceolate terminals in both wild-type and genetically modified animals. Examples of modulatory influences on labeling intensity are given. PMID:27077818

  9. Optical Monitoring of Living Nerve Terminal Labeling in Hair Follicle Lanceolate Endings of the Ex Vivo Mouse Ear Skin.

    PubMed

    Bewick, Guy S; Banks, Robert W

    2016-01-01

    A novel dissection and recording technique is described for optical monitoring staining and de-staining of lanceolate terminals surrounding hair follicles in the skin of the mouse pinna. The preparation is simple and relatively fast, reliably yielding extensive regions of multiple labeled units of living nerve terminals to study uptake and release of styryl pyridinium dyes extensively used in studies of vesicle recycling. Subdividing the preparations before labeling allows test vs. control comparisons in the same ear from a single individual. Helpful tips are given for improving the quality of the preparation, the labeling and the imaging parameters. This new system is suitable for assaying pharmacologically and mechanically-induced uptake and release of these vital dyes in lanceolate terminals in both wild-type and genetically modified animals. Examples of modulatory influences on labeling intensity are given. PMID:27077818

  10. Feasibility of human hair follicle-derived mesenchymal stem cells/CultiSpher(®)-G constructs in regenerative medicine.

    PubMed

    Li, Pengdong; Liu, Feilin; Wu, Chunling; Jiang, Wenyue; Zhao, Guifang; Liu, Li; Bai, Tingting; Wang, Li; Jiang, Yixu; Guo, Lili; Qi, Xiaojuan; Kou, Junna; Fan, Ruirui; Hao, Deshun; Lan, Shaowei; Li, Yulin; Liu, Jin Yu

    2015-10-01

    The use of human mesenchymal stem cells (hMSCs) in cell therapies has increased the demand for strategies that allow efficient cell scale-up. Preliminary data on the three-dimensional (3D) spinner culture describing the potential use of microcarriers for hMSCs culture scale-up have been reported. We exploited a rich source of autologous stem cells (human hair follicle) and demonstrated the robust in vitro long-term expansion of human hair follicle-derived mesenchymal stem cells (hHF-MSCs) by using CultiSpher(®)-G microcarriers. We analyzed the feasibility of 3D culture by using hHF-MSCs/CultiSpher(®)-G microcarrier constructs for its potential applicability in regenerative medicine by comparatively analyzing the performance of hHF-MSCs adhered to the CultiSpher(®)-G microspheres in 3D spinner culture and those grown on the gelatin-coated plastic dishes (2D culture), using various assays. We showed that the hHF-MSCs seeded at various densities quickly adhered to and proliferated well on the microspheres, thus generating at least hundreds of millions of hHF-MSCs on 1 g of CultiSpher(®)-G within 12 days. This resulted in a cumulative cell expansion of greater than 26-fold. Notably, the maximum and average proliferation rates in 3D culture were significantly greater than that of the 2D culture. However, the hHF-MSCs from both the cultures retained surface marker and nestin expression, proliferation capacity and differentiation potentials toward adipocytes, osteoblasts and smooth muscle cells and showed no significant differences as evidenced by Edu incorporation, cell cycle, colony formation, apoptosis, biochemical quantification and qPCR assays.

  11. In vivo formation steps of the hard alpha-keratin intermediate filament along a hair follicle: evidence for structural polymorphism.

    PubMed

    Rafik, Mériem Er; Briki, Fatma; Burghammer, Manfred; Doucet, Jean

    2006-04-01

    Several aspects of the intermediate filaments' molecular architecture remain mysterious despite decades of study. The growth process and the final architecture may depend on the physical, chemical, and biochemical environment. Aiming at clarifying this issue, we have revisited the structure of the human hair follicle by means of X-ray microdiffraction. We conclude that the histology-based growth zones along the follicle are correlated to the fine architecture of the filaments deduced from X-ray microdiffraction. Our analysis reveals the existence of two major polymorph intermediate filament architectures. Just above the bulb, the filaments are characterized by a diameter of 100 Angstroms and a low-density core. The following zone upwards is characterized by the lateral aggregation of the filaments into a compact network of filaments, by a contraction of their diameter (to 75 Angstroms) and by the setting up of a long-range longitudinal ordering. In the upper zone, the small structural change associated with the tissue hardening likely concerns the terminal domains. The architecture of the intermediate filament in the upper zones could be specific to hard alpha-keratin whilst the other architecture found in the lower zone could be representative for intermediate filaments in a different environment.

  12. Squarticles as a lipid nanocarrier for delivering diphencyprone and minoxidil to hair follicles and human dermal papilla cells.

    PubMed

    Aljuffali, Ibrahim A; Sung, Calvin T; Shen, Feng-Ming; Huang, Chi-Ting; Fang, Jia-You

    2014-01-01

    Delivery of diphencyprone (DPCP) and minoxidil to hair follicles and related cells is important in the treatment of alopecia. Here we report the development of "squarticles," nanoparticles formed from sebum-derived lipids such as squalene and fatty esters, for use in achieving targeted drug delivery to the follicles. Two different nanosystems, nanostructured lipid carriers (NLC) and nanoemulsions (NE), were prepared. The physicochemical properties of squarticles, including size, zeta potential, drug encapsulation efficiency, and drug release, were examined. Squarticles were compared to a free control solution with respect to skin absorption, follicular accumulation, and dermal papilla cell targeting. The particle size of the NLC type was 177 nm; that of the NE type was 194 nm. Approximately 80% of DPCP and 60% of minoxidil were entrapped into squarticles. An improved drug deposition in the skin was observed in the in vitro absorption test. Compared to the free control, the squarticles reduced minoxidil penetration through the skin. This may indicate a minimized absorption into systemic circulation. Follicular uptake by squarticles was 2- and 7-fold higher for DPCP and minoxidil respectively compared to the free control. Fluorescence and confocal images of the skin confirmed a great accumulation of squarticles in the follicles and the deeper skin strata. Vascular endothelial growth factor expression in dermal papilla cells was significantly upregulated after the loading of minoxidil into the squarticles. In vitro papilla cell viability and in vivo skin irritancy tests in nude mice suggested a good tolerability of squarticles to skin. Squarticles provide a promising nanocarrier for topical delivery of DPCP and minoxidil. PMID:24307611

  13. Squarticles as a lipid nanocarrier for delivering diphencyprone and minoxidil to hair follicles and human dermal papilla cells.

    PubMed

    Aljuffali, Ibrahim A; Sung, Calvin T; Shen, Feng-Ming; Huang, Chi-Ting; Fang, Jia-You

    2014-01-01

    Delivery of diphencyprone (DPCP) and minoxidil to hair follicles and related cells is important in the treatment of alopecia. Here we report the development of "squarticles," nanoparticles formed from sebum-derived lipids such as squalene and fatty esters, for use in achieving targeted drug delivery to the follicles. Two different nanosystems, nanostructured lipid carriers (NLC) and nanoemulsions (NE), were prepared. The physicochemical properties of squarticles, including size, zeta potential, drug encapsulation efficiency, and drug release, were examined. Squarticles were compared to a free control solution with respect to skin absorption, follicular accumulation, and dermal papilla cell targeting. The particle size of the NLC type was 177 nm; that of the NE type was 194 nm. Approximately 80% of DPCP and 60% of minoxidil were entrapped into squarticles. An improved drug deposition in the skin was observed in the in vitro absorption test. Compared to the free control, the squarticles reduced minoxidil penetration through the skin. This may indicate a minimized absorption into systemic circulation. Follicular uptake by squarticles was 2- and 7-fold higher for DPCP and minoxidil respectively compared to the free control. Fluorescence and confocal images of the skin confirmed a great accumulation of squarticles in the follicles and the deeper skin strata. Vascular endothelial growth factor expression in dermal papilla cells was significantly upregulated after the loading of minoxidil into the squarticles. In vitro papilla cell viability and in vivo skin irritancy tests in nude mice suggested a good tolerability of squarticles to skin. Squarticles provide a promising nanocarrier for topical delivery of DPCP and minoxidil.

  14. 15-deoxy prostaglandin J2, the nonenzymatic metabolite of prostaglandin D2, induces apoptosis in keratinocytes of human hair follicles: a possible explanation for prostaglandin D2-mediated inhibition of hair growth.

    PubMed

    Joo, Hyun Woo; Kang, Yoo Ri; Kwack, Mi Hee; Sung, Young Kwan

    2016-07-01

    Recent studies have shown that prostaglandin D2 (PGD2) and its nonenzymatic metabolite, 15-deoxy-Δ(12,14)-prostaglandin J2 (15-dPGJ2), inhibit in vitro growth of explanted human hair follicles and inhibit hair growth in mice through the GPR44 (DP2). However, the underlying mechanism is still unclear. In this study, we first investigated the expression of DP2 in human hair follicles and in cultured follicular cells. We found that DP2 is strongly expressed in the outer root sheath (ORS) cells and weakly expressed in the dermal papilla (DP) cells. We observed slight growth stimulation when ORS and DP cells were treated with PGD2. We also observed slight growth stimulation when DP and ORS cells were treated with low concentrations (0.5 and 1 μM) of 15-dPGJ2. However, 5 μM 15-dPGJ2 inhibited the viability and caused apoptosis of both cell types. Exposure of cultured human hair follicles to 15-dPGJ2 resulted in significant apoptosis in follicular keratinocytes. Altogether, our data provide an evidence that 15-dPGJ2 promotes apoptosis in follicular keratinocytes and provide rationale for developing remedies for the prevention and treatment of hair loss based on DP2 antagonism.

  15. Atypical Protein Kinase C Isoform, aPKCλ, Is Essential for Maintaining Hair Follicle Stem Cell Quiescence.

    PubMed

    Osada, Shin-Ichi; Minematsu, Naoko; Oda, Fumino; Akimoto, Kazunori; Kawana, Seiji; Ohno, Shigeo

    2015-11-01

    The atypical protein kinase C (aPKC)-partition-defective (PAR) complex regulates the formation of tight junctions and apico-basal epithelial polarity. To examine the role of this complex in the epidermis, we generated mutant mice harboring epidermal-specific deletion of aPKCλ (conditional knock-out (cKO)), a major component of the aPKC-PAR complex. The mutant mice exhibited abnormal hair follicle (HF) cycling, progressive losses of pelage hairs and vibrissae, and altered differentiation into the epidermis and sebaceous gland. We found that in the aPKCλ cKO mice HF stem cell (HFSC) quiescence was lost, as revealed by the decreased expression level of quiescence-inducing factors (Fgf18 and Bmp6) produced in Keratin 6-positive bulge stem cells. The loss of quiescence dysregulated the HFSC marker expression and led to the increase in Lrig1-positive cells, inducing hyperplasia of the interfollicular epidermis and sebaceous glands, and drove an increase in Lef1-positive matrix cells, causing a prolonged anagen-like phase. Persistent bulge stem cell activation led to a gradual depletion of CD34- and α6 integrin-positive HFSC reservoirs. These results suggest that aPKCλ regulates signaling pathways implicated in HFSC quiescence. PMID:26076315

  16. Fibroblast growth factor 5-short (FGF5s) inhibits the activity of FGF5 in primary and secondary hair follicle dermal papilla cells of cashmere goats.

    PubMed

    He, Xiaolin; Chao, Yuan; Zhou, Guangxian; Chen, Yulin

    2016-01-10

    To determine the relationship between fibroblast growth factor 5 (FGF5) and FGF5-short (FGF5s) in dermal papilla cells of cashmere goat primary and secondary hair follicles. We isolated dermal papilla cells from primary hair follicle (PHF) and secondary hair follicle (SHF) of cashmere goat, and found that the FGF5 receptor, fibroblast growth factor receptor 1 (FGFR1), was expressed in these two types of dermal papilla cells. Moreover, adenovirus-mediated overexpression of FGF5 could upregulate the mRNA expression of insulin-like growth factor-1 (IGF-1), versican and noggin that were important for follicle growth maintenance, whereas downregulate the expression of anagen chalone bone morphogenetic protein 4 (BMP4) in dermal papilla cells. However, these alterations were partly reversed by FGF5s overexpression. In conclusion, our results demonstrated that FGF5s acted as an inhibitor of FGF5 in the regulation of anagen-catagen transition of cashmere goat dermal papilla cells.

  17. Mechanism of androgen action in cultured dermal papilla cells derived from human hair follicles with varying responses to androgens in vivo.

    PubMed

    Randall, V A; Thornton, M J; Hamada, K; Messenger, A G

    1992-06-01

    Androgens are major regulators of human hair growth, but their effects vary: many follicles are stimulated by androgens, e.g., beard; some remain unaffected, e.g., eyelashes; whereas scalp follicles undergo regression and balding in genetically disposed individuals. Because the dermal papilla controls many aspects of the hair follicle, androgens may act via the dermal papilla, affecting the other follicular components indirectly. In this hypothesis androgens would alter dermal papilla cell production of regulatory substances, e.g., growth factors and/or extracellular matrix components. To test this theory the mechanism of androgen action has been compared in primary lines of dermal papilla cells cultured from androgen-dependent follicles and relatively androgen-independent non-balding scalp. Androgen receptor levels were assayed by saturation analysis (9-10 points; 0.05-10 nmol/l) using the synthetic androgen [3H]-mibolerone and specificity was confirmed by competition studies. Androgen metabolism was investigated both intracellularly and in the media after a 2-h incubation with 5 nM [3H]-testosterone. Carrier and [14C] steroids were added to the extracts before separation by thin-layer chromatography; steroid identity was confirmed by recrystallization. Dermal papilla cells from androgen-dependent follicles contained higher levels of specific, high-affinity, low-capacity androgen receptors than non-balding scalp cells. Testosterone metabolism also varied with beard, public and scalp cells containing testosterone and androstenedione intracellularly, but only beard cells producing 5 alpha-dihydrotestosterone, in line with the scanty beard growth found in 5 alpha-reductase deficiency. Elsewhere we have shown that cultured dermal papilla cells produce extracellular matrix components and mitogenic factors. These results all concur with our original hypothesis and suggest that further studies of such cells may elucidate the paradoxical effects of androgens on human hair

  18. Removing Hair Safely

    MedlinePlus

    ... the skin, and into the hair follicle. An electric current travels down the wire and destroys the hair ... a period of time. Tweezer epilators also use electric current to remove hair. The tweezers grasp the hair ...

  19. A 4.2 kb upstream region of the human corneodesmosin gene directs site-specific expression in hair follicles and hyperkeratotic epidermis of transgenic mice.

    PubMed

    Gallinaro, Hélène; Jonca, Nathalie; Langbein, Lutz; Vincent, Christian; Simon, Michel; Serre, Guy; Guerrin, Marina

    2004-03-01

    Corneodesmosin (CDSN) is a desmosomal protein expressed in the epidermis during the late stages of differentiation and in the inner root sheath of hair follicles. The homophilic adhesive properties of the protein suggest that it reinforces keratinocyte cohesion in the upper layers of the epidermis (stratum granulosum and stratum corneum). In this study, we analyzed the expression of the CDSN gene in 16 human tissues. We confirmed the closely restricted expression pattern of CSDN. Indeed, apart from the skin, the mRNA was significantly detected only in the placenta and the thymus. As a step in elucidating the mechanisms of tissue-specific expression, transgenic mice bearing a 4.2 kb fragment of the human CSDN gene promoter linked to the LacZ gene were generated. The reporter-gene expression was detected in special areas of the inner root sheath of the hair follicles and the hair medulla but not in the epidermis. Induction of epidermis hyperproliferation however either by pharmacological agents or by wounding led to strong expression of the reporter gene in the keratinocytes of the stratum granulosum and the parakeratotic corneocytes of the stratum corneum. The data suggest that the genomic sequences and/or regulating factors responsible for the cell-specific expression of the human CDSN gene in the normal hair follicle as well as in the hyperproliferative epidermis are different from those necessary for expression in the normal epidermis.

  20. Polycaprolactone fiber meshes provide a 3D environment suitable for cultivation and differentiation of melanocytes from the outer root sheath of hair follicle.

    PubMed

    Savkovic, Vuk; Flämig, Franziska; Schneider, Marie; Sülflow, Katharina; Loth, Tina; Lohrenz, Andrea; Hacker, Michael Christian; Schulz-Siegmund, Michaela; Simon, Jan-Christoph

    2016-01-01

    Melanocytes differentiated from the stem cells of human hair follicle outer root sheath (ORS) have the potential for developing non-invasive treatments for skin disorders out of a minimal sample: of hair root. With a robust procedure for melanocyte cultivation from the ORS of human hair follicle at hand, this study focused on the identification of a suitable biocompatible, biodegradable carrier as the next step toward their clinical implementation. Polycaprolactone (PCL) is a known biocompatible material used for a number of medical devices. In this study, we have populated electrospun PCL fiber meshes with normal human epidermal melanocytes (NHEM) as well as with hair-follicle-derived human melanocytes from the outer root sheath (HUMORS) and tested their functionality in vitro. PCL fiber meshes evidently provided a niche for melanocytes and supported their melanotic properties. The cells were tested for gene expression of PAX3, PMEL, TYR and MITF, as well as for proliferation, expression of melanocyte marker proteins tyrosinase and glycoprotein 100 (gp100), L-DOPA-tautomerase enzymatic activity and melanin content. Reduced mitochondrial activity and PAX-3 gene expression indicated that the three-dimensional PCL scaffold supported differentiation rather than proliferation of melanocytes. The monitored melanotic features of both the NHEM and HUMORS cultivated on PCL scaffolds significantly exceeded those of two-dimensional adherent cultures. PMID:26126647

  1. Polycaprolactone fiber meshes provide a 3D environment suitable for cultivation and differentiation of melanocytes from the outer root sheath of hair follicle.

    PubMed

    Savkovic, Vuk; Flämig, Franziska; Schneider, Marie; Sülflow, Katharina; Loth, Tina; Lohrenz, Andrea; Hacker, Michael Christian; Schulz-Siegmund, Michaela; Simon, Jan-Christoph

    2016-01-01

    Melanocytes differentiated from the stem cells of human hair follicle outer root sheath (ORS) have the potential for developing non-invasive treatments for skin disorders out of a minimal sample: of hair root. With a robust procedure for melanocyte cultivation from the ORS of human hair follicle at hand, this study focused on the identification of a suitable biocompatible, biodegradable carrier as the next step toward their clinical implementation. Polycaprolactone (PCL) is a known biocompatible material used for a number of medical devices. In this study, we have populated electrospun PCL fiber meshes with normal human epidermal melanocytes (NHEM) as well as with hair-follicle-derived human melanocytes from the outer root sheath (HUMORS) and tested their functionality in vitro. PCL fiber meshes evidently provided a niche for melanocytes and supported their melanotic properties. The cells were tested for gene expression of PAX3, PMEL, TYR and MITF, as well as for proliferation, expression of melanocyte marker proteins tyrosinase and glycoprotein 100 (gp100), L-DOPA-tautomerase enzymatic activity and melanin content. Reduced mitochondrial activity and PAX-3 gene expression indicated that the three-dimensional PCL scaffold supported differentiation rather than proliferation of melanocytes. The monitored melanotic features of both the NHEM and HUMORS cultivated on PCL scaffolds significantly exceeded those of two-dimensional adherent cultures.

  2. Survivin, p53, MAC, Complement/C3, fibrinogen and HLA-ABC within hair follicles in central and centrifugal cicatricial alopecia

    PubMed Central

    Abreu-Velez, Ana Maria; Klein, A. Deo; Howard, Michael S

    2011-01-01

    Context: Central centrifugal cicatricial alopecia (CCCA; originally entitled follicular degeneration syndrome, or hot comb alopecia) was first described in African American women utilizing hot combs and/or strong chemical hair care products. Case Report: A 67 year old African American female was evaluated for the presence of alopecic areas occurring on the scalp vertex, and spreading centrifugally. The alopecic lesions appeared as diffuse patches, including atrophic small areas surrounding individual hair follicles. Patients and Methods: Skin biopsies for hematoxylin and eosin examination, as well as for direct immunofluorescence and immunohistochemistry analyses were performed. Results: hematoxylin and eosin staining demonstrated histopathologic findings of premature desquamation of the inner root sheath and eccentric thinning of the follicular epithelium, supporting the diagnosis of CCCA. Direct immunofluorescence revealed strong depositions of Complement/C3, fibrinogen and kappa light chains around the hair follicles. Immunohistochemistry demonstrated increased expressions of HLA-ABC (as in African American patients with insulin independent diabetes mellitus). We also detected positive p53, bcl-2 and MAC staining in the hair follicle areas. Conclusions: Follicular degeneration syndrome may have an important immunological component previously not described, and multicolor immunofluorescence may be useful in establishing an early diagnosis. PMID:22540101

  3. Evaluation of the Effect of NT-3 and Biodegradable Poly-L-lactic Acid Nanofiber Scaffolds on Differentiation of Rat Hair Follicle Stem Cells into Neural Cells In Vitro.

    PubMed

    Ghoroghi, Fatemeh Moghani; Hejazian, Leila Beygom; Esmaielzade, Banafshe; Dodel, Masumeh; Roudbari, Masoud; Nobakht, Maliheh

    2013-08-20

    Recent improvement in neuroscience has led to new strategies in neural repair. Hair follicle stem cells are high promising source of accessible, active, and pluripotent adult stem cells. They have high affinity to differentiate to neurons. Aside from using cell-scaffold combinations for implantation, scaffolds can provide a suitable microenvironment for cell proliferation, migration, and differentiation. NT-3 is the most interesting neurotrophic factors being an important regulator of neural survival and differentiation. Since treatment duration in neural repair is very important, this study aims to evaluate the effect of NT-3 and poly-L-lactic acid (PLLA) on differentiation time of bulge stem cells of rat hair follicle to neural-like cells. HFSCs of rat whisker was isolated and cultured on PLLA and differentiated with 10 ng/mL NT-3. Biological features of cultured cells were evaluated with immunocytochemistry and flowcytometry methods by using CD34, nestin, and βІІІ-tubulin markers. For cell viability and morphological assessment, MTT assay and SEM were performed. Our results showed that bulge stem cells of hair follicle can express CD34 and Nestin before differentiation. By using NT-3 during differentiation process, the cells showed positive reaction to βІІІ-tubulin antibody. MTT results demonstrated that PLLA significantly increased cell viability. Finally, HFSCs adhesion was confirmed by SEM results. The results indicate that 10 ng/mL NT-3 and PLLA have significant effect on differentiation time of rat HFSCs to neural cells even in 10 days.

