Science.gov

Sample records for adult hippocampal neural

  1. Programming Hippocampal Neural Stem/Progenitor Cells into Oligodendrocytes Enhances Remyelination in the Adult Brain after Injury.

    PubMed

    Braun, Simon M G; Pilz, Gregor-Alexander; Machado, Raquel A C; Moss, Jonathan; Becher, Burkhard; Toni, Nicolas; Jessberger, Sebastian

    2015-06-23

    Demyelinating diseases are characterized by a loss of oligodendrocytes leading to axonal degeneration and impaired brain function. Current strategies used for the treatment of demyelinating disease such as multiple sclerosis largely rely on modulation of the immune system. Only limited treatment options are available for treating the later stages of the disease, and these treatments require regenerative therapies to ameliorate the consequences of oligodendrocyte loss and axonal impairment. Directed differentiation of adult hippocampal neural stem/progenitor cells (NSPCs) into oligodendrocytes may represent an endogenous source of glial cells for cell-replacement strategies aiming to treat demyelinating disease. Here, we show that Ascl1-mediated conversion of hippocampal NSPCs into mature oligodendrocytes enhances remyelination in a diphtheria-toxin (DT)-inducible, genetic model for demyelination. These findings highlight the potential of targeting hippocampal NSPCs for the treatment of demyelinated lesions in the adult brain.

  2. Mediation of Autophagic Cell Death by Type 3 Ryanodine Receptor (RyR3) in Adult Hippocampal Neural Stem Cells

    PubMed Central

    Chung, Kyung Min; Jeong, Eun-Ji; Park, Hyunhee; An, Hyun-Kyu; Yu, Seong-Woon

    2016-01-01

    Cytoplasmic Ca2+ actively engages in diverse intracellular processes from protein synthesis, folding and trafficking to cell survival and death. Dysregulation of intracellular Ca2+ levels is observed in various neuropathological states including Alzheimer’s and Parkinson’s diseases. Ryanodine receptors (RyRs) and inositol 1,4,5-triphosphate receptors (IP3Rs), the main Ca2+ release channels located in endoplasmic reticulum (ER) membranes, are known to direct various cellular events such as autophagy and apoptosis. Here we investigated the intracellular Ca2+-mediated regulation of survival and death of adult hippocampal neural stem (HCN) cells utilizing an insulin withdrawal model of autophagic cell death (ACD). Despite comparable expression levels of RyR and IP3R transcripts in HCN cells at normal state, the expression levels of RyRs—especially RyR3—were markedly upregulated upon insulin withdrawal. While treatment with the RyR agonist caffeine significantly promoted the autophagic death of insulin-deficient HCN cells, treatment with its inhibitor dantrolene prevented the induction of autophagy following insulin withdrawal. Furthermore, CRISPR/Cas9-mediated knockout of the RyR3 gene abolished ACD of HCN cells. This study delineates a distinct, RyR3-mediated ER Ca2+ regulation of autophagy and programmed cell death in neural stem cells. Our findings provide novel insights into the critical, yet understudied mechanisms underlying the regulatory function of ER Ca2+ in neural stem cell biology. PMID:27199668

  3. Growth and differentiation of adult hippocampal arctic ground squirrel neural stem cells.

    PubMed

    Drew, Kelly L; McGee, Rebecca C; Wells, Matthew S; Kelleher-Andersson, Judith A

    2011-01-07

    Arctic ground squirrels (Urocitellus parryii, AGS) are unique in their ability to hibernate with a core body temperature near or below freezing. These animals also resist ischemic injury to the brain in vivo and oxygen-glucose deprivation in vitro. These unique qualities provided the impetus to isolate AGS neurons to examine inherent neuronal characteristics that could account for the capacity of AGS neurons to resist injury and cell death caused by ischemia and extremely cold temperatures. Identifying proteins or gene targets that allow for the distinctive properties of these cells could aid in the discovery of effective therapies for a number of ischemic indications and for the study of cold tolerance. Adult AGS hippocampus contains neural stem cells that continue to proliferate, allowing for easy expansion of these stem cells in culture. We describe here methods by which researchers can utilize these stem cells and differentiated neurons for any number of purposes. By closely following these steps the AGS neural stem cells can be expanded through two passages or more and then differentiated to a culture high in TUJ1-positive neurons (~50%) without utilizing toxic chemicals to minimize the number of dividing cells. Ischemia induces neurogenesis and neurogenesis which proceeds via MEK/ERK and PI3K/Akt survival signaling pathways contributes to ischemia resistance in vivo and in vitro (Kelleher-Anderson, Drew et al., in preparation). Further characterization of these unique neural cells can advance on many fronts, using some or all of these methods.

  4. Calpain Determines the Propensity of Adult Hippocampal Neural Stem Cells to Autophagic Cell Death Following Insulin Withdrawal.

    PubMed

    Chung, Kyung Min; Park, Hyunhee; Jung, Seonghee; Ha, Shinwon; Yoo, Seung-Jun; Woo, Hanwoong; Lee, Hyang Ju; Kim, Seong Who; Kim, Eun-Kyoung; Moon, Cheil; Yu, Seong-Woon

    2015-10-01

    Programmed cell death (PCD) has significant effects on the function of neural stem cells (NSCs) during brain development and degeneration. We have previously reported that adult rat hippocampal neural stem (HCN) cells underwent autophagic cell death (ACD) rather than apoptosis following insulin withdrawal despite their intact apoptotic capabilities. Here, we report a switch in the mode of cell death in HCN cells with calpain as a critical determinant. In HCN cells, calpain 1 expression was barely detectable while calpain 2 was predominant. Inhibition of calpain in insulin-deprived HCN cells further augmented ACD. In contrast, expression of calpain 1 switched ACD to apoptosis. The proteasome inhibitor lactacystin blocked calpain 2 degradation and elevated the intracellular Ca(2+) concentration. In combination, these effects potentiated calpain activity and converted the mode of cell death to apoptosis. Our results indicate that low calpain activity, due to absence of calpain 1 and degradation of calpain 2, results in a preference for ACD over apoptosis in insulin-deprived HCN cells. On the other hand, conditions leading to high calpain activity completely switch the mode of cell death to apoptosis. This is the first report on the PCD mode switching mechanism in NSCs. The dynamic change in calpain activity through the proteasome-mediated modulation of the calpain and intracellular Ca(2+) levels may be the critical contributor to the demise of NSCs. Our findings provide a novel insight into the complex mechanisms interconnecting autophagy and apoptosis and their roles in the regulation of NSC death.

  5. Insulin withdrawal-induced cell death in adult hippocampal neural stem cells as a model of autophagic cell death.

    PubMed

    Baek, Seung-Hoon; Kim, Eun-Kyoung; Goudreau, John L; Lookingland, Keith J; Kim, Seong Who; Yu, Seong-Woon

    2009-02-01

    The term "autophagic cell death" was coined to describe a form of cell death associated with the massive formation of autophagic vacuoles without signs of apoptosis. However, questions about the actual role of autophagy and its molecular basis in cell death remain to be elucidated. We recently reported that adult hippocampal neural stem (HCN) cells undergo autophagic cell death following insulin withdrawal. Insulin-deprived HCN cells exhibit morphological and biochemical markers of autophagy, including accumulation of Beclin 1 and the type II form of microtubule-associated protein 1 light chain 3 (LC3) without evidence of apoptosis. Suppression of autophagy by knockdown of Atg7 reduces cell death, whereas promotion of autophagy with rapamycin augments cell death in insulin-deficient HCN cells. These data reveal a causative role of autophagy in insulin withdrawal-induced HCN cell death. HCN cells have intact apoptotic capability despite the lack of apoptosis following insulin withdrawal. Our study demonstrates that autophagy is the default cell death mechanism in insulin-deficient HCN cells, and provides a genuine model of autophagic cell death in apoptosis-intact cells. Novel insight into molecular mechanisms of this underappreciated form of programmed cell death should facilitate the development of therapeutic methods to cope with human diseases caused by dysregulated cell death.

  6. Adult hippocampal neurogenesis and aging.

    PubMed

    Klempin, Friederike; Kempermann, Gerd

    2007-08-01

    The demographic changes in the foreseeable future stress the need for research on successful cognitive aging. Advancing age constitutes a primary risk factor for disease of the central nervous system most notably neurodegenerative disorders. The hippocampus is one of the brain regions that is prominently affected by neurodegeneration and functional decline even in what is still considered "normal aging". Plasticity is the basis for how the brain adapts to changes over time. The discovery of adult hippocampal neurogenesis has added a whole new dimension to research on structural plasticity in the adult and aging hippocampus. In this article, we briefly summarize and discuss recent findings on the regulation of adult neurogenesis with relevance to aging. Aging is an important co-variable for many regulatory mechanisms affecting adult neurogenesis but so far, only few studies have specifically addressed this interaction. We hypothesize that adult neurogenesis contributes to a neural reserve, i.e. the maintained potential for structural plasticity that allows compensation in situations of functional losses with aging. As such we propose that adult neurogenesis might contribute to the structural correlates of successful aging. PMID:17401726

  7. High neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids

    PubMed Central

    Peirouvi, T.; Yekani, F.; Azarnia, M.; Massumi, M.

    2015-01-01

    Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic cerebrospinal fluid (E-CSF) including E13.5, E17-CSF and the adult cerebrospinal fluid (A-CSF), all extracted from rats. CSF samples were selected based on their effects on cell behavioral parameters. Primary cell culture was performed in the presence of either normal or high levels of KCL in a culture medium. High levels of KCL cause cell depolarization, and thus the activation of quiescent NSCs. Results from immunocytochemistry (ICC) and semi-quantitative RT-PCR (sRT-PCR) techniques showed that in E-CSF-treated groups, neuronal differentiation increased (E17>E13.5). In contrast, A-CSF decreased and increased neuronal and astroglial differentiations, respectively. Cell survivability and/or proliferation (S/P), evaluated by an MTT assay, increased by E13.5 CSF, but decreased by both E17 CSF and A-CSF. Based on the results, it is finally concluded that adult rat hippocampal proliferative cells are not restricted progenitors but rather show high plasticity in neuronal/astroglial differentiation according to the effects of CSF samples. In addition, using high concentrations of KCL in the primary cell culture led to an increase in the number of NSCs, which in turn resulted in the increase in neuronal or astroglial differentiations after CSF treatment. PMID:27175157

  8. Glucocorticoids and lithium in adult hippocampal neurogenesis.

    PubMed

    Boku, Shuken; Nakagawa, Shin; Koyama, Tsukasa

    2010-01-01

    Adult hippocampal neurogenesis is decreased in rodent models for stress-related disorders partly through an elevated level of glucocorticoids (GCs). On the other hand, lithium (Li), a mood stabilizer and an inhibitor of GSK-3beta, increases adult hippocampal neurogenesis. However, it remains unclear whether GCs-induced decrease can be recovered by Li or not. Recently we established the culture system of adult rat dentate gyrus-derived neural precursor cell (ADP) and examined GCs and Li actions on ADP proliferation. GCs decreased ADP proliferation and Li recovered it. Both cyclin Dl expression and nuclear beta-catenin are also reciprocally regulated by GCs and Li. In addition, GCs activated GSK-3beta. Therefore, GSK-3beta/beta-catenin pathway may be important in the reciprocal actions of GCs and Li on ADP proliferation. In this manuscript, we review the past literature and our study and summarize what is currently known about the effects of GCs and Li on adult hippocampal neurogenesis.

  9. Updating stored memory requires adult hippocampal neurogenesis.

    PubMed

    Suárez-Pereira, Irene; Carrión, Ángel M

    2015-09-11

    Adult hippocampal neurogenesis appears to influence hippocampal functions, such as memory formation for example. While adult hippocampal neurogenesis is known to be involved in hippocampal-dependent learning and consolidation processes, the role of such immature neurons in memory reconsolidation, a process involved in the modification of stored memories, remains unclear. Here, using a novel fast X-ray ablation protocol to deplete neurogenic cells, we have found that adult hippocampal neurogenesis is required to update object recognition stored memory more than to reinforce it. Indeed, we show that immature neurons were selectively recruited to hippocampal circuits during the updating of stored information. Thus, our data demonstrate a new role for neurogenesis in cognitive processes, adult hippocampal neurogenesis being required for the updating of stored OR memories. These findings suggest that manipulating adult neurogenesis may have a therapeutic application in conditions associated with traumatic stored memory, for example.

  10. Updating stored memory requires adult hippocampal neurogenesis

    PubMed Central

    Suárez-Pereira, Irene; Carrión, Ángel M

    2015-01-01

    Adult hippocampal neurogenesis appears to influence hippocampal functions, such as memory formation for example. While adult hippocampal neurogenesis is known to be involved in hippocampal-dependent learning and consolidation processes, the role of such immature neurons in memory reconsolidation, a process involved in the modification of stored memories, remains unclear. Here, using a novel fast X-ray ablation protocol to deplete neurogenic cells, we have found that adult hippocampal neurogenesis is required to update object recognition stored memory more than to reinforce it. Indeed, we show that immature neurons were selectively recruited to hippocampal circuits during the updating of stored information. Thus, our data demonstrate a new role for neurogenesis in cognitive processes, adult hippocampal neurogenesis being required for the updating of stored OR memories. These findings suggest that manipulating adult neurogenesis may have a therapeutic application in conditions associated with traumatic stored memory, for example. PMID:26358557

  11. Effect of Opioid on Adult Hippocampal Neurogenesis

    PubMed Central

    Zhang, Yue; Loh, Horace H.; Law, Ping-Yee

    2016-01-01

    During the past decade, the study of the mechanisms and functional implications of adult neurogenesis has significantly progressed. Many studies focus on the factors that regulate proliferation and fate determination of adult neural stem/progenitor cells, including addictive drugs such as opioid. Here, we review the most recent works on opiate drugs' effect on different developmental stages of adult hippocampal neurogenesis, as well as the possible underlying mechanisms. We conclude that opiate drugs in general cause a loss of newly born neural progenitors in the subgranular zone of dentate gyrus, by either modulating proliferation or interfering with differentiation and maturation. We also discuss the consequent impact of regulation of adult neurogenesis in animal's opioid addiction behavior. We further look into the future directions in studying the convergence between the adult neurogenesis field and opioid addiction field, since the adult-born granular cells were shown to play a role in neuroplasticity and may help to reduce the vulnerability to drug craving and relapse. PMID:27127799

  12. The Contradictory Effects of Neuronal Hyperexcitation on Adult Hippocampal Neurogenesis

    PubMed Central

    Pineda, José R.; Encinas, Juan M.

    2016-01-01

    Adult hippocampal neurogenesis is a highly plastic process that responds swiftly to neuronal activity. Adult hippocampal neurogenesis can be regulated at the level of neural stem cell recruitment and activation, progenitor proliferation, as well as newborn cell survival and differentiation. An “excitation-neurogenesis” rule was proposed after the demonstration of the capability of cultured neural stem and progenitor cells to intrinsically sense neuronal excitatory activity. In vivo, this property has remained elusive although recently the direct response of neural stem cells to GABA in the hippocampus via GABAA receptors has evidenced a mechanism for a direct talk between neurons and neural stem cells. As it is pro-neurogenic, the effect of excitatory neuronal activity has been generally considered beneficial. But what happens in situations of neuronal hyperactivity in which neurogenesis can be dramatically boosted? In animal models, electroconvulsive shock markedly increases neurogenesis. On the contrary, in epilepsy rodent models, seizures induce the generation of misplaced neurons with abnormal morphological and electrophysiological properties, namely aberrant neurogenesis. We will herein discuss what is known about the mechanisms of influence of neurons on neural stem cells, as well as the severe effects of neuronal hyperexcitation on hippocampal neurogenesis. PMID:26973452

  13. Adult Hippocampal Neurogenesis, Fear Generalization, and Stress.

    PubMed

    Besnard, Antoine; Sahay, Amar

    2016-01-01

    The generalization of fear is an adaptive, behavioral, and physiological response to the likelihood of threat in the environment. In contrast, the overgeneralization of fear, a cardinal feature of posttraumatic stress disorder (PTSD), manifests as inappropriate, uncontrollable expression of fear in neutral and safe environments. Overgeneralization of fear stems from impaired discrimination of safe from aversive environments or discernment of unlikely threats from those that are highly probable. In addition, the time-dependent erosion of episodic details of traumatic memories might contribute to their generalization. Understanding the neural mechanisms underlying the overgeneralization of fear will guide development of novel therapeutic strategies to combat PTSD. Here, we conceptualize generalization of fear in terms of resolution of interference between similar memories. We propose a role for a fundamental encoding mechanism, pattern separation, in the dentate gyrus (DG)-CA3 circuit in resolving interference between ambiguous or uncertain threats and in preserving episodic content of remote aversive memories in hippocampal-cortical networks. We invoke cellular-, circuit-, and systems-based mechanisms by which adult-born dentate granule cells (DGCs) modulate pattern separation to influence resolution of interference and maintain precision of remote aversive memories. We discuss evidence for how these mechanisms are affected by stress, a risk factor for PTSD, to increase memory interference and decrease precision. Using this scaffold we ideate strategies to curb overgeneralization of fear in PTSD.

  14. Zinc deficiency impairs the renewal of hippocampal neural stem cells in adult rats: involvement of FoxO3a activation and downstream p27(kip1) expression.

    PubMed

    Han, Jingling; Zhao, Jianya; Jiang, Junkang; Ma, Xia; Liu, Xinhang; Wang, Cheng; Jiang, Shengyang; Wan, Chunhua

    2015-09-01

    Zinc plays an important role in the development and maintenance of central neural system. Zinc deficiency has been known to alter normal brain function, whose molecular mechanism remains largely elusive. In the present study, we established a zinc deficiency-exposed rat model, and, using western blot and immunohistochemical analyses, found that the expression of FoxO3a and p27(kip1) was remarkably up-regulated in the rat brain hippocampus. Immunofluorescence assay showed that FOXO3a and p27(kip1) were significantly co-localized with nestin, the marker of neural stem cells (NSCs). Furthermore, we identified that the proportion of proliferating NSCs was markedly decreased in zinc-deficient rat hippocampaus. Using C17.2 neural stem cells, it was revealed that exposure to zinc chelator N,N,N',N'-tetrakis-(2-pyridylmethy) ethylenediamine induced the expression of FoxO3a and p27(kip1) , which coincided with reduced NSC proliferation. Furthermore, depletion of FoxO3a inhibited p27(kip1) expression and restored the growth of NSCs. On the basis of these data, we concluded that FoxO3a/p27(kip1) signaling might play a significant role in zinc deficiency-induced growth impairment of NSCs and consequent neurological disorders. We describe here that zinc deficiency induces the proliferative impairment of hippocampal neural stem cells partially through the activation of FOXO3a-p27 axis in rats. Neural progenitor cells exhibited significantly up-regulated expression of FOXO3a and p27 after zinc deficiency in vivo and in vitro. Depletion of FOXO3a ameliorates zinc deficiency-induced expression of p27 and growth impairment of neural stem cells. We provide novel insight into the mechanisms underlying zinc deficiency-induced neurological deficits.

  15. Transcription-Factor-Dependent Control of Adult Hippocampal Neurogenesis.

    PubMed

    Beckervordersandforth, Ruth; Zhang, Chun-Li; Lie, Dieter Chichung

    2015-10-01

    Adult-generated dentate granule neurons have emerged as major contributors to hippocampal plasticity. New neurons are generated from neural stem cells through a complex sequence of proliferation, differentiation, and maturation steps. Development of the new neuron is dependent on the precise temporal activity of transcription factors, which coordinate the expression of stage-specific genetic programs. Here, we review current knowledge in transcription factor-mediated regulation of mammalian neural stem cells and neurogenesis and will discuss potential mechanisms of how transcription factor networks, on one hand, allow for precise execution of the developmental sequence and, on the other hand, allow for adaptation of the rate and timing of adult neurogenesis in response to complex stimuli. Understanding transcription factor-mediated control of neuronal development will provide new insights into the mechanisms underlying neurogenesis-dependent plasticity in health and disease.

  16. Role of adult hippocampal neurogenesis in cognition in physiology and disease: pharmacological targets and biomarkers.

    PubMed

    Costa, Veronica; Lugert, Sebastian; Jagasia, Ravi

    2015-01-01

    Adult hippocampal neurogenesis is a remarkable form of brain structural plasticity by which new functional neurons are generated from adult neural stem cells/precursors. Although the precise role of this process remains elusive, adult hippocampal neurogenesis is important for learning and memory and it is affected in disease conditions associated with cognitive impairment, depression, and anxiety. Immature neurons in the adult brain exhibit an enhanced structural and synaptic plasticity during their maturation representing a unique population of neurons to mediate specific hippocampal function. Compelling preclinical evidence suggests that hippocampal neurogenesis is modulated by a broad range of physiological stimuli which are relevant in cognitive and emotional states. Moreover, multiple pharmacological interventions targeting cognition modulate adult hippocampal neurogenesis. In addition, recent genetic approaches have shown that promoting neurogenesis can positively modulate cognition associated with both physiology and disease. Thus the discovery of signaling pathways that enhance adult neurogenesis may lead to therapeutic strategies for improving memory loss due to aging or disease. This chapter endeavors to review the literature in the field, with particular focus on (1) the role of hippocampal neurogenesis in cognition in physiology and disease; (2) extrinsic and intrinsic signals that modulate hippocampal neurogenesis with a focus on pharmacological targets; and (3) efforts toward novel strategies pharmacologically targeting neurogenesis and identification of biomarkers of human neurogenesis.

  17. Role of adult hippocampal neurogenesis in cognition in physiology and disease: pharmacological targets and biomarkers.

