Science.gov

Sample records for adult hematopoietic tissues

  1. The characterization of hematopoietic tissue in adult Chinese mitten crab Eriocheir sinensis.

    PubMed

    Jia, Zhihao; Kavungal, Sharath; Jiang, Shuai; Zhao, Depeng; Sun, Mingzhe; Wang, Lingling; Song, Linsheng

    2016-07-01

    Invertebrates rely on the efficient innate immune mechanisms against invaders, in which the continuous production of hemocytes (hematopoiesis) is indispensable. In the present study, the hematopoietic tissue (HPT) from Chinese mitten crab Eriocheir sinensis was identified and characterized. It was a thin and non-transparent sheet located at the dorsolateral side of the stomach, which was composed of a series of ovoid lobules. Each lobule was surrounded by connective tissue containing a large amount of spherical cells with big nucleus. In HPT, the cells were full of mitochondria and granules, and DNA replication was detected in some cells by EdU labeling technique. Cell proliferation was observed in HPT by transmission electron microscope (TEM). The distribution of two transcription factors, GATA1 and RUNX1, were examined by human GATA1 and RUNX1 antibodies, respectively. Three homologues of RUNX1 were detected in the HPT while no signal of RUNX1 was observed in hemocytes, and GATA1 was detected in both HPT and some hemocytes. The mRNA transcript of a novel hematopoiesis related cytokine EsAst was detected in hepatopancreas and hemocytes, but it was no detectable in HPT. The mRNA expression level of EsAst in hepatopancreas was 1.38-fold higher than that in hemocytes. Total hemocytes counts were related to the mRNA expression level of EsAst post Aeromonas hydrophila challenge. The results suggested that the stem cells in the hematopoietic tissue of Chinese mitten crab E. sinensis were regulated by transcriptional and humoral factors to generate hemocytes. PMID:26868307

  2. Persistent Disparities in Adult Hematopoietic Cell Transplantation.

    PubMed

    Crockett, David G; Loberiza, Fausto R

    2015-09-01

    The use of large databases has provided advancements in the understanding of racial, ethnic, and socioeconomic disparities in the field of adult hematopoietic cell transplants (HCT). Disparities exist on individual, institutional, and systemic levels for both allogeneic and autologous HCT. We reviewed the most recent publications that utilized large databases to elucidate disparities in HCT and placed them into historical context of the other major studies in the field. Two emerging themes were identified. These themes are persistent inequalities in both allogeneic HCT and autologous HCT for myeloma and the importance of improving homogeneity of care in HCT. Minimization of inequalities can be achieved only with an understanding of the persistent barriers that exist in the field. PMID:26104908

  3. Aneuploidy impairs hematopoietic stem cell fitness and is selected against in regenerating tissues in vivo.

    PubMed

    Pfau, Sarah J; Silberman, Rebecca E; Knouse, Kristin A; Amon, Angelika

    2016-06-15

    Aneuploidy, an imbalanced karyotype, is a widely observed feature of cancer cells that has long been hypothesized to promote tumorigenesis. Here we evaluate the fitness of cells with constitutional trisomy or chromosomal instability (CIN) in vivo using hematopoietic reconstitution experiments. We did not observe cancer but instead found that aneuploid hematopoietic stem cells (HSCs) exhibit decreased fitness. This reduced fitness is due at least in part to the decreased proliferative potential of aneuploid hematopoietic cells. Analyses of mice with CIN caused by a hypomorphic mutation in the gene Bub1b further support the finding that aneuploidy impairs cell proliferation in vivo. Whereas nonregenerating adult tissues are highly aneuploid in these mice, HSCs and other regenerative adult tissues are largely euploid. These findings indicate that, in vivo, mechanisms exist to select against aneuploid cells. PMID:27313317

  4. Most Tissue-Resident Macrophages Except Microglia Are Derived from Fetal Hematopoietic Stem Cells.

    PubMed

    Sheng, Jianpeng; Ruedl, Christiane; Karjalainen, Klaus

    2015-08-18

    Macrophages are one of the most diverse cell populations in terms of their anatomical location and functional specialization during both homeostasis and disease. Although it has been shown in different fate mapping models that some macrophages present in adult tissues are already established during fetal development, their exact origins are still under debate. In the current study, we developed a fate mapping strain, based on the Kit locus, which allowed us to readdress "the origins" question. Different types of macrophages from various adult tissues were traced to their fetal or adult sources by inducing labeling in precursors at several time points either during fetal development or in adult mice. We show that all adult macrophages, resident or infiltrating, are progenies of classical hematopoietic stem cells (HSC) with the exception of microglia and, partially epidermal Langerhans cells, which are yolk sac (YS)-derived. PMID:26287683

  5. Adult neurogenesis in the decapod crustacean brain: A hematopoietic connection?

    PubMed Central

    Beltz, Barbara S.; Zhang, Yi; Benton, Jeanne L.; Sandeman, David C.

    2011-01-01

    New neurons are produced and integrated into circuits in the adult brains of many organisms, including crustaceans. In some crustacean species, the 1st- generation neuronal precursors reside in a niche exhibiting characteristics analogous to mammalian neurogenic niches. However, unlike mammalian niches where several generations of neuronal precursors coexist, the lineage of precursor cells in crayfish is spatially separated allowing the influence of environmental and endogenous regulators on specific generations in the neuronal precursor lineage to be defined. Experiments also demonstrate that the 1st-generation neuronal precursors in the crayfish Procambarus clarkii are not self-renewing. A source external to the neurogenic niche must therefore provide cells that replenish the 1st-generation precursor pool, because although these cells divide and produce a continuous efflux of 2nd-generation cells from the niche, the population of 1st-generation niche precursors is not diminished with growth and aging. In vitro studies show that cells extracted from the hemolymph, but not other tissues, are attracted to and incorporated into the neurogenic niche, a phenomenon that appears to involve serotonergic mechanisms. We propose that in crayfish, the hematopoietic system may be a source of cells that replenish the niche cell pool. These and other studies reviewed here establish decapod crustaceans as model systems in which the processes underlying adult neurogenesis, such as stem cell origins and transformation, can be readily explored. Studies in diverse species where adult neurogenesis occurs will result in a broader understanding of fundamental mechanisms and how evolutionary processes may have shaped the vertebrate/mammalian condition. PMID:21929622

  6. The role of CD44 in fetal and adult hematopoietic stem cell regulation

    PubMed Central

    Cao, Huimin; Heazlewood, Shen Y.; Williams, Brenda; Cardozo, Daniela; Nigro, Julie; Oteiza, Ana; Nilsson, Susan K.

    2016-01-01

    Throughout development, hematopoietic stem cells migrate to specific microenvironments, where their fate is, in part, extrinsically controlled. CD44 standard as a member of the cell adhesion molecule family is extensively expressed within adult bone marrow and has been previously reported to play important roles in adult hematopoietic regulation via CD44 standard-ligand interactions. In this manuscript, CD44 expression and function are further assessed and characterized on both fetal and adult hematopoietic stem cells. Using a CD44−/− mouse model, conserved functional roles of CD44 are revealed throughout development. CD44 is critical in the maintenance of hematopoietic stem and progenitor pools, as well as in hematopoietic stem cell migration. CD44 expression on hematopoietic stem cells as well as other hematopoietic cells within the bone marrow microenvironment is important in the homing and lodgment of adult hematopoietic stem cells isolated from the bone/bone marrow interface. CD44 is also involved in fetal hematopoietic stem cell migration out of the liver, via a process involving stromal cell-derived factor-1α. The absence of CD44 in neonatal bone marrow has no impact on the size of the long-term reconstituting hematopoietic stem cell pool, but results in an enhanced long-term engraftment potential of hematopoietic stem cells. PMID:26546504

  7. Hematopoietic Cell Transplantation for Acute Lymphoblastic Leukemia in Adults.

    PubMed

    Speziali, Craig; Paulson, Kristjan; Seftel, Matthew

    2016-06-01

    The majority of adults with acute lymphoblastic leukemia will achieve a first complete remission (CR). However relapse is the most common cause of treatment failure. Outcomes after relapse remain poor, with long-term survival in the order of 10 %. Treatment decisions made at the time of first complete remission are thus critical to ensuring long-term survival. Allogeneic hematopoietic cell transplant (HCT) is effective at preventing relapse in many transplant recipients but is also associated with significant treatment related morbidity and mortality. Alternatively, ongoing systemic chemotherapy offers lower toxicity at the expense of increased relapse rates. Over the past decades, both the safety of transplant and the efficacy of non-transplant chemotherapy have improved. Emerging data show substantially improved outcomes for young adults treated with pediatric-inspired chemotherapy regimens that question the role of HCT in the upfront setting. In this review, we review the data supporting the role of allogeneic transplantation in adult acute lymphoblastic leukemia (ALL), and we propose a therapeutic algorithm for upfront therapy of adults with ALL. PMID:26984203

  8. Spaceflight Effects on the Hematopoietic Tissue of Ribbed Newts

    NASA Astrophysics Data System (ADS)

    Domaratskaya, E. I.; Almeida, E. A. C.; Butorina, N. N.; Nikonova, T. M.; Grigoryan, E. N.; Poplinskaya, V. A.

    2008-06-01

    The newts Pleurodeles waltl flown on Foton-M2 for 12 days were used for studying the effects of spaceflight on hematopoiesis in lower vertebrates. Prior to the flight, all the animals underwent to removal their lenses and tail tips for regeneration studies. No significant differences in blood cell contents were detected between flight and control animals. Morphological examination of hematopoietic areas of the liver in both groups also showed no significant differences. Experiments with BrdU incorporation revealed labeled cells in the hemopoietic area of the liver as well as in blood. The blood cell composition of newts flown on Foton-M3 was similar to that in intact (nonoperated) newts used in Bion-11 and Foton-M2 experiments. The lack of blood changes in newts during the current experiments distinguishes them from mammals flown in space (rats and mice), which developed significant changes in both blood cell counts, stem and committed cells in the blood-forming tissues.

  9. Hematopoietic tissue repair under chronic low daily dose irradiation

    SciTech Connect

    Seed, T.M.

    1994-12-01

    The capacity of the hematopoietic system to repair constantly accruing cellular damage under chronic, low daily dose gamma irradiation is essential for the maintenance of a functional hematopoietic system, and, in turn, long term survival. In certain individuals, however, such continuous cycles of damage and repair provide an essential inductive environment for selected types of hematopathologies, e.g., myeloid leukemia (ML). We have been studying temporal and causal relationships between hematopoietic capacity, associated repair functions, and propensities for hematologic disease in canines under variable levels of chronic radiation stress (0.3{minus}26.3 cGy d{sup {minus}1}). Results indicate that the maximum exposure rate tolerated by the hematopoietic system is highly individual-specific and is based largely on the degree to which repair capacity, and, in turn, hematopoietic restoration, is augmented under chronic exposure. In low-tolerance individuals (prone to aplastic anemia, subgroup (1), the failure to augment basic m-pair functions seemingly results in a progressive accumulation of genetic and cellular damage within vital progenitorial marrow compartments particularly marked within erythroid compartments. that results in loss of reproductive capacity and ultimately in collapse of the hematopoietic system. The high-tolerance individuals (radioaccomodated and either prone- or not prone to ML, subgroup 2 & 3 appear to minimize the accumulating damage effect of daily exposures by extending repair functions, which preserves reproductive integrity and fosters regenerative hematopoietic responses. As the strength of the regenerative response manifests the extent of repair augmentation, the relatively strong response of high- tolerance individuals progressing to patent ML suggests an insufficiency of repair quality rather than repair quantity.

  10. Brief Report: Alternative Splicing of Extra Domain A (EIIIA) of Fibronectin Plays a Tissue-Specific Role in Hematopoietic Homeostasis.

    PubMed

    Malara, Alessandro; Gruppi, Cristian; Celesti, Giuseppe; Romano, Bina; Laghi, Luigi; De Marco, Luigi; Muro, Andrés F; Balduini, Alessandra

    2016-08-01

    Fibronectin (FN) is a major extracellular matrix protein implicated in cell adhesion and differentiation in the bone marrow (BM) environment. Alternative splicing of FN gene results in the generation of protein variants containing an additional EIIIA domain that sustains cell proliferation or differentiation during physiological or pathological tissue remodeling. To date its expression and role in adult hematopoiesis has not been explored. In our research, we demonstrate that during physiological hematopoiesis a small fraction of BM derived FN contains the EIIIA domain and that mice constitutively including (EIIIA(+/+) ) or excluding (EIIIA(-/-) ) the EIIIA exon present comparable levels of hematopoietic stem cells, myeloid and lymphoid progenitors within BM. Moreover, only minor alterations were detected in blood parameters and in hematopoietic frequencies of BM granulocytes/monocytes and B cells. As opposed to other tissues, unique compensatory mechanisms, such as increased FN accumulation and variable expression of the EIIIA receptors, Toll like receptor-4 and alpha9 integrin subunit, characterized the BM of these mice. Our data demonstrate that FN is a fundamental component of the hematopoietic tissue and that the EIIIA exon may play a key role in modulating hematopiesis in conditions of BM stress or diseases. Stem Cells 2016;34:2263-2268. PMID:27090359

  11. Adult soft tissue sarcoma

    MedlinePlus

    ... free at 5 years. Most people who survive 5 years can expect to be cancer-free at 10 years. ... most soft tissue sarcomas, and there is no way to prevent it. ... them can increase your chance of surviving this type of cancer.

  12. General Information about Adult Soft Tissue Sarcoma

    MedlinePlus

    ... Soft Tissue Sarcoma Treatment (PDQ®)–Patient Version General Information About Adult Soft Tissue Sarcoma Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  13. Intensive care outcomes in adult hematopoietic stem cell transplantation patients

    PubMed Central

    Bayraktar, Ulas D; Nates, Joseph L

    2016-01-01

    Although outcomes of intensive care for patients undergoing hematopoietic stem cell transplantation (HSCT) have improved in the last two decades, the short-term mortality still remains above 50% among allogeneic HSCT patients. Better selection of HSCT patients for intensive care, and consequently reduction of non-beneficial care, may reduce financial costs and alleviate patient suffering. We reviewed the studies on intensive care outcomes of patients undergoing HSCT published since 2000. The risk factors for intensive care unit (ICU) admission identified in this report were primarily patient and transplant related: HSCT type (autologous vs allogeneic), conditioning intensity, HLA mismatch, and graft-versus-host disease (GVHD). At the same time, most of the factors associated with ICU outcomes reported were related to the patients’ functional status upon development of critical illness and interventions in ICU. Among the many possible interventions, the initiation of mechanical ventilation was the most consistently reported factor affecting ICU survival. As a consequence, our current ability to assess the benefit or futility of intensive care is limited. Until better ICU or hospital mortality prediction models are available, based on the available evidence, we recommend practitioners to base their ICU admission decisions on: Patient pre-transplant comorbidities, underlying disease status, GVHD diagnosis/grade, and patients’ functional status at the time of critical illness. PMID:26862493

  14. Wnts are dispensable for differentiation and self-renewal of adult murine hematopoietic stem cells

    PubMed Central

    Kabiri, Zahra; Numata, Akihiko; Kawasaki, Akira; Tenen, Daniel G.

    2015-01-01

    Wnt signaling controls early embryonic hematopoiesis and dysregulated β-catenin is implicated in leukemia. However, the role of Wnts and their source in adult hematopoiesis is still unclear, and is clinically important as upstream Wnt inhibitors enter clinical trials. We blocked Wnt secretion in hematopoietic lineages by targeting Porcn, a membrane-bound O-acyltransferase that is indispensable for the activity and secretion of all vertebrate Wnts. Surprisingly, deletion of Porcn in Rosa-CreERT2/PorcnDel, MX1-Cre/PorcnDel, and Vav-Cre/PorcnDel mice had no effects on proliferation, differentiation, or self-renewal of adult hematopoietic stem cells. Targeting Wnt secretion in the bone marrow niche by treatment with a PORCN inhibitor, C59, similarly had no effect on hematopoiesis. These results exclude a role for hematopoietic PORCN-dependent Wnts in adult hematopoiesis. Clinical use of upstream Wnt inhibitors is not likely to be limited by effects on hematopoiesis. PMID:26089398

  15. Neutralization-resistant variants of infectious hematopoietic necrosis virus have altered virulence and tissue tropism.

    PubMed Central

    Kim, C H; Winton, J R; Leong, J C

    1994-01-01

    Infectious hematopoietic necrosis virus (IHNV) is a rhabdovirus that causes an acute disease in salmon and trout. In this study, a correlation between changes in tissue tropism and specific changes in the virus genome appeared to be made by examining four IHNV neutralization-resistant variants (RB-1, RB-2, RB-3, and RB-4) that had been selected with the glycoprotein (G)-specific monoclonal antibody RB/B5. These variants were compared with the parental strain (RB-76) for their virulence and pathogenicity in rainbow trout after waterborne challenge. Variants RB-2, RB-3, and RB-4 were only slightly attenuated and showed distributions of viral antigen in the livers and hematopoietic tissues of infected fish similar to those of the parental strain. Variant RB-1, however, was highly attenuated and the tissue distribution of viral antigen in RB-1-infected fish was markedly different, with more viral antigen in brain tissue. The sequences of the G genes of all four variants and RB-76 were determined. No significant changes were found for the slightly attenuated variants, but RB-1 G had two changes at amino acids 78 and 218 that dramatically altered its predicted secondary structure. These changes are thought to be responsible for the altered tissue tropism of the virus. Thus, IHNV G, like that of rabies virus and vesicular stomatitis virus, plays an integral part in the pathogenesis of viral infection. Images PMID:7525991

  16. Transglutaminase activity in the hematopoietic tissue of a crustacean, Pacifastacus leniusculus, importance in hemocyte homeostasis

    PubMed Central

    Lin, Xionghui; Söderhäll, Kenneth; Söderhäll, Irene

    2008-01-01

    Background Transglutaminases (TGases) form a group of enzymes that have many different substrates and among the most well known are fibrin for Factor XIIIa and the clotting protein in crustaceans. We also found that TGase is an abundant protein in the hematopoietic tissue (Hpt) cells of crayfish and hence we have studied the possible function of this enzyme in hematopoiesis. Results TGase is one of the most abundant proteins in the Hpt and its mRNA expression as well as enzyme activity is very high in the Hpt cells, lesser in the semi-granular hemocytes and very low in the granular cells. In cultured hematopoietic tissues, high activity was present in cells in the centre of the tissue, whereas cells migrating out of the tissue had very low TGase activity. RNAi experiments using dsRNA for TGase completely knocked down the transcript and as a result the cell morphology was changed and the cells started to spread intensely. If astakine, a cytokine directly involved in hematopoiesis, was added the cells started to spread and adopt a morphology similar to that observed after RNAi of TGase. Astakine had no effect on TGase expression, but after a prolonged incubation for one week with this invertebrate cytokine, TGase activity inside and outside the cells was completely lost. Thus it seems as if astakine addition to the Hpt cells and RNAi of TGase in the cell culture will lead to the same results, i.e. loss of TGase activity in the cells and they start to differentiate and spread. Conclusion The results of this study suggest that TGase is important for keeping the Hpt cells in an undifferentiated stage inside the hematopoietic tissue and if expression of TGase mRNA is blocked the cells start to differentiate and spread. This shows a new function for transglutaminase in preventing hematopoietic stem cells from starting to differentiate and migrate into the hemolymph, whereas their proliferation is unaffected. Astakine is also important for the hematopoiesis, since it

  17. PRIMITIVE ADULT HEMATOPOIETIC STEM CELLS CAN FUNCTION AS OSTEOBLAST PRECURSORS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Osteoblasts are continually recruited from stem cell pools to maintain bone. Although their immediate precursor is a plastic-adherent mesenchymal stem cell able to generate tissues other than bone, increasing evidence suggests the existence of a more primitive cell that can differentiate to both hem...

  18. Tissue engineering using adult stem cells.

    PubMed

    Eberli, Daniel; Atala, Anthony

    2006-01-01

    Patients with a variety of diseases may be treated with transplanted tissues and organs. However, there is a shortage of donor tissues and organs, which is worsening yearly because of the aging population. Scientists in the field of tissue engineering are applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. The stem cell field is also advancing rapidly, opening new options for cellular therapy and tissue engineering. The use of adult stem cells for tissue engineering applications is promising. This chapter discusses applications of these new technologies for the engineering of tissues and organs. The first part provides an overview of regenerative medicine and tissue engineering techniques; the second highlights different adult stem cell populations used for tissue regeneration. PMID:17161702

  19. Analysis of the hematopoietic tissue in Pleurodeles waltl newts exposed to 2 g hypergravity

    NASA Astrophysics Data System (ADS)

    Domaratskaya, Elena; Nikonova, Tatyana M.; Grigoryan, Eleonora N.; Dvorochkin, Natalya; Yousuf, Rukhsana; Almeida, Eduardo; Butorina, Nina N.

    2012-07-01

    Gravity is an important factor in creating biologically-relevant mechanical loads, and in spaceflight living organisms encounter both microgravity as well as hypergravity conditions. Here we studied the influence of hypergravity on the hematopoietic tissue of P. waltl newts in parallel with tissue regeneration experiments of the newt lens and tail. At day 9 post-surgery one group of newts was subjected to centrifugation at 2 g (2G, 12 days), while another was kept at 1 g. In addition, a basal control in wet mats, at 1g, (BC, 1G), and an aquarium control, neutrally buoyant, (AC, low G), were also performed. Differential blood counts and histological analysis of the spleen and liver were carried out in experimental and control groups of animals. At day 21 post-surgery in all groups (AC, 1G, and 2G), the number of neutrophils in the blood was significantly lower than in BC indicating a decrease in the inflammation induced by surgery. The 2G group however, showed numbers of neutrophils significantly higher than AC (neutrally buoyant) animals. This result suggests that post-operative inflammation can persist longer at 2 g that under unloaded aquarium conditions. In contrast we did not observe any significant differences in lymphocyte numbers between any experimental and control groups. Histological examination of the liver and spleen also did not show any significant morphological alterations due to hypergravity. These results indicate that 12 day exposure to hypergravity at 2 g, had only partial influence on newt hematopoiesis, possibly extending the duration of surgery-related inflammatory responses. Data obtained with newts in our previous experiments on Foton-M2 and Foton-M3 flights in microgravity also showed only slight effect on blood cells. Furthermore microgravity also did not cause any morphological changes in the hematopoietic and lymphoid tissues, and did not impair the proliferative capacity of newt hematopoietic cells. In sum these results indicate the

  20. Lamins regulate cell trafficking and lineage maturation of adult human hematopoietic cells

    PubMed Central

    Shin, Jae-Won; Spinler, Kyle R.; Swift, Joe; Chasis, Joel A.; Mohandas, Narla; Discher, Dennis E.

    2013-01-01

    Hematopoietic stem and progenitor cells, as well as nucleated erythroblasts and megakaryocytes, reside preferentially in adult marrow microenvironments whereas other blood cells readily cross the endothelial barrier into the circulation. Because the nucleus is the largest organelle in blood cells, we hypothesized that (i) cell sorting across microporous barriers is regulated by nuclear deformability as controlled by lamin-A and -B, and (ii) lamin levels directly modulate hematopoietic programs. Mass spectrometry-calibrated intracellular flow cytometry indeed reveals a lamin expression map that partitions human blood lineages between marrow and circulating compartments (P = 0.00006). B-type lamins are highly variable and predominate only in CD34+ cells, but migration through micropores and nuclear flexibility in micropipette aspiration both appear limited by lamin-A:B stoichiometry across hematopoietic lineages. Differentiation is also modulated by overexpression or knockdown of lamins as well as retinoic acid addition, which regulates lamin-A transcription. In particular, erythroid differentiation is promoted by high lamin-A and low lamin-B1 expression whereas megakaryocytes of high ploidy are inhibited by lamin suppression. Lamins thus contribute to both trafficking and differentiation. PMID:24191023

  1. Hematopoietic Stem Cell Transplantation in Adult Sickle Cell Disease: Problems and Solutions

    PubMed Central

    Özdoğu, Hakan; Boğa, Can

    2015-01-01

    Sickle cell disease-related organ injuries cannot be prevented despite hydroxyurea use, infection prophylaxis, and supportive therapies. As a consequence, disease-related mortality reaches 14% in adolescents and young adults. Hematopoietic stem cell transplantation is a unique curative therapeutic approach for sickle cell disease. Myeloablative allogeneic hematopoietic stem cell transplantation is curative for children with sickle cell disease. Current data indicate that long-term disease-free survival is about 90% and overall survival about 95% after transplantation. However, it is toxic in adults due to organ injuries. In addition, this curative treatment approach has several limitations, such as difficulties to find donors, transplant-related mortality, graft loss, graft-versus-host disease (GVHD), and infertility. Engraftment effectivity and toxicity for transplantations performed with nonmyeloablative reduced-intensity regimens in adults are being investigated in phase 1/2 trials at many centers. Preliminary data indicate that GVHD could be prevented with transplantations performed using reduced-intensity regimens. It is necessary to develop novel regimens to prevent graft loss and reduce the risk of GVHD. PMID:25912490

  2. Adult stem cells and tissue repair.

    PubMed

    Körbling, M; Estrov, Z; Champlin, R

    2003-08-01

    Recently, adult stem cells originating from bone marrow or peripheral blood have been suggested to contribute to repair and genesis of cells specific for liver, cardiac and skeletal muscle, gut, and brain tissue. The mechanism involved has been termed transdifferentiation, although other explanations including cell fusion have been postulated. Using adult stem cells to generate or repair solid organ tissue obviates the immunologic, ethical, and teratogenic issues that accompany embryonic stem cells. PMID:12931235

  3. Process of allogeneic hematopoietic cell transplantation decision making for older adults.

    PubMed

    Randall, J; Keven, K; Atli, T; Ustun, C

    2016-05-01

    Allogeneic hematopoietic cell transplantation (alloHCT) may be the only curative option for some older adults with hematologic malignancies, and its associated risks of significant morbidity and mortality warrant a clear, informed decision-making process. As older adults have not been transplanted routinely until recent years, younger people have been the prototypical group around whom the current process has developed. Yet, this process is applied to older adults who have different considerations than younger patients when making their transplant decision. Older adults do not have the open-ended lives of younger patients and are entitled to consider how to spend their remaining time. They also possess maturity and experience, and with proper knowledge, they can make informed choices rather than moving forward in the transplant process unaware. Notably, older patients face similar problems with the informed decision-making process in nephrology. Strategies such as providing education about alloHCT gradually and repeatedly during induction, presenting recent knowledge from the literature in plain language, and utilizing a team approach to patient education may help older adults make the best decision about transplant in light of their situation and values. Understanding when and how older adults decide on alloHCT is an important first step to further exploring this problem. PMID:26457910

  4. White spot syndrome virus enters crayfish hematopoietic tissue cells via clathrin-mediated endocytosis.

    PubMed

    Huang, Jiajun; Li, Fang; Wu, Junjun; Yang, Feng

    2015-12-01

    White spot syndrome virus (WSSV) is a major pathogen of aquacultured shrimp. However, the mechanism of its entry remains poorly understood. In this study, by analyzing the internalization of WSSV using crayfish hematopoietic tissue (HPT) cells, we showed that WSSV virions were engulfed by cell membrane invaginations sharing the features of clathrin-coated pits and then internalized into coated cytoplasmic vesicles. Further investigation indicated that WSSV internalization was significantly inhibited by chlorpromazine (CPZ) but not genistein. The internalized virions were colocalized with endogenous clathrin as well as transferrin which undergoes clathrin-dependent uptake. Preventing endosome acidification by ammonium chloride (NH4Cl) or chloroquine (CQ) dramatically reduced WSSV entry as well. Moreover, disturbance of dynamin activity or depletion of membrane cholesterol also blocked WSSV uptake. These data indicate that WSSV enters crayfish HPT cells via clathrin-mediated endocytosis in a pH-dependent manner, and membrane cholesterol as well as dynamin is critical for efficient viral entry. PMID:26397221

  5. Atrial fibrillation is associated with hematopoietic tissue activation and arterial inflammation.

    PubMed

    Joseph, Philip; Ishai, Amorina; MacNabb, Megan; Abdelbaky, Amr; Lavender, Zachary R; Ruskin, Jeremy; Nahrendorf, Matthias; Tawakol, Ahmed

    2016-01-01

    Inflammation is associated with the development of atrial fibrillation (AF). Activity in hematopoietic tissues, which produce inflammatory leukocytes, is closely related to systemic inflammation, arterial inflammation and cardiovascular events, but its relationship to AF is unknown. Using 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging, we examined the relationships between AF, splenic metabolic activity and vascular inflammation. We conducted a cross sectional study of 70 participants: 35 with AF, who were matched (by age, sex and history of active cancer) to 35 controls without AF. Splenic metabolic activity and vascular aortic inflammation were measured by the mean FDG maximum standard uptake values (SUV Max) by PET. We examined (1) the association between AF and splenic activity, and (2) AF and aortic inflammation. The mean age of the population was 68.13 (standard deviation (SD) 8.98) years and 46 (65 %) participants were male. Splenic activity was higher in AF participants [2.31 (SD 0.45) vs. 2.07 (SD 0.37), p = 0.024], and remained significant after adjusting for demographic and clinical covariates. Aortic inflammation was also higher in AF participants [2.22 (SD 0.44) vs. 1.91 (SD 0.44), p = 0.004], and remained significant on multivariable analysis. Aortic inflammation and splenic activity were highly correlated (Pearson R = 0.61, p < 0.001). Atrial fibrillation is associated with higher hematopoietic tissue activation and arterial inflammation. Further studies are needed to clarify the mechanisms by which this cardio-splenic axis is implicated in AF. PMID:26411879

  6. Various Forms of Tissue Damage and Danger Signals Following Hematopoietic Stem-Cell Transplantation

    PubMed Central

    Ramadan, Abdulraouf; Paczesny, Sophie

    2014-01-01

    Hematopoietic stem-cell transplantation (HSCT) is the most potent curative therapy for many malignant and non-malignant disorders. Unfortunately, a major complication of HSCT is graft-versus-host disease (GVHD), which is mediated by tissue damage resulting from the conditioning regimens before the transplantation and the alloreaction of dual immune components (activated donor T-cells and recipient’s antigen-presenting cells). This tissue damage leads to the release of alarmins and the triggering of pathogen-recognition receptors that activate the innate immune system and subsequently the adaptive immune system. Alarmins, which are of endogenous origin, together with the exogenous pathogen-associated molecular patterns (PAMPs) elicit similar responses of danger signals and represent the group of damage-associated molecular patterns (DAMPs). Effector cells of innate and adaptive immunity that are activated by PAMPs or alarmins can secrete other alarmins and amplify the immune responses. These complex interactions and loops between alarmins and PAMPs are particularly potent at inducing and then aggravating the GVHD reaction. In this review, we highlight the role of these tissue damaging molecules and their signaling pathways. Interestingly, some DAMPs and PAMPs are organ specific and GVHD-induced and have been shown to be interesting biomarkers. Some of these molecules may represent potential targets for novel therapeutic approaches. PMID:25674088

  7. Hhex is Required at Multiple Stages of Adult Hematopoietic Stem and Progenitor Cell Differentiation

    PubMed Central

    Goodings, Charnise; Smith, Elizabeth; Mathias, Elizabeth; Elliott, Natalina; Cleveland, Susan M.; Tripathi, Rati M.; Layer, Justin H.; Chen, Xi; Guo, Yan; Shyr, Yu; Hamid, Rizwan; Du, Yang; Davé, Utpal P.

    2015-01-01

    Hhex encodes a homeodomain transcription factor that is widely expressed in hematopoietic stem and progenitor cell populations. Its enforced expression induces T-cell leukemia and we have implicated it as an important oncogene in early T-cell precursor leukemias where it is immediately downstream of an LMO2-associated protein complex. Conventional Hhex knockouts cause embryonic lethality precluding analysis of adult hematopoiesis. Thus, we induced highly efficient conditional knockout (cKO) using vav-Cre transgenic mice. Hhex cKO mice were viable and born at normal litter sizes. At steady state, we observed a defect in B-cell development that we localized to the earliest B-cell precursor, the pro-B-cell stage. Most remarkably, bone marrow transplantation using Hhex cKO donor cells revealed a more profound defect in all hematopoietic lineages. In contrast, sublethal irradiation resulted in normal myeloid cell repopulation of the bone marrow but markedly impaired repopulation of T- and B-cell compartments. We noted that Hhex cKO stem and progenitor cell populations were skewed in their distribution and showed enhanced proliferation compared to WT cells. Our results implicate Hhex in the maintenance of LT-HSCs and in lineage allocation from multipotent progenitors especially in stress hematopoiesis. PMID:25968920

  8. Isolation and Assessment of Single Long-Term Reconstituting Hematopoietic Stem Cells from Adult Mouse Bone Marrow.

    PubMed

    Kent, David G; Dykstra, Brad J; Eaves, Connie J

    2016-01-01

    Hematopoietic stem cells with long-term repopulating activity can now be routinely obtained at purities of 40% to 50% from suspensions of adult mouse bone marrow. Here we describe robust protocols for both their isolation as CD45(+) EPCR(+) CD150(+) CD48(-) (ESLAM) cells using multiparameter cell sorting and for tracking their clonal growth and differentiation activity in irradiated mice transplanted with single ESLAM cells. The simplicity of these procedures makes them attractive for characterizing the molecular and biological properties of individual hematopoietic stem cells with unprecedented power and precision. © 2016 by John Wiley & Sons, Inc. PMID:27532815

  9. Coping strategies of adults with leukemia undergoing hematopoietic stem cell transplantation in Iran: a qualitative study.

    PubMed

    Farsi, Zahra; Dehghan Nayeri, Nahid; Negarandeh, Reza

    2010-12-01

    Hematopoietic stem cell transplantation (HSCT) causes significant physical, social, psychological, and emotional stress in patients with leukemia. This qualitative study using semi-structured interviews explored the coping strategies of 10 adults with acute leukemia who were undergoing this form of treatment in transplantation units in a major hospital in Tehran, Iran, from 2009 to 2010. A content analysis identified eight themes and 13 subthemes that described the participants' coping strategies. The major themes were: attribution, denial and avoidance, connection with divine purpose, organizing treatment, seeking social support, modifying, reflection, and patience and resignation. A deeper understanding of the coping strategies that are used by patients with leukemia undergoing HSCT can help healthcare providers to encourage patients to use strategies that are likely to be more effective. Such coping strategies also can help patients to achieve a greater sense of empowerment. PMID:21210928

  10. PHENOTYPE AND HEMATOPOIETIC POTENTIAL OF SIDE POPULATION CELLS THROUGHOUT EMBRYONIC DEVELOPMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult murine bone marrow hematopoietic stem cells (HSCs) can be purified by sorting Hoechst 33342-extruding side population (SP) cells. Herein we investigated whether SP cells reside within embryonic tissues and exhibit hematopoietic progenitor activity. We isolated yolk sac (YS) and embryonic tissu...

  11. Meis1 Is Required for Adult Mouse Erythropoiesis, Megakaryopoiesis and Hematopoietic Stem Cell Expansion.

    PubMed

    Miller, Michelle Erin; Rosten, Patty; Lemieux, Madeleine E; Lai, Courteney; Humphries, R Keith

    2016-01-01

    Meis1 is recognized as an important transcriptional regulator in hematopoietic development and is strongly implicated in the pathogenesis of leukemia, both as a Hox transcription factor co-factor and independently. Despite the emerging recognition of Meis1's importance in the context of both normal and leukemic hematopoiesis, there is not yet a full understanding of Meis1's functions and the relevant pathways and genes mediating its functions. Recently, several conditional mouse models for Meis1 have been established. These models highlight a critical role for Meis1 in adult mouse hematopoietic stem cells (HSCs) and implicate reactive oxygen species (ROS) as a mediator of Meis1 function in this compartment. There are, however, several reported differences between these studies in terms of downstream progenitor populations impacted and effectors of function. In this study, we describe further characterization of a conditional knockout model based on mice carrying a loxP-flanked exon 8 of Meis1 which we crossed onto the inducible Cre localization/expression strains, B6;129-Gt(ROSA)26Sor(tm1(Cre/ERT)Nat)/J or B6.Cg-Tg(Mx1-Cre)1Cgn/J. Findings obtained from these two inducible Meis1 knockout models confirm and extend previous reports of the essential role of Meis1 in adult HSC maintenance and expansion and provide new evidence that highlights key roles of Meis1 in both megakaryopoiesis and erythropoiesis. Gene expression analyses point to a number of candidate genes involved in Meis1's role in hematopoiesis. Our data additionally support recent evidence of a role of Meis1 in ROS regulation. PMID:26986211

  12. Meis1 Is Required for Adult Mouse Erythropoiesis, Megakaryopoiesis and Hematopoietic Stem Cell Expansion

    PubMed Central

    Miller, Michelle Erin; Rosten, Patty; Lemieux, Madeleine E.; Lai, Courteney; Humphries, R. Keith

    2016-01-01

    Meis1 is recognized as an important transcriptional regulator in hematopoietic development and is strongly implicated in the pathogenesis of leukemia, both as a Hox transcription factor co-factor and independently. Despite the emerging recognition of Meis1’s importance in the context of both normal and leukemic hematopoiesis, there is not yet a full understanding of Meis1’s functions and the relevant pathways and genes mediating its functions. Recently, several conditional mouse models for Meis1 have been established. These models highlight a critical role for Meis1 in adult mouse hematopoietic stem cells (HSCs) and implicate reactive oxygen species (ROS) as a mediator of Meis1 function in this compartment. There are, however, several reported differences between these studies in terms of downstream progenitor populations impacted and effectors of function. In this study, we describe further characterization of a conditional knockout model based on mice carrying a loxP-flanked exon 8 of Meis1 which we crossed onto the inducible Cre localization/expression strains, B6;129-Gt(ROSA)26Sortm1(Cre/ERT)Nat/J or B6.Cg-Tg(Mx1-Cre)1Cgn/J. Findings obtained from these two inducible Meis1 knockout models confirm and extend previous reports of the essential role of Meis1 in adult HSC maintenance and expansion and provide new evidence that highlights key roles of Meis1 in both megakaryopoiesis and erythropoiesis. Gene expression analyses point to a number of candidate genes involved in Meis1’s role in hematopoiesis. Our data additionally support recent evidence of a role of Meis1 in ROS regulation. PMID:26986211

  13. The Perceived Threat in Adults with Leukemia Undergoing Hematopoietic Stem Cell Transplantation

    PubMed Central

    Farsi, Zahra; Dehghan Nayeri, Nahid; Negarandeh, Reza

    2013-01-01

    Background: Leukemia and hematopoietic stem cell transplantation (HSCT) create physical, psychological, social, and spiritual distresses in patients. Understanding this threatening situation in adults with leukemia undergoing HSCT will assist health care professionals in providing holistic care to the patients. Objectives: The aim of the present study was exploring the perceived threat in adults with leukemia undergoing HSCT. Patients and Methods: This article is part of a longitudinal qualitative study which used the grounded theory approach and was conducted in 2009-2011. Ten adults with acute leukemia scheduled for HSCT were recruited from the Hematology–Oncology Research Center and Stem Cell Transplantation, Shariati Hospital in Tehran, Iran. A series of pre-transplant and post-transplant in-depth interviews were held in the hospital’s HSCT wards. Totally, 18 interviews were conducted. Three written narratives were also obtained from the participants. The Corbin and Strauss approach was used to analyze the data. Results: Perceived threat was one of the main categories that emerged from the data. This category included four subcategories, "inattention to the signs and symptoms", "doubt and anxiety", "perception of danger and time limitation" and "change of life conditions", which occurred in linear progression over time. Conclusion: Suffering from leukemia and experiencing HSCT are events that are uniquely perceived by patients. This threatening situation can significantly effect perception of patients and cause temporary or permanent alterations in patients' lives. Health care professionals can help these patients by deeper understanding of their experiences and effective interventions. PMID:25414863

  14. TLR-mediated albuminuria needs TNFα-mediated cooperativity between TLRs present in hematopoietic tissues and CD80 present on non-hematopoietic tissues in mice

    PubMed Central

    Jain, Nidhi; Khullar, Bhavya; Oswal, Neelam; Banoth, Balaji; Joshi, Prashant; Ravindran, Balachandran; Panda, Subrat; Basak, Soumen; George, Anna; Rath, Satyajit; Sopory, Shailaja

    2016-01-01

    ABSTRACT Transient albuminuria induced by pathogen-associated molecular patterns (PAMPs) in mice through engagement of Toll-like receptors (TLRs) is widely studied as a partial model for some forms of human nephrotic syndrome (NS). In addition to TLRs, CD80 has been shown to be essential for PAMP-mediated albuminuria. However, the mechanistic relationships between TLRs, CD80 and albuminuria remain unclear. Here, we show that albuminuria and CD80-uria induced in mice by many TLR ligands are dependent on the expression of TLRs and their downstream signalling intermediate MyD88 exclusively in hematopoietic cells and, conversely, on CD80 expression exclusively in non-hematopoietic cells. TNFα is crucial for TLR-mediated albuminuria and CD80-uria, and induces CD80 expression in cultured renal podocytes. IL-10 from hematopoietic cells ameliorates TNFα production, albuminuria and CD80-uria but does not prevent TNFα-mediated induction of podocyte CD80 expression. Chitohexaose, a small molecule originally of parasite origin, mediates TLR4-dependent anti-inflammatory responses, and blocks TLR-mediated albuminuria and CD80-uria through IL-10. Thus, TNFα is a prominent mediator of renal CD80 induction and resultant albuminuria in this model, and small molecules modulating TLR-mediated inflammatory activation might have contributory or adjunct therapeutic potential in some contexts of NS development. PMID:27125280

  15. Child-rearing and adult leukemia: Epidemiologic evidence in support of competing hematopoietic stem cell differentiation

    SciTech Connect

    Steven, R.G. ); Severson, R.K. . Japan-Hawaii Cancer Study); Heuser, L. )

    1988-05-01

    The hypothesis that lack of child-rearing increases the risk of acute non-lymphocytic leukemia (ANLL) in adults was examined in a case-control study in western Washington State. Among 159 study subjects over age 50 in 1985, there were 76 cases of ANLL and 83 controls. The crude odds ratio associated with lack of child-rearing was 1.8, with a 95% confidence range of 0.7 to 5.0. The average total number of children ever living with cases was 2.6 and with controls was 3.1 (p = 0.06). The mean total number of years living with a child, or children, under age 18 was 17.6 in cases and 20.2 in controls (p = 0.05). These results were not materially altered after adjustment for age, smoking, race, income, and sex. The data provide evidence that cases of ANLL were less likely to ever have had children and that fewer years were spent rearing children than were spent by controls. The hypothesis was based on the competing stem cell'' theory of hematopoietic ontogeny. If valid, then exposure to children would increase exposure to infection, leading to increased lymphocytic stem cell turnover, and decreased non-lymphocytic stem cell turnover. This, in turn, may reduce risk of ANLL in adults. 18 refs., 3 tabs.

  16. How Somatic Adult Tissues Develop Organizer Activity.

    PubMed

    Vogg, Matthias C; Wenger, Yvan; Galliot, Brigitte

    2016-01-01

    The growth and patterning of anatomical structures from specific cellular fields in developing organisms relies on organizing centers that instruct surrounding cells to modify their behavior, namely migration, proliferation, and differentiation. We discuss here how organizers can form in adult organisms, a process of utmost interest for regenerative medicine. Animals like Hydra and planarians, which maintain their shape and fitness thanks to a highly dynamic homeostasis, offer a useful paradigm to study adult organizers in steady-state conditions. Beside the homeostatic context, these model systems also offer the possibility to study how organizers form de novo from somatic adult tissues. Both extracellular matrix remodeling and caspase activation play a key role in this transition, acting as promoters of organizer formation in the vicinity of the wound. Their respective roles and the crosstalk between them just start to be deciphered. PMID:26970630

  17. Pomalidomide reverses γ-globin silencing through the transcriptional reprogramming of adult hematopoietic progenitors.

    PubMed

    Dulmovits, Brian M; Appiah-Kubi, Abena O; Papoin, Julien; Hale, John; He, Mingzhu; Al-Abed, Yousef; Didier, Sebastien; Gould, Michael; Husain-Krautter, Sehba; Singh, Sharon A; Chan, Kyle W H; Vlachos, Adrianna; Allen, Steven L; Taylor, Naomi; Marambaud, Philippe; An, Xiuli; Gallagher, Patrick G; Mohandas, Narla; Lipton, Jeffrey M; Liu, Johnson M; Blanc, Lionel

    2016-03-17

    Current therapeutic strategies for sickle cell anemia are aimed at reactivating fetal hemoglobin. Pomalidomide, a third-generation immunomodulatory drug, was proposed to induce fetal hemoglobin production by an unknown mechanism. Here, we report that pomalidomide induced a fetal-like erythroid differentiation program, leading to a reversion of γ-globin silencing in adult human erythroblasts. Pomalidomide acted early by transiently delaying erythropoiesis at the burst-forming unit-erythroid/colony-forming unit-erythroid transition, but without affecting terminal differentiation. Further, the transcription networks involved in γ-globin repression were selectively and differentially affected by pomalidomide including BCL11A, SOX6, IKZF1, KLF1, and LSD1. IKAROS (IKZF1), a known target of pomalidomide, was degraded by the proteasome, but was not the key effector of this program, because genetic ablation of IKZF1 did not phenocopy pomalidomide treatment. Notably, the pomalidomide-induced reprogramming was conserved in hematopoietic progenitors from individuals with sickle cell anemia. Moreover, multiple myeloma patients treated with pomalidomide demonstrated increased in vivo γ-globin levels in their erythrocytes. Together, these data reveal the molecular mechanisms by which pomalidomide reactivates fetal hemoglobin, reinforcing its potential as a treatment for patients with β-hemoglobinopathies. PMID:26679864

  18. Ethical issues of unrelated hematopoietic stem cell transplantation in adult thalassemia patients

    PubMed Central

    2011-01-01

    Background Beta thalassemia major is a severe inherited form of hemolytic anemia that results from ineffective erythropoiesis. Allogenic hematopoietic stem cell transplantation (HSCT) remains the only potentially curative therapy. Unfortunately, the subgroup of adult thalassemia patients with hepatomegaly, portal fibrosis and a history of irregular iron chelation have an elevated risk for transplantation-related mortality that is currently estimated to be about 29 percent. Discussion Thalassemia patients may be faced with a difficult choice: they can either continue conventional transfusion and iron chelation therapy or accept the high mortality risk of HSCT in the hope of obtaining complete recovery. Throughout the decision making process, every effort should be made to sustain and enhance autonomous choice. The concept of conscious consent becomes particularly important. The patient must be made fully aware of the favourable and adverse outcomes of HSCT. Although it is the physician's duty to illustrate the possibility of completely restoring health, considerable emphasis should be put on the adverse effects of the procedure. The physician also needs to decide whether the patient is eligible for HSCT according to the "rule of descending order". The patient must be given full details on self-care and fundamental lifestyle changes and be fully aware that he/she will be partly responsible for the outcome. Summary Only if all the aforesaid conditions are satisfied can it be considered reasonable to propose unrelated HSCT as a potential cure for high risk thalassemia patients. PMID:21385429

  19. Psychosocial Care for Adolescent and Young Adult Hematopoietic Cell Transplant Patients

    PubMed Central

    Cooke, Liz; Chung, Carol; Grant, Marcia

    2011-01-01

    Psychological issues following Hematopoietic Cell Transplantation (HCT) are unfortunately common. Literature specific to the transplant experience for the needs of adolescents and young adults (AYA) is lacking. The purpose of this article is to 1) describe the allogeneic transplant experience for AYA transplant patients during the first year following transplantation including demographic and treatment characteristics, 2) present AYA data obtained during and following a six-part post transplant discharge study, 3) illustrate typical AYA experiences using case studies and 4) propose AYA intervention strategies within Erickson’s Stages of Psychosocial Development. A Quality of Life (QOL) model provided both the research conceptual framework, and the content analysis framework for the qualitative research. Themes that emerged within each domain were the following: sexuality/fertility, fatigue, depression/poor coping/habits, adherence issues, use of technology, dependency issues, changes in roles/relationships, issues with school/education, financial issues, family problems/issues, miscellaneous, religion/spirituality, fear of future, uncertainty, life, death, more life appreciation. These data guide us for providing targeted interventions for the needs of this AYA population. This paper has presented literature and developmental theory, qualitative and qualitative data from an intervention study, and clinical cases in order to propose a developmental treatment model for AYA transplant patients. A coordinated and multidisciplinary approach is needed for the HCT patient who is an AYA. PMID:21966725

  20. Adverse Late and Long-Term Treatment Effects in Adult Allogeneic Hematopoietic Stem Cell Transplant Survivors.

    PubMed

    Mosesso, Kara

    2015-11-01

    Hematopoietic stem cell transplantation (HSCT) has become the standard of care for many malignant and nonmalignant hematologic diseases that don't respond to traditional therapy. There are two types: autologous transplantation (auto-HSCT), in which an individual's stem cells are collected, stored, and infused back into that person; and allogeneic transplantation (allo-HSCT), in which healthy donor stem cells are infused into a recipient whose bone marrow has been damaged or destroyed. There have been numerous advancements in this field, leading to marked increases in the number of transplants performed annually. This article--the first of several on cancer survivorship--focuses on the care of adult allo-HSCT survivors because of the greater complexity of their posttransplant course. The author summarizes potential adverse late and long-term treatment-related effects, with special focus on the evaluation and management of several cardiovascular disease risk factors that can occur either independently or concurrently as part of the metabolic syndrome. These risk factors are potentially modifiable with appropriate nursing interventions and lifestyle modifications. PMID:26473441

  1. Risk factors for syngeneic graft-versus-host disease after adult hematopoietic cell transplantation.

    PubMed

    Adams, Kristina M; Holmberg, Leona A; Leisenring, Wendy; Fefer, Alexander; Guthrie, Katherine A; Tylee, Tracy S; McDonald, George B; Bensinger, William I; Nelson, J Lee

    2004-09-15

    Syngeneic graft-versus-host disease (sGVHD) has been described after hematopoietic cell transplantation (HCT) but remains poorly defined. We retrospectively reviewed adult syngeneic HCTs at our center (1980-2002) for sGVHD to investigate incidence, morbidity, and risk factors with a primary focus on parity. Among 119 transplantations, there were 21 cases of biopsy-proven sGVHD. The cumulative incidence was 18%, with multiorgan involvement in 6 cases and 1 death. sGVHD was more frequent when the donor was parous (32%) than nulliparous (9%) or male (13%; P =.03) and when the recipient was parous (31%) than nulliparous (7%) or male (13%; P =.02). Other univariable risk factors included older age (P <.01), busulfan/melphalan/thiotepa conditioning (P <.01), interleukin-2 (P =.02), HLA-A26 (P =.03), and more recent transplantation year (P <.01). Overall, risk factors were similar to those described in GVHD. Although an independent effect of parity could not be completely separated from other factors, donor and recipient pregnancy history merits further investigation. PMID:15117763

  2. Hematopoietic bone marrow in the adult knee: spin-echo and opposed-phase gradient-echo MR imaging.

    PubMed

    Lang, P; Fritz, R; Majumdar, S; Vahlensieck, M; Peterfy, C; Genant, H K

    1993-01-01

    Hematopoietic bone marrow in the distal femur of the adult may be mistaken for a pathologic marrow process in magnetic resonance imaging of the knee. We investigated the incidence of hematopoietic marrow in the distal femur in a series of 51 adult patients and compared spin-echo (TR/TE in ms: 500/35, 2000/80) and opposed-phase gradient-echo (0.35 T, TR/TE in ms: 1000/30, theta = 75 degrees) magnetic resonance images. Zones with intermediate to low signal intensity on T1-weighted spin-echo and opposed-phase gradient-echo sequences representing hematopoietic marrow within high signal intensity fatty marrow were observed in 18 of the 51 patients. Five patterns of marrow signal reduction were identified; type 0: uniform high signal, i.e., no signal change; type I, focal signal loss; type II, multifocal signal loss without confluence; type III, confluent signal loss; and type IV, complete homogeneous reduction in marrow signal. Opposed-phase gradient-echo sequences demonstrated markedly greater red-yellow marrow contrast than conventional spin-echo sequences. Follow-up studies in three patients using a gradient-echo sequence with TE varying from 10 to 21 ms at 1-ms increments showed a cyclic increase and decrease in red and yellow marrow signal intensity depending on the TE. The contribution of intravoxel chemical shift effects on red-yellow marrow contrast in opposed-phase gradient-echo images was verified by almost complete cancellation of the TE-dependent marrow signal oscillation with use of a chemically selective pulse presaturating the water protons. Hematopoietic marrow in the adult distal femur in the absence of hematologic abnormalities is found primarily in women of menstruating age.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8438189

  3. Allogeneic hematopoietic cell transplantation in adult patients with acute lymphoblastic leukemia.

    PubMed

    Marks, David I; Alonso, Laura; Radia, Rohini

    2014-12-01

    This review discusses the use of prognostic factors, patient and donor selection, choice of conditioning regimens, and timing of transplant. It also describes the management of Philadelphia-positive acute lymphocytic leukemia (ALL) and central nervous system disease. All aggressively treated adults with ALL should be considered for allogeneic transplantation and tissue typed at diagnosis. We further suggest that eligible patients be entered into clinical trials (that incorporate transplantation); these unselected prospective outcome data are essential to evaluate the true value of allogeneic transplantation in adults with ALL. PMID:25459175

  4. Recent Progress on Tissue-Resident Adult Stem Cell Biology and Their Therapeutic Implications

    PubMed Central

    2013-01-01

    Recent progress in the field of the stem cell research has given new hopes to treat and even cure diverse degenerative disorders and incurable diseases in human. Particularly, the identification of a rare population of adult stem cells in the most tissues/organs in human has emerged as an attractive source of multipotent stem/progenitor cells for cell replacement-based therapies and tissue engineering in regenerative medicine. The tissue-resident adult stem/progenitor cells offer the possibility to stimulate their in vivo differentiation or to use their ex vivo expanded progenies for cell replacement-based therapies with multiple applications in human. Among the human diseases that could be treated by the stem cell-based therapies, there are hematopoietic and immune disorders, multiple degenerative disorders, such as Parkinson’s and Alzeimeher’s diseases, type 1 or 2 diabetes mellitus as well as eye, liver, lung, skin and cardiovascular disorders and aggressive and metastatic cancers. In addition, the genetically-modified adult stem/progenitor cells could also be used as delivery system for expressing the therapeutic molecules in specific damaged areas of different tissues. Recent advances in cancer stem/progenitor cell research also offer the possibility to targeting these undifferentiated and malignant cells that provide critical functions in cancer initiation and progression and disease relapse for treating the patients diagnosed with the advanced and metastatic cancers which remain incurable in the clinics with the current therapies. PMID:18288619

  5. Treatment Options for Adult Soft Tissue Sarcoma

    MedlinePlus

    ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ...

  6. Treatment Option Overview (Adult Soft Tissue Sarcoma)

    MedlinePlus

    ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ...

  7. Stages of Adult Soft Tissue Sarcoma

    MedlinePlus

    ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ... superficial (in subcutaneous tissue with no spread into connective tissue or muscle below) or deep (in the muscle ...

  8. Hematopoietic plakophilin-3 regulates acute tissue-specific and systemic inflammation in mice.

    PubMed

    Sklyarova, Tatyana; van Hengel, Jolanda; Van Wonterghem, Elien; Libert, Claude; van Roy, Frans; Vandenbroucke, Roosmarijn E

    2015-10-01

    Plakophilin-3 (PKP3) is a member of the armadillo protein family, which is important in cell-cell contacts and signaling during development and tumorigenesis. In conventional facilities, PKP3-deficient mice (PKP3(-/-)) develop spontaneous dermatitis, indicating a possible involvement of PKP3 in inflammatory responses. Here, we show that PKP3 deficiency sensitizes mice to irritant contact dermatitis induced by phorbol myristate acetate (PMA). This sensitization occurred in mice with PKP3 deficiency in the hematopoietic system (PKP3(-/-hem)), but not if the deficiency was specific to skin keratinocytes (PKP3(-/-ker)). In a model of dextran sulfate sodium induced colitis, ubiquitous PKP3 deletion, but not intestinal epithelial PKP3 deficiency (PKP3(-/-IEC)), impaired survival from disease. Interestingly, PKP3(-/-hem) mice also displayed increased sensitivity to dextran sulfate sodium induced colitis. Finally, PKP3(-/-) mice were more sensitive to the lethality of lipopolysaccharide (LPS) injection than wild-type (WT) mice, and this phenotype was associated with increased intestinal permeability. PKP3(-/-IEC) mice did not reproduce the enhanced endotoxin reactivity of PKP3(-/-) mice, in contrast to PKP3(-/-hem) mice. Finally, in vitro stimulation of WT neutrophils with LPS or PMA increased Pkp3 expression. In conclusion, our data highlight a novel role for hematopoietic PKP3 in the regulation of both locally and systemically induced immune responses. Nonetheless, further research is needed to unravel the underlying mechanism. PMID:26173741

  9. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages.

    PubMed

    Hoeffel, Guillaume; Chen, Jinmiao; Lavin, Yonit; Low, Donovan; Almeida, Francisca F; See, Peter; Beaudin, Anna E; Lum, Josephine; Low, Ivy; Forsberg, E Camilla; Poidinger, Michael; Zolezzi, Francesca; Larbi, Anis; Ng, Lai Guan; Chan, Jerry K Y; Greter, Melanie; Becher, Burkhard; Samokhvalov, Igor M; Merad, Miriam; Ginhoux, Florent

    2015-04-21

    Although classified as hematopoietic cells, tissue-resident macrophages (MFs) arise from embryonic precursors that seed the tissues prior to birth to generate a self-renewing population, which is maintained independently of adult hematopoiesis. Here we reveal the identity of these embryonic precursors using an in utero MF-depletion strategy and fate-mapping of yolk sac (YS) and fetal liver (FL) hematopoiesis. We show that YS MFs are the main precursors of microglia, while most other MFs derive from fetal monocytes (MOs). Both YS MFs and fetal MOs arise from erythro-myeloid progenitors (EMPs) generated in the YS. In the YS, EMPs gave rise to MFs without monocytic intermediates, while EMP seeding the FL upon the establishment of blood circulation acquired c-Myb expression and gave rise to fetal MOs that then seeded embryonic tissues and differentiated into MFs. Thus, adult tissue-resident MFs established from hematopoietic stem cell-independent embryonic precursors arise from two distinct developmental programs. PMID:25902481

  10. [Radiotherapy of adult soft tissue sarcoma].

    PubMed

    Le Péchoux, C; Moureau-Zabotto, L; Llacer, C; Ducassou, A; Sargos, P; Sunyach, M P; Thariat, J

    2016-09-01

    Incidence of soft tissue sarcoma is low and requires multidisciplinary treatment in specialized centers. The objective of this paper is to report the state of the art regarding indications and treatment techniques of main soft tissue sarcoma localisations. PMID:27523415

  11. Altered microRNA expression patterns in irradiated hematopoietic tissues suggest a sex-specific protective mechanism

    SciTech Connect

    Ilnytskyy, Yaroslav; Zemp, Franz J.; Koturbash, Igor; Kovalchuk, Olga

    2008-12-05

    To investigate involvement of miRNAs in radiation responses we used microRNAome profiling to analyze the sex-specific response of radiation sensitive hematopoietic lymphoid tissues. We show that radiation exposure resulted in a significant and sex-specific deregulation of microRNA expression in murine spleen and thymus tissues. Among the regulated miRNAs, we found that changes in expression of miR-34a and miR-7 may be involved in important protective mechanisms counteracting radiation cytotoxicity. We observed a significant increase in the expression of tumor-suppressor miR-34a, paralleled by a decrease in the expression of its target oncogenes NOTCH1, MYC, E2F3 and cyclin D1. Additionally, we show that miR-7 targets the lymphoid-specific helicase LSH, a pivotal regulator of DNA methylation and genome stability. While miR-7 was significantly down-regulated LSH was significantly up-regulated. These cellular changes may constitute an attempt to counteract radiation-induced hypomethylation. Tissue specificity of miRNA responses and possible regulation of miRNA expression upon irradiation are discussed.

  12. Effects of Allogeneic Hematopoietic Stem Cell Transplantation Plus Thymus Transplantation on Malignant Tumors: Comparison Between Fetal, Newborn, and Adult Mice

    PubMed Central

    Zhang, Yuming; Hosaka, Naoki; Cui, Yunze; Shi, Ming

    2011-01-01

    We have recently shown that allogeneic intrabone marrow–bone marrow transplantation + adult thymus transplantation (TT) is effective for hosts with malignant tumors. However, since thymic and hematopoietic cell functions differ with age, the most effective age for such intervention needed to be determined. We performed hematopoietic stem cell transplantation (HSCT) using the intrabone marrow method with or without TT from fetal, newborn, and adult B6 mice (H-2b) into BALB/c mice (H-2d) bearing Meth-A sarcoma (H-2d). The mice treated with all types of HSCT + TT showed more pronounced regression and longer survival than those treated with HSCT alone in all age groups. Those treated with HSCT + TT showed increased numbers of CD4+ and CD8+ T cells but decreased numbers of Gr-1/Mac-1 myeloid suppressor cells and decreased percentages of FoxP3 cells in CD4+ T cells, compared with those treated with HSCT alone. In all mice, those treated with fetal liver cell (as fetal HSCs) transplantation + fetal TT or with newborn liver cell (as newborn HSCs) transplantation (NLT) + newborn TT (NTT) showed the most regression, and the latter showed the longest survival. The number of Gr-1/Mac-1 cells was the lowest, whereas the percentage of CD62L−CD44+ effector memory T cells and the production of interferon γ (IFN-γ) were highest in the mice treated with NLT + NTT. These findings indicate that, at any age, HSCT + TT is more effective against cancer than HSCT alone and that NLT + NTT is most effective. PMID:20672991

  13. Adult hematopoietic stem cells lacking Hif-1α self-renew normally

    PubMed Central

    Vukovic, Milica; Sepulveda, Catarina; Subramani, Chithra; Guitart, Amélie V.; Mohr, Jasmine; Allen, Lewis; Panagopoulou, Theano I.; Paris, Jasmin; Lawson, Hannah; Villacreces, Arnaud; Armesilla-Diaz, Alejandro; Gezer, Deniz; Holyoake, Tessa L.; Ratcliffe, Peter J.

    2016-01-01

    The hematopoietic stem cell (HSC) pool is maintained under hypoxic conditions within the bone marrow microenvironment. Cellular responses to hypoxia are largely mediated by the hypoxia-inducible factors, Hif-1 and Hif-2. The oxygen-regulated α subunits of Hif-1 and Hif-2 (namely, Hif-1α and Hif-2α) form dimers with their stably expressed β subunits and control the transcription of downstream hypoxia-responsive genes to facilitate adaptation to low oxygen tension. An initial study concluded that Hif-1α is essential for HSC maintenance, whereby Hif-1α–deficient HSCs lost their ability to self-renew in serial transplantation assays. In another study, we demonstrated that Hif-2α is dispensable for cell-autonomous HSC maintenance, both under steady-state conditions and following transplantation. Given these unexpected findings, we set out to revisit the role of Hif-1α in cell-autonomous HSC functions. Here we demonstrate that inducible acute deletion of Hif-1α has no impact on HSC survival. Notably, unstressed HSCs lacking Hif-1α efficiently self-renew and sustain long-term multilineage hematopoiesis upon serial transplantation. Finally, Hif-1α–deficient HSCs recover normally after hematopoietic injury induced by serial administration of 5-fluorouracil. We therefore conclude that despite the hypoxic nature of the bone marrow microenvironment, Hif-1α is dispensable for cell-autonomous HSC maintenance. PMID:27060169

  14. Adult hematopoietic stem cells lacking Hif-1α self-renew normally.

    PubMed

    Vukovic, Milica; Sepulveda, Catarina; Subramani, Chithra; Guitart, Amélie V; Mohr, Jasmine; Allen, Lewis; Panagopoulou, Theano I; Paris, Jasmin; Lawson, Hannah; Villacreces, Arnaud; Armesilla-Diaz, Alejandro; Gezer, Deniz; Holyoake, Tessa L; Ratcliffe, Peter J; Kranc, Kamil R

    2016-06-01

    The hematopoietic stem cell (HSC) pool is maintained under hypoxic conditions within the bone marrow microenvironment. Cellular responses to hypoxia are largely mediated by the hypoxia-inducible factors, Hif-1 and Hif-2. The oxygen-regulated α subunits of Hif-1 and Hif-2 (namely, Hif-1α and Hif-2α) form dimers with their stably expressed β subunits and control the transcription of downstream hypoxia-responsive genes to facilitate adaptation to low oxygen tension. An initial study concluded that Hif-1α is essential for HSC maintenance, whereby Hif-1α-deficient HSCs lost their ability to self-renew in serial transplantation assays. In another study, we demonstrated that Hif-2α is dispensable for cell-autonomous HSC maintenance, both under steady-state conditions and following transplantation. Given these unexpected findings, we set out to revisit the role of Hif-1α in cell-autonomous HSC functions. Here we demonstrate that inducible acute deletion of Hif-1α has no impact on HSC survival. Notably, unstressed HSCs lacking Hif-1α efficiently self-renew and sustain long-term multilineage hematopoiesis upon serial transplantation. Finally, Hif-1α-deficient HSCs recover normally after hematopoietic injury induced by serial administration of 5-fluorouracil. We therefore conclude that despite the hypoxic nature of the bone marrow microenvironment, Hif-1α is dispensable for cell-autonomous HSC maintenance. PMID:27060169

  15. Epimorphic regeneration approach to tissue replacement in adult mammals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Urodeles and fetal mammals are capable of impressive epimorphic regeneration in a variety of tissues, whereas the typical default response to injury in adult mammals consists of inflammation and scar tissue formation. One component of epimorphic regeneration is the recruitment of resident progenitor...

  16. Fetal and adult liver stem cells for liver regeneration and tissue engineering.

    PubMed

    Fiegel, H C; Lange, Claudia; Kneser, U; Lambrecht, W; Zander, A R; Rogiers, X; Kluth, D

    2006-01-01

    For the development of innovative cell-based liver directed therapies, e.g. liver tissue engineering, the use of stem cells might be very attractive to overcome the limitation of donor liver tissue. Liver specific differentiation of embryonic, fetal or adult stem cells is currently under investigation. Different types of fetal liver (stem) cells during development were identified, and their advantageous growth potential and bipotential differentiation capacity were shown. However, ethical and legal issues have to be addressed before using fetal cells. Use of adult stem cells is clinically established, e.g. transplantation of hematopoietic stem cells. Other bone marrow derived liver stem cells might be mesenchymal stem cells (MSC). However, the transdifferentiation potential is still in question due to the observation of cellular fusion in several in vivo experiments. In vitro experiments revealed a crucial role of the environment (e.g. growth factors and extracellular matrix) for specific differentiation of stem cells. Co-cultured liver cells also seemed to be important for hepatic gene expression of MSC. For successful liver cell transplantation, a novel approach of tissue engineering by orthotopic transplantation of gel-immobilized cells could be promising, providing optimal environment for the injected cells. Moreover, an orthotopic tissue engineering approach using bipotential stem cells could lead to a repopulation of the recipients liver with healthy liver and biliary cells, thus providing both hepatic functions and biliary excretion. Future studies have to investigate, which stem cell and environmental conditions would be most suitable for the use of stem cells for liver regeneration or tissue engineering approaches. PMID:16989722

  17. Strategies to control human cytomegalovirus infection in adult hematopoietic stem cell transplant recipients.

    PubMed

    Lilleri, Daniele; Gerna, Giuseppe

    2016-09-01

    Human cytomegalovirus (HCMV) represents the major viral complication after hematopoietic stem cell transplantation. HCMV infection may be controlled by the reconstituting immune system and remain subclinical or can lead to severe systemic and/or organ disease (mainly pneumonia and gastroenteritis) when immune reconstitution is delayed or impaired. In order to prevent the occurrence of HCMV disease, a prompt diagnosis of HCMV infection is mandatory. The adoption of pre-emptive therapy strategies guided by virological monitoring dramatically reduced the occurrence of HCMV disease. However, late-onset end-organ disease may occur in some patients with apparent immune reconstitution. In the near future, introduction of immunological monitoring and immunotherapies could markedly improve management of HCMV infection. PMID:27485084

  18. The landscape of genomic imprinting across diverse adult human tissues.

    PubMed

    Baran, Yael; Subramaniam, Meena; Biton, Anne; Tukiainen, Taru; Tsang, Emily K; Rivas, Manuel A; Pirinen, Matti; Gutierrez-Arcelus, Maria; Smith, Kevin S; Kukurba, Kim R; Zhang, Rui; Eng, Celeste; Torgerson, Dara G; Urbanek, Cydney; Li, Jin Billy; Rodriguez-Santana, Jose R; Burchard, Esteban G; Seibold, Max A; MacArthur, Daniel G; Montgomery, Stephen B; Zaitlen, Noah A; Lappalainen, Tuuli

    2015-07-01

    Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype-Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues. PMID:25953952

  19. The landscape of genomic imprinting across diverse adult human tissues

    PubMed Central

    Baran, Yael; Subramaniam, Meena; Biton, Anne; Tukiainen, Taru; Tsang, Emily K.; Rivas, Manuel A.; Pirinen, Matti; Gutierrez-Arcelus, Maria; Smith, Kevin S.; Kukurba, Kim R.; Zhang, Rui; Eng, Celeste; Torgerson, Dara G.; Urbanek, Cydney; Li, Jin Billy; Rodriguez-Santana, Jose R.; Burchard, Esteban G.; Seibold, Max A.; MacArthur, Daniel G.; Montgomery, Stephen B.; Zaitlen, Noah A.; Lappalainen, Tuuli

    2015-01-01

    Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype-Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues. PMID:25953952

  20. [Adjuvant chemotherapy of adults soft tissue sarcomas].

    PubMed

    Bui-Nguyen, B; Italiano, A; Delva, F; Toulmond, M

    2010-06-01

    The main progress in the management of soft tissue sarcomas have been obtained in the field of local control. Although the main evolutive, vital, risk of these diseases is metastatic dissemination, efficacy of adjuvant chemotherapy remains a controversial issue. Thus, adjuvant chemotherapy cannot be considered as a standard for any situation. The last results of clinical trials, meta-analysis and population studies are presented and discussed in this article. New therapeutic strategies are to be developed to prevent metastases in soft tissue sarcomas. This needs a better understanding of the biology of those tumors, of metastases risk factors and of the determinants of systemic therapies efficacy in these tumors. PMID:20547481

  1. A population-based cohort study of late mortality in adult autologous hematopoietic stem cell transplant recipients in Australia.

    PubMed

    Ashton, Lesley J; Le Marsney, Renate E; Dodds, Anthony J; Nivison-Smith, Ian; Wilcox, Leonie; O'Brien, Tracey A; Vajdic, Claire M

    2014-07-01

    We assessed overall and cause-specific mortality and risk factors for late mortality in a nation-wide population-based cohort of 4547 adult cancer patients who survived 2 or more years after receiving an autologous hematopoietic stem cell transplantation (HSCT) in Australia between 1992 and 2005. Deaths after HSCT were identified from the Australasian Bone Marrow Transplant Recipient Registry and through data linkage with the National Death Index. Overall, the survival probability was 56% at 10 years from HSCT, ranging from 34% for patients with multiple myeloma to 90% for patients with testicular cancer. Mortality rates moved closer to rates observed in the age- and sex-matched Australian general population over time but remained significantly increased 11 or more years from HSCT (standardized mortality ratio, 5.9). Although the proportion of deaths from nonrelapse causes increased over time, relapse remained the most frequent cause of death for all diagnoses, 10 or more years after autologous HSCT. Our findings show that prevention of disease recurrence remains 1 of the greatest challenges for autologous HSCT recipients, while the increasing rates of nonrelapse deaths due to the emergence of second cancers, circulatory diseases, and respiratory diseases highlight the long-term health issues faced by adult survivors of autologous HSCT. PMID:24631736

  2. Innate Immune Activation by Tissue Injury and Cell Death in the Setting of Hematopoietic Stem Cell Transplantation

    PubMed Central

    Brennan, Todd V.; Rendell, Victoria R.; Yang, Yiping

    2015-01-01

    Allogeneic hematopoietic stem cell transplantation (Allo-HSCT) with donor lymphocyte infusion is the mainstay of treatment for many types of hematological malignancies, but the therapeutic effect and prevention of relapse is complicated by donor T-cell recognition and attack of host tissue in a process known as graft-versus-host disease (GvHD). Cytotoxic myeloablative conditioning regimens used prior to Allo-HSCT result in the release of endogenous innate immune activators that are increasingly recognized for their role in creating a pro-inflammatory milieu. This increased inflammatory state promotes allogeneic T-cell activation and the induction and perpetuation of GvHD. Here, we review the processes of cellular response to injury and cell death that are relevant following Allo-HSCT and present the current evidence for a causative role of a variety of endogenous innate immune activators in the mediation of sterile inflammation following Allo-HSCT. Finally, we discuss the potential therapeutic strategies that target the endogenous pathways of innate immune activation to decrease the incidence and severity of GvHD following Allo-HSCT. PMID:25852683

  3. Second Cancer Risk and Late Mortality in Adult Australians Receiving Allogeneic Hematopoietic Stem Cell Transplantation: A Population-Based Cohort Study.

    PubMed

    Vajdic, Claire M; Mayson, Eleni; Dodds, Anthony J; O'Brien, Tracey; Wilcox, Leonie; Nivison-Smith, Ian; Le Marsney, Renate; Daniels, Benjamin; Ashton, Lesley J

    2016-05-01

    We quantified the risk of second cancer and late mortality in a population-based Australian cohort of 3273 adult (≥15 years) allogeneic hematopoietic stem cell transplant recipients (1992 to 2007). Most recipients received nonradiation-based conditioning and a peripheral blood graft from a matched related donor. Using record linkage with death and cancer registries, 79 second cancers were identified a median of 3.5 years after transplantation. The competing-risk adjusted cumulative incidence of second cancers was 3.35% (95% CI, 2.59 to 4.24) at 10 years, and the cancer risk relative to the matched general population was 2.10 (95% CI, 1.65 to 2.56). We observed an excess risk of melanoma and lip, tongue, esophagus, and soft tissue cancers. Cancer risk relative to the general population was elevated for those transplanted for lymphoma, some leukemia subtypes, and severe aplastic anemia, recipients who developed chronic graft-versus-host disease (cGVHD) and irrespective of radiation-based conditioning or stem cell source. In those alive 2 years after transplantation (n = 1463), the cumulative incidence of late mortality was 22.2% (95% CI, 19.7 to 24.9) at 10 years, and the risk of death relative to the matched general population was 13.8 (95% CI, 12.2 to 15.6). In multivariable modeling, risk of late death was reduced for females compared with males and those transplanted for chronic myeloid leukemia compared with acute myeloid leukemia; risk was increased for recipients with discordant sex donors, cGVHD, those undergoing second transplants, and disease relapse. Adults undergoing allogeneic transplantation have unique cancer and mortality risk profiles that continue to warrant prevention and surveillance activities targeted at high-risk subgroups. PMID:26860637

  4. Busulfan in infants to adult hematopoietic cell transplant recipients: A population pharmacokinetic model for initial and Bayesian dose personalization

    PubMed Central

    McCune, Jeannine S.; Bemer, Meagan J.; Barrett, Jeffrey S.; Baker, K. Scott; Gamis, Alan S.; Holford, Nicholas H.G.

    2014-01-01

    Purpose Personalizing intravenous (IV) busulfan doses to a target plasma concentration at steady state (Css) is an essential component of hematopoietic cell transplantation (HCT). We sought to develop a population pharmacokinetic model to predict IV busulfan doses over a wide age spectrum (0.1 – 66 years) that accounts for differences in age and body size. Experimental design A population pharmacokinetic model based on normal fat mass and maturation based on post-menstrual age was built from 12,380 busulfan concentration-time points obtained after IV busulfan administration in 1,610 HCT recipients. Subsequently, simulation results of the initial dose necessary to achieve a target Css with this model were compared with pediatric-only models. Results A two-compartment model with first-order elimination best fit the data. The population busulfan clearance was 12.4 L/h for an adult male with 62kg normal fat mass (equivalent to 70kg total body weight). Busulfan clearance, scaled to body size – specifically normal fat mass, is predicted to be 95% of the adult clearance at 2.5 years post-natal age. With a target Css of 770 ng/mL, a higher proportion of initial doses achieved the therapeutic window with this age- and size-dependent model (72%) compared to dosing recommended by the Food and Drug Administration (57%) or the European Medicines Agency (70%). Conclusion This is the first population pharmacokinetic model developed to predict initial IV busulfan doses and personalize to a target Css over a wide age spectrum, ranging from infants to adults. PMID:24218510

  5. Cytogenetics Does Not Impact Outcomes in Adult Patients with Acute Lymphoblastic Leukemia Undergoing Allogeneic Hematopoietic Cell Transplantation.

    PubMed

    Aldoss, Ibrahim; Tsai, Ni-Chun; Slovak, Marilyn L; Palmer, Joycelynne; Alvarnas, Joseph; Marcucci, Guido; Forman, Stephen J; Pullarkat, Vinod

    2016-07-01

    The prognostic relevance of cytogenetics at diagnosis on the outcome of allogeneic hematopoietic stem cell transplantation (alloHCT) for adult acute lymphoblastic leukemia (ALL) remains unclear. We retrospectively analyzed outcomes of 333 adult ALL patients who underwent alloHCT at our institution over a 10-year period. Patients were classified according to disease status at transplantation (complete response [CR] 1 [n = 202] or > CR1) and according to cytogenetic risk, defined as good (2%), intermediate (42%), poor (46%), or unknown (10%) based on available outcome data for each of the cytogenetic abnormalities. Three-year overall survival (OS), leukemia-free survival (LFS), and relapse incidence (RI) were 55.7%, 47.9% and 27.5%, respectively; 1-year nonrelapse mortality (NRM) was 17.3%. For patients undergoing alloHCT in CR1, 3-year OS, LFS, and RI were 69.8%, 62.3%, and 17.1%, respectively. In multivariable analysis, cytogenetic risk did not impact OS or LFS for the whole cohort or for patients who underwent transplantation in CR1. Disease status at alloHCT was an independent predictor for LFS (CR1 versus others: hazard ratio [HR], 3.17; P < .01) and OS (CR1 versus others: HR, 2.90; P < .01). Graft-versus-host disease prophylaxis with tacrolimus/sirolimus was associated with a low NRM of 11.5% in the alloHCT recipients in CR1. Our data indicate that cytogenetic risk is not an independent predictor of outcomes in alloHCT performed to treat adult ALL. PMID:27044907

  6. Cohesin loss alters adult hematopoietic stem cell homeostasis, leading to myeloproliferative neoplasms

    PubMed Central

    Mullenders, Jasper; Aranda-Orgilles, Beatriz; Lhoumaud, Priscillia; Keller, Matthew; Pae, Juhee; Wang, Kun; Kayembe, Clarisse; Rocha, Pedro P.; Raviram, Ramya; Gong, Yixiao; Premsrirut, Prem K.; Tsirigos, Aristotelis; Bonneau, Richard; Skok, Jane A.; Cimmino, Luisa; Hoehn, Daniela

    2015-01-01

    The cohesin complex (consisting of Rad21, Smc1a, Smc3, and Stag2 proteins) is critically important for proper sister chromatid separation during mitosis. Mutations in the cohesin complex were recently identified in a variety of human malignancies including acute myeloid leukemia (AML). To address the potential tumor-suppressive function of cohesin in vivo, we generated a series of shRNA mouse models in which endogenous cohesin can be silenced inducibly. Notably, silencing of cohesin complex members did not have a deleterious effect on cell viability. Furthermore, knockdown of cohesin led to gain of replating capacity of mouse hematopoietic progenitor cells. However, cohesin silencing in vivo rapidly altered stem cells homeostasis and myelopoiesis. Likewise, we found widespread changes in chromatin accessibility and expression of genes involved in myelomonocytic maturation and differentiation. Finally, aged cohesin knockdown mice developed a clinical picture closely resembling myeloproliferative disorders/neoplasms (MPNs), including varying degrees of extramedullary hematopoiesis (myeloid metaplasia) and splenomegaly. Our results represent the first successful demonstration of a tumor suppressor function for the cohesin complex, while also confirming that cohesin mutations occur as an early event in leukemogenesis, facilitating the potential development of a myeloid malignancy. PMID:26438359

  7. Myelolipoma in the spleen: a rare discovery of extra-adrenal hematopoietic tissue.

    PubMed

    Wood, William G; Restivo, Terry E; Axelsson, Karen L; Svahn, Jonathan D

    2013-01-01

    Myelolipomas are benign tumors usually found within the adrenal gland. Approximately 50 cases of extra-adrenal myelolipomas have been reported in the literature and all are associated with additional lesions. Myelolipomas contain hematopoetic cells and adipose tissue. Most commonly, they are asymptomatic and are found incidentally on radiologic imaging. Here we report a case of an isolated intrasplenic myelolipoma as an incidental finding during the work up for myasthenia gravis in an otherwise asymptomatic man. The spleen and associated mass were excised during laparotomy and the patient had an uneventful recovery. PMID:24964419

  8. Expression of tmp21 in normal adult human tissues

    PubMed Central

    Xie, Jian; Yang, Yuan; Li, Jianbo; Hou, Jing; Xia, Kun; Song, Weihong; Liu, Shengchun

    2014-01-01

    TMP21, known as p23 protein, is one important member of the p24 protein families. The degradation of TMP21 is mediated by the ubiquitin-proteasome pathway, as with the other presenilin-associated γ-secretase complex members. NFAT plays a very important role in regulation of human TMP21 gene expression. Compared with the function of TMP21, the studies about the distribution of this protein in human tissues are limited. We collected 19 normal adult human tissues from a healthy adult man died in a traffic accident and did examination of all the tissues collected for ICH, western blot and RT-PCR. It was shown that the expression of TMP21 is at high levels in heart, liver, lung, kidney and adrenal gland; moderate levels in brain, pancreas, prostate gland, testicle, small intestine, colon, stomach, gall bladder, thyroid gland and trachea; low levels in skeletal muscle, skin and lymphonodus. TMP21 is widely existed in normal adult human tissues. The current study provided for the first time a comprehensive expression of TMP21 in normal adult human tissues. It will benefit on helping in the design and interpretation of future studies focused on expounding the function of TMP21. PMID:25356171

  9. Metabolic syndrome in adults who received hematopoietic stem cell transplantation for acute childhood leukemia: an LEA study.