  4. Herbal Extracts Induce Dermal Papilla Cell Proliferation of Human Hair Follicles

    PubMed Central

    Rastegar, Hosein; Aghaei, Mahmoud; Barikbin, Behrooz; Ehsani, Amirohushang

    2015-01-01

    Background The number of people suffering from balding or hair thinning is increasing, despite the advances in various medical therapies. Therefore, it is highly important to develop new therapies to inhibit balding and increase hair proliferation. Objective We investigated the effects of herbal extracts commonly used for improving balding in traditional medicine to identify potential agents for hair proliferation. Methods The expression levels of 5α-reductase isoforms (type I and II) were analyzed using quantitative real-time reverse transcription polymerase chain reaction in the human follicular dermal papilla cells (DPCs). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylteterazolium bromide and bromodeoxyuridine tests were used to evaluate the cell proliferation effect of herbal extracts in DPCs. The expression levels of extracellular signal-regulated kinase (ERK), Akt, cyclin D1, cyclin-dependent kinase 4 (Cdk4), B-cell lymphoma (Bcl-2) and Bcl-2-associated X protein (Bax) were measured using western blot analysis. Results The 5α-reductase isoform mRNAs and proteins were detected in the cultured DPCs, and the expression level of 5α-R2 in DPCs in the presence of the herbal extracts was gradually decreased. Herbal extracts were found to significantly increase the proliferation of human DPCs at concentrations ranging from 1.5% to 4.5%. These results show that the herbal extracts tested affected the protein expressions of ERK, Akt, cyclin D1, Cdk4, Bcl-2, and Bax in DPCs. Conclusion These results suggest that herbal extracts exert positive effects on hair proliferation via ERK, Akt, cyclin D1, and Cdk4 signaling in DPCs; they also suggest that herbal extracts could be a great alternative therapy for increasing hair proliferation. PMID:26719634

  5. Why Does Hair Turn Gray?

    MedlinePlus

    ... Each hair follicle contains a certain number of pigment cells. These pigment cells continuously produce a chemical called melanin (say: ... each hair contains. As we get older, the pigment cells in our hair follicles gradually die. When ...

  6. Melatonin regulating the expression of miRNAs involved in hair follicle cycle of cashmere goats skin.

    PubMed

    Fu, Shaoyin; Zhao, Hongli; Zheng, Zhuqing; Li, Jinquan; Zhang, Wenguang

    2014-12-01

    Melatonin and microRNAs (miRNAs) play important roles in regulating hair follicle development. However, the effect of melatonin on the expression pattern of miRNAs in skin and follicle of cashmere goats remain largely undefined. To explore the mechanism of melatonin affecting cashmere growth mediated by miRNAs, the effect of melatonin implants administered in Nei Mongol cashmere goats was assessed. In the experiment, five yearling does were implanted with melatonin, with the remaining other five females as control group. The expression of six candidate miRNAs was quantified by reverse transcription-real time polymerase chain reaction (RT-qPCR). The results indicated that melatonin significantly altered the expression pattern of miRNAs. Except for let-7a, the expression levels of miR-203, miR-205, miR-96, miR-183 and miR-199a occur three transitions during a cashmere cycle; melatonin changed the co-expression pattern of miRNAs. The correlation coefficient between miRNAs is 0.87-0.99 in control group(P<0.01). Compared with the control group, the correlation coefficient between some miRNAs (let-7a and miR-96, miR-199a, miR-205;miR-203 and miR-96, miR-199a; miR-96 and miR-183; miR-183 and miR-199a) was significantly weakened in melatonin group. Melatonin might induce second growth of cashmere mediated by down-regulating the expression level of some miRNAs in June in melatonin implanted group. PMID:25487268

  7. Benign hair-follicle derived tumours in the differential diagnosis of basal-cell carcinoma of the eyelids: a clinicopathological comparison.

    PubMed Central

    Simpson, W; Garner, A; Collin, J R

    1989-01-01

    Benign eyelid tumours derived from hair follicles are rare and frequently misdiagnosed as basal-cell carcinoma when evaluation is based on clinical evidence alone. They include trichoepithelioma, trichofolliculoma, trichilemmoma, and pilomatrixoma. We reviewed 117 such tumours received in the Department of Pathology, Institute of Ophthalmology, London, in the last 30 years, a number which compared with 2447 basal-cell carcinomas seen over the same period. The hair follicle tumours may be safely excised with a narrow margin of clearance, whereas a macroscopic clearance of 3 to 5 mm or surgery with frozen section histological control is desirable for excision of basal-cell carcinoma. Therefore confirmation by incisional biopsy of the nature of any large lesion suspected of being a basal-cell carcinoma is essential in order to avoid performing an unnecessarily extensive or time consuming excision. Images PMID:2730855

  8. An Integrated Analysis of MicroRNA and mRNA Expression Profiles to Identify RNA Expression Signatures in Lambskin Hair Follicles in Hu Sheep.

    PubMed

    Lv, Xiaoyang; Sun, Wei; Yin, Jinfeng; Ni, Rong; Su, Rui; Wang, Qingzeng; Gao, Wen; Bao, Jianjun; Yu, Jiarui; Wang, Lihong; Chen, Ling

    2016-01-01

    Wave patterns in lambskin hair follicles are an important factor determining the quality of sheep's wool. Hair follicles in lambskin from Hu sheep, a breed unique to China, have 3 types of waves, designated as large, medium, and small. The quality of wool from small wave follicles is excellent, while the quality of large waves is considered poor. Because no molecular and biological studies on hair follicles of these sheep have been conducted to date, the molecular mechanisms underlying the formation of different wave patterns is currently unknown. The aim of this article was to screen the candidate microRNAs (miRNA) and genes for the development of hair follicles in Hu sheep. Two-day-old Hu lambs were selected from full-sib individuals that showed large, medium, and small waves. Integrated analysis of microRNA and mRNA expression profiles employed high-throughout sequencing technology. Approximately 13, 24, and 18 differentially expressed miRNAs were found between small and large waves, small and medium waves, and medium and large waves, respectively. A total of 54, 190, and 81 differentially expressed genes were found between small and large waves, small and medium waves, and medium and large waves, respectively, by RNA sequencing (RNA-seq) analysis. Differentially expressed genes were classified using gene ontology and pathway analyses. They were found to be mainly involved in cell differentiation, proliferation, apoptosis, growth, immune response, and ion transport, and were associated with MAPK and the Notch signaling pathway. Reverse transcription-polymerase chain reaction (RT-PCR) analyses of differentially-expressed miRNA and genes were consistent with sequencing results. Integrated analysis of miRNA and mRNA expression indicated that, compared to small waves, large waves included 4 downregulated miRNAs that had regulatory effects on 8 upregulated genes and 3 upregulated miRNAs, which in turn influenced 13 downregulated genes. Compared to small waves, medium

  9. An Integrated Analysis of MicroRNA and mRNA Expression Profiles to Identify RNA Expression Signatures in Lambskin Hair Follicles in Hu Sheep

    PubMed Central

    Lv, Xiaoyang; Sun, Wei; Yin, Jinfeng; Ni, Rong; Su, Rui; Wang, Qingzeng; Gao, Wen; Bao, Jianjun; Yu, Jiarui; Wang, Lihong; Chen, Ling

    2016-01-01

    Wave patterns in lambskin hair follicles are an important factor determining the quality of sheep’s wool. Hair follicles in lambskin from Hu sheep, a breed unique to China, have 3 types of waves, designated as large, medium, and small. The quality of wool from small wave follicles is excellent, while the quality of large waves is considered poor. Because no molecular and biological studies on hair follicles of these sheep have been conducted to date, the molecular mechanisms underlying the formation of different wave patterns is currently unknown. The aim of this article was to screen the candidate microRNAs (miRNA) and genes for the development of hair follicles in Hu sheep. Two-day-old Hu lambs were selected from full-sib individuals that showed large, medium, and small waves. Integrated analysis of microRNA and mRNA expression profiles employed high-throughout sequencing technology. Approximately 13, 24, and 18 differentially expressed miRNAs were found between small and large waves, small and medium waves, and medium and large waves, respectively. A total of 54, 190, and 81 differentially expressed genes were found between small and large waves, small and medium waves, and medium and large waves, respectively, by RNA sequencing (RNA-seq) analysis. Differentially expressed genes were classified using gene ontology and pathway analyses. They were found to be mainly involved in cell differentiation, proliferation, apoptosis, growth, immune response, and ion transport, and were associated with MAPK and the Notch signaling pathway. Reverse transcription-polymerase chain reaction (RT-PCR) analyses of differentially-expressed miRNA and genes were consistent with sequencing results. Integrated analysis of miRNA and mRNA expression indicated that, compared to small waves, large waves included 4 downregulated miRNAs that had regulatory effects on 8 upregulated genes and 3 upregulated miRNAs, which in turn influenced 13 downregulated genes. Compared to small waves

  10. Hair cortisol and cognitive performance in working age adults.

    PubMed

    McLennan, Skye N; Ihle, Andreas; Steudte-Schmiedgen, Susann; Kirschbaum, Clemens; Kliegel, Matthias

    2016-05-01

    It has been hypothesized that prolonged exposure to high cortisol levels results in cognitive impairment. However, previous research into the relationship between cortisol and cognition has produced mixed results, most likely due to difficulties achieving valid estimates of long-term cortisol exposure based on salivary or plasma cortisol assessments at a single time point. Furthermore, there has been little research on the cognitive effects of long-term cortisol exposure in working-age adults. In the present study, hair samples were collected from 246 nurses (89.8% female) aged from 21 to 62 (M=42.0, SD=11.2). Hair cortisol concentrations (HCC) in the proximal 3-cm hair segment were analyzed providing an estimate of integrated cortisol secretion over the 3 month-period prior to hair sampling. Cognition was measured using a battery of 15 neuropsychological tests, measuring core dimensions of memory, inductive reasoning, processing speed, crystalized intelligence and major aspects of executive functioning. HCC was not significantly related to any of the cognitive abilities measured, either before or after controlling for potential moderators such as age, sex, education, health, well-being, work ability and burnout. Tests for nonlinear relationships also yielded non-significant results. Thus, despite the study being well powered, long term cortisol exposure did not appear to be related to cognitive performance in this sample of working-age adults, suggesting that long term cortisol exposure may be less relevant to cognition in younger and middle-aged adults than was previously thought.

  11. Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice.

    PubMed

    Mahe, Brice; Vogt, Annika; Liard, Christelle; Duffy, Darragh; Abadie, Valérie; Bonduelle, Olivia; Boissonnas, Alexandre; Sterry, Wolfram; Verrier, Bernard; Blume-Peytavi, Ulrike; Combadiere, Behazine

    2009-05-01

    Particle-based drug delivery systems target active compounds to the hair follicle and may result in a better penetration and higher efficiency of compound uptake by skin resident cells. As previously proposed, such delivery systems could be important tools for vaccine delivery. In this study, we investigated the penetration of solid fluorescent 40 or 200 nm polystyrene nanoparticles (NPs) as well as virus particles in murine skin to further investigate the efficacy of transcutaneously (TC) applied particulate vaccine delivery route. We demonstrated that 40 and 200 nm NPs and modified vaccinia Ankara (MVA) expressing the green-fluorescent protein penetrated deeply into hair follicles and were internalized by perifollicular antigen-presenting cells (APCs). Fibered-based confocal microscopy analyses allowed visualizing in vivo particle penetration along the follicular duct, diffusion into the surrounding tissue, uptake by APCs and transport to the draining lymph nodes. The application of small particles, such as ovalbumin coding DNA or MVA, induced both humoral and cellular immune responses. Furthermore, TC applied MVA induced protection against vaccinia virus challenge. Our results strengthen the concept of TC targeting of cutaneous APCs by hair follicles and will contribute to the development of advanced vaccination protocols using NPs or viral vectors. PMID:19052565

  12. Molecular characterization, expression and methylation status analysis of BMP4 gene in skin tissue of Liaoning cashmere goat during hair follicle cycle.

    PubMed

    Bai, Wen L; Dang, Yun L; Wang, Jiao J; Yin, Rong H; Wang, Ze Y; Zhu, Yu B; Cong, Yu Y; Xue, Hui L; Deng, Liang; Guo, Dan; Wang, Shi Q; Yang, Shu H

    2016-08-01

    Bone morphogenetic protein 4 (BMP4) is a member of the bone morphogenetic protein family (BMPs). It is involved in the development and cycle of hair follicle, as well as, is thought to be a potential candidate gene for cashmere traits in goats. In the present study, we isolated and characterized a full-length open reading frame (ORF) of BMP4 cDNA from the skin tissue of Liaoning cashmere goat, and investigated the transcriptional pattern and methylation status of BMP4 gene in skin tissue of this breed during different stages of hair follicle cycle. The sequence analysis indicated that the isolated cDNA was 1264-bp in length containing a complete ORF of 1230-bp. It encoded a precursor peptide of 409 amino acids with a signal peptide of 19 amino acids. The structural analysis indicated that goat BMP4 contains typical TGF-β propeptide and TGF-β domains. In skin tissue, BMP4 is generally transcribed in an ascendant pattern from anagen to telogen. The methylation level of 5' flanking regulatory region of BMP4 gene might be involved in its mRNA expression in skin tissue: a higher BMP4 methylation level in skin coincides with a lower expression of BMP4 mRNA. These results from the present work provided a foundation for further insight into the functional and regulatory characteristics of BMP4 in the development and cycle of hair follicle in Liaoning Cashmere goat. PMID:27406581

  13. Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice.

    PubMed

    Mahe, Brice; Vogt, Annika; Liard, Christelle; Duffy, Darragh; Abadie, Valérie; Bonduelle, Olivia; Boissonnas, Alexandre; Sterry, Wolfram; Verrier, Bernard; Blume-Peytavi, Ulrike; Combadiere, Behazine

    2009-05-01

    Particle-based drug delivery systems target active compounds to the hair follicle and may result in a better penetration and higher efficiency of compound uptake by skin resident cells. As previously proposed, such delivery systems could be important tools for vaccine delivery. In this study, we investigated the penetration of solid fluorescent 40 or 200 nm polystyrene nanoparticles (NPs) as well as virus particles in murine skin to further investigate the efficacy of transcutaneously (TC) applied particulate vaccine delivery route. We demonstrated that 40 and 200 nm NPs and modified vaccinia Ankara (MVA) expressing the green-fluorescent protein penetrated deeply into hair follicles and were internalized by perifollicular antigen-presenting cells (APCs). Fibered-based confocal microscopy analyses allowed visualizing in vivo particle penetration along the follicular duct, diffusion into the surrounding tissue, uptake by APCs and transport to the draining lymph nodes. The application of small particles, such as ovalbumin coding DNA or MVA, induced both humoral and cellular immune responses. Furthermore, TC applied MVA induced protection against vaccinia virus challenge. Our results strengthen the concept of TC targeting of cutaneous APCs by hair follicles and will contribute to the development of advanced vaccination protocols using NPs or viral vectors.

  14. Molecular characterization, expression and methylation status analysis of BMP4 gene in skin tissue of Liaoning cashmere goat during hair follicle cycle.

    PubMed

    Bai, Wen L; Dang, Yun L; Wang, Jiao J; Yin, Rong H; Wang, Ze Y; Zhu, Yu B; Cong, Yu Y; Xue, Hui L; Deng, Liang; Guo, Dan; Wang, Shi Q; Yang, Shu H

    2016-08-01

    Bone morphogenetic protein 4 (BMP4) is a member of the bone morphogenetic protein family (BMPs). It is involved in the development and cycle of hair follicle, as well as, is thought to be a potential candidate gene for cashmere traits in goats. In the present study, we isolated and characterized a full-length open reading frame (ORF) of BMP4 cDNA from the skin tissue of Liaoning cashmere goat, and investigated the transcriptional pattern and methylation status of BMP4 gene in skin tissue of this breed during different stages of hair follicle cycle. The sequence analysis indicated that the isolated cDNA was 1264-bp in length containing a complete ORF of 1230-bp. It encoded a precursor peptide of 409 amino acids with a signal peptide of 19 amino acids. The structural analysis indicated that goat BMP4 contains typical TGF-β propeptide and TGF-β domains. In skin tissue, BMP4 is generally transcribed in an ascendant pattern from anagen to telogen. The methylation level of 5' flanking regulatory region of BMP4 gene might be involved in its mRNA expression in skin tissue: a higher BMP4 methylation level in skin coincides with a lower expression of BMP4 mRNA. These results from the present work provided a foundation for further insight into the functional and regulatory characteristics of BMP4 in the development and cycle of hair follicle in Liaoning Cashmere goat.

  15. Mycophenolate antagonizes IFN-γ-induced catagen-like changes via β-catenin activation in human dermal papilla cells and hair follicles.

    PubMed

    Ryu, Sunhyo; Lee, Yonghee; Hyun, Moo Yeol; Choi, Sun Young; Jeong, Kwan Ho; Park, Young Min; Kang, Hoon; Park, Kui Young; Armstrong, Cheryl A; Johnson, Andrew; Song, Peter I; Kim, Beom Joon

    2014-01-01

    Recently, various immunosuppressant drugs have been shown to induce hair growth in normal hair as well as in alopecia areata and androgenic alopecia; however, the responsible mechanism has not yet been fully elucidated. In this study, we investigate the influence of mycophenolate (MPA), an immunosuppressant, on the proliferation of human dermal papilla cells (hDPCs) and on the growth of human hair follicles following catagen induction with interferon (IFN)-γ. IFN-γ was found to reduce β-catenin, an activator of hair follicle growth, and activate glycogen synthase kinase (GSK)-3β, and enhance expression of the Wnt inhibitor DKK-1 and catagen inducer transforming growth factor (TGF)-β2. IFN-γ inhibited expression of ALP and other dermal papillar cells (DPCs) markers such as Axin2, IGF-1, and FGF 7 and 10. MPA increased β-catenin in IFN-γ-treated hDPCs leading to its nuclear accumulation via inhibition of GSK3β and reduction of DKK-1. Furthermore, MPA significantly increased expression of ALP and other DPC marker genes but inhibited expression of TGF-β2. Therefore, we demonstrate for the first time that IFN-γ induces catagen-like changes in hDPCs and in hair follicles via inhibition of Wnt/β-catenin signaling, and that MPA stabilizes β-catenin by inhibiting GSK3β leading to increased β-catenin target gene and DP signature gene expression, which may, in part, counteract IFN-γ-induced catagen in hDPCs.

  16. Mycophenolate Antagonizes IFN-γ-Induced Catagen-Like Changes via β-Catenin Activation in Human Dermal Papilla Cells and Hair Follicles

    PubMed Central

    Ryu, Sunhyo; Lee, Yonghee; Hyun, Moo Yeol; Choi, Sun Young; Jeong, Kwan Ho; Park, Young Min; Kang, Hoon; Park, Kui Young; Armstrong, Cheryl A.; Johnson, Andrew; Song, Peter I.; Kim, Beom Joon

    2014-01-01

    Recently, various immunosuppressant drugs have been shown to induce hair growth in normal hair as well as in alopecia areata and androgenic alopecia; however, the responsible mechanism has not yet been fully elucidated. In this study, we investigate the influence of mycophenolate (MPA), an immunosuppressant, on the proliferation of human dermal papilla cells (hDPCs) and on the growth of human hair follicles following catagen induction with interferon (IFN)-γ. IFN-γ was found to reduce β-catenin, an activator of hair follicle growth, and activate glycogen synthase kinase (GSK)-3β, and enhance expression of the Wnt inhibitor DKK-1 and catagen inducer transforming growth factor (TGF)-β2. IFN-γ inhibited expression of ALP and other dermal papillar cells (DPCs) markers such as Axin2, IGF-1, and FGF 7 and 10. MPA increased β-catenin in IFN-γ-treated hDPCs leading to its nuclear accumulation via inhibition of GSK3β and reduction of DKK-1. Furthermore, MPA significantly increased expression of ALP and other DPC marker genes but inhibited expression of TGF-β2. Therefore, we demonstrate for the first time that IFN-γ induces catagen-like changes in hDPCs and in hair follicles via inhibition of Wnt/β-catenin signaling, and that MPA stabilizes β-catenin by inhibiting GSK3β leading to increased β-catenin target gene and DP signature gene expression, which may, in part, counteract IFN-γ-induced catagen in hDPCs. PMID:25247578

  17. miR-128 regulates differentiation of hair follicle mesenchymal stem cells into smooth muscle cells by targeting SMAD2.

    PubMed

    Wang, Zhihao; Pang, Li; Zhao, Huiying; Song, Lei; Wang, Yuehui; Sun, Qi; Guo, Chunjie; Wang, Bin; Qin, Xiujiao; Pan, Aiqun

    2016-05-01

    Human hair follicle mesenchymal stem cells (hHFMSCs) are an important source of cardiovascular tissue engineering for their differentiation potential into smooth muscle cells (SMCs), yet the molecular pathways underlying such fate determination is unclear. MicroRNAs (miRNAs) are non-coding RNAs that play critical roles in cell differentiation. In present study, we found that miR-128 was remarkably decreased during the differentiation of hHFMSCs into SMCs induced by transforming growth factor-β1 (TGF-β1). Moreover, overexpression of miR-128 led to decreased expression of SMC cellular marker proteins, such as smooth muscle actin (SMA) and calponin, in TGF-β1-induced SMC differentiation. Further, we identified that miR-128 targeted the 3'-UTR of SMAD2 transcript for translational inhibition of SMAD2 protein, and knockdown of SMAD2 abrogated the promotional effect of antagomir-128 (miR-128 neutralizer) on SMC differentiation. These results suggest that miR-128 regulates the differentiation of hHFMSCs into SMCs via targeting SMAD2, a main transcription regulator in TGF-β signaling pathway involving SMC differentiation. The miR-128/SMAD2 axis could therefore be considered as a candidate target in tissue engineering and regenerative medicine for SMCs. PMID:27087048

  18. N(1)-methylspermidine, a stable spermidine analog, prolongs anagen and regulates epithelial stem cell functions in human hair follicles.

