Science.gov

Sample records for adult head model

  1. Modeling heading in adult soccer players.

    PubMed

    Ponce, Ernesto; Ponce, Daniel; Andresen, Max

    2014-01-01

    Heading soccer balls can generate mild brain injuries and in the long run can lead to difficulty in solving problems, memory deficits, and language difficulties. Researchers evaluated the effects on the head for both correct and incorrect heading techniques. They based the head's geometry on medical images. They determined the injury's magnitude by comparing the neurological tissue's resistance with predictions of the generated stresses. The evaluation examined fast playing conditions in adult soccer, taking into account the ball's speed and the type of impact. Mathematical simulations using the finite element method indicated that correctly heading balls arriving at moderate speed presents a low risk of brain injury. However, damage can happen around the third cervical vertebra. These results coincide with medical studies. Incorrect heading greatly increases the brain injury risk and can alter the parietal area. PMID:25248195

  2. A revised dosimetric model of the adult head and brain

    SciTech Connect

    Bouchet, L.G.; Bolch, W.E.; Weber, D.A.

    1996-06-01

    During the last decade, new radiopharmaceutical have been introduced for brain imaging. The marked differences of these tracers in tissue specificity within the brain and their increasing use for diagnostic studies support the need for a more anthropomorphic model of the human brain and head. Brain and head models developed in the past have been only simplistic representations of this anatomic region. For example, the brain within the phantom of MIRD Pamphlet No. 5 Revised is modeled simply as a single ellipsoid of tissue With no differentiation of its internal structures. To address this need, the MIRD Committee established a Task Group in 1992 to construct a more detailed brain model to include the cerebral cortex, the white matter, the cerebellum, the thalamus, the caudate nucleus, the lentiform nucleus, the cerebral spinal fluid, the lateral ventricles, and the third ventricle. This brain model has been included within a slightly modified version of the head model developed by Poston et al. in 1984. This model has been incorporated into the radiation transport code EGS4 so as to calculate photon and electron absorbed fractions in the energy range 10 keV to 4 MeV for each of thirteen sources in the brain. Furthermore, explicit positron transport have been considered, separating the contribution by the positron itself and its associated annihilations photons. No differences are found between the electron and positron absorbed fractions; however, for initial energies of positrons greater than {approximately}0.5 MeV, significant differences are found between absorbed fractions from explicit transport of annihilation photons and those from an assumed uniform distribution of 0.511-MeV photons. Subsequently, S values were calculated for a variety of beta-particle and positron emitters brain imaging agents. Moreover, pediatric head and brain dosimetric models are currently being developed based on this adult head model.

  3. A revised dosimetric model of the adult head and brain

    SciTech Connect

    Bouchet, L.G.; Bolch, W.E.; Weber, D.A.; Atkins, H.L.; Poston, J.W. ||

    1996-07-01

    During the last decade, several new radiopharmaceuticals have been introduced for brain imaging. The marked differences of these tracers in tissue specificicity within the brain and their increasing use for diagnostic studies support the need for a more antihropomorphic model of the human brain and head. Brain and head models developed in the past have comprised only simplistic representations of this anatomic region. A new brain model has been developed which includes eight subregions: the caudate nucleus, the cerebellium, the cerebral cortex, the lateral ventricles, the lentiform nucleus, the thalamus, the third ventricle and the white matter. This brain model has been included within a slightly modified version of the head model developed by Poston et al. in 1984. The head model, which includes both the thyroid and eyes, was modified in this work to include the cerebrospinal fluid within the cranial and spinal regions. Absorbed fractions of energy for photon and electron sources located in thirteen source regions within the new head model were calculated using the EGS4 Monte Carlo radiation transport code for radiations in the energy range 10 keV to 4 MeV. S-values were calculated for five radionuclides used in brain imaging ({sup 11}C, {sup 15}O, {sup 18}F, {sup 99m}Tc and {sup 123}I) and for three radionuclides showing selective uptake in the thyroid ({sup 99m}Tc, {sup 123}I, and {sup 131}I). S-values were calculated using 100 discrete energy points in the beta-emission spectrum of the different radionuclides. 17 refs., 14 figs., 3 tabs.

  4. Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head

    NASA Astrophysics Data System (ADS)

    Selb, Juliette; Ogden, Tyler M.; Dubb, Jay; Fang, Qianqian; Boas, David A.

    2014-01-01

    Near-infrared spectroscopy (NIRS) estimations of the adult brain baseline optical properties based on a homogeneous model of the head are known to introduce significant contamination from extracerebral layers. More complex models have been proposed and occasionally applied to in vivo data, but their performances have never been characterized on realistic head structures. Here we implement a flexible fitting routine of time-domain NIRS data using graphics processing unit based Monte Carlo simulations. We compare the results for two different geometries: a two-layer slab with variable thickness of the first layer and a template atlas head registered to the subject's head surface. We characterize the performance of the Monte Carlo approaches for fitting the optical properties from simulated time-resolved data of the adult head. We show that both geometries provide better results than the commonly used homogeneous model, and we quantify the improvement in terms of accuracy, linearity, and cross-talk from extracerebral layers.

  5. Volume-averaged SAR in adult and child head models when using mobile phones: a computational study with detailed CAD-based models of commercial mobile phones.

    PubMed

    Keshvari, Jafar; Heikkilä, Teemu

    2011-12-01

    Previous studies comparing SAR difference in the head of children and adults used highly simplified generic models or half-wave dipole antennas. The objective of this study was to investigate the SAR difference in the head of children and adults using realistic EMF sources based on CAD models of commercial mobile phones. Four MRI-based head phantoms were used in the study. CAD models of Nokia 8310 and 6630 mobile phones were used as exposure sources. Commercially available FDTD software was used for the SAR calculations. SAR values were simulated at frequencies 900 MHz and 1747 MHz for Nokia 8310, and 900 MHz, 1747 MHz and 1950 MHz for Nokia 6630. The main finding of this study was that the SAR distribution/variation in the head models highly depends on the structure of the antenna and phone model, which suggests that the type of the exposure source is the main parameter in EMF exposure studies to be focused on. Although the previous findings regarding significant role of the anatomy of the head, phone position, frequency, local tissue inhomogeneity and tissue composition specifically in the exposed area on SAR difference were confirmed, the SAR values and SAR distributions caused by generic source models cannot be extrapolated to the real device exposures. The general conclusion is that from a volume averaged SAR point of view, no systematic differences between child and adult heads were found. PMID:22005524

  6. Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head.

    PubMed

    Okada, E; Firbank, M; Schweiger, M; Arridge, S R; Cope, M; Delpy, D T

    1997-01-01

    Near-infrared light propagation in various models of the adult head is analyzed by both time-of-flight measurements and mathematical prediction. The models consist of three- or four-layered slabs, the latter incorporating a clear cerebrospinal fluid (CSF) layer. The most sophisticated model also incorporates slots that imitate sulci on the brain surface. For each model, the experimentally measured mean optical path length as a function of source-detector spacing agrees well with predictions from either a Monte Carlo model or a finite-element method based on diffusion theory or a hybrid radiosity-diffusion theory. Light propagation in the adult head is shown to be highly affected by the presence of the clear CSF layer, and both the optical path length and the spatial sensitivity profile of the models with a CSF layer are quite different from those without the CSF layer. However, the geometry of the sulci and the boundary between the gray and the white matter have little effect on the detected light distribution. PMID:18250644

  7. Animal Models of Head Trauma

    PubMed Central

    Cernak, Ibolja

    2005-01-01

    Summary: Animal models of traumatic brain injury (TBI) are used to elucidate primary and secondary sequelae underlying human head injury in an effort to identify potential neuroprotective therapies for developing and adult brains. The choice of experimental model depends upon both the research goal and underlying objectives. The intrinsic ability to study injury-induced changes in behavior, physiology, metabolism, the blood/tissue interface, the blood brain barrier, and/or inflammatory- and immune-mediated responses, makes in vivo TBI models essential for neurotrauma research. Whereas human TBI is a highly complex multifactorial disorder, animal trauma models tend to replicate only single factors involved in the pathobiology of head injury using genetically well-defined inbred animals of a single sex. Although such an experimental approach is helpful to delineate key injury mechanisms, the simplicity and hence inability of animal models to reflect the complexity of clinical head injury may underlie the discrepancy between preclinical and clinical trials of neuroprotective therapeutics. Thus, a search continues for new animal models, which would more closely mimic the highly heterogeneous nature of human TBI, and address key factors in treatment optimization. PMID:16389305

  8. Practical and adequate approach to modeling light propagation in an adult head with low-scattering regions by use of diffusion theory.

    PubMed

    Koyama, Tatsuya; Iwasaki, Atsushi; Ogoshi, Yosuke; Okada, Eiji

    2005-04-10

    A practical and adequate approach to modeling light propagation in an adult head with a low-scattering cerebrospinal fluid (CSF) region by use of diffusion theory was investigated. The diffusion approximation does not hold in a nonscattering or low-scattering regions. The hybrid radiosity-diffusion method was adopted to model the light propagation in the head with a nonscattering region. In the hybrid method the geometry of the nonscattering region is acquired as a priori information. In reality, low-level scattering occurs in the CSF region and may reduce the error caused by the diffusion approximation. The partial optical path length and the spatial sensitivity profile calculated by the finite-element method agree well with those calculated by the Monte Carlo method in the case in which the transport scattering coefficient of the CSF layer is greater than 0.3 mm(-1). Because it is feasible to assume that the transport scattering coefficient of a CSF layer is 0.3 mm(-1), it is practical to adopt diffusion theory to the modeling of light propagation in an adult head as an alternative to the hybrid method. PMID:15835358

  9. Practical and adequate approach to modeling light propagation in an adult head with low-scattering regions by use of diffusion theory

    NASA Astrophysics Data System (ADS)

    Koyama, Tatsuya; Iwasaki, Atsushi; Ogoshi, Yosuke; Okada, Eiji

    2005-04-01

    A practical and adequate approach to modeling light propagation in an adult head with a low-scattering cerebrospinal fluid (CSF) region by use of diffusion theory was investigated. The diffusion approximation does not hold in a nonscattering or low-scattering regions. The hybrid radiosity-diffusion method was adopted to model the light propagation in the head with a nonscattering region. In the hybrid method the geometry of the nonscattering region is acquired as a priori information. In reality, low-level scattering occurs in the CSF region and may reduce the error caused by the diffusion approximation. The partial optical path length and the spatial sensitivity profile calculated by the finite-element method agree well with those calculated by the Monte Carlo method in the case in which the transport scattering coefficient of the CSF layer is greater than 0.3 mm^-1. Because it is feasible to assume that the transport scattering coefficient of a CSF layer is 0.3 mm^-1, it is practical to adopt diffusion theory to the modeling of light propagation in an adult head as an alternative to the hybrid method.

  10. Thermal Index Evaluation of Local SAR in MRI-Based Head Models of Adult and Children for Portable Telephones

    NASA Astrophysics Data System (ADS)

    Fujiwara, Osamu; Miyamoto, Kayoko; Wang, Jianqing

    Biological hazards due to radio-frequency (RF) waves result mainly from the temperature rise in tissue. It should be, therefore, clarified to what extent the RF waves of portable telephones increase the temperature-rise in human brain that includes the central part governing the body-temperature regulation function. In this paper, we calculated both the specific absorption rate (SAR) and the resultant temperature-rise for 900 MHz and 2 GHz portable telephones using the finite-difference time-domain (FDTD) method for three typical use positions, i.e., the vertical position, cheek position and tilt position. As a result, we found that there was an increase for median and 1% value of the cumulative distribution of temperature-rise in children’s brains for any use positions of the portable telephones compared to that in the adult’s brain, and also that the increasing trend in children’s brains for temperature-rise is identical to the temperature-rise trend in children’s hypothalamus. In addition, we found that the ten-gram averaged peak SAR among the adult and children heads had the same trend as that of the 0.1% value of the relatively cumulative distribution of temperature-rise, which shows that the ten-gram averaged peak SAR reflects only the localized temperature-rise in the brain surface.

  11. Comparisons of peak SAR levels in concentric sphere head models of children and adults for irradiation by a dipole at 900 MHz

    NASA Astrophysics Data System (ADS)

    Anderson, Vitas

    2003-10-01

    The aim of this study is to examine the scale and significance of differences in peak specific energy absorption rate (SAR) in the brains of children and adults exposed to radiofrequency emissions from mobile phones. Estimates were obtained by method of multipole analysis of a three layered (scalp/cranium/brain) spherical head exposed to a nearby 0.4lgr dipole at 900 MHz. A literature review of head parameters that influence SAR induction revealed strong indirect evidence based on total body water content that there are no substantive age-related changes in tissue conductivity after the first year of life. However, it was also found that the thickness of the ear, scalp and cranium do decrease on average with decreasing age, though individual variability within any age group is very high. The model analyses revealed that compared to an average adult, the peak brain 10 g averaged SAR in mean 4, 8, 12 and 16 year olds (yo) is increased by a factor of 1.31, 1.23, 1.15 and 1.07, respectively. However, contrary to the expectations of a recent prominent expert review, the UK Stewart Report, the relatively small scale of these increases does not warrant any special precautionary measures for child mobile phone users since: (a) SAR testing protocols as contained in the CENELEC (2001) standard provide an additional safety margin which ensures that allowable localized SAR limits are not exceeded in the brain; (b) the maximum worst case brain temperature rise (~0.13 to 0.14 °C for an average 4 yo) in child users of mobile phones is well within safe levels and normal physiological parameters; and (c) the range of age average increases in children is less than the expected range of variation seen within the adult population.

  12. Analysis of RF exposure in the head tissues of children and adults

    NASA Astrophysics Data System (ADS)

    Wiart, J.; Hadjem, A.; Wong, M. F.; Bloch, I.

    2008-07-01

    This paper analyzes the radio frequencies (RF) exposure in the head tissues of children using a cellular handset or RF sources (a dipole and a generic handset) at 900, 1800, 2100 and 2400 MHz. Based on magnetic resonance imaging, child head models have been developed. The maximum specific absorption rate (SAR) over 10 g in the head has been analyzed in seven child and six adult heterogeneous head models. The influence of the variability in the same age class is carried out using models based on a morphing technique. The SAR over 1 g in specific tissues has also been assessed in the different types of child and adult head models. Comparisons are performed but nevertheless need to be confirmed since they have been derived from data sets of limited size. The simulations that have been performed show that the differences between the maximum SAR over 10 g estimated in the head models of the adults and the ones of the children are small compared to the standard deviations. But they indicate that the maximum SAR in 1 g of peripheral brain tissues of the child models aged between 5 and 8 years is about two times higher than in adult models. This difference is not observed for the child models of children above 8 years old: the maximum SAR in 1 g of peripheral brain tissues is about the same as the one in adult models. Such differences can be explained by the lower thicknesses of pinna, skin and skull of the younger child models.

  13. Biomechanics and neuropathology of adult and paediatric head injury.

    PubMed

    Ommaya, A K; Goldsmith, W; Thibault, L

    2002-06-01

    The objective of this study was to understand the biomechanics in age-related primary traumatic brain injuries (TBI) causing initial severity and secondary progressive damage and to develop strategy reducing TBI outcome variability using biomechanical reconstruction to identify types of causal mechanisms prior to clinical trials of neuro-protective treatment. The methods included the explanation of TBI biomechanics and physiopathological mechanisms from dual perspectives of neurosurgery and biomechanical engineering. Scaling of tolerances for skull failure and brain injuries in infants, children and adults are developed. Diagnostic assumptions without biomechanical considerations are critiqued. Methods for retrospective TBI reconstruction for prevention are summarized. Mechanisms of TBI are based on the differences between the mechanical properties of the head and neck related to age. Skull fracture levels correlate with increasing cranial bone thickness and in the development of the cranial sutures in infants and in adults. Head injury tolerance levels at three age categories for cerebral concussion, skull fracture and three grades of diffuse axonal injuries (DAI) are presented. Brain mass correlates inversely for TBI caused by angular head motions and locations of injurious stresses are predictable by centripetal theory. Improved quantitative diagnosis of TBI type and severity levels depend primarily on age and biomechanical mechanisms. Reconstruction of the biomechanics is feasible and enables quantitative stratification of TBI severity. Experimental treatment has succeeded in preventing progressive damage in animal TBI models. In humans this has failed, because the animal model received biomechanically controlled TBI and humans did not. Clinical similarities of human TBI patients do not necessarily predict equivalent biomechanics because such trauma can be produced in various ways. We recommend 'reverse engineering' for in-depth reconstruction of the TBI injury

  14. Neuroelectromagnetic Forward Head Modeling Toolbox

    PubMed Central

    Acar, Zeynep Akalin; Makeig, Scott

    2014-01-01

    This paper introduces a Neuroelectromagnetic Forward Head Modeling Toolbox (NFT) running under MATLAB (The Mathworks, Inc.) for generating realistic head models from available data (MRI and/or electrode locations) and for computing numerical solutions for the forward problem of electromagnetic source imaging. The NFT includes tools for segmenting scalp, skull, cerebrospinal fluid (CSF) and brain tissues from T1-weighted magnetic resonance (MR) images. The Boundary Element Method (BEM) is used for the numerical solution of the forward problem. After extracting segmented tissue volumes, surface BEM meshes can be generated. When a subject MR image is not available, a template head model can be warped to measured electrode locations to obtain an individualized head model. Toolbox functions may be called either from a graphic user interface compatible with EEGLAB (http://sccn.ucsd.edu/eeglab), or from the MATLAB command line. Function help messages and a user tutorial are included. The toolbox is freely available under the GNU Public License for noncommercial use and open source development. PMID:20457183

  15. Model of beam head erosion

    SciTech Connect

    Lee, E.P.

    1980-08-08

    An analytical model of beam head dynamics is presented, leading to an estimate of the erosion rate due to the combined effects of Ohmic dissipation and scattering. Agreement with the results of a computer simulation and detailed one-dimensional computations is good in all respects except for the scaling of the erosion rate with net current.

  16. Evaluation of time-resolved multi-distance methods to retrieve absorption and reduced scattering coefficients of adult heads in vivo: Optical parameters dependences on geometrical structures of the models used to calculate reflectance

    NASA Astrophysics Data System (ADS)

    Tanifuji, T.

    2016-03-01

    Time-resolved multi-distance measurements are studied to retrieve absorption and reduced scattering coefficients of adult heads, which have enough depth sensitivity to determine the optical parameters in superficial tissues and brain separately. Measurements were performed by putting the injection and collection fibers on the left semi-sphere of the forehead, with the injection fiber placed toward the temporal region, and by moving the collection fiber between 10 and 60 mm from the central sulcus. It became clear that optical parameters of the forehead at all collection fibers were reasonably determined by selecting the appropriate visibility length of the geometrical head models, which is related to head surface curvature at each position.

  17. Adult Head and Neck Soft Tissue Sarcomas: Treatment and Outcome

    PubMed Central

    Singh, Rabindra P.; Grimer, Robert J.; Bhujel, Nabina; Carter, Simon R.; Tillman, Roger M.; Abudu, Adesegun

    2008-01-01

    We have retrospectively analysed the experience of a musculoskeletal oncological unit in the management of adult head and neck soft tissue sarcomas from 1990 to 2005. Thirty-six patients were seen, of whom 24 were treated at this unit, the remainder only receiving advice. The median age of the patients was 46 years. Most of the sarcomas were deep and of high or intermediate grade with a median size of 5.5 cm. Eleven different histological subtypes were identified. Wide excision was possible only in 21% of the cases. 42% of the patients developed local recurrence and 42% developed metastatic disease usually in the lungs. Overall survival was 49% at 5 years. Tumour size was the most important prognostic factor. Adult head and neck soft tissue sarcomas have a high mortality rate with a high risk of local recurrence and metastatic disease. The rarity of the disease would suggest that centralisation of care could lead to increased expertise and better outcomes. PMID:18382622

  18. Neofunctionalization of embryonic head patterning genes facilitates the positioning of novel traits on the dorsal head of adult beetles.

    PubMed

    Zattara, Eduardo E; Busey, Hannah A; Linz, David M; Tomoyasu, Yoshinori; Moczek, Armin P

    2016-07-13

    The origin and integration of novel traits are fundamental processes during the developmental evolution of complex organisms. Yet how novel traits integrate into pre-existing contexts remains poorly understood. Beetle horns represent a spectacular evolutionary novelty integrated within the context of the adult dorsal head, a highly conserved trait complex present since the origin of insects. We investigated whether otd1/2 and six3, members of a highly conserved gene network that instructs the formation of the anterior end of most bilaterians, also play roles in patterning more recently evolved traits. Using ablation-based fate-mapping, comparative larval RNA interference (RNAi) and transcript sequencing, we found that otd1/2, but not six3, play a fundamental role in the post-embryonic formation of the adult dorsal head and head horns of Onthophagus beetles. By contrast, neither gene appears to pattern the adult head of Tribolium flour beetles even though all are expressed in the dorsal head epidermis of both Onthophagus and Tribolium We propose that, at least in beetles, the roles of otd genes during post-embryonic development are decoupled from their embryonic functions, and that potentially non-functional post-embryonic expression in the dorsal head facilitated their co-option into a novel horn-patterning network during Onthophagus evolution. PMID:27412276

  19. Kinematics of a Head-Neck Model Simulating Whiplash

    ERIC Educational Resources Information Center

    Colicchia, Giuseppe; Zollman, Dean; Wiesner, Hartmut; Sen, Ahmet Ilhan

    2008-01-01

    A whiplash event is a relative motion between the head and torso that occurs in rear-end automobile collisions. In particular, the large inertia of the head results in a horizontal translation relative to the thorax. This paper describes a simulation of the motion of the head and neck during a rear-end (whiplash) collision. A head-neck model that…

  20. Changes in Head Stability Control in Response to a Lateral Perturbation while Walking in Older Adults

    NASA Technical Reports Server (NTRS)

    Buccello, Regina R.; Cromwell, Ronita L.; Bloomberg, Jacob J.

    2008-01-01

    Falling is a main contributor of injury in older adults. The decline in sensory systems associated with aging limits information needed to successfully compensate for unexpected perturbations. Therefore, sensory changes result in older adults having problems maintaining balance stability when experiencing an unexpected lateral perturbation (e.g. slip) in the environment. The goal of this study was to determine head stability movement strategies used by older adults when experiencing an unexpected lateral perturbation during walking. A total of 16 healthy adults, aged 66-81 years, walked across a foam pathway 6 times. One piece of the foam pathway covered a movable platform that translated to the left when the subject stepped on the foam. Three trials were randomized in which the platform shifted. Angular rate sensors were placed on the center of mass for the head and trunk segments to collect head and trunk movement in all three planes of motion. The predominant movement strategies for maintaining head stability were determined from the results of the cross-correlation analyses between the head and trunk segments. The Chi square test of independence was used to evaluate the movement pattern distributions of head-trunk coordination during perturbed and non-perturbed walking. When perturbed, head stabilization was significantly challenged in the yaw and roll planes of motion. Subjects demonstrated a movement pattern of the head leading the trunk in an effort to stabilize the head. The older adult subjects used this head stabilization movement pattern to compensate for sensory changes when experiencing the unexpected lateral perturbation.

  1. Effects of Elicitation Procedures on the Narratives of Normal and Closed Head-Injured Adults.

    ERIC Educational Resources Information Center

    Liles, Betty Z.; And Others

    1989-01-01

    Twenty-three normal adults and four closed head-injured (CHI) adults with a high level of language recovery retold and generated stories. The two tasks differentially influenced the performance of both groups. The two groups differed in measures of cohesiveness and story grammar only in the story generation task. (Author/JDD)

  2. Development, Validation and Parametric study of a 3-Year-Old Child Head Finite Element Model

    NASA Astrophysics Data System (ADS)

    Cui, Shihai; Chen, Yue; Li, Haiyan; Ruan, ShiJie

    2015-12-01

    Traumatic brain injury caused by drop and traffic accidents is an important reason for children's death and disability. Recently, the computer finite element (FE) head model has been developed to investigate brain injury mechanism and biomechanical responses. Based on CT data of a healthy 3-year-old child head, the FE head model with detailed anatomical structure was developed. The deep brain structures such as white matter, gray matter, cerebral ventricle, hippocampus, were firstly created in this FE model. The FE model was validated by comparing the simulation results with that of cadaver experiments based on reconstructing the child and adult cadaver experiments. In addition, the effects of skull stiffness on the child head dynamic responses were further investigated. All the simulation results confirmed the good biofidelity of the FE model.

  3. Large scale study on the variation of RF energy absorption in the head & brain regions of adults and children and evaluation of the SAM phantom conservativeness

    NASA Astrophysics Data System (ADS)

    Keshvari, J.; Kivento, M.; Christ, A.; Bit-Babik, G.

    2016-04-01

    This paper presents the results of two computational large scale studies using highly realistic exposure scenarios, MRI based human head and hand models, and two mobile phone models. The objectives are (i) to study the relevance of age when people are exposed to RF by comparing adult and child heads and (ii) to analyze and discuss the conservativeness of the SAM phantom for all age groups. Representative use conditions were simulated using detailed CAD models of two mobile phones operating between 900 MHz and 1950 MHz including configurations with the hand holding the phone, which were not considered in most previous studies. The peak spatial-average specific absorption rate (psSAR) in the head and the pinna tissues is assessed using anatomically accurate head and hand models. The first of the two mentioned studies involved nine head-, four hand- and two phone-models, the second study included six head-, four hand- and three simplified phone-models (over 400 configurations in total). In addition, both studies also evaluated the exposure using the SAM phantom. Results show no systematic differences between psSAR induced in the adult and child heads. The exposure level and its variation for different age groups may be different for particular phones, but no correlation between psSAR and model age was found. The psSAR from all exposure conditions was compared to the corresponding configurations using SAM, which was found to be conservative in the large majority of cases.

  4. Diagnosis of occult radial head and neck fracture in adults.

    PubMed

    Pavić, Roman; Margetić, Petra; Hnatešen, Dijana

    2015-11-01

    The purpose of this study was to compare imaging modalities in the diagnosis of occult radial head and neck fractures and to assess the diagnostic value of ultrasound in diagnosing occult fractures of the radial head and neck. The study included 193 patients (101 male, 92 female) who were referred by trauma surgeons from January 2011 to July 2014 and presented with history of acute elbow trauma. The mean age of the patients was 37 years (range 15-82 years); 95 right and 98 left elbows were included in the study. Clinical examinations and standard radiograms were conducted. The anteroposterior radiographic view revealed no visible signs of fracture. The lateral radiographic view showed displacement of the anterior and posterior fat pads (fat pad sign) due to joint effusion, which is an indirect sign of fracture. In all 193 cases, ultrasound examination showed intraarticular effusion. In 176 cases (91%), there was effusion in both the olecranon bursa and the elbow joint. In 10 patients (5%), there was effusion only inside the elbow joint and in seven cases (4%) there was effusion only in the olecranon bursa. Cortical discontinuity (a direct sign of fracture) was clearly visualised in 157 cases (82%), in the radial neck in 108 cases and in the radial head in 49 cases. Ultrasound findings of fracture were questionable in 36 cases (18%). Step-off deformities, tiny avulsed bone fragments, double-line appearance of cortical margins, and diffuse irregularity of the bone surfaces were identified as auxiliary ultrasound findings (indirect signs of fracture). Standard radiograms were repeated after 7-10 days. In 184 cases (95%), there was a clearly visible fracture: a fracture of the radial neck in 111 cases (58%) and a fracture of non-displaced radial head in 73 cases (37%). In nine cases (5%), radial fracture was not confirmed on radiogram and MRI was performed in these patients. In conclusion, ultrasound imaging proved to be an effective method for diagnosing occult

  5. Predictive Modeling in Adult Education

    ERIC Educational Resources Information Center

    Lindner, Charles L.

    2011-01-01

    The current economic crisis, a growing workforce, the increasing lifespan of workers, and demanding, complex jobs have made organizations highly selective in employee recruitment and retention. It is therefore important, to the adult educator, to develop models of learning that better prepare adult learners for the workplace. The purpose of…

  6. Visually Guided Navigation: Head-Mounted Eye-Tracking of Natural Locomotion in Children and Adults

    PubMed Central

    Franchak, John M.; Adolph, Karen E.

    2010-01-01

    The current study showed that visual fixation of obstacles is not required for rapid and adaptive navigation of obstacles. Children and adults wore a wireless, head-mounted eye-tracker during a visual search task in a room cluttered with obstacles. They spontaneously walked, jumped, and ran through the room, stepping up, down, and over obstacles. Both children and adults navigated adaptively without fixating obstacles, however, adults fixated less often than children. We discuss several possibilities for why obstacle navigation may shift from foveal to peripheral control over development. PMID:20932993

  7. Computational models of adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Cecchi, Guillermo A.; Magnasco, Marcelo O.

    2005-10-01

    Experimental results in recent years have shown that adult neurogenesis is a significant phenomenon in the mammalian brain. Little is known, however, about the functional role played by the generation and destruction of neurons in the context of an adult brain. Here, we propose two models where new projection neurons are incorporated. We show that in both models, using incorporation and removal of neurons as a computational tool, it is possible to achieve a higher computational efficiency that in purely static, synapse-learning-driven networks. We also discuss the implication for understanding the role of adult neurogenesis in specific brain areas like the olfactory bulb and the dentate gyrus.

  8. The Texas Head Start Metro Models.

    ERIC Educational Resources Information Center

    Riley, Mary Tom, Ed.; Flores, Alfredo R., Ed.

    The Texas Metro Network (TMN) is an informal group of Head Start Directors and Executive Directors organized for the purposes of improving the delivery of training and technical assistance and for assisting communication between large scale Head Start programs in the metropolitan areas of Texas. In pursuit of these aims, each member unit of the…

  9. Radiation dose evaluation of dental cone beam computed tomography using an anthropomorphic adult head phantom

    NASA Astrophysics Data System (ADS)

    Wu, Jay; Shih, Cheng-Ting; Ho, Chang-hung; Liu, Yan-Lin; Chang, Yuan-Jen; Min Chao, Max; Hsu, Jui-Ting

    2014-11-01

    Dental cone beam computed tomography (CBCT) provides high-resolution tomographic images and has been gradually used in clinical practice. Thus, it is important to examine the amount of radiation dose resulting from dental CBCT examinations. In this study, we developed an in-house anthropomorphic adult head phantom to evaluate the level of effective dose. The anthropomorphic phantom was made of acrylic and filled with plaster to replace the bony tissue. The contour of the head was extracted from a set of adult computed tomography (CT) images. Different combinations of the scanning parameters of CBCT were applied. Thermoluminescent dosimeters (TLDs) were used to measure the absorbed doses at 19 locations in the head and neck regions. The effective doses measured using the proposed phantom at 65, 75, and 85 kVp in the D-mode were 72.23, 100.31, and 134.29 μSv, respectively. In the I-mode, the effective doses were 108.24, 190.99, and 246.48 μSv, respectively. The maximum percent error between the doses measured by the proposed phantom and the Rando phantom was l4.90%. Therefore, the proposed anthropomorphic adult head phantom is applicable for assessing the radiation dose resulting from clinical dental CBCT.

  10. Characterization of the Head Stabilization Response to a Lateral Perturbation During Walking in Older Adults

    NASA Technical Reports Server (NTRS)

    Buccello-Stout, Regina R.; Cromwell, Ronita L.; Bloomberg, Jacob J.

    2009-01-01

    A main contributor of fractures in older adults is from a lateral fall. The decline in sensory systems results in difficulty maintaining balance stability. Head stabilization contributes to postural control by serving as a stable platform for the sensory systems. The purpose of this study was to characterize the head stabilization response to a lateral perturbation while walking. A total of 16 healthy older adults, aged 66-81 years, walked across a foam pathway 6 times. One piece of the foam pathway covered a movable platform that translated to the left when the subject stepped on the foam. Three trials were randomized in which the platform shifted. Angular rate sensors placed on the center of mass of the head and trunk collected head and trunk movement in all three planes of motion. The roll plane was analyzed to examine motion in the plane of the perturbation. Subjects stepped onto the platform with the right foot. Recovery step time and distance were recorded. The first trial was analyzed to capture the novelty of the perturbation. Results indicate a significant difference in footfall distance t=0.004, p<0.05, as well as the speed of foot recovery t=0.001, p<0.05, between natural and perturbed walking. Results indicate that the head t=0.005, p<0.05, and trunk t=0.0001, p<0.05, velocities increase during perturbed compared to natural walking. Older adults place their recovery foot down faster when perturbed to re-establish their base of support. Head and trunk segments are less stable and move with greater velocities to reestablish stability when perturbed.

  11. An internal model of head kinematics predicts the influence of head orientation on reflexive eye movements

    NASA Astrophysics Data System (ADS)

    Zupan, L. H.; Merfeld, D. M.

    2005-09-01

    Our sense of self-motion and self-orientation results from combining information from different sources. We hypothesize that the central nervous system (CNS) uses internal models of the laws of physics to merge cues provided by different sensory systems. Different models that include internal models have been proposed; we focus herein on that referred to as the sensory weighting model (Zupan et al 2002 Biol. Cybern. 86 209-30). For simplicity, we isolate the portion of the sensory weighting model that estimates head angular velocity: it includes an inverse internal model of head kinematics and an 'idiotropic' vector aligned with the main body axis. Following a post-rotatory tilt in the dark, which is a rapid tilt following a constant-velocity rotation about an earth-vertical axis, the inverse internal model is applied to conflicting vestibular signals. Consequently, the CNS computes an inaccurate estimate of head angular velocity that shifts toward alignment with an estimate of gravity. Since reflexive eye movements known as vestibulo-ocular reflexes (VOR) compensate for this estimate of head angular velocity, the model predicts that the VOR rotation axis shifts toward alignment with this estimate of gravity and that the VOR time constant depends on final head orientation. These predictions are consistent with experimental data.

  12. An internal model of head kinematics predicts the influence of head orientation on reflexive eye movements.

    PubMed

    Zupan, L H; Merfeld, D M

    2005-09-01

    Our sense of self-motion and self-orientation results from combining information from different sources. We hypothesize that the central nervous system (CNS) uses internal models of the laws of physics to merge cues provided by different sensory systems. Different models that include internal models have been proposed; we focus herein on that referred to as the sensory weighting model. For simplicity, we isolate the portion of the sensory weighting model that estimates head angular velocity: it includes an inverse internal model of head kinematics and an 'idiotropic' vector aligned with the main body axis. Following a post-rotatory tilt in the dark, which is a rapid tilt following a constant-velocity rotation about an earth-vertical axis, the inverse internal model is applied to conflicting vestibular signals. Consequently, the CNS computes an inaccurate estimate of head angular velocity that shifts toward alignment with an estimate of gravity. Since reflexive eye movements known as vestibulo-ocular reflexes (VOR) compensate for this estimate of head angular velocity, the model predicts that the VOR rotation axis shifts toward alignment with this estimate of gravity and that the VOR time constant depends on final head orientation. These predictions are consistent with experimental data. PMID:16135883

  13. 45 CFR 286.90 - How many hours per week must an adult or minor head-of-household participate in work-related...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 2 2013-10-01 2012-10-01 true How many hours per week must an adult or minor head... must an adult or minor head-of-household participate in work-related activities to count in the numerator of the work participation rate? During the month, an adult or minor head-of-household...

  14. 45 CFR 286.90 - How many hours per week must an adult or minor head-of-household participate in work-related...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 2 2014-10-01 2012-10-01 true How many hours per week must an adult or minor head... must an adult or minor head-of-household participate in work-related activities to count in the numerator of the work participation rate? During the month, an adult or minor head-of-household...

  15. Head Lice

    MedlinePlus

    Head lice are parasitic wingless insects. They live on people's heads and feed on their blood. An adult louse ... Children ages 3-11 and their families get head lice most often. Personal hygiene has nothing to ...

  16. Head Lice

    MedlinePlus

    Head lice are parasitic wingless insects. They live on people's heads and feed on their blood. An adult ... Children ages 3-11 and their families get head lice most often. Personal hygiene has nothing to do ...

  17. A virtual model of the patient's head for BNCT

    NASA Astrophysics Data System (ADS)

    Tyminska, Katarzyna; Jezierski, Karol; Osko, Jakub

    2009-01-01

    The aim of the present work was creating a virtual phantom of a human head for BNCT, as a part of the BNCT programme project. This model is an amplification of the simple model described in earlier publications. It takes into account the major head organs as well as the scalp and skull. The chemical composition of all tissues was modelled according to the recommendations of the ICRP. The organs were parameterized using mathematical formulas based on the human head magnetic resonance images. The model was used for calculating the thermal neutron flux and the injuring (fast neutron, nitrogen and gamma) dose components for the head irradiated using the therapeutic neutron beam, whose parameters were obtained as the result of the modelling of the filter/moderator system for the BNCT therapeutic beam from the MARIA reactor.

  18. Head Motion Modeling for Human Behavior Analysis in Dyadic Interaction

    PubMed Central

    Xiao, Bo; Georgiou, Panayiotis; Baucom, Brian; Narayanan, Shrikanth S.

    2015-01-01

    This paper presents a computational study of head motion in human interaction, notably of its role in conveying interlocutors’ behavioral characteristics. Head motion is physically complex and carries rich information; current modeling approaches based on visual signals, however, are still limited in their ability to adequately capture these important properties. Guided by the methodology of kinesics, we propose a data driven approach to identify typical head motion patterns. The approach follows the steps of first segmenting motion events, then parametrically representing the motion by linear predictive features, and finally generalizing the motion types using Gaussian mixture models. The proposed approach is experimentally validated using video recordings of communication sessions from real couples involved in a couples therapy study. In particular we use the head motion model to classify binarized expert judgments of the interactants’ specific behavioral characteristics where entrainment in head motion is hypothesized to play a role: Acceptance, Blame, Positive, and Negative behavior. We achieve accuracies in the range of 60% to 70% for the various experimental settings and conditions. In addition, we describe a measure of motion similarity between the interaction partners based on the proposed model. We show that the relative change of head motion similarity during the interaction significantly correlates with the expert judgments of the interactants’ behavioral characteristics. These findings demonstrate the effectiveness of the proposed head motion model, and underscore the promise of analyzing human behavioral characteristics through signal processing methods. PMID:26557047

  19. Evaluation of a laboratory model of human head impact biomechanics.

    PubMed

    Hernandez, Fidel; Shull, Peter B; Camarillo, David B

    2015-09-18

    This work describes methodology for evaluating laboratory models of head impact biomechanics. Using this methodology, we investigated: how closely does twin-wire drop testing model head rotation in American football impacts? Head rotation is believed to cause mild traumatic brain injury (mTBI) but helmet safety standards only model head translations believed to cause severe TBI. It is unknown whether laboratory head impact models in safety standards, like twin-wire drop testing, reproduce six degree-of-freedom (6DOF) head impact biomechanics that may cause mTBI. We compared 6DOF measurements of 421 American football head impacts to twin-wire drop tests at impact sites and velocities weighted to represent typical field exposure. The highest rotational velocities produced by drop testing were the 74th percentile of non-injury field impacts. For a given translational acceleration level, drop testing underestimated field rotational acceleration by 46% and rotational velocity by 72%. Primary rotational acceleration frequencies were much larger in drop tests (~100 Hz) than field impacts (~10 Hz). Drop testing was physically unable to produce acceleration directions common in field impacts. Initial conditions of a single field impact were highly resolved in stereo high-speed video and reconstructed in a drop test. Reconstruction results reflected aggregate trends of lower amplitude rotational velocity and higher frequency rotational acceleration in drop testing, apparently due to twin-wire constraints and the absence of a neck. These results suggest twin-wire drop testing is limited in modeling head rotation during impact, and motivate continued evaluation of head impact models to ensure helmets are tested under conditions that may cause mTBI. PMID:26117075

  20. Modeling polyethylene wear acceleration due to femoral head dislocation damage.

    PubMed

    Kruger, Karen M; Tikekar, Nishant M; Heiner, Anneliese D; Lannutti, John J; Callaghan, John J; Brown, Thomas D

    2014-08-01

    Scratching, scraping, and metal transfer to femoral heads commonly accompany acetabular shell contact during dislocation and closed reduction maneuvers. While head damage conceptually leads to accelerated wear, reports on this subject are mainly anecdotal, and differ widely on the potency of such effect. Towards better understanding this relationship, a physically validated finite element (FE) model was used to compute polyethylene wear acceleration propensity of specific head damage patterns on thirteen retrievals. These FE models estimated wear increases averaging half an order of magnitude when compared to simulations for undamaged heads. There was no correlation between the number of dislocations sustained and wear acceleration. These results underscore the importance of implant-gentle closed reduction, and heightened wear monitoring of successfully reduced dislocation patients. PMID:24851789

  1. Animal models of cancer in the head and neck region.

    PubMed

    Kim, Seungwon

    2009-06-01

    Animal models that resemble the cancers of the head and neck region are of paramount importance in studying the carcinogenesis of these diseases. Although several methods for modeling cancer in the head and neck are available, none are fully satisfactory. Subcutaneous xenograft models of cancer in nude mice are often used in preclinical studies. However, these models are problematic in several aspects as they lack the specific interactions that exist between the tumor cells and their native environment. Establishment of tumors at the orthotopic sites restore these distinct patterns of interactions between the tumor and the host organs that are lost or altered when the tumors are established in ectopic sites. With regard to the transgenic model of cancer in the head and neck region, it should be kept in mind that the transgene used to drive the malignant transformation may not be representative of the carcinogenic process found in human tumors. Low penetrance of tumor formation also translates into high cost and time commitment in performing studies with transgenic models. In this review, we will discuss some of the commonly used methods for modeling cancer in the head and neck region including squamous cell carcinoma of the head and neck as well as thyroid carcinoma. PMID:19565028

  2. Animal Models of Cancer in the Head and Neck Region

    PubMed Central

    2009-01-01

    Animal models that resemble the cancers of the head and neck region are of paramount importance in studying the carcinogenesis of these diseases. Although several methods for modeling cancer in the head and neck are available, none are fully satisfactory. Subcutaneous xenograft models of cancer in nude mice are often used in preclinical studies. However, these models are problematic in several aspects as they lack the specific interactions that exist between the tumor cells and their native environment. Establishment of tumors at the orthotopic sites restore these distinct patterns of interactions between the tumor and the host organs that are lost or altered when the tumors are established in ectopic sites. With regard to the transgenic model of cancer in the head and neck region, it should be kept in mind that the transgene used to drive the malignant transformation may not be representative of the carcinogenic process found in human tumors. Low penetrance of tumor formation also translates into high cost and time commitment in performing studies with transgenic models. In this review, we will discuss some of the commonly used methods for modeling cancer in the head and neck region including squamous cell carcinoma of the head and neck as well as thyroid carcinoma. PMID:19565028

  3. Inverse Modelling to Obtain Head Movement Controller Signal

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Lee, S. H.; Hannaford, B.; Stark, L.

    1984-01-01

    Experimentally obtained dynamics of time-optimal, horizontal head rotations have previously been simulated by a sixth order, nonlinear model driven by rectangular control signals. Electromyography (EMG) recordings have spects which differ in detail from the theoretical rectangular pulsed control signal. Control signals for time-optimal as well as sub-optimal horizontal head rotations were obtained by means of an inverse modelling procedures. With experimentally measured dynamical data serving as the input, this procedure inverts the model to produce the neurological control signals driving muscles and plant. The relationships between these controller signals, and EMG records should contribute to the understanding of the neurological control of movements.

  4. Evidence for Using Alendronate to Treat Adult Avascular Necrosis of the Femoral Head: A Systematic Review

    PubMed Central

    Luo, Ru-Bin; Lin, Tiao; Zhong, Hui-Ming; Yan, Shi-Gui; Wang, Jian-An

    2014-01-01

    Osteonecrosis or avascular osteonecrosis (AVN) of the femoral head is a devastating multifactorial disease that affects 20 000 persons each year in the United States. The purpose of this systematic review was to determine the efficacy and safety of alendronate for adult AVN during short- and long-term follow-up. Electronic databases were searched for randomized or nonrandomized clinical trials, cohort, case-control studies, and series of cases in which alendronate was used for treatment of adult AVN of the femoral head. Relevant articles with adequate data on reduction of pain, improvement of articular function, slowing of bone collapse progression, or need for total hip arthroplasty (THA) were included after applying inclusion and exclusion criteria. Eight articles involving 788 hips with evidence level 1b to 3b were included in this systematic review. Most studies suggested a positive short-term efficacy of alendronate treatment in reducing pain, improving articular function, slowing of bone collapse progression, and delaying the need for THA for adult AVN patients. The favorable long-term results were also presented in those treated patients after 10-year follow-up. In addition, there were no severe adverse effects associated with alendronate treatment observed during short- and long-term follow-up, and most of the included studies suggested use of alendronate in early AVN with small necrotic lesion to achieve better outcomes. The findings support consideration of alendronate use for adult AVN, particularly with early stage and small necrotic size. The lack of large-scale, randomized, and double-blind studies justifies new studies to demonstrate the detailed indication and the optimized strategy of alendronate treatment. Level of evidence: Level 3a. PMID:25424061

  5. 45 CFR 286.90 - How many hours per week must an adult or minor head-of-household participate in work-related...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 2 2012-10-01 2012-10-01 false How many hours per week must an adult or minor... must an adult or minor head-of-household participate in work-related activities to count in the numerator of the work participation rate? During the month, an adult or minor head-of-household...

  6. 45 CFR 286.90 - How many hours per week must an adult or minor head-of-household participate in work-related...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 2 2011-10-01 2011-10-01 false How many hours per week must an adult or minor... must an adult or minor head-of-household participate in work-related activities to count in the numerator of the work participation rate? During the month, an adult or minor head-of-household...

  7. Sound pressure transformations by the head and pinnae of the adult Chinchilla (Chinchilla lanigera)

    PubMed Central

    Koka, Kanthaiah; Jones, Heath G.; Thornton, Jennifer L.; Lupo, J. Eric; Tollin, Daniel J.

    2010-01-01

    There are three main cues to sound location: the interaural differences in time (ITD) and level (ILD) as well as the monaural spectral shape cues. These cues are generated by the spatial- and frequency-dependent filtering of propagating sound waves by the head and external ears. Although the chinchilla has been used for decades to study the anatomy, physiology, and psychophysics of audition, including binaural and spatial hearing, little is actually known about the sound pressure transformations by the head and pinnae and the resulting sound localization cues available to them. Here, we measured the directional transfer functions (DTFs), the directional components of the head-related transfer functions, for 9 adult chinchillas. The resulting localization cues were computed from the DTFs. In the frontal hemisphere, spectral notch cues were present for frequencies from ~6–18 kHz. In general, the frequency corresponding to the notch increased with increases in source elevation as well as in azimuth towards the ipsilateral ear. The ILDs demonstrated a strong correlation with source azimuth and frequency. The maximum ILDs were < 10 dB for frequencies < 5 kHz, and ranged from 10–30 dB for the frequencies > 5 kHz. The maximum ITDs were dependent on frequency, yielding 236 μs at 4 kHz and 336 μs at 250 Hz. Removal of the pinnae eliminated the spectral notch cues, reduced the acoustic gain and the ILDs, altered the acoustic axis, and reduced the ITDs. PMID:20971180

  8. HEAD LICE IN HAIR SAMPLES FROM YOUTHS, ADULTS AND THE ELDERLY IN MANAUS, AMAZONAS STATE, BRAZIL.

    PubMed

    Nunes, Suellen Cristina Barbosa; Moroni, Raquel Borges; Mendes, Júlio; Justiniano, Sílvia Cássia Brandão; Moroni, Fábio Tonissi

    2015-01-01

    A study of head lice infestations among young people, adults and elderly individuals was conducted from August 2010 to July 2013 in Manaus, AM, Northern Brazil. Hair samples collected from 1,860 individuals in 18 barber shops and beauty parlors were examined for the ectoparasite. The occurrence of pediculosis and its association with factors, such as sex, age, ethnicity, hair characteristics and the socioeconomic profile of salon customers, salon location and seasonal variation were determined. The overall occurrence rate was 2.84%. Occurrence was higher in hair samples from non-blacks and the elderly. Higher occurrence was also observed during kindergarten, elementary and junior education school holidays. The results indicate that the occurrence of head lice among young people, adults and the elderly in Manaus is relatively low compared to that determined in children and in other regions of the country. After children, the elderly were the most affected. The study also indicated the need to adopt additional procedures to improve surveys among the population with low or no purchasing power, which is usually the most affected by this ectoparasitic disease. PMID:26200965

  9. Efficacy of Alendronate for Preventing Collapse of Femoral Head in Adult Patients with Nontraumatic Osteonecrosis

    PubMed Central

    Hong, Yu-Cai; Luo, Ru-Bin; Zhong, Hui-Ming; Shi, Jian-Bin

    2014-01-01

    The purpose of the current review was to determine the efficacy of alendronate for preventing collapse of femoral head in adult patients with nontraumatic avascular osteonecrosis of femoral head (ANFH). Five randomized controlled trials (RCTs) involving 305 hips were included in this review, of which 3 studies investigated alendronate versus control/placebo and the other 2 studies compared the combination of alendronate and extracorporeal shockwave therapy (ESWT) with ESWT alone. Our results suggested that even the patients with extensive necrosis encountered much less collapse in the alendronate group than control group. In these RCTs, their data also indicated a positive short- and middle-term efficacy of alendronate treatment in joint function improvement and hip pain diminishment. With the presence of the outlier study, only insignificant overall efficacy of alendronate could be observed with substantial heterogeneities. In addition, we did not find any additive benefits of alendronate in combination with ESWT for preventing collapse compared to ESWT alone. In conclusion, there is still lack of strong evidence for supporting application of alendronate in adult patients with nontraumatic ANFH, which justified that large scale, randomized, and double-blind studies should be developed to demonstrate the confirmed efficacies, detailed indication, and optimized strategy of alendronate treatment. PMID:25535614

  10. HEAD LICE IN HAIR SAMPLES FROM YOUTHS, ADULTS AND THE ELDERLY IN MANAUS, AMAZONAS STATE, BRAZIL

    PubMed Central

    NUNES, Suellen Cristina Barbosa; MORONI, Raquel Borges; MENDES, Júlio; JUSTINIANO, Sílvia Cássia Brandão; MORONI, Fábio Tonissi

    2015-01-01

    A study of head lice infestations among young people, adults and elderly individuals was conducted from August 2010 to July 2013 in Manaus, AM, Northern Brazil. Hair samples collected from 1,860 individuals in 18 barber shops and beauty parlors were examined for the ectoparasite. The occurrence of pediculosis and its association with factors, such as sex, age, ethnicity, hair characteristics and the socioeconomic profile of salon customers, salon location and seasonal variation were determined. The overall occurrence rate was 2.84%. Occurrence was higher in hair samples from non-blacks and the elderly. Higher occurrence was also observed during kindergarten, elementary and junior education school holidays. The results indicate that the occurrence of head lice among young people, adults and the elderly in Manaus is relatively low compared to that determined in children and in other regions of the country. After children, the elderly were the most affected. The study also indicated the need to adopt additional procedures to improve surveys among the population with low or no purchasing power, which is usually the most affected by this ectoparasitic disease. PMID:26200965

  11. An FDTD model of scattering from meteor head plasma

    NASA Astrophysics Data System (ADS)

    Marshall, R. A.; Close, S.

    2015-07-01

    We have developed a three-dimensional finite difference time domain (FDTD) model of scattering of radar waves from meteor head plasma. The model treats the meteor head plasma as a cold, collisional, and magnetized plasma, and solves Maxwell's equations and the Langevin equation simultaneously and self-consistently in and around the plasma. We use this model to investigate scattering of radar waves from a meteor head (the "head echo") under a range of plasma densities, meteor scale sizes, and wave frequencies. In this way we relate the radar cross section (RCS) to these variable parameters. We find that computed RCS disagrees with previous analytical theory at certain meteor sizes and densities, in some cases by over an order of magnitude. We find that the calculated meteor head RCS is monotonically related to the "overdense area" of the meteor, defined as the cross-section area of the part of the meteor where the plasma frequency exceeds the wave frequency. These results provides a physical measure of the meteor size and density that can be inferred from measured RCS values from ground-based radars. Meteoroid mass can then be inferred from the meteor plasma distribution using established methods.

  12. Femoral head blood flow in long-term steroid therapy: study of rabbit model.

    PubMed

    Wang, G J; Hubbard, S L; Reger, S I; Miller, E D; Stamp, W G

    1983-12-01

    Using a rabbit model, previous studies showed steroid-induced hyperlipidemia with subsequent fatty embolization of the subchondral arteries and hypertrophy of the marrow fat cells, followed by elevation of femoral head pressure from the normal level of 25 cm to nearly 60 cm H2O after eight weeks of treatment. This has led us to believe that pressure changes lead to decreased blood flow in the femoral head. In our study of 22 New Zealand white adult rabbits, weighing an average of 4.0 kg, 14 received a weekly dose of 12.45 mg of methylprednisolone (Depo-Medrol), and eight served as control. Femoral head blood flow was established using the radioactive microsphere technique. Control and cortisone-treated rabbits had femoral head blood flow measured 6, 8 and 10 weeks after treatment. The average blood flow in the control femoral heads averaged 0.2039 +/- 0.076 ml/min/gm, with no difference in the left side and the right side. In the treated group, the average blood flow at ten weeks was 0.162 +/- 0.039 ml/min/gm on the right and 0.164 +/- 0.037 ml/min/gm on the left, which was significantly different. This is parallel to unpredictable clinical findings in human beings. PMID:6648615

  13. Femoral head blood flow in long-term steroid therapy: study of rabbit model

    SciTech Connect

    Wang, G.J.; Hubbard, S.L.; Reger, S.I.; Miller, E.D.; Stamp, W.G.

    1983-12-01

    Using a rabbit model, previous studies showed steroid-induced hyperlipidemia with subsequent fatty embolization of the subchondral arteries and hypertrophy of the marrow fat cells, followed by elevation of femoral head pressure from the normal level of 25 cm to nearly 60 cm H2O after eight weeks of treatment. This has led us to believe that pressure changes lead to decreased blood flow in the femoral head. In our study of 22 New Zealand white adult rabbits, weighing an average of 4.0 kg, 14 received a weekly dose of 12.45 mg of methylprednisolone (Depo-Medrol), and eight served as control. Femoral head blood flow was established using the radioactive microsphere technique. Control and cortisone-treated rabbits had femoral head blood flow measured 6, 8 and 10 weeks after treatment. The average blood flow in the control femoral heads averaged 0.2039 +/- 0.076 ml/min/gm, with no difference in the left side and the right side. In the treated group, the average blood flow at ten weeks was 0.162 +/- 0.039 ml/min/gm on the right and 0.164 +/- 0.037 ml/min/gm on the left, which was significantly different. This is parallel to unpredictable clinical findings in human beings.

  14. The Recline Exercise: Comparisons with the Head Lift Exercise in Healthy Adults.

    PubMed

    Mishra, Avinash; Rajappa, Akila; Tipton, Elizabeth; Malandraki, Georgia A

    2015-12-01

    The aim of this investigation was to examine the comparative effectiveness of the new Recline Exercise (RE) and the traditional Head Lift Exercise (Shaker Exercise) on submental muscle activity, tongue strength, and perceived exertion in 40 healthy young adults (mean age = 24.5 years, SD 2.6 years). Both groups participated in a 6-week exercise regimen. Outcome variables evaluated pre- and post-exercise included: duration and peak amplitude of submental muscle activity during swallowing measured via surface electromyography (sEMG); anterior and posterior isometric lingual pressures measured with the Iowa Oral Performance Instrument; and perceived exertion levels measured with the Borg category-ratio scale of perceived exertion. Results indicated no significant pre-post differences within or between groups in swallow duration and peak amplitude. In addition, the RE group demonstrated significant post-treatment increases in anterior and posterior tongue strength [p = 0.009; p < 0.001]; however, these increases were of small magnitude (d = 0.132; d = 0.319). Both groups showed marked improvements in perceived exertion levels [p < 0.001]. Our findings indicate that healthy young adults who perform the RE or the HLE do not have significant swallow duration or amplitude gains, most likely due to the reduced need for such gains in the healthy head/neck musculature for submaximal tasks. Furthermore, the significant lingual strength gains seen with the RE indicate that additional musculature is being engaged during its completion. These results are encouraging; however, future research in older adults and patients with dysphagia with examination of swallowing biomechanics is needed to determine its full potential as a rehabilitative regimen. PMID:26386974

  15. Contribution of Head Position, Standing Surface, and Vision to Postural Control in Community-Dwelling Older Adults.

    PubMed

    Pociask, Fredrick D; DiZazzo-Miller, Rosanne; Goldberg, Allon; Adamo, Diane E

    2016-01-01

    Postural control requires the integration of sensorimotor information to maintain balance and to properly position and orient the body in response to external stimuli. Age-related declines in peripheral and central sensory and motor function contribute to postural instability and falls. This study investigated the contribution of head position, standing surface, and vision on postural sway in 26 community-dwelling older adults. Participants were asked to maintain a stable posture under conditions that varied standing surface, head position, and the availability of visual information. Significant main and interaction effects were found for all three factors. Findings from this study suggest that postural sway responses require the integration of available sources of sensory information. These results have important implications for fall risks in older adults and suggest that when standing with the head extended and eyes closed, older adults may place themselves at risk for postural disequilibrium and loss of balance. PMID:26709429

  16. Computer model of catalytic combustion/Stirling engine heater head

    NASA Technical Reports Server (NTRS)

    Chu, E. K.; Chang, R. L.; Tong, H.

    1981-01-01

    The basic Acurex HET code was modified to analyze specific problems for Stirling engine heater head applications. Specifically, the code can model: an adiabatic catalytic monolith reactor, an externally cooled catalytic cylindrical reactor/flat plate reactor, a coannular tube radiatively cooled reactor, and a monolithic reactor radiating to upstream and downstream heat exchangers.

  17. Ranking Medical Subject Headings using a factor graph model

    PubMed Central

    Wei, Wei; Demner-Fushman, Dina; Wang, Shuang; Jiang, Xiaoqian; Ohno-Machado, Lucila

    2015-01-01

    Automatically assigning MeSH (Medical Subject Headings) to articles is an active research topic. Recent work demonstrated the feasibility of improving the existing automated Medical Text Indexer (MTI) system, developed at the National Library of Medicine (NLM). Encouraged by this work, we propose a novel data-driven approach that uses semantic distances in the MeSH ontology for automated MeSH assignment. Specifically, we developed a graphical model to propagate belief through a citation network to provide robust MeSH main heading (MH) recommendation. Our preliminary results indicate that this approach can reach high Mean Average Precision (MAP) in some scenarios. PMID:26306236

  18. Kinematics of a Head-Neck Model Simulating Whiplash

    NASA Astrophysics Data System (ADS)

    Colicchia, Giuseppe; Zollman, Dean; Wiesner, Hartmut; Sen, Ahmet Ilhan

    2008-02-01

    A whiplash event is a relative motion between the head and torso that occurs in rear-end automobile collisions. In particular, the large inertia of the head results in a horizontal translation relative to the thorax. This paper describes a simulation of the motion of the head and neck during a rear-end (whiplash) collision. A head-neck model that qualitatively undergoes the same forces acting in whiplash and shows the same behavior is used to analyze the kinematics of both the head and the cervical spine and the resulting neck loads. The rapid acceleration during a whiplash event causes the extension and flexion of the cervical spine, which in turn can cause dislocated vertebrae, torn ligaments, intervertebral disc herniation, and other trauma that appear to be the likely causes of subsequent painful headache or neck pain symptoms. Thus, whiplash provides a connection between the dynamics of the human body and physics. Its treatment can enliven the usual teaching in kinematics, and both theoretical and experimental approaches provide an interesting biological context to teach introductory principles of mechanics.

  19. Study of the influence of the laterality of mobile phone use on the SAR induced in two head models

    NASA Astrophysics Data System (ADS)

    Ghanmi, Amal; Varsier, Nadège; Hadjem, Abdelhamid; Conil, Emmanuelle; Picon, Odile; Wiart, Joe

    2013-05-01

    The objective of this paper is to investigate and to analyse the influence of the laterality of mobile phone use on the exposure of the brain to radio-frequencies (RF) and electromagnetic fields (EMF) from different mobile phone models using the finite-difference time-domain (FDTD) method. The study focuses on the comparison of the specific absorption rate (SAR) induced on the right and left sides of two numerical adult and child head models. The heads are exposed by both phone models operating in GSM frequency bands for both ipsilateral and contralateral configurations. A slight SAR difference between the two sides of the heads is noted. The results show that the variation between the left and the right sides is more important at 1800 MHz for an ipsilateral use. Indeed, at this frequency, the variation can even reach 20% for the SAR10g and the SAR1g induced in the head and in the brain, respectively. Moreover, the average SAR induced by the mobile phone in the half hemisphere of the brain in ipsilateral exposure is higher than in contralateral exposure. Owing to the superficial character of energy deposition at 1800 MHz, this difference in the SAR induced for the ipsilateral and contralateral usages is more significant at 1800 MHz than at 900 MHz. The results have shown that depending on the phantom head models, the SAR distribution in the brain can vary because of differences in anatomical proportions and in the geometry of the head models. The induced SAR in child head and in sub-regions of the brain is significantly higher (up to 30%) compared to the adult head. This paper confirms also that the shape/design of the mobile and the location of the antenna can have a large influence at high frequency on the exposure of the brain, particularly on the SAR distribution and on the distinguished brain regions.

  20. Impact of Mild Head Injury on Neuropsychological Performance in Healthy Older Adults: Longitudinal Assessment in the AIBL Cohort.

    PubMed

    Albrecht, Matthew A; Masters, Colin L; Ames, David; Foster, Jonathan K

    2016-01-01

    Traumatic brain injury (TBI) is suggested to be a significant risk factor for dementia. However, little research has been conducted into long-term neuropsychological outcomes after head trauma. Participants from the Australian Imaging, Biomarkers and Lifestyle Study of Ageing (AIBL) who had recovered after sustaining a mild TBI involving loss of consciousness more than 5 years previously were compared with matched controls across a 3-year period. Bayesian nested-domain modeling was used to estimate the effect of TBI on neuropsychological performance. There was no evidence for a chronic effect of mild TBI on any neuropsychological domain compared to controls. Within the TBI group, there was some evidence suggesting that the age that the head trauma occurred and the duration of unconsciousness were modulators of episodic memory. However, these findings were not robust. Taken together, these findings indicate that adults who have sustained a TBI resulting in loss of consciousness, but who recover to a healthy level of cognitive functioning, do not experience frank deficits in cognitive ability. PMID:27242516

  1. Impact of Mild Head Injury on Neuropsychological Performance in Healthy Older Adults: Longitudinal Assessment in the AIBL Cohort

    PubMed Central

    Albrecht, Matthew A.; Masters, Colin L.; Ames, David; Foster, Jonathan K.

    2016-01-01

    Traumatic brain injury (TBI) is suggested to be a significant risk factor for dementia. However, little research has been conducted into long-term neuropsychological outcomes after head trauma. Participants from the Australian Imaging, Biomarkers and Lifestyle Study of Ageing (AIBL) who had recovered after sustaining a mild TBI involving loss of consciousness more than 5 years previously were compared with matched controls across a 3-year period. Bayesian nested-domain modeling was used to estimate the effect of TBI on neuropsychological performance. There was no evidence for a chronic effect of mild TBI on any neuropsychological domain compared to controls. Within the TBI group, there was some evidence suggesting that the age that the head trauma occurred and the duration of unconsciousness were modulators of episodic memory. However, these findings were not robust. Taken together, these findings indicate that adults who have sustained a TBI resulting in loss of consciousness, but who recover to a healthy level of cognitive functioning, do not experience frank deficits in cognitive ability. PMID:27242516

  2. Comparative toxicity of oxygenated monoterpenoids in experimental hydroalcoholic lotions to permethrin-resistant adult head lice.

    PubMed

    Gonzalez-Audino, Paola; Picollo, María Inés; Gallardo, Anabella; Toloza, Ariel; Vassena, Claudia; Mougabure-Cueto, Gastón

    2011-07-01

    The use of botanical compounds such as essential oils has recently become the subject of great interest as a natural means of pest control because of their ovicidal, larvicidal, or adulticidal activity against various insect species including head lice. We tested and compared the efficacy of pure oxygenated monoterpenoids that are main ingredients of essential oils of good biological activity. We used pulegone and citral, components of Aloysia citrodora, and geraniol, citronellol, and linalool, components of Geranium sp. oil. We found that citronellol and geraniol showed the highest knockdown and mortality effect (>60%) on adults of both sexes (50:50%) and third-stage nymphs. Pulegone, linalool, and citral showed knockdown percentages between 42 and 55%, and mortality percentages between 47 and 53%. A simple linear regression analysis showed statistically significant relationships between the studied toxic effects and viscosity of the monoterpenoids (p < 0.05), but not with their partition coefficient (log P). PMID:21174108

  3. Isolation of intact astrocytes from the optic nerve head of adult mice

    PubMed Central

    Choi, Hee Joo; Sun, Daniel; Jakobs, Tatjana C.

    2015-01-01

    The astrocytes of the optic nerve head are a specialized subtype of white matter astrocytes that form the direct cellular environment of the unmyelinated ganglion cell axons. Due to their potential involvement in glaucoma, these astrocytes have become a target of research. Due to the heterogeneity of the optic nerve tissue, which also contains other cell types, in some cases it may be desirable to conduct gene expression studies on small numbers of well-characterized astrocytes or even individual cells. Here, we describe a simple method to isolate individual astrocytes. This method permits obtaining astrocytes with intact morphology from the adult mouse optic nerve and reduces contamination of the isolated astrocytes by other cell types. Individual astrocytes can be recognized by their morphology and collected under microscopic control. The whole procedure can be completed in 2-3 hours. We also discuss downstream applications like multiplex single-cell PCR and quantitative PCR (qPCR). PMID:26093274

  4. A semi-automatic method of generating subject-specific pediatric head finite element models for impact dynamic responses to head injury.

    PubMed

    Li, Zhigang; Han, Xiaoqiang; Ge, Hao; Ma, Chunsheng

    2016-07-01

    To account for the effects of head realistic morphological feature variation on the impact dynamic responses to head injury, it is necessary to develop multiple subject-specific pediatric head finite element (FE) models based on computed tomography (CT) or magnetic resonance imaging (MRI) scans. However, traditional manual model development is very time-consuming. In this study, a new automatic method was developed to extract anatomical points from pediatric head CT scans to represent pediatric head morphological features (head size/shape, skull thickness, and suture/fontanel width). Subsequently, a geometry-adaptive mesh morphing method based on radial basis function was developed that can automatically morph a baseline pediatric head FE model into target FE models with geometries corresponding to the extracted head morphological features. In the end, five subject-specific head FE models of approximately 6-month-old (6MO) were automatically generated using the developed method. These validated models were employed to investigate differences in the head dynamic responses among subjects with different head morphologies. The results show that variations in head morphological features have a relatively large effect on pediatric head dynamic response. The results of this study indicate that pediatric head morphological variation had better be taken into account when reconstructing pediatric head injury due to traffic/fall accidents or child abuses using computational models as well as predicting head injury risk for children with obvious difference in head size and morphologies. PMID:27058003

  5. Habitat Suitability Index Models: Yellow-Headed Blackbird

    USGS Publications Warehouse

    Schroeder, Richard L.

    1982-01-01

    Habitat preferences of the yellow-headed blackbird (Xanthocephalus xanthocephalus) are described in this publication. It is one of a series of Habitat Suitability Index (HSI) models and was developed through an analysis of available infomration on the species-habitat requirements of the species. Habitat use information is presented in a review of the literature, followed by the development of an HSI model, designed for use in impact assessment and habitat management activities.

  6. Development of a finite element human head model partially validated with thirty five experimental cases.

    PubMed

    Mao, Haojie; Zhang, Liying; Jiang, Binhui; Genthikatti, Vinay V; Jin, Xin; Zhu, Feng; Makwana, Rahul; Gill, Amandeep; Jandir, Gurdeep; Singh, Amrinder; Yang, King H

    2013-11-01

    This study is aimed to develop a high quality, extensively validated finite element (FE) human head model for enhanced head injury prediction and prevention. The geometry of the model was based on computed tomography (CT) and magnetic resonance imaging scans of an adult male who has the average height and weight of an American. A feature-based multiblock technique was adopted to develop hexahedral brain meshes including the cerebrum, cerebellum, brainstem, corpus callosum, ventricles, and thalamus. Conventional meshing methods were used to create the bridging veins, cerebrospinal fluid, skull, facial bones, flesh, skin, and membranes-including falx, tentorium, pia, arachnoid, and dura. The head model has 270,552 elements in total. Thirty five loading cases were selected from a range of experimental head impacts to check the robustness of the model predictions based on responses including the brain pressure, relative skull-brain motion, skull response, and facial response. The brain pressure was validated against intracranial pressure data reported by Nahum et al. (1977, "Intracranial Pressure Dynamics During Head Impact," Proc. 21st Stapp Car Crash Conference, SAE Technical Paper No. 770922) and Trosseille et al. (1992, "Development of a F.E.M. of the Human Head According to a Specific Test Protocol," Proc. 36th Stapp Car Crash Conference, SAE Technical Paper No. 922527). The brain motion was validated against brain displacements under sagittal, coronal, and horizontal blunt impacts performed by Hardy et al. (2001, "Investigation of Head Injury Mechanisms Using Neutral Density Technology and High-Speed Biplanar X-Ray," Stapp Car Crash Journal, 45, pp. 337-368; and 2007, "A Study of the Response of the Human Cadaver Head to Impact," Stapp Car Crash Journal, 51, pp. 17-80). The facial bone responses were validated under nasal impact (Nyquist et al. 1986, "Facial Impact Tolerance and Response," Proc. 30th Stapp Car Crash Conference, SAE Technical Paper No. 861896

  7. Modeling gas-liquid head performance of electrical submersible pumps

    NASA Astrophysics Data System (ADS)

    Sun, Datong

    The objectives of this study are to develop a simple and accurate theoretical model and to implement the model into a computational tool to predict Electrical Submersible Pumps (ESP) head performance under two-phase flow conditions. A new two-phase model including a set of one-dimensional mass and momentum balance equations was developed. The derived gas-liquid momentum equations along pump channels has improved Sachdeva (1992, 1994)'s model in petroleum industry and generalized Minemura (1998)'s model in nuclear industry. The resulting pressure ODE for frictionless incompressible single-phase flow is consistent with the pump Euler equation. In the two-phase momentum equations, new models for wall frictional losses for each phase, through using gas-liquid stratified assumption and existing correlations for impeller rotating effect, channel curvature effect, and channel cross section effect, have been proposed. New equations for radius of curvature along ESP channels, used in the curvature effect calculation, have been derived. A new shock loss model incorporating rotational speeds has been developed. A new correlation for drag coefficient and interfacial characteristic length effects has been obtained through fitting the model results with experimental data. An algorithm to solve the model equations has been developed and implemented. The model predicts pressure and void fraction distributions along impellers and diffusers and can also be used to predict the pump head performance curve under different fluid properties, pump intake conditions, and rotational speeds. The new two-phase model is validated with air-water experimental data. Results show the model provides a very good prediction for pump head performance under different gas flow rates, liquid flow rates, and different intake pressures. The new model is capable of predicting surging and gas lock conditions.