    PubMed

    Oudin, C; Auquier, P; Bertrand, Y; Contet, A; Kanold, J; Sirvent, N; Thouvenin, S; Tabone, M-D; Lutz, P; Ducassou, S; Plantaz, D; Dalle, J-H; Gandemer, V; Beliard, S; Berbis, J; Vercasson, C; Barlogis, V; Baruchel, A; Leverger, G; Michel, G

    2015-11-01

    We evaluated prospectively the incidence and risk factors of the metabolic syndrome (MS) and its components in 170 adult patients (mean age at evaluation: 24.8±5.4 years) who received an hematopoietic stem cell transplantation for childhood ALL, n=119, or AML, n=51. TBI was carried out in 124 cases; a busulfan-based conditioning was done in 30 patients. Twenty-nine patients developed a MS (17.1%, 95% confidence intervals: 11.7-23.6). The cumulative incidence was 13.4% at 25 years of age and 35.5% at 35 years of age. A higher body mass index (BMI) before transplantation and a growth hormone deficiency were associated with increased MS risk (P=0.002 and 0.01, respectively). MS risk was similar for patients who received TBI or busulfan-based conditioning. The TBI use increased the hyperglycemia risk (odds ratio (OR): 4.7, P=0.02). Women were at the risk of developing increased waist circumference (OR: 7.18, P=0.003) and low levels of high-density lipoprotein cholesterol (OR: 2.72, P=0.007). The steroid dose was not a risk factor. The MS occurs frequently among transplanted survivors of childhood leukemia. Its incidence increases with age. Both intrinsic (BMI, gender) and extrinsic factors (TBI, alkylating agents) contribute to its etiopathogenesis. PMID:26191949

  10. OBESITY DOES NOT PRECLUDE SAFE AND EFFECTIVE MYELOABLATIVE HEMATOPOIETIC CELL TRANSPLANTATION (HCT) FOR ACUTE MYELOID LEUKEMIA (AML) IN ADULTS

    PubMed Central

    Navarro, Willis H.; Agovi, Manza-A.; Logan, Brent R.; Ballen, Karen; Bolwell, Brian J.; Frangoul, Haydar; Gupta, Vikas; Hahn, Theresa; Ho, Vincent T.; Juckett, Mark; Lazarus, Hillard M.; Litzow, Mark R.; Liesveld, Jane L.; Moreb, Jan S.; Marks, David I.; McCarthy, Philip L.; Pasquini, Marcelo C.; Rizzo, J. Douglas

    2010-01-01

    The incidence of excessive adiposity is increasing worldwide and is associated with numerous adverse health outcomes. We compared outcomes by body mass index (BMI) for adult patients with acute myeloid leukemia (AML) who underwent autologous (auto, n=373), related donor (RD, n=2041), or unrelated donor (URD, n=1801) allogeneic myeloablative hematopoietic cell transplantation (HCT) using marrow or peripheral blood stem cells reported to the Center for International Blood and Marrow Transplant Research (CIBMTR) from 1995-2004. Four weight groups by BMI (kg/m2) were defined: underweight < 18; normal 18 – 25; overweight >25 – 30; and obese > 30. Multivariable analysis referenced to the normal weight group showed an increased risk of death for underweight patients in the RD group (RR, 1.92; 95% CI, 1.28-2.89; P = 0.002) but not in the URD group. There were no other differences in outcomes among the other weight groups within the other HCT groups. Overweight and obese patients enjoyed a modest decrease in relapse incidence, though this did not translate into a survival benefit. Small numbers of patients limit the ability to better characterize the adverse outcomes seen in the underweight RD but not the underweight URD allogeneic HCT patients. Obesity alone should not be considered a barrier to HCT. PMID:20412867

  11. [Alleviation of palmoplantar pustulosis associated with adult T cell leukemia/lymphoma after allogeneic hematopoietic stem cell transplantation].

    PubMed

    Akasaka, Hiroshi; Imaizumi, Kisako; Sakane, Emiko; Tsunemine, Hiroko; Ito, Kiminari; Kodaka, Taiichi; Matsumoto, Mayumi; Matsuoka, Masao; Takahashi, Takayuki

    2012-08-01

    A 68-year-old female with palmoplantar pustulosis was referred to our hospital in July, 2009 because of liver dysfunction, a positive test for HTLV-1, and circulating abnormal lymphocytes with irregularly shaped nuclei. A diagnosis of acute type adult T cell leukemia/lymphoma (ATLL) was made based on generalized lymph node swelling and high levels of serum LDH, in addition to the findings described above. The associated palmoplantar pustulosis responded to some extent to antibiotics, steroid ointment, and narrow band UBV light irradiation. For ATLL, she was serially treated with CHOP chemotherapy, an LSG 15 protocol, and CytaBOM protocol with consequent partial remission. These chemotherapies did not affect the palmoplantar pustulosis. For ATLL in partial remission, we performed allogeneic peripheral blood stem cell transplantation (allo-PBSCT) from a related donor (HTLV-1-negative) with a conditioning regimen consisting of fludarabine, melphalan, and total body irradiation with 3 Gy in February, 2010. After the engraftment of donor hematopoietic cells, ATLL cells disappeared and the patient currently (as of April, 2012) remains in complete remission (CR). The residual palmoplantar pustulosis was further improved soon after allo-PBSCT and disappeared on Day 84 after transplantation. This refractory skin disease has also been in CR to date. PMID:22975820

  12. Assessment of voluntary exercise behavior and active video gaming among adolescent and young adult patients during hematopoietic stem cell transplantation.

    PubMed

    Rosipal, Nicole C; Mingle, Lindsay; Smith, Janet; Morris, G Stephen

    2013-01-01

    This pilot study sought to examine the exercise behavior and preferences among adolescent and young adult (AYA) hematopoietic stem cell transplant (HSCT) recipients. Eighteen patients aged 19 to 25 years were recruited to engage in unsupervised exercise activities lasting at least 60 minutes/week during hospitalization for HSCT. Enrolled patients had access to standard exercise activities (walking, resistance training, and basketball) and active video gaming equipment. Physical function (6-Minute Walk Test and Timed-Up-and-Go test) and quality of life (Behavioral, Affective, and Somatic Experiences Scale) were assessed at different time points during admission. Participants exercised an average of 76% of the days during admission and spent an average of 36.5 minutes per day exercising. The Nintendo Wii was the preferred active video gaming equipment, but standard exercises accounted for 73% of all exercise time. Neither functional capacity nor quality of life improved. Results suggest that AYAs voluntarily exercise during HSCT admission, prefer to use standard exercise activities, and may require supervision in order to derive maximum benefits from their efforts. These results provide guidance for developing rehabilitation interventions for AYA HSCT recipients. PMID:23160792

  13. Outcomes after matched unrelated donor versus identical sibling hematopoietic cell transplantation in adults with acute myelogenous leukemia.

    PubMed

    Saber, Wael; Opie, Shaun; Rizzo, J Douglas; Zhang, Mei-Jie; Horowitz, Mary M; Schriber, Jeff

    2012-04-26

    Approximately one-third of patients with an indication for hematopoietic cell transplantation (HCT) have an HLA-matched related donor (MRD) available to them. For the remaining patients, a matched unrelated donor (MUD) is an alternative. Prior studies comparing MRD and MUD HCT provide conflicting results, and the relative efficacy of MRD and MUD transplantation is an area of active investigation. To address this issue, we analyzed outcomes of 2223 adult acute myelogenous leukemia patients who underwent allogeneic HCT between 2002 and 2006 (MRD, n = 624; 8/8 HLA locus matched MUD, n = 1193; 7/8 MUD, n = 406). The 100-day cumulative incidence of grades B-D acute GVHD was significantly lower in MRD HCT recipients than in 8/8 MUD and 7/8 MUD HCT recipients (33%, 51%, and 53%, respectively; P < .001). In multivariate analysis, 8/8 MUD HCT recipients had a similar survival rate compared with MRD HCT recipients (relative risk [RR], 1.03; P = .62). 7/8 MUD HCT recipients had higher early mortality than MRD HCT recipients (RR, 1.40; P < .001), but beyond 6 months after HCT, their survival rates were similar (RR, 0.88; P = .30). These results suggest that transplantation from MUD and MRD donors results in similar survival times for patients with acute myelogenous leukemia. PMID:22327226

  14. Hematopoietic Stem Cell Niche in Health and Disease.

    PubMed

    Hoggatt, Jonathan; Kfoury, Youmna; Scadden, David T

    2016-05-23

    Regulation of stem cells in adult tissues is a key determinant of how well an organism can respond to the stresses of physiological challenge and disease. This is particularly true of the hematopoietic system, where demands on host defenses can call for an acute increase in cell production. Hematopoietic stem cells receive the regulatory signals for cell production in adult mammals in the bone marrow, a tissue with higher-order architectural and functional organization than previously appreciated. Here, we review the data defining particular structural components and heterologous cells in the bone marrow that participate in hematopoietic stem cell function. Further, we explore the case for stromal-hematopoietic cell interactions contributing to neoplastic myeloid disease. As the hematopoietic regulatory networks in the bone marrow are revealed, it is anticipated that strategies will emerge for how to enhance or inhibit production of specific blood cells. In that way, the control of hematopoiesis will enter the domain of therapies to modulate broad aspects of hematopoiesis, both normal and malignant. PMID:27193455

  15. Participation in clinical research: perspectives of adult patients and parents of pediatric patients undergoing hematopoietic stem cell transplantation.

    PubMed

    Keusch, Florian; Rao, Rohini; Chang, Lawrence; Lepkowski, James; Reddy, Pavan; Choi, Sung Won

    2014-10-01

    Despite major improvements over the past several decades, many patients undergoing hematopoietic stem cell transplantations (HSCT) continue to suffer from significant treatment-related morbidity and mortality. Clinical research studies (trials) have been integral to advancing the standard of care in HSCT. However, 1 of the biggest challenges with clinical trials is the low participation rate. Although barriers to participation in cancer clinical trials have been previously explored, studies specific to HSCT are lacking. The current study was undertaken to examine the knowledge, attitudes, and perceptions of HSCT patients regarding clinical trials. As members of focus groups, participants responded to open-ended questions that assessed factors influencing decision-making about HSCT clinical trials. Suggestions for improvements in the recruitment process were also solicited among participants. Seventeen adult HSCT patients and 6 parents of pediatric HSCT patients participated in the study. The median age was 56 years (range, 18 to 70) and 44 years (range, 28 to 54) for adult patients and parents, respectively. Participants universally indicated that too much information was provided within the informed consents and they were intimidated by the medical and legal language. Despite the large amount of information provided to them at the time of study enrollment, the participants had limited knowledge retention and recall of study details. Nevertheless, participants reported overall positive experiences with clinical trial participation and many would readily choose to participate again. A common concern among participants was the uncertainty of study outcome and general lack of feedback about results at the end of the study. Participants suggested that investigators provide more condensed and easier to understand informed consents and follow-up of study findings. These findings could be used to help guide the development of improved consent documents and enhanced

  16. Tissue adaptations to gravitational stress - Newborn versus adult giraffes

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R; Gershuni, David H.; Danzig, Larry A.; Millard, Ronald W.; Pettersson, Knut

    1988-01-01

    Preliminary results on developmental alterations in load-bearing tissues of newborn and adult giraffes are presented. Attention is focused on vascular wall thickness in relation to local blood pressure, and on meniscal adaptations to increased load bearing in the developing giraffe. It is believed that the developing giraffe provides an excellent model for investigations of adaptive mechanisms of increased weight bearing.

  17. Alkaline diets favor lean tissue mass in older adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maintaining muscle mass in aging is important to prevent falls and fractures. The net acid load from diets that are rich in acidogenic protein and cereal grains relative to their content of alkalinogenic fruits and vegetables may contribute to reduced lean tissue mass in older adults. This analysis ...

  18. The frequency of multipotent CD133(+)CD45RA(-)CD34(+) hematopoietic stem cells is not increased in fetal liver compared with adult stem cell sources.

    PubMed

    Radtke, Stefan; Haworth, Kevin G; Kiem, Hans-Peter

    2016-06-01

    The cell surface marker CD133 has been used to describe a revised model of adult human hematopoiesis, with hematopoietic stem cells and multipotent progenitors (HSCs/MPPs: CD133(+)CD45RA(-)CD34(+)) giving rise to lymphomyeloid-primed progenitors (LMPPs: CD133(+)CD45RA(+)CD34(+)) and erythromyeloid progenitors (EMPs: CD133(low)CD45RA(-)CD34(+)). Because adult and fetal hematopoietic stem and progenitor cells (HSPCs) differ in their gene expression profile, differentiation capabilities, and cell surface marker expression, we were interested in whether the reported segregation of lineage potentials in adult human hematopoiesis would also apply to human fetal liver. CD133 expression was easily detected in human fetal liver cells, and the defined hematopoietic subpopulations were similar to those found for adult HSPCs. Fetal HSPCs were enriched for EMPs and HSCs/MPPs, which were primed toward erythromyeloid differentiation. However, the frequency of multipotent CD133(+)CD45RA(-)CD34(+) HSPCs was much lower than previously reported and comparable to that of umbilical cord blood. We noted that engraftment in NSG (NOD scid gamma [NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ]) mice was driven mostly by LMPPs, confirming recent findings that repopulation in mice is not a unique feature of multipotent HSCs/MPPs. Thus, our data challenge the general assumption that human fetal liver contains a greater percentage of multipotent HSCs/MPPs than any adult HSC source, and the mouse model may have to be re-evaluated with respect to the type of readout it provides. PMID:27016273

  19. Adult stem cell lineage tracing and deep tissue imaging

    PubMed Central

    Fink, Juergen; Andersson-Rolf, Amanda; Koo, Bon-Kyoung

    2015-01-01

    Lineage tracing is a widely used method for understanding cellular dynamics in multicellular organisms during processes such as development, adult tissue maintenance, injury repair and tumorigenesis. Advances in tracing or tracking methods, from light microscopy-based live cell tracking to fluorescent label-tracing with two-photon microscopy, together with emerging tissue clearing strategies and intravital imaging approaches have enabled scientists to decipher adult stem and progenitor cell properties in various tissues and in a wide variety of biological processes. Although technical advances have enabled time-controlled genetic labeling and simultaneous live imaging, a number of obstacles still need to be overcome. In this review, we aim to provide an in-depth description of the traditional use of lineage tracing as well as current strategies and upcoming new methods of labeling and imaging. [BMB Reports 2015; 48(12): 655-667] PMID:26634741

  20. LAPTM5: A novel lysosomal-associated multispanning membrane protein preferentially expressed in hematopoietic cells

    SciTech Connect

    Adra, C.N.; Zhu, Shaochun; Ko, Jone-Long

    1996-07-15

    While a large body of knowledge about cell membrane proteins exists, much less is known about the repertoire and function of integral membrane proteins of intracellular organelles. In looking for novel classes of genes that are functionally important to hematopoietic cells, we have cloned the cDNA for a gene preferentially expressed in adult hematopoietic tissues. During embryonic development the gene is expressed in both hematopoietic and nonhematopoietic tissues. In cell lines the gene is expressed specifically in hematopoietic lineages, whereas in normal adult tissues the mRNA is preferentially detected at high levels in lymphoid and myeloid tissues. The predicted protein is a pentaspanner with no homology to known genes and conserved across evolution. Immunocytological and cell fractionation studies with a specific antibody revealed a protein localizing in lysosomes. The gene, provisionally named LAPTM5, maps to chromosome 1p34. The expression pattern of the gene together with preliminary evidence that the protein interacts with ubiquitin indicates that the protein may have a special functional role during embryogenesis and in adult hematopoietic cells. 53 refs., 9 figs.

  1. Prospective validation of a novel dosing scheme for intravenous busulfan in adult patients undergoing hematopoietic stem cell transplantation

    PubMed Central

    Cho, Sang-Heon; Lee, Jung-Hee; Lim, Hyeong-Seok; Lee, Kyoo-Hyung; Kim, Dae-Young; Choe, Sangmin; Lee, Je-Hwan

    2016-01-01

    The objective of this study was to externally validate a new dosing scheme for busulfan. Thirty-seven adult patients who received busulfan as conditioning therapy for hematopoietic stem cell transplantation (HCT) participated in this prospective study. Patients were randomized to receive intravenous busulfan, either as the conventional dosage (3.2 mg/kg daily) or according to the new dosing scheme based on their actual body weight (ABW) (23×ABW0.5 mg daily) targeting an area under the concentration-time curve (AUC) of 5924 µM·min. Pharmacokinetic profiles were collected using a limited sampling strategy by randomly selecting 2 time points at 3.5, 5, 6, 7 or 22 hours after starting busulfan administration. Using an established population pharmacokinetic model with NONMEM software, busulfan concentrations at the available blood sampling times were predicted from dosage history and demographic data. The predicted and measured concentrations were compared by a visual predictive check (VPC). Maximum a posteriori Bayesian estimators were estimated to calculate the predicted AUC (AUCPRED). The accuracy and precision of the AUCPRED values were assessed by calculating the mean prediction error (MPE) and root mean squared prediction error (RMSE), and compared with the target AUC of 5924 µM·min. VPC showed that most data fell within the 95% prediction interval. MPE and RMSE of AUCPRED were -5.8% and 20.6%, respectively, in the conventional dosing group and −2.1% and 14.0%, respectively, in the new dosing scheme group. These fi ndings demonstrated the validity of a new dosing scheme for daily intravenous busulfan used as conditioning therapy for HCT. PMID:27162478

  2. Hematopoietic stem cell transplantation in children and young adults with secondary myelodysplastic syndrome and acute myelogenous leukemia after aplastic anemia.

    PubMed

    Yoshimi, Ayami; Strahm, Brigitte; Baumann, Irith; Furlan, Ingrid; Schwarz, Stephan; Teigler-Schlegel, Andrea; Walther, Joachim-Ulrich; Schlegelberger, Brigitte; Göhring, Gudrun; Nöllke, Peter; Führer, Monika; Niemeyer, Charlotte M

    2014-03-01

    Secondary myelodysplastic syndrome and acute myelogenous leukemia (sMDS/sAML) are the most serious secondary events occurring after immunosuppressive therapy in patients with aplastic anemia. Here we evaluate the outcome of hematopoietic stem cell transplantation (HSCT) in 17 children and young adults with sMDS/sAML after childhood aplastic anemia. The median interval between the diagnosis of aplastic anemia and the development of sMDS/sAML was 2.9 years (range, 1.2 to 13.0 years). At a median age of 13.1 years (range, 4.4 to 26.7 years), patients underwent HSCT with bone marrow (n = 6) or peripheral blood stem cell (n = 11) grafts from HLA-matched sibling donors (n = 2), mismatched family donors (n = 2), or unrelated donors (n = 13). Monosomy 7 was detected in 13 patients. The preparative regimen consisted of busulfan, cyclophosphamide, and melphalan in 11 patients and other agents in 6 patients. All patients achieved neutrophil engraftment. The cumulative incidence of grade II-IV acute graft-versus-host disease (GVHD) was 47%, and that of chronic GVHD was 70%. Relapse occurred in 1 patient. The major cause of death was transplant-related complication (n = 9). Overall survival and event-free survival at 5 years after HSCT were both 41%. In summary, this study indicates that HSCT is a curative therapy for some patients with sMDS/sAML after aplastic anemia. Future efforts should focus on reducing transplantation-related mortality. PMID:24316460

  3. Outcomes of Allogeneic Hematopoietic Cell Transplantation in Children and Young Adults with Chronic Myeloid Leukemia: A CIBMTR Cohort Analysis.

    PubMed

    Chaudhury, Sonali; Sparapani, Rodney; Hu, Zhen-Huan; Nishihori, Taiga; Abdel-Azim, Hisham; Malone, Adriana; Olsson, Richard; Hamadani, Mehdi; Daly, Andrew; Bacher, Ulrike; Wirk, Baldeep M; Kamble, Rammurti T; Gale, Robert P; Wood, William A; Hale, Gregory; Wiernik, Peter H; Hashmi, Shahrukh K; Marks, David; Ustun, Celalettin; Munker, Reinhold; Savani, Bipin N; Alyea, Edwin; Popat, Uday; Sobecks, Ronald; Kalaycio, Matt; Maziarz, Richard; Hijiya, Nobuko; Saber, Wael

    2016-06-01

    Chronic myeloid leukemia (CML) in children and young adults is uncommon. Young patients have long life expectancies and low morbidity with hematopoietic cell transplantation (HCT). Prolonged tyrosine kinase inhibitor (TKI) use may cause significant morbidity. In addition, indication for HCT in patients in the first chronic phase is not established. We hence retrospectively evaluated outcomes in 449 CML patients with early disease receiving myeloablative HCT reported to the CIBMTR. We analyzed various factors affecting outcome, specifically the effect of age and pre-HCT TKI in pediatric patients (age < 18 years, n = 177) and young adults (age 18 to 29 years, n = 272) with the goal of identifying prognostic factors. Post-HCT probability rates of 5-year overall survival (OS) and leukemia-free survival (LFS) were 75% and 59%, respectively. Rates of OS and LFS were 76% and 57% in <18-year and 74% and 60% in 18- to 29-year group, respectively, by univariate analysis (P = .1 and = .6). Five-year rates of OS for HLA matched sibling donor (MSD) and bone marrow (BM) stem cell source were 83% and 80%, respectively. In multivariate analysis there was no effect of age (<18 versus 18 to 29) or pre-HCT TKI therapy on OS, LFS, transplant related mortality, or relapse. Favorable factors for OS were MSD (P < .001) and recent HCT (2003 to 2010; P = .04). LFS was superior with MSD (P < .001), BM as graft source (P = .001), and performance scores > 90 (P = .03) compared with unrelated or mismatched peripheral blood stem cells donors and recipients with lower performance scores. Older age was associated with increased incidence of chronic graft-versus-host disease (P = .0002). In the current era, HCT outcomes are similar in young patients and children with early CML, and best outcomes are achieved with BM grafts and MSD. PMID:26964698

  4. What do we know about the participation of hematopoietic stem cells in hematopoiesis?

    PubMed Central

    Drize, Nina; Petinati, Nataliya

    2015-01-01

    The demonstrated presence in adult tissues of cells with sustained tissue regenerative potential has given rise to the concept of tissue stem cells. Assays to detect and measure such cells indicate that they have enormous proliferative potential and usually an ability to produce all or many of the mature cell types that define the specialized functionality of the tissue. In the hematopoietic system, one or only a few cells can restore lifelong hematopoiesis of the whole organism. To what extent is the maintenance of hematopoietic stem cells required during normal hematopoiesis? How does the constant maintenance of hematopoiesis occur and what is the behavior of the hematopoietic stem cells in the normal organism? How many of the hematopoietic stem cells are created during the development of the organism? How many hematopoietic stem cells are generating more mature progeny at any given moment? What happens to the population of hematopoietic stem cells in aging? This review will attempt to describe the results of recent research which contradict some of the ideas established over the past 30 years about how hematopoiesis is regulated. PMID:27081472

  5. Tissue typing for hematopoietic cell transplantation: newer techniques and newer antigens for which cross-matching is helpful.

    PubMed

    Iannone, Robert; Davies, Stella M

    2005-12-01

    Refinements in human leukocyte antigen (HLA) typing techniques for hematopoietic cell transplantation (HCT) have permitted a more precise assessment of donor-recipient histocompatibility, which has impacted transplantation outcomes. More recently, differences in transplant outcomes associated with killer immunoglobulin-like receptor compatibility have emphasized the potential importance of natural killer (NK) cell typing in HCT. This article reviews the current state of the art for HCT donor selection based on both HLA and NK cell typing. PMID:16305621

  6. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration

    PubMed Central

    Liu, Shan; Zhou, Jingli; Zhang, Xuan; Liu, Yang; Chen, Jin; Hu, Bo; Song, Jinlin; Zhang, Yuanyuan

    2016-01-01

    Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications. PMID:27338364

  7. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration.

    PubMed

    Liu, Shan; Zhou, Jingli; Zhang, Xuan; Liu, Yang; Chen, Jin; Hu, Bo; Song, Jinlin; Zhang, Yuanyuan

    2016-01-01

    Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications. PMID:27338364

  8. Engraftment and Lineage Potential of Adult Hematopoietic Stem and Progenitor Cells Is Compromised Following Short-Term Culture in the Presence of an Aryl Hydrocarbon Receptor Antagonist

    PubMed Central

    Gu, Angel; Torres-Coronado, Monica; Tran, Chy-Anh; Vu, Hieu; Epps, Elizabeth W.; Chung, Janet; Gonzalez, Nancy; Blanchard, Suzette

    2014-01-01

    Abstract Hematopoietic stem cell gene therapy for HIV/AIDS is a promising alternative to lifelong antiretroviral therapy. One of the limitations of this approach is the number and quality of stem cells available for transplant following in vitro manipulations associated with stem cell isolation and genetic modification. The development of methods to increase the number of autologous, gene-modified stem cells available for transplantation would overcome this barrier. Hematopoietic stem and progenitor cells (HSPC) from adult growth factor-mobilized peripheral blood were cultured in the presence of an aryl hydrocarbon receptor antagonist (AhRA) previously shown to expand HSPC from umbilical cord blood. Qualitative and quantitative assessment of the hematopoietic potential of minimally cultured (MC-HSPC) or expanded HSPC (Exp-HSPC) was performed using an immunodeficient mouse model of transplantation. Our results demonstrate robust, multilineage engraftment of both MC-HSPC and Exp-HSPC although estimates of expansion based on stem cell phenotype were not supported by a corresponding increase in in vivo engrafting units. Bone marrow of animals transplanted with either MC-HSPC or Exp-HSPC contained secondary engrafting cells verifying the presence of primitive stem cells in both populations. However, the frequency of in vivo engrafting units among the more primitive CD34+/CD90+ HSPC population was significantly lower in Exp-HSPC compared with MC-HSPC. Exp-HSPC also produced fewer lymphoid progeny and more myeloid progeny than MC-HSPC. These results reveal that in vitro culture of adult HSPC in AhRA maintains but does not increase the number of in vivo engrafting cells and that HSPC expanded in vitro contain defects in lymphopoiesis as assessed in this model system. Further investigation is required before implementation of this approach in the clinical setting. PMID:25003230

  9. Multipotent progenitor cells isolated from adult human pancreatic tissue.

    PubMed

    Todorov, I; Nair, I; Ferreri, K; Rawson, J; Kuroda, A; Pascual, M; Omori, K; Valiente, L; Orr, C; Al-Abdullah, I; Riggs, A; Kandeel, F; Mullen, Y

    2005-10-01

    The supply of islet cells is a limiting factor for the widespread application of islet transplantation of type-1 diabetes. Islets constitute 1% to 2% of pancreatic tissue, leaving approximately 98% as discard after islet isolation and purification. In this report we present our data on the isolation of multipotent progenitor cells from discarded adult human pancreatic tissue. The collected cells from discarded nonislet fractions, after enzymatic digestion and gradient purification of islets, were dissociated for suspension culture in a serum-free medium. The cell clusters grown to a size of 100 to 150 mum contained cells staining for stage-specific embryonic antigens, but not insulin or C-peptide. To direct cell differentiation toward islets, clusters were recultured in a pancreatic differentiation medium. Insulin and C-peptide-positive cells by immunocytochemistry appeared within a week, reaching over 10% of the cell population. Glucagon and somatostatin-positive cells were also detected. The cell clusters were found to secrete insulin in response to glucose stimulation. Cells from the same clusters also had the capacity for differentiation into neural cells, as documented by staining for neural and glial cell markers when cultured as monolayers in media containing neurotrophic factors. These data suggest that multipotent pancreatic progenitor cells exist within the human pancreatic tissue that is typically discarded during islet isolation procedures. These adult progenitor cells can be successfully differentiated into insulin-producing cells, and thus they have the potential for treatment of type-1 diabetes mellitus. PMID:16298614

  10. Single-Stranded DNA-Binding Transcriptional Regulator FUBP1 Is Essential for Fetal and Adult Hematopoietic Stem Cell Self-Renewal.

    PubMed

    Rabenhorst, Uta; Thalheimer, Frederic B; Gerlach, Katharina; Kijonka, Marek; Böhm, Stefanie; Krause, Daniela S; Vauti, Franz; Arnold, Hans-Henning; Schroeder, Timm; Schnütgen, Frank; von Melchner, Harald; Rieger, Michael A; Zörnig, Martin

    2015-06-30

    The ability of hematopoietic stem cells (HSCs) to self-renew is a prerequisite for the establishment of definitive hematopoiesis and life-long blood regeneration. Here, we report the single-stranded DNA-binding transcriptional regulator far upstream element (FUSE)-binding protein 1 (FUBP1) as an essential factor of HSC self-renewal. Functional inactivation of FUBP1 in two different mouse models resulted in embryonic lethal anemia at around E15.5 caused by severely diminished HSCs. Fetal and adult HSCs lacking FUBP1 revealed an HSC-intrinsic defect in their maintenance, expansion, and long-term blood reconstitution, but could differentiate into all hematopoietic lineages. FUBP1-deficient adult HSCs exhibit significant transcriptional changes, including upregulation of the cell-cycle inhibitor p21 and the pro-apoptotic Noxa molecule. These changes caused an increase in generation time and death of HSCs as determined by video-microscopy-based tracking. Our data establish FUBP1 and its recognition of single-stranded genomic DNA as an important element in the transcriptional regulation of HSC self-renewal. PMID:26095368

  11. Switching roles: the functional plasticity of adult tissue stem cells.

    PubMed

    Wabik, Agnieszka; Jones, Philip H

    2015-05-01

    Adult organisms have to adapt to survive, and the same is true for their tissues. Rates and types of cell production must be rapidly and reversibly adjusted to meet tissue demands in response to both local and systemic challenges. Recent work reveals how stem cell (SC) populations meet these requirements by switching between functional states tuned to homoeostasis or regeneration. This plasticity extends to differentiating cells, which are capable of reverting to SCs after injury. The concept of the niche, the micro-environment that sustains and regulates stem cells, is broadening, with a new appreciation of the role of physical factors and hormonal signals. Here, we review different functions of SCs, the cellular mechanisms that underlie them and the signals that bias the fate of SCs as they switch between roles. PMID:25812989

  12. Switching roles: the functional plasticity of adult tissue stem cells

    PubMed Central

    Wabik, Agnieszka; Jones, Philip H

    2015-01-01

    Adult organisms have to adapt to survive, and the same is true for their tissues. Rates and types of cell production must be rapidly and reversibly adjusted to meet tissue demands in response to both local and systemic challenges. Recent work reveals how stem cell (SC) populations meet these requirements by switching between functional states tuned to homoeostasis or regeneration. This plasticity extends to differentiating cells, which are capable of reverting to SCs after injury. The concept of the niche, the micro-environment that sustains and regulates stem cells, is broadening, with a new appreciation of the role of physical factors and hormonal signals. Here, we review different functions of SCs, the cellular mechanisms that underlie them and the signals that bias the fate of SCs as they switch between roles. PMID:25812989

  13. Evaluation of the Procleix Ultrio Elite Assay and the Panther-System for Individual NAT Screening of Blood, Hematopoietic Stem Cell, Tissue and Organ Donors

    PubMed Central

    Heim, Albert

    2016-01-01

    Summary Background The performance of the multiplex Procleix Ultrio Elite assay as individual donor nucleic acid test (ID-NAT) for the detection of HIV-1, HIV-2, HCV, and HBV was evaluated in a retrospective, single center study. Methods ID-NAT results of 21,181 blood donors, 984 tissue donors, 293 hematopoietic stem cell donors and 4 organ donors were reviewed in synopsis with results of serological screening and additional discriminatory and repetitive NAT in case of positive donors. Results Specificity of the initial Procleix Ultrio Elite assay was 99.98% and after discriminatory testing 100.00%. Initially invalid results were observed in 75 of 21,181 blood donors (0.35%) but 16 of 984 tissue donors (1.62%, p < 0.001) which included non-heart-beating (‘cadaveric’) donors. All these had valid negative ID-NAT results after repeated testing or testing of 1:5 diluted specimens in case of tissue donors. Occult hepatitis B (defined here as HBV DNAemia without HBsAg detection) was demonstrated by ID-NAT in two anti-HBc-positive tissue donors and suspected in two other tissue donors, where a definite diagnosis was not achieved due to the insufficient sample volumes available. Conclusion The Procleix Ultrio Elite assay proved to be specific, robust and rapid. Therefore, routine ID-NAT may also be feasible for organ and granulocyte donors.

  14. Adult stem cell plasticity: will engineered tissues be rejected?

    PubMed Central

    Fang, Te-Chao; Alison, Malcolm R; Wright, Nicholas A; Poulsom, Richard

    2004-01-01

    The dogma that adult tissue-specific stem cells remain committed to supporting only their own tissue has been challenged; a new hypothesis, that adult stem cells demonstrate plasticity in their repertoires, is being tested. This is important because it seems possible that haematopoietic stem cells, for example, could be exploited to generate and perhaps deliver cell-based therapies deep within existing nonhaematopoietic organs. Much of the evidence for plasticity derives from histological studies of tissues from patients or animals that have received grafts of cells or whole organs, from a donor bearing (or lacking) a definitive marker. Detection in the recipient of appropriately differentiated cells bearing the donor marker is indicative of a switch in phenotype of a stem cell or a member of a transit amplifying population or of a differentiated cell. In this review, we discuss evidence for these changes occurring but do not consider the molecular basis of cell commitment. In general, the extent of engraftment is low but may be increased if tissues are damaged. In model systems of liver regeneration, the repeated application of a selection pressure increases levels of engraftment considerably; how this occurs is unclear. Cell fusion plays a part in regeneration and remodelling of the liver, skeletal muscle and even regions of the brain. Genetic disease may be amenable to some forms of cell therapy, yet immune rejection will present challenges. Graft-vs.-host disease will continue to present problems, although this may be avoided if the cells were derived from the recipient or they were tolerized. Despite great expectations for cellular therapies, there are indications that attempts to replace missing proteins could be confounded simply by the development of specific immunity that rejects the new phenotype. PMID:15255965

  15. Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts.

    PubMed

    Lama, Vibha N; Smith, Lisa; Badri, Linda; Flint, Andrew; Andrei, Adin-Cristian; Murray, Susan; Wang, Zhuo; Liao, Hui; Toews, Galen B; Krebsbach, Paul H; Peters-Golden, Marc; Pinsky, David J; Martinez, Fernando J; Thannickal, Victor J

    2007-04-01

    The origin and turnover of connective tissue cells in adult human organs, including the lung, are not well understood. Here, studies of cells derived from human lung allografts demonstrate the presence of a multipotent mesenchymal cell population, which is locally resident in the human adult lung and has extended life span in vivo. Examination of plastic-adherent cell populations in bronchoalveolar lavage samples obtained from 76 human lung transplant recipients revealed clonal proliferation of fibroblast-like cells in 62% (106 of 172) of samples. Immunophenotyping of these isolated cells demonstrated expression of vimentin and prolyl-4-hydroxylase, indicating a mesenchymal phenotype. Multiparametric flow cytometric analyses revealed expression of cell-surface proteins, CD73, CD90, and CD105, commonly found on mesenchymal stem cells (MSCs). Hematopoietic lineage markers CD14, CD34, and CD45 were absent. Multipotency of these cells was demonstrated by their capacity to differentiate into adipocytes, chondrocytes, and osteocytes. Cytogenetic analysis of cells from 7 sex-mismatched lung transplant recipients harvested up to 11 years after transplant revealed that 97.2% +/- 2.1% expressed the sex genotype of the donor. The presence of MSCs of donor sex identity in lung allografts even years after transplantation provides what we believe to be the first evidence for connective tissue cell progenitors that reside locally within a postnatal, nonhematopoietic organ. PMID:17347686

  16. Adult Head and Neck Soft Tissue Sarcomas: Treatment and Outcome

    PubMed Central

    Singh, Rabindra P.; Grimer, Robert J.; Bhujel, Nabina; Carter, Simon R.; Tillman, Roger M.; Abudu, Adesegun

    2008-01-01

    We have retrospectively analysed the experience of a musculoskeletal oncological unit in the management of adult head and neck soft tissue sarcomas from 1990 to 2005. Thirty-six patients were seen, of whom 24 were treated at this unit, the remainder only receiving advice. The median age of the patients was 46 years. Most of the sarcomas were deep and of high or intermediate grade with a median size of 5.5 cm. Eleven different histological subtypes were identified. Wide excision was possible only in 21% of the cases. 42% of the patients developed local recurrence and 42% developed metastatic disease usually in the lungs. Overall survival was 49% at 5 years. Tumour size was the most important prognostic factor. Adult head and neck soft tissue sarcomas have a high mortality rate with a high risk of local recurrence and metastatic disease. The rarity of the disease would suggest that centralisation of care could lead to increased expertise and better outcomes. PMID:18382622

  17. Hematopoietic Tissue Factor–Protease-Activated Receptor 2 Signaling Promotes Hepatic Inflammation and Contributes to Pathways of Gluconeogenesis and Steatosis in Obese Mice

    PubMed Central

    Wang, Jing; Chakrabarty, Sagarika; Bui, Quyen; Ruf, Wolfram; Samad, Fahumiya

    2016-01-01

    Failure to inhibit hepatic gluconeogenesis is a major mechanism contributing to fasting hyperglycemia in type 2 diabetes and, along with steatosis, is the hallmark of hepatic insulin resistance. Obesity is associated with chronic inflammation in multiple tissues, and hepatic inflammation is mechanistically linked to both steatosis and hepatic insulin resistance. Here, we delineate a role for coagulation signaling via tissue factor (TF) and proteinase-activated receptor 2 (PAR2) in obesity-mediated hepatic inflammation, steatosis, and gluconeogenesis. In diet-induced obese mice, TF tail signaling independent of PAR2 drives CD11b+CD11c+ hepatic macrophage recruitment, and TF–PAR2 signaling contributes to the accumulation of hepatic CD8+ T cells. Transcripts of key pathways of gluconeogenesis, lipogenesis, and inflammatory cytokines were reduced in high-fat diet–fed mice that lack the cytoplasmic domain of TF (F3) (TFΔCT) or that are deficient in PAR2 (F2rl1), as well as by pharmacological inhibition of TF–PAR2 signaling in diet-induced obese mice. These gluconeogenic, lipogenic, and inflammatory pathway transcripts were similarly reduced in response to genetic ablation or pharmacological inhibition of TF–PAR2 signaling in hematopoietic cells and were mechanistically associated with activation of AMP-activated protein kinase (AMPK). These findings indicate that hematopoietic TF–PAR2 signaling plays a pivotal role in the hepatic inflammatory responses, steatosis, and hepatic insulin resistance that lead to systemic insulin resistance and type 2 diabetes in obesity. PMID:25476527

  18. In Vivo 4-Dimensional Tracking of Hematopoietic Stem and Progenitor Cells in Adult Mouse Calvarial Bone Marrow

    PubMed Central

    Scott, Mark K.; Akinduro, Olufolake; Lo Celso, Cristina

    2014-01-01

    Through a delicate balance between quiescence and proliferation, self renewal and production of differentiated progeny, hematopoietic stem cells (HSCs) maintain the turnover of all mature blood cell lineages. The coordination of the complex signals leading to specific HSC fates relies upon the interaction between HSCs and the intricate bone marrow microenvironment, which is still poorly understood[1-2]. We describe how by combining a newly developed specimen holder for stable animal positioning with multi-step confocal and two-photon in vivo imaging techniques, it is possible to obtain high-resolution 3D stacks containing HSPCs and their surrounding niches and to monitor them over time through multi-point time-lapse imaging. High definition imaging allows detecting ex vivo labeled hematopoietic stem and progenitor cells (HSPCs) residing within the bone marrow. Moreover, multi-point time-lapse 3D imaging, obtained with faster acquisition settings, provides accurate information about HSPC movement and the reciprocal interactions between HSPCs and stroma cells. Tracking of HSPCs in relation to GFP positive osteoblastic cells is shown as an exemplary application of this method. This technique can be utilized to track any appropriately labeled hematopoietic or stromal cell of interest within the mouse calvarium bone marrow space. PMID:25225854

  19. Hematopoietic bone marrow cells participate in endothelial, but not epithelial or mesenchymal cell renewal in adult rats

    PubMed Central

    Odörfer, Kathrin I; Egerbacher, Monika; Unger, Nina J; Weber, Karin; Jamnig, Angelika; Lepperdinger, Günter; Kleiter, Miriam; Sandgren, Eric P; Erben, Reinhold G

    2011-01-01

    The extent to which bone marrow (BM) contributes to physiological cell renewal is still controversial. Using the marker human placental alkaline phosphatase (ALPP) which can readily be detected in paraffin and plastic sections by histochemistry or immunohistochemistry, and in ultrathin sections by electron microscopy after pre-embedding staining, we examined the role of endogenous BM in physiological cell renewal by analysing tissues from lethally irradiated wild-type inbred Fischer 344 (F344) rats transplanted (BMT) with unfractionated BM from ALPP-transgenic F344 rats ubiquitously expressing the marker. Histochemical, immunohistochemical and immunoelectron microscopic analysis showed that the proportion of ALPP+ capillary endothelial cells (EC) profoundly increased from 1 until 6 months after BMT in all organs except brain and adrenal medulla. In contrast, pericytes and EC in large blood vessels were ALPP–. Epithelial cells in kidney, liver, pancreas, intestine and brain were recipient-derived at all time-points. Similarly, osteoblasts, chondrocytes, striated muscle and smooth muscle cells were exclusively of recipient origin. The lack of mesenchymal BM-derived cells in peripheral tissues prompted us to examine whether BMT resulted in engraftment of mesenchymal precursors. Four weeks after BMT, all haematopoietic BM cells were of donor origin by flow cytometric analysis, whereas isolation of BM mesenchymal stem cells (MSC) failed to show engraftment of donor MSC. In conclusion, our data show that BM is an important source of physiological renewal of EC in adult rats, but raise doubt whether reconstituted irradiated rats are an apt model for BM-derived regeneration of mesenchymal cells in peripheral tissues. PMID:21091631

  20. Adult stem cells in bone and cartilage tissue engineering.

    PubMed

    Salgado, António J; Oliveira, João T; Pedro, Adriano J; Reis, Rui L

    2006-09-01

    The progressive increase in life expectancy within the last century has led to the appearance of novel health related problems, some of those within the musculoskeletal field. Among the latter, one can find diseases such as osteoporosis, rheumatoid arthritis and bone cancer, just to mention some of the most relevant. Other related problems are those that arise from serious injuries, often leading to non-recoverable critical size defects. The therapies currently used to treat this type of diseases/injuries are based on the use of pharmaceutical agents, auto/allotransplant and synthetic materials. However, such solutions present a number of inconveniences and therefore, there is a constant search for novel therapeutic solutions. The appearance of a novel field of science called Tissue engineering brought some hope for the solution of the above mentioned problems. In this field, it is believed that by combining a 3D porous template--scaffold--with an adequate cell population, with osteo or chondrogenic potential, it will be possible to develop bone and cartilage tissue equivalents that when implanted in vivo, could lead to the total regeneration of the affected area. This ideal cell population should have a series of properties, namely a high osteo and chondrogenic potential and at the same time, should be easily expandable and maintained in cultures for long periods of time. Due to its natural and intrinsic properties, stem cells are one of the best available cell types. However, after this sentence, the readers may ask, "Which Stem Cells?". During the last 10/15 years, the scientific community witnessed and reported the appearance of several sources of stem cells with both osteo and chondrogenic potential. Therefore, the present review intends to make an overview of data reported on different sources of adult stem cells (bone marrow, periosteum, adipose tissue, skeletal muscle and umbilical cord) for bone and cartilage regenerative medicine, namely those focusing on

  1. DNA Damage: A Sensible Mediator of the Differentiation Decision in Hematopoietic Stem Cells and in Leukemia

    PubMed Central

    Weiss, Cary N.; Ito, Keisuke

    2015-01-01

    In the adult, the source of functionally diverse, mature blood cells are hematopoietic stem cells, a rare population of quiescent cells that reside in the bone marrow niche. Like stem cells in other tissues, hematopoietic stem cells are defined by their ability to self-renew, in order to maintain the stem cell population for the lifetime of the organism, and to differentiate, in order to give rise to the multiple lineages of the hematopoietic system. In recent years, increasing evidence has suggested a role for the accumulation of reactive oxygen species and DNA damage in the decision for hematopoietic stem cells to exit quiescence and to differentiate. In this review, we will examine recent work supporting the idea that detection of cell stressors, such as oxidative and genetic damage, is an important mediator of cell fate decisions in hematopoietic stem cells. We will explore the benefits of such a system in avoiding the development and progression of malignancies, and in avoiding tissue exhaustion and failure. Additionally, we will discuss new work that examines the accumulation of DNA damage and replication stress in aging hematopoietic stem cells and causes us to rethink ideas of genoprotection in the bone marrow niche. PMID:25789504

  2. The biology of hematopoietic stem cells.

    PubMed

    Szilvassy, Stephen J

    2003-01-01

    Rarely has so much interest from the lay public, government, biotechnology industry, and special interest groups been focused on the biology and clinical applications of a single type of human cell as is today on stem cells, the founder cells that sustain many, if not all, tissues and organs in the body. Granting organizations have increasingly targeted stem cells as high priority for funding, and it appears clear that the evolving field of tissue engineering and regenerative medicine will require as its underpinning a thorough understanding of the molecular regulation of stem cell proliferation, differentiation, self-renewal, and aging. Despite evidence suggesting that embryonic stem (ES) cells might represent a more potent regenerative reservoir than stem cells collected from adult tissues, ethical considerations have redirected attention upon primitive cells residing in the bone marrow, blood, brain, liver, muscle, and skin, from where they can be harvested with relative sociological impunity. Among these, it is arguably the stem and progenitor cells of the mammalian hematopoietic system that we know most about today, and their intense study in rodents and humans over the past 50 years has culminated in the identification of phenotypic and molecular genetic markers of lineage commitment and the development of functional assays that facilitate their quantitation and prospective isolation. This review focuses exclusively on the biology of hematopoietic stem cells (HSCs) and their immediate progeny. Nevertheless, many of the concepts established from their study can be considered fundamental tenets of an evolving stem cell paradigm applicable to many regenerating cellular systems. PMID:14734085

  3. Dramatic Improvement in the Multifocal Positron Emission Tomography Findings of a Young Adult with Chronic Granulomatous Disease Following Allogeneic Hematopoietic Stem Cell Transplantation.

    PubMed

    Shigemura, Tomonari; Nakazawa, Yozo; Hirabayashi, Koichi; Kobayashi, Norimoto; Sakashita, Kazuo; Agematsu, Kazunaga; Koike, Kenichi

    2015-01-01

    Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by defects of nicotinamide adenine dinucleotide phosphate oxidase. Catalase-positive bacteria and fungi are phagocytosed, but persist within phagocytes, resulting in granulomatous inflammation. Although allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for CGD, HSCT sometimes leads to fatal outcomes related to the exacerbation of persistent infectious or post-infectious inflammatory diseases, particularly in adolescent and young adult patients with a history of recurrent infections and/or multiple granulomas in organs. Here, we present the case of a young adult with X-linked CGD in whom multiple lesions were found in lungs and lymph nodes on both computed tomography and positron emission tomography (PET) scans before allogeneic HSCT, but all the lesions disappeared only on PET scan 5 months after HSCT. Monitoring the activity of multiple pre-existing lesions with PET scan may be beneficial to adolescent and young adult CGD-patients undergoing allogeneic HSCT. PMID:25367170

  4. Outcome of Patients with Immunoglobulin Light-Chain Amyloidosis with Lung, Liver, Gastrointestinal, Neurologic, and Soft Tissue Involvement after Autologous Hematopoietic Stem Cell Transplantation.

    PubMed

    Afrough, Aimaz; Saliba, Rima M; Hamdi, Amir; El Fakih, Riad; Varma, Ankur; Dinh, Yvonne T; Rondon, Gabriela; Cornelison, A Megan; Shah, Nina D; Bashir, Qaiser; Shah, Jatin J; Hosing, Chitra; Popat, Uday; Orlowski, Robert Z; Champlin, Richard E; Parmar, Simrit; Qazilbash, Muzaffar H

    2015-08-01

    There is limited information on the outcome when organs other than heart or kidneys are involved by immunoglobulin light-chain amyloidosis (AL). We report the outcome of 53 patients with AL with gastrointestinal (GI), peripheral nerve (PN), liver, lung, or soft-tissue involvement, who underwent high-dose chemotherapy and autologous hematopoietic stem cell transplantation (auto-HCT) at our institution between 1997 and 2013. The median age at auto-HCT was 56 years (range, 35 to 74). One, 2, 3, or 4 organs were involved in 43%, 22%, 28%, and 4% of patients, respectively. Concurrent cardiac, renal, or both were involved in 24 (45%) patients. Forty-six patients received induction therapy before auto-HCT. The 100-day and 1-year treatment-related mortality (TRM) were 3.8% (n = 2) and 7.5% (n = 4), respectively. Forty-one (80%) patients achieved a hematologic response. Organ response at 1 year after auto-HCT was seen in 23 (57%) of the 40 evaluable patients. With a median follow-up of 24 months, the median progression-free survival and overall survival (OS) were 36 and 73 months, respectively. Auto-HCT was associated with a low TRM, durable organ responses, and a median OS of > 6 years in selected patients with AL and GI, PN, liver, lung, or soft-tissue involvement. PMID:25842049

  5. The effects of proliferation and DNA damage on hematopoietic stem cell function determine aging.

    PubMed

    Khurana, Satish

    2016-07-01

    In most of the mammalian tissues, homeostasis as well as injury repair depend upon a small number of resident adult stem cells. The decline in tissue/organ function in aged organisms has been directly linked with poorly functioning stem cells. Altered function of hematopoietic stem cells (HSCs) is at the center of an aging hematopoietic system, a tissue with high cellular turnover. Poorly engrafting, myeloid-biased HSCs with higher levels of DNA damage accumulation are the hallmark features of an aged hematopoietic system. These cells show a higher proliferation rate than their younger counterparts. It was proposed that quiescence of these cells over long period of time leads to accumulation of DNA damage, eventually resulting in poor function/pathological conditions in hematopoietic system. However, various mouse models with premature aging phenotype also show highly proliferative HSCs. This review examines the evidence that links proliferation of HSCs with aging, which leads to functional changes in the hematopoietic system. Developmental Dynamics 245:739-750, 2016. © 2016 Wiley Periodicals, Inc. PMID:26813236

  6. Estimating GFR in Adult Patients with Hematopoietic Cell Transplant: Comparison of Estimating Equations with an Iohexol Reference Standard

    PubMed Central

    Pao, Emily; Schoch, Gary; Gooley, Ted; Schwartz, George J.

    2015-01-01

    Background and objectives Formal evaluation of kidney function before and after hematopoietic cell transplant is important to determine conditioning regimens, type of transplant, and medication dosing. Serum creatinine and estimating equations may not accurately assess kidney function. Design, study, participants, & measurements Existing estimating equations for GFR were compared with an iohexol measure of GFR in a prospective cohort study of 50 patients undergoing hematopoietic cell transplant and subsequent care at the Fred Hutchinson Cancer Research Institute from 2009 to 2013. Patients underwent iohexol GFR, serum creatinine, and cystatin C determination at baseline and day 100 posthematopoietic cell transplant. Iohexol GFR measurements were compared with the CKD Epidemiology Collaboration, Inker CKD Epidemiology Collaboration cystatin C with and without serum creatinine, Modification of Diet in Renal Disease, and Cockcroft–Gault estimating equations using Bland–Altman analysis and McNemar’s test. The iohexol measurements were also compared with blood samples collected simultaneously on filter paper. Results Mean differences between iohexol GFR and eGFR on the basis of Bland–Altman analyses ranged from −20.6 to +15.4 ml/min per 1.73 m2 at baseline and −12.7 to +12.9 ml/min per 1.73 m2 at day 100. The CKD Epidemiology Collaboration and Modification of Diet in Renal Disease estimating equations classified 64% of patients with a GFR<90 at baseline compared with 38% by iohexol GFR (P=0.003 and P<0.01, respectively). No statistically significant differences were seen at day 100. The filter paper GFR had a mean difference of 0 at baseline and 5.9 at day 100. Additionally, 21%–37% and 57%–89% of eGFRs were within 10% and 30%, respectively, of the iohexol GFR at baseline, and 16%–34% and 72%–84% were within 10% and 30%, respectively, of the iohexol GFR at day 100; 98% of the filter paper estimates at baseline were within 30%, and 46% were within 10

  7. Alkaline diets favor lean tissue mass in older adults1234

    PubMed Central

    Dawson-Hughes, Bess; Harris, Susan S; Ceglia, Lisa

    2008-01-01

    Background Maintaining muscle mass while aging is important to prevent falls and fractures. Metabolic acidosis promotes muscle wasting, and the net acid load from diets that are rich in net acid–producing protein and cereal grains relative to their content of net alkali–producing fruit and vegetables may therefore contribute to a reduction in lean tissue mass in older adults. Objective We aimed to determine whether there was an association of 24-h urinary potassium and an index of fruit and vegetable content of the diet with the percentage lean body mass (%LBM) or change in %LBM in older subjects. Design Subjects were 384 men and women ≥65 y old who participated in a 3-y trial comparing calcium and vitamin D with placebo. Potassium was measured in 24-h urine collections at baseline. The %LBM, defined as total body nonfat, nonbone tissue weight ÷ weight × 100, was measured by using dual-energy X-ray absorptiometry at baseline and at 3 y. Physical activity, height, and weight were assessed at baseline and at 3 y. Results At baseline, the mean urinary potassium excretion was 67.0 ± 21.1 mmol/d. Urinary potassium (mmol/d) was significantly positively associated with %LBM at baseline (β = 0.033, P = 0.006; adjusted for sex, weight, and nitrogen excretion) but not with 3-y change in %LBM. Over the 3-y study, %LBM increased by 2.6 ± 3.6%. Conclusion Higher intake of foods rich in potassium, such as fruit and vegetables, may favor the preservation of muscle mass in older men and women. PMID:18326605

  8. Adult human adipose tissue contains several types of multipotent cells.

    PubMed

    Tallone, Tiziano; Realini, Claudio; Böhmler, Andreas; Kornfeld, Christopher; Vassalli, Giuseppe; Moccetti, Tiziano; Bardelli, Silvana; Soldati, Gianni

    2011-04-01

    Multipotent mesenchymal stromal cells (MSCs) are a type of adult stem cells that can be easily isolated from various tissues and expanded in vitro. Many reports on their pluripotency and possible clinical applications have raised hopes and interest in MSCs. In an attempt to unify the terminology and the criteria to label a cell as MSC, in 2006 the International Society for Cellular Therapy (ISCT) proposed a standard set of rules to define the identity of these cells. However, MSCs are still extracted from different tissues, by diverse isolation protocols, are cultured and expanded in different media and conditions. All these variables may have profound effects on the selection of cell types and the composition of heterogeneous subpopulations, on the selective expansion of specific cell populations with totally different potentials and ergo, on the long-term fate of the cells upon in vitro culture. Therefore, specific molecular and cellular markers that identify MSCs subsets as well as standardization of expansion protocols for these cells are urgently needed. Here, we briefly discuss new useful markers and recent data supporting the rapidly emerging concept that many different types of progenitor cells are found in close association with blood vessels. This knowledge may promote the necessary technical improvements required to reduce variability and promote higher efficacy and safety when isolating and expanding these cells for therapeutic use. In the light of the discussed data, particularly the identification of new markers, and advances in the understanding of fundamental MSC biology, we also suggest a revision of the 2006 ISCT criteria. PMID:21327755

  9. Modeling Sitagliptin Effect on Dipeptidyl Peptidase 4 (DPP4) Activity in Adults with Hematological Malignancies After Umbilical Cord Blood (UCB) Hematopoietic Cell Transplant (HCT)

    PubMed Central

    de Mendizábal, Nieves Vélez; Strother, Robert M.; Farag, Sherif S.; Broxmeyer, Hal E.; Messina-Graham, Steven; Chitnis, Shripad D.; Bies, Robert R.

    2014-01-01

    Background and Objectives Dipeptidyl peptidase-4 (DPP4) inhibition is a potential strategy to increase the engraftment rate of hematopoietic stem/progenitor cells. A recent clinical trial using sitagliptin, a DPP4 inhibitor approved for type 2 diabetes mellitus, has shown to be a promising approach in adults with hematological malignancies after umbilical cord blood (UCB) hematopoietic cell transplant (HCT). Based on data from this clinical trial, a semi-mechanistic model was developed to simultaneously describe DPP4 activity after multiple doses of sitagliptin in subjects with hematological malignancies after a single-unit UCB HCT. Methods The clinical study included 24 patients that received myeloablative conditioning followed by 4 oral sitagliptin 600mg with single-unit UCB HCT. Using a nonlinear mixed effects approach, a semi-mechanistic pharmacokinetic/pharmacodynamic model was developed to describe DPP4 activity from this trial data using NONMEM 7.2. The model was used to drive Monte-Carlo simulations to probe various dosage schedules and the attendant DPP4 response. Results The disposition of sitagliptin in plasma was best described by a 2-compartment model. The relationship between sitagliptin concentration and DPP4 activity was best described by an indirect response model with a negative feedback loop. Simulations showed that twice a day or three times a day dosage schedules were superior to once daily schedule for maximal DPP4 inhibition at the lowest sitagliptin exposure. Conclusion This study provides the first pharmacokinetic/pharmacodynamic model of sitagliptin in the context of HCT, and provides a valuable tool for exploration of optimal dosing regimens, critical for improving time to engraftment in patients after UCB HCT. PMID:24142388

  10. Stroma-Derived Connective Tissue Growth Factor Maintains Cell Cycle Progression and Repopulation Activity of Hematopoietic Stem Cells In Vitro

    PubMed Central

    Istvánffy, Rouzanna; Vilne, Baiba; Schreck, Christina; Ruf, Franziska; Pagel, Charlotta; Grziwok, Sandra; Henkel, Lynette; Prazeres da Costa, Olivia; Berndt, Johannes; Stümpflen, Volker; Götze, Katharina S.; Schiemann, Matthias; Peschel, Christian; Mewes, Hans-Werner; Oostendorp, Robert A.J.

    2015-01-01

    Summary Hematopoietic stem cells (HSCs) are preserved in co-cultures with UG26-1B6 stromal cells or their conditioned medium. We performed a genome-wide study of gene expression changes of UG26-1B6 stromal cells in contact with Lineage− SCA-1+ KIT+ (LSK) cells. This analysis identified connective tissue growth factor (CTGF) to be upregulated in response to LSK cells. We found that co-culture of HSCs on CTGF knockdown stroma (shCtgf) shows impaired engraftment and long-term quality. Further experiments demonstrated that CD34− CD48− CD150+ LSK (CD34− SLAM) cell numbers from shCtgf co-cultures increase in G0 and senescence and show delayed time to first cell division. To understand this observation, a CTGF signaling network model was assembled, which was experimentally validated. In co-culture experiments of CD34− SLAM cells with shCtgf stromal cells, we found that SMAD2/3-dependent signaling was activated, with increasing p27Kip1 expression and downregulating cyclin D1. Our data support the view that LSK cells modulate gene expression in the niche to maintain repopulating HSC activity. PMID:26527384

  11. Hematopoietic Cell–Restricted Deletion of CD36 Reduces High-Fat Diet–Induced Macrophage Infiltration and Improves Insulin Signaling in Adipose Tissue

    PubMed Central

    Nicholls, Hayley T.; Kowalski, Greg; Kennedy, David J.; Risis, Steve; Zaffino, Lee A.; Watson, Nadine; Kanellakis, Peter; Watt, Matthew J.; Bobik, Alex; Bonen, Arend; Febbraio, Maria; Lancaster, Graeme I.; Febbraio, Mark A.

    2011-01-01

    OBJECTIVE The fatty acid translocase and scavenger receptor CD36 is important in the recognition and uptake of lipids. Accordingly, we hypothesized that it plays a role in saturated fatty acid–induced macrophage lipid accumulation and proinflammatory activation. RESEARCH DESIGN AND METHODS In vitro, the effect of CD36 inhibition and deletion in lipid-induced macrophage inflammation was assessed using the putative CD36 inhibitor, sulfosuccinimidyl oleate (SSO), and bone marrow–derived macrophages from mice with (CD36KO) or without (wild-type) global deletion of CD36. To investigate whether deletion of macrophage CD36 would improve insulin sensitivity in vivo, wild-type mice were transplanted with bone marrow from CD36KO or wild-type mice and then fed a standard or high-fat diet (HFD) for 20 weeks. RESULTS SSO treatment markedly reduced saturated fatty acid–induced lipid accumulation and inflammation in RAW264.7 macrophages. Mice harboring CD36-specific deletion in hematopoietic-derived cells (HSC CD36KO) fed an HFD displayed improved insulin signaling and reduced macrophage infiltration in adipose tissue compared with wild-type mice, but this did not translate into protection against HFD-induced whole-body insulin resistance. Contrary to our hypothesis and our results using SSO in RAW264.7 macrophages, neither saturated fatty acid–induced lipid accumulation nor inflammation was reduced when comparing CD36KO with wild-type bone marrow–derived macrophages. CONCLUSIONS Although CD36 does not appear important in saturated fatty acid–induced macrophage lipid accumulation, our study uncovers a novel role for CD36 in the migration of proinflammatory phagocytes to adipose tissue in obesity, with a concomitant improvement in insulin action. PMID:21378177

  12. Infusion of autologous adipose tissue derived neuronal differentiated mesenchymal stem cells and hematopoietic stem cells in post-traumatic paraplegia offers a viable therapeutic approach

    PubMed Central

    Thakkar, Umang G.; Vanikar, Aruna V.; Trivedi, Hargovind L.; Shah, Veena R.; Dave, Shruti D.; Dixit, Satyajit B.; Tiwari, Bharat B.; Shah, Harda H.

    2016-01-01

    Background: Spinal cord injury (SCI) is not likely to recover by current therapeutic modalities. Stem cell (SC) therapy (SCT) has promising results in regenerative medicine. We present our experience of co-infusion of autologous adipose tissue derived mesenchymal SC differentiated neuronal cells (N-Ad-MSC) and hematopoietic SCs (HSCs) in a set of patients with posttraumatic paraplegia. Materials and Methods: Ten patients with posttraumatic paraplegia of mean age 3.42 years were volunteered for SCT. Their mean age was 28 years, and they had variable associated complications. They were subjected to adipose tissue resection for in vitro generation of N-Ad-MSC and bone marrow aspiration for generation of HSC. Generated SCs were infused into the cerebrospinal fluid (CSF) below injury site in all patients. Results: Total mean quantum of SC infused was 4.04 ml with a mean nucleated cell count of 4.5 × 104/μL and mean CD34+ of 0.35%, CD45−/90+ and CD45−/73+ of 41.4%, and 10.04%, respectively. All of them expressed transcription factors beta-3 tubulin and glial fibrillary acid protein. No untoward effect of SCT was noted. Variable and sustained improvement in Hauser's index and American Spinal Injury Association score was noted in all patients over a mean follow-up of 2.95 years. Mean injury duration was 3.42 years against the period of approximately 1-year required for natural recovery, suggesting a positive role of SCs. Conclusion: Co-infusion of N-Ad-MSC and HSC in CSF is safe and viable therapeutic approach for SCIs. PMID:27110548

  13. Sustained PU.1 Levels Balance Cell-Cycle Regulators to Prevent Exhaustion of Adult Hematopoietic Stem Cells

    PubMed Central

    Staber, Philipp B.; Zhang, Pu; Ye, Min; Welner, Robert S.; Nombela-Arrieta, César; Bach, Christian; Kerenyi, Marc; Bartholdy, Boris A.; Zhang, Hong; Alberich-Jordà, Meritxell; Lee, Sanghoon; Yang, Henry; Ng, Felicia; Zhang, Junyan; Leddin, Mathias; Silberstein, Leslie E.; Hoefler, Gerald; Orkin, Stuart H.; Göttgens, Berthold; Rosenbauer, Frank; Huang, Gang; Tenen, Daniel G.

    2013-01-01

    SUMMARY To provide a lifelong supply of blood cells, hematopoietic stem cells (HSCs) need to carefully balance both self-renewing cell divisions and quiescence. Although several regulators that control this mechanism have been identified, we demonstrate that the transcription factor PU.1 acts upstream of these regulators. So far, attempts to uncover PU.1’s role in HSC biology have failed because of the technical limitations of complete loss-of-function models. With the use of hypomorphic mice with decreased PU.1 levels specifically in phenotypic HSCs, we found reduced HSC long-term repopulation potential that could be rescued completely by restoring PU.1 levels. PU.1 prevented excessive HSC division and exhaustion by controlling the transcription of multiple cell-cycle regulators. Levels of PU.1 were sustained through autoregulatory PU.1 binding to an upstream enhancer that formed an active looped chromosome architecture in HSCs. These results establish that PU.1 mediates chromosome looping and functions as a master regulator of HSC proliferation. PMID:23395001

  14. Structure-function relationships in radiation-induced cell and tissue lesions: special references to the contributions of scanning electron microscopy and hematopoietic tissue responses

    SciTech Connect

    Seed, T.M.

    1987-03-01

    Contributions of scanning electron microscopy to the field of radiation biology are briefly reviewed and presented in terms of an overall goal to identify and characterize the structural features of radiation-induced lesions in vital cell and tissue targets. In the context of lesion production, the major radiation-elicited response sequences, the types and nature of measured end points, and governing temporal and radiobiological parameters are discussed and illustrated by using results derived from both in vitro cell systems and in vivo studies that measured tissue responses from various organ systems (respiratory, digestive, circulatory, and central nervous systems). Work in our laboratory on the nature of early and late hematopathologic tissue responses (aplastic anemia and myeloid leukemia) induced by protracted radiation exposure and the bridging effect of repair processes relative to the expression of these pathologies is highlighted.

  15. Traffic Light: prognosis-based eligibility for clinical trials of hematopoietic SCT in adults with sickle cell anemia.

    PubMed

    Rotz, S J; O'Riordan, M A; Kim, C; de Lima, M; Gladwin, M T; Little, J A

    2015-07-01

    Estimating prognosis in sickle cell anemia (SCA) assumes greater importance as intensive treatments, such as hematopoietic SCT (HSCT), are being tested. Here we estimate the mortality risk from the walk-PHaSST (Sildenafil Therapy for Pulmonary Hypertension and Sickle Cell Disease) trial of homozygous SCA patients with suspected pulmonary hypertension (19/468 deaths; 10 centers in the US and UK). Parallel investigations were also undertaken in the Cooperative Study of Sickle Cell Disease (CSCCD) and a contemporary urban sickle cell disease population (Case Western Reserve University-University Hospitals (CWRU-UH), Cleveland, OH, USA). One- and two-value positive predictive values for 2-year mortality (from study entry) are calculated using factors that include demographics, laboratory values and clinical evaluations. We define high-, intermediate-, and low-risk SCA as > 15%, 10-15% and < 10% 2-year mortality. In walk-PHaSST, no single factor qualifies as high-risk SCA, although several combinations of two factors (that is, both age > 35 years and history of chronic transfusion) do. Either elevated white blood cell count (> 13.5 × 10(3) cells/mcL, 7/70 deaths) or elevated Tricuspid Regurgitant Jet Velocity (⩾ 3.0 m/s, 8/67 deaths) was individually associated with intermediate-risk disease, as were many two-factor combinations. N-terminal pro-brain natriuretic peptide > 160 ng/L, lactate dehydrogenase > 600 IU/L, history of chronic transfusion, sepsis or age > 35 years are individually associated with low-risk SCA, as are many two-factor combinations. SCA risk was integrated with estimated donor type-associated risk from HSCT to form 'Traffic Light' eligibility criteria for clinical trials of HSCT. This method is adaptable to evolutions in clinical care. PMID:25774596

  16. Physical Activity, Fitness, and Cardiometabolic Risk Factors in Adult Survivors of Childhood Cancer with a History of Hematopoietic Cell Transplantation.

    PubMed

    Slater, Megan E; Steinberger, Julia; Ross, Julie A; Kelly, Aaron S; Chow, Eric J; Koves, Ildiko H; Hoffmeister, Paul; Sinaiko, Alan R; Petryk, Anna; Moran, Antoinette; Lee, Jill; Chow, Lisa S; Baker, K Scott

    2015-07-01

    Along with other childhood cancer survivors (CCS), hematopoietic cell transplantation (HCT) survivors are at high risk of treatment-related late effects, including cardiovascular disease and diabetes. Cardiometabolic risk factor abnormalities may be exacerbated by inadequate physical activity (PA). Relationships between PA and cardiometabolic risk factors have not been well described in CCS with HCT. PA (self reported), mobility (timed up and go test), endurance (6-minute walk test), handgrip strength, and cardiometabolic risk factors were measured in 119 HCT survivors and 66 sibling controls ages ≥18 years. Adjusted comparisons between HCT survivors and controls and between categories of low and high PA, mobility, endurance, and strength were performed with linear regression. Among HCT survivors, the high PA group had lower waist circumference (WC) (81.9 ± 2.5 versus 88.6 ± 3.1 cm ± standard error (SE), P = .009) than the low PA group, whereas the high endurance group had lower WC (77.8 ± 2.6 versus 87.8 ± 2.5 cm ± SE, P = .0001) and percent fat mass (33.6 ± 1.8 versus 39.4 ± 1.7% ± SE, P = .0008) and greater insulin sensitivity (IS) (10.9 ± 1.0 versus 7.42 ± 1.14 mg/kg/min ± SE via euglycemic insulin clamp, P = .001) than the low endurance group. Differences were greater in HCT survivors than in controls for WC between low and high PA groups, triglycerides between low and high mobility groups, and WC, systolic blood pressure, and IS between low and high endurance groups (all Pinteraction <.05). Higher endurance was associated with a more favorable cardiometabolic profile in HCT survivors, suggesting that interventions directed to increase endurance in survivors may reduce the risk of future cardiovascular disease. PMID:25865649

  17. Adult Nephrotic Syndrome after Hematopoietic Stem Cell Transplantation: Renal Pathology is the Best Predictor of Response to Therapy.

    PubMed

    Beyar-Katz, Ofrat; Davila, Etty Kruzel; Zuckerman, Tsila; Fineman, Riva; Haddad, Nuhad; Okasha, Doaa; Henig, Israel; Leiba, Ronit; Rowe, Jacob M; Ofran, Yishai

    2016-06-01

    Nephrotic syndrome (NS) after allogeneic hematopoietic stem cell transplantation (HSCT) is a rare phenomenon usually associated with graft-versus-host disease (GVHD). This systematic review of post-HSCT NS cases reported in the literature aimed to identify risk factors and unique features of the disease in this clinical setting. One hundred sixteen cases of post-HSCT NS published in the English literature between 1988 and 2015 were revealed and analyzed. The median onset of NS was 20.5 months (range, 3 to 174) post-HSCT. NS development was associated with acute or chronic GVHD in 87.2% of cases. Membranous nephropathy (MGN) was the most frequent pathology (65.5%), followed by minimal change disease (MCD) (19%). Complete remission of the NS was achieved in 63.5% of patients (59.1% of MGN cases and 81.3% of MCD cases; P = .15). Patients presenting with MCD recovered at a median of 1.75 months (range, 1 to 12) and with MGN a median of 7 months (range, 1 to 53) (P = .001). NS was treated with corticosteroids alone in 16.8% of patients and with a combination of corticosteroids and other immunosuppressive agents in 73.5% of patients. Univariate analysis failed to identify a single predictive factor of response to therapy. In conclusion, post-HSCT NS usually develops concomitant to GVHD and is associated with high rates of response to therapy. Although most patients were treated with a combination of immunosuppressive drugs, single-agent therapy with steroids may be sufficient in some cases. PMID:26740372

  18. Histologic Features of Intestinal Thrombotic Microangiopathy in Pediatric and Young Adult Patients after Hematopoietic Stem Cell Transplantation

    PubMed Central

    El-Bietar, Javier; Warren, Mikako; Dandoy, Christopher; Myers, Kasiani C.; Lane, Adam; Wallace, Gregory; Davies, Stella M.; Jodele, Sonata

    2015-01-01

    High-risk transplantation-associated thrombotic microangiopathy (TMA) can present with multisystem involvement and is associated with a poor outcome after hematopoietic stem cell transplantation (HSCT), with < 20% 1-year survival. TMA may involve the intestinal vasculature and can present with bleeding and ischemic colitis. There are no established pathologic criteria for the diagnosis of intestinal TMA (iTMA). The goal of our study was to identify histologic features of iTMA and describe associated clinical features. We evaluated endoscopic samples from 50 consecutive HSCT patients for 8 histopathologic signs of iTMA and compared findings in 3 clinical groups based on the presence or absence of systemic high-risk TMA (hrTMA) and the presence or absence of clinically staged intestinal graft-versus-host disease (iGVHD): TMA/iGVHD, no TMA/iGVHD, and no TMA/no iGVHD. Thirty percent of the study subjects had a clinical diagnosis of systemic hrTMA. On histology, loss of glands, intraluminal schistocytes, intraluminal fibrin, intraluminal microthrombi, endothelial cell separation, and total denudation of mucosa were significantly more common in the hrTMA group (P < .05). Intravascular thrombi were seen exclusively in patients with hrTMA. Mucosal hemorrhages and endothelial cell swelling were more common in hrTMA patients but this difference did not reach statistical significance. Patients with hrTMA were more likely to experience significant abdominal pain and gastrointestinal bleeding requiring multiple blood transfusions (P < .05). Our study shows that HSCT patients with systemic hrTMA can have significant bowel vascular injury that can be identified using defined histologic criteria. Recognition of these histologic signs in post-transplantation patients with significant gastrointestinal symptoms may guide clinical decisions. PMID:26150023

  19. Prognostic Factors on the Graft-versus-Host Disease-Free and Relapse-Free Survival after Adult Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Liu, Yao-Chung; Chien, Sheng-Hsuan; Fan, Nai-Wen; Hu, Ming-Hung; Gau, Jyh-Pyng; Liu, Chia-Jen; Yu, Yuan-Bin; Hsiao, Liang-Tsai; Chiou, Tzeon-Jye; Tzeng, Cheng-Hwai; Chen, Po-Min; Liu, Jin-Hwang

    2016-01-01

    The cure of hematologic disorders by allogeneic hematopoietic stem cell transplantation (HSCT) is often associated with major complications resulting in poor outcome, including graft-versus-host disease (GVHD), relapse, and death. A novel composite endpoint of GVHD-free/relapse-free survival (GRFS) in which events include grades 3-4 acute GVHD, chronic GVHD requiring systemic therapy, relapse, or death is censored to completely characterize the survival without mortality or ongoing morbidity. In this regard, studies attempting to identify the prognostic factors of GRFS are quite scarce. Thus, we reviewed 377 adult patients undergoing allogeneic HSCT between 2003 and 2013. The 1- and 2-year GRFS were 40.8% and 36.5%, respectively, significantly worse than overall survival and disease-free survival (log-rank p < 0.001). European Group for Blood and Marrow Transplantation (EBMT) risk score > 2 (p < 0.001) and hematologic malignancy (p = 0.033) were poor prognostic factors for 1-year GRFS. For 2-year GRFS, EBMT risk score > 2 (p < 0.001), being male (p = 0.028), and hematologic malignancy (p = 0.010) were significant for poor outcome. The events between 1-year GRFS and 2-year GRFS predominantly increased in relapsed patients. With prognostic factors of GRFS, we could evaluate the probability of real recovery following HSCT without ongoing morbidity. PMID:27123006

  20. Impact of graft-versus-host disease on outcomes after allogeneic hematopoietic cell transplantation for adult T-cell leukemia: a retrospective cohort study.

    PubMed

    Kanda, Junya; Hishizawa, Masakatsu; Utsunomiya, Atae; Taniguchi, Shuichi; Eto, Tetsuya; Moriuchi, Yukiyoshi; Tanosaki, Ryuji; Kawano, Fumio; Miyazaki, Yasushi; Masuda, Masato; Nagafuji, Koji; Hara, Masamichi; Takanashi, Minoko; Kai, Shunro; Atsuta, Yoshiko; Suzuki, Ritsuro; Kawase, Takakazu; Matsuo, Keitaro; Nagamura-Inoue, Tokiko; Kato, Shunichi; Sakamaki, Hisashi; Morishima, Yasuo; Okamura, Jun; Ichinohe, Tatsuo; Uchiyama, Takashi

    2012-03-01

    Allogeneic hematopoietic cell transplantation (HCT) is an effective treatment for adult T-cell leukemia (ATL), raising the question about the role of graft-versus-leukemia effect against ATL. In this study, we retrospectively analyzed the effects of acute and chronic graft-versus-host disease (GVHD) on overall survival, disease-associated mortality, and treatment-related mortality among 294 ATL patients who received allogeneic HCT and survived at least 30 days posttransplant with sustained engraftment. Multivariate analyses treating the occurrence of GVHD as a time-varying covariate demonstrated that the development of grade 1-2 acute GVHD was significantly associated with higher overall survival (hazard ratio [HR] for death, 0.65; P = .018) compared with the absence of acute GVHD. Occurrence of either grade 1-2 or grade 3-4 acute GVHD was associated with lower disease-associated mortality compared with the absence of acute GVHD, whereas grade 3-4 acute GVHD was associated with a higher risk for treatment-related mortality (HR, 3.50; P < .001). The development of extensive chronic GVHD was associated with higher treatment-related mortality (HR, 2.75; P = .006) compared with the absence of chronic GVHD. Collectively, these results indicate that the development of mild-to-moderate acute GVHD confers a lower risk of disease progression and a beneficial influence on survival of allografted patients with ATL. PMID:22234682

  1. Stable multilineage xenogeneic replacement of definitive hematopoiesis in adult zebrafish

    PubMed Central

    Hess, Isabell; Boehm, Thomas

    2016-01-01

    Bony fishes are the most numerous and phenotypically diverse group of vertebrates inhabiting our planet, making them an ideal target for identifying general principles of tissue development and function. However, lack of suitable experimental platforms prevents the exploitation of this rich source of natural phenotypic variation. Here, we use a zebrafish strain lacking definitive hematopoiesis for interspecific analysis of hematopoietic cell development. Without conditioning prior to transplantation, hematopoietic progenitor cells from goldfish stably engraft in adult zebrafish homozygous for the c-mybI181N mutation. However, in competitive repopulation experiments, zebrafish hematopoietic cells exhibit an advantage over their goldfish counterparts, possibly owing to subtle species-specific functional differences in hematopoietic microenvironments resulting from over 100 million years of independent evolution. Thus, our unique animal model provides an unprecedented opportunity to genetically and functionally disentangle universal and species-specific contributions of the microenvironment to hematopoietic progenitor cell maintenance and development. PMID:26777855

  2. Stable multilineage xenogeneic replacement of definitive hematopoiesis in adult zebrafish.

    PubMed

    Hess, Isabell; Boehm, Thomas

    2016-01-01

    Bony fishes are the most numerous and phenotypically diverse group of vertebrates inhabiting our planet, making them an ideal target for identifying general principles of tissue development and function. However, lack of suitable experimental platforms prevents the exploitation of this rich source of natural phenotypic variation. Here, we use a zebrafish strain lacking definitive hematopoiesis for interspecific analysis of hematopoietic cell development. Without conditioning prior to transplantation, hematopoietic progenitor cells from goldfish stably engraft in adult zebrafish homozygous for the c-myb(I181N) mutation. However, in competitive repopulation experiments, zebrafish hematopoietic cells exhibit an advantage over their goldfish counterparts, possibly owing to subtle species-specific functional differences in hematopoietic microenvironments resulting from over 100 million years of independent evolution. Thus, our unique animal model provides an unprecedented opportunity to genetically and functionally disentangle universal and species-specific contributions of the microenvironment to hematopoietic progenitor cell maintenance and development. PMID:26777855

  3. Cost utility analysis of reduced intensity hematopoietic stem cell transplantation in adolescence and young adult with severe thalassemia compared to hypertransfusion and iron chelation program

    PubMed Central

    2013-01-01

    Background Hematopoieticic stem cell transplantation is the only therapeutic option that can cure thalassemia disease. Reduced intensity hematopoietic stem cell transplantation (RI-HSCT) has demonstrated a high cure rate with minimal complications compared to other options. Because RI-HSCT is very costly, economic justification for its value is needed. This study aimed to estimate the cost-utility of RI-HSCT compared with blood transfusions combined with iron chelating therapy (BT-ICT) for adolescent and young adult with severe thalassemia in Thailand. Methods A Markov model was used to estimate the relevant costs and health outcomes over the patients’ lifetimes using a societal perspective. All future costs and outcomes were discounted at a rate of 3% per annum. The efficacy of RI-HSCT was based a clinical trial including a total of 18 thalassemia patients. Utility values were derived directly from all patients using EQ-5D and SF-6D. Primary outcomes of interest were lifetime costs, quality adjusted life-years (QALYs) gained, and the incremental cost-effectiveness ratio (ICER) in US ($) per QALY gained. One-way and probabilistic sensitivity analyses (PSA) were conducted to investigate the effect of parameter uncertainty. Results In base case analysis, the RI-HSCT group had a better clinical outcomes and higher lifetime costs. The incremental cost per QALY gained was US $ 3,236 per QALY. The acceptability curve showed that the probability of RI-HSCT being cost-effective was 71% at the willingness to pay of 1 time of Thai Gross domestic product per capita (GDP per capita), approximately US $ 4,210 per QALY gained. The most sensitive parameter was utility of severe thalassemia patients without cardiac complication patients. Conclusion At a societal willingness to pay of 1 GDP per capita, RI-HSCT was a cost-effective treatment for adolescent and young adult with severe thalassemia in Thailand compared to BT-ICT. PMID:23379888

  4. Poor growth, thyroid dysfunction and vitamin D deficiency remain prevalent despite reduced intensity chemotherapy for hematopoietic stem cell transplantation in children and young adults.