    PubMed

    Ramot, Yuval; Marzani, Barbara; Pinto, Daniela; Kloepper, Jennifer E; Paus, Ralf

    2015-11-01

    Spermidine (Spd), the prototypic polyamine, has been shown to be essential for hair follicle (HF) growth. However, Spd can be readily converted into other polyamines, and is physiologically unstable. Therefore, to assess its individual functions on HFs, we used the metabolically stable Spd analog N(1)-methylspermidine (N(1)-MeSpd). N(1)-MeSpd was confirmed to be a metabolically stable compound, with a half life of 90 h. 0.5 µM N(1)-MeSpd strongly prolonged anagen and decreased cell apoptosis in HFs in culture after 6 days, accompanied by specific stimulation of the expression of the epithelial stem cell-associated keratin, K15. N(1)-MeSpd also reduced lactate dehydrogenase activity in the culture supernatant, a parameter of cell death and cell lysis. N(1)-MeSpd diminished intracellular reactive oxygen species production in cultured keratinocytes, and reduced tumor necrosis factor-α, interleukin (IL)-1β and IL-6 gene and protein expression after lipopolysaccharide stimulation. This suggests that some effects of N(1)-MeSpd may be mediated by anti-oxidative and anti-inflammatory effects. These additional properties of N(1)-MeSpd could be clinically important for the treatment of inflammatory alopecias and inflammatory scalp diseases.

  19. Magnetofection Mediated Transient NANOG Overexpression Enhances Proliferation and Myogenic Differentiation of Human Hair Follicle Derived Mesenchymal Stem Cells.

    PubMed

    Son, Seoyoung; Liang, Mao-Shih; Lei, Pedro; Xue, Xiaozheng; Furlani, Edward P; Andreadis, Stelios T

    2015-07-15

    We used magnetofection (MF) to achieve high transfection efficiency into human mesenchymal stem cells (MSCs). A custom-made magnet array, matching well-to-well to a 24-well plate, was generated and characterized. Theoretical predictions of magnetic force distribution within each well demonstrated that there was no magnetic field interference among magnets in adjacent wells. An optimized protocol for efficient gene delivery to human hair follicle derived MSCs (hHF-MSCs) was established using an egfp-encoding plasmid, reaching approximately ∼50% transfection efficiency without significant cytotoxicity. Then we applied the optimized MF protocol to express the pluripotency-associated transcription factor NANOG, which was previously shown to reverse the effects of organismal aging on MSC proliferation and myogenic differentiation capacity. Indeed, MF-mediated NANOG delivery increased proliferation and enhanced the differentiation of hHF-MSCs into smooth muscle cells (SMCs). Collectively, our results show that MF can achieve high levels of gene delivery to MSCs and, therefore, may be employed to moderate or reverse the effects of cellular senescence or reprogram cells to the pluripotent state without permanent genetic modification.

  20. Visualization of hair follicles using high-speed optical coherence tomography based on a Fourier domain mode locking laser

    NASA Astrophysics Data System (ADS)

    Tsai, M.-T.; Chang, F.-Y.

    2012-04-01

    In this study, a swept-source optical coherence tomography (SS-OCT) system with a Fourier domain mode locking (FDML) laser is proposed for a dermatology study. The homemade FDML laser is one kind of frequency-sweeping light source, which can provide output power of >20 mW and an output spectrum of 65 nm in bandwidth centered at 1300 nm, enabling imaging with an axial resolution of 12 μm in the OCT system. To eliminate the forward scans from the laser output and insert the delayed backward scans, a Mach-Zehnder configuration is implemented. Compared with conventional frequency-sweeping light sources, the FDML laser can achieve much higher scan rates, as high as ˜240 kHz, which can provide a three-dimensional imaging rate of 4 volumes/s. Furthermore, the proposed high-speed SS-OCT system can provide three-dimensional (3D) images with reduced motion artifacts. Finally, a high-speed SS-OCT system is used to visualize hair follicles, demonstrating the potential of this technology as a tool for noninvasive diagnosis of alopecia.

  1. miR-128 regulates differentiation of hair follicle mesenchymal stem cells into smooth muscle cells by targeting SMAD2.

    PubMed

    Wang, Zhihao; Pang, Li; Zhao, Huiying; Song, Lei; Wang, Yuehui; Sun, Qi; Guo, Chunjie; Wang, Bin; Qin, Xiujiao; Pan, Aiqun

    2016-05-01

    Human hair follicle mesenchymal stem cells (hHFMSCs) are an important source of cardiovascular tissue engineering for their differentiation potential into smooth muscle cells (SMCs), yet the molecular pathways underlying such fate determination is unclear. MicroRNAs (miRNAs) are non-coding RNAs that play critical roles in cell differentiation. In present study, we found that miR-128 was remarkably decreased during the differentiation of hHFMSCs into SMCs induced by transforming growth factor-β1 (TGF-β1). Moreover, overexpression of miR-128 led to decreased expression of SMC cellular marker proteins, such as smooth muscle actin (SMA) and calponin, in TGF-β1-induced SMC differentiation. Further, we identified that miR-128 targeted the 3'-UTR of SMAD2 transcript for translational inhibition of SMAD2 protein, and knockdown of SMAD2 abrogated the promotional effect of antagomir-128 (miR-128 neutralizer) on SMC differentiation. These results suggest that miR-128 regulates the differentiation of hHFMSCs into SMCs via targeting SMAD2, a main transcription regulator in TGF-β signaling pathway involving SMC differentiation. The miR-128/SMAD2 axis could therefore be considered as a candidate target in tissue engineering and regenerative medicine for SMCs.

  2. Repressing the Keratinocyte Genome: How the Polycomb Complex Subunits Operate in Concert to Control Skin and Hair Follicle Development.

    PubMed

    Botchkarev, Vladimir A; Mardaryev, Andrei N

    2016-08-01

    The Polycomb group proteins are transcriptional repressors that are critically important in the control of stem cell activity and maintenance of the identity of differentiated cells. Polycomb proteins interact with each other to form chromatin-associated repressive complexes (Polycomb repressive complexes 1 and 2) leading to chromatin compaction and gene silencing. However, the roles of the distinct components of the Polycomb repressive complex 2 in the control of skin development and keratinocyte differentiation remain obscure. Dauber et al. demonstrate the conditional ablations of three essential Polycomb repressive complex 2 subunits (EED, Suz12, or Ezh1/2) in the epidermal progenitors result in quite similar skin phenotypes including premature acquisition of a functional epidermal barrier, formation of ectopic Merkel cells, and defective postnatal hair follicle development. The reported data demonstrate that in skin epithelia, EED, Suz12, and Ezh1/2 function largely as subunits of the Polycomb repressive complex 2, which is important in the context of data demonstrating their independent activities in other cell types. The report provides an important platform for further analyses of the role of distinct Polycomb components in the control of gene expression programs in the disorders of epidermal differentiation, such as psoriasis and epidermal cancer. PMID:27450498

  3. N(1)-methylspermidine, a stable spermidine analog, prolongs anagen and regulates epithelial stem cell functions in human hair follicles.

    PubMed

    Ramot, Yuval; Marzani, Barbara; Pinto, Daniela; Kloepper, Jennifer E; Paus, Ralf

    2015-11-01

    Spermidine (Spd), the prototypic polyamine, has been shown to be essential for hair follicle (HF) growth. However, Spd can be readily converted into other polyamines, and is physiologically unstable. Therefore, to assess its individual functions on HFs, we used the metabolically stable Spd analog N(1)-methylspermidine (N(1)-MeSpd). N(1)-MeSpd was confirmed to be a metabolically stable compound, with a half life of 90 h. 0.5 µM N(1)-MeSpd strongly prolonged anagen and decreased cell apoptosis in HFs in culture after 6 days, accompanied by specific stimulation of the expression of the epithelial stem cell-associated keratin, K15. N(1)-MeSpd also reduced lactate dehydrogenase activity in the culture supernatant, a parameter of cell death and cell lysis. N(1)-MeSpd diminished intracellular reactive oxygen species production in cultured keratinocytes, and reduced tumor necrosis factor-α, interleukin (IL)-1β and IL-6 gene and protein expression after lipopolysaccharide stimulation. This suggests that some effects of N(1)-MeSpd may be mediated by anti-oxidative and anti-inflammatory effects. These additional properties of N(1)-MeSpd could be clinically important for the treatment of inflammatory alopecias and inflammatory scalp diseases. PMID:26216444

  4. Mitochondrial function in murine skin epithelium is crucial for hair follicle morphogenesis and epithelial-mesenchymal interactions.

    PubMed

    Kloepper, Jennifer E; Baris, Olivier R; Reuter, Karen; Kobayashi, Ken; Weiland, Daniela; Vidali, Silvia; Tobin, Desmond J; Niemann, Catherin; Wiesner, Rudolf J; Paus, Ralf

    2015-03-01

    Here, we studied how epithelial energy metabolism impacts overall skin development by selectively deleting intraepithelial mtDNA in mice by ablating a key maintenance factor (Tfam(EKO)), which induces loss of function of the electron transport chain (ETC). Quantitative (immuno)histomorphometry demonstrated that Tfam(EKO) mice showed significantly reduced hair follicle (HF) density and morphogenesis, fewer intrafollicular keratin15+ epithelial progenitor cells, increased apoptosis, and reduced proliferation. Tfam(EKO) mice also displayed premature entry into (aborted) HF cycling by apoptosis-driven HF regression (catagen). Ultrastructurally, Tfam(EKO) mice exhibited severe HF dystrophy, pigmentary abnormalities, and telogen-like condensed dermal papillae. Epithelial HF progenitor cell differentiation (Plet1, Lrig1 Lef1, and β-catenin), sebaceous gland development (adipophilin, Scd1, and oil red), and key mediators/markers of epithelial-mesenchymal interactions during skin morphogenesis (NCAM, versican, and alkaline phosphatase) were all severely altered in Tfam(EKO) mice. Moreover, the number of mast cells, major histocompatibility complex class II+, or CD11b+ immunocytes in the skin mesenchyme was increased, and essentially no subcutis developed. Therefore, in contrast to their epidermal counterparts, pilosebaceous unit stem cells depend on a functional ETC. Most importantly, our findings point toward a frontier in skin biology: the coupling of HF keratinocyte mitochondrial function with the epithelial-mesenchymal interactions that drive overall development of the skin and its appendages. PMID:25371971

  5. Gonadotropin treatment augments postnatal oogenesis and primordial follicle assembly in adult mouse ovaries?

    PubMed Central

    2012-01-01

    Background Follicle stimulating hormone (FSH) exerts action on both germline and somatic compartment in both ovary and testis although FSH receptors (FSHR) are localized only on the somatic cells namely granulosa cells of growing follicles and Sertoli cells in the seminiferous tubules. High levels of FSH in females are associated with poor ovarian reserve, ovarian hyper stimulation syndrome etc. and at the same time FSH acts as a survival factor during in vitro organotypic culture of ovarian cortical strips. Thus a further understanding of FSH action on the ovary is essential. We have earlier reported presence of pluripotent very small embryonic-like stem cells (VSELs express Oct-4A in addition to other pluripotent markers) and their immediate descendants ‘progenitors’ ovarian germ stem cells (OGSCs express Oct-4B in addition to other germ cell markers) in ovarian surface epithelium (OSE) in various mammalian species including mice, rabbit, monkey, sheep and human. Present study was undertaken to investigate the effect of pregnant mare serum gonadotropin (PMSG) on adult mice ovaries with a focus on VSELs, OGSCs, postnatal oogenesis and primordial follicle assembly. Methods Ovaries were collected from adult mice during different stages of estrus cycle and after 2 and 7 days of PMSG (5 IU) treatment to study histo-architecture and expression for FSHR, pluripotent stem cells , meiosis and germ cell specific markers. Results PMSG treatment resulted in increased FSHR and proliferation as indicated by increased FSHR and PCNA immunostaining in OSE and oocytes of primordial follicles (PF) besides the granulosa cells of large antral follicles. Small 1–2 regions of multilayered OSE invariably associated with a cohort of PF during estrus stage in control ovary were increased to 5–8 regions after PMSG treatment. This was associated with an increase in pluripotent transcripts (Oct-4A, Nanog), meiosis (Scp-3) and germ cells (Oct-4B, Mvh) specific markers. MVH showed

  6. Advances in Understanding Hair Growth.

    PubMed

    Bernard, Bruno A

    2016-01-01

    In this short review, I introduce an integrated vision of human hair follicle behavior and describe opposing influences that control hair follicle homeostasis, from morphogenesis to hair cycling. The interdependence and complementary roles of these influences allow us to propose that the hair follicle is a true paradigm of a "Yin Yang" type, that is a cold/slow-hot/fast duality. Moreover, a new promising field is emerging, suggesting that glycans are key elements of hair follicle growth control. PMID:26918186

  7. Hair cortisol and cognitive performance in working age adults.

    PubMed

    McLennan, Skye N; Ihle, Andreas; Steudte-Schmiedgen, Susann; Kirschbaum, Clemens; Kliegel, Matthias

    2016-05-01

    It has been hypothesized that prolonged exposure to high cortisol levels results in cognitive impairment. However, previous research into the relationship between cortisol and cognition has produced mixed results, most likely due to difficulties achieving valid estimates of long-term cortisol exposure based on salivary or plasma cortisol assessments at a single time point. Furthermore, there has been little research on the cognitive effects of long-term cortisol exposure in working-age adults. In the present study, hair samples were collected from 246 nurses (89.8% female) aged from 21 to 62 (M=42.0, SD=11.2). Hair cortisol concentrations (HCC) in the proximal 3-cm hair segment were analyzed providing an estimate of integrated cortisol secretion over the 3 month-period prior to hair sampling. Cognition was measured using a battery of 15 neuropsychological tests, measuring core dimensions of memory, inductive reasoning, processing speed, crystalized intelligence and major aspects of executive functioning. HCC was not significantly related to any of the cognitive abilities measured, either before or after controlling for potential moderators such as age, sex, education, health, well-being, work ability and burnout. Tests for nonlinear relationships also yielded non-significant results. Thus, despite the study being well powered, long term cortisol exposure did not appear to be related to cognitive performance in this sample of working-age adults, suggesting that long term cortisol exposure may be less relevant to cognition in younger and middle-aged adults than was previously thought. PMID:26881835

  8. Runx1 and p21 synergistically limit the extent of hair follicle stem cell quiescence in vivo.

    PubMed

    Lee, Jayhun; Hoi, Charlene S L; Lilja, Karin C; White, Brian S; Lee, Song Eun; Shalloway, David; Tumbar, Tudorita

    2013-03-19

    Mechanisms of tissue stem cell (SC) quiescence control are important for normal homeostasis and for preventing cancer. Cyclin-dependent kinase inhibitors (CDKis) are known inhibitors of cell cycle progression. We document CDKis expression in vivo during hair follicle stem cell (HFSC) homeostasis and find p21 (cyclin-dependent kinase inhibitor 1a, Cdkn1a), p57, and p15 up-regulated at quiescence onset. p21 appears important for HFSC timely onset of quiescence. Conversely, we find that Runx1 (runt related transcription factor 1), which is known for promoting HFSC proliferation, represses p21, p27, p57, and p15 transcription in HFSC in vivo. Intriguingly, in cell culture, tumors, and normal homeostasis, Runx1 and p21 interplay modulates proliferation in opposing directions under the different conditions. Unexpectedly, Runx1 and p21 synergistically limit the extent of HFSC quiescence in vivo, which antagonizes the role of p21 as a cell cycle inhibitor. Importantly, we find in cultured keratinocytes that Runx1 and p21 bind to the p15 promoter and synergistically repress p15 mRNA transcription, thereby restraining cell cycle arrest. This documents a surprising ability of a CDKi (p21) to act as a direct transcriptional repressor of another CDKi (p15). We unveil a robust in vivo mechanism that enforces quiescence of HFSCs, and a context-dependent role of a CDKi (p21) to limit quiescence of SCs, potentially by directly down-regulating mRNA levels of (an)other CDKi(s).

  9. How many hair follicles are innervated by one afferent axon? A confocal microscopic analysis of palisade endings in the auricular skin of thy1-YFP transgenic mouse.

    PubMed

    Suzuki, Maasa; Ebara, Satomi; Koike, Taro; Tonomura, Sotatsu; Kumamoto, Kenzo

    2012-01-01

    Hairs are known as a sensory apparatus for touch. Their follicles are innervated predominantly by palisade endings composed of longitudinal and circumferential lanceolate endings. However, little is known as to how their original primary neurons make up a part of the ending. In this study, innervation of the palisade endings was investigated in the auricular skin of thy1-YFP transgenic mouse. Major observations were 1) Only a small portion of PGP9.5-immunopositive axons showed YFP-positivity, 2) All of thy1-YFP-positive sensory axons were thick and myelinated, 3) Individual thy1-YFP-positive trunk axons innervated 4-54 hair follicles, 4) Most palisade endings had a gap of lanceolate ending arrangement, 5) PGP9.5-immunopositive 10-32 longitudinal lanceolate endings were closely arranged. Only a part of them were thy1-YFP-positive axons that originated from 1-3 afferents, and 6) Single nerve bundles of the dermal nerve network included both bidirectional afferents. Palisade endings innervated by multiple sensory neurons might be highly sensitive to hair movement.

  10. Human epithelial hair follicle stem cells and their progeny: current state of knowledge, the widening gap in translational research and future challenges.

    PubMed

    Purba, Talveen S; Haslam, Iain S; Poblet, Enrique; Jiménez, Francisco; Gandarillas, Alberto; Izeta, Ander; Paus, Ralf

    2014-05-01

    Epithelial hair follicle stem cells (eHFSCs) are required to generate, maintain and renew the continuously cycling hair follicle (HF), supply cells that produce the keratinized hair shaft and aid in the reepithelialization of injured skin. Therefore, their study is biologically and clinically important, from alopecia to carcinogenesis and regenerative medicine. However, human eHFSCs remain ill defined compared to their murine counterparts, and it is unclear which murine eHFSC markers really apply to the human HF. We address this by reviewing current concepts on human eHFSC biology, their immediate progeny and their molecular markers, focusing on Keratin 15 and 19, CD200, CD34, PHLDA1, and EpCAM/Ber-EP4. After delineating how human eHFSCs may be selectively targeted experimentally, we close by defining as yet unmet key challenges in human eHFSC research. The ultimate goal is to transfer emerging concepts from murine epithelial stem cell biology to human HF physiology and pathology.

  11. CARI ONE induces anagen phase of telogenic hair follicles through regulation of β-catenin, stimulation of dermal papilla cell proliferation, and melanogenesis.

    PubMed

    Park, Hye-Jin

    2014-12-01

    The use of herbal mixtures in the hair growth market has increased dramatically over the last decade. In this study, we investigated the hair growth-promoting activity of CARI ONE, a mixture of medicinal plants and mushrooms, in telogenic 6-week-old C57BL/6N mice. CARI ONE promoted hair growth through stimulation of the telogen to anagen transition. Histomorphometry analysis data indicated that topical application of CARI ONE induced an earlier anagen phase and prolonged the mature anagen phase, and also increased the number and size of hair follicles (HFs) as compared to either the control or 1% minoxidil-treated group. Immunohistochemical analysis revealed an earlier induction of β-catenin and Trp-1 protein in the HFs of the CARI ONE-treated group compared to that in the control group or 1% minoxidil-treated group. In vitro, CARI ONE promoted the proliferation of dermal papilla cells and resulted in increased melanin content in B16F10 cells in a dose-dependent manner without affecting cell viability. These results suggest that CARI ONE promotes hair growth through induction of the anagen phase in resting HFs.

  12. CARI ONE induces anagen phase of telogenic hair follicles through regulation of β-catenin, stimulation of dermal papilla cell proliferation, and melanogenesis.

    PubMed

    Park, Hye-Jin

    2014-12-01

    The use of herbal mixtures in the hair growth market has increased dramatically over the last decade. In this study, we investigated the hair growth-promoting activity of CARI ONE, a mixture of medicinal plants and mushrooms, in telogenic 6-week-old C57BL/6N mice. CARI ONE promoted hair growth through stimulation of the telogen to anagen transition. Histomorphometry analysis data indicated that topical application of CARI ONE induced an earlier anagen phase and prolonged the mature anagen phase, and also increased the number and size of hair follicles (HFs) as compared to either the control or 1% minoxidil-treated group. Immunohistochemical analysis revealed an earlier induction of β-catenin and Trp-1 protein in the HFs of the CARI ONE-treated group compared to that in the control group or 1% minoxidil-treated group. In vitro, CARI ONE promoted the proliferation of dermal papilla cells and resulted in increased melanin content in B16F10 cells in a dose-dependent manner without affecting cell viability. These results suggest that CARI ONE promotes hair growth through induction of the anagen phase in resting HFs. PMID:24773048

  13. Prepubertal goat oocytes from large follicles result in similar blastocyst production and embryo ploidy than those from adult goats.

    PubMed

    Romaguera, R; Moll, X; Morató, R; Roura, M; Palomo, M J; Catalá, M G; Jiménez-Macedo, A R; Hammami, S; Izquierdo, D; Mogas, T; Paramio, M T

    2011-07-01

    Developmental competence of oocytes from prepubertal females is lower than those from adult females. Oocyte development competence is positively related to follicular diameter. Most of the follicles of prepubertal goat ovaries are smaller than 3 mm. The aim of this study was to compare oocytes of two follicle sizes (< 3 mm and ≥ 3 mm) from prepubertal goats with oocytes from adult goats in relation to their in vitro production and quality of blastocysts. Oocytes from prepubertal goats were obtained from slaughterhouse ovaries and selected according to the follicle diameter whereas oocytes from adult goats were recovered in vivo by LOPU technique without prior selection of follicle size. COCs were IVM for 27 h, IVF at the conventional conditions with fresh semen and presumptive zygotes were cultured in SOF medium for 8 days. Blastocysts obtained were vitrified and after warming their blastocoele re-expansion and the ploidy by FISH technique were assessed. We found significant differences between blastocysts yield of oocytes recovered from follicles smaller than 3 mm of prepubertal goats compared to those from adult goats (5.45% vs 20. 83%, respectively) however, these differences disappear if oocytes were recovered form large follicles (18.07%). A total of 28 blastocysts were analysed and 96.43% showed mixoploidy. Age did not affect the number of embryos with abnormal ploidy or blastocyst re-expansion after warming. Furthermore, the percentage of diploid blastomeres per embryo was similar in the 3 groups studied, adult, prepubertal from follicles ≥ 3 mm and < 3 mm (68.6%, 80.8% and 73.6%, respectively). In conclusion, IVP of blastocysts coming from follicles larger than 3 mm of goats 45 days old were not different to the blastocysts produced from adult goats, both in terms of quantity and quality.