  8. The kinesin walk: a dynamic model with elastically coupled heads.

    PubMed Central

    Derényi, I; Vicsek, T

    1996-01-01

    Recently individual two-headed kinesin molecules have been studied in in vitro motility assays revealing a number of their peculiar transport properties. In this paper we propose a simple and robust model for the kinesin stepping process with elastically coupled Brownian heads that show all of these properties. The analytic and numerical treatment of our model results in a very good fit to the experimental data and practically has no free parameters. Changing the values of the parameters in the restricted range allowed by the related experimental estimates has almost no effect on the shape of the curves and results mainly in a variation of the zero load velocity that can be directly fitted to the measured data. In addition, the model is consistent with the measured pathway of the kinesin ATPase. PMID:8692894

  9. Some Observations on the Use of the Woodcock-Johnson Tests of Cognitive Ability in Adults with Head Injury.

    ERIC Educational Resources Information Center

    Tupper, David E.

    1990-01-01

    The study provides descriptive data on use of the Woodcock-Johnson Tests of Cognitive Ability with 39 adults with closed head injury. Correlational analyses indicated significant relationships between coma duration and performance on the Perceptual Speed and Memory clusters of the test. Time since injury did not correlate with test results.…

  10. Development of a Finite Element Head Model for the Study of Impact Head Injury

    PubMed Central

    Yang, Bin; Tse, Kwong-Ming; Chen, Ning; Tan, Long-Bin; Zheng, Qing-Qian; Yang, Hui-Min; Hu, Min; Pan, Gang; Lee, Heow-Pueh

    2014-01-01

    This study is aimed at developing a high quality, validated finite element (FE) human head model for traumatic brain injuries (TBI) prediction and prevention during vehicle collisions. The geometry of the FE model was based on computed tomography (CT) and magnetic resonance imaging (MRI) scans of a volunteer close to the anthropometry of a 50th percentile male. The material and structural properties were selected based on a synthesis of current knowledge of the constitutive models for each tissue. The cerebrospinal fluid (CSF) was simulated explicitly as a hydrostatic fluid by using a surface-based fluid modeling method. The model was validated in the loading condition observed in frontal impact vehicle collision. These validations include the intracranial pressure (ICP), brain motion, impact force and intracranial acceleration response, maximum von Mises stress in the brain, and maximum principal stress in the skull. Overall results obtained in the validation indicated improved biofidelity relative to previous FE models, and the change in the maximum von Mises in the brain is mainly caused by the improvement of the CSF simulation. The model may be used for improving the current injury criteria of the brain and anthropometric test devices. PMID:25405201

  11. Age-specific MRI brain and head templates for healthy adults from 20 through 89 years of age

    PubMed Central

    Fillmore, Paul T.; Phillips-Meek, Michelle C.; Richards, John E.

    2015-01-01

    This study created and tested a database of adult, age-specific MRI brain and head templates. The participants included healthy adults from 20 through 89 years of age. The templates were done in five-year, 10-year, and multi-year intervals from 20 through 89 years, and consist of average T1W for the head and brain, and segmenting priors for gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). It was found that age-appropriate templates provided less biased tissue classification estimates than age-inappropriate reference data and reference data based on young adult templates. This database is available for use by other investigators and clinicians for their MRI studies, as well as other types of neuroimaging and electrophysiological research.1 PMID:25904864

  12. Human head-neck computational model for assessing blast injury.

    PubMed

    Roberts, J C; Harrigan, T P; Ward, E E; Taylor, T M; Annett, M S; Merkle, A C

    2012-11-15

    A human head finite element model (HHFEM) was developed to study the effects of a blast to the head. To study both the kinetic and kinematic effects of a blast wave, the HHFEM was attached to a finite element model of a Hybrid III ATD neck. A physical human head surrogate model (HSHM) was developed from solid model files of the HHFEM, which was then attached to a physical Hybrid III ATD neck and exposed to shock tube overpressures. This allowed direct comparison between the HSHM and HHFEM. To develop the temporal and spatial pressures on the HHFEM that would simulate loading to the HSHM, a computational fluid dynamics (CFD) model of the HHFEM in front of a shock tube was generated. CFD simulations were made using loads equivalent to those seen in experimental studies of the HSHM for shock tube driver pressures of 517, 690 and 862 kPa. Using the selected brain material properties, the peak intracranial pressures, temporal and spatial histories of relative brain-skull displacements and the peak relative brain-skull displacements in the brain of the HHFEM compared favorably with results from the HSHM. The HSHM sensors measured the rotations of local areas of the brain as well as displacements, and the rotations of the sensors in the sagittal plane of the HSHM were, in general, correctly predicted from the HHFEM. Peak intracranial pressures were between 70 and 120 kPa, while the peak relative brain-skull displacements were between 0.5 and 3.0mm. PMID:23010219

  13. Development of skull fracture criterion based on real-world head trauma simulations using finite element head model.

    PubMed

    Sahoo, Debasis; Deck, Caroline; Yoganandan, Narayan; Willinger, Rémy

    2016-04-01

    The objective of this study was to enhance an existing finite element (FE) head model with composite modeling and a new constitutive law for the skull. The response of the state-of-the-art FE head model was validated in the time domain using data from 15 temporo-parietal impact experiments, conducted with postmortem human surrogates. The new model predicted skull fractures observed in these tests. Further, 70 well-documented head trauma cases were reconstructed. The 15 experiments and 70 real-world head trauma cases were combined to derive skull fracture injury risk curves. The skull internal energy was found to be the best candidate to predict skull failure based on an in depth statistical analysis of different mechanical parameters (force, skull internal energy), head kinematic-based parameter, the head injury criterion (HIC), and skull fracture correlate (SFC). The proposed tolerance limit for 50% risk of skull fracture was associated with 453mJ of internal energy. Statistical analyses were extended for individual impact locations (frontal, occipital and temporo-parietal) and separate injury risk curves were obtained. The 50% risk of skull fracture for each location: frontal: 481mJ, occipital: 457mJ, temporo-parietal: 456mJ of skull internal energy. PMID:26703363

  14. 3D head model classification using optimized EGI

    NASA Astrophysics Data System (ADS)

    Tong, Xin; Wong, Hau-san; Ma, Bo

    2006-02-01

    With the general availability of 3D digitizers and scanners, 3D graphical models have been used widely in a variety of applications. This has led to the development of search engines for 3D models. Especially, 3D head model classification and retrieval have received more and more attention in view of their many potential applications in criminal identifications, computer animation, movie industry and medical industry. This paper addresses the 3D head model classification problem using 2D subspace analysis methods such as 2D principal component analysis (2D PCA[3]) and 2D fisher discriminant analysis (2DLDA[5]). It takes advantage of the fact that the histogram is a 2D image, and we can extract the most useful information from these 2D images to get a good result accordingingly. As a result, there are two main advantages: First, we can perform less calculation to obtain the same rate of classification; second, we can reduce the dimensionality more than PCA to obtain a higher efficiency.

  15. Animal models of head and neck squamous cell carcinoma.

    PubMed

    Supsavhad, Wachiraphan; Dirksen, Wessel P; Martin, Chelsea K; Rosol, Thomas J

    2016-04-01

    Head and neck squamous cell carcinoma (HNSCC) is the most common oral cancer worldwide. Local bone invasion into the maxilla or mandible and metastasis to regional lymph nodes often result in a poor prognosis, decreased quality of life and shortened survival time for HNSCC patients. Poor response to treatment and clinical outcomes are the major concerns in this aggressive cancer. Multiple animal models have been developed to replicate spontaneous HNSCC and investigate genetic alterations and novel therapeutic targets. This review provides an overview of HNSCC as well as the traditional animal models used in HNSCC preclinical research. The value and challenges of each in vivo model are discussed. Similarity between HNSCC in humans and cats and the possibility of using spontaneous feline oral squamous cell carcinoma (FOSCC) as a model for HNSCC in translational research are highlighted. PMID:26965084

  16. Improved transcranial magnetic stimulation coil design with realistic head modeling

    NASA Astrophysics Data System (ADS)

    Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2013-03-01

    We are investigating Transcranial magnetic stimulation (TMS) as a noninvasive technique based on electromagnetic induction which causes stimulation of the neurons in the brain. TMS can be used as a pain-free alternative to conventional electroconvulsive therapy (ECT) which is still widely implemented for treatment of major depression. Development of improved TMS coils capable of stimulating subcortical regions could also allow TMS to replace invasive deep brain stimulation (DBS) which requires surgical implantation of electrodes in the brain. Our new designs allow new applications of the technique to be established for a variety of diagnostic and therapeutic applications of psychiatric disorders and neurological diseases. Calculation of the fields generated inside the head is vital for the use of this method for treatment. In prior work we have implemented a realistic head model, incorporating inhomogeneous tissue structures and electrical conductivities, allowing the site of neuronal activation to be accurately calculated. We will show how we utilize this model in the development of novel TMS coil designs to improve the depth of penetration and localization of stimulation produced by stimulator coils.

  17. A conceptual model of emergency physician decision making for head computed tomography in mild head injury.

    PubMed

    Probst, Marc A; Kanzaria, Hemal K; Schriger, David L

    2014-06-01

    The use of computed tomographic scanning in blunt head trauma has increased dramatically in recent years without an accompanying rise in the prevalence of injury or hospital admission for serious conditions. Because computed tomography is neither harmless nor inexpensive, researchers have attempted to optimize utilization, largely through research that describes which clinical variables predict intracranial injury, and use this information to develop clinical decision instruments. Although such techniques may be useful when the benefits and harms of each strategy (neuroimaging vs observation) are quantifiable and amenable to comparison, the exact magnitude of these benefits and harms remains unknown in this clinical scenario. We believe that most clinical decision instrument development efforts are misguided insofar as they ignore critical, nonclinical factors influencing the decision to image. In this article, we propose a conceptual model to illustrate how clinical and nonclinical factors influence emergency physicians making this decision. We posit that elements unrelated to standard clinical factors, such as personality of the physician, fear of litigation and of missed diagnoses, patient expectations, and compensation method, may have equal or greater impact on actual decision making than traditional clinical factors. We believe that 3 particular factors deserve special consideration for further research: fear of error/malpractice, financial incentives, and patient engagement. Acknowledgement and study of these factors will be essential if we are to understand how emergency physicians truly make these decisions and how test-ordering behavior can be modified. PMID:24560384

  18. Alveolar Rhabdomyosarcoma of the Head and Neck Region in Older Adults; Genetic Characterization and a Review of the Literature

    PubMed Central

    Yasuda, Taketoshi; Perry, Kyle D.; Nelson, Marilu; Bui, Marilyn M.; Nasir, Aejaz; Goldschmidt, Robert; Gnepp, Douglas R.; Bridge, Julia A

    2009-01-01

    Alveolar rhabdomyosarcoma (ARMS) is remarkably rare in adults over 45 years. Initial immunoprofiling of a small cell neoplasm of the head and neck region in an older adult may not include myogenic markers. A valuable diagnostic aid and important prognostic parameter in ARMS is the identification of PAX3-FOXO1 [t(2;13)(q35;q14)] or PAX7-FOXO1 [t(1;13)(p36;q14)] rearrangements. The purpose of this study was to document the clinicopathologic, immunophenotypic, and genetic features of head/neck ARMS in older adults. Prior isolated descriptions of three patients were included. Five patients were female and two male (median age 61 years). Each neoplasm was composed of undifferentiated, small round cells in a predominantly solid pattern. Initially ordered immunostains corresponded with early diagnostic impressions of a hematologic malignancy or neuroendocrine carcinoma. CD56 was positive in 5/5 tumors and synaptophysin in 1/6. Given the virtual absence of other lymphoid or epithelial markers, muscle immunostains were performed and these were positive. Definitive ARMS diagnoses were confirmed genetically. This study illustrates the diagnosis of head/neck ARMS in older adults is complicated by its rarity, lack of an alveolar pattern, and a potentially misleading immunoprofile (CD56 and synaptophysin immunoreactivity) if myogenic markers are not employed. Both PAX3- and PAX7-FOXO1 ARMSs were identified in these patients. In children, PAX7-FOXO1 ARMS is associated with a significantly longer event-free survival. In contrast, adult ARMS behaves more aggressively with a worse overall survival than pediatric ARMS. Further follow-up and additional cases are required to assess the prognostic relevance of these fusion transcripts in the context of advanced age. PMID:18973919

  19. SU-E-I-32: Benchmarking Head CT Doses: A Pooled Vs. Protocol Specific Analysis of Radiation Doses in Adult Head CT Examinations

    SciTech Connect

    Fujii, K; Bostani, M; Cagnon, C; McNitt-Gray, M

    2015-06-15

    Purpose: The aim of this study was to collect CT dose index data from adult head exams to establish benchmarks based on either: (a) values pooled from all head exams or (b) values for specific protocols. One part of this was to investigate differences in scan frequency and CT dose index data for inpatients versus outpatients. Methods: We collected CT dose index data (CTDIvol) from adult head CT examinations performed at our medical facilities from Jan 1st to Dec 31th, 2014. Four of these scanners were used for inpatients, the other five were used for outpatients. All scanners used Tube Current Modulation. We used X-ray dose management software to mine dose index data and evaluate CTDIvol for 15807 inpatients and 4263 outpatients undergoing Routine Brain, Sinus, Facial/Mandible, Temporal Bone, CTA Brain and CTA Brain-Neck protocols, and combined across all protocols. Results: For inpatients, Routine Brain series represented 84% of total scans performed. For outpatients, Sinus scans represented the largest fraction (36%). The CTDIvol (mean ± SD) across all head protocols was 39 ± 30 mGy (min-max: 3.3–540 mGy). The CTDIvol for Routine Brain was 51 ± 6.2 mGy (min-max: 36–84 mGy). The values for Sinus were 24 ± 3.2 mGy (min-max: 13–44 mGy) and for Facial/Mandible were 22 ± 4.3 mGy (min-max: 14–46 mGy). The mean CTDIvol for inpatients and outpatients was similar across protocols with one exception (CTA Brain-Neck). Conclusion: There is substantial dose variation when results from all protocols are pooled together; this is primarily a function of the differences in technical factors of the protocols themselves. When protocols are analyzed separately, there is much less variability. While analyzing pooled data affords some utility, reviewing protocols segregated by clinical indication provides greater opportunity for optimization and establishing useful benchmarks.

  20. Modeling head and neck cancer stem cell-mediated tumorigenesis.

    PubMed

    Pearson, Alexander T; Jackson, Trachette L; Nör, Jacques E

    2016-09-01

    A large body of literature has emerged supporting the importance of cancer stem cells (CSCs) in the pathogenesis of head and neck cancers. CSCs are a subpopulation of cells within a tumor that share the properties of self-renewal and multipotency with stem cells from normal tissue. Their functional relevance to the pathobiology of cancer arises from the unique properties of tumorigenicity, chemotherapy resistance, and their ability to metastasize and invade distant tissues. Several molecular profiles have been used to discriminate a stem cell from a non-stem cell. CSCs can be grown for study and further enriched using a number of in vitro techniques. An evolving option for translational research is the use of mathematical and computational models to describe the role of CSCs in complex tumor environments. This review is focused discussing the evidence emerging from modeling approaches that have clarified the impact of CSCs to the biology of cancer. PMID:27151511

  1. Low resolution brain electromagnetic tomography in a realistic geometry head model: a simulation study

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Lai, Yuan; He, Bin

    2005-01-01

    It is of importance to localize neural sources from scalp recorded EEG. Low resolution brain electromagnetic tomography (LORETA) has received considerable attention for localizing brain electrical sources. However, most such efforts have used spherical head models in representing the head volume conductor. Investigation of the performance of LORETA in a realistic geometry head model, as compared with the spherical model, will provide useful information guiding interpretation of data obtained by using the spherical head model. The performance of LORETA was evaluated by means of computer simulations. The boundary element method was used to solve the forward problem. A three-shell realistic geometry (RG) head model was constructed from MRI scans of a human subject. Dipole source configurations of a single dipole located at different regions of the brain with varying depth were used to assess the performance of LORETA in different regions of the brain. A three-sphere head model was also used to approximate the RG head model, and similar simulations performed, and results compared with the RG-LORETA with reference to the locations of the simulated sources. Multi-source localizations were discussed and examples given in the RG head model. Localization errors employing the spherical LORETA, with reference to the source locations within the realistic geometry head, were about 20-30 mm, for four brain regions evaluated: frontal, parietal, temporal and occipital regions. Localization errors employing the RG head model were about 10 mm over the same four brain regions. The present simulation results suggest that the use of the RG head model reduces the localization error of LORETA, and that the RG head model based LORETA is desirable if high localization accuracy is needed.

  2. Monte Carlo modeling of light propagation in the human head for applications in sinus imaging

    NASA Astrophysics Data System (ADS)

    Cerussi, Albert E.; Mishra, Nikhil; You, Joon; Bhandarkar, Naveen; Wong, Brian J. F.

    2015-02-01

    Sinus blockages are a common reason for physician visits, affecting 1 out of 7 in the United States. Over 20 million cases of acute bacterial sinusitis become chronic and require medical treatment. Diagnosis in the primary care setting is challenging because symptom criteria (via detailed clinical history) plus objective imaging (CT or endoscopy) is recommended. Unfortunately, neither option is routinely available in primary care. Our previous work demonstrated that low-cost near infrared (NIR) transillumination instruments produced signals that correlated with the bulk findings of sinus opacity measured by CT. We have upgraded the technology, but questions remain such as finding the optimal arrangement of light sources, measuring the influence of specific anatomical structures, and determining detection limits. In order to begin addressing these questions, we have modeled NIR light propagation inside the adult human head using a mesh-based Monte Carlo algorithm (MMCLab) applied to a detailed anatomical head model constructed from CT images. In this application the sinus itself, which under healthy conditions is a void region (e.g., non-scattering), is the region of interest instead of an obstacle to other contrast mechanisms. We report preliminary simulations that characterize the changes in detected intensity due to clear (i.e., healthy) versus blocked sinuses. We also ran simulations for two of our clinical cases and compared results with the measurements. The simulations presented herein serve as a proof of concept that this approach could be used to understand contrast mechanisms and limitations of NIR imaging of the sinus cavities.

  3. The potential and limitations of utilising head impact injury models to assess the likelihood of significant head injury in infants after a fall.

    PubMed

    Cory, C Z; Jones, M D; James, D S; Leadbeatter, S; Nokes, L D

    2001-12-01

    The use of engineering principles in assessing head injury scenarios is of increasing significance in investigations into suspected child abuse. A fall scenario is often given as the history for a head injury to an infant. This paper addresses the basic engineering principles and factors to be considered when calculating the severity of a head impact after free-fall. The application of head injury models (HIMs) to ascertain the forces involved in childhood head injuries from impact is also discussed. Previous studies including Duhaime et al. [J. Neurosurg. 66 (1987) 409] and Nokes et al. [Forensic Sci. Int. 79 (1995) 85] have utilised HIMs for this purpose: this paper reviews those models most widely documented.The HIM currently considered the 'state-of-the-art' is the head injury criterion (HIC) and it is suggested that this model should be utilised for assessing head impact injury in child abuse cases where appropriate. PMID:11728733

  4. A Cardiovascular Mathematical Model of Graded Head-Up Tilt

    PubMed Central

    Lim, Einly; Chan, Gregory S. H.; Dokos, Socrates; Ng, Siew C.; Latif, Lydia A.; Vandenberghe, Stijn; Karunanithi, Mohan; Lovell, Nigel H.

    2013-01-01

    A lumped parameter model of the cardiovascular system has been developed and optimized using experimental data obtained from 13 healthy subjects during graded head-up tilt (HUT) from the supine position to . The model includes descriptions of the left and right heart, direct ventricular interaction through the septum and pericardium, the systemic and pulmonary circulations, nonlinear pressure volume relationship of the lower body compartment, arterial and cardiopulmonary baroreceptors, as well as autoregulatory mechanisms. A number of important features, including the separate effects of arterial and cardiopulmonary baroreflexes, and autoregulation in the lower body, as well as diastolic ventricular interaction through the pericardium have been included and tested for their significance. Furthermore, the individual effect of parameter associated with heart failure, including LV and RV contractility, baseline systemic vascular resistance, pulmonary vascular resistance, total blood volume, LV diastolic stiffness and reflex gain on HUT response have also been investigated. Our fitted model compares favorably with our experimental measurements and published literature at a range of tilt angles, in terms of both global and regional hemodynamic variables. Compared to the normal condition, a simulated congestive heart failure condition produced a blunted response to HUT with regards to the percentage changes in cardiac output, stroke volume, end diastolic volume and effector response (i.e., heart contractility, venous unstressed volume, systemic vascular resistance and heart rate) with progressive tilting. PMID:24204817

  5. Adult Children of Alcoholics: A Counseling Model.

    ERIC Educational Resources Information Center

    Crawford, Robert L.; Phyfer, Ann Quinn

    1988-01-01

    Notes that adult children of alcoholics attending college present unique problems and opportunities to the college counselor. Presents a treatment model for serving such students which identifies four survivor roles and their manifestations, and suggests counseling techniques for each role. (Author/NB)

  6. Characterizing Discourse Deficits Following Penetrating Head Injury: A Preliminary Model

    ERIC Educational Resources Information Center

    Coelho, Carl; Le, Karen; Mozeiko, Jennifer; Hamilton, Mark; Tyler, Elizabeth; Krueger, Frank; Grafman, Jordan

    2013-01-01

    Purpose: Discourse analyses have demonstrated utility for delineating subtle communication deficits following closed head injuries (CHIs). The present investigation examined the discourse performance of a large group of individuals with penetrating head injury (PHI). Performance was also compared across 6 subgroups of PHI based on lesion locale. A…

  7. Analysis of finite element models for head injury investigation: reconstruction of four real-world impacts.

    PubMed

    Franklyn, Melanie; Fildes, Brian; Zhang, Liying; Yang, King; Sparke, Laurie

    2005-11-01

    Previous studies have shown that both excessive linear and rotational accelerations are the cause of head injuries. Although the head injury criterion has been beneficial as an indicator of head injury risk, it only considers linear acceleration, so there is a need to consider both types of motion in future safety standards. Advanced models of the head/brain complex have recently been developed to gain a better understanding of head injury biomechanics. While these models have been verified against laboratory experimental data, there is a lack of suitable real-world data available for validation. Hence, using two computer models of the head/brain, the objective of the current study was to reconstruct four real-world crashes with known head injury outcomes in a full-vehicle crash laboratory, simulate head/brain responses using kinematics obtained during these reconstructions, and to compare the results predicted by the models against the actual injuries sustained by the occupant. Cases where the occupant sustained no head injuries (AIS 0) and head injuries of severity AIS 4, AIS 5, and multiple head injuries were selected. Data collected from a 9-accelerometer skull were input into the Wayne State University Head Injury Model (WSUHIM) and the NHTSA Simulated Injury Monitor (SIMon). The results demonstrated that both models were able to predict varying injury severities consistent with the difference in AIS injury levels in the real-world cases. The WSUHIM predicted a slightly higher injury threshold than the SIMon, probably due to the finer mesh and different software used for the simulations, and could also determine regions of the brain which had been injured. With further validation, finite element models can be used to establish an injury criterion for each type of brain injury in the future. PMID:17096266

  8. Identification of femoral head center of bipolar hemiarthroplasy in radiostereometric analysis with elementary geometrical shape models.

    PubMed

    Tsukanaka, Masako; Röhrl, Stephan M; von Schewelov, Thord; Nordsletten, Lars

    2016-02-01

    Elementary geometrical shape (EGS) models are useful in radiostereometric analysis (RSA) on hip stems because tantalum markers attached to the stems can be omitted. In order to create an EGS model of a femoral stem, the center of the femoral head has to be identified. The contour of the femoral head is recommended to be used. However, the contour of the femoral head cannot be detected exclusively by computer if it is combined with a bipolar head or a metal cup. We therefore hypothesized that the contour of the outer head of bipolar hemiarthroplasty can be included in the EGS model as well as the femoral head contour. We calculated the time required for the detection of the contour, the precision of analysis and the stem micromotion at 2 years using the two different methods in the same picture set and compared the results. The detection of the bipolar head contour was 10 times faster than that of the femoral head contour. The precision for subsidence was 0.16 mm in EGS RSA with the femoral head contour, and 0.15 mm with the bipolar head contour (p=0.68). The precisions were comparable and clinically acceptable. There was no significant difference between the results of the 2-year micromotion with the two different methods. We conclude that this new method is applicable to measure stem micromotion of hemi-arthroplasty with EGS RSA and the method facilitates the Radiostereometric analysis. PMID:26705109

  9. A Drosophila model of closed head traumatic brain injury

    PubMed Central

    Katzenberger, Rebeccah J.; Loewen, Carin A.; Wassarman, Douglas R.; Petersen, Andrew J.; Ganetzky, Barry; Wassarman, David A.

    2013-01-01

    Traumatic brain injury (TBI) is a substantial health issue worldwide, yet the mechanisms responsible for its complex spectrum of pathologies remains largely unknown. To investigate the mechanisms underlying TBI pathologies, we developed a model of TBI in Drosophila melanogaster. The model allows us to take advantage of the wealth of experimental tools available in flies. Closed head TBI was inflicted with a mechanical device that subjects flies to rapid acceleration and deceleration. Similar to humans with TBI, flies with TBI exhibited temporary incapacitation, ataxia, activation of the innate immune response, neurodegeneration, and death. Our data indicate that TBI results in death shortly after a primary injury only if the injury exceeds a certain threshold and that age and genetic background, but not sex, substantially affect this threshold. Furthermore, this threshold also appears to be dependent on the same cellular and molecular mechanisms that control normal longevity. This study demonstrates the potential of flies for providing key insights into human TBI that may ultimately provide unique opportunities for therapeutic intervention. PMID:24127584

  10. Understanding the Canadian adult CT head rule trial: use of the theoretical domains framework for process evaluation

    PubMed Central

    2013-01-01

    Background The Canadian CT Head Rule was prospectively derived and validated to assist clinicians with diagnostic decision-making regarding the use of computed tomography (CT) in adult patients with minor head injury. A recent intervention trial failed to demonstrate a decrease in the rate of head CTs following implementation of the rule in Canadian emergency departments. Yet, the same intervention, which included a one-hour educational session and reminders at the point of requisition, was successful in reducing cervical spine imaging rates in the same emergency departments. The reason for the varied effect of the intervention across these two behaviours is unclear. There is an increasing appreciation for the use of theory to conduct process evaluations to better understand how strategies are linked with outcomes in implementation trials. The Theoretical Domains Framework (TDF) has been used to explore health professional behaviour and to design behaviour change interventions but, to date, has not been used to guide a theory-based process evaluation. In this proof of concept study, we explored whether the TDF could be used to guide a retrospective process evaluation to better understand emergency physicians’ responses to the interventions employed in the Canadian CT Head Rule trial. Methods A semi-structured interview guide, based on the 12 domains from the TDF, was used to conduct telephone interviews with project leads and physician participants from the intervention sites in the Canadian CT Head Rule trial. Two reviewers independently coded the anonymised interview transcripts using the TDF as a coding framework. Relevant domains were identified by: the presence of conflicting beliefs within a domain; the frequency of beliefs; and the likely strength of the impact of a belief on the behaviour. Results Eight physicians from four of the intervention sites in the Canadian CT Head Rule trial participated in the interviews. Barriers likely to assist with

  11. Closed-Head TBI Model of Multiple Morbidity.

    PubMed

    Thompson, Floyd J; Hou, Jiamei; Bose, Prodip K

    2016-01-01

    Successful therapy for TBI disabilities awaits refinement in the understanding of TBI neurobiology, quantitative measurement of treatment-induced incremental changes in recovery trajectories, and effective translation to human TBI using quantitative methods and protocols that were effective to monitor recovery in preclinical models. Details of the specific neurobiology that underlies these injuries and effective quantitation of treatment-induced changes are beginning to emerge utilizing a variety of preclinical and clinical models (for reviews see (Morales et al., Neuroscience 136:971-989, 2005; Fujimoto et al., Neurosci Biobehav Rev 28:365-378, 2004; Cernak, NeuroRx 2:410-422, 2005; Smith et al., J Neurotrauma 22:1485-1502, 2005; Bose et al., J Neurotrauma 30:1177-1191, 2013; Xiong et al., Nat Rev Neurosci 14:128-142, 2013; Xiong et al., Expert Opin Emerg Drugs 14:67-84, 2009; Johnson et al., Handb Clin Neurol 127:115-128, 2015; Bose et al., Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects, CRC Press/Taylor & Francis, Boca Raton, 2015)). Preclinical models of TBI, essential for the efficient study of TBI neurobiology, benefit from the setting of controlled injury and optimal opportunities for biometric quantitation of injury and treatment-induced changes in the trajectories of disability. Several preclinical models are currently used, and each offer opportunities for study of different aspects of TBI primary and secondary injuries (for review see (Morales et al., Neuroscience 136:971-989, 2005; Xiong et al., Nat Rev Neurosci 14:128-142, 2013; Xiong et al., Expert Opin Emerg Drugs 14:67-84, 2009; Johnson et al., Handb Clin Neurol 127:115-128, 2015; Dixon et al., J Neurotrauma 5:91-104, 1988)). The closed-head, impact-acceleration model of TBI designed by Marmarou et al., 1994 (J Neurosurg 80:291-300, 1994), when used to produce mild to moderate TBI, produces diffuse axonal injuries without significant additional focal injuries of the

  12. Emu model of full-range femoral head osteonecrosis induced focally by an alternating freezing and heating insult.

    PubMed

    Fan, M; Peng, J; Wang, A; Zhang, L; Liu, B; Ren, Z; Xu, W; Sun, J; Xu, Lx; Xiao, D; Qin, L; Lu, S; Wang, Y; Guo, Q Y

    2011-01-01

    The emu, a large bipedal bird with hip joint biomechanics similar to humans, was used to establish an experimental model of femoral head osteonecrosis and subsequent femoral head collapse. Focal lesions were induced in 20 adult male emus using an alternating liquid nitrogen freezing and radiofrequency heating insult. At 2, 4, 8, 12 and 16 weeks post-surgery, hip magnetic resonance imaging (MRI) was performed. Before the emus were sacrificed, barium sulphate was infused to the lower extremity to study blood vessel distribution patterns. Femoral samples were scanned by micro-computed tomography (micro-CT) and evaluated histologically. Hip MRI showed changes from broad oedema to femoral head collapse. Emus developed a crippled gait from post-operative week 6. Micro-CT scans and histology showed human-like osteonecrotic changes with an impaired local blood supply. The protocol resulted in consistent full-range osteonecrosis of the femoral head that may serve as a model for testing potential treatments. PMID:21672321

  13. Hydrogen-rich saline attenuates steroid-associated femoral head necrosis through inhibition of oxidative stress in a rabbit model

    PubMed Central

    HUANG, SHENG-LI; JIAO, JIAN; YAN, HONG-WEI

    2016-01-01

    A growing body of evidence suggests that hydrogen is a novel, selective antioxidant that exerts a protective effect against organ damage. The present study investigated the effect of hydrogen-rich saline on corticosteroid-induced necrosis of the femoral head in an animal model established using prednisolone. A total of 30 healthy, male, adult New Zealand white rabbits were randomly divided into two groups: Hydrogen-rich saline (treated with hydrogen-rich saline via intraperitoneal injection) and placebo (treated with normal saline). At the set time-points, the structure of the femoral head was examined using a microscope; the concentrations of glutathione (GSH), lipid peroxide (LPO), vascular endothelial growth factor (VEGF) and thrombomodulin (TM) in the plasma were measured and the microvessel density was quantified. The results showed that hydrogen-rich saline significantly decreased the levels of VEGF, TM and LPO and increased the GSH level in steroid-associated necrosis of the femoral head in the rabbit model. A significant increase in the microvessel density was observed in the hydrogen-rich saline group. Histopathological staining confirmed the results of the biochemical analysis. The present study demonstrates that hydrogen treatment may alleviate steroid-associated osteonecrosis by inhibiting oxidative stress. Hydrogen-rich saline may provide an alternative treatment for steroid-associated necrosis of the femoral head. PMID:26889236

  14. A kinematic model for 3-D head-free gaze-shifts

    PubMed Central

    Daemi, Mehdi; Crawford, J. Douglas

    2015-01-01

    Rotations of the line of sight are mainly implemented by coordinated motion of the eyes and head. Here, we propose a model for the kinematics of three-dimensional (3-D) head-unrestrained gaze-shifts. The model was designed to account for major principles in the known behavior, such as gaze accuracy, spatiotemporal coordination of saccades with vestibulo-ocular reflex (VOR), relative eye and head contributions, the non-commutativity of rotations, and Listing's and Fick constraints for the eyes and head, respectively. The internal design of the model was inspired by known and hypothesized elements of gaze control physiology. Inputs included retinocentric location of the visual target and internal representations of initial 3-D eye and head orientation, whereas outputs were 3-D displacements of eye relative to the head and head relative to shoulder. Internal transformations decomposed the 2-D gaze command into 3-D eye and head commands with the use of three coordinated circuits: (1) a saccade generator, (2) a head rotation generator, (3) a VOR predictor. Simulations illustrate that the model can implement: (1) the correct 3-D reference frame transformations to generate accurate gaze shifts (despite variability in other parameters), (2) the experimentally verified constraints on static eye and head orientations during fixation, and (3) the experimentally observed 3-D trajectories of eye and head motion during gaze-shifts. We then use this model to simulate how 2-D eye-head coordination strategies interact with 3-D constraints to influence 3-D orientations of the eye-in-space, and the implications of this for spatial vision. PMID:26113816

  15. A kinematic model for 3-D head-free gaze-shifts.

    PubMed

    Daemi, Mehdi; Crawford, J Douglas

    2015-01-01

    Rotations of the line of sight are mainly implemented by coordinated motion of the eyes and head. Here, we propose a model for the kinematics of three-dimensional (3-D) head-unrestrained gaze-shifts. The model was designed to account for major principles in the known behavior, such as gaze accuracy, spatiotemporal coordination of saccades with vestibulo-ocular reflex (VOR), relative eye and head contributions, the non-commutativity of rotations, and Listing's and Fick constraints for the eyes and head, respectively. The internal design of the model was inspired by known and hypothesized elements of gaze control physiology. Inputs included retinocentric location of the visual target and internal representations of initial 3-D eye and head orientation, whereas outputs were 3-D displacements of eye relative to the head and head relative to shoulder. Internal transformations decomposed the 2-D gaze command into 3-D eye and head commands with the use of three coordinated circuits: (1) a saccade generator, (2) a head rotation generator, (3) a VOR predictor. Simulations illustrate that the model can implement: (1) the correct 3-D reference frame transformations to generate accurate gaze shifts (despite variability in other parameters), (2) the experimentally verified constraints on static eye and head orientations during fixation, and (3) the experimentally observed 3-D trajectories of eye and head motion during gaze-shifts. We then use this model to simulate how 2-D eye-head coordination strategies interact with 3-D constraints to influence 3-D orientations of the eye-in-space, and the implications of this for spatial vision. PMID:26113816

  16. Effect of duration of smartphone use on muscle fatigue and pain caused by forward head posture in adults.

    PubMed

    Kim, Seong-Yeol; Koo, Sung-Ja

    2016-06-01

    [Purpose] The effect of duration of smartphone use on neck and shoulder muscle fatigue and pain was investigated in adults with forward head posture. [Subjects and Methods] Thirty-four adults with forward head posture were classified into groups by duration of smartphone use: 11 used a smartphone for 10 minutes each (group 1), 12 for 20 minutes each (group 2), and 11 for 30 minutes each (group 3). Fatigue cervical erector spinae and upper trapezius muscles was measured by electromyography, and pain before and after the experiment was evaluated using Visual Analog Scale (VAS) scores. [Results] There was a significant difference in the degree of fatigue in the left upper trapezius muscles in group 2 and left cervical erector spinae and bilateral upper trapeziuses group 3. There was a significant difference in fatigue in the left upper trapezius in groups 1 and 3. The VAS showed significant differences in all groups before and after the experiment and between groups 1 and 3. [Conclusion] Pain and fatigue worsened with longer smartphone use. This study provided data on the proper duration of smartphone use. Correct posture and breaks of at least 20 minutes are recommend when using smartphones. PMID:27390391

  17. Effect of duration of smartphone use on muscle fatigue and pain caused by forward head posture in adults

    PubMed Central

    Kim, Seong-Yeol; Koo, Sung-Ja

    2016-01-01

    [Purpose] The effect of duration of smartphone use on neck and shoulder muscle fatigue and pain was investigated in adults with forward head posture. [Subjects and Methods] Thirty-four adults with forward head posture were classified into groups by duration of smartphone use: 11 used a smartphone for 10 minutes each (group 1), 12 for 20 minutes each (group 2), and 11 for 30 minutes each (group 3). Fatigue cervical erector spinae and upper trapezius muscles was measured by electromyography, and pain before and after the experiment was evaluated using Visual Analog Scale (VAS) scores. [Results] There was a significant difference in the degree of fatigue in the left upper trapezius muscles in group 2 and left cervical erector spinae and bilateral upper trapeziuses group 3. There was a significant difference in fatigue in the left upper trapezius in groups 1 and 3. The VAS showed significant differences in all groups before and after the experiment and between groups 1 and 3. [Conclusion] Pain and fatigue worsened with longer smartphone use. This study provided data on the proper duration of smartphone use. Correct posture and breaks of at least 20 minutes are recommend when using smartphones. PMID:27390391

  18. Coming apart at the seams: morphological evidence for pregnathal head capsule borders in adult Tribolium castaneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cephalization and seamless fusion of the anterior body segments during development obscure the segmental origins of the insect head. Most of the visible seams are thought to reflect infolding for structural reinforcement rather than a merger of segmental or cuticular plate borders. Incomplete fusion...

  19. Bayesian model averaging for groundwater head prediction and uncertainty analysis using multimodel and multimethod

    NASA Astrophysics Data System (ADS)

    Li, Xiaobao; Tsai, Frank T.-C.

    2009-09-01

    This study introduces a Bayesian model averaging (BMA) method that incorporates multiple groundwater models and multiple hydraulic conductivity estimation methods to predict groundwater heads and evaluate prediction uncertainty. BMA is able to distinguish prediction uncertainty arising from individual models, between models, and between methods. Moreover, BMA is able to identify unfavorable models even though they may present small prediction uncertainty. Uncertainty propagation, from model parameter uncertainty to model prediction uncertainty, can also be studied through BMA. This study adopts a variance window to obtain reasonable BMA weights for the best models, which are usually exaggerated by Occam's window. Results from a synthetic case study show that BMA with the variance window can provide better head prediction than individual models, or at least can obtain better predictions close to the best model. The BMA was applied to predicting groundwater heads in the "1500-foot" sand of the Baton Rouge area in Louisiana. Head prediction uncertainty was assessed by the BMA prediction variance. BMA confirms that large head prediction uncertainty occurs at areas lacking head observations and hydraulic conductivity measurements. Further study in these areas is necessary to reduce head prediction uncertainty.

  20. Thrust and torque characteristics based on a new cutter-head load model

    NASA Astrophysics Data System (ADS)

    Liu, Jianqin; Ren, Jiabao; Guo, Wei

    2015-07-01

    Full face rock tunnel boring machine(TBM) has been widely used in hard rock tunnels, however, there are few published theory about cutter-head design, and the design criteria of cutter-head under complex geological is not clear yet. To deal with the complex relationship among geological parameters, cutter parameters, and operating parameters during tunneling processes, a cutter-head load model is established by using CSM(Colorado school of mines) prediction model. Force distribution on cutter-head under a certain geology is calculated with the new established load model, and result shows that inner cutters bear more force than outer cutters, combining with disc cutters abrasion; a general principle of disc cutters' layout design is proposed. Within the model, the relationship among rock uniaxial compressive strength(UCS), penetration and thrust on cutter-head are analyzed, and the results shows that with increasing penetration, cutter thrust increases, but the growth rate slows and higher penetration makes lower special energy(SE). Finally, a fitting mathematical model of ZT(ratio of cutter-head torque and thrust) and penetration is established, and verified by TB880E, which can be used to direct how to set thrust and torque on cutter-head. When penetration is small, the cutter-head thrust is the main limiting factor in tunneling; when the penetration is large, cutter-head torque is the major limiting factor in tunneling. Based on the new cutter-head load model, thrust and torque characteristics of TBM further are researched and a new way for cutter-head layout design and TBM tunneling operations is proposed.

  1. Jaw Dysfunction Related to Pterygoid and Masseter Muscle Dosimetry After Radiation Therapy in Children and Young Adults With Head-and-Neck Sarcomas

    SciTech Connect

    Krasin, Matthew J.; Wiese, Kristin M.; Spunt, Sheri L.; Hua, Chia-ho; Daw, Najat; Navid, Fariba; Davidoff, Andrew M.; McGregor, Lisa; Merchant, Thomas E.; Kun, Larry E.; McCrarey, Lola; and others

    2012-01-01

    Purpose: To investigate the relationship between jaw function, patient and treatment variables, and radiation dosimetry of the mandibular muscles and joints in children and young adults receiving radiation for soft-tissue and bone sarcomas. Methods and Materials: Twenty-four pediatric and young adult patients with head-and-neck sarcomas were treated on an institutional review board-approved prospective study of focal radiation therapy for local tumor control. Serial jaw depression measurements were related to radiation dosimetry delivered to the medial and lateral pterygoid muscles, masseter muscles, and temporomandibular joints to generate mathematical models of jaw function. Results: Baseline jaw depression was only influenced by the degree of surgical resection. In the first 12 weeks from initiation of radiation, surgical procedures greater than a biopsy, administration of cyclophosphamide containing chemotherapy regimes, and large gross tumor volumes adversely affected jaw depression. Increasing dose to the pterygoid and masseter muscles above 40 Gy predicted loss of jaw function over the full course of follow-up. Conclusions: Clinical and treatment factors are related to initial and subsequent jaw dysfunction. Understanding these complex interactions and the affect of specific radiation doses may help reduce the risk for jaw dysfunction in future children and young adults undergoing radiation therapy for the management of soft-tissue and bone sarcomas.

  2. Comparative efficacy of new commercial pediculicides against adults and eggs of Pediculus humanus capitis (head lice).

    PubMed

    Gallardo, Anabella; Mougabure-Cueto, Gastón; Vassena, Claudia; Picollo, María Inés; Toloza, Ariel Ceferino

    2012-05-01

    The use of pyrethroids to control head louse infestations have suffered considerable loss of efficacy due to the development of resistance. In the last past years, several new alternative products to synthetic pyrethroids have been developed and are sold in the Argentinean market against head lice. The present study investigated the efficacy of two new Argentinean products Nopucid Qubit® and Nopucid Bio Citrus® and its comparison with two reference products Nyda® and Hedrin®. Nopucid Qubit® is a two-phase lotion containing geraniol and citronellol (phase 1) and ciclopentaxiloxane (phase 2); while Nopucid Bio Citrus® contains dimethicone, ciclopentaxiloxane, and bergamot essential oil. These products are physically acting compounds. The sensitivity of two laboratory assays for testing insecticide activity of new formulations was also compared. Mortality (100%) of motile forms occurred after they were exposed to any product for 1 and 2 min, either by in vitro or ex vivo test. Concerning ovicidal activity, the most effective pediculicides were Nopucid Bio Citrus® and Nyda®, followed by Hedrin® and Nopucid Qubit®. The present study revealed, for the first time, the efficacy of over-the-counter commercial pediculicides available in Argentine (Nopucid Bio Citrus® and Nopucid Qubit®) on either motile stages or eggs against head lice. PMID:21984369

  3. Effects of Head Models and Dipole Source Parameters on EEG Fields

    PubMed Central

    Peng, Li; Peng, Mingming; Xu, Anhuai

    2015-01-01

    Head model and an efficient method for computing the forward EEG (electroencephalography)problem are essential to dipole source localization(DSL). In this paper, we use less expensive ovoid geometry to approximate human head, aiming at investigating the effects of head shape and dipole source parameters on EEG fields. The application of point least squares (PLS) based on meshless method was introduced for solving EEG forward problem and numerical simulation is implemented in three kinds of ovoid head models. We present the performances of the surface potential in the face of varying dipole source parameters in detail. The results show that the potential patterns are similar for different dipole position in different head shapes, but the peak value of potential is significantly influenced by the head shape. Dipole position induces a great effect on the peak value of potential and shift of peak potential. The degree of variation between sphere head model and non-sphere head models is seen at the same time. We also show that PLS method with the trigonometric basis is superior to the constant basis, linear basis, and quadratic basis functions in accuracy and efficiency. PMID:25893011

  4. Constructing three-dimensional detachable and composable computer models of the head and neck.

    PubMed

    Fan, Min; Dai, Peishan; Zheng, Buhong; Li, Xinchun

    2015-06-01

    The head and neck region has a complex spatial and topological structure, three-dimensional (3D) computer model of the region can be used in anatomical education, radiotherapy planning and surgical training. However, most of the current models only consist of a few parts of the head and neck, and the 3D models are not detachable and composable. In this study, a high-resolution 3D detachable and composable model of the head and neck was constructed based on computed tomography (CT) serial images. First, fine CT serial images of the head and neck were obtained. Then, a color lookup table was created for 58 structures, which was used to create anatomical atlases of the head and neck. Then, surface and volume rendering methods were used to reconstruct 3D models of the head and neck. Smoothing and polygon reduction steps were added to improve 3D rendering effects. 3D computer models of the head and neck, including the sinus, pharynx, vasculature, nervous system, endocrine system and glands, muscles, bones and skin, were reconstructed. The models consisted of 58 anatomical detachable and composable structures and each structure can be displayed individually or together with other structures. PMID:26091713

  5. Investigation of Head Burns in Adult Salmonids : Phase 1 : Examination of Fish at Lower Granite Dam, July 2, 1996. Final Report.

    SciTech Connect

    Elston, Ralph

    1996-08-01

    Head burn is a descriptive clinical term used by fishery biologists to describe exfoliation of skin and underlying connective tissue of the jaw and cranial region of salmonids, observed at fish passage facilities on the Columbia and Snake Rivers. The observations are usually made on upstream migrant adult salmon or steelhead. An expert panel, convened in 1996, to evaluate the risk and severity of gas bubble disease (GBD) in the Snake and Columbia River system believed that, while head burns appeared to be distinct from GBD, the relationship between dissolved gas saturation in the rivers and head burns was uncertain.

  6. Multivariate models of adult Pacific salmon returns.

    PubMed

    Burke, Brian J; Peterson, William T; Beckman, Brian R; Morgan, Cheryl; Daly, Elizabeth A; Litz, Marisa

    2013-01-01

    Most modeling and statistical approaches encourage simplicity, yet ecological processes are often complex, as they are influenced by numerous dynamic environmental and biological factors. Pacific salmon abundance has been highly variable over the last few decades and most forecasting models have proven inadequate, primarily because of a lack of understanding of the processes affecting variability in survival. Better methods and data for predicting the abundance of returning adults are therefore required to effectively manage the species. We combined 31 distinct indicators of the marine environment collected over an 11-year period into a multivariate analysis to summarize and predict adult spring Chinook salmon returns to the Columbia River in 2012. In addition to forecasts, this tool quantifies the strength of the relationship between various ecological indicators and salmon returns, allowing interpretation of ecosystem processes. The relative importance of indicators varied, but a few trends emerged. Adult returns of spring Chinook salmon were best described using indicators of bottom-up ecological processes such as composition and abundance of zooplankton and fish prey as well as measures of individual fish, such as growth and condition. Local indicators of temperature or coastal upwelling did not contribute as much as large-scale indicators of temperature variability, matching the spatial scale over which salmon spend the majority of their ocean residence. Results suggest that effective management of Pacific salmon requires multiple types of data and that no single indicator can represent the complex early-ocean ecology of salmon. PMID:23326586

  7. Multivariate Models of Adult Pacific Salmon Returns

    PubMed Central

    Burke, Brian J.; Peterson, William T.; Beckman, Brian R.; Morgan, Cheryl; Daly, Elizabeth A.; Litz, Marisa

    2013-01-01

    Most modeling and statistical approaches encourage simplicity, yet ecological processes are often complex, as they are influenced by numerous dynamic environmental and biological factors. Pacific salmon abundance has been highly variable over the last few decades and most forecasting models have proven inadequate, primarily because of a lack of understanding of the processes affecting variability in survival. Better methods and data for predicting the abundance of returning adults are therefore required to effectively manage the species. We combined 31 distinct indicators of the marine environment collected over an 11-year period into a multivariate analysis to summarize and predict adult spring Chinook salmon returns to the Columbia River in 2012. In addition to forecasts, this tool quantifies the strength of the relationship between various ecological indicators and salmon returns, allowing interpretation of ecosystem processes. The relative importance of indicators varied, but a few trends emerged. Adult returns of spring Chinook salmon were best described using indicators of bottom-up ecological processes such as composition and abundance of zooplankton and fish prey as well as measures of individual fish, such as growth and condition. Local indicators of temperature or coastal upwelling did not contribute as much as large-scale indicators of temperature variability, matching the spatial scale over which salmon spend the majority of their ocean residence. Results suggest that effective management of Pacific salmon requires multiple types of data and that no single indicator can represent the complex early-ocean ecology of salmon. PMID:23326586

  8. Head out of water immersion: A simulation model of microgravity?

    NASA Astrophysics Data System (ADS)

    Verheyden, B.; Beckers, F.; Aubert, Ae.

    Introduction. It is well known that during weightlessness a redistribution of body fluids occurs towards the upper parts of the body causing altered cardiovascular reflex activities. During head out of water immersion (HOI), the hydrostatic pressure on the soft tissues of the lower limbs causes thoracic blood volume to increase, comparably with the observed haemodynamics during weightlessness. The purpose of this study was to evaluate HOI as a simulation model of microgravity concerning the cardiovascular autonomic control system. Methods. Heartbeat and continuous blood pressure (fingerplethysmography) were measured in 18 (age=22.2± 10.3yr) healthy subjects in different conditions: Supine, sitting and standing in air (25C); upright submersion in thermo neutral water (34C) up to the shoulders (HOI). After 5 minutes of accommodation to the position and condition, recordings were made for 10 minutes. Time domain parameters (MeanRR, SD, rMSSD and pNN50) as well as frequency domain parameters (Total Power, high frequency (HF), low frequency (LF)) of HRV and BPV were calculated. An index of baroreflex sensitivity was determined by the sequence method. Results from the HOI experiment were compared to results obtained from microgravity phases in parabolic flights in 5 subjects. Results. Cardiac autonomic control during HOI was characterized by a gain in vagal predominance as shown by a decrease of the LF/HF-ratio from 950 ± 130 ms2 during standing control towards 389 ± 119 ms2 during HOI and a increase of BRS by approximately 20%. As a result, heart rate decreased by approximately 28% during HOI. The same evolution was shown during the transition from a standing control position towards 0G obtained during parabolic flights. LF power of BPV, as a marker of peripheral vasomotor sympathetic activity, decreased significantly both in absolute values and normalized units during HOI compared to standing and seated control (p < 0.05). In contrast, an increase in LF power of BPV

  9. Development/global validation of a 6-month-old pediatric head finite element model and application in investigation of drop-induced infant head injury.

    PubMed

    Li, Zhigang; Luo, Xiao; Zhang, Jinhuan

    2013-12-01

    Drop is a frequent cause for infant head injury. To date, finite element (FE) modeling was gradually used to investigate child head dynamic response under drop impact conditions, however, two shortages still exist on this topic: (1) due to ethical reasons, none of developed 6-month-old (6MO) head FE model was found to be quantitatively validated against child cadaver tests at similar age group; (2) drop height and impact surface stiffness effects on infant head responses were not comprehensively investigated. In this study, motivated by the recently published material properties of soft tissues (skull and suture, etc.) and reported pediatric head global cadaver tests, a 6MO child head FE model was developed and simulated results compared with the child cadaver experimental data under compression and drop conditions. Comparison of results indicated that the FE model showed a fairly good biofidelic behavior in most dynamic responses. The validated FE model was further used to investigate effects of different drop heights and impact surface stiffness on the head dynamic responses. Numerical results show that the pediatric head mechanical parameters (peak acceleration, HIC, maximal vonMises stress and maximal first principal strain of skull) keep increasing with the increase in drop height, and exhibit "logarithmic function" shapes at "fast-slow" trends with increase in impact surface stiffness. Based on above analysis, the regressions were conducted to describe the relationship between drop height and impact surface stiffness and head global injury predictors (head peak acceleration, HIC, etc.). This paper provides a fundamental study of child head injury mechanism and protection under drop conditions. PMID:24008251

  10. Influence of head mass on temporo-parietal skull impact using finite element modeling.

    PubMed

    Sahoo, Debasis; Deck, Caroline; Yoganandan, Narayan; Willinger, Rémy

    2015-09-01

    The effect of head mass on its biomechanical response during lateral impact to the head is investigated in this computational study. The mass of the head of a state-of-the-art validated finite element head model is altered by ± 10 % from the base value of 4.7 kg. Numerical simulations of lateral head impacts for 30 cases (representing 15 human cadaver experiments × 2 mass configurations) are performed using the LS-DYNA solver at different velocities ranging from 2.4 to 6.5 m/s and three impacting conditions representing different stiffness and shapes of the contact/impact surfaces. Results are compared with the original model using the baseline head mass, thus resulting in a total of 45 simulations. Present findings show that the head mass has greater influence for peak interaction forces and the force has a greater dependency on stiffness of contact surface than the shape. Mass variations have also influence on skull strain energy. Regardless of increase/decrease in skull strain energy influenced by head mass variations used in the computational study, the 50 % fracture tolerance limit was unaltered, which was 544 mJ. The present study gives a better understanding of the mechanism of temporo-parietal skull impact. PMID:25863692

  11. Coupling of head and body movements to acoustic flow in sighted adults

    NASA Astrophysics Data System (ADS)

    Stoffregen, Thomas A.; Kim, Chunggon; Ito, Kiyohide; Bardy, Benoit G.

    2005-09-01

    Blindfolded sighted persons were found to detect acoustic flow patterns and use this information to control action. A moving room (a large box on wheels, with no floor, that moved in the subject's fore-aft axis) was used. Blindfolded sighted persons (1) stood comfortably or (2) moved their head backward and forward to track audible room motion. Pink noise was presented through four speakers attached to the room, or mounted on stationary stands. Room motion was a sinusoid at 0.2 Hz, 22 cm, along subject's fore-aft axis. When standing comfortably, participants exhibited weak but consistent coupling of body sway with room motion. Tracking of room motion with head movements was robust, matching both the frequency and amplitude of room motion. This was true even when the only information about room motion came from reflected sound (i.e., when the speakers were stationary). The results suggest a strong ability of sighted persons to use acoustic flow in the perception and control of their own action. [Work supported by NSF (BCS-0236627).

  12. Realistic avatar eye and head animation using a neurobiological model of visual attention

    NASA Astrophysics Data System (ADS)

    Itti, Laurent; Dhavale, Nitin; Pighin, Frederic

    2004-01-01

    We describe a neurobiological model of visual attention and eye/head movements in primates, and its application to the automatic animation of a realistic virtual human head watching an unconstrained variety of visual inputs. The bottom-up (image-based) attention model is based on the known neurophysiology of visual processing along the occipito-parietal pathway of the primate brain, while the eye/head movement model is derived from recordings in freely behaving Rhesus monkeys. The system is successful at autonomously saccading towards and tracking salient targets in a variety of video clips, including synthetic stimuli, real outdoors scenes and gaming console outputs. The resulting virtual human eye/head animation yields realistic rendering of the simulation results, both suggesting applicability of this approach to avatar animation and reinforcing the plausibility of the neural model.

  13. Risk factors for head and neck cancer in young adults: a pooled analysis in the INHANCE consortium

    PubMed Central

    Toporcov, Tatiana Natasha; Znaor, Ariana; Zhang, Zuo-Feng; Yu, Guo-Pei; Winn, Deborah M; Wei, Qingyi; Vilensky, Marta; Vaughan, Thomas; Thomson, Peter; Talamini, Renato; Szeszenia-Dabrowska, Neonila; Sturgis, Erich M; Smith, Elaine; Shangina, Oxana; Schwartz, Stephen M; Schantz, Stimson; Rudnai, Peter; Richiardi, Lorenzo; Ramroth, Heribert; Purdue, Mark P; Olshan, Andrew F; Eluf-Neto, José; Muscat, Joshua; Moyses, Raquel Ajub; Morgenstern, Hal; Menezes, Ana; McClean, Michael; Matsuo, Keitaro; Mates, Dana; Macfarlane, Tatiana V; Lissowska, Jolanta; Levi, Fabio; Lazarus, Philip; Vecchia, Carlo La; Lagiou, Pagona; Koifman, Sergio; Kjaerheim, Kristina; Kelsey, Karl; Holcatova, Ivana; Herrero, Rolando; Healy, Claire; Hayes, Richard B; Franceschi, Silvia; Fernandez, Leticia; Fabianova, Eleonora; Daudt, Alexander W; Curioni, Otávio Alberto; Maso, Luigino Dal; Curado, Maria Paula; Conway, David I; Chen, Chu; Castellsague, Xavier; Canova, Cristina; Cadoni, Gabriella; Brennan, Paul; Boccia, Stefania; Antunes, José Leopoldo Ferreira; Ahrens, Wolfgang; Agudo, Antonio; Boffetta, Paolo; Hashibe, Mia; Lee, Yuan-Chin Amy; Filho, Victor Wünsch

    2015-01-01

    Background: Increasing incidence of head and neck cancer (HNC) in young adults has been reported. We aimed to compare the role of major risk factors and family history of cancer in HNC in young adults and older patients. Methods: We pooled data from 25 case-control studies and conducted separate analyses for adults ≤45 years old (‘young adults’, 2010 cases and 4042 controls) and >45 years old (‘older adults’, 17 700 cases and 22 704 controls). Using logistic regression with studies treated as random effects, we estimated adjusted odds ratios (ORs) and 95% confidence intervals (CIs). Results: The young group of cases had a higher proportion of oral tongue cancer (16.0% in women; 11.0% in men) and unspecified oral cavity / oropharynx cancer (16.2%; 11.1%) and a lower proportion of larynx cancer (12.1%; 16.6%) than older adult cases. The proportions of never smokers or never drinkers among female cases were higher than among male cases in both age groups. Positive associations with HNC and duration or pack-years of smoking and drinking were similar across age groups. However, the attributable fractions (AFs) for smoking and drinking were lower in young when compared with older adults (AFs for smoking in young women, older women, young men and older men, respectively, = 19.9% (95% CI = 9.8%, 27.9%), 48.9% (46.6%, 50.8%), 46.2% (38.5%, 52.5%), 64.3% (62.2%, 66.4%); AFs for drinking = 5.3% (−11.2%, 18.0%), 20.0% (14.5%, 25.0%), 21.5% (5.0%, 34.9%) and 50.4% (46.1%, 54.3%). A family history of early-onset cancer was associated with HNC risk in the young [OR = 2.27 (95% CI = 1.26, 4.10)], but not in the older adults [OR = 1.10 (0.91, 1.31)]. The attributable fraction for family history of early-onset cancer was 23.2% (8.60% to 31.4%) in young compared with 2.20% (−2.41%, 5.80%) in older adults. Conclusions: Differences in HNC aetiology according to age group may exist. The lower AF of cigarette smoking and alcohol drinking in young

  14. A Head in Virtual Reality: Development of A Dynamic Head and Neck Model

    ERIC Educational Resources Information Center

    Nguyen, Ngan; Wilson, Timothy D.

    2009-01-01

    Advances in computer and interface technologies have made it possible to create three-dimensional (3D) computerized models of anatomical structures for visualization, manipulation, and interaction in a virtual 3D environment. In the past few decades, a multitude of digital models have been developed to facilitate complex spatial learning of the…

  15. [S3 Guideline. Part 1: Diagnosis and Differential Diagnosis of Non-Traumatic Adult Femoral Head Necrosis].

    PubMed

    Bohndorf, K; Beckmann, J; Jäger, M; Kenn, W; Maus, U; Nöth, U; Peters, K M; Rader, C; Reppenhagen, S; Roth, A

    2015-08-01

    Non-traumatic femoral head necrosis (FHN) is primarily a disease of the middle-aged adult. Early diagnosis, at a time with lacking or minimal clinical symptoms, is mandatory to consider conservative therapy or joint preserving operations as a therapeutic option. The new German S3 guideline about diagnosis and therapy of FHN is a cooperative effort of five professional medical societies, overall headed by the Deutsche Gesellschaft für Orthopädie und Orthopädische Chirurgie (DGOOC). This review (part I/III) cites and explains the statements of the S3 guideline as agreed on the use of imaging methods for diagnosis of FHN. A diagnostic algorithm is presented. FHN clinically has to be considered in case of equivocal pain of a hip joint with a minimum of 6 weeks duration, when risk factors can be revealed, groin pain at clinical investigation, limping, pain or limitation of movement in case of load, and no obvious differential diagnoses. Is an FHN clinically suspected, primarily radiographs of the pelvis ap and a Lauenstein projection of the hip involved should be carried out. When the radiographs are normal, an MRI of the hips should follow routinely. MRI allows the diagnosis of FNH with high accuracy. Furthermore, MRI reveals the site and the size of the necrotic area involved and evaluates the integrity of the joint surface and subchondral fractures. When ARCO stage II (ARCO: Association Research Circulation Osseous) is diagnosed and MRI does not allow one to determine the joint surface with certainty, a CT of the hip joints should be performed. The S3 guideline explains and recommends the use of the ARCO classification. Although, this classification of 1993 is still largely based on radiographs, the pragmatic use of an "extended" version seems reasonable. Today, classical radiographic criteria like impression of the joint surface and subchondral fractures ("crescent sign") are better to be evaluated by MRI, in cases of subtle findings MRI is even surpassed by CT

  16. A finite-element reciprocity solution for EEG forward modeling with realistic individual head models.

    PubMed

    Ziegler, Erik; Chellappa, Sarah L; Gaggioni, Giulia; Ly, Julien Q M; Vandewalle, Gilles; André, Elodie; Geuzaine, Christophe; Phillips, Christophe

    2014-12-01

    We present a finite element modeling (FEM) implementation for solving the forward problem in electroencephalography (EEG). The solution is based on Helmholtz's principle of reciprocity which allows for dramatically reduced computational time when constructing the leadfield matrix. The approach was validated using a 4-shell spherical model and shown to perform comparably with two current state-of-the-art alternatives (OpenMEEG for boundary element modeling and SimBio for finite element modeling). We applied the method to real human brain MRI data and created a model with five tissue types: white matter, gray matter, cerebrospinal fluid, skull, and scalp. By calculating conductivity tensors from diffusion-weighted MR images, we also demonstrate one of the main benefits of FEM: the ability to include anisotropic conductivities within the head model. Root-mean square deviation between the standard leadfield and the leadfield including white-matter anisotropy showed that ignoring the directional conductivity of white matter fiber tracts leads to orientation-specific errors in the forward model. Realistic head models are necessary for precise source localization in individuals. Our approach is fast, accurate, open-source and freely available online. PMID:25204867

  17. 45 CFR 286.90 - How many hours per week must an adult or minor head-of-household participate in work-related...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false How many hours per week must an adult or minor head-of-household participate in work-related activities to count in the numerator of the work participation rate? 286.90 Section 286.90 Public Welfare Regulations Relating to Public Welfare OFFICE OF FAMILY ASSISTANCE (ASSISTANCE...

  18. Principle Study of Head Meridian Acupoint Massage to Stress Release via Grey Data Model Analysis

    PubMed Central

    Lee, Ya-Ting

    2016-01-01

    This paper presents the scientific study of the effectiveness and action principle of head meridian acupoint massage by applying the grey data model analysis approach. First, the head massage procedure for massaging the important head meridian acupuncture points including Taiyang, Fengfu, Tianzhu, Fengqi, and Jianjing is formulated in a standard manner. Second, the status of the autonomic nervous system of each subject is evaluated by using the heart rate variability analyzer before and after the head massage following four weeks. Afterward, the physiological factors of autonomic nerves are quantitatively analyzed by using the grey data modeling theory. The grey data analysis can point out that the status of autonomic nervous system is greatly improved after the massage. The order change of the grey relationship weighting of physiological factors shows the action principle of the sympathetic and parasympathetic nerves when performing head massage. In other words, the grey data model is able to distinguish the detailed interaction of the autonomic nervous system and the head meridian acupoint massage. Thus, the stress relaxing effect of massaging head meridian acupoints is proved, which is lacked in literature. The results can be a reference principle for massage health care in practice. PMID:26904144

  19. Double-ring network model of the head-direction system

    NASA Astrophysics Data System (ADS)

    Xie, Xiaohui; Hahnloser, Richard H.; Seung, H. Sebastian

    2002-10-01

    In the head-direction system, the orientation of an animal's head in space is encoded internally by persistent activities of a pool of cells whose firing rates are tuned to the animal's directional heading. To maintain an accurate representation of the heading information when the animal moves, the system integrates horizontal angular head-velocity signals from the vestibular nuclei and updates the representation of directional heading. The integration is a difficult process, given that head velocities can vary over a large range and the neural system is highly nonlinear. Previous models of integration have relied on biologically unrealistic mechanisms, such as instantaneous changes in synaptic strength, or very fast synaptic dynamics. In this paper, we propose a different integration model with two populations of neurons, which performs integration based on the differential input of the vestibular nuclei to these two populations. We mathematically analyze the dynamics of the model and demonstrate that with carefully tuned synaptic connections it can accurately integrate a large range of the vestibular input, with potentially slow synapses.

  20. Principle Study of Head Meridian Acupoint Massage to Stress Release via Grey Data Model Analysis.

    PubMed

    Lee, Ya-Ting

    2016-01-01

    This paper presents the scientific study of the effectiveness and action principle of head meridian acupoint massage by applying the grey data model analysis approach. First, the head massage procedure for massaging the important head meridian acupuncture points including Taiyang, Fengfu, Tianzhu, Fengqi, and Jianjing is formulated in a standard manner. Second, the status of the autonomic nervous system of each subject is evaluated by using the heart rate variability analyzer before and after the head massage following four weeks. Afterward, the physiological factors of autonomic nerves are quantitatively analyzed by using the grey data modeling theory. The grey data analysis can point out that the status of autonomic nervous system is greatly improved after the massage. The order change of the grey relationship weighting of physiological factors shows the action principle of the sympathetic and parasympathetic nerves when performing head massage. In other words, the grey data model is able to distinguish the detailed interaction of the autonomic nervous system and the head meridian acupoint massage. Thus, the stress relaxing effect of massaging head meridian acupoints is proved, which is lacked in literature. The results can be a reference principle for massage health care in practice. PMID:26904144

  1. Hand effect on head specific absorption rate (SAR) exposed by two realistic phone models

    NASA Astrophysics Data System (ADS)

    Keshvari, J.; Kivento, M.

    2013-04-01

    There have been some reports about possible effect of the hand presence on the head SAR if hand phantom is included in the measurements of the head SAR compliance assessment procedure. The objective of this computational study was to examine the reported effect by using realistic head models and realistic CAD based phone models. A commercially available FDTD based EM solver was used to carry out the computational work. Based on the results of this study considering the SAR values without hand phantom as reference, following conclusions can be made: 1. In general presence of the hand lead to significantly less conservative SAR values in the head for large majority of cases 2. For lower band GSM frequencies the presence of the hand decreases the head SAR up to ~70%. 3. For the upper band GSM frequencies the presence of the hand decreases the head SAR up to ~55%. Based on the results of this study the present SAR compliance protocol where hand phantom is not included leads to more conservative head SAR results compared to the cases where hand is included.