    PubMed

    Myers, K C; Howell, J C; Wallace, G; Dandoy, C; El-Bietar, J; Lane, A; Davies, S M; Jodele, S; Rose, S R

    2016-07-01

    Myeloablative conditioning regimens for hematopoietic stem cell transplant (HSCT) are known to affect endocrine function, but little is known regarding reduced intensity conditioning (RIC) regimens. We retrospectively reviewed 114 children and young adults after single RIC HSCT. The analysis was grouped by age (<2 and ⩾2 years) and diagnosis (hemophagocytic lymphohistiocystosis/X-linked lymphoproliferative syndrome (HLH/XLP), other immune disorders, metabolic/genetic disorders). All groups displayed short stature by mean height-adjusted Z-score (HAZ) before (-1.29) and after HSCT (HAZ -1.38, P=0.47). After HSCT, younger children with HLH/XLP grew better (HAZ -3.41 vs -1.65, P=0.006), whereas older subjects had decline in growth (HAZ -0.8 vs -1.01, P=0.06). Those with steroid therapy beyond standard GVHD prophylaxis were shorter than those without (P 0.04). After HSCT, older subjects with HLH/XLP became thinner with a mean body mass index (BMI) Z-score of 1.20 vs 0.64, P=0.02, and similar to metabolic/genetic disorders (BMI-Z= 0.59 vs -0.99, P<0.001). BMI increased among younger children in these same groups. Thyroid function was abnormal in 24% (18/76). 25-OH vitamin D levels were insufficient in 73% (49/65), with low bone mineral density in 8 of 19 evaluable subjects. Despite RIC, children and young adults still have significant late endocrine effects. Further research is required to compare post-transplant endocrine effects after RIC to those after standard chemotherapy protocols. PMID:26974276

  5. Reduced-intensity conditioning followed by allogeneic hematopoietic cell transplantation for adult patients with myelodysplastic syndrome and myeloproliferative disorders.

    PubMed

    Laport, Ginna G; Sandmaier, Brenda M; Storer, Barry E; Scott, Bart L; Stuart, Monic J; Lange, Thoralf; Maris, Michael B; Agura, Edward D; Chauncey, Thomas R; Wong, Ruby M; Forman, Stephen J; Petersen, Finn B; Wade, James C; Epner, Elliot; Bruno, Benedetto; Bethge, Wolfgang A; Curtin, Peter T; Maloney, David G; Blume, Karl G; Storb, Rainer F

    2008-02-01

    Allogeneic hematopoietic cell transplantation (HCT) is the only curative strategy for patients with myelodysplastic syndrome (MDS) and myeloproliferative disorders (MPD). We report the results of 148 patients (median age = 59 years old) with de novo MDS (n = 40), acute myelogenous leukemia (AML) after antecedent MDS/MPD (n = 49), treatment-related MDS (t-MDS) (n = 25), MPD (n = 27), and chronic myelomonocytic leukemia (CMML) (n = 7) who underwent allogeneic HCT using a conditioning regimen of low-dose total body irradiation (TBI) alone (200 cGy) on day 0 (n = 5) or with the addition of fludarabine (Flu) 30 mg/m(2)/day on days -4 to -2 (n = 143). Postgrafting immunosuppression consisted of cyclosporine and mycophenolate mofetil (MMF). Seventy-five patients (51%) received an allograft from a matched related donor (MRD), and 73 patients (49%) were recipients of unrelated donor (URD) grafts. There was no significant difference in the incidence of acute (gr II-IV) and chronic extensive graft-versus-host disease (aGVHD, cGVHD) between the recipients of related and unrelated donor grafts. By day +28, 75% of patients demonstrated mixed T cell chimerism. Graft rejection was seen in 15% of patients. With a median follow-up of 47 (range: 6-89) months, the 3-year relapse-free survival (RFS) and overall survival (OS) are both 27% for all patients, with a relapse incidence of 41%. The 3-year RFS for the patients with de novo MDS, AML after antecedent MDS/MPD, t-MDS, MPD, and CMML were 22%, 20%, 29%, 37%, and 43%, respectively, and the 3-year OS was 20%, 23%, 27%, 43%, and 43%, respectively. The 3-year nonrelapse mortality (NRM) was 32%. Factors associated with a lower risk of relapse were the development of extensive cGVHD and having a low risk or intermediate-1 risk International Prognostic Score for the de novo MDS patients. Nonmyeloablative HCT confers remissions in patients who otherwise were not eligible for conventional HCT but for whom relapse is the leading cause of

  6. Reassessing the approach to informed consent: the case of unrelated hematopoietic stem cell transplantation in adult thalassemia patients

    PubMed Central

    2014-01-01

    Introduction The informed consent process is the legal embodiment of the fundamental right of the individual to make decisions affecting his or her health., and the patient’s permission is a crucial form of respect of freedom and dignity, it becomes extremely important to enhance the patient’s understanding and recall of the information given by the physician. This statement acquires additional weight when the medical treatment proposed can potentially be detrimental or even fatal. This is the case of thalassemia patients pertaining to class 3 of the Pesaro classification where Allogenic hematopoietic stem cell transplantation (HSCT) remains the only potentially curative treatment. Unfortunately, this kind of intervention is burdened by an elevated transplantation-related mortality risk (TRM: all deaths considered related to transplantation), equal to 30% according to published reports. In thalassemia, the role of the patient in the informed consent process leading up to HSCT has not been fully investigated. This study investigated the hypothesis that information provided by physicians in the medical scenario of HSCT is not fully understood by patients and that misunderstanding and communication biases may affect the clinical decision-making process. Methods A questionnaire was either mailed or given personally to 25 patients. A second questionnaire was administered to the 12 physicians attending the patients enrolled in this study. Descriptive statistics were used to evaluate the communication factors. Results The results pointed out the difference between the risks communicated by physicians and the risks perceived by patients. Besides the study highlighted the mortality risk considered to be acceptable by patients and that considered to be acceptable by physicians. Conclusions Several solutions have been suggested to reduce the gap between communicated and perceived data. A multi-disciplinary approach may possibly help to attenuate some aspects of

  7. Debra-mediated Ci degradation controls tissue homeostasis in Drosophila adult midgut.

    PubMed

    Li, Zhouhua; Guo, Yueqin; Han, Lili; Zhang, Yan; Shi, Lai; Huang, Xudong; Lin, Xinhua

    2014-02-11

    Adult tissue homeostasis is maintained by resident stem cells and their progeny. However, the underlying mechanisms that control tissue homeostasis are not fully understood. Here, we demonstrate that Debra-mediated Ci degradation is important for intestinal stem cell (ISC) proliferation in Drosophila adult midgut. Debra inhibition leads to increased ISC activity and tissue homeostasis loss, phenocopying defects observed in aging flies. These defects can be suppressed by depleting Ci, suggesting that increased Hedgehog (Hh) signaling contributes to ISC proliferation and tissue homeostasis loss. Consistently, Hh signaling activation causes the same defects, whereas depletion of Hh signaling suppresses these defects. Furthermore, the Hh ligand from multiple sources is involved in ISC proliferation and tissue homeostasis. Finally, we show that the JNK pathway acts downstream of Hh signaling to regulate ISC proliferation. Together, our results provide insights into the mechanisms of stem cell proliferation and tissue homeostasis control. PMID:24527387

  8. Debra-Mediated Ci Degradation Controls Tissue Homeostasis in Drosophila Adult Midgut

    PubMed Central

    Li, Zhouhua; Guo, Yueqin; Han, Lili; Zhang, Yan; Shi, Lai; Huang, Xudong; Lin, Xinhua

    2014-01-01

    Summary Adult tissue homeostasis is maintained by resident stem cells and their progeny. However, the underlying mechanisms that control tissue homeostasis are not fully understood. Here, we demonstrate that Debra-mediated Ci degradation is important for intestinal stem cell (ISC) proliferation in Drosophila adult midgut. Debra inhibition leads to increased ISC activity and tissue homeostasis loss, phenocopying defects observed in aging flies. These defects can be suppressed by depleting Ci, suggesting that increased Hedgehog (Hh) signaling contributes to ISC proliferation and tissue homeostasis loss. Consistently, Hh signaling activation causes the same defects, whereas depletion of Hh signaling suppresses these defects. Furthermore, the Hh ligand from multiple sources is involved in ISC proliferation and tissue homeostasis. Finally, we show that the JNK pathway acts downstream of Hh signaling to regulate ISC proliferation. Together, our results provide insights into the mechanisms of stem cell proliferation and tissue homeostasis control. PMID:24527387

  9. Is There Any Reason to Prefer Cord Blood Instead of Adult Donors for Hematopoietic Stem Cell Transplants?

    PubMed Central

    Beksac, Meral

    2016-01-01

    As cord blood (CB) enables rapid access and tolerance to HLA mismatches, a number of unrelated CB transplants have reached 30,000. Such transplant activity has been the result of international accreditation programs maintaining highly qualified cord blood units (CBUs) reaching more than 600,000 CBUs stored worldwide. Efforts to increase stem cell content or engraftment rate of the graft by ex vivo expansion, modulation by molecules such as fucose, prostaglandin E2 derivative, complement CD26 inhibitors, or CXCR4/CXCL12 axis have been able to accelerate engraftment speed and rate. Furthermore, introduction of reduced intensity conditioning protocols, better HLA matching, and recognition of the importance of HLA-C have improved CB transplants success by decreasing transplant-related mortality. CB progenitor/stem cell content has been compared with adult stem cells revealing higher long-term repopulating capacity compared to bone marrow–mesenchymal stromal cells and lesser oncogenic potential than progenitor-induced stem cells. This chapter summarizes the advantages and disadvantages of CB compared to adult stem cells within the context of stem cell biology and transplantation. PMID:26793711

  10. Impact of Cranial Irradiation Added to Intrathecal Conditioning in Hematopoietic Cell Transplantation in Adult Acute Myeloid Leukemia With Central Nervous System Involvement

    SciTech Connect

    Mayadev, Jyoti S.; Douglas, James G.; Storer, Barry E.; Appelbaum, Frederick R.; Storb, Rainer

    2011-05-01

    Purpose: Neither the prognostic importance nor the appropriate management of central nervous system (CNS) involvement is known for patients with acute myeloid leukemia (AML) undergoing hematopoietic cell transplantation (HCT). We examined the impact of a CNS irradiation boost to standard intrathecal chemotherapy (ITC). Methods and Materials: From 1995 to 2005, a total of 648 adult AML patients received a myeloablative HCT: 577 patients were CNS negative (CNS-), and 71 were CNS positive (CNS+). Of the 71 CNS+ patients, 52 received intrathecal chemotherapy alone (CNS+ITC), and 19 received ITC plus an irradiation boost (CNS+RT). Results: The CNS-, CNS+ITC, and CNS+RT patients had 1- and 5-year relapse-free survivals (RFS) of 43% and 35%, 15% and 6%, and 37% and 32%, respectively. CNS+ITC patients had a statistically significant worse RFS compared with CNS- patients (hazard ratio [HR], 2.65; 95% confidence interval [CI], 2.0-3.6; p < 0.0001). CNS+RT patients had improved relapse free survival over that of CNS+ITC patients (HR, 0.45; 95% CI, 0.2-0.8; p = 0.01). The 1- and 5-year overall survivals (OS) of patients with CNS-, CNS+ITC, and CNS+RT, were 50% and 38%, 21% and 6%, and 53% and 42%, respectively. The survival of CNS+RT were significantly better than CNS+ITC patients (p = 0.004). After adjusting for known risk factors, CNS+RT patients had a trend toward lower relapse rates and reduced nonrelapse mortality. Conclusions: CNS+ AML is associated with a poor prognosis. The role of a cranial irradiation boost to intrathecal chemotherapy appears to mitigate the risk of CNS disease, and needs to be further investigated to define optimal treatment strategies.

  11. Distribution of the hematopoietic growth factor G-CSF and its receptor in the adult human brain with specific reference to Alzheimer's disease.

    PubMed

    Ridwan, Sami; Bauer, Henrike; Frauenknecht, Katrin; Hefti, Kyra; von Pein, Harald; Sommer, Clemens J

    2014-04-01

    The granulocyte colony-stimulating factor (G-CSF), being a member of the hematopoietic growth factor family, is also critically involved in controlling proliferation and differentiation of neural stem cells. Treatment with G-CSF has been shown to result in substantial neuroprotective and neuroregenerative effects in various experimental models of acute and chronic diseases of the central nervous system. Although G-CSF has been tested in a clinical study for treatment of acute ischemic stroke, there is only fragmentary data on the distribution of this cytokine and its receptor in the human brain. Therefore, the present study was focused on the immunohistochemical analysis of the protein expression of G-CSF and its receptor (G-CSF R) in the adult human brain. Since G-CSF has been shown not only to exert neuroprotective effects in animal models of Alzheimer's disease (AD) but also to be a candidate for clinical treatment, we have also placed an emphasis on the regulation of these molecules in this neurodegenerative disease. One major finding is that both G-CSF and G-CSF R were ubiquitously but not uniformly expressed in neurons throughout the CNS. Protein expression of G-CSF and G-CSF R was not restricted to neurons but was also detectable in astrocytes, ependymal cells, and choroid plexus cells. However, the distribution of G-CSF and G-CSF R did not substantially differ between AD brains and control, even in the hippocampus, where early neurodegenerative changes typically occur. PMID:24387791

  12. Non-Hematopoietic Stem Cells in Umbilical Cord Blood

    PubMed Central

    Matsumoto, Taro; Mugishima, Hideo

    2009-01-01

    Allogeneic umbilical cord blood (UCB) transplantation has been used to treat a variety of malignant and non-malignant diseases. Recent studies show convincing evidence that UCB contains not only hematopoietic progenitors, but also several types of stem and progenitor cells providing a high proliferative capacity and a variety of differentiation potentials. UCB-derived cells offer multiple advantages over adult stem cells from other sources like bone marrow (BM), because UCB can be collected without painful procedure, easily available in virtually unlimited supply, and has not been exposed to immunologic challenge. In addition, cord blood transplantation is now an established field with great potential and no serious ethical issue by establishment of public UCB banks throughout the world. Therefore UCB-derived non-hematopoietic stem cells may provide an attractive cell source for tissue repair and regeneration. It is generally accepted that UCB contains endothelial progenitor cells (EPC), mesenchymal stromal cells (MSC), unrestricted somatic stem cells (USSC), very small embryonic-like stem cells (VSEL), multilineage progenitor cells (MLPC), and neuronal progenitor cells. This review focuses on biological properties of these non-hematopoietic stem/progenitor cells derived from human UCB and their potential use in cell based therapies. PMID:24855525

  13. Perivascular support of human hematopoietic stem/progenitor cells

    PubMed Central

    Corselli, Mirko; Chin, Chee Jia; Parekh, Chintan; Sahaghian, Arineh; Wang, Wenyuan; Ge, Shundi; Evseenko, Denis; Wang, Xiaoyan; Montelatici, Elisa; Lazzari, Lorenza; Crooks, Gay M.

    2013-01-01

    Hematopoietic stem and progenitor cells (HSPCs) emerge and develop adjacent to blood vessel walls in the yolk sac, aorta-gonad-mesonephros region, embryonic liver, and fetal bone marrow. In adult mouse bone marrow, perivascular cells shape a “niche” for HSPCs. Mesenchymal stem/stromal cells (MSCs), which support hematopoiesis in culture, are themselves derived in part from perivascular cells. In order to define their direct role in hematopoiesis, we tested the ability of purified human CD146+ perivascular cells, as compared with unfractionated MSCs and CD146− cells, to sustain human HSPCs in coculture. CD146+ perivascular cells support the long-term persistence, through cell-to-cell contact and at least partly via Notch activation, of human myelolymphoid HSPCs able to engraft primary and secondary immunodeficient mice. Conversely, unfractionated MSCs and CD146− cells induce differentiation and compromise ex vivo maintenance of HSPCs. Moreover, CD146+ perivascular cells express, natively and in culture, molecular markers of the vascular hematopoietic niche. Unexpectedly, this dramatic, previously undocumented ability to support hematopoietic stem cells is present in CD146+ perivascular cells extracted from the nonhematopoietic adipose tissue. PMID:23412095

  14. Hematopoietic stem cells: can old cells learn new tricks?

    PubMed

    Ho, Anthony D; Punzel, Michael

    2003-05-01

    Since the establishment of cell lines derived from human embryonic stem (ES) cells, it has been speculated that out of such "raw material," we could some day produce all sorts of replacement parts for the human body. Human pluripotent stem cells can be isolated from embryonic, fetal, or adult tissues. Enormous self-renewal capacity and developmental potential are the characteristics of ES cells. Somatic stem cells, especially those derived from hematopoietic tissues, have also been reported to exhibit developmental potential heretofore not considered possible. The initial evidences for the plasticity potential of somatic stem cells were so encouraging that the opponents of ES cell research used them as arguments for restricting ES cell research. In the past months, however, critical issues have been raised challenging the validity and the interpretation of the initial data. Whereas hematopoietic stem-cell therapy has been a clinical reality for almost 40 years, there is still a long way to go in basic research before novel therapy strategies with stem cells as replacement for other organ systems can be established. Given the present status, we should keep all options open for research in ES cells and adult stem cells to appreciate the complexity of their differentiation pathways and the relative merits of various types of stem cells for regenerative medicine. PMID:12714568

  15. The molecular nature of very small embryonic-like stem cells in adult tissues.

    PubMed

    Kim, YongHwan; Jeong, Jaeho; Kang, Hyunsook; Lim, Jisun; Heo, Jinbeom; Ratajczak, Janina; Ratajczak, Mariusz Z; Shin, Dong-Myung

    2014-11-01

    Pluripotent stem cells (PSCs) have been considered as the most important cells in regenerative medicine as they are able to differentiate into all types of cells in the human body. PSCs have been established from several sources of embryo tissue or by reprogramming of terminally differentiated adult tissue by transduction of so-called Yamanaka factors (Oct4, Sox2, Klf4, and cMyc). Interestingly, accumulating evidence has demonstrated the residence of PSCs in adult tissue and with the ability to differentiate into multiple types of tissue-committed stem cells (TCSCs). We also recently demonstrated that a population of pluripotent Oct4(+) SSEA-1(+)Sca-1(+)Lin(-)CD45(-) very small embryonic-like stem cells (VSELs) resides in the adult murine bone marrow (BM) and in other murine tissue. These very small (∼3-6 μm) cells express pluripotent markers such as Oct4, Nanog, and SSEA-1. VSELs could be specified into several tissue-residing TCSCs in response to tissue/organ injury, and thus suggesting that these cells have a physiological role in the rejuvenation of a pool of TCSCs under steady-state conditions. In this review article, we discuss the molecular nature of the rare population of VSELs which have a crucial role in regulating the pluripotency, proliferation, differentiation, and aging of these cells. PMID:25473442

  16. The Molecular Nature of Very Small Embryonic-Like Stem Cells in Adult Tissues

    PubMed Central

    Kim, YongHwan; Jeong, Jaeho; Kang, Hyunsook; Lim, Jisun; Heo, Jinbeom; Ratajczak, Janina; Ratajczak, Mariusz Z.; Shin, Dong-Myung

    2014-01-01

    Pluripotent stem cells (PSCs) have been considered as the most important cells in regenerative medicine as they are able to differentiate into all types of cells in the human body. PSCs have been established from several sources of embryo tissue or by reprogramming of terminally differentiated adult tissue by transduction of so-called Yamanaka factors (Oct4, Sox2, Klf4, and cMyc). Interestingly, accumulating evidence has demonstrated the residence of PSCs in adult tissue and with the ability to differentiate into multiple types of tissue-committed stem cells (TCSCs). We also recently demonstrated that a population of pluripotent Oct4+ SSEA-1+Sca-1+Lin−CD45− very small embryonic-like stem cells (VSELs) resides in the adult murine bone marrow (BM) and in other murine tissue. These very small (∼3–6 μm) cells express pluripotent markers such as Oct4, Nanog, and SSEA-1. VSELs could be specified into several tissue-residing TCSCs in response to tissue/organ injury, and thus suggesting that these cells have a physiological role in the rejuvenation of a pool of TCSCs under steady-state conditions. In this review article, we discuss the molecular nature of the rare population of VSELs which have a crucial role in regulating the pluripotency, proliferation, differentiation, and aging of these cells. PMID:25473442

  17. Facial soft tissue thickness in individuals with different occlusion patterns in adult Turkish subjects.

    PubMed

    Kurkcuoglu, Ayla; Pelin, Can; Ozener, Bariş; Zagyapan, Ragiba; Sahinoglu, Zahira; Yazici, Ayse Canan

    2011-08-01

    Knowledge of variation in facial soft tissue thickness is important for forensic anthropologists, dentists, and plastic surgeons. Forensic anthropologists use such information as a guide in facial reconstruction and superimposition methods. The purpose of this study was to measure facial tissue thicknesses of adult males and females of Turkish origin across different types of occlusion, and to compare the results with each other and with values obtained for other populations. The study was conducted on 200 healthy individuals. The analysis of facial tissue thickness included 20 landmarks (10 dentoskeletal and 10 soft tissue) and 10 linear variables. Sex-based variation in facial tissue thickness was noted. The highest soft tissue thickness values were observed in the group with Class III occlusion type at Sn-A point for both the females (16.9, SD=2.4) and the males (17.8, SD=3.3). In the Class I group, the highest tissue depth was observed at Sn-A point (15.3, SD=2.1) in females, and at Li-Id point (17.1, SD=1.9) in males. In the Class II group, contrary to the findings for Class I, the highest soft tissue depth was at Li-Id point (16.0, SD=1.4) in females, and at Sn-A point (18.1, SD=2.6) in males. In conclusion, facial tissue thickness varied in adults depending on the sex and on the type of occlusion. PMID:21741647

  18. Analysis of RF exposure in the head tissues of children and adults

    NASA Astrophysics Data System (ADS)

    Wiart, J.; Hadjem, A.; Wong, M. F.; Bloch, I.

    2008-07-01

    This paper analyzes the radio frequencies (RF) exposure in the head tissues of children using a cellular handset or RF sources (a dipole and a generic handset) at 900, 1800, 2100 and 2400 MHz. Based on magnetic resonance imaging, child head models have been developed. The maximum specific absorption rate (SAR) over 10 g in the head has been analyzed in seven child and six adult heterogeneous head models. The influence of the variability in the same age class is carried out using models based on a morphing technique. The SAR over 1 g in specific tissues has also been assessed in the different types of child and adult head models. Comparisons are performed but nevertheless need to be confirmed since they have been derived from data sets of limited size. The simulations that have been performed show that the differences between the maximum SAR over 10 g estimated in the head models of the adults and the ones of the children are small compared to the standard deviations. But they indicate that the maximum SAR in 1 g of peripheral brain tissues of the child models aged between 5 and 8 years is about two times higher than in adult models. This difference is not observed for the child models of children above 8 years old: the maximum SAR in 1 g of peripheral brain tissues is about the same as the one in adult models. Such differences can be explained by the lower thicknesses of pinna, skin and skull of the younger child models.

  19. Adipose tissue gene expression and metabolic health of obese adults.

    PubMed

    Das, S K; Ma, L; Sharma, N K

    2015-05-01

    Obese subjects with a similar body mass index (BMI) exhibit substantial heterogeneity in gluco- and cardiometabolic heath phenotypes. However, defining genes that underlie the heterogeneity of metabolic features among obese individuals and determining metabolically healthy and unhealthy phenotypes remain challenging. We conducted unsupervised hierarchical clustering analysis of subcutaneous adipose tissue transcripts from 30 obese men and women ⩾40 years old. Despite similar BMIs in all subjects, we found two distinct subgroups, one metabolically healthy (group 1) and one metabolically unhealthy (group 2). Subjects in group 2 showed significantly higher total cholesterol (P=0.005), low-density lipoprotein cholesterol (P=0.006), 2-h insulin during oral glucose tolerance test (P=0.015) and lower insulin sensitivity (SI, P=0.029) compared with group 1. We identified significant upregulation of 141 genes (for example, MMP9 and SPP1) and downregulation of 17 genes (for example, NDRG4 and GINS3) in group 2 subjects. Intriguingly, these differentially expressed transcripts were enriched for genes involved in cardiovascular disease-related processes (P=2.81 × 10(-11)-3.74 × 10(-02)) and pathways involved in immune and inflammatory response (P=8.32 × 10(-5)-0.04). Two downregulated genes, NDRG4 and GINS3, have been located in a genomic interval associated with cardiac repolarization in published GWASs and zebra fish knockout models. Our study provides evidence that perturbations in the adipose tissue gene expression network are important in defining metabolic health in obese subjects. PMID:25520251

  20. Efficacy of Allogeneic Hematopoietic Stem Cell Transplantation in Intermediate-Risk Acute Myeloid Leukemia Adult Patients in First Complete Remission: A Meta-Analysis of Prospective Studies

    PubMed Central

    Zhu, Honghu; Dou, Liping; Liu, Daihong; Fu, Lin; Ma, Cong; Ma, Xuebin; Yao, Yushi; Zhou, Lei; Wang, Qian; Wang, Lijun; Zhao, Yu; Jing, Yu; Wang, Lili; Li, Yonghui; Yu, Li

    2015-01-01

    Hematopoietic stem cell transplantation (HSCT) and consolidation chemotherapy have been used to treat intermediate-risk acute myeloid leukemia (AML) patients in first complete remission (CR1). However, it is still unclear which treatments are most effective for these patients. The aim of our study was to analyze the relapse-free survival (RFS) and overall survival (OS) benefit of allogeneic HSCT (alloHSCT) for intermediate-risk AML patients in CR1. A meta-analysis of prospective trials comparing alloHSCT to non-alloHSCT (autologous HSCT [autoHSCT] and/or chemotherapy) was undertaken. We systematically searched PubMed, Embase, and the Cochrane Library though October 2014, using keywords and relative MeSH or Emtree terms, ‘allogeneic’; ‘acut*’ and ‘leukem*/aml/leukaem*/leucem*/leucaem*’; and ‘nonlympho*’ or ‘myelo*’. A total of 7053 articles were accessed. The primary outcomes were RFS and OS, while the secondary outcomes were treatment-related mortality (TRM) and relapse rate (RR). Hazard ratios (HR) and 95% confidence intervals (CI) were calculated for each outcome. The primary outcomes were RFS and OS, while the secondary outcomes were TRM and RR. We included 9 prospective controlled studies including 1950 adult patients. Patients with intermediate-risk AML in CR1 who received either alloHSCT or non-alloHSCT were considered eligible. AlloHSCT was found to be associated with significantly better RFS, OS, and RR than non-alloHSCT (HR, 0.684 [95% CI: 0.48, 0.95]; HR, 0.76 [95% CI: 0.61, 0.95]; and HR, 0.58 [95% CI: 0.45, 0.75], respectively). TRM was significantly higher following alloHSCT than non-alloHSCT (HR, 3.09 [95% CI: 1.38, 6.92]). However, subgroup analysis showed no OS benefit for alloHSCT over autoHSCT (HR, 0.99 [95% CI: 0.70, 1.39]). In conclusion, alloHSCT is associated with more favorable RFS, OS, and RR benefits (but not TRM outcomes) than non-alloHSCT generally, but does not have an OS advantage over autoHSCT specifically, in

  1. Superiority of allogeneic hematopoietic stem cell transplantation to nilotinib and dasatinib for adult patients with chronic myelogenous leukemia in the accelerated phase.

    PubMed

    Xu, Lanping; Zhu, Huanling; Hu, Jianda; Wu, Depei; Jiang, Hao; Jiang, Qian; Huang, Xiaojun

    2015-09-01

    In the tyrosine kinase inhibitor (TKI) era, imatinib is the first-line therapy for patients with chronic myeloid leukemia (CML) in chronic or accelerated phase. Although second-generation TKIs (TKI2), including dasatinib and nilotinib, are appropriate treatment regimens for patients with disease that progressed to accelerated phase following imatinib therapy, allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only curative therapy. This study retrospectively analyzed the efficacy of TKI2 and HSCT for treatment of CML in accelerated phase. Ninety-three patients with CML registered in the Chinese CML alliance database from February 2001 to February 2014 were enrolled and divided into the TKI2 (n = 33) and allo-HSCT (n = 60) groups. In the TKI2 group, 26 and 7 patients received nilotinib and dasatinib, respectively, as initial TKI2 and 11 patients transferred to the alternative TKI2 after failure to one TKI2. In the allo-HSCT group, 22 (36.7%), 35 (58.3%), and 3 (10%) patients underwent allo-HSCT from an HLA-matched sibling donor, HLA mismatched/haploidentical donor, and unrelated donor, respectively. All patients in the HSCT group were engrafted. Overall, 69.7%, 48.5%, and 45.5% of patients presented hematological, cytogenetic, and major molecular responses, respectively, to at least one of TKI2. All 60 patients (100%) achieved CHR and cytogenetic response in the HSCT group. Patients in the TKI2 group exhibited lower 5-year overall survival rate (42.9% vs. 86.4%, P = 0.002), 5-year event-free survival rate (14.3% vs. 76.1%, P < 0.001), and 5-year progression-free survival (28.6% vs. 78.1%, P < 0.001) than those in the allo-HSCT group. Multivariate analysis showed that male sex and TKI2 therapy were predictors of poor overall survival, whereas hemoglobin < 100 g/L and TKI2 therapy were predictors of poor event-free survival and progression-free survival. These results indicated that allo-HSCT may be superior to nilotinib and dasatinib for adult

  2. Stromal vascular progenitors in adult human adipose tissue

    PubMed Central

    Zimmerlin, Ludovic; Donnenberg, Vera S.; Pfeifer, Melanie E.; Meyer, E. Michael; Péault, Bruno; Rubin, J. Peter; Donnenberg, Albert D.

    2014-01-01

    Background The in vivo progenitor of culture-expanded mesenchymal-like adipose-derived stem cells (ADSC) remains elusive, owing in part to the complex organization of stromal cells surrounding the small vessels, and the rapidity with which adipose stromal vascular cells adopt a mesenchymal phenotype in vitro. Methods Immunohistostaining of intact adipose tissue was used to identify 3 markers (CD31, CD34, CD146) which together unambiguously discriminate histologically distinct inner and outer rings of vessel-associated stromal cells, as well as capillary and small vessel endothelial cells. These markers were used in multiparameter flow cytometry in conjunction with stem/progenitor markers (CD90, CD117) to further characterize stromal vascular fraction (SVF) subpopulations. Two mesenchymal and two endothelial populations were isolated by high speed flow cytometric sorting, expanded in short term culture and tested for adipogenesis. Results The inner layer of stromal cells in contact with small vessel endothelium (pericytes) was CD146+/α-SMA+/CD90±/CD34−/CD31−; the outer adventitial stromal ring (designated supra adventitial-adipose stromal cells, SA-ASC) was CD146−/α-SMA−/CD90+/CD34+/CD31−. Capillary endothelial cells were CD31+/CD34+/CD90+ (endothelial progenitor), while small vessel endothelium was CD31+/CD34−/CD90− (endothelial mature). Flow cytometry confirmed these expression patterns and revealed a CD146+/CD90+/CD34+/CD31− pericyte subset that may be transitional between pericytes and SA-ASC. Pericytes had the most potent adipogenic potential, followed by the more numerous SA-ASC. Endothelial populations had significantly reduced adipogenic potential compared to unsorted expanded SVF cells. Conclusions In adipose tissue perivascular stromal cells are organized in two discrete layers, the innermost consisting of CD146+/CD34− pericytes, and the outermost of CD146−/CD34+ SA-ASC, both of which have adipogenic potential in culture. A CD146+/CD

  3. Regulation of hematopoietic stem cell aging by the small RhoGTPase Cdc42

    PubMed Central

    Geiger, Hartmut; Zheng, Yi

    2015-01-01

    Summary Aging of stem cells might be the underlying cause of tissue aging in tissue that in the adult heavily rely on stem cell activity, like the blood forming system. Hematopoiesis, the generation of blood forming cells, is sustained by hematopoietic stem cells. In this review article, we introduce the canonical set of phenotypes associated with aged HSCs, focus on the novel aging-associated phenotype apolarity caused by elevated activity of the small RhoGTPase in aged HSCs, disuccs the role of Cdc42 in hematopoiesis and describe that pharmacological inhibition of Cdc42 activity in aged HSCs results in functionally young and thus rejuvenated HSCs. PMID:25220425

  4. Hematopoietic stem cell transplantation for auto immune rheumatic diseases.

    PubMed

    Ramaswamy, Subramanian; Jain, Sandeep; Ravindran, Vinod

    2016-03-24

    Stem cells have their origins in the embryo and during the process of organogenesis, these differentiate into specialized cells which mature to form tissues. In addition, stem cell are characterized by an ability to indefinitely self renew. Stem cells are broadly classified into embryonic stem cells and adult stem cells. Adult stem cells can be genetically reprogrammed to form pluripotent stem cells and exist in an embroyonic like state. In the early phase of embryogenesis, human embryonic stem cells only exist transiently. Adult stem cells are omnipresent in the body and function to regenerate during the process of apoptosis or tissue repair. Hematopoietic stem cells (HSC) are adult stem cells that form blood and immune cells. Autoimmune responses are sustained due to the perennial persistence of tissue self autoantigens and/or auto reactive lymphocytes. Immune reset is a process leading to generation of fresh self-tolerant lymphocytes after chemotherapy induced elimination of self or autoreactive lymphocytes. This forms the basis for autologous HSC transplantation (HSCT). In the beginning HSCT had been limited to refractory autoimmune rheumatic diseases (AIRD) due to concern about transplant related mortality and morbidity. However HSCT for AIRD has come a long way with better understanding of patient selection, conditioning regime and supportive care. In this narrative review we have examined the available literature regarding the HSCT use in AIRD. PMID:27011918

  5. Hematopoietic stem cell transplantation for auto immune rheumatic diseases

    PubMed Central

    Ramaswamy, Subramanian; Jain, Sandeep; Ravindran, Vinod

    2016-01-01

    Stem cells have their origins in the embryo and during the process of organogenesis, these differentiate into specialized cells which mature to form tissues. In addition, stem cell are characterized by an ability to indefinitely self renew. Stem cells are broadly classified into embryonic stem cells and adult stem cells. Adult stem cells can be genetically reprogrammed to form pluripotent stem cells and exist in an embroyonic like state. In the early phase of embryogenesis, human embryonic stem cells only exist transiently. Adult stem cells are omnipresent in the body and function to regenerate during the process of apoptosis or tissue repair. Hematopoietic stem cells (HSC) are adult stem cells that form blood and immune cells. Autoimmune responses are sustained due to the perennial persistence of tissue self autoantigens and/or auto reactive lymphocytes. Immune reset is a process leading to generation of fresh self-tolerant lymphocytes after chemotherapy induced elimination of self or autoreactive lymphocytes. This forms the basis for autologous HSC transplantation (HSCT). In the beginning HSCT had been limited to refractory autoimmune rheumatic diseases (AIRD) due to concern about transplant related mortality and morbidity. However HSCT for AIRD has come a long way with better understanding of patient selection, conditioning regime and supportive care. In this narrative review we have examined the available literature regarding the HSCT use in AIRD. PMID:27011918

  6. JH Biosynthesis by Reproductive Tissues and Corpora Allata in Adult Longhorned Beetles, Apriona germari

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report on juvenile hormone (JH) biosynthesis from long-chain intermediates by specific reproductive system tissues and the corpora allata (CA) prepared from adult longhorned beetles, Apriona germari. Testes, male accessory glands (MAGs), ovaries and CA contain the long-chain intermediates in the ...

  7. Acquired Tissue-Specific Promoter Bivalency Is a Basis for PRC2 Necessity in Adult Cells.

    PubMed

    Jadhav, Unmesh; Nalapareddy, Kodandaramireddy; Saxena, Madhurima; O'Neill, Nicholas K; Pinello, Luca; Yuan, Guo-Cheng; Orkin, Stuart H; Shivdasani, Ramesh A

    2016-06-01

    Bivalent promoters in embryonic stem cells (ESCs) carry methylation marks on two lysine residues, K4 and K27, in histone3 (H3). K4me2/3 is generally considered to promote transcription, and Polycomb Repressive Complex 2 (PRC2) places K27me3, which is erased at lineage-restricted genes when ESCs differentiate in culture. Molecular defects in various PRC2 null adult tissues lack a unifying explanation. We found that epigenomes in adult mouse intestine and other self-renewing tissues show fewer and distinct bivalent promoters compared to ESCs. Groups of tissue-specific genes that carry bivalent marks are repressed, despite the presence of promoter H3K4me2/3. These are the predominant genes de-repressed in PRC2-deficient adult cells, where aberrant expression is proportional to the H3K4me2/3 levels observed at their promoters in wild-type cells. Thus, in adult animals, PRC2 specifically represses genes with acquired, tissue-restricted promoter bivalency. These findings provide new insights into specificity in chromatin-based gene regulation. PMID:27212235

  8. Plasticity of hematopoietic stem cells.

    PubMed

    Ogawa, Makio; LaRue, Amanda C; Mehrotra, Meenal

    2015-01-01

    Almost two decades ago, a number of cell culture and preclinical transplantation studies suggested the striking concept of the tissue-reconstituting ability of hematopoietic stem cells (HSCs). While this heralded an exciting time of radically new therapies for disorders of many organs and tissues, the concept was soon mired by controversy and remained dormant. This chapter provides a brief review of evidence for HSC plasticity including our findings based on single HSC transplantation in mouse. These studies strongly support the concept that HSCs are pluripotent and may be the source for the majority, if not all, of the cell types in our body. PMID:26590762

  9. Adult-derived stem cells and their potential for use in tissue repair and molecular medicine.

    PubMed

    Young, Henry E; Duplaa, Cecile; Katz, Ryan; Thompson, Tina; Hawkins, Kristina C; Boev, Angel N; Henson, Nicholas L; Heaton, Matthew; Sood, Rajiv; Ashley, Dennis; Stout, Christopher; Morgan, Joe H; Uchakin, Peter N; Rimando, Marylen; Long, Gypsy F; Thomas, Crystal; Yoon, Jee-In; Park, Ji Eun; Hunt, Darren J; Walsh, Nancy M; Davis, Josh C; Lightner, Joel E; Hutchings, Anna M; Murphy, Meredith L; Boswell, Elizabeth; McAbee, Jessica A; Gray, Brandon M; Piskurich, Janet; Blake, Lisa; Collins, Julie A; Moreau, Catherine; Hixson, Douglas; Bowyer, Frank P; Black, Asa C

    2005-01-01

    This report reviews three categories of precursor cells present within adults. The first category of precursor cell, the epiblast-like stem cell, has the potential of forming cells from all three embryonic germ layer lineages, e.g., ectoderm, mesoderm, and endoderm. The second category of precursor cell, the germ layer lineage stem cell, consists of three separate cells. Each of the three cells is committed to form cells limited to a specific embryonic germ layer lineage. Thus the second category consists of germ layer lineage ectodermal stem cells, germ layer lineage mesodermal stem cells, and germ layer lineage endodermal stem cells. The third category of precursor cells, progenitor cells, contains a multitude of cells. These cells are committed to form specific cell and tissue types and are the immediate precursors to the differentiated cells and tissues of the adult. The three categories of precursor cells can be readily isolated from adult tissues. They can be distinguished from each other based on their size, growth in cell culture, expressed genes, cell surface markers, and potential for differentiation. This report also discusses new findings. These findings include the karyotypic analysis of germ layer lineage stem cells; the appearance of dopaminergic neurons after implantation of naive adult pluripotent stem cells into a 6-hydroxydopamine-lesioned Parkinson's model; and the use of adult stem cells as transport mechanisms for exogenous genetic material. We conclude by discussing the potential roles of adult-derived precursor cells as building blocks for tissue repair and as delivery vehicles for molecular medicine. PMID:16202227

  10. Circulation and Chemotaxis of Fetal Hematopoietic Stem Cells

    PubMed Central

    2004-01-01

    The major site of hematopoiesis transitions from the fetal liver to the spleen and bone marrow late in fetal development. To date, experiments have not been performed to evaluate functionally the migration and seeding of hematopoietic stem cells (HSCs) during this period in ontogeny. It has been proposed that developmentally timed waves of HSCs enter the bloodstream only during distinct windows to seed the newly forming hematopoietic organs. Using competitive reconstitution assays to measure HSC activity, we determined the localization of HSCs in the mid-to-late gestation fetus. We found that multilineage reconstituting HSCs are present at low numbers in the blood at all timepoints measured. Seeding of fetal bone marrow and spleen occurred over several days, possibly while stem cell niches formed. In addition, using dual-chamber migration assays, we determined that like bone marrow HSCs, fetal liver HSCs migrate in response to stromal cell-derived factor-1α (SDF-1α); however, unlike bone marrow HSCs, the migratory response of fetal liver HSCs to SDF-1α is greatly increased in the presence of Steel factor (SLF), suggesting an important role for SLF in HSC homing to and seeding of the fetal hematopoietic tissues. Together, these data demonstrate that seeding of fetal organs by fetal liver HSCs does not require large fluxes of HSCs entering the fetal bloodstream, and that HSCs constitutively circulate at low levels during the gestational period from 12 to 17 days postconception. Newly forming hematopoietic tissues are seeded gradually by HSCs, suggesting initial seeding is occurring as hematopoietic niches in the spleen and bone marrow form and become capable of supporting HSC self-renewal. We demonstrate that fetal and adult HSCs exhibit specific differences in chemotactic behavior. While both migrate in response to SDF-1α, fetal HSCs also respond significantly to the cytokine SLF. In addition, the combination of SDF-1α and SLF results in substantially enhanced

  11. Spontaneous myogenic differentiation of Flk-1-positive cells from adult pancreas and other nonmuscle tissues.

    PubMed

    Di Rocco, Giuliana; Tritarelli, Alessandra; Toietta, Gabriele; Gatto, Ilaria; Iachininoto, Maria Grazia; Pagani, Francesca; Mangoni, Antonella; Straino, Stefania; Capogrossi, Maurizio C

    2008-02-01

    At the embryonic or fetal stages, autonomously myogenic cells (AMCs), i.e., cells able to spontaneously differentiate into skeletal myotubes, have been identified from several different sites other than skeletal muscle, including the vascular compartment. However, in the adult animal, AMCs from skeletal muscle-devoid tissues have been described in only two cases. One is represented by thymic myoid cells, a restricted population of committed myogenic progenitors of unknown derivation present in the thymic medulla; the other is represented by a small subset of adipose tissue-associated cells, which we recently identified. In the present study we report, for the first time, the presence of spontaneously differentiating myogenic precursors in the pancreas and in other skeletal muscle-devoid organs such as spleen and stomach, as well as in the periaortic tissue of adult mice. Immunomagnetic selection procedures indicate that AMCs derive from Flk-1(+) progenitors. Individual clones of myogenic cells from nonmuscle organs are morphologically and functionally indistinguishable from skeletal muscle-derived primary myoblasts. Moreover, they can be induced to proliferate in vitro and are able to participate in muscle regeneration in vivo. Thus, we provide evidence that fully competent myogenic progenitors can be derived from the Flk-1(+) compartment of several adult tissues that are embryologically unrelated to skeletal muscle. PMID:18094147

  12. The expression of c-kit protein in human adult and fetal tissues.

    PubMed

    Horie, K; Fujita, J; Takakura, K; Kanzaki, H; Suginami, H; Iwai, M; Nakayama, H; Mori, T

    1993-11-01

    The c-kit proto-oncogene encodes a tyrosine kinase receptor and is allelic with the dominant white-spotting (W) locus of the mouse. In this study we investigated the expression of human c-kit protein in various adult and fetal human tissues immunohistochemically using anti-human c-kit monoclonal antibody. To discriminate c-kit+ cells from mast cells expressing c-kit, mast cells were identified by staining with Toluidine blue. In oogonia, spermatogonia and skin melanocytes of the fetus and in oocytes of adult ovary, c-kit expression was detected. In adult uterus, c-kit+ cells were widely distributed in the basal layer of the endometrium, myometrium and cervix, the number and distribution being almost identical to those of mast cells. In fetal uterus, c-kit+ non-mast cells clustered beneath the epithelium and a few mast cells were observed in the myometrium and subserosal layer. In both adult and fetus, c-kit+ non-mast cells were detected within smooth muscle layers of the intestine, colon and oesophagus, while mast cells were observed in the mucosal and submucosal layers of these organs. In contrast to mice, no expression of c-kit protein was detected in the human placenta and decidua. Thus, the distribution of c-kit+ cells in various tissues is similar but not identical between adult and fetus and between human and mouse. PMID:7507133

  13. Postprandial Responses to Lipid and Carbohydrate Ingestion in Repeated Subcutaneous Adipose Tissue Biopsies in Healthy Adults

    PubMed Central

    Dordevic, Aimee L.; Pendergast, Felicity J.; Morgan, Han; Villas-Boas, Silas; Caldow, Marissa K.; Larsen, Amy E.; Sinclair, Andrew J.; Cameron-Smith, David

    2015-01-01

    Adipose tissue is a primary site of meta-inflammation. Diet composition influences adipose tissue metabolism and a single meal can drive an inflammatory response in postprandial period. This study aimed to examine the effect lipid and carbohydrate ingestion compared with a non-caloric placebo on adipose tissue response. Thirty-three healthy adults (age 24.5 ± 3.3 year (mean ± standard deviation (SD)); body mass index (BMI) 24.1 ± 3.2 kg/m2, were randomised into one of three parallel beverage groups; placebo (water), carbohydrate (maltodextrin) or lipid (dairy-cream). Subcutaneous, abdominal adipose tissue biopsies and serum samples were collected prior to (0 h), as well as 2 h and 4 h after consumption of the beverage. Adipose tissue gene expression levels of monocyte chemoattractant protein-1 (MCP-1), interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) increased in all three groups, without an increase in circulating TNF-α. Serum leptin (0.6-fold, p = 0.03) and adipose tissue leptin gene expression levels (0.6-fold, p = 0.001) decreased in the hours following the placebo beverage, but not the nutrient beverages. Despite increased inflammatory cytokine gene expression in adipose tissue with all beverages, suggesting a confounding effect of the repeated biopsy method, differences in metabolic responses of adipose tissue and circulating adipokines to ingestion of lipid and carbohydrate beverages were observed. PMID:26140541

  14. Postprandial Responses to Lipid and Carbohydrate Ingestion in Repeated Subcutaneous Adipose Tissue Biopsies in Healthy Adults.

    PubMed

    Dordevic, Aimee L; Pendergast, Felicity J; Morgan, Han; Villas-Boas, Silas; Caldow, Marissa K; Larsen, Amy E; Sinclair, Andrew J; Cameron-Smith, David

    2015-07-01

    Adipose tissue is a primary site of meta-inflammation. Diet composition influences adipose tissue metabolism and a single meal can drive an inflammatory response in postprandial period. This study aimed to examine the effect lipid and carbohydrate ingestion compared with a non-caloric placebo on adipose tissue response. Thirty-three healthy adults (age 24.5 ± 3.3 year (mean ± standard deviation (SD)); body mass index (BMI) 24.1 ± 3.2 kg/m2, were randomised into one of three parallel beverage groups; placebo (water), carbohydrate (maltodextrin) or lipid (dairy-cream). Subcutaneous, abdominal adipose tissue biopsies and serum samples were collected prior to (0 h), as well as 2 h and 4 h after consumption of the beverage. Adipose tissue gene expression levels of monocyte chemoattractant protein-1 (MCP-1), interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) increased in all three groups, without an increase in circulating TNF-α. Serum leptin (0.6-fold, p = 0.03) and adipose tissue leptin gene expression levels (0.6-fold, p = 0.001) decreased in the hours following the placebo beverage, but not the nutrient beverages. Despite increased inflammatory cytokine gene expression in adipose tissue with all beverages, suggesting a confounding effect of the repeated biopsy method, differences in metabolic responses of adipose tissue and circulating adipokines to ingestion of lipid and carbohydrate beverages were observed. PMID:26140541

  15. Plasticity in the Adult: How Should the Waddington Diagram Be Applied to Regenerating Tissues?

    PubMed

    Rajagopal, Jayaraj; Stanger, Ben Z

    2016-01-25

    Conrad Waddington's eponymous 1957 diagram provided a metaphorical framework for considering how sequential developmental fate decisions allow an egg to develop into an embryo. In recent years, the Waddington diagram has been repurposed to illustrate how cellular identity changes in the context of reprogramming. In this Perspective, we revisit the Waddington diagram in light of the emerging recognition that plasticity is part and parcel of adult regeneration. Specifically, we speculate that the "epigenetic landscapes" that define identity in adult tissues are dynamic, facilitating cellular de-differentiation and trans-differentiation in the setting of injury. PMID:26812013

  16. Distribution of bisphenol A into tissues of adult, neonatal, and fetal Sprague-Dawley rats

    SciTech Connect

    Doerge, Daniel R.; Twaddle, Nathan C.; Vanlandingham, Michelle; Brown, Ronald P.; Fisher, Jeffrey W.

    2011-09-15

    Bisphenol A (BPA) is an important industrial chemical used in the manufacture of polycarbonate plastic products and epoxy resin-based food can liners. The presence of BPA metabolites in urine of > 90% of Americans aged 6-60 suggests ubiquitous and frequent exposure in the range of 0.02-0.2 {mu}g/kg bw/d (25th-95th percentiles). The current study used LC/MS/MS to measure placental transfer and concentrations of aglycone (receptor-active) and conjugated (inactive) BPA in tissues from Sprague-Dawley rats administered deuterated BPA (100 {mu}g/kg bw) by oral and IV routes. In adult female rat tissues, the tissue/serum concentration ratios for aglycone BPA ranged from 0.7 in liver to 5 in adipose tissue, reflecting differences in tissue perfusion, composition, and metabolic capacity. Following IV administration to dams, placental transfer was observed for aglycone BPA into fetuses at several gestational days (GD), with fetal/maternal serum ratios of 2.7 at GD 12, 1.2 at GD 16, and 0.4 at GD 20; the corresponding ratios for conjugated BPA were 0.43, 0.65, and 3.7. These ratios were within the ranges observed in adult tissues and were not indicative of preferential accumulation of aglycone BPA or hydrolysis of conjugates in fetal tissue in vivo. Concentrations of aglycone BPA in GD 20 fetal brain were higher than in liver or serum. Oral administration of the same dose did not produce measurable levels of aglycone BPA in fetal tissues. Amniotic fluid consistently contained levels of BPA at or below those in maternal serum. Concentrations of aglycone BPA in tissues of neonatal rats decreased with age in a manner consistent with the corresponding circulating levels. Phase II metabolism of BPA increased with fetal age such that near-term fetus was similar to early post-natal rats. These results show that concentrations of aglycone BPA in fetal tissues are similar to those in other maternal and neonatal tissues and that maternal Phase II metabolism, especially following oral

  17. Dietary Iron Concentration May Influence Aging Process by Altering Oxidative Stress in Tissues of Adult Rats

    PubMed Central

    Arruda, Lorena Fernandes; Arruda, Sandra Fernandes; Campos, Natália Aboudib; de Valencia, Fernando Fortes; Siqueira, Egle Machado de Almeida

    2013-01-01

    Iron is an essential element. However, in its free form, iron participates in redox-reactions, leading to the production of free radicals that increase oxidative stress and the risk of damaging processes. Living organisms have an efficient mechanism that regulates iron absorption according to their iron content to protect against oxidative damage. The effects of restricted and enriched-iron diets on oxidative stress and aging biomarkers were investigated. Adult Wistar rats were fed diets containing 10, 35 or 350 mg/kg iron (adult restricted-iron, adult control-iron and adult enriched-iron groups, respectively) for 78 days. Rats aged two months were included as a young control group. Young control group showed higher hemoglobin and hematocrit values, lower levels of iron and lower levels of MDA or carbonyl in the major studied tissues than the adult control group. Restricted-iron diet reduced iron concentrations in skeletal muscle and oxidative damage in the majority of tissues and also increased weight loss. Enriched-iron diet increased hematocrit values, serum iron, gamma-glutamyl transferase, iron concentrations and oxidative stress in the majority of tissues. As expected, young rats showed higher mRNA levels of heart and hepatic L-Ferritin (Ftl) and kidneys SMP30 as well as lower mRNA levels of hepatic Hamp and interleukin-1 beta (Il1b) and also lower levels of liver protein ferritin. Restricted-iron adult rats showed an increase in heart Ftl mRNA and the enriched-iron adult rats showed an increase in liver nuclear factor erythroid derived 2 like 2 (Nfe2l2) and Il1b mRNAs and in gut divalent metal transporter-1 mRNA (Slc11a2) relative to the control adult group. These results suggest that iron supplementation in adult rats may accelerate aging process by increasing oxidative stress while iron restriction may retards it. However, iron restriction may also impair other physiological processes that are not associated with aging. PMID:23593390

  18. A Novel Population of Cells Expressing Both Hematopoietic and Mesenchymal Markers Is Present in the Normal Adult Bone Marrow and Is Augmented in a Murine Model of Marrow Fibrosis

    PubMed Central

    Ohishi, Masanobu; Ono, Wanida; Ono, Noriaki; Khatri, Richa; Marzia, Marilena; Baker, Emma K.; Root, Sierra H.; Wilson, Tremika Le-Shan; Iwamoto, Yukihide; Kronenberg, Henry M.; Aguila, Hector L.; Purton, Louise E.; Schipani, Ernestina

    2012-01-01

    Bone marrow (BM) fibrosis is a feature of severe hyperparathyroidism. Consistent with this observation, mice expressing constitutively active parathyroid hormone (PTH)/PTH-related peptide receptors (PPR) in osteoblasts (PPR*Tg) display BM fibrosis. To obtain insight into the nature of BM fibrosis in such a model, a double-mutant mouse expressing constitutively active PPR and green fluorescent protein (GFP) under the control of the type I collagen promoter (PPR*Tg/GFP) was generated. Confocal microscopy and flow cytometry revealed the presence of a cell population expressing GFP (GFP+) that was also positive for the hematopoietic marker CD45 in the BM of both PPR*Tg/GFP and control animals. This cell population was expanded in PPR*Tg/GFP. The existence of cells expressing both type I collagen and CD45 in the adult BM was confirmed by IHC and fluorescence-activated cell sorting. An analysis of total RNA extracted from sorted GFP+CD45+ cells showed that these cells produced type I collagen and PTH/PTH-related peptide receptor and receptor activator for NF-κB mRNAs, further supporting their features of being both mesenchymal and hematopoietic lineages. Similar cells, known as fibrocytes, are also present in pathological fibroses. Our findings, thus, indicate that the BM is a permissive microenvironment for the differentiation of fibrocyte-like cells and raise the possibility that these cells could contribute to the pathogenesis of BM fibrosis. PMID:22155108

  19. Adipogenic potential in human mesenchymal stem cells strictly depends on adult or foetal tissue harvest.

    PubMed

    Ragni, Enrico; Viganò, Mariele; Parazzi, Valentina; Montemurro, Tiziana; Montelatici, Elisa; Lavazza, Cristiana; Budelli, Silvia; Vecchini, Alba; Rebulla, Paolo; Giordano, Rosaria; Lazzari, Lorenza

    2013-11-01

    Cell-based therapies promise important developments for regenerative medicine purposes. Adipose tissue and the adipogenic process has become central to an increasing number of translational efforts in addition to plastic and reconstructive surgical applications. In recent experimental clinical trials, human mesenchymal stem cells (MSC) have been proven to be well tolerated because of their low immunoreactivity. MSC are multipotent cells found among mature cells in different tissues and organs with the potentiality to differentiate in many cell types, including osteocytes, chondrocytes and adipocytes, thus being a suitable cell source for tissue engineering strategies. We compared the adipogenic potential of MSC originated from two adult sources as fat pads and bone marrow, and from four foetal sources as umbilical cord blood, Wharton's jelly, amniotic fluid and preterm umbilical cord perivascular cells. Surprisingly, adult MSC displayed higher differentiation capacities confirmed by gene expression analysis on a selected panel of adipogenesis-related genes. Further, an in-depth molecular analysis highlighted the early and vigorous activation of the PPARγ transcription factor-cascade in adipose-derived MSC that resulted to be both delayed and reduced in foetal MSC accounting for their lack of adipogenic potential. Thus, MSC show a different degree of phenotypic plasticity depending on the source tissue, that should be taken into consideration for the selection of the most appropriate MSC type for specific tissue regeneration purposes. PMID:23942228

  20. Adult male mice conceived by in vitro fertilization exhibit increased glucocorticoid receptor expression in fat tissue.

    PubMed

    Simbulan, R K; Liu, X; Feuer, S K; Maltepe, E; Donjacour, A; Rinaudo, P

    2016-02-01

    Prenatal development is highly plastic and readily influenced by the environment. Adverse conditions have been shown to alter organ development and predispose offspring to chronic diseases, including diabetes and hypertension. Notably, it appears that the changes in glucocorticoid hormones or glucocorticoid receptor (GR) levels in peripheral tissues could play a role in the development of chronic diseases. We have previously demonstrated that in vitro fertilization (IVF) and preimplantation embryo culture is associated with growth alterations and glucose intolerance in mice. However, it is unknown if GR signaling is affected in adult IVF offspring. Here we show that GR expression is increased in inbred (C57Bl6/J) and outbred (CF-1× B6D2F1/J) blastocysts following in vitro culture and elevated levels are also present in the adipose tissue of adult male mice. Importantly, genes involved in lipolysis and triglyceride synthesis and responsive to GR were also increased in adipose tissue, indicating that increased GR activates downstream gene pathways. The promoter region of GR, previously reported to be epigenetically modified by perinatal manipulation, showed no changes in DNA methylation status. Our findings demonstrate that IVF results in a long-term change in GR gene expression in a sex- and tissue-specific manner. These changes in adipose tissues may well contribute to the metabolic phenotype in mice conceived by IVF. PMID:26511158

  1. Bcl-2 proteins in development, health, and disease of the hematopoietic system.

    PubMed

    Kollek, Matthias; Müller, Alexandra; Egle, Alexander; Erlacher, Miriam

    2016-08-01

    Members of the Bcl-2 protein family regulate cell fate decisions following a variety of developmental cues or stress signals, with the outcomes of cell death or survival, thus shaping multiple mammalian tissues. This review describes in detail how anti- and proapoptotic Bcl-2 proteins contribute to the development and functioning of the fetal and adult hematopoietic systems and how they influence the generation and maintenance of different hematopoietic lineages. An overview on how stress signals such as genotoxic stress or inflammation can compromise blood cell production, partially by engaging the intrinsic apoptosis pathway, is presented. Finally, the review describes how Bcl-2 protein deregulation-either leading to increased apoptosis resistance or excessive cell death-contributes to many hematological disorders, with specific focus on rare disorders of hematopoiesis and how this knowledge may be used therapeutically. PMID:26881825

  2. Signaling from the Sympathetic Nervous System Regulates Hematopoietic Stem Cell Emergence during Embryogenesis

    PubMed Central

    Fitch, Simon R.; Kimber, Gillian M.; Wilson, Nicola K.; Parker, Aimée; Mirshekar-Syahkal, Bahar; Göttgens, Berthold; Medvinsky, Alexander; Dzierzak, Elaine; Ottersbach, Katrin

    2012-01-01

    Summary The first adult-repopulating hematopoietic stem cells (HSCs) emerge in the aorta-gonads-mesonephros (AGM) region of the embryo. We have recently identified the transcription factor Gata3 as being upregulated in this tissue specifically at the time of HSC emergence. We now demonstrate that the production of functional and phenotypic HSCs in the AGM is impaired in the absence of Gata3. Furthermore, we show that this effect on HSC generation is secondary to the role of Gata3 in the production of catecholamines, the mediators of the sympathetic nervous system (SNS), thus making these molecules key components of the AGM HSC niche. These findings demonstrate that the recently described functional interplay between the hematopoietic system and the SNS extends to the earliest stages of their codevelopment and highlight the fact that HSC development needs to be viewed in the context of the development of other organs. PMID:23040481

  3. Classification and Subtype Prediction of Adult Soft Tissue Sarcoma by Functional Genomics

    PubMed Central

    Segal, Neil H.; Pavlidis, Paul; Antonescu, Cristina R.; Maki, Robert G.; Noble, William S.; DeSantis, Diann; Woodruff, James M.; Lewis, Jonathan J.; Brennan, Murray F.; Houghton, Alan N.; Cordon-Cardo, Carlos

    2003-01-01

    Adult soft tissue sarcomas are a heterogeneous group of tumors, including well-described subtypes by histological and genotypic criteria, and pleomorphic tumors typically characterized by non-recurrent genetic aberrations and karyotypic heterogeneity. The latter pose a diagnostic challenge, even to experienced pathologists. We proposed that gene expression profiling in soft tissue sarcoma would identify a genomic-based classification scheme that is useful in diagnosis. RNA samples from 51 pathologically confirmed cases, representing nine different histological subtypes of adult soft tissue sarcoma, were examined using the Affymetrix U95A GeneChip. Statistical tests were performed on experimental groups identified by cluster analysis, to find discriminating genes that could subsequently be applied in a support vector machine algorithm. Synovial sarcomas, round-cell/myxoid liposarcomas, clear-cell sarcomas and gastrointestinal stromal tumors displayed remarkably distinct and homogenous gene expression profiles. Pleomorphic tumors were heterogeneous. Notably, a subset of malignant fibrous histiocytomas, a controversialhistological subtype, was identified as a distinct genomic group. The support vector machine algorithm supported a genomic basis for diagnosis, with both high sensitivity and specificity. In conclusion, we showed gene expression profiling to be useful in classification and diagnosis, providing insights into pathogenesis and pointing to potential new therapeutic targets of soft tissue sarcoma. PMID:12875988

  4. [The three-dimensional culture of adult mesenchymal stem cells for intervertebral disc tissue engineering].

    PubMed

    Feng, Ganjun; Liu, Hao; Deng, Li; Chen, Xiaohe; Zhao, Xianfeng; Liang, Tao; Li, Xiuqiong

    2009-12-01

    Intervertebral disc (IVD) degeneration is one of the major causes of low back pain. As current clinical treatments are aimed at restoring biomechanical function and providing symptomatic relief, the methods focused on biological repair have aroused interest and several tissue engineering approaches using different cell types have been proposed. Owing to the unsuitable nature of degenerate cells for tissue engineering, attention has been given to the use of mesenchymal stem cells (MSCs). In this connection, we have made a study on the characteristics of MSCs derived from adult bone marrow and on the feasibility of constructing IVD tissue-engineering cell under a Three-Dimensional Pellet Culture System. The human bone marrow MSCs were isolated and purified with density gradient solution and attachment-independent culture system. MSCs isolated using this method are a homogeneous population as indicated by morphology and other criteria. They have the capacity for self-renewal and proliferation, and the multilineage potential to differentiate. PMID:20095491

  5. Pathology, physiologic parameters, tissue contaminants, and tissue thiamine in morbid and healthy central Florida adult American alligators (Alligator mississippiensis).

    PubMed

    Honeyfield, Dale C; Ross, J Perran; Carbonneau, Dwayne A; Terrell, Scott P; Woodward, Allan R; Schoeb, Trenton R; Perceval, H Franklin; Hinterkopf, Joy P

    2008-04-01

    An investigation of adult alligator (Alligator mississippiensis) mortalities in Lake Griffin, central Florida, was conducted from 1998-2004. Alligator mortality was highest in the months of April and May and annual death count peaked in 2000. Bacterial pathogens, heavy metals, and pesticides were not linked with the mortalities. Blood chemistry did not point to any clinical diagnosis, although differences between impaired and normal animals were noted. Captured alligators with signs of neurologic impairment displayed unresponsive and uncoordinated behavior. Three of 21 impaired Lake Griffin alligators were found to have neural lesions characteristic of thiamine deficiency in the telencephalon, particularly the dorsal ventricular ridge. In some cases, lesions were found in the thalamus, and parts of the midbrain. Liver and muscle tissue concentrations of thiamine (vitamin B(1)) were lowest in impaired Lake Griffin alligators when compared to unimpaired alligators or to alligators from Lake Woodruff. The consumption of thiaminase-positive gizzard shad (Dorosoma cepedianum) is thought to have been the cause of the low tissue thiamine and resulting mortalities. PMID:18436661

  6. Pathology, physiologic parameters, tissue contaminants, and tissue thiamine in morbid and healthy central Florida adult American alligators (Alligator mississippiensis)

    USGS Publications Warehouse

    Honeyfield, D.C.; Ross, J.P.; Carbonneau, D.A.; Terrell, S.P.; Woodward, A.R.; Schoeb, T.R.; Perceval, H.F.; Hinterkopf, J.P.

    2008-01-01

    An investigation of adult alligator (Alligator mississippiensis) mortalities in Lake Griffin, central Florida, was conducted from 1998-2004. Alligator mortality was highest in the months of April and May and annual death count peaked in 2000. Bacterial pathogens, heavy metals, and pesticides were not linked with the mortalities. Blood chemistry did not point to any clinical diagnosis, although differences between impaired and normal animals were noted. Captured alligators with signs of neurologic impairment displayed unresponsive and uncoordinated behavior. Three of 21 impaired Lake Griffin alligators were found to have neural lesions characteristic of thiamine deficiency in the telencephalon, particularly the dorsal ventricular ridge. In some cases, lesions were found in the thalamus, and parts of the midbrain. Liver and muscle tissue concentrations of thiamine (vitamin B"1) were lowest in impaired Lake Griffin alligators when compared to unimpaired alligators or to alligators from Lake Woodruff. The consumption of thiaminase-positive gizzard shad (Dorosoma cepedianum) is thought to have been the cause of the low tissue thiamine and resulting mortalities. ?? Wildlife Disease Association 2008.

  7. Are hematopoietic stem cells involved in hepatocarcinogenesis?

    PubMed Central

    Antonino, Matteo; Del Prete, Valentina; Neve, Viviana; Scavo, Maria Principia; Barone, Michele

    2014-01-01

    The liver has three cell lineages able to proliferate after a hepatic injury: the mature hepatocyte, the ductular “bipolar” progenitor cell termed “oval cell” and the putative periductular stem cell. Hepatocytes can only produce other hepatocytes whereas ductular progenitor cells are considerate bipolar since they can give rise to biliary cells or hepatocytes. Periductular stem cells are rare in the liver, have a very long proliferation potential and may be multipotent, being this aspect still under investigation. They originate in the bone marrow since their progeny express genetic markers of donor hematopoietic cells after bone marrow transplantation. Since the liver is the hematopoietic organ of the fetus, it is possible that hematopoietic stem cells may reside in the liver of the adult. This assumption is proved by the finding that oval cells express hematopoietic markers like CD34, CD45, CD 109, Thy-1, c-kit, and others, which are also expressed by bone marrow-derived hematopoietic stem cells (BMSCs). Few and discordant studies have evaluated the role of BMSC in hepatocarcinogenesis so far and further studies in vitro and in vivo are warranted in order to definitively clarify such an issue. PMID:25202697

  8. Fetal hematopoietic stem cells express MFG-E8 during mouse embryogenesis.

    PubMed

    Lee, Jaehun; Choi, Byung-il; Park, Seo Young; An, Su Yeon; Han, Jiyou; Kim, Jong-Hoon

    2015-01-01

    The milk fat globule-EGF-factor 8 protein (MFG-E8) has been identified in various tissues, where it has an important role in intercellular interactions, cellular migration, and neovascularization. Previous studies showed that MFG-E8 is expressed in different cell types under normal and pathophysiological conditions, but its expression in hematopoietic stem cells (HSCs) during hematopoiesis has not been reported. In the present study, we investigated MFG-E8 expression in multiple hematopoietic tissues at different stages of mouse embryogenesis. Using immunohistochemistry, we showed that MFG-E8 was specifically expressed in CD34(+) HSCs at all hematopoietic sites, including the yolk sac, aorta-gonad-mesonephros region, placenta and fetal liver, during embryogenesis. Fluorescence-activated cell sorting and polymerase chain reaction analyses demonstrated that CD34(+) cells, purified from the fetal liver, expressed additional HSC markers, c-Kit and Sca-1, and that these CD34(+) cells, but not CD34(-) cells, highly expressed MFG-E8. We also found that MFG-E8 was not expressed in HSCs in adult mouse bone marrow, and that its expression was confined to F4/80(+) macrophages. Together, this study demonstrates, for the first time, that MFG-8 is expressed in fetal HSC populations, and that MFG-E8 may have a role in embryonic hematopoiesis. PMID:26206421

  9. In Vivo Deletion of the Cebpa +37 kb Enhancer Markedly Reduces Cebpa mRNA in Myeloid Progenitors but Not in Non-Hematopoietic Tissues to Impair Granulopoiesis.

    PubMed

    Guo, Hong; Cooper, Stacy; Friedman, Alan D

    2016-01-01

    The murine Cebpa gene contains a +37 kb, evolutionarily conserved 440 bp enhancer that directs high-level expression to myeloid progenitors in transgenic mice. The enhancer is bound and activated by Runx1, Scl, GATA2, C/EBPα, c-Myb, Pu.1, and additional Ets factors in myeloid cells. CRISPR/Cas9-mediated replacement of the wild-type enhancer with a variant mutant in its seven Ets sites leads to 20-fold reduction of Cebpa mRNA in the 32Dcl3 myeloid cell line. To determine the effect of deleting the enhancer in vivo, we now characterize C57BL/6 mice in which loxP sites flank a 688 bp DNA segment containing the enhancer. CMV-Cre mediated germline deletion resulted in diminution of the expected number of viable Enh(f/f);CMV-Cre offspring, with 28-fold reduction in marrow Cebpa mRNA but normal levels in liver, lung, adipose, intestine, muscle, and kidney. Cre-transduction of lineage-negative marrow cells in vitro reduced Cebpa mRNA 12-fold, with impairment of granulocytic maturation, morphologic blast accumulation, and IL-3 dependent myeloid colony replating for >12 generations. Exposure of Enh(f/f);Mx1-Cre mice to pIpC led to 14-fold reduction of Cebpa mRNA in GMP or CMP, 30-fold reduction in LSK, and <2-fold reduction in the LSK/SLAM subset. FACS analysis of marrow from these mice revealed 10-fold reduced neutrophils, 3-fold decreased GMP, and 3-fold increased LSK cells. Progenitor cell cycle progression was mildly impaired. Granulocyte and B lymphoid colony forming units were reduced while monocytic and erythroid colonies were increased, with reduced Pu.1 and Gfi1 and increased Egr1 and Klf4 in GMP. Finally, competitive transplantation indicated preservation of functional long-term hematopoietic stem cells upon enhancer deletion and confirmed marrow-intrinsic impairment of granulopoiesis and B cell generation with LSK and monocyte lineage expansion. These findings demonstrate a critical role for the +37 kb Cebpa enhancer for hematopoietic-specific Cebpa expression

  10. In Vivo Deletion of the Cebpa +37 kb Enhancer Markedly Reduces Cebpa mRNA in Myeloid Progenitors but Not in Non-Hematopoietic Tissues to Impair Granulopoiesis

    PubMed Central

    Guo, Hong; Cooper, Stacy; Friedman, Alan D.

    2016-01-01

    The murine Cebpa gene contains a +37 kb, evolutionarily conserved 440 bp enhancer that directs high-level expression to myeloid progenitors in transgenic mice. The enhancer is bound and activated by Runx1, Scl, GATA2, C/EBPα, c-Myb, Pu.1, and additional Ets factors in myeloid cells. CRISPR/Cas9-mediated replacement of the wild-type enhancer with a variant mutant in its seven Ets sites leads to 20-fold reduction of Cebpa mRNA in the 32Dcl3 myeloid cell line. To determine the effect of deleting the enhancer in vivo, we now characterize C57BL/6 mice in which loxP sites flank a 688 bp DNA segment containing the enhancer. CMV-Cre mediated germline deletion resulted in diminution of the expected number of viable Enh(f/f);CMV-Cre offspring, with 28-fold reduction in marrow Cebpa mRNA but normal levels in liver, lung, adipose, intestine, muscle, and kidney. Cre-transduction of lineage-negative marrow cells in vitro reduced Cebpa mRNA 12-fold, with impairment of granulocytic maturation, morphologic blast accumulation, and IL-3 dependent myeloid colony replating for >12 generations. Exposure of Enh(f/f);Mx1-Cre mice to pIpC led to 14-fold reduction of Cebpa mRNA in GMP or CMP, 30-fold reduction in LSK, and <2-fold reduction in the LSK/SLAM subset. FACS analysis of marrow from these mice revealed 10-fold reduced neutrophils, 3-fold decreased GMP, and 3-fold increased LSK cells. Progenitor cell cycle progression was mildly impaired. Granulocyte and B lymphoid colony forming units were reduced while monocytic and erythroid colonies were increased, with reduced Pu.1 and Gfi1 and increased Egr1 and Klf4 in GMP. Finally, competitive transplantation indicated preservation of functional long-term hematopoietic stem cells upon enhancer deletion and confirmed marrow-intrinsic impairment of granulopoiesis and B cell generation with LSK and monocyte lineage expansion. These findings demonstrate a critical role for the +37 kb Cebpa enhancer for hematopoietic-specific Cebpa expression

  11. Progerin expression disrupts critical adult stem cell functions involved in tissue repair.

    PubMed

    Pacheco, Laurin Marie; Gomez, Lourdes Adriana; Dias, Janice; Ziebarth, Noel M; Howard, Guy A; Schiller, Paul C

    2014-12-01

    Vascular disease is one of the leading causes of death worldwide. Vascular repair, essential for tissue maintenance, is critically reduced during vascular disease and aging. Efficient vascular repair requires functional adult stem cells unimpaired by aging or mutation. One protein candidate for reducing stem cell?mediated vascular repair is progerin, an alternative splice variant of lamin A. Progerin results from erroneous activation of cryptic splice sites within the LMNA gene, and significantly increases during aging. Mutations triggering progerin overexpression cause the premature aging disorder Hutchinson-Gilford Progeria Syndrome (HGPS), in which patients die at approximately 13-years of age due to atherosclerosis-induced disease. Progerin expression affects tissues rich in cells that can be derived from marrow stromal cells (MSCs. Studies using various MSC subpopulations and models have led to discrepant results. Using a well-defined, immature subpopulation of MSCs, Marrow Isolated Adult Multilineage Inducible (MIAMI) cells, we find progerin significantly disrupts expression and localization of self-renewal markers, proliferation, migration, and membrane elasticity. One potential treatment, farnesyltransferase inhibitor, ameliorates some of these effects. Our results confirm proposed progerin-induced mechanisms and suggest novel ways in which progerin disturbs critical stem cell functions collectively required for proper tissue repair, offering promising treatment targets for future therapies. PMID:25567453

  12. Progerin expression disrupts critical adult stem cell functions involved in tissue repair

    PubMed Central

    Pacheco, Laurin Marie; Gomez, Lourdes Adriana; Dias, Janice; Ziebarth, Noel M; Howard, Guy A; Schiller, Paul C

    2014-01-01

    Vascular disease is one of the leading causes of death worldwide. Vascular repair, essential for tissue maintenance, is critically reduced during vascular disease and aging. Efficient vascular repair requires functional adult stem cells unimpaired by aging or mutation. One protein candidate for reducing stem cell–mediated vascular repair is progerin, an alternative splice variant of lamin A. Progerin results from erroneous activation of cryptic splice sites within the LMNA gene, and significantly increases during aging. Mutations triggering progerin overexpression cause the premature aging disorder Hutchinson-Gilford Progeria Syndrome (HGPS), in which patients die at approximately 13-years of age due to atherosclerosis-induced disease. Progerin expression affects tissues rich in cells that can be derived from marrow stromal cells (MSCs). Studies using various MSC subpopulations and models have led to discrepant results. Using a well-defined, immature subpopulation of MSCs, Marrow Isolated Adult Multilineage Inducible (MIAMI) cells, we find progerin significantly disrupts expression and localization of self-renewal markers, proliferation, migration, and membrane elasticity. One potential treatment, farnesyltransferase inhibitor, ameliorates some of these effects. Our results confirm proposed progerin-induced mechanisms and suggest novel ways in which progerin disturbs critical stem cell functions collectively required for proper tissue repair, offering promising treatment targets for future therapies. PMID:25567453

  13. Co-infusion of autologous adipose tissue derived insulin-secreting mesenchymal stem cells and bone marrow derived hematopoietic stem cells: viable therapy for type III.C. a diabetes mellitus.

    PubMed

    Thakkar, Umang G; Vanikar, Aruna V; Trivedi, Hargovind L

    2013-01-01

    Transition from acute pancreatitis to insulin-dependent diabetes mellitus (IDDM) is a rare manifestation of primary hyperparathyroidism caused by parathyroid adenoma because of impaired glucose tolerance and suppresses insulin secretion. We report the case of a 26-year-old male with pancreatic diabetes caused by parathyroid adenoma induced chronic pancreatitis. He had serum C-peptide 0.12 ng/ml, glutamic acid decarboxylase antibody 5.0 IU/ml, and glycosylated hemoglobin (HbA1C) 8.9%, and required 72 IU/day of biphasic-isophane insulin injection for uncontrolled hyperglycemia. We treated him with his own adipose tissue derived insulin-secreting mesenchymal stem-cells (IS-ADMSC) along with his bone marrow derived hematopoietic stem cells (BM-HSC). Autologous IS-ADMSC + BM-HSC were infused into subcutaneous tissue, portal and thymic circulation without any conditioning. Over a follow-up of 27 months, the patient is maintaining fasting and postprandial blood sugar levels of 132 and 165 mg/dl, respectively, with HbA1C 6.8% and requiring 36 IU/day of biphasic-isophane insulin. Co-infusion of IS-ADMSC + BM-HSC offers a safe and viable therapy for type III.C.a Diabetes Mellitus. PMID:24385073

  14. Identification of a population of cells with hematopoietic stem cell properties in mouse aorta-gonad-mesonephros cultures

    SciTech Connect

    Nobuhisa, Ikuo; Ohtsu, Naoki; Okada, Seiji; Nakagata, Naomi; Taga, Tetsuya . E-mail: taga@kaiju.medic.kumamoto-u.ac.jp

    2007-03-10

    The aorta-gonad-mesonephros (AGM) region is a primary source of definitive hematopoietic cells in the midgestation mouse embryo. In cultures of dispersed AGM regions, adherent cells containing endothelial cells are observed first, and then non-adherent hematopoietic cells are produced. Here we report on the characterization of hematopoietic cells that emerge in the AGM culture. Based on the expression profiles of CD45 and c-Kit, we defined three cell populations: CD45{sup low} c-Kit{sup +} cells that had the ability to form hematopoietic cell colonies in methylcellulose media and in co-cultures with stromal cells; CD45{sup low} c-Kit{sup -} cells that showed a granulocyte morphology; CD45{sup high} c-Kit{sup low/-} that exhibited a macrophage morphology. In co-cultures of OP9 stromal cells and freshly prepared AGM cultures, CD45{sup low} c-Kit{sup +} cells from the AGM culture had the abilities to reproduce CD45{sup low} c-Kit{sup +} cells and differentiate into CD45{sup low} c-Kit{sup -} and CD45{sup high} c-Kit{sup low/-} cells, whereas CD45{sup low} c-Kit{sup -} and CD45{sup high} c-Kit{sup low/-} did not produce CD45{sup low} c-Kit{sup +} cells. Furthermore, CD45{sup low} c-Kit{sup +} cells displayed a long-term repopulating activity in adult hematopoietic tissue when transplanted into the liver of irradiated newborn mice. These results indicate that CD45{sup low} c-Kit{sup +} cells from the AGM culture have the potential to reconstitute multi-lineage hematopoietic cells.

  15. INTERINDIVIDUAL VARIATION IN SERUM CHOLESTEROL IS ASSOCIATED WITH REGIONAL WHITE MATTER TISSUE INTEGRITY IN OLDER ADULTS

    PubMed Central

    Williams, Victoria J.; Leritz, Elizabeth C.; Shepel, Juli; McGlinchey, Regina E.; Milberg, William P.; Rudolph, James L.; Lipsitz, Lewis A.; Salat, David H.

    2013-01-01

    Prior research has demonstrated links among vascular health and the occurrence of stroke, mild cognitive decline, and dementia in older adults. However, little is known about whether normal variation in vascular indicators may be related to changes in neural tissue integrity. Even less is known about how the brain is affected by cholesterol levels in the normal to moderate risk range, leading up to overt disease pathology. This study examined associations between serum lipid levels and DTI indicators of white matter (WM) structural integrity in a sample of 125 generally healthy older adults aged 43–87 years. Whole-brain voxelwise analysis, controlling for age and gender, revealed low density lipoprotein levels (LDL) as the most robust correlate of regional WM structural integrity of the measured lipids. Higher LDL was associated with decreased WM integrity in right frontal and temporal regions, the superior longitudinal fasciculus and internal/external capsules. Increasing LDL was associated with increased radial and axial diffusivity; however, more widespread statistical effects were found for radial diffusivity. These findings suggest that normal inter-individual variation in lipid levels is associated with compromised regional WM integrity, even in individuals below clinical thresholds for hyperlipidemia. Given the prevalence of cholesterol-associated sequelae in older adults, and mounting evidence suggesting a vascular role in the etiology of dementia, the current data suggest that understanding the relationship between cholesterol and brain tissue microstructure may have important clinical implications for early detection of vascular-related cognitive disorders and optimal regulation of serum lipids to maintain neural health in older adults. PMID:22438182

  16. Periodontal implications of orthodontic treatment in adults with reduced or normal periodontal tissues versus those of adolescents.