    PubMed

    Costa, Veronica; Lugert, Sebastian; Jagasia, Ravi

    2015-01-01

    Adult hippocampal neurogenesis is a remarkable form of brain structural plasticity by which new functional neurons are generated from adult neural stem cells/precursors. Although the precise role of this process remains elusive, adult hippocampal neurogenesis is important for learning and memory and it is affected in disease conditions associated with cognitive impairment, depression, and anxiety. Immature neurons in the adult brain exhibit an enhanced structural and synaptic plasticity during their maturation representing a unique population of neurons to mediate specific hippocampal function. Compelling preclinical evidence suggests that hippocampal neurogenesis is modulated by a broad range of physiological stimuli which are relevant in cognitive and emotional states. Moreover, multiple pharmacological interventions targeting cognition modulate adult hippocampal neurogenesis. In addition, recent genetic approaches have shown that promoting neurogenesis can positively modulate cognition associated with both physiology and disease. Thus the discovery of signaling pathways that enhance adult neurogenesis may lead to therapeutic strategies for improving memory loss due to aging or disease. This chapter endeavors to review the literature in the field, with particular focus on (1) the role of hippocampal neurogenesis in cognition in physiology and disease; (2) extrinsic and intrinsic signals that modulate hippocampal neurogenesis with a focus on pharmacological targets; and (3) efforts toward novel strategies pharmacologically targeting neurogenesis and identification of biomarkers of human neurogenesis. PMID:25977081

  18. Alcohol and adult hippocampal neurogenesis: promiscuous drug, wanton effects.

    PubMed

    Geil, Chelsea R; Hayes, Dayna M; McClain, Justin A; Liput, Daniel J; Marshall, S Alex; Chen, Kevin Y; Nixon, Kimberly

    2014-10-01

    Adult neurogenesis is now widely accepted as an important contributor to hippocampal integrity and function but also dysfunction when adult neurogenesis is affected in neuropsychiatric diseases such as alcohol use disorders. Excessive alcohol consumption, the defining characteristic of alcohol use disorders, results in a variety of cognitive and behavioral impairments related wholly or in part to hippocampal structure and function. Recent preclinical work has shown that adult neurogenesis may be one route by which alcohol produces hippocampal neuropathology. Alcohol is a pharmacologically promiscuous drug capable of interfering with adult neurogenesis through multiple mechanisms. This review will discuss the primary mechanisms underlying alcohol-induced changes in adult hippocampal neurogenesis including alcohol's effects on neurotransmitters, CREB and its downstream effectors, and the neurogenic niche.

  19. Astrocytes regulate adult hippocampal neurogenesis through ephrin-B signaling

    PubMed Central

    Ashton, Randolph S.; Conway, Anthony; Pangarkar, Chinmay; Bergen, Jamie; Lim, Kwang-Il; Shah, Priya; Bissell, Mina; Schaffer, David V.

    2012-01-01

    Neurogenesis in the adult hippocampus involves activation of quiescent neural stem cells (NSCs) to yield transiently amplifying NSCs and progenitors, and ultimately neurons that affect learning and memory. This process is tightly controlled by microenvironmental cues, though few endogenous factors are known to regulate neuronal differentiation. While astrocytes have been implicated, their role in juxtacrine (i.e. cell-cell contact-dependent) signaling within NSC niches has not been investigated. We show that ephrin-B2 presented from rodent hippocampal astrocytes regulates neurogenesis in vivo. Furthermore, clonal analysis in NSC fate-mapping studies reveals a novel role for ephrin-B2 in instructing neuronal differentiation. Additionally, ephrin-B2 signaling, transduced by EphB4 receptors on NSCs, activates β-catenin in vitro and in vivo independent of Wnt signaling and upregulates proneural transcription factors. Ephrin-B2+ astrocytes thus promote neuronal differentiation of adult NSCs through juxtacrine signaling, findings that advance our understanding of adult neurogenesis and may have future regenerative medicine implications. PMID:22983209

  20. A neural network approach to hippocampal function in classical conditioning.

    PubMed

    Schmajuk, N A; DiCarlo, J J

    1991-02-01

    Hippocampal participation in classical conditioning in terms of Grossberg's (1975) attentional theory is described. According to the present rendition of this theory, pairing of a conditioned stimulus (CS) with an unconditioned stimulus (US) causes both an association of the sensory representation of the CS with the US (conditioned reinforcement learning) and an association of the sensory representation of the CS with the drive representation of the US (incentive motivation learning). Sensory representations compete among themselves for a limited-capacity short-term memory (STM) that is reflected in a long-term memory storage. The STM regulation hypothesis, which proposes that the hippocampus controls incentive motivation, self-excitation, and competition among sensory representations thereby regulating the contents of a limited capacity STM, is introduced. Under the STM regulation hypothesis, nodes and connections in Grossberg's neural network are mapped onto regional hippocampal-cerebellar circuits. The resulting neural model provides (a) a framework for understanding the dynamics of information processing and storage in the hippocampus and cerebellum during classical conditioning of the rabbit's nictitating membrane, (b) principles for understanding the effect of different hippocampal manipulations on classical conditioning, and (c) numerous novel and testable predictions.

  1. The amyloid precursor protein controls adult hippocampal neurogenesis through GABAergic interneurons.

    PubMed

    Wang, Baiping; Wang, Zilai; Sun, Lu; Yang, Li; Li, Hongmei; Cole, Allysa L; Rodriguez-Rivera, Jennifer; Lu, Hui-Chen; Zheng, Hui

    2014-10-01

    Impaired neurogenesis in the adult hippocampus has been implicated in AD pathogenesis. Here we reveal that the APP plays an important role in the neural progenitor proliferation and newborn neuron maturation in the mouse dentate gyrus. APP controls adult neurogenesis through a non cell-autonomous mechanism by GABAergic neurons, as selective deletion of GABAergic, but not glutamatergic, APP disrupts adult hippocampal neurogenesis. APP, highly expressed in the majority of GABAergic neurons in the dentate gyrus, enhances the inhibitory tone to granule cells. By regulating both tonic and phasic GABAergic inputs to dentate granule cells, APP maintains excitatory-inhibitory balance and preserves cognitive functions. Our studies uncover an indispensable role of APP in the GABAergic system for controlling adult hippocampal neurogenesis, and our findings indicate that APP dysfunction may contribute to impaired neurogenesis and cognitive decline associated with AD.

  2. Could adult hippocampal neurogenesis be relevant for human behavior?

    PubMed Central

    Snyder, Jason S.; Cameron, Heather A.

    2011-01-01

    Although the function of adult neurogenesis is still unclear, tools for directly studying the behavioral role of new hippocampal neurons now exist in rodents. Since similar studies are impossible to do in humans, it is important to assess whether the role of new neurons in rodents is likely to be similar to that in humans. One feature of adult neurogenesis that varies tremendously across species is the number of neurons that are generated, so a key question is whether there are enough neurons generated in humans to impact function. In this review we examine neuroanatomy and circuit function in the hippocampus to ask how many granule neurons are needed to impact hippocampal function and then discuss what is known about numbers of new neurons produced in adult rats and humans. We conclude that relatively small numbers of neurons could affect hippocampal circuits and that the magnitude of adult neurogenesis in adult rats and humans is probably larger than generally believed. PMID:21736900

  3. Functional role of adult hippocampal neurogenesis as a therapeutic strategy for mental disorders.

    PubMed

    Jun, Heechul; Mohammed Qasim Hussaini, Syed; Rigby, Michael J; Jang, Mi-Hyeon

    2012-01-01

    Adult neurogenesis, the process of generating new neurons from neural stem cells, plays significant roles in synaptic plasticity, memory, and mood regulation. In the mammalian brain, it continues to occur well into adulthood in discrete regions, namely, the hippocampus and olfactory bulb. During the past decade, significant progress has been made in understanding the mechanisms regulating adult hippocampal neurogenesis and its role in the etiology of mental disorders. In addition, adult hippocampal neurogenesis is highly correlated with the remission of the antidepressant effect. In this paper, we discuss three major psychiatric disorders, depression, schizophrenia, and drug addiction, in light of preclinical evidence used in establishing the neurobiological significance of adult neurogenesis. We interpret the significance of these results and pose questions that remain unanswered. Potential treatments which include electroconvulsive therapy, deep brain stimulation, chemical antidepressants, and exercise therapy are discussed. While consensus lacks on specific mechanisms, we highlight evidence which indicates that these treatments may function via an increase in neural progenitor proliferation and changes to the hippocampal circuitry. Establishing a significant role of adult neurogenesis in the pathogenicity of psychiatric disorders may hold the key to potential strategies toward effective treatment.

  4. Increasing Adult Hippocampal Neurogenesis is Sufficient to Reduce Anxiety and Depression-Like Behaviors.

    PubMed

    Hill, Alexis S; Sahay, Amar; Hen, René

    2015-09-01

    Adult hippocampal neurogenesis is increased by antidepressants, and is required for some of their behavioral effects. However, it remains unclear whether expanding the population of adult-born neurons is sufficient to affect anxiety and depression-related behavior. Here, we use an inducible transgenic mouse model in which the pro-apoptotic gene Bax is deleted from neural stem cells and their progeny in the adult brain, and thereby increases adult neurogenesis. We find no effects on baseline anxiety and depression-related behavior; however, we find that increasing adult neurogenesis is sufficient to reduce anxiety and depression-related behaviors in mice treated chronically with corticosterone (CORT), a mouse model of stress. Thus, neurogenesis differentially affects behavior under baseline conditions and in a model of chronic stress. Moreover, we find no effect of increased adult hippocampal neurogenesis on hypothalamic-pituitary-adrenal (HPA) axis regulation, either at baseline or following chronic CORT administration, suggesting that increasing adult hippocampal neurogenesis can affect anxiety and depression-related behavior through a mechanism independent of the HPA axis. The use of future techniques to specifically inhibit BAX in the hippocampus could be used to augment adult neurogenesis, and may therefore represent a novel strategy to promote antidepressant-like behavioral effects.

  5. Increasing Adult Hippocampal Neurogenesis is Sufficient to Reduce Anxiety and Depression-Like Behaviors.

    PubMed

    Hill, Alexis S; Sahay, Amar; Hen, René

    2015-09-01

    Adult hippocampal neurogenesis is increased by antidepressants, and is required for some of their behavioral effects. However, it remains unclear whether expanding the population of adult-born neurons is sufficient to affect anxiety and depression-related behavior. Here, we use an inducible transgenic mouse model in which the pro-apoptotic gene Bax is deleted from neural stem cells and their progeny in the adult brain, and thereby increases adult neurogenesis. We find no effects on baseline anxiety and depression-related behavior; however, we find that increasing adult neurogenesis is sufficient to reduce anxiety and depression-related behaviors in mice treated chronically with corticosterone (CORT), a mouse model of stress. Thus, neurogenesis differentially affects behavior under baseline conditions and in a model of chronic stress. Moreover, we find no effect of increased adult hippocampal neurogenesis on hypothalamic-pituitary-adrenal (HPA) axis regulation, either at baseline or following chronic CORT administration, suggesting that increasing adult hippocampal neurogenesis can affect anxiety and depression-related behavior through a mechanism independent of the HPA axis. The use of future techniques to specifically inhibit BAX in the hippocampus could be used to augment adult neurogenesis, and may therefore represent a novel strategy to promote antidepressant-like behavioral effects. PMID:25833129

  6. Stress, glucocorticoid hormones, and hippocampal neural progenitor cells: implications to mood disorders

    PubMed Central

    Kino, Tomoshige

    2015-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis and its end-effectors glucocorticoid hormones play central roles in the adaptive response to numerous stressors that can be either internal or external. Thus, this system has a strong impact on the brain hippocampus and its major functions, such as cognition, memory as well as behavior, and mood. The hippocampal area of the adult brain contains neural stem cells or more committed neural progenitor cells, which retain throughout the human life the ability of self-renewal and to differentiate into multiple neural cell lineages, such as neurons, astrocytes, and oligodendrocytes. Importantly, these characteristic cells contribute significantly to the above-indicated functions of the hippocampus, while various stressors and glucocorticoids influence proliferation, differentiation, and fate of these cells. This review offers an overview of the current understanding on the interactions between the HPA axis/glucocorticoid stress-responsive system and hippocampal neural progenitor cells by focusing on the actions of glucocorticoids. Also addressed is a further discussion on the implications of such interactions to the pathophysiology of mood disorders. PMID:26347657

  7. Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning

    PubMed Central

    Nokia, Miriam S.; Mikkonen, Jarno E.; Penttonen, Markku; Wikgren, Jan

    2012-01-01

    Oscillations in hippocampal local-field potentials (LFPs) reflect the crucial involvement of the hippocampus in memory trace formation: theta (4–8 Hz) oscillations and ripples (~200 Hz) occurring during sharp waves are thought to mediate encoding and consolidation, respectively. During sharp wave-ripple complexes (SPW-Rs), hippocampal cell firing closely follows the pattern that took place during the initial experience, most likely reflecting replay of that event. Disrupting hippocampal ripples using electrical stimulation either during training in awake animals or during sleep after training retards spatial learning. Here, adult rabbits were trained in trace eyeblink conditioning, a hippocampus-dependent associative learning task. A bright light was presented to the animals during the inter-trial interval (ITI), when awake, either during SPW-Rs or irrespective of their neural state. Learning was particularly poor when the light was presented following SPW-Rs. While the light did not disrupt the ripple itself, it elicited a theta-band oscillation, a state that does not usually coincide with SPW-Rs. Thus, it seems that consolidation depends on neuronal activity within and beyond the hippocampus taking place immediately after, but by no means limited to, hippocampal SPW-Rs. PMID:23316148

  8. Role of adult hippocampal neurogenesis in stress resilience.

    PubMed

    Levone, Brunno R; Cryan, John F; O'Leary, Olivia F

    2015-01-01

    There is a growing appreciation that adult hippocampal neurogenesis plays a role in emotional and cognitive processes related to psychiatric disorders. Although many studies have investigated the effects of stress on adult hippocampal neurogenesis, most have not focused on whether stress-induced changes in neurogenesis occur specifically in animals that are more resilient or more susceptible to the behavioural and neuroendocrine effects of stress. Thus, in the present review we explore whether there is a clear relationship between stress-induced changes in adult hippocampal neurogenesis, stress resilience and antidepressant-induced recovery from stress-induced changes in behaviour. Exposure to different stressors is known to reduce adult hippocampal neurogenesis, but some stressors have also been shown to exert opposite effects. Ablation of neurogenesis does not lead to a depressive phenotype, but it can enhance responsiveness to stress and affect stress susceptibility. Monoaminergic-targeted antidepressants, environmental enrichment and adrenalectomy are beneficial for reversing stress-induced changes in behaviour and have been shown to do so in a neurogenesis-dependant manner. In addition, stress and antidepressants can affect hippocampal neurogenesis, preferentially in the ventral hippocampus. Together, these data show that adult hippocampal neurogenesis may play a role in the neuroendocrine and behavioural responses to stress, although it is not yet fully clear under which circumstances neurogenesis promotes resilience or susceptibility to stress. It will be important that future studies carefully examine how adult hippocampal neurogenesis can contribute to stress resilience/susceptibility so that it may be appropriately exploited for the development of new and more effective treatments for stress-related psychiatric disorders. PMID:27589664

  9. miR-17-92 Cluster Regulates Adult Hippocampal Neurogenesis, Anxiety, and Depression.

    PubMed

    Jin, Junghee; Kim, Seung-Nam; Liu, Xuqing; Zhang, Haijun; Zhang, Chao; Seo, Ji-Seon; Kim, Yong; Sun, Tao

    2016-08-01

    Emerging evidence has shown that noncoding RNAs, particularly microRNAs (miRNAs), contribute to the pathogenesis of mood and anxiety disorders, although the molecular mechanisms are poorly understood. Here, we show that altered levels of miR-17-92 in adult hippocampal neural progenitors have a significant impact on neurogenesis and anxiety- and depression-related behaviors in mice. miR-17-92 deletion in adult neural progenitors decreases neurogenesis in the dentate gyrus, while its overexpression increases neurogenesis. miR-17-92 affects neurogenesis by regulating genes in the glucocorticoid pathway, especially serum- and glucocorticoid-inducible protein kinase-1 (Sgk1). miR-17-92 knockout mice show anxiety- and depression-like behaviors, whereas miR-17-92 overexpressing mice exhibit anxiolytic and antidepression-like behaviors. Furthermore, we show that miR-17-92 expression in the adult mouse hippocampus responds to chronic stress, and miR-17-92 rescues proliferation defects induced by corticosterone in hippocampal neural progenitors. Our study uncovers a crucial role for miR-17-92 in adult neural progenitors through regulation of neurogenesis and anxiety- and depression-like behaviors. PMID:27477270

  10. Adult hippocampal neurogenesis and its role in cognition

    PubMed Central

    Oomen, Charlotte A.; Bekinschtein, Pedro; Kent, Brianne A.; Saksida, Lisa M.; Bussey, Timothy J.

    2015-01-01

    Adult hippocampal neurogenesis (AHN) has intrigued neuroscientists for decades. Several lines of evidence show that adult-born neurons in the hippocampus are functionally integrated and contribute to cognitive function, in particular learning and memory processes. Biological properties of immature hippocampal neurons indicate that these cells are more easily excitable compared to mature neurons, and demonstrate enhanced structural plasticity. The structure in which adult-born hippocampal neurons are situated -the dentate gyrus- is thought to contribute to hippocampus function by disambiguating similar input patterns, a process referred to as pattern separation. Several ideas about AHN function have been put forward; currently there is good evidence in favour of a role for AHN in pattern separation. This function of AHN may be understood within a ‘representational-hierarchical’ view of brain organisation. PMID:26308746

  11. Adult hippocampal neurogenesis and memory interference.

    PubMed

    Winocur, Gordon; Becker, Suzanna; Luu, Paul; Rosenzweig, Shira; Wojtowicz, J Martin

    2012-02-14

    Rats, subjected to low-dose irradiation that suppressed hippocampal neurogenesis, or a sham treatment, were administered a visual discrimination task under conditions of high, or low interference. Half of the rats engaged in running activity and the other half did not. In the non-runners, there was no effect of irradiation on learning, or remembering the discrimination response under low interference, but irradiation treatment increased their susceptibility to interference, resulting in loss of memory for the previously learned discrimination. Irradiated rats that engaged in running activity exhibited increased neuronal growth and protection from memory impairment. The results, which show that hippocampal cells generated in adulthood play a role in differentiating between conflicting, context-dependent memories, provide further evidence of the importance of neurogenesis in hippocampus-sensitive memory tasks. The results are consistent with computational models of hippocampal function that specify a central role for neurogenesis in the modulation of interfering influences during learning and memory.

  12. Alterations of Hippocampal Projections in Adult Macaques with Neonatal Hippocampal Lesions: A Diffusion Tensor Imaging Study

    PubMed Central

    Meng, Yuguang; Payne, Christa; Li, Longchuan; Hu, Xiaoping; Zhang, Xiaodong; Bachevalier, Jocelyne

    2014-01-01

    Neuropsychological and brain imaging studies have demonstrated persistent deficits in memory functions and structural changes after neonatal neurotoxic hippocampal lesion in monkeys. However, the relevant microstructural changes in the white matter of affected brain regions following this early insult remain unknown. This study assessed white matter integrity in the main hippocampal projections of adult macaque monkeys with neonatal hippocampal lesions, by diffusion tensor imaging (DTI). Data analysis was performed using tract-based spatial statistics (TBSS) and compared with volume of interest statistics. Alterations of fractional anisotropy (FA) and diffusivity indices were observed in fornix, temporal stem, ventromedial prefrontal cortex and optical radiations. To further validate the lesion effects on the prefrontal cortex, probabilistic diffusion tractography was used to examine the integrity of the fiber connections between hippocampus and ventromedial prefrontal cortex, and alterations were found in these connections. In addition, increased radial diffusivity in the left ventromedial prefrontal cortex correlated negatively with the severity of deficits in working memory in the same monkeys. The findings revealed microstructural changes due to neonatal hippocampal lesion, and confirmed that neonatal neurotoxic hippocampal lesions resulted in significant and enduring functional alterations in the hippocampal projection system. PMID:25204865

  13. Adult hippocampal neurogenesis inversely correlates with microglia in conditions of voluntary running and aging

    PubMed Central

    Gebara, Elias; Sultan, Sebastien; Kocher-Braissant, Jacqueline; Toni, Nicolas

    2013-01-01

    Adult hippocampal neurogenesis results in the formation of new neurons and is a process of brain plasticity involved in learning and memory. The proliferation of adult neural stem or progenitor cells is regulated by several extrinsic factors such as experience, disease or aging and intrinsic factors originating from the neurogenic niche. Microglia is very abundant in the dentate gyrus (DG) and increasing evidence indicates that these cells mediate the inflammation-induced reduction in neurogenesis. However, the role of microglia in neurogenesis in physiological conditions remains poorly understood. In this study, we monitored microglia and the proliferation of adult hippocampal stem/progenitor cells in physiological conditions known to increase or decrease adult neurogenesis, voluntary running and aging respectively. We found that the number of microglia in the DG was strongly inversely correlated with the number of stem/progenitor cells and cell proliferation in the granule cell layer. Accordingly, co-cultures of decreasing neural progenitor/glia ratio showed that microglia but not astroglia reduced the number of progenitor cells. Together, these results suggest that microglia inhibits the proliferation of neural stem/progenitor cells despite the absence of inflammatory stimulus. PMID:23970848

  14. Adult hippocampal neurogenesis inversely correlates with microglia in conditions of voluntary running and aging.

    PubMed

    Gebara, Elias; Sultan, Sebastien; Kocher-Braissant, Jacqueline; Toni, Nicolas

    2013-01-01

    Adult hippocampal neurogenesis results in the formation of new neurons and is a process of brain plasticity involved in learning and memory. The proliferation of adult neural stem or progenitor cells is regulated by several extrinsic factors such as experience, disease or aging and intrinsic factors originating from the neurogenic niche. Microglia is very abundant in the dentate gyrus (DG) and increasing evidence indicates that these cells mediate the inflammation-induced reduction in neurogenesis. However, the role of microglia in neurogenesis in physiological conditions remains poorly understood. In this study, we monitored microglia and the proliferation of adult hippocampal stem/progenitor cells in physiological conditions known to increase or decrease adult neurogenesis, voluntary running and aging respectively. We found that the number of microglia in the DG was strongly inversely correlated with the number of stem/progenitor cells and cell proliferation in the granule cell layer. Accordingly, co-cultures of decreasing neural progenitor/glia ratio showed that microglia but not astroglia reduced the number of progenitor cells. Together, these results suggest that microglia inhibits the proliferation of neural stem/progenitor cells despite the absence of inflammatory stimulus.