  2. Biomechanical studies in an ovine model of non-accidental head injury.

    PubMed

    Anderson, R W G; Sandoz, B; Dutschke, J K; Finnie, J W; Turner, R J; Blumbergs, P C; Manavis, J; Vink, R

    2014-08-22

    This paper presents the head kinematics of a novel ovine model of non-accidental head injury (NAHI) that consists only of a naturalistic oscillating insult. Nine, 7-to-10-day-old anesthetized and ventilated lambs were subjected to manual shaking. Two six-axis motion sensors tracked the position of the head and torso, and a triaxial accelerometer measured head acceleration. Animals experienced 10 episodes of shaking over 30 min, and then remained under anesthesia for 6h until killed by perfusion fixation of the brain. Each shaking episode lasted for 20s resulting in about 40 cycles per episode. Each cycle typically consisted of three impulsive events that corresponded to specific phases of the head's motion; the most substantial of these were interactions typically with the lamb's own torso, and these generated accelerations of 30-70 g. Impulsive loading was not considered severe. Other kinematic parameters recorded included estimates of head power transfer, head-torso flexion, and rate of flexion. Several styles of shaking were also identified across episodes and subjects. Axonal injury, neuronal reaction and albumin extravasation were widely distributed in the hemispheric white matter, brainstem and at the craniocervical junction and to a much greater magnitude in lower body weight lambs that died. This is the first biomechanical description of a large animal model of NAHI in which repetitive naturalistic insults were applied, and that reproduced a spectrum of injury associated with NAHI. PMID:24974335

  3. Monte Carlo modeling of light propagation in the human head for applications in sinus imaging

    NASA Astrophysics Data System (ADS)

    Cerussi, Albert E.; Mishra, Nikhil; You, Joon; Bhandarkar, Naveen; Wong, Brian

    2015-03-01

    Sinus blockages are a common reason for physician visits, affecting one out of seven people in the United States, and often require medical treatment. Diagnosis in the primary care setting is challenging because symptom criteria (via detailed clinical history) plus objective imaging [computed tomography (CT) or endoscopy] are recommended. Unfortunately, neither option is routinely available in primary care. We previously demonstrated that low-cost near-infrared (NIR) transillumination correlates with the bulk findings of sinus opacity measured by CT. We have upgraded the technology, but questions of source optimization, anatomical influence, and detection limits remain. In order to begin addressing these questions, we have modeled NIR light propagation inside a three-dimensional adult human head constructed via CT images using a mesh-based Monte Carlo algorithm (MMCLAB). In this application, the sinus itself, which when healthy is a void region (e.g., nonscattering), is the region of interest. We characterize the changes in detected intensity due to clear (i.e., healthy) versus blocked sinuses and the effect of illumination patterns. We ran simulations for two clinical cases and compared simulations with measurements. The simulations presented herein serve as a proof of concept that this approach could be used to understand contrast mechanisms and limitations of NIR sinus imaging.

  4. Monte Carlo modeling of light propagation in the human head for applications in sinus imaging

    PubMed Central

    Cerussi, Albert E.; Mishra, Nikhil; You, Joon; Bhandarkar, Naveen; Wong, Brian

    2015-01-01

    Abstract. Sinus blockages are a common reason for physician visits, affecting one out of seven people in the United States, and often require medical treatment. Diagnosis in the primary care setting is challenging because symptom criteria (via detailed clinical history) plus objective imaging [computed tomography (CT) or endoscopy] are recommended. Unfortunately, neither option is routinely available in primary care. We previously demonstrated that low-cost near-infrared (NIR) transillumination correlates with the bulk findings of sinus opacity measured by CT. We have upgraded the technology, but questions of source optimization, anatomical influence, and detection limits remain. In order to begin addressing these questions, we have modeled NIR light propagation inside a three-dimensional adult human head constructed via CT images using a mesh-based Monte Carlo algorithm (MMCLAB). In this application, the sinus itself, which when healthy is a void region (e.g., nonscattering), is the region of interest. We characterize the changes in detected intensity due to clear (i.e., healthy) versus blocked sinuses and the effect of illumination patterns. We ran simulations for two clinical cases and compared simulations with measurements. The simulations presented herein serve as a proof of concept that this approach could be used to understand contrast mechanisms and limitations of NIR sinus imaging. PMID:25781310

  5. [Developing a finite element model of human head with true anatomic structure mandible].

    PubMed

    Ma, Chunsheng; Zhang, Haizhong; Du, Huiliang; Huang, Shilin; Zhang, Jinhuan

    2005-02-01

    A finite element model of human mandible is developed from CT scan images by the technologies of three-dimensional reconstruction, image processing and meshing. The mandible model is connected to one modified head model of Hybrid III dummy with joint according to the anatomic structure and mechanical characteristics of the temporomandibular joint. Then a finite element model of the human head with the true anatomic structure mandible is developed. This model has been validated with the cadaver test results. It can be used in researches on the mechanism of craniofacial blunt-impact injury and on the assessment of injury severity. PMID:15762115

  6. Development of head injury assessment reference values based on NASA injury modeling.

    PubMed

    Somers, Jeffrey T; Granderson, Bradley; Melvin, John W; Tabiei, Ala; Lawrence, Charles; Feiveson, Alan; Gernhardt, Michael; Ploutz-Snyder, Robert; Patalak, John

    2011-11-01

    NASA is developing a new crewed vehicle and desires a lower risk of injury compared to automotive or commercial aviation. Through an agreement with the National Association of Stock Car Auto Racing, Inc. (NASCAR®), an analysis of NASCAR impacts was performed to develop new injury assessment reference values (IARV) that may be more relevant to NASA's context of vehicle landing operations. Head IARVs associated with race car impacts were investigated by analyzing all NASCAR recorded impact data for the 2002-2008 race seasons. From the 4015 impact files, 274 impacts were selected for numerical simulation using a custom NASCAR restraint system and Hybrid III 50th percentile male Finite Element Model (FEM) in LS-DYNA. Head injury occurred in 27 of the 274 selected impacts, and all of the head injuries were mild concussions with or without brief loss of consciousness. The 247 noninjury impacts selected were representative of the range of crash dynamics present in the total set of impacts. The probability of head injury was estimated for each metric using an ordered probit regression analysis. Four metrics had good correlation with the head injury data: head resultant acceleration, head change in velocity, HIC 15, and HIC 36. For a 5% risk of AIS≥1/AIS≥2 head injuries, the following IARVs were found: 121.3/133.2 G (head resultant acceleration), 20.3/22.0 m/s (head change in velocity), 1,156/1,347 (HIC 15), and 1,152/1,342 (HIC 36) respectively. Based on the results of this study, further analysis of additional datasets is recommended before applying these results to future NASA vehicles. PMID:22869304

  7. A mathematical model of adult subventricular neurogenesis

    PubMed Central

    Ashbourn, J. M. A.; Miller, J. J.; Reumers, V.; Baekelandt, V.; Geris, L.

    2012-01-01

    Neurogenesis has been the subject of active research in recent years and many authors have explored the phenomenology of the process, its regulation and its purported purpose. Recent developments in bioluminescent imaging (BLI) allow direct in vivo imaging of neurogenesis, and in order to interpret the experimental results, mathematical models are necessary. This study proposes such a mathematical model that describes adult mammalian neurogenesis occurring in the subventricular zone and the subsequent migration of cells through the rostral migratory stream to the olfactory bulb (OB). This model assumes that a single chemoattractant is responsible for cell migration, secreted both by the OB and in an endocrine fashion by the cells involved in neurogenesis. The solutions to the system of partial differential equations are compared with the physiological rodent process, as previously documented in the literature and quantified through the use of BLI, and a parameter space is described, the corresponding solution to which matches that of the rodent model. A sensitivity analysis shows that this parameter space is stable to perturbation and furthermore that the system as a whole is sloppy. A large number of parameter sets are stochastically generated, and it is found that parameter spaces corresponding to physiologically plausible solutions generally obey constraints similar to the conditions reported in vivo. This further corroborates the model and its underlying assumptions based on the current understanding of the investigated phenomenon. Concomitantly, this leaves room for further quantitative predictions pertinent to the design of future proposed experiments. PMID:22572029

  8. Older Adults in Child Care: A Job-Training Model.

    ERIC Educational Resources Information Center

    Ward, Christopher R.; Smith, Thomas B.

    Recognizing the increasing demand for older adults to work as child care employees, this manual presents the Generations Together model for training older adults at the community college level to work in child care settings. The manual describes the steps necessary to implement a community-college-based, older-adult child care employment training…

  9. Modeling heading and path perception from optic flow in the case of independently moving objects

    PubMed Central

    Raudies, Florian; Neumann, Heiko

    2013-01-01

    Humans are usually accurate when estimating heading or path from optic flow, even in the presence of independently moving objects (IMOs) in an otherwise rigid scene. To invoke significant biases in perceived heading, IMOs have to be large and obscure the focus of expansion (FOE) in the image plane, which is the point of approach. For the estimation of path during curvilinear self-motion no significant biases were found in the presence of IMOs. What makes humans robust in their estimation of heading or path using optic flow? We derive analytical models of optic flow for linear and curvilinear self-motion using geometric scene models. Heading biases of a linear least squares method, which builds upon these analytical models, are large, larger than those reported for humans. This motivated us to study segmentation cues that are available from optic flow. We derive models of accretion/deletion, expansion/contraction, acceleration/deceleration, local spatial curvature, and local temporal curvature, to be used as cues to segment an IMO from the background. Integrating these segmentation cues into our method of estimating heading or path now explains human psychophysical data and extends, as well as unifies, previous investigations. Our analysis suggests that various cues available from optic flow help to segment IMOs and, thus, make humans' heading and path perception robust in the presence of such IMOs. PMID:23554589

  10. A computational simulation study of the influence of helmet wearing on head injury risk in adult cyclists.

    PubMed

    McNally, D S; Whitehead, S

    2013-11-01

    Evidence for the effectiveness of cycle helmets has relied either on simplified experiments or complex statistical analysis of patient cohorts or populations. This study directly assesses the effectiveness of cycle helmets over a range of accident scenarios, from basic loss of control to vehicle impact, using computational modelling. Simulations were performed using dynamics modelling software (MADYMO) and models of a 50% Hybrid III dummy, a hybrid cross bicycle and a car. Loss of control was simulated by a sudden turn of the handlebars and striking a curb, side and rear-on impacts by a car were also simulated. Simulations were run over a representative range of cycle speeds (2.0-14.0 m s(-1)) and vehicle speeds (4.5-17.9 m s(-1)). Bicycle helmets were found to be effective in reducing the severity of head injuries sustained in common accidents. They reduced the risk of an AIS>3 injury, in cases with head impacts, by an average of 40%. In accidents that would cause up to moderate (AIS=2) injuries to a non-helmeted rider, helmets eliminated the risk of injury. Helmets were also found to be effective in preventing fatal head injuries in some instances. The effectiveness of helmets was demonstrated over the entire range of cycle speeds studied, up to and including 14 m s(-1). There was no evidence that helmet wearing increased the risk of neck injury, indeed helmets were found to be protective of neck injuries in many cases. Similarly, helmets were found to offer an increase in protection even when an increase in cycle speed due to risk compensation was taken into consideration. PMID:24005027

  11. Double-stranded DNA organization in bacteriophage heads: An alternative toroid-based model

    SciTech Connect

    Hud, N.V.

    1995-10-01

    Studies of the organization of double-stranded DNA within bacteriophage heads during the past four decades have produced a wealth of data. However, despite the presentation of numerous models, the true organization of DNA within phage heads remains unresolved. The observations of toroidal DNA structures in electron micrographs of phage lysates have long been cited as support for the organization of DNA in a spool-like fashion. This particular model, like all other models, has not been found to be consistent with all available data. Recently, the authors proposed that DNA within toroidal condensates produced in vitro is organized in a manner significantly different from that suggested by the spool model. This new toroid model has allowed the development of an alternative model for DNA organization within bacteriophage heads that is consistent with a wide range of biophysical data. Here the authors propose that bacteriophage DNA is packaged in a toroid that is folded into a highly compact structure.

  12. Simulations of a lattice model of two-headed linear amphiphiles: Influence of amphiphile asymmetry

    NASA Astrophysics Data System (ADS)

    Jackson, Douglas R.; Mohareb, Amir; MacNeil, Jennifer; Razul, M. Shajahan G.; Marangoni, D. Gerrard; Poole, Peter H.

    2011-05-01

    Using a 2D lattice model, we conduct Monte Carlo simulations of micellar aggregation of linear-chain amphiphiles having two solvophilic head groups. In the context of this simple model, we quantify how the amphiphile architecture influences the critical micelle concentration (CMC), with a particular focus on the role of the asymmetry of the amphiphile structure. Accordingly, we study all possible arrangements of the head groups along amphiphile chains of fixed length N = 12 and 16 molecular units. This set of idealized amphiphile architectures approximates many cases of symmetric and asymmetric gemini surfactants, double-headed surfactants, and boloform surfactants. Consistent with earlier results, we find that the number of spacer units s separating the heads has a significant influence on the CMC, with the CMC increasing with s for s < N/2. In comparison, the influence of the asymmetry of the chain architecture on the CMC is much weaker, as is also found experimentally.

  13. Wearable-Sensor-Based Classification Models of Faller Status in Older Adults

    PubMed Central

    2016-01-01

    Wearable sensors have potential for quantitative, gait-based, point-of-care fall risk assessment that can be easily and quickly implemented in clinical-care and older-adult living environments. This investigation generated models for wearable-sensor based fall-risk classification in older adults and identified the optimal sensor type, location, combination, and modelling method; for walking with and without a cognitive load task. A convenience sample of 100 older individuals (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m under single-task and dual-task conditions while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, and left and right shanks. Participants also completed the Activities-specific Balance Confidence scale, Community Health Activities Model Program for Seniors questionnaire, six minute walk test, and ranked their fear of falling. Fall risk classification models were assessed for all sensor combinations and three model types: multi-layer perceptron neural network, naïve Bayesian, and support vector machine. The best performing model was a multi-layer perceptron neural network with input parameters from pressure-sensing insoles and head, pelvis, and left shank accelerometers (accuracy = 84%, F1 score = 0.600, MCC score = 0.521). Head sensor-based models had the best performance of the single-sensor models for single-task gait assessment. Single-task gait assessment models outperformed models based on dual-task walking or clinical assessment data. Support vector machines and neural networks were the best modelling technique for fall risk classification. Fall risk classification models developed for point-of-care environments should be developed using support vector machines and neural networks, with a multi-sensor single-task gait assessment. PMID:27054878

  14. Experimental Test of Spatial Updating Models for Monkey Eye-Head Gaze Shifts

    PubMed Central

    Van Grootel, Tom J.; Van der Willigen, Robert F.; Van Opstal, A. John

    2012-01-01

    How the brain maintains an accurate and stable representation of visual target locations despite the occurrence of saccadic gaze shifts is a classical problem in oculomotor research. Here we test and dissociate the predictions of different conceptual models for head-unrestrained gaze-localization behavior of macaque monkeys. We adopted the double-step paradigm with rapid eye-head gaze shifts to measure localization accuracy in response to flashed visual stimuli in darkness. We presented the second target flash either before (static), or during (dynamic) the first gaze displacement. In the dynamic case the brief visual flash induced a small retinal streak of up to about 20 deg at an unpredictable moment and retinal location during the eye-head gaze shift, which provides serious challenges for the gaze-control system. However, for both stimulus conditions, monkeys localized the flashed targets with accurate gaze shifts, which rules out several models of visuomotor control. First, these findings exclude the possibility that gaze-shift programming relies on retinal inputs only. Instead, they support the notion that accurate eye-head motor feedback updates the gaze-saccade coordinates. Second, in dynamic trials the visuomotor system cannot rely on the coordinates of the planned first eye-head saccade either, which rules out remapping on the basis of a predictive corollary gaze-displacement signal. Finally, because gaze-related head movements were also goal-directed, requiring continuous access to eye-in-head position, we propose that our results best support a dynamic feedback scheme for spatial updating in which visuomotor control incorporates accurate signals about instantaneous eye- and head positions rather than relative eye- and head displacements. PMID:23118883

  15. Competency-Based Adult Education: Florida Model.

    ERIC Educational Resources Information Center

    Singer, Elizabeth

    This compilation of program materials serves as an introduction to Florida's Brevard Community College's (BCC's) Competency-Based Adult High School Completion Project, a multi-year project designed to teach adult administrators, counselors, and teachers how to organize and implement a competency-based adult education (CBAE) program; to critique…

  16. Skull Defects in Finite Element Head Models for Source Reconstruction from Magnetoencephalography Signals

    PubMed Central

    Lau, Stephan; Güllmar, Daniel; Flemming, Lars; Grayden, David B.; Cook, Mark J.; Wolters, Carsten H.; Haueisen, Jens

    2016-01-01

    Magnetoencephalography (MEG) signals are influenced by skull defects. However, there is a lack of evidence of this influence during source reconstruction. Our objectives are to characterize errors in source reconstruction from MEG signals due to ignoring skull defects and to assess the ability of an exact finite element head model to eliminate such errors. A detailed finite element model of the head of a rabbit used in a physical experiment was constructed from magnetic resonance and co-registered computer tomography imaging that differentiated nine tissue types. Sources of the MEG measurements above intact skull and above skull defects respectively were reconstructed using a finite element model with the intact skull and one incorporating the skull defects. The forward simulation of the MEG signals reproduced the experimentally observed characteristic magnitude and topography changes due to skull defects. Sources reconstructed from measured MEG signals above intact skull matched the known physical locations and orientations. Ignoring skull defects in the head model during reconstruction displaced sources under a skull defect away from that defect. Sources next to a defect were reoriented. When skull defects, with their physical conductivity, were incorporated in the head model, the location and orientation errors were mostly eliminated. The conductivity of the skull defect material non-uniformly modulated the influence on MEG signals. We propose concrete guidelines for taking into account conducting skull defects during MEG coil placement and modeling. Exact finite element head models can improve localization of brain function, specifically after surgery. PMID:27092044

  17. National Survey of Radiation Dose and Image Quality in Adult CT Head Scans in Taiwan

    PubMed Central

    Lin, Chung-Jung; Mok, Greta S. P.; Tsai, Mang-Fen; Tsai, Wei-Ta; Yang, Bang-Hung; Tu, Chun-Yuan; Wu, Tung-Hsin

    2015-01-01

    Introduction The purpose of the present study was to evaluate the influence of different variables on radiation dose and image quality based on a national database. Materials and Methods Taiwan’s Ministry of Health and Welfare requested all radiology departments to complete a questionnaire for each of their CT scanners. Information gathered included all scanning parameters for CT head scans. For the present analysis, CT machines were divided into three subgroups: single slice CT (Group A); multi-detector CT (MDCT) with 2-64 slices (Group B); and MDCT with more than 64 slices (Group C). Correlations between computed tomography dose index (CTDI) and signal-to-noise ratio (SNR) with cumulated tube rotation number (CTW(n)) and cumulated tube rotation time (CTW(s)), and sub group analyses of CTDI and SNR across the three groups were performed. Results CTDI values demonstrated a weak correlation (r = 0.33) with CTW(n) in Group A. SNR values demonstrated a weak negative correlation (r = -0.46) with CTW(n) in Group C. MDCT with higher slice numbers used more tube potential resulting in higher effective doses. There were both significantly lower CTDI and SNR values in helical mode than in axial mode in Group B, but not Group C. Conclusion CTW(n) and CTW(s) did not influence radiation output. Helical mode is more often used in MDCT and results in both lower CTDI and SNR compared to axial mode in MDCT with less than 64 slices. PMID:26125549

  18. Proposed modification of the Huxley-Simmons model for myosin head motion along an actin filament.

    PubMed

    Mitsui, T; Chiba, H

    1996-09-21

    A model is proposed for myosin head motion along an actin filament which accommodates recent experimental data. The model includes three attached states of a myosin head and is thus similar to the classical Huxley & Simmons (1971) model, but differs in that an explicit expression is given for the spatial distribution of potential energy wells for the myosin head. Our model also differs from the classical model, in that it assumes that the proportion of myosin heads attached to actin filament is constant and independent of shortening velocity, as suggested by X-ray diffraction data. Furthermore, it posits that the crossbridge is string-like rather than spring-like. This modified model fits well to the experimental data in the following respects. (1) The calculated tension dependence of muscle stiffness agrees with the observation by Ford et al. (1985 J. Physiol. 361, 131-150). (2) A myosin head under low load can move as far as 60 nm along an actin filament during one ATP hydrolysis cycle in muscle, in agreement with the results by Yanagida et al. (1985 Nature 316, 366-369) and others. (3) The model predicts that such movements consist of a series of elementary steps of 11 nm. (4) A single myosin head hardly moves after the first step of 11 nm under the condition of in vitro experiment carried out by Finer et al. (1994 Nature 368, 113-119), in agreement with their observation. (5) The calculated energy liberation rate reproduces the characteristics of Hill's equation. (6) The "double-hyperbolic force-velocity relation" reported by Edman (1988 J. Physiol. 404, 301-321) can be understood in terms of a potential barrier against movement of a potential well in which a myosin head is trapped. PMID:8944146

  19. Near-infrared spectroscopy of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue.

    PubMed

    Dehghani, H; Delpy, D T

    2000-09-01

    Previous modeling of near-infrared (NIR) light distribution in models of the adult head incorporating a clear nonscattering cerebrospinal fluid (CSF) layer have shown the latter to have a profound effect on the resulting photon measurement density function (PMDF). In particular, the presence of the CSF limits the PMDF largely to the outer cortical gray matter with little signal contribution from the deeper white matter. In practice, the CSF is not a simple unobstructed clear layer but contains light-scattering membranes and is crossed by various blood vessels. Using a radiosity-diffusion finite-element model, we investigated the effect on the PMDF of introducing intrusions within the clear layer. The results show that the presence of such obstructions does not significantly increase the light penetration into the brain tissue, except immediately adjacent to the obstruction and that its presence also increases the light sampling of the adjacent skull tissues, which would lead to additional contamination of the NIR spectroscopy signal by the surface tissue layers. PMID:18350064

  20. Immunocompromised and immunocompetent mouse models for head and neck squamous cell carcinoma

    PubMed Central

    Lei, Zhen-ge; Ren, Xiao-hua; Wang, Sha-sha; Liang, Xin-hua; Tang, Ya-ling

    2016-01-01

    Mouse models can closely mimic human oral squamous epithelial carcinogenesis, greatly expand the in vivo research possibilities, and play a critical role in the development of diagnosis, monitoring, and treatment of head and neck squamous cell carcinoma. With the development of the recent research on the contribution of immunity/inflammation to cancer initiation and progression, mouse models have been divided into two categories, namely, immunocompromised and immunocompetent mouse models. And thus, this paper will review these two kinds of models applied in head and neck squamous cell carcinoma to provide a platform to understand the complicated histological, molecular, and genetic changes of oral squamous epithelial tumorigenesis. PMID:26869799

  1. Mental Models: Knowledge in the Head and Knowledge in the World.

    ERIC Educational Resources Information Center

    Jonassen, David H.; Henning, Philip

    1999-01-01

    Explores the utility of mental models as learning outcomes in using complex and situated learning environments. Describes two studies: one aimed at eliciting mental models in the heads of novice refrigeration technicians, and the other an ethnographic study eliciting knowledge and models within the community of experienced refrigeration…

  2. Parametric Comparisons of Intracranial Mechanical Responses from Three Validated Finite Element Models of the Human Head

    PubMed Central

    Ji, Songbai; Ghadyani, Hamidreza; Bolander, Richard P.; Beckwith, Jonathan G.; Ford, James C.; Mcallister, Thomas W.; Flashman, Laura A.; Paulsen, Keith D.; Ernstrom, Karin; Jain, Sonia; Raman, Rema; Zhang, Liying; Greenwald, Richard M.

    2015-01-01

    A number of human head finite element (FE) models have been developed from different research groups over the years to study the mechanisms of traumatic brain injury. These models can vary substantially in model features and parameters, making it important to evaluate whether simulation results from one model are readily comparable with another, and whether response-based injury thresholds established from a specific model can be generalized when a different model is employed. The purpose of this study is to parametrically compare regional brain mechanical responses from three validated head FE models to test the hypothesis that regional brain responses are dependent on the specific head model employed as well as the region of interest (ROI). The Dartmouth Scaled and Normalized Model (DSNM), the Simulated Injury Monitor (SIMon), and the Wayne State University Head Injury Model (WSUHIM) were selected for comparisons. For model input, 144 unique kinematic conditions were created to represent the range of head impacts sustained by male collegiate hockey players during play. These impacts encompass the 50th, 95th, and 99th percentile peak linear and rotational accelerations at 16 impact locations around the head. Five mechanical variables (strain, strain rate, strain × strain rate, stress, and pressure) in seven ROIs reported from the FE models were compared using Generalized Estimating Equation statistical models. Highly significant differences existed among FE models for nearly all output variables and ROIs. The WSUHIM produced substantially higher peak values for almost all output variables regardless of the ROI compared to the DSNM and SIMon models (p < 0.05). DSNM also produced significantly different stress and pressure compared with SIMon for all ROIs (p < 0.05), but such differences were not consistent across ROIs for other variables. Regardless of FE model, most output variables were highly correlated with linear and rotational peak accelerations. The

  3. S-values calculated from a tomographic head/brain model for brain imaging

    NASA Astrophysics Data System (ADS)

    Chao, Tsi-chian; Xu, X. George

    2004-11-01

    A tomographic head/brain model was developed from the Visible Human images and used to calculate S-values for brain imaging procedures. This model contains 15 segmented sub-regions including caudate nucleus, cerebellum, cerebral cortex, cerebral white matter, corpus callosum, eyes, lateral ventricles, lenses, lentiform nucleus, optic chiasma, optic nerve, pons and middle cerebellar peduncle, skull CSF, thalamus and thyroid. S-values for C-11, O-15, F-18, Tc-99m and I-123 have been calculated using this model and a Monte Carlo code, EGS4. Comparison of the calculated S-values with those calculated from the MIRD (1999) stylized head/brain model shows significant differences. In many cases, the stylized head/brain model resulted in smaller S-values (as much as 88%), suggesting that the doses to a specific patient similar to the Visible Man could have been underestimated using the existing clinical dosimetry.

  4. Development of a computational biomechanical infant model for the investigation of infant head injury by shaking.

    PubMed

    Jones, Michael David; Martin, Philip S; Williams, Jonathan M; Kemp, Alison M; Theobald, Peter

    2015-10-01

    The inertial loading thresholds for infant head injury are of profound medico-legal and safety-engineering significance. Injurious experimentation with infants is impossible, and physical and computational biomechanical modelling has been frustrated by a paucity of paediatric biomechanical data. This study describes the development of a computational infant model (MD Adams®) by combining radiological, kinematic, mechanical modelling and literature-based data. Previous studies have suggested the neck as critical in determining inertial head loading. The biomechanical effects of varying neck stiffness parameters during simulated shakes were investigated, measuring peak translational and rotational accelerations and rotational velocities at the vertex. A neck quasi-static stiffness of 0.6 Nm/deg and lowest rate-dependent stiffness predisposed the model infant head to the highest accelerations. Plotted against scaled infant injury tolerance curves, simulations produced head accelerations commensurate with those produced during simulated physical model shaking reported in the literature. The model provides a computational platform for the exploitation of improvements in head biofidelity for investigating a wider range of injurious scenarios. PMID:25550310

  5. Emulating the Visual Receptive Field Properties of MST Neurons with a Template Model of Heading Estimation

    NASA Technical Reports Server (NTRS)

    Perrone, John A.; Stone, Leland S.

    1997-01-01

    We have previously proposed a computational neural-network model by which the complex patterns of retinal image motion generated during locomotion (optic flow) can be processed by specialized detectors acting as templates for specific instances of self-motion. The detectors in this template model respond to global optic flow by sampling image motion over a large portion of the visual field through networks of local motion sensors with properties similar to neurons found in the middle temporal (MT) area of primate extrastriate visual cortex. The model detectors were designed to extract self-translation (heading), self-rotation, as well as the scene layout (relative distances) ahead of a moving observer, and are arranged in cortical-like heading maps to perform this function. Heading estimation from optic flow has been postulated by some to be implemented within the medial superior temporal (MST) area. Others have questioned whether MST neurons can fulfill this role because some of their receptive-field properties appear inconsistent with a role in heading estimation. To resolve this issue, we systematically compared MST single-unit responses with the outputs of model detectors under matched stimulus conditions. We found that the basic physiological properties of MST neurons can be explained by the template model. We conclude that MST neurons are well suited to support heading estimation and that the template model provides an explicit set of testable hypotheses which can guide future exploration of MST and adjacent areas within the primate superior temporal sulcus.

  6. Model of head-neck joint fast movements in the frontal plane.

    PubMed

    Pedrocchi, A; Ferrigno, G

    2004-06-01

    The objective of this work is to develop a model representing the physiological systems driving fast head movements in frontal plane. All the contributions occurring mechanically in the head movement are considered: damping, stiffness, physiological limit of range of motion, gravitational field, and muscular torques due to voluntary activation as well as to stretch reflex depending on fusal afferences. Model parameters are partly derived from the literature, when possible, whereas undetermined block parameters are determined by optimising the model output, fitting to real kinematics data acquired by a motion capture system in specific experimental set-ups. The optimisation for parameter identification is performed by genetic algorithms. Results show that the model represents very well fast head movements in the whole range of inclination in the frontal plane. Such a model could be proposed as a tool for transforming kinematics data on head movements in 'neural equivalent data', especially for assessing head control disease and properly planning the rehabilitation process. In addition, the use of genetic algorithms seems to fit well the problem of parameter identification, allowing for the use of a very simple experimental set-up and granting model robustness. PMID:15316785

  7. Head model and electrical source imaging: A study of 38 epileptic patients☆

    PubMed Central

    Birot, Gwénael; Spinelli, Laurent; Vulliémoz, Serge; Mégevand, Pierre; Brunet, Denis; Seeck, Margitta; Michel, Christoph M.

    2014-01-01

    Electrical source imaging (ESI) aims at reconstructing the electrical brain activity from scalp EEG. When applied to interictal epileptiform discharges (IEDs), this technique is of great use for identifying the irritative zone in focal epilepsies. Inaccuracies in the modeling of electro-magnetic field propagation in the head (forward model) may strongly influence ESI and lead to mislocalization of IED generators. However, a systematic study on the influence of the selected head model on the localization precision of IED in a large number of patients with known focus localization has not yet been performed. We here present such a performance evaluation of different head models in a dataset of 38 epileptic patients who have undergone high-density scalp EEG, intracranial EEG and, for the majority, subsequent surgery. We compared ESI accuracy resulting from three head models: a Locally Spherical Model with Anatomical Constraints (LSMAC), a Boundary Element Model (BEM) and a Finite Element Model (FEM). All of them were computed from the individual MRI of the patient and ESI was performed on averaged IED. We found that all head models provided very similar source locations. In patients having a positive post-operative outcome, at least 74% of the source maxima were within the resection. The median distance from the source maximum to the nearest intracranial electrode showing IED was 13.2, 15.6 and 15.6 mm for LSMAC, BEM and FEM, respectively. The study demonstrates that in clinical applications, the use of highly sophisticated and difficult to implement head models is not a crucial factor for an accurate ESI. PMID:25003030

  8. Racemic ketamine in adult head injury patients: use in endotracheal suctioning

    PubMed Central

    2013-01-01

    Introduction Endotracheal suctioning (ETS) is essential for patient care in an ICU but may represent a cause of cerebral secondary injury. Ketamine has been historically contraindicated for its use in head injury patients, since an increase of intracranial pressure (ICP) was reported; nevertheless, its use was recently suggested in neurosurgical patients. In this prospective observational study we investigated the effect of ETS on ICP, cerebral perfusion pressure (CPP), jugular oxygen saturation (SjO2) and cerebral blood flow velocity (mVMCA) before and after the administration of ketamine. Methods In the control phase, ETS was performed on patients sedated with propofol and remifentanil in continuous infusion. If a cough was present, patients were assigned to the intervention phase, and 100 γ/kg/min of racemic ketamine for 10 minutes was added before ETS. Results In the control group ETS stimulated the cough reflex, with a median cough score of 2 (interquartile range (IQR) 1 to 2). Furthermore, it caused an increase in mean arterial pressure (MAP) (from 89.0 ± 11.6 to 96.4 ± 13.1 mmHg; P <0.001), ICP (from 11.0 ± 6.7 to 18.5 ± 8.9 mmHg; P <0.001), SjO2 (from 82.3 ± 7.5 to 89.1 ± 5.4; P = 0.01) and mVMCA (from 76.8 ± 20.4 to 90.2 ± 30.2 cm/sec; P = 0.04). CPP did not vary with ETS. In the intervention group, no significant variation of MAP, CPP, mVMCA, and SjO2 were observed in any step; after ETS, ICP increased if compared with baseline (15.1 ± 9.4 vs. 11.0 ± 6.4 mmHg; P <0.05). Cough score was significantly reduced in comparison with controls (P <0.0001). Conclusions Ketamine did not induce any significant variation in cerebral and systemic parameters. After ETS, it maintained cerebral hemodynamics without changes in CPP, mVMCA and SjO2, and prevented cough reflex. Nevertheless, ketamine was not completely effective when used to control ICP increase after administration of 100 γ/kg/min for 10

  9. A dynamical model for reflex activated head movements in the horizontal plane

    NASA Technical Reports Server (NTRS)

    Peng, G. C.; Hain, T. C.; Peterson, B. W.

    1996-01-01

    We present a controls systems model of horizontal-plane head movements during perturbations of the trunk, which for the first time interfaces a model of the human head with neural feedback controllers representing the vestibulocollic (VCR) and the cervicocollic (CCR) reflexes. This model is homeomorphic such that model structure and parameters are drawn directly from anthropomorphic, biomechanical and physiological studies. Using control theory we analyzed the system model in the time and frequency domains, simulating neck movement responses to input perturbations of the trunk. Without reflex control, the head and neck system produced a second-order underdamped response with a 5.2 dB resonant peak at 2.1 Hz. Adding the CCR component to the system dampened the response by approximately 7%. Adding the VCR component dampened head oscillations by 75%. The VCR also improved low-frequency compensation by increasing the gain and phase lag, creating a phase minimum at 0.1 Hz and a phase peak at 1.1 Hz. Combining all three components (mechanics, VCR and CCR) linearly in the head and neck system reduced the amplitude of the resonant peak to 1.1 dB and increased the resonant frequency to 2.9 Hz. The closed loop results closely fit human data, and explain quantitatively the characteristic phase peak often observed.

  10. Development of Head Injury Assessment Reference Values Based on NASA Injury Modeling

    NASA Technical Reports Server (NTRS)

    Somers, Jeffrey T.; Melvin, John W.; Tabiei, Ala; Lawrence, Charles; Ploutz-Snyder, Robert; Granderson, Bradley; Feiveson, Alan; Gernhardt, Michael; Patalak, John

    2011-01-01

    NASA is developing a new capsule-based, crewed vehicle that will land in the ocean, and the space agency desires to reduce the risk of injury from impact during these landings. Because landing impact occurs for each flight and the crew might need to perform egress tasks, current injury assessment reference values (IARV) were deemed insufficient. Because NASCAR occupant restraint systems are more effective than the systems used to determine the current IARVs and are similar to NASA s proposed restraint system, an analysis of NASCAR impacts was performed to develop new IARVs that may be more relevant to NASA s context of vehicle landing operations. Head IARVs associated with race car impacts were investigated by completing a detailed analysis of all of the 2002-2008 NASCAR impact data. Specific inclusion and exclusion criteria were used to select 4071 impacts from the 4015 recorder files provided (each file could contain multiple impact events). Of the 4071 accepted impacts, 274 were selected for numerical simulation using a custom NASCAR restraint system and Humanetics Hybrid-III 50th percentile numerical dummy model in LS-DYNA. Injury had occurred in 32 of the 274 selected impacts, and 27 of those injuries involved the head. A majority of the head injuries were mild concussions with or without brief loss of consciousness. The 242 non-injury impacts were randomly selected and representative of the range of crash dynamics present in the total set of 4071 impacts. Head dynamics data (head translational acceleration, translational change in velocity, rotational acceleration, rotational velocity, HIC-15, HIC-36, and the Head 3ms clip) were filtered according to SAE J211 specifications and then transformed to a log scale. The probability of head injury was estimated using a separate logistic regression analysis for each log-transformed predictor candidate. Using the log transformation constrains the estimated probability of injury to become negligible as IARVs approach

  11. Pain Prevention Using Head and Neck Cancer as a Model

    PubMed Central

    McMenamin, Erin M.; Grant, Marcia

    2015-01-01

    Pain is a common and often debilitating consequence of cancer and its treatment. Efforts to improve pain management for patients diagnosed with cancer have not resulted in widespread patient reports of acceptable management of pain. Patients and providers alike remain opiophobic due to a number of issues, resulting in suboptimal management of pain. Recent literature has revealed that it may be possible to prevent pain related to cancer and its treatment and therefore avoid or decrease the amount of opioids used to treat pain. This may result in better quality of life for patients. Several newer antiepileptic drugs (AEDs) have been found to decrease the perception of pain in a number of patient populations, including those with head and neck cancer. The side-effect profile for the newer AEDs is mild and well tolerated. Future efforts should focus on the use of newer AEDs to prevent pain in other cancer populations, with a focus on ideal dose and scheduling. Once established, recommendations regarding the prevention of pain in patients with cancer can be incorporated into national guidelines. PMID:26413373

  12. Five-layer realistic head model based on inhomogeneous and anisotropic conductivity distribution of different tissues

    NASA Astrophysics Data System (ADS)

    Yan, Dandan; Zhang, Jianwei; Wu, Weijuan; Ying, Xiaoyan; Wu, Xiangping

    2009-10-01

    This paper is focused on the sophisticated realistic head modeling based on inhomogeneous and anisotropic conductivity distribution of the head tissues. The finite element method (FEM) was used to model the five-layer head volume conductor models with hexahedral elements from segmentation and mapping of DT-MRI data. Then the inhomogeneous conductivities of the scalp, CSF and gray matter tissue were distributed according a normal distribution based on the mean value of respective tissues. The electric conductivity of the brain tissues dictates different inhomogeneous and anisotropic at some different microscopic levels. Including the inhomogeneous and anisotropy of the tissue would improve the accuracy of the MREIT, EEG and MEG problems in the simulation research.

  13. Dynamic modeling of the neck muscles during horizontal head movement.

    PubMed

    Haapala, Stephenie A; Enderle, John D

    2002-01-01

    This paper presents modeling and simulation of superficial neck muscle movement in the horizontal plane (yaw). The parametric muscle model was constructed using Pro/Engineer 2000i Student Edition, Parametric Technologies Corp, and simulated using Pro/Mechanica. Pennation angles, force-tension, force-generation and rate of muscle activation data were obtained from anatomic and physiological studies. Saccadic eye movement models developed by G. Alexander Korentis and John Enderle also provided the basis for this model. PMID:12085608

  14. Of lice and math: using models to understand and control populations of head lice.

    PubMed

    Laguna, María Fabiana; Laguna, Mara Fabiana; Risau-Gusman, Sebastián

    2011-01-01

    In this paper we use detailed data about the biology of the head louse (pediculus humanus capitis) to build a model of the evolution of head lice colonies. Using theory and computer simulations, we show that the model can be used to assess the impact of the various strategies usually applied to eradicate head lice, both conscious (treatments) and unconscious (grooming). In the case of treatments, we study the difference in performance that arises when they are applied in systematic and non-systematic ways. Using some reasonable simplifying assumptions (as random mixing of human groups and the same mobility for all life stages of head lice other than eggs) we model the contagion of pediculosis using only one additional parameter. It is shown that this parameter can be tuned to obtain collective infestations whose characteristics are compatible with what is given in the literature on real infestations. We analyze two scenarios: One where group members begin treatment when a similar number of lice are present in each head, and another where there is one individual who starts treatment with a much larger threshold ("superspreader"). For both cases we assess the impact of several collective strategies of treatment. PMID:21799752

  15. Of Lice and Math: Using Models to Understand and Control Populations of Head Lice

    PubMed Central

    Laguna, Mara Fabiana; Risau-Gusman, Sebastián

    2011-01-01

    In this paper we use detailed data about the biology of the head louse (pediculus humanus capitis) to build a model of the evolution of head lice colonies. Using theory and computer simulations, we show that the model can be used to assess the impact of the various strategies usually applied to eradicate head lice, both conscious (treatments) and unconscious (grooming). In the case of treatments, we study the difference in performance that arises when they are applied in systematic and non-systematic ways. Using some reasonable simplifying assumptions (as random mixing of human groups and the same mobility for all life stages of head lice other than eggs) we model the contagion of pediculosis using only one additional parameter. It is shown that this parameter can be tuned to obtain collective infestations whose characteristics are compatible with what is given in the literature on real infestations. We analyze two scenarios: One where group members begin treatment when a similar number of lice are present in each head, and another where there is one individual who starts treatment with a much larger threshold (“superspreader”). For both cases we assess the impact of several collective strategies of treatment. PMID:21799752

  16. Mechanism of head and neck response to -Gx impact acceleration: a math modeling approach.

    PubMed

    Frisch, G D; D'Aulerio, L; O'Rourke, J

    1977-03-01

    Mathematical modeling has attained wider acceptance in recent years. In particular, the use of computer programs to simulate the dynamic response of a human in a crash situation has become an attractive alternative to full-scale experimental testing. This paper analyzes data on the dynamic response of the living human head and neck to -Gx impact acceleration, where the motion of the subject's head and neck in the midsagittal plane was monitored with inertial instrumentation and high-speed photography for confirmation. The Calspan "3D Computer Simulator of Motor Vehicle Crash Victims" was used to predict expected responses for the deceleration pulses employed. These estimates were compared to the fully instrumented human test runs. The standard 15-segment and 14-joint representation of the occupant was modified to include two sternoclavicular joints, increasing the articulation in the upper torso. Analysis of the data indicated that muscular activity in the head and neck seemed to be evident and does influence motion of the head, even at relatively high (10-G peak, 530 G/s onset) acceleration levels. Simulation of muscular contraction, using a spring-damper arrangement, improved the results significantly. Additionally, possible limitations to head-to-neck motion, such as ligament restrictions, were also modeled. PMID:856153

  17. SCDAP/RELAP5 Modeling of Heat Transfer and Flow Losses in Lower Head Porous Debris

    SciTech Connect

    E. W. Coryell; L. J. Siefken; S. Paik

    1998-09-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of nonporous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate manner. A design is also described for implementing a model of heat transfer by radiation from debris to the interstitial fluid. A design is described for implementation of models for flow losses and interphase drag in porous debris. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region.

  18. Accessible and informative sectioned images and surface models of a cadaver head.

    PubMed

    Shin, Dong Sun; Jang, Hae Gwon; Park, Jin Seo; Park, Hyung Seon; Lee, Sangho; Chung, Min Suk

    2012-07-01

    The sectioned images and surface models of a cadaver head in the Visible Korean Project would be more beneficial if they were accessible and informative. To this aim, 3 policies were established: (1) the data are promptly obtainable and observable; (2) the graphic data are accompanied by explaining the anatomic terms; and (3) two-dimensional images and three-dimensional models are shown together. According to the policies, the following were attempted. Two hundred thirty-five couples of sectioned images and outlined images (intervals, 1 mm) of the head were prepared. Browsing software was developed where the 2 corresponding images were displayed simultaneously. In addition, the structures in the images were recognized with the aid of automatic labeling. From the outlined images, surface models of 178 head structures were constructed. The two-dimensional surface models including the sectioned images were embedded into the three-dimensional surface models. All the models were categorized into systems and arranged to be inputted to a PDF (portable document format) file. The finalized PDF file containing comprehensive head data could be explored on Adobe Reader. If the user clicked on the surface models, their anatomic names were highlighted. The sectioned images, outlined images, and surface models in the browsing software and PDF file can be downloaded from the homepage (anatomy.co.kr) free of charge. The state-of-the-art graphic information will hopefully assist medical students in learning head anatomy. In addition, the raw data are expected to contribute to the various clinical practice simulations. PMID:22801119

  19. A Porcine Model of Traumatic Brain Injury via Head Rotational Acceleration.

    PubMed

    Cullen, D Kacy; Harris, James P; Browne, Kevin D; Wolf, John A; Duda, John E; Meaney, David F; Margulies, Susan S; Smith, Douglas H

    2016-01-01

    Unique from other brain disorders, traumatic brain injury (TBI) generally results from a discrete biomechanical event that induces rapid head movement. The large size and high organization of the human brain makes it particularly vulnerable to traumatic injury from rotational accelerations that can cause dynamic deformation of the brain tissue. Therefore, replicating the injury biomechanics of human TBI in animal models presents a substantial challenge, particularly with regard to addressing brain size and injury parameters. Here we present the historical development and use of a porcine model of head rotational acceleration. By scaling up the rotational forces to account for difference in brain mass between swine and humans, this model has been shown to produce the same tissue deformations and identical neuropathologies found in human TBI. The parameters of scaled rapid angular accelerations applied for the model reproduce inertial forces generated when the human head suddenly accelerates or decelerates in falls, collisions, or blunt impacts. The model uses custom-built linkage assemblies and a powerful linear actuator designed to produce purely impulsive non-impact head rotation in different angular planes at controlled rotational acceleration levels. Through a range of head rotational kinematics, this model can produce functional and neuropathological changes across the spectrum from concussion to severe TBI. Notably, however, the model is very difficult to employ, requiring a highly skilled team for medical management, biomechanics, neurological recovery, and specialized outcome measures including neuromonitoring, neurophysiology, neuroimaging, and neuropathology. Nonetheless, while challenging, this clinically relevant model has proven valuable for identifying mechanisms of acute and progressive neuropathologies as well as for the evaluation of noninvasive diagnostic techniques and potential neuroprotective treatments following TBI. PMID:27604725

  20. A dynamic factor modeling framework for analyzing multiple groundwater head series simultaneously

    NASA Astrophysics Data System (ADS)

    Berendrecht, W. L.; van Geer, F. C.

    2016-05-01

    In this paper we present an approach in which we combine a dynamic factor model (DFM) and predefined response functions to analyze a set of groundwater head series simultaneously. Each groundwater head series is decomposed into: (a) one or more deterministic components as a response to known driving forces, (b) one or more common dynamic factors, representing spatial patterns not related to any of the input series and (c) one specific dynamic factor for each groundwater head series, describing unique variation for that series. The approach reduces the degrees of freedom for each response function, enables the application to irregular observed data, and exploits the correlation between residual series of a set of groundwater head series. The common dynamic factors may be interpreted as spatial patterns due to e.g. limitations in the model specification or concept, spatially correlated errors in input variables, or driving forces which have not been included in the model. In the latter case the model can be applied in the context of an alarming system, e.g. to monitor regional trends. The specific dynamic factor depicts the variation of a particular groundwater head series that cannot be related to any other time series of the set nor to any input series. Therefore the specific dynamic factor is suitable for analyzing local variations and detecting incidental measurement errors, for example in a quality control procedure. The DFM framework is illustrated with a set of 8 groundwater head series and applied for filling gaps in time series, reconstructing high-frequency data, and detecting outliers.

  1. SCDAP/RELAP5 Modeling of Heat Transfer and Flow Losses in Lower Head Porous Debris

    SciTech Connect

    Siefken, Larry James; Coryell, Eric Wesley; Paik, Seungho; Kuo, Han Hsiung

    1999-07-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of nonporous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate manner. Designs are described for models to calculate the flow losses and interphase drag of fluid flowing through the interstices of the porous debris, and to apply these variables in the momentum equations in the RELAP5 part of the code. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region.

  2. The influence of CSF on EEG sensitivity distributions of multilayered head models.

    PubMed

    Wendel, K; Narra, N G; Hannula, M; Kauppinen, P; Malmivuo, J

    2008-04-01

    We examined how the cerebrospinal fluid (CSF) affects the distribution of electroencephalogram (EEG) measurement sensitivity. We used concentric spheres and realistic head models to investigate the difference between computed-tomography (CT) and magnetic resonance image (MRI) models that exclude the CSF layer. The cortical EEG sensitivity distributions support these phenomena and show that the CSF layer significantly influences them, thus identifying the importance of including the CSF layer inside the head volume conductor models. The results show that the highly conductive CSF channels the current, thus decreasing the maximum cortical current density relative to models that do not include the CSF. We found that the MRI and CT models yielded HSV results 20% and 45%, respectively, too small when compared with CSF-inclusive models. PMID:18390339

  3. SCDAP/RELAP5 Modeling of Movement of Melted Material Through Porous Debris in Lower Head

    SciTech Connect

    Siefken, Larry James; Harvego, Edwin Allan

    2000-04-01

    A model is described for the movement of melted metallic material through a ceramic porous debris bed. The model is designed for the analysis of severe accidents in LWRs, wherein melted core plate material may slump onto the top of a porous bed of relocated core material supported by the lower head. The permeation of the melted core plate material into the porous debris bed influences the heatup of the debris bed and the heatup of the lower head supporting the debris. A model for mass transport of melted metallic material is applied that includes terms for viscosity and turbulence but neglects inertial and capillary terms because of their small value relative to gravity and viscous terms in the momentum equation. The relative permeability and passability of the porous debris are calculated as functions of debris porosity, particle size, and effective saturation. An iterative numerical solution is used to solve the set of nonlinear equations for mass transport. The effective thermal conductivity of the debris is calculated as a function of porosity, particle size, and saturation. The model integrates the equations for mass transport with a model for the two-dimensional conduction of heat through porous debris. The integrated model has been implemented into the SCDAP/RELAP5 code for the analysis of the integrity of LWR lower heads during severe accidents. The results of the model indicate that melted core plate material may permeate to near the bottom of a 1m deep hot porous debris bed supported by the lower head. The presence of the relocated core plate material was calculated to cause a 12% increase in the heat flux on the external surface of the lower head.

  4. SCDAP/RELAP5 modeling of movement of melted material through porous debris in lower head

    SciTech Connect

    L. J. Siefken; E. A. Harvego

    2000-04-02

    A model is described for the movement of melted metallic material through a ceramic porous debris bed. The model is designed for the analysis of severe accidents in LWRs, wherein melted core plate material may slump onto the top of a porous bed of relocated core material supported by the lower head. The permeation of the melted core plate material into the porous debris bed influences the heatup of the debris bed and the heatup of the lower head supporting the debris. A model for mass transport of melted metallic material is applied that includes terms for viscosity and turbulence but neglects inertial and capillary terms because of their small value relative to gravity and viscous terms in the momentum equation. The relative permeability and passability of the porous debris are calculated as functions of debris porosity, particle size, and effective saturation. An iterative numerical solution is used to solve the set of nonlinear equations for mass transport. The effective thermal conductivity of the debris is calculated as a function of porosity, particle size, and saturation. The model integrates the equations for mass transport with a model for the two-dimensional conduction of heat through porous debris. The integrated model has been implemented into the SCDAP/RELAP5 code for the analysis of the integrity of LWR lower heads during severe accidents. The results of the model indicate that melted core plate material may permeate to near the bottom of a 1m deep hot porous debris bed supported by the lower head. The presence of the relocated core plate material was calculated to cause a 12% increase in the heat flux on the external surface of the lower head.

  5. Radio-wave exposure of the human head: analytical study based on a versatile eccentric spheres model including a brain core and a pair of eyeballs.

    PubMed

    Moneda, Angela P; Ioannidou, Melina P; Chrissoulidis, Dimitris P

    2003-06-01

    A versatile eccentric-spheres model of the human head is used in this paper to investigate radio-wave absorption. Numerical results, obtained by use of an exact analytical solution, are presented for the total, percentage, and gram-specific absorption. Interest is mainly in the brain and in the eyes of an adult or an infant head. Our model comprises a host sphere and several spherical inclusions, all concentrically stratified with respect to their own center. Any number of inclusions and any number of concentric layers for the host sphere and each one of the inclusions can be considered. Excitation is provided either by a plane-wave or by a nearby electric dipole. The analytical solution is obtained by use of the indirect-mode matching method. The theory of this paper and the accompanying computer code constitute a versatile tool for analytical studies of cellular-phone interactions with the human head. Specific absorption rate maps in a horizontal cross section of the head model manifest the existence of hot spots in the eyes and near the center of the brain. PMID:12814233

  6. BrainK for Structural Image Processing: Creating Electrical Models of the Human Head

    PubMed Central

    Li, Kai; Papademetris, Xenophon; Tucker, Don M.

    2016-01-01

    BrainK is a set of automated procedures for characterizing the tissues of the human head from MRI, CT, and photogrammetry images. The tissue segmentation and cortical surface extraction support the primary goal of modeling the propagation of electrical currents through head tissues with a finite difference model (FDM) or finite element model (FEM) created from the BrainK geometries. The electrical head model is necessary for accurate source localization of dense array electroencephalographic (dEEG) measures from head surface electrodes. It is also necessary for accurate targeting of cerebral structures with transcranial current injection from those surface electrodes. BrainK must achieve five major tasks: image segmentation, registration of the MRI, CT, and sensor photogrammetry images, cortical surface reconstruction, dipole tessellation of the cortical surface, and Talairach transformation. We describe the approach to each task, and we compare the accuracies for the key tasks of tissue segmentation and cortical surface extraction in relation to existing research tools (FreeSurfer, FSL, SPM, and BrainVisa). BrainK achieves good accuracy with minimal or no user intervention, it deals well with poor quality MR images and tissue abnormalities, and it provides improved computational efficiency over existing research packages. PMID:27293419

  7. BrainK for Structural Image Processing: Creating Electrical Models of the Human Head.

    PubMed

    Li, Kai; Papademetris, Xenophon; Tucker, Don M

    2016-01-01

    BrainK is a set of automated procedures for characterizing the tissues of the human head from MRI, CT, and photogrammetry images. The tissue segmentation and cortical surface extraction support the primary goal of modeling the propagation of electrical currents through head tissues with a finite difference model (FDM) or finite element model (FEM) created from the BrainK geometries. The electrical head model is necessary for accurate source localization of dense array electroencephalographic (dEEG) measures from head surface electrodes. It is also necessary for accurate targeting of cerebral structures with transcranial current injection from those surface electrodes. BrainK must achieve five major tasks: image segmentation, registration of the MRI, CT, and sensor photogrammetry images, cortical surface reconstruction, dipole tessellation of the cortical surface, and Talairach transformation. We describe the approach to each task, and we compare the accuracies for the key tasks of tissue segmentation and cortical surface extraction in relation to existing research tools (FreeSurfer, FSL, SPM, and BrainVisa). BrainK achieves good accuracy with minimal or no user intervention, it deals well with poor quality MR images and tissue abnormalities, and it provides improved computational efficiency over existing research packages. PMID:27293419

  8. A Neural Model of How the Brain Computes Heading from Optic Flow in Realistic Scenes

    ERIC Educational Resources Information Center

    Browning, N. Andrew; Grossberg, Stephen; Mingolla, Ennio

    2009-01-01

    Visually-based navigation is a key competence during spatial cognition. Animals avoid obstacles and approach goals in novel cluttered environments using optic flow to compute heading with respect to the environment. Most navigation models try either explain data, or to demonstrate navigational competence in real-world environments without regard…

  9. Earnings Profiles of Department Heads: Comparing Cross-Sectional and Panel Models.

    ERIC Educational Resources Information Center

    Ragan, James F., Jr.; Rehman, Qazi Najeeb

    1996-01-01

    A cross-sectional study of 842 faculty who served as department heads between 1965-92 was compared with 170 in a panel study for whom earnings were estimated using a personal effects model. The average chair received a 12% wage premium for administrative service. Skill depreciation was most severe and wage growth most adversely affected in the…

  10. Realistic numerical modelling of human head tissue exposure to electromagnetic waves from cellular phones

    NASA Astrophysics Data System (ADS)

    Scarella, Gilles; Clatz, Olivier; Lanteri, Stéphane; Beaume, Grégory; Oudot, Steve; Pons, Jean-Philippe; Piperno, Sergo; Joly, Patrick; Wiart, Joe

    2006-06-01

    The ever-rising diffusion of cellular phones has brought about an increased concern for the possible consequences of electromagnetic radiation on human health. Possible thermal effects have been investigated, via experimentation or simulation, by several research projects in the last decade. Concerning numerical modeling, the power absorption in a user's head is generally computed using discretized models built from clinical MRI data. The vast majority of such numerical studies have been conducted using Finite Differences Time Domain methods, although strong limitations of their accuracy are due to heterogeneity, poor definition of the detailed structures of head tissues (staircasing effects), etc. In order to propose numerical modeling using Finite Element or Discontinuous Galerkin Time Domain methods, reliable automated tools for the unstructured discretization of human heads are also needed. Results presented in this article aim at filling the gap between human head MRI images and the accurate numerical modeling of wave propagation in biological tissues and its thermal effects. To cite this article: G. Scarella et al., C. R. Physique 7 (2006).

  11. Female-Headed Families: An Ecological Model of Residential Concentration in a Small City.

    ERIC Educational Resources Information Center

    And Others; Roncek, Dennis W.

    1980-01-01

    Proposed an ecological model to explain the concentration of female-headed families in a small city. Data for city blocks provided patterns of concentration. Of the physical variables, only historical development of the city and market decisions by nonresidential consumers were important predictors of concentration; spatial concentration was not…

  12. Head and brain response to blast using sagittal and transverse finite element models.

    PubMed

    Singh, Dilaver; Cronin, Duane S; Haladuick, Tyler N

    2014-04-01

    Mild traumatic brain injury caused by blast exposure from Improvised Explosive Devices has become increasingly prevalent in modern conflicts. To investigate head kinematics and brain tissue response in blast scenarios, two solid hexahedral blast-head models were developed in the sagittal and transverse planes. The models were coupled to an Arbitrary Lagrangian-Eulerian model of the surrounding air to model blast-head interaction, for three blast load cases (5 kg C4 at 3, 3.5 and 4 m). The models were validated using experimental kinematic data, where predicted accelerations were in good agreement with experimental tests, and intracranial pressure traces at four locations in the brain, where the models provided good predictions for frontal, temporal and parietal, but underpredicted pressures at the occipital location. Brain tissue response was investigated for the wide range of constitutive properties available. The models predicted relatively low peak principal brain tissue strains from 0.035 to 0.087; however, strain rates ranged from 225 to 571 s-1. Importantly, these models have allowed us to quantify expected strains and strain rates experienced in brain tissue, which can be used to guide future material characterization. These computationally efficient and predictive models can be used to evaluate protection and mitigation strategies in future analysis. PMID:24293124

  13. A Model of Mira's Cometary Head/Tail Entering the Local Bubble

    NASA Astrophysics Data System (ADS)

    Esquivel, A.; Raga, A. C.; Cantó, J.; Rodríguez-González, A.; López-Cámara, D.; Velázquez, P. F.; De Colle, F.

    2010-12-01

    We model the cometary structure around Mira as the interaction of an asymptotic giant branch stellar wind from Mira A with a streaming environment. Our simulations introduce the following new element: we assume that after 200 kyr of evolution in a dense environment, Mira entered the Local Bubble (low-density coronal gas). As Mira enters the bubble, the head of the comet expands quite rapidly, while the tail remains well collimated for a >100 kyr timescale. The result is a broad-head/narrow-tail structure that resembles the observed morphology of Mira's comet. The simulations were carried out with our new adaptive grid code WALICXE, which is described in detail.

  14. Radical Reeducation: Alcoholics Anonymous as a Model in Adult Education.

    ERIC Educational Resources Information Center

    Crossman, Lenard H.

    1980-01-01

    The peer self-help group approach used by Alcoholics Anonymous can be a model for other types of adult learning. The group's power, solidarity, experience sharing, and values clarification can provide positive social and educational experiences to others such as the chronically unemployed, illiterate adults, and high school dropouts. (SK)

  15. Adult Community Education: A Model for Regional Policy Development.

    ERIC Educational Resources Information Center

    Jones, Peter

    1998-01-01

    The adult community education (ACE) sector in the state of Victoria provides an example of best practice in regional rural policy in Australia that may serve as a model for other areas of government effort. In 1997, 309,000 Victorians enrolled in adult and community education courses, such as business and technical skills development, literacy and…

  16. A MODEL INFORMATION SYSTEM FOR THE ADULT EDUCATION PROFESSION.

    ERIC Educational Resources Information Center

    DECROW, ROGER

    A MODEL OF INFORMATION SERVICES FOR THE ADULT EDUCATION PROFESSION PROVIDES FOR--(1) ACCESS TO THE LITERATURE THROUGH BIBLIOGRAPHIES, REVIEWS, AND MECHANIZED RETRIEVAL, (2) PHYSICAL ACCESS (MAINLY IN MICROFORM), (3) SPECIALIZED INFORMATION SERVICES LINKED WITH ONE ANOTHER AND THE ERIC CLEARINGHOUSE ON ADULT EDUCATION, (4) COORDINATION, RESEARCH,…

  17. Building a Data Based Model for Senior Adult Basic Education.

    ERIC Educational Resources Information Center

    Courtenay, Bradley C.; And Others

    Research shows that developing a curriculum model for senior adult education requires consideration of at least four important factors: (1) the heterogeneous nature of the senior adult population; (2) their specific information and interest needs; (3) the specific nature of the learning activities; and (4) the specific barriers and facilitators…

  18. Infant Imitation from Televised Peer and Adult Models

    ERIC Educational Resources Information Center

    Seehagen, Sabine; Herbert, Jane S.

    2011-01-01

    Developmental changes in learning from peers and adults during the second year of life were assessed using an imitation paradigm. Independent groups of 15- and 24-month-old infants watched a prerecorded video of an unfamiliar child or adult model demonstrating a series of actions with objects. When learning was assessed immediately, 15-month-old…

  19. Animal models of psychopathology: the establishment, maintenance, attenuation, and persistence of head-banging by pigeons.

    PubMed

    Layng, T V; Andronis, P T; Goldiamond, I

    1999-03-01

    Investigators of animal models of psychopathology have typically introduced experimental conditions so that an animal's behavior progressively deviates from a baseline of routine laboratory behavior toward a pattern which resembles human psychopathological behavior in some form of S, then R relation. The present experiments report consequential contingency procedures for bringing head-to-wall head-banging by an animal under experimental control and analysis. The first two experiments examined the establishment and maintenance by reinforcement of head-banging by pigeons. The final two experiments examined the occurrence of head-banging, under conditions of extinction and limited reinforcement, when an alternative behavior, i.e., key-pecking, was reinforced under a variety of reinforcement schedules. Extinguished and infrequently reinforced head-banging was found to recur under a variety of conditions including the reinforcement of the more "normal" alternative behavior. To the extent that human patterns are governed by similar functional relations, the data may be of relevance in the analysis of the maintenance, attenuation, and recurrence of human patterns designated as pathological. Further, the permanent elimination of a disturbing pattern may be difficult, and the recurrence of a disturbing pattern might properly be considered a likely and "normal" outcome of basic behavioral processes. PMID:10365865

  20. Electromagnetic field generated in model of human head by simplified telephone transceiver

    NASA Astrophysics Data System (ADS)

    King, Ronold W. P.

    1995-01-01

    Possible adverse effects of electromagnetic fields on the human body and especially on the nervous system and the brain are of increasing concern, particularly with reference to cellular telephone transceivers held close to the head. An essential step in the study of this problem is the accurate determination of the complete electromagnetic field penetrating through the skull into the brain. Simple analytical formulas are derived from the theory of the horizontal electric dipole over a layered region. These give the components of the electric and magnetic fields on the air-head surface, in the skin-skull layer, and throughout the brain in terms of a planar model with the dimensions and average electrical properties of the human head. The specific absorption rate (SAR) is also determined.

  1. Does littoral sand bypass the head of Mugu Submarine Canyon? - a modeling study

    USGS Publications Warehouse

    Xu, Jingping; Elias, Edwin; Kinsman, Nicole

    2011-01-01

    A newly developed sand-tracer code for the process-based model Delft3D (Deltares, The Netherlands) was used to simulate the littoral transport near the head of the Mugu Submarine Canyon in California, USA. For westerly swells, which account for more than 90% of the wave conditions in the region, the sand tracers in the downcoast littoral drift were unable to bypass the canyon head. A flow convergence near the upcoast rim of the canyon intercepts the tracers and moves them either offshore onto the shelf just west of the canyon rim (low wave height conditions) or into the canyon head (storm wave conditions). This finding supports the notion that Mugu Canyon is the true terminus of the Santa Barbara Littoral Cell.

  2. Computing interaural differences through finite element modeling of idealized human heads

    PubMed Central

    Cai, Tingli; Rakerd, Brad; Hartmann, William M.

    2015-01-01

    Acoustical interaural differences were computed for a succession of idealized shapes approximating the human head-related anatomy: sphere, ellipsoid, and ellipsoid with neck and torso. Calculations were done as a function of frequency (100–2500 Hz) and for source azimuths from 10 to 90 degrees using finite element models. The computations were compared to free-field measurements made with a manikin. Compared to a spherical head, the ellipsoid produced greater large-scale variation with frequency in both interaural time differences and interaural level differences, resulting in better agreement with the measurements. Adding a torso, represented either as a large plate or as a rectangular box below the neck, further improved the agreement by adding smaller-scale frequency variation. The comparisons permitted conjectures about the relationship between details of interaural differences and gross features of the human anatomy, such as the height of the head, and length of the neck. PMID:26428792

  3. A link-segment model of upright human posture for analysis of head-trunk coordination

    NASA Technical Reports Server (NTRS)

    Nicholas, S. C.; Doxey-Gasway, D. D.; Paloski, W. H.

    1998-01-01

    Sensory-motor control of upright human posture may be organized in a top-down fashion such that certain head-trunk coordination strategies are employed to optimize visual and/or vestibular sensory inputs. Previous quantitative models of the biomechanics of human posture control have examined the simple case of ankle sway strategy, in which an inverted pendulum model is used, and the somewhat more complicated case of hip sway strategy, in which multisegment, articulated models are used. While these models can be used to quantify the gross dynamics of posture control, they are not sufficiently detailed to analyze head-trunk coordination strategies that may be crucial to understanding its underlying mechanisms. In this paper, we present a biomechanical model of upright human posture that extends an existing four mass, sagittal plane, link-segment model to a five mass model including an independent head link. The new model was developed to analyze segmental body movements during dynamic posturography experiments in order to study head-trunk coordination strategies and their influence on sensory inputs to balance control. It was designed specifically to analyze data collected on the EquiTest (NeuroCom International, Clackamas, OR) computerized dynamic posturography system, where the task of maintaining postural equilibrium may be challenged under conditions in which the visual surround, support surface, or both are in motion. The performance of the model was tested by comparing its estimated ground reaction forces to those measured directly by support surface force transducers. We conclude that this model will be a valuable analytical tool in the search for mechanisms of balance control.

  4. Quantitative Simulations of MST Visual Receptive Field Properties Using a Template Model of Heading Estimation

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Perrone, J. A.

    1997-01-01

    We previously developed a template model of primate visual self-motion processing that proposes a specific set of projections from MT-like local motion sensors onto output units to estimate heading and relative depth from optic flow. At the time, we showed that that the model output units have emergent properties similar to those of MSTd neurons, although there was little physiological evidence to test the model more directly. We have now systematically examined the properties of the model using stimulus paradigms used by others in recent single-unit studies of MST: 1) 2-D bell-shaped heading tuning. Most MSTd neurons and model output units show bell-shaped heading tuning. Furthermore, we found that most model output units and the finely-sampled example neuron in the Duffy-Wurtz study are well fit by a 2D gaussian (sigma approx. 35deg, r approx. 0.9). The bandwidth of model and real units can explain why Lappe et al. found apparent sigmoidal tuning using a restricted range of stimuli (+/-40deg). 2) Spiral Tuning and Invariance. Graziano et al. found that many MST neurons appear tuned to a specific combination of rotation and expansion (spiral flow) and that this tuning changes little for approx. 10deg shifts in stimulus placement. Simulations of model output units under the same conditions quantitatively replicate this result. We conclude that a template architecture may underlie MT inputs to MST.