    PubMed

    Boyd, R L; Leggott, P J; Quinn, R S; Eakle, W S; Chambers, D

    1989-09-01

    This longitudinal study monitored periodontal status in 20 adults and 20 adolescents undergoing fixed orthodontic treatment. Ten adults had generalized periodontitis and received periodontal treatment, including periodontal surgery, before orthodontic treatment. They also received periodontal maintenance at 3-month intervals during orthodontic treatment. The other 10 adults had normal periodontal tissues. Neither these latter adults nor the adolescents received periodontal maintenance during orthodontic treatment. Periodontal status was determined (1) at six standard sites before fixed appliances were placed (baseline), (2) at 1, 3, 6, 9, 12, and 18 months after appliances had been placed, and (3) 1, 3, 6, and 12 months after appliances had been removed. At each of these visits, these sites were assessed for plaque index, gingival index, bleeding tendency, and pocket depth. Loss of attachment between baseline and 3 months after appliances were removed and tooth loss were also determined. Complete data were obtained for 15 adolescents and 14 adults. During orthodontic treatment the adolescent group showed significantly more (p less than 0.05) periodontal inflammation and supragingival plaque than the adults; after appliances were removed, this pattern was no longer statistically significant. For loss of attachment, there were no significant differences among adolescents, adults with normal periodontal tissues, or adults with reduced but healthy periodontal tissues who had undergone treatment for periodontal disease. For tooth loss, three nonstudy site teeth with pockets deeper than 6 mm and/or furcation involvements were lost because of periodontal abscesses in the adult group treated for periodontal disease. PMID:2773862

  17. Eleven secondary cancers after hematopoietic stem cell transplantation using a total body irradiation-based regimen in 370 consecutive pediatric and adult patients.

    PubMed

    Omori, Mami; Yamashita, Hideomi; Shinohara, Akihito; Kurokawa, Mineo; Takita, Jyunko; Hiwatari, Mitsuteru; Nakagawa, Keiichi

    2013-01-01

    About the bone marrow transplantation that high dose chemotherapy and total-body irradiation (TBI) are used for as conditioning regimen, a late toxicity may become the problem in the long-term survival patient. One of the toxicities which has been implied to be associated with TBI is secondary cacinogenesis. Between June 1995 and December 2010, 370 patients who were undergoing allogeneic hematopoietic stem cell transplantation using a TBI-based regimen at our department, were the subjects of this study. Eleven secondary cancers occurred in 10 patients. The median time from transplantation to diagnosis of a secondary cancer was 6.8 years. In this analysis, the cumulative incidence rate of secondary cancer at 5 and 10 years was 2.15% and 6.46%, respectively after TBI in our institution. PMID:24040584

  18. Expression of tissue polypeptide antigen (TPA) in fetal and adult liver: changes in liver disease.

    PubMed Central

    Burt, A D; Stewart, J A; Aitchison, M; MacSween, R N

    1987-01-01

    The distribution of tissue polypeptide antigen (40 kD molecular weight) in normal adult and fetal liver, and in liver disease was investigated and compared with the distribution of low and high molecular weight cytokeratins. In normal liver tissue polypeptide antigen was found only in bile duct epithelium; this distribution is similar to that of high molecular weight cytokeratin, but differs from that of low molecular weight cytokeratins. In liver disease it was found in areas of ductular transformation; in Mallory's bodies; and in alcoholic liver disease and primary biliary cirrhosis in some hepatocytes that did not contain Mallory's bodies. Images Fig 1 Fig 2 Fig 3 Fig 4 Fig 5 Fig 6 PMID:2442199

  19. Efficient Cargo Delivery into Adult Brain Tissue Using Short Cell-Penetrating Peptides

    PubMed Central

    Thomas, Alvin Kuriakose; Bhattarai, Prabesh; Zhang, Yixin; Brand, Michael

    2015-01-01

    Zebrafish brains can regenerate lost neurons upon neurogenic activity of the radial glial progenitor cells (RGCs) that reside at the ventricular region. Understanding the molecular events underlying this ability is of great interest for translational studies of regenerative medicine. Therefore, functional analyses of gene function in RGCs and neurons are essential. Using cerebroventricular microinjection (CVMI), RGCs can be targeted efficiently but the penetration capacity of the injected molecules reduces dramatically in deeper parts of the brain tissue, such as the parenchymal regions that contain the neurons. In this report, we tested the penetration efficiency of five known cell-penetrating peptides (CPPs) and identified two– polyR and Trans – that efficiently penetrate the brain tissue without overt toxicity in a dose-dependent manner as determined by TUNEL staining and L-Plastin immunohistochemistry. We also found that polyR peptide can help carry plasmid DNA several cell diameters into the brain tissue after a series of coupling reactions using DBCO-PEG4-maleimide-based Michael’s addition and azide-mediated copper-free click reaction. Combined with the advantages of CVMI, such as rapidness, reproducibility, and ability to be used in adult animals, CPPs improve the applicability of the CVMI technique to deeper parts of the central nervous system tissues. PMID:25894337

  20. Cell Competition Modifies Adult Stem Cell and Tissue Population Dynamics in a JAK-STAT-Dependent Manner

    PubMed Central

    Kolahgar, Golnar; Suijkerbuijk, Saskia J.E.; Kucinski, Iwo; Poirier, Enzo Z.; Mansour, Sarah; Simons, Benjamin D.; Piddini, Eugenia

    2015-01-01

    Summary Throughout their lifetime, cells may suffer insults that reduce their fitness and disrupt their function, and it is unclear how these potentially harmful cells are managed in adult tissues. We address this question using the adult Drosophila posterior midgut as a model of homeostatic tissue and ribosomal Minute mutations to reduce fitness in groups of cells. We take a quantitative approach combining lineage tracing and biophysical modeling and address how cell competition affects stem cell and tissue population dynamics. We show that healthy cells induce clonal extinction in weak tissues, targeting both stem and differentiated cells for elimination. We also find that competition induces stem cell proliferation and self-renewal in healthy tissue, promoting selective advantage and tissue colonization. Finally, we show that winner cell proliferation is fueled by the JAK-STAT ligand Unpaired-3, produced by Minute−/+ cells in response to chronic JNK stress signaling. PMID:26212135

  1. Cell Competition Modifies Adult Stem Cell and Tissue Population Dynamics in a JAK-STAT-Dependent Manner.

    PubMed

    Kolahgar, Golnar; Suijkerbuijk, Saskia J E; Kucinski, Iwo; Poirier, Enzo Z; Mansour, Sarah; Simons, Benjamin D; Piddini, Eugenia

    2015-08-10

    Throughout their lifetime, cells may suffer insults that reduce their fitness and disrupt their function, and it is unclear how these potentially harmful cells are managed in adult tissues. We address this question using the adult Drosophila posterior midgut as a model of homeostatic tissue and ribosomal Minute mutations to reduce fitness in groups of cells. We take a quantitative approach combining lineage tracing and biophysical modeling and address how cell competition affects stem cell and tissue population dynamics. We show that healthy cells induce clonal extinction in weak tissues, targeting both stem and differentiated cells for elimination. We also find that competition induces stem cell proliferation and self-renewal in healthy tissue, promoting selective advantage and tissue colonization. Finally, we show that winner cell proliferation is fueled by the JAK-STAT ligand Unpaired-3, produced by Minute(-/+) cells in response to chronic JNK stress signaling. PMID:26212135

  2. [Origin of Hematopoietic Stem Cells in Bone Marrow--Endothelial to Hematopoietic Transition (EHT)?].

    PubMed

    Wang, Fen; Yuan, Yan; Chen, Tong

    2015-06-01

    In contrast to primitive hematopoiesis, during embryonic definitive hematopoiesis, it has been demonstrated that multilineage hematopoietic stem/progenitor cells (HSPCs) arise from hemogenic endothelium, and the endothelial to hematopoietic transition (EHT) exists within the yolk sac, placenta, AGM, mouse head vascular and extraembryonic vessels. However, whether hemogenic endothelial cells contribute to blood cell development at other sites of definitive hematopoiesis, including fetal liver and bone marrow, remains largely unknown. Recently, more and more researches showed that hematopoiesis within bone marrow had a close relationship with vascular endothelium development, too. This review summarizes the mechanism of EHT during embryo development, and discuss whether EHT exists in adult hematopoiesis. PMID:26117052

  3. Effect of anti-sclerostin therapy and osteogenesis imperfecta on tissue-level properties in growing and adult mice while controlling for tissue age.

    PubMed

    Sinder, Benjamin P; Lloyd, William R; Salemi, Joseph D; Marini, Joan C; Caird, Michelle S; Morris, Michael D; Kozloff, Kenneth M

    2016-03-01

    Bone composition and biomechanics at the tissue-level are important contributors to whole bone strength. Sclerostin antibody (Scl-Ab) is a candidate anabolic therapy for the treatment of osteoporosis that increases bone formation, bone mass, and bone strength in animal studies, but its effect on bone quality at the tissue-level has received little attention. Pre-clinical studies of Scl-Ab have recently expanded to include diseases with altered collagen and material properties such as osteogenesis imperfecta (OI). The purpose of this study was to investigate the role of Scl-Ab on bone quality by determining bone material composition and tissue-level mechanical properties in normal wild type (WT) tissue, as well as mice with a typical OI Gly➔Cys mutation (Brtl/+) in type I collagen. Rapidly growing (3-week-old) and adult (6-month-old) WT and Brtl/+ mice were treated for 5weeks with Scl-Ab. Fluorescent guided tissue-level bone composition analysis (Raman spectroscopy) and biomechanical testing (nanoindentation) were performed at multiple tissue ages. Scl-Ab increased mineral to matrix in adult WT and Brtl/+ at tissue ages of 2-4wks. However, no treatment related changes were observed in mineral to matrix levels at mid-cortex, and elastic modulus was not altered by Scl-Ab at any tissue age. Increased mineral-to-matrix was phenotypically observed in adult Brtl/+ OI mice (at tissue ages>3wks) and rapidly growing Brtl/+ (at tissue ages>4wks) mice compared to WT. At identical tissue ages defined by fluorescent labels, adult mice had generally lower mineral to matrix ratios and a greater elastic modulus than rapidly growing mice, demonstrating that bone matrix quality can be influenced by animal age and tissue age alike. In summary, these data suggest that Scl-Ab alters the matrix chemistry of newly formed bone while not affecting the elastic modulus, induces similar changes between Brtl/+ and WT mice, and provides new insight into the interaction between tissue age and

  4. High-efficiency immunomagnetic isolation of solid tissue-originated integrin-expressing adult stem cells.

    PubMed

    Palmon, Aaron; David, Ran; Neumann, Yoav; Stiubea-Cohen, Raluca; Krief, Guy; Aframian, Doron J

    2012-02-01

    Isolation of highly pure specific cell types is crucial for successful adult stem cell-based therapy. As the number of such cells in adult tissue is low, an extremely efficient method is needed for their isolation. Here, we describe cell-separation methodologies based on magnetic-affinity cell sorting (MACS) MicroBeads with monoclonal antibodies against specific membrane proteins conjugated to superparamagnetic particles. Cells labeled with MACS MicroBeads are retained in a magnetic field within a MACS column placed in a MACS separator, allowing fast and efficient separation. Both positively labeled and non-labeled fractions can be used directly for downstream applications as the separated cell fractions remain viable with no functional impairment. As immunomagnetic separation depends on the interaction between a cell's membrane and the magnetically labeled antibody, separation of specific cells originating from solid tissues is more complex and demands a cell-dissociating pretreatment. In this paper, we detail the use of immunomagnetic separation for the purpose of regenerating damaged salivary gland (SG) function in animal and human models of irradiated head and neck cancer. Each year 500,000 new cases of head and neck cancer occur worldwide. Most of these patients lose SG function following irradiation therapy. SGs contain integrin α6β1-expressing epithelial stem cells. We hypothesized that these cells can be isolated, multiplied in culture and auto-implanted into the irradiated SGs to regenerate damaged SG function. PMID:22019721

  5. Fetal and adult fibroblasts display intrinsic differences in tendon tissue engineering and regeneration

    PubMed Central

    Tang, Qiao-Mei; Chen, Jia Lin; Shen, Wei Liang; Yin, Zi; Liu, Huan Huan; Fang, Zhi; Heng, Boon Chin; Ouyang, Hong Wei; Chen, Xiao

    2014-01-01

    Injured adult tendons do not exhibit optimal healing through a regenerative process, whereas fetal tendons can heal in a regenerative fashion without scar formation. Hence, we compared FFs (mouse fetal fibroblasts) and AFs (mouse adult fibroblasts) as seed cells for the fabrication of scaffold-free engineered tendons. Our results demonstrated that FFs had more potential for tendon tissue engineering, as shown by higher levels of tendon-related gene expression. In the in situ AT injury model, the FFs group also demonstrated much better structural and functional properties after healing, with higher levels of collagen deposition and better microstructure repair. Moreover, fetal fibroblasts could increase the recruitment of fibroblast-like cells and reduce the infiltration of inflammatory cells to the injury site during the regeneration process. Our results suggest that the underlying mechanisms of better regeneration with FFs should be elucidated and be used to enhance adult tendon healing. This may assist in the development of future strategies to treat tendon injuries. PMID:24992450

  6. Selective expression of prion protein in peripheral tissues of the adult mouse.

    PubMed

    Ford, M J; Burton, L J; Morris, R J; Hall, S M

    2002-01-01

    The level of expression of normal cellular prion protein, PrP(c) (cellular prion protein), controls both the rate and the route of neuroinvasive infection, from peripheral entry portal to the CNS. Paradoxically, an overview of the distribution of PrP(c) within tissues outside the CNS is lacking. We have used novel antibodies that recognise cellular prion protein in glutaraldehyde-fixed tissue (in order to optimise immunohistochemical labelling of this conformationally labile protein), in combination with in situ hybridisation, to examine the expression of PrP(c) in peripheral tissues of the adult mouse. We found that although prion protein is expressed in many tissues, it is expressed at high levels only in discrete subpopulations of cells. Prominent amongst these are elements of the "hardwired neuroimmune network" that integrate the body's immune defence and neuroendocrine systems under CNS control. These prion protein-expressing elements include small diameter afferent nerves in the skin and the lamina propria of the aerodigestive tract, sympathetic ganglia and nerves, antigen presenting and processing cells (both follicular and non-follicular dendritic cells) and sub-populations of lymphocytes particularly in skin, gut- and bronchus-associated lymphoid tissues. Prion protein is also expressed in the parasympathetic and enteric nervous systems, in the dispersed neuroendocrine system, and in peripheral nervous system axons and their associated Schwann cells. This selective expression of cellular prion protein provides a variety of alternative routes for the propagation and transport of prion infection entering from peripheral sites, either naturally (via the aerodigestive tract or abraded skin) or experimentally (by intraperitoneal injection) to the brain. Key regulatory cells that express prion protein, and in particular enteroendocrine cells in the mucosal wall of the gut, and dendritic cells that convey pathogens from epithelial layers to secondary lymphoid

  7. Co-infusion of autologous adipose tissue derived neuronal differentiated mesenchymal stem cells and bone marrow derived hematopoietic stem cells, a viable therapy for post-traumatic brachial plexus injury: a case report.

    PubMed

    Thakkar, Umang G; Vanikar, Aruna V; Trivedi, Hargovind L

    2014-01-01

    Stem cell therapy is emerging as a viable approach in regenerative medicine. A 31-year-old male with brachial plexus injury had complete sensory-motor loss since 16 years with right pseudo-meningocele at C5-D1 levels and extra-spinal extension up to C7-D1, with avulsion on magnetic resonance imaging and irreversible damage. We generated adipose tissue derived neuronal differentiated mesenchymal stem cells (N-AD-MSC) and bone marrow derived hematopoietic stem cells (HSC-BM). Neuronal stem cells expressed β-3 tubulin and glial fibrillary acid protein which was confirmed on immunofluorescence. On day 14, 2.8 ml stem cell inoculum was infused under local anesthesia in right brachial plexus sheath by brachial block technique under ultrasonography guidance with a 1.5-inch-long 23 gauge needle. Nucleated cell count was 2 × 10 4 /μl, CD34+ was 0.06%, and CD45-/90+ and CD45-/73+ were 41.63% and 20.36%, respectively. No untoward effects were noted. He has sustained recovery with re-innervation over a follow-up of 4 years documented on electromyography-nerve conduction velocity study. PMID:25116721

  8. Genotoxic sensitivity of the developing hematopoietic system.

    PubMed

    Udroiu, Ion; Sgura, Antonella

    2016-01-01

    Genotoxic sensitivity seems to vary during ontogenetic development. Animal studies have shown that the spontaneous mutation rate is higher during pregnancy and infancy than in adulthood. Human and animal studies have found higher levels of DNA damage and mutations induced by mutagens in fetuses/newborns than in adults. This greater susceptibility could be due to reduced DNA repair capacity. In fact, several studies indicated that some DNA repair pathways seem to be deficient during ontogenesis. This has been demonstrated also in murine hematopoietic stem cells. Genotoxicity in the hematopoietic system has been widely studied for several reasons: it is easy to assess, deals with populations cycling also in the adults and may be relevant for leukemogenesis. Reviewing the literature concerning the application of the micronucleus test (a validated assay to assess genotoxicity) in fetus/newborns and adults, we found that the former show almost always higher values than the latter, both in animals treated with genotoxic substances and in those untreated. Therefore, we draw the conclusion that the genotoxic sensitivity of the hematopoietic system is more pronounced during fetal life and decreases during ontogenic development. PMID:27036061

  9. Adult stem cells and biocompatible scaffolds as smart drug delivery tools for cardiac tissue repair.

    PubMed

    Pagliari, Stefania; Romanazzo, Sara; Mosqueira, Diogo; Pinto-do-Ó, Perpetua; Aoyagi, Takao; Forte, Giancarlo

    2013-01-01

    The contribution of adult stem cells to cardiac repair is mostly ascribed to an indirect paracrine effect, rather than to their actual engraftment and differentiation into new contractile and vascular cells. This effect consists in a direct reduction of host cell death, promotion of neovascularization, and in a "bystander effect" on local inflammation. A number of cytokines secreted by adult stem/progenitor cells has been proposed to be responsible for the consistent beneficial effect reported in the early attempts to deliver different stem cell subsets to the injured myocardium. Aiming to maximize their beneficial activity on the diseased myocardium, the genetic modification of adult stem cells to enhance and/or control the secretion of specific cytokines would turn them into active drug delivery vectors. On the other hand, engineering biocompatible scaffolds as to release paracrine factors could result in multiple advantages: (1) achieve a local controlled release of the drug of interest, thus minimizing off-target effects, (2) enhance stem cell retention in the injured area and (3) boost the beneficial paracrine effects exerted by adult stem cells on the host tissue. In the present review, a critical overview of the state-of-the-art in the modification of stem cells and the functionalization of biocompatible scaffolds to deliver beneficial soluble factors to the injured myocardium is offered. Besides the number of concerns to be addressed before a clinical application can be foreseen for such concepts, this path could translate into the generation of active scaffolds as smart cell and drug delivery systems for cardiac repair. PMID:23745554

  10. Autoimmune hemolytic anemia after allogeneic hematopoietic stem cell transplantation: analysis of 533 adult patients who underwent transplantation at King's College Hospital.

    PubMed

    Wang, Meng; Wang, Wenjia; Abeywardane, Ayesha; Adikarama, Malinthi; McLornan, Donal; Raj, Kavita; de Lavallade, Hugues; Devereux, Stephen; Mufti, Ghulam J; Pagliuca, Antonio; Potter, Victoria T; Mijovic, Aleksandar

    2015-01-01

    Autoimmune hemolytic anemia (AIHA) is a recognized complication of hematopoietic stem cell transplantation (HSCT); it is often refractory to treatment and carries a high mortality. To improve understanding of the incidence, risk factors, and clinical outcome of post-transplantation AIHA, we analyzed 533 patients who received allogeneic HSCT, and we identified 19 cases of AIHA after HSCT (overall incidence, 3.6%). The median time to onset, from HSCT to AIHA, was 202 days. AIHA was associated with HSCT from unrelated donors (hazard ratio [HR], 5.28; 95% confidence interval [CI], 1.22 to 22.9; P = .026). In the majority (14 of 19; 74%) of AIHA patients, multiple agents for treatment were required, with only 9 of 19 (47%) patients achieving complete resolution of AIHA. Patients with post-transplantation AIHA had a higher overall mortality (HR, 2.48; 95% CI, 1.33 to 4.63; P = .004), with 36% (4 of 11 cases) of deaths attributable to AIHA. PMID:25262883

  11. Hematopoiesis and hematopoietic organs in arthropods.

    PubMed

    Grigorian, Melina; Hartenstein, Volker

    2013-03-01

    Hemocytes (blood cells) are motile cells that move throughout the extracellular space and that exist in all clades of the animal kingdom. Hemocytes play an important role in shaping the extracellular environment and in the immune response. Developmentally, hemocytes are closely related to the epithelial cells lining the vascular system (endothelia) and the body cavity (mesothelia). In vertebrates and insects, common progenitors, called hemangioblasts, give rise to the endothelia and blood cells. In the adult animal, many differentiated hemocytes seem to retain the ability to proliferate; however, in most cases investigated closely, the bulk of hemocyte proliferation takes place in specialized hematopoietic organs. Hematopoietic organs provide an environment where undifferentiated blood stem cells are able to self-renew, and at the same time generate offspring that differentiate into different blood cell types. Hematopoiesis in vertebrates, taking place in the bone marrow, has been subject to intensive research by immunologists and stem cell biologists. Much less is known about blood cell formation in invertebrate animals. In this review, we will survey structural and functional properties of invertebrate hematopoietic organs, with a main focus on insects and other arthropod taxa. We will then discuss similarities, at the molecular and structural level, that are apparent when comparing the development of blood cells in hematopoietic organs of vertebrates and arthropods. Our comparative review is intended to elucidate aspects of the biology of blood stem cells that are more easily missed when focusing on one or a few model species. PMID:23319182

  12. Hematopoiesis and Hematopoietic Organs in Arthropods

    PubMed Central

    Grigorian, Melina; Hartenstein, Volker

    2013-01-01

    Hemocytes (blood cells) are motile cells moving throughout the extracellular space and exist in all clades of the animal kingdom. Hemocytes play an important role in shaping the extracellular environment and in the immune response. Developmentally, hemocytes are closely related to the epithelial cells lining the vascular system (endothelia) and body cavity (mesothelia). In vertebrates and insects, common progenitors, called hemangioblasts, give rise to the endothelia and blood cells. In the adult animal, many differentiated hemocytes seem to retain the ability to proliferate; however, in most cases investigated closely, the bulk of hemocyte proliferation takes place in specialized hematopoietic organs. Hematopoietic organs provide an environment where undifferentiated blood stem cells are able to self renew, and at the same time generate offspring that differentiate into different blood cell types. Hematopoiesis in vertebrates, taking place in the bone marrow, has been subject to intensive research by immunologists and stem cell biologists. Much less is known about blood cell formation in invertebrate animals. In this review we will survey structural and functional properties of invertebrate hematopoietic organs, with a main focus on insects and other arthropod taxa. We will then discuss similarities, at the molecular and structural level, that are apparent when comparing the development of blood cells in hematopoietic organs of vertebrates and arthropods. Our comparative review is intended to elucidate aspects of the biology of blood stem cells that are more easily missed when focusing on one or a few model species. PMID:23319182

  13. Immunohistochemical characterization of selected cell markers for the detection of hematopoietic cells in formalin-fixed, paraffin wax-embedded lymphoid tissues of harbor seals (Phoca vitulina) and walruses (Odobenus rosmarus rosmarus).

    PubMed

    Seibel, H; Stimmer, L; Siebert, U; Beineke, A

    2010-10-15

    To facilitate a detailed investigation of pinniped lymphoid organs, 30 monoclonal antibodies (mAb) as well as eight polyclonal antibodies (pAb) of different species specificities directed against cell antigens of the hematopoietic system were tested for immunohistochemical cross-reactivity on formalin-fixed, paraffin wax-embedded tissues of harbor seals (Phoca vitulina) and a walrus (Odobenus rosmarus rosmarus). Six monoclonal and eight polyclonal antibodies showed specific immunoreactivities. Lymphocytes were immunolabeled by an anti-CD3 pAb, anti-Foxp3 mAb and anti-CD79 alpha mAb, while plasma cell subpopulations were recognized by anti-IgA pAb, anti-IgG pAb and anti-IgM pAb as well as by anti-kappa- and anti-lambda light chain pAb. Cells of the histiocytic lineage were recognized by lysozyme-, myeloid/histiocyte antigen-, and CD68-specific markers. Furthermore, dendritic cell-like cells were detected by an anti-S100 protein pAb. The MHC class II antigen was labeled on the majority of immune cells of the harbor seal and walrus using a bovine mAb. Mast cells were stained by an anti-mast cell tryptase mAb. Thus, using these antibodies from various species, it is now possible to determine phenotypical changes in lymphoid organs and detect different leukocyte subsets involved in inflammatory responses in archived tissue samples of these pinniped species. PMID:20566219

  14. Analysis of histone gene expression in adult tissues of the sea urchins Strongylocentrotus purpuratus and Lytechinus pictus: tissue-specific expression of sperm histone genes.

    PubMed Central

    Lieber, T; Weisser, K; Childs, G

    1986-01-01

    We analyzed the histone mRNA population found in several adult tissues of the sea urchin Strongylocentrotus purpuratus and in testis of Lytechinus pictus. Unique species of H1 and H2b mRNAs encoding the sperm-specific histone subtypes can be found exclusively in testis RNA. S. purpuratus contains two distinct testis-specific H1 transcripts, while L. pictus contains one such transcript. Each of these mRNAs is larger than either early or late embryonic H1 mRNAs. Other somatic adult tissues contain transcripts derived from members of the late embryonic H1 histone gene family. S. purpuratus contains one H2b transcript found exclusively in testis, while L. pictus contains two such H2b mRNAs. Similarly, in tissues other than testis, late H2b transcripts were found. While there is no sperm-specific H2a protein, a limited set of late histone H2a genes encoding primarily the H2a-beta subtype is expressed in testis. The majority of the H2a protein found in diploid adult tissues is also the H2a-beta subtype; however, the size of the H2a transcripts differs between testis and other tissues. We conclude that different members of the late H2a gene family are differentially expressed in embryos and adult tissues. We prepared and characterized cDNA clones encoding the sperm-specific H2b protein as well as the H2a-beta protein found in testis. Images PMID:3785204

  15. From the Cover: Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells

    NASA Astrophysics Data System (ADS)

    Sapir, Tamar; Shternhall, Keren; Meivar-Levy, Irit; Blumenfeld, Tamar; Cohen, Hamutal; Skutelsky, Ehud; Eventov-Friedman, Smadar; Barshack, Iris; Goldberg, Iris; Pri-Chen, Sarah; Ben-Dor, Lya; Polak-Charcon, Sylvie; Karasik, Avraham; Shimon, Ilan; Mor, Eytan; Ferber, Sarah

    2005-05-01

    Shortage in tissue availability from cadaver donors and the need for life-long immunosuppression severely restrict the large-scale application of cell-replacement therapy for diabetic patients. This study suggests the potential use of adult human liver as alternate tissue for autologous beta-cell-replacement therapy. By using pancreatic and duodenal homeobox gene 1 (PDX-1) and soluble factors, we induced a comprehensive developmental shift of adult human liver cells into functional insulin-producing cells. PDX-1-treated human liver cells express insulin, store it in defined granules, and secrete the hormone in a glucose-regulated manner. When transplanted under the renal capsule of diabetic, immunodeficient mice, the cells ameliorated hyperglycemia for prolonged periods of time. Inducing developmental redirection of adult liver offers the potential of a cell-replacement therapy for diabetics by allowing the patient to be the donor of his own insulin-producing tissue. pancreas | transdifferentiation

  16. The Sequential Tissue Distribution of Duck Tembusu Virus in Adult Ducks

    PubMed Central

    Wu, Li; Liu, Jinxiong; Chen, Pucheng; Jiang, Yongping; Ding, Leilei; Lin, Yuan; Li, Qimeng; He, Xijun; Chen, Qiusheng; Chen, Hualan

    2014-01-01

    In 2010, a novel Tembusu virus (TMUV) that caused a severe decrease in the egg production of ducks was isolated in southeast China. Given the novelty of this duck pathogen, little information is available regarding its pathogenesis. Here, we systematically investigated the replication kinetics of TMUV PTD2010 in adult male and female ducks. We found that PTD2010 was detectable in most of the parenchymatous organs as well as the oviduct and intestinal tract from days 1 to 7 after inoculation. Viral titers were maintained at high levels for at least 9 days in the spleen, kidney, bursa of Fabricius, brain, and ovary. No virus was detected in any of these organs or tissues at 18 days after inoculation. PTD2010, thus, causes systemic infections in male and female ducks; its replication kinetics show similar patterns in most organs, with the exception of the ovaries and testes. PMID:25215289

  17. Academic difficulties and occupational outcomes of adult survivors of childhood leukemia who have undergone allogeneic hematopoietic stem cell transplantation and fractionated total body irradiation conditioning.

    PubMed

    Freycon, Fernand; Trombert-Paviot, Béatrice; Casagranda, Léonie; Frappaz, Didier; Mialou, Valérie; Armari-Alla, Corinne; Gomez, Frederic; Faure-Conter, Cécile; Plantaz, Dominique; Berger, Claire

    2014-04-01

    We studied academic and employment outcomes in 59 subjects who underwent allogeneic hematopoietic stem cell transplantation (a-HSCT) with fractionated total body irradiation (fTBI) for childhood leukemia, comparing them with, first, the general French population and, second, findings in 19 who underwent a-HSCT with chemotherapy conditioning. We observed an average academic delay of 0.98 years among the 59 subjects by Year 10 of secondary school (French class Troisième), which was higher than the 0.34-year delay in the normal population (P < .001) but not significantly higher than the delay of 0.68 years in our cohort of 19 subjects who underwent a-HSCT with chemotherapy. The delay was dependent on age at leukemia diagnosis, but not at fTBI. This delay increased to 1.32 years by the final year of secondary school (Year 13, Terminale) for our 59 subjects versus 0.51 years in the normal population (P = .0002), but did not differ significantly from the 1.08-year delay observed in our cohort of 19 subjects. The number of students who received their secondary school diploma (Baccalaureate) was similar to the expected rate in the general French population for girls (observed/expected = 1.02) but significantly decreased for boys (O/E = 0.48; CI: 95%[0.3-0.7]). Compared with 13.8% of the general population, 15.3% of the cancer survivors received no diploma (P = NS). Reported job distribution did not differ significantly between our cohort of childhood cancer survivors and the general population except that more female survivors were employed in intermediate-level professional positions. Academic difficulties after fTBI are common and their early identification will facilitate educational and professional achievement. PMID:24087985

  18. Non-myeloablative Allogeneic Hematopoietic Stem Cell Transplantation for Adults with Relapsed and Refractory Mantle Cell Lymphoma: A Single Center Analysis in the Rituximab Era

    PubMed Central

    Mussetti, Alberto; Devlin, Sean M.; Castro-Malaspina, Hugo R; Barker, Juliet N.; Giralt, Sergio A.; Zelenetz, Andrew D.

    2015-01-01

    Relapsed and refractory (rel/ref) mantle cell lymphoma (MCL) portends a dismal prognosis. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) represents the only potentially curative therapy in this setting. We analyzed survival outcomes of 29 recipients of non-myeloablative allo-HSCT for rel/ref MCL, and studied possible prognostic factors in this setting. The cumulative incidence of disease progression and non-relapse mortality at 3 years were 28% (95% confidence interval [CI]: 13-46%) and 29% (95%CI: 13-47%), respectively. The cumulative incidence of grade II-IV acute graft-versus-host disease (GVHD) at days +100 and +180 were 34% (95%CI: 18-52%) and 45% (95%CI: 26-62%), respectively. With a median follow-up in survivors of 53 (range 24-83) months, the 3-year overall survival (OS) and progression-free survival (PFS) were 54% (95%CI: 38-76%) and 41% (95%CI: 26-64%), respectively. In vivo T-cell depletion with alemtuzumab (n=6) was associated with inferior 3-year PFS (0% vs. 51%, p=0.007) and OS (17% vs. 64%, p=0.014). Conversely, a second line international prognostic index (sIPI) at transplantation equal to 0 (no risk factors) was associated with an improved 3-year PFS (52% vs. 22%, p=0.020) and OS (71% vs. 22%, p=0.006) compared to sIPI ≥1. Performing an allo-HSCT before 2007 was associated with a decreased 3-year OS (25% vs. 76%, p=0.015) but not with a significantly inferior PFS (17% vs. 59%, p=0.058). In this single center series, we report encouraging results with allo-HSCT for patients with rel/ref MCL. High alemtuzumab doses should probably be avoided in this context. PMID:26146802

  19. Life satisfaction in young adults 10 or more years after hematopoietic stem cell transplantation for childhood malignant and nonmalignant diseases does not show significant impairment compared with healthy controls: a case-matched study.

    PubMed

    Uderzo, Cornelio; Corti, Paola; Pappalettera, Marco; Baldini, Valentina; Lucchini, Giovanna; Meani, Dario; Rovelli, Attilio

    2012-11-01

    Patients undergoing hematopoietic stem cell transplantation (HSCT) may experience physical and psychological deterioration that impairs their life satisfaction (LS). This study focused on LS in long-term survivors at 10 or more years after HSCT. Fifty-five patients (39 males, median age 25 years) undergoing allogeneic HSCT for childhood malignant (n = 52) or nonmalignant diseases (n = 3) were enrolled. A control group of 98 young adults (59 males, median age 24 years) was considered. A questionnaire with a modified Satisfaction Life Domain Scale was administered. We assessed such domains as education, employment, leisure time, social relationships, and perception of physical status with a 30-item questionnaire. To investigate the association between the domains and the probability of diminished LS, we performed a logistical procedure using the maximum likelihood method. Predictive factors of LS were adjusted for sociodemographic variables. In the multivariate analysis, the participant's level of LS was not significantly correlated with sociodemographic factors or with HSCT status. The same analysis showed a slight trend in favor of the control group (P = .06) for body perception. Our data suggest that the patients who undergo HSCT in childhood have no significant difference in long-term LS compared with healthy controls. PMID:22766222

  20. Sequential myeloablative autologous stem cell transplantation and reduced intensity allogeneic hematopoietic cell transplantation is safe and feasible in children, adolescents and young adults with poor-risk refractory or recurrent Hodgkin and non-Hodgkin lymphoma.

    PubMed

    Satwani, P; Jin, Z; Martin, P L; Bhatia, M; Garvin, J H; George, D; Chaudhury, S; Talano, J; Morris, E; Harrison, L; Sosna, J; Peterson, M; Militano, O; Foley, S; Kurtzberg, J; Cairo, M S

    2015-02-01

    The outcome of children, adolescents and young adults (CAYA) with poor-risk recurrent/refractory lymphoma is dismal (⩽30%). To overcome this poor prognosis, we designed an approach to maximize an allogeneic graft vs lymphoma effect in the setting of low disease burden. We conducted a multi-center prospective study of myeloablative conditioning (MAC) and autologous stem cell transplantation (AutoSCT), followed by a reduced intensity conditioning (RIC) and allogeneic hematopoietic cell transplantation (AlloHCT) in CAYA, with poor-risk refractory or recurrent lymphoma. Conditioning for MAC AutoSCT consisted of carmustine/etoposide/cyclophosphamide, RIC consisted of busulfan/fludarabine. Thirty patients, 16 Hodgkin lymphoma (HL) and 14 non-Hodgkin lymphoma (NHL), with a median age of 16 years and median follow-up of 5years, were enrolled. Twenty-three patients completed both MAC AutoSCT and RIC AlloHCT. Allogeneic donor sources included unrelated cord blood (n=9), unrelated donor (n=8) and matched siblings (n=6). The incidence of transplant-related mortality following RIC AlloHCT was only 12%. In patients with HL and NHL, 10 year EFS was 59.8% and 70% (P=0.613), respectively. In summary, this approach is safe, and long-term EFS with this approach is encouraging considering the poor-risk patient characteristics and the use of unrelated donors for RIC AlloHCT in the majority of cases. PMID:24938649

  1. Generation of axolotl hematopoietic chimeras

    PubMed Central

    Lopez, David; Scott, Edward W.

    2015-01-01

    Wound repair is an extremely complex process that requires precise coordination between various cell types including immune cells. Unfortunately, in mammals this usually results in scar formation instead of restoration of the original fully functional tissue, otherwise known as regeneration. Various animal models like frogs and salamanders are currently being studied to determine the intracellular and intercellular pathways, controlled by gene expression, that elicit cell proliferation, differentiation, and migration of cells during regenerative healing. Now, the necessary genetic tools to map regenerative pathways are becoming available for the axolotl salamander, thus allowing comparative studies between scarring and regeneration. Here, we describe in detail three methods to produce axolotl hematopoietic cell-tagged chimeras for the study of hematopoiesis and regeneration. PMID:26366424

  2. Radioimmunotherapy for hematopoietic cell transplantation.

    PubMed

    Jurcic, Joseph G

    2013-04-01

    Radioimmunotherapy (RIT) represents an attractive strategy to deliver radiation selectively to tumor and other target organs while minimizing toxicity to normal tissues. RIT with β-particle-emitting isotopes targeting CD33, CD45 and CD66 can potentially allow intensification of conditioning before hematopoietic cell transplantation (HCT) in leukemia. Similarly, RIT directed against CD20 has shown promise in the setting of autologous and allogeneic HCT for B-cell lymphomas. α-particle immunotherapy with isotopes such as bismuth-213, actinium-225 and astatinine-211 offers the possibility of more selective and efficient killing of target cells while sparing the surrounding normal cells. Pretargeting strategies may further improve target:normal organ dose ratios. While RIT has demonstrated significant antitumor activity, ultimately, randomized studies will be required to determine if conditioning regimens that include this therapeutic modality can improve patient outcomes after HCT. PMID:23557421

  3. Use of Adult Stem Cells for Cartilage Tissue Engineering: Current Status and Future Developments

    PubMed Central

    Baugé, Catherine; Boumédiene, Karim

    2015-01-01

    Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. So, in recent years, researchers and surgeons have been working hard to elaborate cartilage repair interventions for patients who suffer from cartilage damage. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or hypertrophic cartilage. In the next years, the development of new strategies using adult stem cells, in scaffolds, with supplementation of culture medium and/or culture in low oxygen tension should improve the quality of neoformed cartilage. Through these solutions, some of the latest technologies start to bring very promising results in repairing cartilage from traumatic injury or chondropathies. This review discusses the current knowledge about the use of adult stem cells in the context of cartilage tissue engineering and presents clinical trials in progress, as well as in the future, especially in the field of bioprinting stem cells. PMID:26246809

  4. Predicting visceral adipose tissue by MRI using DXA and anthropometry in adolescents and young adults

    PubMed Central

    Laddu, Deepika R.; Lee, Vinson R.; Blew, Robert M.; Sato, Tetsuya; Lohman, Timothy G.; Going, Scott B.

    2015-01-01

    Objective Accumulation of intra-abdominal (visceral) adipose tissue, independent of total adiposity, is associated with development of metabolic abnormalities such as insulin resistance and type-2 diabetes in children and adults. The objective of this study was to develop prediction equations for estimating visceral adiposity (VAT) measured by magnetic resonance imaging (MRI) using anthropometric variables and measures of abdominal fat mass from DXA in adolescents and young adults. Methods Cross-sectional data was collected from a multiethnic population of seventy males and females, aged 12–25 years, with BMI ranging from 14.5–38.1 kg/m2. Android (AFM; android region as defined by manufacturers instruction) and lumbar L1-L4 regional fat masses were assessed using DXA (GE Lunar Prodigy; GE Lunar Corp, Madison, WI, USA). Criterion measures of intra-abdominal visceral fat were obtained using single-slice MRI (General Electric Signa Model 5x 1.5T) and VAT area was analyzed at the level OF L4–L5. Image analysis was carried out using ZedView 3.1. Results DXA measures of AFM (r=0.76) and L1-L4 (r=0.71) were significantly (P<0.0001) correlated with MRI-measured VAT. DXA AFM, together with gender and weight, explained 62% of the variance in VAT (SEE=10.06 cm2). DXA L1-L4 fat mass with gender explained 54% of the variance in VAT (SEE=11.08 cm2). Addition of the significant interaction, gender × DXA fat mass, improved prediction of VAT from AFM (Radj2=0.61, SEE=10.10cm2) and L1-L4 (Radj2=0.59, SEE=10.39cm2). Conclusion These results demonstrate that VAT is accurately estimated from regional fat masses measured by DXA in adolescents and young adults. PMID:26097436

  5. Macrophage heterogeneity in tissues: phenotypic diversity and functions

    PubMed Central

    Gordon, Siamon; Plüddemann, Annette; Martinez Estrada, Fernando

    2014-01-01

    During development and throughout adult life, macrophages derived from hematopoietic progenitors are seeded throughout the body, initially in the absence of inflammatory and infectious stimuli as tissue-resident cells, with enhanced recruitment, activation, and local proliferation following injury and pathologic insults. We have learned a great deal about macrophage properties ex vivo and in cell culture, but their phenotypic heterogeneity within different tissue microenvironments remains poorly characterized, although it contributes significantly to maintaining local and systemic homeostasis, pathogenesis, and possible treatment. In this review, we summarize the nature, functions, and interactions of tissue macrophage populations within their microenvironment and suggest questions for further investigation. PMID:25319326

  6. In vivo facial tissue depth for Canadian Mi'kmaq adults: a case study from Nova Scotia, Canada.

    PubMed

    Peckmann, Tanya R; Harris, Mikkel; Huculak, Meaghan; Pringle, Ashleigh; Fournier, Michel

    2015-01-01

    This study examines facial tissue depth in Canadian Mi'kmaq adults. Using ultrasound, measurements were taken at 19 landmarks on the faces of 152 individuals aged 18-75 years old. The relationships between tissue thickness, age, and sex were investigated. A positive linear trend exists between tissue thickness and age for Mi'kmaq males and females at multiple landmarks. Seven landmarks show significant differences in facial tissue depth between males and females aged 18-34 years old; no landmarks show significant differences in facial tissue depth between males and females aged 35-45 years old and 46-55 years old. Significant differences were shown in facial tissue depth between Mi'kmaq and White Americans and Mi'kmaq and African Americans. These data can assist in 3-D facial reconstructions and aid in establishing the identity of unknown Mi'kmaq individuals. PMID:25572085

  7. BAF180 regulates cellular senescence and hematopoietic stem cell homeostasis through p21.

    PubMed

    Lee, Hyemin; Dai, Fangyan; Zhuang, Li; Xiao, Zhen-Dong; Kim, Jongchan; Zhang, Yilei; Ma, Li; You, M James; Wang, Zhong; Gan, Boyi

    2016-04-12

    BAF180 (also called PBRM1), a subunit of the SWI/SNF complex, plays critical roles in the regulation of chromatin remodeling and gene transcription, and is frequently mutated in several human cancers. However, the role of mammalian BAF180 in tumor suppression and tissue maintenance in vivo remains largely unknown. Here, using a conditional somatic knockout approach, we explored the cellular and organismal functions of BAF180 in mouse. BAF180 deletion in primary mouse embryonic fibroblasts (MEFs) triggers profound cell cycle arrest, premature cellular senescence, without affecting DNA damage response or chromosomal integrity. While somatic deletion of BAF180 in adult mice does not provoke tumor development, BAF180 deficient mice exhibit defects in hematopoietic system characterized by progressive reduction of hematopoietic stem cells (HSCs), defective long-term repopulating potential, and hematopoietic lineage developmental aberrations. BAF180 deletion results in elevated p21 expression in both MEFs and HSCs. Mechanistically, we showed that BAF180 binds to p21 promoter, and BAF180 deletion enhances the binding of modified histones associated with transcriptional activation on p21 promoter. Deletion of p21 rescues cell cycle arrest and premature senescence in BAF180 deficient MEFs, and partially rescues hematopoietic defects in BAF180 deficient mice. Together, our study identifies BAF180 as a critical regulator of cellular senescence and HSC homeostasis, which is at least partially regulated through BAF180-mediated suppression of p21 expression. Our results also suggest that senescence triggered by BAF180 inactivation may serve as a failsafe mechanism to restrain BAF180 deficiency-associated tumor development, providing a conceptual framework to further understand BAF180 function in tumor biology. PMID:26992241

  8. BAF180 regulates cellular senescence and hematopoietic stem cell homeostasis through p21

    PubMed Central

    Lee, Hyemin; Dai, Fangyan; Zhuang, Li; Xiao, Zhen-Dong; Kim, Jongchan; Zhang, Yilei; Ma, Li; You, M. James; Wang, Zhong; Gan, Boyi

    2016-01-01

    BAF180 (also called PBRM1), a subunit of the SWI/SNF complex, plays critical roles in the regulation of chromatin remodeling and gene transcription, and is frequently mutated in several human cancers. However, the role of mammalian BAF180 in tumor suppression and tissue maintenance in vivo remains largely unknown. Here, using a conditional somatic knockout approach, we explored the cellular and organismal functions of BAF180 in mouse. BAF180 deletion in primary mouse embryonic fibroblasts (MEFs) triggers profound cell cycle arrest, premature cellular senescence, without affecting DNA damage response or chromosomal integrity. While somatic deletion of BAF180 in adult mice does not provoke tumor development, BAF180 deficient mice exhibit defects in hematopoietic system characterized by progressive reduction of hematopoietic stem cells (HSCs), defective long-term repopulating potential, and hematopoietic lineage developmental aberrations. BAF180 deletion results in elevated p21 expression in both MEFs and HSCs. Mechanistically, we showed that BAF180 binds to p21 promoter, and BAF180 deletion enhances the binding of modified histones associated with transcriptional activation on p21 promoter. Deletion of p21 rescues cell cycle arrest and premature senescence in BAF180 deficient MEFs, and partially rescues hematopoietic defects in BAF180 deficient mice. Together, our study identifies BAF180 as a critical regulator of cellular senescence and HSC homeostasis, which is at least partially regulated through BAF180-mediated suppression of p21 expression. Our results also suggest that senescence triggered by BAF180 inactivation may serve as a failsafe mechanism to restrain BAF180 deficiency-associated tumor development, providing a conceptual framework to further understand BAF180 function in tumor biology. PMID:26992241

  9. Cortical activity evoked by an acute painful tissue-damaging stimulus in healthy adult volunteers

    PubMed Central

    Williams, Gemma; Lee, Amy; Meek, Judith; Slater, Rebeccah; Olhede, Sofia; Fitzgerald, Maria

    2013-01-01

    Everyday painful experiences are usually single events accompanied by tissue damage, and yet most experimental studies of cutaneous nociceptive processing in the brain use repeated laser, thermal, or electrical stimulations that do not damage the skin. In this study the nociceptive activity in the brain evoked by tissue-damaging skin lance was analyzed with electroencephalography (EEG) in 20 healthy adult volunteers (13 men and 7 women) aged 21–40 yr. Time-frequency analysis of the evoked activity revealed a distinct late event-related vertex potential (lance event-related potential, LERP) at 100–300 ms consisting of a phase-locked energy increase between 1 and 20 Hz (delta-beta bands). A pairwise comparison between lance and sham control stimulation also revealed a period of ultralate stronger desynchronization after lance in the delta band (1–5 Hz). Skin application of mustard oil before lancing, which sensitizes a subpopulation of nociceptors expressing the cation channel TRPA1, did not affect the ultralate desynchronization but reduced the phase-locked energy increase in delta and beta bands, suggesting a central interaction between different modalities of nociceptive inputs. Verbal descriptor screening of individual pain experience revealed that lance pain is predominantly due to Aδ fiber activation, but when individuals describe lances as C fiber mediated, an ultralate delta band event-related desynchronization occurs in the brain-evoked activity. We conclude that pain evoked by acute tissue damage is associated with distinct Aδ and C fiber-mediated patterns of synchronization and desynchronization of EEG oscillations in the brain. PMID:23427303

  10. Allogeneic hematopoietic stem cell transplantation could improve survival of cytogenetically normal adult acute myeloid leukemia patients with DNMT3A mutations.

    PubMed

    Xu, Yang; Sun, Yanjun; Shen, Hongjie; Ding, Lin; Yang, Zhen; Qiu, Huiying; Sun, Aining; Chen, Suning; Wu, Depei

    2015-11-01

    DNMT3A mutations are frequent in cytogenetically normal acute myeloid leukemia (cn-AML) patients and associated with poor survival. The role of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in DNMT3A(mut) cn-AML patients remains unclear. In this study, we retrospectively analyzed the prognostic impact of DNMT3A mutations and explored the role of allo-HSCT in 308 cn-AML patients who received consolidation of intensive chemotherapy or allo-HSCT in our center from March 2005 to May 2014. In the whole cohort, 63 patients (20.5%) were identified with DNMT3A exon 23 mutations and R882H was the most frequent variant. DNMT3A(mut) patients had shorter overall survival (3-year OS: 31.9% vs. 52.0%, P = 0.009) and disease-free survival (3-year DFS: 21.8% vs. 40.1%, P = 0.004) compared with DNMT3A(wt) patients. Based on FLT3/NPM1/CEBPA mutations, 308 cn-AML patients were divided into favorable/intermediate group (n = 262) and unfavorable group (n = 46). There were no significant differences in 3-year OS and 3-year DFS between DNMT3A(mut) and DNMT3A(wt) patients in both favorable/intermediate and unfavorable groups. Additionally, in multivariate analysis, DNMT3A mutation remained an independent adverse prognostic factor for the survival. In the DNMT3A(mut) cohort, 23 complete remission (CR) patients received allo-HSCT consolidation and 32 CR patients received chemotherapy consolidation, dramatic differences were observed in 3-year OS (51.7% vs. 28.9%, P = 0.048) and 3-year DFS (41.6% vs. 14.9%, P = 0.024) between allo-HSCT group and chemotherapy group. Collectively, DNMT3A mutation is a poor prognostic factor for cn-AML patients and allo-HSCT could improve survival of cn-AML patients with DNMT3A mutations. PMID:26223865

  11. Regulation of adult hematopoiesis by the a disintegrin and metalloproteinase 10 (ADAM10).

    PubMed

    Weber, Silvio; Wetzel, Sebastian; Prox, Johannes; Lehmann, Tobias; Schneppenheim, Janna; Donners, Marjo; Saftig, Paul

    2013-12-13

    Adult hematopoiesis requires tightly regulated cell-cell interactions between hematopoietic cells and the bone marrow stromal microenvironment. We addressed the question if the ectodomain sheddase ADAM10 is essential to regulate adult hematopoiesis. Induced ADAM10 deletion in hematopoietic cells resulted in morphological and histological abnormalities that resemble an unclassified myeloproliferative disorder (MPD). The MPD was characterized by an expansion of granulocytic subpopulations and their infiltration of peripheral hematopoietic tissues, the development of hepatosplenomegaly with extramedullary erythropoiesis, lymphnodepathy and death of the mice around 20weeks after induction. ADAM10 expression analysis during the different stages of the MPD revealed that non-targeted hematopoietic cells repopulated the immune system of the ADAM10-deficient mice. Examination of mice with a myeloid- or epidermis-specific deletion of ADAM10 and bone marrow transplantation (BMT) experiments indicated that the development of the MPD can be triggered by non-cell autonomous effects. We found that plasma levels of clinical markers for MPD such as G-CSF, TIMP-1 and IL-16 were significantly elevated in ADAM10-deficient mice. Our findings indicate that a tightly controlled ADAM10 expression is needed to balance hematopoietic cell-fate decisions in adult mice. PMID:24239882

  12. Proinflammatory signaling regulates hematopoietic stem cell emergence.

    PubMed

    Espín-Palazón, Raquel; Stachura, David L; Campbell, Clyde A; García-Moreno, Diana; Del Cid, Natasha; Kim, Albert D; Candel, Sergio; Meseguer, José; Mulero, Victoriano; Traver, David

    2014-11-20

    Hematopoietic stem cells (HSCs) underlie the production of blood and immune cells for the lifetime of an organism. In vertebrate embryos, HSCs arise from the unique transdifferentiation of hemogenic endothelium comprising the floor of the dorsal aorta during a brief developmental window. To date, this process has not been replicated in vitro from pluripotent precursors, partly because the full complement of required signaling inputs remains to be determined. Here, we show that TNFR2 via TNF? activates the Notch and NF-?B signaling pathways to establish HSC fate, indicating a requirement for inflammatory signaling in HSC generation. We determine that primitive neutrophils are the major source of TNF?, assigning a role for transient innate immune cells in establishing the HSC program. These results demonstrate that proinflammatory signaling, in the absence of infection, is utilized by the developing embryo to generate the lineal precursors of the adult hematopoietic system. PMID:25416946

  13. Proinflammatory signaling regulates hematopoietic stem cell emergence

    PubMed Central

    Espín-Palazón, Raquel; Stachura, David L.; Campbell, Clyde A.; García-Moreno, Diana; Cid, Natasha Del; Kim, Albert D.; Candel, Sergio; Meseguer, José; Mulero, Victoriano; Traver, David

    2014-01-01

    Summary Hematopoietic stem cells (HSCs) underlie the production of blood and immune cells for the lifetime of an organism. In vertebrate embryos, HSCs arise from the unique transdifferentiation of hemogenic endothelium comprising the floor of the dorsal aorta during a brief developmental window. To date, this process has not been replicated in vitro from pluripotent precursors, partly because the full complement of required signaling inputs remains to be determined. Here, we show that TNFR2 via TNFα activates the Notch and NF-κB signaling pathways to establish HSC fate, indicating a requirement for inflammatory signaling in HSC generation. We determine that primitive neutrophils are the major source of TNFα, assigning a role for transient innate immune cells in establishing the HSC program. These results demonstrate that proinflammatory signaling, in the absence of infection, is utilized by the developing embryo to generate the lineal precursors of the adult hematopoietic system. PMID:25416946

  14. A Digital Gene Expression-Based Bovine Gene Atlas Evaluating 92 Adult, Juvenile and Fetal Cattle Tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A comprehensive transcriptome survey, or “Gene Atlas,” provides information essential for a complete understanding of the genomic biology of an organism. Using a digital gene expression approach, we developed a Gene Atlas of RNA abundance in 92 adult, juvenile and fetal cattle tissues. The samples...

  15. Hyaluronan and Fibrin Biomaterial as Scaffolds for Neuronal Differentiation of Adult Stem Cells Derived from Adipose Tissue and Skin

    PubMed Central

    Gardin, Chiara; Vindigni, Vincenzo; Bressan, Eriberto; Ferroni, Letizia; Nalesso, Elisa; Puppa, Alessandro Della; D’Avella, Domenico; Lops, Diego; Pinton, Paolo; Zavan, Barbara

    2011-01-01

    Recently, we have described a simple protocol to obtain an enriched culture of adult stem cells organized in neurospheres from two post-natal tissues: skin and adipose tissue. Due to their possible application in neuronal tissue regeneration, here we tested two kinds of scaffold well known in tissue engineering application: hyaluronan based membranes and fibrin-glue meshes. Neurospheres from skin and adipose tissue were seeded onto two scaffold types: hyaluronan based membrane and fibrin-glue meshes. Neurospheres were then induced to acquire a glial and neuronal-like phenotype. Gene expression, morphological feature and chromosomal imbalance (kariotype) were analyzed and compared. Adipose and skin derived neurospheres are able to grow well and to differentiate into glial/neuron cells without any chromosomal imbalance in both scaffolds. Adult cells are able to express typical cell surface markers such as S100; GFAP; nestin; βIII tubulin; CNPase. In summary, we have demonstrated that neurospheres isolated from skin and adipose tissues are able to differentiate in glial/neuron-like cells, without any chromosomal imbalance in two scaffold types, useful for tissue engineering application: hyaluronan based membrane and fibrin-glue meshes. PMID:22072917

  16. Facial soft tissue thickness among various vertical facial patterns in adult Pakistani subjects.

    PubMed

    Jeelani, Waqar; Fida, Mubassar; Shaikh, Attiya

    2015-12-01

    Facial reconstruction techniques are used to obtain an approximation of an individual's appearance thus helping identification of unidentified decedents from their dried skeletal remains. Many of these techniques rely on the sets of average facial soft tissue thickness (FST) values at different anatomical landmarks provided by the previous studies. FST is influenced by the age, sex, ethnicity and the body mass index of the individual. Recent literature has shown that the anthropological variations of the skull may also affect FST at certain points. This study was designed to evaluate the effect of such variations in vertical skull morphology on FST as around one third of different population groups have either a long or short facial pattern as compared to the average facial pattern. Moreover, this study also provides a FST database for the adult Pakistani subjects that may have potential implications in the facial reconstruction of the local subjects. A retrospective analysis of 276 lateral cephalograms of adult subjects having normal sagittal facial pattern was performed. Subjects were categorized into three vertical facial patterns (long face=95, average face=102, short face=79) according to the vertical dimensions of the skull and the FST was measured at 11 midline points. To compare the FST between males and females Mann-Whitney U test was used. Kruskal-Wallis test was applied to compare FST among three vertical facial patterns. The results of our study revealed significant differences in FST at nine landmarks between males and females. These sex-based differences were more pronounced in the long and short facial patterns as compared to the average facial pattern. FST at stomion, pogonion, gnathion and menton was significantly greater in the short facial pattern as compared to the long facial pattern in both the sexes. The results of the present study highlight the importance of anthropological analysis of the skull and taking the vertical skeletal dimension

  17. Cotransplantation of Adipose Tissue-Derived Insulin-Secreting Mesenchymal Stem Cells and Hematopoietic Stem Cells: A Novel Therapy for Insulin-Dependent Diabetes Mellitus

    PubMed Central

    Vanikar, A. V.; Dave, S. D.; Thakkar, U. G.; Trivedi, H. L.

    2010-01-01

    Aims. Insulin dependent diabetes mellitus (IDDM) is believed to be an autoimmune disorder with disturbed glucose/insulin metabolism, requiring life-long insulin replacement therapy (IRT), 30% of patients develop end-organ failure. We present our experience of cotransplantation of adipose tissue derived insulin-secreting mesenchymal stem cells (IS-AD-MSC) and cultured bone marrow (CBM) as IRT for these patients. Methods. This was a prospective open-labeled clinical trial to test efficacy and safety of IS-AD-MSC+CBM co-transplantation to treat IDDM, approved by the institutional review board after informed consent in 11 (males : females: 7 : 4) patients with 1–24-year disease duration, in age group: 13–43 years, on mean values of exogenous insulin requirement of 1.14 units/kg BW/day, glycosylated hemoglobin (Hb1Ac): 8.47%, and c-peptide levels: 0.1 ng/mL. Intraportal infusion of xenogeneic-free IS-AD-MSC from living donors, subjected to defined culture conditions and phenotypically differentiated to insulin-secreting cells, with mean quantum: 1.5 mL, expressing Pax-6, Isl-1, and pdx-1, cell counts: 2.1 × 103/μL, CD45−/90+/73+:40/30.1%, C-Peptide level:1.8 ng/mL, and insulin level: 339.3  IU/mL with CBM mean quantum: 96.3 mL and cell counts: 28.1 × 103/μL, CD45−/34+:0.62%, was carried out. Results. All were successfully transplanted without any untoward effect. Over mean followup of 23 months, they had a decreased mean exogenous insulin requirement to 0.63 units/kgBW/day, Hb1Ac to 7.39%, raised serum c-peptide levels to 0.38 ng/mL, and became free of diabetic ketoacidosis events with mean 2.5 Kg weight gain on normal vegetarian diet and physical activities. Conclusion. This is the first report of treating IDDM with insulin-secreting-AD-MSC+CBM safely and effectively with relatively simple techniques. PMID:21197448

  18. Adjuvant Radiotherapy for Pediatric and Young Adult Nonrhabdomyosarcoma Soft-Tissue Sarcoma

    SciTech Connect

    Smith, Kristy B.; Indelicato, Daniel J.; Knapik, Jacquelyn A.; Lagmay, Joanne P.; Morris, Christopher; Kirwan, Jessica M.; Zlotecki, Robert A.; Scarborough, Mark T.; Gibbs, C. Parker; Marcus, Robert B.

    2011-09-01

    Purpose: To evaluate the prognostic factors, outcomes, and complications in patients aged {<=}30 years with resectable nonrhabdomyosarcoma soft-tissue sarcoma treated at the University of Florida with radiotherapy (RT) during a 34-year period. Methods and Materials: A total of 95 pediatric or young adult patients with nonrhabdomyosarcoma soft-tissue sarcoma were treated with curative intent with surgery and RT at the University of Florida between 1973 and 2007. The most common histologic tumor subtypes were synovial sarcoma in 22 patients, malignant fibrous histiocytoma in 19, and malignant peripheral nerve sheath tumor in 11 patients. The mean age at RT was 22 years (range, 6-30). Of the 95 patients, 73 had high-grade tumors; 45 had undergone preoperative RT and 50 postoperative RT. The prognostic factors for survival, local recurrence, and distant recurrence were analyzed. Results: The median follow-up was 7.2 years (range, 0.4-30.5). The actuarial 5-year local control rate was 88%. A microscopically negative margin was associated with superior local control. Although 83% of local recurrence cases initially developed in the absence of metastases, all patients with local failure ultimately died of their disease. The actuarial estimate of 5-year overall survival and disease-free survival was 65% and 63%, respectively. Of all the deaths, 92% were disease related. An early American Joint Committee on Cancer stage, tumor <8 cm, and the absence of neurovascular invasion were associated with superior disease-free survival. The National Cancer Institute Common Toxicity Criteria, version 3, Grade 3-4 treatment complication rate was 9%. No secondary malignancies were observed. Conclusion: In the present large single-institution study, we found positive margins and locally advanced features to be poor prognostic factors for both local progression and survival. The results from the present study have helped to characterize the therapeutic ratio of RT in pediatric and young

  19. Subcutaneous adipose tissue topography (SAT-Top) development in children and young adults.

    PubMed

    Tafeit, Erwin; Möller, Reinhard; Jurimae, Toivo; Sudi, Karl; Wallner, Sandra Johanna

    2007-06-01

    The importance of body composition measurements to elucidate the dynamics of related diseases in pediatrics is gaining recognition. The methods used should not expose subjects to high doses of radiation and require substantial cooperation. The Lipometer is a new optical device that enables the non-invasive, quick and safe determination of the thickness of subcutaneous adipose tissue (SAT) layers (in mm) at any site of the human body. The topographic specification of 15 evenly distributed body sites, which makes it possible to precisely measure subcutaneous body fat distribution, is called subcutaneous adipose tissue topography (SAT-Top). SAT-Top was determined in more than 1000 children and young adults between the ages of 7 and 21. In this paper we describe the SAT-Top development of these subjects through different age groups and the differences between male and female SAT-Top development in each age group. SAT layer profiles (medians of the 15 body sites) for boys and girls in age group 1 (7-9 yrs) show a very similar pattern for both sexes, followed by slightly decreasing SAT layer thicknesses in boys and increasing values in girls in the subsequent age groups. Between age group 3 (11-13 yrs) and age group 7 (19-21 yrs) male and female SAT-Top is significantly different. The discriminating power between male and female SAT-Top was investigated by stepwise discriminant analysis, which provided no significant results for age group 1 (7-9 yrs), about 73% correct classification for age group 2 (9-11 yrs) and 3 (11-13 yrs), 83% for age group 4 (13-15 yrs), and about 91-93% for the following age groups (15-21 yrs). It is known that SAT development is the same in both sexes until puberty, when girls gain relatively more fat mass than boys to reach a higher body-fat percentage as adults. This paper presents a precise description of SAT development in boys and girls from childhood to adolescence, which provides a basis for further investigations. PMID:17847915

  20. Clinical guide to fertility preservation in hematopoietic cell transplant recipients.

    PubMed

    Joshi, S; Savani, B N; Chow, E J; Gilleece, M H; Halter, J; Jacobsohn, D A; Pidala, J; Quinn, G P; Cahn, J-Y; Jakubowski, A A; Kamani, N R; Lazarus, H M; Rizzo, J D; Schouten, H C; Socie, G; Stratton, P; Sorror, M L; Warwick, A B; Wingard, J R; Loren, A W; Majhail, N S

    2014-04-01

    With broadening indications, more options for hematopoietic cell transplantation (HCT) and improvement in survival, the number of long-term HCT survivors is expected to increase steadily. Infertility is a frequent problem that long-term HCT survivors and their partners face and it can negatively impact on the quality of life. The most optimal time to address fertility issues is before the onset of therapy for the underlying disease; however, fertility preservation should also be addressed before HCT in all children and patients of reproductive age, with referral to a reproductive specialist for patients interested in fertility preservation. In vitro fertilization (IVF) and embryo cryopreservation, oocyte cryopreservation and ovarian tissue banking are acceptable methods for fertility preservation in adult women/pubertal females. Sperm banking is the preferred method for adult men/pubertal males. Frequent barriers to fertility preservation in HCT recipients may include the perception of lack of time to preserve fertility given an urgency to move ahead with transplant, lack of patient-physician discussion because of several factors (for example, time constraints, lack of knowledge), inadequate access to reproductive specialists, and costs and lack of insurance coverage for fertility preservation. There is a need to raise awareness in the medical community about fertility preservation in HCT recipients. PMID:24419521

  1. Clinical guide to fertility preservation in hematopoietic cell transplant recipients

    PubMed Central

    Joshi, S; Savani, BN; Chow, EJ; Gilleece, MH; Halter, J; Jacobsohn, DA; Pidala, J; Quinn, GP; Cahn, J-Y; Jakubowski, AA; Kamani, NR; Lazarus, HM; Rizzo, JD; Schouten, HC; Socie, G; Stratton, P; Sorror, ML; Warwick, AB; Wingard, JR; Loren, AW; Majhail, NS

    2014-01-01

    With broadening indications, more options for hematopoietic cell transplantation (HCT) and improvement in survival, the number of long-term HCT survivors is expected to increase steadily. Infertility is a frequent problem that long-term HCT survivors and their partners face and it can negatively impact on the quality of life. The most optimal time to address fertility issues is before the onset of therapy for the underlying disease; however, fertility preservation should also be addressed before HCT in all children and patients of reproductive age, with referral to a reproductive specialist for patients interested in fertility preservation. In vitro fertilization (IVF) and embryo cryopreservation, oocyte cryopreservation and ovarian tissue banking are acceptable methods for fertility preservation in adult women/pubertal females. Sperm banking is the preferred method for adult men/pubertal males. Frequent barriers to fertility preservation in HCT recipients may include the perception of lack of time to preserve fertility given an urgency to move ahead with transplant, lack of patient–physician discussion because of several factors (for example, time constraints, lack of knowledge), inadequate access to reproductive specialists, and costs and lack of insurance coverage for fertility preservation. There is a need to raise awareness in the medical community about fertility preservation in HCT recipients. PMID:24419521

  2. Hematopoietic stem cell transplantation

    PubMed Central

    Hatzimichael, Eleftheria; Tuthill, Mark

    2010-01-01

    More than 25,000 hematopoietic stem cell transplantations (HSCTs) are performed each year for the treatment of lymphoma, leukemia, immune-deficiency illnesses, congenital metabolic defects, hemoglobinopathies, and myelodysplastic and myeloproliferative syndromes. Before transplantation, patients receive intensive myeloablative chemoradiotherapy followed by stem cell “rescue.” Autologous HSCT is performed using the patient’s own hematopoietic stem cells, which are harvested before transplantation and reinfused after myeloablation. Allogeneic HSCT uses human leukocyte antigen (HLA)-matched stem cells derived from a donor. Survival after allogeneic transplantation depends on donor–recipient matching, the graft-versus-host response, and the development of a graft versus leukemia effect. This article reviews the biology of stem cells, clinical efficacy of HSCT, transplantation procedures, and potential complications. PMID:24198516

  3. Medulloblastoma with soft-tissue and skeletal metastases in an adult: A case report

    PubMed Central

    GENG, DIANZHONG; SONG, XIAOHUA; LIU, JING; YU, ZESHUN; NING, FANGLING

    2015-01-01

    Medulloblastoma (MB) is a highly malignant primary brain tumor, which occurs in the cerebellum or posterior cranial fossa. MB is most commonly identified in children <10 years of age. The disease is rare in adults, affecting patients aged between 30 and 50 years of age, with an incidence of 0.5 cases per 1,000,000 individuals. Extraneural metastases are reported in 7–10% of cases, most commonly involving the bones and more rarely involving the lymph nodes, visceral organs and bone marrow. The current study presents the case of a 36-year-old male who underwent a gross total resection followed by radiation therapy to the craniospinal axis for the treatment of MB. The patient subsequently developed widespread metastasis, which involved the soft tissue of the occipital bone. Subsequently, the patient was administered palliative radiotherapy and initially exhibited a good clinical response. However, the patient succumbed at 18 months post-diagnosis due to dissemination of the disease. The literature on the extraneural metastasis of MB is also reviewed in the current study. PMID:26622837

  4. A mystery unraveled: nontumorigenic pluripotent stem cells in human adult tissues

    PubMed Central

    Simerman, Ariel A; Perone, Marcelo J; Gimeno, María L; Dumesic, Daniel A; Chazenbalk, Gregorio D

    2014-01-01

    Introduction: Embryonic stem cells and induced pluripotent stem cells have emerged as the gold standard of pluripotent stem cells and the class of stem cell with the highest potential for contribution to regenerative and therapeutic application; however, their translational use is often impeded by teratoma formation, commonly associated with pluripotency. We discuss a population of nontumorigenic pluripotent stem cells, termed Multilineage Differentiating Stress Enduring (Muse) cells, which offer an innovative and exciting avenue of exploration for the potential treatment of various human diseases. Areas covered: This review discusses the origin of Muse cells, describes in detail their various unique characteristics, and considers future avenues of their application and investigation with respect to what is currently known of adult pluripotent stem cells in scientific literature. We begin by defining cell potency, then discuss both mesenchymal and various reported populations of pluripotent stem cells, and finally delve into Muse cells and the characteristics that set them apart from their contemporaries. Expert opinion: Muse cells derived from adipose tissue (Muse-AT) are efficiently, routinely and painlessly isolated from human lipoaspirate material, exhibit tripoblastic differentiation both spontaneously and under media-specific induction, and do not form teratomas. We describe qualities specific to Muse-AT cells and their potential impact on the field of regenerative medicine and cell therapy. PMID:24745973

  5. Adjuvant Chemotherapy Following Complete Resection of Soft Tissue Sarcoma in Adults: A Clinical Practice Guideline

    PubMed Central

    Bramwell, Vivien H. C.; Bell, Robert; Davis, Aileen M.; Charette, Manya L.; The members of the cancer care Ontario practice guidelines initiative sarcoma disease site group

    2002-01-01

    Purpose. To review the literature and make recommendations for the use of anthracycline-based adjuvant chemotherapy in adult patients with soft tissue sarcoma (STS). Patients. The recommendations apply to patients >15 years old with completely resected STS. Methods. A systematic overview of the published literature was combined with a consensus process around the interpretation of the evidence in the context of conventional practice to develop an evidence-based practice guideline. Results. Four meta-analyses and 17 randomized clinical trials comparing anthracycline-based adjuvant chemotherapy versus observation were reviewed. The Sarcoma Meta-Analysis Collaboration (SMAC) was the best analysis because it assessed individual patient data and had the longest follow-up. The results of the SMAC meta-analysis together with data from more recently published randomized trials, as well as our analysis of the toxicity and compliance data, are incorporated in this systematic review. Discussion. It is reasonable to consider anthracycline-based adjuvant chemotherapy in patients who have had removal of a sarcoma with features predicting a high likelihood of relapse (deep location, size >5 cm, high histological grade). Although the benefits of adjuvant chemotherapy are most apparent in patients with extremity sarcomas, patients with high-risk tumours at other sites should also be considered for such therapy. PMID:18521341

  6. Comparative microarray analyses of adult female midgut tissues from feeding Rhipicephalus species.

    PubMed

    van Zyl, Willem A; Stutzer, Christian; Olivier, Nicholas A; Maritz-Olivier, Christine

    2015-02-01

    The cattle tick, Rhipicephalus microplus, has a debilitating effect on the livestock industry worldwide, owing to its being a vector of the causative agents of bovine babesiosis and anaplasmosis. In South Africa, co-infestation with R. microplus and R. decoloratus, a common vector species on local livestock, occurs widely in the northern and eastern parts of the country. An alternative to chemical control methods is sought in the form of a tick vaccine to control these tick species. However, sequence information and transcriptional data for R. decoloratus is currently lacking. Therefore, this study aimed at identifying genes that are shared between midgut tissues of feeding adult female R. microplus and R. decoloratus ticks. In this regard, a custom oligonucleotide microarray comprising of 13,477 R. microplus sequences was used for transcriptional profiling and 2476 genes were found to be shared between these Rhipicephalus species. In addition, 136 transcripts were found to be more abundantly expressed in R. decoloratus and 1084 in R. microplus. Chi-square analysis revealed that genes involved in lipid transport and metabolism are significantly overrepresented in R. microplus and R. decoloratus. This study is the first transcriptional profiling of R. decoloratus and is an additional resource that can be evaluated further in future studies for possible tick control. PMID:25448423

  7. Transposable elements and their KRAB-ZFP controllers regulate gene expression in adult tissues

    PubMed Central

    Ecco, Gabriela; Cassano, Marco; Kauzlaric, Annamaria; Duc, Julien; Coluccio, Andrea; Offner, Sandra; Imbeault, Michaël; Rowe, Helen M.; Turelli, Priscilla; Trono, Didier

    2016-01-01

    Summary KRAB-containing zinc finger proteins (KRAB-ZFPs) are early embryonic controllers of transposable elements (TEs), which they repress with their cofactor KAP1 through histone and DNA methylation, a process thought to result in irreversible silencing. Using a target-centered functional screen, we matched murine TEs with their cognate KRAB-ZFP. We found the paralogs ZFP932 and Gm15446 to bind overlapping but distinguishable subsets of ERVK (endogenous retrovirus K), to repress these elements in embryonic stem cells, and to regulate secondarily the expression of neighboring genes. Most importantly, we uncovered that these KRAB-ZFPs and KAP1 control TEs in adult tissues, in cell culture and in vivo, where they partner up to modulate cellular genes. Therefore, TEs and KRAB-ZFPs establish transcriptional networks that regulate not only development but probably many physiological events. Given the high degree of species-specificity of TEs and KRAB-ZFPs, these results have important implications for understanding the biology of higher vertebrates, including humans. PMID:27003935

  8. Randomized Clinical Trial of Therapeutic Music Video Intervention for Resilience Outcomes in Adolescents/Young Adults Undergoing Hematopoietic Stem Cell Transplant: A Report from the Children’s Oncology Group

    PubMed Central

    Robb, Sheri L.; Burns, Debra S.; Stegenga, Kristin A.; Haut, Paul R.; Monahan, Patrick O.; Meza, Jane; Stump, Timothy E.; Cherven, Brooke O.; Docherty, Sharron L.; Hendricks-Ferguson, Verna L.; Kintner, Eileen K.; Haight, Ann E.; Wall, Donna A.; Haase, Joan E.

    2013-01-01

    Background To reduce the risk of adjustment problems associated with Hematopoietic Stem Cell Transplant (HSCT) for adolescents/young adults (AYA), we examined efficacy of a therapeutic music video (TMV) intervention delivered during the acute phase of HSCT to: (a) increase protective factors of spiritual perspective, social integration, family environment, courageous coping, and hope-derived meaning; (b) decrease risk factors of illness-related distress and defensive coping; and (c) increase outcomes of self-transcendence and resilience. Methods A multi-site, randomized controlled trial (COG-ANUR0631) conducted at 8 Children’s Oncology Group sites involving 113 AYA aged 11–24 years undergoing myeloablative HSCT. Participants, randomized to the TMV or low-dose control (audiobooks) group, completed 6 sessions over 3 weeks with a board-certified music therapist. Variables were based on Haase’s Resilience in Illness Model. Participants completed measures related to latent variables of illness-related distress, social integration, spiritual perspective, family environment, coping, hope-derived meaning and resilience at baseline (T1), post-intervention (T2), and 100-days post-transplant (T3). Results At T2, the TMV group reported significantly better courageous coping (ES=0.505; P=0.030). At T3, the TMV group reported significantly better social integration (ES=0.543; P=.028) and family environment (ES=0.663; P=0.008), as well as moderate non-significant effect sizes for spiritual perspective (E=0.450; P=0.071) and self-transcendence (ES=0.424; P=0.088). Conclusion The TMV intervention improves positive health outcomes of courageous coping, social integration, and family environment during a high risk cancer treatment. We recommend the TMV be examined in a broader population of AYA with high risk cancers. PMID:24469862

  9. Comparative potential of juvenile and adult human articular chondrocytes for cartilage tissue formation in three-dimensional biomimetic hydrogels.

    PubMed

    Smeriglio, Piera; Lai, Janice H; Dhulipala, Lakshmi; Behn, Anthony W; Goodman, Stuart B; Smith, Robert L; Maloney, William J; Yang, Fan; Bhutani, Nidhi

    2015-01-01

    Regeneration of human articular cartilage is inherently limited and extensive efforts have focused on engineering the cartilage tissue. Various cellular sources have been studied for cartilage tissue engineering including adult chondrocytes, and embryonic or adult stem cells. Juvenile chondrocytes (from donors below 13 years of age) have recently been reported to be a promising cell source for cartilage regeneration. Previous studies have compared the potential of adult and juvenile chondrocytes or adult and osteoarthritic (OA) chondrocytes. To comprehensively characterize the comparative potential of young, old, and diseased chondrocytes, here we examined cartilage formation by juvenile, adult, and OA chondrocytes in three-dimensional (3D) biomimetic hydrogels composed of poly(ethylene glycol) and chondroitin sulfate. All three human articular chondrocytes were encapsulated in the 3D biomimetic hydrogels and cultured for 3 or 6 weeks to allow maturation and extracellular matrix formation. Outcomes were analyzed using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. After 3 and 6 weeks, juvenile chondrocytes showed a greater upregulation of chondrogenic gene expression than adult chondrocytes, while OA chondrocytes showed a downregulation. Aggrecan and type II collagen deposition and glycosaminoglycan accumulation were high for juvenile and adult chondrocytes but not for OA chondrocytes. Similar trend was observed in the compressive moduli of the cartilage constructs generated by the three different chondrocytes. In conclusion, the juvenile, adult and OA chondrocytes showed differential responses in the 3D biomimetic hydrogels. The 3D culture model described here may also provide a useful tool to further study the molecular differences among chondrocytes from different stages, which can help elucidate the mechanisms for age-related decline in the intrinsic capacity for cartilage repair. PMID:25054343

  10. Very small embryonic/epiblast-like stem cells (VSELs) and their potential role in aging and organ rejuvenation – an update and comparison to other primitive small stem cells isolated from adult tissues

    PubMed Central

    Ratajczak, Mariusz Z.; Shin, Dong-Myung; Liu, Rui; Mierzejewska, Kasia; Ratajczak, Janina; Kucia, Magda; Zuba-Surma, Ewa K.

    2012-01-01

    Very small embryonic-like stem cells (VSELs) are a population of developmentally early stem cells residing in adult tissues. These rare cells, which are slightly smaller than red blood cells, i) become mobilized during stress situations into peripheral blood, ii) are enriched in the Sca1+Lin−CD45− cell fraction in mice and the CD133+ Lin−CD45− cell fraction in humans, iii) express markers of pluripotent stem cells (e.g., Oct4, Nanog, and SSEA), and iv) display a distinct morphology characterized by a high nuclear/cytoplasmic ratio and undifferentiated chromatin. Recent evidence indicates that murine VSELs are kept quiescent in adult tissues and protected from teratoma formation by epigenetic modification of imprinted genes that regulate insulin/insulin like growth factor signaling (IIS). The successful reversal of these epigenetic changes in VSELs that render them quiescent will be crucial for efficient expansion of these cells. The most recent data in vivo from our and other laboratories demonstrated that both murine and human VSELs exhibit some characteristics of long-term repopulating hematopoietic stem cells (LT-HSCs), are at the top of the hierarchy in the mesenchymal lineage, and may differentiate into organ-specific cells (e.g., cardiomyocytes). Moreover, as recently demonstrated the number of these cells positively correlates in several murine models with longevity. Finally, while murine BM-derived VSELs have been extensively characterized more work is needed to better characterize these small cells at the molecular level in humans. PMID:22498452

  11. The adult brain tissue response to hollow fiber membranes of varying surface architecture with or without cotransplanted cells

    NASA Astrophysics Data System (ADS)

    Zhang, Ning

    A variety of biomaterials have been chronically implanted into the central nervous system (CNS) for repair or therapeutic purposes. Regardless of the application, chronic implantation of materials into the CNS induces injury and elicits a wound healing response, eventually leading to the formation of a dense extracellular matrix (ECM)-rich scar tissue that is associated with the segregation of implanted materials from the surrounding normal tissue. Often this reaction results in impaired performance of indwelling CNS devices. In order to enhance the performance of biomaterial-based implantable devices in the CNS, this thesis investigated whether adult brain tissue response to implanted biomaterials could be manipulated by changing biomaterial surface properties or further by utilizing the biology of co-transplanted cells. Specifically, the adult rat brain tissue response to chronically implanted poly(acrylonitrile-vinylchloride) (PAN-PVC) hollow fiber membranes (HFMs) of varying surface architecture were examined temporally at 2, 4, and 12 weeks postimplantation. Significant differences were discovered in the brain tissue response to the PAN-PVC HFMs of varying surface architecture at 4 and 12 weeks. To extend this work, whether the soluble factors derived from a co-transplanted cellular component further affect the brain tissue response to an implanted HFM in a significant way was critically exploited. The cells used were astrocytes, whose ability to influence scar formation process following CNS injury by physical contact with the host tissue had been documented in the literature. Data indicated for the first time that astrocyte-derived soluble factors ameliorate the adult brain tissue reactivity toward HFM implants in an age-dependent manner. While immature astrocytes secreted soluble factors that suppressed the brain tissue reactivity around the implants, mature astrocytes secreted factors that enhanced the gliotic response. These findings prove the feasibility

  12. Incidence and risk factors of post-engraftment invasive fungal disease in adult allogeneic hematopoietic stem cell transplant recipients receiving oral azoles prophylaxis.