  15. Cognitive training-related changes in hippocampal activity associated with recollection in older adults

    PubMed Central

    Kirchhoff, Brenda A.; Anderson, Benjamin A.; Smith, Staci E.; Barch, Deanna M.; Jacoby, Larry L.

    2013-01-01

    Impairments in the ability to recollect specific details of personally experienced events are one of the main cognitive changes associated with aging. Cognitive training can improve older adults’ recollection. However, little is currently known regarding the neural correlates of these training-related changes in recollection. Prior research suggests that the hippocampus plays a central role in supporting recollection in young and older adults, and that age-related changes in hippocampal function may lead to age-related changes in recollection. The present study investigated whether cognitive training-related increases in older adults’ recollection are associated with changes in their hippocampal activity during memory retrieval. Older adults’ hippocampal activity during retrieval was examined before and after they were trained to use semantic encoding strategies to intentionally encode words. Training-related changes in recollection were positively correlated with training-related changes in activity for old words in the hippocampus bilaterally. Positive correlations were also found between training-related changes in activity in prefrontal and left lateral temporal regions associated with self-initiated semantic strategy use during encoding and training-related changes in right hippocampal activity associated with recollection during retrieval. These results suggest that cognitive training-related improvements in older adults’ recollection can be supported by changes in their hippocampal activity during retrieval. They also suggest that age differences in cognitive processes engaged during encoding are a significant contributor to age differences in recollection during retrieval. PMID:22728150

  16. Norbin ablation results in defective adult hippocampal neurogenesis and depressive-like behavior in mice.

    PubMed

    Wang, Hong; Warner-Schmidt, Jennifer; Varela, Santiago; Enikolopov, Grigori; Greengard, Paul; Flajolet, Marc

    2015-08-01

    Adult neurogenesis in the hippocampus subgranular zone is associated with the etiology and treatment efficiency of depression. Factors that affect adult hippocampal neurogenesis have been shown to contribute to the neuropathology of depression. Glutamate, the major excitatory neurotransmitter, plays a critical role in different aspects of neurogenesis. Of the eight metabotropic glutamate receptors (mGluRs), mGluR5 is the most highly expressed in neural stem cells. We previously identified Norbin as a positive regulator of mGluR5 and showed that its expression promotes neurite outgrowth. In this study, we investigated the role of Norbin in adult neurogenesis and depressive-like behaviors using Norbin-deficient mice. We found that Norbin deletion significantly reduced hippocampal neurogenesis; specifically, the loss of Norbin impaired the proliferation and maturation of newborn neurons without affecting cell-fate specification of neural stem cells/neural progenitor cells (NSCs/NPCs). Norbin is highly expressed in the granular neurons in the dentate gyrus of the hippocampus, but it is undetectable in NSCs/NPCs or immature neurons, suggesting that the effect of Norbin on neurogenesis is likely caused by a nonautonomous niche effect. In support of this hypothesis, we found that the expression of a cell-cell contact gene, Desmoplakin, is greatly reduced in Norbin-deletion mice. Moreover, Norbin-KO mice show an increased immobility in the forced-swim test and the tail-suspension test and reduced sucrose preference compared with wild-type controls. Taken together, these results show that Norbin is a regulator of adult hippocampal neurogenesis and that its deletion causes depressive-like behaviors.

  17. Norbin ablation results in defective adult hippocampal neurogenesis and depressive-like behavior in mice

    PubMed Central

    Wang, Hong; Warner-Schmidt, Jennifer; Varela, Santiago; Enikolopov, Grigori; Greengard, Paul; Flajolet, Marc

    2015-01-01

    Adult neurogenesis in the hippocampus subgranular zone is associated with the etiology and treatment efficiency of depression. Factors that affect adult hippocampal neurogenesis have been shown to contribute to the neuropathology of depression. Glutamate, the major excitatory neurotransmitter, plays a critical role in different aspects of neurogenesis. Of the eight metabotropic glutamate receptors (mGluRs), mGluR5 is the most highly expressed in neural stem cells. We previously identified Norbin as a positive regulator of mGluR5 and showed that its expression promotes neurite outgrowth. In this study, we investigated the role of Norbin in adult neurogenesis and depressive-like behaviors using Norbin-deficient mice. We found that Norbin deletion significantly reduced hippocampal neurogenesis; specifically, the loss of Norbin impaired the proliferation and maturation of newborn neurons without affecting cell-fate specification of neural stem cells/neural progenitor cells (NSCs/NPCs). Norbin is highly expressed in the granular neurons in the dentate gyrus of the hippocampus, but it is undetectable in NSCs/NPCs or immature neurons, suggesting that the effect of Norbin on neurogenesis is likely caused by a nonautonomous niche effect. In support of this hypothesis, we found that the expression of a cell–cell contact gene, Desmoplakin, is greatly reduced in Norbin-deletion mice. Moreover, Norbin-KO mice show an increased immobility in the forced-swim test and the tail-suspension test and reduced sucrose preference compared with wild-type controls. Taken together, these results show that Norbin is a regulator of adult hippocampal neurogenesis and that its deletion causes depressive-like behaviors. PMID:26195764

  18. VEGF is necessary for exercise-induced adult hippocampal neurogenesis.

    PubMed

    Fabel, Klaus; Fabel, Konstanze; Tam, Betty; Kaufer, Daniela; Baiker, Armin; Simmons, Natalie; Kuo, Calvin J; Palmer, Theo D

    2003-11-01

    Declining learning and memory function is associated with the attenuation of adult hippocampal neurogenesis. As in humans, chronic stress or depression in animals is accompanied by hippocampal dysfunction, and neurogenesis is correspondingly down regulated, in part, by the activity of the hypothalamic-pituitary-adrenal axis as well as glutamatergic and serotonergic networks. Antidepressants can reverse this effect over time but one of the most clinically effective moderators of stress or depression and robust stimulators of neurogenesis is simple voluntary physical exercise such as running. Curiously, running also elevates circulating stress hormone levels yet neurogenesis is doubled in running animals. In evaluating the signalling that running provides to the central nervous system in mice, we have found that peripheral vascular endothelial growth factor (VEGF) is necessary for the effects of running on adult hippocampal neurogenesis. Peripheral blockade of VEGF abolished running-induced neurogenesis but had no detectable effect on baseline neurogenesis in non-running animals. These data suggest that VEGF is an important element of a 'somatic regulator' of adult neurogenesis and that these somatic signalling networks can function independently of the central regulatory networks that are typically considered in the context of hippocampal neurogenesis.

  19. Role of adult neurogenesis in hippocampal-cortical memory consolidation.

    PubMed

    Kitamura, Takashi; Inokuchi, Kaoru

    2014-01-01

    Acquired memory is initially dependent on the hippocampus (HPC) for permanent memory formation. This hippocampal dependency of memory recall progressively decays with time, a process that is associated with a gradual increase in dependency upon cortical structures. This process is commonly referred to as systems consolidation theory. In this paper, we first review how memory becomes hippocampal dependent to cortical dependent with an emphasis on the interactions that occur between the HPC and cortex during systems consolidation. We also review the mechanisms underlying the gradual decay of HPC dependency during systems consolidation from the perspective of memory erasures by adult hippocampal neurogenesis. Finally, we discuss the relationship between systems consolidation and memory precision. PMID:24552281

  20. Adult hippocampal neurogenesis in natural populations of mammals.

    PubMed

    Amrein, Irmgard

    2015-05-01

    This review will discuss adult hippocampal neurogenesis in wild mammals of different taxa and outline similarities with and differences from laboratory animals. It begins with a review of evidence for hippocampal neurogenesis in various mammals, and shows the similar patterns of age-dependent decline in cell proliferation in wild and domesticated mammals. In contrast, the pool of immature neurons that originate from proliferative activity varies between species, implying a selective advantage for mammals that can make use of a large number of these functionally special neurons. Furthermore, rapid adaptation of hippocampal neurogenesis to experimental challenges appears to be a characteristic of laboratory rodents. Wild mammals show species-specific, rather stable hippocampal neurogenesis, which appears related to demands that characterize the niche exploited by a species rather than to acute events in the life of its members. Studies that investigate adult neurogenesis in wild mammals are not numerous, but the findings of neurogenesis under natural conditions can provide new insights, and thereby also address the question to which cognitive demands neurogenesis may respond during selection.

  1. Microbats appear to have adult hippocampal neurogenesis, but post-capture stress causes a rapid decline in the number of neurons expressing doublecortin.

    PubMed

    Chawana, R; Alagaili, A; Patzke, N; Spocter, M A; Mohammed, O B; Kaswera, C; Gilissen, E; Bennett, N C; Ihunwo, A O; Manger, P R

    2014-09-26

    A previous study investigating potential adult hippocampal neurogenesis in microchiropteran bats failed to reveal a strong presence of this neural trait. As microchiropterans have a high field metabolic rate and a small body mass, it is possible that capture/handling stress may lead to a decrease in the detectable presence of adult hippocampal neurogenesis. Here we looked for evidence of adult hippocampal neurogenesis using immunohistochemical techniques for the endogenous marker doublecortin (DCX) in 10 species of microchiropterans euthanized and perfusion fixed at specific time points following capture. Our results reveal that when euthanized and perfused within 15 min of capture, abundant putative adult hippocampal neurogenesis could be detected using DCX immunohistochemistry. Between 15 and 30 min post-capture, the detectable levels of DCX dropped dramatically and after 30 min post-capture, immunohistochemistry for DCX could not reveal any significant evidence of putative adult hippocampal neurogenesis. Thus, as with all other mammals studied to date apart from cetaceans, bats, including both microchiropterans and megachiropterans, appear to exhibit substantial levels of adult hippocampal neurogenesis. The present study underscores the concept that, as with laboratory experiments, studies conducted on wild-caught animals need to be cognizant of the fact that acute stress (capture/handling) may induce major changes in the appearance of specific neural traits.

  2. A simple assessment model to quantifying the dynamic hippocampal neurogenic process in the adult mammalian brain.

    PubMed

    Choi, Minee L; Begeti, Faye; Barker, Roger A; Kim, Namho

    2016-04-01

    Adult hippocampal neurogenesis is a highly dynamic process in which new cells are born, but only some of which survive. Of late it has become clear that these surviving newborn neurons have functional roles, most notably in certain forms of memory. Conventional methods to look at adult neurogenesis are based on the quantification of the number of newly born neurons using a simple cell counting methodology. However, this type of approach fails to capture the dynamic aspects of the neurogenic process, where neural proliferation, death and differentiation take place continuously and simultaneously. In this paper, we propose a simple mathematical approach to better understand the adult neurogenic process in the hippocampus which in turn will allow for a better analysis of this process in disease states and following drug therapies. PMID:26443687

  3. Consequences of cancer treatments on adult hippocampal neurogenesis: implications for cognitive function and depressive symptoms

    PubMed Central

    Pereira Dias, Gisele; Hollywood, Ronan; Bevilaqua, Mário Cesar do Nascimento; da Silveira da Luz, Anna Claudia Domingos; Hindges, Robert; Nardi, Antonio Egidio; Thuret, Sandrine

    2014-01-01

    The human brain is capable of generating new functional neurons throughout life, a phenomenon known as adult neurogenesis. The generation of new neurons is sustained throughout adulthood due to the proliferation and differentiation of adult neural stem cells. This process in humans is uniquely located in the subgranular zone of the dentate gyrus in the hippocampus. Adult hippocampal neurogenesis (AHN) is thought to play a major role in hippocampus-dependent functions, such as spatial awareness, long-term memory, emotionality, and mood. The overall aim of current treatments for cancer (such as radiotherapy and chemotherapy) is to prevent aberrant cell division of cell populations associated with malignancy. However, the treatments in question are absolutist in nature and hence inhibit all cell division. An unintended consequence of this cessation of cell division is the impairment of adult neural stem cell proliferation and AHN. Patients undergoing treatment for cancerous malignancies often display specific forms of memory deficits, as well as depressive symptoms. This review aims to discuss the effects of cancer treatments on AHN and propose a link between the inhibition of the neurogenetic process in the hippocampus and the advent of the cognitive and mood-based deficits observed in patients and animal models undergoing cancer therapies. Possible evidence for coadjuvant interventions aiming to protect neural cells, and subsequently the mood and cognitive functions they regulate, from the ablative effects of cancer treatment are discussed as potential clinical tools to improve mental health among cancer patients. PMID:24470543

  4. Ghrelin regulates cell cycle-related gene expression in cultured hippocampal neural stem cells.

    PubMed

    Chung, Hyunju; Park, Seungjoon

    2016-08-01

    We have previously demonstrated that ghrelin stimulates the cellular proliferation of cultured adult rat hippocampal neural stem cells (NSCs). However, little is known about the molecular mechanisms by which ghrelin regulates cell cycle progression. The purpose of this study was to investigate the potential effects of ghrelin on cell cycle regulatory molecules in cultured hippocampal NSCs. Ghrelin treatment increased proliferation assessed by CCK-8 proliferation assay. The expression levels of proliferating cell nuclear antigen and cell division control 2, well-known cell-proliferating markers, were also increased by ghrelin. Fluorescence-activated cell sorting analysis revealed that ghrelin promoted progression of cell cycle from G0/G1 to S phase, whereas this progression was attenuated by the pretreatment with specific inhibitors of MEK/extracellular signal-regulated kinase 1/2, phosphoinositide 3-kinase/Akt, mammalian target of rapamycin, and janus kinase 2/signal transducer and activator of transcription 3. Ghrelin-induced proliferative effect was associated with increased expression of E2F1 transcription factor in the nucleus, as determined by Western blotting and immunofluorescence. We also found that ghrelin caused an increase in protein levels of positive regulators of cell cycle, such as cyclin A and cyclin-dependent kinase (CDK) 2. Moreover, p27(KIP1) and p57(KIP2) protein levels were reduced when cell were exposed to ghrelin, suggesting downregulation of CDK inhibitors may contribute to proliferative effect of ghrelin. Our data suggest that ghrelin targets both cell cycle positive and negative regulators to stimulate proliferation of cultured hippocampal NSCs. PMID:27325242

  5. The Mammalian Adult Neurogenesis Gene Ontology (MANGO) Provides a Structural Framework for Published Information on Genes Regulating Adult Hippocampal Neurogenesis

    PubMed Central

    Overall, Rupert W.; Paszkowski-Rogacz, Maciej; Kempermann, Gerd

    2012-01-01

    Background Adult hippocampal neurogenesis is not a single phenotype, but consists of a number of sub-processes, each of which is under complex genetic control. Interpretation of gene expression studies using existing resources often does not lead to results that address the interrelatedness of these processes. Formal structure, such as provided by ontologies, is essential in any field for comprehensive interpretation of existing knowledge but, until now, such a structure has been lacking for adult neurogenesis. Methodology/Principal Findings We have created a resource with three components 1. A structured ontology describing the key stages in the development of adult hippocampal neural stem cells into functional granule cell neurons. 2. A comprehensive survey of the literature to annotate the results of all published reports on gene function in adult hippocampal neurogenesis (257 manuscripts covering 228 genes) to the appropriate terms in our ontology. 3. An easy-to-use searchable interface to the resulting database made freely available online. The manuscript presents an overview of the database highlighting global trends such as the current bias towards research on early proliferative stages, and an example gene set enrichment analysis. A limitation of the resource is the current scope of the literature which, however, is growing by around 100 publications per year. With the ontology and database in place, new findings can be rapidly annotated and regular updates of the database will be made publicly available. Conclusions/Significance The resource we present allows relevant interpretation of gene expression screens in terms of defined stages of postnatal neuronal development. Annotation of genes by hand from the adult neurogenesis literature ensures the data are directly applicable to the system under study. We believe this approach could also serve as an example to other fields in a ‘bottom-up’ community effort complementing the already successful

  6. Wnt signaling in neuropsychiatric disorders: ties with adult hippocampal neurogenesis and behavior

    PubMed Central

    Hussaini, Syed Mohammed Qasim; Choi, Chan-Il; Cho, Chang Hoon; Kim, Hyo Jin; Jun, Heechul; Jang, Mi-Hyeon

    2014-01-01

    In an effort to better understand and treat mental disorders, the Wnt pathway and adult hippocampal neurogenesis have received increased attention in recent years. One is a signaling pathway regulating key aspects of embryonic patterning, cell specification, and adult tissue homeostasis. The other is the generation of newborn neurons in adulthood that integrate into the neural circuit and function in learning and memory, and mood behavior. In this review, we discuss the growing relationship between Wnt signaling-mediated regulation of adult hippocampal neurogenesis as it applies to neuropsychiatric disorders. Evidence suggests dysfunctional Wnt signaling may aberrantly regulate new neuron development and cognitive function. Indeed, altered expression of key Wnt pathway components are observed in the hippocampus of patients suffering from neuropsychiatric disorders. Clinically-utilized mood stabilizers also proceed through modulation of Wnt signaling in the hippocampus, while Wnt pathway antagonists can regulate the antidepressant response. Here, we review the role of Wnt signaling in disease etiology and pathogenesis, regulation of adult neurogenesis and behavior, and the therapeutic targeting of disease symptoms. PMID:25263701

  7. Role of adult hippocampal neurogenesis in persistent pain.

    PubMed

    Apkarian, A Vania; Mutso, Amelia A; Centeno, Maria V; Kan, Lixin; Wu, Melody; Levinstein, Marjorie; Banisadr, Ghazal; Gobeske, Kevin T; Miller, Richard J; Radulovic, Jelena; Hen, René; Kessler, John A

    2016-02-01

    The full role of adult hippocampal neurogenesis (AHN) remains to be determined, yet it is implicated in learning and emotional functions, and is disrupted in negative mood disorders. Recent evidence indicates that AHN is decreased in persistent pain consistent with the idea that chronic pain is a major stressor, associated with negative moods and abnormal memories. Yet, the role of AHN in development of persistent pain has remained unexplored. In this study, we test the influence of AHN in postinjury inflammatory and neuropathic persistent pain-like behaviors by manipulating neurogenesis: pharmacologically through intracerebroventricular infusion of the antimitotic AraC; ablation of AHN by x-irradiation; and using transgenic mice with increased or decreased AHN. Downregulating neurogenesis reversibly diminished or blocked persistent pain; oppositely, upregulating neurogenesis led to prolonged persistent pain. Moreover, we could dissociate negative mood from persistent pain. These results suggest that AHN-mediated hippocampal learning mechanisms are involved in the emergence of persistent pain.

  8. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour.

    PubMed

    Snyder, Jason S; Soumier, Amélie; Brewer, Michelle; Pickel, James; Cameron, Heather A

    2011-08-03

    Glucocorticoids are released in response to stressful experiences and serve many beneficial homeostatic functions. However, dysregulation of glucocorticoids is associated with cognitive impairments and depressive illness. In the hippocampus, a brain region densely populated with receptors for stress hormones, stress and glucocorticoids strongly inhibit adult neurogenesis. Decreased neurogenesis has been implicated in the pathogenesis of anxiety and depression, but direct evidence for this role is lacking. Here we show that adult-born hippocampal neurons are required for normal expression of the endocrine and behavioural components of the stress response. Using either transgenic or radiation methods to inhibit adult neurogenesis specifically, we find that glucocorticoid levels are slower to recover after moderate stress and are less suppressed by dexamethasone in neurogenesis-deficient mice than intact mice, consistent with a role for the hippocampus in regulation of the hypothalamic-pituitary-adrenal (HPA) axis. Relative to controls, neurogenesis-deficient mice also showed increased food avoidance in a novel environment after acute stress, increased behavioural despair in the forced swim test, and decreased sucrose preference, a measure of anhedonia. These findings identify a small subset of neurons within the dentate gyrus that are critical for hippocampal negative control of the HPA axis and support a direct role for adult neurogenesis in depressive illness.

  9. Fractalkine and CX3CR1 regulate hippocampal neurogenesis in adult and aged rats

    PubMed Central

    Bachstetter, Adam D.; Morganti, Josh M.; Jernberg, Jennifer; Schlunk, Andrea; Mitchell, Staten H.; Brewster, Kaelin W.; Hudson, Charles E.; Cole, Michael J; Harrison, Jeffrey K.; Bickford, Paula C.; Gemma, Carmelina

    2010-01-01

    Microglia have neuroprotective capacities, yet chronic activation can promote neurotoxic inflammation. Neuronal fractalkine (FKN), acting on CX3CR1, has been shown to suppress excessive microglia activation. We found that disruption in FKN/ CX3CR1 signaling in young adult rodents decreased survival and proliferation of neural progenitor cells through IL-1β. Aged rats were found to have decreased levels of hippocampal FKN protein; moreover, interruption of CX3CR1 function in these animals did not affect neurogenesis. The age-related loss of FKN could be restored by exogenous FKN reversing the age-related decrease in hippocampal neurogenesis. There were no measureable changes in young animals by the addition of exogenous FKN. The results suggest that FKN/ CX3CR1 signaling has a regulatory role in modulating hippocampal neurogenesis via mechanisms that involve indirect modification of the niche environment. As elevated neuroinflammation is associated with many age-related neurodegenerative diseases, enhancing FKN/ CX3CR1 interactions could provide an alternative therapeutic approach to slow age-related neurodegeneration. PMID:20018408

  10. Hippocampal representation of related and opposing memories develop within distinct, hierarchically organized neural schemas.