  5. Kinematic Model-Based Pedestrian Dead Reckoning for Heading Correction and Lower Body Motion Tracking

    PubMed Central

    Lee, Min Su; Ju, Hojin; Song, Jin Woo; Park, Chan Gook

    2015-01-01

    In this paper, we present a method for finding the enhanced heading and position of pedestrians by fusing the Zero velocity UPdaTe (ZUPT)-based pedestrian dead reckoning (PDR) and the kinematic constraints of the lower human body. ZUPT is a well known algorithm for PDR, and provides a sufficiently accurate position solution for short term periods, but it cannot guarantee a stable and reliable heading because it suffers from magnetic disturbance in determining heading angles, which degrades the overall position accuracy as time passes. The basic idea of the proposed algorithm is integrating the left and right foot positions obtained by ZUPTs with the heading and position information from an IMU mounted on the waist. To integrate this information, a kinematic model of the lower human body, which is calculated by using orientation sensors mounted on both thighs and calves, is adopted. We note that the position of the left and right feet cannot be apart because of the kinematic constraints of the body, so the kinematic model generates new measurements for the waist position. The Extended Kalman Filter (EKF) on the waist data that estimates and corrects error states uses these measurements and magnetic heading measurements, which enhances the heading accuracy. The updated position information is fed into the foot mounted sensors, and reupdate processes are performed to correct the position error of each foot. The proposed update-reupdate technique consequently ensures improved observability of error states and position accuracy. Moreover, the proposed method provides all the information about the lower human body, so that it can be applied more effectively to motion tracking. The effectiveness of the proposed algorithm is verified via experimental results, which show that a 1.25% Return Position Error (RPE) with respect to walking distance is achieved. PMID:26561814

  6. Kinematic Model-Based Pedestrian Dead Reckoning for Heading Correction and Lower Body Motion Tracking.

    PubMed

    Lee, Min Su; Ju, Hojin; Song, Jin Woo; Park, Chan Gook

    2015-01-01

    In this paper, we present a method for finding the enhanced heading and position of pedestrians by fusing the Zero velocity UPdaTe (ZUPT)-based pedestrian dead reckoning (PDR) and the kinematic constraints of the lower human body. ZUPT is a well known algorithm for PDR, and provides a sufficiently accurate position solution for short term periods, but it cannot guarantee a stable and reliable heading because it suffers from magnetic disturbance in determining heading angles, which degrades the overall position accuracy as time passes. The basic idea of the proposed algorithm is integrating the left and right foot positions obtained by ZUPTs with the heading and position information from an IMU mounted on the waist. To integrate this information, a kinematic model of the lower human body, which is calculated by using orientation sensors mounted on both thighs and calves, is adopted. We note that the position of the left and right feet cannot be apart because of the kinematic constraints of the body, so the kinematic model generates new measurements for the waist position. The Extended Kalman Filter (EKF) on the waist data that estimates and corrects error states uses these measurements and magnetic heading measurements, which enhances the heading accuracy. The updated position information is fed into the foot mounted sensors, and reupdate processes are performed to correct the position error of each foot. The proposed update-reupdate technique consequently ensures improved observability of error states and position accuracy. Moreover, the proposed method provides all the information about the lower human body, so that it can be applied more effectively to motion tracking. The effectiveness of the proposed algorithm is verified via experimental results, which show that a 1.25% Return Position Error (RPE) with respect to walking distance is achieved. PMID:26561814

  7. Double Cluster Heads Model for Secure and Accurate Data Fusion in Wireless Sensor Networks

    PubMed Central

    Fu, Jun-Song; Liu, Yun

    2015-01-01

    Secure and accurate data fusion is an important issue in wireless sensor networks (WSNs) and has been extensively researched in the literature. In this paper, by combining clustering techniques, reputation and trust systems, and data fusion algorithms, we propose a novel cluster-based data fusion model called Double Cluster Heads Model (DCHM) for secure and accurate data fusion in WSNs. Different from traditional clustering models in WSNs, two cluster heads are selected after clustering for each cluster based on the reputation and trust system and they perform data fusion independently of each other. Then, the results are sent to the base station where the dissimilarity coefficient is computed. If the dissimilarity coefficient of the two data fusion results exceeds the threshold preset by the users, the cluster heads will be added to blacklist, and the cluster heads must be reelected by the sensor nodes in a cluster. Meanwhile, feedback is sent from the base station to the reputation and trust system, which can help us to identify and delete the compromised sensor nodes in time. Through a series of extensive simulations, we found that the DCHM performed very well in data fusion security and accuracy. PMID:25608211

  8. Uncertainties and correction methods when modeling passive scattering proton therapy treatment heads with Monte Carlo

    PubMed Central

    Bednarz, Bryan; Lu, Hsiao-Ming; Engelsman, Martijn; Paganetti, Harald

    2011-01-01

    Monte Carlo models of proton therapy treatment heads are being used to improve beam delivery systems and to calculate the radiation field for patient dose calculations. The achievable accuracy of the model depends on the exact knowledge of the treatment head geometry and time structure, the material characteristics, and the underlying physics. This work aimed at studying the uncertainties in treatment head simulations for passive scattering proton therapy. The sensitivities of spread-out Bragg peak (SOBP) dose distributions on material densities, mean ionization potentials, initial proton beam energy spread and spot size were investigated. An improved understanding of the nature of these parameters may help to improve agreement between calculated and measured SOBP dose distributions and to ensure that the range, modulation width, and uniformity are within clinical tolerance levels. Furthermore, we present a method to make small corrections to the uniformity of spread-out Bragg peaks by utilizing the time structure of the beam delivery. In addition, we re-commissioned the models of the two proton treatment heads located at our facility using the aforementioned correction methods presented in this paper. PMID:21478569

  9. A revised dosimetric model of the head and brain

    SciTech Connect

    Bolch, W.E.; Poston, J.W. Sr.

    1995-05-01

    The use of PET and SPECT radiopharmaceuticals in brain imaging has greatly expanded over the past several years. Many of these agents localize within particular subregions of the brain, thus allowing for detailed physiologic and metabolic imaging. Dosimetric models to support these advances in nuclear medicine have been lacking. For example, the brain within the phantom of MIRD Pamphlet No. 5 Revised is modeled simply as a single ellipsoid of tissue with no differentiation of its internal structures. To address this need, the MIRD Committee established a Task Group in 1992 to construct a revised dosimetric model of the brain to include the following subregions: the cerebral cortex, the white matter, the cerebellum, the thalamus, the caudate nucleus, the lentiform nucleus (putamen and globus pallidus), the cerebral spinal fluid (within the subarachnoid space of the brain), the lateral ventricles, and the third ventricle. Estimates of both electron and photon absorbed fractions (AF) were subsequently calculated using the EGS4 radiation transport code. For most of the internal brain structures, electron AFs are shown to fall fellow unity for all regions within the energy range of {approximately}200 keV to 4 MeV. For example, AFs for the caudate nucleus as both a source and target region and estimated as 0.98, 0.84, 0.39 for 200-keV, 1-MeV, and 4-MeV electron sources, respectively. Corresponding AFs within the white matter as a source and target region are estimated as 1.0, 0.95, and 0.79 for these same electron energies. Revised S values were subsequently calculated for a variety of beta-particle and positron emitters used in brain imaging.

  10. Estimation of partial optical path length in the brain in subject-specific head models for near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakamura, Kotaro; Kurihara, Kazuki; Kawaguchi, Hiroshi; Obata, Takayuki; Ito, Hiroshi; Okada, Eiji

    2016-04-01

    Three-dimensional head models with the structures constructed from the MR head images of 40 volunteers were constructed to analyze light propagation in the subject-specific head models. The mean optical path length in the head and the partial optical path length in the brain at 13 fiducial points for each volunteer were estimated to evaluate the intersubject and spatial variability in the optical path lengths. Although the intersubject variability in the optical path lengths is very high, the spatial variability in the average of the mean optical path length and partial optical path length is similar to the previously reported data. The mean optical path length in the head increases, whereas the partial optical path length in the brain decreases with an increase in the depth of the brain surface. The partial optical path length is highly correlated with the depth of the brain surface in comparison to the mean optical path length in the head.

  11. Computational Modeling of the Working Process in the Combustion Chamber for Casing-Head Gas Recovery

    NASA Astrophysics Data System (ADS)

    Bachev, N. L.; Betinskaya, O. A.; Bul‧bovich, R. V.

    2016-01-01

    The present paper considers problems of computational modeling of the working process in multizone combustion chambers (CC) forming a part of gas-turbine power plants for recovering casing-head and other process gases. To investigate the turbulent flow and combustion, we use the LES method with a Smagorinskii subnet model. Various schemes of feeding components into combustion and dilution zones are considered. A comparison is made between the calculated and experimental data on the temperature in the combustion zone.

  12. The role of blood vessels in high-resolution volume conductor head modeling of EEG.

    PubMed

    Fiederer, L D J; Vorwerk, J; Lucka, F; Dannhauer, M; Yang, S; Dümpelmann, M; Schulze-Bonhage, A; Aertsen, A; Speck, O; Wolters, C H; Ball, T

    2016-03-01

    Reconstruction of the electrical sources of human EEG activity at high spatio-temporal accuracy is an important aim in neuroscience and neurological diagnostics. Over the last decades, numerous studies have demonstrated that realistic modeling of head anatomy improves the accuracy of source reconstruction of EEG signals. For example, including a cerebro-spinal fluid compartment and the anisotropy of white matter electrical conductivity were both shown to significantly reduce modeling errors. Here, we for the first time quantify the role of detailed reconstructions of the cerebral blood vessels in volume conductor head modeling for EEG. To study the role of the highly arborized cerebral blood vessels, we created a submillimeter head model based on ultra-high-field-strength (7T) structural MRI datasets. Blood vessels (arteries and emissary/intraosseous veins) were segmented using Frangi multi-scale vesselness filtering. The final head model consisted of a geometry-adapted cubic mesh with over 17×10(6) nodes. We solved the forward model using a finite-element-method (FEM) transfer matrix approach, which allowed reducing computation times substantially and quantified the importance of the blood vessel compartment by computing forward and inverse errors resulting from ignoring the blood vessels. Our results show that ignoring emissary veins piercing the skull leads to focal localization errors of approx. 5 to 15mm. Large errors (>2cm) were observed due to the carotid arteries and the dense arterial vasculature in areas such as in the insula or in the medial temporal lobe. Thus, in such predisposed areas, errors caused by neglecting blood vessels can reach similar magnitudes as those previously reported for neglecting white matter anisotropy, the CSF or the dura - structures which are generally considered important components of realistic EEG head models. Our findings thus imply that including a realistic blood vessel compartment in EEG head models will be helpful to

  13. Computational modeling of human head under blast in confined and open spaces: primary blast injury.

    PubMed

    Rezaei, A; Salimi Jazi, M; Karami, G

    2014-01-01

    In this paper, a computational modeling for biomechanical analysis of primary blast injuries is presented. The responses of the brain in terms of mechanical parameters under different blast spaces including open, semi-confined, and confined environments are studied. In the study, the effect of direct and indirect blast waves from the neighboring walls in the confined environments will be taken into consideration. A 50th percentile finite element head model is exposed to blast waves of different intensities. In the open space, the head experiences a sudden intracranial pressure (ICP) change, which vanishes in a matter of a few milliseconds. The situation is similar in semi-confined space, but in the confined space, the reflections from the walls will create a number of subsequent peaks in ICP with a longer duration. The analysis procedure is based on a simultaneous interaction simulation of the deformable head and its components with the blast wave propagations. It is concluded that compared with the open and semi-confined space settings, the walls in the confined space scenario enhance the risk of primary blast injuries considerably because of indirect blast waves transferring a larger amount of damaging energy to the head. PMID:23996897

  14. Rapidly re-computable EEG (electroencephalography) forward models for realistic head shapes

    SciTech Connect

    Ermer, J. J.; Mosher, J. C.; Baillet, S.; Leahy, R. M.

    2001-01-01

    Solution of the EEG source localization (inverse) problem utilizing model-based methods typically requires a significant number of forward model evaluations. For subspace based inverse methods like MUSIC [6], the total number of forward model evaluations can often approach an order of 10{sup 3} or 10{sup 4}. Techniques based on least-squares minimization may require significantly more evaluations. The observed set of measurements over an M-sensor array is often expressed as a linear forward spatio-temporal model of the form: F = GQ + N (1) where the observed forward field F (M-sensors x N-time samples) can be expressed in terms of the forward model G, a set of dipole moment(s) Q (3xP-dipoles x N-time samples) and additive noise N. Because of their simplicity, ease of computation, and relatively good accuracy, multi-layer spherical models [7] (or fast approximations described in [1], [7]) have traditionally been the 'forward model of choice' for approximating the human head. However, approximation of the human head via a spherical model does have several key drawbacks. By its very shape, the use of a spherical model distorts the true distribution of passive currents in the skull cavity. Spherical models also require that the sensor positions be projected onto the fitted sphere (Fig. 1), resulting in a distortion of the true sensor-dipole spatial geometry (and ultimately the computed surface potential). The use of a single 'best-fitted' sphere has the added drawback of incomplete coverage of the inner skull region, often ignoring areas such as the frontal cortex. In practice, this problem is typically countered by fitting additional sphere(s) to those region(s) not covered by the primary sphere. The use of these additional spheres results in added complication to the forward model. Using high-resolution spatial information obtained via X-ray CT or MR imaging, a realistic head model can be formed by tessellating the head into a set of contiguous regions (typically the

  15. A mouse model of weight-drop closed head injury: emphasis on cognitive and neurological deficiency.

    PubMed

    Khalin, Igor; Jamari, Nor Laili Azua; Razak, Nadiawati Bt Abdul; Hasain, Zubaidah Bt; Nor, Mohd Asri Bin Mohd; Zainudin, Mohd Hakimi Bin Ahmad; Omar, Ainsah Bt; Alyautdin, Renad

    2016-04-01

    Traumatic brain injury (TBI) is a leading cause of death and disability in individuals worldwide. Producing a clinically relevant TBI model in small-sized animals remains fairly challenging. For good screening of potential therapeutics, which are effective in the treatment of TBI, animal models of TBI should be established and standardized. In this study, we established mouse models of closed head injury using the Shohami weight-drop method with some modifications concerning cognitive deficiency assessment and provided a detailed description of the severe TBI animal model. We found that 250 g falling weight from 2 cm height produced severe closed head injury in C57BL/6 male mice. Cognitive disorders in mice with severe closed head injury could be detected using passive avoidance test on day 7 after injury. Findings from this study indicate that weight-drop injury animal models are suitable for further screening of brain neuroprotectants and potentially are similar to those seen in human TBI. PMID:27212925

  16. A mouse model of weight-drop closed head injury: emphasis on cognitive and neurological deficiency

    PubMed Central

    Khalin, Igor; Jamari, Nor Laili Azua; Razak, Nadiawati Bt Abdul; Hasain, Zubaidah Bt; Nor, Mohd Asri bin Mohd; Zainudin, Mohd Hakimi bin Ahmad; Omar, Ainsah Bt; Alyautdin, Renad

    2016-01-01

    Traumatic brain injury (TBI) is a leading cause of death and disability in individuals worldwide. Producing a clinically relevant TBI model in small-sized animals remains fairly challenging. For good screening of potential therapeutics, which are effective in the treatment of TBI, animal models of TBI should be established and standardized. In this study, we established mouse models of closed head injury using the Shohami weight-drop method with some modifications concerning cognitive deficiency assessment and provided a detailed description of the severe TBI animal model. We found that 250 g falling weight from 2 cm height produced severe closed head injury in C57BL/6 male mice. Cognitive disorders in mice with severe closed head injury could be detected using passive avoidance test on day 7 after injury. Findings from this study indicate that weight-drop injury animal models are suitable for further screening of brain neuroprotectants and potentially are similar to those seen in human TBI. PMID:27212925

  17. Examining a Model of Life Satisfaction among Unemployed Adults

    ERIC Educational Resources Information Center

    Duffy, Ryan D.; Bott, Elizabeth M.; Allan, Blake A.; Torrey, Carrie L.

    2013-01-01

    The present study examined a model of life satisfaction among a diverse sample of 184 adults who had been unemployed for an average of 10.60 months. Using the Lent (2004) model of life satisfaction as a framework, a model was tested with 5 hypothesized predictor variables: optimism, job search self-efficacy, job search support, job search…

  18. A Coping Model for Adult Survivors of Childhood Sexual Abuse.

    ERIC Educational Resources Information Center

    Draucker, Claire B.

    1995-01-01

    A group of 149 adult survivors of childhood sexual abuse was tested using a causal model that identifies relationships among sexual abuse situation characteristics, the accomplishment of cognitive coping tasks, and long-term effects. Results indicated the model did not fit the data. A revised model is proposed and examined. (JBJ)

  19. A head impact model of early axonal injury in the sheep.

    PubMed

    Lewis, S B; Finnie, J W; Blumbergs, P C; Scott, G; Manavis, J; Brown, C; Reilly, P L; Jones, N R; McLean, A J

    1996-09-01

    Axonal injury (AI), one of the principal determinants of clinical outcome after head injury, may evolve over several hours after injury, raising the future possibility of therapeutic intervention during this period. A new head impact model of AI in sheep was developed to examine pathological and physiological changes in the brain resulting from a graded traumatic insult. In this preliminary study 10 anesthetized and ventilated Merino ewes were used. Head injury was produced by impact from a humane stunner to the temporal region of an unrestrained head. Eight sheep were studied for 1, 2, 4, or 6 h after impact. Two sham animals (no impact, 6 h survival) were also examined. Arterial blood pressure, intracranial pressure, and cerebral blood flow were monitored continuously. A physiological index of injury severity was calculated by weighting the percentage shift from preinjury values for each monitored parameter over the first hour after injury. Immunostaining with amyloid precursor protein (APP) was used as a marker of axonal damage and the distribution of APP positive axons was recorded according to a sector scoring method (APPS). Widespread AI was identified in 7 of the 8 impacted animals, around cerebral contusions and in hemispheric white matter, central gray matter, brain stem, and cerebellum, and was detected as early as 1 h after injury. The degree of axonal injury (APPS) correlated well with an index of physiological response to injury (r = 0.83, p = 0.005). PMID:8913967

  20. SAR calculations in an anatomically realistic model of the head for mobile communication transceivers at 900 MHz and 1.8 GHz.

    PubMed

    Dimbylow, P J; Mann, S M

    1994-10-01

    A new mathematical model of the head has been constructed from a set of serial MRI slices from one subject. Finite-difference time-domain (FDTD) calculations of the specific energy absorption rate (SAR) have been performed on this model with a 2 mm resolution for a generic mobile communication transceiver represented by a quarter-wavelength monopole on a metal box. The antenna was mounted either at the centre or corner of the top face of the box. The frequencies considered were 900 MHz and 1.8 GHz. Three irradiation geometries were considered, a vertical handset in front of the eye and vertical and horizontal orientations at the side of the ear. The effect of a hand grasping the handset was considered. The head model was scaled to represent the head of an infant and a subset of calculations was performed to verify that the SAR deposited in the infant head did not exceed that in the adult. Results are also presented for a half-wavelength dipole. The maximum SAR values produced by the generic transceiver for the horizontal orientation at the side of the head which is the most typical position, averaged over 10 g of tissue at 900 MHz and 1.8 GHz, are 2.1 and 3.0 W kg(-1) per W of radiated power. The corresponding values over 1 g of tissue are 2.3 and 4.8 W kg(-1) per W at 900 MHz and 1.8 GHz. However, if one were to consider all possible operational conditions, the placement of the transceiver in front of the eye will give 3.1 and 4.6 W kg(-1) per W averaged over 10 g of tissue and 4.7 and 7.7 W kg(-1) per W over 1 g of tissue at 900 MHz and 1.8 GHz, respectively. PMID:15551530

  1. Analysis of head-down tilt as an analog of weightlessness using a methematical simulation model

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1984-01-01

    Antiorthostasis or head down tilt of a moderate degree was used as a ground based analog of weightless space flight to study headward fluid shifts, decreased plasma volume, orthostatic intolerance and muscular skeletal degradation. A mathematical model was used to help interpret these observations. The model proved most valuable for these studies was originally developed as a description of the major circulatory, fluid and electrolyte control systems. Two different experimental studies are employed to validate the model. The first is a 24 hour head down tilt study and the second is a 7 day head down bed rest study. The major issues addressed include the reduction in plasma volume, the dynamic changes of venous pressure and cardiac output, the extent of central hypervolemia during long term zero g exposure, the existence of an early diuresis, the mechanisms which alter the renal regulating hormones during the short term and long term periods, the significance of potassium loss on other zero g responses, and the role of transcapillary filtration in adjusting fluid shifts. The use of mathematical models as an interpretive and analysis technique for experimental research for space life science is illustrated.

  2. Heading recovery from optic flow: comparing performance of humans and computational models

    PubMed Central

    Foulkes, Andrew J.; Rushton, Simon K.; Warren, Paul A.

    2013-01-01

    Human observers can perceive their direction of heading with a precision of about a degree. Several computational models of the processes underpinning the perception of heading have been proposed. In the present study we set out to assess which of four candidate models best captured human performance; the four models we selected reflected key differences in terms of approach and methods to modelling optic flow processing to recover movement parameters. We first generated a performance profile for human observers by measuring how performance changed as we systematically manipulated both the quantity (number of dots in the stimulus per frame) and quality (amount of 2D directional noise) of the flow field information. We then generated comparable performance profiles for the four candidate models. Models varied markedly in terms of both their performance and similarity to human data. To formally assess the match between the models and human performance we regressed the output of each of the four models against human performance data. We were able to rule out two models that produced very different performance profiles to human observers. The remaining two shared some similarities with human performance profiles in terms of the magnitude and pattern of thresholds. However none of the models tested could capture all aspect of the human data. PMID:23801946

  3. The Changing Nature of Adult Education in the Age of Transnational Migration: Toward a Model of Recognitive Adult Education

    ERIC Educational Resources Information Center

    Guo, Shibao

    2015-01-01

    This chapter examines the changing nature of adult education in the age of transnational migration and proposes recognitive adult education as an inclusive model that acknowledges and affirms cultural difference and diversity as positive and desirable assets.

  4. Applying the SNOMED CT Concept Model to Represent Value Sets for Head and Neck Cancer Documentation.

    PubMed

    Højen, Anne Randorff; Brønnum, Dorthe; Gøeg, Kirstine Rosenbeck; Elberg, Pia Britt

    2016-01-01

    This paper presents an analysis of the extent to which SNOMED CT is suitable for representing data within the domain of head and neck cancer. In this analysis we assess whether the concept model of SNOMED CT comply with the documentation needed within this clinical domain. Attributes from the follow-up template of the clinical quality registry for Danish Head and Neck Cancer, and their respective value sets were mapped to SNOMED CT using existing mapping guidelines. Results show that post-coordination is important to represent specific types of value sets, such as absence of findings and severities. The concept model of SNOMED CT was found suitable for representing the value sets of this material. We argue for the development of further mapping guidelines for consistent post-coordination and for initiatives that demonstrate use of this important terminological feature in actual SNOMED CT implementations. PMID:27577420

  5. Lamb’s head: The model for novice education in endoscopic sinus surgery

    PubMed Central

    Skitarelić, Neven; Mladina, Ranko

    2015-01-01

    Structured training in endonasal endoscopic sinus surgery (EESS) and skull base surgery is essential considering serious potential complications. We have developed a detailed concept on training these surgical skills on the lamb’s head. This simple and extremely cheap model offers the possibility of training even more demanding and advanced procedures in human endonasal endoscopic surgery such as: frontal sinus surgery, orbital decompression, cerebrospinal fluid-leak repair followed also by the naso-septal flap, etc. Unfortunately, the sphenoid sinus surgery cannot be practiced since quadrupeds do not have this sinus. Still, despite this anatomical limitation, it seems that the lamb’s head can be very useful even for the surgeons already practicing EESS, but in a limited edition because of a lack of the experience and dexterity. Only after gaining the essential surgical skills of this demanding field it makes sense to go for the expensive trainings on the human cadaveric model. PMID:26413487

  6. Lamb's head: The model for novice education in endoscopic sinus surgery.

    PubMed

    Skitarelić, Neven; Mladina, Ranko

    2015-09-26

    Structured training in endonasal endoscopic sinus surgery (EESS) and skull base surgery is essential considering serious potential complications. We have developed a detailed concept on training these surgical skills on the lamb's head. This simple and extremely cheap model offers the possibility of training even more demanding and advanced procedures in human endonasal endoscopic surgery such as: frontal sinus surgery, orbital decompression, cerebrospinal fluid-leak repair followed also by the naso-septal flap, etc. Unfortunately, the sphenoid sinus surgery cannot be practiced since quadrupeds do not have this sinus. Still, despite this anatomical limitation, it seems that the lamb's head can be very useful even for the surgeons already practicing EESS, but in a limited edition because of a lack of the experience and dexterity. Only after gaining the essential surgical skills of this demanding field it makes sense to go for the expensive trainings on the human cadaveric model. PMID:26413487

  7. Mapping the brain cortex using an analytical model of the head

    NASA Astrophysics Data System (ADS)

    Hollaender, Igor

    1995-04-01

    In neurosciences, 3D renderings of the human brain cortex based on MR tomographical measurements are often used to study cortical structures, their similarity or variability, or to depict surface distribution of a given physical quantity. We have developed a method for producing maps of the human cortex depicting the complete brain surface in one view. The mapping is based on casting rays normal to the skin surface of the head. The projection surface is then remapped to the plane. An analytical model of the head consisting of four Bezier patches is used for generating the normal rays. The contribution describes the structure of the model and its computation, the projection geometry of the mapping, and the details of the rendering phase. Examples of possible applications of the method are presented.

  8. Head and neck resonance in a rhesus monkey - a comparison with results from a human model

    NASA Astrophysics Data System (ADS)

    Tinniswood, Adam; Gandhi, Om P.

    1999-03-01

    The use of primates for examining the effects of electromagnetic radiation on behavioural patterns is well established. Rats have also been used for this purpose. However, the monkey is of greater interest as its physiological make-up is somewhat closer to that of the human. Since the behavioural effects are likely to occur at lower field strengths for resonant absorption conditions for the head and neck, the need for determination of resonance frequencies for this region is obvious. Numerical techniques are ideal for the prediction of coupling to each of the organs, and accurate anatomically based models can be used to pinpoint the conditions for maximum absorption in the head in order to focus the experiments. In this paper we use two models, one of a human male and the other of a rhesus monkey, and find the mass-averaged power absorption spectra for both. The frequencies at which highest absorption (i.e. resonance) occurs in both the whole body and the head and neck region are determined. The results from these two models are compared for both E-polarization and k-polarization, and are shown to obey basic electromagnetic scaling principles.

  9. Development of a Human Head FE Model and Impact Simulation on the Focal Brain Injury

    NASA Astrophysics Data System (ADS)

    Watanabe, Dai; Yuge, Kohei; Nishimoto, Tetsuya; Murakami, Shigeyuki; Takao, Hiroyuki

    In this paper, a three-dimensional digital human-head model was developed and several dynamic analyses on the head trauma were conducted. This model was built up by the VOXEL approach using 433 slice CT images (512×512 pixels) and made of 1.22 million parallelepiped finite elements with 10 anatomical tissue properties such as scalp, CSF, skull, brain, dura mater and so on. The numerical analyses were conducted using a finite element code the authors have developed. The main features of the code are 1) it is based on the explicit time integration method and 2) it uses the one point integration method to evaluate the equivalent nodal forces with the hourglass control proposed by Flanagan and Belytschko(1) and 3) it utilizes the parallel computation system based on MPI. In order to verify the developed model, the head impact experiment for a cadaver by Nahum et al.(2) was simulated. The calculated results showed good agreement with the experimental ones. A front and rear impact analyses were also performed to discuss on the characteristic measure of the brain injury, in which the von-Mises stress was high in the frontal lobe in both of the analyses because of the large deformations of a frontal cranial base. This result suggests that the von-Mises stress can be a good measure of the brain injury since it is empirically well known that the frontal lobe tends to get injured regardless of the impact positions.

  10. Development of an FE model of the rat head subjected to air shock loading.

    PubMed

    Zhu, Feng; Mao, Haojie; Dal Cengio Leonardi, Alessandra; Wagner, Christina; Chou, Clifford; Jin, Xin; Bir, Cynthia; Vandevord, Pamela; Yang, King H; King, Albert I

    2010-11-01

    As early as the 1950's, Gurdjian and colleagues (Gurdjian et al. 1955) observed that brain injuries could occur by direct pressure loading without any global head accelerations. This pressure-induced injury mechanism was "forgotten" for some time and is being rekindled due to the many mild traumatic brain injuries attributed to blast overpressure. The aim of the current study was to develop a finite element (FE) model to predict the biomechanical response of rat brain under a shock tube environment. The rat head model, including more than 530,000 hexahedral elements with a typical element size of 100 to 300 microns was developed based on a previous rat brain model for simulating a blunt controlled cortical impact. An FE model, which represents gas flow in a 0.305-m diameter shock tube, was formulated to provide input (incident) blast overpressures to the rat model. It used an Eulerian approach and the predicted pressures were verified with experimental data. These two models were integrated and an arbitrary Lagrangian-Eulerian (ALE) fluid-structure coupling algorithm was then utilized to simulate the interaction of the shock wave with the rat head. The FE model-predicted pressure-time histories at the cortex and in the lateral ventricle were in reasonable agreement with those obtained experimentally. Further examination of the FE model predictions revealed that pressure amplification, caused by shock wave reflection at the interface of the materials with distinct wave impedances, was found in the skull. The overpressures in the anterior and posterior regions were 50% higher than those at the vertex and central regions, indicating a higher possibility of injuries in the coup and contrecoup sites. At an incident pressure of 85 kPa, the shear stress and principal strain in the brain remained at a low level, implying that they are not the main mechanism causing injury in the current scenario. PMID:21512910

  11. Data Sources Available for Modeling Environmental Exposures in Older Adults

    EPA Science Inventory

    This report, “Data Sources Available for Modeling Environmental Exposures in Older Adults,” focuses on information sources and data available for modeling environmental exposures in the older U.S. population, defined here to be people 60 years and older, with an emphasis on those...

  12. Adult Intellectual Development as Social-Cognitive Growth: A Model.

    ERIC Educational Resources Information Center

    Sinnott, Jan D.

    This paper describes a tentative model to assist in conceptualization of the dynamics of adult social-cognitive development based on Piaget's and Riegel's thought, gerontological studies, and dialectical theory. The proposed model possesses several qualities: (1) it derives from the concept of intelligence as an adaptive biological entity; (2) it…

  13. Andragogy in Practice: Clarifying the Andragogical Model of Adult Learning.

    ERIC Educational Resources Information Center

    Holton, Elwood F., III; Swanson, Richard A.; Naquin, Sharon S.

    2001-01-01

    Discusses aspects of andragogy that are important for performance improvement professionals. Topics include the core andragogical model that presents core principles of adult learning; andragogy as an individual-transactional framework; individual learner differences; situational differences; and the Andragogy in Practice Model. (Contains 70…

  14. Research-Based Model for Adult Consumer-Homemaking Education.

    ERIC Educational Resources Information Center

    Ball State Univ., Muncie, IN.

    This model is designed to be used as a guide by all teachers and designers of adult vocational consumer and homemaking courses who usually function as program planners. Chapter 1 contains an operational definition, the rationale, and description of intended users. Chapter 2 presents the model description with an overview and discussion of the…

  15. "A Bad Head for Maths"? Constructions of Educability and Mathematics in Adult Students' Narrative Life Histories

    ERIC Educational Resources Information Center

    Siivonen, Päivi

    2013-01-01

    The article focuses on the social differences of educability constructed in Finnish general upper secondary school adult graduates' narratives on mathematics. Social class, gender, and age intertwine in the narratives that express the adult students' worries about their ability and competence to study and learn mathematics. Social…

  16. Resistor mesh model of a spherical head: part 1: applications to scalp potential interpolation.

    PubMed

    Chauveau, N; Morucci, J P; Franceries, X; Celsis, P; Rigaud, B

    2005-11-01

    A resistor mesh model (RMM) has been implemented to describe the electrical properties of the head and the configuration of the intracerebral current sources by simulation of forward and inverse problems in electroencephalogram/event related potential (EEG/ERP) studies. For this study, the RMM representing the three basic tissues of the human head (brain, skull and scalp) was superimposed on a spherical volume mimicking the head volume: it included 43 102 resistances and 14 123 nodes. The validation was performed with reference to the analytical model by consideration of a set of four dipoles close to the cortex. Using the RMM and the chosen dipoles, four distinct families of interpolation technique (nearest neighbour, polynomial, splines and lead fields) were tested and compared so that the scalp potentials could be recovered from the electrode potentials. The 3D spline interpolation and the inverse forward technique (IFT) gave the best results. The IFT is very easy to use when the lead-field matrix between scalp electrodes and cortex nodes has been calculated. By simple application of the Moore-Penrose pseudo inverse matrix to the electrode cap potentials, a set of current sources on the cortex is obtained. Then, the forward problem using these cortex sources renders all the scalp potentials. PMID:16594294

  17. Novel Model of Frontal Impact Closed Head Injury in the Rat

    PubMed Central

    Kilbourne, Michael; Kuehn, Reed; Tosun, Cigdem; Caridi, John; Keledjian, Kaspar; Bochicchio, Grant; Scalea, Thomas; Gerzanich, Volodymyr

    2009-01-01

    Abstract Frontal impact, closed head trauma is a frequent cause of traumatic brain injury (TBI) in motor vehicle and sports accidents. Diffuse axonal injury (DAI) is common in humans and experimental animals, and results from shearing forces that develop within the anisotropic brain. Because the specific anisotropic properties of the brain are axis-dependent, the anatomical site where force is applied as well as the resultant acceleration, be it linear, rotational, or some combination, are important determinants of the resulting pattern of brain injury. Available rodent models of closed head injury do not reproduce the frontal impact commonly encountered in humans. Here we describe a new rat model of closed head injury that is a modification of the impact-acceleration model of Marmarou. In our model (the Maryland model), the impact force is applied to the anterior part of the cranium and produces TBI by causing anterior-posterior plus sagittal rotational acceleration of the brain inside the intact cranium. Skull fractures, prolonged apnea, and mortality were absent. The animals exhibited petechial hemorrhages, DAI marked by a bead-like pattern of β-amyloid precursor protein (β-APP) in damaged axons, and widespread upregulation of β-APP in neurons, with regions affected including the orbitofrontal cortex (coup), corpus callosum, caudate, putamen, thalamus, cerebellum, and brainstem. Activated caspase-3 was prominent in hippocampal neurons and Purkinje cells at the grey-white matter junction of the cerebellum. Neurobehavioral dysfunction, manifesting as reduced spontaneous exploration, lasted more than 1 week. We conclude that the Maryland model produces diffuse injuries that may be relevant to human brain injury. PMID:19929375

  18. Resources for Educators of Adults. Annotated Bibliography for the Education of Public Offenders: by Descriptive Subject Headings.

    ERIC Educational Resources Information Center

    Willis, Michael J.; And Others

    This bibliography is presented to assist educators who are engaged in research activities with inmate or ex-inmate populations. The first part contains entries under descriptive subject headings (alphabetically by author); the second part contains abstracts of the material listed in part 1 (alphabetically by title). The descriptive headings…

  19. Free vascularized fibular grafting benefits severely collapsed femoral head in concomitant with osteoarthritis in very young adults: a prospective study.

    PubMed

    Ding, Hao; Gao, You-Shui; Chen, Sheng-Bao; Jin, Dong-Xu; Zhang, Chang-Qing

    2013-07-01

    Although free vascularized fibular grafting (FVFG) has been successfully employed for precollapsed osteonecrosis of the femoral head (ONFH), there are few reports concerning its radiographic and functional results for ONFH concomitant with osteoarthritis (OA) of the hip. In the current study, 12 patients with OA induced by traumatic ONFH were enrolled, with FVFG employed as the treatment protocol. The collapsed step of the cartilage surface was measured and compared with the postoperative value, and the Merle d'Aubigné scoring system was used to evaluate preoperative and postoperative status of the hip joint. The collapsed step disappeared, and sphericity of the femoral head could be restored at an average duration of 56 months postoperatively in seven patients. With regard to the severity of hip OA, six were improved to Grade 1 and one to Grade 2. In terms of functionality, all patients with a restored femoral head experienced postoperative improvement in pain relief, mobility, and functional capacity. The average Merle d'Aubigné score increased from 6.0 to 16.9 postoperatively (p < 0.001). In conclusion, for traumatic ONFH concomitant with OA, FVFG can confer benefits in the form of restoration of the contour of the femoral head and improvement in joint function. PMID:23588546

  20. Head Start and Even Start: Greater Collaboration Needed on Measures of Adult Education and Literacy. Report to the Congressional Requesters.

    ERIC Educational Resources Information Center

    Vanderlinde, Virginia; Doughty, Sherri; Boiman, Tiffany; Rebbe, James; Stenersen, Stan; Peterson, Jill

    This report examines whether Head Start and Even Start are substantially similar in key areas. At the request of a congressional subcommittee, the Government Accounting Office determined: (1) how similar the programs are in legal requirements and administration and the extent to which they have similar purposes, performance goals, and indicators;…

  1. Segmentation of T1 MR scans for reconstruction of resistive head models.

    PubMed

    Heinonen, T; Eskola, H; Dastidar, P; Laarne, P; Malmivuo, J

    1997-11-01

    This paper describes a segmentation method primarily developed for reconstructing resistive head models for electroencephalographic modelling purposes. The method was implemented by combining several image processing techniques, such as amplitude segmentation, region growing, and image fusion. Also a graphical user interface was developed to enable semiautomatic approach to the segmentation process. This method was developed especially for segmentation of the brain and skull from T1-weighted magnetic resonance images, but can also be applied in any segmentation procedure. The entire project was implemented successfully in a PC-based computer running the Unix/NeXTstep operating system. PMID:9421663

  2. Multi-scale/multi-physical modeling in head/disk interface of magnetic data storage

    NASA Astrophysics Data System (ADS)

    Chung, Pil Seung; Smith, Robert; Vemuri, Sesha Hari; Jhon, Young In; Tak, Kyungjae; Moon, Il; Biegler, Lorenz T.; Jhon, Myung S.

    2012-04-01

    The model integration of the head-disk interface (HDI) in the hard disk drive system, which includes the hierarchy of highly interactive layers (magnetic layer, carbon overcoat (COC), lubricant, and air bearing system (ABS)), has recently been focused upon to resolve technical barriers and enhance reliability. Heat-assisted magnetic recording especially demands that the model simultaneously incorporates thermal and mechanical phenomena by considering the enormous combinatorial cases of materials and multi-scale/multi-physical phenomena. In this paper, we explore multi-scale/multi-physical simulation methods for HDI, which will holistically integrate magnetic layers, COC, lubricants, and ABS in non-isothermal conditions.

  3. Stereoscopic vascular models of the head and neck: A computed tomography angiography visualization.

    PubMed

    Cui, Dongmei; Lynch, James C; Smith, Andrew D; Wilson, Timothy D; Lehman, Michael N

    2016-01-01

    Computer-assisted 3D models are used in some medical and allied health science schools; however, they are often limited to online use and 2D flat screen-based imaging. Few schools take advantage of 3D stereoscopic learning tools in anatomy education and clinically relevant anatomical variations when teaching anatomy. A new approach to teaching anatomy includes use of computed tomography angiography (CTA) images of the head and neck to create clinically relevant 3D stereoscopic virtual models. These high resolution images of the arteries can be used in unique and innovative ways to create 3D virtual models of the vasculature as a tool for teaching anatomy. Blood vessel 3D models are presented stereoscopically in a virtual reality environment, can be rotated 360° in all axes, and magnified according to need. In addition, flexible views of internal structures are possible. Images are displayed in a stereoscopic mode, and students view images in a small theater-like classroom while wearing polarized 3D glasses. Reconstructed 3D models enable students to visualize vascular structures with clinically relevant anatomical variations in the head and neck and appreciate spatial relationships among the blood vessels, the skull and the skin. PMID:25929248

  4. Modeling the direction-continuous time-of-arrival in head-related transfer functions.

    PubMed

    Ziegelwanger, Harald; Majdak, Piotr

    2014-03-01

    Head-related transfer functions (HRTFs) describe the filtering of the incoming sound by the torso, head, and pinna. As a consequence of the propagation path from the source to the ear, each HRTF contains a direction-dependent, broadband time-of-arrival (TOA). TOAs are usually estimated independently for each direction from HRTFs, a method prone to artifacts and limited by the spatial sampling. In this study, a continuous-direction TOA model combined with an outlier-removal algorithm is proposed. The model is based on a simplified geometric representation of the listener, and his/her arbitrary position within the HRTF measurement. The outlier-removal procedure uses the extreme studentized deviation test to remove implausible TOAs. The model was evaluated for numerically calculated HRTFs of sphere, torso, and pinna under various conditions. The accuracy of estimated parameters was within the resolution given by the sampling rate. Applied to acoustically measured HRTFs of 172 listeners, the estimated parameters were consistent with realistic listener geometry. The outlier removal further improved the goodness-of-fit, particularly for some problematic fits. The comparison with a simpler model that fixed the listener position to the center of the measurement geometry showed a clear advantage of listener position as an additional free model parameter. PMID:24606268

  5. Adult Zebrafish model of streptococcal infection

    PubMed Central

    Phelps, Hilary A.; Runft, Donna L.

    2009-01-01

    Streptococcal pathogens cause a wide array of clinical syndromes in humans, including invasive systemic infections resulting in high mortality rates. Many of these pathogens are human specific, and therefore difficult to analyze in vivo using typical animal models, as these models rarely replicate what is observed in human infections. This unit describes the use of the zebrafish (Danio rerio) as an animal model for streptococcal infection to analyze multiple disease states. This model closely mimics the necrotizing fasciitis/myositis pathology observed in humans from a Streptococcus pyogenes infection. The use of a zoonotic pathogen, Streptococcus iniae, which replicates systemic infections caused by many streptococcal pathogens, including dissemination to the brain, is also described. Included protocols describe both intraperitoneal and intramuscular infections, as well as methods for histological and quantitative measurements of infection. PMID:19412913

  6. Heads Up

    MedlinePlus

    ... Juvenil HEADS UP to School Sports Online Concussion Training Coaches Parents Athletes Sports Officials HEADS UP to Schools School Nurses Teachers, Counselors, and School Professionals Parents HEADS UP ...

  7. The application of a generativity model for older adults.

    PubMed

    Ehlman, Katie; Ligon, Mary

    2012-01-01

    Generativity is a concept first introduced by Erik Erikson as a part of his psychosocial theory which outlines eight stages of development in the human life. Generativity versus stagnation is the main developmental concern of middle adulthood; however, generativity is also recognized as an important theme in the lives of older adults. Building on the work of Erikson, McAdams and de St. Aubin (1992) developed a model explaining the generative process. The aims of this article are: (a) to explore the relationship between generativity and older adults as it appears in research literature; and (b) to examine McAdam's model and use it to explain the role of generativity in older adults who share life stories with gerontology students through an oral history project. PMID:22950351

  8. Evaluation of three-dimensional anisotropic head model for mapping realistic electromagnetic fields of brain tissues

    NASA Astrophysics Data System (ADS)

    Jeong, Woo Chul; Wi, Hun; Sajib, Saurav Z. K.; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2015-08-01

    Electromagnetic fields provide fundamental data for the imaging of electrical tissue properties, such as conductivity and permittivity, in recent magnetic resonance (MR)-based tissue property mapping. The induced voltage, current density, and magnetic flux density caused by externally injected current are critical factors for determining the image quality of electrical tissue conductivity. As a useful tool to identify bio-electromagnetic phenomena, precise approaches are required to understand the exact responses inside the human body subject to an injected currents. In this study, we provide the numerical simulation results of electromagnetic field mapping of brain tissues using a MR-based conductivity imaging method. First, we implemented a realistic three-dimensional human anisotropic head model using high-resolution anatomical and diffusion tensor MR images. The voltage, current density, and magnetic flux density of brain tissues were imaged by injecting 1 mA of current through pairs of electrodes on the surface of our head model. The current density map of anisotropic brain tissues was calculated from the measured magnetic flux density based on the linear relationship between the water diffusion tensor and the electrical conductivity tensor. Comparing the current density to the previous isotropic model, the anisotropic model clearly showed the differences between the brain tissues. This originates from the enhanced signals by the inherent conductivity contrast as well as the actual tissue condition resulting from the injected currents.

  9. A TRAINING MODEL FOR THE JOBLESS ADULT.

    ERIC Educational Resources Information Center

    ULRICH, BERNARD

    THE TRAINING SYSTEMS DESIGN, AN INTERDISCIPLINARY APPROACH UTILIZING KNOWLEDGE OF BEHAVIORAL SCIENCES, NEW INSTRUCTIONAL TECHNOLOGY, AND SYSTEMS DESIGN, HAS BEEN APPLIED TO DEVELOP A MODEL FOR RE-EDUCATING AND TRAINING THE AGING UNEMPLOYED. RESEARCH INTO EXISTING MDTA DEMONSTRATION PROGRAMS BY THE COOPERATIVE EFFORTS OF MCGRAW-HILL AND THE…

  10. Transient Inverse Calibration of a Facies-Based Groundwater Flow and Transport Model Using Contaminant Concentration and Hydraulic Head Data

    NASA Astrophysics Data System (ADS)

    Williams, M. D.; Thorne, P. D.; Bergeron, M. P.; Vermeul, V. R.; Ward, D. L.

    2006-12-01

    A three dimensional groundwater flow and transport model was calibrated against observations of both hydraulic head and tritium plume concentrations measured in wells. Hydraulic parameters were estimated with a transient inverse process using UCODE, a universal inverse modeling code developed jointly by the U.S. Geological Survey and the International Groundwater Modeling Center at the Colorado School of Mines. Previous groundwater models at the site had been calibrated using hydraulic head data in the transient inverse calibration process. The resulting models were good at fitting the hydraulic head data, but did not perform well in replicating the movement of contaminant plumes over this period. A separate transient inverse calibration effort used only tritium measurements collected from wells at the site over the operational period, along with estimates of the water volume and tritium mass discharged to the aquifer, to estimate the hydraulic properties. The resulting model did a better job of replicating the overall shape and development of the tritium plume, but did not do as well in matching the hydraulic heads. Both the hydraulic head and tritium concentration data sets were used jointly in the transient inverse process for this study. These data included 47,739 measurements of hydraulic head from 543 wells and 37,802 measurements of tritium concentrations from 1,201 wells. The transient inverse process estimated hydraulic conductivity for 18 facies-based zones in the main sand and gravel units in the unconfined aquifer. A simplified weighting scheme for the hydraulic head and tritium data was developed so that the overall sum-of-squared residuals for the inverse runs were roughly equally weighted for the two data sets. Preliminary simulation results from this combined calibration dataset show a good fit for both the evolving tritium plume and hydraulic head measurements over the operational period.

  11. Cortical imaging on a head template: a simulation study using a resistor mesh model (RMM).

    PubMed

    Chauveau, Nicolas; Franceries, Xavier; Aubry, Florent; Celsis, Pierre; Rigaud, Bernard

    2008-09-01

    The T1 head template model used in Statistical Parametric Mapping Version 2000 (SPM2), was segmented into five layers (scalp, skull, CSF, grey and white matter) and implemented in 2 mm voxels. We designed a resistor mesh model (RMM), based on the finite volume method (FVM) to simulate the electrical properties of this head model along the three axes for each voxel. Then, we introduced four dipoles of high eccentricity (about 0.8) in this RMM, separately and simultaneously, to compute the potentials for two sets of conductivities. We used the direct cortical imaging technique (CIT) to recover the simulated dipoles, using 60 or 107 electrodes and with or without addition of Gaussian white noise (GWN). The use of realistic conductivities gave better CIT results than standard conductivities, lowering the blurring effect on scalp potentials and displaying more accurate position areas when CIT was applied to single dipoles. Simultaneous dipoles were less accurately localized, but good qualitative and stable quantitative results were obtained up to 5% noise level for 107 electrodes and up to 10% noise level for 60 electrodes, showing that a compromise must be found to optimize both the number of electrodes and the noise level. With the RMM defined in 2 mm voxels, the standard 128-electrode cap and 5% noise appears to be the upper limit providing reliable source positions when direct CIT is used. The admittance matrix defining the RMM is easy to modify so as to adapt to different conductivities. The next step will be the adaptation of individual real head T2 images to the RMM template and the introduction of anisotropy using diffusion imaging (DI). PMID:18629625

  12. Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches.

    PubMed

    Ganpule, S; Alai, A; Plougonven, E; Chandra, N

    2013-06-01

    Blast waves generated by improvised explosive devices can cause mild, moderate to severe traumatic brain injury in soldiers and civilians. To understand the interactions of blast waves on the head and brain and to identify the mechanisms of injury, compression-driven air shock tubes are extensively used in laboratory settings to simulate the field conditions. The overall goal of this effort is to understand the mechanics of blast wave-head interactions as the blast wave traverses the head/brain continuum. Toward this goal, surrogate head model is subjected to well-controlled blast wave profile in the shock tube environment, and the results are analyzed using combined experimental and numerical approaches. The validated numerical models are then used to investigate the spatiotemporal distribution of stresses and pressure in the human skull and brain. By detailing the results from a series of careful experiments and numerical simulations, this paper demonstrates that: (1) Geometry of the head governs the flow dynamics around the head which in turn determines the net mechanical load on the head. (2) Biomechanical loading of the brain is governed by direct wave transmission, structural deformations, and wave reflections from tissue-material interfaces. (3) Deformation and stress analysis of the skull and brain show that skull flexure and tissue cavitation are possible mechanisms of blast-induced traumatic brain injury. PMID:22832705

  13. NIR light propagation in a digital head model for traumatic brain injury (TBI)

    PubMed Central

    Francis, Robert; Khan, Bilal; Alexandrakis, George; Florence, James; MacFarlane, Duncan

    2015-01-01

    Near infrared spectroscopy (NIRS) is capable of detecting and monitoring acute changes in cerebral blood volume and oxygenation associated with traumatic brain injury (TBI). Wavelength selection, source-detector separation, optode density, and detector sensitivity are key design parameters that determine the imaging depth, chromophore separability, and, ultimately, clinical usefulness of a NIRS instrument. We present simulation results of NIR light propagation in a digital head model as it relates to the ability to detect intracranial hematomas and monitor the peri-hematomal tissue viability. These results inform NIRS instrument design specific to TBI diagnosis and monitoring. PMID:26417498

  14. NIR light propagation in a digital head model for traumatic brain injury (TBI).

    PubMed

    Francis, Robert; Khan, Bilal; Alexandrakis, George; Florence, James; MacFarlane, Duncan

    2015-09-01

    Near infrared spectroscopy (NIRS) is capable of detecting and monitoring acute changes in cerebral blood volume and oxygenation associated with traumatic brain injury (TBI). Wavelength selection, source-detector separation, optode density, and detector sensitivity are key design parameters that determine the imaging depth, chromophore separability, and, ultimately, clinical usefulness of a NIRS instrument. We present simulation results of NIR light propagation in a digital head model as it relates to the ability to detect intracranial hematomas and monitor the peri-hematomal tissue viability. These results inform NIRS instrument design specific to TBI diagnosis and monitoring. PMID:26417498

  15. Suggesting a General ESP Model for Adult Learners

    ERIC Educational Resources Information Center

    Al-Jumaily, Samir

    2011-01-01

    The study suggests a general model that could guarantee the cooperation between teachers and their students to overcome the difficulties encountered in ESP learning. It tries to join together different perspectives in the research of adult education, specifically in the teaching of English for Specific Purposes. It also provides some sort of trust…

  16. MIDA: A Multimodal Imaging-Based Detailed Anatomical Model of the Human Head and Neck

    PubMed Central

    Iacono, Maria Ida; Neufeld, Esra; Akinnagbe, Esther; Bower, Kelsey; Wolf, Johanna; Vogiatzis Oikonomidis, Ioannis; Sharma, Deepika; Lloyd, Bryn; Wilm, Bertram J.; Wyss, Michael; Pruessmann, Klaas P.; Jakab, Andras; Makris, Nikos; Cohen, Ethan D.; Kuster, Niels; Kainz, Wolfgang; Angelone, Leonardo M.

    2015-01-01

    Computational modeling and simulations are increasingly being used to complement experimental testing for analysis of safety and efficacy of medical devices. Multiple voxel- and surface-based whole- and partial-body models have been proposed in the literature, typically with spatial resolution in the range of 1–2 mm and with 10–50 different tissue types resolved. We have developed a multimodal imaging-based detailed anatomical model of the human head and neck, named “MIDA”. The model was obtained by integrating three different magnetic resonance imaging (MRI) modalities, the parameters of which were tailored to enhance the signals of specific tissues: i) structural T1- and T2-weighted MRIs; a specific heavily T2-weighted MRI slab with high nerve contrast optimized to enhance the structures of the ear and eye; ii) magnetic resonance angiography (MRA) data to image the vasculature, and iii) diffusion tensor imaging (DTI) to obtain information on anisotropy and fiber orientation. The unique multimodal high-resolution approach allowed resolving 153 structures, including several distinct muscles, bones and skull layers, arteries and veins, nerves, as well as salivary glands. The model offers also a detailed characterization of eyes, ears, and deep brain structures. A special automatic atlas-based segmentation procedure was adopted to include a detailed map of the nuclei of the thalamus and midbrain into the head model. The suitability of the model to simulations involving different numerical methods, discretization approaches, as well as DTI-based tensorial electrical conductivity, was examined in a case-study, in which the electric field was generated by transcranial alternating current stimulation. The voxel- and the surface-based versions of the models are freely available to the scientific community. PMID:25901747

  17. Determination of stimulation focality in heterogeneous head models during transcranial magnetic stimulation (TMS)

    NASA Astrophysics Data System (ADS)

    Lee, Erik; Hadimani, Ravi; Jiles, David

    2015-03-01

    Transcranial Magnetic Stimulation (TMS) is an increasingly popular tool used by both the scientific and medical community to understand and treat the brain. TMS has the potential to help people with a wide range of diseases such as Parkinson's, Alzheimer's, and PTSD, while currently being used to treat people with chronic, drug-resistant depression. Through computer simulations, we are able to see the electric field that TMS induces in anatomical human models, but there is no measure to quantify this electric field in a way that relates to a specific patient undergoing TMS therapy. We propose a way to quantify the focality of the induced electric field in a heterogeneous head model during TMS by relating the surface area of the brain being stimulated to the total volume of the brain being stimulated. This figure would be obtained by conducting finite element analysis (FEA) simulations of TMS therapy on a patient specific head model. Using this figure to assist in TMS therapy will allow clinicians and researchers to more accurately stimulate the desired region of a patient's brain and be more equipped to do comparative studies on the effects of TMS across different patients. This work was funded by the Carver Charitable Trust.

  18. Partially Automated Method for Localizing Standardized Acupuncture Points on the Heads of Digital Human Models

    PubMed Central

    Kim, Jungdae; Kang, Dae-In

    2015-01-01

    Having modernized imaging tools for precise positioning of acupuncture points over the human body where the traditional therapeutic method is applied is essential. For that reason, we suggest a more systematic positioning method that uses X-ray computer tomographic images to precisely position acupoints. Digital Korean human data were obtained to construct three-dimensional head-skin and skull surface models of six individuals. Depending on the method used to pinpoint the positions of the acupoints, every acupoint was classified into one of three types: anatomical points, proportional points, and morphological points. A computational algorithm and procedure were developed for partial automation of the positioning. The anatomical points were selected by using the structural characteristics of the skin surface and skull. The proportional points were calculated from the positions of the anatomical points. The morphological points were also calculated by using some control points related to the connections between the source and the target models. All the acupoints on the heads of the six individual were displayed on three-dimensional computer graphical image models. This method may be helpful for developing more accurate experimental designs and for providing more quantitative volumetric methods for performing analyses in acupuncture-related research. PMID:26101534

  19. CE-QUAL-W2 Modeling of Head-of-Reservoir Conditions at Shasta Reservoir, California

    NASA Astrophysics Data System (ADS)

    Clancey, K. M.; Saito, L.; Svoboda, C.; Bender, M. D.; Hannon, J.

    2014-12-01

    Restoration of Chinook salmon and steelhead is a priority in the Sacramento River Basin since they were listed under the Endangered Species Act in 1989 and 1998, respectively. Construction of Shasta Dam and Reservoir obstructed fish migration, resulting in severe population declines. Efforts have been undertaken to restore the fisheries, including evaluation of opportunities for reintroducing Chinook salmon upstream of the dam and providing juvenile fish passage downstream past Shasta Dam. Shasta Reservoir and the Sacramento River and McCloud River tributaries have been modeled with CE-QUAL-W2 (W2) to assess hydrodynamic and temperature conditions with and without surface curtains to be deployed in the tributaries. Expected head-of-reservoir tributary conditions of temperature and water depth are being simulated under dry, median and wet year conditions. Model output is analyzed during months of downstream migration of fish from upstream Sacramento and McCloud River tributaries. W2 will be used to determine presence of favorable conditions for juvenile rearing with proposed surface temperature curtains. Evaluation of favorable conditions for fish includes assessment of water temperature, velocities, and depth. Preliminary results for head-of-reservoir conditions and the influence of temperature curtains modeled with W2 will be presented. Study findings may assist in formulation of juvenile fish passage alternatives for Shasta Lake.

  20. Impact of uncertainty description on assimilating hydraulic head in the MIKE SHE distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Zhang, Donghua; Madsen, Henrik; Ridler, Marc E.; Refsgaard, Jens C.; Jensen, Karsten H.

    2015-12-01

    The ensemble Kalman filter (EnKF) is a popular data assimilation (DA) technique that has been extensively used in environmental sciences for combining complementary information from model predictions and observations. One of the major challenges in EnKF applications is the description of model uncertainty. In most hydrological EnKF applications, an ad hoc model uncertainty is defined with the aim of avoiding a collapse of the filter. The present work provides a systematic assessment of model uncertainty in DA applications based on combinations of forcing, model parameters, and state uncertainties. This is tested in a case where groundwater hydraulic heads are assimilated into a distributed and integrated catchment-scale model of the Karup catchment in Denmark. A series of synthetic data assimilation experiments are carried out to analyse the impact of different model uncertainty assumptions on the feasibility and efficiency of the assimilation. The synthetic data used in the assimilation study makes it possible to diagnose model uncertainty assumptions statistically. Besides the model uncertainty, other factors such as observation error, observation locations, and ensemble size are also analysed with respect to performance and sensitivity. Results show that inappropriate definition of model uncertainty can greatly degrade the assimilation performance, and an appropriate combination of different model uncertainty sources is advised.

  1. Modeling and Individualization of Head-Related Transfer Functions Using Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Fink, Kimberly J.

    Spatial localization of sound depends on interaural time delay (ITD), level difference, and on the interaction of the source with the head, torso, and pinna. Head-related transfer functions (HRTFs) model the dynamics that are used by listeners to derive spatial information from binaural signals and are used to create virtual auditory displays (VADs). This thesis presents methods to model and customize HRTFs for the creation of a tunable VAD. Prior research has investigated development of virtual auditory displays (VADs) using models of HRTFs as a function of a finite number of principal components (PCs) and associated weights (PCWs). This thesis investigates the effect of PCWs on horizontal plane HRTFs derived from a database of head-related impulse responses (HRIRs). Tuning is evaluated from a numerical perspective to determine how variation of PCWs from an average PC model affects HRTF spectral characteristics. A PC model of an average subject at 50 azimuths in the horizontal plane is developed from HRIRs of 34 subjects from a public database. An additional nine subjects are used to test the PC model and conduct three optimization experiments, in which a cost function of spectral distortion is minimized by sequentially tuning PCWs. These experiments show that error deriving from PC model truncation can be reduced and average HRTFs can be tuned to match individual HRTFs. Model order reduction is used to reduce the dimensionality of a VAD from 200 point FIR filters for each ear to 15th order IIR filters per ear, without introducing audible differences. Subject testing evaluated the performance of the tuning. First the subject listens to a known azimuth and tunes sliders related to the PCWs and ITD so that what they are hearing sound like the given azimuth. On a later day, azimuths are presented in a random order unknown to the subject and he or she is asked to make judgments about where they perceive the sound. The tuned PCWs are interpolated to obtain customized

  2. Coupled head neck torso and seat model for car seat optimization under rear-end impact

    NASA Astrophysics Data System (ADS)

    Bourdet, Nicolas; Willinger, Rémy

    2008-06-01

    The development of new protective systems must be performed on tools reliable and representative of alive human. In an earlier study, a simplified but realistic modelling of the head-neck system under moderate rear impact was performed. In order to address this issue, an original lumped model of the human torso was developed and coupled to a car seat-head rest complex. The experimental modal analysis of the human torso in a seating position performed by Kitazaki in 1992 [Paper presented at the United Kingdom Meeting on Human Response to Vibration held at I.S.V.R. University of Southampton, Southampton, UK, 28-30 September 1992.] was used in the present study for the identification of the mechanical parameters of a lumped human torso model. Despite its low complexity, this model was able to reproduce the five first experimental vibration modes and it was possible to validate it in terms of natural frequencies, damping ratio and mode shapes. In addition to the lumped approach, an external geometry of the human torso was implemented in order to provide a realistic coupling of the human body model to a finite element model of the car seat also developed in the present study. A parametric study was finally carried out in order to evaluate the influence of the torso behaviour and of the different parts of a car seat on the mechanical neck response under rear-end impact. The results of this study allow concluding that the torso behaviour has an important influence on the neck loading and therefore that the quality of a car seat depends on the human body substitute used. For instance, with the proposed torso model, a low-neck injury criterion (NIC) rearward value was obtained with low rigidity of the backrest foam and a stiff backrest net.

  3. EEG source analysis of epileptiform activity using a 1mm anisotropic hexahedra finite element head model

    PubMed Central

    Rullmann, M.; Anwander, A.; Dannhauer, M.; Warfield, S.K.; Duffy, F.H.; Wolters, C.H.

    2009-01-01

    The major goal of the evaluation in presurgical epilepsy diagnosis for medically intractable patients is the precise reconstruction of the epileptogenic foci, preferably with non-invasive methods. This paper evaluates whether surface electroencephalography (EEG) source analysis based on a 1mm anisotropic finite element (FE) head model can provide additional guidance for presurgical epilepsy diagnosis and whether it is practically feasible in daily routine. A 1mm hexahedra FE volume conductor model of the patient’s head with special focus on accurately modeling the compartments skull, cerebrospinal fluid (CSF) and the anisotropic conducting brain tissues was constructed using non-linearly co-registered T1-, T2- and diffusion-tensor- magnetic resonance imaging data. The electrodes of intra-cranial EEG (iEEG) measurements were extracted from a co-registered computed tomography image. Goal function scan (GFS), minimum norm least squares (MNLS), standardized low resolution electromagnetic tomography (sLORETA) and spatio-temporal current dipole modeling inverse methods were then applied to the peak of the averaged ictal discharges EEG data. MNLS and sLORETA pointed to a single center of activity. Moving and rotating single dipole fits resulted in an explained variance of more than 97%. The non-invasive EEG source analysis methods localized at the border of the lesion and at the border of the iEEG electrodes which mainly received ictal discharges. Source orientation was towards the epileptogenic tissue. For the reconstructed superficial source, brain conductivity anisotropy and the lesion conductivity had only a minor influence, whereas a correct modeling of the highly conducting CSF compartment and the anisotropic skull was found to be important. The proposed FE forward modeling approach strongly simplifies meshing and reduces run-time (37 Milliseconds for one forward computation in the model with 3.1 Million unknowns), corroborating the practical feasibility of the

  4. Multicamera 3D modeling system to digitize human head and body

    NASA Astrophysics Data System (ADS)

    Fujimura, Kouta; Matsumoto, Yukinori; Emi, Tetsuichi

    2001-04-01

    A multi-camera 3D modeling system to digitize a human head and body is presented in this paper. The main features of this system are as follows: 1) Fast capturing: Both of texture images and pattern images can be taken within a few seconds using multiple digital still cameras which are set around the target human. Slide projectors are also set to provide a color line patterned light on the target for pattern image capturing, 2) Realistic Shape and Texture: The whole shape and photo-realistic textures of the human head including hair can be digitized at a time on a personal computer, and 3) Hybrid Algorithm: Our modeling algorithm is based on a hybrid method where the Shape-from-Silhouette technique and the Active-Stereo technique are combined. In the first step, the rough shape of the target is estimated in a voxel space using our Extended Shape-from-Silhouette method. In the next step, the shape is refined based on the depth-map data that is calculated using a multi-camera active stereo method. This combination makes up for the shortcomings of each method. Our system has been applied to the digitizing several Japanese people using sixteen cameras for texture image capturing and twelve cameras and two projectors for pattern image capturing. Its capturing time is approximately three seconds and calculation time is about 15-20 minutes on a personal computer with the Pentium-III processor (600MHz) and 512MB memory to digitize the whole shape as well as the texture of the human head and body.

  5. Biofidelic white matter heterogeneity decreases computational model predictions of white matter strains during rapid head rotations.

    PubMed

    Maltese, Matthew R; Margulies, Susan S

    2016-11-01

    The finite element (FE) brain model is used increasingly as a design tool for developing technology to mitigate traumatic brain injury. We developed an ultra high-definition FE brain model (>4 million elements) from CT and MRI scans of a 2-month-old pre-adolescent piglet brain, and simulated rapid head rotations. Strain distributions in the thalamus, coronal radiata, corpus callosum, cerebral cortex gray matter, brainstem and cerebellum were evaluated to determine the influence of employing homogeneous brain moduli, or distinct experimentally derived gray and white matter property representations, where some white matter regions are stiffer and others less stiff than gray matter. We find that constitutive heterogeneity significantly lowers white matter deformations in all regions compared with homogeneous properties, and should be incorporated in FE model injury prediction. PMID:27123826

  6. Design of the Neuro-ECAT: A high-resolution, high efficiency positron tomography for imaging the adult head or infant torso

    SciTech Connect

    Williams, C.W.; Burgiss, S.G.; Burke, M.R.; Crabtree, M.C.; Hoffman, E.J.; Keyser, R.M.; Phelps, M.E.

    1981-04-01

    The Neuro-ECAT scanner is a positron emission tomograph designed for high resolution cross-sectional imaging of the adult human head, or the complete torso of a child or small animal. The Neuro-ECAT scanner performs both rectilinear and tomographic scans, in both transmission and emission modes. There are three detector planes, producing five images. Each detector plane contains 88 bismuth germanate detectors, arranged in an octagonal array of 11 detectors per bank. Retained and electrically operated shadow shields provide two choices of reconstructed tomographic resolution, nominally 8.0 and 10.5 mm. Interplane septa, also retained and electrically operated, may be inserted between the detector planes for low noise, highly quantitative measurements, or moved aside for high efficiency scanning of low activity levels. The paper presents the Neuro-ECAT scanner design criteria and a description of the scanner. Data from phantom studies are presented to illustrate system performance.

  7. Effect of Head Position on Cerebrospinal Fluid Pressure in Cats: Comparison with Artificial Model

    PubMed Central

    Klarica, Marijan; Radoš, Milan; Draganić, Pero; Erceg, Gorislav; Orešković, Darko; Maraković, Jurica; Bulat, Marin

    2006-01-01

    Aim To demonstrate that changes in the cerebrospinal fluid (CSF) pressure in the cranial cavity and spinal canal after head elevation from the horizontal level occur primarily due to the biophysical characteristics of the CSF system, ie, distensibility of the spinal dura. Methods Experiments in vivo were performed on cats and a new artificial model of the CSF system with dimensions similar to the CSF system in cats, consisting of non-distensible cranial and distensible spinal part. Measurements of the CSF pressure in the cranial and spinal spaces were performed in chloralose-anesthetized cats (n = 10) in the horizontal position on the base of a stereotaxic apparatus (reference zero point) and in the position in which the head was elevated to 5 cm and 10 cm above that horizontal position. Changes in the CSF pressure in the cranial and spinal part of the model were measured in the cranial part positioned in the same way as the head in cats (n = 5). Results When the cat was in the horizontal position, the values of the CSF pressure in the cranial (11.9 ± 1.1 cm H2O) and spinal (11.8 ± 0.6 cm H2O) space were not significantly different. When the head was elevated 5 cm or 10 cm above the reference zero point, the CSF pressure in the cranium significantly decreased to 7.7 ± 0.6 cm H2O and 4.7 ± 0.7 cm H2O, respectively, while the CSF pressure in the spinal space significantly increased to 13.8 ± 0.7 cm H2O and 18.5 ± 1.6 cm H2O, respectively (P<0.001 for both). When the artificial CSF model was positioned in the horizontal level and its cranial part elevated by 5 cm and 10 cm, the changes in the pressure were the same as those in the cats when in the same hydrostatic position. Conclusions The new model of the CSF system used in our study faithfully mimicked the changes in the CSF pressure in cats during head elevation in relation to the body. Changes in the pressure in the model were not accompanied by the changes in fluid volume in

  8. Following your heart or your head: focusing on emotions versus information differentially influences the decisions of younger and older adults.

    PubMed

    Mikels, Joseph A; Löckenhoff, Corinna E; Maglio, Sam J; Goldstein, Mary K; Garber, Alan; Carstensen, Laura L

    2010-03-01

    Research on aging has indicated that whereas deliberative cognitive processes decline with age, emotional processes are relatively spared. To examine the implications of these divergent trajectories in the context of health care choices, we investigated whether instructional manipulations emphasizing a focus on feelings or details would have differential effects on decision quality among younger and older adults. We presented 60 younger and 60 older adults with health care choices that required them to hold in mind and consider multiple pieces of information. Instructional manipulations in the emotion-focus condition asked participants to focus on their emotional reactions to the options, report their feelings about the options, and then make a choice. In the information-focus condition, participants were instructed to focus on the specific attributes, report the details about the options, and then make a choice. In a control condition, no directives were given. Manipulation checks indicated that the instructions were successful in eliciting different modes of processing. Decision quality data indicate that younger adults performed better in the information-focus than in the control condition whereas older adults performed better in the emotion-focus and control conditions than in the information-focus condition. Findings support and extend extant theorizing on aging and decision making as well as suggest that interventions to improve decision-making quality should take the age of the decision maker into account. PMID:20350046

  9. Following Your Heart or Your Head: Focusing on Emotions Versus Information Differentially Influences the Decisions of Younger and Older Adults

    PubMed Central

    Mikels, Joseph A.; Löckenhoff, Corinna E.; Maglio, Sam J.; Goldstein, Mary K.; Garber, Alan; Carstensen, Laura L.