    PubMed

    Montesinos, P; Rodríguez-Veiga, R; Boluda, B; Martínez-Cuadrón, D; Cano, I; Lancharro, A; Sanz, J; Arilla, M J; López-Chuliá, F; Navarro, I; Lorenzo, I; Salavert, M; Pemán, J; Calvillo, P; Martínez, J; Carpio, N; Jarque, I; Sanz, G F; Sanz, M A

    2015-11-01

    Studies that analyze the epidemiology and risk factors for invasive fungal disease (IFD) after engraftment in alloSCT are few in number. This single-center retrospective study included 404 alloSCT adult recipients surviving >40 days who engrafted and were discharged without prior IFD. All patients who received ⩾20 mg/day of prednisone were assigned to primary oral prophylaxis (itraconazole or low-dose voriconazole). The primary end point was the cumulative incidence (CI) of probable/proven IFD using the European Organization for Research and Treatment of Cancer and Mycoses Study Group (EORTC/MSG) criteria. The independent prognostic factors after multivariate analyses were used to construct a post-engraftment IFD risk score. The 1-year CI of IFD was 11%. The non-relapse mortality was 40% in those developing IFD and 16% in those who did not. The intent-to-treat analysis showed that 17% of patients abandoned the assigned prophylaxis. Age >40 years, ⩾1 previous SCT, pre-engraftment neutropenia >15 days, extensive chronic GVHD and CMV reactivation were independent risk factors. The post-engraftment IFD score stratified patients into low risk (0-1 factor, CI 0.7%), intermediate risk (2 factors, CI 9.9%) and high risk (3-5 factors, CI 24.7%) (P<0.0001). The antifungal prophylaxis strategy failed to prevent post-engraftment IFD in 11% of alloSCT. Our risk score could be useful to implement risk-adapted strategies using antifungal prophylaxis after engraftment. PMID:26281032

  13. ONE ANTIGEN MISMATCHED RELATED VS. HLA-MATCHED UNRELATED DONOR HEMATOPOIETIC TRANSPLANTATION IN ADULTS WITH ACUTE LEUKEMIA: CIBMTR RESULTS IN THE ERA OF MOLECULAR HLA TYPING

    PubMed Central

    Valcárcel, David; Sierra, Jorge; Wang, Tao; Kan, Fangyu; Gupta, Vikas; Hale, Gregory A.; Marks, David I.; McCarthy, Philip L; Oudshoorn, Machteld; Petersdorf, Effie W; Ringdén, Olle; Setterholm, Michelle; Spellman, Stephen R; Waller, Edmund K.; Gajewski, James L; Marino, Susana R.; Senitzer, David; Lee, Stephanie J.

    2012-01-01

    Purpose Approximately 13% of patients lacking an HLA-identical sibling have a 1-antigen-mismatched related donor (MMRD). Historically, outcomes using a 1-antigen MMRD were considered equivalent to a matched unrelated donor (UD). Recent improvements in unrelated donor (UD) stem cell transplantation (SCT) due to better molecular HLA-matching justifies investigating if UD should be preferred to MMRD in adult patients with acute leukemia. Patients and Methods The outcomes of MMRD (n=89) and HLA-A, B, C, DRB1 allele matched UD (n=700) SCT reported to the CIBMTR between 1995 and 2005 were compared. Patients were transplanted for acute myeloid leukemia (AML) or acute lymphoid leukemia (ALL) in first or second complete remission. Results Donor type was not associated with hematological recovery. Univariate and multivariate comparisons of MMRD vs. HLA-matched UD transplants showed no statistically significant differences in overall survival, disease free survival, transplant related mortality, relapse, and 100-day grade III–IV acute graft-versus-host disease (GVHD). MMRD SCT was associated with a lower rate of chronic GVHD at 1-year, 35% vs 47% p=0.03, which was confirmed in multivariate analysis (RR 0.58, 95% CI 0.39-0.85, p<0.01). Conclusion HLA-matched UD and MMRD SCT are associated with comparable survival. Since less chronic GVHD was observed in MMRD, this option when available remains the first choice in acute leukemia patients without an HLA-identical sibling in need of allogeneic transplantation. PMID:20674756

  14. Relationship of articular soft tissue contour and shape to the underlying eminence and slope profile in young adult temporomandibular joints.

    PubMed

    Pullinger, A G; Bibb, C A; Ding, X; Baldioceda, F

    1993-11-01

    This study examined whether the overall shape of the articular soft tissue overlying the posterior slope and articular eminence of the temporal bone could be predicted by the underlying osseous contour in a histologic model of 51 central sagittal sections of young adult temporomandibular joints. Articular soft tissue and bone contours were traced, and osseous landmarks identified on the basis of joint geometry. Soft tissue thickness measurements were made under low power light microscopy. Seven categories of articular soft tissue pattern were identified. The soft tissue uniformly followed the osseous contour in only one (14%). A progressive increase in soft tissue thickness from the middle of the posterior slope to the articular crest was the most common pattern (35%) but did not describe most of the sample that was more asymmetric. Pattern was poorly predicted by the shape and slope of the temporal bone outline or by dental factors that describe anterior guidance and did not relate to disk displacement. The articular soft tissue compensated for flatter eminence slopes and osseous irregularities and maintained an intact surface. This study has clinical implications for radiographic interpretation of disk space, condyle translation pathways, and the integrity of the functional articular surface. PMID:8247507

  15. The distribution and localization of /sup 127/m tellurium in normal and pathological nervous tissues of young and adult rats

    SciTech Connect

    Duckett, S.

    1982-11-01

    An equal amount (per weight) of /sup 127/m tellurium (Te) was injected IP into weanling and adult rats, some intoxicated with a diet containing Te, others not. The young intoxicated rats presented a segmental demyelination of the sciatic nerve and paralysis of the hind limbs; the adult intoxicated rats did not. Quantitation of 127m Te in nervous and other tissues was done with a gamma counter. Correlative morphological examination of the nervous tissues was done with light and electron microscopy. This study shows that Te crosses the vascular wall without injuring endothelial cells and invades the surrounding sciatic nerve parenchyma following administration of 127m Te to a weanling or adult rat. However, Te damages the endothelium, crosses the vascular wall of endo and perineurial vessels in weanling rats, causes a perivascular oedema, cytoplasmic anomalies in the Schwann cells, destruction of myelin and apparently invades axones--according to autoradiographic studies--following the administration of 127m Te plus the Te-diet. It is concluded that Te penetrates more quickly and in larger amounts the walls of blood vessels in the sciatic nerve of weanling rats intoxicated with Te, than the same nerve in the other weanling and adults rats. Te in the amounts indicated here penetrates the parenchyma of the CNS but apparently does not cause injury.

  16. Association between subcutaneous white adipose tissue and serum 25-hydroxyvitamin D in overweight and obese adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Cholecalciferol is known to be deposited in human adipose tissue, but the distribution of 25-hydroxyvitamin D (25(OH)D) in adipose tissue is not known. Objectives: To determine whether 25(OH)D is detectable in subcutaneous white adipose tissue (SWAT) in overweight and obese persons an...

  17. Adult Stem and Progenitor Cells

    NASA Astrophysics Data System (ADS)

    Geraerts, Martine; Verfaillie, Catherine M.

    The discovery of adult stem cells in most adult tissues is the basis of a number of clinical studies that are carried out, with therapeutic use of hematopoietic stem cells as a prime example. Intense scientific debate is still ongoing as to whether adult stem cells may have a greater plasticity than previously thought. Although cells with some features of embryonic stem cells that, among others, express Oct4, Nanog and SSEA1 are isolated from fresh tissue, it is not clear if the greater differentiation potential is acquired during cell culture. Moreover, adult more pluripotent cells do not have all pluripotent characteristics typical for embryonic stem cells. Recently, some elegant studies were published in which adult cells could be completely reprogrammed to embryonic stem cell-like cells by overexpression of some key transcription factors for pluripotency (Oct4, Sox2, Klf4 and c-Myc). It will be interesting for the future to investigate the exact mechanisms underlying this reprogramming and whether similar transcription factor pathways are present and/or can be activated in adult more pluripotent stem cells.

  18. A resource of ribosomal RNA-depleted RNA-Seq data from different normal adult and fetal human tissues

    PubMed Central

    Choy, Jocelyn Y.H.; Boon, Priscilla L.S.; Bertin, Nicolas; Fullwood, Melissa J.

    2015-01-01

    Gene expression is the most fundamental level at which the genotype leads to the phenotype of the organism. Enabled by ultra-high-throughput next-generation DNA sequencing, RNA-Seq involves shotgun sequencing of fragmented RNA transcripts by next-generation sequencing followed by in silico assembly, and is rapidly becoming the most popular method for gene expression analysis. Poly[A]+ RNA-Seq analyses of normal human adult tissue samples such as Illumina’s Human BodyMap 2.0 Project and the RNA-Seq atlas have provided a useful global resource and framework for comparisons with diseased tissues such as cancer. However, these analyses have failed to provide information on poly[A]−RNA, which is abundant in our cells. The most recent advances in RNA-Seq analyses use ribosomal RNA-depletion to provide information on both poly[A]+ and poly[A]−RNA. In this paper, we describe the use of Illumina’s HiSeq 2000 to generate high quality rRNA-depleted RNA-Seq datasets from human fetal and adult tissues. The datasets reported here will be useful in understanding the different expression profiles in different tissues. PMID:26594381

  19. Activation of the Canonical Bone Morphogenetic Protein (BMP) Pathway during Lung Morphogenesis and Adult Lung Tissue Repair

    PubMed Central

    Sountoulidis, Alexandros; Stavropoulos, Athanasios; Giaglis, Stavros; Apostolou, Eirini; Monteiro, Rui; Chuva de Sousa Lopes, Susana M.; Chen, Huaiyong; Stripp, Barry R.; Mummery, Christine; Andreakos, Evangelos; Sideras, Paschalis

    2012-01-01

    Signaling by Bone Morphogenetic Proteins (BMP) has been implicated in early lung development, adult lung homeostasis and tissue-injury repair. However, the precise mechanism of action and the spatio-temporal pattern of BMP-signaling during these processes remains inadequately described. To address this, we have utilized a transgenic line harboring a BMP-responsive eGFP-reporter allele (BRE-eGFP) to construct the first detailed spatiotemporal map of canonical BMP-pathway activation during lung development, homeostasis and adult-lung injury repair. We demonstrate that during the pseudoglandular stage, when branching morphogenesis progresses in the developing lung, canonical BMP-pathway is active mainly in the vascular network and the sub-epithelial smooth muscle layer of the proximal airways. Activation of the BMP-pathway becomes evident in epithelial compartments only after embryonic day (E) 14.5 primarily in cells negative for epithelial-lineage markers, located in the proximal portion of the airway-tree, clusters adjacent to neuro-epithelial-bodies (NEBs) and in a substantial portion of alveolar epithelial cells. The pathway becomes activated in isolated E12.5 mesenchyme-free distal epithelial buds cultured in Matrigel suggesting that absence of reporter activity in these regions stems from a dynamic cross-talk between endoderm and mesenchyme. Epithelial cells with activated BMP-pathway are enriched in progenitors capable of forming colonies in three-dimensional Matrigel cultures. As lung morphogenesis approaches completion, eGFP-expression declines and in adult lung its expression is barely detectable. However, upon tissue-injury, either with naphthalene or bleomycin, the canonical BMP-pathways is re-activated, in bronchial or alveolar epithelial cells respectively, in a manner reminiscent to early lung development and in tissue areas where reparatory progenitor cells reside. Our studies illustrate the dynamic activation of canonical BMP-pathway during lung

  20. TIN DISTRIBUTION IN ADULT RAT TISSUES AFTER EXPOSURE TO TRIMETHYLTIN AND TRIETHYLTIN

    EPA Science Inventory

    The time course of distribution of tin in the adult rat was determined in brain, liver kidney, heart, and blood following single ip administrations of trimethyltin hydroxide (TMT) and triethyltin bromide (TET). Adult Long-Evans rats were killed 1 hr, 4 hr, 12 hr, 24 hr, 5 days, 1...

  1. Characterizing active and inactive brown adipose tissue in adult humans using PET-CT and MR imaging.

    PubMed

    Gifford, Aliya; Towse, Theodore F; Walker, Ronald C; Avison, Malcolm J; Welch, E Brian

    2016-07-01

    Activated brown adipose tissue (BAT) plays an important role in thermogenesis and whole body metabolism in mammals. Positron emission tomography (PET)-computed tomography (CT) imaging has identified depots of BAT in adult humans, igniting scientific interest. The purpose of this study is to characterize both active and inactive supraclavicular BAT in adults and compare the values to those of subcutaneous white adipose tissue (WAT). We obtained [(18)F]fluorodeoxyglucose ([(18)F]FDG) PET-CT and magnetic resonance imaging (MRI) scans of 25 healthy adults. Unlike [(18)F]FDG PET, which can detect only active BAT, MRI is capable of detecting both active and inactive BAT. The MRI-derived fat signal fraction (FSF) of active BAT was significantly lower than that of inactive BAT (means ± SD; 60.2 ± 7.6 vs. 62.4 ± 6.8%, respectively). This change in tissue morphology was also reflected as a significant increase in Hounsfield units (HU; -69.4 ± 11.5 vs. -74.5 ± 9.7 HU, respectively). Additionally, the CT HU, MRI FSF, and MRI R2* values are significantly different between BAT and WAT, regardless of the activation status of BAT. To the best of our knowledge, this is the first study to quantify PET-CT and MRI FSF measurements and utilize a semiautomated algorithm to identify inactive and active BAT in the same adult subjects. Our findings support the use of these metrics to characterize and distinguish between BAT and WAT and lay the foundation for future MRI analysis with the hope that some day MRI-based delineation of BAT can stand on its own. PMID:27166284

  2. Measuring ATP Concentration in a Small Number of Murine Hematopoietic Stem Cells.

    PubMed

    Szade, Krzysztof; Zukowska, Monika; Jozkowicz, Alicja; Dulak, Jozef

    2016-01-01

    The metabolism of quiescent adult stem cells differs from the metabolism of differentiated cells. The metabolic processes are tightly regulated and their alterations disturb function of stem cells. One of the indicators of metabolic status of cells is the ATP level. While the method of measuring the ATP levels has been known for many years, estimating ATP levels in small population of defined stem cells isolated directly from the tissue has remained challenging. Here, we show our method of measuring the ATP levels in hematopoietic stem cells sorted from murine bone marrow. We used magnetic sorting as well as cell sorter and adopted the commonly used bioluminescence-based detection kits in described protocol. Our strategy allows to measure ATP levels in 1000 highly purified HSC. PMID:27138010

  3. STEM CELL AGING. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging

    PubMed Central

    Mohrin, Mary; Shin, Jiyung; Liu, Yufei; Brown, Katharine; Luo, Hanzhi; Xi, Yannan; Haynes, Cole M.; Chen, Danica

    2015-01-01

    Deterioration of adult stem cells accounts for much of aging-associated compromised tissue maintenance. How stem cells maintain metabolic homeostasis remains elusive. Here, we identified a regulatory branch of the mitochondrial unfolded protein response (UPRmt), which is mediated by the interplay of SIRT7 and NRF1 and is coupled to cellular energy metabolism and proliferation. SIRT7 inactivation caused reduced quiescence, increased mitochondrial protein folding stress (PFSmt), and compromised regenerative capacity of hematopoietic stem cells (HSCs). SIRT7 expression was reduced in aged HSCs, and SIRT7 up-regulation improved the regenerative capacity of aged HSCs. These findings define the deregulation of a UPRmt-mediated metabolic checkpoint as a reversible contributing factor for HSC aging. PMID:25792330

  4. Detection and transmission of infectious hematopoietic necrosis virus in rainbow trout

    USGS Publications Warehouse

    Amend, Donald F.

    1975-01-01

    Detection and transmission of Infectious Hematopoietic Necrosis Virus in rainbow trout (Salmo gairdneri) was studied at a commercial trout hatchery. Transmission of virus was demonstrated via water, feed and contaminated eggs. If eggs from carrier females were incubated several weeks in virus-free water, the resulting fry did not become infected. However, if fry subsequently became infected they were lifetime carriers. Infectious virus was readily detectable in most tissues of moribund fish; in carriers it was detected in sex products of spawning fish, and in samples from the intestine of post-spawning fish, but not in samples from blood, feces, kidney, or liver. The carrier rate was not significantly different between sexes. It was concluded that adult carriers are the reservoir of infection and that transmission occurs primarily when carriers shed virus and expose susceptible fish or eggs.

  5. Fetal Hematopoietic Stem Cell Transplantation Fails to Fully Regenerate the B-Lymphocyte Compartment

    PubMed Central

    Ghosn, Eliver Eid Bou; Waters, Jeffrey; Phillips, Megan; Yamamoto, Ryo; Long, Brian R.; Yang, Yang; Gerstein, Rachel; Stoddart, Cheryl A.; Nakauchi, Hiromitsu; Herzenberg, Leonore A.

    2015-01-01

    Summary B cells are key components of cellular and humoral immunity and, like all lymphocytes, are thought to originate and renew from hematopoietic stem cells (HSCs). However, our recent single-HSC transfer studies demonstrate that adult bone marrow HSCs do not regenerate B-1a, a subset of tissue B cells required for protection against pneumonia, influenza, and other infections. Since B-1a are regenerated by transfers of fetal liver, the question arises as to whether B-1a derive from fetal, but not adult, HSCs. Here we show that, similar to adult HSCs, fetal HSCs selectively fail to regenerate B-1a. We also show that, in humanized mice, human fetal liver regenerates tissue B cells that are phenotypically similar to murine B-1a, raising the question of whether human HSC transplantation, the mainstay of such models, is sufficient to regenerate human B-1a. Thus, our studies overtly challenge the current paradigm that HSCs give rise to all components of the immune system. PMID:26724903

  6. Abdominal Adipose Tissue was Associated with Glomerular Hyperfiltration among Non- Diabetic and Normotensive Adults with a Normal Body Mass Index.

    PubMed

    Lee, Jeonghwan; Kim, Hye Jin; Cho, Belong; Park, Jin Ho; Choi, Ho Chun; Lee, Cheol Min; Oh, Seung Won; Kwon, Hyuktae; Heo, Nam Ju

    2015-01-01

    Glomerular hyperfiltration is recognized as an early marker of progressive kidney dysfunction in the obese population. This study aimed to identify the relationship between glomerular hyperfiltration and body fat distribution measured by computed tomography (CT) in healthy Korean adults. The study population included individuals aged 20-64 years who went a routine health check-up including an abdominal CT scan. We selected 4,378 individuals without diabetes and hypertension. Glomerular filtration rate was estimated using the CKD-EPI equation, and glomerular hyperfiltration was defined as the highest quintile of glomerular filtration rate. Abdominal adipose tissue areas were measured at the level of the umbilicus using a 16-detector CT scanner, and the cross-sectional area was calculated using Rapidia 2.8 CT software. The prevalence of glomerular hyperfiltration increased significantly according to the subcutaneous adipose tissue area in men (OR = 1.74 (1.16-2.61), P for trend 0.016, for the comparisons of lowest vs. highest quartile) and visceral adipose tissue area in women (OR = 2.34 (1.46-3.75), P for trend < 0.001) in multivariate analysis. After stratification by body mass index (normal < 23 kg/m2, overweight ≥ 23 kg/m2), male subjects with greater subcutaneous adipose tissue, even those in the normal BMI group, had a higher prevalence of glomerular hyperfiltration (OR = 2.11 (1.17-3.80), P for trend = 0.009). Among women, the significance of visceral adipose tissue area on glomerular hyperfiltration resulted from the normal BMI group (OR = 2.14 (1.31-3.49), P for trend = 0.002). After menopause, the odds ratio of the association of glomerular hyperfiltration with subcutaneous abdominal adipose tissue increased (OR = 2.96 (1.21-7.25), P for trend = 0.013). Subcutaneous adipose tissue areas and visceral adipose tissue areas are positively associated with glomerular hyperfiltration in healthy Korean adult men and women, respectively. In post-menopausal women

  7. Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation

    PubMed Central

    Goode, Debbie K.; Obier, Nadine; Vijayabaskar, M.S.; Lie-A-Ling, Michael; Lilly, Andrew J.; Hannah, Rebecca; Lichtinger, Monika; Batta, Kiran; Florkowska, Magdalena; Patel, Rahima; Challinor, Mairi; Wallace, Kirstie; Gilmour, Jane; Assi, Salam A.; Cauchy, Pierre; Hoogenkamp, Maarten; Westhead, David R.; Lacaud, Georges; Kouskoff, Valerie; Göttgens, Berthold; Bonifer, Constanze

    2016-01-01

    Summary Metazoan development involves the successive activation and silencing of specific gene expression programs and is driven by tissue-specific transcription factors programming the chromatin landscape. To understand how this process executes an entire developmental pathway, we generated global gene expression, chromatin accessibility, histone modification, and transcription factor binding data from purified embryonic stem cell-derived cells representing six sequential stages of hematopoietic specification and differentiation. Our data reveal the nature of regulatory elements driving differential gene expression and inform how transcription factor binding impacts on promoter activity. We present a dynamic core regulatory network model for hematopoietic specification and demonstrate its utility for the design of reprogramming experiments. Functional studies motivated by our genome-wide data uncovered a stage-specific role for TEAD/YAP factors in mammalian hematopoietic specification. Our study presents a powerful resource for studying hematopoiesis and demonstrates how such data advance our understanding of mammalian development. PMID:26923725

  8. Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation.

    PubMed

    Goode, Debbie K; Obier, Nadine; Vijayabaskar, M S; Lie-A-Ling, Michael; Lilly, Andrew J; Hannah, Rebecca; Lichtinger, Monika; Batta, Kiran; Florkowska, Magdalena; Patel, Rahima; Challinor, Mairi; Wallace, Kirstie; Gilmour, Jane; Assi, Salam A; Cauchy, Pierre; Hoogenkamp, Maarten; Westhead, David R; Lacaud, Georges; Kouskoff, Valerie; Göttgens, Berthold; Bonifer, Constanze

    2016-03-01

    Metazoan development involves the successive activation and silencing of specific gene expression programs and is driven by tissue-specific transcription factors programming the chromatin landscape. To understand how this process executes an entire developmental pathway, we generated global gene expression, chromatin accessibility, histone modification, and transcription factor binding data from purified embryonic stem cell-derived cells representing six sequential stages of hematopoietic specification and differentiation. Our data reveal the nature of regulatory elements driving differential gene expression and inform how transcription factor binding impacts on promoter activity. We present a dynamic core regulatory network model for hematopoietic specification and demonstrate its utility for the design of reprogramming experiments. Functional studies motivated by our genome-wide data uncovered a stage-specific role for TEAD/YAP factors in mammalian hematopoietic specification. Our study presents a powerful resource for studying hematopoiesis and demonstrates how such data advance our understanding of mammalian development. PMID:26923725

  9. Requirement for Ssbp2 in Hematopoietic Stem Cell Maintenance and Stress Response

    PubMed Central

    Li, June; Kurasawa, Yasuhiro; Wang, Yang; Clise-Dwyer, Karen; Klumpp, Sherry A.; Liang, Hong; Tailor, Ramesh C.; Raymond, Aaron C.; Estrov, Zeev; Brandt, Stephen J.; Davis, Richard E.; Zweidler–McKay, Patrick; Amin, Hesham M.; Nagarajan, Lalitha

    2014-01-01

    Transcriptional mechanisms governing hematopoietic stem cell (HSC) quiescence, self-renewal, and differentiation are not fully understood. Sequence-specific single-stranded DNA-binding protein 2 (SSBP2) is a candidate acute myelogenous leukemia (AML) suppressor gene located at chromosome 5q14. SSBP2 binds the transcriptional adaptor protein Lim-domain binding protein 1 (LDB1) and enhances LDB1 stability to regulate gene expression. Notably, Ldb1 is essential for HSC specification during early development and maintenance in adults. We previously reported shortened lifespan and greater susceptibility to B cell lymphomas and carcinomas in Ssbp2 −/− mice. However, whether Ssbp2 plays a regulatory role in normal HSC function and leukemogenesis is unknown. Here, we provide several lines of evidence to demonstrate a requirement for Ssbp2 in the function and transcriptional program of hematopoietic stem and progenitor cells (HSPCs) in vivo. We found that hematopoietic tissues were hypoplastic in Ssbp2−/− mice and the frequency of lymphoid-primed multipotent progenitor cells in bone marrow was reduced. Other significant features of these mice were delayed recovery from 5-fluorouracil treatment and diminished multilineage reconstitution in lethally irradiated bone marrow recipients. Dramatic reduction of Notch1 transcripts and increased expression of transcripts encoding the transcription factor E2a and its downstream target Cdkn1a also distinguished Ssbp2−/− HSPCs from wild-type HSPCs. Finally, a tendency towards coordinated expression of SSBP2 and the AML suppressor NOTCH1 in a subset of The Cancer Genome Atlas AML cases suggested a role for SSBP2 in AML pathogenesis. Collectively, our results uncovered a critical regulatory function for SSBP2 in HSPC gene expression and function. PMID:25238756

  10. Human placenta and chorion: potential additional sources of hematopoietic stem cells for transplantation

    PubMed Central

    Bárcena, Alicia; Muench, Marcus O.; Kapidzic, Mirhan; Gormley, Matthew; Goldfien, Gabriel A.; Fisher, Susan J.

    2012-01-01

    Background Hematopoietic stem cell (HSC) transplantation is an essential element of medical therapy, leading to cures of previously incurable disease for hematological and non-hematological pathologies. Many patients do not find matched donors in a timely manner, which has driven efforts to find alternative pools of transplantable HSCs. The use of umbilical cord blood (UCB) as a source of transplantable HSCs began more than two decades ago. However, the use of UCB as a reliable source of HSCs for transplantation still faces crucial challenges: the number of HSCs present in a unit of UCB is usually sufficient for younger children but not for adults and the persistent delayed engraftment often seen can result in high rates of infection and mortality. Study Design and Methods We propose a new approach to a solution of these problems: a potential increase of the limited number of UCB–HSCs available by harvesting HSCs contained in the placenta and the fetal chorionic membrane available at birth. Results We investigated the presence of hematopoietic progenitors/HSC in human placenta and chorion at different gestational ages. The characterization of these cells was performed by flow cytometry and immunolocalization and their functional status was investigated by transplanting them into immunodeficient mice. Conclusion HSCs are present in extraembryonic tissues and could be banked in conjunction to the UCB-HSCs. This novel approach could have a large impact on the field of HSC banking and more crucially, on the outcome of patients undergoing this treatment by greatly improving the use of life-saving hematopoietic transplants. PMID:22074633

  11. Three-dimensional cartography of hematopoietic clusters in the vasculature of whole mouse embryos.

    PubMed

    Yokomizo, Tomomasa; Dzierzak, Elaine

    2010-11-01

    Hematopoietic cell clusters in the aorta of vertebrate embryos play a pivotal role in the formation of the adult blood system. Despite their importance, hematopoietic clusters have not been systematically quantitated or mapped because of technical limitations posed by the opaqueness of whole mouse embryos. Here, we combine an approach to make whole mouse embryos transparent, with multicolor marking, to allow observation of hematopoietic clusters using high-resolution 3-dimensional confocal microscopy. Our method provides the first complete map and temporal quantitation of all hematopoietic clusters in the mouse embryonic vasculature. We show that clusters peak in number at embryonic day 10.5, localize to specific vascular subregions and are heterogeneous, indicating a basal endothelial to non-basal (outer cluster) hematopoietic cell transition. Clusters enriched with the c-Kit(+)CD31(+)SSEA1(-) cell population contain functional hematopoietic progenitors and stem cells. Thus, three-dimensional cartography of transparent mouse embryos provides novel insight into the vascular subregions instrumental in hematopoietic progenitor/stem cell development, and represents an important technological advancement for comprehensive in situ hematopoietic cluster analysis. PMID:20876651

  12. Three-dimensional cartography of hematopoietic clusters in the vasculature of whole mouse embryos

    PubMed Central

    Yokomizo, Tomomasa; Dzierzak, Elaine

    2010-01-01

    Hematopoietic cell clusters in the aorta of vertebrate embryos play a pivotal role in the formation of the adult blood system. Despite their importance, hematopoietic clusters have not been systematically quantitated or mapped because of technical limitations posed by the opaqueness of whole mouse embryos. Here, we combine an approach to make whole mouse embryos transparent, with multicolor marking, to allow observation of hematopoietic clusters using high-resolution 3-dimensional confocal microscopy. Our method provides the first complete map and temporal quantitation of all hematopoietic clusters in the mouse embryonic vasculature. We show that clusters peak in number at embryonic day 10.5, localize to specific vascular subregions and are heterogeneous, indicating a basal endothelial to non-basal (outer cluster) hematopoietic cell transition. Clusters enriched with the c-Kit+CD31+SSEA1– cell population contain functional hematopoietic progenitors and stem cells. Thus, three-dimensional cartography of transparent mouse embryos provides novel insight into the vascular subregions instrumental in hematopoietic progenitor/stem cell development, and represents an important technological advancement for comprehensive in situ hematopoietic cluster analysis. PMID:20876651

  13. Directed differentiation of definitive hemogenic endothelium and hematopoietic progenitors from human pluripotent stem cells.

    PubMed

    Ditadi, Andrea; Sturgeon, Christopher M

    2016-05-15

    The generation of hematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) remains a major goal for regenerative medicine and disease modeling. However, hPSC differentiation cultures produce mostly hematopoietic progenitors belonging to the embryonic HSC-independent hematopoietic program, which may not be relevant or accurate for modeling normal and disease-state adult hematopoietic processes. Through a stage-specific directed differentiation approach, it is now possible to generate exclusively definitive hematopoietic progenitors from hPSCs showing characteristics of the more developmentally advanced fetal hematopoiesis. Here, we summarize recent efforts at generating hPSC-derived definitive hematopoiesis through embryoid body differentiation under defined conditions. Embryoid bodies are generated through enzymatic dissociation of hPSCs from matrigel-coated plasticware, followed by recombinant BMP4, driving mesoderm specification. Definitive hematopoiesis is specified by a GSK3β-inhibitor, followed by recombinant VEGF and supportive hematopoietic cytokines. The CD34+ cells obtained using this method are then suitable for hematopoietic assays for definitive hematopoietic potential. PMID:26439174

  14. [Cell sources for cardiovascular tissue engineering].

    PubMed

    Klopsch, C; Donndorf, P; Kaminski, A; Ma, N; Steinhoff, G

    2011-04-01

    Numerous studies have confirmed that stem cell therapy has significant potential for the regeneration of congenital and acquired heart diseases. The utilization of embryonic stem cells and induced pluripotent stem cells promises a possible generation and regeneration of all cardiovascular structures. On the one hand fetal and adult stem cells, e.g. endothelial progenitors, mesenchymal, hematopoietic, cardiac stem cells and myoblasts, possess limited potential for multilinear differentiation. On the other hand these cells have high paracrin activity and support with well-confirmed safety the reconstruction and formation of cardiovascular structures. On the visionary track towards an autonomously functioning autologous heart generated by tissue engineering, vascular, valvular and myocardial tissues have already been successfully created. This manuscript describes the possible stem cell sources for cardiovascular tissue engineering and evaluates their potency and safety from a medical and ethical point of view employing the data from systematic reviews (Medline database) and own investigations. PMID:21424292

  15. Current Understanding of the Pathways Involved in Adult Stem and Progenitor Cell Migration for Tissue Homeostasis and Repair.

    PubMed

    Goichberg, Polina

    2016-08-01

    With the advancements in the field of adult stem and progenitor cells grows the recognition that the motility of primitive cells is a pivotal aspect of their functionality. There is accumulating evidence that the recruitment of tissue-resident and circulating cells is critical for organ homeostasis and effective injury responses, whereas the pathobiology of degenerative diseases, neoplasm and aging, might be rooted in the altered ability of immature cells to migrate. Furthermore, understanding the biological machinery determining the translocation patterns of tissue progenitors is of great relevance for the emerging methodologies for cell-based therapies and regenerative medicine. The present article provides an overview of studies addressing the physiological significance and diverse modes of stem and progenitor cell trafficking in adult mammalian organs, discusses the major microenvironmental cues regulating cell migration, and describes the implementation of live imaging approaches for the exploration of stem cell movement in tissues and the factors dictating the motility of endogenous and transplanted cells with regenerative potential. PMID:27209167

  16. Evaluation of soft-tissue morphology of the face in 1,050 young adults.

    PubMed

    Borman, H; Ozgür, F; Gürsu, G

    1999-03-01

    Anthropometry of the face has always been an interesting subject for artists and plastic surgeons. Since ancient times, many rules have been proposed for the ideal face. The authors measured directly vertical and horizontal proportions of the face and inclinations of the soft-tissue facial profile in 1050 young Turkish adults. Differences between the facial measurements of subjects from seven different geographic regions were analyzed. Some of the measurements were compared further with the measurements of other populations in the literature, and the validity of the neoclassical canons were tested. The special head height measure was shorter than the special face height in the majority of our study group (women/men: equal height, 13%/15%; longer special head height, 28%/30%; shorter special head height, 59%/55%). Faces with three equally high-profile sections were not seen in women or in men. When the forehead height was compared with the nose height, equality was present in a small percentage of the population (women/men: equal height, 17%/18%; longer forehead, 41%/ 42%; shorter forehead, 42%/40%). The nose height was equal to the lower face height in a minority of the population (women/men: equal height, 10%/11%; longer nose, 9%/11%; shorter nose (81%/78%). The forehead height was shorter than the lower face height in the majority of the population (women/ men: equal height, 8%/9%; longer forehead, 12%/13%; shorter forehead, 79%/78%). The intercanthal distance was shorter than the nose width in the majority of the population (women/men: equal width, 20%/19%; wider intercanthal distance, 35%/37%; narrower intercanthal width, 65%/68%). The population was distributed evenly in regard to the variations of the orbital proportion canon (women/men: equal intercanthal width and eye fissure length, 31%/36%; wider intercanthal distance, 34%/27%; narrower intercanthal width, 35%/37%). The mouth width was greater than 1.5 times the nose width in the majority of the

  17. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb (14)C.

    PubMed

    Heinemeier, Katja Maria; Schjerling, Peter; Heinemeier, Jan; Magnusson, Stig Peter; Kjaer, Michael

    2013-05-01

    Tendons are often injured and heal poorly. Whether this is caused by a slow tissue turnover is unknown, since existing data provide diverging estimates of tendon protein half-life that range from 2 mo to 200 yr. With the purpose of determining life-long turnover of human tendon tissue, we used the (14)C bomb-pulse method. This method takes advantage of the dramatic increase in atmospheric levels of (14)C, produced by nuclear bomb tests in 1955-1963, which is reflected in all living organisms. Levels of (14)C were measured in 28 forensic samples of Achilles tendon core and 4 skeletal muscle samples (donor birth years 1945-1983) with accelerator mass spectrometry (AMS) and compared to known atmospheric levels to estimate tissue turnover. We found that Achilles tendon tissue retained levels of (14)C corresponding to atmospheric levels several decades before tissue sampling, demonstrating a very limited tissue turnover. The tendon concentrations of (14)C approximately reflected the atmospheric levels present during the first 17 yr of life, indicating that the tendon core is formed during height growth and is essentially not renewed thereafter. In contrast, (14)C levels in muscle indicated continuous turnover. Our observation provides a fundamental premise for understanding tendon function and pathology, and likely explains the poor regenerative capacity of tendon tissue. PMID:23401563

  18. In vivo adeno-associated viral vector-mediated genetic engineering of white and brown adipose tissue in adult mice.

    PubMed

    Jimenez, Veronica; Muñoz, Sergio; Casana, Estefania; Mallol, Cristina; Elias, Ivet; Jambrina, Claudia; Ribera, Albert; Ferre, Tura; Franckhauser, Sylvie; Bosch, Fatima

    2013-12-01

    Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes. PMID:24043756

  19. In Vivo Adeno-Associated Viral Vector–Mediated Genetic Engineering of White and Brown Adipose Tissue in Adult Mice

    PubMed Central

    Jimenez, Veronica; Muñoz, Sergio; Casana, Estefania; Mallol, Cristina; Elias, Ivet; Jambrina, Claudia; Ribera, Albert; Ferre, Tura; Franckhauser, Sylvie; Bosch, Fatima

    2013-01-01

    Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes. PMID:24043756

  20. DNA Damage Response in Hematopoietic Stem Cell Ageing.

    PubMed

    Li, Tangliang; Zhou, Zhong-Wei; Ju, Zhenyu; Wang, Zhao-Qi

    2016-06-01

    Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing. PMID:27221660

  1. Ectopic bone formation in severely combat-injured orthopedic patients -- a hematopoietic niche.

    PubMed

    Davis, Thomas A; Lazdun, Yelena; Potter, Benjamin K; Forsberg, Jonathan A

    2013-09-01

    Combat-related heterotopic ossification (HO) has emerged as a common and problematic complication of modern wartime extremity injuries, contributing to substantial patient morbidity and loss of function. We have previously reported that HO-forming patients exhibit a more pronounced systemic and local inflammatory response very early in the wound healing process. Moreover, traumatized muscle-derived mesenchymal progenitor cells from these patients have a skewed differentiation potential toward bone. Here, we demonstrate that HO lesions excised from this patient population contain highly vascularized, mature, cancellous bone containing adipogenic marrow. Histologic analysis showed immature hematopoietic cells located within distinct foci in perivascular regions. The adipogenic marrow often contained low numbers of functional erythroid (BFU-E), myeloid (CFU-GM, CFU-M) and multilineage (CFU-GEMM) colony-forming hematopoietic progenitor cells (HPCs). Conversely, tissue from control muscle and non-HO traumatic wound granulation tissue showed no evidence of hematopoietic progenitor cell activity. In summary, our findings suggest that ectopic bone can provide an appropriate hematopoietic microenvironment for supporting the proliferation and differentiation of HPCs. This reactive and vibrant cell population may help maintain normal hematopoietic function, particularly in those with major extremity amputations who have sustained both massive blood loss, prompting systemic marrow stimulation, as well as loss of available native active marrow space. These findings begin to characterize the functional biology of ectopic bone and elucidate the interactions between HPC and non-hematopoietic cell types within the ectopic intramedullary hematopoietic microenvironmental niche identified. PMID:23727270

  2. Mass spectral determination of phenylacetonitrile (PAN) levels in body tissues of adult desert locust, Schistocerca gregaria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : Wings and legs of the gregarious desert locust, Schistocerca gregaria have been shown to be release sites of phenylacetonitrile (PAN), the major adult male-produced pheromone. However, there is limited information on the distribution of PAN within the locust. Here we show, using gas chromatograph...

  3. ALKYTIN INHIBITION OF ATPASE ACTIVITIES IN TISSUE HOMOGENATES AND SUBCELLULAR FRACTIONS FROM NEONATAL AND ADULT RATS

    EPA Science Inventory

    The effects of triethyltin (TET) on ATPase activities in brain and liver homogenates and subcellular fractions were compared in neonatal and adult rats. n 5 day old rats, relative sensitivities to TET inhibition were: brain and liver mitochondrial ATPase >> rain Na+/K+ ATPase > b...

  4. Tight regulation of ubiquitin-mediated DNA damage response by USP3 preserves the functional integrity of hematopoietic stem cells

    PubMed Central

    Lancini, Cesare; van den Berk, Paul C.M.; Vissers, Joseph H.A.; Gargiulo, Gaetano; Song, Ji-Ying; Hulsman, Danielle; Serresi, Michela; Tanger, Ellen; Blom, Marleen; Vens, Conchita; van Lohuizen, Maarten; Jacobs, Heinz

    2014-01-01

    Histone ubiquitination at DNA breaks is required for activation of the DNA damage response (DDR) and DNA repair. How the dynamic removal of this modification by deubiquitinating enzymes (DUBs) impacts genome maintenance in vivo is largely unknown. To address this question, we generated mice deficient for Ub-specific protease 3 (USP3; Usp3Δ/Δ), a histone H2A DUB which negatively regulates ubiquitin-dependent DDR signaling. Notably, USP3 deletion increased the levels of histone ubiquitination in adult tissues, reduced the hematopoietic stem cell (HSC) reserves over time, and shortened animal life span. Mechanistically, our data show that USP3 is important in HSC homeostasis, preserving HSC self-renewal, and repopulation potential in vivo and proliferation in vitro. A defective DDR and unresolved spontaneous DNA damage contribute to cell cycle restriction of Usp3Δ/Δ HSCs. Beyond the hematopoietic system, Usp3Δ/Δ animals spontaneously developed tumors, and primary Usp3Δ/Δ cells failed to preserve chromosomal integrity. These findings broadly support the regulation of chromatin ubiquitination as a key pathway in preserving tissue function through modulation of the response to genotoxic stress. PMID:25113974

  5. Fancb deficiency impairs hematopoietic stem cell function

    PubMed Central

    Du, Wei; Amarachintha, Surya; Erden, Ozlem; Wilson, Andrew; Meetei, Amom Ruhikanta; Andreassen, Paul R.; Namekawa, Satoshi H.; Pang, Qishen

    2015-01-01

    Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure, variable congenital malformations and a predisposition to malignancies. FANCB (also known as FAAP95), is the only X-linked FA gene discovered thus far. In the present study, we investigated hematopoiesis in adult Fancb deficient (Fancb−/y) mice and found that Fancb−/y mice have decreased hematopoietic stem cell (HSC) quiescence accompanied by reduced progenitor activity in vitro and reduced repopulating capacity in vivo. Like other FA mouse models previously reported, the hematopoietic system of Fancb−/y mice is hypersensitive to DNA cross-linking agent mitomycin C (MMC), which induces bone marrow failure in Fancb−/y mice. Furthermore, Fancb−/y BM exhibits slower recovery kinetics and less tolerance to myelotoxic stress induced by 5-fluorouracil than wild-type littermates. RNA-seq analysis reveals altered expression of genes involved in HSC function and cell cycle regulation in Fancb−/y HSC and progenitor cells. Thus, this Fancb−/y mouse model provides a novel approach for studying the critical role of the FA pathway not only in germ cell development but also in the maintenance of HSC function. PMID:26658157

  6. Epigenetic regulation of hematopoietic stem cell aging

    SciTech Connect

    Beerman, Isabel

    2014-12-10

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.

  7. Simultaneous characterization of progenitor cell compartments in adult human liver.

    PubMed

    Porretti, Laura; Cattaneo, Alessandra; Colombo, Federico; Lopa, Raffaella; Rossi, Giorgio; Mazzaferro, Vincenzo; Battiston, Carlo; Svegliati-Baroni, Gianluca; Bertolini, Francesco; Rebulla, Paolo; Prati, Daniele

    2010-01-01

    The human liver is a complex tissue consisting of epithelial, endothelial, hematopoietic, and mesenchymal elements that probably derive from multiple lineage-committed progenitors, but no comprehensive study aimed at identifying and characterizing intrahepatic precursors has yet been published. Cell suspensions for this study were obtained by enzymatic digestion of liver specimens taken from 20 patients with chronic liver disease and 13 multiorgan donors. Stem and progenitor cells were first isolated, amplified, and characterized ex vivo according to previously validated methods, and then optimized flow cytometry was used to assess their relative frequencies and characterize their immunophenotypes in the clinical specimens. Stem and progenitor cells committed to hematopoietic, endothelial, epithelial, and mesenchymal lineages were clearly identifiable in livers from both healthy and diseased subjects. Within the mononuclear liver cell compartment, epithelial progenitors [epithelial cell adhesion molecule (EpCAM)(+)/CD49f(+)/CD29(+)/CD45(-)] accounted for 2.7-3.5% whereas hematopoietic (CD34(+)/CD45(+)), endothelial [vascular endothelial growth factor-2 (KDR)(+)/CD146(+)/CD45(-)], and mesenchymal [CD73(+)/CD105(+)/CD90 (Thy-1)(+)/CD45 (-)] stem cells and progenitors accounted for smaller fractions (0.02-0.6%). The patients' livers had higher percentages of hematopoietic and endothelial precursors than those of the donors. In conclusion, we identified and characterized precursors committed to four different lineages in adult human liver. We also optimized a flow cytometry approach that will be useful in exploring the contribution of these cells to the pathogenesis of liver disease. PMID:19960544

  8. Quantitative comparison of the expression of myogenic regulatory factors in flounder ( Paralichthys olivaceus) embryos and adult tissues

    NASA Astrophysics Data System (ADS)

    Zhang, Yuqing; Tan, Xungang; Xu, Peng; Sun, Wei; Xu, Yongli; Zhang, Peijun

    2010-03-01

    MyoD, Myf5, and myogenin are myogenic regulatory factors that play important roles during myogenesis. It is thought that MyoD and Myf5 are required for myogenic determination, while myogenin is important for terminal differentiation and lineage maintenance. To better understand the function of myogenic regulatory factors in muscle development of flounder, an important economic fish in Asia, real-time quantitative RT-PCR was used to characterize the expression patterns of MyoD, Myf5, and myogenin at early stages of embryo development, and in different tissues of the adult flounder. The results show that, Myf5 is the first gene to be expressed during the early stages of flounder development, followed by MyoD and myogenin. The expressions of Myf5, yoD, and myogenin at the early stages have a common characteristic: expression gradually increased to a peak level, and then gradually decreased to an extremely low level. In the adult flounder, the expression of the three genes in muscle is much higher than that in other tissues, indicating that they are important for muscle growth and maintenance of grown fish. During embryonic stages, the expression level of MyoD might serve an important role in the balance between muscle cell differentiation and proliferation. When the MyoD expression is over 30% of its highest level, the muscle cells enter the differentiation stage.

  9. Assessment of the relationships among posture, maxillomandibular denture complex, and soft-tissue profile of aesthetic adult Korean women.

    PubMed

    Choi, B; Baek, S H; Yang, W S; Kim, S

    2000-11-01

    The objective of this study was to assess the relationships among the posture, the maxillomandibular denture complex, and the soft-tissue profile of aesthetic adult Korean women. From an initial group of 346 women, the authors examined 28 beautiful adult Korean women who had normal vertical and sagittal skeletal relationships and normal occlusion. There were no differences in the inclinations of the incisors to the occlusal planes in the maxilla and the mandible in the data for Korean women vs. Arnett's data for white women. However, the overbite and overjet in Korean women were slightly smaller than in white women. AB to maxillary occlusal plane angle (MxOP) represented the anteroposterior denture base discrepancy to the occlusal plane. Angulation of the maxillary occlusal plane to the Frankfurt (FH) plane and the true vertical line at submasale (TVL) (Sn) was a little steeper in Korean women than in white women. The FH plane was almost parallel to the true horizontal line in Korean women who had normal vertical and sagittal skeletal relationships and normal occlusion. With regard to soft-tissue variables, the upper lip length (Sn-Stms), interlabial gap, upper incisor exposure, nasolabial angle, lip and nose tip projection value, and TVL (Sn)-to-upper lip line (UL) angle showed interracial differences. The results of this study can assist in the diagnosis and treatment planning of orthognathic surgery. PMID:11314500

  10. Increase in adipose tissue linoleic acid of US adults in the last half century.

    PubMed

    Guyenet, Stephan J; Carlson, Susan E

    2015-11-01

    Linoleic acid (LA) is a bioactive fatty acid with diverse effects on human physiology and pathophysiology. LA is a major dietary fatty acid, and also one of the most abundant fatty acids in adipose tissue, where its concentration reflects dietary intake. Over the last half century in the United States, dietary LA intake has greatly increased as dietary fat sources have shifted toward polyunsaturated seed oils such as soybean oil. We have conducted a systematic literature review of studies reporting the concentration of LA in subcutaneous adipose tissue of US cohorts. Our results indicate that adipose tissue LA has increased by 136% over the last half century and that this increase is highly correlated with an increase in dietary LA intake over the same period of time. PMID:26567191

  11. Thomsen-Friedenreich-related carbohydrate antigens in normal adult human tissues: a systematic and comparative study.

    PubMed

    Cao, Y; Stosiek, P; Springer, G F; Karsten, U

    1996-08-01

    A broad variety of normal human tissues were examined for the expression of Thomsen-Friedenreich (TF)-related histo-blood group antigens, TF (Gal beta 1-3GalNAc alpha 1-R), Tn (TF precursor, GalNAc alpha 1-R), sialosyl-Tn (NeuAc alpha 2-6GalNAc alpha 1-R), considered to be useful in cancer diagnosis and immunotherapy, and sialosyl-TF, the cryptic form of TF. These antigens or, more correctly, glycotopes, were determined by immunohistochemistry with at least two monoclonal antibodies (mAbs) each (except sialosyl-TF) as well as by lectin histochemistry. For a better dissection of sialosyl-TF and TF glycotopes, tissue sections were pretreated with galactose oxidase or the galactose oxidase-Schiff sequence. Staining with mAbs appeared to be more restricted than with the lectins used. Distribution patterns among normal epithelia were different for all four antigens. These antigens were also detected in some non-epithelial tissues. They can be classified in the following sequence according to the frequency of their occurrence in normal tissues: sialosyl-TF > > sialosyl-Tn > Tn > TF. Most of the positively staining sites for TF, Tn, and sialosyl-Tn are located in immunologically privileged areas. The complex results obtained with anti-TF mAbs (after treatment of the tissue sections with sialidase from Vibrio cholerae) and the lectins amaranthin and jacalin revealed a differential distribution of the subtypes of sialosyl-TF [NeuAc alpha 2-3Gal beta 1-3GalNAc alpha 1-R and Gal beta 1-3 (NeuAc alpha 2-6)GalNAc alpha 1-R] in normal human tissues. From our data it can be inferred that TF, Tn, and sialosyl-Tn are promising targets for a cancer vaccine. PMID:8877380

  12. Histological image data of limb skeletal tissue from larval and adult Ambystoma mexicanum.

    PubMed

    McCusker, Catherine D; Diaz-Castillo, Carlos; Sosnik, Julian; Phan, Anne; Gardiner, David M

    2016-09-01

    The data presented in this article are related to the article entitled "Cartilage and bone cells do not participate in skeletal regeneration in Ambystoma mexicanum limbs" [1]. Here we present image data of the post-embryonic development of the forelimb skeletal tissue of Ambystoma Mexicanum. Histological staining was performed on sections from the intact limbs of young (6.5 cm) and old (25 cm) animals, and on dissected skeletal tissues (cartilage, bone, and periosteum) from these animals. PMID:27547798

  13. Gingival Cyst of the Adult as Early Sequela of Connective Tissue Grafting

    PubMed Central

    Gil Escalante, Mariana; Tatakis, Dimitris N.

    2015-01-01

    The subepithelial connective tissue graft (SCTG) is a highly predictable procedure with low complication rate. The reported early complications consist of typical postsurgical sequelae, such as pain and swelling. This case report describes the development and management of a gingival cyst following SCTG to obtain root coverage. Three weeks after SCTG procedure, a slightly raised, indurated, ~5 mm diameter asymptomatic lesion was evident. Excisional biopsy was performed and the histopathological evaluation confirmed the gingival cyst diagnosis. At the 1-year follow-up, the site had complete root coverage and normal tissue appearance and the patient remained asymptomatic. PMID:26236510

  14. Mouse matriptase-2: identification, characterization and comparative mRNA expression analysis with mouse hepsin in adult and embryonic tissues.

    PubMed Central

    Hooper, John D; Campagnolo, Luisa; Goodarzi, Goodarz; Truong, Tony N; Stuhlmann, Heidi; Quigley, James P

    2003-01-01

    We report the identification and characterization of mouse matriptase-2 (m-matriptase-2), an 811-amino-acid protein composed of an N-terminal cytoplasmic domain, a membrane-spanning domain, two CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domains, three LDLR (low-density-lipoprotein receptor class A) domains and a C-terminal serine-protease domain. All m-matriptase-2 protein domain boundaries corresponded with intron/exon junctions of the encoding gene, which spans approx. 29 kb and comprises 18 exons. Matriptase-2 is highly conserved in human, mouse and rat, with the rat matriptase-2 gene ( r-maltriptase-2 ) predicted to encode transmembrane and soluble isoforms. Western-blot analysis indicated that m-matriptase-2 migrates close to its theoretical molecular mass of 91 kDa, and immunofluorescence analysis was consistent with the proposed surface membrane localization of this protein. Reverse-transcription PCR and in-situ -hybridization analysis indicated that m-matriptase-2 expression overlaps with the distribution of mouse hepsin (m-hepsin, a cell-surface serine protease identified in hepatoma cells) in adult tissues and during embryonic development. In adult tissues both are expressed at highest levels in liver, kidney and uterus. During embryogenesis m-matriptase-2 expression peaked between days 12.5 and 15.5. m-hepsin expression was biphasic, with peaks at day 7.5 to 8.5 and again between days 12.5 and 15.5. In situ hybridization of embryonic tissues indicated abundant expression of both m-matriptase-2 and m-hepsin in the developing liver and at lower levels in developing pharyngo-tympanic tubes. While m-hepsin was detected in the residual embryonic yolk sac and with lower intensity in lung, heart, gastrointestinal tract, developing kidney tubules and epithelium of the oral cavity, m-matriptase-2 was absent in these tissues, but strongly expressed within the nasal cavity by olfactory epithelial

  15. Prediction and validation of DXA-derived appendicular lean soft tissue mass by ultrasound in older adults.

    PubMed

    Abe, Takashi; Thiebaud, Robert S; Loenneke, Jeremy P; Young, Kaelin C

    2015-12-01

    The purpose of this study was to develop regression-based prediction equations for estimating dual-energy X-ray absorptiometry (DXA)-derived appendicular lean soft tissue mass (aLM) using ultrasound and to investigate the validity of these equations in 102 Caucasian adults aged 50 to 76 years. The subjects were randomly separated into two groups: 71 in the model-development group (41 men and 30 women) and 31 in the cross-validation group (18 men and 13 women). aLM was measured using a DXA, and muscle thickness (MT) was measured using ultrasound at 9 sites. Stepwise linear regression analysis was used to determine predictive models for DXA-derived aLM from MT variables, sex, and age. A number of ultrasound prediction equations for estimation of aLM were developed and then cross-validated in a subsample of older adults. The results indicated that ultrasound MT and MT × height can be used to accurately and reliably estimate DXA-derived aLM in older Caucasian adults. PMID:26552906

  16. Adult Bone Marrow-Derived Stem Cells in Muscle Connective Tissue and Satellite Cell Niches

    PubMed Central

    Dreyfus, Patrick A.; Chretien, Fabrice; Chazaud, Bénédicte; Kirova, Youlia; Caramelle, Philippe; Garcia, Luis; Butler-Browne, Gillian; Gherardi, Romain K.

    2004-01-01

    Skeletal muscle includes satellite cells, which reside beneath the muscle fiber basal lamina and mainly represent committed myogenic precursor cells, and multipotent stem cells of unknown origin that are present in muscle connective tissue, express the stem cell markers Sca-1 and CD34, and can differentiate into different cell types. We tracked bone marrow (BM)-derived stem cells in both muscle connective tissue and satellite cell niches of irradiated mice transplanted with green fluorescent protein (GFP)-expressing BM cells. An increasing number of GFP+ mononucleated cells, located both inside and outside of the muscle fiber basal lamina, were observed 1, 3, and 6 months after transplantation. Sublaminal cells expressed unambiguous satellite cell markers (M-cadherin, Pax7, NCAM) and fused into scattered GFP+ muscle fibers. In muscle connective tissue there were GFP+ cells located close to blood vessels that expressed the ScaI or CD34 stem-cell antigens. The rate of settlement of extra- and intralaminal compartments by BM-derived cells was compatible with the view that extralaminal cells constitute a reservoir of satellite cells. We conclude that both muscle satellite cells and stem cell marker-expressing cells located in muscle connective tissue can derive from BM in adulthood. PMID:14982831

  17. Ophthalmic Manifestations of Hematopoietic Malignancy.

    PubMed

    Yoshida-Hata, Natsuyo; Katai, Naomichi; Oshitari, Toshiyuki

    2016-01-01

    Purpose. To report the ocular findings in patients with hematopoietic malignancy with optic nerve involvement and abducens nerve palsy. Methods. The medical records of all cases of hematopoietic cancer with ophthalmic involvements seen in the Department of Ophthalmology of the National Center for Global Health and Medicine between 2009 and 2014 were reviewed. Results. Eight patients with hematopoietic cancer with optic nerve invasion or abducens nerve palsy were studied. The primary diseases were 3 cases of multiple myeloma, 1 case of acute lymphocytic leukemia, 1 case of follicular lymphoma, and 3 cases of AIDS-related lymphoma. Six cases had optic nerve invasion, 2 cases had abducens nerve palsy, and 1 case had optic nerve invasion of both eyes. The median visual acuity of eyes with optic nerve invasion was 0.885 logarithm of the minimum angle of resolution (logMAR) units. The final visual acuity of eyes with optic nerve invasion was 1.25 logMAR units, and that of those with sixth-nerve palsy was -0.1 logMAR units. Six cases died during the five-year follow-up period. An ophthalmic involvement in patients with hematopoietic cancer, especially AIDS-related lymphoma, was associated with poor prognosis. Conclusion. Because ophthalmic involvement in patients with hematopoietic malignancy has a poor prognosis, an early diagnosis of the cancers by the ophthalmologic findings by ophthalmologists could improve the prognosis. PMID:27375913

  18. Ophthalmic Manifestations of Hematopoietic Malignancy

    PubMed Central

    2016-01-01

    Purpose. To report the ocular findings in patients with hematopoietic malignancy with optic nerve involvement and abducens nerve palsy. Methods. The medical records of all cases of hematopoietic cancer with ophthalmic involvements seen in the Department of Ophthalmology of the National Center for Global Health and Medicine between 2009 and 2014 were reviewed. Results. Eight patients with hematopoietic cancer with optic nerve invasion or abducens nerve palsy were studied. The primary diseases were 3 cases of multiple myeloma, 1 case of acute lymphocytic leukemia, 1 case of follicular lymphoma, and 3 cases of AIDS-related lymphoma. Six cases had optic nerve invasion, 2 cases had abducens nerve palsy, and 1 case had optic nerve invasion of both eyes. The median visual acuity of eyes with optic nerve invasion was 0.885 logarithm of the minimum angle of resolution (logMAR) units. The final visual acuity of eyes with optic nerve invasion was 1.25 logMAR units, and that of those with sixth-nerve palsy was −0.1 logMAR units. Six cases died during the five-year follow-up period. An ophthalmic involvement in patients with hematopoietic cancer, especially AIDS-related lymphoma, was associated with poor prognosis. Conclusion. Because ophthalmic involvement in patients with hematopoietic malignancy has a poor prognosis, an early diagnosis of the cancers by the ophthalmologic findings by ophthalmologists could improve the prognosis. PMID:27375913

  19. Sources of adult mesenchymal stem cells for ligament and tendon tissue engineering.

    PubMed

    Dhinsa, Baljinder S; Mahapatra, Anant N; Khan, Wasim S

    2014-01-01

    Tendon and ligament injuries are common, and repair slowly with reduced biomechanical properties. With increasing financial demands on the health service and patients to recover from tendon and ligament injuries faster, and with less morbidity, health professionals are exploring new treatment options. Tissue engineering may provide the answer, with its unlimited source of natural cells that in the correct environment may improve repair and regeneration of tendon and ligament tissue. Mesenchymal stem cells have demonstrated the ability to self renew and have multilineage differentiation potential. The use of bone marrow-derived mesenchymal stem cells has been reported, however significant in vitro culture expansion is required due to the low yield of cells, which has financial implications. Harvesting of bone marrow cells also has associated morbidity. Several studies have looked at alternative sources for mesenchymal stem cells. Reports in literature from animal studies have been encouraging, however further work is required. This review assesses the potential sources of mesenchymal stem cells for tissue engineering in tendons and ligaments. PMID:25012740

  20. Hematopoietic stem cells: multiparameter regulation.

    PubMed

    Song, Kedong; Li, Liying; Wang, Yiwei; Liu, Tianqing

    2016-04-01

    Hematopoietic stem cells (HSCs) are capable to self-renew with multi-potency which generated much excitement in clinical therapy. However, the main obstacle of HSCs in clinical application was insufficient number of HSCs which were derived from either bone marrow, peripheral blood or umbilical cord blood. This review briefly discusses the indispensable utility of growth factors and cytokines, stromal cells, extracellular matrix, bionic scaffold and microenvironment aiming to control the hematopoiesis in all directions and provide a better and comprehensive understanding for in vitro expansion of hematopoietic stem cells. PMID:26883144

  1. Two follistatin-like 1 homologs are differentially expressed in adult tissues and during embryogenesis in grass carp (Ctenopharyngodon idellus).

    PubMed

    Sun, Yi-Wen; Li, Fu-Gui; Chen, Jie; Jiang, Xia-Yun; Zou, Shu-Ming

    2015-11-01

    Follistatin-like 1 (Fstl1) peptides play important roles in inhibiting myoblast proliferation and differentiation. Here, we characterized and examined the expression patterns of fstl1a and -b in grass carp (Ctenopharyngodon idellus). These genes encode 314 aa and 310 aa peptides, respectively, sharing a sequence identity of 83%. Except for the existence of the follistatin-N-terminal (FOLN) and Kazal-type 2 serine protease inhibitor (Kazal 2) domains, grass carp Fstl1a and -b do not share amino acid sequence similarity with Fst1 and -b. Both fstl1a and -b mRNAs were widely expressed in adult tissues. During embryogenesis, grass carp fstl1a and -b mRNA was detected in the presomitic mesoderm and somites at 12h post fertilization (hpf). At 24hpf, fstl1a mRNA was expressed in the hindbrain, somites, notochord and tailbud, while fstl1b mRNA was only detected in the tailbud. At 36hpf, fstl1a mRNA was detected in the hindbrain and notochord, and fstl1b was also expressed in the notochord. Furthermore, fstl1a and -b were downregulated in brain and liver tissue following injection with 10 or 50μg hGH, while fstl1b was significantly up-regulated in muscle tissue after 10μg hGH treatment. Both fstl1a and -b were significantly up-regulated at 2, 4 or 6days of nutrient restriction, and fstl1a was still highly expressed in the liver and muscle after 3days of refeeding, as was fstl1b in the brain and muscle. The expression of these genes returned to near control levels following 6days of refeeding. Our findings suggest that the two fstls play important but divergent roles in embryonic development and tissue growth regulation in grass carp. PMID:26439673

  2. The hematopoietic system in the context of regenerative medicine.

    PubMed

    Porada, Christopher D; Atala, Anthony J; Almeida-Porada, Graça

    2016-04-15

    Hematopoietic stem cells (HSC) represent the prototype stem cell within the body. Since their discovery, HSC have been the focus of intensive research, and have proven invaluable clinically to restore hematopoiesis following inadvertent radiation exposure and following radio/chemotherapy to eliminate hematologic tumors. While they were originally discovered in the bone marrow, HSC can also be isolated from umbilical cord blood and can be "mobilized" peripheral blood, making them readily available in relatively large quantities. While their ability to repopulate the entire hematopoietic system would already guarantee HSC a valuable place in regenerative medicine, the finding that hematopoietic chimerism can induce immunological tolerance to solid organs and correct autoimmune diseases has dramatically broadened their clinical utility. The demonstration that these cells, through a variety of mechanisms, can also promote repair/regeneration of non-hematopoietic tissues as diverse as liver, heart, and brain has further increased their clinical value. The goal of this review is to provide the reader with a brief glimpse into the remarkable potential HSC possess, and to highlight their tremendous value as therapeutics in regenerative medicine. PMID:26319943

  3. The circadian clock in skin: implications for adult stem cells, tissue regeneration, cancer, aging, and immunity.

    PubMed

    Plikus, Maksim V; Van Spyk, Elyse N; Pham, Kim; Geyfman, Mikhail; Kumar, Vivek; Takahashi, Joseph S; Andersen, Bogi

    2015-06-01

    Historically, work on peripheral circadian clocks has been focused on organs and tissues that have prominent metabolic functions, such as the liver, fat, and muscle. In recent years, skin has emerged as a model for studying circadian clock regulation of cell proliferation, stem cell functions, tissue regeneration, aging, and carcinogenesis. Morphologically, skin is complex, containing multiple cell types and structures, and there is evidence for a functional circadian clock in most, if not all, of its cell types. Despite the complexity, skin stem cell populations are well defined, experimentally tractable, and exhibit prominent daily cell proliferation cycles. Hair follicle stem cells also participate in recurrent, long-lasting cycles of regeneration: the hair growth cycles. Among other advantages of skin is a broad repertoire of available genetic tools enabling the creation of cell type-specific circadian mutants. Also, due to the accessibility of skin, in vivo imaging techniques can be readily applied to study the circadian clock and its outputs in real time, even at the single-cell level. Skin provides the first line of defense against many environmental and stress factors that exhibit dramatic diurnal variations such as solar ultraviolet (UV) radiation and temperature. Studies have already linked the circadian clock to the control of UVB-induced DNA damage and skin cancers. Due to the important role that skin plays in the defense against microorganisms, it also represents a promising model system to further explore the role of the clock in the regulation of the body's immune functions. To that end, recent studies have already linked the circadian clock to psoriasis, one of the most common immune-mediated skin disorders. Skin also provides opportunities to interrogate the clock regulation of tissue metabolism in the context of stem cells and regeneration. Furthermore, many animal species feature prominent seasonal hair molt cycles, offering an attractive model

  4. The circadian clock in skin: implications for adult stem cells, tissue regeneration, cancer, aging, and immunity

    PubMed Central

    Plikus, Maksim V.; Van Spyk, Elyse Noelani; Pham, Kim; Geyfman, Mikhail; Kumar, Vivek; Takahashi, Joseph S.; Andersen, Bogi

    2015-01-01

    Historically work on peripheral circadian clocks has been focused on organs and tissues that have prominent metabolic functions, such as liver, fat and muscle. In recent years, skin is emerging as a model for studying circadian clock regulation of cell proliferation, stem cell functions, tissue regeneration, aging and carcinogenesis. Morphologically skin is complex, containing multiple cell types and structures, and there is evidence for a functional circadian clock in most, if not all, of its cell types. Despite the complexity, skin stem cell populations are well defined, experimentally tractable and exhibit prominent daily cell proliferation cycles. Hair follicle stem cells also participate in recurrent, long-lasting cycles of regeneration -- the hair growth cycles. Among other advantages of skin is a broad repertoire of available genetic tools enabling the creation of cell-type specific circadian mutants. Also, due to the accessibility of the skin, in vivo imaging techniques can be readily applied to study the circadian clock and its outputs in real time, even at the single-cell level. Skin provides the first line of defense against many environmental and stress factors that exhibit dramatic diurnal variations such as solar UV radiation and temperature. Studies have already linked the circadian clock to the control of UVB-induced DNA damage and skin cancers. Due to the important role that skin plays in the defense against microorganisms, it represents a promising model system to further explore the role of the clock in the regulation of the body's immune functions. To that end, recent studies have already linked the circadian clock to psoriasis, one of the most common immune-mediated skin disorders. The skin also provides opportunities to interrogate clock regulation of tissue metabolism in the context of stem cells and regeneration. Furthermore, many animal species feature prominent seasonal hair molt cycles, offering an attractive model for investigating the

  5. Advances in Radiation Therapy for Primary and Metastatic Adult Soft Tissue Sarcomas.

    PubMed

    Blumenfeld, Philip; Sen, Neilayan; Abrams, Ross; Wang, Dian

    2016-06-01

    Soft tissue sarcomas (STS) consist of a heterogeneous group of rare malignancies arising from mesenchymal origin. While surgical resection is the primary treatment for STS, the use of radiotherapy (RT) as an adjunctive modality has been shown to improve oncologic outcomes. Technologic improvements, such as image guidance and intensity-modulated radiotherapy that significantly improve both the precision and delivery of RT, have led to the reduction of long-term RT toxicities without compromising outcomes. This review addresses these technologic advancements as well as discussing the most current updates regarding the use of brachytherapy, charged particles, and novel agents with RT. PMID:27113370

  6. The activity of some phosphatases in tissues of adult Hymenolepis nana Siebold (Csetoda).

    PubMed

    Humiczewska, M

    1989-01-01

    Histochemical methods were used to study the localization and activity of acid and alkaline phosphatases, ATP-ase, 5-nucleotidase, and glucose-6-phosphatase in tissues of the mature form of Hymenolepis nana. Considerable differences in activity and localization of particular enzymes were observed in the organs of the parasite. The results obtained permit the statement that the integument is the most active enzymatically; in connection with the literature data, this gives grounds for the thesis that the integument of the cestodes functions as an absorbent-digestive organ. PMID:2558920

  7. A hematopoietic virus disease of rainbow trout and sockeye salmon

    USGS Publications Warehouse

    Amend, Donald F.; Yasutake, William T.; Mead, Robert W.

    1969-01-01

    A previously undescribed virus disease epizootic of hatchery rainbow trout (Salmo gairdneri) in British Columbia, Canada is presented. In the same locality, a similar virus disease was experienced among hatchery sockeye salmon (Oncorhynchus nerka). Typical symptoms included flashing, fecal casts, hemorrhagic areas at the base of fins, and petechial hemorrhages on the visceral fat and membranes in the abdominal cavity. Histopathologic changes were typified by extensive degeneration and necrosis in the hematopoietic tissues of the kidney and spleen. A virus was isolated from both species of fish on tissue culture and the viruses showed cross-infectivity. Based upon the pathological changes in the hematopoietic tissue and the demonstration of a vital infection, a tentative descriptive name was designated Infectious Hematopoietic Necrosis. The isolated viruses were distinctly different from the infectious pancreatic necrosis or viral hemorrhagic septicemia viruses of trout, but did show similarities to the Oregon sockeye and Sacramento River chinook viruses. Positive identification awaits further tests. The significance of these observations is the reporting of a new viral disease of rainbow trout and the extension of the geographic range of sockeye salmon viruses.

  8. Correction of Class II malocclusion and soft tissue profile in an adult patient

    PubMed Central

    Gaur, Aditi; Maheshwari, Sandhya; Verma, Sanjeev Kumar

    2016-01-01

    Treatment of Class II malocclusion in nongrowing individuals is a challenging situation for the clinician. Class II malocclusion with bialveolar protrusion often dictates premolar extractions with maximum anchorage. The present article describes the case of an adult female with skeletal Class II malocclusion, bimaxillary protrusion, increased overjet, deep bite, lip protrusion, everted lower lip, deep mentolabial sulcus, and lip incompetence. To correct the malocclusion, all four first premolars were extracted. Direct anchorage from miniscrews was used for retraction of the anterior segment. The mandibular buccal segment was protracted into the extraction space using Class II mechanics. Ideal Class I canine and molar relation were achieved in 24 months. There was a significant improvement in facial profile and smile esthetics of the patient.

  9. Group B streptococcus infections of soft tissue and bone in California adults, 1995-2012.

    PubMed

    Smith, E M; Khan, M A; Reingold, A; Watt, J P

    2015-11-01

    Group B streptococcus (GBS) is an increasing cause of disease in adults. We present long-term trends in incidence of overall infections and identify characteristics of patients with GBS cellulitis, bone and joint infections. Active, population-based surveillance was conducted from 1995-2012 in three California counties and the data were analysed retrospectively. All cases had isolation of GBS from a normally sterile site. Cases of cellulitis were classified based on clinical diagnosis. GBS bone or joint infection was defined as isolation of GBS from a bone or joint or a diagnosis of osteomyelitis or septic arthritis. Medical charts were reviewed for demographic and clinical information. There were 3917 cases of GBS; the incidence of disease increased from 5·8 to 8·3 cases/100 000 persons (P < 0·001) from 1995 to 2012. In adults aged ⩾40 years, the overall incidence of GBS increased from 8·5 to 14·2 cases/100 000 (P < 0·001) persons during the study period. The incidence of cellulitis increased from 1·6 to 3·8 cases/100 000 (P < 0·001), bone infection increased from 0·7 to 2·6 cases/100 000 (P < 0·001), and the incidence of joint infection remained approximately constant at an average rate of 1·0 case/100 000. The highest incidence rates were observed in men, persons aged ⩾80 years, non-Hispanic blacks and Hispanics. Diabetes was the most common underlying condition (51·2% cellulitis cases, 76·3% bone infections, 29·8% joint infections). PMID:26418351

  10. Moderate‐to‐Vigorous Physical Activity With Accelerometry is Associated With Visceral Adipose Tissue in Adults

    PubMed Central

    Murabito, Joanne M.; Pedley, Alison; Massaro, Joseph M.; Vasan, Ramachandran S.; Esliger, Dale; Blease, Susan J.; Hoffman, Udo; Fox, Caroline S.

    2015-01-01

    Background We examined the relation between objectively measured physical activity with accelerometry and subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in a community‐based sample. Methods and Results We evaluated 1249 participants of the Framingham Third Generation and Omni II cohorts (mean age 51.7 years, 47% women) who underwent assessment of moderate‐to‐vigorous physical activity (MVPA) with accelerometry over 5 to 7 days, and multi‐detector computed tomography for measurement of SAT and VAT volume; fat attenuation was estimated by SAT and VAT hounsfield units (HU). In women, higher levels of MVPA were associated with decreased SAT (P<0.0001) and VAT volume (P<0.0001). The average decrement in VAT per 30 minute/day increase in MVPA was −453 cm3 (95% CI −574, −331). The association was attenuated but persisted upon adjustment for BMI (−122 cm3, P=0.002). Higher levels of MVPA were associated with higher SAT HU (all P≤0.01), a marker of fat quality, even after adjustment for SAT volume. Similar findings were observed in men but the magnitude of the association was less. Sedentary time was not associated with SAT or VAT volume or quality in men or women. Conclusions MVPA was associated with less VAT and SAT and better fat quality. PMID:25736442

  11. Soft Tissue Tumors in Adults: ESSR-Approved Guidelines for Diagnostic Imaging.

    PubMed

    Noebauer-Huhmann, Iris M; Weber, Marc-André; Lalam, Radhesh K; Trattnig, Siegfried; Bohndorf, Klaus; Vanhoenacker, Filip; Tagliafico, Alberto; van Rijswijk, Carla; Vilanova, Joan C; Afonso, P Diana; Breitenseher, Martin; Beggs, Ian; Robinson, Philip; de Jonge, Milko C; Krestan, Christian; Bloem, Johan L

    2015-12-01

    Soft tissue sarcomas are rare, but early, accurate diagnosis with subsequent appropriate treatment is crucial for the clinical outcome. The ESSR guidelines are intended to help radiologists in their decision-making and support discussion among clinicians who deal with patients with suspected or proven soft tissue tumors. Potentially malignant lesions recognized by ultrasound should be referred for magnetic resonance imaging (MRI), which also serves as a preoperative local staging modality, with specific technical requirements and mandatory radiological report elements. Radiography may add information about matrix calcification and osseous involvement. Indeterminate lesions, or lesions in which therapy is dependent on histology results, should be biopsied. For biopsy, we strongly recommend referral to a specialist sarcoma center, where an interdisciplinary tumor group, with a specialized pathologist, radiologist, and the surgeon are involved. In sarcoma, a CT scan of the chest is mandatory. Additional staging modalities are entity-specific. There are no evidence-based recommendations for routine follow-up in surgically treated sarcomas. However, we would recommend regular follow-up with intervals dependent on tumor grade, for 10 years after the initial diagnosis. PMID:26696086

  12. Diversity of Retinal Ganglion Cells Identified by Transient GFP Transfection in Organotypic Tissue Culture of Adult Marmoset Monkey Retina

    PubMed Central

    Moritoh, Satoru; Komatsu, Yusuke; Yamamori, Tetsuo; Koizumi, Amane

    2013-01-01

    The mammalian retina has more diversity of neurons than scientists had once believed in order to establish complicated vision processing. In the monkey retina, morphological diversity of retinal ganglion cells (RGCs) besides dominant midget and parasol cells has been suggested. However, characteristic subtypes of RGCs in other species such as bistratified direction-selective ganglion cells (DSGC) have not yet been identified. Increasing interest has been shown in the common marmoset (Callithrix jacchus) monkey as a “super-model” of neuroscientific research. Here, we established organotypic tissue culture of the adult marmoset monkey retina with particle-mediated gene transfer of GFP to survey the morphological diversity of RGCs. We successfully incubated adult marmoset monkey retinas for 2 to 4 days ex vivo for transient expression of GFP. We morphologically examined 121 RGCs out of more than 3240 GFP-transfected cells in 5 retinas. Among them, we identified monostratified or broadly stratified ganglion cells (midget, parasol, sparse, recursive, thorny, and broad thorny ganglion cells), and bistratified ganglion cells (recursive, large, and small bistratified ganglion cells [blue-ON/yellow-OFF-like]). By this survey, we also found a candidate for bistratified DSGC whose dendrites were well cofasciculated with ChAT-positive starburst dendrites, costratified with ON and OFF ChAT bands, and had honeycomb-shaped dendritic arbors morphologically similar to those in rabbits. Our genetic engineering method provides a new approach to future investigation for morphological and functional diversity of RGCs in the monkey retina. PMID:23336011

  13. Lack of Phenotypical and Morphological Evidences of Endothelial to Hematopoietic Transition in the Murine Embryonic Head during Hematopoietic Stem Cell Emergence

    PubMed Central

    Iizuka, Kazuhide; Yokomizo, Tomomasa; Watanabe, Naoki; Tanaka, Yosuke; Osato, Motomi; Takaku, Tomoiku; Komatsu, Norio

    2016-01-01

    During mouse ontogeny, hematopoietic cells arise from specialized endothelial cells, i.e., the hemogenic endothelium, and form clusters in the lumen of arterial vessels. Hemogenic endothelial cells have been observed in several embryonic tissues, such as the dorsal aorta, the placenta and the yolk sac. Recent work suggests that the mouse embryonic head also produces hematopoietic stem cells (HSCs)/progenitors. However, a histological basis for HSC generation in the head has not yet been determined because the hematopoietic clusters and hemogenic endothelium in the head region have not been well characterized. In this study, we used whole-mount immunostaining and 3D confocal reconstruction techniques to analyze both c-Kit+ hematopoietic clusters and Runx1+ hemogenic endothelium in the whole-head vasculature. The number of c-Kit+ hematopoietic cells was 20-fold less in the head arteries than in the dorsal aorta. In addition, apparent nascent hematopoietic cells, which are characterized by a “budding” structure and a Runx1+ hemogenic endothelium, were not observed in the head. These results suggest that head HSCs may not be or are rarely generated from the endothelium in the same manner as aortic HSCs. PMID:27227884

  14. Isolated Limb Perfusion of Melphalan With or Without Tumor Necrosis Factor in Treating Patients With Soft Tissue Sarcoma of the Arm or Leg

    ClinicalTrials.gov

    2012-03-14

    Stage IVB Adult Soft Tissue Sarcoma; Stage IIB Adult Soft Tissue Sarcoma; Stage IIC Adult Soft Tissue Sarcoma; Recurrent Adult Soft Tissue Sarcoma; Stage IVA Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma

  15. OGG1 mRNA expression and incision activity in rats are higher in foetal tissue than in adult liver tissue while 8-oxo-2'-deoxyguanosine levels are unchanged.

    PubMed

    Riis, Bente; Risom, Lotte; Loft, Steffen; Poulsen, Henrik Enghusen

    2002-09-01

    This study was set up to investigate the relationships between the formation and removal of DNA damage in form of 8-oxodeoxyguanosine (8-oxodG) in neonatal (day 16 of gestation) as compared to adult rats. The hypothesis addressed was whether the rapidly dividing foetal tissue has an enhanced requirement of DNA repair providing protection against potentially mutagenic DNA damages such as 8-oxodG. The activity of the primary 8-oxodG-repair protein OGG1 was measured by a DNA incision assay and the expression of OGG1 mRNA was measured by Real-Time PCR normalised to 18S rRNA. The tissue level of 8-oxodG was measured by HPLC-ECD. We found a 2-3-fold increased incision activity in the foetal control tissue, together with a 3-15-fold increase in mRNA of OGG1 as compared to liver tissue from adult rats. The levels of 8-oxodG in the foetal tissue were unaltered as compared to the adult groups. To increase the levels of 8-oxodG, the rats received an injection (i.p.) of the hepatotoxin 2-nitropropane. The compound induced significant levels of 8-oxodG in male rat livers 5h after the injection and in the foetuses 24h after the injection, while the female rats showed no increase in 8-oxodG. The incision activity was slightly depressed in both male and female liver tissue and in the foetal tissue 5h after the injection, but significantly increased from 5 to 24h after the injection. However, it did not reach levels significantly above the control levels. In conclusion, this study confirms that foetal tissue has increased levels of OGG1 mRNA and correspondingly an enhanced incision activity on an 8-oxodG substrate in a crude tissue extract. PMID:12509275

  16. The transcriptional landscape of hematopoietic stem cell ontogeny

    PubMed Central

    McKinney-Freeman, Shannon; Cahan, Patrick; Li, Hu; Lacadie, Scott A.; Huang, Hsuan-Ting; Curran, Matthew; Loewer, Sabine; Naveiras, Olaia; Kathrein, Katie L.; Konantz, Martina; Langdon, Erin M.; Lengerke, Claudia; Zon, Leonard I.; Collins, James J.; Daley, George Q.