    PubMed

    McKenzie, Sam; Frank, Andrea J; Kinsky, Nathaniel R; Porter, Blake; Rivière, Pamela D; Eichenbaum, Howard

    2014-07-01

    Recent evidence suggests that the hippocampus may integrate overlapping memories into relational representations, or schemas, that link indirectly related events and support flexible memory expression. Here we explored the nature of hippocampal neural population representations for multiple features of events and the locations and contexts in which they occurred. Hippocampal networks developed hierarchical organizations of associated elements of related but separately acquired memories within a context, and distinct organizations for memories where the contexts differentiated object-reward associations. These findings reveal neural mechanisms for the development and organization of relational representations.

  11. Effective Connectivity of Hippocampal Neural Network and Its Alteration in Mg2+-Free Epilepsy Model

    PubMed Central

    Gong, Xin-Wei; Li, Jing-Bo; Lu, Qin-Chi; Liang, Pei-Ji; Zhang, Pu-Ming

    2014-01-01

    Understanding the connectivity of the brain neural network and its evolution in epileptiform discharges is meaningful in the epilepsy researches and treatments. In the present study, epileptiform discharges were induced in rat hippocampal slices perfused with Mg2+-free artificial cerebrospinal fluid. The effective connectivity of the hippocampal neural network was studied by comparing the normal and epileptiform discharges recorded by a microelectrode array. The neural network connectivity was constructed by using partial directed coherence and analyzed by graph theory. The transition of the hippocampal network topology from control to epileptiform discharges was demonstrated. Firstly, differences existed in both the averaged in- and out-degree between nodes in the pyramidal cell layer and the granule cell layer, which indicated an information flow from the pyramidal cell layer to the granule cell layer during epileptiform discharges, whereas no consistent information flow was observed in control. Secondly, the neural network showed different small-worldness in the early, middle and late stages of the epileptiform discharges, whereas the control network did not show the small-world property. Thirdly, the network connectivity began to change earlier than the appearance of epileptiform discharges and lasted several seconds after the epileptiform discharges disappeared. These results revealed the important network bases underlying the transition from normal to epileptiform discharges in hippocampal slices. Additionally, this work indicated that the network analysis might provide a useful tool to evaluate the neural network and help to improve the prediction of seizures. PMID:24658094

  12. Effective connectivity of hippocampal neural network and its alteration in Mg2+-free epilepsy model.

    PubMed

    Gong, Xin-Wei; Li, Jing-Bo; Lu, Qin-Chi; Liang, Pei-Ji; Zhang, Pu-Ming

    2014-01-01

    Understanding the connectivity of the brain neural network and its evolution in epileptiform discharges is meaningful in the epilepsy researches and treatments. In the present study, epileptiform discharges were induced in rat hippocampal slices perfused with Mg2+-free artificial cerebrospinal fluid. The effective connectivity of the hippocampal neural network was studied by comparing the normal and epileptiform discharges recorded by a microelectrode array. The neural network connectivity was constructed by using partial directed coherence and analyzed by graph theory. The transition of the hippocampal network topology from control to epileptiform discharges was demonstrated. Firstly, differences existed in both the averaged in- and out-degree between nodes in the pyramidal cell layer and the granule cell layer, which indicated an information flow from the pyramidal cell layer to the granule cell layer during epileptiform discharges, whereas no consistent information flow was observed in control. Secondly, the neural network showed different small-worldness in the early, middle and late stages of the epileptiform discharges, whereas the control network did not show the small-world property. Thirdly, the network connectivity began to change earlier than the appearance of epileptiform discharges and lasted several seconds after the epileptiform discharges disappeared. These results revealed the important network bases underlying the transition from normal to epileptiform discharges in hippocampal slices. Additionally, this work indicated that the network analysis might provide a useful tool to evaluate the neural network and help to improve the prediction of seizures.

  13. Impaired adult hippocampal neurogenesis and its partial reversal by chronic treatment of fluoxetine in a mouse model of Angelman syndrome.

    PubMed

    Godavarthi, Swetha K; Dey, Parthanarayan; Sharma, Ankit; Jana, Nihar Ranjan

    2015-09-01

    Angelman syndrome (AS) is a neurodevelopmental disorder characterized by severe cognitive and motor deficits, caused by the loss of function of maternally inherited Ube3a. Ube3a-maternal deficient mice (AS model mice) recapitulate many essential features of AS, but how the deficiency of Ube3a lead to such behavioural abnormalities is poorly understood. Here we have demonstrated significant impairment of adult hippocampal neurogenesis in AS mice brain. Although, the number of BrdU and Ki67-positive cell in the hippocampal DG region was nearly equal at early postnatal days among wild type and AS mice, they were significantly reduced in adult AS mice compared to wild type controls. Reduced number of doublecortin-positive immature neurons in this region of AS mice further indicated impaired neurogenesis. Unaltered BrdU and Ki67-positive cells number in the sub ventricular zone of adult AS mice brain along with the absence of imprinted expression of Ube3a in the neural progenitor cell suggesting that Ube3a may not be directly linked with altered neurogenesis. Finally, we show that the impaired hippocampal neurogenesis in these mice can be partially rescued by the chronic treatment of antidepressant fluoxetine. These results suggest that the chronic stress may lead to reduced hippocampal neurogenesis in AS mice and that impaired neurogenesis could contribute to cognitive disturbances observed in these mice.

  14. Impaired adult hippocampal neurogenesis and its partial reversal by chronic treatment of fluoxetine in a mouse model of Angelman syndrome.

    PubMed

    Godavarthi, Swetha K; Dey, Parthanarayan; Sharma, Ankit; Jana, Nihar Ranjan

    2015-09-01

    Angelman syndrome (AS) is a neurodevelopmental disorder characterized by severe cognitive and motor deficits, caused by the loss of function of maternally inherited Ube3a. Ube3a-maternal deficient mice (AS model mice) recapitulate many essential features of AS, but how the deficiency of Ube3a lead to such behavioural abnormalities is poorly understood. Here we have demonstrated significant impairment of adult hippocampal neurogenesis in AS mice brain. Although, the number of BrdU and Ki67-positive cell in the hippocampal DG region was nearly equal at early postnatal days among wild type and AS mice, they were significantly reduced in adult AS mice compared to wild type controls. Reduced number of doublecortin-positive immature neurons in this region of AS mice further indicated impaired neurogenesis. Unaltered BrdU and Ki67-positive cells number in the sub ventricular zone of adult AS mice brain along with the absence of imprinted expression of Ube3a in the neural progenitor cell suggesting that Ube3a may not be directly linked with altered neurogenesis. Finally, we show that the impaired hippocampal neurogenesis in these mice can be partially rescued by the chronic treatment of antidepressant fluoxetine. These results suggest that the chronic stress may lead to reduced hippocampal neurogenesis in AS mice and that impaired neurogenesis could contribute to cognitive disturbances observed in these mice. PMID:26231800

  15. Bi-parental care contributes to sexually dimorphic neural cell genesis in the adult mammalian brain.

    PubMed

    Mak, Gloria K; Antle, Michael C; Dyck, Richard H; Weiss, Samuel

    2013-01-01

    Early life events can modulate brain development to produce persistent physiological and behavioural phenotypes that are transmissible across generations. However, whether neural precursor cells are altered by early life events, to produce persistent and transmissible behavioural changes, is unknown. Here, we show that bi-parental care, in early life, increases neural cell genesis in the adult rodent brain in a sexually dimorphic manner. Bi-parentally raised male mice display enhanced adult dentate gyrus neurogenesis, which improves hippocampal neurogenesis-dependent learning and memory. Female mice display enhanced adult white matter oligodendrocyte production, which increases proficiency in bilateral motor coordination and preference for social investigation. Surprisingly, single parent-raised male and female offspring, whose fathers and mothers received bi-parental care, respectively, display a similar enhancement in adult neural cell genesis and phenotypic behaviour. Therefore, neural plasticity and behavioural effects due to bi-parental care persist throughout life and are transmitted to the next generation.

  16. Hippocampal (subfield) volume and shape in relation to cognitive performance across the adult lifespan.

    PubMed

    Voineskos, Aristotle N; Winterburn, Julie L; Felsky, Daniel; Pipitone, Jon; Rajji, Tarek K; Mulsant, Benoit H; Chakravarty, M Mallar

    2015-08-01

    Newer approaches to characterizing hippocampal morphology can provide novel insights regarding cognitive function across the lifespan. We comprehensively assessed the relationships among age, hippocampal morphology, and hippocampal-dependent cognitive function in 137 healthy individuals across the adult lifespan (18-86 years of age). They underwent MRI, cognitive assessments and genotyping for Apolipoprotein E status. We measured hippocampal subfield volumes using a new multiatlas segmentation tool (MAGeT-Brain) and assessed vertex-wise (inward and outward displacements) and global surface-based descriptions of hippocampus morphology. We examined the effects of age on hippocampal morphology, as well as the relationship among age, hippocampal morphology, and episodic and working memory performance. Age and volume were modestly correlated across hippocampal subfields. Significant patterns of inward and outward displacement in hippocampal head and tail were associated with age. The first principal shape component of the left hippocampus, characterized by a lengthening of the antero-posterior axis was prominently associated with working memory performance across the adult lifespan. In contrast, no significant relationships were found among subfield volumes and cognitive performance. Our findings demonstrate that hippocampal shape plays a unique and important role in hippocampal-dependent cognitive aging across the adult lifespan, meriting consideration as a biomarker in strategies targeting the delay of cognitive aging.

  17. The effect of adult-acquired hippocampal damage on memory retrieval: an fMRI study.

    PubMed

    Maguire, Eleanor A; Frith, Christopher D; Rudge, Peter; Cipolotti, Lisa

    2005-08-01

    Bilateral hippocampal pathology typically results in significant memory problems. Despite apparently similar structural damage, patients with such lesions can differ in the pattern of impairment and preservation of memory functions. Previously, an fMRI study of a developmental amnesic patient whose anoxic hippocampal damage was incurred perinatally revealed his residual hippocampal tissue to be active during memory retrieval. This hippocampal activity was apparent during the retrieval of personal and general facts relative to a control task. In this study, we used a similar fMRI paradigm to investigate whether residual hippocampal activation was present also in patient VC with adult-acquired anoxic hippocampal pathology. VC's performance and reaction times on the experimental personal and general fact tasks were comparable to age-matched control subjects. However, in contrast to the elderly control sample and the previous developmental amnesic patient, his residual hippocampal tissue did not show activation changes during the experimental tasks. This finding indicates that patient VC's successful retrieval of personal and general facts was achieved without a significant hippocampal contribution. It further suggests that the hippocampal activation observed in the elderly controls and previous developmental amnesic patient was not necessary for successful task performance. The reason for this difference in hippocampal responsivity between VC and the developmental amnesic patient remains to be determined. We speculate that it may relate to the age at which hippocampal damage occurred reflecting plasticity within the developing brain, or to cognitive differences between VC, the developmental amnesic patient, and the control subjects. PMID:15886022

  18. Folate deficiency inhibits proliferation of adult hippocampal progenitors.

    PubMed

    Kruman, Inna I; Mouton, Peter R; Emokpae, Roland; Cutler, Roy G; Mattson, Mark P

    2005-07-13

    Neurogenesis in the adult hippocampus may play important roles in learning and memory, and in recovery from injury. As recent findings suggest, the perturbance of homocysteine/folate or one-carbon metabolism can adversely affect both the developing and the adult brain, and increase the risk of neural tube defects and Alzheimer's disease. We report that dietary folic acid deficiency dramatically increased blood homocysteine levels and significantly reduced the number of proliferating cells in the dentate gyrus of the hippocampus in adult mice. In vitro, the perturbance of one-carbon metabolism repressed proliferation of cultured embryonic multipotent neuroepithelial progenitor cells and affected cell cycle distribution. Our results suggest that dietary folate deficiency inhibits proliferation of neuronal progenitor cells in the adult brain and thereby affects neurogenesis. PMID:15973147

  19. Adult Hippocampal Neurogenesis: Regulation, Functional Implications, And Contribution to Disease Pathology

    PubMed Central

    Balu, Darrick T.; Lucki, Irwin

    2009-01-01

    It is now well established that the mammalian brain has the capacity to produce new neurons into adulthood. One such region that provides the proper milieu to sustain progenitor cells and is permissive to neuronal fate determination is located in the dentate gyrus of the hippocampus. This review will discuss in detail the complex process of adult hippocampal neurogenesis, including proliferation, differentiation, survival, and incorporation into neuronal networks. The regulation of this phenomenon by a number of factors is described, including neurotransmitter systems, growth factors, paracrine signaling molecules, neuropeptides, transcription factors, endogenous psychotropic systems, sex hormones, stress, and others. This review also addresses the functional significance of adult born hippocampal granule cells with regard to hippocampal circuitry dynamics and behavior. Furthermore, the relevance of perturbations in adult hippocampal neurogenesis to the pathophysiology of various disease states, including depression, schizophrenia, epilepsy, and diabetes are examined. Finally, this review discusses the potential of using hippocampal neurogenesis as a therapeutic target for these disorders. PMID:18786562

  20. Multipotent adult hippocampal progenitor cells maintained as neurospheres favor differentiation toward glial lineages

    PubMed Central

    Oh, Jisun; Daniels, Gabrielle J.; Chiou, Lawrence S.; Ye, Eun-Ah; Jeong, Yong-Seob; Sakaguchi, Donald S.

    2014-01-01

    Adult hippocampal progenitor cells (AHPCs) are generally maintained as a dispersed monolayer population of multipotent neural progenitors. To better understand cell-cell interactions among neural progenitors and their influences on cellular characteristics, we generated free-floating cellular aggregates, or neurospheres, from the adherent monolayer population of AHPCs. Results from in vitro analyses demonstrated that both populations of AHPCs were highly proliferative under maintenance conditions, but AHPCs formed in neurospheres favored differentiation along a glial lineage and displayed greater migrational activity, than the traditionally cultured AHPCs. To study the plasticity of AHPCs from both populations in vivo, we transplanted GFP-expressing AHPCs via intraocular injection into the developing rat eyes. Both AHPC populations were capable of surviving and integrating into the developing host central nervous system, but considerably more GFP-positive cells were observed in the retinas transplanted with neurosphere AHPCs, compared to adherent AHPCs. These results suggest that the culture configuration during maintenance for neural progenitor cells (NPCs) influences cell fate and motility in vitro as well as in vivo. Our findings have implication for understanding different cellular characteristics of NPCs according to distinct intercellular architectures and for developing cell-based therapeutic strategies using lineage-committed NPCs. PMID:24844209

  1. The postnatal origin of adult neural stem cells and the effects of glucocorticoids on their genesis.

    PubMed

    Ortega-Martínez, Sylvia; Trejo, José L

    2015-02-15

    The relevance of adult neurogenesis in hippocampal function is well documented, as is the potential impact stress has on the adult neurogenic niche. Adult born neurons are generated from neural precursors in the dentate gyrus (DG), although the point in postnatal development that these cell precursors originate is not known. This is particularly relevant if we consider the effects stress may have on the development of neural precursors, and whether such effects on adult neurogenesis and behavior may persist in the long-term. We have analyzed the proportion of neural precursors in the adult murine hippocampus born on specific days during postnatal development using a dual birth-dating analysis, and we assessed their sensitivity to dexamethasone (DEX) on the peak day of cell generation. We also studied the consequences of postnatal DEX administration on adult hippocampal-dependent behavior. Postnatal day 6 (P6) is a preferred period for proliferating neural stem cells (NSCs) to become the precursors that remain in a proliferative state throughout adulthood. This window is independent of gender, the cell's location in the DG granule cell layer or their rostro-caudal position. DEX administration at P6 reduces the size of the adult NSC pool in the DG, which is correlated with poor learning/memory capacity and increased anxiety-like behavior. These results indicate that aNSCs are generated non-uniformly during postnatal development, with peak generation on day P6, and that stress receptor activation during the key period of postnatal NSC generation has a profound impact on both adult hippocampal neurogenesis and behavior.

  2. Generalized Potential of Adult Neural Stem Cells

    NASA Astrophysics Data System (ADS)

    Clarke, Diana L.; Johansson, Clas B.; Wilbertz, Johannes; Veress, Biborka; Nilsson, Erik; Karlström, Helena; Lendahl, Urban; Frisén, Jonas

    2000-06-01

    The differentiation potential of stem cells in tissues of the adult has been thought to be limited to cell lineages present in the organ from which they were derived, but there is evidence that some stem cells may have a broader differentiation repertoire. We show here that neural stem cells from the adult mouse brain can contribute to the formation of chimeric chick and mouse embryos and give rise to cells of all germ layers. This demonstrates that an adult neural stem cell has a very broad developmental capacity and may potentially be used to generate a variety of cell types for transplantation in different diseases.

  3. Untangling the Influences of Voluntary Running, Environmental Complexity, Social Housing and Stress on Adult Hippocampal Neurogenesis

    PubMed Central

    Grégoire, Catherine-Alexandra; Bonenfant, David; Le Nguyen, Adalie; Aumont, Anne; Fernandes, Karl J. L.

    2014-01-01

    Environmental enrichment (EE) exerts powerful effects on brain physiology, and is widely used as an experimental and therapeutic tool. Typical EE paradigms are multifactorial, incorporating elements of physical exercise, environmental complexity, social interactions and stress, however the specific contributions of these variables have not been separable using conventional housing paradigms. Here, we evaluated the impacts of these individual variables on adult hippocampal neurogenesis by using a novel “Alternating EE” paradigm. For 4 weeks, adult male CD1 mice were alternated daily between two enriched environments; by comparing groups that differed in one of their two environments, the individual and combinatorial effects of EE variables could be resolved. The Alternating EE paradigm revealed that (1) voluntary running for 3 days/week was sufficient to increase both mitotic and post-mitotic stages of hippocampal neurogenesis, confirming the central importance of exercise; (2) a complex environment (comprised of both social interactions and rotated inanimate objects) had no effect on neurogenesis itself, but enhanced depolarization-induced c-Fos expression (attributable to social interactions) and buffered stress-induced plasma corticosterone levels (attributable to inanimate objects); and (3) neither social isolation, group housing, nor chronically increased levels of plasma corticosterone had a prolonged impact on neurogenesis. Mouse strain, handling and type of running apparatus were tested and excluded as potential confounding factors. These findings provide valuable insights into the relative effects of key EE variables on adult neurogenesis, and this “Alternating EE” paradigm represents a useful tool for exploring the contributions of individual EE variables to mechanisms of neural plasticity. PMID:24465980

  4. Sex hormones and adult hippocampal neurogenesis: Regulation, implications, and potential mechanisms.

    PubMed

    Mahmoud, Rand; Wainwright, Steven R; Galea, Liisa A M

    2016-04-01

    Neurogenesis within the adult hippocampus is modulated by endogenous and exogenous factors. Here, we review the role of sex hormones in the regulation of adult hippocampal neurogenesis in males and females. The review is framed around the potential functional implications of sex hormone regulation of adult hippocampal neurogenesis, with a focus on cognitive function and mood regulation, which may be related to sex differences in incidence and severity of dementia and depression. We present findings from preclinical studies of endogenous fluctuations in sex hormones relating to reproductive function and ageing, and from studies of exogenous hormone manipulations. In addition, we discuss the modulating roles of sex, age, and reproductive history on the relationship between sex hormones and neurogenesis. Because sex hormones have diverse targets in the central nervous system, we overview potential mechanisms through which sex hormones may influence hippocampal neurogenesis. Lastly, we advocate for a more systematic consideration of sex and sex hormones in studying the functional implications of adult hippocampal neurogenesis.

  5. Impaired spatial learning and reduced adult hippocampal neurogenesis in histamine H1-receptor knockout mice.

    PubMed

    Ambrée, Oliver; Buschert, Jens; Zhang, Weiqi; Arolt, Volker; Dere, Ekrem; Zlomuzica, Armin

    2014-08-01

    The histamine H1-receptor (H1R) is expressed in wide parts of the brain including the hippocampus, which is involved in spatial learning and memory. Previous studies in H1R knockout (H1R-KO) mice revealed deficits in a variety of learning and memory tasks. It was also proposed that H1R activation is crucial for neuronal differentiation of neural progenitors. Therefore, the aim of this study was to investigate negatively reinforced spatial learning in the water-maze and to assess survival and neuronal differentiation of newborn cells in the adult hippocampus of H1R-KO mice. H1R-KO and wild-type (WT) mice were subjected to the following sequence of tests: (a) cued version, (b) place learning, (c) spatial probe, (d) long-term retention and (e) reversal learning. Furthermore hippocampal neurogenesis in terms of survival and differentiation was assessed in H1R-KO and WT mice. H1R-KO mice showed normal cued learning, but impaired place and reversal learning as well as impaired long-term retention performance. In addition, a marked reduction of newborn neurons in the hippocampus but no changes in differentiation of neural progenitors into neuronal and glial lineage was found in H1R-KO mice. Our data suggest that H1R deficiency in mice is associated with pronounced deficits in hippocampus-dependent spatial learning and memory. Furthermore, we herein provide first evidence that H1R deficiency in the mouse leads to a reduced neurogenesis. However, the exact mechanisms for the reduced number of cells in H1R-KO mice remain elusive and might be due to a reduced survival of newborn hippocampal neurons and/or a reduction in cell proliferation.