    2014-01-01

    Research on aging indicates that whereas deliberative cognitive processes decline with age, emotional processes are relatively spared. To examine the implications of these divergent trajectories in the context of healthcare choices, we investigated whether instructional manipulations emphasizing a focus on feelings or details would have differential effects on decision quality among younger and older adults. We presented 60 younger and 60 older adults with healthcare choices that required them to hold in mind and consider multiple pieces of information. Instructional manipulations in the emotion-focus condition asked participants to focus on their emotional reactions to the options, report their feelings about the options, and then make a choice. In the information-focus condition, participants were instructed to focus on the specific attributes, report the details about the options, and then make a choice. In a control condition, no directives were given. Manipulation checks indicated that the instructions were successful in eliciting different modes of processing. Decision quality data indicate that younger adults performed better in the information-focus than in the control condition whereas older adults performed better in the emotion-focus and control conditions than in the information-focus condition. Findings support and extend extant theorizing on aging and decision making as well as suggest that interventions to improve decision making quality should take the age of the decision maker into account. PMID:20350046

  10. Estimation of electrical conductivity of a layered spherical head model using electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Fernández-Corazza, M.; von-Ellenrieder, N.; Muravchik, C. H.

    2011-12-01

    Electrical Impedance Tomography (EIT) is a non-invasive method that aims to create an electrical conductivity map of a volume. In particular, it can be applied to study the human head. The method consists on the injection of an unperceptive and known current through two electrodes attached to the scalp, and the measurement of the resulting electric potential distribution at an array of sensors also placed on the scalp. In this work, we propose a parametric estimation of the brain, scalp and skull conductivities using EIT over an spherical model of the head. The forward problem involves the computation of the electric potential on the surface, for given the conductivities and the injection electrode positions, while the inverse problem consists on estimating the conductivities given the sensor measurements. In this study, the analytical solution to the forward problem based on a three layer spherical model is first described. Then, some measurements are simulated adding white noise to the solutions and the inverse problem is solved in order to estimate the brain, skull and scalp conductivity relations. This is done with a least squares approach and the Nelder-Mead multidimensional unconstrained nonlinear minimization method.

  11. Efficiency prediction for a low head bulb turbine with SAS SST and zonal LES turbulence models

    NASA Astrophysics Data System (ADS)

    Jošt, D.; Škerlavaj, A.

    2014-03-01

    A comparison between results of numerical simulations and measurements for a 3-blade bulb turbine is presented in order to determine an appropriate numerical setup for accurate and reliable simulations of flow in low head turbines. Numerical analysis was done for three angles of runner blades at two values of head. For the smallest blade angle the efficiency was quite accurately predicted, but for the optimal and maximal blade angles steady state analysis entirely failed to predict the efficiency due to underestimated torque on the shaft and incorrect results in the draft tube. Transient simulation with SST did not give satisfactory results, but with SAS and zonal LES models the prediction of efficiency was significantly improved. From the results obtained by SAS and zonal LES the interdependence between turbulence models, vortex structures in the flow, values of eddy viscosity and flow energy losses in the draft tube can be seen. Also the effect of using the bounded central differential scheme instead of the high resolution scheme was evident. To test the effect of grid density, simulations were performed on four grids. While a difference between results obtained on the basic grid and on the fine grid was small, the results obtained on the coarse grids were not satisfactory.

  12. Safety and efficacy of quadrapeutics versus chemoradiation in head and neck carcinoma xenograft model.

    PubMed

    Lukianova-Hleb, Ekaterina Y; Kim, Yoo-Shin; Aryasomayajula, Bhawani; Boulikas, Teni; Phan, Jack; Hung, Mien-Chie; Torchilin, Vladimir P; O'Neill, Brian E; Lapotko, Dmitri O

    2015-01-01

    Chemoradiation is the strongest anti-tumor therapy but in resistant unresectable cancers it often lacks safety and efficacy. We compared our recently developed cell-level combination approach, quadrapeutics, to chemoradiation therapy to establish pre-clinical data for its biodistribution, safety and efficacy in head and neck squamous cell carcinoma (HNSCC), as a clinically challenging aggressive and resistant cancer. In vitro and in vivo models of four carcinomas were treated with standard chemoradiation and quadrapeutics using identical drug and radiation doses. We applied liposomal cisplatin or doxorubicin, colloidal gold, near-infrared laser pulses and radiation, all at low safe doses. The final evaluation used a xenograft model of HNSCC. Quadrapeutics enhanced standard chemoradiation in vitro by reducing head and neck cancer cell proliferation by 1000-fold, inhibiting tumor growth in vivo by 34-fold and improving animal survival by 5-fold, and reducing the side effects to a negligible level. In quadrapeutics, we observed an "inversion" of the drug efficacy of two standard drugs: doxorubicin, a low efficacy drug for the cancers studied, was two times more efficient than cisplatin, the first choice drug in clinic for HNSCC. The radical therapeutic gain of quadrapeutics resulted from the intracellular synergy of the four components employed which we administered in a specific sequence, while the reduction in the toxicity was due to the low doses of all four components. The biodistribution, safety and efficacy data for quadrapeutics in HNSCC ensure its high translational potential and justify the possibility of clinical trials. PMID:26885444

  13. Safety and efficacy of quadrapeutics versus chemoradiation in head and neck carcinoma xenograft model

    PubMed Central

    Lukianova-Hleb, Ekaterina Y; Kim, Yoo-Shin; Aryasomayajula, Bhawani; Boulikas, Teni; Phan, Jack; Hung, Mien-Chie; Torchilin, Vladimir P; O’Neill, Brian E; Lapotko, Dmitri O

    2015-01-01

    Chemoradiation is the strongest anti-tumor therapy but in resistant unresectable cancers it often lacks safety and efficacy. We compared our recently developed cell-level combination approach, quadrapeutics, to chemoradiation therapy to establish pre-clinical data for its biodistribution, safety and efficacy in head and neck squamous cell carcinoma (HNSCC), as a clinically challenging aggressive and resistant cancer. In vitro and in vivo models of four carcinomas were treated with standard chemoradiation and quadrapeutics using identical drug and radiation doses. We applied liposomal cisplatin or doxorubicin, colloidal gold, near-infrared laser pulses and radiation, all at low safe doses. The final evaluation used a xenograft model of HNSCC. Quadrapeutics enhanced standard chemoradiation in vitro by reducing head and neck cancer cell proliferation by 1000-fold, inhibiting tumor growth in vivo by 34-fold and improving animal survival by 5-fold, and reducing the side effects to a negligible level. In quadrapeutics, we observed an “inversion” of the drug efficacy of two standard drugs: doxorubicin, a low efficacy drug for the cancers studied, was two times more efficient than cisplatin, the first choice drug in clinic for HNSCC. The radical therapeutic gain of quadrapeutics resulted from the intracellular synergy of the four components employed which we administered in a specific sequence, while the reduction in the toxicity was due to the low doses of all four components. The biodistribution, safety and efficacy data for quadrapeutics in HNSCC ensure its high translational potential and justify the possibility of clinical trials. PMID:26885444

  14. Development of the software tool for generation and visualization of the finite element head model with bone conduction sounds

    NASA Astrophysics Data System (ADS)

    Nikolić, Dalibor; Milošević, Žarko; Saveljić, Igor; Filipović, Nenad

    2015-12-01

    Vibration of the skull causes a hearing sensation. We call it Bone Conduction (BC) sound. There are several investigations about transmission properties of bone conducted sound. The aim of this study was to develop a software tool for easy generation of the finite element (FE) model of the human head with different materials based on human head anatomy and to calculate sound conduction through the head. Developed software tool generates a model in a few steps. The first step is to do segmentation of CT medical images (DICOM) and to generate a surface mesh files (STL). Each STL file presents a different layer of human head with different material properties (brain, CSF, different layers of the skull bone, skin, etc.). The next steps are to make tetrahedral mesh from obtained STL files, to define FE model boundary conditions and to solve FE equations. This tool uses PAK solver, which is the open source software implemented in SIFEM FP7 project, for calculations of the head vibration. Purpose of this tool is to show impact of the bone conduction sound of the head on the hearing system and to estimate matching of obtained results with experimental measurements.

  15. Carbon Ion Radiation Therapy Improves the Prognosis of Unresectable Adult Bone and Soft-Tissue Sarcoma of the Head and Neck

    SciTech Connect

    Jingu, Keiichi; Tsujii, Hirohiko; Mizoe, Jun-Etsu; Hasegawa, Azusa; Bessho, Hiroki; Takagi, Ryo; Morikawa, Takamichi; Tonogi, Morio; Tsuji, Hiroshi; Kamada, Tadashi; Yamada, Shogo

    2012-04-01

    Purpose: To evaluate the safety and efficacy of carbon ion radiotherapy (C-ion RT) with 70.4 GyE for unresectable bone and soft-tissue sarcoma of the adult head and neck. Methods and Materials: Twenty-seven patients (mean age, 46.2 years) were enrolled in this prospective study on C-ion RT with 70.4 GyE/16 fractions (fr) between April 2001 and February 2008. The primary end points were acute and late reactions of normal tissues, local control rate, and overall survival rate. The secondary end point was efficacy of the treatment in comparison to historical results with 57.6 or 64.0 GyE/16 fr. Results: The 3-year local control rate and overall survival rate for all patients were 91.8% (95% confidence interval [CI] = 81.0-100%) and 74.1% (95% CI = 57.5-90.6%), respectively. Acute reaction of Grade 3 or more was observed in only 1 patient. With regard to late reactions, visual loss was observed in 1 patient and a Grade 3 reaction of the maxillary bone was observed in 4 patients. A comparison with historical results revealed that the local control rate with 70.4 GyE was significantly higher than that with 57.6 or 64.0 GyE (3-year, 91.8% vs. 23.6%, p < 0.0001). Furthermore, the overall survival with 70.4 GyE tended to be higher than that with 57.6 or 64.0 GyE (3-year, 74.1% vs. 42.9%, p = 0.09). Conclusion: C-ion RT with 70.4 GyE/16 fr for bone and soft-tissue sarcoma of the adult head and neck appears to be effective with acceptable toxicities in comparison to conventional RT and C-ion RT with lower doses.

  16. Multistate Models for Estimation of Survival and Reproduction in the Grey-headed Albatross (Thalassarche chrysostoma)

    USGS Publications Warehouse

    Converse, S.J.; Kendall, W.L.; Doherty, P.F., Jr.; Ryan, P.G.

    2009-01-01

    Reliable information on demography is necessary for conservation of albatrosses, the most threatened family of pelagic birds. Albatross survival has been estimated using mark?recapture data and the Cormack-Jolly-Seber (CJS) model. However, albatross exhibit skipped breeding, violating assumptions of the CJS model. Multistate modeling integrating unobservable states is a promising tool for such situations. We applied multistate models to data on Grey-headed Albatross (Thalassarche chrysostoma) to evaluate model performance and describe demographic patterns. These included a multistate equivalent of the CJS model (MS-2), including successful and failed breeding states and ignoring temporary emigration, and three versions of a four-state multistate model that accounts for temporary emigration by integrating unobservable states: a model (MS-4) with one sample per breeding season, a robust design model (RDMS-4) with multiple samples per season and geographic closure within the season, and an open robust design model (ORDMS-4) with multiple samples per season and staggered entry and exit of animals within the season. Survival estimates from the MS-2 model were higher than those from the MS-4 model, which resulted in apparent percent relative bias averaging 2.2%. The ORDMS-4 model was more appropriate than the RDMS-4 model, given that staggered entry and exit occurred. Annual survival probability for Greyheaded Albatross at Marion Island was 0.951 ? 0.006 (SE), and the probability of skipped breeding in a subsequent year averaged 0.938 for successful and 0.163 for failed breeders. We recommend that multistate models with unobservable states, combined with robust-design sampling, be used in studies of species that exhibit temporary emigration.

  17. Efficient Monte Carlo modelling of individual tumour cell propagation for hypoxic head and neck cancer

    NASA Astrophysics Data System (ADS)

    Tuckwell, W.; Bezak, E.; Yeoh, E.; Marcu, L.

    2008-09-01

    A Monte Carlo tumour model has been developed to simulate tumour cell propagation for head and neck squamous cell carcinoma. The model aims to eventually provide a radiobiological tool for radiation oncology clinicians to plan patient treatment schedules based on properties of the individual tumour. The inclusion of an oxygen distribution amongst the tumour cells enables the model to incorporate hypoxia and other associated parameters, which affect tumour growth. The object oriented program FORTRAN 95 has been used to create the model algorithm, with Monte Carlo methods being employed to randomly assign many of the cell parameters from probability distributions. Hypoxia has been implemented through random assignment of partial oxygen pressure values to individual cells during tumour growth, based on in vivo Eppendorf probe experimental data. The accumulation of up to 10 million virtual tumour cells in 15 min of computer running time has been achieved. The stem cell percentage and the degree of hypoxia are the parameters which most influence the final tumour growth rate. For a tumour with a doubling time of 40 days, the final stem cell percentage is approximately 1% of the total cell population. The effect of hypoxia on the tumour growth rate is significant. Using a hypoxia induced cell quiescence limit which affects 50% of cells with and oxygen levels less than 1 mm Hg, the tumour doubling time increases to over 200 days and the time of tumour growth for a clinically detectable tumour (109 cells) increases from 3 to 8 years. A biologically plausible Monte Carlo model of hypoxic head and neck squamous cell carcinoma tumour growth has been developed for real time assessment of the effects of multiple biological parameters which impact upon the response of the individual patient to fractionated radiotherapy.

  18. Efficient Monte Carlo modelling of individual tumour cell propagation for hypoxic head and neck cancer.

    PubMed

    Tuckwell, W; Bezak, E; Yeoh, E; Marcu, L

    2008-09-01

    A Monte Carlo tumour model has been developed to simulate tumour cell propagation for head and neck squamous cell carcinoma. The model aims to eventually provide a radiobiological tool for radiation oncology clinicians to plan patient treatment schedules based on properties of the individual tumour. The inclusion of an oxygen distribution amongst the tumour cells enables the model to incorporate hypoxia and other associated parameters, which affect tumour growth. The object oriented program FORTRAN 95 has been used to create the model algorithm, with Monte Carlo methods being employed to randomly assign many of the cell parameters from probability distributions. Hypoxia has been implemented through random assignment of partial oxygen pressure values to individual cells during tumour growth, based on in vivo Eppendorf probe experimental data. The accumulation of up to 10 million virtual tumour cells in 15 min of computer running time has been achieved. The stem cell percentage and the degree of hypoxia are the parameters which most influence the final tumour growth rate. For a tumour with a doubling time of 40 days, the final stem cell percentage is approximately 1% of the total cell population. The effect of hypoxia on the tumour growth rate is significant. Using a hypoxia induced cell quiescence limit which affects 50% of cells with and oxygen levels less than 1 mm Hg, the tumour doubling time increases to over 200 days and the time of tumour growth for a clinically detectable tumour (10(9) cells) increases from 3 to 8 years. A biologically plausible Monte Carlo model of hypoxic head and neck squamous cell carcinoma tumour growth has been developed for real time assessment of the effects of multiple biological parameters which impact upon the response of the individual patient to fractionated radiotherapy. PMID:18677039

  19. Comparison of Snyder Head Phantom Models Used for Neutron Capture Therapy Benchmark Monte Carlo Dosimetry Calculations

    NASA Astrophysics Data System (ADS)

    Goorley, T.; Kiger, W. S.; Zamenhof, R.

    As Boron Neutron Capture Therapy (BNCT) clinical trials are initiated in more countries, new treatment planning software programs are being developed to calculate dose distributions in patient specific models. A reference suite of test problems, i.e., head phantom irradiations and resulting depth-dose curves, would allow quantitative comparison of the treatment planning software. This paper presents sets of central axis depth vs. dose curves calculated with the Monte Carlo radiation transport code MCNP4B for five different representations of the Snyder head phantom. The first is a multi-shell analytic ellipsoidal representation, and the remaining four are voxelized representations with cube edge lengths of 16, 10, 8 and 4 mm. For these calculations, 10 cm diameter monoenergetic and monodirectional neutron and photon beams were incident along the central axes of the models. Individual beams of 0.0253 eV, 1, 2, 10, 100 and 1000 keV neutrons, and 0.2, 0.5, 1, 2, 5, and 10 MeV photons were simulated to high statistical convergence, with statistical error less than 1% in the center of the model. A "generic" epithermal neutron beam, with 1% fast flux contamination and 10% thermal flux contamination, similar to those proposed for BNCT treatments, was also simulated with all five models. Computations for both of the smaller sized voxel models produced thermal neutron, fast neutron, and gamma dose rates within 4% of those from the analytical representation. It is proposed that these data sets be used by the BNCT community for the verification of existing and new BNCT treatment planning software.

  20. Experimental study of blast-induced traumatic brain injury using a physical head model.

    PubMed

    Zhang, Jiangyue; Pintar, Frank A; Yoganandan, Narayan; Gennarelli, Thomas A; Son, Steven F

    2009-11-01

    This study was conducted to quantify intracranial biomechanical responses and external blast overpressures using physical head model to understand the biomechanics of blast traumatic brain injury and to provide experimental data for computer simulation of blast-induced brain trauma. Ellipsoidal-shaped physical head models, made from 3-mm polycarbonate shell filled with Sylgard 527 silicon gel, were used. Six blast tests were conducted in frontal, side, and 45 degrees oblique orientations. External blast overpressures and internal pressures were quantified with ballistic pressure sensors. Blast overpressures, ranging from 129.5 kPa to 769.3 kPa, were generated using a rigid cannon and 1.3 to 3.0 grams of pentaerythritol tetranitrate (PETN) plastic sheet explosive (explosive yield of 13.24 kJ and TNT equivalent mass of 2.87 grams for 3 grams of material). The PETN plastic sheet explosive consisted of 63% PETN powder, 29% plasticizer, and 8% nitrocellulose with a density of 1.48 g/cm3 and detonation velocity of 6.8 km/s. Propagation and reflection of the shockwave was captured using a shadowgraph technique. Shockwave speeds ranging from 423.3 m/s to 680.3 m/s were recorded. The model demonstrated a two-stage response: a pressure dominant (overpressure) stage followed by kinematic dominant (blast wind) stage. Positive pressures in the brain simulant ranged from 75.1 kPa to 1095 kPa, and negative pressures ranged from -43.6 kPa to -646.0 kPa. High- and normal-speed videos did not reveal observable deformations in the brain simulant from the neutral density markers embedded in the midsagittal plane of the head model. Amplitudes of the internal positive and negative pressures were found to linearly correlate with external overpressure. Results from the current study suggested a pressure-dominant brain injury mechanism instead of strain injury mechanism under the blast severity of the current study. These quantitative results also served as the validation and calibration

  1. A canine model of osteonecrosis of the femoral head induced by MRI guided argon helium cryotherapy system

    PubMed Central

    Wang, Dong; Sun, Lixin; Zhang, Huawu; Jiang, Honglei; Liu, Ming; Tian, Jing; Hu, Na; Sun, Shui

    2015-01-01

    Objective: This study is to identify the reliability of osteonecrosis of the femoral head (ONFH) modeling established by MRI guided argon helium cryotherapy system in beagles. Methods: A total of 15 beagles were used to establish the ONFH model. The left femoral heads of the beagles received two cycles of argon helium freezing-thawing under MRI guidance and were considered as experimental group while the right femoral heads received only one cycle of argon helium freezing-thawing and were considered as the control group. X-ray, MRI, general shape and histological examinations were performed so as to identify the effect of modeling. Results: At 4 week after modeling, MRI showed obvious bilateral hip joint effusion and marked femoral head bone marrow high signal. At 8 week after surgery, abnormal signal appeared in bilateral femoral heads. T1WI showed irregular patchy low signal, T2WI showed irregular mixed signals and the joint capsule effusion showed long T1 and T2 changes. Twelve weeks after operation, T1WI showed a low signal strip with clear boundary and T2WI showed intermediate signal. The changes of the left femoral heads were significant while compared with those of the right sides. The lacunae rates of femoral heads in the experimental group at 4, 8, and 12 week after surgery (40.75 ± 3.77, 57.46 ± 4.01, 50.27 ± 2.98) were higher than those in control group (30.08 ± 3.61, 49.43 ± 2.82, 40.56 ± 2.73). Conclusion: Canine model of ONFH was successfully established using an argon helium cryotherapy system. PMID:26550205

  2. Anatomical Reproducibility of a Head Model Molded by a Three-dimensional Printer

    PubMed Central

    KONDO, Kosuke; NEMOTO, Masaaki; MASUDA, Hiroyuki; OKONOGI, Shinichi; NOMOTO, Jun; HARADA, Naoyuki; SUGO, Nobuo; MIYAZAKI, Chikao

    We prepared rapid prototyping models of heads with unruptured cerebral aneurysm based on image data of computed tomography angiography (CTA) using a three-dimensional (3D) printer. The objective of this study was to evaluate the anatomical reproducibility and accuracy of these models by comparison with the CTA images on a monitor. The subjects were 22 patients with unruptured cerebral aneurysm who underwent preoperative CTA. Reproducibility of the microsurgical anatomy of skull bone and arteries, the length and thickness of the main arteries, and the size of cerebral aneurysm were compared between the CTA image and rapid prototyping model. The microsurgical anatomy and arteries were favorably reproduced, apart from a few minute regions, in the rapid prototyping models. No significant difference was noted in the measured lengths of the main arteries between the CTA image and rapid prototyping model, but errors were noted in their thickness (p < 0.001). A significant difference was also noted in the longitudinal diameter of the cerebral aneurysm (p < 0.01). Regarding the CTA image as the gold standard, reproducibility of the microsurgical anatomy of skull bone and main arteries was favorable in the rapid prototyping models prepared using a 3D printer. It was concluded that these models are useful tools for neurosurgical simulation. The thickness of the main arteries and size of cerebral aneurysm should be comprehensively judged including other neuroimaging in consideration of errors. PMID:26119896

  3. Temporal MRI characterization, neurobiochemical and neurobehavioral changes in a mouse repetitive concussive head injury model

    PubMed Central

    Yang, Zhihui; Wang, Ping; Morgan, Drake; Lin, Dan; Pan, Jianchun; Lin, Fan; Strang, Kevin H.; Selig, Tyler M.; Perez, Pablo D.; Febo, Marcelo; Chang, Binggong; Rubenstein, Richard; Wang, Kevin K.W.

    2015-01-01

    Single and repeated sports-related mild traumatic brain injury (mTBI), also referred to as concussion, can result in chronic post-concussive syndrome (PCS), neuropsychological and cognitive deficits, or chronic traumatic encephalopathy (CTE). However PCS is often difficult to diagnose using routine clinical, neuroimaging or laboratory evaluations, while CTE currently only can be definitively diagnosed postmortem. We sought to develop an animal model to simulate human repetitive concussive head injury for systematic study. In this study, mice received single or multiple head impacts by a stereotaxic impact device with a custom-made rubber tip-fitted impactor. Dynamic changes in MRI, neurobiochemical markers (Tau hyperphosphorylation and glia activation in brain tissues) and neurobehavioral functions such as anxiety, depression, motor function and cognitive function at various acute/subacute (1-7 day post-injury) and chronic (14-60 days post-injury) time points were examined. To explore the potential biomarkers of rCHI, serum levels of total Tau (T-Tau) and phosphorylated Tau (P-Tau) were also monitored at various time points. Our results show temporal dynamics of MRI consistent with structural perturbation in the acute phase and neurobiochemical changes (P-Tau and GFAP induction) in the subacute and chronic phase as well as development of chronic neurobehavioral changes, which resemble those observed in mTBI patients. PMID:26058556

  4. SCDAP/RELAP5 Modeling of Movement of Melted Material through Porous Debris in Lower Head (Rev. 2)

    SciTech Connect

    Siefken, Larry James

    1999-10-01

    A model is described for the movement of melted metallic material through a ceramic porous debris bed. The model is designed for the analysis of severe accidents in LWRs, wherein melted core plate material may slump onto the top of a porous bed of relocated core material supported by the lower head. The permeation of the melted core plate material into the porous debris bed influences the heatup of the debris bed and the heatup of the lower head supporting the debris. A model for mass transport of melted metallic material is applied that includes terms for viscosity and turbulence but neglects inertial and capillary terms because of their small value relative to gravity and viscous terms in the momentum equation. The relative permeability and passability of the porous debris are calculated as functions of debris porosity, particle size, and effective saturation. An iterative numerical solution is used to solve the set of nonlinear equations for mass transport. The effective thermal conductivity of the debris is calculated as a function of porosity, particle size, and saturation. The model integrates the equations for mass transport with a model for the two-dimensional conduction of heat through porous debris. The integrated model has been implemented into the SCDAP/RELAP5 code for the analysis of the integrity of LWR lower heads during severe accidents. The results of the model indicate that melted core plate material my permeate in about 120 s to the bottom of a 1 m deep hot porous debris bed supported by the lower head. The presence of the relocated core plate material at the bottom of the debris bed decreases the thermal resistance of the interface between the debris bed and the lower head. This report is a revision of the report with the identifier of INEEL/EXT-98-01178 REV 1, entitled "SCDAP/RELAP5 Modeling of Movement of Melted Material Through Porous Debris in Lower Head."

  5. Effect of Anatomically Realistic Full-Head Model on Activation of Cortical Neurons in Subdural Cortical Stimulation—A Computational Study

    PubMed Central

    Seo, Hyeon; Kim, Donghyeon; Jun, Sung Chan

    2016-01-01

    Electrical brain stimulation (EBS) is an emerging therapy for the treatment of neurological disorders, and computational modeling studies of EBS have been used to determine the optimal parameters for highly cost-effective electrotherapy. Recent notable growth in computing capability has enabled researchers to consider an anatomically realistic head model that represents the full head and complex geometry of the brain rather than the previous simplified partial head model (extruded slab) that represents only the precentral gyrus. In this work, subdural cortical stimulation (SuCS) was found to offer a better understanding of the differential activation of cortical neurons in the anatomically realistic full-head model than in the simplified partial-head models. We observed that layer 3 pyramidal neurons had comparable stimulation thresholds in both head models, while layer 5 pyramidal neurons showed a notable discrepancy between the models; in particular, layer 5 pyramidal neurons demonstrated asymmetry in the thresholds and action potential initiation sites in the anatomically realistic full-head model. Overall, the anatomically realistic full-head model may offer a better understanding of layer 5 pyramidal neuronal responses. Accordingly, the effects of using the realistic full-head model in SuCS are compelling in computational modeling studies, even though this modeling requires substantially more effort. PMID:27273817

  6. Effect of Anatomically Realistic Full-Head Model on Activation of Cortical Neurons in Subdural Cortical Stimulation-A Computational Study.

    PubMed

    Seo, Hyeon; Kim, Donghyeon; Jun, Sung Chan

    2016-01-01

    Electrical brain stimulation (EBS) is an emerging therapy for the treatment of neurological disorders, and computational modeling studies of EBS have been used to determine the optimal parameters for highly cost-effective electrotherapy. Recent notable growth in computing capability has enabled researchers to consider an anatomically realistic head model that represents the full head and complex geometry of the brain rather than the previous simplified partial head model (extruded slab) that represents only the precentral gyrus. In this work, subdural cortical stimulation (SuCS) was found to offer a better understanding of the differential activation of cortical neurons in the anatomically realistic full-head model than in the simplified partial-head models. We observed that layer 3 pyramidal neurons had comparable stimulation thresholds in both head models, while layer 5 pyramidal neurons showed a notable discrepancy between the models; in particular, layer 5 pyramidal neurons demonstrated asymmetry in the thresholds and action potential initiation sites in the anatomically realistic full-head model. Overall, the anatomically realistic full-head model may offer a better understanding of layer 5 pyramidal neuronal responses. Accordingly, the effects of using the realistic full-head model in SuCS are compelling in computational modeling studies, even though this modeling requires substantially more effort. PMID:27273817

  7. Effect of Anatomically Realistic Full-Head Model on Activation of Cortical Neurons in Subdural Cortical Stimulation—A Computational Study

    NASA Astrophysics Data System (ADS)

    Seo, Hyeon; Kim, Donghyeon; Jun, Sung Chan

    2016-06-01

    Electrical brain stimulation (EBS) is an emerging therapy for the treatment of neurological disorders, and computational modeling studies of EBS have been used to determine the optimal parameters for highly cost-effective electrotherapy. Recent notable growth in computing capability has enabled researchers to consider an anatomically realistic head model that represents the full head and complex geometry of the brain rather than the previous simplified partial head model (extruded slab) that represents only the precentral gyrus. In this work, subdural cortical stimulation (SuCS) was found to offer a better understanding of the differential activation of cortical neurons in the anatomically realistic full-head model than in the simplified partial-head models. We observed that layer 3 pyramidal neurons had comparable stimulation thresholds in both head models, while layer 5 pyramidal neurons showed a notable discrepancy between the models; in particular, layer 5 pyramidal neurons demonstrated asymmetry in the thresholds and action potential initiation sites in the anatomically realistic full-head model. Overall, the anatomically realistic full-head model may offer a better understanding of layer 5 pyramidal neuronal responses. Accordingly, the effects of using the realistic full-head model in SuCS are compelling in computational modeling studies, even though this modeling requires substantially more effort.

  8. A Naturally Occurring Feline Model of Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Wypij, Jackie M.

    2013-01-01

    Despite advances in understanding cancer at the molecular level, timely and effective translation to clinical application of novel therapeutics in human cancer patients is lacking. Cancer drug failure is often a result of toxicity or inefficacy not predicted by preclinical models, emphasizing the need for alternative animal tumor models with improved biologic relevancy. Companion animals (dogs and cats) provide an opportunity to capitalize on an underutilized and biologically relevant translational research model which allows spontaneous disease modeling of human cancer. Head and neck squamous cell carcinoma (HNSCC) is a common cancer with a poor prognosis and limited clinical advancements in recent years. One potential novel spontaneous animal tumor model is feline oral squamous cell carcinoma (FOSCC). FOSCC and HNSCC share similar etiopathogenesis (tobacco and papillomavirus exposure) and molecular markers (EGFR, VEGF, and p53). Both human and feline SCCs share similar tumor biology, clinical outcome, treatment, and prognosis. Future clinical trials utilizing FOSCC as a tumor model may facilitate translation of preclinical cancer research for human cancer patients. PMID:23970998

  9. Using an evolutionary algorithm to determine the parameters of a biologically inspired model of head direction cells.

    PubMed

    Kyriacou, Theocharis

    2012-04-01

    A biologically inspired model of head direction cells is presented and tested on a small mobile robot. Head direction cells (discovered in the brain of rats in 1984) encode the head orientation of their host irrespective of the host's location in the environment. The head direction system thus acts as a biological compass (though not a magnetic one) for its host. Head direction cells are influenced in different ways by idiothetic (host-centred) and allothetic (not host-centred) cues. The model presented here uses the visual, vestibular and kinesthetic inputs that are simulated by robot sensors. Real robot-sensor data has been used in order to train the model's artificial neural network connections. The main contribution of this paper lies in the use of an evolutionary algorithm in order to determine the values of parameters that determine the behaviour of the model. More importantly, the objective function of the evolutionary strategy used takes into consideration quantitative biological observations reported in the literature. PMID:21785973

  10. Establishment of a prediction model for the miRNA-based heading date characteristics of rice in the booting stage.

    PubMed

    Chen, Y C; Lin, W S; Chen, R K; Chao, Y Y; Chin, S W; Chen, F C; Lee, C Y

    2015-01-01

    Rice (Oryza sativa L.) is one of the most important food crops in the world. In Taiwan, due to the warm climate, there are two harvests annually. However, the yield and quality of rice can vary between each crop season in any given year. Previous reports have shown that microRNAs (miRNAs) play a crucial role in many developmental and physiological processes in plants. In this study, the heading date characteristics of 167 rice cultivars from the second crop season were recorded, and 27 rice cultivars were selected for preliminary microarray analysis. A total of 14 miRNAs from different heading date characteristics in 21 cultivars were selected based on significant differences in their expression profiles. Using a correlation analysis between the heading date and selected miRNA expression obtained from real-time polymerase chain reaction (PCR) assays, we developed a heading date prediction model. The model includes nine miRNA genes with corresponding R2 values of 0.8. To confirm the model, a real-time PCR analysis was performed on an additional 27 rice cultivars and we found the model predicted the heading date with accuracy. Therefore, the developed prediction may be useful in further studies aimed at confirming the reliability of the use of miRNA in molecular breeding and to increase the selection efficiency of rice cultivars and breeding. PMID:25966211

  11. Quantitative Relationship between Axonal Injury and Mechanical Response in a Rodent Head Impact Acceleration Model

    PubMed Central

    Li, Yan; Kallakuri, Srinivasu; Zhou, Runzhou; Cavanaugh, John M.

    2011-01-01

    Abstract A modified Marmarou impact acceleration model was developed to study the mechanical responses induced by this model and their correlation to traumatic axonal injury (TAI). Traumatic brain injury (TBI) was induced in 31 anesthetized male Sprague-Dawley rats (392±13 g) by a custom-made 450-g impactor from heights of 1.25 m or 2.25 m. An accelerometer and angular rate sensor measured the linear and angular responses of the head, while the impact event was captured by a high-speed video camera. TAI distribution along the rostro-caudal direction, as well as across the left and right hemispheres, was determined using β-amyloid precursor protein (β-APP) immunocytochemistry, and detailed TAI injury maps were constructed for the entire corpus callosum. Peak linear acceleration 1.25 m and 2.25 m impacts were 666±165 g and 907±501 g, respectively. Peak angular velocities were 95±24 rad/sec and 124±48 rad/sec, respectively. Compared to the 2.25-m group, the observed TAI counts in the 1.25-m impact group were significantly lower. Average linear acceleration, peak angular velocity, average angular acceleration, and surface righting time were also significantly different between the two groups. A positive correlation was observed between normalized total TAI counts and average linear acceleration (R2=0.612, p<0.05), and time to surface right (R2=0.545, p<0.05). Our study suggested that a 2.25-m drop in the Marmarou model may not always result in a severe injury, and TAI level is related to the linear and angular acceleration response of the rat head during impact, not necessarily the drop height. PMID:21895482

  12. Power deposition in the head and neck of an anatomically based human body model for plane wave exposures

    NASA Astrophysics Data System (ADS)

    Tinniswood, A. D.; Furse, C. M.; Gandhi, O. P.

    1998-08-01

    At certain frequencies, when the human head becomes a resonant structure, the power absorbed by the head and neck, when the body is exposed to a vertically polarized plane wave propagating from front to back, becomes significantly larger than would ordinarily be expected from its shadow cross section. This has possible implications in the study of the biological effects of electromagnetic fields. Additionally the frequencies at which these resonances occur are not readily predicted by simple approximations of the head in isolation. In order to determine these resonant conditions an anatomically based model of the whole human body has been used, with the finite-difference time-domain (FDTD) algorithm to accurately determine field propagation, specific absorption rate (SAR) distributions and power absorption in both the whole body and the head region (head and neck). This paper shows that resonant frequencies can be determined using two methods. The first is by use of the accurate anatomically based model (with heterogeneous tissue properties) and secondly using a model built from parallelepiped sections (for the torso and legs), an ellipsoid for the head and a cylinder for the neck. This approximation to the human body is built from homogeneous tissue the equivalent of two-thirds the conductivity and dielectric constant of that of muscle. An IBM SP-2 supercomputer together with a parallel FDTD code has been used to accommodate the large problem size. We find resonant frequencies for the head and neck at 207 MHz and 193 MHz for the isolated and grounded conditions, with absorption cross sections that are respectively 3.27 and 2.62 times the shadow cross section.

  13. A general photon source model for clinical linac heads in photon mode

    NASA Astrophysics Data System (ADS)

    González, W.; García-Ferreira, I.-B.; Anguiano, M.; Lallena, A. M.

    2015-12-01

    In this work a general photon source model has been developed to describe clinical linac heads when operating in photon mode. Six different linacs (three operating at 6 MV, one at 15 MV and two at 18 MV) have been studied. The construction of the model as well as its validation have been carried out on the base of the virtual linac approach in which the complete linac geometries have been simulated with the Monte Carlo code PENELOPE. The model includes a primary and a secondary sources whose geometrical characteristics are determined from a set of simulated fluence distributions in air. The photon energy distributions are obtained from the Monte Carlo energy distributions of the photons moving along the beam axis, using a softening function that depends on the nominal energy of the beam and a Compton-like correction. To verify the model, output factors, percentage depth doses and transverse profiles in water obtained from a calculation performed with the complete geometry are compared to those found with the source model. A reasonable agreement is obtained in all cases analyzed except for the 18 MV Mevatron KDS linac for the 20 cm× 20 cm field.

  14. An eye model for uncalibrated eye gaze estimation under variable head pose

    NASA Astrophysics Data System (ADS)

    Hnatow, Justin; Savakis, Andreas

    2007-04-01

    Gaze estimation is an important component of computer vision systems that monitor human activity for surveillance, human-computer interaction, and various other applications including iris recognition. Gaze estimation methods are particularly valuable when they are non-intrusive, do not require calibration, and generalize well across users. This paper presents a novel eye model that is employed for efficiently performing uncalibrated eye gaze estimation. The proposed eye model was constructed from a geometric simplification of the eye and anthropometric data about eye feature sizes in order to circumvent the requirement of calibration procedures for each individual user. The positions of the two eye corners and the midpupil, the distance between the two eye corners, and the radius of the eye sphere are required for gaze angle calculation. The locations of the eye corners and midpupil are estimated via processing following eye detection, and the remaining parameters are obtained from anthropometric data. This eye model is easily extended to estimating eye gaze under variable head pose. The eye model was tested on still images of subjects at frontal pose (0 °) and side pose (34 °). An upper bound of the model's performance was obtained by manually selecting the eye feature locations. The resulting average absolute error was 2.98 ° for frontal pose and 2.87 ° for side pose. The error was consistent across subjects, which indicates that good generalization was obtained. This level of performance compares well with other gaze estimation systems that utilize a calibration procedure to measure eye features.

  15. Trunnion-Head Stresses in THA: Are Big Heads Trouble?

    PubMed

    Lavernia, Carlos J; Iacobelli, David A; Villa, Jesus M; Jones, Kinzy; Gonzalez, Jose L; Jones, William Kinzy

    2015-06-01

    The effects of large heads on stresses at the THA trunnion-head junction and their impact on tribocorrosion/metal ion release remain controversial. A 12/14 3D-model of a stem with different head sizes was investigated. Material properties of titanium were assigned to the trunnion and cobalt-chrome/alumina to the heads. A load simulating walking single-leg stand phase was applied to the head. A total contact head-trunnion interface was assumed. The area underneath the junction underwent significant elevations in stresses as head size increased from 28- to 40-mm. Maximum principal stress doubled between 28 and 40-mm heads, regardless of head material. Stress levels had a direct correlation to head diameter. Stress increases observed using increasingly larger heads will probably contribute to head-trunnion tribocorrosion and ion release. PMID:25724112

  16. Computer modeling of infrared head-on emission from missile noses

    SciTech Connect

    Tofani, A. )

    1990-02-01

    A computer model that takes into account the effect of aerodynamic and solar heating, sky irradiation, and radiative cooling on infrared emission from missile noses is presented. The heat transfer equation was solved with numerical techniques both in the steady-state (constant sped and altitude flight of cruise missiles) and in the nonstationary regime (quickly variable speed and altitude of short to medium range ballistic missiles) to give the temperature distribution on the skin surface. The corresponding head-on absolute infrared emission in the 3 to 5 {mu}m spectral bands was computed as a function of time of flight and missile altitude. Results show a strong dependence of temperature on the skin material, on the character of the aerodynamic flow (laminar or turbulent boundary layer), and on the physical characteristics of the atmosphere. By varying these parameters into reasonable ranges, infrared emissions spanning over more than an order of magnitude were obtained.

  17. Behavior and modeling of two-dimensional precedence effect in head-unrestrained cats

    PubMed Central

    Ruhland, Janet L.; Yin, Tom C. T.

    2015-01-01

    The precedence effect (PE) is an auditory illusion that occurs when listeners localize nearly coincident and similar sounds from different spatial locations, such as a direct sound and its echo. It has mostly been studied in humans and animals with immobile heads in the horizontal plane; speaker pairs were often symmetrically located in the frontal hemifield. The present study examined the PE in head-unrestrained cats for a variety of paired-sound conditions along the horizontal, vertical, and diagonal axes. Cats were trained with operant conditioning to direct their gaze to the perceived sound location. Stereotypical PE-like behaviors were observed for speaker pairs placed in azimuth or diagonally in the frontal hemifield as the interstimulus delay was varied. For speaker pairs in the median sagittal plane, no clear PE-like behavior occurred. Interestingly, when speakers were placed diagonally in front of the cat, certain PE-like behavior emerged along the vertical dimension. However, PE-like behavior was not observed when both speakers were located in the left hemifield. A Hodgkin-Huxley model was used to simulate responses of neurons in the medial superior olive (MSO) to sound pairs in azimuth. The novel simulation incorporated a low-threshold potassium current and frequency mismatches to generate internal delays. The model exhibited distinct PE-like behavior, such as summing localization and localization dominance. The simulation indicated that certain encoding of the PE could have occurred before information reaches the inferior colliculus, and MSO neurons with binaural inputs having mismatched characteristic frequencies may play an important role. PMID:26133795

  18. Head circumference

    MedlinePlus

    ... a child's head circumference Normal ranges for a child's sex and age (weeks, months), based on values that experts have obtained for normal growth rates of infants' and children's heads Measurement of the head circumference is an ...

  19. Head Injuries

    MedlinePlus

    ... of head injuries include bicycle or motorcycle wrecks, sports injuries, falls from windows (especially among children who live ... to watch for? When can I start playing sports again after a head injury? How can brain damage from a head injury ...

  20. Preclinical modeling of EGFR inhibitor resistance in head and neck cancer

    PubMed Central

    Quesnelle, Kelly M.; Wheeler, Sarah E.; Ratay, Mary K.; Grandis, Jennifer R.

    2012-01-01

    The epidermal growth factor receptor (EGFR) is widely expressed in head and neck squamous cell carcinomas (HNSCC) and can activate many growth and survival pathways within tumor cells. Despite ubiquitous EGFR expression, therapies targeting the receptor are only modestly effective in the treatment of HNSCC. A consistent mechanism of resistance to EGFR targeting agents has not yet been identified in HNSCC likely due, in part, to the paucity of preclinical models. We assessed the in vitro and in vivo responses of a panel of 10 genotypically validated HNSCC cell lines to the EGFR inhibitors erlotinib and cetuximab to determine their validity as models of resistance to these agents. We defined a narrow range of response to erlotinib in HNSCC cells in vitro and found a positive correlation between EGFR protein expression and erlotinib response. We observed cross-sensitivity in one HNSCC cell line, 686LN, between erlotinib and cetuximab in vivo. We attempted to generate models of cetuximab resistance in HNSCC cell line-derived xenografts and heterotopic tumorgrafts generated directly from primary patient tumors. While all 10 HNSCC cell line xenografts tested were sensitive to cetuximab in vivo, heterotopic patient tumorgrafts varied in response to cetuximab indicating that these models may be more representative of clinical responses. These studies demonstrate the limitations of using HNSCC cell lines to reflect the heterogeneous clinical responses to erlotinib and cetuximab, and suggest that different approaches including heterotopic tumorgrafts may prove more valuable to elucidate mechanisms of clinical resistance to EGFR inhibitors in HNSCC. PMID:22785204

  1. A model of the release of myosin heads from actin in rapidly contracting muscle fibers.

    PubMed Central

    Cooke, R; White, H; Pate, E

    1994-01-01

    We describe a model that relates the maximum shortening velocity of a muscle fiber, Vm, to the kinetics of the dissociation of a myosin head from actin. At Vm, the positive work exerted by cross-bridges attached in the powerstroke must be balanced by cross-bridges that have been carried by movement of the filaments into a region where they exert a negative force. This balance allows one to relate Vm and the rate of cross-bridge detachment. Studies of actomyosin kinetics suggest that at high substrate, detachment should be limited by a slow protein isomerization (approximately 50 s-1) that precedes ADP release. This rate is too slow to be easily accommodated in existing models. However, a slow rate for cross-bridge dissociation, similar to that of the isomerization, is predicted if previous models are modified to include rapid detachment of cross-bridges that have been carried so far into the negative force region that their free energy exceeds that of the detached state. The model also explains another aspect of muscle contraction: at high shortening velocities, the observed rate of ATP hydrolysis is low, because a cross-bridge can interact with multiple actin binding sites before releasing the hydrolysis products and binding another ATP. PMID:8011910

  2. Animal models of sports-related head injury: bridging the gap between pre-clinical research and clinical reality

    PubMed Central

    Angoa-Pérez, Mariana; Kane, Michael J.; Briggs, Denise I.; Herrera-Mundo, Nieves; Viano, David C.; Kuhn, Donald M.

    2016-01-01

    Sports-related head impact and injury has become a very highly contentious public health and medico-legal issue. Near-daily news accounts describe the travails of concussed athletes as they struggle with depression, sleep disorders, mood swings, and cognitive problems. Some of these individuals have developed chronic traumatic encephalopathy, a progressive and debilitating neurodegenerative disorder. Animal models have always been an integral part of the study of traumatic brain injury in humans but, historically, they have concentrated on acute, severe brain injuries. This review will describe a small number of new and emerging animal models of sports-related head injury that have the potential to increase our understanding of how multiple mild head impacts, starting in adolescence, can have serious psychiatric, cognitive and histopathological outcomes much later in life. PMID:24673291

  3. MCNP Analytical Models of a Calibration Head Phantom for Bone-Seeker Nuclides In Vivo Measurements

    NASA Astrophysics Data System (ADS)

    Gualdrini, G.; Ferrari, P.; Battisti, P.; De Felice, P.; Pierotti, L.

    Dosimetric studies related to internal contamination from actinides, characterised by a gamma or X-ray emission, can be done using Whole Body Counters (WBC), equipped with Germanium detectors. Their calibration requires suitable plastic phantoms, activated with a known quantity of the investigated radionuclide, to reproduce the contamination of the individual, or of the particular target organ. In order to detect low energy photon emitters, some long-lived daughter nuclei, characterised by higher energy emission, are usually selected as markers. In the case of Plutonium the internationally accepted practice is to employ 241 Am (nearly 60 keV gamma emission) taken as a marker of actinide previous contamination [1]. These actinides deposit, during their long retention period (over 20 years), in the skeleton and in the liver. Taking into account that the low energy of the emitted photons makes the measurement strongly sensitive to the thickness of the soft tissue surrounding the bones (and therefore very much subject-dependent), it is advised to perform the measurement on the head, to minimise the individual variation of the soft tissue thickness. The measured head activity can be thereafter extrapolated to the whole skeleton. The previous considerations justify the importance of developing a suitable head calibration phantom to be activated with known activity radioactive sources in order to well approximate the assumed homogeneous contamination encountered in the real practice. The main difficulty is represented by the complexity of the radioactive source itself which is the skull of the plastic phantom. Since many years Monte Carlo techniques have been used to simulate internal dosimetry measurements with satisfactory results [2-4]. This paper describes the method followed to work out this problem relying on the capabilities of the Monte Carlo code MCNP [5]. The code was employed both to determine the best distribution a set of 24 point sources, to simulate a

  4. Induced EM field in a layered eccentric spheres model of the head: Plane-wave and localized source exposure

    SciTech Connect

    Skaropoulos, N.C.; Ioannidou, M.P.; Chrissoulidis, D.P.

    1996-10-01

    Understanding the interaction of EM radiation with humans is essential in a number of contemporary applications. Special attention is paid to the absorption of EM energy by the human head, which exhibits a resonant behavior in the frequency band 0.1--3 GHz. The use of handheld transceivers for wireless communications, which operate in close proximity to the head, has raised safety-related questions and questions concerning the effect of the head on the performance of the mobile phone antenna. The induced electromagnetic (EM) field in a layered eccentric spheres structure is determined through a concise analytical formulation based on indirect mode-matching (IMM). The exact analytical solution is applied to a six-layer model of the head. This model allows for eccentricity between the inner and outer sets of concentric spherical layers which simulate brain and skull, respectively. Excitation is provided by a nearby localized source or by an incident plane wave. The numerical application provides information about the total absorbed power, the absorption in each layer, and the spatial distribution of the specific absorption rate (SAR) at frequencies used by cellular phones. The effects of excitation frequency, eccentricity, exposure configuration, and antenna-head separation are investigated.

  5. Experimental Injury Biomechanics of the Pediatric Head and Brain

    NASA Astrophysics Data System (ADS)

    Margulies, Susan; Coats, Brittany

    Traumatic brain injury (TBI) is a leading cause of death and disability among children and young adults in the United States and results in over 2,500 childhood deaths, 37,000 hospitalizations, and 435,000 emergency department visits each year (Langlois et al. 2004). Computational models of the head have proven to be powerful tools to help us understand mechanisms of adult TBI and to determine load thresholds for injuries specific to adult TBI. Similar models need to be developed for children and young adults to identify age-specific mechanisms and injury tolerances appropriate for children and young adults. The reliability of these tools, however, depends heavily on the availability of pediatric tissue material property data. To date the majority of material and structural properties used in pediatric computer models have been scaled from adult human data. Studies have shown significant age-related differences in brain and skull properties (Prange and Margulies 2002; Coats and Margulies 2006a, b), indicating that the pediatric head cannot be modeled as a miniature adult head, and pediatric computer models incorporating age-specific data are necessary to accurately mimic the pediatric head response to impact or rotation. This chapter details the developmental changes of the pediatric head and summarizes human pediatric properties currently available in the literature. Because there is a paucity of human pediatric data, material properties derived from animal tissue are also presented to demonstrate possible age-related differences in the heterogeneity and rate dependence of tissue properties. The chapter is divided into three main sections: (1) brain, meninges, and cerebral spinal fluid (CSF); (2) skull; and (3) scalp.

  6. Injury predictors for traumatic axonal injury in a rodent head impact acceleration model.

    PubMed

    Li, Yan; Zhang, Liying; Kallakuri, Srinivasu; Zhou, Runzhou; Cavanaugh, John M

    2011-11-01

    A modified Marmarou impact acceleration injury model was developed to study the kinematics of the rat head to quantify traumatic axonal injury (TAI) in the corpus callosum (CC) and brainstem pyramidal tract (Py), to determine injury predictors and to establish injury thresholds for severe TAI. Thirty-one anesthetized male Sprague-Dawley rats (392±13 grams) were impacted using a modified impact acceleration injury device from 2.25 m and 1.25 m heights. Beta-amyloid precursor protein (β-APP) immunocytochemistry was used to assess and quantify axonal changes in CC and Py. Over 600 injury maps in CC and Py were constructed in the 31 impacted rats. TAI distribution along the rostro-caudal direction in CC and Py was determined. Linear and angular responses of the rat head were monitored and measured in vivo with an attached accelerometer and angular rate sensor, and were correlated to TAI data. Logistic regression analysis suggested that the occurrence of severe TAI in CC was best predicted by average linear acceleration, followed by power and time to surface righting. The combination of average linear acceleration and time to surface righting showed an improved predictive result. In Py, severe TAI was best predicted by time to surface righting, followed by peak and average angular velocity. When both CC and Py were combined, power was the best predictor, and the combined average linear acceleration and average angular velocity was also found to have good injury predictive ability. Receiver operator characteristic curves were used to assess the predictive power of individual and paired injury predictors. TAI tolerance curves were also proposed in this study. PMID:22869303

  7. Thermal modeling of head disk interface system in heat assisted magnetic recording

    SciTech Connect

    Vemuri, Sesha Hari; Seung Chung, Pil; Jhon, Myung S.; Min Kim, Hyung

    2014-05-07

    A thorough understanding of the temperature profiles introduced by the heat assisted magnetic recording is required to maintain the hotspot at the desired location on the disk with minimal heat damage to other components. Here, we implement a transient mesoscale modeling methodology termed lattice Boltzmann method (LBM) for phonons (which are primary carriers of energy) in the thermal modeling of the head disk interface (HDI) components, namely, carbon overcoat (COC). The LBM can provide more accurate results compared to conventional Fourier methodology by capturing the nanoscale phenomena due to ballistic heat transfer. We examine the in-plane and out-of-plane heat transfer in the COC via analyzing the temperature profiles with a continuously focused and pulsed laser beam on a moving disk. Larger in-plane hotspot widening is observed in continuously focused laser beam compared to a pulsed laser. A pulsed laser surface develops steeper temperature gradients compared to continuous hotspot. Furthermore, out-of-plane heat transfer from the COC to the media is enhanced with a continuous laser beam then a pulsed laser, while the temperature takes around 140 fs to reach the bottom surface of the COC. Our study can lead to a realistic thermal model describing novel HDI material design criteria for the next generation of hard disk drives with ultra high recording densities.

  8. SCDAP/RELAP5 modeling of heat transfer and flow losses in lower head porous debris. Revision 1

    SciTech Connect

    Siefken, L.J.; Coryell, E.W.; Paik, S.; Kuo, H.

    1999-05-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of nonporous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate ma nner. Designs are described for models to calculate the flow losses and interphase drag of fluid flowing through the interstices of the porous debris, and to apply these variables in the momentum equations in the RELAP5 part of the code. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region.

  9. Brain Response to Primary Blast Wave Using Validated Finite Element Models of Human Head and Advanced Combat Helmet

    PubMed Central

    Zhang, Liying; Makwana, Rahul; Sharma, Sumit

    2013-01-01

    Blast-induced traumatic brain injury has emerged as a “signature injury” in combat casualty care. Present combat helmets are designed primarily to protect against ballistic and blunt impacts, but the current issue with helmets is protection concerning blasts. In order to delineate the blast wave attenuating capability of the Advanced Combat Helmet (ACH), a finite element (FE) study was undertaken to evaluate the head response against blast loadings with and without helmet using a partially validated FE model of the human head and ACH. Four levels of overpressures (0.27–0.66 MPa) from the Bowen’s lung iso-damage threshold curves were used to simulate blast insults. Effectiveness of the helmet with respect to head orientation was also investigated. The resulting biomechanical responses of the brain to blast threats were compared for human head with and without the helmet. For all Bowen’s cases, the peak intracranial pressures (ICP) in the head ranged from 0.68 to 1.8 MPa in the coup cortical region. ACH was found to mitigate ICP in the head by 10–35%. Helmeted head resulted in 30% lower average peak brain strains and product of strain and strain rate. Among three blast loading directions with ACH, highest reduction in peak ICP (44%) was due to backward blasts whereas the lowest reduction in peak ICP and brain strains was due to forward blast (27%). The biomechanical responses of a human head to primary blast insult exhibited directional sensitivity owing to the different geometry contours and coverage of the helmet construction and asymmetric anatomy of the head. Thus, direction-specific tolerances are needed in helmet design in order to offer omni-directional protection for the human head. The blasts of varying peak overpressures and durations that are believed to produce the same level of lung injury produce different levels of mechanical responses in the brain, and hence “iso-damage” curves for brain injury are likely different than the Bowen

  10. Brain response to primary blast wave using validated finite element models of human head and advanced combat helmet.

    PubMed

    Zhang, Liying; Makwana, Rahul; Sharma, Sumit

    2013-01-01

    Blast-induced traumatic brain injury has emerged as a "signature injury" in combat casualty care. Present combat helmets are designed primarily to protect against ballistic and blunt impacts, but the current issue with helmets is protection concerning blasts. In order to delineate the blast wave attenuating capability of the Advanced Combat Helmet (ACH), a finite element (FE) study was undertaken to evaluate the head response against blast loadings with and without helmet using a partially validated FE model of the human head and ACH. Four levels of overpressures (0.27-0.66 MPa) from the Bowen's lung iso-damage threshold curves were used to simulate blast insults. Effectiveness of the helmet with respect to head orientation was also investigated. The resulting biomechanical responses of the brain to blast threats were compared for human head with and without the helmet. For all Bowen's cases, the peak intracranial pressures (ICP) in the head ranged from 0.68 to 1.8 MPa in the coup cortical region. ACH was found to mitigate ICP in the head by 10-35%. Helmeted head resulted in 30% lower average peak brain strains and product of strain and strain rate. Among three blast loading directions with ACH, highest reduction in peak ICP (44%) was due to backward blasts whereas the lowest reduction in peak ICP and brain strains was due to forward blast (27%). The biomechanical responses of a human head to primary blast insult exhibited directional sensitivity owing to the different geometry contours and coverage of the helmet construction and asymmetric anatomy of the head. Thus, direction-specific tolerances are needed in helmet design in order to offer omni-directional protection for the human head. The blasts of varying peak overpressures and durations that are believed to produce the same level of lung injury produce different levels of mechanical responses in the brain, and hence "iso-damage" curves for brain injury are likely different than the Bowen curves for lung

  11. Investigation of tDCS volume conduction effects in a highly realistic head model

    NASA Astrophysics Data System (ADS)

    Wagner, S.; Rampersad, S. M.; Aydin, Ü.; Vorwerk, J.; Oostendorp, T. F.; Neuling, T.; Herrmann, C. S.; Stegeman, D. F.; Wolters, C. H.

    2014-02-01

    Objective. We investigate volume conduction effects in transcranial direct current stimulation (tDCS) and present a guideline for efficient and yet accurate volume conductor modeling in tDCS using our newly-developed finite element (FE) approach. Approach. We developed a new, accurate and fast isoparametric FE approach for high-resolution geometry-adapted hexahedral meshes and tissue anisotropy. To attain a deeper insight into tDCS, we performed computer simulations, starting with a homogenized three-compartment head model and extending this step by step to a six-compartment anisotropic model. Main results. We are able to demonstrate important tDCS effects. First, we find channeling effects of the skin, the skull spongiosa and the cerebrospinal fluid compartments. Second, current vectors tend to be oriented towards the closest higher conducting region. Third, anisotropic WM conductivity causes current flow in directions more parallel to the WM fiber tracts. Fourth, the highest cortical current magnitudes are not only found close to the stimulation sites. Fifth, the median brain current density decreases with increasing distance from the electrodes. Significance. Our results allow us to formulate a guideline for volume conductor modeling in tDCS. We recommend to accurately model the major tissues between the stimulating electrodes and the target areas, while for efficient yet accurate modeling, an exact representation of other tissues is less important. Because for the low-frequency regime in electrophysiology the quasi-static approach is justified, our results should also be valid for at least low-frequency (e.g., below 100 Hz) transcranial alternating current stimulation.

  12. Social models of HIV risk among young adults in Lesotho.

    PubMed

    Bulled, Nicola L

    2015-01-01

    Extensive research over the past 30 years has revealed that individual and social determinants impact HIV risk. Even so, prevention efforts focus primarily on individual behaviour change, with little recognition of the dynamic interplay of individual and social environment factors that further exacerbate risk engagement. Drawing on long-term research with young adults in Lesotho, I examine how social environment factors contribute to HIV risk. During preliminary ethnographic analysis, I developed novel scales to measure social control, adoption of modernity, and HIV knowledge. In survey research, I examined the effects of individual characteristics (i.e., socioeconomic status, HIV knowledge, adoption of modernity) and social environment (i.e., social control) on HIV risk behaviours. In addition, I measured the impact of altered environments by taking advantage of an existing situation whereby young adults attending a national college are assigned to either a main campus in a metropolitan setting or a satellite campus in a remote setting, irrespective of the environment in which they were socialised as youth. This arbitrary assignment process generates four distinct groups of young adults with altered or constant environments. Regression models show that lower levels of perceived social control and greater adoption of modernity are associated with HIV risk, controlling for other factors. The impact of social control and modernity varies with environment dynamics. PMID:26284999

  13. The compressive stiffness of human pediatric heads.

    PubMed

    Loyd, Andre Matthew; Nightingale, Roger W; Luck, Jason F; Song, Yin; Fronheiser, Lucy; Cutcliffe, Hattie; Myers, Barry S; Dale Bass, Cameron R

    2015-11-01

    Head injury is a persistent and costly problem for both children and adults. Globally, approximately 10 million people are hospitalized each year for head injuries. Knowing the structural properties of the head is important for modeling the response of the head in impact, and for providing insights into mechanisms of head injury. Hence, the goal of this study was to measure the sub-injurious structural stiffness of whole pediatric heads. 12 cadaveric pediatric (20-week-gestation to 16 years old) heads were tested in a battery of viscoelastic compression tests. The heads were compressed in both the lateral and anterior-posterior directions to 5% of gauge length at normalized deformation rates of 0.0005/s, 0.01/s, 0.1/s, and 0.3/s. Because of the non-linear nature of the response, linear regression models were used to calculate toe region (<2.5%) and elastic region (>2.5%) stiffness separately so that meaningful comparisons could be made across rate, age, and direction. The results showed that age was the dominant factor in predicting the structural stiffness of the human head. A large and statistically significant increase in the stiffness of both the toe region and the elastic region was observed with increasing age (p<0.0001), but no significant difference was seen across direction or normalized deformation rate. The stiffness of the elastic region increased from as low as 5 N/mm in the neonate to >4500 N/mm in the 16 year old. The changes in stiffness with age may be attributed to the disappearance of soft sutures and the thickening of skull bones with age. PMID:26476760

  14. An Ex Vivo Model in Human Femoral Heads for Histopathological Study and Resonance Frequency Analysis of Dental Implant Primary Stability

    PubMed Central

    Hernández-Cortés, Pedro; Galindo-Moreno, Pablo; Catena, Andrés; Ortega-Oller, Inmaculada; Salas-Pérez, José; Gómez-Sánchez, Rafael; Aguilar, Mariano; Aguilar, David

    2014-01-01

    Objective. This study was designed to explore relationships of resonance frequency analysis (RFA)—assessed implant stability (ISQ values) with bone morphometric parameters and bone quality in an ex vivo model of dental implants placed in human femoral heads and to evaluate the usefulness of this model for dental implant studies. Material and Methods. This ex vivo study included femoral heads from 17 patients undergoing surgery for femoral neck fracture due to osteoporosis (OP) (n = 7) or for total prosthesis joint replacement due to severe hip osteoarthrosis (OA) (n = 10). Sixty 4.5 × 13 mm Dentsply Astra implants were placed, followed by RFA. CD44 immunohistochemical analysis for osteocytes was also carried out. Results. As expected, the analysis yielded significant effects of femoral head type (OA versus OA) (P < 0.001), but not of the implants (P = 0.455) or of the interaction of the two factors (P = 0.848). Bonferroni post hoc comparisons showed a lower mean ISQ for implants in decalcified (50.33 ± 2.92) heads than in fresh (66.93 ± 1.10) or fixated (70.77 ± 1.32) heads (both P < 0.001). The ISQ score (fresh) was significantly higher for those in OA (73.52 ± 1.92) versus OP (67.13 ± 1.09) heads. However, mixed linear analysis showed no significant association between ISQ scores and morphologic or histomorphometric results (P > 0.5 in all cases), and no significant differences in ISQ values were found as a function of the length or area of the cortical layer (both P > 0.08). Conclusion. Although RFA-determined ISQ values are not correlated with morphometric parameters, they can discriminate bone quality (OP versus OA). This ex vivo model is useful for dental implant studies. PMID:24995307

  15. A Multiple Model Approach to Track Head Orientation With Delta Quaternions.

    PubMed

    Himberg, Henry; Motai, Yuichi; Bradley, Arthur

    2013-02-01

    Virtual reality and augmented reality environments using helmet-mounted displays create a sense of immersion by closely coupling user head motion to display content. Delays in the presentation of visual information can destroy the sense of presence in the simulation environment when it causes a lag in the display response to user head motion. The effect of display lag can be minimized by predicting head orientation, allowing the system to have sufficient time to counteract the delay. In this paper, anew head orientation prediction technique is proposed that uses a multiple delta quaternion (DQ) extended Kalman filter to track angular head velocity and angular head acceleration. This method is independent of the device used for orientation measurement, relying on quaternion orientation as the only measurement data. A new orientation prediction algorithm is proposed that estimates future head orientation as a function of the current orientation measurement and a predicted change in orientation, using the velocity and acceleration estimates. Extensive experimentation shows that the new method improves head orientation prediction when compared to single filter DQ prediction. PMID:22692926

  16. A Modeling of Cerebral Blood Flow Changes due to Head Motion for fNIRS

    NASA Astrophysics Data System (ADS)

    Takahashi, Kosuke; Tanaka, Takayuki; Nara, Hiroyuki; Kaneko, Shun'ichi; Inoue, Masao; Shimizu, Shunji; Kojima, Satoru

    2013-04-01

    A method is proposed for measuring brain activity during exercises involving head motion by using functional near-infrared spectroscopy (fNIRS), which investigates cerebral hemodynamics. Obtaining measurements during exercise is difficult because cerebral blood flow changes due to the head motion component (HMC), in addition to neural activity. HMC is an undesirable artifact in the measurement of hemodynamic response caused by neural activity, and as such, it must be estimated and eliminated. In our experiments, cerebral blood flow and head motion were measured during repeated passive forward bending of the subjects. Head motion was measured by 3-D motion capture, and HMC was estimated by deriving a relation between head motion and cerebral blood flow, where the pitch angle was found to be suitable for estimating HMC. In this research, an assumption was made that cerebral blood flow caused by neural activity and that caused by postural change were additive, and thus HMC was eliminated by subtraction.

  17. SU-C-BRF-03: PCA Modeling of Anatomical Changes During Head and Neck Radiation Therapy

    SciTech Connect

    Chetvertkov, M; Kim, J; Siddiqui, F; Kumarasiri, A; Chetty, I; Gordon, J

    2014-06-15

    Purpose: To develop principal component analysis (PCA) models from daily cone beam CTs (CBCTs) of head and neck (H and N) patients that could be used prospectively in adaptive radiation therapy (ART). Methods: : For 7 H and N patients, Pinnacle Treatment Planning System (Philips Healthcare) was used to retrospectively deformably register daily CBCTs to the planning CT. The number N of CBCTs per treatment course ranged from 14 to 22. For each patient a PCA model was built from the deformation vector fields (DVFs), after first subtracting the mean DVF, producing N eigen-DVFs (EDVFs). It was hypothesized that EDVFs with large eigenvalues represent the major anatomical deformations during the course of treatment, and that it is feasible to relate each EDVF to a clinically meaningful systematic or random change in anatomy, such as weight loss, neck flexion, etc. Results: DVFs contained on the order of 3×87×87×58=1.3 million scalar values (3 times the number of voxels in the registered volume). The top 3 eigenvalues accounted for ∼90% of variance. Anatomical changes corresponding to an EDVF were evaluated by generating a synthetic DVF, and applying that DVF to the CT to produce a synthetic CBCT. For all patients, the EDVF for the largest eigenvalue was interpreted to model weight loss. The EDVF for other eigenvalues appeared to represented quasi-random fraction-to-fraction changes. Conclusion: The leading EDVFs from single-patient PCA models have tentatively been identified with weight loss changes during treatment. Other EDVFs are tentatively identified as quasi-random inter-fraction changes. Clean separation of systematic and random components may require further work. This work is expected to facilitate development of population-based PCA models that can be used to prospectively identify significant anatomical changes, such as weight loss, early in treatment, triggering replanning where beneficial.

  18. Phototheranostic Porphyrin Nanoparticles Enable Visualization and Targeted Treatment of Head and Neck Cancer in Clinically Relevant Models

    PubMed Central

    Muhanna, Nidal; Jin, Cheng S; Huynh, Elizabeth; Chan, Harley; Qiu, Yi; Jiang, Wenlei; Cui, Liyang; Burgess, Laura; Akens, Margarete K; Chen, Juan; Irish, Jonathan C; Zheng, Gang

    2015-01-01

    Head and neck cancer is the fifth most common type of cancer worldwide and remains challenging for effective treatment due to the proximity to critical anatomical structures in the head and neck region, which increases the probability of toxicity from surgery and radiotherapy, and therefore emphasizes the importance of maximizing the targeted ablation. We have assessed the effectiveness of porphysome nanoparticles to enhance fluorescence and photoacoustic imaging of head and neck tumors in rabbit and hamster models. In addition, we evaluated the effectiveness of this agent for localized photothermal ablative therapy of head and neck tumors. We have demonstrated that porphysomes not only enabled fluorescence and photoacoustic imaging of buccal and tongue carcinomas, but also allowed for complete targeted ablation of these tumors. The supremacy of porphysome-enabled photothermal therapy over surgery to completely eradicate primary tumors and metastatic regional lymph node while sparing the adjacent critical structures' function has been demonstrated for the first time. This study represents a novel breakthrough that has the potential to revolutionize our approach to tumor diagnosis and treatment in head and neck cancer and beyond. PMID:26681987

  19. Parametric transfer function analysis and modeling of blood flow autoregulation in the optic nerve head

    PubMed Central

    Yu, Jintao; Liang, Yi; Thompson, Simon; Cull, Grant; Wang, Lin

    2014-01-01

    The aim of the study was to establish a parametric transfer function to describe the relationship between ocular perfusion pressure (OPP) and blood flow (BF) in the optic nerve head (ONH). A third-order parametric theoretical model was proposed to describe the ONH OPP-BF relationship within the lower OPP range of the autoregulation curve (< 80 mmHg) based on experimentally induced BF response to a rapid intraocular pressure (IOP) increase in 6 rhesus monkeys. The theoretical and actual data fitted well and suggest that this parametric third-order transfer function can effectively describe both the linear and nonlinear feature in dynamic and static autoregulation in the ONH within the OPP range studied. It shows that the BF autoregulation fully functions when the OPP was > 40 mmHg and becomes incomplete when the OPP was < 40 mmHg. This model may be used to help investigating the features of autoregulation in the ONH under different experimental conditions. PMID:24665355

  20. Telomere dysfunction promotes metastasis in a Terc null mouse model of head and neck cancer

    PubMed Central

    Bojovic, Bojana; Crowe, David L.