  14. Hydroxyl radical mediates cisplatin-induced apoptosis in human hair follicle dermal papilla cells and keratinocytes through Bcl-2-dependent mechanism

    PubMed Central

    Luanpitpong, Sudjit; Chanvorachote, Pithi; Leonard, Stephen S.; Pongrakhananon, Varisa; Wang, Liying

    2016-01-01

    Induction of massive apoptosis of hair follicle cells by chemotherapy has been implicated in the pathogenesis of chemotherapy-induced alopecia (CIA), but the underlying mechanisms of regulation are not well understood. The present study investigated the apoptotic effect of cisplatin in human hair follicle dermal papilla cells and HaCaT keratinocytes, and determined the identity and role of specific reactive oxygen species (ROS) involved in the process. Treatment of the cells with cisplatin induced ROS generation and a parallel increase in caspase activation and apoptotic cell death. Inhibition of ROS generation by antioxidants inhibited the apoptotic effect of cisplatin, indicating the role of ROS in the process. Studies using specific ROS scavengers further showed that hydroxyl radical, but not hydrogen peroxide or superoxide anion, is the primary oxidative species responsible for the apoptotic effect of cisplatin. Electron spin resonance studies confirmed the formation of hydroxyl radicals induced by cisplatin. The mechanism by which hydroxyl radical mediates the apoptotic effect of cisplatin was shown to involve down-regulation of the anti-apoptotic protein Bcl-2 through ubiquitin-proteasomal degradation. Bcl-2 was also shown to have a negative regulatory role on hydroxyl radical. Together, our results indicate an essential role of hydroxyl radical in cisplatin-induced cell death of hair follicle cells through Bcl-2 regulation. Since CIA is a major side effect of cisplatin and many other chemotherapeutic agents with no known effective treatments, the knowledge gained from this study could be useful in the design of preventive treatment strategies for CIA through localized therapy without compromising the chemotherapy efficacy. PMID:21573972

  15. The bulge area is the major hair follicle source of nestin-expressing pluripotent stem cells which can repair the spinal cord compared to the dermal papilla.

    PubMed

    Liu, Fang; Uchugonova, Aisada; Kimura, Hiroaki; Zhang, Chuansen; Zhao, Ming; Zhang, Lei; Koenig, Karsten; Duong, Jennifer; Aki, Ryoichi; Saito, Norimitsu; Mii, Sumiyuki; Amoh, Yasuyuki; Katsuoka, Kensei; Hoffman, Robert M

    2011-03-01

    Nestin has been shown to be expressed in the hair follicle, both in the bulge area (BA) as well as the dermal papilla (DP). Nestin-expressing stem cells of both the BA and DP have been previously shown to be pluripotent and be able to form neurons and other non-follicle cell types. The nestin-expressing pluripotent stem cells from the DP have been termed skin precursor or SKP cells. The objective of the present study was to determine the major source of nestin-expressing pluripotent stem cells in the hair follicle and to compare the ability of the nestin-expressing pluripotent stem cells from the BA and DP to repair spinal cord injury. Transgenic mice in which the nestin promoter drives GFP (ND-GFP) were used in order to observe nestin expression in the BA and DP. Nestin-expressing DP cells were found in early and middle anagen. The BA had nestin expression throughout the hair cycle and to a greater extent than the DP. The cells from both regions had very long processes extending from them as shown by two-photon confocal microscopy. Nestin-expressing stem cells from both areas differentiated into neuronal cells at high frequency in vitro. Both nestin-expressing DP and BA cells differentiated into neuronal and glial cells after transplantation to the injured spinal cord and enhanced injury repair and locomotor recovery within four weeks. Nestin-expressing pluripotent stem cells from both the BA and DP have potential for spinal cord regeneration, with the BA being the greater and more constant source.

  16. Hydroxyl radical mediates cisplatin-induced apoptosis in human hair follicle dermal papilla cells and keratinocytes through Bcl-2-dependent mechanism.

    PubMed

    Luanpitpong, Sudjit; Nimmannit, Ubonthip; Chanvorachote, Pithi; Leonard, Stephen S; Pongrakhananon, Varisa; Wang, Liying; Rojanasakul, Yon

    2011-08-01

    Induction of massive apoptosis of hair follicle cells by chemotherapy has been implicated in the pathogenesis of chemotherapy-induced alopecia (CIA), but the underlying mechanisms of regulation are not well understood. The present study investigated the apoptotic effect of cisplatin in human hair follicle dermal papilla cells and HaCaT keratinocytes, and determined the identity and role of specific reactive oxygen species (ROS) involved in the process. Treatment of the cells with cisplatin induced ROS generation and a parallel increase in caspase activation and apoptotic cell death. Inhibition of ROS generation by antioxidants inhibited the apoptotic effect of cisplatin, indicating the role of ROS in the process. Studies using specific ROS scavengers further showed that hydroxyl radical, but not hydrogen peroxide or superoxide anion, is the primary oxidative species responsible for the apoptotic effect of cisplatin. Electron spin resonance studies confirmed the formation of hydroxyl radicals induced by cisplatin. The mechanism by which hydroxyl radical mediates the apoptotic effect of cisplatin was shown to involve down-regulation of the anti-apoptotic protein Bcl-2 through ubiquitin-proteasomal degradation. Bcl-2 was also shown to have a negative regulatory role on hydroxyl radical. Together, our results indicate an essential role of hydroxyl radical in cisplatin-induced cell death of hair follicle cells through Bcl-2 regulation. Since CIA is a major side effect of cisplatin and many other chemotherapeutic agents with no known effective treatments, the knowledge gained from this study could be useful in the design of preventive treatment strategies for CIA through localized therapy without compromising the chemotherapy efficacy.

  17. Highly Efficient Neural Differentiation of CD34-Positive Hair-Follicle-Associated Pluripotent Stem Cells Induced by Retinoic Acid and Serum-Free Medium.

    PubMed

    Sagha, Mohsen; Najafzadeh, Nowruz

    2016-01-01

    Neural differentiation of hair-follicle-associated pluripotent (HAP) stem cells residing in the bulge area is a promising autologous source for stem cell therapy. In the present chapter, we describe the identification and enrichment of CD34(+) HAP stem cells by magnetic-activated cell sorting (MACS), and induce them to differentiate into neuronal and glial cells using defined neural-induction media. The different neural cell populations arising during in vitro differentiation from HAP stem cells are characterized by reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemistry assay. PMID:27431256

  18. The biology, structure, and function of eyebrow hair.

    PubMed

    Nguyen, Jennifer V

    2014-01-01

    Eyebrow hair serves many important biologic and aesthetic functions. This article reviews the structure and function of the hair follicle, as well as hair follicle morphogenesis and cycling. Eyebrow hair follicles share the same basic structure as hair follicles elsewhere on the body, but are distinguished by their shorter anagen (growing) phase. Knowledge of the hair follicle structure and cycle is important for understanding the pathophysiology of alopecia, as diseases affecting the stem cell portion of the hair follicle in the bulge region may cause permanent hair loss. Furthermore, therapeutic agents that target distinct phases and hormones involved in the hair cycle may be useful for promoting hair growth.

  19. Robust regeneration of adult zebrafish lateral line hair cells reflects continued precursor pool maintenance.

    PubMed

    Cruz, Ivan A; Kappedal, Ryan; Mackenzie, Scott M; Hailey, Dale W; Hoffman, Trevor L; Schilling, Thomas F; Raible, David W

    2015-06-15

    We have examined lateral line hair cell and support cell maintenance in adult zebrafish when growth is largely complete. We demonstrate that adult zebrafish not only replenish hair cells after a single instance of hair cell damage, but also maintain hair cells and support cells after multiple rounds of damage and regeneration. We find that hair cells undergo continuous turnover in adult zebrafish in the absence of damage. We identify mitotically-distinct support cell populations and show that hair cells regenerate from underlying support cells in a region-specific manner. Our results demonstrate that there are two distinct support cell populations in the lateral line, which may help explain why zebrafish hair cell regeneration is extremely robust, retained throughout life, and potentially unlimited in regenerative capacity.

  20. Robust regeneration of adult zebrafish lateral line hair cells reflects continued precursor pool maintenance

    PubMed Central

    Cruz, Ivan A.; Kappedal, Ryan; Mackenzie, Scott M.; Hailey, Dale W.; Hoffman, Trevor L.; Schilling, Thomas F.; Raible, David W.

    2015-01-01

    We have examined lateral line hair cell and support cell maintenance in adult zebrafish when growth is largely complete. We demonstrate that adult zebrafish not only replenish hair cells after a single instance of hair cell damage, but also maintain hair cells and support cells after multiple rounds of damage and regeneration. We find that hair cells undergo continuous turnover in adult zebrafish in the absence of damage. We identify mitotically-distinct support cell populations and show that hair cells regenerate from underlying support cells in a region-specific manner. Our results demonstrate that there are two distinct support cell populations in the lateral line, which may help explain why zebrafish hair cell regeneration is extremely robust, retained throughout life, and potentially unlimited in regenerative capacity. PMID:25869855

  1. Merkel cell carcinoma with glandular differentiation admixed with sweat gland carcinoma and spindle cell carcinoma: histogenesis of merkel cell carcinoma from hair follicle stem cells.

    PubMed

    Koba, Shinichi; Nagase, Kotaro; Ikeda, Satoshi; Aoki, Shigehisa; Misago, Noriyuki; Narisawa, Yutaka

    2015-03-01

    We describe a unique case of Merkel cell carcinoma (MCC) with a heterogeneous differentiation exhibiting distinct triphasic phenotypic differentiation features: small cells typical of MCC, sweat gland carcinoma (sweat gland Ca.) with possible decapitation secretion, and spindle cell carcinoma (spindle cell Ca.). The patient was an 84-year-old Japanese woman. We evaluated the present case immunohistochemically with various antibodies. The histological features showed a gradual transition from MCC to sweat gland Ca. and spindle cell Ca. For clarifying the histogenesis, immunophenotypic analysis of the 3 different components of the carcinoma was performed using hair follicle stem cell markers (eg, CK15, CK19, and CD200) that have been identified as biomarkers of human bulge cells. The triphasic components immunohistochemically shared the characteristic feature of CK19 and CD200 expression. We posit that the MCC arose from hair follicle stem cells residing within the bulge area where Merkel cells are preferentially situated. Based on our findings, we recommend adding this rare neoplasm to the expanding morphological spectrum of MCC.

  2. Comparison of label-free and GFP multiphoton imaging of hair follicle-associated pluripotent (HAP) stem cells in mouse whiskers.

    PubMed

    Uchugonova, Aisada; Cao, Wenluo; Hoffman, Robert M; Koenig, Karsten

    2015-01-01

    Hair-follicle-associated pluripotent (HAP) stem cells can differentiate into many cell types, including neurons and heart muscle cells, and have been shown to repair peripheral nerves and the spinal cord in mice. HAP stem cells can be obtained from each individual patient for regenerative medicine which overcomes problems with immune rejection. Previously, we have demonstrated that genetically-encoded protein markers such as GFP in transgenic mice can be used to visualize HAP stem cells in vivo by multiphoton tomography. Detection and visualization of stem cells in vivo without exogenous labels such as GFP would be important for human application. In the present report, we demonstrate label-free visualization of hair follicle stem cells in mouse whiskers by multiphoton tomography due to the intrinsic fluorophores such as NAD(P)H/flavins. We compared multiphoton tomography of GFP-labeled HAP stem cells and unlabeled stem cells in isolated mouse whiskers. We show that observation of HAP stem cells by label-free multiphoton tomography is comparable to detection using GFP-labeled stem cells. The results described here have important implications for detection and isolation of human HAP stem cells for regenerative medicine.

  3. Comparative Transcriptome Analysis Reveals that a Ubiquitin-Mediated Proteolysis Pathway Is Important for Primary and Secondary Hair Follicle Development in Cashmere Goats

    PubMed Central

    Zheng, Zhu-qing; Fu, Shao-yin; Tarekegn, Getinet Mekuriaw; Bai, Xue; Bai, Yong-sheng; Li, Heng; Zhang, Wen-guang

    2016-01-01

    Background The fleece of cashmere goats contains two distinct populations of fibers, a short and fine non-medullated insulating cashmere fiber and a long and coarse medullated guard hair. The former is produced by secondary follicles (SFs) and the later by primary follicles (PFs). Evidence suggests that the induction of PFs and SFs may require different signaling pathways. The regulation of BMP2/4 signaling by noggin and Edar signaling via Downless genes are essential for the induction of SFs and PFs, respectively. However, these differently expressed genes of the signaling pathway cannot directly distinguish between the PFs and SFs. Results In this study, we selected RNA samples from 11 PFs and 7 SFs that included 145,525 exons. The pathway analysis of 4512 differentially expressed exons revealed that the most statistically significant metabolic pathway was related to the ubiquitin–mediated proteolysis pathway (UMPP) (P<3.32x 10−7). In addition, the 51 exons of the UMPP that were differentially expressed between the different types of hair follicle (HFs) were compared by cluster analysis. This resulted in the PFs and SFs being divided into two classes. The expression level of two selected exons was analyzed by qRT-PCR, and the results indicated that the expression patterns were consistent with the deep sequencing results obtained by RNA-Seq. Conclusions Based on the comparative transcriptome analysis of 18 HFs from cashmere goats, a large number of differentially expressed exons were identified using a high-throughput sequencing approach. This study suggests that UMPP activation is a prominent signaling pathway for distinguishing the PFs and SFs of cashmere goats. It is also a meaningful contribution to the theoretical basis of the biological study of the HFs of cashmere goats and other mammals. PMID:27695037

  4. Origin of germ cells and formation of new primary follicles in adult human ovaries

    PubMed Central

    Bukovsky, Antonin; Caudle, Michael R; Svetlikova, Marta; Upadhyaya, Nirmala B

    2004-01-01

    Recent reports indicate that functional mouse oocytes and sperm can be derived in vitro from somatic cell lines. We hypothesize that in adult human ovaries, mesenchymal cells in the tunica albuginea (TA) are bipotent progenitors with a commitment for both primitive granulosa and germ cells. We investigated ovaries of twelve adult women (mean age 32.8 ± 4.1 SD, range 27–38 years) by single, double, and triple color immunohistochemistry. We show that cytokeratin (CK)+ mesenchymal cells in ovarian TA differentiate into surface epithelium (SE) cells by a mesenchymal-epithelial transition. Segments of SE directly associated with ovarian cortex are overgrown by TA, forming solid epithelial cords, which fragment into small (20 micron) epithelial nests descending into the lower ovarian cortex, before assembling with zona pellucida (ZP)+ oocytes. Germ cells can originate from SE cells which cover the TA. Small (10 micron) germ-like cells showing PS1 meiotically expressed oocyte carbohydrate protein are derived from SE cells via asymmetric division. They show nuclear MAPK immunoexpression, subsequently divide symmetrically, and enter adjacent cortical vessels. During vascular transport, the putative germ cells increase to oocyte size, and are picked-up by epithelial nests associated with the vessels. During follicle formation, extensions of granulosa cells enter the oocyte cytoplasm, forming a single paranuclear CK+ Balbiani body supplying all the mitochondria of the oocyte. In the ovarian medulla, occasional vessels show an accumulation of ZP+ oocytes (25–30 microns) or their remnants, suggesting that some oocytes degenerate. In contrast to males, adult human female gonads do not preserve germline type stem cells. This study expands our previous observations on the formation of germ cells in adult human ovaries. Differentiation of primitive granulosa and germ cells from the bipotent mesenchymal cell precursors of TA in adult human ovaries represents a most

  5. Surface Tension Guided Hanging-Drop: Producing Controllable 3D Spheroid of High-Passaged Human Dermal Papilla Cells and Forming Inductive Microtissues for Hair-Follicle Regeneration.

    PubMed

    Lin, Bojie; Miao, Yong; Wang, Jin; Fan, Zhexiang; Du, Lijuan; Su, Yongsheng; Liu, Bingcheng; Hu, Zhiqi; Xing, Malcolm

    2016-03-01

    Human dermal papilla (DP) cells have been studied extensively when grown in the conventional monolayer. However, because of great deviation from the real in vivo three-dimensional (3D) environment, these two-dimensional (2D) grown cells tend to lose the hair-inducible capability during passaging. Hence, these 2D caused concerns have motivated the development of novel 3D culture techniques to produce cellular microtissues with suitable mimics. The hanging-drop approach is based on surface tension-based technique and the interaction between surface tension and gravity field that makes a convergence of liquid drops. This study used this technique in a converged drop to form cellular spheroids of dermal papilla cells. It leads to a controllable 3Dspheroid model for scalable fabrication of inductive DP microtissues. The optimal conditions for culturing high-passaged (P8) DP spheroids were determined first. Then, the morphological, histological and functional studies were performed. In addition, expressions of hair-inductive markers including alkaline phosphatase, α-smooth muscle actin and neural cell adhesion molecule were also analyzed by quantitative RT-PCR, immunostaining and immunoblotting. Finally, P8-DP microtissues were coimplanted with newborn mouse epidermal cells (EPCs) into nude mice. Our results indicated that the formation of 3D microtissues not only endowed P8-DP microtissues many similarities to primary DP, but also confer these microtissues an enhanced ability to induce hair-follicle (HF) neogenesis in vivo. This model provides a potential to elucidate the native biology of human DP, and also shows the promising for the controllable and scalable production of inductive DP cells applied in future follicle regeneration.

  6. Splitting hairs.

    PubMed

    Eisenstein, Michael

    2005-11-01

    A dual-transgenic mouse with localized expression of two different fluorescent markers is the foundation for an inventive strategy for dissecting hair follicles and isolating their component cell populations.

  7. Use of body hair and beard hair in hair restoration.

    PubMed

    Umar, Sanusi

    2013-08-01

    For many hair restoration patients with limited scalp donor hair it is possible to use nonhead hair sources to increase the potential follicle supply. Follicular unit extraction provides the hair restoration surgeon with a useful surgical means for accessing this valuable source of donor reserve. Nonhead hair can also be used to restore eyebrows, eyelashes, and moustaches. This article focuses on the use of body hair and beard in hair restoration. Discussed are the indications and effective techniques for performing hair transplants using non head hair donor sources, along with the pitfalls and risks of this surgical modality.

  8. Differentiating neoplasms of hair germ

    PubMed Central

    Headington, J. T.

    1970-01-01

    Differentiating neoplasms of hair germ are benign epithelial-mesenchymal tumours of skin in which hair follicle development may be partly or completely recapitulated. The epithelial component is equivalent to the hair germ. The mesenchymal component is equivalent to the dermal papilla. Epithelial-mesenchymal interaction results in the morphogenesis of hair follicles. In neoplasms showing stromal induction, there is centrifugal organizations: hair bulbs are found at the periphery of tumour lobules and hairs are projected centrally to lie within small keratinizing cysts. Neoplasms of hair germ without advanced morpho-differentiation are termed `trichoblastomas', and those neoplasms in which hair follicle development is advanced are called `trichogenic trichoblastomas'. Images PMID:5476873

  9. Identification of Wnt/β-catenin signaling pathway in dermal papilla cells of human scalp hair follicles: TCF4 regulates the proliferation and secretory activity of dermal papilla cell.

    PubMed

    Xiong, Ya; Liu, Yi; Song, Zhiqiang; Hao, Fei; Yang, Xichuan

    2014-01-01

    It is clear that the dermal papilla cell (DPC), which is located at the bottom of the hair follicle, is a special mesenchymal component, and it plays a leading role in regulating hair follicle development and periodic regeneration. Recent studies showed that the Wnt signaling pathway through β-catenin (canonical Wnt signaling pathway) is an essential component in maintaining the hair-inducing activity of the dermal papilla and growth of hair papilla cells. However, the intrinsic pathways and regulating mechanism are largely unknown. In the previous work, we constructed a cDNA subtractive library of DPC and first found that the TCF4 gene, as a key factor of Wnt signaling pathway, was expressed as the upregulated gene of the hair follicle in low-passage DPC. This study was to explore the role of TCF4 in regulating the proliferation and secretory activity of DPC. We constructed a pcDNA3.0-TCF4 expression vector and transfected it into DPC to achieve stable expression by bangosome 2000. Furthermore, we used the method of chemosynthesis to synthesize three pairs of TCF4 siRNA and transfected them into DPC. Meanwhile, we compared the transfection group and non-transfection group. We first proposed that there was expression difference in TCF4 in DPC under different biological condition. This study may have a high impact on the molecular mechanism of follicular lesions and provide a new vision for the treatment of clinic diseases.