  6. Thermal dependence of neural activity in the hamster hippocampal slice preparation

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Thomas, M. P.; Eckerman, P.

    1987-01-01

    1. Neural activity was recorded in an in vitro hamster hippocampal slice preparation while the temperature of the Ringer's solution bathing in the slice was controlled at selected levels. 2. The amplitude of the population spike (action potentials from a group of pyramidal cells) was measured as bath temperature was lowered from 35 degrees C to temperatures where a response could not be evoked. 3. Plots of population spike amplitude versus temperature have bell-shaped curves. The population spikes increased in amplitude as temperature was lowered from 35 degrees C, reached a peak amplitude between 25 and 20 degrees C, and then decreased until a response could not be evoked when temperature was further lowered. 4. These in vitro results obtained in the slice preparation are related to in vivo hippocampal studies. Results are interpreted as consistent with the proposal reviewed here that neural activity in the hippocampus plays a role at specific stages of entrance into and arousal from hibernation.

  7. Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus.

    PubMed

    Kim, So Jung; Son, Tae Gen; Park, Hee Ra; Park, Mikyung; Kim, Min-Sun; Kim, Hyung Sik; Chung, Hae Young; Mattson, Mark P; Lee, Jaewon

    2008-05-23

    Curcumin is a natural phenolic component of yellow curry spice, which is used in some cultures for the treatment of diseases associated with oxidative stress and inflammation. Curcumin has been reported to be capable of preventing the death of neurons in animal models of neurodegenerative disorders, but its possible effects on developmental and adult neuroplasticity are unknown. In the present study, we investigated the effects of curcumin on mouse multi-potent neural progenitor cells (NPC) and adult hippocampal neurogenesis. Curcumin exerted biphasic effects on cultured NPC; low concentrations stimulated cell proliferation, whereas high concentrations were cytotoxic. Curcumin activated extracellular signal-regulated kinases (ERKs) and p38 kinases, cellular signal transduction pathways known to be involved in the regulation of neuronal plasticity and stress responses. Inhibitors of ERKs and p38 kinases effectively blocked the mitogenic effect of curcumin in NPC. Administration of curcumin to adult mice resulted in a significant increase in the number of newly generated cells in the dentate gyrus of hippocampus, indicating that curcumin enhances adult hippocampal neurogenesis. Our findings suggest that curcumin can stimulate developmental and adult hippocampal neurogenesis, and a biological activity that may enhance neural plasticity and repair.

  8. Hippocampal Brain Volume Is Associated with Faster Facial Emotion Identification in Older Adults: Preliminary Results.

    PubMed

    Szymkowicz, Sarah M; Persson, Jonas; Lin, Tian; Fischer, Håkan; Ebner, Natalie C

    2016-01-01

    Quick correct identification of facial emotions is highly relevant for successful social interactions. Research suggests that older, compared to young, adults experience increased difficulty with face and emotion processing skills. While functional neuroimaging studies suggest age differences in neural processing of faces and emotions, evidence about age-associated structural brain changes and their involvement in face and emotion processing is scarce. Using structural magnetic resonance imaging (MRI), this study investigated the extent to which volumes of frontal and temporal brain structures were related to reaction time in accurate identification of facial emotions in 30 young and 30 older adults. Volumetric segmentation was performed using FreeSurfer and gray matter volumes from frontal and temporal regions were extracted. Analysis of covariances (ANCOVAs) models with response time (RT) as the dependent variable and age group and regional volume, and their interaction, as independent variables were conducted, controlling for total intracranial volume (ICV). Results indicated that, in older adults, larger hippocampal volumes were associated with faster correct facial emotion identification. These preliminary observations suggest that greater volume in brain regions associated with face and emotion processing contributes to improved facial emotion identification performance in aging. PMID:27610082

  9. Hippocampal Brain Volume Is Associated with Faster Facial Emotion Identification in Older Adults: Preliminary Results

    PubMed Central

    Szymkowicz, Sarah M.; Persson, Jonas; Lin, Tian; Fischer, Håkan; Ebner, Natalie C.

    2016-01-01

    Quick correct identification of facial emotions is highly relevant for successful social interactions. Research suggests that older, compared to young, adults experience increased difficulty with face and emotion processing skills. While functional neuroimaging studies suggest age differences in neural processing of faces and emotions, evidence about age-associated structural brain changes and their involvement in face and emotion processing is scarce. Using structural magnetic resonance imaging (MRI), this study investigated the extent to which volumes of frontal and temporal brain structures were related to reaction time in accurate identification of facial emotions in 30 young and 30 older adults. Volumetric segmentation was performed using FreeSurfer and gray matter volumes from frontal and temporal regions were extracted. Analysis of covariances (ANCOVAs) models with response time (RT) as the dependent variable and age group and regional volume, and their interaction, as independent variables were conducted, controlling for total intracranial volume (ICV). Results indicated that, in older adults, larger hippocampal volumes were associated with faster correct facial emotion identification. These preliminary observations suggest that greater volume in brain regions associated with face and emotion processing contributes to improved facial emotion identification performance in aging.

  10. Hippocampal Brain Volume Is Associated with Faster Facial Emotion Identification in Older Adults: Preliminary Results

    PubMed Central

    Szymkowicz, Sarah M.; Persson, Jonas; Lin, Tian; Fischer, Håkan; Ebner, Natalie C.

    2016-01-01

    Quick correct identification of facial emotions is highly relevant for successful social interactions. Research suggests that older, compared to young, adults experience increased difficulty with face and emotion processing skills. While functional neuroimaging studies suggest age differences in neural processing of faces and emotions, evidence about age-associated structural brain changes and their involvement in face and emotion processing is scarce. Using structural magnetic resonance imaging (MRI), this study investigated the extent to which volumes of frontal and temporal brain structures were related to reaction time in accurate identification of facial emotions in 30 young and 30 older adults. Volumetric segmentation was performed using FreeSurfer and gray matter volumes from frontal and temporal regions were extracted. Analysis of covariances (ANCOVAs) models with response time (RT) as the dependent variable and age group and regional volume, and their interaction, as independent variables were conducted, controlling for total intracranial volume (ICV). Results indicated that, in older adults, larger hippocampal volumes were associated with faster correct facial emotion identification. These preliminary observations suggest that greater volume in brain regions associated with face and emotion processing contributes to improved facial emotion identification performance in aging. PMID:27610082

  11. Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice

    PubMed Central

    Ardiles, Alvaro O.; Flores-Muñoz, Carolina; Toro-Ayala, Gabriela; Cárdenas, Ana M.; Palacios, Adrian G.; Muñoz, Pablo; Fuenzalida, Marco; Sáez, Juan C.; Martínez, Agustín D.

    2014-01-01

    The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca2+ concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP), it remains unknown whether these channels also modulate long-term depression (LTD) or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory. PMID:25360084

  12. Impaired Memory in OT-II Transgenic Mice Is Associated with Decreased Adult Hippocampal Neurogenesis Possibly Induced by Alteration in Th2 Cytokine Levels

    PubMed Central

    Jeon, Seong Gak; Kim, Kyoung Ah; Chung, Hyunju; Choi, Junghyun; Song, Eun Ji; Han, Seung-Yun; Oh, Myung Sook; Park, Jong Hwan; Kim, Jin-il; Moon, Minho

    2016-01-01

    Recently, an increasing number of studies have focused on the effects of CD4+ T cell on cognitive function. However, the changes of Th2 cytokines in restricted CD4+ T cell receptor (TCR) repertoire model and their effects on the adult hippocampal neurogenesis and memory are not fully understood. Here, we investigated whether and how the mice with restricted CD4+ repertoire TCR exhibit learning and memory impairment by using OT-II mice. OT-II mice showed decreased adult neurogenesis in hippocampus and short- and long- term memory impairment. Moreover, Th2 cytokines in OT-II mice are significantly increased in peripheral organs and IL-4 is significantly increased in brain. Finally, IL-4 treatment significantly inhibited the proliferation of cultured adult rat hippocampal neural stem cells. Taken together, abnormal level of Th2 cytokines can lead memory dysfunction via impaired adult neurogenesis in OT-II transgenic. PMID:27432189

  13. Impaired Memory in OT-II Transgenic Mice Is Associated with Decreased Adult Hippocampal Neurogenesis Possibly Induced by Alteration in Th2 Cytokine Levels.

    PubMed

    Jeon, Seong Gak; Kim, Kyoung Ah; Chung, Hyunju; Choi, Junghyun; Song, Eun Ji; Han, Seung-Yun; Oh, Myung Sook; Park, Jong Hwan; Kim, Jin-Il; Moon, Minho

    2016-08-31

    Recently, an increasing number of studies have focused on the effects of CD4+ T cell on cognitive function. However, the changes of Th2 cytokines in restricted CD4+ T cell receptor (TCR) repertoire model and their effects on the adult hippocampal neurogenesis and memory are not fully understood. Here, we investigated whether and how the mice with restricted CD4+ repertoire TCR exhibit learning and memory impairment by using OT-II mice. OT-II mice showed decreased adult neurogenesis in hippocampus and short- and long- term memory impairment. Moreover, Th2 cytokines in OT-II mice are significantly increased in peripheral organs and IL-4 is significantly increased in brain. Finally, IL-4 treatment significantly inhibited the proliferation of cultured adult rat hippocampal neural stem cells. Taken together, abnormal level of Th2 cytokines can lead memory dysfunction via impaired adult neurogenesis in OT-II transgenic. PMID:27432189

  14. Changes in fitness are associated with changes in hippocampal microstructure and hippocampal volume among older adults.

    PubMed

    Kleemeyer, Maike Margarethe; Kühn, Simone; Prindle, John; Bodammer, Nils Christian; Brechtel, Lars; Garthe, Alexander; Kempermann, Gerd; Schaefer, Sabine; Lindenberger, Ulman

    2016-05-01

    This study investigates the effects of fitness changes on hippocampal microstructure and hippocampal volume. Fifty-two healthy participants aged 59-74years with a sedentary lifestyle were randomly assigned to either of two levels of exercise intensity. Training lasted for six months. Physical fitness, hippocampal volumes, and hippocampal microstructure were measured before and after training. Hippocampal microstructure was assessed by mean diffusivity, which inversely reflects tissue density; hence, mean diffusivity is lower for more densely packed tissue. Mean changes in fitness did not differ reliably across intensity levels of training, so data were collapsed across groups. Multivariate modeling of pretest-posttest differences using structural equation modeling (SEM) revealed that individual differences in latent change were reliable for all three constructs. More positive changes in fitness were associated with more positive changes in tissue density (i.e., more negative changes in mean diffusivity), and more positive changes in tissue density were associated with more positive changes in volume. We conclude that fitness-related changes in hippocampal volume may be brought about by changes in tissue density. The relative contributions of angiogenesis, gliogenesis, and/or neurogenesis to changes in tissue density remain to be identified.

  15. Immunological control of adult neural stem cells

    PubMed Central

    Gonzalez-Perez, Oscar; Quiñones-Hinojosa, Alfredo; Garcia-Verdugo, Jose Manuel

    2010-01-01

    Adult neurogenesis occurs only in discrete regions of adult central nervous system: the subventricular zone and the subgranular zone. These areas are populated by adult neural stem cells (aNSC) that are regulated by a number of molecules and signaling pathways, which control their cell fate choices, survival and proliferation rates. For a long time, it was believed that the immune system did not exert any control on neural proliferative niches. However, it has been observed that many pathological and inflammatory conditions significantly affect NSC niches. Even more, increasing evidence indicates that chemokines and cytokines play an important role in regulating proliferation, cell fate choices, migration and survival of NSCs under physiological conditions. Hence, the immune system is emerging is an important regulator of neurogenic niches in the adult brain, which may have clinical relevance in several brain diseases. PMID:20861925

  16. Adult neural stem cells stake their ground

    PubMed Central

    Lim, Daniel A.; Alvarez-Buylla, Arturo

    2014-01-01

    The birth of new neurons in the walls of the adult brain lateral ventricles has captured the attention of many neuroscientists for over two decades, yielding key insights into the identity and regulation of neural stem cells (NSCs). In the adult ventricular-subventricular zone (V-SVZ), NSCs are a specialized form of astrocyte that generates several types of neurons for the olfactory bulb. Here we discuss recent findings regarding the unique organization of the V-SVZ NSCs niche, the multiple regulatory controls of neuronal production, the distinct regional identities of adult NSCs, and the epigenetic mechanisms that maintain adult neurogenesis. Understanding how V-SVZ NSCs establish and maintain lifelong neurogenesis continues to provide surprising insights into the cellular and molecular regulation of neural development. PMID:25223700

  17. Closing the Loop for Memory Prostheses: Detecting the Role of Hippocampal Neural Ensembles Using Nonlinear Models

    PubMed Central

    Hampson, Robert E.; Song, Dong; Chan, Rosa H.M.; Sweatt, Andrew J.; Riley, Mitchell R.; Goonawardena, Anushka V.; Marmarelis, Vasilis Z.; Gerhardt, Greg A.; Berger, Theodore W.; Deadwyler, Sam A.

    2012-01-01

    A major factor involved in providing closed loop feedback for control of neural function is to understand how neural ensembles encode online information critical to the final behavioral endpoint. This issue was directly assessed in rats performing a short-term delay memory task in which successful encoding of task information is dependent upon specific spatiotemporal firing patterns recorded from ensembles of CA3 and CA1 hippocampal neurons. Such patterns, extracted by a specially designed nonlinear multi-input multi-output (MIMO) nonlinear mathematical model, were used to predict successful performance online via a closed loop paradigm which regulated trial difficulty (time of retention) as a function of the “strength” of stimulus encoding. The significance of the MIMO model as a neural prosthesis has been demonstrated by substituting trains of electrical stimulation pulses to mimic these same ensemble firing patterns. This feature was used repeatedly to vary “normal” encoding as a means of understanding how neural ensembles can be “tuned” to mimic the inherent process of selecting codes of different strength and functional specificity. The capacity to enhance and tune hippocampal encoding via MIMO model detection and insertion of critical ensemble firing patterns shown here provides the basis for possible extension to other disrupted brain circuitry. PMID:22498704

  18. Vector Symbolic Spiking Neural Network Model of Hippocampal Subarea CA1 Novelty Detection Functionality.

    PubMed

    Agerskov, Claus

    2016-04-01

    A neural network model is presented of novelty detection in the CA1 subdomain of the hippocampal formation from the perspective of information flow. This computational model is restricted on several levels by both anatomical information about hippocampal circuitry and behavioral data from studies done in rats. Several studies report that the CA1 area broadcasts a generalized novelty signal in response to changes in the environment. Using the neural engineering framework developed by Eliasmith et al., a spiking neural network architecture is created that is able to compare high-dimensional vectors, symbolizing semantic information, according to the semantic pointer hypothesis. This model then computes the similarity between the vectors, as both direct inputs and a recalled memory from a long-term memory network by performing the dot-product operation in a novelty neural network architecture. The developed CA1 model agrees with available neuroanatomical data, as well as the presented behavioral data, and so it is a biologically realistic model of novelty detection in the hippocampus, which can provide a feasible explanation for experimentally observed dynamics. PMID:26890351

  19. Vector Symbolic Spiking Neural Network Model of Hippocampal Subarea CA1 Novelty Detection Functionality.

    PubMed

    Agerskov, Claus

    2016-04-01

    A neural network model is presented of novelty detection in the CA1 subdomain of the hippocampal formation from the perspective of information flow. This computational model is restricted on several levels by both anatomical information about hippocampal circuitry and behavioral data from studies done in rats. Several studies report that the CA1 area broadcasts a generalized novelty signal in response to changes in the environment. Using the neural engineering framework developed by Eliasmith et al., a spiking neural network architecture is created that is able to compare high-dimensional vectors, symbolizing semantic information, according to the semantic pointer hypothesis. This model then computes the similarity between the vectors, as both direct inputs and a recalled memory from a long-term memory network by performing the dot-product operation in a novelty neural network architecture. The developed CA1 model agrees with available neuroanatomical data, as well as the presented behavioral data, and so it is a biologically realistic model of novelty detection in the hippocampus, which can provide a feasible explanation for experimentally observed dynamics.

  20. The Effect of Advanced Motherhood on Newborn Offspring's Hippocampal Neural Stem Cell Proliferation

    PubMed Central

    Duan, Ping; Han, Xuefei

    2016-01-01

    Objective. To investigate the effect of advanced motherhood on rat hippocampal neural stem cell proliferation. Methods. Female parents were subdivided into control and old mother group by age, and neural stem cells were cultured from hippocampal tissues for 24 h newborn offspring. The diameter and numbers of neurospheres were examined by microscopy, and differences in proliferation were examined by EdU immunofluorescence, CCK-8 assay, and cell cycle analysis. Results. The number of neurospheres in the old mother group after culture was lower than the control group. Additionally, neurospheres' diameter was smaller than that of the control group (P < 0.05). The EdU positive rate of the old mother group was lower than that of the control group (P < 0.05). CCK-8 assay results showed that the absorbance values for the old mother group were lower than that of the control group at 48 h and 72 h (P < 0.05). The proportions of cells in the S and G2/M phases of the cell cycle for the older mother group were less than that found for the control group (P < 0.05). Conclusion. The proliferation rates of hippocampal NSCs seen in the older mother group were lower than that seen in the control group. PMID:27689086

  1. The Effect of Advanced Motherhood on Newborn Offspring's Hippocampal Neural Stem Cell Proliferation

    PubMed Central

    Duan, Ping; Han, Xuefei

    2016-01-01

    Objective. To investigate the effect of advanced motherhood on rat hippocampal neural stem cell proliferation. Methods. Female parents were subdivided into control and old mother group by age, and neural stem cells were cultured from hippocampal tissues for 24 h newborn offspring. The diameter and numbers of neurospheres were examined by microscopy, and differences in proliferation were examined by EdU immunofluorescence, CCK-8 assay, and cell cycle analysis. Results. The number of neurospheres in the old mother group after culture was lower than the control group. Additionally, neurospheres' diameter was smaller than that of the control group (P < 0.05). The EdU positive rate of the old mother group was lower than that of the control group (P < 0.05). CCK-8 assay results showed that the absorbance values for the old mother group were lower than that of the control group at 48 h and 72 h (P < 0.05). The proportions of cells in the S and G2/M phases of the cell cycle for the older mother group were less than that found for the control group (P < 0.05). Conclusion. The proliferation rates of hippocampal NSCs seen in the older mother group were lower than that seen in the control group.

  2. Low-intensity daily walking activity is associated with hippocampal volume in older adults.

    PubMed

    Varma, Vijay R; Chuang, Yi-Fang; Harris, Gregory C; Tan, Erwin J; Carlson, Michelle C

    2015-05-01

    Hippocampal atrophy is associated with memory impairment and dementia and serves as a key biomarker in the preclinical stages of Alzheimer's disease. Physical activity, one of the most promising behavioral interventions to prevent or delay cognitive decline, has been shown to be associated with hippocampal volume; specifically increased aerobic activity and fitness may have a positive effect on the size of the hippocampus. The majority of older adults, however, are sedentary and have difficulty initiating and maintaining exercise programs. A modestly more active lifestyle may nonetheless be beneficial. This study explored whether greater objectively measured daily walking activity was associated with larger hippocampal volume. We additionally explored whether greater low-intensity walking activity, which may be related to leisure-time physical, functional, and social activities, was associated with larger hippocampal volume independent of exercise and higher-intensity walking activity. Segmentation of hippocampal volumes was performed using Functional Magnetic Resonance Imaging of the Brain's Software Library (FSL), and daily walking activity was assessed using a step activity monitor on 92, nondemented, older adult participants. After controlling for age, education, body mass index, cardiovascular disease risk factors, and the Mini Mental State Exam, we found that a greater amount, duration, and frequency of total daily walking activity were each associated with larger hippocampal volume among older women, but not among men. These relationships were specific to hippocampal volume, compared with the thalamus, used as a control brain region, and remained significant for low-intensity walking activity, independent of moderate- to vigorous-intensity activity and self-reported exercise. This is the first study, to our knowledge, to explore the relationship between objectively measured daily walking activity and hippocampal volume in an older adult population. Findings

  3. Low-intensity daily walking activity is associated with hippocampal volume in older adults

    PubMed Central

    Varma, Vijay R.; Chuang, Yi-fang; Harris, Gregory C.; Tan, Erwin J.; Carlson, Michelle C.