    2011-01-01

    Squamous cell carcinoma arises from highly proliferative basal layer epithelial cells which normally divide for a short time before detaching from the basement membrane and undergoing terminal differentiation. Basal layer cells in stratified epithelia express the reverse transcriptase known as telomerase. Most human cells do not express telomerase and therefore are subject to loss of telomeric DNA with age due to the inability of lagging strand synthesis to completely replicate chromosomal ends. Late generation telomerase deficient mice exhibit signs of premature aging including reduced function of proliferating cellular compartments. We examined development of squamous cell carcinoma in a telomerase deficient murine background with long and short telomeres. G1 Terc−/− mice (long telomeres) had fewer lymph node metastases which correlated with increased numbers of apoptotic cells in these tumors compared to wild type mice. However, G5 Terc−/− mice with short telomeres had increased metastatic tumor burden similar to wild type mice. This increased metastasis correlated with genomic instability and aneuploidy in tumor cells from G5 Terc−/− mice. A number of similarities with human SCC were noted in the mouse model, and dramatic differences in global gene expression profiles were demonstrated between primary and metastatic tumors. We concluded that telomere shortening promotes metastatic tumor development in a Terc null mouse model of head and neck cancer. PMID:21593138

  1. Impact of Model Uncertainty Description on Assimilating Hydraulic Head into the MIKE-SHE Distributed Hydrological Model

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Madsen, H.; Ridler, M. E.; Rasmussen, J.; Refsgaard, J.; Jensen, K.

    2013-12-01

    Catchment-scale hydrological models are used as prediction tools to solve major challenges in water resources management. The reliability of hydrological model predictions is inevitably affected by the amount of information available to set up and calibrate the model. Data assimilation (DA) which combines complementary information from measurements and models has proven to be a powerful and promising tool in numerous research studies to improve model predictions. Especially, the ensemble Kalman filter (EnKF) which is a popular sequential data assimilation technique, has been extensively studied in the earth sciences for assimilating in-situ measurements and remote sensing data. However, one of the major challenges in data assimilation to optimally combine model and measurements is the description of model uncertainty. Only few studies have been reported for defining appropriate model uncertainty in hydrological DA. Modeling uncertainties can be conceptually different in different applications. Traditionally, model uncertainty is represented by parameter uncertainty with corresponding parameter statistics determined by inverse modeling. In most hydrological DA applications, however, model uncertainty is defined by experience using simple statistical descriptions of different uncertainty sources. In this work, both the uncertainty derived from inverse modeling and from empirical knowledge are used and analyzed. A combination of parameter-based, forcing-based and state-based model error is implemented in the EnKF framework for assimilating groundwater hydraulic heads into a catchment-scale model of the Karup Catchment in Denmark using the distributed and integrated hydrological model MIKE SHE. A series of synthetic identical twin experiments are carried out to analyze the impact of different model error assumptions on the feasibility and efficiency of the assimilation. The optimality of the EnKF underlying twin test provides possibilities to diagnose model error

  2. Applying DTI white matter orientations to finite element head models to examine diffuse TBI under high rotational accelerations.

    PubMed

    Colgan, Niall C; Gilchrist, Michael D; Curran, Kathleen M

    2010-12-01

    The in-vivo mechanical response of neural tissue during impact loading of the head is simulated using geometrically accurate finite element (FE) head models. However, current FE models do not account for the anisotropic elastic material behaviour of brain tissue. In soft biological tissue, there is a correlation between internal microscopic structure and macroscopic mechanical properties. Therefore, constitutive equations are important for the numerical analysis of the soft biological tissues. By exploiting diffusion tensor techniques the anisotropic orientation of neural tissue is incorporated into a non-linear viscoelastic material model for brain tissue and implemented in an explicit FE analysis. The viscoelastic material parameters are derived from published data and the viscoelastic model is used to describe the mechanical response of brain tissue. The model is formulated in terms of a large strain viscoelastic framework and considers non-linear viscous deformations in combination with non-linear elastic behaviour. The constitutive model was applied in the University College Dublin brain trauma model (UCDBTM) (i.e. three-dimensional finite element head model) to predict the mechanical response of the intra-cranial contents due to rotational injury. PMID:20869383

  3. Experimental rat model for alcohol-induced osteonecrosis of the femoral head

    PubMed Central

    Okazaki, Shunichiro; Nagoya, Satoshi; Tateda, Kenji; Katada, Ryuichi; Mizuo, Keisuke; Watanabe, Satoshi; Yamashita, Toshihiko; Matsumoto, Hiroshi

    2013-01-01

    Alcohol-induced osteonecrosis of the femoral head (ONFH) is observed in alcohol abusers and patients with alcoholic fatty liver disease. It has been reported that Toll-like receptor 4 (TLR4) signalling plays a crucial role in the pathogenesis of alcoholic fatty liver disease. We previously reported a corticosteroid-induced ONFH rat model, and suggested that TLR4 signalling contributes to the pathogenesis of ONFH. Thus, it is thought that the pathogenesis of alcohol-induced ONFH is probably similar to that of corticosteroid-induced ONFH. The aim of this study was to develop a new animal model for alcohol-induced ONFH and to evaluate the relationship between the pro-inflammatory response via TLRs and the development of ONFH in rats. Male Wistar rats were fed a Lieber–DeCarli liquid diet containing 5% ethanol (experimental group) or dextran (control group) for 1–24 weeks. Histopathological and biochemical analyses were performed. Feeding the ethanol-containing liquid diet resulted in the development of ONFH with hepatic steatosis, hepatic dysfunction and hyperlipidaemia, whereas feeding the dextran-containing diet did not cause ONFH. However, we could not recognize any relationship between the pro-inflammatory response via TLR4 and the development of alcohol-induced ONFH. Thus in this study we have developed a new rat model for alcohol-induced ONFH based on the feeding of an ethanol liquid diet. ONFH was observed within seven days from the start of feeding with 5% ethanol-containing liquid diet. Although this was linked to hepatic steatosis, a TLR4 association was not a feature of this model. PMID:24020403

  4. Head-Down Tilt with Balanced Traction as a Model for Simulating Spinal Acclimation to Microgravity

    NASA Technical Reports Server (NTRS)

    Ballard, R. E.; Styf, J. R.; Watenpaugh, D. E.; Fechner, K.; Haruna, Y.; Kahan, N. J.; Hargens, A. R.

    1994-01-01

    Astronauts experience total body height increases of 4 to 7 cm in microgravity. Thus, stretching of the spinal cord, nerve roots, and muscular and ligamentous tissues may be responsible for the hyperreflexia, back pain, and muscular atrophy associated with exposure to microgravity. Axial compression of the spine makes 6 deg. head-down tilt (HDT) an unsuitable model for spinal acclimation to microgravity. However, this axial compression may be counteracted by balanced traction consisting of 10% body weight (sin 6 deg. = 0.1) applied to the legs. Six healthy male subjects underwent 3 days each of 60 HDT with balanced traction and horizontal bed rest (HBR), with a 2 week recovery period between treatments. Total body and spine length, lumbar disc height, back pain, erector spinae intramuscular pressure, and ankle joint torque were measured before, during and after each treatment. Total body and spine (processes of L5 - C7) lengths increased significantly more during HDT with balanced traction (22 +/- 8 mm and 25 +/- 8 mm, respectively) than during HBR (16 +/- 4 mm and 14 +/- 9 mm, respectively). Back and leg pain were significantly greater during HDT with balanced traction than during HBR. The distance between the lower end plate of L4 and the upper endplate of S1, as measured by sonography, increased significantly in both treatments to the same degree (2.9 +/- 1.9 mm, HDT with balanced traction; 3.3 +/- 1.5 mm, HBR). Intramuscular pressure of the erector spinae muscles and maximal ankle joint torque were unaltered with both models. While neither model increased height to the magnitude observed in microgravity, HDT with balanced traction may be a better model for simulating the body lengthening and back pain experienced in microgravity.

  5. Impact of Full-Day Head Start Prekindergarten Class Model on Student Academic Performance, Cognitive Skills, and Learning Behaviors by the End of Grade 2. Evaluation Brief

    ERIC Educational Resources Information Center

    Zhao, Huafang; Modarresi, Shahpar

    2013-01-01

    This brief describes the impact of the Montgomery County (Maryland) Public Schools (MCPS) 2007-2008 full-day Head Start prekindergarten (pre-K) class model on student academic performance, cognitive skills, and learning behaviors by the end of Grade 2. This is the fourth impact study of the MCPS full-day Head Start pre-K class model. The following…

  6. Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI.

    PubMed

    Ferradal, Silvina L; Eggebrecht, Adam T; Hassanpour, Mahlega; Snyder, Abraham Z; Culver, Joseph P

    2014-01-15

    Diffuse optical imaging (DOI) is increasingly becoming a valuable neuroimaging tool when fMRI is precluded. Recent developments in high-density diffuse optical tomography (HD-DOT) overcome previous limitations of sparse DOI systems, providing improved image quality and brain specificity. These improvements in instrumentation prompt the need for advancements in both i) realistic forward light modeling for accurate HD-DOT image reconstruction, and ii) spatial normalization for voxel-wise comparisons across subjects. Individualized forward light models derived from subject-specific anatomical images provide the optimal inverse solutions, but such modeling may not be feasible in all situations. In the absence of subject-specific anatomical images, atlas-based head models registered to the subject's head using cranial fiducials provide an alternative solution. In addition, a standard atlas is attractive because it defines a common coordinate space in which to compare results across subjects. The question therefore arises as to whether atlas-based forward light modeling ensures adequate HD-DOT image quality at the individual and group level. Herein, we demonstrate the feasibility of using atlas-based forward light modeling and spatial normalization methods. Both techniques are validated using subject-matched HD-DOT and fMRI data sets for visual evoked responses measured in five healthy adult subjects. HD-DOT reconstructions obtained with the registered atlas anatomy (i.e. atlas DOT) had an average localization error of 2.7mm relative to reconstructions obtained with the subject-specific anatomical images (i.e. subject-MRI DOT), and 6.6mm relative to fMRI data. At the group level, the localization error of atlas DOT reconstruction was 4.2mm relative to subject-MRI DOT reconstruction, and 6.1mm relative to fMRI. These results show that atlas-based image reconstruction provides a viable approach to individual head modeling for HD-DOT when anatomical imaging is not available

  7. Attraction Toward the Model and Model's Competence as Determinants of Adult Imitative Behavior

    ERIC Educational Resources Information Center

    Baron, Robert A.

    1970-01-01

    Suggests that adults are quicker to learn to match the performance of a model similar to themselves in attitude if he is competent. Similarity of the model interferes with rate of learning if he is incompetent. Tables, graph, and bibliography. (RW)

  8. Old Heads Tell Their Stories: From Street Gangs to Street Organizations in New York City.

    ERIC Educational Resources Information Center

    Brotherton, David C.

    It has been the contention of researchers that the "old heads" (identified by Anderson in 1990 and Wilson in 1987) of the ghettos and barrios of America have voluntarily or involuntarily left the community, leaving behind new generations of youth without adult role models and legitimate social controllers. This absence of an adult strata of…

  9. Energy Metabolism in a Matched Model of Radiation Resistance for Head and Neck Squamous Cell Cancer

    PubMed Central

    Mims, Jade; Bansal, Nidhi; Bharadwaj, Manish S.; Chen, Xiaofei; Molina, Anthony J.; Tsang, Allen W.; Furdui, Cristina M.

    2015-01-01

    While radiation therapy is commonly used for treating cancer, radiation resistance can limit long-term control of the disease. In this study, we investigated the reprogramming of the energy metabolism in radiosensitive and radioresistant head and neck squamous cell carcinomas (HNSCC) using a preclinical matched model of radiation resistance. Our investigation found that radioresistant rSCC-61 cells: 1. They display increased glucose uptake and decreased fatty acid uptake; 2. They deviate from the classical Warburg effect by diverting the glycolytic flux into the pentose phosphate pathway; 3. They are more dependent on glucose than glutamine metabolism to support growth; 4. They have decreased mitochondrial oxidative phosphorylation; 5. They have enhanced fatty acid biosynthesis by increasing the expression of fatty acid synthase; and 6. They utilize endogenous fatty acids to meet the energy demands for proliferation. Inhibition of fatty acid synthase with orlistat or FASN siRNA resulted in increased cytotoxicity and sensitivity to radiation in rSCC-61 cells. These results demonstrate the potential of combination therapy using radiation and orlistat or other inhibitors of lipid and energy metabolism for treating radiation resistance in HNSCC. PMID:25738895

  10. Closed Head Injury in a Mouse Model Results in Molecular Changes Indicating Inflammatory Responses

    PubMed Central

    Israelsson, Charlotte; Wang, Yun; Kylberg, Annika; Pick, Chaim G.; Hoffer, Barry J.

    2009-01-01

    Abstract Cerebral gene expression changes in response to traumatic brain injury will provide useful information in the search for future trauma treatment. In order to characterize the outcome of mild brain injury, we studied C57BL/6J mice in a weight-drop, closed head injury model. At various times post-injury, mRNA was isolated from neocortex and hippocampus and transcriptional alterations were studied using quantitative reverse transcriptase PCR and gene array analysis. At three days post-injury, the results showed unilateral injury responses, both in neocortex and hippocampus, with the main effect seen on the side of the skull hit by the dropping weight. Upregulated transcripts encoded products characterizing reactive astrocytes, phagocytes, microglia, and immune-reactive cells. Markers for oligodendrocytes and T-cells were not altered. Notably, strong differences in the responses among individual mice were seen (e.g., for the Gfap transcript expressed by reactive astrocytes and the chemokine Ccl3 transcript expressed by activated microglial cells). In conclusion, mild TBI chiefly activates transcripts leading to tissue signaling, inflammatory processes, and chemokine signaling, as in focal brain injury, suggesting putative targets for drug development. PMID:19317611

  11. Modeling the Response of an Extraordinary Magnetoresistance (EMR) Magnetic Read-head

    NASA Astrophysics Data System (ADS)

    Ram-Mohan, L. R.; Moussa, J.; Solin, S. A.; Rowe, A. C. H.

    2002-03-01

    A finite element approach to the modeling of extraordinary magnetoresistance (EMR)(S.A. Solin et al., Science 289), 1530 (2000). in a 4-terminal circular semiconductor wafer with a central concentric metallic inhomogeneity, which acts as a metal shunt, was reported earlier.(J. Moussa, L. R. Ram-Mohan, J. Sullivan, T. Zhou, D. R. Hines, and S. A. Solin, Physical Review B64), 184410 (2001). Here we present new results on more complex externally shunted van der Pauw plate geometries(T. Zhou, D.R. Hines and S.A. Solin, Appl. Phys. Letter 78), 667 (2001). for the semiconductor/metal shunt structures. The response at the voltage leads is evaluated for a constant current through the two outer leads in a 4-contact arrangement, and the results suggest geometry-dependent variations to the EMR as the shunt geometry is altered. The effect of a localized magnetic field moving over a semiconductor bar attached to a metal shunt on the EMR is reported. The results demonstrate the significant advantages of the semiconductor/shunt arrangement over conventional magnetic structures such as those based on GMR and TMR used as read-heads in digital data storage systems.

  12. Closed traumatic brain injury model in sheep mimicking high-velocity, closed head trauma in humans.

    PubMed

    Grimmelt, A-C; Eitzen, S; Balakhadze, I; Fischer, B; Wölfer, J; Schiffbauer, H; Gorji, A; Greiner, C

    2011-08-01

    To date, there are only a few, non-evidence based, cerebroprotective therapeutic strategies for treatment and, accordingly, for prevention of secondary brain injuries following severe closed head trauma. In order to develop new therapy strategies, existing realistic animal models need to be advanced. The objective is to bridge standardized small animal models and actual patient medical care, since the results of experimental small animal studies often cannot be transferred to brain-injured humans. For improved standardization of high-velocity trauma, new trauma devices for initiating closed traumatic brain injury in sheep were developed. The following new devices were tested: 1. An anatomically shaped rubber bolt with an integrated oscillation absorber for prevention of skull fractures; 2. Stationary mounting of the bolt to guarantee stable experimental conditions; 3. Varying degrees of trauma severity, i. e., mild and severe closed traumatic brain injury, using different cartridges; and 4. Trauma analysis via high-speed video recording. Peritraumatic measurements of intracranial pressure, brain tissue pH, brain tissue oxygen, and carbon dioxide pressure, as well as neurotransmitter concentrations were performed. Cerebral injuries were documented with magnetic resonance imaging and compared to neuropathological results. Due to the new trauma devices, skull fractures were prevented. The high-speed video recording documented a realistic trauma mechanism for a car accident. Enhancement of extracellular glutamate, aspartate, and gamma amino butyric acid concentrations began 60 min after the trauma. Magnetic resonance imaging and neuropathological results showed characteristic injury patterns of mild, and severe, closed traumatic brain injury. The severe, closed traumatic brain injury group showed diffuse axonal injuries, traumatic subarachnoid hemorrhage, and hemorrhagic contusions with inconsistent distribution among the animals. The model presented here achieves

  13. A stylized computational model of the head for the reference Japanese male.

    PubMed

    Yamauchi, M; Ishikawa, M; Hoshi, M

    2005-01-01

    Computational models of human anatomy, along with Monte Carlo radiation transport simulations, have been used by Snyder et al. [MIRD Pamphlet No. 5, revised (The Society of Nuclear Medicine, New York, 1978)], Cristy and Eckerman [ORNL/TM-8381/VI, Oak Ridge National Laboratory, Oak Ridge, TN (1987)] and Zubal et al. [Med. Phys. 21, 299-302 (1994)] to estimate internal organ doses from internal and external radiation sources. These were created using physiological data from Caucasoid subjects but not from other races. There is a need for research to determine whether the obvious differences from the Caucasoid anatomy make these models unsuitable for estimating the absorbed dose in other races such as the Mongoloid. We used the cranial region of the adult Japanese male to represent the Mongoloid race. This region contains organs that are highly sensitive to radiation. The cranial region of a physical phantom produced by KYOTO KAGAKU Co., LTD. using numerical data from a Japanese Reference Man [Tanaka, Nippon Acta. Radiol. 48, 509-513 (1988)] was used to supply the data for the geometry of a stylized computational model. Our computational model was constructed with equations rather than voxel-based, in order to deal with as small a number of parameters as possible in the computer simulation experiment. The accuracy of our computational model was checked by comparing simulated experimental results obtained with MCNP4C with actual doses measured with thermoluminescence dosimeters (TLDs) inside the physical phantom from which our computational model was constructed. The TLDs, whose margin of error is less than +/-10%, were arranged at six positions. Co-60 was used as the radiation source. The irradiated dose was 2 Gy in terms of air kerma. In the computer simulation experiments, we used our computational model and Cristy's computational model, whose component data are those of the tissue substitute materials and of the human body as published in ICRU Report 46. The

  14. A stylized computational model of the head for the reference Japanese male

    SciTech Connect

    Yamauchi, M.; Ishikawa, M.; Hoshi, M.

    2005-01-01

    Computational models of human anatomy, along with Monte Carlo radiation transport simulations, have been used by Snyder et al. [MIRD Pamphlet No. 5, revised (The Society of Nuclear Medicine, New York, 1978)], Cristy and Eckerman [ORNL/TM-8381/VI, Oak Ridge National Laboratory, Oak Ridge, TN (1987)] and Zubal et al. [Med. Phys. 21, 299-302 (1994)] to estimate internal organ doses from internal and external radiation sources. These were created using physiological data from Caucasoid subjects but not from other races. There is a need for research to determine whether the obvious differences from the Caucasoid anatomy make these models unsuitable for estimating the absorbed dose in other races such as the Mongoloid. We used the cranial region of the adult Japanese male to represent the Mongoloid race. This region contains organs that are highly sensitive to radiation. The cranial region of a physical phantom produced by KYOTO KAGAKU Co., LTD. using numerical data from a Japanese Reference Man [Tanaka, Nippon Acta. Radiol. 48, 509-513 (1988)] was used to supply the data for the geometry of a stylized computational model. Our computational model was constructed with equations rather than voxel-based, in order to deal with as small a number of parameters as possible in the computer simulation experiment. The accuracy of our computational model was checked by comparing simulated experimental results obtained with MCNP4C with actual doses measured with thermoluminescence dosimeters (TLDs) inside the physical phantom from which our computational model was constructed. The TLDs, whose margin of error is less than {+-}10%, were arranged at six positions. Co-60 was used as the radiation source. The irradiated dose was 2 Gy in terms of air kerma. In the computer simulation experiments, we used our computational model and Cristy's computational model, whose component data are those of the tissue substitute materials and of the human body as published in ICRU Report 46. The

  15. A Study in the Application of the C. A. Curran Counseling-Learning Model to Adults.

    ERIC Educational Resources Information Center

    Brady, Thomas C.

    The study attempts to demonstrate movement in adult learning from particularization to symbolization to internalization (value choice) through use of a Counseling-Learning Model. Adult resistance to learning is dealt with through application of counseling awarenesses to the learning situation. If the adult learner can be freed from threat to…

  16. Developing Programs in Adult Education: A Conceptual Programming Model. Second Edition.

    ERIC Educational Resources Information Center

    Boone, Edgar J.; Safrit, R. Dale; Jones, Jo

    This guide for current and prospective adult educators is a comprehensive, practical conceptual framework for planning, designing/implementing, and evaluating/accounting for adult education programs. Chapter 1 describes the programming process. Chapter 2 describes 13 nationally recognized models of the adult education programming process, the…

  17. Feasibility of Primary Tumor Culture Models and Preclinical Prediction Assays for Head and Neck Cancer: A Narrative Review

    PubMed Central

    Dohmen, Amy J. C.; Swartz, Justin E.; Van Den Brekel, Michiel W. M.; Willems, Stefan M.; Spijker, René; Neefjes, Jacques; Zuur, Charlotte L.

    2015-01-01

    Primary human tumor culture models allow for individualized drug sensitivity testing and are therefore a promising technique to achieve personalized treatment for cancer patients. This would especially be of interest for patients with advanced stage head and neck cancer. They are extensively treated with surgery, usually in combination with high-dose cisplatin chemoradiation. However, adding cisplatin to radiotherapy is associated with an increase in severe acute toxicity, while conferring only a minor overall survival benefit. Hence, there is a strong need for a preclinical model to identify patients that will respond to the intended treatment regimen and to test novel drugs. One of such models is the technique of culturing primary human tumor tissue. This review discusses the feasibility and success rate of existing primary head and neck tumor culturing techniques and their corresponding chemo- and radiosensitivity assays. A comprehensive literature search was performed and success factors for culturing in vitro are debated, together with the actual value of these models as preclinical prediction assay for individual patients. With this review, we aim to fill a gap in the understanding of primary culture models from head and neck tumors, with potential importance for other tumor types as well. PMID:26343729

  18. Lithospheric Flexure and Sedimentary Basin Evolution: the Steer's Head Model Re-visited

    NASA Astrophysics Data System (ADS)

    Moore, J. D. P.; Watts, A. B.

    2015-12-01

    Backstripping studies of biostratigraphic data from deep wells show that sediment loading is one of the main factors controlling the subsidence and uplift history of sedimentary basins. Previous studies based on single layer models of elastic and viscoelastic plates overlying an inviscid fluid have shown that sediment loading, together with a tectonic subsidence that decreases exponentially with time, can explain the large-scale 'architecture' of rift-type basins and, in some cases, details of their internal stratigraphy such as onlap and offlap patterns. One problem with these so-called 'steer's head' models is that they were based on a simple rheological model in which the long-term strength of the lithosphere increased with thermal age. Recent oceanic flexure studies, however, reveal that the long-term strength of the lithosphere depends not only on thermal age, but also load age. We have used the thermal structure based on plate cooling models, together with recent experimentally-derived flow laws, to compute the viscosity structure of the lithosphere and a new analytical model to compute the flexure of a multilayer viscoelastic plate by a trapezoid-shaped sediment load at different times since basin initiation. If we define the nondimensional number Dw = τm/τt, where τm is the Maxwell time constant and τt is the thermal time constant, we find that for Dw << 1 the flexure approximates that of an elastic plate and an onlap pattern forms at the edge of basin (Fig. 1), whereas for Dw >> 1 the flexure approximates that of a viscoelastic plate and an offlap pattern develops (Fig. 2). Interestingly Dw ~ 1 produces a basin in which onlap dominates its early evolution while offlap dominates its later evolution and an unconformity separates the two different stratal patterns (Fig. 3). Therefore, when consideration is given to the fact that the long-term strength of the lithosphere depends on both thermal and load age we are able to produce stratal geometries that

  19. Lithospheric flexure and sedimentary basin evolution: depositional cycles in the steer's head model

    NASA Astrophysics Data System (ADS)

    Moore, James; Watts, Tony

    2016-04-01

    Backstripping studies of biostratigraphic data from deep wells show that sediment loading is one of the main factors controlling the subsidence and uplift history of sedimentary basins. Previous studies based on single layer models of elastic and viscoelastic plates overlying an inviscid fluid have shown that sediment loading, together with a tectonic subsidence that decreases exponentially with time, can explain the large-scale 'architecture' of rift-type basins and, in some cases, details of their internal stratigraphy such as onlap and offlap patterns. One problem with these so-called 'steer's head' models is that they were based on a simple rheological model in which the long-term strength of the lithosphere increased with thermal age. Recent oceanic flexure studies, however, reveal that the long-term strength of the lithosphere depends not only on thermal age, but also load age. We have used the thermal structure based on plate cooling models, together with recent experimentally-derived flow laws, to compute the viscosity structure of the lithosphere and a new analytical model to compute the flexure of a multilayer viscoelastic plate by a trapezoid-shaped sediment load at different times since basin initiation. The combination of basin subsidence and viscoelastic flexural response results in the fluctuation of the depositional surface with time. If we define the nondimensional number Dw= τm/τt, where τm is the Maxwell time constant and τt is the thermal time constant, we find that for Dw<<1 the flexure approximates that of an elastic plate and is dominated by "onlapping" stratigraphy which evolves through the sedimentary facies with a progressive deepening of the depositional surface. For Dw>>1 the flexure approximates that of a viscoelastic plate and is dominated by "offlapping" stratigraphy, with the basin edges evolving through shallow marine facies; though erosion late in the basin formation prevents much of this from being recorded in the stratigraphy

  20. Dropout and Completion in Adult Vocational Job Training Programs: A Prediction Model for the Adult Vocational Student.

    ERIC Educational Resources Information Center

    Shank, Jacqueline A.; McCracken, J. David

    A study described the nontraditional adult students attending full-time, occupationally specific vocational training programs in Ohio. It also developed a dropout prediction model of enrolled students using sets of independent variables adapted from the Conceptual Model of Nontraditional Student Attrition and Persistence in Postsecondary…

  1. New York State Adult Functional Literacy Models. Final Report.

    ERIC Educational Resources Information Center

    Heller, Barbara R.

    This report discusses a nationwide study of Adult Performance Level (APL) which involved sixteen projects in seven states and was conducted to (1) examine the University of Texas at Austin's APL study and describe the results and recommendations in terms of the adult needs in New York State; (2) examine several New York State Adult Basic Education…

  2. A biokinetic model for systemic technetium in adult humans

    SciTech Connect

    Leggett, Richard Wayne; Giussani, Augusto

    2015-04-10

    The International Commission on Radiological Protection (ICRP) currently is updating its biokinetic and dosimetric models for internally deposited radionuclides. Technetium (Tc), the lightest element that exists only in radioactive form, has two important isotopes from the standpoint of potential risk to humans: the long-lived isotope 99Tm(T1/2=2.1x105 y) is present in high concentration in nuclear waste, and the short-lived isotope 99mTc (T1/2=6.02 h) is the most commonly used radionuclide in diagnostic nuclear medicine. This paper reviews data on the biological behavior of technetium and proposes a biokinetic model for systemic technetium in the adult human body for use in radiation protection. Compared with the ICRP s current occupational model for systemic technetium, the proposed model provides a more realistic description of the paths of movement of technetium in the body; provides greater consistency with experimental and medical data; and, for most radiosensitive organs, yields substantially different estimates of cumulative activity (total radioactive decays within the organ) following uptake of 99Tm or 99mTc to blood.

  3. A biokinetic model for systemic technetium in adult humans

    DOE PAGESBeta

    Leggett, Richard Wayne; Giussani, Augusto

    2015-04-10

    The International Commission on Radiological Protection (ICRP) currently is updating its biokinetic and dosimetric models for internally deposited radionuclides. Technetium (Tc), the lightest element that exists only in radioactive form, has two important isotopes from the standpoint of potential risk to humans: the long-lived isotope 99Tm(T1/2=2.1x105 y) is present in high concentration in nuclear waste, and the short-lived isotope 99mTc (T1/2=6.02 h) is the most commonly used radionuclide in diagnostic nuclear medicine. This paper reviews data on the biological behavior of technetium and proposes a biokinetic model for systemic technetium in the adult human body for use in radiation protection.more » Compared with the ICRP s current occupational model for systemic technetium, the proposed model provides a more realistic description of the paths of movement of technetium in the body; provides greater consistency with experimental and medical data; and, for most radiosensitive organs, yields substantially different estimates of cumulative activity (total radioactive decays within the organ) following uptake of 99Tm or 99mTc to blood.« less

  4. Some Models of Adult Learning and Adult Change. Studies on Permanent Education, No. 22/1974.

    ERIC Educational Resources Information Center

    Huberman, A. M.

    With emphasis on the developmental psychology unique to adults, the author presents a comprehensive document of research and progress pertaining to adult learning and change. Section 1 reviews age cycles of adulthood as well as changing career patterns for men and women. Also examined are changes with age in leisure and interest patterns,…

  5. Assessment of Antero-Posterior Skeletal and Soft Tissue Relationships of Adult Indian Subjects in Natural Head Position and Centric Relation

    PubMed Central

    Latif, Vishnu Ben; Keshavaraj; Rai, Rohan; Hegde, Gautham; Shajahan, Shabna

    2015-01-01

    Background: The aim of this study was to verify the intra-individual reproducibility of natural head position (NHP) in centric relation (CR) position, to prove the inter-individual differences in the Frankfort horizontal plane and sella-nasion line compared with the true horizontal line, and to establish linear norms from A-point, B-point, Pog as well as soft tissue A-point, soft tissue B-point, and soft tissue Pog to nasion true vertical line (NTVL) in adult Indian subjects. Methods: Lateral cephalograms (T1) of Angle’s Class I subjects were taken in NHP and with bite in CR. A second lateral cephalogram (T2) of these subjects with ANB angle in the range 1-4° were taken after 1 week using the same wax bite and both the radiographs were analyzed based on six angular parameters using cephalometric software (Do-it, Dental studio NX version 4.1) to assess the reproducibility of NHP. Linear values of six landmarks were taken in relation to NTVL, and the mean values were calculated. A total of 116 subjects were included in this study. Results: When the cephalometric values of T1 and T2 were analyzed, it was found that, the parameters showed a P < 0.001, indicating the reproducibility of NHP in CR. Mean values for point A, point B, Pog and their soft tissue counterparts were also obtained. Conclusion: The study proved that NHP is a reproducible and accurate when recorded with the mandible in CR. Linear norms for skeletal Class I subjects in relation to NTVL were established. PMID:26124598

  6. Conceptual model and map of financial exploitation of older adults.

    PubMed

    Conrad, Kendon J; Iris, Madelyn; Ridings, John W; Fairman, Kimberly P; Rosen, Abby; Wilber, Kathleen H

    2011-10-01

    This article describes the processes and outcomes of three-dimensional concept mapping to conceptualize financial exploitation of older adults. Statements were generated from a literature review and by local and national panels consisting of 16 experts in the field of financial exploitation. These statements were sorted and rated using Concept Systems software, which grouped the statements into clusters and depicted them as a map. Statements were grouped into six clusters, and ranked by the experts as follows in descending severity: (a) theft and scams, (b) financial victimization, (c) financial entitlement, (d) coercion, (e) signs of possible financial exploitation, and (f) money management difficulties. The hierarchical model can be used to identify elder financial exploitation and differentiate it from related but distinct areas of victimization. The severity hierarchy may be used to develop measures that will enable more precise screening for triage of clients into appropriate interventions. PMID:21978290

  7. Upward and inward displacements of the acetabular component increase stress on femoral head in single endoprothesis models

    PubMed Central

    Zhang, Zhiqi; Kang, Yan; Chen, Yi; Liao, Weiming

    2009-01-01

    The centre of rotation of the hip can be displaced in hip dysplasia and revision arthroplasty. This study examined the effect of artificial femoral head load after acetabular component displacement in total hip arthroplasty. Sixteen total hip arthroplasty models of human cadaver specimens were reconstructed, and under different acetabular component position, the load around the femoral head was evaluated by strain gages. The results showed that the load was higher in the same specimens when the cup was moved 2 mm inward or upward, especially after the cup was moved more than 6 mm, and the load had an increasing effect in the inward group. In the upward group, an increasing effect happened at 8 mm upward displacement, but the stress value decreased from 4 mm to 6 mm upward displacement. In the same moving distance, the stress of inward displacement is obviously higher than upward displacement. Altogether, the results suggested that for both inward displacement and upward displacement of the acetabular cup, the load around the femoral head increased gradually, while the distance of the inward displacement and the superior displacement was increased. The greater the displacement, the bigger the loading contact stress. The upward displacement caused less stress change on the femoral head. The stress of the 6 mm upward position was lower than nearby positions; perhaps this site represented a stress buffering zone. PMID:19424694

  8. Emulating the visual receptive-field properties of MST neurons with a template model of heading estimation

    NASA Technical Reports Server (NTRS)

    Perrone, J. A.; Stone, L. S.

    1998-01-01

    We have proposed previously a computational neural-network model by which the complex patterns of retinal image motion generated during locomotion (optic flow) can be processed by specialized detectors acting as templates for specific instances of self-motion. The detectors in this template model respond to global optic flow by sampling image motion over a large portion of the visual field through networks of local motion sensors with properties similar to those of neurons found in the middle temporal (MT) area of primate extrastriate visual cortex. These detectors, arranged within cortical-like maps, were designed to extract self-translation (heading) and self-rotation, as well as the scene layout (relative distances) ahead of a moving observer. We then postulated that heading from optic flow is directly encoded by individual neurons acting as heading detectors within the medial superior temporal (MST) area. Others have questioned whether individual MST neurons can perform this function because some of their receptive-field properties seem inconsistent with this role. To resolve this issue, we systematically compared MST responses with those of detectors from two different configurations of the model under matched stimulus conditions. We found that the characteristic physiological properties of MST neurons can be explained by the template model. We conclude that MST neurons are well suited to support self-motion estimation via a direct encoding of heading and that the template model provides an explicit set of testable hypotheses that can guide future exploration of MST and adjacent areas within the superior temporal sulcus.

  9. Head Injuries

    MedlinePlus

    ... injuries internal head injuries, which may involve the skull, the blood vessels within the skull, or the brain Fortunately, most childhood falls or ... knock the brain into the side of the skull or tear blood vessels. Some internal head injuries ...

  10. Head Lice

    MedlinePlus

    ... or prescription products. Over-the-counter shampoos and lotions containing pyrethrin (one brand name: Rid) or permethrin ( ... commonly used to treat head lice. Shampoos and lotions that kill head lice contain pesticides and other ...

  11. Head MRI

    MedlinePlus

    ... the head; MRI - cranial; NMR - cranial; Cranial MRI; Brain MRI; MRI - brain; MRI - head ... tell your health care provider if you have: Brain aneurysm clips Certain types of artificial heart valves ...

  12. Form emergence and fixation of head bobbing displays in the green anole lizard (Anolis carolinensis): a reptilian model of signal ontogeny.

    PubMed

    Lovern, Matthew B; Jenssen, Thomas A

    2003-06-01

    Signal ontogeny was examined in green anoles (Anolis carolinensis). From 1,246 head bob displays given by 114 juveniles, it was found that juveniles possessed all 3 display types (A, B, and C) described for adults and that C displays were present at hatching, but A and B displays appeared to emerge gradually from a common precursor. Durations of the head bobs and pauses that make up juvenile displays tended to be more variable (i.e., less stereotyped) than those of adult displays. However, within the juvenile class, sex, age (or size), social context, and rearing environment (field or lab) had no effect on display structure or stereotypy. Thus, in contrast to typical signal ontogeny in songbirds and mammals, components of the green anole signal repertoire are expressed from early development. Similar to signal ontogeny in altricial species, maturation is nevertheless important for the complete and stereotyped expression of the adult signal repertoire. PMID:12856783

  13. Modeling of ray paths of head waves on irregular interfaces in TOFD inspection for NDE.

    PubMed

    Ferrand, A; Darmon, M; Chatillon, S; Deschamps, M

    2014-09-01

    The TOFD (Time of Flight Diffraction) technique is a classical ultrasonic inspection method used in ultrasonic non-destructive evaluation (NDE). This inspection technique is based on an arrangement of two probes of opposite beam directions and allows a precise positioning and a quantitative evaluation of the size of cracks contained in the inspected material thanks to their edges diffraction echoes. Among the typical phenomena arising for such an arrangement, head waves, which propagate along the specimen surface and are chronologically the first waves reaching the receiver, are notably observed. Head wave propagation on planar surfaces in TOFD configurations is well known. However, realistic inspection configurations often involve components with irregular surfaces, like steel excavated specimens. Surface irregularity is responsible for numerous effects on the scattering of bulk waves, causing the melting of surface and bulk mechanisms in the head wave propagation. In order to extend the classical ray approach on these complex cases, a generic algorithm of ray tracing between interface points (GIRT) has been designed. With respect to time of flight minimization (i.e. the Generalized Fermat's Principle), ray paths can be computed by GIRT for different natures of waves scattered by the complex surfaces or by flaws. The head wave fronts computed by GIRT are notably in good agreement with FEM simulated results. This algorithm, based on pure kinematic analysis of waves propagation, represents a first step in the future development of a complete ray theory for head waves simulation on irregular interfaces. PMID:24388406

  14. Head lice.

    PubMed

    Devore, Cynthia D; Schutze, Gordon E

    2015-05-01

    Head lice infestation is associated with limited morbidity but causes a high level of anxiety among parents of school-aged children. Since the 2010 clinical report on head lice was published by the American Academy of Pediatrics, newer medications have been approved for the treatment of head lice. This revised clinical report clarifies current diagnosis and treatment protocols and provides guidance for the management of children with head lice in the school setting. PMID:25917986

  15. Two-Year versus One-Year Head Start Program Impact: Addressing Selection Bias by Comparing Regression Modeling with Propensity Score Analysis

    ERIC Educational Resources Information Center

    Leow, Christine; Wen, Xiaoli; Korfmacher, Jon

    2015-01-01

    This article compares regression modeling and propensity score analysis as different types of statistical techniques used in addressing selection bias when estimating the impact of two-year versus one-year Head Start on children's school readiness. The analyses were based on the national Head Start secondary dataset. After controlling for…

  16. Modelling an advanced ManPAD with dual band detectors and a rosette scanning seeker head

    NASA Astrophysics Data System (ADS)

    Birchenall, Richard P.; Richardson, Mark A.; Butters, Brian; Walmsley, Roy

    2012-01-01

    Man Portable Air Defence Systems (ManPADs) have been a favoured anti aircraft weapon since their appearance on the military proliferation scene in the mid 1960s. Since this introduction there has been a 'cat and mouse' game of Missile Countermeasures (CMs) and the aircraft protection counter counter measures (CCMs) as missile designers attempt to defeat the aircraft platform protection equipment. Magnesium Teflon Viton (MTV) flares protected the target aircraft until the missile engineers discovered the art of flare rejection using techniques including track memory and track angle bias. These early CCMs relied upon CCM triggering techniques such as the rise rate method which would just sense a sudden increase in target energy and assume that a flare CM had been released by the target aircraft. This was not as reliable as was first thought as aspect changes (bringing another engine into the field of view) or glint from the sun could inadvertently trigger a CCM when not needed. The introduction of dual band detectors in the 1980s saw a major advance in CCM capability allowing comparisons between two distinct IR bands to be made thus allowing the recognition of an MTV flare to occur with minimal false alarms. The development of the rosette scan seeker in the 1980s complemented this advancement allowing the scene in the missile field of view (FOV) to be scanned by a much smaller (1/25) instantaneous FOV (IFOV) with the spectral comparisons being made at each scan point. This took the ManPAD from a basic IR energy detector to a pseudo imaging system capable of analysing individual elements of its overall FOV allowing more complex and robust CCM to be developed. This paper continues the work published in [1,2] and describes the method used to model an advanced ManPAD with a rosette scanning seeker head and robust CCMs similar to the Raytheon Stinger RMP.

  17. Dipole estimation errors due to not incorporating anisotropic conductivities in realistic head models for EEG source analysis

    NASA Astrophysics Data System (ADS)

    Hallez, Hans; Staelens, Steven; Lemahieu, Ignace

    2009-10-01

    EEG source analysis is a valuable tool for brain functionality research and for diagnosing neurological disorders, such as epilepsy. It requires a geometrical representation of the human head or a head model, which is often modeled as an isotropic conductor. However, it is known that some brain tissues, such as the skull or white matter, have an anisotropic conductivity. Many studies reported that the anisotropic conductivities have an influence on the calculated electrode potentials. However, few studies have assessed the influence of anisotropic conductivities on the dipole estimations. In this study, we want to determine the dipole estimation errors due to not taking into account the anisotropic conductivities of the skull and/or brain tissues. Therefore, head models are constructed with the same geometry, but with an anisotropically conducting skull and/or brain tissue compartment. These head models are used in simulation studies where the dipole location and orientation error is calculated due to neglecting anisotropic conductivities of the skull and brain tissue. Results show that not taking into account the anisotropic conductivities of the skull yields a dipole location error between 2 and 25 mm, with an average of 10 mm. When the anisotropic conductivities of the brain tissues are neglected, the dipole location error ranges between 0 and 5 mm. In this case, the average dipole location error was 2.3 mm. In all simulations, the dipole orientation error was smaller than 10°. We can conclude that the anisotropic conductivities of the skull have to be incorporated to improve the accuracy of EEG source analysis. The results of the simulation, as presented here, also suggest that incorporation of the anisotropic conductivities of brain tissues is not necessary. However, more studies are needed to confirm these suggestions.

  18. Two particle model for studying the effects of space-charge force on strong head-tail instabilities

    NASA Astrophysics Data System (ADS)

    Chin, Yong Ho; Chao, Alexander Wu; Blaskiewicz, Michael M.

    2016-01-01

    In this paper, we present a new two particle model for studying the strong head-tail instabilities in the presence of the space-charge force. It is a simple expansion of the well-known two particle model for strong head-tail instability and is still analytically solvable. No chromaticity effect is included. It leads to a formula for the growth rate as a function of the two dimensionless parameters: the space-charge tune shift parameter (normalized by the synchrotron tune) and the wakefield strength, ϒ . The three-dimensional contour plot of the growth rate as a function of those two dimensionless parameters reveals stopband structures. Many simulation results generally indicate that a strong head-tail instability can be damped by a weak space-charge force, but the beam becomes unstable again when the space-charge force is further increased. The new two particle model indicates a similar behavior. In weak space-charge regions, additional tune shifts by the space-charge force dissolve the mode coupling. As the space-charge force is increased, they conversely restore the mode coupling, but then a further increase of the space-charge force decouples the modes again. This mode coupling/decoupling behavior creates the stopband structures.

  19. Numerical calculation of listener-specific head-related transfer functions and sound localization: Microphone model and mesh discretization

    PubMed Central

    Ziegelwanger, Harald; Majdak, Piotr; Kreuzer, Wolfgang

    2015-01-01

    Head-related transfer functions (HRTFs) can be numerically calculated by applying the boundary element method on the geometry of a listener’s head and pinnae. The calculation results are defined by geometrical, numerical, and acoustical parameters like the microphone used in acoustic measurements. The scope of this study was to estimate requirements on the size and position of the microphone model and on the discretization of the boundary geometry as triangular polygon mesh for accurate sound localization. The evaluation involved the analysis of localization errors predicted by a sagittal-plane localization model, the comparison of equivalent head radii estimated by a time-of-arrival model, and the analysis of actual localization errors obtained in a sound-localization experiment. While the average edge length (AEL) of the mesh had a negligible effect on localization performance in the lateral dimension, the localization performance in sagittal planes, however, degraded for larger AELs with the geometrical error as dominant factor. A microphone position at an arbitrary position at the entrance of the ear canal, a microphone size of 1 mm radius, and a mesh with 1 mm AEL yielded a localization performance similar to or better than observed with acoustically measured HRTFs. PMID:26233020

  20. Automatic Prompting and Positive Attention to Reduce Tongue Protrusion and Head Tilting by Two Adults with Severe to Profound Intellectual Disabilities

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Didden, Robert; Pichierri, Sabrina

    2010-01-01

    This study assessed a simple behavioral strategy for reducing stereotypic tongue protrusion and forward head tilting displayed by a woman and a man with severe to profound intellectual disabilities. The strategy involved (a) auditory prompting (i.e., verbal encouragements to keep the tongue in the mouth or the head upright) delivered automatically…

  1. Simple adult rabbit model for Campylobacter jejuni enteritis.

    PubMed Central

    Caldwell, M B; Walker, R I; Stewart, S D; Rogers, J E

    1983-01-01

    We tested the usefulness of the Removable Intestinal Tie Adult Rabbit Diarrhea model to establish Campylobacter jejuni infection in rabbits. The procedure involved ligation of the cecum, placement of a slip knot at the terminal ileum, and injection of the test inoculum into the mid-small bowel. The ends of the slip knot were externalized, and the tie was released 4 h later. Fifty-five rabbits received C. jejuni, and 16 received uninoculated medium as controls. Daily rectal swabs were positive for 2 weeks in infected rabbits. The diarrheal attack rate was 64% in infected rabbits and 0% in controls. Diarrhea was characterized by loose, mucus-containing stools after an incubation period ranging from 24 h to 6 days. When blood was obtained daily for culture from 30 rabbits for 4 days post-challenge, bacteremia was present in 96.3% 24 h after challenge but diminished to 5 of 19 (26.3%) at 96 h. Death occurred in 53% of rabbits and was always preceded by diarrhea. No control animal died. Only 5 of 35 animals experiencing diarrhea recovered. An indirect whole-cell enzyme-linked immunosorbent assay was used to determine serum immunoglobulin G responses. Mean titers rose from 1:198 preoperatively to 1:9,087 on day 28. Necropsy on eight infected and two control animals showed inflammatory lesions with ulceration in 62.5% and goblet cell hyperplasia in 75% of infected rabbits. We conclude that the Removable Intestinal Tie Adult Rabbit Diarrhea procedure is a simple, effective method to establish C. jejuni infection which mimics human disease. Images PMID:6642664

  2. A model of head-related transfer functions based on a state-space analysis

    NASA Astrophysics Data System (ADS)

    Adams, Norman Herkamp

    This dissertation develops and validates a novel state-space method for binaural auditory display. Binaural displays seek to immerse a listener in a 3D virtual auditory scene with a pair of headphones. The challenge for any binaural display is to compute the two signals to supply to the headphones. The present work considers a general framework capable of synthesizing a wide variety of auditory scenes. The framework models collections of head-related transfer functions (HRTFs) simultaneously. This framework improves the flexibility of contemporary displays, but it also compounds the steep computational cost of the display. The cost is reduced dramatically by formulating the collection of HRTFs in the state-space and employing order-reduction techniques to design efficient approximants. Order-reduction techniques based on the Hankel-operator are found to yield accurate low-cost approximants. However, the inter-aural time difference (ITD) of the HRTFs degrades the time-domain response of the approximants. Fortunately, this problem can be circumvented by employing a state-space architecture that allows the ITD to be modeled outside of the state-space. Accordingly, three state-space architectures are considered. Overall, a multiple-input, single-output (MISO) architecture yields the best compromise between performance and flexibility. The state-space approximants are evaluated both empirically and psychoacoustically. An array of truncated FIR filters is used as a pragmatic reference system for comparison. For a fixed cost bound, the state-space systems yield lower approximation error than FIR arrays for D>10, where D is the number of directions in the HRTF collection. A series of headphone listening tests are also performed to validate the state-space approach, and to estimate the minimum order N of indiscriminable approximants. For D = 50, the state-space systems yield order thresholds less than half those of the FIR arrays. Depending upon the stimulus uncertainty, a

  3. Deformation Prediction and Geometrical Modeling of Head and Neck Cancer Tumor: A Data Mining Approach

    NASA Astrophysics Data System (ADS)

    Azimi, Maryam

    Radiation therapy has been used in the treatment of cancer tumors for several years and many cancer patients receive radiotherapy. It may be used as primary therapy or with a combination of surgery or other kinds of therapy such as chemotherapy, hormone therapy or some mixture of the three. The treatment objective is to destroy cancer cells or shrink the tumor by planning an adequate radiation dose to the desired target without damaging the normal tissues. By using the pre-treatment Computer Tomography (CT) images, most of the radiotherapy planning systems design the target and assume that the size of the tumor will not change throughout the treatment course, which takes 5 to 7 weeks. Based on this assumption, the total amount of radiation is planned and fractionated for the daily dose required to be delivered to the patient's body. However, this assumption is flawed because the patients receiving radiotherapy have marked changes in tumor geometry during the treatment period. Therefore, there is a critical need to understand the changes of the tumor shape and size over time during the course of radiotherapy in order to prevent significant effects of inaccuracy in the planning. In this research, a methodology is proposed in order to monitor and predict daily (fraction day) tumor volume and surface changes of head and neck cancer tumors during the entire treatment period. In the proposed method, geometrical modeling and data mining techniques will be used rather than repetitive CT scans data to predict the tumor deformation for radiation planning. Clinical patient data were obtained from the University of Texas-MD Anderson Cancer Center (MDACC). In the first step, by using CT scan data, the tumor's progressive geometric changes during the treatment period are quantified. The next step relates to using regression analysis in order to develop predictive models for tumor geometry based on the geometric analysis results and the patients' selected attributes (age, weight

  4. Variability analysis of SAR from 20 MHz to 2.4 GHz for different adult and child models using finite-difference time-domain

    NASA Astrophysics Data System (ADS)

    Conil, E.; Hadjem, A.; Lacroux, F.; Wong, M. F.; Wiart, J.

    2008-03-01

    This paper deals with the variability of body models used in numerical dosimetry studies. Six adult anthropomorphic voxel models have been collected and used to build 5-, 8- and 12-year-old children using a morphing method respecting anatomical parameters. Finite-difference time-domain calculations of a specific absorption rate (SAR) have been performed for a range of frequencies from 20 MHz to 2.4 GHz for isolated models illuminated by plane waves. A whole-body-averaged SAR is presented as well as the average on specific tissues such as skin, muscles, fat or bones and the average on specific parts of the body such as head, legs, arms or torso. Results point out the variability of adult models. The standard deviation of whole-body-averaged SAR of adult models can reach 40%. All phantoms are exposed to the ICNIRP reference levels. Results show that for adults, compliance with reference levels ensures compliance with basic restrictions, but concerning children models involved in this study, the whole-body-averaged SAR goes over the fundamental safety limits up to 40%. For more information on this article, see medicalphysicsweb.org

  5. Variability analysis of SAR from 20 MHz to 2.4 GHz for different adult and child models using finite-difference time-domain.

    PubMed

    Conil, E; Hadjem, A; Lacroux, F; Wong, M F; Wiart, J

    2008-03-21

    This paper deals with the variability of body models used in numerical dosimetry studies. Six adult anthropomorphic voxel models have been collected and used to build 5-, 8- and 12-year-old children using a morphing method respecting anatomical parameters. Finite-difference time-domain calculations of a specific absorption rate (SAR) have been performed for a range of frequencies from 20 MHz to 2.4 GHz for isolated models illuminated by plane waves. A whole-body-averaged SAR is presented as well as the average on specific tissues such as skin, muscles, fat or bones and the average on specific parts of the body such as head, legs, arms or torso. Results point out the variability of adult models. The standard deviation of whole-body-averaged SAR of adult models can reach 40%. All phantoms are exposed to the ICNIRP reference levels. Results show that for adults, compliance with reference levels ensures compliance with basic restrictions, but concerning children models involved in this study, the whole-body-averaged SAR goes over the fundamental safety limits up to 40%. PMID:18367785

  6. Parenting Classes, Parenting Behavior, and Child Cognitive Development in Early Head Start: A Longitudinal Model

    ERIC Educational Resources Information Center

    Chang, Mido; Park, Boyoung; Kim, Sunha

    2009-01-01

    This study analyzed Early Head Start Research and Evaluation (EHSRE) study data, examining the effect of parenting classes on parenting behaviors and children's cognitive outcomes. The study analyzed three sets of dependent variables: parental language and cognitive stimulation, parent-child interactive activities, and the Bayley Mental…

  7. Models of Emotion Skills and Social Competence in the Head Start Classroom

    ERIC Educational Resources Information Center

    Spritz, Becky L.; Sandberg, Elisabeth Hollister; Maher, Edward; Zajdel, Ruth T.

    2010-01-01

    Research Findings: Fostering the social competence of at-risk preschoolers would be facilitated by knowing which of children's emotion skills are most salient to social outcomes. We examined the emotion skills and social competence of 44 children enrolled in a Head Start program. Emotion skills were examined in terms of children's emotional…

  8. Optimal weighted combinatorial forecasting model of QT dispersion of ECGs in Chinese adults

    NASA Astrophysics Data System (ADS)

    Wen, Zhang; Miao, Ge; Xinlei, Liu; Minyi, Cen

    2015-11-01

    This study aims to provide a scientific basis for unifying the reference value standard of QT dispersion of ECGs in Chinese adults. Three predictive models including regression model, principal component model, and artificial neural network model are combined to establish the optimal weighted combination model. The optimal weighted combination model and single model are verified and compared. Optimal weighted combinatorial model can reduce predicting risk of single model and improve the predicting precision. The reference value of geographical distribution of Chinese adults' QT dispersion was precisely made by using kriging methods. When geographical factors of a particular area are obtained, the reference value of QT dispersion of Chinese adults in this area can be estimated by using optimal weighted combinatorial model and reference value of the QT dispersion of Chinese adults anywhere in China can be obtained by using geographical distribution figure as well.

  9. Optimal weighted combinatorial forecasting model of QT dispersion of ECGs in Chinese adults

    NASA Astrophysics Data System (ADS)

    Wen, Zhang; Miao, Ge; Xinlei, Liu; Minyi, Cen

    2016-07-01

    This study aims to provide a scientific basis for unifying the reference value standard of QT dispersion of ECGs in Chinese adults. Three predictive models including regression model, principal component model, and artificial neural network model are combined to establish the optimal weighted combination model. The optimal weighted combination model and single model are verified and compared. Optimal weighted combinatorial model can reduce predicting risk of single model and improve the predicting precision. The reference value of geographical distribution of Chinese adults' QT dispersion was precisely made by using kriging methods. When geographical factors of a particular area are obtained, the reference value of QT dispersion of Chinese adults in this area can be estimated by using optimal weighted combinatorial model and reference value of the QT dispersion of Chinese adults anywhere in China can be obtained by using geographical distribution figure as well.

  10. Bringing older adults into the classroom: the sharing community model.

    PubMed

    Hantman, Shira; Oz, Miriam Ben; Gutman, Caroline; Criden, Wendy

    2013-01-01

    This article describes an innovative model for teaching gerontological social work that has been introduced into the social work methods curriculum in the Department of Social Work at a college in northern Israel. The basic concept of the model is to create an alternative learning environment by including older persons as full participants in the classroom. As experts on old age, they provide social work students with a hands-on learning experience intended to facilitate their understanding of aging. The changing needs of this growing population place a complex and pressing burden on the social systems that provide services to older adults, and on the families that care for them. To meet these needs, it is predicted that there will be a substantial increase in the demand for social workers in the field of gerontology. At present, there is a shortage of social workers who wish to work with this population as a result of negative perceptions and stereotypes relating to old age. This calls for a different approach to teaching gerontological social work, one that will adapt the study of aging to today's older population while addressing the misconceptions and anxieties of social work students. PMID:23383713

  11. Modelling the Species Distribution of Flat-Headed Cats (Prionailurus planiceps), an Endangered South-East Asian Small Felid

    PubMed Central

    Hearn, Andrew J.; Hesse, Deike; Mohamed, Azlan; Traeholdt, Carl; Cheyne, Susan M.; Sunarto, Sunarto; Jayasilan, Mohd-Azlan; Ross, Joanna; Shapiro, Aurélie C.; Sebastian, Anthony; Dech, Stefan; Breitenmoser, Christine; Sanderson, Jim; Duckworth, J. W.; Hofer, Heribert

    2010-01-01

    Background The flat-headed cat (Prionailurus planiceps) is one of the world's least known, highly threatened felids with a distribution restricted to tropical lowland rainforests in Peninsular Thailand/Malaysia, Borneo and Sumatra. Throughout its geographic range large-scale anthropogenic transformation processes, including the pollution of fresh-water river systems and landscape fragmentation, raise concerns regarding its conservation status. Despite an increasing number of camera-trapping field surveys for carnivores in South-East Asia during the past two decades, few of these studies recorded the flat-headed cat. Methodology/Principal Findings In this study, we designed a predictive species distribution model using the Maximum Entropy (MaxEnt) algorithm to reassess the potential current distribution and conservation status of the flat-headed cat. Eighty-eight independent species occurrence records were gathered from field surveys, literature records, and museum collections. These current and historical records were analysed in relation to bioclimatic variables (WorldClim), altitude (SRTM) and minimum distance to larger water resources (Digital Chart of the World). Distance to water was identified as the key predictor for the occurrence of flat-headed cats (>50% explanation). In addition, we used different land cover maps (GLC2000, GlobCover and SarVision LLC for Borneo), information on protected areas and regional human population density data to extract suitable habitats from the potential distribution predicted by the MaxEnt model. Between 54% and 68% of suitable habitat has already been converted to unsuitable land cover types (e.g. croplands, plantations), and only between 10% and 20% of suitable land cover is categorised as fully protected according to the IUCN criteria. The remaining habitats are highly fragmented and only a few larger forest patches remain. Conclusion/Significance Based on our findings, we recommend that future conservation efforts for

  12. An impulsive state feedback control model for releasing white-headed langurs in captive to the wild

    NASA Astrophysics Data System (ADS)

    Xu, Weijian; Chen, Lansun; Chen, Shidong; Pang, Guoping

    2016-05-01

    In this paper, an impulsive state feedback control model for releasing white-headed langurs in captive to the wild is investigated. By using the geometric theory of semi-continuous dynamic system, the method of successor functions and the analogue of the Poincare criterion, it is proved that under certain conditions the system has an order-1 periodic solution with trajectory asymptotical stability, and this periodic solution remains above some critical value. The theoretical results are verified by the numerical simulations. The conclusion is that simultaneously taking the measures of both population migration and artificial breeding can effectively protect wild white-headed langurs, so that the population can continue to survive and can avoid becoming extinct.

  13. Pattern of cerebrospinal immediate early gene c-fos expression in an ovine model of non-accidental head injury.

    PubMed

    Finnie, J W; Blumbergs, P C; Manavis, J; Vink, R

    2013-12-01

    Expression of the immediate early gene, c-fos, was examined in a large animal model of non-accidental head injury ("shaken baby syndrome"). Lambs were used because they have a relatively large gyrencephalic brain and weak neck muscles resembling a human infant. Neonatal lambs were manually shaken in a manner similar to that believed to occur with most abused human infants, but there was no head impact. The most striking c-fos expression was in meningothelial cells of the cranial cervical spinal cord and, to a lesser degree, in hemispheric, cerebellar, and brainstem meninges. Vascular endothelial cells also frequently showed c-fos immunopositivity in the meninges and hemispheric white matter. It was hypothesised that this c-fos immunoreactivity was due to mechanical stress induced by shaking, with differential movement of different craniospinal components. PMID:24035422

  14. Improving inferences from short-term ecological studies with Bayesian hierarchical modeling: white-headed woodpeckers in managed forests

    PubMed Central

    Linden, Daniel W; Roloff, Gary J

    2015-01-01

    Pilot studies are often used to design short-term research projects and long-term ecological monitoring programs, but data are sometimes discarded when they do not match the eventual survey design. Bayesian hierarchical modeling provides a convenient framework for integrating multiple data sources while explicitly separating sample variation into observation and ecological state processes. Such an approach can better estimate state uncertainty and improve inferences from short-term studies in dynamic systems. We used a dynamic multistate occupancy model to estimate the probabilities of occurrence and nesting for white-headed woodpeckers Picoides albolarvatus in recent harvest units within managed forests of northern California, USA. Our objectives were to examine how occupancy states and state transitions were related to forest management practices, and how the probabilities changed over time. Using Gibbs variable selection, we made inferences using multiple model structures and generated model-averaged estimates. Probabilities of white-headed woodpecker occurrence and nesting were high in 2009 and 2010, and the probability that nesting persisted at a site was positively related to the snag density in harvest units. Prior-year nesting resulted in higher probabilities of subsequent occurrence and nesting. We demonstrate the benefit of forest management practices that increase the density of retained snags in harvest units for providing white-headed woodpecker nesting habitat. While including an additional year of data from our pilot study did not drastically alter management recommendations, it changed the interpretation of the mechanism behind the observed dynamics. Bayesian hierarchical modeling has the potential to maximize the utility of studies based on small sample sizes while fully accounting for measurement error and both estimation and model uncertainty, thereby improving the ability of observational data to inform conservation and management strategies

  15. Improving inferences from short-term ecological studies with Bayesian hierarchical modeling: white-headed woodpeckers in managed forests.

    PubMed

    Linden, Daniel W; Roloff, Gary J

    2015-08-01

    Pilot studies are often used to design short-term research projects and long-term ecological monitoring programs, but data are sometimes discarded when they do not match the eventual survey design. Bayesian hierarchical modeling provides a convenient framework for integrating multiple data sources while explicitly separating sample variation into observation and ecological state processes. Such an approach can better estimate state uncertainty and improve inferences from short-term studies in dynamic systems. We used a dynamic multistate occupancy model to estimate the probabilities of occurrence and nesting for white-headed woodpeckers Picoides albolarvatus in recent harvest units within managed forests of northern California, USA. Our objectives were to examine how occupancy states and state transitions were related to forest management practices, and how the probabilities changed over time. Using Gibbs variable selection, we made inferences using multiple model structures and generated model-averaged estimates. Probabilities of white-headed woodpecker occurrence and nesting were high in 2009 and 2010, and the probability that nesting persisted at a site was positively related to the snag density in harvest units. Prior-year nesting resulted in higher probabilities of subsequent occurrence and nesting. We demonstrate the benefit of forest management practices that increase the density of retained snags in harvest units for providing white-headed woodpecker nesting habitat. While including an additional year of data from our pilot study did not drastically alter management recommendations, it changed the interpretation of the mechanism behind the observed dynamics. Bayesian hierarchical modeling has the potential to maximize the utility of studies based on small sample sizes while fully accounting for measurement error and both estimation and model uncertainty, thereby improving the ability of observational data to inform conservation and management strategies

  16. The Model for the Council of Adult Education? Beyond the Myth.

    ERIC Educational Resources Information Center

    Dadswell, Gordon

    2003-01-01

    Presents evidence demonstrating that, although Colin Robert Badger claimed to have originated the model for Australia's Council of Adult Education, another unacknowledged model had actually formed the basis of it. States that the Badger narrative has become an enduring myth in Australian adult education history. (Contains 20 archival and 36…

  17. Development of a Conceptual Model to Predict Physical Activity Participation in Adults with Brain Injuries

    ERIC Educational Resources Information Center

    Driver, Simon

    2008-01-01

    The purpose was to examine psychosocial factors that influence the physical activity behaviors of adults with brain injuries. Two differing models, based on Harter's model of self-worth, were proposed to examine the relationship between perceived competence, social support, physical self-worth, affect, and motivation. Adults numbering 384 with…

  18. The Family of Origin Parachute Model: Landing Safely in Adult Romantic Relationships

    ERIC Educational Resources Information Center

    Busby, Dean M.; Gardner, Brandt C.; Taniguchi, Narumi

    2005-01-01

    This study investigates the utility of the family of origin parachute model in predicting longitudinal outcomes for couples in romantic relationships. This conceptual model contains common family variables that are theoretically and empirically related to later adult functioning and are believed to influence attitudes that adult children develop…

  19. Modeling the effect of head drag reduction for a cylinder with a protruding disk at high mach numbers

    NASA Astrophysics Data System (ADS)

    Isaev, S. A.; Baranov, P. A.; Mikhalev, A. N.; Sudakov, A. G.

    2014-11-01

    Various approaches to modeling super- and hypersonic turbulent airflow past cylindrical bodies with a nontraditional nose in the form of a protruding rod-supported disk have been compared. Aeroballistic experiments on a light-gas propulsion setup were combined with wind tunnel tests and numerical simulations using VP2/3 program package based on multiblock computational techniques and a model of shear stress transport with flow-line curvature corrections. The phenomenon of the head and wave drag reduction for the stepped body is analyzed at high Mach numbers (up to 10) and variation of the supporting rod length under conditions of existence of the frontal flow separation zone.

  20. Bone Circulatory Disturbances in the Development of Spontaneous Bacterial Chondronecrosis with Osteomyelitis: A Translational Model for the Pathogenesis of Femoral Head Necrosis

    PubMed Central

    Wideman, Robert F.; Prisby, Rhonda D.

    2013-01-01

    This review provides a comprehensive overview of the vascularization of the avian growth plate and its subsequent role in the pathogenesis of bacterial chondronecrosis with osteomyelitis (BCO, femoral head necrosis). BCO sporadically causes high incidences of lameness in rapidly growing broiler (meat-type) chickens. BCO is believed to be initiated by micro-trauma to poorly mineralized columns of cartilage cells in the proximal growth plates of the leg bones, followed by colonization by hematogenously distributed opportunistic bacteria. Inadequate blood flow to the growth plate, vascular occlusion, and structural limitations of the microvasculature all have been implicated in the pathogenesis of BCO. Treatment strategies have been difficult to investigate because under normal conditions the incidence of BCO typically is low and sporadic. Rearing broilers on wire flooring triggers the spontaneous development of high incidences of lameness attributable to pathognomonic BCO lesions. Wire flooring imposes persistent footing instability and is thought to accelerate the development of BCO by amplifying the torque and shear stress imposed on susceptible leg joints. Wire flooring per se also constitutes a significant chronic stressor that promotes bacterial proliferation attributed to stress-mediated immunosuppression. Indeed, dexamethasone-mediated immunosuppression causes broilers to develop lameness primarily associated with avascular necrosis and BCO. Prophylactic probiotic administration consistently reduces the incidence of lameness in broilers reared on wire flooring, presumably by reducing bacterial translocation from the gastrointestinal tract that likely contributes to hematogenous infection of the leg bones. The pathogenesis of BCO in broilers is directly relevant to osteomyelitis in growing children, as well as to avascular femoral head necrosis in adults. Our new model for reliably triggering spontaneous osteomyelitis in large numbers of animals represents an

  1. A three-dimensional virtual model of the head generated from digitalized CT or MR images for anatomical-radiological and neurosurgical evaluations.

    PubMed

    Juanes, J A; Espinel, J L; Velasco, M J; Zoreda, J L; Riesco, J M; Carmena, J J; Blanco, E; Marcos, J; Vazquez, R

    1996-12-01

    A computer-generated virtual model has been developed that reconstructs the head in three dimensions from digitalized images obtained with magnetic resonance and computerized tomography. Through programming and the use of commercial graphic animation software, we have developed the whole process of the rotation of the head on different spatial planes. The procedure permits multidirectional anatomical sections to be made on the structure of the head, providing a true dynamic and user-friendly anatomical-radiological atlas. The system serves as a virtual model for the localization of an ideal surgical approach to any lesion thus avoiding possible neurological lesions. PMID:9107107

  2. Are adult nonbreeders prudent parents? The kittiwake model

    USGS Publications Warehouse

    Cam, E.; Hines, J.E.; Monnat, J.-Y.; Nichols, J.D.; Danchin, E.

    1998-01-01

    Understanding evolutionary consequences of intermittent breeding (non-breeding in individuals that previously bred) requires investigation of the relationships between adult breeding state and two demographic parameters: survival probability and subsequent breeding probability. One major difficulty raised by comparing the demographic features of breeders and nonbreeders as estimated from capture-recapture data is that breeding state is often suspected to influence recapture or resighting probability. We used multistate capture-recapture models to test the hypothesis of equal recapture probabilities for breeding and nonbreeding Kittiwakes and found no evidence of an effect of breeding state on this parameter. The same method was used to test whether reproductive state affects survival probability. Nonbreeding individuals have lower survival rates than breeders. Moreover, nonbreeders have a higher probability of being nonbreeders the following year than do breeders. State-specific survival rates and transition probabilities vary from year to year, but temporal variations of survival and transition probabilities of breeders and nonbreeders are in parallel (on a logit scale). These inferences led us to conclude that nonbreeders tend to be lower quality individuals. The effect of sex was also investigated: males and females do not differ with respect to survival probabilities when reproductive state is taken into account. Similarly, there is no effect of sex on transition probabilities between reproductive states.