    2012-01-01

    Transcriptome analysis of adult hematopoietic stem cells (HSC) and their progeny has revealed mechanisms of blood differentiation and leukemogenesis, but a similar analysis of HSC development is lacking. Here, we acquired the transcriptomes of developing HSC purified from >2500 murine embryos and adult mice. We found that embryonic hematopoietic elements clustered into three distinct transcriptional states characteristic of the definitive yolk sac, HSCs undergoing specification, and definitive HSCs. We applied a network biology-based analysis to reconstruct the gene regulatory networks of sequential stages of HSC development and functionally validated candidate transcriptional regulators of HSC ontogeny by morpholino-mediated knock-down in zebrafish embryos. Moreover, we found that HSCs from in vitro differentiated embryonic stem cells closely resemble definitive HSC, yet lack a Notch-signaling signature, likely accounting for their defective lymphopoiesis. Our analysis and web resource (http://hsc.hms.harvard.edu) will enhance efforts to identify regulators of HSC ontogeny and facilitate the engineering of hematopoietic specification. PMID:23122293

  17. The Evaluation of Left Ventricular Functions with Tissue Doppler Echocardiography in Adults with Celiac Disease

    PubMed Central

    Akin, Fatma E.; Sari, Cenk; Özer-Sari, Sevil; Demirezer-Bolat, Aylin; Durmaz, Tahir; Keles, Telat; Ersoy, Osman; Bozkurt, Engin

    2016-01-01

    Background/Aim: The aim of this study was to investigate the effects of celiac disease on cardiac functions using tissue Doppler echocardiography (TDE). Patients and Methods: The study included 30 patients with celiac disease (CD) and 30 healthy volunteers. Echocardiographic examinations were assessed by conventional echocardiography and tissue Doppler imaging. The peak systolic velocity (S'm), early diastolic myocardial peak velocity (E'm), late diastolic myocardial peak velocity (A'm), E'm/A'm ratio, myocardial precontraction time (PCT'm), myocardial contraction time (CT'm), and myocardial isovolumetric relaxation time (IVRT'm), E to E'm ratio were measured. Results: In pulsed wave Doppler echocardiography, mitral late diastolic flow (A) velocity and E to E'm ratio were significantly higher (P = 0.02 and P = 0,017), E/A ratio was significantly lower (P = 0.008) and IVRT was significantly prolonged (P = 0.014) in patients with CD. In TDE, S'm, E'm, and E'm/A'm ratio were significantly lower, IVRT'm was longer (P = 0.009) from septal mitral annulus and S'm, E'm, E'm/A'm ratio were significantly lower, PCT'm, PCT/ET ratio, IVRT'm were longer, and MPI was higher from lateral mitral annulus in celiac group than controls. Conclusion: Our study confirms that patients with CD have impaired diastolic function. More importantly, we also demonstrated an impairment of myocardial systolic function in patients with CD by TDE. We recommend using TDE in addition to conventional echocardiography parameters for the cardiovascular risk assessment of patients with CD. PMID:26997217

  18. Angular photogrammetric analysis of the soft tissue facial profile of Turkish adults.

    PubMed

    Malkoç, Siddik; Demir, Abdullah; Uysal, Tancan; Canbuldu, Naci

    2009-04-01

    One of the most important components of orthodontic diagnosis and treatment planning is the evaluation of the patient's soft tissue profile. The aim of this study was to develop angular photogrammetric standards for Class I Anatolian Turkish males and females. A random sample of 100 Turkish individuals (46 males and 54 females; ages 19-25 years) was obtained. The photographic set-up consisted of a tripod that held a 35 mm camera and a primary flash. The camera was used in its manual position and photographic records were taken of the subjects in natural head posture. The photographic records, 35 mm slide format, were digitized and analyzed using the Quick Ceph Image software program for Windows. Twelve measurements were digitally analyzed on each photograph. For statistical evaluation a Student's t-test was performed and the reliability of the method was analyzed. The results were compared with reported norms of facial aesthetics. The nasofrontal (G-N-Prn), nasal (Cm-Sn/N-Prn), vertical nasal (N-Prn/TV), and nasal dorsum (N-Mn-Prn) angles showed statistically insignificant gender differences (P>0.05). The nasolabial angle (Cm-Sn-Ls) demonstrated large variability. Gender differences were present in the mentolabial (Li-Sm-Pg) and cervicomental (G-Pg/C-Me) angles. The mentolabial angle showed a high method error and large variability. Facial (G-Sn-Pg) and total facial (G-Prn-Pg) convexity angles were similar, while Cm-Sn-Ls angle range was larger compared with other angles. The mean values obtained from this sample can be used for comparison with records of subjects with the same characteristics and following the same photogrammetric technique. Angular photogrammetric profile analysis can provide the orthodontist with a way of determining problems associated with various soft tissue segments of the face. PMID:19064675

  19. Tissue specific uptake and elimination of perfluoroalkyl acids (PFAAs) in adult rainbow trout (Oncorhynchus mykiss) after dietary exposure.

    PubMed

    Falk, Sandy; Failing, Klaus; Georgii, Sebastian; Brunn, Hubertus; Stahl, Thorsten

    2015-06-01

    Tissue specific uptake and elimination of perfluoroalkyl acids (PFAAs) were studied in rainbow trout (Oncorhynchus mykiss). Adult trout were exposed to perfluorobutane sulfonic acid (PFBS), perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) via food over a time period of 28d. In the following 28-d depuration period the fish were fed PFAA-free food. At defined sampling times four animals were removed from the experimental tank, euthanized and dissected. Muscle, liver, kidneys, gills, blood, skin and carcass were examined individually. At the end of the accumulation phase between 0.63% (PFOA) and 15.5% (PFOS) of the absolute, applied quantity of PFAAs was recovered in the whole fish. The main target organ was the liver with recovery rates between 0.11% (PFBS) and 4.01% (PFOS) of the total amount of ingested PFAAs. Perfluoroalkyl sulfonic acids were taken up more readily and had longer estimated elimination half-lives than perfluoroalkyl carboxylic acids of the same chain length. The longest estimated elimination half-lives were found to be for PFOS between 8.4d in muscle tissue and 20.4d in the liver and for PFNA between 8.2d in the blood and 11.6d in the liver. PMID:25022474

  20. Expression of spicule matrix protein gene SM30 in embryonic and adult mineralized tissues of sea urchin Hemicentrotus pulcherrimus

    NASA Technical Reports Server (NTRS)

    Kitajima, T.; Tomita, M.; Killian, C. E.; Akasaka, K.; Wilt, F. H.

    1996-01-01

    We have isolated a cDNA clone for spicule matrix protein, SM30, from sea urchin Hemicentrotus pulcherrimus and have studied the expression of this gene in comparison with that of another spicule matrix protein gene, SM50. In cultured micromeres as well as in intact embryos transcripts of SM30 were first detectable around the onset of spicule formation and rapidly increased with the growth of spicules, which accompanied accumulation of glycosylated SM30 protein(s). When micromeres were cultured in the presence of Zn2+, spicule formation and SM30 expression were suppressed, while both events resumed concurrently after the removal of Zn2+ from the culture medium. Expression of SM50, in contrast, started before the appearance of spicules and was not sensitive to Zn2+. Differences were also observed in adult tissues; SM30 mRNA was detected in spines and tube feet but not in the test, while SM50 mRNA was apparent in all of these mineralized tissues at similar levels. These results strongly suggest that the SM30 gene is regulated by a different mechanism to that of the SM50 gene and that the products of these two genes are differently involved in sea urchin biomineralization. A possible role of SM30 protein in skeleton formation is discussed.

  1. Comparative Analysis of the Expression Profile of Wnk1 and Wnk1/Hsn2 Splice Variants in Developing and Adult Mouse Tissues

    PubMed Central

    Shekarabi, Masoud; Lafrenière, Ron G.; Gaudet, Rébecca; Laganière, Janet; Marcinkiewicz, Martin M.; Dion, Patrick A.; Rouleau, Guy A.

    2013-01-01

    The With No lysine (K) family of serine/threonine kinase (WNK) defines a small family of kinases with significant roles in ion homeostasis. WNK1 has been shown to have different isoforms due to what seems to be largely tissue specific splicing. Here, we used two distinct in situ hybridization riboprobes on developing and adult mouse tissues to make a comparative analysis of Wnk1 and its sensory associated splice isoform, Wnk1/Hsn2. The hybridization signals in developing mouse tissues, which were prepared at embryonic day e10.5 and e12.5, revealed a homogenous expression profile with both probes. At e15.5 and in the newborn mouse, the two probes revealed different expression profiles with prominent signals in nervous system tissues and also other tissues such as kidney, thymus and testis. In adult mouse tissues, the two expression profiles appeared even more restricted to the nervous tissues, kidney, thymus and testis, with no detectable signal in the other tissues. Throughout the nervous system, sensory tissues, as well as in Cornu Ammonis 1 (CA1), CA2 and CA3 areas of the hippocampus, were strongly labeled with both probes. Hybridization signals were also strongly detected in Schwann and supporting satellite cells. Our results show that the expression profiles of Wnk1 isoforms change during the development, and that the expression of the Wnk1 splice variant containing the Hsn2 exon is prominent during developing and in adult mouse tissues, suggesting its important role in the development and maintenance of the nervous system. PMID:23451271

  2. Embryonic hematopoiesis in vertebrate somites gives rise to definitive hematopoietic stem cells.

    PubMed

    Qiu, Juhui; Fan, Xiaoying; Wang, Yixia; Jin, Hongbin; Song, Yixiao; Han, Yang; Huang, Shenghong; Meng, Yaping; Tang, Fuchou; Meng, Anming

    2016-08-01

    Hematopoietic stem cells (HSCs) replenish all types of blood cells. It is debating whether HSCs in adults solely originate from the aorta-gonad-mesonephros (AGM) region, more specifically, the dorsal aorta, during embryogenesis. Here, we report that somite hematopoiesis, a previously unwitnessed hematopoiesis, can generate definitive HSCs (dHSCs) in zebrafish. By transgenic lineage tracing, we found that a subset of cells within the forming somites emigrate ventromedially and mix with lateral plate mesoderm-derived primitive hematopoietic cells before the blood circulation starts. These somite-derived hematopoietic precursors and stem cells (sHPSCs) subsequently enter the circulation and colonize the kidney of larvae and adults. RNA-seq analysis reveals that sHPSCs express hematopoietic genes with sustained expression of many muscle/skeletal genes. Embryonic sHPSCs transplanted into wild-type embryos expand during growth and survive for life time with differentiation into various hematopoietic lineages, indicating self-renewal and multipotency features. Therefore, the embryonic origin of dHSCs in adults is not restricted to the AGM. PMID:27252540

  3. Hematopoietic Stem Cell: Self-renewal versus Differentiation

    PubMed Central

    Seita, Jun; Weissman, Irving L.

    2010-01-01

    The mammalian blood system, containing more than ten distinct mature cell types, stands on one specific cell type, hematopoietic stem cell (HSC). Within the system, only HSC possess the ability of both multi-potency and self-renewal. Multi-potency is the ability to differentiate into all functional blood cells. Self-renewal is the ability to give rise to HSC itself without differentiation. Since mature blood cells are predominantly short lived, HSC continuously provide more differentiated progenitors while properly maintaining the HSC pool size properly throughout life by precisely balancing self-renewal and differentiation. Thus, understanding the mechanisms of self-renewal and differentiation of HSC has been a central issue. In this review, we focus on the hierarchical structure of the hematopoietic system, the current understanding of microenvironment and molecular cues regulating self-renewal and differentiation of adult HSC, and the currently emerging systems approaches to understand HSC biology. PMID:20890962

  4. Cannabinoid Receptor-2 Regulates Embryonic Hematopoietic Stem Cell Development via Prostaglandin E2 and P-Selectin Activity.

    PubMed

    Esain, Virginie; Kwan, Wanda; Carroll, Kelli J; Cortes, Mauricio; Liu, Sarah Y; Frechette, Gregory M; Sheward, Lea M V; Nissim, Sahar; Goessling, Wolfram; North, Trista E

    2015-08-01

    Cannabinoids (CB) modulate adult hematopoietic stem and progenitor cell (HSPCs) function, however, impact on the production, expansion, or migration of embryonic HSCs is currently uncharacterized. Here, using chemical and genetic approaches targeting CB-signaling in zebrafish, we show that CB receptor (CNR) 2, but not CNR1, regulates embryonic HSC development. During HSC specification in the aorta-gonad-mesonephros (AGM) region, CNR2 stimulation by AM1241 increased runx1;cmyb(+) HSPCs, through heightened proliferation, whereas CNR2 antagonism decreased HSPC number; FACS analysis and absolute HSC counts confirmed and quantified these effects. Epistatic investigations showed AM1241 significantly upregulated PGE2 synthesis in a Ptgs2-dependent manner to increase AGM HSCs. During the phases of HSC production and colonization of secondary niches, AM1241 accelerated migration to the caudal hematopoietic tissue (CHT), the site of embryonic HSC expansion, and the thymus; however these effects occurred independently of PGE2. Using a candidate approach for HSC migration and retention factors, P-selectin was identified as the functional target of CNR2 regulation. Epistatic analyses confirmed migration of HSCs into the CHT and thymus was dependent on CNR2-regulated P-selectin activity. Together, these data suggest CNR2-signaling optimizes the production, expansion, and migration of embryonic HSCs by modulating multiple downstream signaling pathways. PMID:25931248

  5. CCI-779 in Treating Patients With Soft Tissue Sarcoma or Gastrointestinal Stromal Tumor

    ClinicalTrials.gov

    2013-06-03

    Gastrointestinal Stromal Tumor; Recurrent Adult Soft Tissue Sarcoma; Stage I Adult Soft Tissue Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma

  6. Ontogeny of Tissue-Resident Macrophages

    PubMed Central

    Hoeffel, Guillaume; Ginhoux, Florent

    2015-01-01

    The origin of tissue-resident macrophages, crucial for homeostasis and immunity, has remained controversial until recently. Originally described as part of the mononuclear phagocyte system, macrophages were long thought to derive solely from adult blood circulating monocytes. However, accumulating evidence now shows that certain macrophage populations are in fact independent from monocyte and even from adult bone marrow hematopoiesis. These tissue-resident macrophages derive from sequential seeding of tissues by two precursors during embryonic development. Primitive macrophages generated in the yolk sac (YS) from early erythro-myeloid progenitors (EMPs), independently of the transcription factor c-Myb and bypassing monocytic intermediates, first give rise to microglia. Later, fetal monocytes, generated from c-Myb+ EMPs that initially seed the fetal liver (FL), then give rise to the majority of other adult macrophages. Thus, hematopoietic stem cell-independent embryonic precursors transiently present in the YS and the FL give rise to long-lasting self-renewing macrophage populations. PMID:26441990

  7. Differences between neonates and adults in tissue-type-plasminogen activator (t-PA)-catalyzed plasminogen activation with various effectors and in carbohydrate sequences of fibrinogen chains.

    PubMed

    Ries, M; Easton, R L; Longstaff, C; Zenker, M; Corran, P H; Morris, H R; Dell, A; Gaffney, P J

    2001-08-01

    Our study investigates the effect of fetal and adult soluble fibrin (SF), fetal and adult fibrinogen Aalpha- and gamma-chains, as well as adult CNBr-fibrinogen fragments on tissue-type plasminogen activator (t-PA)-catalyzed plasminogen activation of both fetal and adult Glu-plasminogen types 1 and 2. In addition, we determined carbohydrate sequences of fetal and adult Bbeta- and gamma-chains by mass spectrometric analysis. In the absence of an effector, no substantial differences in the rate of plasmin formation could be seen between the fetal and adult plasminogen types. In the presence of an effector, both fetal Glu-plasminogen types revealed lower values for k(cat app) than the respective adult types. No differences could be seen in the values for K(m app). The resulting differences in catalytic efficiencies between the fetal and adult plasminogen types were much less than previously reported. No differences could be seen between fetal and adult effectors in stimulating t-PA-catalyzed plasminogen activation. Detailed analyses of the activation kinetics revealed a longer initial phase of slow plasmin formation of both fetal Glu-plasminogen types compared to their respective adult types, indicating a slower plasmin-induced modification of CNBr-fibrinogen fragments or SF by fetal plasmin. Mass spectrometric analysis of the N-glycans present on adult and fetal Bbeta- and gamma-fibrinogen chains showed the presence of a major monosialylated biantennary structure with lesser amounts of the disialylated form. In contrast to previous data, we conclude that catalytic efficiency of t-PA-catalyzed plasminogen activation in neonates is only slightly lower than in adults. PMID:11672579

  8. zebraflash transgenic lines for in vivo bioluminescence imaging of stem cells and regeneration in adult zebrafish

    PubMed Central

    Chen, Chen-Hui; Durand, Ellen; Wang, Jinhu; Zon, Leonard I.; Poss, Kenneth D.

    2013-01-01

    The zebrafish has become a standard model system for stem cell and tissue regeneration research, based on powerful genetics, high tissue regenerative capacity and low maintenance costs. Yet, these studies can be challenged by current limitations of tissue visualization techniques in adult animals. Here we describe new imaging methodology and present several ubiquitous and tissue-specific luciferase-based transgenic lines, which we have termed zebraflash, that facilitate the assessment of regeneration and engraftment in freely moving adult zebrafish. We show that luciferase-based live imaging reliably estimates muscle quantity in an internal organ, the heart, and can longitudinally follow cardiac regeneration in individual animals after major injury. Furthermore, luciferase-based detection enables visualization and quantification of engraftment in live recipients of transplanted hematopoietic stem cell progeny, with advantages in sensitivity and gross spatial resolution over fluorescence detection. Our findings present a versatile resource for monitoring and dissecting vertebrate stem cell and regeneration biology. PMID:24198277

  9. Depleted uranium induces sex- and tissue-specific methylation patterns in adult zebrafish.

    PubMed

    Gombeau, Kewin; Pereira, Sandrine; Ravanat, Jean-Luc; Camilleri, Virginie; Cavalie, Isabelle; Bourdineaud, Jean-Paul; Adam-Guillermin, Christelle

    2016-04-01

    We examined the effects of chronic exposure to different concentrations (2 and 20 μg L(-)(1)) of environmentally relevant waterborne depleted uranium (DU) on the DNA methylation patterns both at HpaII restriction sites (5'-CCGG-3') and across the whole genome in the zebrafish brain, gonads, and eyes. We first identified sex-dependent differences in the methylation level of HpaII sites after exposure. In males, these effects were present as early as 7 days after exposure to 20 μg L(-)(1) DU, and were even more pronounced in the brain, gonads, and eyes after 24 days. However, in females, hypomethylation was only observed in the gonads after exposure to 20 μg L(-)(1) DU for 24 days. Sex-specific effects of DU were also apparent at the whole-genome level, because in males, exposure to 20 μg L(-)(1) DU for 24 days resulted in cytosine hypermethylation in the brain and eyes and hypomethylation in the gonads. In contrast, in females, hypermethylation was observed in the brain after exposure to both concentrations of DU for 7 days. Based on our current knowledge of uranium toxicity, several hypotheses are proposed to explain these findings, including the involvement of oxidative stress, alteration of demethylation enzymes and the calcium signaling pathway. This study reports, for the first time, the sex- and tissue-specific epigenetic changes that occur in a nonhuman organism after exposure to environmentally relevant concentrations of uranium, which could induce transgenerational epigenetic effects. PMID:26829549

  10. Densely calculated facial soft tissue thickness for craniofacial reconstruction in Chinese adults.

    PubMed

    Shui, Wuyang; Zhou, Mingquan; Deng, Qingqiong; Wu, Zhongke; Ji, Yuan; Li, Kang; He, Taiping; Jiang, Haiyan

    2016-09-01

    Craniofacial reconstruction (CFR) is used to recreate a likeness of original facial appearance for an unidentified skull; this technique has been applied in both forensics and archeology. Many CFR techniques rely on the average facial soft tissue thickness (FSTT) of anatomical landmarks, related to ethnicity, age, sex, body mass index (BMI), etc. Previous studies typically employed FSTT at sparsely distributed anatomical landmarks, where different landmark definitions may affect the contrasting results. In the present study, a total of 90,198 one-to-one correspondence skull vertices are established on 171 head CT-scans and the FSTT of each corresponding vertex is calculated (hereafter referred to as densely calculated FSTT) for statistical analysis and CFR. Basic descriptive statistics (i.e., mean and standard deviation) for densely calculated FSTT are reported separately according to sex and age. Results show that 76.12% of overall vertices indicate that the FSTT is greater in males than females, with the exception of vertices around the zygoma, zygomatic arch and mid-lateral orbit. These sex-related significant differences are found at 55.12% of all vertices and the statistically age-related significant differences are depicted between the three age groups at a majority of all vertices (73.31% for males and 63.43% for females). Five non-overlapping categories are given and the descriptive statistics (i.e., mean, standard deviation, local standard deviation and percentage) are reported. Multiple appearances are produced using the densely calculated FSTT of various age and sex groups, and a quantitative assessment is provided to examine how relevant the choice of FSTT is to increasing the accuracy of CFR. In conclusion, this study provides a new perspective in understanding the distribution of FSTT and the construction of a new densely calculated FSTT database for craniofacial reconstruction. PMID:27544400

  11. Non-Hematopoietic and Hematopoietic SIRPα Signaling Differently Regulates Murine B Cell Maturation in Bone Marrow and Spleen

    PubMed Central

    Kolan, Shrikant Shantilal; Lejon, Kristina; Koskinen Holm, Cecilia; Sulniute, Rima; Lundberg, Pernilla; Matozaki, Takashi; Oldenborg, Per-Arne

    2015-01-01

    B lymphocyte development occurs in the bone marrow, while final differentiation and maturation can occur in both the bone marrow and the spleen. Here we provide evidence that signal regulatory protein α (SIRPα), an Ig-superfamily ITIM-receptor expressed by myeloid but not by lymphoid cells, is involved in regulating B cell maturation. Lack of SIRPα signaling in adult SIRPα-mutant mice resulted in a reduced maturation of B cells in the bone marrow, evident by reduced numbers of semi-mature IgD+IgMhi follicular type-II (F-II) and mature IgD+IgMlo follicular type-I (F-I) B cells, as well as reduced blood B cell numbers. In addition, lack of SIRPα signaling also impaired follicular B cell maturation in the spleen. Maturing BM or splenic B cells of SIRPα-mutant mice were found to express higher levels of the pro-apoptotic protein BIM and apoptosis was increased among these B cells. Bone marrow reconstitution experiments revealed that the B cell maturation defect in bone marrow and blood was due to lack of SIRPα signaling in non-hematopoietic cells, while hematopoietic SIRPα signaling was important for follicular B cell maturation in the spleen. Adding on to our previous findings of a stromal cell defect in SIRPα-mutant mice was the finding that gene expression of receptor activator of nuclear factor-ĸB ligand (RANKL) was significantly lower in cultured bone marrow stromal cells of SIRPα mutant mice. These data suggest a novel and opposite contribution of SIRPα signaling within non-hematopoietic and hematopoietic cells, respectively, to maintain B cell maturation and to prevent apoptosis in the bone marrow and spleen of adult mice. PMID:26222253

  12. A single early postnatal estradiol injection affects morphology and gene expression of the ovary and parametrial adipose tissue in adult female rats.

    PubMed

    Alexanderson, Camilla; Stener-Victorin, Elisabet; Kullberg, Joel; Nilsson, Staffan; Levin, Max; Cajander, Stefan; Lönn, Lars; Lönn, Malin; Holmäng, Agneta

    2010-10-01

    Events during early life can affect reproductive and metabolic functions in adulthood. We evaluated the programming effects of a single early postnatal estradiol injection (within 3h after birth) in female rats. We assessed ovarian and parametrial adipose tissue morphology, evaluated gene expression related to follicular development and adipose tissue metabolism, and developed a non-invasive volumetric estimation of parametrial adipose tissue by magnetic resonance imaging. Estradiol reduced ovarian weight, increased antral follicle size and number of atretic antral follicles, and decreased theca interna thickness in atretic antral follicles. Adult estradiol-injected rats also had malformed vaginal openings and lacked corpora lutea, confirming anovulation. Estradiol markedly reduced parametrial adipose tissue mass. Adipocyte size was unchanged, suggesting reduced adipocyte number. Parametrial adipose tissue lipoprotein lipase activity was increased. In ovaries, estradiol increased mRNA expression of adiponectin, complement component 3, estrogen receptor α, and glucose transporter 3 and 4; in parametrial adipose tissue, expression of complement component 3 was increased, expression of estrogen receptor α was decreased, and expression of leptin, lipoprotein lipase, and hormone-sensitive lipase was unaffected. These findings suggest that early postnatal estradiol exposure of female rats result in long-lasting effects on the ovary and parametrial adipose tissue at adult age. PMID:19857573

  13. Somatomedin-C/insulin-like growth factor-I and Insulin-like growth factor-II mRNAs in rate fetal and adult tissues

    SciTech Connect

    Lund, P.K.; Moats-Staats, B.M.; Hynes, M.A.; Simmons, J.G.; Jansen, M.; D'ercole, A.J.; Van Wyk, J.J.

    1986-11-05

    Somatomedin-C or insulin-like growth factor I (Sm-C/IGF-I) and insulin-like growth factor II (IGF-II) have been implicated in the regulation of fetal growth and development. In the present study /sup 32/P-labeled complementary DNA probes encoding human and mouse Sm-C/IGF-I and human IGF-II were used in Northern blot hybridizations to analyze rat Sm-C/IGF-I and IGF-II mRNAs in poly(A/sup +/) RNAs from intestine, liver, lung, and brain of adult rats and fetal rats between day 14 and 17 of gestation. In fetal rats, all four tissues contained a major mRNA of 1.7 kilobase (kb) that hybridized with the human Sm-C/IGF-I cDNA and mRNAs of 7.5, 4.7, 1.7, and 1.2 kb that hybridized with the mouse Sm-C/IGF-I cDNA. Adult rat intestine, liver, and lung also contained these mRNAs but Sm-C/IGF-I mRNAs were not detected in adult rat brain. These findings provide direct support for prior observations that multiple tissues in the fetus synthesize immunoreactive Sm-C/IGF-I and imply a role for Sm-C/IGF-I in fetal development as well as postnatally. Multiple IGF-II mRNAs of estimated sizes 4.7, 3.9, 2.2, 1.75, and 1.2 kb were observed in fetal rat intestine, liver, lung, and brain. The 4.7- and 3.9-kb mRNAs were the major hybridizing IGF-II mRNAs in all fetal tissues. Higher abundance of IGF-II mRNAs in rat fetal tissues compared with adult tissues supports prior hypotheses, based on serum IGF-II concentrations, that IGF-II is predominantly a fetal somatomedin. IGF-II mRNAs are present, however, in some poly(A/sup +/) RNAs from adult rat tissues. The brain was the only tissue in the adult rat where the 4.7- and 3.9-kb IGF-II mRNAs were consistently detected. These findings suggest that a role for IGF-II in the adult rat, particularly in the central nervous system, cannot be excluded.

  14. Intensified Adjuvant IFADIC Chemotherapy for Adult Soft Tissue Sarcoma: A Prospective Randomized Feasibility Trial

    PubMed Central

    Brodowicz, Thomas; Schwameis, Eva; Widder, Joachim; Amann, Gabriele; Wiltschke, Christoph; Dominkus, Martin; Windhager, Reinhard; Ritschl, Peter; Pötter, Richard; Kotz, Rainer

    2000-01-01

    Purpose. The present prospective randomized adjuvant trial was carried out to compare the toxicity, feasibility and efficacy of augmented chemotherapy added to hyperfractionated accelerated radiotherapy after wide or marginal resection of grade 2 and grade 3 soft tissue sarcoma (STS). Patients and methods. Fifty-nine patients underwent primary surgery by wide or marginal excision and were subsequently randomized to receive radiotherapy alone or under the addition of six courses of ifosfamide (1500 mg/m2 , days 1–4), dacarbazine (DTIC) (200 mg/m2 , days 1–4) and doxorubicin (25 mg/m2 , days 1–2) administered in 14-day-intervals supported by granulocyte-colony stimulating factor (30 × 106 IU/day, s.c.) on days 5–13. According to the randomization protocol, 28 patients received radiotherapy only, whereas 31 patients were treated with additional chemotherapy. Results. The relative ifosfamide–doxorubicin–DTIC (IFADIC) dose intensity achieved was 93%. After a mean observation period of 41±19.7 months (range, 8.1–84 months), 16 patients (57%) in the control group versus 24 patients (77%) in the chemotherapy group were free of disease (p>0.05).Within the control group, tumor relapses occurred in 12 patients (43%;six patients with distant metastases, two with local relapse, four with both) versus seven patients (23%; five patients with distant metastases, one with local recurrence, one with both) from the chemotherapy group. Relapse-free survival (RFS) (p=0.1), time to local failure (TLF) (p=0.09), time to distant failure (TDF) (p=0.17) as well as overall survival (OS) (p=0.4) did not differ significantly between the two treatment groups. Treatment-related toxicity was generally mild in both treatment arms. Conclusion. We conclude that the safety profile of intensified IFADIC added to radiotherapy was manageable and tolerable in the current setting. Inclusion of intensified IFADIC was not translated into a significant benefit concerning OS, RFS, TLF and

  15. Polycomb repressive complex 2 component Suz12 is required for hematopoietic stem cell function and lymphopoiesis.

    PubMed

    Lee, Stanley C W; Miller, Sarah; Hyland, Craig; Kauppi, Maria; Lebois, Marion; Di Rago, Ladina; Metcalf, Donald; Kinkel, Sarah A; Josefsson, Emma C; Blewitt, Marnie E; Majewski, Ian J; Alexander, Warren S

    2015-07-01

    Polycomb repressive complex 2 (PRC2) is a chromatin modifier that regulates stem cells in embryonic and adult tissues. Loss-of-function studies of PRC2 components have been complicated by early embryonic dependence on PRC2 activity and the partial functional redundancy of enhancer of zeste homolog 1 (Ezh1) and enhancer of zeste homolog 2 (Ezh2), which encode the enzymatic component of PRC2. Here, we investigated the role of PRC2 in hematopoiesis by conditional deletion of suppressor of zeste 12 protein homolog (Suz12), a core component of PRC2. Complete loss of Suz12 resulted in failure of hematopoiesis, both in the embryo and the adult, with a loss of maintenance of hematopoietic stem cells (HSCs). In contrast, partial loss of PRC2 enhanced HSC self-renewal. Although Suz12 was required for lymphoid development, deletion in individual blood cell lineages revealed that it was dispensable for the development of granulocytic, monocytic, and megakaryocytic cells. Collectively, these data reveal the multifaceted role of PRC2 in hematopoiesis, with divergent dose-dependent effects in HSC and distinct roles in maturing blood cells. Because PRC2 is a potential target for cancer therapy, the significant consequences of modest changes in PRC2 activity, as well as the cell and developmental stage-specific effects, will need to be carefully considered in any therapeutic context. PMID:26036803

  16. ESAM is a novel human hematopoietic stem cell marker associated with a subset of human leukemias.

    PubMed

    Ishibashi, Tomohiko; Yokota, Takafumi; Tanaka, Hirokazu; Ichii, Michiko; Sudo, Takao; Satoh, Yusuke; Doi, Yukiko; Ueda, Tomoaki; Tanimura, Akira; Hamanaka, Yuri; Ezoe, Sachiko; Shibayama, Hirohiko; Oritani, Kenji; Kanakura, Yuzuru

    2016-04-01

    Reliable markers are essential to increase our understanding of the biological features of human hematopoietic stem cells and to facilitate the application of hematopoietic stem cells in the field of transplantation and regenerative medicine. We previously identified endothelial cell-selective adhesion molecule (ESAM) as a novel functional marker of hematopoietic stem cells in mice. Here, we found that ESAM can also be used to purify human hematopoietic stem cells from all the currently available sources (adult bone marrow, mobilized peripheral blood, and cord blood). Multipotent colony-forming units and long-term hematopoietic-reconstituting cells in immunodeficient mice were found exclusively in the ESAM(High) fraction of CD34(+)CD38(-) cells. The CD34(+)CD38(-) fraction of cord blood and collagenase-treated bone marrow contained cells exhibiting extremely high expression of ESAM; these cells are likely to be related to the endothelial lineage. Leukemia cell lines of erythroid and megakaryocyte origin, but not those of myeloid or lymphoid descent, were ESAM positive. However, high ESAM expression was observed in some primary acute myeloid leukemia cells. Furthermore, KG-1a myeloid leukemia cells switched from ESAM negative to ESAM positive with repeated leukemia reconstitution in vivo. Thus, ESAM is a useful marker for studying both human hematopoietic stem cells and leukemia cells. PMID:26774386

  17. Protective effects of ginsenoside Rg1 on aging Sca-1⁺ hematopoietic cells.

    PubMed

    Zhou, Yue; Liu, Jun; Cai, Shizhong; Liu, Dianfeng; Jiang, Rong; Wang, Yaping

    2015-09-01

    In adults, bone hematopoietic cells are responsible for the lifelong production of all blood cells. It is affected in aging, with progressive loss of physiological integrity leading to impaired function by cellular intrinsic and extrinsic factors. However, intervention measures, which directly inhibit the aging of hematopoietic cells, remain to be investigated. In the present study, 10 µmol/l ginsenoside Rg1 (Rg1) markedly alleviated the aging phenotypes of Sca‑1+ hematopoietic cells following in vitro exposure. In addition, the protective effects of ginsenoside Rg1 on the aging of Sca‑1+ hematopoietic cells was confirmed using a serial transplantation assay in C57BL/6 mice. The mechanistic investigations revealed that Rg1‑mediated Sca‑1+ hematopoietic cell aging alleviation was linked to a series of characteristic events, including telomere end attrition compensation, telomerase activity reconstitution and the activation of genes involved in p16‑Rb signaling pathways. Based on the above results, it was concluded that ginsenoside Rg1 is a potent agent, which acts on hematopoietic cells to protect them from aging, which has implications for therapeutic approaches in hemopoietic diseases. PMID:26045300

  18. In Vivo Neural Tissue Engineering: Cylindrical Biocompatible Hydrogels That Create New Neural Tracts in the Adult Mammalian Brain.

    PubMed

    Clark, Amanda R; Carter, Arrin B; Hager, Lydia E; Price, Elmer M

    2016-08-01

    Individuals with neurodegenerative disorders or brain injury have few treatment options and it has been proposed that endogenous adult neural stem cells can be harnessed to repopulate dysfunctional nonneurogenic regions of the brain. We have accomplished this through the development of rationally designed hydrogel implants that recruit endogenous cells from the adult subventricular zone to create new relatively long tracts of neuroblasts. These implants are biocompatible and biodegradable cylindrical hydrogels consisting of fibrin and immobilized neurotrophic factors. When implanted into rat brain such that the cylinder intersected the migratory path of endogenous neural progenitors (the rostral migratory stream) and led into the nonneurogenic striatum, we observed a robust neurogenic response in the form of migrating neuroblasts with long (>100 μm) complex neurites. The location of these new neural cells in the striatum was directly coincident with the original track of the fibrin implant, which itself had completely degraded, and covered a significant area and distance (>2.5 mm). We also observed a significant number of neuroblasts in the striatal region between the implant track and the lateral ventricle. When these fibrin cylinders were implanted into hemiparkinson rats, correction of parkinsonian behavior was observed. There were no obvious behavioral, inflammatory or tumorigenic sequelae as a consequence of the implants. In conclusion, we have successfully engineered neural tissue in vivo, using neurogenic biomaterials cast into a unique cylindrical architecture. These results represent a novel approach to efficiently induce neurogenesis in a controlled and targeted manner, which may lead toward a new therapeutic modality for neurological disorders. PMID:27295980

  19. Assessing the effects of model Maillard compound intake on iron, copper and zinc retention and tissue delivery in adult rats.

    PubMed

    Roncero-Ramos, Irene; Pastoriza, Silvia; Navarro, M Pilar; Delgado-Andrade, Cristina

    2016-01-01

    The behaviour of dietary Maillard reaction compounds (MRP) as metal chelating polymers can alter mineral absorption and/or retention. Our aim in this study was to analyse the long-term effects of the consumption of model MRP from glucose-lysine heated for 90 min at 150 °C (GL) on iron, copper and zinc whole-body retention and tissue delivery. For 88 days, weaning rats were fed a Control diet or one containing 3% GL, until reaching the adult stage. During the experimental period a mineral balance was conducted to investigate the mineral retention. At day 88, the animals were sacrificed, blood was drawn for haemoglobin determination and some organs were removed. Copper and zinc balances were unaffected (Cu: 450 vs. 375 μg; Zn: 6.7 vs. 6.2 mg for Control and GL groups, respectively) and no change was observed in whole-body delivery. Iron retention, too, was unaltered (11.2 mg for Control and GL groups) but due to the tendency toward decreased body weight in the GL group (248 vs. 233 g for the Control and GL groups), whole-body iron concentration was 13% higher in the GL group than in the Control group. Absorbed iron accumulated particularly in the liver (144 vs. 190 μg g(-1) for the Control and GL groups), thus reducing haemoglobin levels. The long-term intake of MRP induced iron accumulation in the body but this did not result in enhanced iron functionality, since the haemoglobin concentration declined. Taking into account the findings of our research group's studies of young and adult rats, we now corroborate the hypothesis that the negative effect of GL MRP consumption on iron functionality takes place regardless of the animals' stage of life. PMID:26593232

  20. Epithelial-connective tissue interactions induced by thyroid hormone receptor are essential for adult stem cell development in the Xenopus laevis intestine

    PubMed Central

    Hasebe, Takashi; Buchholz, Daniel R.; Shi, Yun-Bo; Ishizuya-Oka, Atsuko

    2012-01-01

    In the amphibian intestine during metamorphosis, stem cells appear and generate the adult absorptive epithelium, analogous to the mammalian one, under the control of thyroid hormone (TH). We have previously shown that the adult stem cells originate from differentiated larval epithelial cells in the Xenopus laevis intestine. To clarify whether TH signaling in the epithelium alone is sufficient for inducing the stem cells, we have now performed tissue recombinant culture experiments, using transgenic X. laevis tadpoles that express a dominant positive TH receptor (dpTR) under a control of heat shock promoter. Wild-type (Wt) or dpTR transgenic (Tg) larval epithelium (Ep) was isolated from the tadpole intestine, recombined with homologous or heterologous non-epithelial tissues (non-Ep), and then cultivated in the absence of TH with daily heat shocks to induce transgenic dpTR expression. Adult epithelial progenitor cells expressing sonic hedgehog became detectable on day 5 in both the recombinant intestine of Tg Ep and Tg non-Ep (Tg/Tg) and that of Tg Ep and Wt non-Ep (Tg/Wt). However, in Tg/Wt intestine, they did not express other stem cell markers such as Musashi-1 and never generated the adult epithelium expressing a marker for absorptive epithelial cells. Our results indicate that, while it is unclear why some larval epithelial cells dedifferentiate into adult progenitor/stem cells, TR-mediated gene expression in the surrounding tissues other than the epithelium is required for them to develop into adult stem cells, suggesting the importance of TH-inducible epithelial-connective tissue interactions in establishment of the stem cell niche in the amphibian intestine. PMID:21280164

  1. Nonmyeloablative allogeneic hematopoietic cell transplantation

    PubMed Central

    Storb, Rainer; Sandmaier, Brenda M.

    2016-01-01

    Most hematological malignancies occur in older patients. Until recently these patients and those with comorbidities were not candidates for treatment with allogeneic hematopoietic transplantation because they were unable to tolerate the heretofore used high-dose conditioning regimens. The finding that many of the cures achieved with allogeneic hematopoietic transplantation were due to graft-versus-tumor effects led to the development of less toxic and well-tolerated reduced intensity and nonmyeloablative regimens. These regimens enabled allogeneic engraftment, thereby setting the stage for graft-versus-tumor effects. This review summarizes the encouraging early results seen with the new regimens and discusses the two hurdles that need to be overcome for achieving even greater success, disease relapse and graft-versus-host disease. PMID:27132278

  2. Making a Hematopoietic Stem Cell

    PubMed Central

    Daniel, Michael G.; Pereira, Carlos-Filipe; Lemischka, Ihor R.; Moore, Kateri A.

    2016-01-01

    Previous attempts to either generate or expand hematopoietic stem cells (HSCs) in vitro have involved either ex vivo expansion of pre-existing patient or donor HSCs or de novo generation from pluripotent stem cells (PSCs), comprising both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). iPSCs alleviated ESC ethical issues but attempts to generate functional mature hematopoietic stem and progenitor cells (HSPCs) have been largely unsuccessful. New efforts focus on directly reprogramming somatic cells into definitive HSCs and HSPCs. To meet clinical needs and to advance drug discovery and stem cell therapy, alternative approaches are necessary. In this review, we synthesize the strategies used and the key findings made in recent years by those trying to make an HSC. PMID:26526106

  3. DNA methylation in hematopoietic development and disease.

    PubMed

    Gore, Aniket V; Weinstein, Brant M

    2016-09-01

    DNA methylation is an important epigenetic modification that can have profound and widespread effects on gene expression and on cellular fate and function. Recent work has indicated that DNA methylation plays a critical role in hematopoietic development and hematopoietic disease. DNA methyltransferases and Ten-eleven translocation enzymes are required to add and remove methyl "marks" from DNA, respectively, and both sets of genes have been found necessary for proper formation and maintenance of hematopoietic stem cells and for differentiation of downstream hematopoietic lineages during development. DNA methylation and demethylation enzymes have also been implicated in hematopoietic disorders such as acute myeloid leukemia and myelodysplastic syndrome. Here, we review some of the recent literature regarding the role of DNA methylation in hematopoietic health and disease. PMID:27178734

  4. Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches

    PubMed Central

    Pekovic, Vanja; Hutchison, Christopher J

    2008-01-01

    Adult stem cells have been identified in most mammalian tissues of the adult body and are known to support the continuous repair and regeneration of tissues. A generalized decline in tissue regenerative responses associated with age is believed to result from a depletion and/or a loss of function of adult stem cells, which itself may be a driving cause of many age-related disease pathologies. Here we review the striking similarities between tissue phenotypes seen in many degenerative conditions associated with old age and those reported in age-related nuclear envelope disorders caused by mutations in the LMNA gene. The concept is beginning to emerge that nuclear filament proteins, A-type lamins, may act as signalling receptors in the nucleus required for receiving and/or transducing upstream cytosolic signals in a number of pathways central to adult stem cell maintenance as well as adaptive responses to stress. We propose that during ageing and in diseases caused by lamin A mutations, dysfunction of the A-type lamin stress-resistant signalling network in adult stem cells, their progenitors and/or stem cell niches leads to a loss of protection against growth-related stress. This in turn triggers an inappropriate activation or a complete failure of self-renewal pathways with the consequent initiation of stress-induced senescence. As such, A-type lamins should be regarded as intrinsic modulators of ageing within adult stem cells and their niches that are essential for survival to old age. PMID:18638067

  5. Gemcitabine Hydrochloride With or Without Pazopanib Hydrochloride in Treating Patients With Refractory Soft Tissue Sarcoma

    ClinicalTrials.gov

    2016-04-05

    Adult Alveolar Soft Part Sarcoma; Adult Angiosarcoma; Adult Desmoplastic Small Round Cell Tumor; Adult Epithelioid Hemangioendothelioma; Adult Epithelioid Sarcoma; Adult Extraskeletal Myxoid Chondrosarcoma; Adult Extraskeletal Osteosarcoma; Adult Fibrosarcoma; Adult Leiomyosarcoma; Adult Liposarcoma; Adult Malignant Mesenchymoma; Adult Malignant Peripheral Nerve Sheath Tumor; Adult Rhabdomyosarcoma; Adult Synovial Sarcoma; Adult Undifferentiated Pleomorphic Sarcoma; Malignant Adult Hemangiopericytoma; Recurrent Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma

  6. Characterization and Functional Properties of Gastric Tissue-Resident Memory T Cells from Children, Adults, and the Elderly

    PubMed Central

    Booth, Jayaum S.; Toapanta, Franklin R.; Salerno-Goncalves, Rosangela; Patil, Seema; Kader, Howard A.; Safta, Anca M.; Czinn, Steven J.; Greenwald, Bruce D.; Sztein, Marcelo B.

    2014-01-01

    T cells are the main orchestrators of protective immunity in the stomach; however, limited information on the presence and function of the gastric T subsets is available mainly due to the difficulty in recovering high numbers of viable cells from human gastric biopsies. To overcome this shortcoming we optimized a cell isolation method that yielded high numbers of viable lamina propria mononuclear cells (LPMC) from gastric biopsies. Classic memory T subsets were identified in gastric LPMC and compared to peripheral blood mononuclear cells (PBMC) obtained from children, adults, and the elderly using an optimized 14 color flow cytometry panel. A dominant effector memory T (TEM) phenotype was observed in gastric LPMC CD4+ and CD8+ T cells in all age groups. We then evaluated whether these cells represented a population of gastric tissue-resident memory T (TRM) cells by assessing expression of CD103 and CD69. The vast majority of gastric LPMC CD8+ T cells either co-expressed CD103/CD69 (>70%) or expressed CD103 alone (~20%). Gastric LPMC CD4+ T cells also either co-expressed CD103/CD69 (>35%) or expressed at least one of these markers. Thus, gastric LPMC CD8+ and CD4+ T cells had the characteristics of TRM cells. Gastric CD8+ and CD4+ TRM cells produced multiple cytokines (IFN-γ, IL-2, TNF-α, IL-17A, MIP-1β) and up-regulated CD107a upon stimulation. However, marked differences were observed in their cytokine and multi-cytokine profiles when compared to their PBMC TEM counterparts. Furthermore, gastric CD8+ TRM and CD4+ TRM cells demonstrated differences in the frequency, susceptibility to activation, and cytokine/multi-cytokine production profiles among the age groups. Most notably, children’s gastric TRM cells responded differently to stimuli than gastric TRM cells from adults or the elderly. In conclusion, we demonstrate the presence of gastric TRM, which exhibit diverse functional characteristics in children, adults, and the elderly. PMID:24995010

  7. Age-Dependent Changes in Geometry, Tissue Composition and Mechanical Properties of Fetal to Adult Cryopreserved Human Heart Valves

    PubMed Central

    van Geemen, Daphne; Soares, Ana L. F.; Oomen, Pim J. A.; Driessen-Mol, Anita; Janssen-van den Broek, Marloes W. J. T.; van den Bogaerdt, Antoon J.; Bogers, Ad J. J. C.; Goumans, Marie-José T. H.; Baaijens, Frank P. T.; Bouten, Carlijn V. C.

    2016-01-01

    There is limited information about age-specific structural and functional properties of human heart valves, while this information is key to the development and evaluation of living valve replacements for pediatric and adolescent patients. Here, we present an extended data set of structure-function properties of cryopreserved human pulmonary and aortic heart valves, providing age-specific information for living valve replacements. Tissue composition, morphology, mechanical properties, and maturation of leaflets from 16 pairs of structurally unaffected aortic and pulmonary valves of human donors (fetal-53 years) were analyzed. Interestingly, no major differences were observed between the aortic and pulmonary valves. Valve annulus and leaflet dimensions increase throughout life. The typical three-layered leaflet structure is present before birth, but becomes more distinct with age. After birth, cell numbers decrease rapidly, while remaining cells obtain a quiescent phenotype and reside in the ventricularis and spongiosa. With age and maturation–but more pronounced in aortic valves–the matrix shows an increasing amount of collagen and collagen cross-links and a reduction in glycosaminoglycans. These matrix changes correlate with increasing leaflet stiffness with age. Our data provide a new and comprehensive overview of the changes of structure-function properties of fetal to adult human semilunar heart valves that can be used to evaluate and optimize future therapies, such as tissue engineering of heart valves. Changing hemodynamic conditions with age can explain initial changes in matrix composition and consequent mechanical properties, but cannot explain the ongoing changes in valve dimensions and matrix composition at older age. PMID:26867221

  8. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    SciTech Connect

    Kabiri, Azadeh; Esfandiari, Ebrahim; Hashemibeni, Batool; Kazemi, Mohammad; Mardani, Mohammad; Esmaeili, Abolghasem

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We investigated effects of FGF-2 on hADSCs. Black-Right-Pointing-Pointer We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. Black-Right-Pointing-Pointer FGF-2 induces chondrogenesis in hADSCs, which Bullet Increasing information will decrease quality if hospital costs are very different. Black-Right-Pointing-Pointer The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  9. The contribution of the Tie2+ lineage to primitive and definitive hematopoietic cells.

    PubMed

    Tang, Yuefeng; Harrington, Anne; Yang, Xuehui; Friesel, Robert E; Liaw, Lucy

    2010-09-01

    The regulatory elements of the Tie2/Tek promoter are commonly used in mouse models to direct transgene expression to endothelial cells. Tunica intima endothelial kinase 2 (Tie2) is also expressed in hematopoietic cells, although this has not been fully characterized. We determine the lineages of adult hematopoietic cells derived from Tie2-expressing populations using Tie2-Cre;Rosa26R-EYFP mice. In Tie2-Cre;Rosa26R-EYFP mice, analysis of bone marrow cells showed Cre-mediated recombination in 85% of the population. In adult bone marrow and spleen, we analyzed subclasses of early hematopoietic progenitors, T cells, monocytes, granulocytes, and B cells. We found that ∼ 84% of each lineage was EYFP(+), and nearly all cells that come from Tie2-expressing lineages are CD45(+), confirming widespread contribution to definitive hematopoietic cells. In addition, more than 82% of blood cells within the embryonic yolk sac were of Tie2(+) origin. Our findings of high levels of Tie2-Cre recombination in the hematopoietic lineage have implications for the use of the Tie2-Cre mouse as a lineage-restricted driver strain. PMID:20645309

  10. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance

    PubMed Central

    Mortensen, Monika; Soilleux, Elizabeth J.; Djordjevic, Gordana; Tripp, Rebecca; Lutteropp, Michael; Sadighi-Akha, Elham; Stranks, Amanda J.; Glanville, Julie; Knight, Samantha; W. Jacobsen, Sten-Eirik; Kranc, Kamil R.

    2011-01-01

    The role of autophagy, a lysosomal degradation pathway which prevents cellular damage, in the maintenance of adult mouse hematopoietic stem cells (HSCs) remains unknown. Although normal HSCs sustain life-long hematopoiesis, malignant transformation of HSCs leads to leukemia. Therefore, mechanisms protecting HSCs from cellular damage are essential to prevent hematopoietic malignancies. In this study, we crippled autophagy in HSCs by conditionally deleting the essential autophagy gene Atg7 in the hematopoietic system. This resulted in the loss of normal HSC functions, a severe myeloproliferation, and death of the mice within weeks. The hematopoietic stem and progenitor cell compartment displayed an accumulation of mitochondria and reactive oxygen species, as well as increased proliferation and DNA damage. HSCs within the Lin−Sca-1+c-Kit+ (LSK) compartment were significantly reduced. Although the overall LSK compartment was expanded, Atg7-deficient LSK cells failed to reconstitute the hematopoietic system of lethally irradiated mice. Consistent with loss of HSC functions, the production of both lymphoid and myeloid progenitors was impaired in the absence of Atg7. Collectively, these data show that Atg7 is an essential regulator of adult HSC maintenance. PMID:21339326

  11. In vitro flubendazole-induced damage to vital tissues in adult females of the filarial nematode Brugia malayi.

    PubMed

    O'Neill, Maeghan; Geary, James F; Agnew, Dalen W; Mackenzie, Charles D; Geary, Timothy G

    2015-12-01

    The use of a microfilaricidal drug for the control of onchocerciasis and lymphatic filariasis necessitates prolonged yearly dosing. Prospects for elimination or eradication of these diseases would be enhanced by availability of a macrofilaricidal drug. Flubendazole (FLBZ), a benzimidazole anthelmintic, is an appealing candidate macrofilaricide. FLBZ has demonstrated profound and potent macrofilaricidal effects in a number of experimental filarial rodent models and one human trial. Unfortunately, FLBZ was deemed unsatisfactory for use in mass drug administration (MDA) campaigns due to its markedly limited oral bioavailability. However, a new formulation that provided sufficient bioavailability following oral administration could render FLBZ an effective treatment for onchocerciasis and LF. This study characterized the effects of FLBZ and its reduced metabolite (FLBZ-R) on filarial nematodes in vitro to determine the exposure profile which results in demonstrable damage. Adult female Brugia malayi were exposed to varying concentrations of FLBZ or FLBZ-R (100 nM-10 μM) for up to five days, after which worms were fixed for histology. Morphological damage following exposure to FLBZ was observed prominently in the hypodermis and developing embryos at concentrations as low as 100 nM following 24 h exposure. The results indicate that damage to tissues required for reproduction and survival can be achieved at pharmacologically relevant concentrations. PMID:26288741

  12. In vitro flubendazole-induced damage to vital tissues in adult females of the filarial nematode Brugia malayi

    PubMed Central

    O'Neill, Maeghan; Geary, James F.; Agnew, Dalen W.; Mackenzie, Charles D.; Geary, Timothy G.

    2015-01-01

    The use of a microfilaricidal drug for the control of onchocerciasis and lymphatic filariasis necessitates prolonged yearly dosing. Prospects for elimination or eradication of these diseases would be enhanced by availability of a macrofilaricidal drug. Flubendazole (FLBZ), a benzimidazole anthelmintic, is an appealing candidate macrofilaricide. FLBZ has demonstrated profound and potent macrofilaricidal effects in a number of experimental filarial rodent models and one human trial. Unfortunately, FLBZ was deemed unsatisfactory for use in mass drug administration (MDA) campaigns due to its markedly limited oral bioavailability. However, a new formulation that provided sufficient bioavailability following oral administration could render FLBZ an effective treatment for onchocerciasis and LF. This study characterized the effects of FLBZ and its reduced metabolite (FLBZ-R) on filarial nematodes in vitro to determine the exposure profile which results in demonstrable damage. Adult female Brugia malayi were exposed to varying concentrations of FLBZ or FLBZ-R (100 nM–10 μM) for up to five days, after which worms were fixed for histology. Morphological damage following exposure to FLBZ was observed prominently in the hypodermis and developing embryos at concentrations as low as 100 nM following 24 h exposure. The results indicate that damage to tissues required for reproduction and survival can be achieved at pharmacologically relevant concentrations. PMID:26288741

  13. TopBP1 Governs Hematopoietic Stem/Progenitor Cells Survival in Zebrafish Definitive Hematopoiesis

    PubMed Central

    Gao, Lei; Li, Dantong; Ma, Ke; Zhang, Wenjuan; Xu, Tao; Fu, Cong; Jing, Changbin; Jia, Xiaoe; Wu, Shuang; Sun, Xin; Dong, Mei; Deng, Min; Chen, Yi; Zhu, Wenge; Peng, Jinrong; Wan, Fengyi; Zhou, Yi; Zon, Leonard I.; Pan, Weijun

    2015-01-01

    In vertebrate definitive hematopoiesis, nascent hematopoietic stem/progenitor cells (HSPCs) migrate to and reside in proliferative hematopoietic microenvironment for transitory expansion. In this process, well-established DNA damage response pathways are vital to resolve the replication stress, which is deleterious for genome stability and cell survival. However, the detailed mechanism on the response and repair of the replication stress-induced DNA damage during hematopoietic progenitor expansion remains elusive. Here we report that a novel zebrafish mutantcas003 with nonsense mutation in topbp1 gene encoding topoisomerase II β binding protein 1 (TopBP1) exhibits severe definitive hematopoiesis failure. Homozygous topbp1cas003 mutants manifest reduced number of HSPCs during definitive hematopoietic cell expansion, without affecting the formation and migration of HSPCs. Moreover, HSPCs in the caudal hematopoietic tissue (an equivalent of the fetal liver in mammals) in topbp1cas003 mutant embryos are more sensitive to hydroxyurea (HU) treatment. Mechanistically, subcellular mislocalization of TopBP1cas003 protein results in ATR/Chk1 activation failure and DNA damage accumulation in HSPCs, and eventually induces the p53-dependent apoptosis of HSPCs. Collectively, this study demonstrates a novel and vital role of TopBP1 in the maintenance of HSPCs genome integrity and survival during hematopoietic progenitor expansion. PMID:26131719

  14. Hematopoietic Progenitors from Early Murine Fetal Liver Possess Hepatic Differentiation Potential

    PubMed Central

    Khurana, Satish; Mukhopadhyay, Asok

    2008-01-01

    Bipotential hepatoblasts differentiate into hepatocytes and cholangiocytes during liver development. It is believed that hepatoblasts originate from endodermal tissue. Here, we provide evidence for the presence of hepatic progenitor cells in the hematopoietic compartment at an early stage of liver development. Flow cytometric analysis showed that at early stages of liver development, approximately 13% of CD45+ cells express Δ-like protein-1, a marker of hepatoblasts. Furthermore, reverse transcriptase-PCR data suggest that many hepatic genes are expressed in these cells. Cell culture experiments confirmed the hepatic differentiation potential of these cells with the loss of the CD45 marker. We observed that both hematopoietic activity in Δ-like protein-1+ cells and hepatic activity in CD45+ cells were high at embryonic day 10.5 and declined thereafter. Clonal analysis revealed that the hematopoietic fraction of fetal liver cells at embryonic day 10.5 gave rise to both hepatic and hematopoietic colonies. The above results suggest a common source of these two functionally distinct cell lineages. In utero transplantation experiments confirmed these results, as green fluorescent protein-expressing CD45+ cells at the same stage of development yielded functional hepatocytes and hematopoietic reconstitution. Since these cells were unable to differentiate into cytokeratin-19-expressing cholangiocytes, we distinguished them from hepatoblasts. This preliminary study provides hope to correct many liver diseases during prenatal development via transplantation of fetal liver hematopoietic cells. PMID:18988804

  15. Comparative study of hematopoietic differentiation between human embryonic stem cell lines.

    PubMed

    Melichar, Heather; Li, Ou; Ross, Jenny; Haber, Hilary; Cado, Dragana; Nolla, Hector; Robey, Ellen A; Winoto, Astar

    2011-01-01

    Directed differentiation of human embryonic stem cells (hESCs) into any desired cell type has been hailed as a therapeutic promise to cure many human diseases. However, substantial roadblocks still exist for in vitro differentiation of hESCs into distinct cell types, including T lymphocytes. Here we examined the hematopoietic differentiation potential of six different hESC lines. We compare their ability to develop into CD34(+) or CD34(+)CD45(+) hematopoietic precursor populations under several differentiation conditions. Comparison of lymphoid potential of hESC derived- and fetal tissue derived-hematopoietic precursors was also made. We found diverse hematopoietic potential between hESC lines depending on the culture or passage conditions. In contrast to fetal-derived hematopoietic precursors, none of the CD34(+) precursors differentiated from hESCs were able to develop further into T cells. These data underscore the difficulties in the current strategy of hESC forward differentiation and highlight distinct differences between CD34(+) hematopoietic precursors generated in vitro versus in vivo. PMID:21603627

  16. Hematopoietic stem cell transplantation: clinical use and perspectives.

    PubMed

    Barriga, Francisco; Ramírez, Pablo; Wietstruck, Angélica; Rojas, Nicolás

    2012-01-01

    Hematopoietic stem cell transplantation is the accepted therapy of choice for a variety of malignant and non-malignant diseases in children and adults. Initially developed as rescue therapy for a patient with cancer after high doses of chemotherapy and radiation as well as the correction of severe deficiencies in the hematopoietic system, it has evolved into an adoptive immune therapy for malignancies and autoimmune disorders. The procedure has helped to obtain key information about the bone marrow environment, the biology of hematopoietic stem cells and histocompatibility. The development of this new discipline has allowed numerous groups working around the world to cure patients of diseases previously considered lethal. Together with the ever growing list of volunteer donors and umbilical cord blood banks, this has resulted in life saving therapy for thousands of patients yearly. We present an overview of the procedure from its cradle to the most novel applications, as well as the results of the HSC transplant program developed at our institution since 1989. PMID:23283440

  17. Hematopoietic toxicity from lead-containing Ayurvedic medications

    PubMed Central

    Kales, Stefanos N.; Christophi, Costas A.; Saper, Robert B.

    2008-01-01

    Summary Background Millions worldwide use Ayurvedic (traditional Indian) medicines. These medications are increasingly associated with lead poisoning, often accompanied by anemia. We compared the relative hematopoietic toxicity of Ayurvedic lead poisoning with a common form of occupational lead poisoning. Material/Methods We retrospectively studied 66 adult lead intoxications: 43 published Ayurvedic cases identified in published reports by searching MEDLINE (1966 to November 2005); 4 Ayurvedic patients seen at a referral center; and 19 lead paint intoxications from the same center. We considered patients’ age, gender and blood lead at presentation, and then compared the groups with respect to hematopoietic parameters. Results Ayurvedic lead poisoning was associated with higher blood lead (p<0.001), more basophilic stippling (p<0.001), lower hemoglobin (p<0.001) and higher protoporphyrin (p<0.001). Multiple regression adjusted for blood lead and gender found Ayurvedic lead poisoning associated with a 36.2 g/L (95% CI -48.8, -23.6 g/L) greater decrement in hemoglobin (p<0.001) as compared to paint-removal poisoning. Conclusions Ayurvedic poisoning produces greater hematopoietic toxicity than paint-removal poisoning. Ayurvedic ingestion should be considered in patients with anemia. Ayurveda users should be screened for lead exposure and strongly encouraged to discontinue metal-containing remedies. PMID:17599022

  18. Hematopoietic ontogeny and its relevance for pediatric leukemias.

    PubMed

    Udroiu, Ion; Sgura, Antonella

    2016-03-01

    Fetal and infant hematopoiesis display characteristics different from the adult one: our suggestion is that these features may help to explain the peculiar incidence rates of acute leukemias. Hematopoietic stem cells (HSCs) are fast-cycling (those in adults instead are largely quiescent) and studies in mice demonstrated that their relative contribution to myelo- and lymphopoiesis varies during development. We hypothesize that during development some of the "hits" needed for the onset of leukemia are usually occurring (being part of the normal development), so leukemogenesis needs less mutations than in adults to take place and therefore it's more probable. The switch between the relative incidence of acute myeloid and lymphoid leukemias may be related to the changes of the percentage of lymphoid-deficient and lymphoid-proficient sub-set of HSCs during development. Further investigations may clarify this hypothesis, elucidating also the roles of the different microenvironments in determining the myeloid/lymphoid predisposition of the HSCs. PMID:26880643

  19. Evidence and clinical outcomes of adult soft tissue sarcomas of the extremities treated with adjuvant high-dose-rate brachytherapy – a literature review

    PubMed Central

    2014-01-01

    The treatment strategies for adult soft tissue sarcomas of the extremities place an emphasis on local control, maintenance of limb function, and quality of life. Surgery is the mainstay of treatment for soft tissue sarcomas. Radiotherapy and chemotherapy are also both important treatments used in these patients to optimize the outcomes of limb sparing surgery. Compared to external beam radiation therapy, brachytherapy has the advantage of delivering a concentrated dose to the tumor, whilst sparing the normal tissues. Consequently, early and late complications such as bone fractures and subcutaneous fibrosis are potentially avoided by using brachytherapy. The evidence and clinical outcomes of HDR brachytherapy in soft tissue sarcomas of the extremities are described in this paper by means of a literature review. PMID:25337137

  20. Adult soft tissue sarcoma

    MedlinePlus

    ... certain chemicals, such as vinyl chloride or certain herbicides Having swelling in the arms or legs for ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  1. Myocardial infarction activates CCR2+ hematopoietic stem and progenitor cells

    PubMed Central

    Dutta, Partha; Sager, Hendrik B.; Stengel, Kristy R.; Naxerova, Kamila; Courties, Gabriel; Saez, Borja; Silberstein, Lev; Heidt, Timo; Sebas, Matthew; Sun, Yuan; Wojtkiewicz, Gregory; Feruglio, Paolo Fumene; King, Kevin; Baker, Joshua N.; van der Laan, Anja M.; Borodovsky, Anna; Fitzgerald, Kevin; Hulsmans, Maarten; Hoyer, Friedrich; Iwamoto, Yoshiko; Vinegoni, Claudio; Brown, Dennis; Di Carli, Marcelo; Libby, Peter; Hiebert, Scott; Scadden, David; Swirski, Filip K.; Weissleder, Ralph; Nahrendorf, Matthias

    2015-01-01

    SUMMARY Following myocardial infarction (MI), myeloid cells derived from the hematopoietic system drive a sharp increase in systemic leukocyte levels that correlate closely with mortality. The origin of these myeloid cells, and the response of hematopoietic stem and progenitor cells (HSPCs) to MI, however, is unclear. Here, we identify a CCR2+CD150+CD48− LSK hematopoietic subset as the most upstream contributor to emergency myelopoiesis after ischemic organ injury. CCR2+ HSPC have fourfold higher proliferation rates than CCR2−CD150+CD48− LSK cells, display a myeloid differentiation bias, and dominate the migratory HSPC population. We further demonstrate the myeloid translocation gene 16 (Mtg16) regulates CCR2+ HSPC emergence. Mtg16−/− mice have decreased levels of systemic monocytes and infarct-associated macrophages and display compromised tissue healing and post-MI heart failure. Together, these data provide insights into regulation of emergency hematopoiesis after ischemic injury, and identify potential therapeutic targets to modulate leukocyte output after MI. PMID:25957903

  2. Collagen synthesis and degradation in vivo. Evidence for rapid rates of collagen turnover with extensive degradation of newly synthesized collagen in tissues of the adult rat.

    PubMed

    McAnulty, R J; Laurent, G J

    1987-06-01

    Collagen turnover is now known to occur more rapidly in body tissues than traditionally believed, but the kinetics and mechanisms for degradation are still poorly understood. Here we measure collagen synthesis rates and the proportion of newly synthesized collagen (probably procollagen) which is rapidly degraded, in tissues of the adult rat after injection of [14C]-proline with a large "flooding" dose of unlabelled proline. Incorporation of [14C]-proline into lung, heart, skeletal muscle and skin collagen and its appearance as hydroxy [14C]-proline, free or in small molecular weight moieties, at various times up to one hour, suggested extremely rapid synthesis and degradation for some tissues of the adult rat. Values in heart, lung, skeletal muscle and skin (with the proportion of degradation of newly synthesized collagen shown in parentheses) were 5.2 +/- 0.7%/day (53 +/- 5%), 9.0 +/- 0.7%/day (37 +/- 2%), 2.2 +/- 0.3%/day (38 +/- 7%) and 4.4 +/- 1.3%/day (8.8 +/- 0.5%). These data provide in vivo evidence, which are consistent with the observation in isolated cells, that a proportion of newly synthesized collagen is degraded rapidly, and probably intracellularly, after its synthesis. They also indicate that collagen may be synthesized and degraded rapidly in normal rat tissues, but the mean turnover rates and the proportions of collagen degraded intracellularly vary widely between tissues. PMID:3497767

  3. Primary intracranial soft tissue sarcomas in children, adolescents, and young adults: single institution experience and review of the literature.

    PubMed

    Maher, Ossama M; Khatua, Soumen; Mukherjee, Devashis; Olar, Adriana; Lazar, Alexander; Luthra, Raja; Liu, Diane; Wu, Jimin; Ketonen, Leena; Zaky, Wafik

    2016-03-01

    There is a paucity of literature reporting the outcome of intracranial sarcomas (IS) in children, adolescents, and young adults (CAYA). A multimodal therapeutic approach is commonly used, with no well-established treatment consensus. We conducted a retrospective review of CAYA with IS, treated at our institution, to determine their clinical findings, treatments, and outcomes. Immunohistochemistry (PDGFRA and EGFR) and DNA sequencing were performed on 5 tumor samples. A literature review of IS was also conducted. We reviewed 13 patients (median age, 7 years) with a primary diagnosis of IS between 1990 and 2015. Diagnoses included unclassified sarcoma (n = 9), chondrosarcoma (n = 2), and rhabdomyosarcoma (n = 2). Five patients underwent upfront gross total resection (GTR) of the tumor. The 5-drug regimen (vincristine, doxorubicin, cyclophosphamide, etoposide, and ifosfamide) was the most common treatment used. Nine patients died due to progression or recurrence (n = 8) or secondary malignancy (n = 1). The median follow-up period of the 4 surviving patients was 1.69 years (range 1.44-5.17 years). The 5-year progression-free survival and overall survival rates were 21 and 44 %, respectively. BRAF, TP53, KRAS, KIT, ERBB2, MET, RET, ATM, and EGFR mutations were detected in 4 of the 5 tissue samples. All 5 samples were immunopositive for PDGFRA, and only 2 were positive for EGFR. IS remain a therapeutic challenge due to high progression and recurrence rates. Collaborative multi-institutional studies are warranted to delineate a treatment consensus and investigate tumor biology to improve the disease outcome. PMID:26718692

  4. mTOR Complexes Repress Hypertrophic Agonist-Stimulated Expression of Connective Tissue Growth Factor in Adult Cardiac Muscle Cells.

    PubMed

    Sundararaj, Kamala; Pleasant, Dorea L; Moschella, Phillip C; Panneerselvam, Kavin; Balasubramanian, Sundaravadivel; Kuppuswamy, Dhandapani

    2016-02-01

    Connective tissue growth factor (CTGF) is a fibrogenic cytokine that promotes fibrosis in various organs. In the heart, both cardiomyocytes (CM) and cardiac fibroblasts have been reported as a source of CTGF expression, aiding cardiac fibrosis. Although the mammalian target of rapamycin (mTOR) forms 2 distinct complexes, mTORC1 and mTORC2, and plays a central role in integrating biochemical signals for protein synthesis and cellular homeostasis, we explored its role in CTGF expression in adult feline CM. CM were stimulated with 10 μM phenylephrine (PE), 200 nM angiotensin (Ang), or 100 nM insulin for 24 hours. PE and Ang, but not insulin, caused an increase in CTGF mRNA expression with the highest expression observed with PE. Inhibition of mTOR with torin1 but not rapamycin significantly enhanced PE-stimulated CTGF expression. Furthermore, silencing of raptor and rictor using shRNA adenoviral vectors to suppress mTORC1 and mTORC2, respectively, or blocking phosphatidylinositol 3-kinase (PI3K) signaling with LY294002 (LY) or Akt signaling by dominant-negative Akt expression caused a substantial increase in PE-stimulated CTGF expression as measured by both mRNA and secreted protein levels. However, studies with dominant-negative delta isoform of protein kinase C demonstrate that delta isoform of protein kinase C is required for both agonist-induced CTGF expression and mTORC2/Akt-mediated CTGF suppression. Finally, PE-stimulated CTGF expression was accompanied with a corresponding increase in Smad3 phosphorylation and pretreatment of cells with SIS3, a Smad3 specific inhibitor, partially blocked the PE-stimulated CTGF expression. Therefore, a PI3K/mTOR/Akt axis plays a suppressive role on agonist-stimulated CTGF expression where the loss of this mechanism could be a contributing factor for the onset of cardiac fibrosis in the hypertrophying myocardium. PMID:26371948

  5. Sensorimotor Experience Influences Recovery of Forelimb Abilities but Not Tissue Loss after Focal Cortical Compression in Adult Rats

    PubMed Central

    Martinez, Marina; Brezun, Jean-Michel; Xerri, Christian

    2011-01-01

    Sensorimotor activity has been shown to play a key role in functional outcome after extensive brain damage. This study was aimed at assessing the influence of sensorimotor experience through subject-environment interactions on the time course of both lesion and gliosis volumes as well as on the recovery of forelimb sensorimotor abilities following focal cortical injury. The lesion consisted of a cortical compression targeting the forepaw representational area within the primary somatosensory cortex of adult rats. After the cortical lesion, rats were randomly subjected to various postlesion conditions: unilateral C5–C6 dorsal root transection depriving the contralateral cortex from forepaw somatosensory inputs, standard housing or an enriched environment promoting sensorimotor experience and social interactions. Behavioral tests were used to assess forelimb placement during locomotion, forelimb-use asymmetry, and forepaw tactile sensitivity. For each group, the time course of tissue loss was described and the gliosis volume over the first postoperative month was evaluated using an unbiased stereological method. Consistent with previous studies, recovery of behavioral abilities was found to depend on post-injury experience. Indeed, increased sensorimotor activity initiated early in an enriched environment induced a rapid and more complete behavioral recovery compared with standard housing. In contrast, severe deprivation of peripheral sensory inputs led to a delayed and only partial sensorimotor recovery. The dorsal rhizotomy was found to increase the perilesional gliosis in comparison to standard or enriched environments. These findings provide further evidence that early sensory experience has a beneficial influence on the onset and time course of functional recovery after focal brain injury. PMID:21359230

  6. Depsipeptide (Romidepsin) in Treating Patients With Metastatic or Unresectable Soft Tissue Sarcoma

    ClinicalTrials.gov

    2014-08-26

    Adult Alveolar Soft-part Sarcoma; Adult Angiosarcoma; Adult Epithelioid Sarcoma; Adult Extraskeletal Chondrosarcoma; Adult Extraskeletal Osteosarcoma; Adult Fibrosarcoma; Adult Leiomyosarcoma; Adult Liposarcoma; Adult Malignant Fibrous Histiocytoma; Adult Malignant Hemangiopericytoma; Adult Malignant Mesenchymoma; Adult Neurofibrosarcoma; Adult Rhabdomyosarcoma; Adult Synovial Sarcoma; Gastrointestinal Stromal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Adult Soft Tissue Sarcoma; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma

  7. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function

    PubMed Central

    Graves, Christina L.; Harden, Scott W.; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J.; Wallet, Shannon M.

    2015-01-01

    Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors. PMID:25193428

  8. Detection and quantification of a very high density lipoprotein in different tissues of Triatoma infestans during the last nymphal and adult stages.

    PubMed

    Rimoldi, O J; Córsico, B; González, M S; Brenner, R R

    1996-07-01

    The presence of a very high density lipoprotein (VHDL), an hexameric protein, was explored in different tissues of Triatoma infestans throughout the last nymphal and adult stages, and in egg extracts by Western blot assays. The VHDL was always detected in both, hemolymph and fat body, during the above mentioned stages and it was also observed in the buffer soluble fraction of testis and egg homogenates. An enzyme-linked immunosorbent assay (ELISA) was used to measure the VHDL titer in these tissues. Hemolymph VHDL reaches a maximum value before the last molt, then it abruptly declines in males and females just after emergence, but during adult life it increases again. Fat body VHDL decreases slowly and continuously during the nymph growth reaching a minimum value prior to molting, and in the first week of adult life the values were even two-fold lower; then, it shows a different cycle of accumulation and depletion in males and females. In adult testis the VHDL undergoes a cycle similar to the one observed in male fat body. This protein increases progressively during embryonic development and, at the time of larval hatching it reaches its maximum value. The hexameric protein presents homologies in its N-terminal sequence with storage hexamerins of Diptera, Lepidoptera and Hymenoptera. PMID:8995792

  9. Fibrogenic Cell Plasticity Blunts Tissue Regeneration and Aggravates Muscular Dystrophy.

    PubMed

    Pessina, Patrizia; Kharraz, Yacine; Jardí, Mercè; Fukada, So-ichiro; Serrano, Antonio L; Perdiguero, Eusebio; Muñoz-Cánoves, Pura

    2015-06-01

    Preservation of cell identity is necessary for homeostasis of most adult tissues. This process is challenged every time a tissue undergoes regeneration after stress or injury. In the lethal Duchenne muscular dystrophy (DMD), skeletal muscle regenerative capacity declines gradually as fibrosis increases. Using genetically engineered tracing mice, we demonstrate that, in dystrophic muscle, specialized cells of muscular, endothelial, and hematopoietic origins gain plasticity toward a fibrogenic fate via a TGFβ-mediated pathway. This results in loss of cellular identity and normal function, with deleterious consequences for regeneration. Furthermore, this fibrogenic process involves acquisition of a mesenchymal progenitor multipotent status, illustrating a link between fibrogenesis and gain of progenitor cell functions. As this plasticity also was observed in DMD patients, we propose that mesenchymal transitions impair regeneration and worsen diseases with a fibrotic component. PMID:25981413

  10. Hematopoietic stem cells: an overview.

    PubMed

    Mosaad, Youssef Mohamed

    2014-12-01

    Considerable efforts have been made in recent years in understanding the mechanisms that govern hematopoietic stem cell (HSC) origin, development, differentiation, self-renewal, aging, trafficking, plasticity and transdifferentiation. Hematopoiesis occurs in sequential waves in distinct anatomical locations during development and these shifts in location are accompanied by changes in the functional status of the stem cells and reflect the changing needs of the developing organism. HSCs make a choice of either self-renewal or committing to differentiation. The balance between self-renewal and differentiation is considered to be critical to the maintenance of stem cell numbers. It is still under debate if HSC can rejuvenate infinitely or if they do not possess ''true" self-renewal and undergo replicative senescence such as any other somatic cell. Gene therapy applications that target HSCs offer a great potential for the treatment of hematologic and immunologic diseases. However, the clinical success has been limited by many factors. This review is intended to summarize the recent advances made in the human HSC field, and will review the hematopoietic stem cell from definition through development to clinical applications. PMID:25457002

  11. Reconstructing the in vivo dynamics of hematopoietic stem cells from telomere length distributions

    PubMed Central

    Werner, Benjamin; Beier, Fabian; Hummel, Sebastian; Balabanov, Stefan; Lassay, Lisa; Orlikowsky, Thorsten; Dingli, David; Brümmendorf, Tim H; Traulsen, Arne

    2015-01-01

    We investigate the in vivo patterns of stem cell divisions in the human hematopoietic system throughout life. In particular, we analyze the shape of telomere length distributions underlying stem cell behavior within individuals. Our mathematical model shows that these distributions contain a fingerprint of the progressive telomere loss and the fraction of symmetric cell proliferations. Our predictions are tested against measured telomere length distributions in humans across all ages, collected from lymphocyte and granulocyte sorted telomere length data of 356 healthy individuals, including 47 cord blood and 28 bone marrow samples. We find an increasing stem cell pool during childhood and adolescence and an approximately maintained stem cell population in adults. Furthermore, our method is able to detect individual differences from a single tissue sample, i.e. a single snapshot. Prospectively, this allows us to compare cell proliferation between individuals and identify abnormal stem cell dynamics, which affects the risk of stem cell related diseases. DOI: http://dx.doi.org/10.7554/eLife.08687.001 PMID:26468615

  12. Parasitic Infections in Hematopoietic Stem Cell Transplantation

    PubMed Central

    Jarque, Isidro; Salavert, Miguel; Pemán, Javier

    2016-01-01

    Parasitic infections are rarely documented in hematopoietic stem cell transplant recipients. However they may be responsible for fatal complications that are only diagnosed at autopsy. Increased awareness of the possibility of parasitic diseases both in autologous and allogeneic stem cell transplant patients is relevant not only for implementing preventive measures but also for performing an early diagnosis and starting appropriate therapy for these unrecognized but fatal infectious complications in hematopoietic transplant recipients. In this review, we will focus on parasitic diseases occurring in this population especially those with major clinical relevance including toxoplasmosis, American trypanosomiasis, leishmaniasis, malaria, and strongyloidiasis, among others, highlighting the diagnosis and management in hematopoietic transplant recipients. PMID:27413527

  13. Parasitic Infections in Hematopoietic Stem Cell Transplantation.

    PubMed

    Jarque, Isidro; Salavert, Miguel; Pemán, Javier

    2016-01-01

    Parasitic infections are rarely documented in hematopoietic stem cell transplant recipients. However they may be responsible for fatal complications that are only diagnosed at autopsy. Increased awareness of the possibility of parasitic diseases both in autologous and allogeneic stem cell transplant patients is relevant not only for implementing preventive measures but also for performing an early diagnosis and starting appropriate therapy for these unrecognized but fatal infectious complications in hematopoietic transplant recipients. In this review, we will focus on parasitic diseases occurring in this population especially those with major clinical relevance including toxoplasmosis, American trypanosomiasis, leishmaniasis, malaria, and strongyloidiasis, among others, highlighting the diagnosis and management in hematopoietic transplant recipients. PMID:27413527

  14. Hematopoietic Stem Cell Transplantation in Thalassemia and Sickle Cell Anemia

    PubMed Central

    Lucarelli, Guido; Isgrò, Antonella; Sodani, Pietro; Gaziev, Javid

    2012-01-01

    The globally widespread single-gene disorders β-thalassemia and sickle cell anemia (SCA) can only be cured by allogeneic hematopoietic stem cell transplantation (HSCT). HSCT treatment of thalassemia has substantially improved over the last two decades, with advancements in preventive strategies, control of transplant-related complications, and preparative regimens. A risk class–based transplantation approach results in disease-free survival probabilities of 90%, 84%, and 78% for class 1, 2, and 3 thalassemia patients, respectively. Because of disease advancement, adult thalassemia patients have a higher risk for transplant-related toxicity and a 65% cure rate. Patients without matched donors could benefit from haploidentical mother-to-child transplantation. There is a high cure rate for children with SCA who receive HSCT following myeloablative conditioning protocols. Novel non-myeloablative transplantation protocols could make HSCT available to adult SCA patients who were previously excluded from allogeneic stem cell transplantation. PMID:22553502

  15. Cocaine exposure impairs multineage hematopoiesis of human hematopoietic progenitor cells mediated by the sigma-1 receptor

    PubMed Central

    Nixon, Christopher C.; Schwartz, Brandon H.; Dixit, Dhaval; Zack, Jerome A.; Vatakis, Dimitrios N.

    2015-01-01

    Prenatal exposure to cocaine is a significant source of fetal and neonatal developmental defects. While cocaine associated neurological and cardiac pathologies are well-documented, it is apparent that cocaine use has far more diverse physiological effects. It is known that in some cell types, the sigma-1 receptor mediates many of cocaine's cellular effects. Here we present a novel and concise investigation into the mechanism that underlies cocaine associated hematopoietic pathology. Indeed, this is the first examination of the effects of cocaine on hematopoiesis. We show that cocaine impairs multilineage hematopoiesis from human progenitors from multiple donors and tissue types. We go on to present the first demonstration of the expression of the sigma-1 receptor in human CD34 + human hematopoietic stem/progenitor cells. Furthermore, we demonstrate that these cocaine-induced hematopoietic defects can be reversed through sigma-1 receptor blockade. PMID:25728014

  16. Ex vivo expansion and transplantation of hematopoietic stem/progenitor cells supported by mesenchymal stem cells from human umbilical cord blood.