    2014-01-01

    Hippocampal atrophy is associated with memory impairment and dementia and serves as a key biomarker in the preclinical stages of Alzheimer's disease. Physical activity, one of the most promising behavioral interventions to prevent or delay cognitive decline, has been shown to be associated with hippocampal volume; specifically increased aerobic activity and fitness may have a positive effect on the size of the hippocampus. The majority of older adults, however, are sedentary and have difficulty initiating and maintaining exercise programs. A modestly more active lifestyle may nonetheless be beneficial. This study explored whether greater objectively measured daily walking activity was associated with larger hippocampal volume. We additionally explored whether greater low-intensity walking activity, which may be related to leisure-time physical, functional, and social activities, was associated with larger hippocampal volume independent of exercise and higher-intensity walking activity. Segmentation of hippocampal volumes was performed using FMRIB's Software Library (FSL) and daily walking activity was assessed using a step activity monitor (SAM) on 92, non-demented, older adult participants. After controlling for age, education, body mass index (BMI), cardiovascular disease risk factors, and the Mini Mental State Exam (MMSE), we found that a greater amount, duration, and frequency of total daily walking activity were each associated with larger hippocampal volume among older women, but not men. These relationships were specific to hippocampal volume, compared to the thalamus, used as a control brain region, and remained significant for low-intensity walking activity, independent of moderate- to vigorous-intensity activity and self-reported exercise. This is the first study, to our knowledge, to explore the relationship between objectively measured daily walking activity and hippocampal volume in an older adult sample. Findings suggest the importance of better

  4. Neural plasticity in adults with amblyopia.

    PubMed Central

    Levi, D M; Polat, U

    1996-01-01

    Amblyopia is a neuronal abnormality of vision that is often considered irreversible in adults. We found strong and significant improvement of Vernier acuity in human adults with naturally occurring amblyopia following practice. Learning was strongest at the trained orientation and did not transfer to an untrained task (detection), but it did transfer partially to the untrained eye (primarily at the trained orientation). We conclude that this perceptual learning reflects alterations in early neural processes that are localized beyond the site of convergence of the two eyes. Our results suggest a significant degree of plasticity in the visual system of adults with amblyopia. PMID:8692904

  5. Distinct Effects of Chronic Dopaminergic Stimulation on Hippocampal Neurogenesis and Striatal Doublecortin Expression in Adult Mice

    PubMed Central

    Salvi, Rachele; Steigleder, Tobias; Schlachetzki, Johannes C. M.; Waldmann, Elisabeth; Schwab, Stefan; Winner, Beate; Winkler, Jürgen; Kohl, Zacharias

    2016-01-01

    While adult neurogenesis is considered to be restricted to the hippocampal dentate gyrus (DG) and the subventricular zone (SVZ), recent studies in humans and rodents provide evidence for newly generated neurons in regions generally considered as non-neurogenic, e.g., the striatum. Stimulating dopaminergic neurotransmission has the potential to enhance adult neurogenesis in the SVZ and the DG most likely via D2/D3 dopamine (DA) receptors. Here, we investigated the effect of two distinct preferential D2/D3 DA agonists, Pramipexole (PPX), and Ropinirole (ROP), on adult neurogenesis in the hippocampus and striatum of adult naïve mice. To determine newly generated cells in the DG incorporating 5-bromo-2′-deoxyuridine (BrdU) a proliferation paradigm was performed in which two BrdU injections (100 mg/kg) were applied intraperitoneally within 12 h after a 14-days-DA agonist treatment. Interestingly, PPX, but not ROP significantly enhanced the proliferation in the DG by 42% compared to phosphate buffered saline (PBS)-injected control mice. To analyze the proportion of newly generated cells differentiating into mature neurons, we quantified cells co-expressing BrdU and Neuronal Nuclei (NeuN) 32 days after the last of five BrdU injections (50 mg/kg) applied at the beginning of 14-days DA agonist or PBS administration. Again, PPX only enhanced neurogenesis in the DG significantly compared to ROP- and PBS-injected mice. Moreover, we explored the pro-neurogenic effect of both DA agonists in the striatum by quantifying neuroblasts expressing doublecortin (DCX) in the entire striatum, as well as in the dorsal and ventral sub-regions separately. We observed a significantly higher number of DCX+ neuroblasts in the dorsal compared to the ventral sub-region of the striatum in PPX-injected mice. These results suggest that the stimulation of hippocampal and dorsal striatal neurogenesis may be up-regulated by PPX. The increased generation of neural cells, both in constitutively active

  6. Reduction of adult hippocampal neurogenesis confers vulnerability in an animal model of cocaine addiction

    PubMed Central

    Noonan, Michele A.; Bulin, Sarah; Fuller, Dwain C.; Eisch, Amelia J.

    2010-01-01

    Drugs of abuse dynamically regulate adult neurogenesis, which appears important for some types of learning and memory. Interestingly, a major site of adult neurogenesis - the hippocampus - is important in the formation of drug-context associations and in the mediation of drug-taking and drug-seeking behaviors in animal models of addiction. Correlative evidence suggests an inverse relationship between hippocampal neurogenesis and drug-taking or drug-seeking behaviors, but the lack of a causative link has made the relationship between adult-generated neurons and addiction unclear. We used rat i.v. cocaine self-administration in rodents, a clinicall-relevant animal model of addiction, to test the hypothesis that suppression of adult hippocampal neurogenesis enhances vulnerability to addiction and relapse. Suppression of adult hippocampal neurogenesis via cranial irradiation before drug-taking significantly increased cocaine self-administration on both fixed-ratio and progressive-ratio schedules, as well as induced a vertical shift in the dose-response curve. This was not a general enhancement of learning, motivation or locomotion, as sucrose self-administration and locomotor activity were unchanged in irradiated rats. Suppression of adult hippocampal neurogenesis after drug-taking significantly enhanced resistance to extinction of drug-seeking behavior. These studies identify reduced adult hippocampal neurogenesis as a novel risk factor for addiction-related behaviors in an animal model of cocaine addiction. Further, they suggest that therapeutics to specifically increase or stabilize adult hippocampal neurogenesis could aid in preventing initial addiction as well as future relapse. PMID:20053911

  7. Adult hippocampal neurogenesis and pattern separation in DG: a role for feedback inhibition in modulating sparseness to govern population-based coding

    PubMed Central

    McAvoy, Kathleen; Besnard, Antoine; Sahay, Amar

    2015-01-01

    The dentate gyrus (DG) of mammals harbors neural stem cells that generate new dentate granule cells (DGCs) throughout life. Behavioral studies using the contextual fear discrimination paradigm have found that selectively augmenting or blocking adult hippocampal neurogenesis enhances or impairs discrimination under conditions of high, but not low, interference suggestive of a role in pattern separation. Although contextual discrimination engages population-based coding mechanisms underlying pattern separation such as global remapping in the DG and CA3, how adult hippocampal neurogenesis modulates pattern separation in the DG is poorly understood. Here, we propose a role for adult-born DGCs in re-activation coupled modulation of sparseness through feed-back inhibition to govern global remapping in the DG. PMID:26347621

  8. Content-based retrieval using MPEG-7 visual descriptor and hippocampal neural network

    NASA Astrophysics Data System (ADS)

    Kim, Young Ho; Joung, Lyang-Jae; Kang, Dae-Seong

    2005-12-01

    As development of digital technology, many kinds of multimedia data are used variously and requirements for effective use by user are increasing. In order to transfer information fast and precisely what user wants, effective retrieval method is required. As existing multimedia data are impossible to apply the MPEG-1, MPEG-2 and MPEG-4 technologies which are aimed at compression, store and transmission. So MPEG-7 is introduced as a new technology for effective management and retrieval for multimedia data. In this paper, we extract content-based features using color descriptor among the MPEG-7 standardization visual descriptor, and reduce feature data applying PCA(Principal Components Analysis) technique. We remodel the cerebral cortex and hippocampal neural networks as a principle of a human's brain and it can label the features of the image-data which are inputted according to the order of hippocampal neuron structure to reaction-pattern according to the adjustment of a good impression in Dentate gyrus region and remove the noise through the auto-associate- memory step in the CA3 region. In the CA1 region receiving the information of the CA3, it can make long-term or short-term memory learned by neuron. Hippocampal neural network makes neuron of the neural network separate and combine dynamically, expand the neuron attaching additional information using the synapse and add new features according to the situation by user's demand. When user is querying, it compares feature value stored in long-term memory first and it learns feature vector fast and construct optimized feature. So the speed of index and retrieval is fast. Also, it uses MPEG-7 standard visual descriptors as content-based feature value, it improves retrieval efficiency.

  9. Correlates of reward-predictive value in learning-related hippocampal neural activity

    PubMed Central

    Okatan, Murat

    2009-01-01

    Temporal difference learning (TD) is a popular algorithm in machine learning. Two learning signals that are derived from this algorithm, the predictive value and the prediction error, have been shown to explain changes in neural activity and behavior during learning across species. Here, the predictive value signal is used to explain the time course of learning-related changes in the activity of hippocampal neurons in monkeys performing an associative learning task. The TD algorithm serves as the centerpiece of a joint probability model for the learning-related neural activity and the behavioral responses recorded during the task. The neural component of the model consists of spiking neurons that compete and learn the reward-predictive value of task-relevant input signals. The predictive-value signaled by these neurons influences the behavioral response generated by a stochastic decision stage, which constitutes the behavioral component of the model. It is shown that the time course of the changes in neural activity and behavioral performance generated by the model exhibits key features of the experimental data. The results suggest that information about correct associations may be expressed in the hippocampus before it is detected in the behavior of a subject. In this way, the hippocampus may be among the earliest brain areas to express learning and drive the behavioral changes associated with learning. Correlates of reward-predictive value may be expressed in the hippocampus through rate remapping within spatial memory representations, they may represent reward-related aspects of a declarative or explicit relational memory representation of task contingencies, or they may correspond to reward-related components of episodic memory representations. These potential functions are discussed in connection with hippocampal cell assembly sequences and their reverse reactivation during the awake state. The results provide further support for the proposal that neural

  10. Hippocampal learning, memory, and neurogenesis: Effects of sex and estrogens across the lifespan in adults.

    PubMed

    Duarte-Guterman, Paula; Yagi, Shunya; Chow, Carmen; Galea, Liisa A M

    2015-08-01

    This article is part of a Special Issue "Estradiol and Cognition". There are sex differences in hippocampus-dependent cognition and neurogenesis suggesting that sex hormones are involved. Estrogens modulate certain forms of spatial and contextual memory and neurogenesis in the adult female rodent, and to a lesser extent male, hippocampus. This review focuses on the effects of sex and estrogens on hippocampal learning, memory, and neurogenesis in the young and aged adult rodent. We discuss how factors such as the type of estrogen, duration and dose of treatment, timing of treatment, and type of memory influence the effects of estrogens on cognition and neurogenesis. We also address how reproductive experience (pregnancy and mothering) and aging interact with estrogens to modulate hippocampal cognition and neurogenesis in females. Given the evidence that adult hippocampal neurogenesis plays a role in long-term spatial memory and pattern separation, we also discuss the functional implications of regulating neurogenesis in the hippocampus.

  11. Hippocampal volume is as variable in young as in older adults: implications for the notion of hippocampal atrophy in humans.

    PubMed

    Lupien, S J; Evans, A; Lord, C; Miles, J; Pruessner, M; Pike, B; Pruessner, J C

    2007-01-15

    Previous studies in humans have shown the presence of an age-related reduction of hippocampal (HC) volume, as well as the presence of reduced HC volume in psychiatric populations suffering from schizophrenia, depression or post-traumatic stress disorder. Altogether, these data suggested that aging or psychiatric disease can have neurotoxic effects on the hippocampus, and lead to HC atrophy. However, these two sets of findings imply that HC volume in young healthy adults should present less variability than HC volume in older adults and psychiatric populations. In the present study, we assessed HC volume in 177 healthy men and women aged from 18 to 85 years of age. We show that the dispersion around the mean of HC volume is not different in young and older adults, so that 25% of young healthy adults present HC volume as small as the average participants aged 60 to 75 years. This shows that HC volume is as variable in young as in older adults and suggests that smaller HC volume attributed to the aging process in previous studies could in fact represent HC volume determined early in life. We also report that within similar age groups, the percentage of difference in HC volume between the individuals with the smallest HC volume (smallest quartile) and the group average is greater than the percentage of difference reported to exist between psychiatric populations and normal control in recent meta-analyses. Taken together, these results confront the notion of hippocampal atrophy in humans and raise the possibility that pre-determined inter-individual differences in HC volume in humans may determine the vulnerability for age-related cognitive impairments or psychopathology throughout the lifetime.

  12. Differential responses of Trans-Resveratrol on proliferation of neural progenitor cells and aged rat hippocampal neurogenesis

    PubMed Central

    Kumar, Vivek; Pandey, Ankita; Jahan, Sadaf; Shukla, Rajendra Kumar; Kumar, Dipak; Srivastava, Akriti; Singh, Shripriya; Rajpurohit, Chetan Singh; Yadav, Sanjay; Khanna, Vinay Kumar; Pant, Aditya Bhushan

    2016-01-01

    The plethora of literature has supported the potential benefits of Resveratrol (RV) as a life-extending as well as an anticancer compound. However, these two functional discrepancies resulted at different concentration ranges. Likewise, the role of Resveratrol on adult neurogenesis still remains controversial and less understood despite its well documented health benefits. To gather insight into the biological effects of RV on neurogenesis, we evaluated the possible effects of the compound on the proliferation and survival of neural progenitor cells (NPCs) in culture, and in the hippocampus of aged rats. Resveratrol exerted biphasic effects on NPCs; low concentrations (10 μM) stimulated cell proliferation mediated by increased phosphorylation of extracellular signal-regulated kinases (ERKs) and p38 kinases, whereas high concentrations (>20 μM) exhibited inhibitory effects. Administration of Resveratrol (20 mg/kg body weight) to adult rats significantly increased the number of newly generated cells in the hippocampus, with upregulation of p-CREB and SIRT1 proteins implicated in neuronal survival and lifespan extension respectively. We have successfully demonstrated that Resveratrol exhibits dose dependent discrepancies and at a lower concentration can have a positive impact on the proliferation, survival of NPCs and aged rat hippocampal neurogenesis implicating its potential as a candidate for restorative therapies against age related disorders. PMID:27334554

  13. MTLE with hippocampal sclerosis in adult as a syndrome.

    PubMed

    Baulac, M

    2015-03-01

    Mesial temporal lobe epilepsy with hippocampal sclerosis, (MTLE-HS) is a well characterized disorder which associates electroclinical features suggestive of seizure onset in the mesial or limbic structures of the temporal lobe, and hippocampal sclerosis. This underlying pathology differentiates MTLE-HS from MTLE due to other pathological substrates. Typically, when MTLE-HS is diagnosed, a typical course of the disease can be retrospectively recognized, including early prolonged febrile seizures, a latent period, onset in mid-to-late childhood, auras that may initially occur in isolation, periods of seizure remission during adolescence or early adulthood. Then the condition progresses, associating elaborated seizures, progressive drug-resistance and cognitive, mainly memory, disorders of variable intensity. The seizures have a relatively gradual onset/offset, developing over 1-2minutes, with partial awareness at the onset, and lasting for 2 to 10minutes. Auras are common, with visceral, autonomic, psycho-affective, experiential components, presenting less frequently diverse sensory or sensorial symptoms. Awareness is generally preserved at onset, but then loss of consciousness occurs, with initial motionless stare, and automatisms, which typically are oro-alimentary, vocal or gestural, accompanied by motor signs such as contralateral dystonic posturing. A dysphasia is frequent when the focus is in the dominant hemisphere, often prolonged by a post-ictal dysphasia and confusion. Interictal EEG shows anterior or mid-temporal spikes/sharp ipsilaterally to the focus, in combination with non-epileptiform regional slowing. These changes may be bilateral but usually predominates ipsilaterally. Ictal EEG changes are marked by rhythmic temporal alpha or theta activity within 30seconds of clinical onset. The hallmark is the presence of hippocampal sclerosis, demonstrable on coronal MRI sequences by unilateral (or asymmetrical) decrease in hippocampal volume and increase in

  14. MTLE with hippocampal sclerosis in adult as a syndrome.

    PubMed

    Baulac, M

    2015-03-01

    Mesial temporal lobe epilepsy with hippocampal sclerosis, (MTLE-HS) is a well characterized disorder which associates electroclinical features suggestive of seizure onset in the mesial or limbic structures of the temporal lobe, and hippocampal sclerosis. This underlying pathology differentiates MTLE-HS from MTLE due to other pathological substrates. Typically, when MTLE-HS is diagnosed, a typical course of the disease can be retrospectively recognized, including early prolonged febrile seizures, a latent period, onset in mid-to-late childhood, auras that may initially occur in isolation, periods of seizure remission during adolescence or early adulthood. Then the condition progresses, associating elaborated seizures, progressive drug-resistance and cognitive, mainly memory, disorders of variable intensity. The seizures have a relatively gradual onset/offset, developing over 1-2minutes, with partial awareness at the onset, and lasting for 2 to 10minutes. Auras are common, with visceral, autonomic, psycho-affective, experiential components, presenting less frequently diverse sensory or sensorial symptoms. Awareness is generally preserved at onset, but then loss of consciousness occurs, with initial motionless stare, and automatisms, which typically are oro-alimentary, vocal or gestural, accompanied by motor signs such as contralateral dystonic posturing. A dysphasia is frequent when the focus is in the dominant hemisphere, often prolonged by a post-ictal dysphasia and confusion. Interictal EEG shows anterior or mid-temporal spikes/sharp ipsilaterally to the focus, in combination with non-epileptiform regional slowing. These changes may be bilateral but usually predominates ipsilaterally. Ictal EEG changes are marked by rhythmic temporal alpha or theta activity within 30seconds of clinical onset. The hallmark is the presence of hippocampal sclerosis, demonstrable on coronal MRI sequences by unilateral (or asymmetrical) decrease in hippocampal volume and increase in

  15. Neuroinflammation negatively affects adult hippocampal neurogenesis and cognition: can exercise compensate?

    PubMed

    Ryan, Sinéad M; Nolan, Yvonne M

    2016-02-01

    Adult hippocampal neurogenesis is believed to be integral for certain forms of learning and memory. Dysregulation of hippocampal neurogenesis has been shown to be an important mechanism underlying the cognitive impairment associated with normal aging, as well as the cognitive deficits evident in preclinical models of Alzheimer's disease and other neurodegenerative diseases. Neuroinflammation is a significant pathological feature of these conditions; it contributes to the observed cognitive decline, and recent evidence demonstrates that it also negatively affects hippocampal neurogenesis. Conversely, during the past twenty years, it has been robustly shown that exercise is a potent inducer of hippocampal neurogenesis, and it is believed that the positive beneficial effect of exercise on cognitive function is likely due to its pro-neurogenic effects. However, the interplay between exercise- and neuroinflammatory-induced changes in hippocampal neurogenesis and associated cognitive function has only recently begun to receive attention. Here we review the current literature on exercise-induced effects on hippocampal neurogenesis, cognitive function and neuroinflammation, and consider exercise as a potential pro-neurogenic and anti-inflammatory intervention for cognition.

  16. Gene expression profiling of the hippocampal dentate gyrus in an adult toxicity study captures a variety of neurodevelopmental dysfunctions in rat models of hypothyroidism.

    PubMed

    Shiraki, Ayako; Saito, Fumiyo; Akane, Hirotoshi; Akahori, Yumi; Imatanaka, Nobuya; Itahashi, Megu; Yoshida, Toshinori; Shibutani, Makoto

    2016-01-01

    We previously found that developmental hypothyroidism changed the expression of genes in the rat hippocampal dentate gyrus, a brain region where adult neurogenesis is known to occur. In the present study, we performed brain region-specific global gene expression profiling in an adult rat hypothyroidism model to see if it reflected the developmental neurotoxicity we saw in the developmental hypothyroidism model. Starting when male rats were 5 weeks old, we administered 6-propyl-2-thiouracil at a doses of 0, 0.1 and 10 mg kg(-1) body weight by gavage for 28 days. We selected four brain regions to represent both cerebral and cerebellar tissues: hippocampal dentate gyrus, cerebral cortex, corpus callosum and cerebellar vermis. We observed significant alterations in the expression of genes related to neural development (Eph family genes and Robo3) in the cerebral cortex and hippocampal dentate gyrus and in the expression of genes related to myelination (Plp1 and Mbp) in the hippocampal dentate gyrus. We observed only minor changes in the expression of these genes in the corpus callosum and cerebellar vermis. We used real-time reverse-transcription polymerase chain reaction to confirm Chrdl1, Hes5, Mbp, Plp1, Slit1, Robo3 and the Eph family transcript expression changes. The most significant changes in gene expression were found in the dentate gyrus. Considering that the gene expression profile of the adult dentate gyrus closely related to neurogenesis, 28-day toxicity studies looking at gene expression changes in adult hippocampal dentate gyrus may also detect possible developmental neurotoxic effects.

  17. Photoperiodic regulation of hippocampal neurogenesis in adult male white-footed mice (Peromyscus leucopus).

    PubMed

    Walton, James C; Aubrecht, Taryn G; Weil, Zachary M; Leuner, Benedetta; Nelson, Randy J

    2014-08-01

    Photoperiodic organisms monitor environmental day length to engage in seasonally appropriate adaptions in physiology and behavior. Among these adaptations are changes in brain volume and neurogenesis, which have been well described in multiple species of birds, yet few studies have described such changes in the brains of adult mammals. White-footed mice (Peromyscus leucopus) are an excellent species in which to investigate the effects of day length on adult hippocampal neurogenesis, as males, in addition to having reduced hippocampal volume in short days (SD) with concomitant impairments in hippocampus-mediated behaviors, have photoperiod-dependent changes in olfactory bulb neurogenesis. We performed the current experiment to assess the effects of photoperiod on hippocampal neurogenesis longitudinally, using the thymidine analog bromodeoxyuridine at multiple time points across 10 weeks of SD exposure. Compared with counterparts held in long day (LD) lengths, across the first 8 weeks of SD exposure hippocampal neurogenesis was reduced. However, at 10 weeks in SD lengths neurogenic levels in the hippocampus were elevated above those levels in mice held in LD lengths. The current findings are consistent with the natural photoperiodic cycle of hippocampal function in male white-footed mice, and may help to inform research on photoperiodic plasticity in neurogenesis and provide insight into how the complex interplay among the environment, genes and adaptive responses to changing day lengths affects brain structure, function and behavior at multiple levels. PMID:24893623

  18. Photoperiodic regulation of hippocampal neurogenesis in adult male white-footed mice (Peromyscus leucopus).

    PubMed

    Walton, James C; Aubrecht, Taryn G; Weil, Zachary M; Leuner, Benedetta; Nelson, Randy J

    2014-08-01

    Photoperiodic organisms monitor environmental day length to engage in seasonally appropriate adaptions in physiology and behavior. Among these adaptations are changes in brain volume and neurogenesis, which have been well described in multiple species of birds, yet few studies have described such changes in the brains of adult mammals. White-footed mice (Peromyscus leucopus) are an excellent species in which to investigate the effects of day length on adult hippocampal neurogenesis, as males, in addition to having reduced hippocampal volume in short days (SD) with concomitant impairments in hippocampus-mediated behaviors, have photoperiod-dependent changes in olfactory bulb neurogenesis. We performed the current experiment to assess the effects of photoperiod on hippocampal neurogenesis longitudinally, using the thymidine analog bromodeoxyuridine at multiple time points across 10 weeks of SD exposure. Compared with counterparts held in long day (LD) lengths, across the first 8 weeks of SD exposure hippocampal neurogenesis was reduced. However, at 10 weeks in SD lengths neurogenic levels in the hippocampus were elevated above those levels in mice held in LD lengths. The current findings are consistent with the natural photoperiodic cycle of hippocampal function in male white-footed mice, and may help to inform research on photoperiodic plasticity in neurogenesis and provide insight into how the complex interplay among the environment, genes and adaptive responses to changing day lengths affects brain structure, function and behavior at multiple levels.