  3. A Biopsychosocial-Spiritual Model of Chronic Pain in Adults with Sickle Cell Disease

    PubMed Central

    Taylor, Lou Ella V.; Stotts, Nancy A.; Humphreys, Janice; Treadwell, Marsha J.; Miaskowski, Christine

    2011-01-01

    Chronic pain in adults with sickle cell disease (SCD) is a complex multidimensional experience that includes biological, psychological, sociological, and spiritual factors. To date, three models of pain associated with SCD (i.e., biomedical model; biopsychosocial model for SCD pain; Health Belief Model) are published. The biopsychosocial (BPS) multidimensional approach to chronic pain developed by Turk and Gatchel is a widely used model of chronic pain. However, this model has not been applied to chronic pain associated with SCD. In addition, a spiritual/religious dimension is not included in this model. Because spirituality/religion is central to persons affected by SCD, this dimension needs to be added to any model of chronic pain in adults with SCD. In fact, data from one study suggest that spirituality/religiosity is associated with decreased pain intensity in adults with chronic pain from SCD. A BPS-Spiritual model is proposed for adults with chronic pain from SCD since it embraces the whole person. This model includes the biological, psychological, sociological, and spiritual factors relevant to adults with SCD based on past and current research. The purpose of this paper is to describe an adaptation of Turk and Gatchel’s model of chronic pain for adults with SCD and to summarize research findings that support each component of the revised model (i.e., biological, psychological, sociological, spiritual). The paper concludes with a discussion of implications for the use of this model in research. PMID:24315252

  4. Head lice.

    PubMed

    Frankowski, Barbara L; Bocchini, Joseph A

    2010-08-01

    Head lice infestation is associated with limited morbidity but causes a high level of anxiety among parents of school-aged children. Since the 2002 clinical report on head lice was published by the American Academy of Pediatrics, patterns of resistance to products available over-the-counter and by prescription have changed, and additional mechanical means of removing head lice have been explored. This revised clinical report clarifies current diagnosis and treatment protocols and provides guidance for the management of children with head lice in the school setting. PMID:20660553

  5. Sensory Interactions for Head and Trunk Control in Space in Young and Older Adults During Normal and Narrow-Base Walking.

    PubMed

    Zhang, Fang; Deshpande, Nandini

    2016-01-01

    Fifteen young (20-30 years old) and 15 older (>65 years old) healthy participants were recruited to investigate age-related differences in head and trunk control under suboptimal vestibular conditions (galvanic vestibular stimulation, or GVS) and vision conditions during normal and narrow-based walking. Head-roll velocity decreased in the blurred-vision condition and marginally increased with GVS in older but not in young participants. Head pitch increased, whereas head-roll velocity decreased in narrow-base walking. Trunk pitch, trunk-pitch velocity, and gait speed increased with GVS, whereas trunk-pitch velocity and gait speed decreased in narrow-base walking. Marginally increased head-roll velocity in the older participants possibly suggests decreased integrative ability of the central nervous system in elderly people. The changes in head control during narrow-base walking may be an attempt to simplify the interpretation of the vestibular signal and increase otolith sensitivity. The complexity of controlling the trunk in the mediolateral direction was suggested by different strategies used for trunk control in different conditions. PMID:25675141

  6. Impact of head models in N170 component source imaging: results in control subjects and ADHD patients

    NASA Astrophysics Data System (ADS)

    Beltrachini, L.; Blenkmann, A.; von Ellenrieder, N.; Petroni, A.; Urquina, H.; Manes, F.; Ibáñez, A.; Muravchik, C. H.

    2011-12-01

    The major goal of evoked related potential studies arise in source localization techniques to identify the loci of neural activity that give rise to a particular voltage distribution measured on the surface of the scalp. In this paper we evaluate the effect of the head model adopted in order to estimate the N170 component source in attention deficit hyperactivity disorder (ADHD) patients and control subjects, considering faces and words stimuli. The standardized low resolution brain electromagnetic tomography algorithm (sLORETA) is used to compare between the three shell spherical head model and a fully realistic model based on the ICBM-152 atlas. We compare their variance on source estimation and analyze the impact on the N170 source localization. Results show that the often used three shell spherical model may lead to erroneous solutions, specially on ADHD patients, so its use is not recommended. Our results also suggest that N170 sources are mainly located in the right occipital fusiform gyrus for faces stimuli and in the left occipital fusiform gyrus for words stimuli, for both control subjects and ADHD patients. We also found a notable decrease on the N170 estimated source amplitude on ADHD patients, resulting in a plausible marker of the disease.

  7. Modeling distance-dependent individual head-related transfer functions in the horizontal plane using frontal projection headphones.

    PubMed

    Sunder, Kaushik; Gan, Woon-Seng; Tan, Ee-Leng

    2015-07-01

    The veracity of virtual audio is degraded by the use of non-individualized head-related transfer functions (HRTFs) due to the introduction of front-back, elevation confusions, and timbral coloration. Hence, an accurate reproduction of spatial sound demands the use of individualized HRTFs. Measuring distance-dependent individualized HRTFs can be extremely tedious, since it requires precise measurements at several distances in the proximal region (<1 m) for each individual. This paper proposes a technique to model distance-dependent individualized HRTFs in the horizontal plane using "frontal projection headphones playback" that does not require individualized measurements. The frontal projection headphones [Sunder, Tan, and Gan (2013). J. Audio Eng. Soc. 61, 989-1000] project the sound directly onto the pinnae from the front, and thus inherently create listener's idiosyncratic pinna cues at the eardrum. Perceptual experiments were conducted to investigate cues (auditory parallax and interaural level differences) that aid distance perception in anechoic conditions. Interaural level differences were identified as the prominent cue for distance perception and a spherical head model was used to model these distance-dependent features. Detailed psychophysical experiments revealed that the modeled distance-dependent individualized HRTFs exhibited localization performance close to the measured distance-dependent individualized HRTFs for all subjects. PMID:26233016

  8. Dynamics of the head-neck complex in response to the trunk horizontal vibration: modeling and identification.

    PubMed

    Fard, Mohammad A; Ishihara, Tadashi; Inooka, Hikaru

    2003-08-01

    Although many studies exist concerning the influence of seat vibration on the head in the seated human body, the dynamic response of the head-neck complex (HNC) to the trunk vibration has not been well investigated. Little quantitative knowledge exists about viscoelastic parameters of the neck. In this study, the dynamics of the HNC is identified when it is exposed to the trunk horizontal (fore-and-aft) vibration. The frequency response functions between the HNC angular velocity and the trunk horizontal acceleration, corresponding to four volunteers, are obtained in the frequency range of 0.5 Hz to 10 Hz. A fourth-order mathematical model, derived by considering a double-inverted-pendulum model for the HNC, is designed to simulate the dynamic response of the HNC to the trunk horizontal vibration. The frequency domain identification method is used to determine the coefficients of the mathematical model of the HNC. Good agreement has been obtained between experimental and simulation results. This indicates that the system, similar to the designed fourth-order model, has mainly two resonance frequencies. The viscoelastic parameters of the neck, including the spring and damping coefficients, are then obtained by use of the optimization method. PMID:12968578

  9. The role of cerebral spinal fluid in light propagation through the mouse head: improving fluorescence tomography with Monte Carlo modeling

    NASA Astrophysics Data System (ADS)

    Ancora, Daniele; Zacharopoulos, Athanasios; Ripoll, Jorge; Zacharakis, Giannis

    2016-03-01

    Optical Neuroimaging is a highly dynamical field of research owing to the combination of many advanced imaging techniques and computational tools that uncovered unexplored paths through the functioning of the brain. Light propagation modelling through such complicated structures has always played a crucial role as the basis for a high resolution and quantitative imaging where even the slightest improvement could lead to significant results. Fluorescence Diffuse Optical Tomography (fDOT), a widely used technique for three dimensional imaging of small animals and tissues, has been proved to be inaccurate for neuroimaging the mouse head without the knowledge of a-priori anatomical information of the subject. Commonly a normalized Born approximation model is used in fDOT reconstruction based on forward photon propagation using Diffusive Equation (DE) which has strong limitations in the optically clear regime. The presence of the Cerebral Spinal Fluid (CSF) instead, a thin optically clear layer surrounding the brain, can be more accurately taken into account using Monte Carlo approaches which nowadays is becoming more usable thanks to parallelized GPU algorithms. In this work we discuss the results of a synthetic experimental comparison, resulting to the increase of the accuracy for the Born approximation by introducing the CSF layer in a realistic mouse head structure with respect to the current model. We point out the importance of such clear layer for complex geometrical models, while for simple slab phantoms neglecting it does not introduce a significant error.

  10. SU-E-T-08: A Convolution Model for Head Scatter Fluence in the Intensity Modulated Field

    SciTech Connect

    Chen, M; Mo, X; Chen, Y; Parnell, D; Key, S; Olivera, G; Galmarini, W; Lu, W

    2014-06-01

    Purpose: To efficiently calculate the head scatter fluence for an arbitrary intensity-modulated field with any source distribution using the source occlusion model. Method: The source occlusion model with focal and extra focal radiation (Jaffray et al, 1993) can be used to account for LINAC head scatter. In the model, the fluence map of any field shape at any point can be calculated via integration of the source distribution within the visible range, as confined by each segment, using the detector eye's view. A 2D integration would be required for each segment and each fluence plane point, which is time-consuming, as an intensity-modulated field contains typically tens to hundreds of segments. In this work, we prove that the superposition of the segmental integrations is equivalent to a simple convolution regardless of what the source distribution is. In fact, for each point, the detector eye's view of the field shape can be represented as a function with the origin defined at the point's pinhole reflection through the center of the collimator plane. We were thus able to reduce hundreds of source plane integration to one convolution. We calculated the fluence map for various 3D and IMRT beams and various extra-focal source distributions using both the segmental integration approach and the convolution approach and compared the computation time and fluence map results of both approaches. Results: The fluence maps calculated using the convolution approach were the same as those calculated using the segmental approach, except for rounding errors (<0.1%). While it took considerably longer time to calculate all segmental integrations, the fluence map calculation using the convolution approach took only ∼1/3 of the time for typical IMRT fields with ∼100 segments. Conclusions: The convolution approach for head scatter fluence calculation is fast and accurate and can be used to enhance the online process.

  11. Vasculature deprivation – induced osteonecrosis of the rat femoral head as a model for therapeutic trials

    PubMed Central

    Bejar, Jacob; Peled, Eli; Boss, Jochanan H

    2005-01-01

    Experimental Osteonecrosis The authors' experience with experimentally produced femoral capital osteonecrosis in rats is reviewed: incising the periosteum at the base of the neck of the femur and cutting the ligamentum teres leads to coagulation necrosis of the epiphysis. The necrotic debris is substituted by fibrous tissue concomitantly with resorption of the dead soft and hard tissues by macrophages and osteoclasts, respectively. Progressively, the formerly necrotic epiphysis is repopulated by hematopoietic-fatty tissue, and replaced by architecturally abnormal and biomechanically weak bone. The femoral heads lose their smooth-surfaced hemispherical shape in the wake of the load transfer through the hip joint such that, together with regressive changes of the joint cartilage and inflammatory-hyperplastic changes of the articular membrane, an osteoarthritis-like disorder ensues. Therapeutic Choices Diverse therapeutic options are studied to satisfy the different opinions concerning the significance of diverse etiological and pathogenic mechanisms: 1. Exposure to hyperbaric oxygen. 2. Exposure to hyperbaric oxygen and non-weight bearing on the operated hip. 3. Medication with enoxaparin. 4. Reduction of intraosseous hypertension, putting to use a procedure aimed at core decompression, namely drilling a channel through the femoral head. 5. Medication with vascular endothelial growth factor with a view to accelerating revascularization. 6. Medication with zoledronic acid to decrease osteoclastic productivity such that the remodeling of the femoral head is slowed. Glucocorticoid-related osteonecrosis appears to be apoptosis-related, thus differing from the vessel-deprivation-induced tissue coagulation found in idiopathic osteonecrosis. The quantities of TNF-α, RANK-ligand and osteoprotegerin are raised in glucocorticoid-treated osteoblasts so that the differentiation of osteoclasts is blocked. Moreover, the osteoblasts and osteocytes of the femoral cortex mostly

  12. Field Verification of the Prediction Model on Desert Locust Adult Phase Status From Density and Vegetation

    PubMed Central

    Cissé, S.; Ghaout, S.; Babah Ebbe, M. A; Kamara, S; Piou, C.

    2016-01-01

    Previous studies investigated the effect of vegetation on density thresholds of adult Desert Locust gregarization from historical data in Mauritania. We examine here the prediction of locust phase based on adult density and vegetation conditions using the statistical model from Cisse et al. compared with actual behavior of Desert Locust adults observed in the field in Mauritania. From the 130 sites where adult locusts were found, the model predicted the phase of Desert Locust adults with a relatively small error of prediction of 6.1%. Preventive locust control should be rational, based on a risk assessment. The staff involved in implementation of the preventive control strategy needs specific indicators for when or where chemical treatment should be done. In this respect, we show here that the statistical model of Cisse et al. may be appropriate. PMID:27432351

  13. Field Verification of the Prediction Model on Desert Locust Adult Phase Status From Density and Vegetation.

    PubMed

    Cissé, S; Ghaout, S; Babah Ebbe, M A; Kamara, S; Piou, C

    2016-01-01

    Previous studies investigated the effect of vegetation on density thresholds of adult Desert Locust gregarization from historical data in Mauritania. We examine here the prediction of locust phase based on adult density and vegetation conditions using the statistical model from Cisse et al. compared with actual behavior of Desert Locust adults observed in the field in Mauritania. From the 130 sites where adult locusts were found, the model predicted the phase of Desert Locust adults with a relatively small error of prediction of 6.1%. Preventive locust control should be rational, based on a risk assessment. The staff involved in implementation of the preventive control strategy needs specific indicators for when or where chemical treatment should be done. In this respect, we show here that the statistical model of Cisse et al. may be appropriate. PMID:27432351

  14. Magnetic fabric and modeled strain distribution in the head of a nested granite diapir, the Melechov pluton, Bohemian Massif

    NASA Astrophysics Data System (ADS)

    Trubač, Jakub; Žák, Jiří; Chlupáčová, Marta; Janoušek, Vojtěch

    2014-09-01

    The Melechov pluton, Bohemian Massif, is interpreted as a mid-crustal nested granitic diapir with an apical part exposed at the present-day erosion level. The diapir head exhibits a concentric structure defined by lithologic zoning and by the anisotropy of magnetic susceptibility (AMS). In concert with theoretical models, outward-dipping margin-parallel magnetic foliations are associated with oblate shapes of the susceptibility ellipsoids and higher degree of anisotropy, passing inward into weaker triaxial to prolate fabric. By contrast, magnetic fabric in an inner granite unit is in places oriented at a high angle to internal contacts and is interpreted as recording an internal diapir circulation. We use inverse modeling to calculate strain variations across the diapir from the AMS data. The magnetic fabric parameters and calculated strains are in agreement with strain distribution in heads of model Newtonian diapirs traveling a distance of two body radii and suggest granitic magma ascent as a crystal-poor suspension followed by crystallization of fabric markers and their response to strain near the final emplacement level. The intrusive fabric thus formed late but, though generally weak, was still capable of recording incremental strain gradient in the granite diapir.

  15. Negative Adult Influences and the Protective Effects of Role Models: A Study with Urban Adolescents

    ERIC Educational Resources Information Center

    Hurd, Noelle M.; Zimmerman, Marc A.; Xue, Yange

    2009-01-01

    We investigated whether role models (individuals adolescents look up to) contributed to the resilience of adolescents who were exposed to negative nonparental adult influences. Our sample included 659 African American, ninth-grade adolescents. We found that adolescents' exposure to negative adult behavior was associated with increased…

  16. Images of Women in Historical Young Adult Fiction: Seeking Role Models.

    ERIC Educational Resources Information Center

    Boreen, Jean

    1999-01-01

    Considers a number of young adult novels in light of how they cast female characters as potential role models to which late 20th-century adolescent readers can relate. Offers brief descriptions of 28 young adult books of historical fiction set in America with female protagonists. (SR)

  17. The Five Factor Model of Personality Applied to Adults Who Stutter

    ERIC Educational Resources Information Center

    Iverach, Lisa; O'Brian, Susan; Jones, Mark; Block, Susan; Lincoln, Michelle; Harrison, Elisabeth; Hewat, Sally; Menzies, Ross G.; Packman, Ann; Onslow, Mark

    2010-01-01

    Previous research has not explored the Five Factor Model of personality among adults who stutter. Therefore, the present study investigated the five personality domains of Neuroticism, Extraversion, Openness, Agreeableness and Conscientiousness, as measured by the NEO Five Factor Inventory (NEO-FFI), in a sample of 93 adults seeking speech…

  18. Innovation in Doctoral Degrees Designed for Adult Learners: A Hybrid Model in Personal Financial Planning

    ERIC Educational Resources Information Center

    Grable, John E.

    2011-01-01

    Innovation in doctoral degree program development and delivery provides an effective counterpoint to the expert-apprentice model established in the Middle Ages. The author outlines the importance of innovation in reaching adult learners and describes an innovative hybrid PhD program designed to allow aspiring doctoral adult-age students to pursue…

  19. Adapting the Individual Placement and Support Model with Homeless Young Adults

    ERIC Educational Resources Information Center

    Ferguson, Kristin M.; Xie, Bin; Glynn, Shirley

    2012-01-01

    Background: Prior research reveals high unemployment rates among homeless young adults. The literature offers many examples of using evidence-based supported employment models with vulnerable populations to assist them in obtaining and maintaining competitive employment; yet few examples exist to date with homeless young adults with mental…

  20. Fostering a New Model of Multigenerational Learning: Older Adult Perspectives, Community Partners, and Higher Education

    ERIC Educational Resources Information Center

    Dauenhauer, Jason; Steitz, David W.; Cochran, Lynda J.

    2016-01-01

    Intergenerational service-learning initiatives are an increasingly common educational practice designed to engage college students and older adults with one another. The growth of the baby boomer population and a growing interest in lifelong learning opportunities among older adults have the potential to create new models of multigenerational…

  1. Children Are Not like Older Adults: A Diffusion Model Analysis of Developmental Changes in Speeded Responses

    ERIC Educational Resources Information Center

    Ratcliff, Roger; Love, Jessica; Thompson, Clarissa A.; Opfer, John E.

    2012-01-01

    Children (n = 130; M[subscript age] = 8.51-15.68 years) and college-aged adults (n = 72; M[subscript age] = 20.50 years) completed numerosity discrimination and lexical decision tasks. Children produced longer response times (RTs) than adults. R. Ratcliff's (1978) diffusion model, which divides processing into components (e.g., quality of…

  2. Temporal and Spatial Weighting of Head and Concentration Observations for a Large-Scale Transient Inverse Model

    SciTech Connect

    Scheibe, Timothy D.; Murray, Christopher J.; Xie, YuLong; Williams, Mark D.; Cole, Charles R.; Vermeul, Vince R.; Bergeron, Marcel P.

    2003-09-19

    A regional-scale, three-dimensional groundwater flow and transport modeling effort is ongoing to quantify the environmental consequences of past waste disposal activities and support environmental management activities at the U.S. Department of Energy’s 560-square-mile Hanford Site in southeastern Washington. On the order of one thousand wells in the deep surficial aquifer have been monitored over several decades of site operations (beginning in the 1940’s), and tens of thousands of observations of water table elevation (head) and contaminant concentrations (primarily tritium) have been made over that same period. These data are currently being used as the basis for a site-wide inverse modeling effort to identify model parameters and quantify model uncertainty. Several issues complicate the assignment of appropriate weights to the observations used in the inverse modeling process. The precision of available monitoring techniques has changed significantly over the modeled time period, and the associated error weighting should reflect the methods used (which were in some cases not well documented). In some cases, the detection limits are poorly defined, and some analytical techniques can give rise to non-physical results (such as negative measured concentrations). In addition, the data are strongly clustered both in space and time. This presents the possibility of the inverse solution being too strongly influenced by a cluster of similar values. However, the elimination of some data by declustering techniques, or alternatively, the adjustment of observation weights used in the objective function, raises problems with interpretation and regulatory acceptance of model predictions and uncertainty estimates. This paper presents the methods we have utilized to assign appropriate weights to head and concentration observations and discusses potential issues associated with the weighting scheme employed.

  3. Structure-based modeling of head-related transfer functions towards interactive customization of binaural sound systems

    NASA Astrophysics Data System (ADS)

    Gupta, Navarun

    2003-10-01

    One of the most popular techniques for creating spatialized virtual sounds is based on the use of Head-Related Transfer Functions (HRTFs). HRTFs are signal processing models that represent the modifications undergone by the acoustic signal as it travels from a sound source to each of the listener's eardrums. These modifications are due to the interaction of the acoustic waves with the listener's torso, shoulders, head and pinnae, or outer ears. As such, HRTFs are somewhat different for each listener. For a listener to perceive synthesized 3-D sound cues correctly, the synthesized cues must be similar to the listener's own HRTFs. One can measure individual HRTFs using specialized recording systems, however, these systems are prohibitively expensive and restrict the portability of the 3-D sound system. HRTF-based systems also face several computational challenges. This dissertation presents an alternative method for the synthesis of binaural spatialized sounds. The sound entering the pinna undergoes several reflective, diffractive and resonant phenomena, which determine the HRTF. Using signal processing tools, such as Prony's signal modeling method, an appropriate set of time delays and a resonant frequency were used to approximate the measured Head-Related Impulse Responses (HRIRs). Statistical analysis was used to find out empirical equations describing how the reflections and resonances are determined by the shape and size of the pinna features obtained from 3D images of 15 experimental subjects modeled in the project. These equations were used to yield "Model HRTFs" that can create elevation effects. Listening tests conducted on 10 subjects show that these model HRTFs are 5% more effective than generic HRTFs when it comes to localizing sounds in the frontal plane. The number of reversals (perception of sound source above the horizontal plane when actually it is below the plane and vice versa) was also reduced by 5.7%, showing the perceptual effectiveness of this

  4. A Novel Closed-Head Model of Mild Traumatic Brain Injury Using Focal Primary Overpressure Blast to the Cranium in Mice.

    PubMed

    Guley, Natalie H; Rogers, Joshua T; Del Mar, Nobel A; Deng, Yunping; Islam, Rafiqul M; D'Surney, Lauren; Ferrell, Jessica; Deng, Bowei; Hines-Beard, Jessica; Bu, Wei; Ren, Huiling; Elberger, Andrea J; Marchetta, Jeffrey G; Rex, Tonia S; Honig, Marcia G; Reiner, Anton

    2016-02-15

    Mild traumatic brain injury (TBI) from focal head impact is the most common form of TBI in humans. Animal models, however, typically use direct impact to the exposed dura or skull, or blast to the entire head. We present a detailed characterization of a novel overpressure blast system to create focal closed-head mild TBI in mice. A high-pressure air pulse limited to a 7.5 mm diameter area on the left side of the head overlying the forebrain is delivered to anesthetized mice. The mouse eyes and ears are shielded, and its head and body are cushioned to minimize movement. This approach creates mild TBI by a pressure wave that acts on the brain, with minimal accompanying head acceleration-deceleration. A single 20-psi blast yields no functional deficits or brain injury, while a single 25-40 psi blast yields only slight motor deficits and brain damage. By contrast, a single 50-60 psi blast produces significant visual, motor, and neuropsychiatric impairments and axonal damage and microglial activation in major fiber tracts, but no contusive brain injury. This model thus reproduces the widespread axonal injury and functional impairments characteristic of closed-head mild TBI, without the complications of systemic or ocular blast effects or head acceleration that typically occur in other blast or impact models of closed-skull mild TBI. Accordingly, our model provides a simple way to examine the biomechanics, pathophysiology, and functional deficits that result from TBI and can serve as a reliable platform for testing therapies that reduce brain pathology and deficits. PMID:26414413

  5. Integrating deterministic lithostratigraphic models in stochastic realizations of subsurface heterogeneity. Impact on predictions of lithology, hydraulic heads and groundwater fluxes

    NASA Astrophysics Data System (ADS)

    Bianchi, Marco; Kearsey, Timothy; Kingdon, Andrew

    2015-12-01

    Realistic representations of geological complexity are important to address several engineering and environmental challenges. The spatial distribution of properties controlling physical and geochemical processes can be effectively described by the geological structure of the subsurface. In this work, we present an approach to account for geological structure in geostatistical simulations of categorical variables. The approach is based on the extraction of information from a deterministic conceptualization of the subsurface, which is then used in the geostatistical analysis for the development of models of spatial correlation and as soft conditioning data. The approach was tested to simulate the distribution of four lithofacies in highly heterolithic Quaternary deposits. A transition probability-based stochastic model was implemented using hard borehole data and soft data extracted from a 3-D deterministic lithostratigraphic model. Simulated lithofacies distributions were also used as input in a flow model for numerical simulation of hydraulic head and groundwater flux. The outputs from these models were compared to corresponding values from models based exclusively on borehole data. Results show that soft lithostratigraphic information increases the accuracy and reduces the uncertainty of these predictions. The representation of the geological structure also allows a more precise definition of the spatial distribution of prediction uncertainty, here quantified with a metric based on Shannon information entropy. Correlations between prediction uncertainties for lithofacies, hydraulic heads and groundwater fluxes were also investigated. The results from this analysis provide useful insights about the incorporation of soft geological data into stochastic realizations of subsurface heterogeneity, and emphasize the critical importance of this type of information for reducing the uncertainty of simulations considering flux-dependent processes.

  6. Normal Tissue Complication Probability Modeling of Radiation-Induced Hypothyroidism After Head-and-Neck Radiation Therapy

    SciTech Connect

    Bakhshandeh, Mohsen; Hashemi, Bijan; Mahdavi, Seied Rabi Mehdi; Nikoofar, Alireza; Vasheghani, Maryam; Kazemnejad, Anoshirvan

    2013-02-01

    Purpose: To determine the dose-response relationship of the thyroid for radiation-induced hypothyroidism in head-and-neck radiation therapy, according to 6 normal tissue complication probability models, and to find the best-fit parameters of the models. Methods and Materials: Sixty-five patients treated with primary or postoperative radiation therapy for various cancers in the head-and-neck region were prospectively evaluated. Patient serum samples (tri-iodothyronine, thyroxine, thyroid-stimulating hormone [TSH], free tri-iodothyronine, and free thyroxine) were measured before and at regular time intervals until 1 year after the completion of radiation therapy. Dose-volume histograms (DVHs) of the patients' thyroid gland were derived from their computed tomography (CT)-based treatment planning data. Hypothyroidism was defined as increased TSH (subclinical hypothyroidism) or increased TSH in combination with decreased free thyroxine and thyroxine (clinical hypothyroidism). Thyroid DVHs were converted to 2 Gy/fraction equivalent doses using the linear-quadratic formula with {alpha}/{beta} = 3 Gy. The evaluated models included the following: Lyman with the DVH reduced to the equivalent uniform dose (EUD), known as LEUD; Logit-EUD; mean dose; relative seriality; individual critical volume; and population critical volume models. The parameters of the models were obtained by fitting the patients' data using a maximum likelihood analysis method. The goodness of fit of the models was determined by the 2-sample Kolmogorov-Smirnov test. Ranking of the models was made according to Akaike's information criterion. Results: Twenty-nine patients (44.6%) experienced hypothyroidism. None of the models was rejected according to the evaluation of the goodness of fit. The mean dose model was ranked as the best model on the basis of its Akaike's information criterion value. The D{sub 50} estimated from the models was approximately 44 Gy. Conclusions: The implemented normal tissue

  7. Novel Word Learning of Preschoolers Enrolled in Head Start Regular and Bilingual Classrooms: Impact of Adult Vocabulary Noneliciting Questions during Shared Storybook Reading

    ERIC Educational Resources Information Center

    Walsh, Bridget A.

    2009-01-01

    This dissertation study employed quantitative methods to investigate the impact of adult questioning styles on children's novel vocabulary acquisition during shared storybook reading. In an effort to examine adult qualitative variations in shared storybook readings, two experiments were conducted to assess the effect of noneliciting questions…

  8. Head injury.

    PubMed

    Hureibi, K A; McLatchie, G R

    2010-05-01

    Head injury is one of the commonest injuries in sport. Most are mild but some can have serious outcomes. Sports medicine doctors should be able to recognise the clinical features and evaluate athletes with head injury. It is necessary during field assessment to recognise signs and symptoms that help in assessing the severity of injury and making a decision to return-to-play. Prevention of primary head injury should be the aim. This includes protective equipment like helmets and possible rule changes. PMID:20533694

  9. Blunt force impact to the head using a teeball bat: systematic comparison of physical and finite element modeling.

    PubMed

    Kettner, Mattias; Ramsthaler, Frank; Potente, Stefan; Bockenheimer, Alexander; Schmidt, Peter H; Schrodt, Michael

    2014-12-01

    Blunt head trauma secondary to violent actions with various weapons is frequently a cause of injury in forensic casework; differing striking tools have varying degrees of injury capacity. The systematic approach used to examine a 19-year-old student who was beaten with a wooden teeball bat will be described. The assailant stopped beating the student when the teeball bat broke into two pieces. The surviving victim sustained bruises and a forehead laceration. The State's Attorney assigned a forensic expert to examine whether the forces exerted on the victim's head (leading to the fracture of the bat) were potentially life threatening (e.g. causing cranial bone fractures). Physical modeling was conducted using a pigskin-covered polyethylene end cap cushioned by cellulose that was connected to a piezoelectric force gauge. Experiments with teeball bats weighing 295-485 g demonstrated that 12-20 kN forces were necessary to cause a comparable bat fracture. In addition to physical testing, a computer-aided simulation was conducted, utilizing a finite-element (FE) method. In the FE approach, after selecting for wood properties, a virtual bat was swung against a hemisphere comprising two layers that represented bone and soft tissue. Employing this model, a 17.6 kN force was calculated, with the highest fracture probability points resembling the fracture patterns of the physically tested bats. PMID:25107575

  10. Depth-compensated diffuse optical tomography enhanced by general linear model analysis and an anatomical atlas of human head.

    PubMed

    Tian, Fenghua; Liu, Hanli

    2014-01-15

    One of the main challenges in functional diffuse optical tomography (DOT) is to accurately recover the depth of brain activation, which is even more essential when differentiating true brain signals from task-evoked artifacts in the scalp. Recently, we developed a depth-compensated algorithm (DCA) to minimize the depth localization error in DOT. However, the semi-infinite model that was used in DCA deviated significantly from the realistic human head anatomy. In the present work, we incorporated depth-compensated DOT (DC-DOT) with a standard anatomical atlas of human head. Computer simulations and human measurements of sensorimotor activation were conducted to examine and prove the depth specificity and quantification accuracy of brain atlas-based DC-DOT. In addition, node-wise statistical analysis based on the general linear model (GLM) was also implemented and performed in this study, showing the robustness of DC-DOT that can accurately identify brain activation at the correct depth for functional brain imaging, even when co-existing with superficial artifacts. PMID:23859922

  11. On the magnetic field distribution generated by a dipolar current source situated in a realistically shaped compartment model of the head.

    PubMed

    Meijs, J W; Bosch, F G; Peters, M J; Lopes da Silva, F H

    1987-03-01

    The magnetic field distribution around the head is simulated using a realistically shaped compartment model of the head. The model is based on magnetic resonance images. The 3 compartments describe the brain, the skull and the scalp. The source is represented by a current dipole situated in the visual cortex. The magnetic field distribution due to the source and that due to the volume currents are calculated separately. The simulations are carried out in order to ascertain which matrix of grid points is suitable as a measuring grid. The possibilities studied are grid points situated in a plane, in a surface which follows the contours of the head and in a sphere. This sphere is taken concentric to the sphere which is the best possible fit for the head. Taking into account the relative contribution of the volume currents and the possible accuracy in the positioning of the magnetic field detector, it can be concluded that the best choice is to measure the normal component of the magnetic field at points which are situated in the spherical surface. The results of this study also show that the magnetic field distribution based on a realistically shaped compartment model differs from that based on a compartment model consisting of concentric spheres. In the spherical model of the head no contribution of the volume currents to the component of the field normal to the sphere can be expected. The difference between the results obtained with these two volume conductor models increases with source depth. PMID:2434313

  12. The Application of a Generativity Model for Older Adults

    ERIC Educational Resources Information Center

    Ehlman, Katie; Ligon, Mary

    2012-01-01

    Generativity is a concept first introduced by Erik Erikson as a part of his psychosocial theory which outlines eight stages of development in the human life. Generativity versus stagnation is the main developmental concern of middle adulthood; however, generativity is also recognized as an important theme in the lives of older adults. Building on…

  13. Andragogy Content Knowledge Technology: A Training Model for Teaching Adults

    ERIC Educational Resources Information Center

    Santos, Roberta

    2012-01-01

    Professional Development (PD) is an important tool in the field of education. Successful PD programs are those that include adult learning methods and opportunities for experiential learning and discussion. The university where this action research was conducted does not offer formal training to adjunct instructors. The adjunct instructors are…

  14. EVALUATING RISK IN OLDER ADULTS USING PHYSIOLOGICALLY BASED PHARMACOKINETIC MODELS

    EPA Science Inventory

    The rapid growth in the number of older Americans has many implications for public health, including the need to better understand the risks posed by environmental exposures to older adults. An important element for evaluating risk is the understanding of the doses of environment...

  15. Actively targeted gold nanoparticles as novel radiosensitizer agents: an in vivo head and neck cancer model

    NASA Astrophysics Data System (ADS)

    Popovtzer, Aron; Mizrachi, Aviram; Motiei, Menachem; Bragilovski, Dimitri; Lubimov, Leon; Levi, Mattan; Hilly, Ohad; Ben-Aharon, Irit; Popovtzer, Rachela

    2016-01-01

    A major problem in the treatment of head and neck cancer today is the resistance of tumors to traditional radiation therapy, which results in 40% local failure, despite aggressive treatment. The main objective of this study was to develop a technique which will overcome tumor radioresistance by increasing the radiation absorbed in the tumor using cetuximab targeted gold nanoparticles (GNPs), in clinically relevant energies and radiation dosage. In addition, we have investigated the biological mechanisms underlying tumor shrinkage and the in vivo toxicity of GNP. The results showed that targeted GNP enhanced the radiation effect and had a significant impact on tumor growth (P < 0.001). The mechanism of radiation enhancement was found to be related to earlier and greater apoptosis (TUNEL assay), angiogenesis inhibition (by CD34 level) and diminished repair mechanism (PCNA staining). Additionally, GNPs have been proven to be safe as no evidence of toxicity has been observed.

  16. Influence of Head Motion on the Accuracy of 3D Reconstruction with Cone-Beam CT: Landmark Identification Errors in Maxillofacial Surface Model

    PubMed Central

    Song, Jin-Myoung; Cho, Jin-Hyoung

    2016-01-01

    Purpose The purpose of this study was to investigate the influence of head motion on the accuracy of three-dimensional (3D) reconstruction with cone-beam computed tomography (CBCT) scan. Materials and Methods Fifteen dry skulls were incorporated into a motion controller which simulated four types of head motion during CBCT scan: 2 horizontal rotations (to the right/to the left) and 2 vertical rotations (upward/downward). Each movement was triggered to occur at the start of the scan for 1 second by remote control. Four maxillofacial surface models with head motion and one control surface model without motion were obtained for each skull. Nine landmarks were identified on the five maxillofacial surface models for each skull, and landmark identification errors were compared between the control model and each of the models with head motion. Results Rendered surface models with head motion were similar to the control model in appearance; however, the landmark identification errors showed larger values in models with head motion than in the control. In particular, the Porion in the horizontal rotation models presented statistically significant differences (P < .05). Statistically significant difference in the errors between the right and left side landmark was present in the left side rotation which was opposite direction to the scanner rotation (P < .05). Conclusions Patient movement during CBCT scan might cause landmark identification errors on the 3D surface model in relation to the direction of the scanner rotation. Clinicians should take this into consideration to prevent patient movement during CBCT scan, particularly horizontal movement. PMID:27065238

  17. Situation Model Updating in Young and Older Adults: Global versus Incremental Mechanisms

    PubMed Central

    Bailey, Heather R.; Zacks, Jeffrey M.

    2015-01-01

    Readers construct mental models of situations described by text. Activity in narrative text is dynamic, so readers must frequently update their situation models when dimensions of the situation change. Updating can be incremental, such that a change leads to updating just the dimension that changed, or global, such that the entire model is updated. Here, we asked whether older and young adults make differential use of incremental and global updating. Participants read narratives containing changes in characters and spatial location and responded to recognition probes throughout the texts. Responses were slower when probes followed a change, suggesting that situation models were updated at changes. When either dimension changed, responses to probes for both dimensions were slowed; this provides evidence for global updating. Moreover, older adults showed stronger evidence of global updating than did young adults. One possibility is that older adults perform more global updating to offset reduced ability to manipulate information in working memory. PMID:25938248

  18. Head Injuries

    MedlinePlus

    ... before. Often, the injury is minor because your skull is hard and it protects your brain. But ... injuries can be more severe, such as a skull fracture, concussion, or traumatic brain injury. Head injuries ...

  19. Head Injuries

    MedlinePlus

    ... before. Usually, the injury is minor because your skull is hard and it protects your brain. But ... injuries can be more severe, such as a skull fracture, concussion, or traumatic brain injury. Head injuries ...

  20. Head Noises.

    ERIC Educational Resources Information Center

    Senior, Tom

    2000-01-01

    Explains how a toy called "Sound Bites" can be modified to demonstrate the transmission of sound waves. Students can hear music from the toy when they press it against any bone in their heads or shoulders. (WRM)

  1. Multidimensional model of apathy in older adults using partial least squares-path modeling.

    PubMed

    Raffard, Stéphane; Bortolon, Catherine; Burca, Marianna; Gely-Nargeot, Marie-Christine; Capdevielle, Delphine

    2016-06-01

    Apathy defined as a mental state characterized by a lack of goal-directed behavior is prevalent and associated with poor functioning in older adults. The main objective of this study was to identify factors contributing to the distinct dimensions of apathy (cognitive, emotional, and behavioral) in older adults without dementia. One hundred and fifty participants (mean age, 80.42) completed self-rated questionnaires assessing apathy, emotional distress, anticipatory pleasure, motivational systems, physical functioning, quality of life, and cognitive functioning. Data were analyzed using partial least squares variance-based structural equation modeling in order to examine factors contributing to the three different dimensions of apathy in our sample. Overall, the different facets of apathy were associated with cognitive functioning, anticipatory pleasure, sensitivity to reward, and physical functioning, but the contribution of these different factors to the three dimensions of apathy differed significantly. More specifically, the impact of anticipatory pleasure and physical functioning was stronger for the cognitive than for emotional apathy. Conversely, the impact of sensibility to reward, although small, was slightly stronger on emotional apathy. Regarding behavioral apathy, again we found similar latent variables except for the cognitive functioning whose impact was not statistically significant. Our results highlight the need to take into account various mechanisms involved in the different facets of apathy in older adults without dementia, including not only cognitive factors but also motivational variables and aspects related to physical disability. Clinical implications are discussed. PMID:27153818

  2. Effects of sutures and fontanels on MEG and EEG source analysis in a realistic infant head model

    PubMed Central

    Lew, Seok; Sliva, Danielle D.; Choe, Myong-sun; Grant, P. Ellen; Okada, Yoshio; Wolters, Carsten H.; Hämäläinen, Matti S.

    2013-01-01

    In infants, the fontanels and sutures as well as conductivity of the skull influence the volume currents accompanying primary currents generated by active neurons and thus the associated electroencephalography (EEG) and magnetoencephalography (MEG) signals. We used a finite element method (FEM) to construct a realistic model of the head of an infant based on MRI images. Using this model, we investigated the effects of the fontanels, sutures and skull conductivity on forward and inverse EEG and MEG source analysis. Simulation results show that MEG is better suited than EEG to study early brain development because it is much less sensitive than EEG to distortions of the volume current caused by the fontanels and sutures and to inaccurate estimates of skull conductivity. Best results will be achieved when MEG and EEG are used in combination. PMID:23531680

  3. Measurement of Pressure Responses in a Physical Model of a Human Head with High Shape Fidelity Based on Ct/mri Data

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yusuke; Tachiya, Hiroshi; Anata, Kenji; Hojo, Akihiro

    This study discusses a head injury mechanism in case of a human head subjected to impact, from results of impact experiments by using a physical model of a human head with high-shape fidelity. The physical model was constructed by using rapid prototyping technology from the three-dimensional CAD data, which obtained from CT/MRI images of a subject's head. As results of the experiments, positive pressure responses occurred at the impacted site, whereas negative pressure responses occurred at opposite the impacted site. Moreover, the absolute maximum value of pressure occurring at the frontal region of the intracranial space of the head model resulted in same or higher than that at the occipital site in each case that the impact force was imposed on frontal or occipital region. This result has not been showed in other study using simple shape physical models. And, the result corresponds with clinical evidences that brain contusion mainly occurs at the frontal part in each impact direction. Thus, physical model with accurate skull shape is needed to clarify the mechanism of brain contusion.

  4. Evaluation of apoptogenic adenovirus type 5 oncolytic vectors in a Syrian hamster head and neck cancer model.

    PubMed

    Vijayalingam, S; Kuppuswamy, M; Subramanian, T; Strebeck, F F; West, C L; Varvares, M; Chinnadurai, G

    2014-06-01

    Human adenovirus (HAdV) vectors are intensely investigated for virotherapy of a wide variety of human cancers. Here, we have evaluated the effect of two apoptogenic HAdV5 vectors in an immunocompetent Syrian hamster animal model of head and neck cancer. We established two cell lines of hamster cheek pouch squamous cell carcinomas, induced by treatment with 9,10-dimethyl-1,2-benzanthracene. These cell lines, when infected with HAdV5 mutants lp11w and lp11w/Δ55 K (which are defective in the expression of either E1B-19 K alone or both E1B-19 K and E1B-55 K proteins) exhibited enhanced apoptotic and cytotoxic responses. The cheek pouch tumor cells transplanted either subcutaneously at the flanks or in the cheek pouches of hamsters readily formed tumors. Intratumoral administration of HAdV5-E1B mutants efficiently suppressed the growth of tumors at both sites. Histological examination of orthotopic tumors revealed reduced vascularity and the expression of the viral fiber antigen in virus-administered cheek pouch tumors. These tumors also exhibited increased caspase-3 levels, suggesting that virus-induced apoptosis may contribute to tumor growth suppression. Our results suggest that the apoptogenic HAdV5 vectors may have utility for the treatment of human head and neck cancers. PMID:24874842

  5. Evaluation of apoptogenic adenovirus type 5 oncolytic vectors in a Syrian hamster head and neck cancer model

    PubMed Central

    Subramanian, T.; Strebeck, Frank F.; West, Cheri L.; Varvares, Mark; Chinnadurai, G.

    2015-01-01

    Human adenovirus (HAdV) vectors are intensely investigated for virotherapy of a wide variety of human cancers. Here, we have evaluated the effect of two apoptogenic HAdV5 vectors in an immunocompetent Syrian hamster animal model of head and neck cancer. We established two cell lines of hamster cheek pouch squamous cell carcinomas, induced by treatment with 9, 10-dimethyl-1, 2-benzanthracene (DMBA). These cell lines, when infected with HAdV5 mutants lp11w and lp11w/Δ55K (which are defective in the expression of either E1B-19K alone or both E1B-19K and E1B-55K proteins) exhibited enhanced apoptotic and cytotoxic responses. The cheek pouch tumor cells transplanted either subcutaneously at the flanks or in the cheek pouches of hamsters readily formed tumors. Intra-tumoral administration of HAdV5 E1B mutants efficiently suppressed the growth of tumors at both sites. Histological examination of orthotopic tumors revealed reduced vascularity and the expression of the viral fiber antigen in virus-administered cheek pouch tumors. These tumors also exhibited increased caspase-3 levels, suggesting virus-induced apoptosis may contribute to tumor growth suppression. Our results suggest that the apoptogenic HAdV5 vectors may have utility for the treatment of human head and neck cancers. PMID:24874842

  6. A Fully Nonlinear, Dynamically Consistent Numerical Model for Solid-Body Ship Motion. I. Ship Motion with Fixed Heading

    NASA Technical Reports Server (NTRS)

    Lin, Ray-Quing; Kuang, Weijia

    2011-01-01

    In this paper, we describe the details of our numerical model for simulating ship solidbody motion in a given environment. In this model, the fully nonlinear dynamical equations governing the time-varying solid-body ship motion under the forces arising from ship wave interactions are solved with given initial conditions. The net force and moment (torque) on the ship body are directly calculated via integration of the hydrodynamic pressure over the wetted surface and the buoyancy effect from the underwater volume of the actual ship hull with a hybrid finite-difference/finite-element method. Neither empirical nor free parametrization is introduced in this model, i.e. no a priori experimental data are needed for modelling. This model is benchmarked with many experiments of various ship hulls for heave, roll and pitch motion. In addition to the benchmark cases, numerical experiments are also carried out for strongly nonlinear ship motion with a fixed heading. These new cases demonstrate clearly the importance of nonlinearities in ship motion modelling.

  7. Regional electric field induced by electroconvulsive therapy in a realistic finite element head model: influence of white matter anisotropic conductivity.

    PubMed

    Lee, Won Hee; Deng, Zhi-De; Kim, Tae-Seong; Laine, Andrew F; Lisanby, Sarah H; Peterchev, Angel V

    2012-02-01

    We present the first computational study investigating the electric field (E-field) strength generated by various electroconvulsive therapy (ECT) electrode configurations in specific brain regions of interest (ROIs) that have putative roles in the therapeutic action and/or adverse side effects of ECT. This study also characterizes the impact of the white matter (WM) conductivity anisotropy on the E-field distribution. A finite element head model incorporating tissue heterogeneity and WM anisotropic conductivity was constructed based on structural magnetic resonance imaging (MRI) and diffusion tensor MRI data. We computed the spatial E-field distributions generated by three standard ECT electrode placements including bilateral (BL), bifrontal (BF), and right unilateral (RUL) and an investigational electrode configuration for focal electrically administered seizure therapy (FEAST). The key results are that (1) the median E-field strength over the whole brain is 3.9, 1.5, 2.3, and 2.6 V/cm for the BL, BF, RUL, and FEAST electrode configurations, respectively, which coupled with the broad spread of the BL E-field suggests a biophysical basis for observations of superior efficacy of BL ECT compared to BF and RUL ECT; (2) in the hippocampi, BL ECT produces a median E-field of 4.8 V/cm that is 1.5-2.8 times stronger than that for the other electrode configurations, consistent with the more pronounced amnestic effects of BL ECT; and (3) neglecting the WM conductivity anisotropy results in E-field strength error up to 18% overall and up to 39% in specific ROIs, motivating the inclusion of the WM conductivity anisotropy in accurate head models. This computational study demonstrates how the realistic finite element head model incorporating tissue conductivity anisotropy provides quantitative insight into the biophysics of ECT, which may shed light on the differential clinical outcomes seen with various forms of ECT, and may guide the development of novel stimulation paradigms

  8. The Analysis of the Effectiveness of Simultaneous Inversion of Turning and Head Waves First Breaks - Model Study

    NASA Astrophysics Data System (ADS)

    Kasina, Zbigniew

    2012-09-01

    In the presented paper the model data were used to analyse the effectiveness of simultaneous inversion of the turning and head waves first breaks in comparison with the effectiveness of the inversion of only first breaks of turning waves or head waves. The analysis was undertaken for the gradient velocity models of the near surface layer with the low' velocity anomaly and for the CDP aquisition. The effect of the numerical ray tracing on the traveltime calculations and inversion results was estimated taking into account the wave equation modeling of seismic records. The effect of the errors of the starting velocity field m the process of inversion as well as the effect of spatial smothing of resulting velocity fields were considered too. The analysis confirmed some improvement in the imaging of the near surface velocity anomalies when we use simultaneous inversion of the turning and head waves first breaks. W przedstawionej pracy wykorzystano dane modelowe do analizy efektywności jednoczesnej inwersji pierwszych wstąpień fal czołowych i refragowanych w porównaniu do efektywności inwersj i tylko pierwszy ch wstąpień fali refragowanej lub czołowej. Analizę podjęto dla gradientowych modeli strefy przypowierzchniowej z niskoprędkościową anomalią dla akwizycji metody pokryć wielokrotnych. Oszacowano wpływ numerycznego trasowania promieni na wyniki obliczeń czasów przebiegu i inwersji uwzględniając wyniki modelowania rekordów sejsmicznych z równania falowego. Rozważano także wpływ błędów startowego pola prędkości w procesie inwersji, jak również wpływ przestrzennego wygładzania wynikowych pól prędkości. Analiza potwierdziła pewną poprawę w odwzorowaniu anomalii prędkościowych strefy przy- powierzchniowej, gdy wykorzystujemy jednoczesną inwersję pierwszych wstąpień fal czołowych i refragowanych.

  9. Finite Element Model Predictions of Intracranial Hemorrhage from Non-Impact, Rapid Head Rotations in the Piglet

    PubMed Central

    Coats, Brittany; Eucker, Stephanie A.; Sullivan, Sarah; Margulies, Susan S.

    2012-01-01

    Clinicians are charged with the significant task of distinguishing between accidental and inflicted head trauma. Oftentimes this distinction is straightforward, but many times probabilities of injuries from accidental scenarios are unknown making the differential diagnosis difficult. For example, it is unknown whether intracranial hemorrhage (IH) can occur at a location other than a focal contact site following a low height fall. To create a foundation for predicting regional IH in infants, we sought to identify the biomechanical response and injury threshold best able to predict IH in 3–5 day old piglets. First, finite element (FE) model simulations of in situ animal studies were performed to ascertain the optimal representation of the pia-arachnoid complex, cerebrospinal fluid and cortical vasculature (PCC) for predicting brain strain and brain/skull displacement. Second, rapid head rotations resulting in various degrees of IH were simulated (n=24) to determine the biomechanical predictor and injury threshold most closely correlated with IH. FE models representing the PCC with either spring connectors or solid elements between the brain and skull resulted in peak brain strain and brain/skull displacement similar to measured values in situ. However, when predicting IH, the spring connector representation of the PCC had the best predictive capability for IH with a sensitivity of 80% and a specificity of 85% when ≥ 1% of all spring connectors had at least a peak strain of 0.31 mm/mm. These findings and reported methodology will be used in the development of a human infant FE model to simulate real-world falls and identify injury thresholds for predicting IH in infants. PMID:22239917

  10. The Adult Life Spiral: A Critique of the Life Cycle Model.

    ERIC Educational Resources Information Center

    Stein, Peter; Etzkowitz, Henry

    We can identify and describe alternate paths of adulthood utilizing data from interviews with single adults. Our review of major models used in adulthood studies suggests that a developmental model, such as Daniel Levinson's life cycle model, is too tied to the notion of the imminent unfolding of the life course. The age-stratification theory…

  11. Impingement and stability of total hip arthroplasty versus femoral head resurfacing using a cadaveric robotics model.

    PubMed

    Colbrunn, R W; Bottros, J J; Butler, R S; Klika, A K; Bonner, T F; Greeson, C; van den Bogert, A J; Barsoum, W K

    2013-07-01

    We identified and compared the impingent-free range of motion (ROM) and subluxation potential for native hip, femoral head resurfacing (FHR), and total hip arthroplasty (THA). These constructs were also compared both with and without soft tissue to elucidate the role of the soft tissue. Five fresh-frozen bilateral hip specimens were mounted to a six-degree of freedom robotic manipulator. Under load-control parameters, in vivo mechanics were recreated to evaluate impingement free ROM, and the subluxation potential in two "at risk" positions for native hip, FHR, and THA. Impingement-free ROM of the skeletonized THA was greater than FHR for the anterior subluxation position. For skeletonized posterior subluxations, stability for THA and FHR constructs were similar, while a different pattern was observed for specimens with soft tissues intact. FHR constructs were more stable than THA constructs for both anterior and posterior subluxations. When the femoral neck is intact the joint has an earlier impingement profile placing the hip at risk for subluxation. However, FHR design was shown to be more stable than THA only when soft tissues were intact. PMID:23494830

  12. Electromagnetic Head-And-Neck Hyperthermia Applicator: Experimental Phantom Verification and FDTD Model

    SciTech Connect

    Paulides, Margarethus M. . E-mail: M.Paulides@ErasmusMC.nl; Bakker, Jurriaan F.; Rhoon, Gerard C. van

    2007-06-01

    Purpose: To experimentally verify the feasibility of focused heating in the neck region by an array of two rings of six electromagnetic antennas. We also measured the dynamic specific absorption rate (SAR) steering possibilities of this setup and compared these SAR patterns to simulations. Methods and Materials: Using a specially constructed laboratory prototype head-and-neck applicator, including a neck-mimicking cylindrical muscle phantom, we performed SAR measurements by electric field, Schottky-diode sheet measurements and, using the power-pulse technique, by fiberoptic thermometry and infrared thermography. Using phase steering, we also steered the SAR distribution in radial and axial directions. All measured distributions were compared with the predictions by a finite-difference time-domain-based electromagnetic simulator. Results: A central 50% iso-SAR focus of 35 {+-} 3 mm in diameter and about 100 {+-} 15 mm in length was obtained for all investigated settings. Furthermore, this SAR focus could be steered toward the desired location in the radial and axial directions with an accuracy of {approx}5 mm. The SAR distributions as measured by all three experimental methods were well predicted by the simulations. Conclusion: The results of our study have shown that focused heating in the neck is feasible and that this focus can be effectively steered in the radial and axial directions. For quality assurance measurements, we believe that the Schottky-diode sheet provides the best compromise among effort, speed, and accuracy, although a more specific and improved design is warranted.

  13. Proximal coracobrachialis tendon rupture, subscapularis tendon rupture, and medial dislocation of the long head of the biceps tendon in an adult after traumatic anterior shoulder dislocation.

    PubMed

    Saltzman, Bryan M; Harris, Joshua D; Forsythe, Brian

    2015-01-01

    Rupture of the coracobrachialis is a rare entity, in isolation or in combination with other muscular or tendinous structures. When described, it is often a result of direct trauma to the anatomic area resulting in rupture of the muscle belly. The authors present a case of a 57-year-old female who suffered a proximal coracobrachialis tendon rupture from its origin at the coracoid process, with concomitant subscapularis tear and medial dislocation of the long head of biceps tendon after first time traumatic anterior shoulder dislocation. Two weeks after injury, magnetic resonance imaging suggested the diagnosis, which was confirmed during combined arthroscopic and open technique. Soft-tissue tenodesis of coracobrachialis to the intact short head of the biceps, tenodesis of the long head of biceps to the intertubercular groove, and double-row anatomic repair of the subscapularis were performed. The patient did well postoperatively, and ultimately at 6 months follow-up, she was without pain, and obtained 160° of active forward elevation, 45° of external rotation, internal rotation to T8, 5/5 subscapularis and biceps strength. Scoring scales had improved from the following preoperative to final follow-up: American Shoulder and Elbow Surgeons, 53.33-98.33; constant, 10-100; visual analogue scale-pain, 4-0. DASH score was 5. PMID:25937715

  14. Proximal coracobrachialis tendon rupture, subscapularis tendon rupture, and medial dislocation of the long head of the biceps tendon in an adult after traumatic anterior shoulder dislocation

    PubMed Central

    Saltzman, Bryan M.; Harris, Joshua D.; Forsythe, Brian

    2015-01-01

    Rupture of the coracobrachialis is a rare entity, in isolation or in combination with other muscular or tendinous structures. When described, it is often a result of direct trauma to the anatomic area resulting in rupture of the muscle belly. The authors present a case of a 57-year-old female who suffered a proximal coracobrachialis tendon rupture from its origin at the coracoid process, with concomitant subscapularis tear and medial dislocation of the long head of biceps tendon after first time traumatic anterior shoulder dislocation. Two weeks after injury, magnetic resonance imaging suggested the diagnosis, which was confirmed during combined arthroscopic and open technique. Soft-tissue tenodesis of coracobrachialis to the intact short head of the biceps, tenodesis of the long head of biceps to the intertubercular groove, and double-row anatomic repair of the subscapularis were performed. The patient did well postoperatively, and ultimately at 6 months follow-up, she was without pain, and obtained 160° of active forward elevation, 45° of external rotation, internal rotation to T8, 5/5 subscapularis and biceps strength. Scoring scales had improved from the following preoperative to final follow-up: American Shoulder and Elbow Surgeons, 53.33-98.33; constant, 10-100; visual analogue scale-pain, 4-0. DASH score was 5. PMID:25937715

  15. Incorporating single-side sparing in models for predicting parotid dose sparing in head and neck IMRT

    SciTech Connect

    Yuan, Lulin Wu, Q. Jackie; Yin, Fang-Fang; Yoo, David; Jiang, Yuliang; Ge, Yaorong

    2014-02-15

    Purpose: Sparing of single-side parotid gland is a common practice in head-and-neck (HN) intensity modulated radiation therapy (IMRT) planning. It is a special case of dose sparing tradeoff between different organs-at-risk. The authors describe an improved mathematical model for predicting achievable dose sparing in parotid glands in HN IMRT planning that incorporates single-side sparing considerations based on patient anatomy and learning from prior plan data. Methods: Among 68 HN cases analyzed retrospectively, 35 cases had physician prescribed single-side parotid sparing preferences. The single-side sparing model was trained with cases which had single-side sparing preferences, while the standard model was trained with the remainder of cases. A receiver operating characteristics (ROC) analysis was performed to determine the best criterion that separates the two case groups using the physician's single-side sparing prescription as ground truth. The final predictive model (combined model) takes into account the single-side sparing by switching between the standard and single-side sparing models according to the single-side sparing criterion. The models were tested with 20 additional cases. The significance of the improvement of prediction accuracy by the combined model over the standard model was evaluated using the Wilcoxon rank-sum test. Results: Using the ROC analysis, the best single-side sparing criterion is (1) the predicted median dose of one parotid is higher than 24 Gy; and (2) that of the other is higher than 7 Gy. This criterion gives a true positive rate of 0.82 and a false positive rate of 0.19, respectively. For the bilateral sparing cases, the combined and the standard models performed equally well, with the median of the prediction errors for parotid median dose being 0.34 Gy by both models (p = 0.81). For the single-side sparing cases, the standard model overestimates the median dose by 7.8 Gy on average, while the predictions by the combined

  16. A New Model for Predicting Acute Mucosal Toxicity in Head-and-Neck Cancer Patients Undergoing Radiotherapy With Altered Schedules

    SciTech Connect

    Strigari, Lidia; Pedicini, Piernicola; D'Andrea, Marco; Pinnaro, Paola; Marucci, Laura; Giordano, Carolina; Benassi, Marcello

    2012-08-01

    Purpose: One of the worst radiation-induced acute effects in treating head-and-neck (HN) cancer is grade 3 or higher acute (oral and pharyngeal) mucosal toxicity (AMT), caused by the killing/depletion of mucosa cells. Here we aim to testing a predictive model of the AMT in HN cancer patients receiving different radiotherapy schedules. Methods and Materials: Various radiotherapeutic schedules have been reviewed and classified as tolerable or intolerable based on AMT severity. A modified normal tissue complication probability (NTCP) model has been investigated to describe AMT data in radiotherapy regimens, both conventional and altered in dose and overall treatment time (OTT). We tested the hypothesis that such a model could also be applied to identify intolerable treatment and to predict AMT. This AMT NTCP model has been compared with other published predictive models to identify schedules that are either tolerable or intolerable. The area under the curve (AUC) was calculated for all models, assuming treatment tolerance as the gold standard. The correlation between AMT and the predicted toxicity rate was assessed by a Pearson correlation test. Results: The AMT NTCP model was able to distinguish between acceptable and intolerable schedules among the data available for the study (AUC = 0.84, 95% confidence interval = 0.75-0.92). In the equivalent dose at 2 Gy/fraction (EQD2) vs OTT space, the proposed model shows a trend similar to that of models proposed by other authors, but was superior in detecting some intolerable schedules. Moreover, it was able to predict the incidence of {>=}G3 AMT. Conclusion: The proposed model is able to predict {>=}G3 AMT after HN cancer radiotherapy, and could be useful for designing altered/hypofractionated schedules to reduce the incidence of AMT.

  17. Four decades of modeling methane cycling in terrestrial ecosystems: Where we are heading?

    NASA Astrophysics Data System (ADS)

    Xu, X.; Yuan, F.; Hanson, P. J.; Wullschleger, S. D.; Thornton, P. E.; Tian, H.; Riley, W. J.; Song, X.; Graham, D. E.; Song, C.

    2015-12-01

    A modeling approach to methane (CH4) is widely used to quantify the budget, investigate spatial and temporal variabilities, and understand the mechanistic processes and environmental controls on CH4 fluxes across spatial and temporal scales. Moreover, CH4 models are an important tool for integrating CH4 data from multiple sources, such as laboratory-based incubation and molecular analysis, field observational experiments, remote sensing, and aircraft-based measurements across a variety of terrestrial ecosystems. We reviewed 39 terrestrial CH4 models to characterize their strengths and weaknesses and to design a roadmap for future model improvement and application. We found that: (1) the focus of CH4 models have been shifted from theoretical to site- to regional-level application over the past four decades, expressed as dramatic increases in CH4 model development on regional budget quantification; (2) large discrepancies exist among models in terms of representing CH4 processes and their environmental controls; (3) significant data-model and model-model mismatches are partially attributed to different representations of wetland characterization and inundation dynamics. Three efforts should be paid special attention for future improvements and applications of fully mechanistic CH4 models: (1) CH4 models should be improved to represent the mechanisms underlying land-atmosphere CH4 exchange, with emphasis on improving and validating individual CH4 processes over depth and horizontal space; (2) models should be developed that are capable of simulating CH4 fluxes across space and time (particularly hot moments and hot spots); (3) efforts should be invested to develop model benchmarking frameworks that can easily be used for model improvement, evaluation, and integration with data from molecular to global scales. A newly developed microbial functional group-based CH4 model (CLM-Microbe) was further used to demonstrate the features of mechanistic representation and

  18. Targeted molecular therapy of head and neck squamous cell carcinoma with the tyrosine kinase inhibitor vandetanib in a mouse model

    PubMed Central

    Sano, Daisuke; Fooshee, David R.; Zhao, Mei; Andrews, Genevieve A.; Frederick, Mitchell J.; Galer, Chad; Milas, Zvonimir L.; Morrow, Phuong Khanh H.; Myers, Jeffrey N.

    2010-01-01

    Background We investigated the effects of vandetanib, an inhibitor of vascular endothelial growth factor receptor 2 (VEGFR-2) and epidermal growth factor receptor (EGFR), alone and in combination with paclitaxel in an orthotopic mouse model of human head and neck squamous cell carcinoma (HNSCC). Methods The in vitro effects of vandetanib (ZACTIMA™) were assessed in two HNSCC cell lines on cell growth, apoptosis, and receptor and downstream signaling morecule expression and phosphorylation levels. We assessed in vivo effects of vandetanib and/or paclitaxel by measuring tumor cell apoptosis, endothelial cell apoptosis, microvessel density, tumor size, and animal survival. Results In vitro, vandetanib inhibited the phosphorylation of EGFR and its downstream targets in HNSCC cells and inhibited proliferation and induced apoptosis of HNSCC cells and extended survival and inhibited tumor growth in nude mice orthotopically injected with human HNSCC. Conclusion Vandetanib has the potential to be a novel molecular targeted therapy for HNSCC. PMID:20629091

  19. Tumor associated fibroblasts enhance head and neck squamous cell carcinoma proliferation, invasion, and metastasis in preclinical models

    PubMed Central

    Wheeler, Sarah Elizabeth; Shi, Huifang; Lin, Fangchen; Dasari, Sumana; Bednash, Joseph; Thorne, Stephen; Watkins, Simon; Joshi, Radhika; Thomas, Sufi Mary

    2014-01-01

    Background Head and neck squamous cell carcinoma (HNSCC) has had little improvement in mortality rates in decades. A clearer understanding of the HNSCC tumor microenvironment will aid in finding more effective targeted therapies for this disease. Tumor associated fibroblasts (TAFs) are the largest stromal cellular components of the tumor microenvironment in HNSCC. Methods We isolated TAFs from clinical HNSCC cases and propagated in vitro. The effects of TAF secreted paracrine factors on in vitro HNSCC migration, invasion and proliferation was assessed. The effect of TAFs on HNSCC growth and metastases was determined in an orthotopic floor of mouth tumor model. Results TAF conditioned media increased HNSCC cell migration, invasion and proliferation. TAFs increased HNSCC tumor growth and metastases in vivo. Conclusions TAFs play a major role in increasing tumor growth and metastasis in HNSCC. Targeting the tumor stroma may be important to reduce the rate of HNSCC metastasis. PMID:23728942

  20. Predictive modelling of adult emergence in a polyphagous Eucolaspis (Chrysomelidae: Eumolpinae) leaf beetle.

    PubMed

    Doddala, P R C; Trewick, S A; Rogers, D J; Minor, M A

    2013-04-01

    Eucolaspis sp. "Hawke's Bay" (Chrysomelidae: Eumolpinae) is a pest that inflicts huge economic loss in many organic apple (Malus domestica Borkh.) orchards in New Zealand. The timing of control methods for this pest has been shown to be crucial for success. To aid in planning control programs, we studied threshold temperature and degree-days required for the development of Eucolaspis sp. "Hawke's Bay" pupae and modeled adult emergence in the field. Pupal development was observed at three constant temperatures. Pupae required 237.0 +/- 21.67 degree-days above lower threshold temperature of 4.7 degrees C +/- 0.89 degrees C to develop into adults. The emergence of adults was modeled with these thermal values and the model was tested for accuracy with field data. The model performed well with a precision of +/- 4 d. The proposed phenology model has wide applicability in monitoring and planning pest control measures. PMID:23786080

  1. Modelling of waves propagation on irregular surfaces using ray tracing and GTD approaches: Application to head waves simulation in TOFD inspections for NDT

    NASA Astrophysics Data System (ADS)

    Ferrand, Adrien; Darmon, Michel; Chatillon, Sylvain; Deschamps, Marc

    2014-04-01

    The Time of Flight Diffraction (TOFD) technique is a classical ultrasonic method used in ultrasonic non-destructive evaluation, which allows a precise positioning and a quantitative size evaluation of cracks in the inspected material. Among the typical phenomena arising in the current TOFD inspection, the so-called "head wave" is the first contribution reaching the receiver. The head wave propagation on a planar interface is well known and identified as a critical refraction taking place on the material surface. On irregular surfaces, it has been shown that the head wave results from the melting of surface and bulk waves mechanisms and that surface irregularities are responsible for numerous diffractions of the incident head wave. To simulate such behaviour, a model has been developed using a ray tracing technique based on time of flight minimization (generalized Fermat's principle). It enables the calculation of the ray path and the corresponding time of flight of all waves propagating in the material, including the head wave. To obtain a complete propagation model for these waves (both trajectory and amplitude), the integration of Geometrical Theory of Diffraction (GTD) models is currently performed by coupling them with the ray-based approach discussed above.

  2. High head pump-turbine: Pumping mode numerical simulations with a cavitation model for off-design conditions

    NASA Astrophysics Data System (ADS)

    Jese, U.; Fortes-Patella, R.; Antheaume, S.

    2014-03-01

    Flexibility and energy storage are one of the main challenges of the energy industry at the present time. Pumped Storage Power Plants (PSP), using reversible pump-turbines, are among the most cost-efficient solutions to answer these needs. To provide a rapid adjustment to the electricity grid, pump-turbines are subject of quick switching between pumping and generating modes and to extended operation under off-design conditions. In particular, at part load, instabilities in pump characteristics can occur. It can lead to unsteadiness and even to a shift of the operating point with significant modification of discharge and drop of efficiency. This unstable area is often exposed to the cavitation phenomenon, which can lead to vibrations, loss of performance and sometimes erosion. The paper focuses on the numerical analysis of the pumping mode regime, especially on the part load off-design instabilities, observed as a saddle shaped pump-turbine head curve and the presence and development of the cavitation in the part load area. The investigations were made on the reduce-scaled model of a high head pump-turbine design. Numerical calculations were performed using commercial code with implemented barotropic cavitation model. Some of the numerical results were compared to the experimental data. Flow analysis was stressed on the cavitation influence on the flow behavior and the performance of the machine. The analysis was made for various flow rates and a wide range of NPSH values. The importance of specific parts of the numerical domain for obtained results was investigated and evaluated.