    PubMed

    Huang, Guo-Ping; Pan, Zhi-Jun; Jia, Bing-Bing; Zheng, Qiang; Xie, Chun-Gang; Gu, Jiang-Hong; McNiece, Ian K; Wang, Jin-Fu

    2007-01-01

    Human mesenchymal stem cells (MSCs) are multipotential and are detected in bone marrow (BM), adipose tissue, placenta, and umbilical cord blood (UCB). In this study, we examined the ability of UCB-derived MSCs (UCB-MSCs) to support ex vivo expansion of hematopoietic stem/progenitor cells (HSPCs) from UCB and the engraftment of expanded HSPCs in NOD/SCID mice. The result showed that UCB-MSCs supported the proliferation and differentiation of CD34+ cells in vitro. The number of expanded total nucleated cells (TNCs) in MSC-based culture was twofold higher than cultures without MSC (control cultures). UCB-MSCs increased the expansion capabilities of CD34+ cells, long-term culture-initiating cells (LTC-ICs), granulocyte-macrophage colony-forming cells (GM-CFCs), and high proliferative potential colony-forming cells (HPP-CFCs) compared to control cultures. The expanded HSPCs were transplanted into lethally irradiated NOD/SCID mice to assess the effects of expanded cells on hematopoietic recovery. The number of white blood cells (WBCs) in the peripheral blood of mice transplanted with expanded cells from both the MSC-based and control cultures returned to pretreatment levels at day 25 posttransplant and then decreased. The WBC levels returned to pretreatment levels again at days 45-55 posttransplant. The level of human CD45+ cell engraftment in primary recipients transplanted with expanded cells from the MSC-based cultures was significantly higher than recipients transplanted with cells from the control cultures. Serial transplantation demonstrated that the expanded cells could establish long-term engraftment of hematopoietic cells. UCB-MSCs similar to those derived from adult bone marrow may provide novel targets for cellular and gene therapy. PMID:17912949

  17. Role of Hematopoietic Stem Cells in Inflammation of the Pancreas during Diabetes Mellitus.

    PubMed

    Dygai, A M; Skurikhin, E G; Pershina, O V; Ermakova, N N; Krupin, V A; Ermolaeva, L A; Stakheeva, M N; Choinzonov, E L; Goldberg, V E; Reikhart, D V; Ellinidi, V N; Kravtsov, V Yu

    2016-02-01

    The model of streptozotocin-induced diabetes mellitus in C57Bl/6 mice was employed to study the role of precursors of insulin-producing β-cells, hematopoietic stem cells, and progenitor hematopoietic cells in inflammation. In addition to provoking hyperglycemia, streptozotocin elevated serum levels of IL-1β and hyaluronic acid, induced edema in the pancreatic insular tissue and its infiltration by inflammatory cells (neutrophils, lymphocytes, and macrophages) and fibroblasts. Inflammation in pancreatic islets was accompanied by necrotic processes and decreasing counts of multipotent progenitor β-cells (CD45(-), TER119(-), c-kit-1(-), and Flk-1(-)), oligopotent progenitor β-cells (CD45(-), TER119(-), CD133(+), and CD49f(low)), and insulinproducing β-cells (Pdx1(+)). Pancreatic infl ammation was preceded by elevation of the number of short-term hematopoietic stem cells (Lin-Sca-1(+)c-kit(+)CD34(+)) relative to long-term cells (Lin(-)Sca-1(+)c-kit(+)CD34(-)) in the bone marrow as well as recruitment of hematopoietic stem and progenitor cells into circulation. Transplantation of bone marrow hematopoietic stem and progenitor cells from diabetic C57Bl/6 donor mice to recipient CBA mice with 5-fluorouracilinduced leukopenia accelerated regeneration of granulocytopoiesis in recipient mice. PMID:26906195

  18. The adult human brain harbors multipotent perivascular mesenchymal stem cells.

    PubMed

    Paul, Gesine; Özen, Ilknur; Christophersen, Nicolaj S; Reinbothe, Thomas; Bengzon, Johan; Visse, Edward; Jansson, Katarina; Dannaeus, Karin; Henriques-Oliveira, Catarina; Roybon, Laurent; Anisimov, Sergey V; Renström, Erik; Svensson, Mikael; Haegerstrand, Anders; Brundin, Patrik

    2012-01-01

    Blood vessels and adjacent cells form perivascular stem cell niches in adult tissues. In this perivascular niche, a stem cell with mesenchymal characteristics was recently identified in some adult somatic tissues. These cells are pericytes that line the microvasculature, express mesenchymal markers and differentiate into mesodermal lineages but might even have the capacity to generate tissue-specific cell types. Here, we isolated, purified and characterized a previously unrecognized progenitor population from two different regions in the adult human brain, the ventricular wall and the neocortex. We show that these cells co-express markers for mesenchymal stem cells and pericytes in vivo and in vitro, but do not express glial, neuronal progenitor, hematopoietic, endothelial or microglial markers in their native state. Furthermore, we demonstrate at a clonal level that these progenitors have true multilineage potential towards both, the mesodermal and neuroectodermal phenotype. They can be epigenetically induced in vitro into adipocytes, chondroblasts and osteoblasts but also into glial cells and immature neurons. This progenitor population exhibits long-term proliferation, karyotype stability and retention of phenotype and multipotency following extensive propagation. Thus, we provide evidence that the vascular niche in the adult human brain harbors a novel progenitor with multilineage capacity that appears to represent mesenchymal stem cells and is different from any previously described human neural stem cell. Future studies will elucidate whether these cells may play a role for disease or may represent a reservoir that can be exploited in efforts to repair the diseased human brain. PMID:22523602

  19. Medical perspectives of adults and embryonic stem cells.

    PubMed

    Cavazzana-Calvo, Marina; André-Schmutz, Isabelle; Lagresle, Chantal; Fischer, Alain

    2002-10-01

    In the last 30 years, allogeneic bone marrow transplantation has become the treatment of choice for many hematologic malignancies or inherited disorders and a number of changes have been registered in terms of long-term survival rate of transplanted patients as well as of available sources of hematopoietic stem cell (HSC). In parallel to the publication of better results in HSC transplantation, several recent discoveries have opened a scientific and ethical debate on the therapeutical potential of stem cells isolated from adult or embryonic tissues. One of the major discoveries in this field is the capacity of bone marrow-derived stem cells to treat a genetic liver disease in a mouse model, thus justifying the concept of transdifferentiation of adult stem cell and raising hopes on its possible therapeutical applications. We have tried here to summarise the advances in this field and to discuss the limits of these biological data. PMID:12494504

  20. A multistep procedure to prepare pre-vascularized cardiac tissue constructs using adult stem sells, dynamic cell cultures, and porous scaffolds

    PubMed Central

    Pagliari, Stefania; Tirella, Annalisa; Ahluwalia, Arti; Duim, Sjoerd; Goumans, Marie-Josè; Aoyagi, Takao; Forte, Giancarlo

    2014-01-01

    The vascularization of tissue engineered products represents a key issue in regenerative medicine which needs to be addressed before the translation of these protocols to the bedside can be foreseen. Here we propose a multistep procedure to prepare pre-vascularized three-dimensional (3D) cardiac bio-substitutes using dynamic cell cultures and highly porous biocompatible gelatin scaffolds. The strategy adopted exploits the peculiar differentiation potential of two distinct subsets of adult stem cells to obtain human vascularized 3D cardiac tissues. In the first step of the procedure, human mesenchymal stem cells (hMSCs) are seeded onto gelatin scaffolds to provide interconnected vessel-like structures, while human cardiomyocyte progenitor cells (hCMPCs) are stimulated in vitro to obtain their commitment toward the cardiac phenotype. The use of a modular bioreactor allows the perfusion of the whole scaffold, providing superior performance in terms of cardiac tissue maturation and cell survival. Both the cell culture on natural-derived polymers and the continuous medium perfusion of the scaffold led to the formation of a densely packaged proto-tissue composed of vascular-like and cardiac-like cells, which might complete maturation process and interconnect with native tissue upon in vivo implantation. In conclusion, the data obtained through the approach here proposed highlight the importance to provide stem cells with complementary signals in vitro able to resemble the complexity of cardiac microenvironment. PMID:24917827

  1. The Biology of Allogeneic Hematopoietic Cell Resistance

    PubMed Central

    Shizuru, Judith A.; Bhattacharya, Deepta; Cavazzana-Calvo, Marina

    2016-01-01

    At the most basic level, success of an allogeneic hematopoietic cell transplantation (HCT) procedure relies upon the engraftment of recipients with donor hematopoietic stem cells (HSCs) that will generate blood formation for the life of that individual. The formula to achieve durable HSC engraftment involves multiple factors including the recipient conditioning regimen, the nature of the genetic disparity between donor and recipient, and the content of the hematopoietic graft. Animal and clinical studies have shown that the biology of host resistance is complex, involving both immune and nonimmune elements. In this article, we review the factors that contribute to host resistance, describe emerging concepts on the basic biology of resistance, and discuss hematopoietic resistance as it relates specifically to patients with severe combined immunodeficiencies (SCID)— disorders that bring unique insights into the dynamics of cell replacement by allogeneic HSCs and progenitor cells. PMID:19913629

  2. Hematopoietic bone marrow recovery after radiation therapy: MRI evaluation

    SciTech Connect

    Casamassima, F.; Ruggiero, C.; Caramella, D.; Tinacci, E.; Villari, N.; Ruggiero, M. )

    1989-05-01

    Magnetic resonance imaging (MRI) is able to detect the increase of adipocytes in the hematopoietic bone marrow that occurs as a consequence of radiotherapy and is indicative of the loss of myeloid tissue. By monitoring this process, it is also possible to determine the recovery of the bone marrow. The amount of viable hematopoietic tissue plays a fundamental role in determining whether the patient is able to undergo further antineoplastic therapy, particularly chemotherapy. We examined 35 patients who had been treated with radiotherapy for Hodgkin's lymphoma (12), uterine cervix carcinoma (nine), ovarian dysgerminoma (six), testicular seminoma (four), and non-Hodgkin's lymphoma (four). We observed that radiation-induced modifications of the MRI pattern in the bone marrow are tightly linked to two parameters; the administered radiation dose and the length of time passed after the treatment. Bone marrow recovery was observed only when patients were treated with doses lower than 50 Gy. The earlier radiation-induced modifications of the bone marrow MRI pattern occurred 6 to 12 months after irradiation, and they were most evident 5 to 6 years after the treatment. From 2 to 9 years after radiotherapy, we observed partial recovery. Complete recovery, when it occurred, was observed only 10 to 23 years after the treatment. Our results indicate that MRI studies are likely to be useful in the assessment of radiation-induced injuries.

  3. Association between vitamin D metabolites in fat tissue and serum 25-hydroxy vitamin D in overweight and obese adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cholecalciferol has been measured in human white adipose tissue (WAT), but little is known about the relationship between the other circulating vitamin D metabolites and WAT. We measured concentrations of 25(OH)D and 1,25(OH)2D in subcutaneous fat tissue from 20 overweight and obese subjects partic...

  4. Site-specific concentrations of carotenoids in adipose tissue: relations with dietary and serum carotenoid concentrations in healthy adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary carotenoids are related to decreased risk of certain diseases. Serum and adipose tissue carotenoid concentrations are used as biomarkers of intake. This study examined relationships among concentrations of carotenoids in diet, serum and adipose tissue. Twelve women and thirteen healthy men p...

  5. The effect of in vivo hydrocortisone administration on the labelling index and size of chromaffin tissue in the postnatal and adult mouse.

    PubMed Central

    Monkhouse, W S

    1986-01-01

    Hydrocortisone administration in vivo to neonatal mice for seven days led to a significant increase in both the size and the labelling index of extra-adrenal chromaffin tissue (as represented by the para-aortic body) of 8 days old mice. In untreated animals at this age, the para-aortic body was in most cases too small to obtain a valid labelling index. In the para-aortic bodies of 14 days old, 21 days old and adult mice, the extra-adrenal chromaffin tissue was too dispersed to obtain values for either volumetric analysis or labelling indices, and hydrocortisone was without significant effect in promoting a hyperplastic response. In the postnatal adrenal medulla at all ages studied, hydrocortisone had no effect on the medullary size or on the labelling indices of either adrenaline- or noradrenaline-storing cells, although it led to a marked diminution of adrenocortical volume. The relative proportion of adrenaline-storing cells increased between the values for 8 days old animals and those for adults; this was unaffected by hydrocortisone. The cortico-medullary ratio remained unchanged from the eighth postnatal day onwards. The results are discussed and related to those of other workers. It is suggested that factors as yet unknown might modulate the response to corticosteroids of developing intra- and extra-adrenal chromaffin tissue. Images Fig. 1 Fig. 2 PMID:3693040

  6. The rate of protein synthesis in hematopoietic stem cells is limited partly by 4E-BPs

    PubMed Central

    Signer, Robert A.J.; Qi, Le; Zhao, Zhiyu; Thompson, David; Sigova, Alla A.; Fan, Zi Peng; DeMartino, George N.; Young, Richard A.; Sonenberg, Nahum; Morrison, Sean J.

    2016-01-01

    Adult stem cells must limit their rate of protein synthesis, but the underlying mechanisms remain largely unexplored. Differences in protein synthesis among hematopoietic stem cells (HSCs) and progenitor cells did not correlate with differences in proteasome activity, total RNA content, mRNA content, or cell division rate. However, adult HSCs had more hypophosphorylated eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and 4E-BP2 as compared with most other hematopoietic progenitors. Deficiency for 4E-BP1 and 4E-BP2 significantly increased global protein synthesis in HSCs, but not in other hematopoietic progenitors, and impaired their reconstituting activity, identifying a mechanism that promotes HSC maintenance by attenuating protein synthesis. PMID:27492367

  7. TGFβ restores hematopoietic homeostasis after myelosuppressive chemotherapy

    PubMed Central

    Brenet, Fabienne; Kermani, Pouneh; Spektor, Roman; Rafii, Shahin

    2013-01-01

    Myelosuppression is a life-threatening complication of antineoplastic therapy, but treatment is restricted to a few cytokines with unilineage hematopoietic activity. Although hematopoietic stem cells (HSCs) are predominantly quiescent during homeostasis, they are rapidly recruited into cell cycle by stresses, including myelosuppressive chemotherapy. Factors that induce HSCs to proliferate during stress have been characterized, but it is not known how HSC quiescence is then reestablished. In this study, we show that TGFβ signaling is transiently activated in hematopoietic stem and progenitor cells (HSPCs) during hematopoietic regeneration. Blockade of TGFβ signaling after chemotherapy accelerates hematopoietic reconstitution and delays the return of cycling HSCs to quiescence. In contrast, TGFβ blockade during homeostasis fails to induce cycling of HSPCs. We identified the cyclin-dependent kinase inhibitor Cdkn1c (p57) as a key downstream mediator of TGFβ during regeneration because the recovery of chimeric mice, incapable of expressing p57 in HSPCs, phenocopies blockade of TGFβ signaling after chemotherapy. This study demonstrates that context-dependent activation of TGFβ signaling is central to an unrecognized counterregulatory mechanism that promotes homeostasis once hematopoiesis has sufficiently recovered from myelosuppressive chemotherapy. These results open the door to new, potentially superior, approaches to promote multilineage hematopoietic recovery by blocking the TGFβ signaling that dampens regeneration. PMID:23440043

  8. SNP Array in Hematopoietic Neoplasms: A Review

    PubMed Central

    Song, Jinming; Shao, Haipeng

    2015-01-01

    Cytogenetic analysis is essential for the diagnosis and prognosis of hematopoietic neoplasms in current clinical practice. Many hematopoietic malignancies are characterized by structural chromosomal abnormalities such as specific translocations, inversions, deletions and/or numerical abnormalities that can be identified by karyotype analysis or fluorescence in situ hybridization (FISH) studies. Single nucleotide polymorphism (SNP) arrays offer high-resolution identification of copy number variants (CNVs) and acquired copy-neutral loss of heterozygosity (LOH)/uniparental disomy (UPD) that are usually not identifiable by conventional cytogenetic analysis and FISH studies. As a result, SNP arrays have been increasingly applied to hematopoietic neoplasms to search for clinically-significant genetic abnormalities. A large numbers of CNVs and UPDs have been identified in a variety of hematopoietic neoplasms. CNVs detected by SNP array in some hematopoietic neoplasms are of prognostic significance. A few specific genes in the affected regions have been implicated in the pathogenesis and may be the targets for specific therapeutic agents in the future. In this review, we summarize the current findings of application of SNP arrays in a variety of hematopoietic malignancies with an emphasis on the clinically significant genetic variants. PMID:27600067

  9. Ash1l controls quiescence and self-renewal potential in hematopoietic stem cells

    PubMed Central

    Jones, Morgan; Chase, Jennifer; Brinkmeier, Michelle; Xu, Jing; Weinberg, Daniel N.; Schira, Julien; Friedman, Ann; Malek, Sami; Grembecka, Jolanta; Cierpicki, Tomasz; Dou, Yali; Camper, Sally A.; Maillard, Ivan

    2015-01-01

    Rapidly cycling fetal and neonatal hematopoietic stem cells (HSCs) generate a pool of quiescent adult HSCs after establishing hematopoiesis in the bone marrow. We report an essential role for the trithorax group gene absent, small, or homeotic 1-like (Ash1l) at this developmental transition. Emergence and expansion of Ash1l-deficient fetal/neonatal HSCs were preserved; however, in young adult animals, HSCs were profoundly depleted. Ash1l-deficient adult HSCs had markedly decreased quiescence and reduced cyclin-dependent kinase inhibitor 1b/c (Cdkn1b/1c) expression and failed to establish long-term trilineage bone marrow hematopoiesis after transplantation to irradiated recipients. Wild-type HSCs could efficiently engraft when transferred to unirradiated, Ash1l-deficient recipients, indicating increased availability of functional HSC niches in these mice. Ash1l deficiency also decreased expression of multiple Hox genes in hematopoietic progenitors. Ash1l cooperated functionally with mixed-lineage leukemia 1 (Mll1), as combined loss of Ash1l and Mll1, but not isolated Ash1l or Mll1 deficiency, induced overt hematopoietic failure. Our results uncover a trithorax group gene network that controls quiescence, niche occupancy, and self-renewal potential in adult HSCs. PMID:25866973

  10. Morphology of certain viruses of Salmonid fishes. II. In vivo studies of infectious Hematopoietic Necrosis Virus

    USGS Publications Warehouse

    Amend, Donald F.; Chambers, Velma C.

    1970-01-01

    Juvenile sockeye salmon (Oncorhynchus nerka) were injected with the infectious hematopoietic necrosis (IHN) virus, and tissue samples from the anterior kidney, spleen, liver, intestine, and pyloric caeca of moribund fish were prepared for electron microscopy. Bullet-shaped virus particles measuring 158 × 90 mμ were observed in the hematopoietic tissues of the anterior kidney and spleen. Virus particles were also observed in the outer connective tissues of the pancreas or pyloric caeca, or both. No virus was found in the intestine or liver. The healthy appearance of erythrocytes, reticular cells, and endothelial cells in necrotic areas of the spleen and anterior kidney, and the absence of lymphocytes in these areas, suggested that lymphocytes might be one source of the virus.

  11. Collecting and Storing Tissue, Blood, and Bone Marrow Samples From Patients With Rhabdomyosarcoma or Other Soft Tissue Sarcoma

    ClinicalTrials.gov

    2016-03-18

    Adult Rhabdomyosarcoma; Childhood Desmoplastic Small Round Cell Tumor; Chordoma; Desmoid Tumor; Metastatic Childhood Soft Tissue Sarcoma; Nonmetastatic Childhood Soft Tissue Sarcoma; Previously Treated Childhood Rhabdomyosarcoma; Previously Untreated Childhood Rhabdomyosarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Soft Tissue Sarcoma; Stage I Adult Soft Tissue Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma

  12. Control of AC133/CD133 and impact on human hematopoietic progenitor cells through nucleolin.

    PubMed

    Bhatia, S; Reister, S; Mahotka, C; Meisel, R; Borkhardt, A; Grinstein, E

    2015-11-01

    AC133 is a prominent surface marker of CD34+ and CD34- hematopoietic stem/progenitor cell (HSPC) subsets. AC133+ HSPCs contain high progenitor cell activity and are capable of hematopoietic reconstitution. Furthermore, AC133 is used for prospective isolation of tumor-initiating cells in several hematological malignancies. Nucleolin is a multifunctional factor of growing and cancer cells, which is aberrantly active in certain hematological neoplasms, and serves as a candidate molecular target for cancer therapy. Nucleolin is involved in gene transcription and RNA metabolism and is prevalently expressed in HSPCs, as opposed to differentiated hematopoietic tissue. The present study dissects nucleolin-mediated activation of surface AC133 and its cognate gene CD133, via specific interaction of nucleolin with the tissue-dependent CD133 promoter P1, as a mechanism that crucially contributes to AC133 expression in CD34+ HSPCs. In mobilized peripheral blood (MPB)-derived HSPCs, nucleolin elevates colony-forming unit (CFU) frequencies and enriches granulocyte-macrophage CFUs. Furthermore, nucleolin amplifies long-term culture-initiating cells and also promotes long-term, cytokine-dependent maintenance of hematopoietic progenitor cells. Active β-catenin, active Akt and Bcl-2 levels in MPB-derived HSPCs are nucleolin-dependent, and effects of nucleolin on these cells partially rely on β-catenin activity. The study provides new insights into molecular network relevant to stem/progenitor cells in normal and malignant hematopoiesis. PMID:26183533

  13. Effects of fetal and neonatal exposure to nicotine on blood pressure and perivascular adipose tissue function in adult life.

    PubMed

    Gao, Yu-Jing; Holloway, Alison C; Su, Li-Ying; Takemori, Kumiko; Lu, Chao; Lee, Robert M K W

    2008-08-20

    In Wistar rats, maternal exposure to nicotine was shown to impair the inhibitory function of perivascular adipose tissue on vascular contractility in the aorta of the offspring. It is not known whether an impairment of perivascular adipose tissue function occurs in smaller arteries, and whether the control of blood pressure is affected. Here we studied the blood pressure effects and the alteration of perivascular adipose tissue function in mesenteric arteries of the offspring born to Wistar-Kyoto rat (WKY) dams exposed to nicotine. Nulliparous female WKY rats were given either nicotine bitartrate (1 mg/kg/day) or saline (vehicle) by subcutaneous injection 2 weeks prior to mating, during pregnancy and until weaning. Blood pressure of the offspring and functional studies with mesenteric arteries were conducted. Tissue samples (thoracic aorta, mesenteric arteries, and kidneys) were collected for morphological and immunohistochemical examinations. Blood pressure increased from 14 weeks of age onwards in the offspring born to nicotine-exposed dams. Nicotine-exposed offspring showed a significant increase in the number of brown adipocytes in aortic perivascular adipose tissue relative to control offspring. In mesenteric arteries from control offspring, contractile responses induced by phenylephrine, serotonin, and 9,11-dideoxy-11alpha, 9alpha-epoxymethanoprostaglandin F(2)alpha (U44619) were significantly attenuated in the presence of perivascular adipose tissue, an effect not observed in the nicotine-exposed tissues. Endothelium-dependent relaxation responses to carbachol, kidney weight, the total number of nephrons and glomerulus' size were comparable in nicotine and saline groups. We conclude that fetal and neonatal exposure to nicotine caused blood pressure elevation. Alterations in perivascular adipose tissue composition and modulatory function are some of the mechanisms associated with this blood pressure increase. PMID:18647709

  14. Population Pharmacokinetics of Busulfan in Pediatric and Young Adult Patients Undergoing Hematopoietic Cell Transplant: A Model-Based Dosing Algorithm for Personalized Therapy and Implementation into Routine Clinical Use

    PubMed Central

    Long-Boyle, Janel; Savic, Rada; Yan, Shirley; Bartelink, Imke; Musick, Lisa; French, Deborah; Law, Jason; Horn, Biljana; Cowan, Morton J.; Dvorak, Christopher C.

    2014-01-01

    Background Population pharmacokinetic (PK) studies of busulfan in children have shown that individualized model-based algorithms provide improved targeted busulfan therapy when compared to conventional dosing. The adoption of population PK models into routine clinical practice has been hampered by the tendency of pharmacologists to develop complex models too impractical for clinicians to use. The authors aimed to develop a population PK model for busulfan in children that can reliably achieve therapeutic exposure (concentration-at-steady-state, Css) and implement a simple, model-based tool for the initial dosing of busulfan in children undergoing HCT. Patients and Methods Model development was conducted using retrospective data available in 90 pediatric and young adult patients who had undergone HCT with busulfan conditioning. Busulfan drug levels and potential covariates influencing drug exposure were analyzed using the non-linear mixed effects modeling software, NONMEM. The final population PK model was implemented into a clinician-friendly, Microsoft Excel-based tool and used to recommend initial doses of busulfan in a group of 21 pediatric patients prospectively dosed based on the population PK model. Results Modeling of busulfan time-concentration data indicates busulfan CL displays non-linearity in children, decreasing up to approximately 20% between the concentrations of 250–2000 ng/mL. Important patient-specific covariates found to significantly impact busulfan CL were actual body weight and age. The percentage of individuals achieving a therapeutic Css was significantly higher in subjects receiving initial doses based on the population PK model (81%) versus historical controls dosed on conventional guidelines (52%) (p = 0.02). Conclusion When compared to the conventional dosing guidelines, the model-based algorithm demonstrates significant improvement for providing targeted busulfan therapy in children and young adults. PMID:25162216

  15. High-Dose [131I]Tositumomab (anti-CD20) Radioimmunotherapy and Autologous Hematopoietic Stem Cell Transplantation for Adults ≥ 60 Years Old with Relapsed or Refractory B-Cell Lymphoma

    SciTech Connect

    Gopal, Ajay K.; Rajendran, Joseph G.; Gooley, Ted; Pagel, John M.; Fisher, Darrell R.; Petersdorf, Stephen; Maloney, David G.; Eary, Janet F.; Appelbaum, Frederick R.; Press, Oliver W.

    2007-04-10

    Purpose: The majority of patients with relapsed or refractory B-cell, non-Hodgkin’s lymphoma (NHL) are over 60 years of age, yet they are often denied potentially curative high-dose therapy and autologous stem cell transplants (ASCT) due to the risk of excessive treatment-related morbidity and mortality. Myeloablative anti-CD20 radioimmunotherapy (RIT) can deliver curative radiation doses to tumor sites while limiting exposure to normal organs and may be particularly suited for older adults requiring high-dose therapy. Methods: Patients over age 60 with relapsed B-NHL received infusions of tositumomab anti-CD20 antibody labeled with 5-10mCi I-131 tracer for dosimetry purposes followed 10 days later by individualized therapeutic infusions of I-131-tositumomab (median 525 mCi, range 328-1154 mCi) to deliver 25-27Gy to the critical normal organ receiving the highest radiation dose. ASCT was performed approximately 2 weeks after therapy. Results: Twenty-four patients with a median age of 64 (range 60-76) who had received a median of four prior regimens (range 2-14) were treated. Thirteen (54%) had chemotherapy-resistant disease. The estimated 3-year overall and progression-free survivals were 59% and 51%, respectively with a median follow-up of 2.9 years (range 1-6 years). All patients experienced expected myeloablation with engraftment of platelets (≥20K/µL) and neutrophils (≥500/µL) occurring a median of 9 and 15 days, respectively following ASCT. There were no treatment-related deaths, and only two patients experienced grade 4 non-hematologic toxicity. Conclusions: Myeloablative RIT and ASCT is a safe and effective therapeutic option for older adults with relapsed B-NHL.

  16. Tissue inhibitor of metalloproteinases-2 is expressed in the interstitial matrix in adult mouse organs and during embryonic development.

    PubMed Central

    Blavier, L; DeClerck, Y A

    1997-01-01

    Tissue inhibitor of metalloproteinases-2 (TIMP-2) is a member of a family of inhibitors of matrix-degrading metalloproteinases. A better insight into the role of this inhibitor during development and in organ function was obtained by examining the temporospatial expression of TIMP-2 in mice. Northern blot analysis indicated high levels of TIMP-2 mRNA in the lung, skin, reproductive organs, and brain. Lower levels of expression were found in all other organs with the exception of the liver and gastrointestinal tissue, which were negative of these tissues with complete absence of TIMP-2 mRNA in the epithelium. In the testis, TIMP-2 was present in the Leydig cells, and in the brain, it was expressed in pia matter and in neuronal tissues. TIMP-2 expression in the placenta increased during late gestation and was particularly abundant in spongiotrophoblasts In mouse embryo (day 10.5-18.5), TIMP-2 mRNA was abundant in mesenchymal tissues that surrounded developing epithelia and maturing skeleton. The pattern of expression significantly differs from that observed with TIMP-1 and TIMP-3, therefore, suggesting specific roles for each inhibitor during tissue remodeling and development. Images PMID:9285822

  17. Hematopoietic expression of oncogenic BRAF promotes aberrant growth of monocyte-lineage cells resistant to PLX4720

    PubMed Central

    Kamata, Tamihiro; Dankort, David; Kang, Jing; Giblett, Susan; Pritchard, Catrin A.; McMahon, Martin; Leavitt, Andrew D.

    2013-01-01

    Mutational activation of BRAF leading to expression of the BRAFV600E oncoprotein was recently identified in a high percentage of specific hematopoietic neoplasms in monocyte/histiocyte and mature B-cell lineages. Although BRAFV600E is a driver oncoprotein and pharmacological target in solid tumors such as melanoma, lung and thyroid cancer, it remains unknown whether BRAFV600E is an appropriate therapeutic target in hematopoietic neoplasms. To address this critical question, we generated a mouse model expressing inducible BRAFV600E in the hematopoietic system, and evaluated the efficacy of pathway-targeted therapeutics against primary hematopoietic cells. In this model, BRAFV600E expression conferred cytokine-independent growth to monocyte/macrophage-lineage progenitors leading to aberrant in vivo and in vitro monocyte/macrophage expansion. Furthermore, transplantation of BRAFV600E-expressing bone marrow cells promoted an in vivo pathology most notable for monocytosis in hematopoietic tissues and visceral organs. In vitro analysis revealed that MEK inhibition, but not RAF inhibition, effectively suppressed cytokine-independent clonal growth of monocyte/macrophage-lineage progenitors. However, combined RAF and PI3K inhibition effectively inhibited cytokine-independent colony formation, suggesting autocrine PI3K pathway activation. Taken together, these results provide evidence that constitutively activated BRAFV600E drives aberrant proliferation of monocyte-lineage cells. This study supports the development of pathway-targeted therapeutics in the treatment of BRAFV600E-expressing hematopoietic neoplasms in the monocyte/histiocyte lineage. PMID:24152792

  18. The Hematopoietic Stem Cell Therapy for Exploration of Space

    NASA Technical Reports Server (NTRS)

    Roach, Allana Nicole; Brezo, Jelena

    2002-01-01

    Astronauts experience severe/invasive disorders caused by space environments. These include hematological/cardiac abnormalities, bone and muscle losses, immunodeficiency, neurological disorders and cancer. While the cause of these symptoms are not yet fully delineated, one possible explanation could be the inhibition of hematopoietic stem cell (HSC) growth and hematopoiesis in space. HSCs differentiate into all types of blood cells, and growing evidence indicates that the HSCs also have the ability to transdifferentiate to various tissues, including muscle, skin, liver, neuronal cells and possibly bone. Therefore, a hypothesis was advanced in this laboratory that the hematopoietic stem cell-based therapy, herein called the hematopoietic stem cell therapy (HSCT), could mitigate some of the disorders described above. Due to the magnitude of this project our laboratory has subdivided it into 3 sections: a) HSCT for space anemia; b) HSCT for muscle and bone losses; and c) HSCT for immunodeficiency. Toward developing the HSCT protocol for space anemia, the HSC transplantation procedure was established using a mouse model of beta thalassemia. In addition, the NASA Rotating Wall Vessel (RWV) culture system was used to grow HSCs in space condition. To investigate the HSCT for muscle loss and bone loss, donor HSCs were genetically marked either by transfecting the beta-galactosidase-containing plasmid, pCMV.SPORT-beta-gal or by preparing from b-galactosidase transgenic mice. The transdifferentiation of HSCs to muscle is traced by the reporter gene expression in the hindlimb suspended mice with some positive outcome, as studied by the X-gal staining procedure. The possible structural contribution of HSCs against muscle loss is being investigated histochemically.

  19. Thymus and immune reconstitution after allogeneic hematopoietic stem cell transplantation in humans: never say never again.

    PubMed

    Toubert, A; Glauzy, S; Douay, C; Clave, E

    2012-02-01

    Assessment of the host immune status is becoming a key issue in allogeneic hematopoietic stem cell transplantation (allo-HSCT). In the long-term follow-up of these patients, severe post-transplant infections, relapse or secondary malignancies may be directly related to persistent immune defects. In allo-HSCT, T-cell differentiation of donor progenitors within the recipient thymus is required to generate naive recent T-cell emigrants (RTE). These cells account for a durable T-cell reconstitution, generating a diverse T-cell receptor (TCR) repertoire and robust response to infections. It is now possible to quantify the production of RTE by measuring thymic T-cell receptor excision circles or 'TREC' which are small circular DNA produced during the recombination of the genomic segments encoding the TCR alpha chain. Here we discuss the role of thymic function in allo-HSCT. The pre-transplant recipient thymic function correlates with clinical outcome in terms of survival and occurrence of severe infections. Post-transplant, TREC analysis showed that the thymus is a sensitive target to the allogeneic acute graft-versus-host disease (GvHD) reaction but is also prone to recovery in young adult patients. In all, thymus is a key player for the quality of immune reconstitution and clinical outcome after allo-HSCT. Thymic tissue is plastic and it is a future challenge to halt or reverse thymic GVHD therapeutically by acting at the level of T-cell progenitors generation, thymic homing and/or epithelial thymic tissue preservation. PMID:22220718

  20. ALKYLTIN INHIBITION OF ATPASE ACTIVITIES IN TISSUE HOMOGENATES AND SUBCELLULAR FRACTIONS FROM ADULT AND NEONATAL RATS (JOURNAL VERSION)

    EPA Science Inventory

    Inhibition of ATPase activities by triethyltin (TET), diethyltin (DET), monoethyltin (MET) and trimethyltin (TMT) was studied in homogenates of brain and liver from adult rats. MET did not produce significant inhibition. ATPase activities in brain and liver homogenates from TET-t...

  1. Potential of Newborn and Adult Stem Cells for the Production of Vascular Constructs Using the Living Tissue Sheet Approach

    PubMed Central

    Bourget, Jean-Michel; Gauvin, Robert; Duchesneau, David; Remy, Murielle; Auger, François A.; Germain, Lucie

    2015-01-01

    Bypass surgeries using native vessels rely on the availability of autologous veins and arteries. An alternative to those vessels could be tissue-engineered vascular constructs made by self-organized tissue sheets. This paper intends to evaluate the potential use of mesenchymal stem cells (MSCs) isolated from two different sources: (1) bone marrow-derived MSCs and (2) umbilical cord blood-derived MSCs. When cultured in vitro, a proportion of those cells differentiated into smooth muscle cell- (SMC-) like cells and expressed contraction associated proteins. Moreover, these cells assembled into manipulable tissue sheets when cultured in presence of ascorbic acid. Tubular vessels were then produced by rolling those tissue sheets on a mandrel. The architecture, contractility, and mechanical resistance of reconstructed vessels were compared with tissue-engineered media and adventitia produced from SMCs and dermal fibroblasts, respectively. Histology revealed a collagenous extracellular matrix and the contractile responses measured for these vessels were stronger than dermal fibroblasts derived constructs although weaker than SMCs-derived constructs. The burst pressure of bone marrow-derived vessels was higher than SMCs-derived ones. These results reinforce the versatility of the self-organization approach since they demonstrate that it is possible to recapitulate a contractile media layer from MSCs without the need of exogenous scaffolding material. PMID:26504783

  2. Potential of Newborn and Adult Stem Cells for the Production of Vascular Constructs Using the Living Tissue Sheet Approach.

    PubMed

    Bourget, Jean-Michel; Gauvin, Robert; Duchesneau, David; Remy, Murielle; Auger, François A; Germain, Lucie

    2015-01-01

    Bypass surgeries using native vessels rely on the availability of autologous veins and arteries. An alternative to those vessels could be tissue-engineered vascular constructs made by self-organized tissue sheets. This paper intends to evaluate the potential use of mesenchymal stem cells (MSCs) isolated from two different sources: (1) bone marrow-derived MSCs and (2) umbilical cord blood-derived MSCs. When cultured in vitro, a proportion of those cells differentiated into smooth muscle cell- (SMC-) like cells and expressed contraction associated proteins. Moreover, these cells assembled into manipulable tissue sheets when cultured in presence of ascorbic acid. Tubular vessels were then produced by rolling those tissue sheets on a mandrel. The architecture, contractility, and mechanical resistance of reconstructed vessels were compared with tissue-engineered media and adventitia produced from SMCs and dermal fibroblasts, respectively. Histology revealed a collagenous extracellular matrix and the contractile responses measured for these vessels were stronger than dermal fibroblasts derived constructs although weaker than SMCs-derived constructs. The burst pressure of bone marrow-derived vessels was higher than SMCs-derived ones. These results reinforce the versatility of the self-organization approach since they demonstrate that it is possible to recapitulate a contractile media layer from MSCs without the need of exogenous scaffolding material. PMID:26504783

  3. Determination of malachite green residues in the eggs, fry, and adult muscle-tissue of rainbow-trout (Oncorhynchus-mykiss)

    USGS Publications Warehouse

    Allen, John L.; Gofus, J.E.; Meinertz, Jeffery R.

    1994-01-01

    Malachite green, an effective antifungal therapeutant used in fish culture, is a known teratogen. We developed a method to simultaneously detect both the chromatic and leuco forms of malachite green residues in the eggs, fry, and adult muscle tissue of rainbow trout (oncorhynchus mykiss). Homogenates of these tissues were fortified with [c-14] malachite green chloride and extracted with 1% (v/v) acetic acid in acetonitrile or in methanol. The extracts were partitioned with chloroform, dried, redissolved in mobile phase, and analyzed by liquid chromatography (lc) with postcolumn oxidation of leuco malachite green to the chromatic form. Lc fractions were collected every 30 s for quantitation by scintillation counting. Recoveries of total [c-14] malachite green chloride residue were 85 and 98% in eggs fortified with labeled malachite green at concentrations of 0.5 And 1.00 Mug/g, respectively; 68% in fry similarly fortified at a concentration of 0.65 Mug/g; and 66% in muscle homogenate similarly fortified at a level of 1.00 Mug/g. The method was tested under operational conditions by exposing adult rainbow trout to 1.00 Mg/l [c-14] malachite green chloride bath for 1 h. Muscle samples analyzed by sample oxidation and scintillation counting contained 1.3 And 0.5 Mug/g total malachite green chloride residues immediately after exposure and after a 5-day withdrawal period, respectively.

  4. Alpha/Beta Interferon Protects Adult Mice from Fatal Sindbis Virus Infection and Is an Important Determinant of Cell and Tissue Tropism

    PubMed Central

    Ryman, Kate D.; Klimstra, William B.; Nguyen, Khuong B.; Biron, Christine A.; Johnston, Robert E.

    2000-01-01

    Infection of adult 129 Sv/Ev mice with consensus Sindbis virus strain TR339 is subclinical due to an inherent restriction in early virus replication and viremic dissemination. By comparing the pathogenesis of TR339 in 129 Sv/Ev mice and alpha/beta interferon receptor null (IFN-α/βR−/−) mice, we have assessed the contribution of IFN-α/β in restricting virus replication and spread and in determining cell and tissue tropism. In adult 129 Sv/Ev mice, subcutaneous inoculation with 100 PFU of TR339 led to extremely low-level virus replication and viremia, with clearance under way by 96 h postinoculation (p.i.). In striking contrast, adult IFN-α/βR−/− mice inoculated subcutaneously with 100 PFU of TR339 succumbed to the infection within 84 h. By 24 h p.i. a high-titer serum viremia had seeded infectious virus systemically, coincident with the systemic induction of the proinflammatory cytokines interleukin-12 (IL-12) p40, IFN-γ, tumor necrosis factor alpha, and IL-6. Replicating virus was located in macrophage-dendritic cell (DC)-like cells at 24 h p.i. in the draining lymph node and in the splenic marginal zone. By 72 h p.i. virus replication was widespread in macrophage-DC-like cells in the spleen, liver, lung, thymus, and kidney and in fibroblast-connective tissue and periosteum, with sporadic neuroinvasion. IFN-α/β-mediated restriction of TR339 infection was mimicked in vitro in peritoneal exudate cells from 129 Sv/Ev versus IFN-α/βR−/− mice. Thus, IFN-α/β protects the normal adult host from viral infection by rapidly conferring an antiviral state on otherwise permissive cell types, both locally and systemically. Ablation of the IFN-α/β system alters the apparent cell and tissue tropism of the virus and renders macrophage-DC-lineage cells permissive to infection. PMID:10708454

  5. Flow-cytometric method for simultaneous analysis of mouse lung epithelial, endothelial, and hematopoietic lineage cells.

    PubMed

    Singer, Benjamin D; Mock, Jason R; D'Alessio, Franco R; Aggarwal, Neil R; Mandke, Pooja; Johnston, Laura; Damarla, Mahendra

    2016-05-01

    Flow cytometry is a powerful tool capable of simultaneously analyzing multiple parameters on a cell-by-cell basis. Lung tissue preparation for flow cytometry requires creation of a single-cell suspension, which often employs enzymatic and mechanical dissociation techniques. These practices may damage cells and cause cell death that is unrelated to the experimental conditions under study. We tested methods of lung tissue dissociation and sought to minimize cell death in the epithelial, endothelial, and hematopoietic lineage cellular compartments. A protocol that involved flushing the pulmonary circulation and inflating the lung with Dispase, a bacillus-derived neutral metalloprotease, at the time of tissue harvest followed by mincing, digestion in a DNase and collagenase solution, and filtration before staining with fluorescent reagents concurrently maximized viable yields of epithelial, endothelial, and hematopoietic lineage cells compared with a standard method that did not use enzymes at the time of tissue harvest. Flow cytometry identified each population-epithelial (CD326(+)CD31(-)CD45(-)), endothelial (CD326(-)CD31(+)CD45(-)), and hematopoietic lineage (CD326(-)CD31(-)CD45(+))-and measured cellular viability by 7-aminoactinomycin D (7-AAD) staining. The Dispase method permitted discrimination of epithelial vs. endothelial cell death in a systemic lipopolysaccharide model of increased pulmonary vascular permeability. We conclude that application of a dissociative enzyme solution directly to the cellular compartments of interest at the time of tissue harvest maximized viable cellular yields of those compartments. Investigators could employ this dissociation method to simultaneously harvest epithelial, endothelial, and hematopoietic lineage and other lineage-negative cells for flow-cytometric analysis. PMID:26944088

  6. A new cell culture protocol for enrichment and genetic modification of adult canine Schwann cells suitable for peripheral nerve tissue engineering.

    PubMed

    Haastert, K; Seef, P; Stein, V M; Tipold, A; Grothe, C

    2009-08-01

    Easily applicable techniques are presented to obtain high numbers of enriched canine Schwann cells (cSC) in a short time-window. The potential of adult SC for tissue engineering of peripheral nerves and ex vivo gene therapy is obvious from physiological events taking place after peripheral nerve transection [Haastert, K., Grothe, C., 2007. Gene therapy in peripheral nerve reconstruction approaches. Curr. Gene Ther. 7, 221-228]. The presented techniques were modified from a protocol for cultivation and expansion of adult cSC by others [Pauls, J., Nolte, C., Forterre, F., Brunnberg, L., 2004. Cultivation and expansion of canine Schwann cells using reexplantation. Berl. Munch. Tierarztl. Wochenschr. 117, 341-352] and own experiences in rodent and human SC cultivation and transfection [Haastert, K., Mauritz, C., Chaturvedi, S., Grothe, C., 2007. Human and rat adult Schwann cell cultures: fast and efficient enrichment and highly effective non-viral transfection protocol. Nat. Protoc. 2, 99-104]. A purity of about 80% cSC achieved by immunopanning techniques and selective culture conditions is 2.5 fold higher as previously reported (Pauls et al., 2004). Additionally, highly enriched cSC populations are available in 3-4 weeks, only half the time period reported previously (Pauls et al., 2004). Furthermore, electroporation and genetic modification of cSC is reported for the first time. PMID:19232653

  7. Use of Anthropometry for the Prediction of Regional Body Tissue Distribution in Adults: Benefits and Limitations in Clinical Practice

    PubMed Central

    Scafoglieri, Aldo; Clarys, Jan Pieter; Cattrysse, Erik; Bautmans, Ivan

    2014-01-01

    Regional body composition changes with aging. Some of the changes in composition are considered major risk factors for developing obesity related chronic diseases which in turn may lead to increased mortality in adults. The role of anthropometry is well recognized in the screening, diagnosis and follow-up of adults for risk classification, regardless of age. Regional body composition is influenced by a number of intrinsic and extrinsic factors. Therapeutic measures recommended to lower cardiovascular disease risk include lifestyle changes. The aim of this review is to systematically summarize studies that assessed the relationships between anthropometry and regional body composition. The potential benefits and limitations of anthropometry for use in clinical practice are presented and suggestions for future research given. PMID:25489489

  8. Histological and immunohistochemical study of estrogen and progesterone receptors in normal human breast tissue in adult age groups vulnerable to malignancy.

    PubMed

    Goyal, R; Gupta, T; Gupta, R; Aggarwal, A; Sahni, D; Singh, G

    2016-09-01

    Analysis of receptor status has become standard procedure for assessing breast cancer patients. Estrogen causes epithelial proliferation in breast tissue via the estrogen receptor (ER). The progesterone receptor (PR) is also regulated by the estrogen gene. Analyzing ER and PR together gives information regarding the likely response of carcinoma patients to hormonal therapy. The aim of the present study was to record the expression patterns of ER and PR in normal mammary tissue in different age groups to provide reference data to facilitate histological diagnosis. Breast tissues from the upper outer quadrant of each side of 27 adult female cadavers were examined after H & E staining. ER and PR were identified and examined by immunohistochemistry. The percentage area occupied by parenchyma relative to stromal tissue was calculated in different age groups and was about 4:6, 3.5:6.5, 3:7, 2:8, and 1.5:8.5 in the 3rd, 4th and 5th, 6th, 7th, 8th and 9th, and 10th decades of life, respectively. Both ER and PR were present in all age groups and the numbers of both receptors were maximal during the 4th decade. The distribution and staining patterns for both ER and PR were recorded in different age groups. The contiguous pattern of ER, which is considered pathognomonic of breast carcinoma, was not seen except in one case in the 6th decade. Moderately stained ER and PR receptor sites predominated throughout. The study of normal breast tissue of similar age might provide comparisons that will help histopathologists to make clinical diagnoses from breast biopsies. Clin. Anat. 29:729-737, 2016. © 2016 Wiley Periodicals, Inc. PMID:27038435

  9. Epidemiological characteristics of infectious hematopoietic necrosis virus (IHNV): a review.

    PubMed

    Dixon, Peter; Paley, Richard; Alegria-Moran, Raul; Oidtmann, Birgit

    2016-01-01

    Infectious hematopoietic necrosis virus (IHNV, Rhabdoviridae), is the causative agent of infectious hematopoietic necrosis (IHN), a disease notifiable to the World Organisation for Animal Health, and various countries and trading areas (including the European Union). IHNV is an economically important pathogen causing clinical disease and mortalities in a wide variety of salmonid species, including the main salmonid species produced in aquaculture, Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). We reviewed the scientific literature on IHNV on a range of topics, including geographic distribution; host range; conditions required for infection and clinical disease; minimum infectious dose; subclinical infection; shedding of virus by infected fish; transmission via eggs; diagnostic tests; pathogen load and survival of IHNV in host tissues. This information is required for a range of purposes including import risk assessments; parameterisation of disease models; for surveillance planning; and evaluation of the chances of eradication of the pathogen to name just a few. The review focuses on issues that are of relevance for the European context, but many of the data summarised have relevance to IHN globally. Examples for application of the information is presented and data gaps highlighted. PMID:27287024

  10. Human Adult Retinal Pigment Epithelial Stem Cell–Derived RPE Monolayers Exhibit Key Physiological Characteristics of Native Tissue

    PubMed Central

    Blenkinsop, Timothy A.; Saini, Janmeet S.; Maminishkis, Arvydas; Bharti, Kapil; Wan, Qin; Banzon, Tina; Lotfi, Mostafa; Davis, Janine; Singh, Deepti; Rizzolo, Lawrence J.; Miller, Sheldon; Temple, Sally; Stern, Jeffrey H.

    2015-01-01

    Purpose We tested what native features have been preserved with a new culture protocol for adult human RPE. Methods We cultured RPE from adult human eyes. Standard protocols for immunohistochemistry, electron microscopy, electrophysiology, fluid transport, and ELISA were used. Results Confluent monolayers of adult human RPE cultures exhibit characteristics of native RPE. Immunohistochemistry demonstrated polarized expression of RPE markers. Electron microscopy illustrated characteristics of native RPE. The mean transepithelial potential (TEP) was 1.19 ± 0.24 mV (mean ± SEM, n = 31), apical positive, and the mean transepithelial resistance (RT) was 178.7 ± 9.9 Ω·cm2 (mean ± SEM, n = 31). Application of 100 μM adenosine triphosphate (ATP) apically increased net fluid absorption (Jv) by 6.11 ± 0.53 μL·cm2·h−1 (mean ± SEM, n = 6) and TEP by 0.33 ± 0.048 mV (mean ± SEM, n = 25). Gene expression of cultured RPE was comparable to native adult RPE (n = 5); however, native RPE RNA was harvested between 24 and 40 hours after death and, therefore, may not accurately reflect healthy native RPE. Vascular endothelial growth factor secreted preferentially basally 2582 ± 146 pg/mL/d, compared to an apical secretion of 1548 ± 162 pg/mL/d (n = 14, P < 0.01), while PEDF preferentially secreted apically 1487 ± 280 ng/mL/d compared to a basolateral secretion of 864 ± 132 ng/mL/d (n = 14, P < 0.01). Conclusions The new culture model preserves native RPE morphology, electrophysiology, and gene and protein expression patterns, and may be a useful model to study RPE physiology, disease, and transplantation. PMID:26540654

  11. A more alkaline diet may enhance the favorable impact of dietary protein on lean tissue mass in older adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maintaining muscle mass in aging is important to prevent falls and fractures. Dietary protein is required to preserve muscle mass, however the acid load from diets rich in acidogenic protein foods and cereal grains relative to alkalinogenic fruits and vegetables may contribute to loss of lean tissue...

  12. Adult hair follicle stem cells do not retain the older DNA strands in vivo during normal tissue homeostasis.

    PubMed

    Waghmare, Sanjeev K; Tumbar, Tudorita

    2013-05-01

    Tissue stem cells have been proposed to segregate the chromosomes asymmetrically (in a non-random manner), thereby retaining preferentially the older "immortal" DNA strands bearing the stemness characteristics into one daughter cell, whereas the newly synthesized strands are segregated to the other daughter cell that will commit to differentiation. Moreover, this non-random segregation would protect the stem cell genome from accumulating multiple mutations during repeated DNA replication. This long-standing hypothesis remains an active subject of study due to conflicting results for some systems and lack of consistency among different tissue stem cell populations. In this review, we will focus on work done in the hair follicle, which is one of the best-understood vertebrate tissue stem cell system to date. In cell culture analysis of paired cultured keratinocytes derived from hair follicle, stem cells suggested a non-random segregation of chromosome with respect to the older DNA strand. In vivo, the hair follicle stem cells appear to self-renew and differentiate at different phases of their homeostatic cycle. The fate decisions occur in quiescence when some stem cells migrate out of their niche and commit to differentiation without self-renewal. The stem cells left behind in the niche self-renew symmetrically and randomly segregate the chromosomes at each division, making more stem cells. This model seems to apply to at least a few other vertebrate tissue stem cells in vivo. PMID:23681654

  13. Comparison of specific absorption rate induced in brain tissues of a child and an adult using mobile phone

    NASA Astrophysics Data System (ADS)

    Lu, Mai; Ueno, Shoogo

    2012-04-01

    The steady increase of mobile phone usage, especially mobile phones by children, has led to a rising concern about the possible adverse health effects of radio frequency electromagnetic field exposure. The objective of this work is to study whether there is a larger radio frequency energy absorption in the brain of a child compared to that of an adult. For this reason, three high-resolution models, two child head models (6 - and 11-year old) and one adult head model (34-year old) have been used in the study. A finite-difference time-domain method was employed to calculate the specific absorption rate (SAR) in the models from exposure to a generic handset at 1750 MHz. The results show that the SAR distributions in the human brain are age-dependent, and there is a deeper penetration of the absorbed SAR in the child's brain. The induced SAR can be significantly higher in subregions of the child's brain. In all of the examined cases, the SAR values in the brains of a child and an adult are well below the IEEE safety standard.

  14. Carbon Ion Radiation Therapy Improves the Prognosis of Unresectable Adult Bone and Soft-Tissue Sarcoma of the Head and Neck

    SciTech Connect

    Jingu, Keiichi; Tsujii, Hirohiko; Mizoe, Jun-Etsu; Hasegawa, Azusa; Bessho, Hiroki; Takagi, Ryo; Morikawa, Takamichi; Tonogi, Morio; Tsuji, Hiroshi; Kamada, Tadashi; Yamada, Shogo

    2012-04-01

    Purpose: To evaluate the safety and efficacy of carbon ion radiotherapy (C-ion RT) with 70.4 GyE for unresectable bone and soft-tissue sarcoma of the adult head and neck. Methods and Materials: Twenty-seven patients (mean age, 46.2 years) were enrolled in this prospective study on C-ion RT with 70.4 GyE/16 fractions (fr) between April 2001 and February 2008. The primary end points were acute and late reactions of normal tissues, local control rate, and overall survival rate. The secondary end point was efficacy of the treatment in comparison to historical results with 57.6 or 64.0 GyE/16 fr. Results: The 3-year local control rate and overall survival rate for all patients were 91.8% (95% confidence interval [CI] = 81.0-100%) and 74.1% (95% CI = 57.5-90.6%), respectively. Acute reaction of Grade 3 or more was observed in only 1 patient. With regard to late reactions, visual loss was observed in 1 patient and a Grade 3 reaction of the maxillary bone was observed in 4 patients. A comparison with historical results revealed that the local control rate with 70.4 GyE was significantly higher than that with 57.6 or 64.0 GyE (3-year, 91.8% vs. 23.6%, p < 0.0001). Furthermore, the overall survival with 70.4 GyE tended to be higher than that with 57.6 or 64.0 GyE (3-year, 74.1% vs. 42.9%, p = 0.09). Conclusion: C-ion RT with 70.4 GyE/16 fr for bone and soft-tissue sarcoma of the adult head and neck appears to be effective with acceptable toxicities in comparison to conventional RT and C-ion RT with lower doses.

  15. Lack of increases in methylation at three CpG-rich genomic loci in non-mitotic adult tissues during aging

    PubMed Central

    Chu, Michelle W; Siegmund, Kimberly D; Eckstam, Carrie L; Kim, Jung Yeon; Yang, Allen S; Kanel, Gary C; Tavaré, Simon; Shibata, Darryl

    2007-01-01

    Background Cell division occurs during normal human development and aging. Despite the likely importance of cell division to human pathology, it has been difficult to infer somatic cell mitotic ages (total numbers of divisions since the zygote) because direct counting of lifetime numbers of divisions is currently impractical. Here we attempt to infer relative mitotic ages with a molecular clock hypothesis. Somatic genomes may record their mitotic ages because greater numbers of replication errors should accumulate after greater numbers of divisions. Mitotic ages will vary between cell types if they divide at different times and rates. Methods Age-related increases in DNA methylation at specific CpG sites (termed "epigenetic molecular clocks") have been previously observed in mitotic human epithelium like the intestines and endometrium. These CpG rich sequences or "tags" start unmethylated and potentially changes in methylation during development and aging represent replication errors. To help distinguish between mitotic versus time-associated changes, DNA methylation tag patterns at 8–20 CpGs within three different genes, two on autosomes and one on the X-chromosome were measured by bisulfite sequencing from heart, brain, kidney and liver of autopsies from 21 individuals of different ages. Results Levels of DNA methylation were significantly greater in adult compared to fetal or newborn tissues for two of the three examined tags. Consistent with the relative absence of cell division in these adult tissues, there were no significant increases in tag methylation after infancy. Conclusion Many somatic methylation changes at certain CpG rich regions or tags appear to represent replication errors because this methylation increases with chronological age in mitotic epithelium but not in non-mitotic organs. Tag methylation accumulates differently in different tissues, consistent with their expected genealogies and mitotic ages. Although further studies are necessary

  16. Endothelium and NOTCH specify and amplify aorta-gonad-mesonephros-derived hematopoietic stem cells.

    PubMed

    Hadland, Brandon K; Varnum-Finney, Barbara; Poulos, Michael G; Moon, Randall T; Butler, Jason M; Rafii, Shahin; Bernstein, Irwin D

    2015-05-01

    Hematopoietic stem cells (HSCs) first emerge during embryonic development within vessels such as the dorsal aorta of the aorta-gonad-mesonephros (AGM) region, suggesting that signals from the vascular microenvironment are critical for HSC development. Here, we demonstrated that AGM-derived endothelial cells (ECs) engineered to constitutively express AKT (AGM AKT-ECs) can provide an in vitro niche that recapitulates embryonic HSC specification and amplification. Specifically, nonengrafting embryonic precursors, including the VE-cadherin-expressing population that lacks hematopoietic surface markers, cocultured with AGM AKT-ECs specified into long-term, adult-engrafting HSCs, establishing that a vascular niche is sufficient to induce the endothelial-to-HSC transition in vitro. Subsequent to hematopoietic induction, coculture with AGM AKT-ECs also substantially increased the numbers of HSCs derived from VE-cadherin⁺CD45⁺ AGM hematopoietic cells, consistent with a role in supporting further HSC maturation and self-renewal. We also identified conditions that included NOTCH activation with an immobilized NOTCH ligand that were sufficient to amplify AGM-derived HSCs following their specification in the absence of AGM AKT-ECs. Together, these studies begin to define the critical niche components and resident signals required for HSC induction and self-renewal ex vivo, and thus provide insight for development of defined in vitro systems targeted toward HSC generation for therapeutic applications. PMID:25866967

  17. Lymphatic and hematopoietic tissue cancer in a chemical manufacturing environment

    SciTech Connect

    Ott, M.G.; Teta, M.J.; Greenberg, H.L. )

    1989-01-01

    Nested case-control studies of non-Hodgkin's lymphoma (52 cases), multiple myeloma (20 cases), nonlymphocytic leukemia (39 cases), and lymphocytic leukemia (18 cases) were conducted within a cohort of employed men from two chemical manufacturing facilities and a research and development center. Exposure odds ratios were examined in relation to 111 work areas, 21 specific chemicals, and 52 chemical activity groups. Associations were observed for a maintenance and construction subgroup (non-Hodgkin's lymphoma) and a chlorohydrin production unit (nonlymphocytic leukemia). The odds ratio for the association of foremen and others with non-Hodgkin's lymphoma was 3.2 (CI95 = 1.47-7.2) based on 11 cases. A duration-response trend was observed for the chlorohydrin unit with three of four cases assigned 5+ years to that unit. An association between non-Hodgkin's lymphoma and assignment to strong acid alcohol production units (OR = 8.3; CI95 = 2.3-30.7) was not supported by a duration-response trend. Two highly correlated chemical groups, antioxidants (five cases) and nitriles (four cases), were over-represented among multiple myeloma cases. A duration effect was observed. However, examination of work histories did not reveal common jobs or departments among these cases.

  18. Engineering humanized mice for improved hematopoietic reconstitution

    PubMed Central

    Drake, Adam C; Chen, Qingfeng; Chen, Jianzhu

    2012-01-01

    Humanized mice are immunodeficient animals engrafted with human hematopoietic stem cells that give rise to various lineages of human blood cells throughout the life of the mouse. This article reviews recent advances in the generation of humanized mice, focusing on practical considerations. We discuss features of different immunodeficient recipient mouse strains, sources of human hematopoietic stem cells, advances in expansion and genetic modification of hematopoietic stem cells, and techniques to modulate the cytokine environment of recipient mice, in order to enhance reconstitution of specific human blood lineage cells. We highlight the opportunities created by new technologies and discuss practical considerations on how to make best use of the widening array of basic models for specific research applications. PMID:22425741

  19. Long noncoding RNAs in hematopoietic malignancies.

    PubMed

    Rodríguez-Malavé, Norma I; Rao, Dinesh S

    2016-05-01

    Recent years have witnessed the discovery of several classes of noncoding RNAs (ncRNAs), which are indispensable for the regulation of cellular processes. Many of these RNAs are regulatory in nature with functions in gene expression regulation such as piwi-interacting RNAs, small interfering RNAs and micro RNAs. Long noncoding RNAs (lncRNAs) comprise the most recently characterized class. LncRNAs are involved in transcriptional regulation, chromatin remodeling, imprinting, splicing, and translation, among other critical functions in the cell. Recent studies have elucidated the importance of lncRNAs in hematopoietic development. Dysregulation of lncRNA expression is a feature of various diseases and cancers, and is also seen in hematopoietic malignancies. This article focuses on lncRNAs that have been implicated in the pathogenesis of hematopoietic malignancies. PMID:26612601

  20. Yolk Sac Macrophages, Fetal Liver, and Adult Monocytes Can Colonize an Empty Niche and Develop into Functional Tissue-Resident Macrophages.

    PubMed

    van de Laar, Lianne; Saelens, Wouter; De Prijck, Sofie; Martens, Liesbet; Scott, Charlotte L; Van Isterdael, Gert; Hoffmann, Eik; Beyaert, Rudi; Saeys, Yvan; Lambrecht, Bart N; Guilliams, Martin

    2016-04-19

    Tissue-resident macrophages can derive from yolk sac macrophages (YS-Macs), fetal liver monocytes (FL-MOs), or adult bone-marrow monocytes (BM-MOs). The relative capacity of these precursors to colonize a niche, self-maintain, and perform tissue-specific functions is unknown. We simultaneously transferred traceable YS-Macs, FL-MOs, and BM-MOs into the empty alveolar macrophage (AM) niche of neonatal Csf2rb(-/-) mice. All subsets produced AMs, but in competition preferential outgrowth of FL-MOs was observed, correlating with their superior granulocyte macrophage-colony stimulating factor (GM-CSF) reactivity and proliferation capacity. When transferred separately, however, all precursors efficiently colonized the alveolar niche and generated AMs that were transcriptionally almost identical, self-maintained, and durably prevented alveolar proteinosis. Mature liver, peritoneal, or colon macrophages could not efficiently colonize the empty AM niche, whereas mature AMs could. Thus, precursor origin does not affect the development of functional self-maintaining tissue-resident macrophages and the plasticity of the mononuclear phagocyte system is largest at the precursor stage. PMID:26992565

  1. Near-infrared spectroscopy of the adult head: effect of scattering and absorbing obstructions in the cerebrospinal fluid layer on light distribution in the tissue.

    PubMed

    Dehghani, H; Delpy, D T

    2000-09-01

    Previous modeling of near-infrared (NIR) light distribution in models of the adult head incorporating a clear nonscattering cerebrospinal fluid (CSF) layer have shown the latter to have a profound effect on the resulting photon measurement density function (PMDF). In particular, the presence of the CSF limits the PMDF largely to the outer cortical gray matter with little signal contribution from the deeper white matter. In practice, the CSF is not a simple unobstructed clear layer but contains light-scattering membranes and is crossed by various blood vessels. Using a radiosity-diffusion finite-element model, we investigated the effect on the PMDF of introducing intrusions within the clear layer. The results show that the presence of such obstructions does not significantly increase the light penetration into the brain tissue, except immediately adjacent to the obstruction and that its presence also increases the light sampling of the adjacent skull tissues, which would lead to additional contamination of the NIR spectroscopy signal by the surface tissue layers. PMID:18350064

  2. Pericytes: Properties, Functions and Applications in Tissue Engineering.

    PubMed

    Gökçinar-Yagci, Beyza; Uçkan-Çetinkaya, Duygu; Çelebi-Saltik, Betül

    2015-08-01

    Mesenchymal stem cells (MSCs) are one of the most studied adult stem cells and in recent years. They have become attractive agents/cell source for cellular therapy and regenerative medicine applications. During investigations about their origin, researchers hypothesized that perivascular regions are the common anatomical regions where MSCs come from and perivascular cells like pericytes (PCs) (Rouget cells, mural cells) are in vivo counterparts of MSCs. Beside capillaries and microvessels as their most common locations, PCs are also found in large vessels (arteries and veins). They can be isolated from several tissues and organs particularly from retina and brain. There are different approaches about their isolation, characterization and culture but there has been no common protocol yet because of the lack of defined PC-specific marker. They make special contact with endothelial cells in the basement membrane and have very important functions in several tissues and organs. They participate in vascular development, stabilization, maturation, and remodeling, blood pressure control, endothelial cell proliferation and differentiation, contractility of vascular smooth muscle cells, wound healing, vasculogenesis and angiogenesis, long-term maintenance of hematopoietic stem cells in bone marrow niche. Their multipotential differentiation capacity and participation in many events in the body make PCs preferred cells in tissue engineering applications including 3D blood-brain barrier models, skeletal muscle constructs, bone tissue engineering and tissue-engineered vascular grafts. PMID:25865146

  3. The Effect of a Hyperdynamic Circulation on Tissue Doppler Values: A Simulation in Young Adults during Exercise

    PubMed Central

    Royse, Colin F.; Ruizhi, Ni; Huynh, Andrew L.; Royse, Alistair G.

    2011-01-01

    Left ventricular tissue Doppler imaging (TDI) velocities are used to monitor systolic and diastolic function, but it is not known how these may change in a hyperdynamic circulation, as often occurs in anesthesia and critical care medicine. Twenty-six healthy young volunteers were recruited and left ventricular systolic and diastolic tissue Doppler velocities measured at rest, light exercise, strenuous exercise, and recovery (10 minutes after exercise). At rest, TDI velocities significantly decreased from base to apex (P < .001). Within basal, mid, and apical sections, systolic and diastolic peak velocities differed between segments (P < .05), except for systolic middle (P = .094) and late diastolic apical velocities (P = .257). Basal septal velocities differed from basal lateral, for systolic (P = .041) but not diastolic peak values. Inferobasal radial values differed from basal lateral values for both systolic and diastolic velocities (P < .05). Both systolic and diastolic TDI velocities increased significantly in all segments in a proportionate manner with a hyperdynamic circulation. PMID:21403890

  4. In utero hematopoietic cell transplantation for hemoglobinopathies

    PubMed Central

    Derderian, S. Christopher; Jeanty, Cerine; Walters, Mark C.; Vichinsky, Elliott; MacKenzie, Tippi C.

    2014-01-01

    In utero hematopoietic cell transplantation (IUHCTx) is a promising strategy to circumvent the challenges of postnatal hematopoietic stem cell (HSC) transplantation. The goal of IUHCTx is to introduce donor cells into a naïve host prior to immune maturation, thereby inducing donor–specific tolerance. Thus, this technique has the potential of avoiding host myeloablative conditioning with cytotoxic agents. Over the past two decades, several attempts at IUHCTx have been made to cure numerous underlying congenital anomalies with limited success. In this review, we will briefly review the history of IUHCTx and give a perspective on alpha thalassemia major, one target disease for its clinical application. PMID:25628564

  5. National Hematopoietic Stem Cells Transplant Registry in Poland: Nationwide Internet Reporting System and Results.

    PubMed

    Łęczycka, A; Dudkiewicz, M; Czerwiński, J; Malanowski, P; Żalikowska-Hołoweńko, J; Danielewicz, R

    2016-06-01

    History of hematopoietic stem cell transplantations in Poland begins in early 1980s; the 1st bone marrow allotransplantation was performed in 1983 in the Central Clinical Hospital of the Military Medical Academy in Warsaw. Following years brought the 1st autologous stem cell transplantations. Ten years later, unrelated bone marrow transplantation was performed for the 1st time by the team of the Hematology and Blood and Marrow Transplantation Unit in Katowice. Since then, hematopoietic stem cell transplantation developed to be standard procedure and one of the most important therapies applied in leukemia treatment. The number of allotransplantations in Poland has grown significantly in the past 2 decades, which generated new needs and problems. In 2005, based on a new Transplant Law, a National Transplants Registry was created. Its main role is to collect data (registration of procedures and follow-up data) related to every transplantation case for stem cells and tissues as well as for organs. We present statistics concerning stem cell transplantations performed in Poland, as collected in the National Transplants Registry in the years 2006-2014. There are 18 centers transplanting hematopoietic stem cells in Poland. The total number of hematopoietic stem cell transplantations performed in 2006-2014 was 3,537, with allotransplantations from relatives accounted for 1,491 and from unrelated donors for 2,046. The main indication for allotransplantation in past years was acute leukemia. PMID:27496493

  6. Congenic Mice Confirm That Collagen X Is Required for Proper Hematopoietic Development

    PubMed Central

    Sweeney, Elizabeth; Roberts, Douglas; Corbo, Tina; Jacenko, Olena

    2010-01-01

    The link between endochondral skeletal development and hematopoiesis in the marrow was established in the collagen X transgenic (Tg) and null (KO) mice. Disrupted function of collagen X, a major hypertrophic cartilage matrix protein, resulted in skeletal and hematopoietic defects in endochondrally derived tissues. Manifestation of the disease phenotype was variable, ranging from perinatal lethality in a subset of mice, to altered lymphopoiesis and impaired immunity in the surviving mice. To exclude contribution of strain specific modifiers to this variable manifestation of the skeleto-hematopoietic phenotype, C57Bl/6 and DBA/2J collagen X congenic lines were established. Comparable disease manifestations confirmed that the skeleto-hematopoietic alterations are an inherent outcome of disrupted collagen X function. Further, colony forming cell assays, complete blood count analysis, serum antibody ELISA, and organ outgrowth studies established altered lymphopoiesis in all collagen X Tg and KO mice and implicated opportunistic infection as a contributor to the severe disease phenotype. These data support a model where endochondral ossification-specific collagen X contributes to the establishment of a hematopoietic niche at the chondro-osseous junction. PMID:20209091

  7. A NEW ROLE FOR THE HUMAN PLACENTA AS A HEMATOPOIETIC SITE THROUGHOUT GESTATION

    PubMed Central

    Bárcena, Alicia; Muench, Marcus O.; Kapidzic, Mirhan; Fisher, Susan J.

    2009-01-01

    We investigated whether the human placenta plays a role in embryonic and fetal hematopoietic development. Two cell populations—CD34++CD45low and CD34+CD45low—were found in chorionic villi. CD34++CD45low cells display many markers that are characteristic of multipotent primitive hematopoietic progenitors and hematopoietic stem cells (HSCs). Clonogenic in vitro assays showed that CD34++CD45low cells contained colony-forming units-culture (CFU-C) with myeloid and erythroid potential and differentiated into CD56+ NK cells and CD19+ B cells in culture. CD34+CD45low cells were mostly enriched in erythroid- and myeloid-committed progenitors. The number of CD34++CD45low cells increased throughout gestation in parallel with placental mass. However, their density (cells per gram of tissue) reached its peak at 5–8 weeks, decreasing more than sevenfold from the ninth week onward. In addition to multipotent progenitors, the placenta contained intermediate progenitors, indicative of active hematopoiesis. Together, these data suggest that the human placenta is potentially an important hematopoietic organ, opening the possibility of banking placental HSCs along with cord blood for transplantation. PMID:19208786

  8. BACTERIAL FOODBORNE INFECTIONS AFTER HEMATOPOIETIC CELL TRANSPLANTATION

    PubMed Central

    Boyle, Nicole; Podczervinski, Sara; Jordan, Kim; Stednick, Zach; Butler-Wu, Susan; McMillen, Kerry; Pergam, Steven A.

    2014-01-01

    Background Diarrhea, abdominal pain and fever are common among patients undergoing hematopoietic cell transplant (HCT), but such symptoms are also typical with foodborne infections. The burden of disease caused by foodborne infections in patients undergoing HCT is unknown. We sought to describe bacterial foodborne infection incidence post-transplant within a single-center population of HCT recipients. Methods All HCT recipients transplanted from 2001 through 2011 at the Fred Hutchinson Cancer Research Center in Seattle, WA were followed for one year post-transplant. Data were collected retrospectively using center databases, which include information from transplant, on-site examinations, outside records, and collected laboratory data. Patients were considered to have a bacterial foodborne infection if Campylobacter jejuni/coli, Listeria monocytogenes, E. coli 0157:H7, Salmonella species, Shigella species, Vibrio species or Yersinia species were isolated in culture within one-year post-transplant. Non-foodborne infections with these agents and patients with preexisting bacterial foodborne infection (within 30 days of transplant) were excluded from analyses. Results A total of 12/4069 (0.3%) patients developed a bacterial foodborne infection within one year post-transplant. Patients with infections had a median age at transplant of 50.5 years (interquartile range [IQR]: 35–57), and the majority were adults ≥18 years of age (9/12 [75%]), male gender (8/12 [67%]) and post-allogeneic transplant (8/12 [67%]). Infectious episodes occurred at an incidence rate of 1.0 per 100,000 patient-days (95% CI: 0.5–1.7) and at a median of 50.5 days after transplant (IQR: 26–58.5). The most frequent pathogen detected was Campylobacter jejuni/coli (5/12 [42%]) followed by Yersinia (3/12 [25%]), while Salmonella (2/12 [17%]) and Listeria (2/12 [17%]) showed equal frequencies; no cases of Shigella, Vibrio, or E. coli 0157:H7 were detected. Most patients were diagnosed via stool

  9. Assessment of Antero-Posterior Skeletal and Soft Tissue Relationships of Adult Indian Subjects in Natural Head Position and Centric Relation

    PubMed Central

    Latif, Vishnu Ben; Keshavaraj; Rai, Rohan; Hegde, Gautham; Shajahan, Shabna

    2015-01-01

    Background: The aim of this study was to verify the intra-individual reproducibility of natural head position (NHP) in centric relation (CR) position, to prove the inter-individual differences in the Frankfort horizontal plane and sella-nasion line compared with the true horizontal line, and to establish linear norms from A-point, B-point, Pog as well as soft tissue A-point, soft tissue B-point, and soft tissue Pog to nasion true vertical line (NTVL) in adult Indian subjects. Methods: Lateral cephalograms (T1) of Angle’s Class I subjects were taken in NHP and with bite in CR. A second lateral cephalogram (T2) of these subjects with ANB angle in the range 1-4° were taken after 1 week using the same wax bite and both the radiographs were analyzed based on six angular parameters using cephalometric software (Do-it, Dental studio NX version 4.1) to assess the reproducibility of NHP. Linear values of six landmarks were taken in relation to NTVL, and the mean values were calculated. A total of 116 subjects were included in this study. Results: When the cephalometric values of T1 and T2 were analyzed, it was found that, the parameters showed a P < 0.001, indicating the reproducibility of NHP in CR. Mean values for point A, point B, Pog and their soft tissue counterparts were also obtained. Conclusion: The study proved that NHP is a reproducible and accurate when recorded with the mandible in CR. Linear norms for skeletal Class I subjects in relation to NTVL were established. PMID:26124598

  10. [Physiological regulation of hematopoietic stem cell and its molecular basis].

    PubMed

    Dong, Fang; Hao, Sha; Cheng, Hui; Cheng, Tao

    2016-08-25

    As a classical type of tissue stem cells, hematopoietic stem cell (HSC) is the earliest discovered and has been widely applied in the clinic as a great successful example for stem cell therapy. Thus, HSC research represents a leading field in stem cell biology and regenerative medicine. Self-renewal, differentiation, quiescence, apoptosis and trafficking constitute major characteristics of functional HSCs. These characteristics also signify different dynamic states of HSC through physiological interactions with the microenvironment cues in vivo. This review covers our current knowledge on the physiological regulation of HSC and its underlying molecular mechanisms. It is our hope that this review will not only help our colleagues to understand how HSC is physiologically regulated but also serve as a good reference for the studies on stem cell and regenerative medicine in general. PMID:27546503

  11. Immunotherapy following hematopoietic stem cell transplantation: potential for synergistic effects

    PubMed Central

    Bouchlaka, Myriam N; Redelman, Doug; Murphy, William J

    2011-01-01

    Hematopoietic stem cell transplantation (HSCT) is a particularly important treatment for hematologic malignancies. Unfortunately, following allogeneic HSCT, graft-versus-host disease, immunosuppression and susceptibility to opportunistic infections remain among the most substantial problems restricting the efficacy and use of this procedure, particularly for cancer. Adoptive immunotherapy and/or manipulation of the graft offer ways to attack residual cancer as well as other transplant-related complications. Recent exciting discoveries have demonstrated that HSCT could be expanded to solid tissue cancers with profound effects on the effectiveness of adoptive immunotherapy. This review will provide a background regarding HSCT, discuss the complications that make it such a complex treatment procedure following up with current immunotherapeutic strategies and discuss emerging approaches in applying immunotherapy in HSCT for cancer. PMID:20635904

  12. RNA polymerase III component Rpc9 regulates hematopoietic stem and progenitor cell maintenance in zebrafish.

    PubMed

    Wei, Yonglong; Xu, Jin; Zhang, Wenqing; Wen, Zilong; Liu, Feng

    2016-06-15

    Hematopoietic stem and progenitor cells (HSPCs) are capable of self-renewal and replenishing all lineages of blood cells throughout life and are thus crucial for tissue homeostasis. However, the mechanism regulating HSPC development is still incompletely understood. Here, we isolate a zebrafish mutant with defective T lymphopoiesis and positional cloning identifies that Rpc9, a component of DNA-directed RNA polymerase III (Pol III) complex, is responsible for the mutant phenotype. Further analysis shows that rpc9 deficiency leads to the impairment of HSPCs and their derivatives in zebrafish embryos. Excessive apoptosis is observed in the caudal hematopoietic tissue (CHT; the equivalent of fetal liver in mammals) of rpc9(-/-) embryos and the hematopoietic defects in these embryos can be fully rescued by suppression of p53 Thus, our work illustrates that Rpc9, a component of Pol III, plays an important tissue-specific role in HSPC maintenance during zebrafish embryogenesis and might be conserved across vertebrates, including mammals. PMID:27151951

  13. A diffusible signal derived from hematopoietic cells supports the survival and proliferation of regenerative cells during zebrafish fin fold regeneration.

    PubMed

    Hasegawa, Tomoya; Nakajima, Teruhiro; Ishida, Takashi; Kudo, Akira; Kawakami, Atsushi

    2015-03-01

    Multicellular organisms maintain body integrity by constantly regenerating tissues throughout their lives; however, the overall mechanism for regulating regeneration remains an open question. Studies of limb and fin regeneration in teleost fish and urodeles have shown the involvement of a number of locally activated signals at the wounded site during regeneration. Here, we demonstrate that a diffusible signal from a distance also play an essential role for regeneration. Among a number of zebrafish mutants, we found that the zebrafish cloche (clo) and tal1 mutants, which lack most hematopoietic tissues, displayed a unique regeneration defect accompanying apoptosis in primed regenerative tissue. Our analyses of the mutants showed that the cells in the primed regenerative tissue are susceptible to apoptosis, but their survival is normally supported by the presence of hematopoietic tissues, mainly the myeloid cells. We further showed that a diffusible factor in the wild-type body fluid mediates this signal. Thus, our study revealed a novel mechanism that the hematopoietic tissues regulate tissue regeneration through a diffusible signal. PMID:25533245

  14. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    NASA Astrophysics Data System (ADS)

    Ohi, Seigo; Roach, Allana-Nicole; Ramsahai, Shweta; Kim, Bak C.; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2004-02-01

    Astronauts experience severe/invasive disorders caused by space environments. These include hematological and cardiac abnormalities, bone and muscle losses, immunodeficiency, neurological disorders and cancer. Exploiting the extraordinary plasticity of hematopoietic stem cells (HSCs), which differentiate not only to all types of blood cells, but also to various tissues, including muscle, bone, skin, liver, and neuronal cells, we advanced a hypothesis that some of the space-caused disorders might be amenable to hematopoietic stem cell therapy (HSCT) so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using mouse models of human anemia (β-thalassemia) and spaceflight (hindlimb suspension unloading system), we have obtained feasibility results of HSCT for space anemia, muscle loss, and immunodeficiency. For example, the β-thalassemic mice were successfully transplanted with isologous HSCs, resulting in chimerism of hemoglobin species and alleviation of the hemoglobinopathy. In the case of HSCT for muscle loss, β-galactosidase-marked HSCs, which were prepared from β-galactosidase-transgenic mice, were detected by the X-gal wholemount staining procedure in the hindlimbs of unloaded mice following transplantation. Histochemical and physical analyses indicated structural contribution of HSCs to the muscle. To investigate HSCT for immunodeficiency, β-galactosidase-transformed Escherichia coli was used as the reporter bacteria, and infected to control and the hindlimb suspended mice. Results of the X-gal stained tissues indicated that the HSCT could help eliminate the E. coli infection. In an effort to facilitate the HSCT in space, growth of HSCs has been optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  15. Observation, Radiation Therapy, Combination Chemotherapy, and/or Surgery in Treating Young Patients With Soft Tissue Sarcoma

    ClinicalTrials.gov

    2014-09-08

    Adult Alveolar Soft-part Sarcoma; Adult Angiosarcoma; Adult Epithelioid Sarcoma; Adult Extraskeletal Chondrosarcoma; Adult Extraskeletal Osteosarcoma; Adult Fibrosarcoma; Adult Leiomyosarcoma; Adult Liposarcoma; Adult Malignant Fibrous Histiocytoma; Adult Malignant Hemangiopericytoma; Adult Malignant Mesenchymoma; Adult Neurofibrosarcoma; Adult Synovial Sarcoma; Childhood Alveolar Soft-part Sarcoma; Childhood Angiosarcoma; Childhood Epithelioid Sarcoma; Childhood Fibrosarcoma; Childhood Leiomyosarcoma; Childhood Liposarcoma; Childhood Malignant Mesenchymoma; Childhood Neurofibrosarcoma; Childhood Synovial Sarcoma; Dermatofibrosarcoma Protuberans; Metastatic Childhood Soft Tissue Sarcoma; Nonmetastatic Childhood Soft Tissue Sarcoma; Stage I Adult Soft Tissue Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma

  16. Bacterial skin and soft tissue infections in adults: A review of their epidemiology, pathogenesis, diagnosis, treatment and site of care

    PubMed Central

    Ki, Vincent; Rotstein, Coleman

    2008-01-01

    Skin and soft tissue infections (SSTIs) involve microbial invasion of the skin and underlying soft tissues. They have variable presentations, etiologies and severities. The challenge of SSTIs is to efficiently differentiate those cases that require immediate attention and intervention, whether medical or surgical, from those that are less severe. Approximately 7% to 10% of hospitalized patients are affected by SSTIs, and they are very common in the emergency care setting. The skin has an extremely diverse ecology of organisms that may produce infection. The clinical manifestations of SSTIs are the culmination of a two-step process involving invasion and the interaction of bacteria with host defences. The cardinal signs of SSTIs involve the features of inflammatory response, with other manifestations such as fever, rapid progression of lesions and bullae. The diagnosis of SSTIs is difficult because they may commonly masquerade as other clinical syndromes. To improve the management of SSTIs, the development of a severity stratification approach to determine site of care and appropriate empirical treatment is advantageous. The selection of antimicrobial therapy is predicated on knowledge of the potential pathogens, the instrument of entry, disease severity and clinical complications. For uncomplicated mild to moderate infections, the oral route suffices, whereas for complicated severe infections, intravenous administration of antibiotics is warranted. Recognition of the potential for resistant pathogens causing SSTIs can assist in guiding appropriate selection of antibiotic therapy. PMID:19352449

  17. Supportive Care of Hematopoietic Cell Transplant Patients

    PubMed Central

    Jim, Heather S. L.; Syrjala, Karen L.; Rizzo, Doug

    2012-01-01

    Hematopoietic cell transplant survivors face a number of challenges including low energy and stamina, “chemo-brain” and emotional distress, and late effects that can compromise functioning or lead to early mortality. This session will review the most recent interventions and recommendations to avoid or mitigate these complications. PMID:22226095

  18. The Drosophila melanogaster importin alpha3 locus encodes an essential gene required for the development of both larval and adult tissues.