  19. Alzheimer's Disease and Hippocampal Adult Neurogenesis; Exploring Shared Mechanisms

    PubMed Central

    Hollands, Carolyn; Bartolotti, Nancy; Lazarov, Orly

    2016-01-01

    New neurons incorporate into the granular cell layer of the dentate gyrus throughout life. Neurogenesis is modulated by behavior and plays a major role in hippocampal plasticity. Along with older mature neurons, new neurons structure the dentate gyrus, and determine its function. Recent data suggest that the level of hippocampal neurogenesis is substantial in the human brain, suggesting that neurogenesis may have important implications for human cognition. In support of that, impaired neurogenesis compromises hippocampal function and plays a role in cognitive deficits in Alzheimer's disease mouse models. We review current work suggesting that neuronal differentiation is defective in Alzheimer's disease, leading to dysfunction of the dentate gyrus. Additionally, alterations in critical signals regulating neurogenesis, such as presenilin-1, Notch 1, soluble amyloid precursor protein, CREB, and β-catenin underlie dysfunctional neurogenesis in Alzheimer's disease. Lastly, we discuss the detectability of neurogenesis in the live mouse and human brain, as well as the therapeutic implications of enhancing neurogenesis for the treatment of cognitive deficits and Alzheimer's disease. PMID:27199641

  20. Essential role of brain-derived neurotrophic factor in adult hippocampal function

    PubMed Central

    Monteggia, Lisa M.; Barrot, Michel; Powell, Craig M.; Berton, Olivier; Galanis, Victor; Gemelli, Terry; Meuth, Sven; Nagy, Andreas; Greene, Robert W.; Nestler, Eric J.

    2004-01-01

    Brain-derived neurotrophic factor (BDNF) regulates neuronal development and function. However, it has been difficult to discern its role in the adult brain in influencing complex behavior. Here, we use a recently developed inducible knockout system to show that deleting BDNF in broad forebrain regions of adult mice impairs hippocampal-dependent learning and long-term potentiation. We use the inducible nature of this system to show that the loss of BDNF during earlier stages of development causes hyperactivity and more pronounced hippocampal-dependent learning deficits. We also demonstrate that the loss of forebrain BDNF attenuates the actions of desipramine, an antidepressant, in the forced swim test, suggesting the involvement of BDNF in antidepressant efficacy. These results establish roles for BDNF in the adult, and demonstrate the strength of this inducible knockout system in studying gene function in the adult brain. PMID:15249684

  1. Functional Integration of Adult-Born Hippocampal Neurons after Traumatic Brain Injury

    PubMed Central

    Villasana, Laura E.; Kim, Kristine N.

    2015-01-01

    Abstract Traumatic brain injury (TBI) increases hippocampal neurogenesis, which may contribute to cognitive recovery after injury. However, it is unknown whether TBI-induced adult-born neurons mature normally and functionally integrate into the hippocampal network. We assessed the generation, morphology, and synaptic integration of new hippocampal neurons after a controlled cortical impact (CCI) injury model of TBI. To label TBI-induced newborn neurons, we used 2-month-old POMC-EGFP mice, which transiently and specifically express EGFP in immature hippocampal neurons, and doublecortin-CreERT2 transgenic mice crossed with Rosa26-CAG-tdTomato reporter mice, to permanently pulse-label a cohort of adult-born hippocampal neurons. TBI increased the generation, outward migration, and dendritic complexity of neurons born during post-traumatic neurogenesis. Cells born after TBI had profound alterations in their dendritic structure, with increased dendritic branching proximal to the soma and widely splayed dendritic branches. These changes were apparent during early dendritic outgrowth and persisted as these cells matured. Whole-cell recordings from neurons generated during post-traumatic neurogenesis demonstrate that they are excitable and functionally integrate into the hippocampal circuit. However, despite their dramatic morphologic abnormalities, we found no differences in the rate of their electrophysiological maturation, or their overall degree of synaptic integration when compared to age-matched adult-born cells from sham mice. Our results suggest that cells born after TBI participate in information processing, and receive an apparently normal balance of excitatory and inhibitory inputs. However, TBI-induced changes in their anatomic localization and dendritic projection patterns could result in maladaptive network properties. PMID:26478908

  2. Perceived Stress Is Differentially Related to Hippocampal Subfield Volumes among Older Adults

    PubMed Central

    Zimmerman, Molly E.; Ezzati, Ali; Katz, Mindy J.; Lipton, Michael L.; Brickman, Adam M.; Sliwinski, Martin J.; Lipton, Richard B.

    2016-01-01

    Introduction Chronic exposure to stress has been shown to impact a wide range of health-related outcomes in older adults. Despite extensive animal literature revealing deleterious effects of biological markers of stress on the dentate gyrus subfield of the hippocampus, links between hippocampal subfields and psychological stress have not been studied in humans. This study examined the relationship between perceived stress and hippocampal subfield volumes among racially/ethnically diverse older adults. Methods and Materials Between July 2011 and March 2014, 116 nondemented participants were consecutively drawn from the Einstein Aging Study, an ongoing community-based sample of individuals over the age of 70 residing in Bronx, New York. All participants completed the Perceived Stress Scale, Geriatric Depression Scale, and underwent 3.0 T MRI. FreeSurfer was used to derive total hippocampal volume, hippocampal subfield volumes (CA1, CA2/CA3, CA4/Dentate Gyrus (CA4/DG), and subiculum), entorhinal cortex volume, whole brain volume, and total intracranial volume. Results Linear regression analyses revealed that higher levels of perceived stress were associated with smaller total hippocampal volume (β = -0.20, t = -2.40, p = 0.02), smaller CA2/CA3 volumes (β = -0.18, t = -2.24, p = 0.03) and smaller CA4/DG volumes (β = -0.19, t = -2.28, p = 0.03) after controlling for total intracranial volume, age, gender, and race. These findings remained unchanged after removal of individuals with clinically significant symptoms of depression. Discussion Our findings provide evidence of a relationship between a direct indicator of psychological stress and specific hippocampal subfield volumes in elderly individuals. These results highlight the importance of clinical screening for chronic stress in otherwise healthy older adults. PMID:27144832

  3. Hippocampal Pathway Plasticity Is Associated with the Ability to Form Novel Memories in Older Adults

    PubMed Central

    Antonenko, Daria; Külzow, Nadine; Cesarz, Magda E.; Schindler, Kristina; Grittner, Ulrike; Flöel, Agnes

    2016-01-01

    White matter deterioration in the aging human brain contributes to cognitive decline. The fornix as main efferent hippocampal pathway is one of the tracts most strongly associated with age-related memory impairment. Its deterioration may predict conversion to Alzheimer’s dementia and its precursors. However, the associations between the ability to form novel memories, fornix microstructure and plasticity in response to training have never been tested. In the present study, 25 healthy older adults (15 women; mean age (SD): 69 (6) years) underwent an object-location training on three consecutive days. Behavioral outcome measures comprised recall performance on the training days, and on 1-day and 1-month follow up assessments. MRI at 3 Tesla was assessed before and after training. Fornix microstructure was determined by fractional anisotropy and mean diffusivity (MD) values from diffusion tensor imaging (DTI). In addition, hippocampal volumes were extracted from high-resolution images; individual hippocampal masks were further aligned to DTI images to determine hippocampal microstructure. Using linear mixed model analysis, we found that the change in fornix FA from pre- to post-training assessment was significantly associated with training success. Neither baseline fornix microstructure nor hippocampal microstructure or volume changes were significantly associated with performance. Further, models including control task performance (auditory verbal learning) and control white matter tract microstructure (uncinate fasciculus and parahippocampal cingulum) did not yield significant associations. Our results confirm that hippocampal pathways respond to short-term cognitive training, and extend previous findings by demonstrating that the magnitude of training-induced structural changes is associated with behavioral success in older adults. This suggests that the amount of fornix plasticity may not only be behaviorally relevant, but also a potential sensitive biomarker

  4. Hippocampal adult neurogenesis: Its regulation and potential role in spatial learning and memory.

    PubMed

    Lieberwirth, Claudia; Pan, Yongliang; Liu, Yan; Zhang, Zhibin; Wang, Zuoxin

    2016-08-01

    Adult neurogenesis, defined here as progenitor cell division generating functionally integrated neurons in the adult brain, occurs within the hippocampus of numerous mammalian species including humans. The present review details various endogenous (e.g., neurotransmitters) and environmental (e.g., physical exercise) factors that have been shown to influence hippocampal adult neurogenesis. In addition, the potential involvement of adult-generated neurons in naturally-occurring spatial learning behavior is discussed by summarizing the literature focusing on traditional animal models (e.g., rats and mice), non-traditional animal models (e.g., tree shrews), as well as natural populations (e.g., chickadees and Siberian chipmunk). PMID:27174001

  5. HIPPOCAMPAL ADULT NEUROGENESIS: ITS REGULATION AND POTENTIAL ROLE IN SPATIAL LEARNING AND MEMORY

    PubMed Central

    Lieberwirth, Claudia; Pan, Yongliang; Liu, Yan; Zhang, Zhibin; Wang, Zuoxin

    2016-01-01

    Adult neurogenesis, defined here as progenitor cell division generating functionally integrated neurons in the adult brain, occurs within the hippocampus of numerous mammalian species including humans. The present review details various endogenous (e.g., neurotransmitters) and environmental (e.g., physical exercise) factors that have been shown to influence hippocampal adult neurogenesis. In addition, the potential involvement of adult-generated neurons in naturally-occurring spatial learning behavior is discussed by summarizing the literature focusing on traditional animal models (e.g., rats and mice), non-traditional animal models (e.g., tree shrews), as well as natural populations (e.g., chickadees and Siberian chipmunk). PMID:27174001

  6. Neural Androgen Receptor Deletion Impairs the Temporal Processing of Objects and Hippocampal CA1-Dependent Mechanisms.

    PubMed

    Picot, Marie; Billard, Jean-Marie; Dombret, Carlos; Albac, Christelle; Karameh, Nida; Daumas, Stéphanie; Hardin-Pouzet, Hélène; Mhaouty-Kodja, Sakina

    2016-01-01

    We studied the role of testosterone, mediated by the androgen receptor (AR), in modulating temporal order memory for visual objects. For this purpose, we used male mice lacking AR specifically in the nervous system. Control and mutant males were gonadectomized at adulthood and supplemented with equivalent amounts of testosterone in order to normalize their hormonal levels. We found that neural AR deletion selectively impaired the processing of temporal information for visual objects, without affecting classical object recognition or anxiety-like behavior and circulating corticosterone levels, which remained similar to those in control males. Thus, mutant males were unable to discriminate between the most recently seen object and previously seen objects, whereas their control littermates showed more interest in exploring previously seen objects. Because the hippocampal CA1 area has been associated with temporal memory for visual objects, we investigated whether neural AR deletion altered the functionality of this region. Electrophysiological analysis showed that neural AR deletion affected basal glutamate synaptic transmission and decreased the magnitude of N-methyl-D-aspartate receptor (NMDAR) activation and high-frequency stimulation-induced long-term potentiation. The impairment of NMDAR function was not due to changes in protein levels of receptor. These results provide the first evidence for the modulation of temporal processing of information for visual objects by androgens, via AR activation, possibly through regulation of NMDAR signaling in the CA1 area in male mice.

  7. Attractor neural networks storing multiple space representations: A model for hippocampal place fields

    NASA Astrophysics Data System (ADS)

    Battaglia, F. P.; Treves, A.

    1998-12-01

    A recurrent neural network model storing multiple spatial maps, or ``charts,'' is analyzed. A network of this type has been suggested as a model for the origin of place cells in the hippocampus of rodents. The extremely diluted and fully connected limits are studied, and the storage capacity and the information capacity are found. The important parameters determining the performance of the network are the sparsity of the spatial representations and the degree of connectivity, as found already for the storage of individual memory patterns in the general theory of autoassociative networks. Such results suggest a quantitative parallel between theories of hippocampal function in different animal species, such as primates (episodic memory) and rodents (memory for space).

  8. Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2.

    PubMed

    Kirby, Elizabeth D; Muroy, Sandra E; Sun, Wayne G; Covarrubias, David; Leong, Megan J; Barchas, Laurel A; Kaufer, Daniela

    2013-04-16

    Stress is a potent modulator of the mammalian brain. The highly conserved stress hormone response influences many brain regions, particularly the hippocampus, a region important for memory function. The effect of acute stress on the unique population of adult neural stem/progenitor cells (NPCs) that resides in the adult hippocampus is unclear. We found that acute stress increased hippocampal cell proliferation and astrocytic fibroblast growth factor 2 (FGF2) expression. The effect of acute stress occurred independent of basolateral amygdala neural input and was mimicked by treating isolated NPCs with conditioned media from corticosterone-treated primary astrocytes. Neutralization of FGF2 revealed that astrocyte-secreted FGF2 mediated stress-hormone-induced NPC proliferation. 2 weeks, but not 2 days, after acute stress, rats also showed enhanced fear extinction memory coincident with enhanced activation of newborn neurons. Our findings suggest a beneficial role for brief stress on the hippocampus and improve understanding of the adaptive capacity of the brain. DOI:http://dx.doi.org/10.7554/eLife.00362.001.

  9. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory?

    PubMed Central

    Deng, Wei; Aimone, James B.; Gage, Fred H.

    2010-01-01

    The integration of adult-born neurons into the circuitry of the adult hippocampus suggests an important role for adult hippocampal neurogenesis in learning and memory, but its specific function in these processes has remained elusive. In this article, we summarize recent progress in this area, including advances based on behavioural studies and insights provided by computational modelling. Increasingly, evidence suggests that newborn neurons might be involved in hippocampal functions that are particularly dependent on the dentate gyrus, such as pattern separation. Furthermore, newborn neurons at different maturation stages may make distinct contributions to learning and memory. In particular, computational studies suggest that, before newborn neurons are fully mature, they might function as a pattern integrator by introducing a degree of similarity to the encoding of events that occur closely in time. PMID:20354534

  10. Taxonomic Separation of Hippocampal Networks: Principal Cell Populations and Adult Neurogenesis

    PubMed Central

    van Dijk, R. Maarten; Huang, Shih-Hui; Slomianka, Lutz; Amrein, Irmgard

    2016-01-01

    While many differences in hippocampal anatomy have been described between species, it is typically not clear if they are specific to a particular species and related to functional requirements or if they are shared by species of larger taxonomic units. Without such information, it is difficult to infer how anatomical differences may impact on hippocampal function, because multiple taxonomic levels need to be considered to associate behavioral and anatomical changes. To provide information on anatomical changes within and across taxonomic ranks, we present a quantitative assessment of hippocampal principal cell populations in 20 species or strain groups, with emphasis on rodents, the taxonomic group that provides most animals used in laboratory research. Of special interest is the importance of adult hippocampal neurogenesis (AHN) in species-specific adaptations relative to other cell populations. Correspondence analysis of cell numbers shows that across taxonomic units, phylogenetically related species cluster together, sharing similar proportions of principal cell populations. CA3 and hilus are strong separators that place rodent species into a tight cluster based on their relatively large CA3 and small hilus while non-rodent species (including humans and non-human primates) are placed on the opposite side of the spectrum. Hilus and CA3 are also separators within rodents, with a very large CA3 and rather small hilar cell populations separating mole-rats from other rodents that, in turn, are separated from each other by smaller changes in the proportions of CA1 and granule cells. When adult neurogenesis is included, the relatively small populations of young neurons, proliferating cells and hilar neurons become main drivers of taxonomic separation within rodents. The observations provide challenges to the computational modeling of hippocampal function, suggest differences in the organization of hippocampal information streams in rodent and non-rodent species, and

  11. Regeneration and characterization of adult mouse hippocampal neurons in a defined in vitro system.

    PubMed

    Varghese, Kucku; Das, Mainak; Bhargava, Neelima; Stancescu, Maria; Molnar, Peter; Kindy, Mark S; Hickman, James J

    2009-02-15

    Although the majority of human illnesses occur during adulthood, most of the available in vitro disease models are based upon cells obtained from embryonic/fetal tissues because of the difficulties involved with culturing adult cells. Development of adult mouse neuronal cultures has a special significance because of the abundance of transgenic disease models that use this species. In this study a novel cell culture method has been developed that supports the long-term survival and physiological regeneration of adult mouse hippocampal cells in a serum-free defined environment. In this well-defined, controlled system, adult mouse hippocampal cells survived for up to 21 days in culture. The cultured cells exhibited typical hippocampal neuronal morphology and electrophysiological properties after recovery from the trauma of dissociation, and stained positive for the expected neuronal markers. This system has great potential as an investigative tool for in vitro studies of adult diseases, the aging brain or transgenic models of age-associated disorders. PMID:18955083

  12. Modulation of adult hippocampal neurogenesis by thyroid hormones: implications in depressive-like behavior.

    PubMed

    Montero-Pedrazuela, A; Venero, C; Lavado-Autric, R; Fernández-Lamo, I; García-Verdugo, J M; Bernal, J; Guadaño-Ferraz, A

    2006-04-01

    Hormonal imbalances are involved in many of the age-related pathologies, as neurodegenerative and psychiatric diseases. Specifically, thyroid state alterations in the adult are related to psychological changes and mood disorders as depression. The dentate gyrus of the hippocampal formation undergoes neurogenesis in adult mammals including humans. Recent evidence suggests that depressive disorders and their treatment are tightly related to the number of newly born neurons in the dentate gyrus. We have studied the effect of thyroid hormones (TH) on hippocampal neurogenesis in adult rats in vivo. A short period of adult-onset hypothyroidism impaired normal neurogenesis in the subgranular zone of the dentate gyrus with a 30% reduction in the number of proliferating cells. Hypothyroidism also reduced the number of newborn neuroblasts and immature neurons (doublecortin (DCX) immunopositive cells) which had a severely hypoplastic dendritic arborization. To correlate these changes with hippocampal function, we subjected the rats to the forced swimming and novel object recognition tests. Hypothyroid rats showed normal memory in object recognition, but displayed abnormal behavior in the forced swimming test, indicating a depressive-like disorder. Chronic treatment of hypothyroid rats with TH not only normalized the abnormal behavior but also restored the number of proliferative and DCX-positive cells, and induced growth of their dendritic trees. Therefore, hypothyroidism induced a reversible depressive-like disorder, which correlated to changes in neurogenesis. Our results indicate that TH are essential for adult hippocampal neurogenesis and suggest that mood disorders related to adult-onset hypothyroidism in humans could be due, in part, to impaired neurogenesis.

  13. Adult hippocampal neurogenesis and mRNA expression are altered by perinatal arsenic exposure in mice and restored by brief exposure to enrichment.

    PubMed

    Tyler, Christina R; Allan, Andrea M

    2013-01-01

    Arsenic is a common and pervasive environmental contaminant found in drinking water in varying concentrations depending on region. Exposure to arsenic induces behavioral and cognitive deficits in both human populations and in rodent models. The Environmental Protection Agency (EPA) standard for the allotment of arsenic in drinking water is in the parts-per-billion range, yet our lab has shown that 50 ppb arsenic exposure during development can have far-reaching consequences into adulthood, including deficits in learning and memory, which have been linked to altered adult neurogenesis. Given that the morphological impact of developmental arsenic exposure on the hippocampus is unknown, we sought to evaluate proliferation and differentiation of adult neural progenitor cells in the dentate gyrus after 50 ppb arsenic exposure throughout the perinatal period of development in mice (equivalent to all three trimesters in humans) using a BrdU pulse-chase assay. Proliferation of the neural progenitor population was decreased by 13% in arsenic-exposed mice, but was not significant. However, the number of differentiated cells was significantly decreased by 41% in arsenic-exposed mice compared to controls. Brief, daily exposure to environmental enrichment significantly increased proliferation and differentiation in both control and arsenic-exposed animals. Expression levels of 31% of neurogenesis-related genes including those involved in Alzheimer's disease, apoptosis, axonogenesis, growth, Notch signaling, and transcription factors were altered after arsenic exposure and restored after enrichment. Using a concentration previously considered safe by the EPA, perinatal arsenic exposure altered hippocampal morphology and gene expression, but did not inhibit the cellular neurogenic response to enrichment. It is possible that behavioral deficits observed during adulthood in animals exposed to arsenic during development derive from the lack of differentiated neural progenitor cells

  14. Adult Hippocampal Neurogenesis and mRNA Expression are Altered by Perinatal Arsenic Exposure in Mice and Restored by Brief Exposure to Enrichment

    PubMed Central

    Tyler, Christina R.; Allan, Andrea M.