  10. In vivo Quantification of the Effects of Radiation and Presence of Hair Follicle Pores on the Proliferation of Fibroblasts in an Acellular Human Dermis in a Dorsal Skinfold Chamber: Relevance for Tissue Reconstruction following Neoadjuvant Therapy

    PubMed Central

    Maier, Patrick; Hohenberger, Peter; Roessner, Eric Dominic

    2015-01-01

    Introduction In neoadjuvant therapy, irradiation has a deleterious effect on neoangiogenesis. The aim of this study was to examine the post-implantation effects of neoadjuvant irradiation on the survival and proliferation of autologous cells seeded onto an acellular human dermis (hAD; Epiflex). Additionally, we examined the influence of dermal hair follicle pores on viability and proliferation. We used dorsal skinfold chambers implanted in rats and in-situ microscopy to quantify cell numbers over 9 days. Methods 24 rats received a skinfold chamber and were divided into 2 main groups; irradiated and unirradiated. In the irradiated groups 20Gy were applied epicutaneously at the dorsum. Epiflex pieces were cut to size 5x5mm such that each piece had either one or more visible hair follicle pores, or no such visible pores. Fibroblasts were transduced lentiviral with a fluorescent protein for cell tracking. Matrices were seeded statically with 2.5x104 fluorescent fibroblasts and implanted into the chambers. In each of the two main groups, half of the rats received Epiflex with hair follicle pores and half received Epiflex without pores. Scaffolds were examined in-situ at 0, 3, 6 and 9 days after transplantation. Visible cells on the surface were quantified using ImageJ. Results In all groups cell numbers were decreased on day 3. A treatment-dependent increase in cell numbers was observed at subsequent time points. Irradiation had an adverse effect on cell survival and proliferation. The number of cells detected in both irradiated and non-irradiated subjects was increased in those subjects that received transplants with hair follicle pores. Discussion This in-vivo study confirms that radiation negatively affects the survival and proliferation of fibroblasts seeded onto a human dermis transplant. The presence of hair follicle pores in the dermis transplants is shown to have a positive effect on cell survival and proliferation even in irradiated subjects. PMID:25955842

  11. Induction of Hair Growth by Insulin-Like Growth Factor-1 in 1,763 MHz Radiofrequency-Irradiated Hair Follicle Cells

    PubMed Central

    Jo, Seong Jin; Cho, A-Ri; Jeon, Soon-Ik; Choi, Hyung-Do; Kim, Kyu Han; Park, Gun-Sik; Pack, Jeong-Ki; Kwon, Oh Sang; Park, Woong-Yang

    2011-01-01

    Radiofrequency (RF) radiation does not transfer high energy to break the covalent bonds of macromolecules, but these low energy stimuli might be sufficient to induce molecular responses in a specific manner. We monitored the effect of 1,763 MHz RF radiation on cultured human dermal papilla cells (hDPCs) by evaluating changes in the expression of cytokines related to hair growth. The expression of insulin-like growth factor-1 (IGF-1) mRNA in hDPCs was significantly induced upon RF radiation at the specific absorption rate of 10 W/kg, which resulted in increased expression of B-cell chronic lymphocytic leukemia/lymphoma 2 (BCL-2) and cyclin D1 (CCND1) proteins and increased phosphorylation of MAPK1 protein. Exposure to 10 W/kg RF radiation 1 h per day for 7 days significantly enhanced hair shaft elongation in ex vivo hair organ cultures. In RF-exposed follicular matrix keratinocytes in the hair bulb, the expression of Ki-67 was increased, while the signal for terminal deoxynucleotidyl transferase dUTP nick end labeling was reduced. From these results, we suggest that 1,763 MHz RF exposure stimulates hair growth in vitro through the induction of IGF-1 in hDPCs. PMID:22164296

  12. Interaction of alpha-melanocyte-stimulating hormone, melatonin, cyclic AMP and cyclic GMP in the control of melanogenesis in hair follicle melanocytes in vitro.

    PubMed

    Weatherhead, B; Logan, A

    1981-07-01

    In short-term (48 h) cultures of hair follicles alpha-melanocyte-stimulating hormone (alpha-MSH) and cyclic AMP stimulated melanogenesis through an increase in tyrosinase activity. In contrast cyclic GMP mimicked the effects of melatonin by inhibiting melanin production without causing a concomitant decrease in tyrosinase activity. Both cyclic GMP and melatonin blocked the stimulatory effects of cyclic AMP and alpha-MSH on melanin production but they left the increased levels of tyrosinase activity unaffected. Phosphodiesterase inhibitors (3-isobutyl-1--methylxanthine and papaverine) simultaneously stimulated tyrosinase activity and inhibited melanin production, presumably by allowing endogenous cyclic AMP and cyclic GMP to accumulate intracellularly. It is suggested that whereas MSH stimulates melanogenesis through a cyclic AMP-dependent mechanism there must also be an inhibitory cyclic GMP-dependent mechanism, perhaps activated by melatonin, which operates at some post-tyrosinase step in the melanin biosynthetic pathway. PMID:6267154

  13. Biochemical and ultrastructural processing of (/sup 125/I)epidermal growth factor in rat epidermis and hair follicles: accumulation of nuclear label

    SciTech Connect

    Green, M.R.; Mycock, C.; Smith, C.G.; Couchman, J.R.

    1987-03-01

    Although the intracellular ultrastructural processing of epidermal growth factor (EGF) and its receptor have been described in cell culture systems, very few studies have examined this phenomenon in intact tissues. We have examined the ultrastructural and biochemical handling of (/sup 125/I)EGF in the epidermis and hair follicle bulb of intact, viable, 3- to 5-day-old rat skin the EGF receptor distribution of which has already been documented and in which EGF has been shown to be biologically active. After incubation of explants with 10 nM (/sup 125/I)EGF for 2.5 h at 25 degrees or 37 degrees C, radiolabel was detected over the basal cells of the epidermis and hair follicle outer root sheath, confirming previous light microscope observations. More specifically, silver grains were observed near coated and uncoated plasma membrane and coated membrane invaginations, Golgi apparatus, lysosomal structures, and nuclei. Sodium azide inhibited internalization of label, whereas a series of lysosomal inhibitors (chloroquine, monensin, and iodoacetamide) caused a slight increase in silver grains associated with lysosomal vesicles and a decrease in nuclear label. Biochemical analysis indicated that greater than 35% of radioactivity following incubation at 37 degrees C was in the form of degraded (/sup 125/I)EGF fragments and that inclusion of chloroquine, monensin, and iodoacetamide reduced this value to 20.8%, 8.6%, and 4.0%, respectively. In addition, chloramine T-prepared (/sup 125/I)EGF was found to be covalently cross-linked with low efficiency to a protein having the molecular weight of the EGF receptor. These data are discussed in the light of the effects of EGF on epithelial cell proliferation in skin.

  14. Human hair follicle pluripotent stem (hfPS) cells promote regeneration of peripheral-nerve injury: an advantageous alternative to ES and iPS cells.

    PubMed

    Amoh, Yasuyuki; Kanoh, Maho; Niiyama, Shiro; Hamada, Yuko; Kawahara, Katsumasa; Sato, Yuichi; Hoffman, Robert M; Katsuoka, Kensei

    2009-08-01

    The optimal source of stem cells for regenerative medicine is a major question. Embryonic stem (ES) cells have shown promise for pluripotency but have ethical issues and potential to form teratomas. Pluripotent stem cells have been produced from skin cells by either viral-, plasmid- or transposon-mediated gene transfer. These stem cells have been termed induced pluripotent stem cells or iPS cells. iPS cells may also have malignant potential and are inefficiently produced. Embryonic stem cells may not be suited for individualized therapy, since they can undergo immunologic rejection. To address these fundamental problems, our group is developing hair follicle pluripotent stem (hfPS) cells. Our previous studies have shown that mouse hfPS cells can differentiate to neurons, glial cells in vitro, and other cell types, and can promote nerve and spinal cord regeneration in vivo. hfPS cells are located above the hair follicle bulge in what we have termed the hfPS cell area (hfPSA) and are nestin positive and keratin 15 (K-15) negative. Human hfPS cells can also differentiate into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. In the present study, human hfPS cells were transplanted in the severed sciatic nerve of the mouse where they differentiated into glial fibrillary-acidic-protein (GFAP)-positive Schwann cells and promoted the recovery of pre-existing axons, leading to nerve generation. The regenerated nerve recovered function and, upon electrical stimulation, contracted the gastrocnemius muscle. The hfPS cells can be readily isolated from the human scalp, thereby providing an accessible, autologous and safe source of stem cells for regenerative medicine that have important advantages over ES or iPS cells.

  15. Streptomycin ototoxicity and hair cell regeneration in the adult pigeon utricle

    NASA Technical Reports Server (NTRS)

    Frank, T. C.; Dye, B. J.; Newlands, S. D.; Dickman, J. D.

    1999-01-01

    OBJECTIVE: The purpose of this study was to develop a technique to investigate the regeneration of utricular hair cells in the adult pigeon (Columba livia) following complete hair cell loss through administration of streptomycin. STUDY DESIGN: Experimental animal study. METHODS: Animals were divided into four groups. Group 1 received 10 to 15 days of systemic streptomycin injections. Animals in Groups 2 and 3 received a single direct placement of a 1-, 2-, 4-, or 8-mg streptomycin dose into the perilymphatic space. Animals in Groups 1 and 2 were analyzed within 1 week from injection to investigate hair cell destruction, whereas Group 3 was investigated at later dates to study hair cell recovery. Group 4 animals received a control injection of saline into the perilymphatic space. Damage and recovery were quantified by counting hair cells in isolated utricles using scanning electron microscopy. RESULTS: Although systemic injections failed to reliably achieve complete utricular hair cell destruction, a single direct placement of a 2-, 4-, or 8-mg streptomycin dose caused complete destruction within the first week. Incomplete hair cell loss was observed with the 1-mg dose. Over the long term, regeneration of the hair cells was seen with the 2-mg dose but not the 8-mg dose. Control injections of saline into the perilymphatic space caused no measurable hair cell loss. CONCLUSIONS: Direct placement of streptomycin into the perilymph is an effective, reliable method for complete destruction of utricular hair cells while preserving the regenerative potential of the neuroepithelium.

  16. Hair transplantation.

    PubMed

    Al-Khair, Y M

    2000-09-01

    Hair transplantation is a technique in which hair follicles are harvested from the occipital area and re-transplanted in the frontal bald area. Hair transplantation is the most common cosmetic procedure in the United States nowadays despite the fact that it is expensive. Usually, patients need more than one session to receive a cosmetically acceptable result and patients need to be understanding and have realistic expectations. Although most of our patients are males, females represent about 10-15% of our new patients. This article reviews the basic principals of hair transplantation and describes new and improved techniques of hair transplantation. PMID:11376357

  17. Integrated Analysis of the Roles of Long Noncoding RNA and Coding RNA Expression in Sheep (Ovis aries) Skin during Initiation of Secondary Hair Follicle

    PubMed Central

    Liu, Jianbin; Guo, Jian; Feng, Ruilin; Niu, Chune; Sun, Xiaoping; Yang, Bohui

    2016-01-01

    Initiation of hair follicle (HF) is the first and most important stage of HF morphogenesis. However the precise molecular mechanism of initiation of hair follicle remains elusive. Meanwhile, in previous study, the more attentions had been paid to the function of genes, while the roles of non-coding RNAs (such as long noncoding RNA and microRNA) had not been described. Therefore, the roles of long noncoding RNA(LncRNA) and coding RNA in sheep skin during the initiation of sheep secondary HF were integrated and analyzed, by using strand-specific RNA sequencing (ssRNA-seq).A total of 192 significant differentially expressed genes were detected, including 67 up-regulated genes and 125 down-regulated genes between stage 0 and stage 1 of HF morphogenesis during HF initiation. Only Wnt2, FGF20 were just significant differentially expressed among Wnt, Shh, Notch and BMP signaling pathways. Further expression profile analysis of lncRNAs showed that 884 novel lncRNAs were discovered in sheep skin expression profiles. A total of 15 lncRNAs with significant differential expression were detected, 6 up-regulated and 9 down-regulated. Among of differentially expressed genes and LncRNA, XLOC002437 lncRNA and potential target gene COL6A6 were all significantly down-regulated in stage 1. Furthermore, by using RNAhybrid, XLOC005698 may be as a competing endogenous RNA ‘‘sponges” oar-miR-3955-5p activity. Gene Ontology and KEGG pathway analyses indicated that the significantly enriched pathway was peroxisome proliferator-activated receptors (PPARs) pathway (corrected P-value < 0.05), indicating that PPAR pathway is likely to play significant roles during the initiation of secondary HF.Results suggest that the key differentially expressed genes and LncRNAs may be considered as potential candidate genes for further study on the molecular mechanisms of HF initiation, as well as supplying some potential values for understanding human hair disorders. PMID:27276011

  18. Trace metals in scalp hair of children and adults in three Alberta Indian villages.

    PubMed

    Moon, J; Smith, T J; Tamaro, S; Enarson, D; Fadl, S; Davison, A J; Weldon, L

    1986-10-01

    This study examined trace metal levels in scalp hair taken from 122 children and 27 adult residents of three small northern Alberta (Canada) Indian villages, one of which is situated close to the world's first tar sands oil extraction plants. The three communities studied were: Fort McKay (the exposed village), Fort Chipewyan (also in the tar sands ecosystem but distant from the plants), and Garden River (not in the tar sands ecosystem). Inductively coupled argon plasma emission spectroscopy was used to determine hair sample metal content. Nineteen metals were included in data analysis. Children from Fort McKay had the highest average hair lead, cadmium and nickel levels. Chromium levels were approximately equal in hair from Fort McKay and Garden River children, and significantly elevated above levels found in the hair of Fort Chipewyan children. Children from Garden River showed highest hair levels of eight metals: vanadium, aluminum, iron, manganese, barium, zinc, magnesium and calcium. Fort Chipewyan children had the highest hair levels of copper, but the lowest levels of all other metals. Among adults, hair lead, nickel and cadmium levels were highest in Fort McKay residents, while phosphorous and vanadium were highest in hair from Garden River residents. Bioaccumulation of lead, cadmium, nickel and chromium in hair from Fort McKay residents may be related to exposure to extraction plant pollution. Plant stack emissions are known to contain appreciable amounts of lead, nickel and chromium. Spills into the Athabasca River, until recently the source of Fort McKay drinking water, have been reported from plant wastewater holding ponds, known to contain elevated levels of lead, nickel and cadmium. An increased number of significant metal-metal correlations in hair metal levels for Fort McKay children suggests a richer source of multiple metal exposure, relative to children in the other two communities.

  19. Hair toxic element content in adult men and women in relation to body mass index.

    PubMed

    Skalnaya, Margarita G; Tinkov, Alexey A; Demidov, Vasily A; Serebryansky, Eugeny P; Nikonorov, Alexandr A; Skalny, Anatoly V

    2014-10-01

    The primary objective of the current study was to estimate the hair toxic metal content in adults in relation to body mass index. A total of 1,229 persons including 719 women and 510 men were examined. All subjects were divided into two age groups: 1 and 2 periods of adulthood. All men and women were also subdivided into groups in relation to their values of body mass index (BMI): underweight, normal weight, overweight and obese. Hair aluminium (Al), beryllium (Be), cadmium (Cd), mercury (Hg), lead (Pb) and tin (Sn) content was evaluated using mass spectrometry with inductively coupled plasma. It has been shown that increase in body weight is accompanied by elevated hair cadmium content in women. At the same time, no significant alteration of hair cadmium concentration was observed in males. Higher values of scalp hair mercury and lead content were observed in men and women with increased body mass index independently of their age. BMI-related elevation of hair tin content was registered only in men of the first period of adulthood. A significant correlation between hair metal content and the values of BMI was observed for mercury independently of the gender of the subjects, whereas BMI values correlated significantly with hair cadmium levels in women and lead and tin levels in men. It has been also estimated that hair cadmium, mercury and lead levels in men exceed the respective values in women.

  20. Advances in Understanding Hair Growth

    PubMed Central

    Bernard, Bruno A.

    2016-01-01

    In this short review, I introduce an integrated vision of human hair follicle behavior and describe opposing influences that control hair follicle homeostasis, from morphogenesis to hair cycling. The interdependence and complementary roles of these influences allow us to propose that the hair follicle is a true paradigm of a “Yin Yang” type, that is a cold/slow-hot/fast duality. Moreover, a new promising field is emerging, suggesting that glycans are key elements of hair follicle growth control. PMID:26918186

  1. Hair follicle targeting, penetration enhancement and Langerhans cell activation make cyanoacrylate skin surface stripping a promising delivery technique for transcutaneous immunization with large molecules and particle-based vaccines.

    PubMed

    Vogt, Annika; Hadam, Sabrina; Deckert, Iliane; Schmidt, Julia; Stroux, Andrea; Afraz, Zahra; Rancan, Fiorenza; Lademann, Jürgen; Combadiere, Behazine; Blume-Peytavi, Ulrike

    2015-01-01

    Transcutaneous immunization (TCI) requires targeting of a maximum number of skin antigen-presenting cells as non-invasive as possible on small skin areas. In two clinical trials, we introduced cyanoacrylate skin surface stripping (CSSS) as a safe method for TCI. Here, using ex vivo human skin, we demonstrate that one CSSS procedure removed only 30% of stratum corneum, but significantly increased the penetration of 200 nm polystyrene particles deep into vellus and intermediate hair follicles from where they could not been retrieved by conventional tape stripping. Two subsequent CSSS had no striking additional effect. CSSS increased particle penetration in superficial stratum corneum and induced Langerhans cell activation. Formulation in amphiphilic ointment or massage did not substantially influences the interfollicular penetration profiles. Hair follicle (HF) targeting by CSSS could become a highly effective tool for TCI when combined with carrier-based delivery and is gaining new attention as our understanding on the HF immune system increases. PMID:25382068

  2. Hair follicle targeting, penetration enhancement and Langerhans cell activation make cyanoacrylate skin surface stripping a promising delivery technique for transcutaneous immunization with large molecules and particle-based vaccines.

    PubMed

    Vogt, Annika; Hadam, Sabrina; Deckert, Iliane; Schmidt, Julia; Stroux, Andrea; Afraz, Zahra; Rancan, Fiorenza; Lademann, Jürgen; Combadiere, Behazine; Blume-Peytavi, Ulrike

    2015-01-01

    Transcutaneous immunization (TCI) requires targeting of a maximum number of skin antigen-presenting cells as non-invasive as possible on small skin areas. In two clinical trials, we introduced cyanoacrylate skin surface stripping (CSSS) as a safe method for TCI. Here, using ex vivo human skin, we demonstrate that one CSSS procedure removed only 30% of stratum corneum, but significantly increased the penetration of 200 nm polystyrene particles deep into vellus and intermediate hair follicles from where they could not been retrieved by conventional tape stripping. Two subsequent CSSS had no striking additional effect. CSSS increased particle penetration in superficial stratum corneum and induced Langerhans cell activation. Formulation in amphiphilic ointment or massage did not substantially influences the interfollicular penetration profiles. Hair follicle (HF) targeting by CSSS could become a highly effective tool for TCI when combined with carrier-based delivery and is gaining new attention as our understanding on the HF immune system increases.

  3. The localisation and characterisation of insulin-like growth factor-I receptors and the investigation of melatonin receptors on the hair follicles of seasonal and non-seasonal fibre-producing goats.

    PubMed

    Dicks, P; Morgan, C J; Morgan, P J; Kelly, D; Williams, L M

    1996-10-01

    To define the hormonal influences that are directly involved in the hair follicle cycles of animals with differing patterns of fibre growth and moulting, we have investigated the possible presence of IGF-I and melatonin receptors on the dermis and hair follicles of cashmere and Angora goats, sampled in February. March and June, using quantitative in vitro autoradiography. The presence of IGF-I receptors in the dermis of both breeds of goat was determined using cryostat sections incubated with 50 pM 125I-labelled IGF-I in the presence or absence of 50 nM IGF-I. Sections of the growing tip of deep antlers concerning the cartilaginous zone, a tissue known to contain high concentrations of specific IGF-I receptors, were used as a positive control. As the production of antler velvet uniquely involves the generation of hair follicles de novo, the presence of IGF-I receptors in the velvet-producing region was also investigated. In both breeds of goat, specific 125I-IGF-I binding was localised over the inner and outer root sheath, the matrix, the germinal matrix, the dermal papilla and the sebaceous glands and satisfied the basic kinetic criteria considered to be representative of a specific IGF-I receptor. Analysis of saturation isotherms using a one-site binding model revealed dissociation constants (Kd) in the range 0.1-0.9 nM and theoretical maximal numbers of binding sites (Bmax) between 21.4 and 45.6 fmol/mg tissue. Kd and Bmax values derived from cashmere and Angora goats sampled at different times of the year did not differ significantly between breeds or sampling times. Specific 125I-IGF-I binding was also localised to the developing follicles on the deer antler dermis. The presence of melatonin receptors within the goat dermis was also investigated. Sections were incubated with 100 pM 2-[125I]iodomelatonin with or without 0.1 microM melatonin, along with sections of sheep pars tuberalis which are known to contain high levels of high-affinity melatonin receptors

  4. Genistein exposure inhibits growth and alters steroidogenesis in adult mouse antral follicles.

    PubMed

    Patel, Shreya; Peretz, Jackye; Pan, Yuan-Xiang; Helferich, William G; Flaws, Jodi A

    2016-02-15

    Genistein is a naturally occurring isoflavone phytoestrogen commonly found in plant products such as soybeans, lentils, and chickpeas. Genistein, like other phytoestrogens, has the potential to mimic, enhance, or impair the estradiol biosynthesis pathway, thereby potentially altering ovarian follicle growth. Previous studies have inconsistently indicated that genistein exposure may alter granulosa cell proliferation and hormone production, but no studies have examined the effects of genistein on intact antral follicles. Thus, this study was designed to test the hypothesis that genistein exposure inhibits follicle growth and steroidogenesis in intact antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice were cultured with vehicle (dimethyl sulfoxide; DMSO) or genistein (6.0 and 36μM) for 18-96h. Every 24h, follicle diameters were measured to assess growth. At the end of each culture period, the media were pooled to measure hormone levels, and the cultured follicles were collected to measure expression of cell cycle regulators and steroidogenic enzymes. The results indicate that genistein (36μM) inhibits growth of mouse antral follicles. Additionally, genistein (6.0 and 36μM) increases progesterone, testosterone, and dehydroepiandrosterone (DHEA) levels, but decreases estrone and estradiol levels. The results also indicate that genistein alters the expression of steroidogenic enzymes at 24, 72 and 96h, and the expression of cell cycle regulators at 18h. These data indicate that genistein exposure inhibits antral follicle growth by inhibiting the cell cycle, alters sex steroid hormone levels, and dysregulates steroidogenic enzymes in cultured mouse antral follicles. PMID:26792615

  5. Derivation of Hair-Inducing Cell from Human Pluripotent Stem Cells

    PubMed Central

    Gnedeva, Ksenia; Vorotelyak, Ekaterina; Cimadamore, Flavio; Cattarossi, Giulio; Giusto, Elena; Terskikh, Vasiliy V.; Terskikh, Alexey V.