    PubMed Central

    Mason, D Adam; Máthé, Endre; Fleming, Robert J; Goldfarb, David S

    2003-01-01

    The nuclear transport of classical nuclear localization signal (cNLS)-containing proteins is mediated by the cNLS receptor importin alpha. The conventional importin alpha gene family in metazoan animals is composed of three clades that are conserved between flies and mammals and are referred to here as alpha1, alpha2, and alpha3. In contrast, plants and fungi contain only alpha1 genes. In this study we report that Drosophila importin alpha3 is required for the development of both larval and adult tissues. Importin alpha3 mutant flies die around the transition from first to second instar larvae, and homozygous importin alpha3 mutant eyes are defective. The transition to second instar larvae was rescued with importin alpha1, alpha2, or alpha3 transgenes, indicating that Importin alpha3 is normally required at this stage for an activity shared by all three importin alpha's. In contrast, an alpha3-specific biochemical activity(s) of Importin alpha3 is probably required for development to adults and photoreceptor cell development, since only an importin alpha3 transgene rescued these processes. These results are consistent with the view that the importin alpha's have both overlapping and distinct functions and that their role in animal development involves the spatial and temporal control of their expression. PMID:14704178

  19. Gata2 cis-element is required for hematopoietic stem cell generation in the mammalian embryo.

    PubMed

    Gao, Xin; Johnson, Kirby D; Chang, Yuan-I; Boyer, Meghan E; Dewey, Colin N; Zhang, Jing; Bresnick, Emery H

    2013-12-16

    The generation of hematopoietic stem cells (HSCs) from hemogenic endothelium within the aorta, gonad, mesonephros (AGM) region of the mammalian embryo is crucial for development of the adult hematopoietic system. We described a deletion of a Gata2 cis-element (+9.5) that depletes fetal liver HSCs, is lethal at E13-14 of embryogenesis, and is mutated in an immunodeficiency that progresses to myelodysplasia/leukemia. Here, we demonstrate that the +9.5 element enhances Gata2 expression and is required to generate long-term repopulating HSCs in the AGM. Deletion of the +9.5 element abrogated the capacity of hemogenic endothelium to generate HSC-containing clusters in the aorta. Genomic analyses indicated that the +9.5 element regulated a rich ensemble of genes that control hemogenic endothelium and HSCs, as well as genes not implicated in hematopoiesis. These results reveal a mechanism that controls stem cell emergence from hemogenic endothelium to establish the adult hematopoietic system. PMID:24297994

  20. Gata2 cis-element is required for hematopoietic stem cell generation in the mammalian embryo

    PubMed Central

    Gao, Xin; Johnson, Kirby D.; Chang, Yuan-I; Boyer, Meghan E.; Dewey, Colin N.; Zhang, Jing

    2013-01-01

    The generation of hematopoietic stem cells (HSCs) from hemogenic endothelium within the aorta, gonad, mesonephros (AGM) region of the mammalian embryo is crucial for development of the adult hematopoietic system. We described a deletion of a Gata2 cis-element (+9.5) that depletes fetal liver HSCs, is lethal at E13–14 of embryogenesis, and is mutated in an immunodeficiency that progresses to myelodysplasia/leukemia. Here, we demonstrate that the +9.5 element enhances Gata2 expression and is required to generate long-term repopulating HSCs in the AGM. Deletion of the +9.5 element abrogated the capacity of hemogenic endothelium to generate HSC-containing clusters in the aorta. Genomic analyses indicated that the +9.5 element regulated a rich ensemble of genes that control hemogenic endothelium and HSCs, as well as genes not implicated in hematopoiesis. These results reveal a mechanism that controls stem cell emergence from hemogenic endothelium to establish the adult hematopoietic system. PMID:24297994

  1. Epigenetic Regulation of Hematopoietic Stem Cells

    PubMed Central

    Sharma, Shilpa; Gurudutta, Gangenahalli

    2016-01-01

    Hematopoietic stem cells are endowed with a distinct potential to bolster self-renewal and to generate progeny that differentiate into mature cells of myeloid and lymphoid lineages. Both hematopoietic stem cells and mature cells have the same genome, but their gene expression is controlled by an additional layer of epigenetics such as DNA methylation and post-translational histone modifications, enabling each cell-type to acquire various forms and functions. Until recently, several studies have largely focussed on the transcription factors andniche factors for the understanding of the molecular mechanisms by which hematopoietic cells replicate and differentiate. Several lines of emerging evidence suggest that epigenetic modifications eventually result in a defined chromatin structure and an “individual” gene expression pattern, which play an essential role in the regulation of hematopoietic stem cell self-renewal and differentiation. Distinct epigenetic marks decide which sets of genes may be expressed and which genes are kept silent. Epigenetic mechanisms are interdependent and ensure lifelong production of blood and bone marrow, thereby contributing to stem cell homeostasis. The epigenetic analysis of hematopoiesis raises the exciting possibility that chromatin structure is dynamic enough for regulated expression of genes. Though controlled chromatin accessibility plays an essential role in maintaining blood homeostasis; mutations in chromatin impacts on the regulation of genes critical to the development of leukemia. In this review, we explored the contribution of epigenetic machinery which has implications for the ramification of molecular details of hematopoietic self-renewal for normal development and underlying events that potentially co-operate to induce leukemia. PMID:27426084

  2. Preliminary Results From a Prospective Study Using Limited Margin Radiotherapy in Pediatric and Young Adult Patients With High-Grade Nonrhabdomyosarcoma Soft-Tissue Sarcoma

    SciTech Connect

    Krasin, Matthew J.; Davidoff, Andrew M.; Xiong Xiaoping; Wu Shengjie; Hua, C.-H.; Navid, Fariba; Rodriguez-Galindo, Carlos; Rao, Bhaskar N.; Hoth, Kelly A.; Neel, Michael D.; Merchant, Thomas E.; Kun, Larry E.; Spunt, Sheri L.

    2010-03-01

    Purpose: To demonstrate the safety and efficacy of limited margin radiotherapy in the local control of pediatric and young adult patients with high-grade nonrhabdomyosarcoma soft tissue sarcoma (NRSTS). Methods and Materials: Pediatric patients with high-grade NRSTS requiring radiation were treated on an institutional review board approved prospective institutional study of conformal/intensity-modulated/interstitial brachytherapy using a 2-cm anatomically constrained margin. Results: A total of 32 patients (median age, 15.3 years; range, 2-22 years) received adjuvant (27 patients) or definitive (5 patients) irradiation. With a median follow-up of 32 months, the 3-year cumulative incidence of local failure was 3.7% for patients undergoing irradiation after surgical resection. Four patients experienced local failure; the mean dose to the volume of recurrence was >=97% of the prescribed dose. Conclusions: Delivery of limited margin radiotherapy using external beam or brachytherapy provides a high rate of local tumor control without marginal failure. Further follow-up is required to determine whether normal tissue effects are minimized using this approach.

  3. Comparative transcriptomic analysis by RNA-seq to discern differential expression of genes in liver and muscle tissues of adult Berkshire and Jeju Native Pig.

    PubMed

    Sodhi, Simrinder Singh; Song, Ki-Duk; Ghosh, Mrinmoy; Sharma, Neelesh; Lee, Sung Jin; Kim, Jeong Hyun; Kim, Nameun; Mongre, Raj Kumar; Adhikari, Pradeep; Kim, Jin Young; Hong, Sang Pyo; Oh, Sung Jong; Jeong, Dong Kee

    2014-08-10

    RNA-seq is being rapidly adopted for the profiling of the transcriptomes in different areas of biology, especially in the studies related to gene regulation. The discovery of differentially expressed genes (DEGs) between adult animals of Jeju Native Pig (JNP) and Berkshire breeds of Sus scrofa, is of particular interest for the current study. For the better understanding of the gene expression profiles of the liver and longissimus dorsi muscle, DEGs were identified via RNA-seq. Sequence reads were obtained from Illumina HiSeq2000 and mapped to the pig reference genome (Sscrofa10.2) using Tophat2. We identified 169 and 39 DEGs in the liver and muscle of JNP respectively, by comparison with Berkshire breed. Out of all identified genes, 41 genes in the liver and 9 genes in the muscle have given significant expression. Gene ontology (GO) terms of developmental process and KEGG pathway analysis showed that metabolic, immune response and protein binding were commonly enriched pathways in the two tissues. Further the heat map analysis by ArrayStar has shown the different levels of expression in JNP with respect to the Berkshire breed. The validation through real time PCR and western blotting also confirmed the differential expression of genes in both breeds. Genes pertaining to metabolic process and inflammatory and immune system are more enriched in Berkshire breed. This comparative transcriptome analysis of two tissues suggests a subset of novel marker genes which expressed differently between the JNP and Berkshire. PMID:24910116

  4. Sclerosing extramedullary hematopoietic tumor presenting as an inguinal mass in a patient with primary myelofibrosis: a diagnostic pitfall

    PubMed Central

    Gu, Mi-Jin

    2015-01-01

    Sclerosing extramedullary hematopoietic tumor (SEMHT) is a rare lesion and presented as retroperitoneal or serosal-based mass. A 53-year-old man with a long history of primary myelofibrosis, presented with abdominal distension and inguinal mass. Pathologic examination of inguinal mass revealed a prominent sclerotic background with thick collagen deposits and mono, bi, or tri-lineage hematopoietic tissue containing atypical megakaryocytes and variable proportions of myeloid and erythroid series. The atypical megakaryocytes were positive for Factor VIII and CD61. SEMHT may be misdiagnosed as lymphocyte depleted Hodgkin’s disease, as a mesenchymal neoplasm, or as carcinoma, because of the presence of large atypical cells and marked fibrosis when clinical information regarding PMF is unknown. Awareness of the bizarre atypical megakaryocyte morphology with immature hematopoietic cells and of clinical history is essential to prevent misdiagnosis. PMID:26045874

  5. Progressive maturation toward hematopoietic stem cells in the mouse embryo aorta.

    PubMed

    Boisset, Jean-Charles; Clapes, Thomas; Klaus, Anna; Papazian, Natalie; Onderwater, Jos; Mommaas-Kienhuis, Mieke; Cupedo, Tom; Robin, Catherine

    2015-01-15

    Clusters of cells attached to the endothelium of the main embryonic arteries were first observed a century ago. Present in most vertebrate species, such clusters, or intraaortic hematopoietic clusters (IAHCs), derive from specialized hemogenic endothelial cells and contain the first few hematopoietic stem cells (HSCs) generated during embryonic development. However, some discrepancies remained concerning the spatio-temporal appearance and the numbers of IAHCs and HSCs. Therefore, the exact cell composition and function of IAHCs remain unclear to date. We show here that IAHCs contain pre-HSCs (or HSC precursors) that can mature into HSCs in vivo (as shown by the successful long-term multilineage reconstitution of primary neonates and secondary adult recipients). Such IAHC pre-HSCs could contribute to the HSC pool increase observed at midgestation. The novel insights in pre-HSC to HSC transition represent an important step toward generating transplantable HSCs in vitro that are needed for autologous HSC transplantation therapies. PMID:25301706

  6. Replication stress caused by low MCM expression limits fetal erythropoiesis and hematopoietic stem cell functionality

    PubMed Central

    Alvarez, Silvia; Díaz, Marcos; Flach, Johanna; Rodriguez-Acebes, Sara; López-Contreras, Andrés J.; Martínez, Dolores; Cañamero, Marta; Fernández-Capetillo, Oscar; Isern, Joan; Passegué, Emmanuelle; Méndez, Juan

    2015-01-01

    Replicative stress during embryonic development influences ageing and predisposition to disease in adults. A protective mechanism against replicative stress is provided by the licensing of thousands of origins in G1 that are not necessarily activated in the subsequent S-phase. These ‘dormant' origins provide a backup in the presence of stalled forks and may confer flexibility to the replication program in specific cell types during differentiation, a role that has remained unexplored. Here we show, using a mouse strain with hypomorphic expression of the origin licensing factor mini-chromosome maintenance (MCM)3 that limiting origin licensing in vivo affects the functionality of hematopoietic stem cells and the differentiation of rapidly-dividing erythrocyte precursors. Mcm3-deficient erythroblasts display aberrant DNA replication patterns and fail to complete maturation, causing lethal anemia. Our results indicate that hematopoietic progenitors are particularly sensitive to replication stress, and full origin licensing ensures their correct differentiation and functionality. PMID:26456157

  7. Co-transplantation of Hematopoietic Stem Cells and Cxcr4 Gene-Transduced Mesenchymal Stem Cells Promotes Hematopoiesis.

    PubMed

    Chen, Wei; Li, Miao; Su, Guizhen; Zang, Yu; Yan, Zhiling; Cheng, Hai; Pan, Bin; Cao, Jiang; Wu, Qingyun; Zhao, Kai; Zhu, Feng; Zeng, Lingyu; Li, Zhenyu; Xu, Kailin

    2015-04-01

    Mesenchymal stem cells (MSCs) are a promising candidate for cellular therapies. Co-transplantation of MSCs and hematopoietic stem cells (HSCs) promotes successful engraftment and improves hematopoietic recovery. In this study, the effects of co-transplantation of HSCs and mouse bone marrow (BM)-derived MSCs overexpressing CXCR4 (CXCR4-MSC) on CXCR4-MSC homing capacity and the reconstitution potential in lethally irradiated mice were evaluated. Recovery of donor-derived peripheral blood leukocytes and platelets was accelerated when CXCR4-MSCs were co-transplanted with BM cells. The frequency of c-kit(+)Sca(+)Lin(-) HSCs was higher in recipient BM following co-transplantation of CXCR4-MSCs compared with the EGFP-MSC control and the BMT only groups. Surprisingly, the rate of early engraftment of donor-derived BM cells in recipients co-transplanted with CXCR4-MSCs was slightly lower than in the absence of MSCs on day 7. Moreover, co-transplantation of CXCR4-MSCs regulated the balance of T helper cells subsets. Hematopoietic tissue reconstitution was evaluated by histopathological analysis of BM and spleen. Co-transplantation of CXCR4-MSCs was shown to promote the recovery of hematopoietic organs. These findings indicate that co-transplantation of CXCR4-MSCs promotes the early phase of hematopoietic recovery and sustained hematopoiesis. PMID:25391891

  8. Generation of induced pluripotent stem cells as a potential source of hematopoietic stem cells for transplant in PNH patients.

    PubMed

    Phondeechareon, Tanapol; Wattanapanitch, Methichit; U-Pratya, Yaowalak; Damkham, Chanapa; Klincumhom, Nuttha; Lorthongpanich, Chanchao; Kheolamai, Pakpoom; Laowtammathron, Chuti; Issaragrisil, Surapol

    2016-10-01

    Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hemolytic anemia caused by lack of CD55 and CD59 on blood cell membrane leading to increased sensitivity of blood cells to complement. Hematopoietic stem cell transplantation (HSCT) is the only curative therapy for PNH, however, lack of HLA-matched donors and post-transplant complications are major concerns. Induced pluripotent stem cells (iPSCs) derived from patients are an attractive source for generating autologous HSCs to avoid adverse effects resulting from allogeneic HSCT. The disease involves only HSCs and their progeny; therefore, other tissues are not affected by the mutation and may be used to produce disease-free autologous HSCs. This study aimed to derive PNH patient-specific iPSCs from human dermal fibroblasts (HDFs), characterize and differentiate to hematopoietic cells using a feeder-free protocol. Analysis of CD55 and CD59 expression was performed before and after reprogramming, and hematopoietic differentiation. Patients' dermal fibroblasts expressed CD55 and CD59 at normal levels and the normal expression remained after reprogramming. The iPSCs derived from PNH patients had typical pluripotent properties and differentiation capacities with normal karyotype. After hematopoietic differentiation, the differentiated cells expressed early hematopoietic markers (CD34 and CD43) with normal CD59 expression. The iPSCs derived from HDFs of PNH patients have normal levels of CD55 and CD59 expression and hold promise as a potential source of HSCs for autologous transplantation to cure PNH patients. PMID:27465155

  9. Comparison of Epicardial Adipose Tissue Volume and Coronary Artery Disease Severity in Asymptomatic Adults with versus without Diabetes Mellitus

    PubMed Central

    Groves, Elliott M.; Erande, Ashwini S.; Le, Christine; Salcedo, Jonathan; Hoang, Khiet C.; Kumar, Shivesh; Mohar, Dilbahar S.; Saremi, Farhood; Im, Jiye; Agrawal, Yashwant; Nadeswaran, Pradeep; Naderi, Nassim; Malik, Shaista

    2014-01-01

    Epicardial adipose tissue (EAT) has been shown to have important effects on the development of coronary artery disease (CAD) via local paracrine influences on the vascular bed. We compared a cohort of asymptomatic patients with Type II Diabetes (DM) without known CAD to an age and gender matched group of asymptomatic patients without DM from the CTRAD study in which patients underwent a cardiac computed tomography angiogram (CTA), for early detection of CAD. Mean EAT volumes of 118.6 ± 43.0 and 70.0 ± 44.0 cm3 were found in the DM and non-DM groups respectively. When stratified by presence and severity of CAD, it was found that in the DM (p=0.003) and non-DM groups (p<0.001) there was a statistically significant increase in EAT volume as the patients were found to have increasingly severe CAD. After adjusting for age, race, gender, DM, hypertension, insulin use, BMI, and coronary artery calcium (CAC) score, the presence of >120 cm3 of EAT was found to be highly correlated with the presence of significant CAD (Adjusted Odds Ratio 4.47, 95% CI (1.35–14.82)). We found that not only is EAT volume an independent predictor of CAD, but that an increasing volume of EAT predicted increasing severity of CAD even after adjustment for CAC score. PMID:25037677

  10. Synthesis of calcium phosphate-zirconia scaffold and human endometrial adult stem cells for bone tissue engineering.

    PubMed

    Alizadeh, Aliakbar; Moztarzadeh, Fathollah; Ostad, Seyed Naser; Azami, Mahmoud; Geramizadeh, Bita; Hatam, Gholamreza; Bizari, Davood; Tavangar, Seyed Mohammad; Vasei, Mohammad; Ai, Jafar

    2016-01-01

    To address the hypothesis that using a zirconia (ZrO2)/ β-tricalcium phosphate (β-TCP) composite might improve both the mechanical properties and cellular compatibility of the porous material, we fabricated ZrO2/β-TCP composite scaffolds with different ZrO2/β-TCP ratios, and evaluated their physical and mechanical characteristics, also the effect of three-dimensional (3D) culture (ZrO2/β-TCP scaffold) on the behavior of human endometrial stem cells. Results showed the porosity of a ZrO2/β-TCP scaffold can be adjusted from 65% to 84%, and the compressive strength of the scaffold increased from 4.95 to 6.25 MPa when the ZrO2 content increased from 30 to 50 wt%. The cell adhesion and proliferation in the ZrO2/β-TCP scaffold was greatly improved when ZrO2 decreased. Moreover, in vitro study showed that an osteoblasts-loaded ZrO2/β-TCP scaffold provided a suitable 3D environment for osteoblast survival and enhanced bone regeneration. We thus showed that a porous ZrO2/β-TCP composite scaffold has excellent mechanical properties, and cellular/tissue compatibility, and would be a promising substrate to achieve both bone reconstruction and regeneration needed during in vivo study for treatment of large bone defects. PMID:24810360

  11. Dnmt3a Regulates Myeloproliferation and Liver-Specific Expansion of Hematopoietic Stem and Progenitor Cells

    PubMed Central

    Guryanova, Olga A.; Lieu, Yen K.; Garrett-Bakelman, Francine E.; Spitzer, Barbara; Glass, Jacob L.; Shank, Kaitlyn; Valencia Martinez, Ana Belen; Rivera, Sharon A.; Durham, Benjamin H.; Rapaport, Franck; Keller, Matthew D.; Pandey, Suveg; Bastian, Lennart; Tovbin, Daniel; Weinstein, Abby R.; Teruya-Feldstein, Julie; Abdel-Wahab, Omar; Santini, Valeria; Mason, Christopher E.; Melnick, Ari M.; Mukherjee, Siddhartha; Levine, Ross L.

    2015-01-01

    DNMT3A mutations are observed in myeloid malignancies, including myeloproliferative neoplasms (MPN), myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). Transplantation studies have elucidated an important role for Dnmt3a in stem cell self-renewal and in myeloid differentiation. Here we investigated the impact of conditional hematopoietic Dnmt3a loss on disease phenotype in primary mice. Mx1-Cre-mediated Dnmt3a ablation led to the development of a lethal, fully penetrant myeloproliferative neoplasm with myelodysplasia (MDS/MPN) characterized by peripheral cytopenias and by marked, progressive hepatomegaly. We detected expanded stem/progenitor populations in the liver of Dnmt3a-ablated mice. The MDS/MPN induced by Dnmt3a ablation was transplantable, including the marked hepatomegaly. Homing studies showed that Dnmt3a-deleted bone marrow cells preferentially migrated to the liver. Gene expression and DNA methylation analyses of progenitor cell populations identified differential regulation of hematopoietic regulatory pathways, including fetal liver hematopoiesis transcriptional programs. These data demonstrate that Dnmt3a ablation in the hematopoietic system leads to myeloid transformation in vivo, with cell autonomous aberrant tissue tropism and marked extramedullary hematopoiesis (EMH) with liver involvement. Hence, in addition to the established role of Dnmt3a in regulating self-renewal, Dnmt3a regulates tissue tropism and limits myeloid progenitor expansion in vivo. PMID:26710888

  12. The Effects of Partial Mechanical Loading and Ibandronate on Skeletal Tissues in the Adult Rat Hindquarter Suspension Model for Microgravity

    NASA Technical Reports Server (NTRS)

    Schultheis, Lester W.

    1999-01-01

    We report initial data from a suspended rat model that quantitatively relates chronic partial weightbearing to bone loss. Chronic partial weightbearing is our simulation of the effect of limited artificial gravity aboard spacecraft or reduced planetary gravity. Preliminary analysis of bone by PQCT, histomorphometry, mechanical testing and biochemistry suggest that chronic exposure to half of Earth gravity is insufficient to prevent severe bone loss. The effect of episodic full weightbearing activity (Earth Gravity) on rats otherwise at 50% weightbearing was also explored. This has similarity to treatment by an Earth G-rated centrifuge on a spacecraft that normally maintained artificial gravity at half of Earth G. Our preliminary evidence, using the above techniques to analyze bone, indicate that 2 hours daily of full weightbearing was insufficient to prevent the bone loss observed in 50% weightbearing animals. The effectiveness of partial weightbearing and episodic full weightbearing as potential countermeasures to bone loss in spaceflight was compared with treatment by ibandronate. Ibandronate, a long-acting potent bisphosphonate proved more effective in preventing bone loss and associated functionality based upon structure than our first efforts at mechanical countermeasures. The effectiveness of ibandronate was notable by each of the testing methods we used to study bone from gross structure and strength to tissue and biochemistry. These results appear to be independent of generalized systemic stress imposed by the suspension paradigm. Preliminary evidence does not suggest that blood levels of vitamin D were affected by our countermeasures. Despite the modest theraputic benefit of mechanical countermeasures of partial weightbearing and episodic full weightbearing, we know that some appropriate mechanical signal maintains bone mass in Earth gravity. Moreover, the only mechanism that correctly assigns bone mass and strength to oppose regionally specific force

  13. The Effects of Partial Mechanical Loading and Ibandronate on Skeletal Tissues in the Adult Rat Hindquarter Suspension Model for Microgravity

    NASA Technical Reports Server (NTRS)

    Schultheis, Lester W.

    1999-01-01

    We report initial data from a suspended rat model that quantitatively relates chronic partial weightbearing to bone loss. Chronic partial weightbearing is our simulation of the effect of limited artificial gravity aboard spacecraft or reduced planetary gravity. Preliminary analysis of bone by PQCT, histomorphometry, mechanical testing and biochemistry suggest that chronic exposure to half of Earth gravity is insufficient to prevent severe bone loss. The effect of episodic full weightbearing activity (Earth Gravity) on rats otherwise at 50% weightbearing was also explored. This has similarity to treatment by an Earth G-rated centrifuge on a spacecraft that normally maintained artificial gravity at half of Earth G. Our preliminary evidence, using the above techniques to analyze bone, indicate that 2 hours daily of full weightbearing was insufficient to prevent the bone loss observed in 50% weightbearing animals. The effectiveness of partial weightbearing and episodic full weightbearing as potential countermeasures to bone loss in spaceflight was compared with treatment by ibandronate. Ibandronate, a long-acting potent bisphosphonate proved more effective in preventing bone loss and associated functionality based upon structure than our first efforts at mechanical countermeasures. The effectiveness of ibandronate was notable by each of the testing methods we used to study bone from gross structure and strength to tissue and biochemistry. These results appear to be independent of generalized systemic stress imposed by the suspension paradigm. Preliminary evidence does not suggest that blood levels of vitamin D were affected by our countermeasures. Despite the modest theraputic benefit of mechanical countermeasures of partial weightbearing and episodic full weightbearing, we know that some appropriate mechanical signal maintains bone mass in Earth gravity. Moreover, the only mechanism that correctly assigns bone mass and strength to oppose regionally specific force

  14. Herpesviral Hematopoietic Necrosis in Goldfish in Switzerland: Early Lesions in Clinically Normal Goldfish (Carassius auratus).

    PubMed

    Giovannini, S; Bergmann, S M; Keeling, C; Lany, C; Schütze, H; Schmidt-Posthaus, H

    2016-07-01

    Cyprinid herpesvirus 2 is a pathogen of goldfish, inducing a disease referred to as herpesviral hematopoietic necrosis. The disease is described so far in Japan, North America, Taiwan, Australia, the United Kingdom, and recently also Italy. Here the authors describe histologic lesions in clinically affected fish in comparison with clinically normal but virus DNA-positive goldfish in Switzerland. While necrosis or enhanced single-cell necrosis in the hematopoietic tissue in the pronephros or mesonephros was evident in dead and sick animals, in clinically normal goldfish, only single-cell necrosis was observed. Virus DNA was demonstrated in dead as well as clinically affected and subclinically infected goldfish by polymerase chain reaction and in situ hybridization. This study identifies the presence of goldfish herpesvirus in Switzerland and highlights the fact that the virus might be more widespread than assumed, as clinically normal goldfish can also carry cyprinid herpesvirus 2, showing histologically similar lesions but of lesser extent and severity. PMID:26553521

  15. Hematopoietic stem cell compartment: Acute and late effects of radiation therapy an chemotherapy

    SciTech Connect

    Mauch, P.; Constine, L.; Greenberger, J.

    1995-03-30

    The bone marrow is an important dose-limiting cell renewal tissue for chemotherapy, wide-field irradiation, and autologous bone marrow transplantion. Over the past 5-10 years a great deal has been discovered about the hematopoietic stem cell compartment. Although the toxicity associated with prolonged myelosuppression continue to limit the wider use of chemotherapy and irradiation, ways are being discovered to circumvent this toxicity such as with the increasing use of cytokines. This review describes what is known of how chemotherapy and irradiation damage stem cells and the microenvironment, how cytokines protect hematopoietic cells from radiation damage and speed marrow recovery after chemotherapy or marrow transplantation, and how various types of blood marrow cells contribute to engraftment and long-term hematopoiesis after high doses of cytotoxic agents and/or total body irradiation. 167 refs., 7 figs., 6 tabs.

  16. Immunoselection techniques in hematopoietic stem cell transplantation.

    PubMed

    Li Pira, Giuseppina; Biagini, Simone; Cicchetti, Elisabetta; Merli, Pietro; Brescia, Letizia Pomponia; Milano, Giuseppe Maria; Montanari, Mauro

    2016-06-01

    Hematopoietic Stem Cells Transplantation (HSCT) is an effective treatment for hematological and non-hematological diseases. The main challenge in autologous HSCT is purging of malignant cells to prevent relapse. In allogeneic HSCT graft-versus-host disease (GvHD) and opportunistic infections are frequent complications. Two types of graft manipulation have been introduced: the first one in the autologous context aimed at separating malignant cells from hematopoietic stem cells (HSC), and the second one in allogeneic HSCT aimed at reducing the incidence of GvHD and at accelerating immune reconstitution. Here we describe the manipulations used for cell purging in autologous HSCT or for T Cell Depletion (TCD) and T cell selection in allogeneic HSCT. More complex manipulations, requiring a Good Manufacturing Practice (GMP) facility, are briefly mentioned. PMID:27209628

  17. Hematopoietic stem cell engineering at a crossroads

    PubMed Central

    Rivière, Isabelle; Dunbar, Cynthia E.

    2012-01-01

    The genetic engineering of hematopoietic stem cells is the basis for potentially treating a large array of hereditary and acquired diseases, and stands as the paradigm for stem cell engineering in general. Recent clinical reports support the formidable promise of this approach but also highlight the limitations of the technologies used to date, which have on occasion resulted in clonal expansion, myelodysplasia, or leukemogenesis. New research directions, predicated on improved vector designs, targeted gene delivery or the therapeutic use of pluripotent stem cells, herald the advent of safer and more effective hematopoietic stem cell therapies that may transform medical practice. In this review, we place these recent advances in perspective, emphasizing the solutions emerging from a wave of new technologies and highlighting the challenges that lie ahead. PMID:22096239

  18. Exogenous endothelial cells as accelerators of hematopoietic reconstitution

    PubMed Central

    2012-01-01

    Despite the successes of recombinant hematopoietic-stimulatory factors at accelerating bone marrow reconstitution and shortening the neutropenic period post-transplantation, significant challenges remain such as cost, inability to reconstitute thrombocytic lineages, and lack of efficacy in conditions such as aplastic anemia. A possible means of accelerating hematopoietic reconstitution would be administration of cells capable of secreting hematopoietic growth factors. Advantages of this approach would include: a) ability to regulate secretion of cytokines based on biological need; b) long term, localized production of growth factors, alleviating need for systemic administration of factors that possess unintended adverse effects; and c) potential to actively repair the hematopoietic stem cell niche. Here we overview the field of hematopoietic growth factors, discuss previous experiences with mesenchymal stem cells (MSC) in accelerating hematopoiesis, and conclude by putting forth the rationale of utilizing exogenous endothelial cells as a novel cellular therapy for acceleration of hematopoietic recovery. PMID:23171397

  19. Common Variants at Putative Regulatory Sites of the Tissue Nonspecific Alkaline Phosphatase Gene Influence Circulating Pyridoxal 5′-Phosphate Concentration in Healthy Adults123

    PubMed Central

    Carter, Tonia C; Pangilinan, Faith; Molloy, Anne M; Fan, Ruzong; Wang, Yifan; Shane, Barry; Gibney, Eileen R; Midttun, Øivind; Ueland, Per M; Cropp, Cheryl D; Kim, Yoonhee; Wilson, Alexander F; Bailey-Wilson, Joan E; Brody, Lawrence C; Mills, James L

    2015-01-01

    Background: Vitamin B-6 interconversion enzymes are important for supplying pyridoxal 5′-phosphate (PLP), the co-enzyme form, to tissues. Variants in the genes for these enzymes [tissue nonspecific alkaline phosphatase (ALPL), pyridoxamine 5′-phosphate oxidase, pyridoxal kinase, and pyridoxal phosphatase] could affect enzyme function and vitamin B-6 status. Objectives: We tested whether single-nucleotide polymorphisms (SNPs) in these genes influence vitamin B-6 status markers [plasma PLP, pyridoxal (PL), and 4-pyridoxic acid (PA)], and explored potential functional effects of the SNPs. Methods: Study subjects were young, healthy adults from Ireland (n = 2345). We measured plasma PLP, PL, and PA with liquid chromatography–tandem mass spectrometry and genotyped 66 tag SNPs in the 4 genes. We tested for associations with single SNPs in candidate genes and also performed genome-wide association study (GWAS) and gene-based analyses. Results: Seventeen SNPs in ALPL were associated with altered plasma PLP in candidate gene analyses (P < 1.89 × 10−4). In the GWAS, 5 additional ALPL SNPs were associated with altered plasma PLP (P < 5.0 × 10−8). Gene-based analyses that used the functional linear model β-spline (P = 4.04 × 10−15) and Fourier spline (P = 5.87 × 10−15) methods also showed associations between ALPL and altered plasma PLP. No SNPs in other genes were associated with plasma PLP. The association of the minor CC genotype of 1 ALPL SNP, rs1256341, with reduced ALPL expression in the HapMap Northern European ancestry population is consistent with the positive association between the CC genotype and plasma PLP in our study (P = 0.008). No SNP was associated with altered plasma PL or PA. Conclusions: In healthy adults, common variants in ALPL influence plasma PLP concentration, the most frequently used biomarker for vitamin B-6 status. Whether these associations are indicative of functional changes in vitamin B-6 status requires more investigation

  20. Middle-term expansion of hematopoietic cord blood cells with new human stromal cell line feeder-layers and different cytokine cocktails.

    PubMed

    De Angeli, S; Baiguera, S; Del Pup, L; Pavan, E; Gajo, G B; Di Liddo, R; Conconi, M T; Grandi, C; Schiavon, O; Parnigotto, P P

    2009-12-01

    Cord blood (CB) is a source of hematopoietic stem cells (HSCs) and is an alternative to bone marrow for allogenic transplantation in patients with hematological disorders. The improvement of HSC in vitro expansion is one of the main challenges in cell therapy. Stromal components and soluble factors, such as cytokines, can be useful to induce in vitro cell expansion. Hence, we investigated whether feeder-layers from new stromal cell lines and different exogenous cytokine cocktails induce HSC expansion in middle-term cultures. CB HSC middle-term expansion was carried out in co-cultures on different feeder-layers exposed to three different cytokine cocktails. CB HSC expansion was also carried out in stroma-free cultures in the presence of different cytokine cocktails. Clonogenic tests were performed, and cell growth levels were evaluated. Moreover, the presence of VCAM-1 mRNA was assessed, and the mesenchymal cell-like phenotype expression was detected. All feeder-layers were able to induce a significant clonogenic growth with respect to the control culture, and all of the cytokine cocktails induced a significant increase in CB cell expansion indexes, even though no potential variation dependent on their composition was noted. The modulative effects of the different cocktails, exerted on each cell line used, was dependent on their composition. Finally, all cell lines were positive for CD73, CD117 and CD309, similar to mesenchymal stem cells present in adult bone marrow and in other human tissues, and negative for the hematopoietic markers. These data indicate that our cell lines have, not only a stromal cell-like phenotype, but also a mesenchymal cell-like phenotype, and they have the potential to support in vitro expansion of CB HSCs. Moreover, exogenous cytokines can be used in synergism with feeder-layers to improve the expansion levels of CB HSCs in preparation for their clinical use in allogenic transplantation. PMID:19885627

  1. Chronic variable stress activates hematopoietic stem cells

    PubMed Central

    Courties, Gabriel; Dutta, Partha; Iwamoto, Yoshiko; Zaltsman, Alex; von zur Muhlen, Constantin; Bode, Christoph; Fricchione, Gregory L.; Denninger, John; Lin, Charles P.; Vinegoni, Claudio; Libby, Peter; Swirski, Filip K.; Weissleder, Ralph; Nahrendorf, Matthias

    2014-01-01

    Exposure to psychosocial stress is a risk factor for many diseases, including atherosclerosis1,2. While incompletely understood, interaction between the psyche and the immune system provides one potential mechanism linking stress and disease inception and progression. Known crosstalk between the brain and immune system includes the hypothalamic–pituitary–adrenal axis, which centrally drives glucocorticoid production in the adrenal cortex, and the sympathetic–adrenal–medullary axis, which controls stress–induced catecholamine release in support of the fight–or–flight reflex3,4. It remains unknown however if chronic stress changes hematopoietic stem cell activity. Here we show that stress increases proliferation of these most primitive progenitors, giving rise to higher levels of disease–promoting inflammatory leukocytes. We found that chronic stress induced monocytosis and neutrophilia in humans. While investigating the source of leukocytosis in mice, we discovered that stress activates upstream hematopoietic stem cells. Sympathetic nerve fibers release surplus noradrenaline, which uses the β3 adrenergic receptor to signal bone marrow niche cells to decrease CXCL12 levels. Consequently, elevated hematopoietic stem cell proliferation increases output of neutrophils and inflammatory monocytes. When atherosclerosis–prone ApoE−/− mice encounter chronic stress, accelerated hematopoiesis promotes plaque features associated with vulnerable lesions that cause myocardial infarction and stroke in humans. PMID:24952646

  2. MRI-measured pelvic bone marrow adipose tissue is inversely related to DXA-measured bone mineral in younger and older Adults

    PubMed Central

    Shen, Wei; Chen, Jun; Gantz, Madeleine; Punyanitya, Mark; Heymsfield, Steven B; Gallagher, Dympna; Albu, Jeanine; Engelson, Ellen; Kotler, Donald; Pi-Sunyer, Xavier; Gilsanz, Vicente

    2012-01-01

    Background/Objective Recent research has shown an inverse relationship between bone marrow adipose tissue (BMAT) and bone mineral density (BMD). There is a lack of evidence at the macro-imaging level to establish whether increased BMAT is a cause or effect of bone loss. This cross-sectional study compared the BMAT and BMD relationship between a younger adult group at or approaching peak bone mass (PBM) (age 18.0-39.9 yrs) and an older group with potential bone loss (PoBL) (age 40.0-88 yrs). Subjects/Methods Pelvic BMAT was evaluated in 560 healthy men and women with T1-weighted whole body magnetic resonance imaging. BMD was measured using whole body dual-energy x-ray absorptiometry. Results An inverse correlation was observed between pelvic BMAT and pelvic, total, and spine BMD in the younger PBM group (r=-0.419 to -0.461, P<0.001) and in the older PoBL group (r=-0.405 to -0.500, P<0.001). After adjusting for age, sex, ethnicity, menopausal status, total body fat, skeletal muscle, subcutaneous and visceral adipose tissue, neither subject group (younger PBM vs. older PoBL) nor its interaction with pelvic BMAT significantly contributed to the regression models with BMD as dependent variable and pelvic BMAT as independent variable (P=0.434 to 0.928). Conclusion Our findings indicate that an inverse relationship between pelvic BMAT and BMD is present both in younger subjects who have not yet experienced bone loss and also in older subjects. These results provide support at the macro-imaging level for the hypothesis that low BMD may be a result of preferential differentiation of mesenchymal stem cells from osteoblasts to adipocytes. PMID:22491495

  3. Partial Loss of Rpl11 in Adult Mice Recapitulates Diamond-Blackfan Anemia and Promotes Lymphomagenesis.

    PubMed

    Morgado-Palacin, Lucia; Varetti, Gianluca; Llanos, Susana; Gómez-López, Gonzalo; Martinez, Dolores; Serrano, Manuel

    2015-10-27

    Diamond-Blackfan anemia (DBA) is characterized by anemia and cancer susceptibility and is caused by mutations in ribosomal genes, including RPL11. Here, we report that Rpl11-heterozygous mouse embryos are not viable and that Rpl11 homozygous deletion in adult mice results in death within a few weeks, accompanied by bone marrow aplasia and intestinal atrophy. Importantly, Rpl11 heterozygous deletion in adult mice results in anemia associated with decreased erythroid progenitors and defective erythroid maturation. These defects are also present in mice transplanted with inducible heterozygous Rpl11 bone marrow and, therefore, are intrinsic to the hematopoietic system. Additionally, heterozygous Rpl11 mice present increased susceptibility to radiation-induced lymphomagenesis. In this regard, total or partial deletion of Rpl11 compromises p53 activation upon ribosomal stress or DNA damage in fibroblasts. Moreover, fibroblasts and hematopoietic tissues from heterozygous Rpl11 mice present higher basal cMYC levels. We conclude that Rpl11-deficient mice recapitulate DBA disorder, including cancer predisposition. PMID:26489471

  4. Connective tissue growth factor is critical for proper β-cell function and pregnancy-induced β-cell hyperplasia in adult mice.

    PubMed

    Pasek, Raymond C; Dunn, Jennifer C; Elsakr, Joseph M; Aramandla, Mounika; Matta, Anveetha R; Gannon, Maureen

    2016-09-01

    During pregnancy, maternal β-cells undergo compensatory changes, including increased β-cell mass and enhanced glucose-stimulated insulin secretion. Failure of these adaptations to occur results in gestational diabetes mellitus. The secreted protein connective tissue growth factor (CTGF) is critical for normal β-cell development and promotes regeneration after partial β-cell ablation. During embryogenesis, CTGF is expressed in pancreatic ducts, vasculature, and β-cells. In adult pancreas, CTGF is expressed only in the vasculature. Here we show that pregnant mice with global Ctgf haploinsufficiency (Ctgf(LacZ/+)) have an impairment in maternal β-cell proliferation; no difference was observed in virgin Ctgf(LacZ/+) females. Using a conditional CTGF allele, we found that mice with a specific inactivation of CTGF in endocrine cells (Ctgf(ΔEndo)) develop gestational diabetes during pregnancy, but this is due to a reduction in glucose-stimulated insulin secretion rather than impaired maternal β-cell proliferation. Moreover, virgin Ctgf(ΔEndo) females also display impaired GSIS with glucose intolerance, indicating that underlying β-cell dysfunction precedes the development of gestational diabetes in this animal model. This is the first time a role for CTGF in β-cell function has been reported. PMID:27460898

  5. DNA-methylation dependent regulation of embryo-specific 5S ribosomal DNA cluster transcription in adult tissues of sea urchin Paracentrotus lividus.

    PubMed

    Bellavia, Daniele; Dimarco, Eufrosina; Naselli, Flores; Caradonna, Fabio

    2013-10-01

    We have previously reported a molecular and cytogenetic characterization of three different 5S rDNA clusters in the sea urchin Paracentrotus lividus and recently, demonstrated the presence of high heterogeneity in functional 5S rRNA. In this paper, we show some important distinctive data on 5S rRNA transcription for this organism. Using single strand conformation polymorphism (SSCP) analysis, we demonstrate the existence of two classes of 5S rRNA, one which is embryo-specific and encoded by the smallest (700 bp) cluster and the other which is expressed at every stage and encoded by longer clusters (900 and 950 bp). We also demonstrate that the embryo-specific class of 5S rRNA is expressed in oocytes and embryonic stages and is silenced in adult tissue and that this phenomenon appears to be due exclusively to DNA methylation, as indicated by sensitivity to 5-azacytidine, unlike Xenopus where this mechanism is necessary but not sufficient to maintain the silenced status. PMID:23933480

  6. Novel antibody capture assay for paraffin-embedded tissue detects wide-ranging amyloid beta and paired helical filament–tau accumulation in cognitively normal older adults

    PubMed Central

    Postupna, Nadia; Rose, Shannon E.; Bird, Thomas D.; Gonzalez-Cuyar, Luis F.; Sonnen, Joshua A.; Larson, Eric B.; Keene, C. Dirk; Montine, Thomas J.

    2011-01-01

    Quantifying antigens in formalin-fixed tissue is challenging and limits investigation in population-based studies of brain aging. To address this major limitation, we have developed a new technique that we call “Histelide”: immunohistochemistry (HIST-) and ELISA (-EL-) performed on a glass slide (-IDE). We validated Histelide in sections of prefrontal cortex from 20 selected cases: 12 subjects with clinically and neuropathologically diagnosed Alzheimer’s disease (AD), either autosomal dominant or late-onset forms, and 8 clinical and neuropathologic Controls. AD cases had significantly increased amyloid beta (Aβ) peptide and paired helical filament– (PHF-) tau per area of neocortex that was proteinase K-sensitive, and significantly decreased amount of synaptophysin. We next investigated prefrontal cortex from 81 consecutive cases of high cognitive performers from the Adult Changes in Thought (ACT) study, a population-based study of brain aging and incident dementia. As expected, latent AD was common in this group; however, our results quantified widely individually-varying levels of Aβ peptides and PHF-tau among these high cognitive performers. This novel approach obtains quantitative data from population-based studies, and our initial studies with high cognitive performers provide important quantitative insights into latent AD that should help guide expectations from neuroimaging and prevention studies. PMID:21999410

  7. The gene encoding the VP16-accessory protein HCF (HCFC1) resides in human Xq28 and is highly expressed in fetal tissues and the adult kidney

    SciTech Connect

    Wilson, A.C.; Herr, W.; Parrish, J.E.; Massa, H.F.

    1995-01-20

    After herpes simplex virus (HSV) infection, the viral regulatory protein VP16 activates transcription of the HSV immediate-early promoters by directing complex formation with two cellular proteins, the POU-homeodomain transcription factor Oct-1 and the host cell factor HCF. The function of HCF in uninfected cells is unknown. Here we show by fluorescence in situ hybridization and somatic cell hybrid analysis that the gene encoding human HCF, HCFC1, maps to the q28 region of the X chromosome. Yeast artificial chromosome and cosmid mapping localizes the HCFC1 gene within 100 kb distal of the renal vasopressin type-2 receptor (V2R) gene and adjacent to the renin-binding protein gene (RENBP). The HCFC1 gene is apparently unique. HCF transcripts and protein are most abundant in fetal and placental tissues and cell lines, suggesting a role in cell proliferation. In adults, HCF protein is abundant in the kidney, but not in the brain, a site of latent HSV infection and where HCF levels may influence progression of HSV infection. 42 refs., 3 figs.

  8. Distinct Functions of Different scl Isoforms in Zebrafish Definitive Hematopoietic Stem Cell Initiation and Maintenance

    NASA Astrophysics Data System (ADS)

    Lan, Yahui

    2011-07-01

    The establishment of entire blood system relies on the multi-potent hematopoietic stem cells (HSCs), thus identifying the molecular mechanism in HSC generation is of importance for not only complementing the fundamental knowledge in stem cell biology, but also providing insights to the regenerative therapies. Recent researches have documented the formation of nascent HSCs through a direct transition from ventral aortic endothelium, named as endothelial hematopoietic transition (EHT) process. However, the precise genetic program engaged in this process remains largely elusive. The transcription factor scl plays pivotal and conserved roles in embryonic and adult hematopoiesis from teleosts to mammals. Our lab have previously identified a new truncated scl isoform, scl-beta, which is indispensible for the specification of HSCs in the ventral wall of dorsal aorta (VDA), the zebrafish equivalent of mammalian fetal hematopoietic organ. Here we observe that, by combining time-lapse confocal imaging of transgenic zebrafish and genetic epistasis analysis, scl-beta is expressed in a subset of ventral aortic endothelial cells and critical for their forthcoming transformation to hemogenic endothelium; in contrast, runx1 is required downstream to govern the successful egress of the hemogenic endothelial cells to become naive HSCs. In addition, the traditional known full-length scl-alpha isoform is firstly evidenced to be required for the maintenance or survival of newly formed HSCs in VDA. Collectively our data has established the genetic hierarchy controlling discrete steps in the consecutive process of HSC formation from endothelial cells and further development in VDA.

  9. (Lymph)angiogenic influences on hematopoietic cells in acute myeloid leukemia

    PubMed Central

    Lee, Ji Yoon; Kim, Hee-Je

    2014-01-01

    The purpose of this review is to provide an overview of the effect of (lymph)angiogenic cytokines on hematopoietic cells involved in acute myeloid leukemia (AML). Like angiogenesis, lymphangiogenesis occurs in pathophysiological conditions but not in healthy adults. AML is closely associated with the vasculature system, and the interplay between lymphangiogenic cytokines maintains leukemic blast survival in the bone marrow (BM). Once AML is induced, proangiogenic cytokines function as angiogenic or lymphangiogenic factors and affect hematopoietic cells, including BM-derived immune cells. Simultaneously, the representative cytokines, VEGFs and their receptors are expressed on AML blasts in vascular and osteoblast niches in both the BM and the peripheral circulation. After exposure to (lymph)angiogenic cytokines in leukemogenesis and infiltration, immune cell phenotypes and functions are affected. These dynamic behaviors in the BM reflect the clinical features of AML. In this review, we note the importance of lymphangiogenic factors and their receptors in hematopoietic cells in AML. Understanding the functional characterization of (lymph)angiogenic factors in the BM niche in AML will also be helpful in interrupting the engraftment of leukemic stem cells and for enhancing immune cell function by modulating the tumor microenvironment. PMID:25412683

  10. Potential for a pluripotent adult stem cell treatment for acute radiation sickness

    PubMed Central

    Rodgerson, Denis O; Reidenberg, Bruce E; Harris, Alan G; Pecora, Andrew L

    2012-01-01

    Accidental radiation exposure and the threat of deliberate radiation exposure have been in the news and are a public health concern. Experience with acute radiation sickness has been gathered from atomic blast survivors of Hiroshima and Nagasaki and from civilian nuclear accidents as well as experience gained during the development of radiation therapy for cancer. This paper reviews the medical treatment reports relevant to acute radiation sickness among the survivors of atomic weapons at Hiroshima and Nagasaki, among the victims of Chernobyl, and the two cases described so far from the Fukushima Dai-Ichi disaster. The data supporting the use of hematopoietic stem cell transplantation and the new efforts to expand stem cell populations ex vivo for infusion to treat bone marrow failure are reviewed. Hematopoietic stem cells derived from bone marrow or blood have a broad ability to repair and replace radiation induced damaged blood and immune cell production and may promote blood vessel formation and tissue repair. Additionally, a constituent of bone marrow-derived, adult pluripotent stem cells, very small embryonic like stem cells, are highly resistant to ionizing radiation and appear capable of regenerating radiation damaged tissue including skin, gut and lung. PMID:24520532

  11. The Hematopoietic Stem Cell Therapy for Exploration of Space

    NASA Astrophysics Data System (ADS)

    Ohi, S.

    Departments of Biochemistry &Molecular Biology, Genetics &Human Genetics, Pediatrics &Child Long-duration space missions require countermeasures against severe/invasive disorders in astronauts that are caused by space environments, such as hematological/cardiac abnormalities, bone/muscle losses, immunodeficiency, neurological disorders, and cancer. Some, if not all, of these disorders may be amenable to hematopoietic stem cell therapy and gene therapy. Growing evidence indicates that hematopoietic stem cells (HSCs) possess extraordinary plasticity to differentiate not only to all types of blood cells but also to various tissues, including bone, muscle, skin, liver and neuronal cells. Therefore, our working hypothesis is that the hematopoietic stem cell-based therapy, herein called as the hematopoietic stem cell therapy (HSCT), might provide countermeasure/prevention for hematological abnormalities, bone and muscle losses in space, thereby maintaining astronauts' homeostasis. Our expertise lies in recombinant adeno-associated virus (rAAV)-mediated gene therapy for the hemoglobinopathies, -thalassemia and sickle cell disease (Ohi S, Kim BC, J Pharm Sci 85: 274-281, 1996; Ohi S, et al. Grav Space Biol Bull 14: 43, 2000). As the requisite steps in this protocol, we established procedures for purification of HSCs from both mouse and human bone marrow in 1 G. Furthermore, we developed an easily harvestable, long-term liquid suspension culture system, which lasts more than one year, for growing/expanding HSCs without stromal cells. Human globin cDNAs/gene were efficiently expressed from the rAAVs in the mouse HSCs in culture. Additionally, the NASA Rotating Wall Vessel (RWV) culture system is being optimized for the HSC growth/expansion. Thus, using these technologies, the above hypothesis is being investigated by the ground-based experiments as follows: 1) -thalassemic mice (C57BL/6-Hbbth/Hbbth, Hbd-minor) are transplanted with normal isologous HSCs to correct the

  12. Kinetics of iron removal by phlebotomy in patients with iron overload after allogeneic hematopoietic cell transplantation

    PubMed Central

    Eisfeld, Ann-Kathrin; Krahl, Rainer; Jaekel, Nadja; Niederwieser, Dietger; Al-Ali, Haifa Kathrin

    2012-01-01

    Excess body iron could persist for years after allogeneic hematopoietic cell transplantation (HCT) with possible deleterious sequels. An iron depletive therapy with phlebotomy seems rational. Kinetics of iron removal by phlebotomy without erythropoietin support in non-thalassemic adult patients with iron overload after HCT and the impact of pre- and post-HCT hemochromatosis (HFE) genotype on iron mobilization were investigated. Patients and methods: Phlebotomy was initiated in 61 recipients of allografts due to hematologic malignancies (median age 48 years) after a median of 18 months. The prephlebotomy median serum ferritin (SF) was 1697ng/ml and the median number of blood transfusions 28 units. Alanine aminotransferase (ALT)/aspartate aminotransferase (AST), alkaline phosphates (AP), and bilirubin were elevated in 55.7%, 64% and 11.5% patients respectively. HFE-genotype was elucidated by polymerase chain reaction using hybridization probes and melting curve analysis. Results: Phlebotomy was well-tolerated irrespective of age or conditioning. A negative iron balance in 80% of patients (median SF 1086 ng/ml) and a rise in hemoglobin were observed (p<0.0001). Higher transfusional burden and SF were associated with a greater iron mobilization per session (p=0.02). In 58% of patients, a plateau after an initial steady decline in SF was followed by a second decline under further phlebotomy. The improvement in ALT (p=0.002), AST (p=0.03), AP (p=0.01), and bilirubin (p<0.0001) did not correlate with the decline in SF. Mutant HFE-gene variants were detected in 14/55 (25%) pre-HCT and 22/55 (40%) patients post-HCT. Overall, dissimilar pre- and posttransplantational HFE-genotypes were detected in 20/55 (40%) patients. Posttransplantational mutant HFE variants correlated with a slower decline in SF (p=0.007). Conclusions: Phlebotomy is a convenient therapy of iron overload in survivors of HCT. A negative iron balance and a rise in hemoglobin were observed in the majority of

  13. Hematopoietic stem cells develop in the absence of endothelial cadherin 5 expression.

    PubMed

    Anderson, Heidi; Patch, Taylor C; Reddy, Pavankumar N G; Hagedorn, Elliott J; Kim, Peter G; Soltis, Kathleen A; Chen, Michael J; Tamplin, Owen J; Frye, Maike; MacLean, Glenn A; Hübner, Kathleen; Bauer, Daniel E; Kanki, John P; Vogin, Guillaume; Huston, Nicholas C; Nguyen, Minh; Fujiwara, Yuko; Paw, Barry H; Vestweber, Dietmar; Zon, Leonard I; Orkin, Stuart H; Daley, George Q; Shah, Dhvanit I

    2015-12-24

    Rare endothelial cells in the aorta-gonad-mesonephros (AGM) transition into hematopoietic stem cells (HSCs) during embryonic development. Lineage tracing experiments indicate that HSCs emerge from cadherin 5 (Cdh5; vascular endothelial-cadherin)(+) endothelial precursors, and isolated populations of Cdh5(+) cells from mouse embryos and embryonic stem cells can be differentiated into hematopoietic cells. Cdh5 has also been widely implicated as a marker of AGM-derived hemogenic endothelial cells. Because Cdh5(-/-) mice embryos die before the first HSCs emerge, it is unknown whether Cdh5 has a direct role in HSC emergence. Our previous genetic screen yielded malbec (mlb(bw306)), a zebrafish mutant for cdh5, with normal embryonic and definitive blood. Using time-lapse confocal imaging, parabiotic surgical pairing of zebrafish embryos, and blastula transplantation assays, we show that HSCs emerge, migrate, engraft, and differentiate in the absence of cdh5 expression. By tracing Cdh5(-/-)green fluorescent protein (GFP)(+/+) cells in chimeric mice, we demonstrated that Cdh5(-/-)GFP(+/+) HSCs emerging from embryonic day 10.5 and 11.5 (E10.5 and E11.5) AGM or derived from E13.5 fetal liver not only differentiate into hematopoietic colonies but also engraft and reconstitute multilineage adult blood. We also developed a conditional mouse Cdh5 knockout (Cdh5(flox/flox):Scl-Cre-ER(T)) and demonstrated that multipotent hematopoietic colonies form despite the absence of Cdh5. These data establish that Cdh5, a marker of hemogenic endothelium in the AGM, is dispensable for the transition of hemogenic endothelium to HSCs. PMID:26385351

  14. Epigenetic and in vivo comparison of diverse MSC sources reveals an endochondral signature for human hematopoietic niche formation

    PubMed Central

    Etchart, Nathalie; Thomas, Daniel; Hofmann, Nicole A.; Fruehwirth, Margareta; Sinha, Subarna; Chan, Charles K.; Senarath-Yapa, Kshemendra; Seo, Eun-Young; Wearda, Taylor; Hartwig, Udo F.; Beham-Schmid, Christine; Trajanoski, Slave; Lin, Qiong; Wagner, Wolfgang; Dullin, Christian; Alves, Frauke; Andreeff, Michael; Weissman, Irving L.; Longaker, Michael T.; Schallmoser, Katharina; Majeti, Ravindra; Strunk, Dirk

    2015-01-01

    In the last decade there has been a rapid expansion in clinical trials using mesenchymal stromal cells (MSCs) from a variety of tissues. However, despite similarities in morphology, immunophenotype, and differentiation behavior in vitro, MSCs sourced from distinct tissues do not necessarily have equivalent biological properties. We performed a genome-wide methylation, transcription, and in vivo evaluation of MSCs from human bone marrow (BM), white adipose tissue, umbilical cord, and skin cultured in humanized media. Surprisingly, only BM-derived MSCs spontaneously formed a BM cavity through a vascularized cartilage intermediate in vivo that was progressively replaced by hematopoietic tissue and bone. Only BM-derived MSCs exhibited a chondrogenic transcriptional program with hypomethylation and increased expression of RUNX3, RUNX2, BGLAP, MMP13, and ITGA10 consistent with a latent and primed skeletal developmental potential. The humanized MSC–derived microenvironment permitted homing and maintenance of long-term murine SLAM+ hematopoietic stem cells (HSCs), as well as human CD34+/CD38−/CD90+/CD45RA+ HSCs after cord blood transplantation. These studies underscore the profound differences in developmental potential between MSC sources independent of donor age, with implications for their clinical use. We also demonstrate a tractable human niche model for studying homing and engraftment of human hematopoietic cells in normal and neoplastic states. PMID:25406351

  15. Reticular dysgenesis–associated AK2 protects hematopoietic stem and progenitor cell development from oxidative stress

    PubMed Central

    Rissone, Alberto; Weinacht, Katja Gabriele; la Marca, Giancarlo; Bishop, Kevin; Giocaliere, Elisa; Jagadeesh, Jayashree; Felgentreff, Kerstin; Dobbs, Kerry; Al-Herz, Waleed; Jones, Marypat; Chandrasekharappa, Settara; Kirby, Martha; Wincovitch, Stephen; Simon, Karen Lyn; Itan, Yuval; DeVine, Alex; Schlaeger, Thorsten; Schambach, Axel; Sood, Raman

    2015-01-01

    Adenylate kinases (AKs) are phosphotransferases that regulate the cellular adenine nucleotide composition and play a critical role in the energy homeostasis of all tissues. The AK2 isoenzyme is expressed in the mitochondrial intermembrane space and is mutated in reticular dysgenesis (RD), a rare form of severe combined immunodeficiency (SCID) in humans. RD is characterized by a maturation arrest in the myeloid and lymphoid lineages, leading to early onset, recurrent, and overwhelming infections. To gain insight into the pathophysiology of RD, we studied the effects of AK2 deficiency using the zebrafish model and induced pluripotent stem cells (iPSCs) derived from fibroblasts of an RD patient. In zebrafish, Ak2 deficiency affected hematopoietic stem and progenitor cell (HSPC) development with increased oxidative stress and apoptosis. AK2-deficient iPSCs recapitulated the characteristic myeloid maturation arrest at the promyelocyte stage and demonstrated an increased AMP/ADP ratio, indicative of an energy-depleted adenine nucleotide profile. Antioxidant treatment rescued the hematopoietic phenotypes in vivo in ak2 mutant zebrafish and restored differentiation of AK2-deficient iPSCs into mature granulocytes. Our results link hematopoietic cell fate in AK2 deficiency to cellular energy depletion and increased oxidative stress. This points to the potential use of antioxidants as a supportive therapeutic modality for patients with RD. PMID:26150473

  16. Ultra-endurance exercise induces stress and inflammation and affects circulating hematopoietic progenitor cell function.

    PubMed

    Stelzer, I; Kröpfl, J M; Fuchs, R; Pekovits, K; Mangge, H; Raggam, R B; Gruber, H-J; Prüller, F; Hofmann, P; Truschnig-Wilders, M; Obermayer-Pietsch, B; Haushofer, A C; Kessler, H H; Mächler, P

    2015-10-01

    Although amateur sports have become increasingly competitive within recent decades, there are as yet few studies on the possible health risks for athletes. This study aims to determine the impact of ultra-endurance exercise-induced stress on the number and function of circulating hematopoietic progenitor cells (CPCs) and hematological, inflammatory, clinical, metabolic, and stress parameters in moderately trained amateur athletes. Following ultra-endurance exercise, there were significant increases in leukocytes, platelets, interleukin-6, fibrinogen, tissue enzymes, blood lactate, serum cortisol, and matrix metalloproteinase-9. Ultra-endurance exercise did not influence the number of CPCs but resulted in a highly significant decline of CPC functionality after the competition. Furthermore, Epstein-Barr virus was seen to be reactivated in one of seven athletes. The link between exercise-induced stress and decline of CPC functionality is supported by a negative correlation between cortisol and CPC function. We conclude that ultra-endurance exercise induces metabolic stress and an inflammatory response that affects not only mature hematopoietic cells but also the function of the immature hematopoietic stem and progenitor cell fraction, which make up the immune system and provide for regeneration. PMID:25438993

  17. Angiogenin Defines Heterogeneity at the Core of the Hematopoietic Niche.

    PubMed

    Di Scala, Marianna; Hidalgo, Andrés

    2016-09-01

    Successful hematopoietic regeneration demands preservation of stemness while enabling expansion and differentiation into blood lineages. Now, Silberstein et al. (2016) and Goncalves et al. (2016) identify a ribonuclease secreted by proximal niche cells that simultaneously drives quiescence of HSCs and proliferation of myeloid progenitors and dramatically enhances hematopoietic recovery after HSC transplantation. PMID:27588743

  18. Tissue-Specific Cultured Human Pericytes: Perivascular Cells from Smooth Muscle Tissue Have Restricted Mesodermal Differentiation Ability.

    PubMed

    Pierantozzi, Enrico; Vezzani, Bianca; Badin, Margherita; Curina, Carlo; Severi, Filiberto Maria; Petraglia, Felice; Randazzo, Davide; Rossi, Daniela; Sorrentino, Vincenzo

    2016-05-01

    Microvascular pericytes (PCs) are considered the adult counterpart of the embryonic mesoangioblasts, which represent a multipotent cell population that resides in the dorsal aorta of the developing embryo. Although PCs have been isolated from several adult organs and tissues, it is still controversial whether PCs from different tissues exhibit distinct differentiation potentials. To address this point, we investigated the differentiation potentials of isogenic human cultured PCs isolated from skeletal (sk-hPCs) and smooth muscle tissues (sm-hPCs). We found that both sk-hPCs and sm-hPCs expressed known pericytic markers and did not express endothelial, hematopoietic, and myogenic markers. Both sk-hPCs and sm-hPCs were able to differentiate into smooth muscle cells. In contrast, sk-hPCs, but not sm-hPCs, differentiated in skeletal muscle cells and osteocytes. Given the reported ability of the Notch pathway to regulate skeletal muscle and osteogenic differentiation, sk-hPCs and sm-hPCs were treated with N-[N-(3,5- difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), a known inhibitor of Notch signaling. DAPT treatment, as assessed by histological and molecular analysis, enhanced myogenic differentiation and abolished osteogenic potential of sk-hPCs. In contrast, DAPT treatment did not affect either myogenic or osteogenic differentiation of sm-hPCs. In summary, these results indicate that, despite being isolated from the same anatomical niche, cultured PCs from skeletal muscle and smooth muscle tissues display distinct differentiation abilities. PMID:26956507

  19. In vivo gene targeting of IL-3 into immature hematopoietic cells through CD117 receptor mediated antibody gene delivery

    PubMed Central

    Chapel, Alain; Deas, Olivier; Bensidhoum, Morad; François, Sabine; Mouiseddine, Moubarak; Poncet, Pascal; Dürrbach, Antoine; Aigueperse, Jocelyne; Gourmelon, Patrick; Gorin, Norbert C; Hirsch, François; Thierry, Dominique

    2004-01-01

    Background Targeted gene transfection remains a crucial issue to permit the real development of genetic therapy. As such, in vivo targeted transfection of specific subsets of hematopoietic stem cells might help to sustain hematopoietic recovery from bone marrow aplasia by providing local production of growth factors. Methods Balb/C mice were injected intravenously, with an anti-mouse c-kit (CD117) monoclonal antibody chemically coupled to a human IL-3 gene-containing plasmid DNA. Mice were sacrificed for tissue analyses at various days after injection of the conjugates. Results By ELISA, the production of human IL-3 was evidenced in the sera of animals 5 days after treatment. Cytofluorometric analysis after in vivo transfection of a reporter gene eGFP demonstrated transfection of CD117+/Sca1+ hematopoietic immature cells. By PCR analysis of genomic DNA and RNA using primer specific pIL3 sequences, presence and expression of the human IL-3-transgene were detected in the bone marrow up to 10 days in transfected mice but not in control animals. Conclusions These data clearly indicate that antibody-mediated endocytosis gene transfer allows the expression of the IL-3 transgene into hematopoietic immature cells, in vivo. While availability of marketed recombinant growth factors is restricted, this targeting strategy should permit delivery of therapeutic genes to tissues of interest through systemic delivery. In particular, the ability to specifically target growth factor expression into repopulating hematopoietic stem cells may create new opportunities for the treatment of primary or radiation-induced marrow failures. PMID:15509303

  20. Hematopoietic Stem Cells, Their Niche, and the Concept of Co-Culture Systems: A Critical Review.

    PubMed

    Vaidya, Anuradha; Kale, Vaijayanti

    2015-01-01

    Hematopoietic stem cells (HSCs) have the ability to self-renew and give rise to all lineages of blood cells. HSCs reside in niches that are local tissue microenvironments that maintain and regulate them. Although much progress has been made in elucidating the location and cellular components of the HSC niche, however it still remains incompletely defined. Transplantation using HSCs has been applied for the treatment of several diseases but with limited success. Furthermore, although human HSC transplantation has been widely used to rescue the patients after cytoablative therapies, quantitative in vivo human assays for hematopoietic cells have been considered to be neither ethical nor practical. Since HSCs persist in small quantities in the body, understanding the mechanism that govern their fate is essential for the advancement of HSC expansion and transplantation in the future. Since bone marrow is the primary site of HSC maintenance and hematopoiesis, defining the niche components that work in concert to regulate hematopoiesis is crucial to improve regeneration following injury or following HSC transplantation and to also understand how disordered niche function could contribute to disease. In recent years, there has been a growing realization of the limitations in identifying the primitive HSCs by its phenotype alone and therefore the concept of co-culture systems (functional in vitro assays) has become increasingly important to demonstrate the presence of primitive hematopoietic cells by estimating their biological functions. This system has provided a basis for the development of powerful assay procedures for expanding, quantitating and distinguishing cells at discrete stages of early hematopoietic cell differentiation. PMID:26665935

  1. Neuromuscular complications of hematopoietic stem cell transplantation.

    PubMed

    Ruzhansky, Katherine M; Brannagan, Thomas H

    2015-10-01

    Neuromuscular diseases such as polymyositis, dermatomyositis, peripheral neuropathy, and disorders of neuromuscular transmission are reported to be complications of hematopoietic stem cell transplantation (HSCT). Although cases have been reported with allogeneic HSCT in the setting of chronic graft versus host disease, they are also known to occur without evidence thereof and even occur in the setting of autologous HSCT. The 2005 National Institutes of Health Consensus Criteria classify polymyositis and dermatomyositis as "distinctive" features, and neuropathy and MG as "other" features. These neuromuscular complications present very similarly to the idiopathic autoimmune disorders and respond to similar treatment modalities. PMID:26044357

  2. RNA interference in adult Ascaris suum – an opportunity for the development of a functional genomics platform that supports organism-, tissue- and cell-based biology in a nematode parasite

    PubMed Central

    McCoy, Ciaran J.; Warnock, Neil D.; Atkinson, Louise E.; Atcheson, Erwan; Martin, Richard J.; Robertson, Alan P.; Maule, Aaron G.; Marks, Nikki J.; Mousley, Angela

    2015-01-01

    The sustainable control of animal parasitic nematodes requires the development of efficient functional genomics platforms to facilitate target validation and enhance anthelmintic discovery. Unfortunately, the utility of RNA interference (RNAi) for the validation of novel drug targets in nematode parasites remains problematic. Ascaris suum is an important veterinary parasite and a zoonotic pathogen. Here we show that adult A. suum is RNAi competent, and highlight the induction, spread and consistency of RNAi across multiple tissue types. This platform provides a new opportunity to undertake whole organism-, tissue- and cell-level gene function studies to enhance target validation processes for nematode parasites of veterinary/medical significance. PMID:26149642

  3. Endoplasmic reticulum stress regulation in hematopoietic stem cells.

    PubMed

    Miharada, Kenichi

    2016-08-01

    Adult hematopoietic stem cells (HSCs) reside in bone marrow and are maintained in a dormant state within a special microenvironment, their so-called "niche". Detaching from the niche induces cell cycle progression, resulting in a reduction of the reconstitution capacity of HSCs. In contrast, fetal liver HSCs actively divide without losing their stem cell potentials. Thus, it has been unclear what types of cellular responses and metabolic changes occur in growing HSCs. We previously discovered that HSCs express relatively low levels of endoplasmic reticulum (ER) chaperone proteins governing protein folding, making HSCs vulnerable to an elevation of stress signals caused by accumulation of un-/misfolded proteins (ER stress) upon in vitro culture. Interestingly, fetal liver HSCs do not show ER stress elevation despite unchanged levels of chaperone proteins. Our latest studies utilizing multiple mouse models revealed that in the fetal liver bile acids as chemical chaperones play a key role supporting the protein folding which results in the suppression of ER stress induction. These findings highlight the importance of ER stress regulations in hematopoiesis. PMID:27599423

  4. Engraftment syndrome after allogeneic hematopoietic cell transplantation predicts poor outcomes.

    PubMed

    Chang, Lawrence; Frame, David; Braun, Thomas; Gatza, Erin; Hanauer, David A; Zhao, Shuang; Magenau, John M; Schultz, Kathryn; Tokala, Hemasri; Ferrara, James L M; Levine, John E; Reddy, Pavan; Paczesny, Sophie; Choi, Sung Won

    2014-09-01

    Engraftment syndrome (ES), characterized by fever, rash, pulmonary edema, weight gain, liver and renal dysfunction, and/or encephalopathy, occurs at the time of neutrophil recovery after hematopoietic cell transplantation (HCT). In this study, we evaluated the incidence, clinical features, risk factors, and outcomes of ES in children and adults undergoing first-time allogeneic HCT. Among 927 patients, 119 (13%) developed ES at a median of 10 days (interquartile range 9 to 12) after HCT. ES patients experienced significantly higher cumulative incidence of grade 2 to 4 acute GVHD at day 100 (75% versus 34%, P < .001) and higher nonrelapse mortality at 2 years (38% versus 19%, P < .001) compared with non-ES patients, resulting in lower overall survival at 2 years (38% versus 54%, P < .001). There was no significant difference in relapse at 2 years (26% versus 31%, P = .772). Suppression of tumorigenicity 2, interleukin 2 receptor alpha, and tumor necrosis factor receptor 1 plasma biomarker levels were significantly elevated in ES patients. Our results illustrate the clinical significance and prognostic impact of ES on allogeneic HCT outcomes. Despite early recognition of the syndrome and prompt institution of corticosteroid therapy, outcomes in ES patients were uniformly poor. This study suggests the need for a prospective approach of collecting clinical features combined with correlative laboratory analyses to better characterize ES. PMID:24892262

  5. Local Mesenchymal Stem/Progenitor Cells Are a Preferential Target for Initiation of Adult Soft Tissue Sarcomas Associated with p53 and Rb Deficiency

    PubMed Central

    Choi, Jinhyang; Curtis, Stephen J.; Roy, David M.; Flesken-Nikitin, Andrea; Nikitin, Alexander Yu.

    2010-01-01

    The cell of origin and pathogenesis of the majority of adult soft tissue sarcomas (STS) remains poorly understood. Because mutations in both the P53 and RB tumor suppressor genes are frequent in STS in humans, we inactivated these genes by Cre-loxP–mediated recombination in mice with floxed p53 and Rb. Ninety-three percent of mice developed spindle cell/pleomorphic sarcomas after a single subcutaneous injection of adenovirus carrying Cre-recombinase. Similar to human STS, these sarcomas overexpress Cxcr4, which contributes to their invasive properties. Using irradiation chimeras generated by transplanting bone marrow cells from mice carrying either the Rosa26StoploxPLacZ or the Z/EG reporter, as well as the floxed p53 and Rb genes, into irradiated p53loxP/loxPRbloxP/loxP mice, it was determined that sarcomas do not originate from bone marrow–derived cells, such as macrophages, but arise from the local resident cells. At the same time, dermal mesenchymal stem cells isolated by strict plastic adherence and low levels of Sca-1 expression (Sca-1low, CD31negCD45neg) have shown enhanced potential for malignant transformation according to soft agar, invasion, and tumorigenicity assays, after the conditional inactivation of both p53 and Rb. Sarcomas formed after transplantation of these cells have features typical for undifferentiated high-grade pleomorphic sarcomas. Taken together, our studies indicate that local Sca-1low dermal mesenchymal stem/progenitor cells are preferential targets for malignant transformation associated with deficiencies in both p53 and Rb. PMID:20864684

  6. Putative population of adipose-derived stem cells isolated from mediastinal tissue during cardiac surgery.

    PubMed

    Patel, Amit N; Yockman, James; Vargas, Vanessa; Bull, David A

    2013-01-01

    Mesenchymal stem cells have been isolated from various adult human tissues and are valuable for not only therapeutic applications but for the study of tissue homeostasis and disease progression. Subcutaneous adipose depots have been shown to contain large amounts of stem cells. There is little information that has been reported to date describing the isolation and characterization of mesenchymal stem cells from visceral adipose tissue. In this study, we describe a mesenchymal stem cell population isolated from mediastinal adipose depots. The cells express CD44, CD105, CD166, and CD90 and are negative for hematopoietic markers CD34, CD45, and HLA-DR. In addition, the cells have a multilineage potential, with the ability to differentiate into adipogenic, osteogenic, and chondrogenic cell types. The biological function of visceral adipose tissue remains largely unknown and uncharacterized. However, the proximity of adipose tissue to the heart suggests a potential role in the pathogenesis of cardiovascular disease in obesity. In addition, with the ability of fat to regulate metabolic activity in humans, this novel stem cell source may be useful to further study the mechanisms involved in metabolic disorders. PMID:22490339

  7. Characterization of feline glomerulonephritis associated with viral-induced hematopoietic neoplasms.

    PubMed

    Glick, A D; Horn, R G; Holscher, M

    1978-08-01

    Light, electron, and immunofluorescence microscopy on tissues from 63 domestic cats revealed that glomerulonephritis occurred in almost one third of cats with hematopoietic neoplasms of the type linked with feline leukemia virus (FeLV). Glomerular lesions were of the immune complex type with subepithelial, subendothelial, and mesangial dense deposits and reticular aggregates, similar to the nephropathy associated with systemic lupus erythematosus in humans. Evidence that the glomerular lesions may be viral-induced raises the possibility of similar pathogenetic mechanisms in human disease. PMID:677265

  8. Omental sclerosing extramedullary hematopoietic tumors in Janus kinase-2 negative myelofibrosis: caveat at frozen section.

    PubMed

    Shinde, Sweety V; Shenoy, Asha S; Balsarkar, Dharmesh J; Shah, Vinaya B

    2014-01-01

    Sclerosing extramedullary hematopoietic tumors (SEMHTs) are associated with chronic myeloproliferative neoplasms. These extremely rare mass lesions were first described in kidney and peritoneum. On histopathology, they are characterized by sclerosis, entrapped fat, atypical megakaryocytes with myeloid and erythroid elements. Only approximately ten cases have been subsequently reported in orbit, lacrimal system, liver, omentum, and skin. The authors present a case of SEMHTs as incidentally detected omental nodules, while the patient was undergoing splenectomy for Janus kinase-2 negative myelofibrosis. The authors postulate their origin in omentum-associated lymphoid tissue; and highlight the diagnostic dilemma presented by SEMHTs at frozen section. PMID:25118752

  9. Functions of TET Proteins in Hematopoietic Transformation

    PubMed Central

    Han, Jae-A; An, Jungeun; Ko, Myunggon

    2015-01-01

    DNA methylation is a well-characterized epigenetic modification that plays central roles in mammalian development, genomic imprinting, X-chromosome inactivation and silencing of retrotransposon elements. Aberrant DNA methylation pattern is a characteristic feature of cancers and associated with abnormal expression of oncogenes, tumor suppressor genes or repair genes. Ten-eleven-translocation (TET) proteins are recently characterized dioxygenases that catalyze progressive oxidation of 5-methylcytosine to produce 5-hydroxymethylcytosine and further oxidized derivatives. These oxidized methylcytosines not only potentiate DNA demethylation but also behave as independent epigenetic modifications per se. The expression or activity of TET proteins and DNA hydroxymethylation are highly dysregulated in a wide range of cancers including hematologic and non-hematologic malignancies, and accumulating evidence points TET proteins as a novel tumor suppressor in cancers. Here we review DNA demethylation-dependent and -independent functions of TET proteins. We also describe diverse TET loss-of-function mutations that are recurrently found in myeloid and lymphoid malignancies and their potential roles in hematopoietic transformation. We discuss consequences of the deficiency of individual Tet genes and potential compensation between different Tet members in mice. Possible mechanisms underlying facilitated oncogenic transformation of TET-deficient hematopoietic cells are also described. Lastly, we address non-mutational mechanisms that lead to suppression or inactivation of TET proteins in cancers. Strategies to restore normal 5mC oxidation status in cancers by targeting TET proteins may provide new avenues to expedite the development of promising anti-cancer agents. PMID:26552488

  10. Kras is Required for Adult Hematopoiesis.

    PubMed

    Damnernsawad, Alisa; Kong, Guangyao; Wen, Zhi; Liu, Yangang; Rajagopalan, Adhithi; You, Xiaona; Wang, Jinyong; Zhou, Yun; Ranheim, Erik A; Luo, Hongbo R; Chang, Qiang; Zhang, Jing

    2016-07-01

    Previous studies indicate that Kras is dispensable for fetal liver hematopoiesis, but its role in adult hematopoiesis remains unclear. Here, we generated a Kras conditional knockout allele to address this question. Deletion of Kras in adult bone marrow (BM) is mediated by Vav-Cre or inducible Mx1-Cre. We find that loss of Kras leads to greatly reduced thrombopoietin (TPO) signaling in hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs), while stem cell factor-evoked ERK1/2 activation is not affected. The compromised TPO signaling is associated with reduced long term- and intermediate-term HSC compartments and a bias toward myeloid differentiation in MPPs. Although granulocyte macrophage colony-stimulating factor (GM-CSF)-evoked ERK1/2 activation is only moderately decreased in Kras(-/-) myeloid progenitors, it is blunted in neutrophils and neutrophil survival is significantly reduced in vitro. At 9-12 months old, Kras conditional knockout mice develop profound hematopoietic defects, including splenomegaly, an expanded neutrophil compartment, and reduced B cell number. In a serial transplantation assay, the reconstitution potential of Kras(-/-) BM cells is greatly compromised, which is attributable to defects in the self-renewal of Kras(-/-) HSCs and defects in differentiated hematopoietic cells. Our results demonstrate that Kras is a major regulator of TPO and GM-CSF signaling in specific populations of hematopoietic cells and its function is required for adult hematopoiesis. Stem Cells 2016;34:1859-1871. PMID:26972179

  11. Natural killer cells in non-hematopoietic malignancies

    PubMed Central

    Desbois, Mélanie; Rusakiewicz, Sylvie; Locher, Clara; Zitvogel, Laurence; Chaput, Nathalie

    2012-01-01

    Natural killer (NK) cells belong to the innate immune system and were initially described functionallywise by their spontaneous cytotoxic potential against transformed or virus-infected cells. A delicate balance between activating and inhibiting receptors regulates NK cell tolerance. A better understanding of tissue resident NK cells, of NK cell maturation stages and migration patterns has evolved allowing a thoughtful evaluation of their modus operandi. While evidence has been brought up for their relevance as gate keepers in some hematopoietic malignancies, the role of NK cells against progression and dissemination of solid tumors remains questionable. Hence, many studies pointed out the functional defects of the rare NK cell infiltrates found in tumor beds and the lack of efficacy of adoptively transferred NK cells in patients. However, several preclinical evidences suggest their anti-metastatic role in a variety of mouse tumor models. In the present review, we discuss NK cell functions according to their maturation stage and environmental milieu, the receptor/ligand interactions dictating tumor cell recognition and recapitulate translational studies aimed at deciphering their prognostic or predictive role against human solid malignancies. PMID:23269924

  12. Natural killer cells in non-hematopoietic malignancies.

    PubMed

    Desbois, Mélanie; Rusakiewicz, Sylvie; Locher, Clara; Zitvogel, Laurence; Chaput, Nathalie

    2012-01-01

    Natural killer (NK) cells belong to the innate immune system and were initially described functionallywise by their spontaneous cytotoxic potential against transformed or virus-infected cells. A delicate balance between activating and inhibiting receptors regulates NK cell tolerance. A better understanding of tissue resident NK cells, of NK cell matura