  3. Spheroid-based 3-dimensional culture models: Gene expression and functionality in head and neck cancer.

    PubMed

    Schmidt, Marianne; Scholz, Claus-Juergen; Polednik, Christine; Roller, Jeanette

    2016-04-01

    In the present study a panel of 12 head and neck cancer (HNSCC) cell lines were tested for spheroid formation. Since the size and morphology of spheroids is dependent on both cell adhesion and proliferation in the 3-dimensional (3D) context, morphology of HNSCC spheroids was related to expression of E-cadherin and the proliferation marker Ki67. In HNSCC cell lines the formation of tight regular spheroids was dependent on distinct E-cadherin expression levels in monolayer cultures, usually resulting in upregulation following aggregation into 3D structures. Cell lines expressing only low levels of E-cadherin in monolayers produced only loose cell clusters, frequently decreasing E-cadherin expression further upon aggregation. In these cell lines no epidermal growth factor receptor (EGFR) upregulation occurred and proliferation generally decreased in spheroids/aggregates independent of E-cadherin expression. In a second approach a global gene expression analysis of the larynx carcinoma cell line HLaC78 monolayer and the corresponding spheroids was performed. A global upregulation of gene expression in HLaC78 spheroids was related to genes involved in cell adhesion, cell junctions and cytochrome P450-mediated metabolism of xenobiotics. Downregulation was associated with genes controlling cell cycle, DNA-replication and DNA mismatch repair. Analyzing the expression of selected genes of each functional group in monolayer and spheroid cultures of all 12 cell lines revealed evidence for common gene expression shifts in genes controlling cell junctions, cell adhesion, cell cycle and DNA replication as well as genes involved in the cytochrome P450-mediated metabolism of xenobiotics. PMID:26797047

  4. Model of Care for Adolescents and Young Adults with Cancer: The Youth Project in Milan.

    PubMed

    Magni, Chiara; Veneroni, Laura; Silva, Matteo; Casanova, Michela; Chiaravalli, Stefano; Massimino, Maura; Clerici, Carlo Alfredo; Ferrari, Andrea

    2016-01-01

    Adolescents and young adults (AYA) with cancer form a particular group of patients with unique characteristics, who inhabit a so-called "no man's land" between pediatric and adult services. In the last 10 years, the scientific oncology community has started to pay attention to these patients, implementing dedicated programs. A standardized model of care directed toward patients in this age range has yet to be developed and neither the pediatric nor the adult oncologic systems perfectly fit these patients' needs. The Youth Project of the Istituto Nazionale Tumori in Milan, dedicated to AYA with pediatric-type solid tumors, can be seen as a model of care for AYA patients, with its heterogeneous multidisciplinary staff and close cooperation with adult medical oncologists and surgeons. Further progress in the care of AYA cancer patients is still needed to improve their outcomes. PMID:27606308

  5. Model of Care for Adolescents and Young Adults with Cancer: The Youth Project in Milan

    PubMed Central

    Magni, Chiara; Veneroni, Laura; Silva, Matteo; Casanova, Michela; Chiaravalli, Stefano; Massimino, Maura; Clerici, Carlo Alfredo; Ferrari, Andrea

    2016-01-01

    Adolescents and young adults (AYA) with cancer form a particular group of patients with unique characteristics, who inhabit a so-called “no man’s land” between pediatric and adult services. In the last 10 years, the scientific oncology community has started to pay attention to these patients, implementing dedicated programs. A standardized model of care directed toward patients in this age range has yet to be developed and neither the pediatric nor the adult oncologic systems perfectly fit these patients’ needs. The Youth Project of the Istituto Nazionale Tumori in Milan, dedicated to AYA with pediatric-type solid tumors, can be seen as a model of care for AYA patients, with its heterogeneous multidisciplinary staff and close cooperation with adult medical oncologists and surgeons. Further progress in the care of AYA cancer patients is still needed to improve their outcomes. PMID:27606308

  6. Role of Positron Emission Tomography in the Treatment of Occult Disease in Head-and-Neck Cancer: A Modeling Approach

    SciTech Connect

    Phillips, Mark H.; Smith, Wade P.; Parvathaneni, Upendra; Laramore, George E.

    2011-03-15

    Purpose: To determine under what conditions positron emission tomography (PET) imaging will be useful in decisions regarding the use of radiotherapy for the treatment of clinically occult lymph node metastases in head-and-neck cancer. Methods and Materials: A decision model of PET imaging and its downstream effects on radiotherapy outcomes was constructed using an influence diagram. This model included the sensitivity and specificity of PET, as well as the type and stage of the primary tumor. These parameters were varied to determine the optimal strategy for imaging and therapy for different clinical situations. Maximum expected utility was the metric by which different actions were ranked. Results: For primary tumors with a low probability of lymph node metastases, the sensitivity of PET should be maximized, and 50 Gy should be delivered if PET is positive and 0 Gy if negative. As the probability for lymph node metastases increases, PET imaging becomes unnecessary in some situations, and the optimal dose to the lymph nodes increases. The model needed to include the causes of certain health states to predict current clinical practice. Conclusion: The model demonstrated the ability to reproduce expected outcomes for a range of tumors and provided recommendations for different clinical situations. The differences between the optimal policies and current clinical practice are likely due to a disparity between stated clinical decision processes and actual decision making by clinicians.

  7. Intellectual Changes after Closed Head Injury

    ERIC Educational Resources Information Center

    Becker, Bruce

    1975-01-01

    This study provided more details on the nature of the intellectual deficit suffered by persons having closed head injuries and the recovery process as measured on the Wechsler Adult Intelligence Scale (WAIS). (Author/RK)

  8. Why do woodpeckers resist head impact injury: a biomechanical investigation.

    PubMed

    Wang, Lizhen; Cheung, Jason Tak-Man; Pu, Fang; Li, Deyu; Zhang, Ming; Fan, Yubo

    2011-01-01

    Head injury is a leading cause of morbidity and death in both industrialized and developing countries. It is estimated that brain injuries account for 15% of the burden of fatalities and disabilities, and represent the leading cause of death in young adults. Brain injury may be caused by an impact or a sudden change in the linear and/or angular velocity of the head. However, the woodpecker does not experience any head injury at the high speed of 6-7 m/s with a deceleration of 1000 g when it drums a tree trunk. It is still not known how woodpeckers protect their brain from impact injury. In order to investigate this, two synchronous high-speed video systems were used to observe the pecking process, and the force sensor was used to measure the peck force. The mechanical properties and macro/micro morphological structure in woodpecker's head were investigated using a mechanical testing system and micro-CT scanning. Finite element (FE) models of the woodpecker's head were established to study the dynamic intracranial responses. The result showed that macro/micro morphology of cranial bone and beak can be recognized as a major contributor to non-impact-injuries. This biomechanical analysis makes it possible to visualize events during woodpecker pecking and may inspire new approaches to prevention and treatment of human head injury. PMID:22046293

  9. Why Do Woodpeckers Resist Head Impact Injury: A Biomechanical Investigation

    PubMed Central

    Wang, Lizhen; Cheung, Jason Tak-Man; Pu, Fang; Li, Deyu; Zhang, Ming; Fan, Yubo

    2011-01-01

    Head injury is a leading cause of morbidity and death in both industrialized and developing countries. It is estimated that brain injuries account for 15% of the burden of fatalities and disabilities, and represent the leading cause of death in young adults. Brain injury may be caused by an impact or a sudden change in the linear and/or angular velocity of the head. However, the woodpecker does not experience any head injury at the high speed of 6–7 m/s with a deceleration of 1000 g when it drums a tree trunk. It is still not known how woodpeckers protect their brain from impact injury. In order to investigate this, two synchronous high-speed video systems were used to observe the pecking process, and the force sensor was used to measure the peck force. The mechanical properties and macro/micro morphological structure in woodpecker's head were investigated using a mechanical testing system and micro-CT scanning. Finite element (FE) models of the woodpecker's head were established to study the dynamic intracranial responses. The result showed that macro/micro morphology of cranial bone and beak can be recognized as a major contributor to non-impact-injuries. This biomechanical analysis makes it possible to visualize events during woodpecker pecking and may inspire new approaches to prevention and treatment of human head injury. PMID:22046293

  10. Comparison of spherical and realistically shaped boundary element head models for transcranial magnetic stimulation navigation

    PubMed Central

    Nummenmaa, Aapo; Stenroos, Matti; Ilmoniemi, Risto J.; Okada, Yoshio C.; Hämäläinen, Matti S.; Raij, Tommi

    2013-01-01

    Objective MRI-guided real-time transcranial magnetic stimulation (TMS) navigators that apply electromagnetic modeling have improved the utility of TMS. However, their accuracy and speed depends on the assumed volume conductor geometry. Spherical models found in present navigators are computationally fast but may be inaccurate in some areas. Realistically-shaped boundary-element models (BEMs) could increase accuracy at a moderate computational cost, but it is unknown which model features have the largest influence on accuracy. Thus, we compared different types of spherical models and BEMs. Methods Globally and locally fitted spherical models and different BEMs with either one or three compartments and with different skull-to-brain conductivity ratios (1/1 – 1/80) were compared against a reference BEM. Results The one-compartment BEM at inner skull surface was almost as accurate as the reference BEM. Skull/brain conductivity ratio in the range 1/10 – 1/80 had only a minor influence. BEMs were superior to spherical models especially in frontal and temporal areas (up to 20 mm localization and 40% intensity improvement); in motor cortex all models provided similar results. Conclusions One-compartment BEMs offer a good balance between accuracy and computational cost. Significance Realistically-shaped BEMs may increase TMS navigation accuracy in several brain areas, such as in prefrontal regions often targeted in clinical applications. PMID:23890512

  11. It's All in Your Head: Feminist and Medical Models of Menopause (Strange Bedfellows).

    ERIC Educational Resources Information Center

    Posner, Judith

    1979-01-01

    This article describes the medical model of menopause as it exists in contemporary gynecological textbooks and some popular books written by gynecologists for the general public. The feminist position on menopause is then compared and contrasted with the medical model. (Author/EB)

  12. Cone Heads

    ERIC Educational Resources Information Center

    Coy, Mary

    2005-01-01

    The author, a middle school art teacher, describes a sculpture project lesson involving Cone Heads (sculptures made from cardboard cones). Discussion of caricatures with exaggerated facial features and interesting profiles helped students understand that the more expressive the face, the better. This project took approximately four to five…

  13. Toward a Model of Young Adult Participation in Adult Education Activities.

    ERIC Educational Resources Information Center

    Martin, James Leonard

    The goal of this study was to construct from the available data a model for integrating the interrelated variables of participation into a consistent, theoretical framework which explained who participated in which activities and why they participated. The author sought to attain the goal by establishing two variable relationships to determine the…

  14. Reduction of adult hippocampal neurogenesis confers vulnerability in an animal model of cocaine addiction.

    PubMed

    Noonan, Michele A; Bulin, Sarah E; Fuller, Dwain C; Eisch, Amelia J

    2010-01-01

    Drugs of abuse dynamically regulate adult neurogenesis, which appears important for some types of learning and memory. Interestingly, a major site of adult neurogenesis, the hippocampus, is important in the formation of drug-context associations and in the mediation of drug-taking and drug-seeking behaviors in animal models of addiction. Correlative evidence suggests an inverse relationship between hippocampal neurogenesis and drug-taking or drug-seeking behaviors, but the lack of a causative link has made the relationship between adult-generated neurons and addiction unclear. We used rat intravenous cocaine self-administration in rodents, a clinically relevant animal model of addiction, to test the hypothesis that suppression of adult hippocampal neurogenesis enhances vulnerability to addiction and relapse. Suppression of adult hippocampal neurogenesis via cranial irradiation before drug-taking significantly increased cocaine self-administration on both fixed-ratio and progressive-ratio schedules, as well as induced a vertical shift in the dose-response curve. This was not a general enhancement of learning, motivation, or locomotion, because sucrose self-administration and locomotor activity were unchanged in irradiated rats. Suppression of adult hippocampal neurogenesis after drug-taking significantly enhanced resistance to extinction of drug-seeking behavior. These studies identify reduced adult hippocampal neurogenesis as a novel risk factor for addiction-related behaviors in an animal model of cocaine addiction. Furthermore, they suggest that therapeutics to specifically increase or stabilize adult hippocampal neurogenesis could aid in preventing initial addiction as well as future relapse. PMID:20053911

  15. Reduction of adult hippocampal neurogenesis confers vulnerability in an animal model of cocaine addiction

    PubMed Central

    Noonan, Michele A.; Bulin, Sarah; Fuller, Dwain C.; Eisch, Amelia J.

    2010-01-01

    Drugs of abuse dynamically regulate adult neurogenesis, which appears important for some types of learning and memory. Interestingly, a major site of adult neurogenesis - the hippocampus - is important in the formation of drug-context associations and in the mediation of drug-taking and drug-seeking behaviors in animal models of addiction. Correlative evidence suggests an inverse relationship between hippocampal neurogenesis and drug-taking or drug-seeking behaviors, but the lack of a causative link has made the relationship between adult-generated neurons and addiction unclear. We used rat i.v. cocaine self-administration in rodents, a clinicall-relevant animal model of addiction, to test the hypothesis that suppression of adult hippocampal neurogenesis enhances vulnerability to addiction and relapse. Suppression of adult hippocampal neurogenesis via cranial irradiation before drug-taking significantly increased cocaine self-administration on both fixed-ratio and progressive-ratio schedules, as well as induced a vertical shift in the dose-response curve. This was not a general enhancement of learning, motivation or locomotion, as sucrose self-administration and locomotor activity were unchanged in irradiated rats. Suppression of adult hippocampal neurogenesis after drug-taking significantly enhanced resistance to extinction of drug-seeking behavior. These studies identify reduced adult hippocampal neurogenesis as a novel risk factor for addiction-related behaviors in an animal model of cocaine addiction. Further, they suggest that therapeutics to specifically increase or stabilize adult hippocampal neurogenesis could aid in preventing initial addiction as well as future relapse. PMID:20053911

  16. Study on the Influence of Different Interface Conditions on the Response of Finite Element Human Head Models under Occipital Impact Loading

    NASA Astrophysics Data System (ADS)

    Aomura, Shigeru; Fujiwara, Satoshi; Ikoma, Takayuki

    The aim of the present study is to obtain a better understanding of skull-brain interface conditions and the influence of the neck region when the finite element human head model under impact loading is constructed. The three-dimensional finite element head model consisting of skin, skull, CSF and neck is constructed based on MRI and CT data. The material properties are adopted from the literature previously published and are homogeneous and isotropic. Next, a crash test is carried out by crashing an iron block impactor on the occipital region of the physical human head neck model in which water is filled and intracranial pressure and head acceleration are measured. The result of the numerical calculation is compared with the result of the experiment for verification of the computer model and good agreement is obtained. The result shows that the tied-type interface condition is preferable than the slide-type condition in order to represent the phenomenon in the physical model. The presence of the neck is important for analysis but the stiffness of the neck seldom affects the intracranial response.

  17. Simulations on Head-Tail Radio Galaxies Using Magnetic Tower Model

    SciTech Connect

    Gan, Zhaoming; Li, Hui; Li, Shengtai; Yuan, Feng

    2015-08-19

    The presentation is a series of slides showing diagrams, equations, and various photographs. In summary, a detailed comparison was carried out between hydrodynamic jet and MHD jet models (the magnetic tower jet, more precisely), in an effort to understand the underlying physics of observed radio galaxies, and also its possible indications for jet feedback. It was found that the results of magnetic tower model usually lie in a reasonable regime, and in several aspects, the magnetic tower jet seems more preferred than pure hydrodynamic jet models.

  18. Head and Neck Sarcomas: Analysis of the SEER Database

    PubMed Central

    Peng, Kevin A.; Grogan, Tristan; Wang, Marilene B.

    2015-01-01

    Objective To summarize the epidemiology of sarcomas occurring in the head and neck and identify prognostic factors for patient survival. Study Design and Setting Cross-sectional analysis of the National Cancer Institute’s Surveillance, Epidemiology and End Results (SEER) program. Methods The SEER 18 registries, comprising sarcoma diagnoses made from 1973 to 2010, were queried for sarcomas arising in the head and neck. Pediatric and adult patients were analyzed separately, and multivariate and propensity-matched analyses were performed to identify predictors of disease-specific survival. Results In all, 11,481 adult cases and 1244 pediatric cases were identified. In adults, the most common histologic subtypes were malignant fibrous histiocytoma (MFH), Kaposi sarcoma, and hemangiosarcoma, while in the pediatric cohort, the most common histologic subtypes were rhabdomyosar-coma, MFH, and osteosarcoma. Cause-specific 2-, 5-, and 10-year survival rates were 76%, 66%, and 61% for adults and 84%, 73%, and 71% for pediatric patients. Multivariate analysis performed for adults revealed that male gender, absence of radiation therapy, and stage I disease were associated with improved cause-specific survival reaching statistical significance. However, a propensity-matched model demonstrated no significant difference in cause-specific survival between patients who received radiation and those who did not. Conclusion Sarcomas, a heterogeneous group of malignant mesenchymal tumors, are uncommonly found in the head and neck. This study represents the largest analysis of patients with head and neck sarcomas in the literature and demonstrates the impact of age, gender, primary site, histology, and radiation status on overall prognosis. PMID:25135525

  19. An Instrument Development Model for Online Surveys in Human Resource Development and Adult Education

    ERIC Educational Resources Information Center

    Strachota, Elaine M.; Conceicao, Simone C. O.; Schmidt, Steven W.

    2006-01-01

    This article describes the use of a schematic model for developing and distributing online surveys. Two empirical studies that developed and implemented online surveys to collect data to measure satisfaction in various aspects of human resource development and adult education exemplify the use of the model to conduct online survey research. The…

  20. Emerging from Depression: Treatment of Adolescent Depression Using the Major Treatment Models of Adult Depression.

    ERIC Educational Resources Information Center

    Long, Kathleen M.

    Noting that adolescents who commit suicide are often clinically depressed, this paper examines various approaches in the treatment of depression. Major treatment models of adult depression, which can be directly applied to the treatment of the depressed adolescent, are described. Major treatment models and selected research studies are reviewed in…

  1. Teaching Adult Education Courses: The Business Management Model. Social Sciences. Agricultural Education 3. Information Bulletin 98.

    ERIC Educational Resources Information Center

    Bail, Joe P.; Cushman, Harold R.

    The model described here was developed for use as a program planning guide by teachers, many of them business and other lay people, at the secondary school level who offer adult education courses on how to make management decisions and solve problems. Ten features of the model are listed: (1) The purpose is to assist owner-operators or managers to…

  2. A Diffusion Model Analysis of Adult Age Differences in Episodic and Semantic Long-Term Memory Retrieval

    ERIC Educational Resources Information Center

    Spaniol, Julia; Madden, David J.; Voss, Andreas

    2006-01-01

    Two experiments investigated adult age differences in episodic and semantic long-term memory tasks, as a test of the hypothesis of specific age-related decline in context memory. Older adults were slower and exhibited lower episodic accuracy than younger adults. Fits of the diffusion model (R. Ratcliff, 1978) revealed age-related increases in…

  3. Active head rotations and eye-head coordination

    NASA Technical Reports Server (NTRS)

    Zangemeister, W. H.; Stark, L.

    1981-01-01

    It is pointed out that head movements play an important role in gaze. The interaction between eye and head movements involves both their shared role in directing gaze and the compensatory vestibular ocular reflex. The dynamics of head trajectories are discussed, taking into account the use of parameterization to obtain the peak velocity, peak accelerations, the times of these extrema, and the duration of the movement. Attention is given to the main sequence, neck muscle EMG and details of the head-movement trajectory, types of head model accelerations, the latency of eye and head movement in coordinated gaze, gaze latency as a function of various factors, and coordinated gaze types. Clinical examples of gaze-plane analysis are considered along with the instantaneous change of compensatory eye movement (CEM) gain, and aspects of variability.

  4. Automated MRI segmentation for individualized modeling of current flow in the human head

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Dmochowski, Jacek P.; Su, Yuzhuo; Datta, Abhishek; Rorden, Christopher; Parra, Lucas C.

    2013-12-01

    Objective. High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of the brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images requires labor-intensive manual segmentation, even when utilizing available automated segmentation tools. Also, accurate placement of many high-density electrodes on an individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process. Approach. A fully automated segmentation technique based on Statical Parametric Mapping 8, including an improved tissue probability map and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on four healthy subjects and seven stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets.Main results. The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly.Significance. Fully

  5. Automated MRI Segmentation for Individualized Modeling of Current Flow in the Human Head

    PubMed Central

    Huang, Yu; Dmochowski, Jacek P.; Su, Yuzhuo; Datta, Abhishek; Rorden, Christopher; Parra, Lucas C.

    2013-01-01

    Objective High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography (HD-EEG) require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images (MRI) requires labor-intensive manual segmentation, even when leveraging available automated segmentation tools. Also, accurate placement of many high-density electrodes on individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process. Approach A fully automated segmentation technique based on Statical Parametric Mapping 8 (SPM8), including an improved tissue probability map (TPM) and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on 4 healthy subjects and 7 stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets. Main results The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view (FOV) extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly

  6. Children's and adults' knowledge and models of reasoning about the ozone layer and its depletion

    NASA Astrophysics Data System (ADS)

    Leighton, Jacqueline P.; Bisanz, Gay L.

    2003-01-01

    As environmental concepts, the ozone layer and ozone hole are important to understand because they can profoundly influence our health. In this paper, we examined: (a) children's and adults' knowledge of the ozone layer and its depletion, and whether this knowledge increases with age' and (b) how the 'ozone layer' and 'ozone hole' might be structured as scientific concepts. We generated a standardized set of questions and used it to interview 24 kindergarten students, 48 Grade 3 students, 24 Grade 5 students, and 24 adults in university, in Canada. An analysis of participants' responses revealed that adults have more knowledge than children about the ozone layer and ozone hole, but both adults and children exhibit little knowledge about protecting themselves from the ozone hole. Moreover, only some participants exhibited 'mental models' in their conceptual understanding of the ozone layer and ozone hole. The implications of these results for health professionals, educators, and scientists are discussed.

  7. Development of a conceptual model to predict physical activity participation in adults with brain injuries.

    PubMed

    Driver, Simon

    2008-10-01

    The purpose was to examine psychosocial factors that influence the physical activity behaviors of adults with brain injuries. Two differing models, based on Harter's model of self-worth, were proposed to examine the relationship between perceived competence, social support, physical self-worth, affect, and motivation. Adults numbering 384 with brain injuries completed a series of questionnaires measuring each psychosocial variable. The structural analysis indicated a nonsignificant chi squared value and good fit indices for model two which included affect as the mediating variable. Findings indicate that affect is critical in shaping the physical activity cognitions and behaviors of adults with brain injuries. Suggestions are made on practical ways to enhance affect and subsequently physical activity participation. PMID:18955746

  8. Integrative molecular characterization of head and neck cancer cell model genomes

    PubMed Central

    Tsui, Ivy F.L.; Garnis, Cathie

    2010-01-01

    Background Cell lines are invaluable model systems for the investigation of cancer. Knowledge of the molecular alterations that exist within cell models is required to define the mechanisms governing cellular phenotypes. Methods Five tongue squamous cell carcinomas cell lines and one submaxillary salivary gland epidermoid carcinoma cell line were analyzed for copy number and mRNA expression by tiling-path DNA microarrays and Agilent Whole Human Genome Oligoarrays, respectively. Results Integrative analysis of genetic and expression alterations revealed the molecular landscape of each cell line. Molecular results for individual cell lines and across all samples have been summarized and made available for easy reference. Conclusion Our integrative genomic analyses have defined the DNA and RNA alterations for each individual line. These data will be useful to anyone modelling oral cancer behaviour, providing a molecular context that will be useful for deciphering cell phenotypes. PMID:20014447

  9. A national survey of healthcare professionals' views on models of follow-up, holistic needs assessment and survivorship care for patients with head and neck cancer.

    PubMed

    Wells, M; Semple, C J; Lane, C

    2015-11-01

    Patterns of follow-up and survivorship care are changing in response to growing numbers of cancer survivors and an increasing recognition that traditional models are unsustainable and result in unmet needs. Clinicians have shown reluctance in changing conventional follow-up practices for patients with head and neck cancer. This study aimed to explore nurses' and allied health professionals' views and practices in relation to follow-up, holistic needs assessment and survivorship care in this patient group. An online survey of members of the British Association of Head and Neck Oncology Nurses was undertaken. The response rate was 43% (74 of 174). Findings revealed a range of existing models of follow-up, rehabilitation and support for people with head and neck cancer across the UK. Specialist staff were open to new models of care and to more responsibility, with adequate training and supervision. There were some gaps in the provision of comprehensive survivorship care and some specific areas of practice in which nurses lacked confidence, knowledge and skills, such as managing medications and complex symptoms. Further research is needed to develop and evaluate effective models of follow-up and support for a growing population of head and neck cancer survivors who have diverse and complex needs. PMID:25615418

  10. Follow the heart or the head? The interactive influence model of emotion and cognition

    PubMed Central

    Luo, Jiayi; Yu, Rongjun

    2015-01-01

    The experience of emotion has a powerful influence on daily-life decision making. Following Plato’s description of emotion and reason as two horses pulling us in opposite directions, modern dual-system models of decision making endorse the antagonism between reason and emotion. Decision making is perceived as the competition between an emotion system that is automatic but prone to error and a reason system that is slow but rational. The reason system (in “the head”) reins in our impulses (from “the heart”) and overrides our snap judgments. However, from Darwin’s evolutionary perspective, emotion is adaptive, guiding us to make sound decisions in uncertainty. Here, drawing findings from behavioral economics and neuroeconomics, we provide a new model, labeled “The interactive influence model of emotion and cognition,” to elaborate the relationship of emotion and reason in decision making. Specifically, in our model, we identify factors that determine when emotions override reason and delineate the type of contexts in which emotions help or hurt decision making. We then illustrate how cognition modulates emotion and how they cooperate to affect decision making. PMID:25999889

  11. Stereoscopic Vascular Models of the Head and Neck: A Computed Tomography Angiography Visualization

    ERIC Educational Resources Information Center

    Cui, Dongmei; Lynch, James C.; Smith, Andrew D.; Wilson, Timothy D.; Lehman, Michael N.

    2016-01-01

    Computer-assisted 3D models are used in some medical and allied health science schools; however, they are often limited to online use and 2D flat screen-based imaging. Few schools take advantage of 3D stereoscopic learning tools in anatomy education and clinically relevant anatomical variations when teaching anatomy. A new approach to teaching…

  12. Modeling Face Identification Processing in Children and Adults.

    ERIC Educational Resources Information Center

    Schwarzer, Gudrun; Massaro, Dominic W.

    2001-01-01

    Two experiments studied whether and how 5-year-olds integrate single facial features to identify faces. Results indicated that children could evaluate and integrate information from eye and mouth features to identify a face when salience of features was varied. A weighted Fuzzy Logical Model of Perception fit better than a Single Channel Model,…

  13. Bringing Older Adults into the Classroom: The Sharing Community Model

    ERIC Educational Resources Information Center

    Hantman, Shira; Oz, Miriam Ben; Gutman, Caroline; Criden, Wendy

    2013-01-01

    This article describes an innovative model for teaching gerontological social work that has been introduced into the social work methods curriculum in the Department of Social Work at a college in northern Israel. The basic concept of the model is to create an alternative learning environment by including older persons as full participants in the…

  14. MODELING MULTIPATHWAY EXPOSURES OF CHILDREN AND ADULTS TO PESTICIDES

    EPA Science Inventory

    A probabilistic model of individual exposure to chlorpyrifos has been developed in support of the United States Environmental Protection Agency (US EPA) National Human Exposure Assessment Survey (NHEXAS) and the Food Quality Protection Act (FQPA) program. The model examines a v...

  15. Impact resistance and hardness modelling of Aluminium alloy welds using square-headed friction-stir welding tool

    NASA Astrophysics Data System (ADS)

    Sudhakar, U.; Srinivas, J., Dr.

    2016-02-01

    This paper proposes modelling and optimization issues relating to friction-stir welding process of aluminium alloys. A specially prepared SS tool of square headed pin profile with cylindrical shoulder is used with a vertical milling machine. Effects of process variables including tool rotation and tool velocity on the weld performance are studied in terms of impact strength and hardness. Three different rotational motions and three welding speeds (feeds) of tool are considered at constant axial load (depth of cut) condition and altogether nine experiments are conducted on a vertical milling machine with specially prepared fixture. Each weld sample is then tested for its impact strength (IS) and hardness independently. A model is developed to correlate the relations between the hardness/impact strength with tool rotation and weld speed using neural networks. The optimized process conditions are predicted to improvise the impact strength and hardness of the weld. Further, the morphology of the weld is studied using SEM to know the material flow characteristics.

  16. The Prototype Hypothesis and the Origins of Attachment Working Models: Adult Relationships with Parents and Romantic Partners.

    ERIC Educational Resources Information Center

    Owens, Gretchen; And Others

    1995-01-01

    Used Current Relationship Interview (CRI) to examine correspondence between adults' models of their current love relationships and generalized attachment models accessed by the Adult Attachment Interview (AAI). Found that early experience influences later relationships, but little support for the idea that a working model formed by caregiver-child…

  17. Head and neck injury risks in heavy metal: head bangers stuck between rock and a hard bass

    PubMed Central

    Patton, Declan

    2008-01-01

    Objective To investigate the risks of mild traumatic brain injury and neck injury associated with head banging, a popular dance form accompanying heavy metal music. Design Observational studies, focus group, and biomechanical analysis. Participants Head bangers. Main outcome measures Head Injury Criterion and Neck Injury Criterion were derived for head banging styles and both popular heavy metal songs and easy listening music controls. Results An average head banging song has a tempo of about 146 beats per minute, which is predicted to cause mild head injury when the range of motion is greater than 75°. At higher tempos and greater ranges of motion there is a risk of neck injury. Conclusion To minimise the risk of head and neck injury, head bangers should decrease their range of head and neck motion, head bang to slower tempo songs by replacing heavy metal with adult oriented rock, only head bang to every second beat, or use personal protective equipment. PMID:19091761

  18. Fate Analysis of Adult Hippocampal Progenitors in a Murine Model of Fetal Alcohol Spectrum Disorder (FASD)

    PubMed Central

    Kajimoto, Kenta; Allan, Andrea; Cunningham, Lee Anna

    2013-01-01

    Prenatal alcohol exposure can lead to fetal alcohol spectrum disorder (FASD) and associated behavioral impairments that may be linked to disruptions in adult hippocampal neurogenesis. Social and physical enrichment has been proposed as a potential therapeutic approach toward reversing behavioral deficits associated with FASD and is also a potent stimulator of adult hippocampal neurogenesis. In the present study, we utilized a genetic fate mapping approach in nestin-CreERT2/YFP bitransgenic mice to identify the stage-specific impact of prenatal alcohol exposure on the stepwise maturation of adult hippocampal progenitors. Using a limited alcohol access “drinking-in-the-dark” model of FASD, we confirm previous findings that moderate prenatal alcohol exposure has no effect on adult neurogenesis under standard housing conditions, but abolishes the neurogenic response to enriched environment (EE). Furthermore, we demonstrate that this effect is primarily due to failed EE-mediated survival of postmitotic neurons. Finally, we demonstrate that the neurogenic deficit is associated with impaired spatial pattern recognition, as demonstrated by delayed learning of FASD-EE mice in an A–B contextual discrimination task. These results identify a potential maturational stage-specific mechanism(s) underlying impaired neurogenic function in a preclinical model of FASD, and provide a basis for testing regulatory pathways in this model through conditional and inducible manipulation of gene expression in the adult hippocampal progenitor population. PMID:24040071

  19. Fate analysis of adult hippocampal progenitors in a murine model of fetal alcohol spectrum disorder (FASD).

    PubMed

    Kajimoto, Kenta; Allan, Andrea; Cunningham, Lee Anna

    2013-01-01

    Prenatal alcohol exposure can lead to fetal alcohol spectrum disorder (FASD) and associated behavioral impairments that may be linked to disruptions in adult hippocampal neurogenesis. Social and physical enrichment has been proposed as a potential therapeutic approach toward reversing behavioral deficits associated with FASD and is also a potent stimulator of adult hippocampal neurogenesis. In the present study, we utilized a genetic fate mapping approach in nestin-CreER(T2)/YFP bitransgenic mice to identify the stage-specific impact of prenatal alcohol exposure on the stepwise maturation of adult hippocampal progenitors. Using a limited alcohol access "drinking-in-the-dark" model of FASD, we confirm previous findings that moderate prenatal alcohol exposure has no effect on adult neurogenesis under standard housing conditions, but abolishes the neurogenic response to enriched environment (EE). Furthermore, we demonstrate that this effect is primarily due to failed EE-mediated survival of postmitotic neurons. Finally, we demonstrate that the neurogenic deficit is associated with impaired spatial pattern recognition, as demonstrated by delayed learning of FASD-EE mice in an A-B contextual discrimination task. These results identify a potential maturational stage-specific mechanism(s) underlying impaired neurogenic function in a preclinical model of FASD, and provide a basis for testing regulatory pathways in this model through conditional and inducible manipulation of gene expression in the adult hippocampal progenitor population. PMID:24040071

  20. Sculpting Ceramic Heads.

    ERIC Educational Resources Information Center

    Sapiro, Maurice

    1983-01-01

    Clay sculpture is difficult to produce because of the requirements of kiln firing. The problems can be overcome by modeling the original manikin head and making a plaster mold, pressing molding slabs of clay into the plaster mold to form the hollow clay armature, and sculpting on the armature. (IS)

  1. Head and neck response of a finite element anthropomorphic test device and human body model during a simulated rotary-wing aircraft impact.

    PubMed

    White, Nicholas A; Danelson, Kerry A; Gayzik, F Scott; Stitzel, Joel D

    2014-11-01

    A finite element (FE) simulation environment has been developed to investigate aviator head and neck response during a simulated rotary-wing aircraft impact using both an FE anthropomorphic test device (ATD) and an FE human body model. The head and neck response of the ATD simulation was successfully validated against an experimental sled test. The majority of the head and neck transducer time histories received a CORrelation and analysis (CORA) rating of 0.7 or higher, indicating good overall correlation. The human body model simulation produced a more biofidelic head and neck response than the ATD experimental test and simulation, including change in neck curvature. While only the upper and lower neck loading can be measured in the ATD, the shear force, axial force, and bending moment were reported for each level of the cervical spine in the human body model using a novel technique involving cross sections. This loading distribution provides further insight into the biomechanical response of the neck during a rotary-wing aircraft impact. PMID:25085863

  2. Passaged Adult Chondrocytes Can Form Engineered Cartilage with Functional Mechanical Properties: A Canine Model

    PubMed Central

    Ng, Kenneth W.; Lima, Eric G.; Bian, Liming; O'Conor, Christopher J.; Jayabalan, Prakash S.; Stoker, Aaron M.; Kuroki, Keiichi; Cook, Cristi R.; Ateshian, Gerard A.; Cook, James L.

    2010-01-01

    It was hypothesized that previously optimized serum-free culture conditions for juvenile bovine chondrocytes could be adapted to generate engineered cartilage with physiologic mechanical properties in a preclinical, adult canine model. Primary or passaged (using growth factors) adult chondrocytes from three adult dogs were encapsulated in agarose, and cultured in serum-free media with transforming growth factor-β3. After 28 days in culture, engineered cartilage formed by primary chondrocytes exhibited only small increases in glycosaminoglycan content. However, all passaged chondrocytes on day 28 elaborated a cartilage matrix with compressive properties and glycosaminoglycan content in the range of native adult canine cartilage values. A preliminary biocompatibility study utilizing chondral and osteochondral constructs showed no gross or histological signs of rejection, with all implanted constructs showing excellent integration with surrounding cartilage and subchondral bone. This study demonstrates that adult canine chondrocytes can form a mechanically functional, biocompatible engineered cartilage tissue under optimized culture conditions. The encouraging findings of this work highlight the potential for tissue engineering strategies using adult chondrocytes in the clinical treatment of cartilage defects. PMID:19845465

  3. Evaluation of 3-Dimensional Superimposition Techniques on Various Skeletal Structures of the Head Using Surface Models

    PubMed Central

    Pazera, Pawel; Zorkun, Berna; Katsaros, Christos; Ludwig, Björn

    2015-01-01

    Objectives To test the applicability, accuracy, precision, and reproducibility of various 3D superimposition techniques for radiographic data, transformed to triangulated surface data. Methods Five superimposition techniques (3P: three-point registration; AC: anterior cranial base; AC + F: anterior cranial base + foramen magnum; BZ: both zygomatic arches; 1Z: one zygomatic arch) were tested using eight pairs of pre-existing CT data (pre- and post-treatment). These were obtained from non-growing orthodontic patients treated with rapid maxillary expansion. All datasets were superimposed by three operators independently, who repeated the whole procedure one month later. Accuracy was assessed by the distance (D) between superimposed datasets on three form-stable anatomical areas, located on the anterior cranial base and the foramen magnum. Precision and reproducibility were assessed using the distances between models at four specific landmarks. Non parametric multivariate models and Bland-Altman difference plots were used for analyses. Results There was no difference among operators or between time points on the accuracy of each superimposition technique (p>0.05). The AC + F technique was the most accurate (D<0.17 mm), as expected, followed by AC and BZ superimpositions that presented similar level of accuracy (D<0.5 mm). 3P and 1Z were the least accurate superimpositions (0.790.05), the detected structural changes differed significantly between different techniques (p<0.05). Bland-Altman difference plots showed that BZ superimposition was comparable to AC, though it presented slightly higher random error. Conclusions Superimposition of 3D datasets using surface models created from voxel data can provide accurate, precise, and reproducible results, offering also high efficiency and increased post-processing capabilities. In

  4. The Model Human Processor and the Older Adult: Parameter Estimation and Validation Within a Mobile Phone Task

    PubMed Central

    Jastrzembski, Tiffany S.; Charness, Neil

    2009-01-01

    The authors estimate weighted mean values for nine information processing parameters for older adults using the Card, Moran, and Newell (1983) Model Human Processor model. The authors validate a subset of these parameters by modeling two mobile phone tasks using two different phones and comparing model predictions to a sample of younger (N = 20; Mage = 20) and older (N = 20; Mage = 69) adults. Older adult models fit keystroke-level performance at the aggregate grain of analysis extremely well (R = 0.99) and produced equivalent fits to previously validated younger adult models. Critical path analyses highlighted points of poor design as a function of cognitive workload, hardware/software design, and user characteristics. The findings demonstrate that estimated older adult information processing parameters are valid for modeling purposes, can help designers understand age-related performance using existing interfaces, and may support the development of age-sensitive technologies. PMID:18194048

  5. Modeling the dosimetry of organ-at-risk in head and neck IMRT planning: An intertechnique and interinstitutional study

    SciTech Connect

    Lian, Jun Chera, Bhishamjit S.; Chang, Sha; Yuan, Lulin Yoo, David P.; Yin, FangFang; Wu, Q. Jackie; Ge, Yaorong

    2013-12-15

    Purpose: To build a statistical model to quantitatively correlate the anatomic features of structures and the corresponding dose-volume histogram (DVH) of head and neck (HN) Tomotherapy (Tomo) plans. To study if the model built upon one intensity modulated radiation therapy (IMRT) technique (such as conventional Linac) can be used to predict anticipated organs-at-risk (OAR) DVH of patients treated with a different IMRT technique (such as Tomo). To study if the model built upon the clinical experience of one institution can be used to aid IMRT planning for another institution. Methods: Forty-four Tomotherapy intensity modulate radiotherapy plans of HN cases (Tomo-IMRT) from Institution A were included in the study. A different patient group of 53 HN fixed gantry IMRT (FG-IMRT) plans was selected from Institution B. The analyzed OARs included the parotid, larynx, spinal cord, brainstem, and submandibular gland. Two major groups of anatomical features were considered: the volumetric information and the spatial information. The volume information includes the volume of target, OAR, and overlapped volume between target and OAR. The spatial information of OARs relative to PTVs was represented by the distance-to-target histogram (DTH). Important anatomical and dosimetric features were extracted from DTH and DVH by principal component analysis. Two regression models, one for Tomotherapy plan and one for IMRT plan, were built independently. The accuracy of intratreatment-modality model prediction was validated by a leave one out cross-validation method. The intertechnique and interinstitution validations were performed by using the FG-IMRT model to predict the OAR dosimetry of Tomo-IMRT plans. The dosimetry of OARs, under the same and different institutional preferences, was analyzed to examine the correlation between the model prediction and planning protocol. Results: Significant patient anatomical factors contributing to OAR dose sparing in HN Tomotherapy plans have been

  6. Adult attachment styles, the desire to have children, and working models of parenthood.

    PubMed

    Rholes, W S; Simpson, J A; Blakely, B S; Lanigan, L; Allen, E A

    1997-06-01

    College students who had yet to marry and begin a family were asked about their desire to have children and their beliefs and expectations about themselves as parents (Study 1) and the characteristics of their prospective children (Study 2). Persons with more avoidant and anxious-ambivalent models of close adult relationships harbored more negative models of parenthood and parent-child relationships. These findings indicate that working models of parenting and parent-child relationships form well before marriage and the birth of children and that these models are systematically associated with attachment styles in adult relationships. The findings also suggest ways in which insecure attachments between child and parent may be influenced by the caregiver's models of parenting and parent-child relationships. PMID:9226942

  7. Use of a poultry model to assess the transfer inhibition effect of head lice (Pediculus humanus capitis) products.

    PubMed

    Ketzis, Jennifer K; Clements, Kathleen; Honraet, Kris

    2014-05-01

    Head lice (Pediculus humanus capitis) remain a nuisance, predominantly in school age children. Despite the availability of pediculicidal products, children, after treatment, easily become re-infested if the outbreak has not been controlled on a class or school level. Lice repellents and re-infestation deterrents have been developed to protect children post-treatment. In vitro assays, which are used to evaluate the performance of these products, have limited correlation to in vivo efficacy. In this study, a chicken model was developed as an alternative to in vitro models, more closely mimicking the in vivo situation of children at school. Chickens with natural infestations of Menopon spp. and Menacanthus spp. were divided into three groups and co-housed for 23 h: Group 1 was treated with a commercial product designed to kill lice and protect from re-infestation (Oystershell Laboratories); group 2 was used to assess lice re-population onto lice-free, untreated chickens; and group 3, the seeder group, consisted of lice-infested chickens. The chickens were examined for lice before and at regular intervals after treatment. The group 1 chickens had an average of 40 lice pre-treatment, 0 lice post-treatment and did not become re-infested during the 23-h period. Lice were slow to re-populate the group 2 chickens but were seen 3 h after co-housing with an average of 6 lice each at the end of the study. Group 3 chickens maintained their lice throughout the study (average of 32 at end of study). Based on this study, chickens can be used as a model to test the performance of lice repellents and re-infestation deterrents. PMID:24647985

  8. Targeting TORC1/2 enhances sensitivity to EGFR inhibitors in head and neck cancer preclinical models.

    PubMed

    Cassell, Andre; Freilino, Maria L; Lee, Jessica; Barr, Sharon; Wang, Lin; Panahandeh, Mary C; Thomas, Sufi M; Grandis, Jennifer R

    2012-11-01

    Head and neck squamous cell carcinoma (HNSCC) is characterized by overexpression of the epidermal growth factor receptor (EGFR) where treatments targeting EGFR have met with limited clinical success. Elucidation of the key downstream-pathways that remain activated in the setting of EGFR blockade may reveal new therapeutic targets. The present study was undertaken to test the hypothesis that inhibition of the mammalian target of rapamycin (mTOR) complex would enhance the effects of EGFR blockade in HNSCC preclinical models. Treatment of HNSCC cell lines with the newly developed TORC1/TORC2 inhibitor OSI-027/ASP4876 resulted in dose-dependent inhibition of proliferation with abrogation of phosphorylation of known downstream targets including phospho-AKT (Ser473), phospho-4E-BP1, phospho-p70s6K, and phospho-PRAS40. Furthermore, combined treatment with OSI-027 and erlotinib resulted in enhanced biochemical effects and synergistic growth inhibition in vitro. Treatment of mice bearing HNSCC xenografts with a combination of the Food and Drug Administration (FDA)-approved EGFR inhibitor cetuximab and OSI-027 demonstrated a significant reduction of tumor volumes compared with either treatment alone. These findings suggest that TORC1/TORC2 inhibition in conjunction with EGFR blockade represents a plausible therapeutic strategy for HNSCC. PMID:23226094

  9. Targeting TORC1/2 Enhances Sensitivity to EGFR Inhibitors in Head and Neck Cancer Preclinical Models1

    PubMed Central

    Cassell, Andre; Freilino, Maria L; Lee, Jessica; Barr, Sharon; Wang, Lin; Panahandeh, Mary C; Thomas, Sufi M; Grandis, Jennifer R

    2012-01-01

    Head and neck squamous cell carcinoma (HNSCC) is characterized by overexpression of the epidermal growth factor receptor (EGFR) where treatments targeting EGFR have met with limited clinical success. Elucidation of the key downstream-pathways that remain activated in the setting of EGFR blockade may reveal new therapeutic targets. The present study was undertaken to test the hypothesis that inhibition of the mammalian target of rapamycin (mTOR) complex would enhance the effects of EGFR blockade in HNSCC preclinical models. Treatment of HNSCC cell lines with the newly developed TORC1/TORC2 inhibitor OSI-027/ASP4876 resulted in dose-dependent inhibition of proliferation with abrogation of phosphorylation of known downstream targets including phospho-AKT (Ser473), phospho-4E-BP1, phospho-p70s6K, and phospho-PRAS40. Furthermore, combined treatment with OSI-027 and erlotinib resulted in enhanced biochemical effects and synergistic growth inhibition in vitro. Treatment of mice bearing HNSCC xenografts with a combination of the Food and Drug Administration (FDA)-approved EGFR inhibitor cetuximab and OSI-027 demonstrated a significant reduction of tumor volumes compared with either treatment alone. These findings suggest that TORC1/TORC2 inhibition in conjunction with EGFR blockade represents a plausible therapeutic strategy for HNSCC. PMID:23226094

  10. Photoimmunotherapy of residual disease after incomplete surgical resection in head and neck cancer models.

    PubMed

    Moore, Lindsay S; de Boer, Esther; Warram, Jason M; Tucker, Matthew D; Carroll, William R; Korb, Melissa L; Brandwein-Gensler, Margaret S; van Dam, Gooitzen M; Rosenthal, Eben L

    2016-07-01

    Antibody-based photodynamic therapy, or photoimmunotherapy (PIT), is a novel, targeted cancer therapy, which can serve as both a diagnostic and a therapeutic agent. The primary objective of this study was to evaluate the capacity of panitumumab-IRDye700DX (Pan-IR700) to eliminate microscopic tumor remnants in the postsurgical setting, which was accomplished using novel in vitro and in vivo models of residual disease after incomplete resection. Additionally, PIT was evaluated in fresh human-derived cancer tissue. To determine a threshold for cellular regrowth after PIT, an in vitro assay was performed using a range of cells representing microscopic disease quantities. Long-term growth inhibition was induced after treatment of 5 × 10(3) and 1 × 10(4) cells at 6 J. A novel in vivo mouse model of subtotal tumor resection was used to assess the effectiveness of Pan-IR700 mediated PIT to eliminate residual disease and inhibit recurrence in the post-surgical wound bed. Mice receiving surgical treatment plus adjuvant PIT showed a threefold and fourfold reduction in tumor regrowth at 30 days post PIT in the 50% and 90% subtotal resection groups, respectively (as measured by bioluminescence imaging), demonstrating a significant (P < 0.001) reduction in tumor regrowth. To determine the translatability of epidermal growth factor receptor (EGFR)-targeted PIT, SCCHN human tissues (n = 12) were treated with Pan-IR700. A significant reduction (P < 0.001) in ATP levels was observed after treatment with Pan-IR700 and 100 J cm(-2) (48% ± 5%) and 150 J cm(-2) (49% ± 7%) when compared to baseline. Targeting EGFR with Pan-IR700 has robust potential to provide a tumor-specific mechanism for eliminating residual disease in the surgical setting, thereby increasing therapeutic efficacy, prolonging progression-free survival, and decreasing morbidity. PMID:27167827

  11. Network modeling identifies molecular functions targeted by miR-204 to suppress head and neck tumor metastasis.

    PubMed

    Lee, Younghee; Yang, Xinan; Huang, Yong; Fan, Hanli; Zhang, Qingbei; Wu, Youngfei; Li, Jianrong; Hasina, Rifat; Cheng, Chao; Lingen, Mark W; Gerstein, Mark B; Weichselbaum, Ralph R; Xing, H Rosie; Lussier, Yves A

    2010-04-01

    Due to the large number of putative microRNA gene targets predicted by sequence-alignment databases and the relative low accuracy of such predictions which are conducted independently of biological context by design, systematic experimental identification and validation of every functional microRNA target is currently challenging. Consequently, biological studies have yet to identify, on a genome scale, key regulatory networks perturbed by altered microRNA functions in the context of cancer. In this report, we demonstrate for the first time how phenotypic knowledge of inheritable cancer traits and of risk factor loci can be utilized jointly with gene expression analysis to efficiently prioritize deregulated microRNAs for biological characterization. Using this approach we characterize miR-204 as a tumor suppressor microRNA and uncover previously unknown connections between microRNA regulation, network topology, and expression dynamics. Specifically, we validate 18 gene targets of miR-204 that show elevated mRNA expression and are enriched in biological processes associated with tumor progression in squamous cell carcinoma of the head and neck (HNSCC). We further demonstrate the enrichment of bottleneckness, a key molecular network topology, among miR-204 gene targets. Restoration of miR-204 function in HNSCC cell lines inhibits the expression of its functionally related gene targets, leads to the reduced adhesion, migration and invasion in vitro and attenuates experimental lung metastasis in vivo. As importantly, our investigation also provides experimental evidence linking the function of microRNAs that are located in the cancer-associated genomic regions (CAGRs) to the observed predisposition to human cancers. Specifically, we show miR-204 may serve as a tumor suppressor gene at the 9q21.1-22.3 CAGR locus, a well established risk factor locus in head and neck cancers for which tumor suppressor genes have not been identified. This new strategy that integrates

  12. Mineral bone disorder in chronic kidney disease: head-to-head comparison of the 5/6 nephrectomy and adenine models

    PubMed Central

    2014-01-01

    Background Experimental models are important to the understanding of the pathophysiology of, as well as the effects of therapy on, certain diseases. In the case of chronic kidney disease-mineral bone disorder, there are currently two models that are used in evaluating the disease: 5/6 nephrectomy (Nx) and adenine-induced renal failure (AIRF). However, the two models have never been compared in studies using animals maintained under similar conditions. Therefore, we compared these two models, focusing on the biochemical, bone histomorphometry, and vascular calcification aspects. Methods Wistar rats, initially fed identical diets, were divided into two groups: those undergoing 5/6 Nx (5/6Nx group) and those that were switched to an adenine-enriched diet (AIRF group). After 9 weeks, animals were sacrificed, and we conducted biochemical and bone histomorphometry analyses, as well as assessing vascular calcification. Results At sacrifice, the mean body weight was higher in the 5/6Nx group than in the AIRF group, as was the mean blood pressure. No differences were seen regarding serum phosphate, ionized calcium, intact parathyroid hormone (PTH), or fibroblast growth factor 23 (FGF23). However, creatinine clearance was lower and fractional excretion of phosphate (FeP) was higher in the AIRF group rats, which also had a more severe form of high-turnover bone disease. Vascular calcification, as evaluated through von Kossa staining, was not observed in any of the animals. Conclusions Overt vascular calcification was not seen in either model as applied in this study. Under similar conditions of diet and housing, the AIRF model produces a more severe form of bone disease than does 5/6 Nx. This should be taken into account when the choice is made between these models for use in preclinical studies. PMID:24885705

  13. Model for antiorthostatic hypokinesia - Head-down tilt effects on water and salt excretion

    NASA Technical Reports Server (NTRS)

    Deavers, D. R.; Musacchia, X. J.; Meininger, G. A.

    1980-01-01

    Water and electrolyte excretion was investigated in antiorthostatic hypokinetic and orthostatic hypokinetic and control rats in metabolic cages. Significant (t test, P less than 0.05) diuresis, natriuresis, and kaliuresis occurred in the antiorthostatic hypokinetic subjects but did not occur in either the orthostatic hypokinetic or controls. Recovery from antiorthostatic hypokinesia was characterized by retention of water, sodium, and potassium. Patterns of changes in body weight and food and water consumption were virtually identical in antiorthostatic and orthostatic hypokinetic rats and thus could not account for the differences in renal handling of water and electrolytes. Also, differences in ingestion of food and water in controls could not account for differences in excretion of water and electrolytes between these and antiorthostatic hypokinetic rats. It was concluded that the antiorthostatic position was responsible for the diuresis and natriuresis and that the antiorthostatic hypokinetic rat appears to be a good model for the study of water and elecrolyte excretion during conditions such as bed rest, water immersion, and exposure to weightlessness.

  14. Accidental Head Injury: A Real Life Experience.

    ERIC Educational Resources Information Center

    Blakely, Jim

    1988-01-01

    The adult victim of accidental head injury as a result of an automobile accident recounts his experiences as a brain injured adult with such problems as poor balance, poor speech, spasticity, and lack of fine motor movement. He emphasizes his determination to get on with his life. (DB)

  15. Latent Model Analysis of Substance Use and HIV Risk Behaviors among High-Risk Minority Adults

    ERIC Educational Resources Information Center

    Wang, Min Qi; Matthew, Resa F.; Chiu, Yu-Wen; Yan, Fang; Bellamy, Nikki D.

    2007-01-01

    Objectives: This study evaluated substance use and HIV risk profile using a latent model analysis based on ecological theory, inclusive of a risk and protective factor framework, in sexually active minority adults (N=1,056) who participated in a federally funded substance abuse and HIV prevention health initiative from 2002 to 2006. Methods: Data…

  16. Motives and Determinants of Volunteering in Older Adults: An Integrated Model

    ERIC Educational Resources Information Center

    Grano, Caterina; Lucidi, Fabio; Zelli, Arnaldo; Violani, Cristiano

    2008-01-01

    The present study focused on changes in volunteering over time among Italian adults and examined a model in which motives from self-determination theory (SDT) were hypothesized to influence a series of social-cognitive processes including self-efficacy judgments and constructs from the theory of planned behavior (TPB). The study was conducted with…

  17. Transitioning an Adult-Serving University to a Blended Learning Model

    ERIC Educational Resources Information Center

    Korr, Jeremy; Derwin, Ellen Baker; Greene, Kimberly; Sokoloff, William

    2012-01-01

    While many institutions deliver some classes in blended format, Brandman University transitioned all of its face-to-face classes to blended delivery, using a model tailored to the needs of adult learners. This article provides research supporting the ways that blended learning principles align with key principles of andragogy. The article provides…

  18. Adult Participation in Children's Word Searches: On the Use of Prompting, Hinting, and Supplying a Model

    ERIC Educational Resources Information Center

    Radford, Julie

    2010-01-01

    Although word searching in children is very common, very little is known about how adults support children in the turns following the child's search behaviours, an important topic because of the social, educational, and clinical implications. This study characterizes, in detail, teachers' use of prompting, hinting, and supplying a model. From a…

  19. Adaptive Behavior and Cognitive Function of Adults with Down Syndrome: Modeling Change with Age.

    ERIC Educational Resources Information Center

    Hawkins, Barbara A.; Eklund, Susan J.; James, David R.; Foose, Alice K.

    2003-01-01

    Fifty-eight adults with Down syndrome were assessed longitudinally over 10 years for the purpose of modeling aging-related change in cognitive function and adaptive behavior. Findings provide further evidence of changes in performance with age and include selected effects for participants who completed the study and those lost to follow-up.…

  20. Modeling dietary fiber intakes in US adults: implications for public policy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this study was to simulate the application of the dietary recommendations to increase dietary fiber (DF)-containing foods. This study used 24-hour dietary recalls from NHANES 2003-2006 to model the impact of different approaches of increasing DF with current dietary patterns of US adults...

  1. Levinson's Model as a Predictor of the Adult Development of Policemen.

    ERIC Educational Resources Information Center

    Fagan, M. Michael; Ayers, Kenneth, Jr.

    1983-01-01

    Investigated adult development of police officers compared to the development of subjects in Daniel Levinson's study. Interviews with 23 male police officers indicated that their lives generally corresponded to Levinson's theory. The nature of subjects' psychosocial stages was similar to Levinson's model for some age periods, but not all.…

  2. Completion and Attrition in Adult Basic Education: A Test of Two Pragmatic Prediction Models.

    ERIC Educational Resources Information Center

    Dirkx, John M.; Jha, Ladeane R.

    1994-01-01

    Two prediction models using age and entry-level reading and math scores to differentiate completers and noncompleters were tested with 1,319 community college adult basic education students. Persisters and dropouts were not homogeneous groups; for example, General Educational Development completers differed from other completers, and early and…

  3. Anxiety Psychopathology in African American Adults: Literature Review and Development of an Empirically Informed Sociocultural Model

    ERIC Educational Resources Information Center

    Hunter, Lora Rose; Schmidt, Norman B.

    2010-01-01

    In this review, the extant literature concerning anxiety psychopathology in African American adults is summarized to develop a testable, explanatory framework with implications for future research. The model was designed to account for purported lower rates of anxiety disorders in African Americans compared to European Americans, along with other…

  4. A Leadership Decision-Making Model for the Program Development and Management of Adult Education Agencies.

    ERIC Educational Resources Information Center

    Sample, John A.

    1985-01-01

    Addresses the issue of participation in the development and management of programs for adult learners. The Vroom and Yetton model of leadership decision making, a contingency approach that utilizes a range of decision styles, is described through various case examples. (CT)

  5. Developmental Assets: Validating a Model of Successful Adaptation for Emerging Adults

    ERIC Educational Resources Information Center

    Pashak, Travis J.; Hagen, John W.; Allen, Jennifer M.; Selley, Ryan S.

    2014-01-01

    This brief report assesses the validity of applying the adolescent-based developmental assets model to emerging adults. Developmental assets are specific constructs which predict future success, including positive individual characteristics and environmental resources. The researchers developed a self-report survey based on a subset of the assets…

  6. Modeling Participation Intention of Adults in Continuing Education--A Behavioral Approach

    ERIC Educational Resources Information Center

    Lau, Chiu Ming; Chen, Qijie

    2012-01-01

    The study examined how attitudes and subjective norms could be used to predict participation intention of adults in continuing education. In this research, attitudes comprised the two variables of positive attitude and negative attitude and subjective norms included normative belief and motivation to comply. Structural equation modeling using a…

  7. The Effects of Time-Limitations and Peer Relationships on Adult Student Learning: A Causal Model.

    ERIC Educational Resources Information Center

    Lundberg, Carol

    Using data from 4,644 undergraduates, this study tested a causal model identifying effects of social integration, age, and time limiting characteristics on adult student learning. Time limiting characteristics included such constraints as off-campus responsibilities and relationships. Educationally related peer relationships were the strongest…

  8. Polynomial Modeling of Child and Adult Intonation in German Spontaneous Speech

    ERIC Educational Resources Information Center

    de Ruiter, Laura E.

    2011-01-01

    In a data set of 291 spontaneous utterances from German 5-year-olds, 7-year-olds and adults, nuclear pitch contours were labeled manually using the GToBI annotation system. Ten different contour types were identified.The fundamental frequency (F0) of these contours was modeled using third-order orthogonal polynomials, following an approach similar…

  9. A Meta-Analysis of Dunn and Dunn Model Correlational Research with Adult Populations

    ERIC Educational Resources Information Center

    Mangino, Christine

    2004-01-01

    The purpose of this investigation was to conduct a quantitative synthesis of correlational research that focused on the Dunn and Dunn Learning-Style Model and was concerned with adult populations. A total of 8,661 participants from the 47 original investigations provided 386 individual effect sizes for this meta-analysis. The mean effect size was…

  10. The Source of Adult Age Differences in Event-Based Prospective Memory: A Multinomial Modeling Approach

    ERIC Educational Resources Information Center

    Smith, Rebekah E.; Bayen, Ute J.

    2006-01-01

    Event-based prospective memory involves remembering to perform an action in response to a particular future event. Normal younger and older adults performed event-based prospective memory tasks in 2 experiments. The authors applied a formal multinomial processing tree model of prospective memory (Smith & Bayen, 2004) to disentangle age differences…

  11. A Conceptual Model and Assessment Template for Capacity Evaluation in Adult Guardianship

    ERIC Educational Resources Information Center

    Moye, Jennifer; Butz, Steven W.; Marson, Daniel C.; Wood, Erica

    2007-01-01

    Purpose: We develop a conceptual model and associated assessment template that is usable across state jurisdictions for evaluating the independent-living capacity of older adults in guardianship proceedings. Design and Methods: We used an iterative process in which legal provisions for guardianship and prevailing clinical practices for capacity…

  12. Dealing with the Stress of College: A Model for Adult Students

    ERIC Educational Resources Information Center

    Kohler Giancola, Jennifer; Grawitch, Matthew J.; Borchert, Dana

    2009-01-01

    With an increase in nontraditional students attending college, there is a need to understand how work/school/life stress affects adult students. The purpose of this study is to test a comprehensive stress model that posits appraisal (cognitive evaluation) and coping as mediators between stressors/interrole conflict and psychosocial outcomes. The…

  13. Parent Power Nights: A Model for Engaging Adults/Families in Learning Mathematics

    ERIC Educational Resources Information Center

    Kosheleva, Olga; Lesser, Larry; Munter, Judith; Trillo, Sylvia

    2008-01-01

    Located on the U.S./México border, The University of Texas at El Paso (UTEP) offers academic programs in K-12 school teacher preparation. Many of the courses integrate parents and families into teacher preparation courses. One example of effective adult/community learning is the "Parent Power Night" (PPN) component. This model builds a…

  14. A Proposed Integrative Model for Enhanced Career Development for Young Adults with Disabilities

    ERIC Educational Resources Information Center

    Lorenz, Dawn C.

    2011-01-01

    Models of career development have been discussed as a matter of growth over the life span and in relation to social learning. An integrated approach using specified career development theories to assist young adults with disabilities will allow professionals to better understand the school-to-work transition and implement meaningful interventions.

  15. Application of a compressible flow solver and barotropic cavitation model for the evaluation of the suction head in a low specific speed centrifugal pump impeller channel

    NASA Astrophysics Data System (ADS)

    Limbach, P.; Müller, T.; Skoda, R.

    2015-12-01

    Commonly, for the simulation of cavitation in centrifugal pumps incompressible flow solvers with VOF kind cavitation models are applied. Since the source/sink terms of the void fraction transport equation are based on simplified bubble dynamics, empirical parameters may need to be adjusted to the particular pump operating point. In the present study a barotropic cavitation model, which is based solely on thermodynamic fluid properties and does not include any empirical parameters, is applied on a single flow channel of a pump impeller in combination with a time-explicit viscous compressible flow solver. The suction head curves (head drop) are compared to the results of an incompressible implicit standard industrial CFD tool and are predicted qualitatively correct by the barotropic model.

  16. Solving the forward problem in electrical impedance tomography for the human head using IDEAS (integrated design engineering analysis software), a finite element modelling tool.

    PubMed

    Bayford, R H; Gibson, A; Tizzard, A; Tidswell, T; Holder, D S

    2001-02-01

    If electrical impedance tomography is to be used as a clinical tool, the image reconstruction algorithms must yield accurate images of impedance changes. One of the keys to producing an accurate reconstructed image is the inclusion of prior information regarding the physical geometry of the object. To achieve this, many researchers have created tools for solving the forward problem by means of finite element methods (FEMs). These tools are limited, allowing only a set number of meshes to be produced from the geometric information of the object. There is a clear need for geometrical accurate FEM models to improve the quality of the reconstructed images. We present a commercial tool called IDEAS, which can be used to create FEM meshes for these models. The application of this tool is demonstrated by using segmented data from the human head to model impedance changes inside the head. PMID:11236890

  17. Anti-lymphangiogenic properties of mTOR inhibitors in head and neck squamous cell carcinoma experimental models

    PubMed Central

    2013-01-01

    Background Tumor dissemination to cervical lymph nodes via lymphatics represents the first step in the metastasis of head and neck squamous cell carcinoma (HNSCC) and is the most significant predictor of tumor recurrence decreasing survival by 50%. The lymphatic suppressing properties of mTOR inhibitors are not yet well understood. Methods Lymphatic inhibiting effects of rapamycin were evaluated in vitro using two lymphatic endothelial cell (LEC) lines. An orthotopic mouse model of HNSCC (OSC-19 cells) was used to evaluate anti-lymphangiogenic effects of rapamycin in vivo. The incidence of cervical lymph node metastases, numbers of tumor-free lymphatic vessels and those invaded by tumor cells in mouse lingual tissue, and expression of pro-lymphangiogenic markers were assessed. Results Rapamycin significantly decreased lymphatic vascular density (p = 0.027), reduced the fraction of lymphatic vessels invaded by tumor cells in tongue tissue (p = 0.013) and decreased metastasis-positive lymph nodes (p = 0.04). Rapamycin also significantly attenuated the extent of metastatic tumor cell spread within lymph nodes (p < 0.0001). We found that rapamycin significantly reduced LEC proliferation and was correlated with decreased VEGFR-3 expression in both LEC, and in some HNSCC cell lines. Conclusions The results of this study demonstrate anti-lymphangiogenic properties of mTOR inhibitors in HNSCC. mTOR inhibitors suppress autocrine and paracrine growth stimulation of tumor and lymphatic endothelial cells by impairing VEGF-C/VEGFR-3 axis and release of soluble VEGFR-2. In a murine HNSCC orthotopic model rapamycin significantly suppressed lymphovascular invasion, decreased cervical lymph node metastasis and delayed the spread of metastatic tumor cells within the lymph nodes. PMID:23815869

  18. Using Kalman Filtering to Predict Time-Varying Parameters in a Model Predicting Baroreflex Regulation During Head-Up Tilt.

    PubMed

    Matzuka, Brett; Mehlsen, Jesper; Tran, Hien; Olufsen, Mette Sofie

    2015-08-01

    The cardiovascular control system is continuously engaged to maintain homeostasis, but it is known to fail in a large cohort of patients suffering from orthostatic intolerance. Numerous clinical studies have been put forward to understand how the system fails, yet noninvasive clinical data are sparse, typical studies only include measurements of heart rate and blood pressure, as a result it is difficult to determine what mechanisms that are impaired. It is known, that blood pressure regulation is mediated by changes in heart rate, vascular resistance, cardiac contractility, and a number of other factors. Given that numerous factors contribute to changing these quantities, it is difficult to devise a physiological model describing how they change in time. One way is to build a model that allows these controlled quantities to change and to compare dynamics between subject groups. To do so, it requires more knowledge of how these quantities change for healthy subjects. This study compares two methods predicting time-varying changes in cardiac contractility and vascular resistance during head-up tilt. Similar to the study by Williams et al. [51], the first method uses piecewise linear splines, while the second uses the ensemble transform Kalman filter (ETKF) [1], [11], [12], [33]. In addition, we show that the delayed rejection adaptive Metropolis (DRAM) algorithm can be used for predicting parameter uncertainties within the spline methodology, which is compared with the variability obtained with the ETKF. While the spline method is easier to set up, this study shows that the ETKF has a significantly shorter computational time. Moreover, while uncertainty of predictions can be augmented to spline predictions using DRAM, these are readily available with the ETKF. PMID:25769142

  19. Estimating a neutral reference for electroencephalographic recordings: the importance of using a high-density montage and a realistic head model

    NASA Astrophysics Data System (ADS)

    Liu, Quanying; Balsters, Joshua H.; Baechinger, Marc; van der Groen, Onno; Wenderoth, Nicole; Mantini, Dante

    2015-10-01

    Objective. In electroencephalography (EEG) measurements, the signal of each recording electrode is contrasted with a reference electrode or a combination of electrodes. The estimation of a neutral reference is a long-standing issue in EEG data analysis, which has motivated the proposal of different re-referencing methods, among which linked-mastoid re-referencing (LMR), average re-referencing (AR) and reference electrode standardization technique (REST). In this study we quantitatively assessed the extent to which the use of a high-density montage and a realistic head model can impact on the optimal estimation of a neutral reference for EEG recordings. Approach. Using simulated recordings generated by projecting specific source activity over the sensors, we assessed to what extent AR, REST and LMR may distort the scalp topography. We examined the impact electrode coverage has on AR and REST, and how accurate the REST reconstruction is for realistic and less realistic (three-layer and single-layer spherical) head models, and with possible uncertainty in the electrode positions. We assessed LMR, AR and REST also in the presence of typical EEG artifacts that are mixed in the recordings. Finally, we applied them to real EEG data collected in a target detection experiment to corroborate our findings on simulated data. Main results. Both AR and REST have relatively low reconstruction errors compared to LMR, and that REST is less sensitive than AR and LMR to artifacts mixed in the EEG data. For both AR and REST, high electrode density yields low re-referencing reconstruction errors. A realistic head model is critical for REST, leading to a more accurate estimate of a neutral reference compared to spherical head models. With a low-density montage, REST shows a more reliable reconstruction than AR either with a realistic or a three-layer spherical head model. Conversely, with a high-density montage AR yields better results unless precise information on electrode positions

  20. Estimating a neutral reference for electroencephalographic recordings: The importance of using a high-density montage and a realistic head model

    PubMed Central

    Liu, Quanying; Balsters, Joshua H.; Baechinger, Marc; van der Groen, Onno; Wenderoth, Nicole; Mantini, Dante

    2016-01-01

    Objective In electroencephalography (EEG) measurements, the signal of each recording electrode is contrasted with a reference electrode or a combination of electrodes. The estimation of a neutral reference is a long-standing issue in EEG data analysis, which has motivated the proposal of different re-referencing methods, among which linked-mastoid re-referencing (LMR), average re-referencing (AR) and reference electrode standardization technique (REST). In this study we quantitatively assessed the extent to which the use of a high-density montage and a realistic head model can impact on the optimal estimation of a neutral reference for EEG recordings. Approach Using simulated recordings generated by projecting specific source activity over the sensors, we assessed to what extent AR, REST and LMR may distort the scalp topography. We examined the impact electrode coverage has on AR and REST, and how accurate the REST reconstruction is for realistic and less realistic (three-layer and single-layer spherical) head models, and with possible uncertainty in the electrode positions. We assessed LMR, AR and REST also in the presence of typical EEG artifacts that are mixed in the recordings. Finally, we applied them to real EEG data collected in a target detection experiment to corroborate our findings on simulated data. Main results Both AR and REST have relatively low reconstruction errors compared to LMR, and that REST is less sensitive than AR and LMR to artifacts mixed in the EEG data. For both AR and REST, high electrode density yields low re-referencing reconstruction errors. A realistic head model is critical for REST, leading to a more accurate estimate of a neutral reference compared to spherical head models. With a low-density montage, REST shows a more reliable reconstruction than AR either with a realistic or a three-layer spherical head model. Conversely, with a high-density montage AR yields better results unless precise information on electrode positions is