    2015-01-01

    Dermal Papillae (DP) is a unique population of mesenchymal cells that was shown to regulate hair follicle formation and growth cycle. During development most DP cells are derived from mesoderm, however, functionally equivalent DP cells of cephalic hairs originate from Neural Crest (NC). Here we directed human embryonic stem cells (hESCs) to generate first NC cells and then hair-inducing DP-like cells in culture. We showed that hESC-derived DP-like cells (hESC-DPs) express markers typically found in adult human DP cells (e.g. p-75, nestin, versican, SMA, alkaline phosphatase) and are able to induce hair follicle formation when transplanted under the skin of immunodeficient NUDE mice. Engineered to express GFP, hESC-derived DP-like cells incorporate into DP of newly formed hair follicles and express appropriate markers. We demonstrated that BMP signaling is critical for hESC-DP derivation since BMP inhibitor dorsomorphin completely eliminated hair-inducing activity from hESC-DP cultures. DP cells were proposed as the cell-based treatment for hair loss diseases. Unfortunately human DP cells are not suitable for this purpose because they cannot be obtained in necessary amounts and rapidly loose their ability to induce hair follicle formation when cultured. In this context derivation of functional hESC-DP cells capable of inducing a robust hair growth for the first time shown here can become an important finding for the biomedical science. PMID:25607935

  6. Derivation of hair-inducing cell from human pluripotent stem cells.

    PubMed

    Gnedeva, Ksenia; Vorotelyak, Ekaterina; Cimadamore, Flavio; Cattarossi, Giulio; Giusto, Elena; Terskikh, Vasiliy V; Terskikh, Alexey V

    2015-01-01

    Dermal Papillae (DP) is a unique population of mesenchymal cells that was shown to regulate hair follicle formation and growth cycle. During development most DP cells are derived from mesoderm, however, functionally equivalent DP cells of cephalic hairs originate from Neural Crest (NC). Here we directed human embryonic stem cells (hESCs) to generate first NC cells and then hair-inducing DP-like cells in culture. We showed that hESC-derived DP-like cells (hESC-DPs) express markers typically found in adult human DP cells (e.g., p-75, nestin, versican, SMA, alkaline phosphatase) and are able to induce hair follicle formation when transplanted under the skin of immunodeficient NUDE mice. Engineered to express GFP, hESC-derived DP-like cells incorporate into DP of newly formed hair follicles and express appropriate markers. We demonstrated that BMP signaling is critical for hESC-DP derivation since BMP inhibitor dorsomorphin completely eliminated hair-inducing activity from hESC-DP cultures. DP cells were proposed as the cell-based treatment for hair loss diseases. Unfortunately human DP cells are not suitable for this purpose because they cannot be obtained in necessary amounts and rapidly loose their ability to induce hair follicle formation when cultured. In this context derivation of functional hESC-DP cells capable of inducing a robust hair growth for the first time shown here can become an important finding for the biomedical science.

  7. Blockade of Androgen Markers Using a Novel Betasitosterol, Thioctic Acid and Carnitine-containing Compound in Prostate and Hair Follicle Cell-based Assays.

    PubMed

    Chen, Li; Wang, Jiaolong; Mouser, Glen; Li, Yan Chun; Marcovici, Geno

    2016-06-01

    Androgenetic alopecia (AGA) affects approximately 70% of men and 40% of women in an age-dependent manner and is partially mediated by androgen hormones. Benign prostatic hyperplasia (BPH) similarly affects 50% of the male population, rising by 10% each decade. Finasteride inhibits 5-alpha reductase (5AR) and is used to treat both disorders, despite offering limited clinical benefits accompanied by significant adverse side effects. Building on our previous work demonstrating the efficacy of naturally derived 5AR inhibitors (such as stigmasterol and beta sitosterol), we hypothesize that targeting 5AR as well as inflammatory pathways may yield improved efficacy in AGA and BPH. Here we address these dual pathomechanisms by examining the potency of a novel composition using in vitro assays of representative cell lines for AGA (hair follicle dermal papilla cells) and BPH (LNCaP prostate cells), respectively. Exposure of cells to the novel test composition down-regulated mRNA expression profiles characteristic of both disease processes, which outperformed finasteride. Changes in mRNA expression were corroborated at the protein level as assessed by western blotting. These studies provide proof of concept that novel, naturally derived compositions simultaneously targeting 5AR and inflammatory mediators may represent a rational approach to treating AGA and BPH. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26990224

  8. Homing of allogeneic nestin-positive hair follicle-associated pluripotent stem cells after maternal transplantation in experimental model of cortical dysplasia.

    PubMed

    Omidi, Ameneh; Kashani, Iraj Ragerdi; Akbari, Mohammad; Mortezaee, Keywan; Ghasemi, Soudabeh; Beyer, Cordian; Zendedel, Adib

    2015-12-01

    An embryo has the capability to accept allo- or xeno-geneic cells, which probably makes it an ideal candidate for stem cell transplantation of various cerebral cortex abnormalities, such as cortical dysplasia. The aim of this study was to determine hair follicle-associated pluripotent (HAP) stem cells homing into various organs of mother and fetus. Cells were obtained, analyzed for immunophenotypic features, and then labelled with CM-Dil; nestin(+)HAP stem cells or media phosphate-buffered saline (PBS) were intravenously delivered on day 16 of gestation in BALB/c mice, which intraperitoneally received methylazoxymethanol (MAM) one day in advance, and homing was assessed at 24 h after cell injection. Flow cytometry and immunocytochemistry manifested positive expression of nestin in HAP stem cells. For both mother and fetus, brain, lungs, liver, and spleen were the host organs for cell implants. For the brain, the figure was considerably higher in fetus, 4.05 ± 0.5% (p ≤ 0.05 vs. mother). MAM-injected mice had a downward trend for SDF-1α and CXCR4 (p ≤ 0.05 vs. control), but HAP stem cells group showed an upward trend for CXCR4 (p ≤ 0.05 vs. MAM). We conclude the HAP stem cells show homing potential in experimental cortical dysplasia, which may permit these cells to be a target in future work on prenatal therapy of neural disorders. PMID:26568364

  9. Homing of allogeneic nestin-positive hair follicle-associated pluripotent stem cells after maternal transplantation in experimental model of cortical dysplasia.

    PubMed

    Omidi, Ameneh; Kashani, Iraj Ragerdi; Akbari, Mohammad; Mortezaee, Keywan; Ghasemi, Soudabeh; Beyer, Cordian; Zendedel, Adib

    2015-12-01

    An embryo has the capability to accept allo- or xeno-geneic cells, which probably makes it an ideal candidate for stem cell transplantation of various cerebral cortex abnormalities, such as cortical dysplasia. The aim of this study was to determine hair follicle-associated pluripotent (HAP) stem cells homing into various organs of mother and fetus. Cells were obtained, analyzed for immunophenotypic features, and then labelled with CM-Dil; nestin(+)HAP stem cells or media phosphate-buffered saline (PBS) were intravenously delivered on day 16 of gestation in BALB/c mice, which intraperitoneally received methylazoxymethanol (MAM) one day in advance, and homing was assessed at 24 h after cell injection. Flow cytometry and immunocytochemistry manifested positive expression of nestin in HAP stem cells. For both mother and fetus, brain, lungs, liver, and spleen were the host organs for cell implants. For the brain, the figure was considerably higher in fetus, 4.05 ± 0.5% (p ≤ 0.05 vs. mother). MAM-injected mice had a downward trend for SDF-1α and CXCR4 (p ≤ 0.05 vs. control), but HAP stem cells group showed an upward trend for CXCR4 (p ≤ 0.05 vs. MAM). We conclude the HAP stem cells show homing potential in experimental cortical dysplasia, which may permit these cells to be a target in future work on prenatal therapy of neural disorders.

  10. Disruption of FGF5 in Cashmere Goats Using CRISPR/Cas9 Results in More Secondary Hair Follicles and Longer Fibers

    PubMed Central

    Zhu, Haijing; Niu, Yiyuan; Ma, Baohua; Yu, Honghao; Lei, Anmin; Yan, Hailong; Shen, Qiaoyan; Shi, Lei; Zhao, Xiaoe; Hua, Jinlian; Huang, Xingxu; Qu, Lei; Chen, Yulin

    2016-01-01

    Precision genetic engineering accelerates the genetic improvement of livestock for agriculture and biomedicine. We have recently reported our success in producing gene-modified goats using the CRISPR/Cas9 system through microinjection of Cas9 mRNA and sgRNAs targeting the MSTN and FGF5 genes in goat embryos. By investigating the influence of gene modification on the phenotypes of Cas9-mediated goats, we herein demonstrate that the utility of this approach involving the disruption of FGF5 results in increased number of second hair follicles and enhanced fiber length in Cas9-mediated goats, suggesting more cashmere will be produced. The effects of genome modifications were characterized using H&E and immunohistochemistry staining, quantitative PCR, and western blotting techniques. These results indicated that the gene modifications induced by the disruption of FGF5 had occurred at the morphological and genetic levels. We further show that the knockout alleles were likely capable of germline transmission, which is essential for goat population expansion. These results provide sufficient evidences of the merit of using the CRISPR/Cas9 approach for the generation of gene-modified goats displaying the corresponding mutant phenotypes. PMID:27755602

  11. Hair Follicle Morphogenesis in the Treatment of Mouse Full-Thickness Skin Defects Using Composite Human Acellular Amniotic Membrane and Adipose Derived Mesenchymal Stem Cells

    PubMed Central

    Minjuan, Wu; Jun, Xiong; Shiyun, Shao; Sha, Xu; Haitao, Ni

    2016-01-01

    Early repair of skin injury and maximal restoration of the function and appearance have become important targets of clinical treatment. In the present study, we observed the healing process of skin defects in nude mice and structural characteristics of the new skin after transplantation of isolated and cultured adipose derived mesenchymal stem cells (ADMSCs) onto the human acellular amniotic membrane (AAM). The result showed that ADMSCs were closely attached to the surface of AAM and grew well 24 h after seeding. Comparison of the wound healing rate at days 7, 14, and 28 after transplantation showed that ADMSCs seeded on AAM facilitated the healing of full-thickness skin wounds more effectively as compared with either hAM or AAM alone, indicating that ADMSCs participated in skin regeneration. More importantly, we noticed a phenomenon of hair follicle development during the process of skin repair. Composite ADMSCs and AAM not only promoted the healing of the mouse full-thickness defects but also facilitated generation of the appendages of the affected skin, thus promoting restoration of the skin function. Our results provide a new possible therapy idea for the treatment of skin wounds with respect to both anatomical regeneration and functional restoration. PMID:27597871

  12. Hair Follicle Morphogenesis in the Treatment of Mouse Full-Thickness Skin Defects Using Composite Human Acellular Amniotic Membrane and Adipose Derived Mesenchymal Stem Cells

    PubMed Central

    Minjuan, Wu; Jun, Xiong; Shiyun, Shao; Sha, Xu; Haitao, Ni

    2016-01-01

    Early repair of skin injury and maximal restoration of the function and appearance have become important targets of clinical treatment. In the present study, we observed the healing process of skin defects in nude mice and structural characteristics of the new skin after transplantation of isolated and cultured adipose derived mesenchymal stem cells (ADMSCs) onto the human acellular amniotic membrane (AAM). The result showed that ADMSCs were closely attached to the surface of AAM and grew well 24 h after seeding. Comparison of the wound healing rate at days 7, 14, and 28 after transplantation showed that ADMSCs seeded on AAM facilitated the healing of full-thickness skin wounds more effectively as compared with either hAM or AAM alone, indicating that ADMSCs participated in skin regeneration. More importantly, we noticed a phenomenon of hair follicle development during the process of skin repair. Composite ADMSCs and AAM not only promoted the healing of the mouse full-thickness defects but also facilitated generation of the appendages of the affected skin, thus promoting restoration of the skin function. Our results provide a new possible therapy idea for the treatment of skin wounds with respect to both anatomical regeneration and functional restoration.

  13. Hair Follicle Morphogenesis in the Treatment of Mouse Full-Thickness Skin Defects Using Composite Human Acellular Amniotic Membrane and Adipose Derived Mesenchymal Stem Cells.

    PubMed

    Minjuan, Wu; Jun, Xiong; Shiyun, Shao; Sha, Xu; Haitao, Ni; Yue, Wang; Kaihong, Ji

    2016-01-01

    Early repair of skin injury and maximal restoration of the function and appearance have become important targets of clinical treatment. In the present study, we observed the healing process of skin defects in nude mice and structural characteristics of the new skin after transplantation of isolated and cultured adipose derived mesenchymal stem cells (ADMSCs) onto the human acellular amniotic membrane (AAM). The result showed that ADMSCs were closely attached to the surface of AAM and grew well 24 h after seeding. Comparison of the wound healing rate at days 7, 14, and 28 after transplantation showed that ADMSCs seeded on AAM facilitated the healing of full-thickness skin wounds more effectively as compared with either hAM or AAM alone, indicating that ADMSCs participated in skin regeneration. More importantly, we noticed a phenomenon of hair follicle development during the process of skin repair. Composite ADMSCs and AAM not only promoted the healing of the mouse full-thickness defects but also facilitated generation of the appendages of the affected skin, thus promoting restoration of the skin function. Our results provide a new possible therapy idea for the treatment of skin wounds with respect to both anatomical regeneration and functional restoration. PMID:27597871

  14. Blockade of Androgen Markers Using a Novel Betasitosterol, Thioctic Acid and Carnitine-containing Compound in Prostate and Hair Follicle Cell-based Assays.

    PubMed

    Chen, Li; Wang, Jiaolong; Mouser, Glen; Li, Yan Chun; Marcovici, Geno

    2016-06-01

    Androgenetic alopecia (AGA) affects approximately 70% of men and 40% of women in an age-dependent manner and is partially mediated by androgen hormones. Benign prostatic hyperplasia (BPH) similarly affects 50% of the male population, rising by 10% each decade. Finasteride inhibits 5-alpha reductase (5AR) and is used to treat both disorders, despite offering limited clinical benefits accompanied by significant adverse side effects. Building on our previous work demonstrating the efficacy of naturally derived 5AR inhibitors (such as stigmasterol and beta sitosterol), we hypothesize that targeting 5AR as well as inflammatory pathways may yield improved efficacy in AGA and BPH. Here we address these dual pathomechanisms by examining the potency of a novel composition using in vitro assays of representative cell lines for AGA (hair follicle dermal papilla cells) and BPH (LNCaP prostate cells), respectively. Exposure of cells to the novel test composition down-regulated mRNA expression profiles characteristic of both disease processes, which outperformed finasteride. Changes in mRNA expression were corroborated at the protein level as assessed by western blotting. These studies provide proof of concept that novel, naturally derived compositions simultaneously targeting 5AR and inflammatory mediators may represent a rational approach to treating AGA and BPH. Copyright © 2016 John Wiley & Sons, Ltd.

  15. The role of biodegradable engineered random polycaprolactone nanofiber scaffolds seeded with nestin-positive hair follicle stem cells for tissue engineering

    PubMed Central

    Yari, Abazar; Teimourian, Shahram; Amidi, Fardin; Bakhtiyari, Mehrdad; Heidari, Fatemeh; Sajedi, Nayereh; Veijouye, Sanaz Joulai; Dodel, Masumeh; Nobakht, Maliheh

    2016-01-01

    Background: Tissue engineering is a new approach to reconstruction and/or regeneration of lost or damaged tissue. The purpose of this study was to fabricate the polycaprolactone (PCL) random nanofiber scaffold as well as evaluation of the cell viability, adhesion, and proliferation of rat nestin-positive hair follicle stem cells (HFSCs) in the graft material using electrospun PCL nanofiber scaffold in regeneration medicine. Materials and Methods: The bulge HFSCs was isolated from rat whiskers and cultivated in Dulbecco's modified Eagle's medium/F12. To evaluate the biological nature of the bulge stem cells, flow cytometry using nestin, CD34 and K15 antibodies was performed. Electrospinning was used for the production of PCL nanofiber scaffolds. Furthermore, scanning electron microscopy (SEM) for HFSCs attachment, infiltration, and morphology, 3-(4, 5-di-methylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay for cell viability and cytotoxicity, tensile strength of the scaffolds mesh, and histology analysis were used. Results: Flow cytometry showed that HFSCs were nestin and CD34 positive but K15 negative. The results of the MTT assay showed cell viability and cell proliferation of the HFSCs on PCL nanofiber scaffolds. SEM microscopy photographs indicated that HFSCs are attached and spread on PCL nanofiber scaffolds. Furthermore, tensile strength of the scaffolds mesh was measured. Conclusion: The results of this study revealed that modified PCL nanofiber scaffolds are suitable for HFSCs seeding, attachment, and proliferation. Furthermore, HFSCs are attached and proliferated on PCL nanofiber scaffolds. PMID:26962524

  16. [Hair and their environment].

    PubMed

    Piérard-Franchimont, C; Piérard, G E

    2015-02-01

    Hair is influenced by the effects of the daily environment. Some toxic xenobiotics slow down or block the cell renewal of the hair matrix, thus inhibiting hair growth. The ultraviolet light obviously influences the physical structure and physiology of the hair follicle. Tobacco is similarly responsible for negative influences on the evolution of various alopecias. Several cosmetic procedures for maintaining and making hair more attractive are not always harmless, and they occasionally represent a possible origin for alopecia. PMID:26011990

  17. Heterotopic synaptic bodies in the auditory hair cells of adult lizards.

    PubMed

    Miller, M R; Beck, J

    1987-07-01

    The auditory hair cells of adults of eight species of lizards (three gekkonids: Coleonyx variegatus, Gekko gecko, and Cosymbotus platyurus; two teiids: Ameiva ameiva and Cnemidophorus tigris; one anguid: Celestus costatus; one lacertid: Podarcis (Lacerta) sicula; and one iguanid: Crotaphytus wislizeni) were studied by transmission electron microscopy. Heterotopic synaptic bodies were found in some of the auditory hair cells of all of the above species, occurring frequently in the gekkonids but infrequently in other species. The groups of heterotopic synaptic bodies occurred mainly in the infranuclear cytoplasm between the hair cell nucleus and the hair cell plasma membrane. The groups of synaptic bodies that were close to the hair cell nucleus were usually associated with specialized arrays of rough and smooth endoplasmic reticulum. The numbers of heterotopic synaptic bodies were greatest in the gekkonid species and were especially large in Coleonyx variegatus, where an average of 36.8 synaptic bodies occur in one group. The functional significance of the presence of heterotopic synaptic bodies in the auditory hair cells of adults animals is not known. PMID:2820267

  18. Hair as a biomarker of polybrominated diethyl ethers' exposure in infants, children and adults.

    PubMed

    Aleksa, Katarina; Liesivuori, Jyrki; Koren, Gideon

    2012-04-25

    Over the last 20 years hair has moved from being a highly questionable biological matrix to mainstream and acceptable biomarker in forensic sciences where it is primarily used to determine past and present exposure to illicit drugs. In contrast, the use of hair to assess exposure to pesticides and persistent environmental pollutants is still not common. The applicability of this matrix to assess an individual's body burden of chemicals such as polybrominated diethyl ethers (PBDEs) can provide critical insight into current, but also to past exposure levels, which is not possible with more conventional matrices such as blood and urine. Furthermore, as PBDEs cross the placenta and since the hair the fetus is born with begins to grow during the third trimester, this matrix can be used to assess in utero exposure. These features of hair may therefore be used to determine the potential roles of chemicals such as PBDEs in mediating physiological or anatomical abnormalities in infants, children or adults.

  19. In vitro development of secondary follicles from pre-pubertal and adult goats cultured in two-dimensional or three-dimensional systems.

    PubMed

    Silva, G M; Rossetto, R; Chaves, R N; Duarte, A B G; Araújo, V R; Feltrin, C; Bernuci, M P; Anselmo-Franci, J A; Xu, M; Woodruff, T K; Campello, C C; Figueiredo, J R

    2015-08-01

    The aim of this study was to evaluate the influence of two-dimensional (2D) and three-dimensional (3D) alginate culture systems on in vitro development of pre-antral caprine follicles. In addition, the influence of the reproductive age of the ovary donor on the in vitro culture success was investigated. Pre-antral follicles from pre-pubertal or adult goats were isolated and cultured directly on a plastic surface (2D) or encapsulated in an alginate-based matrix (3D). After 18 days, the oocytes underwent in vitro maturation (IVM) and in vitro fertilization (IVF) to produce embryos. The 3D system showed higher rates of follicle survival, lower rates of oocyte extrusion, and a greater number of recovered oocytes for IVM and IVF (P < 0.05). Only pre-antral follicles from adult animals produced MII oocytes and embryos. The estradiol concentrations increased from day 2 to day 12 of culture in all groups tested (P < 0.05). Conversely, progesterone concentrations were lower in 3D-cultured follicles than in 2D-cultured follicles, with differences on days 2 and 6 of culture (P < 0.05). We provide compelling evidence that a 2D or 3D alginate in vitro culture system offers a promising approach to achieving full in vitro development of caprine pre-antral follicles to produce mature oocytes that are capable of fertilization and viable embryos.

  20. Combined effect of follicle-follicle interactions and declining follicle-stimulating hormone on murine follicle health in vitro.

    PubMed

    Baker, S J; Srsen, V; Lapping, R; Spears, N

    2001-10-01

    Follicle selection occurs throughout an adult female's reproductive life, with selected, dominant follicle(s) developing to the preovulatory stage whereas the remaining, subordinate follicles within the growing cohort instead undergo atresia and die. To date, most research into follicle dominance has concentrated on its endocrine regulation, although it seems likely that intraovarian mechanisms are also involved in its regulation. We demonstrate here that the response of singly cultured murine follicles to declining concentrations of FSH depends on their developmental stage, with follicles at an earlier stage of development being much more susceptible than mature follicles to a lowering of FSH levels. We then extrapolate this information to follicle cocultures, in which a large dominant follicle was grown with a small subordinate follicle in a manner that maintained a dominant/subordinate relationship, with follicle health assessed by a terminal transferase-mediated 2'-deoxyuracil 5'-triphosphate nick end-labeled reaction on whole-follicle mounts. Our investigations show a combined negative effect of coculture and FSH withdrawal on small subordinate follicles, such that subordinate follicles cocultured with dominant follicles and subjected to a lowering of FSH levels during the culture period exhibit a greatly increased incidence of apoptosis in the granulosa cells (750% increase) compared with that exhibited by the dominant follicles (97% increase). We suggest that a similar interaction between endocrine and intraovarian factors regulates follicular dominance in vivo, such that dominant follicles, in addition to bringing about a fall in FSH levels via the hypothalamic-pituitary axis, exert local, direct effects on subordinate follicles, with both of these influences combining to induce atresia in subordinate follicles.

  1. Hair Cortisol Analysis: A Promising Biomarker of HPA Activation in Older Adults.

    PubMed

    Wright, Kathy D; Hickman, Ronald; Laudenslager, Mark L

    2015-06-01

    Prolonged stress is a potentially harmful and often undetected risk factor for chronic illness in older adults. Cortisol, one indicator of the body's hormonal responses to stress, is regulated by the hypothalamic-pituitary-adrenal (HPA) axis and is commonly measured in saliva, urine, or blood samples. Cortisol possesses a diurnal pattern and thus collection timing is critical. Hair cortisol is a proxy measure to the total retrospective activity of the HPA axis over the preceding months, much like hemoglobin A1c is a proxy measure of glucose control over the past 3 months. The aim of this review is to examine a novel biomarker, hair cortisol, as a practical measure of long-term retrospective cortisol activity associated with chronic stress in older adults. Hair cortisol analysis advances the science of aging by better characterizing chronic stress as a risk factor for chronic illness progression and as a biomarker of the effectiveness of stress reduction interventions.

  2. sPLA2 -IIA Overexpression in Mice Epidermis Depletes Hair Follicle Stem Cells and Induces Differentiation Mediated Through Enhanced JNK/c-Jun Activation.

    PubMed

    Sarate, Rahul M; Chovatiya, Gopal L; Ravi, Vagisha; Khade, Bharat; Gupta, Sanjay; Waghmare, Sanjeev K

    2016-09-01

    Secretory phospholipase A2 Group-IIA (sPLA2 -IIA) catalyzes the hydrolysis of the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. sPLA2 -IIA is deregulated in various cancers; however, its role in hair follicle stem cell (HFSC) regulation is obscure. Here we report a transgenic mice overexpressing sPLA2 -IIA (K14-sPLA2 -IIA) showed depletion of HFSC pool. This was accompanied with increased differentiation, loss of ortho-parakeratotic organization and enlargement of sebaceous gland, infundibulum and junctional zone. The colony forming efficiency of keratinocytes was significantly reduced. Microarray profiling of HFSCs revealed enhanced level of epithelial mitogens and transcription factors, c-Jun and FosB that may be involved in proliferation and differentiation. Moreover, K14-sPLA2 -IIA keratinocytes showed enhanced activation of EGFR and JNK1/2 that led to c-Jun activation, which co-related with enhanced differentiation. Further, depletion of stem cells in bulge is associated with high levels of chromatin silencing mark, H3K27me3 and low levels of an activator mark, H3K9ac suggestive of alteration in gene expression contributing toward stem cells differentiation. Our results, first time uncovered that overexpression of sPLA2 -IIA lead to depletion of HFSCs and differentiation associated with altered histone modification. Thus involvement of sPLA2 -IIA in stem cells regulation and disease pathogenesis suggest its prospective clinical implications. Stem Cells 2016;34:2407-2417. PMID:27299855

  3. sPLA2 -IIA Overexpression in Mice Epidermis Depletes Hair Follicle Stem Cells and Induces Differentiation Mediated Through Enhanced JNK/c-Jun Activation.

    PubMed

    Sarate, Rahul M; Chovatiya, Gopal L; Ravi, Vagisha; Khade, Bharat; Gupta, Sanjay; Waghmare, Sanjeev K

    2016-09-01

    Secretory phospholipase A2 Group-IIA (sPLA2 -IIA) catalyzes the hydrolysis of the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. sPLA2 -IIA is deregulated in various cancers; however, its role in hair follicle stem cell (HFSC) regulation is obscure. Here we report a transgenic mice overexpressing sPLA2 -IIA (K14-sPLA2 -IIA) showed depletion of HFSC pool. This was accompanied with increased differentiation, loss of ortho-parakeratotic organization and enlargement of sebaceous gland, infundibulum and junctional zone. The colony forming efficiency of keratinocytes was significantly reduced. Microarray profiling of HFSCs revealed enhanced level of epithelial mitogens and transcription factors, c-Jun and FosB that may be involved in proliferation and differentiation. Moreover, K14-sPLA2 -IIA keratinocytes showed enhanced activation of EGFR and JNK1/2 that led to c-Jun activation, which co-related with enhanced differentiation. Further, depletion of stem cells in bulge is associated with high levels of chromatin silencing mark, H3K27me3 and low levels of an activator mark, H3K9ac suggestive of alteration in gene expression contributing toward stem cells differentiation. Our results, first time uncovered that overexpression of sPLA2 -IIA lead to depletion of HFSCs and differentiation associated with altered histone modification. Thus involvement of sPLA2 -IIA in stem cells regulation and disease pathogenesis suggest its prospective clinical implications. Stem Cells 2016;34:2407-2417.

  4. Regeneration of stereocilia of hair cells by forced Atoh1 expression in the adult mammalian cochlea.

    PubMed

    Yang, Shi-Ming; Chen, Wei; Guo, Wei-Wei; Jia, Shuping; Sun, Jian-He; Liu, Hui-Zhan; Young, Wie-Yen; He, David Z Z

    2012-01-01

    The hallmark of mechanosensory hair cells is the stereocilia, where mechanical stimuli are converted into electrical signals. These delicate stereocilia are susceptible to acoustic trauma and ototoxic drugs. While hair cells in lower vertebrates and the mammalian vestibular system can spontaneously regenerate lost stereocilia, mammalian cochlear hair cells no longer retain this capability. We explored the possibility of regenerating stereocilia in the noise-deafened guinea pig cochlea by cochlear inoculation of a viral vector carrying Atoh1, a gene critical for hair cell differentiation. Exposure to simulated gunfire resulted in a 60-70 dB hearing loss and extensive damage and loss of stereocilia bundles of both inner and outer hair cells along the entire cochlear length. However, most injured hair cells remained in the organ of Corti for up to 10 days after the trauma. A viral vector carrying an EGFP-labeled Atoh1 gene was inoculated into the cochlea through the round window on the seventh day after noise exposure. Auditory brainstem response measured one month after inoculation showed that hearing thresholds were substantially improved. Scanning electron microscopy revealed that the damaged/lost stereocilia bundles were repaired or regenerated after Atoh1 treatment, suggesting that Atoh1 was able to induce repair/regeneration of the damaged or lost stereocilia. Therefore, our studies revealed a new role of Atoh1 as a gene critical for promoting repair/regeneration of stereocilia and maintaining injured hair cells in the adult mammal cochlea. Atoh1-based gene therapy, therefore, has the potential to treat noise-induced hearing loss if the treatment is carried out before hair cells die. PMID:23029493

  5. Predictors of hair cortisol concentrations in older adults.

    PubMed

    Feller, Silke; Vigl, Matthaeus; Bergmann, Manuela M; Boeing, Heiner; Kirschbaum, Clemens; Stalder, Tobias

    2014-01-01

    People at older ages are at increased risk for developing stress-related diseases associated with chronically elevated cortisol secretion. However, the main factors contributing to such endocrine alterations in this age group are still largely unknown. This cross-sectional study examined patterns of long-term integrated cortisol secretion, as assessed in hair, in a sample of 654 participants in middle and old adulthood (mean age: 65.8 years; range: 47-82 years) from the German cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC) study in Potsdam. Hair cortisol concentrations (HCC) were determined from the first scalp-near 3 cm hair segment and several sociodemographic, lifestyle, anthropometric, disease-related, and psychological parameters were assessed. In simple linear regressions, HCC were found to increase with participants' age and to be higher in men compared to women. HCC also showed positive associations with waist-to-hip ratio, waist circumference, smoking, prevalent type 2 diabetes mellitus, mental health, daytime sleeping, and being unemployed or retired--as well as a negative association with diastolic blood pressure. After full mutual adjustment, only age and smoking remained independent predictors of HCC. The association between prevalent type 2 diabetes mellitus and HCC was attenuated but still persisted independently in women. Similar, a positive relationship between HCC and alcohol consumption was found in women. The current results confirm previous evidence of positive associations of HCC with age, sex, alcohol consumption, and type 2 diabetes mellitus and add new knowledge on factors--such as smoking--that may contribute to elevated cortisol levels in people at older ages.

  6. Elevation of cadmium, lead, and zinc in the hair of adult black female hypertensives

    SciTech Connect

    Medeiros, D.M.; Pellum, L.K.

    1984-05-01

    The southern portion of the United States has the highest mortality due to cardiovascular disease of any region of the country. The prevalence of hypertension in the South is also higher. Dietary intake of sodium, an overweight condition, and genetic factors may contribute to the problem. The role of trace elements is also a factor in producing hypertension. The objective of the present study was to explore the relationship of selected trace elements with tensive status using hair as a biopsy material. The study examined the differences in hair elemental concentrations between adult black female hypertensives and normotensives from low socioeconomic backgrounds.

  7. Genetically induced cell death in bulge stem cells reveals their redundancy for hair and epidermal regeneration.

    PubMed

    Driskell, Iwona; Oeztuerk-Winder, Feride; Humphreys, Peter; Frye, Michaela

    2015-03-01

    Adult mammalian epidermis contains multiple stem cell populations in which quiescent and more proliferative stem and progenitor populations coexist. However, the precise interrelation of these populations in homeostasis remains unclear. Here, we blocked the contribution of quiescent keratin 19 (K19)-expressing bulge stem cells to hair follicle formation through genetic ablation of the essential histone methyltransferase Setd8 that is required for the maintenance of adult skin. Deletion of Setd8 eliminated the contribution of bulge cells to hair follicle regeneration through inhibition of cell division and induction of cell death, but the growth and morphology of hair follicles were unaffected. Furthermore, ablation of Setd8 in the hair follicle bulge blocked the contribution of K19-postive stem cells to wounded epidermis, but the wound healing process was unaltered. Our data indicate that quiescent bulge stem cells are dispensable for hair follicle regeneration and epidermal injury in the short term and support the hypothesis that quiescent and cycling stem cell populations are equipotent.

  8. Hair shape of curly hair.

    PubMed

    Bernard, Bruno A

    2003-06-01

    The hair follicle is a unique composite organ, composed of epithelial and dermal compartments interacting with each other in a surprisingly autonomous way. This is a self-renewing organ that seems to be a true paradigm of epithelial and mesenchymal interactions. Each of the follicular compartments is endowed with a specific differentiation pathway under the control of an intricate network of growth factors, cytokines, and hormones. As observed for ethnic hairs, even the shape of the hair shaft is intrinsically programmed from the bulb.

  9. Cortisol in hair measured in young adults - a biomarker of major life stressors?

    PubMed Central

    2011-01-01

    Background Stress as a cause of illness has been firmly established. In public health and stress research a retrospective biomarker of extended stress would be an indispensible aid. The objective of this pilot study was to investigate whether concentrations of cortisol in hair correlate with perceived stress, experiences of serious life events, and perceived health in young adults. Methods Hair samples were cut from the posterior vertex area of (n = 99) university students who also answered a questionnaire covering experiences of serious life events, perceived Stress Scale and perceived health during the last three months. Cortisol was measured using a competitive radioimmunoassay in methanol extracts of hair samples frozen in liquid nitrogen and mechanically pulverised. Results Mean cortisol levels were significantly related to serious life events (p = 0.045), weakly negatively correlated to perceived stress (p = 0.025, r = -0.061) but nor affected by sex, coloured/permed hair, intake of pharmaceuticals or self-reported health. In a multiple regression model, only the indicator of serious life events had an independent (p = 0.041) explanation of increased levels of cortisol in hair. Out of four outliers with extremely high cortisol levels two could be contacted, both reported serious psychological problems. Conclusions These findings suggest that measurement of cortisol in hair could serve as a retrospective biomarker of increased cortisol production reflecting exposure to major life stressors and possibly extended psychological illness with important implications for research, clinical practice and public health. Experience of serious life events seems to be more important in raising cortisol levels in hair than perceived stress. PMID:22026917

  10. Associations of zinc and copper levels in serum and hair with sleep duration in adult women.

    PubMed

    Song, Chan-Hee; Kim, Yeong-Hoon; Jung, Kyu-In

    2012-10-01

    Zinc (Zn) and copper (Cu) are essential micronutrients involved in numerous metabolic reactions. They are also antagonists of the N-methyl-D-aspartate glutamate (NMDA) receptor in the central nervous system, which mediates mood, cognition, pain perception, and sleep. However, there have been few studies on the effects of Zn and Cu on sleep. A total of 126 adult women were recruited in this cross-sectional study. Zn and Cu levels in the serum and hair were measured for each subject. The participants completed the 7-day physical activity recall questionnaire and the Hospital Anxiety and Depression Scale. The mean hours of sleep were compared according to the tertiles of Zn, Cu, and Zn/Cu ratio in the serum and hair by analyses of covariance. The participants in the middle tertile of Zn and Zn/Cu ratio in the serum had significantly longer sleep duration compared to those in the lowest tertile (p<0.05 for each). An increasing Zn/Cu ratio in the hair was associated with longer sleep hours (p=0.026), whereas sleep duration decreased significantly from the lowest to the highest tertile of hair Cu level (p=0.010). The largest percentage of participants with optimal sleep duration was observed in the highest tertile of Zn/Cu ratio in the serum and hair (p=0.052 and 0.046, respectively). The results of our study suggest that Zn/Cu ratio as well as Zn or Cu levels in the serum and hair may be involved in sleep duration in adult women.

  11. Aging of hair.

    PubMed

    Trüeb, Ralph M

    2005-06-01

    The appearance of hair plays an important role in people's overall physical appearance and self-perception. With today's increasing life expectation, the desire to look youthful plays a bigger role than ever. The hair care industry has become aware of this and also more capable to deliver active products that are directed toward meeting this consumer demand. The discovery of pharmacological targets and the development of safe and effective drugs also indicate strategies of the drug industry for maintenance of healthy and beautiful hair. Hair aging comprises weathering of the hair shaft and aging of the hair follicle. The latter manifests as decrease of melanocyte function or graying, and decrease in hair production in androgenetic and senescent alopecia. The scalp is also subject to intrinsic or physiologic aging and extrinsic aging caused by external factors. Intrinsic factors are related to individual genetic and epigenetic mechanisms with interindividual variation. Prototypes are familial premature graying and androgenetic alopecia. Extrinsic factors include ultraviolet radiation and smoking. Experimental evidence supports the hypothesis that oxidative stress plays a role in skin and hair aging. Topical anti-aging compounds for hair include humefactants, hair conditioners, photoprotectors, and antioxidants. Current available treatment modalities with proven efficacy for treatment of androgenetic alopecia are topical minoxidil, oral finasteride, and autologous hair transplantation. In the absence of another way to reverse hair graying, hair colorants are the mainstays of recovering lost hair color. Topical liposome targeting for melanins, genes, and proteins selectively to hair follicles are under current investigation.

  12. miR-18b inhibits TGF-β1-induced differentiation of hair follicle stem cells into smooth muscle cells by targeting SMAD2.

    PubMed

    Liu, Xuejuan; Song, Lei; Liu, Jinyu; Wang, Shichao; Tan, Xiaohua; Bai, Xiaoguang; Bai, Tingting; Wang, Yimei; Li, Meiying; Song, Yaolin; Li, Yulin

    2013-08-30

    Human hair follicle mesenchymal stem cells (hHF-MSCs) are capable of differentiating into smooth muscle cells (SMCs) in response to transforming growth factor-β (TGF-β), and thus can be used for cardiovascular tissue engineering and regenerative medicine. However, the precise molecular mechanisms underlying SMC conversion of hHF-MSCs are still undefined. MicroRNAs (miRNAs) are small noncoding RNAs that modulate gene expression post-transcriptionally by binding to the complementary sequences of targeted mRNAs. Accumulating evidence indicates that miRNAs are associated with SMC differentiation in vitro andin vivo. In this study, we revealed that miR-18b was significantly downregulated during TGF-β1-induced hHF-MSCs differentiation into SMC using miRNA array profiling and quantitative RT- PCR (qRT-PCR). Over-expression of miR-18b in hHF-MSCs led to remarkable downregulation of SMC-specific markers such as SMA and calponin proteins. On the contrary, inhibition of endogenous miR-18b by its antisense oligonucleotide antagomir-18b reversed the changes of SMA and calponin proteins. We also showed that SMAD2, a key transcription regulator in TGF-β signaling which was involved in SMC differentiation, is regulated by miR-18b. miR-18b could suppress the expression of SMAD2 protein by targeting the 3'UTR of SMAD2 gene without affecting its mRNA level in hHF-MSCs. Moreover, knockdown of SMAD2 by RNA interference could block the effect of inhibition of miR-18b on SMC differentiation, indicating that SMAD2 contributed to miR-18b mediated regulation of TGF-β-induced SMC differentiation. In conclusion, this study demonstrated that miR-18b regulated the TGF-β1-induced differentiation of hHF-MSCs into SMCs by targeting SMAD2 gene, and provided novel insights into the regulatory mechanisms of TGF-β-induced SMC differentiation. PMID:23916701

  13. miR-18b inhibits TGF-β1-induced differentiation of hair follicle stem cells into smooth muscle cells by targeting SMAD2.

    PubMed

    Liu, Xuejuan; Song, Lei; Liu, Jinyu; Wang, Shichao; Tan, Xiaohua; Bai, Xiaoguang; Bai, Tingting; Wang, Yimei; Li, Meiying; Song, Yaolin; Li, Yulin

    2013-08-30

    Human hair follicle mesenchymal stem cells (hHF-MSCs) are capable of differentiating into smooth muscle cells (SMCs) in response to transforming growth factor-β (TGF-β), and thus can be used for cardiovascular tissue engineering and regenerative medicine. However, the precise molecular mechanisms underlying SMC conversion of hHF-MSCs are still undefined. MicroRNAs (miRNAs) are small noncoding RNAs that modulate gene expression post-transcriptionally by binding to the complementary sequences of targeted mRNAs. Accumulating evidence indicates that miRNAs are associated with SMC differentiation in vitro andin vivo. In this study, we revealed that miR-18b was significantly downregulated during TGF-β1-induced hHF-MSCs differentiation into SMC using miRNA array profiling and quantitative RT- PCR (qRT-PCR). Over-expression of miR-18b in hHF-MSCs led to remarkable downregulation of SMC-specific markers such as SMA and calponin proteins. On the contrary, inhibition of endogenous miR-18b by its antisense oligonucleotide antagomir-18b reversed the changes of SMA and calponin proteins. We also showed that SMAD2, a key transcription regulator in TGF-β signaling which was involved in SMC differentiation, is regulated by miR-18b. miR-18b could suppress the expression of SMAD2 protein by targeting the 3'UTR of SMAD2 gene without affecting its mRNA level in hHF-MSCs. Moreover, knockdown of SMAD2 by RNA interference could block the effect of inhibition of miR-18b on SMC differentiation, indicating that SMAD2 contributed to miR-18b mediated regulation of TGF-β-induced SMC differentiation. In conclusion, this study demonstrated that miR-18b regulated the TGF-β1-induced differentiation of hHF-MSCs into SMCs by targeting SMAD2 gene, and provided novel insights into the regulatory mechanisms of TGF-β-induced SMC differentiation.

  14. Scurvy, corkscrew hair (image)

    MedlinePlus

    Scurvy is a nutritional disease caused by deficiency of vitamin C. Pinpoint bleeding around hair follicles, and " ... this picture, can occur as a result of scurvy. Bleeding along the gums is common. This disease ...

  15. Hair concentration of essential trace elements in adult non-exposed Russian population.

    PubMed

    Skalny, Anatoly V; Skalnaya, Margarita G; Tinkov, Alexey A; Serebryansky, Eugeny P; Demidov, Vasily A; Lobanova, Yulia N; Grabeklis, Andrei R; Berezkina, Elena S; Gryazeva, Irina V; Skalny, Andrey A; Skalnaya, Oksana A; Zhivaev, Nikolay G; Nikonorov, Alexandr A

    2015-11-01

    Appropriate reference values of hair trace element content are required for correct interpretation of biomonitoring data. The primary objective of the current study was to estimate the reference values of selected essential trace elements in hair of adult Russian population. Involved in current investigation were 7256 occupationally non-exposed adults aged from 20 to 60 years and living in the European part of Russia. Occipital hair essential metal and metalloid (Co, Cr, Cu, Fe, Mn, Se, V, Zn) content was estimated using inductively coupled plasma mass spectrometry. The reference ranges were calculated in accordance with the International Union of Pure and Applied Chemistry (IUPAC) recommendations. Women were characterized by 55, 18, 58, and 7% higher values of hair Co, Cu, Mn, and Zn content as compared to the values observed in men. At the same time, hair Cr, Fe, Se, and V concentration in men significantly exceeded the respective female values by 65, 13, 20, and 56%. Consequently, the reference ranges of essential hair trace elements content should be separately calculated for both men and women. The obtained reference ranges for hair Co, Cr, Cu, Fe, Mn, Se, V, and Zn in men were 0.11-0.67, 0.007-0.045, 10.4-22.6, 11.1-40.5, 0.24-1.05, 0.089-0.480, 0.014-0.083, and 125.7-262.8 μg/g, respectively. The respective values estimated for women were 0.06-0.40, 0.011-0.085, 12.1-44.5, 8.9-25.6, 0.32-2.05, 0.094-0.504, 0.010-0.056, and 140.0-315.1 μg/g. The reference ranges for hair Co (0.07-0.50), Cr (0.009-0.073), Cu (11.8-29.2), Fe (9.6-31.5), Mn (0.29-1.76), Se (0.093-0.482), V (0.011-0.069), and Zn (134.7-301.9) content (μg/g) in the general cohort were also calculated.

  16. Determination of hair structure and shape.

    PubMed

    Schlake, Thomas

    2007-04-01

    The hair follicle attracted significant attention as a model for the investigation of diverse biological problems. Whereas its morphology and the structure of the hair shaft are known in detail, the molecular biology of this miniorgan is significantly less characterised. Many efforts focussed on the development of the hair follicle and its stem cell reservoir; by contrast, the follicular product, the hair, which is interesting not only in terms of cosmetics was neglected. This review highlights our current knowledge of the control of hair structure and shape with emphasis on mouse hair follicle biology and discusses continuing problems.

  17. Diversity in human hair growth, diameter, colour and shape. An in vivo study on young adults from 24 different ethnic groups observed in the five continents.

    PubMed

    Loussouarn, Geneviève; Lozano, Isabelle; Panhard, Ségolène; Collaudin, Catherine; El Rawadi, Charles; Genain, Gilles

    2016-04-01

    Based on previous findings, from a worldwide study, classified the shapes of human hair into 8 major types, from straight to highly curly. This clearly extended the usual classification of hair into African, Asian or Caucasian types. However, determinations of hair growth parameters and hair density were excluded from such studies. To measure and compare the hair growth profiles of young adults without alopecia living in the five continents. 2249 young adults (18-35 years, females and males) without alopecia, originating from 24 various human ethnic groups were included in the study. Total hair density, telogen percentage and growth rate on three different scalp areas were measured, using non-invasive validated techniques. Natural hair colour level, curliness and hair diameter were additionally recorded, when practically possible. Diversity in hair growth parameters among the entire cohort was a key finding, with differences linked to scalp area, gender and geographic origin. Statistical approaches depicted African hair as having lower density and a slower growth rate. Asian hair showed a thicker diameter, with faster growth. Caucasian hair showed a high total hair density. On the one hand, this inter-continental study of hair growth parameters provides initial valuable base-line data on hair in young adults without alopecia, and on the other hand, further extends our knowledge of this unique human appendage, with some mosaic features, observed worldwide. PMID:27019510

  18. Diversity in human hair growth, diameter, colour and shape. An in vivo study on young adults from 24 different ethnic groups observed in the five continents.

    PubMed

    Loussouarn, Geneviève; Lozano, Isabelle; Panhard, Ségolène; Collaudin, Catherine; El Rawadi, Charles; Genain, Gilles

    2016-04-01

    Based on previous findings, from a worldwide study, classified the shapes of human hair into 8 major types, from straight to highly curly. This clearly extended the usual classification of hair into African, Asian or Caucasian types. However, determinations of hair growth parameters and hair density were excluded from such studies. To measure and compare the hair growth profiles of young adults without alopecia living in the five continents. 2249 young adults (18-35 years, females and males) without alopecia, originating from 24 various human ethnic groups were included in the study. Total hair density, telogen percentage and growth rate on three different scalp areas were measured, using non-invasive validated techniques. Natural hair colour level, curliness and hair diameter were additionally recorded, when practically possible. Diversity in hair growth parameters among the entire cohort was a key finding, with differences linked to scalp area, gender and geographic origin. Statistical approaches depicted African hair as having lower density and a slower growth rate. Asian hair showed a thicker diameter, with faster growth. Caucasian hair showed a high total hair density. On the one hand, this inter-continental study of hair growth parameters provides initial valuable base-line data on hair in young adults without alopecia, and on the other hand, further extends our knowledge of this unique human appendage, with some mosaic features, observed worldwide.

  19. Levels of selected trace metals in hair of urban and rural adult male population of Pakistan

    SciTech Connect

    Ashraf, W.; Jaffar, M.; Mohammad, D.

    1995-02-01

    Human scalp hair as a biopsy material may well serve the purpose of estimating the degree of human exposure to environmental contaminants, especially trace metals. To this effect, the levels of trace metals in hair of various groups of population living in areas with varying extent of environmental exposure are generally compared together. Such comparative evaluations are important since they are unique for each group of population and probably reflect not only a number of factors of genetical, nutritional and environmental origin, but also indicate relationship with factors such as food, ambient air, drinking water, occupational exposure, age, race, sex and metabolic condition etc. Also there are some elements which are selectively deposited in hair and may thus provide clinical information on the level of exposure and toxication. The aim of the present study was two-fold: to collect base-line trace metal data on hair and to evaluate the metal levels as measure of the nutritional status of the relevant groups of urban and rural population in terms of industrial, agricultural and occupation exposure. For this purpose, scalp hair samples were obtained from donors belonging to urban adult male population from the city of Peshawer and a rural town, Jamrood and were investigated for three essential metals (Na, K and Zn) and four non-essential metals (Co, Hg, As and Ag) by AAS technique. The impact of urban and rural environments, including the food habits of individuals, on trace metal distribution in scalp hair of the two classes of population is then reviewed with reference to the literature data available from other parts of the world. 16 refs., 5 tabs.

  20. Hair transplantation in mice: Challenges and solutions.

    PubMed

    Asgari, Azar Z; Rufaut, Nicholas W; Morrison, Wayne A; Dilley, Rodney J; Knudsen, Russle; Jones, Leslie N; Sinclair, Rodney D

    2016-07-01

    Hair follicle cells contribute to wound healing, skin circulation, and skin diseases including skin cancer, and hair transplantation is a useful technique to study the participation of hair follicle cells in skin homeostasis and wound healing. Although hair follicle transplantation is a well-established human hair-restoration procedure, follicular transplantation techniques in animals have a number of shortcomings and have not been well described or optimized. To facilitate the study of follicular stem and progenitor cells and their interaction with surrounding skin, we have established a new murine transplantation model, similar to follicular unit transplantation in humans. Vibrissae from GFP transgenic mice were harvested, flip-side microdissected, and implanted individually into needle hole incisions in the back skin of immune-deficient nude mice. Grafts were evaluated histologically and the growth of transplanted vibrissae was observed. Transplanted follicles cycled spontaneously and newly formed hair shafts emerged from the skin after 2 weeks. Ninety percent of grafted vibrissae produced a hair shaft at 6 weeks. After pluck-induced follicle cycling, growth rates were equivalent to ungrafted vibrissae. Transplanted vibrissae with GFP-positive cells were easily identified in histological sections. We established a follicular vibrissa transplantation method that recapitulates human follicular unit transplantation. This method has several advantages over current protocols for animal hair transplantation. The method requires no suturing and minimizes the damage to donor follicles and recipient skin. Vibrissae are easier to microdissect and transplant than pelage follicles and, once transplanted, are readily distinguished from host pelage hair. This facilitates measurement of hair growth. Flip-side hair follicle microdissection precisely separates donor follicular tissue from interfollicular tissue and donor cells remain confined to hair follicles. This makes it

  1. HEAD LICE IN HAIR SAMPLES FROM YOUTHS, ADULTS AND THE ELDERLY IN MANAUS, AMAZONAS STATE, BRAZIL

    PubMed Central

    NUNES, Suellen Cristina Barbosa; MORONI, Raquel Borges; MENDES, Júlio; JUSTINIANO, Sílvia Cássia Brandão; MORONI, Fábio Tonissi

    2015-01-01

    A study of head lice infestations among young people, adults and elderly individuals was conducted from August 2010 to July 2013 in Manaus, AM, Northern Brazil. Hair samples collected from 1,860 individuals in 18 barber shops and beauty parlors were examined for the ectoparasite. The occurrence of pediculosis and its association with factors, such as sex, age, ethnicity, hair characteristics and the socioeconomic profile of salon customers, salon location and seasonal variation were determined. The overall occurrence rate was 2.84%. Occurrence was higher in hair samples from non-blacks and the elderly. Higher occurrence was also observed during kindergarten, elementary and junior education school holidays. The results indicate that the occurrence of head lice among young people, adults and the elderly in Manaus is relatively low compared to that determined in children and in other regions of the country. After children, the elderly were the most affected. The study also indicated the need to adopt additional procedures to improve surveys among the population with low or no purchasing power, which is usually the most affected by this ectoparasitic disease. PMID:26200965

  2. HEAD LICE IN HAIR SAMPLES FROM YOUTHS, ADULTS AND THE ELDERLY IN MANAUS, AMAZONAS STATE, BRAZIL.

    PubMed

    Nunes, Suellen Cristina Barbosa; Moroni, Raquel Borges; Mendes, Júlio; Justiniano, Sílvia Cássia Brandão; Moroni, Fábio Tonissi

    2015-01-01

    A study of head lice infestations among young people, adults and elderly individuals was conducted from August 2010 to July 2013 in Manaus, AM, Northern Brazil. Hair samples collected from 1,860 individuals in 18 barber shops and beauty parlors were examined for the ectoparasite. The occurrence of pediculosis and its association with factors, such as sex, age, ethnicity, hair characteristics and the socioeconomic profile of salon customers, salon location and seasonal variation were determined. The overall occurrence rate was 2.84%. Occurrence was higher in hair samples from non-blacks and the elderly. Higher occurrence was also observed during kindergarten, elementary and junior education school holidays. The results indicate that the occurrence of head lice among young people, adults and the elderly in Manaus is relatively low compared to that determined in children and in other regions of the country. After children, the elderly were the most affected. The study also indicated the need to adopt additional procedures to improve surveys among the population with low or no purchasing power, which is usually the most affected by this ectoparasitic disease.

  3. Follicle-stimulating hormone, interleukin-1, and bone density in adult women.

    PubMed

    Cannon, Joseph G; Cortez-Cooper, Miriam; Meaders, Eric; Stallings, Judith; Haddow, Sara; Kraj, Barbara; Sloan, Gloria; Mulloy, Anthony

    2010-03-01

    Recent studies have indicated that follicle-stimulating hormone (FSH) promotes bone loss. The present study tested the hypothesis that FSH enhances the activity of bone-resorbing cytokines [interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, and IL-6], either by inducing their secretion or by altering their receptor expression. Thirty-six women between the ages of 20 and 50 were assessed for bone mineral density (BMD), reproductive hormone, cytokine ligand and soluble receptor concentrations, and surface expression of cytokine receptors on monocytes. In addition, isolated mononuclear cells were incubated in vitro with exogenous FSH. Univariate regression analyses indicated that BMD was inversely related to serum FSH (r = -0.29 to -0.51, P = 0.03-0.001, depending upon the skeletal site). Physical activity and body composition were also identified as significant factors by multiple regressions. Exogenous FSH induced isolated cells to secrete IL-1beta, TNF-alpha, and IL-6 in proportion to the surface expression of FSH receptors on the monocytes. Endogenous (serum) FSH concentrations correlated with the circulating concentrations of these cytokines. None of these individual cytokines was related to BMD, but the IL-1beta to IL-1 receptor antagonist (IL-1Ra) ratio was inversely related to BMD (r = -0.53, P = 0.002) in all but the most physically active women, who had significantly lower expression of IL-1 type I receptors relative to type II (decoy receptors, P = 0.01). Physical activity also correlated positively with secretion of inhibitory soluble IL-1 receptors (r = 0.53, P = 0.003). Moreover, IL-1Ra correlated strongly with percent body fat (r = 0.66, P < 0.0001). These results indicate that BMD is related to FSH concentration, physical activity, and body composition. Although each of these factors likely has direct effects on bone, the present study suggests that each may also influence BMD by modulating the activity of the osteoresorptive cytokine IL-1beta.

  4. Isolation and Quantification of Glycosaminoglycans from Human Hair Shaft

    PubMed Central

    Bonovas, Stefanos; Sitaras, Nikolaos

    2016-01-01

    Background There is evidence that glycosaminoglycans (GAGs) are present in the hair shaft within the follicle but there are no studies regarding GAGs isolation and measurement in the human hair shaft over the scalp surface, it means, in the free hair shaft. Objective The purpose of our research was to isolate and measure the total GAGs from human free hair shaft. Methods Seventy-five healthy individuals participated in the study, 58 adults, men and women over the age of 50 and 17 children (aged 4~9). GAGs in hair samples, received from the parietal and the occipital areas, were isolated with 4 M guanidine HCl and measured by the uronic acid-carbazole reaction assay. Results GAGs concentration was significantly higher in the occipital area than in the parietal area, in all study groups. GAG levels from both areas were significantly higher in children than in adults. GAG levels were not associated with gender, hair color or type. Conclusion We report the presence of GAGs in the human free hair shaft and the correlation of hair GAG levels with the scalp area and participants' age. PMID:27746630

  5. Markers of epidermal stem cell subpopulations in adult mammalian skin.

    PubMed

    Kretzschmar, Kai; Watt, Fiona M

    2014-10-01

    The epidermis is the outermost layer of mammalian skin and comprises a multilayered epithelium, the interfollicular epidermis, with associated hair follicles, sebaceous glands, and eccrine sweat glands. As in other epithelia, adult stem cells within the epidermis maintain tissue homeostasis and contribute to repair of tissue damage. The bulge of hair follicles, where DNA-label-retaining cells reside, was traditionally regarded as the sole epidermal stem cell compartment. However, in recent years multiple stem cell populations have been identified. In this review, we discuss the different stem cell compartments of adult murine and human epidermis, the markers that they express, and the assays that are used to characterize epidermal stem cell properties.

  6. Aminoglycoside ototoxicity and hair cell ablation in the adult gerbil: A simple model to study hair cell loss and regeneration.

    PubMed

    Abbas, Leila; Rivolta, Marcelo N

    2015-07-01

    The Mongolian gerbil, Meriones unguiculatus, has been widely employed as a model for studies of the inner ear. In spite of its established use for auditory research, no robust protocols to induce ototoxic hair cell damage have been developed for this species. In this paper, we demonstrate the development of an aminoglycoside-induced model of hair cell loss, using kanamycin potentiated by the loop diuretic furosemide. Interestingly, we show that the gerbil is relatively insensitive to gentamicin compared to kanamycin, and that bumetanide is ineffective in potentiating the ototoxicity of the drug. We also examine the pathology of the spiral ganglion after chronic, long-term hair cell damage. Remarkably, there is little or no neuronal loss following the ototoxic insult, even at 8 months post-damage. This is similar to the situation often seen in the human, where functioning neurons can persist even decades after hair cell loss, contrasting with the rapid, secondary degeneration found in rats, mice and other small mammals. We propose that the combination of these factors makes the gerbil a good model for ototoxic damage by induced hair cell loss.

  7. Aminoglycoside ototoxicity and hair cell ablation in the adult gerbil: A simple model to study hair cell loss and regeneration

    PubMed Central

    Abbas, Leila; Rivolta, Marcelo N.

    2015-01-01

    The Mongolian gerbil, Meriones unguiculatus, has been widely employed as a model for studies of the inner ear. In spite of its established use for auditory research, no robust protocols to induce ototoxic hair cell damage have been developed for this species. In this paper, we demonstrate the development of an aminoglycoside-induced model of hair cell loss, using kanamycin potentiated by the loop diuretic furosemide. Interestingly, we show that the gerbil is relatively insensitive to gentamicin compared to kanamycin, and that bumetanide is ineffective in potentiating the ototoxicity of the drug. We also examine the pathology of the spiral ganglion after chronic, long-term hair cell damage. Remarkably, there is little or no neuronal loss following the ototoxic insult, even at 8 months post-damage. This is similar to the situation often seen in the human, where functioning neurons can persist even decades after hair cell loss, contrasting with the rapid, secondary degeneration found in rats, mice and other small mammals. We propose that the combination of these factors makes the gerbil a good model for ototoxic damage by induced hair cell loss. PMID:25783988

  8. Female Pattern Hair Loss: a clinical and pathophysiological review*

    PubMed Central

    Ramos, Paulo Müller; Miot, Hélio Amante

    2015-01-01

    Female Pattern Hair Loss or female androgenetic alopecia is the main cause of hair loss in adult women and has a major impact on patients' quality of life. It evolves from the progressive miniaturization of follicles that lead to a subsequent decrease of the hair density, leading to a non-scarring diffuse alopecia, with characteristic clinical, dermoscopic and histological patterns. In spite of the high frequency of the disease and the relevance of its psychological impact, its pathogenesis is not yet fully understood, being influenced by genetic, hormonal and environmental factors. In addition, response to treatment is variable. In this article, authors discuss the main clinical, epidemiological and pathophysiological aspects of female pattern hair loss. PMID:26375223

  9. Hair and scalp disorders in ethnic populations.

    PubMed

    Rodney, Ife J; Onwudiwe, Oge C; Callender, Valerie D; Halder, Rebat M

    2013-04-01

    Human hair has been classified into 3 major groups, as determined by ethnic origin. In these populations, significant structural and biochemical variations of the hair follicle and shaft are seen, as well as unique hair grooming practices. These structural variations of the hair are closely linked to the common disorders of the hair and scalp, such as acquired trichorrhexis nodosa, seborrheic dermatitis, traction alopecia, central centrifugal cicatricial alopecia, dissecting cellulitis, frontal fibrosing alopecia, and pseudofolliculitis barbae. PMID:23652889

  10. Canonical and non-canonical Wnt signaling control the regeneration of amputated rodent vibrissae follicles.

    PubMed

    Yuan, Yan-Ping; Huang, Keng; Xu, Yan-Min; Chen, Xian-Cai; Li, Hai-Hong; Cai, Bo-Zhi; Liu, Yang; Zhang, Huan; Li, Yu; Lin, Chang-Min

    2016-02-01

    Although mammals are notoriously poor at regeneration compared with many lower-order species, the hair follicle, particular to mammals, is capable of regeneration following partial amputation. The detailed internal mechanism of this phenomenon is still unclear. Development and regrowth of the hair follicle depends on dermal-epidermal interaction within the hair follicle. Previous studies have shown that Wnt/β-catenin, Shh, Bmp, PDGF, TGF and Notch signals all take part in the development and growth of the hair follicle, and the Wnt/β-catenin signaling additionally plays an indispensable role in hair follicle morphogenesis and regrowth. In this study, we investigated the localization, as well as, protein levels of Wnt/β-catenin signaling molecules during amputated whisker follicle regeneration. PMID:26742765

  11. Recurrence of Dysplastic Nevi Is Strongly Associated with Extension of the Lesions to the Lateral Margins and into the Deep Margins through the Hair Follicles in the Original Shave Removal Specimens

    PubMed Central

    2016-01-01

    Melanocytic nevi, including dysplastic or atypical nevi (DN), can recur or persist following shave removal procedures, and recurrence may resemble melanoma, both clinically and histologically (pseudomelanoma). Recurrence may originate from proliferation of the remaining neoplastic melanocytes following incomplete removal. The present study determines the rate and etiology of this event. A cross-sectional analysis of 110 excision specimens showing histological recurrence was performed, and these specimens were compared to the slides of the original shave specimens showing mildly atypical DN. In the second portion of the study, a retrospective review of 167 cases with biopsy-proven mildly atypical DN which were followed up for at least two years was conducted to determine the rate of recurrence/persistence. When followed up for two years, DN, with positive shave margins, defined by extension or very close extension (≤0.2 mm) of the lesions to the lateral margins and into the deep margins through the hair follicles in the shave removal specimens, have a higher probability of recurrence than DN with negative (or clear) margins (odds ratio (OR) = 158; 95% confidence interval (CI) = 36.62–683; P < 0.001). The overall rate of histologically confirmed recurrence/persistence was approximately 10%. PMID:27774100

  12. Hair growth in neonatally undernourished rats.

    PubMed

    Salas, M; Pulido, S; Torrero, C; Regalado, M; Loranca, A

    1995-01-01

    Interaction between neonatal undernutrition and the increased self-grooming activity upon hair growth of several body areas was analyzed in rats of 10, 20 and 30 days of age. Light microscopic observations on methylene blue impregnated hairs showed that these perinatal influences delayed the growth of hair follicles and thickness and length of hair measurements of the head and thoracic areas. The hair growth of lateral abdominal regions was less affected. Data suggest that hair alterations are primarily related to food deprivation since hair follicle measures of all skin areas were more affected than the distal hair measurements. Moreover, the distribution of impaired hair growth on different body areas correlates well with the increased self-grooming components associated to neonatal undernourishment. PMID:8914627

  13. In vivo and in vitro biophysical properties of hair cells from the lateral line and inner ear of developing and adult zebrafish

    PubMed Central

    Olt, Jennifer; Johnson, Stuart L; Marcotti, Walter

    2014-01-01

    Hair cells detect and process sound and movement information, and transmit this with remarkable precision and efficiency to afferent neurons via specialized ribbon synapses. The zebrafish is emerging as a powerful model for genetic analysis of hair cell development and function both in vitro and in vivo. However, the full exploitation of the zebrafish is currently limited by the difficulty in obtaining systematic electrophysiological recordings from hair cells under physiological recording conditions. Thus, the biophysical properties of developing and adult zebrafish hair cells are largely unknown. We investigated potassium and calcium currents, voltage responses and synaptic activity in hair cells from the lateral line and inner ear in vivo and using near-physiological in vitro recordings. We found that the basolateral current profile of hair cells from the lateral line becomes more segregated with age, and that cells positioned in the centre of the neuromast show more mature characteristics and those towards the edge retain a more immature phenotype. The proportion of mature-like hair cells within a given neuromast increased with zebrafish development. Hair cells from the inner ear showed a developmental change in current profile between the juvenile and adult stages. In lateral line hair cells from juvenile zebrafish, exocytosis also became more efficient and required less calcium for vesicle fusion. In hair cells from mature zebrafish, the biophysical characteristics of ion channels and exocytosis resembled those of hair cells from other lower vertebrates and, to some extent, those in the immature mammalian vestibular and auditory systems. We show that although the zebrafish provides a suitable animal model for studies on hair cell physiology, it is advisable to consider that the age at which the majority of hair cells acquire a mature-type configuration is reached only in the juvenile lateral line and in the inner ear from >2 months after hatching. PMID

  14. Sensory Hairs in the Bowhead Whale, Balaena mysticetus (Cetacea, Mammalia).

    PubMed

    Drake, Summer E; Crish, Samuel D; George, John C; Stimmelmayr, Raphaella; Thewissen, J G M

    2015-07-01

    We studied the histology and morphometrics of the hairs of bowhead whales (Balaena mysticetus). Thes