    2013-01-01

    Arsenic is a common and pervasive environmental contaminant found in drinking water in varying concentrations depending on region. Exposure to arsenic induces behavioral and cognitive deficits in both human populations and in rodent models. The Environmental Protection Agency (EPA) standard for the allotment of arsenic in drinking water is in the parts-per-billion range, yet our lab has shown that 50 ppb arsenic exposure during development can have far-reaching consequences into adulthood, including deficits in learning and memory, which have been linked to altered adult neurogenesis. Given that the morphological impact of developmental arsenic exposure on the hippocampus is unknown, we sought to evaluate proliferation and differentiation of adult neural progenitor cells in the dentate gyrus after 50 ppb arsenic exposure throughout the perinatal period of development in mice (equivalent to all three trimesters in humans) using a BrdU pulse-chase assay. Proliferation of the neural progenitor population was decreased by 13% in arsenic-exposed mice, but was not significant. However, the number of differentiated cells was significantly decreased by 41% in arsenic-exposed mice compared to controls. Brief, daily exposure to environmental enrichment significantly increased proliferation and differentiation in both control and arsenic-exposed animals. Expression levels of 31% of neurogenesis-related genes including those involved in Alzheimer’s disease, apoptosis, axonogenesis, growth, Notch signaling, and transcription factors were altered after arsenic exposure and restored after enrichment. Using a concentration previously considered safe by the EPA, perinatal arsenic exposure altered hippocampal morphology and gene expression, but did not inhibit the cellular neurogenic response to enrichment. It is possible that behavioral deficits observed during adulthood in animals exposed to arsenic during development derive from the lack of differentiated neural progenitor

  15. Trim9 Deletion Alters the Morphogenesis of Developing and Adult-Born Hippocampal Neurons and Impairs Spatial Learning and Memory

    PubMed Central

    Winkle, Cortney C.; Olsen, Reid H. J.; Kim, Hyojin; Moy, Sheryl S.

    2016-01-01

    During hippocampal development, newly born neurons migrate to appropriate destinations, extend axons, and ramify dendritic arbors to establish functional circuitry. These developmental stages are recapitulated in the dentate gyrus of the adult hippocampus, where neurons are continuously generated and subsequently incorporate into existing, local circuitry. Here we demonstrate that the E3 ubiquitin ligase TRIM9 regulates these developmental stages in embryonic and adult-born mouse hippocampal neurons in vitro and in vivo. Embryonic hippocampal and adult-born dentate granule neurons lacking Trim9 exhibit several morphological defects, including excessive dendritic arborization. Although gross anatomy of the hippocampus was not detectably altered by Trim9 deletion, a significant number of Trim9−/− adult-born dentate neurons localized inappropriately. These morphological and localization defects of hippocampal neurons in Trim9−/− mice were associated with extreme deficits in spatial learning and memory, suggesting that TRIM9-directed neuronal morphogenesis may be involved in hippocampal-dependent behaviors. SIGNIFICANCE STATEMENT Appropriate generation and incorporation of adult-born neurons in the dentate gyrus are critical for spatial learning and memory and other hippocampal functions. Here we identify the brain-enriched E3 ubiquitin ligase TRIM9 as a novel regulator of embryonic and adult hippocampal neuron shape acquisition and hippocampal-dependent behaviors. Genetic deletion of Trim9 elevated dendritic arborization of hippocampal neurons in vitro and in vivo. Adult-born dentate granule cells lacking Trim9 similarly exhibited excessive dendritic arborization and mislocalization of cell bodies in vivo. These cellular defects were associated with severe deficits in spatial learning and memory. PMID:27147649

  16. Long-Term Fate Mapping Using Conditional Lentiviral Vectors Reveals a Continuous Contribution of Radial Glia-Like Cells to Adult Hippocampal Neurogenesis in Mice

    PubMed Central

    Aelvoet, Sarah-Ann; Pascual-Brazo, Jesus; Libbrecht, Sarah; Reumers, Veerle; Gijsbers, Rik; Van den Haute, Chris; Baekelandt, Veerle

    2015-01-01

    Newborn neurons are generated throughout life in two neurogenic regions, the subventricular zone and the hippocampal dentate gyrus. Stimulation of adult neurogenesis is considered as an attractive endogenous repair mechanism to treat different neurological disorders. Although tremendous progress has been made in our understanding of adult hippocampal neurogenesis, important questions remain unanswered, regarding the identity and the behavior of neural stem cells in the dentate gyrus. We previously showed that conditional Cre-Flex lentiviral vectors can be used to label neural stem cells in the subventricular zone and to track the migration of their progeny with non-invasive bioluminescence imaging. Here, we applied these Cre-Flex lentiviral vectors to study neurogenesis in the dentate gyrus with bioluminescence imaging and histological techniques. Stereotactic injection of the Cre-Flex vectors into the dentate gyrus of transgenic Nestin-Cre mice resulted in specific labeling of the nestin-positive neural stem cells. The labeled cell population could be detected with bioluminescence imaging until 9 months post injection, but no significant increase in the number of labeled cells over time was observed with this imaging technique. Nevertheless, the specific labeling of the nestin-positive neural stem cells, combined with histological analysis at different time points, allowed detailed analysis of their neurogenic potential. This long-term fate mapping revealed that a stable pool of labeled nestin-positive neural stem cells continuously contributes to the generation of newborn neurons in the mouse brain until 9 months post injection. In conclusion, the Cre-Flex technology is a valuable tool to address remaining questions regarding neural stem cell identity and behavior in the dentate gyrus. PMID:26600383

  17. The Mineralocorticoid Agonist Fludrocortisone Promotes Survival and Proliferation of Adult Hippocampal Progenitors

    PubMed Central

    Gesmundo, Iacopo; Villanova, Tania; Gargantini, Eleonora; Arvat, Emanuela; Ghigo, Ezio; Granata, Riccarda

    2016-01-01

    Glucocorticoid receptor (GR) activation has been shown to reduce adult hippocampal progenitor cell proliferation and neurogenesis. By contrast, mineralocorticoid receptor (MR) signaling is associated with neuronal survival in the dentate gyrus of the hippocampus, and impairment of hippocampal MR has been linked to pathological conditions, such as depression or neurodegenerative disorders. Here, we aimed to further clarify the protective role of MR in adult hippocampal neurons by studying the survival and proliferative effects of the highly potent MR agonist fludrocortisone (Fludro) in adult rat hippocampal progenitor cells (AHPs), along with the associated signaling mechanisms. Fludro, which upregulated MR but not GR expression, increased survival and proliferation and prevented apoptosis in AHPs cultured in growth factor-deprived medium. These effects were blunted by the MR antagonist spironolactone and by high doses of the GR agonist dexamethasone. Moreover, they involved signaling through cAMP/protein kinase A (PKA)/cAMP response element-binding protein, phosphoinositide 3-kinase (PI3K)/Akt and its downstream targets glycogen synthase kinase-3β (GSK-3β) and mammalian target of rapamycin. Furthermore, Fludro attenuated the detrimental effects of amyloid-β peptide 1–42 (Aβ1–42) on cell survival, proliferation, and apoptosis in AHPs, and increased the phosphorylation of both PI3K/Akt and GSK-3β, which was reduced by Aβ1–42. Finally, Fludro blocked Aβ1–42-induced hyperphosphorylation of Tau protein, which is a main feature of Alzheimer’s disease. Overall, these results are the first to show the protective and proliferative role of Fludro in AHPs, suggesting the potential therapeutic importance of targeting MR for increasing hippocampal neurogenesis and for treating neurodegenerative diseases. PMID:27379018

  18. An NCAM mimetic, FGL, alters hippocampal cellular morphometry in young adult (4 month-old) rats.

    PubMed

    Ojo, Bunmi; Gabbott, Paul L; Rezaie, Payam; Corbett, Nicola; Medvedev, Nikolay I; Cowley, Thelma R; Lynch, Marina A; Stewart, Michael G

    2013-06-01

    The neural cell adhesion molecule, NCAM, is ubiquitously expressed within the CNS and has roles in development, cognition, neural plasticity and regulation of the immune system. NCAM is thus potentially an important pharmacological target for treatment of brain diseases. A cell adhesion mimetic FGL, a 15 amino-acid peptide derived from the second fibronectin type-III module of NCAM, has been shown to act as a neuroprotective agent in experimental disease and ageing models, restoring hippocampal/cognitive function and markedly alleviating deleterious changes in the CNS. However, the effects of FGL on the hippocampus of young healthy rats are unknown. The present study has examined the cellular neurobiological consequences of subcutaneous injections of FGL, on hippocampal cell morphometry in young (4 month-old) rats. We determined the effects of FGL on hippocampal volume, pyramidal neuron number/density (using unbiased quantitative stereology), and examined aspects of neurogenesis (using 2D morphometric analyses). FGL treatment reduced total volume of the dorsal hippocampus (associated with a decrease in total pyramidal neuron numbers in CA1 and CA3), and elevated the number of doublecortin immunolabeled neurons in the dentate gyrus, indicating a likely influence on neurogenesis in young healthy rats. These data indicate that FGL has a specific age dependent effect on the hippocampus, differing according to the development and maturity of the CNS.

  19. Effects of long-term methylphenidate treatment in adolescent and adult rats on hippocampal shape, functional connectivity and adult neurogenesis.

    PubMed

    van der Marel, K; Bouet, V; Meerhoff, G F; Freret, T; Boulouard, M; Dauphin, F; Klomp, A; Lucassen, P J; Homberg, J R; Dijkhuizen, R M; Reneman, L

    2015-11-19

    Methylphenidate (MPH) is a widely prescribed stimulant drug for the treatment of attention deficit hyperactivity disorder (ADHD) in children and adolescents. Its use in this age group raises concerns regarding the potential interference with ongoing neurodevelopmental processes. Particularly the hippocampus is a highly plastic brain region that continues to develop postnatally and is involved in cognition and emotional behavior, functions known to be affected by MPH. In this study, we assessed whether hippocampal structure and function were affected by chronic oral MPH treatment and whether its effects were different in adolescent or adult rats. Using behavioral testing, resting-state functional MRI, post-mortem structural magnetic resonance imaging (MRI), and immunohistochemistry, we assessed MPH's effects on recognition memory, depressive-like behavior, topological features of functional connectivity networks, hippocampal shape and markers for hippocampal neurogenesis and proliferation. Object recognition memory was transiently impaired in adolescent treated rats, while in animals treated during adulthood, increased depressive-like behavior was observed. Neurogenesis was increased in adolescent treated rats, whereas cell proliferation was decreased following adult treatment. Adolescent treated rats showed inward shape deformations adjacent to ventral parahippocampal regions known to be involved in recognition memory, whereas such deformations were not observed in adult treated animals. Irrespective of the age of treatment, MPH affected topological features of ventral hippocampal functional networks. Thus, chronic oral treatment with a therapeutically relevant dose of MPH preferentially affected the ventral part of the hippocampus and induced contrasting effects in adolescent and adult rats. The differences in behavior were paralleled by opposite effects on adult neurogenesis and granule cell proliferation.

  20. Converging action of alcohol consumption and cannabinoid receptor activation on adult hippocampal neurogenesis.

    PubMed

    Alén, Francisco; Mouret, Aurélie; Viveros, Maria-Paz; Llorente, Ricardo; Lepousez, Gabriel; Lledo, Pierre-Marie; López-Moreno, José Antonio

    2010-03-01

    Alcoholism is characterized by successive periods of abstinence and relapse, resulting from long-lasting changes in various circuits of the central nervous system. Accumulating evidence points to the endocannabinoid system as one of the most relevant biochemical systems mediating alcohol addiction. The endocannabinoid system regulates adult neurogenesis, a form of long-lasting adult plasticity that occurs in a few areas of the brain, including the dentate gyrus. Because exposure to psychotropic drugs regulates adult neurogenesis, it is possible that neurogenesis might be implicated in the pathophysiology, and hence treatment, of neurobiological illnesses related to drugs of abuse. Here, we investigated the sensitivity of adult hippocampal neurogenesis to alcohol and the cannabinoid receptor agonist WIN 55,212-2 (WIN). Specifically, we analysed the potential link between alcohol relapse, cannabinoid receptor activation, and adult neurogenesis. Adult rats were exposed to subchronic alcohol binge intoxication and received the cannabinoid receptor agonist WIN. Another group of rats were subjected to an alcohol operant self-administration task. Half of these latter animals had continuous access to alcohol, while the other half were subjected to alcohol deprivation, with or without WIN administration. WIN treatment, when administered during alcohol deprivation, resulted in the greatest increase in alcohol consumption during relapse. Together, forced alcohol binge intoxication and WIN administration dramatically reduced hippocampal neurogenesis. Furthermore, adult neurogenesis inversely correlated with voluntary consumption of alcohol. These findings suggest that adult hippocampal neurogenesis is a key factor involved in drug abuse and that it may provide a new strategy for the treatment of alcohol addiction and dependence.

  1. Varied access to intravenous methamphetamine self-administration differentially alters adult hippocampal neurogenesis

    PubMed Central

    Mandyam, Chitra D.; Wee, Sunmee; Crawford, Elena F.; Eisch, Amelia J.; Richardson, Heather N.; Koob, George F.

    2008-01-01

    Background Chronic abuse of methamphetamine produces deficits in hippocampal function, perhaps by altering hippocampal neurogenesis and plasticity. We examined how intravenous methamphetamine self-administration modulates active division, proliferation of late progenitors, differentiation, maturation, survival, and mature phenotype of hippocampal subgranular zone (SGZ) progenitors. Methods Adult male Wistar rats were given access to methamphetamine 1 h twice weekly (intermittent short), 1 h daily (short), or 6 h daily (long). Rats received one intraperitoneal injection of bromodeoxyuridine (BrdU) to label progenitors in the synthesis (S) phase, and 28-day-old surviving BrdU-immunoreactive (IR) cells were quantified. Ki-67, doublecortin (DCX), and activated caspase-3 (AC-3) were used to visualize and quantify proliferating, differentiating, maturing, and apoptotic cells. Terminal corticosterone was measured to determine changes in adrenal steroids. Results Intermittent access to methamphetamine increased Ki-67 and DCX-IR cells, but opposing effects on late progenitors and postmitotic neurons resulted in no overall change in neurogenesis. Daily access to methamphetamine decreased all studied aspects of neurogenesis and reduced hippocampal granule neurons and volume, changes that likely are mediated by decreased proliferative and neurogenic capacity of the SGZ. Furthermore, methamphetamine self-administration relative to the amount of methamphetamine intake produced a biphasic effect on hippocampal apoptosis and reduced corticosterone levels. Conclusions Intermittent (occasional access) and daily (limited and extended access) self-administration of methamphetamine impact different aspects of neurogenesis, the former producing initial pro-proliferative effects and the latter producing downregulating effects. These findings suggest that altered hippocampal integrity by even modest doses of methamphetamine could account for pronounced pathology linked to methamphetamine

  2. Blockade of 2-arachidonoylglycerol hydrolysis produces antidepressant-like effects and enhances adult hippocampal neurogenesis and synaptic plasticity.

    PubMed

    Zhang, Zhen; Wang, Wei; Zhong, Peng; Liu, Sarah J; Long, Jonathan Z; Zhao, Li; Gao, Hai-qing; Cravatt, Benjamin F; Liu, Qing-song

    2015-01-01

    The endocannabinoid ligand 2-arachidonoylglycerol (2-AG) is inactivated primarily by monoacylglycerol lipase (MAGL). We have shown recently that chronic treatments with MAGL inhibitor JZL184 produce antidepressant- and anxiolytic-like effects in a chronic unpredictable stress (CUS) model of depression in mice. However, the underlying mechanisms remain poorly understood. Adult hippocampal neurogenesis has been implicated in animal models of anxiety and depression and behavioral effects of antidepressants. We tested whether CUS and chronic JZL184 treatments affected adult neurogenesis and synaptic plasticity in the dentate gyrus (DG) of mouse hippocampus. We report that CUS induced depressive-like behaviors and decreased the number of bromodeoxyuridine-labeled neural progenitor cells and doublecortin-positive immature neurons in the DG, while chronic JZL184 treatments prevented these behavioral and cellular deficits. We also investigated the effects of CUS and chronic JZL184 on a form long-term potentiation (LTP) in the DG known to be neurogenesis-dependent. CUS impaired LTP induction, whereas chronic JZL184 treatments restored LTP in CUS-exposed mice. These results suggest that enhanced adult neurogenesis and long-term synaptic plasticity in the DG of the hippocampus might contribute to antidepressant- and anxiolytic-like behavioral effects of JZL184.

  3. Visual confrontation naming and hippocampal function: A neural network study using quantitative (1)H magnetic resonance spectroscopy.

    PubMed

    Sawrie, S M; Martin, R C; Gilliam, F G; Faught, R E; Maton, B; Hugg, J W; Bush, N; Sinclair, K; Kuzniecky, R I

    2000-04-01

    Prior research on the relationship between visual confrontation naming and hippocampal function has been inconclusive. The present study examined this relationship using quantitative (1)H magnetic resonance spectroscopy ((1)H-MRS) to operationalize the function of the left and right hippocampi. The 60-item Boston Naming Test (BNT) was used to measure naming. Our sample included 46 patients with medically intractable, focal mesial temporal lobe epilepsy who had been screened for all pathology other than mesial temporal sclerosis. Statistics included Pearson correlations and neural network analysis (multilayer perceptron and radial basis function). Baseline BNT performance correlated significantly with left (1)H-MRS hippocampal ratios. Thirty-six per cent of the variance in baseline BNT performance was explained by a neural network model using left and right (1)H-MRS ratios(creatine/N-acetylaspartate) as input. This was elevated to 49% when input from the right hippocampus was lesioned mathematically. In a second model, left (1)H-MRS hippocampal ratios were modelled using measures of semantic and episodic memory as input (including the BNT). Explained variance in left (1)H-MRS hippocampal ratios fell from 60.8 to 3.6% when input from BNT and another semantic memory measure was degraded mathematically. These results provide evidence that the speech-dominant hippocampus is a significant component of the overall neuroanatomical network of visual confrontation naming. Clinical and theoretical implications are explored.

  4. Delivery of Epidermal Neural Crest Stem Cells (EPI-NCSC) to hippocamp in Alzheimer's Disease Rat Model

    PubMed Central

    Esmaeilzade, Banafshe; Nobakht, Maliheh; Joghataei, Mohammad Taghi; Rahbar Roshandel, Nahid; Rasouli, Homa; Samadi Kuchaksaraei, Ali; Hosseini, Seyed Mohammad; Najafzade, Nowruz; Asalgoo, Sara; Hejazian, Leila Beygom; Ghoroghi, Fatima Moghani

    2012-01-01

    Background: Alzheimer’s disease (AD) is characterized by progressive neuronal loss in hippocamp. Epidermal neural crest stem cells (EPI-NCSC) can differentiate into neurons, astrocytes and oligodendrocytes. The purpose of this study was to evaluate the effects of transplanting EPI-NCSC into AD rat model. Methods: Two weeks after induction of AD by injection of Amyloid-β 1-40 into CA1 area of rat hippocamp, Y-maze and single-trial passive avoidance tests were used to show deficit of learning and memory abilities. EPI-NCSC were obtained from the vibrissa hair follicle of rat, cultured and labeled with bromodeoxyuridine. When Alzheimer was proved by behavioral tests, EPI-NCSC was transplanted into CA3 area of hippocamp in AD rat model. The staining of EPI-NCSC markers (nestin and SOX10) was done in vitro. Double-labeling immunofluorescence was performed to study survival and differentiation of the grafted cells. Results: We showed that transplanted EPI-NCSC survive and produce many neurons and a few glial cells, presenting glial fibrillary acidic protein. Total number of granule cells in hippocamp was estimated to be more in the AD rat model with transplanted cells as compared to AD control group. We observed that rats with hippocampal damage made more errors than control rats on the Y-maze, when reward locations were reversed. Conclusion: Transplanted cells were migrated to all areas of hippocamp and the total number of granule cell in treatment group was equal compared to control group. Transplantation of EPI-NCSC into hippocamp might differentiate into cholinergic neurons and could cure impairment of memory in AD rat model. PMID:22562026

  5. Anti-Nogo-A Immunotherapy Does Not Alter Hippocampal Neurogenesis after Stroke in Adult Rats

    PubMed Central

    Shepherd, Daniel J.; Tsai, Shih-Yen; O'Brien, Timothy E.; Farrer, Robert G.; Kartje, Gwendolyn L.

    2016-01-01

    Ischemic stroke is a leading cause of adult disability, including cognitive impairment. Our laboratory has previously shown that treatment with function-blocking antibodies against the neurite growth inhibitory protein Nogo-A promotes functional recovery after stroke in adult and aged rats, including enhancing spatial memory performance, for which the hippocampus is critically important. Since spatial memory has been linked to hippocampal neurogenesis, we investigated whether anti-Nogo-A treatment increases hippocampal neurogenesis after stroke. Adult rats were subject to permanent middle cerebral artery occlusion followed 1 week later by 2 weeks of antibody treatment. Cellular proliferation in the dentate gyrus was quantified at the end of treatment, and the number of newborn neurons was determined at 8 weeks post-stroke. Treatment with both anti-Nogo-A and control antibodies stimulated the accumulation of new microglia/macrophages in the dentate granule cell layer, but neither treatment increased cellular proliferation or the number of newborn neurons above stroke-only levels. These results suggest that anti-Nogo-A immunotherapy does not increase post-stroke hippocampal neurogenesis. PMID:27803646

  6. Premature aging of the hippocampal neurogenic niche in adult Bmal1-deficient mice.

    PubMed

    Ali, Amira A H; Schwarz-Herzke, Beryl; Stahr, Anna; Prozorovski, Timour; Aktas, Orhan; von Gall, Charlotte

    2015-06-01

    Hippocampal neurogenesis undergoes dramatic age-related changes. Mice with targeted deletion of the clock geneBmal1 (Bmal1(-/-)) show disrupted regulation of reactive oxygen species homeostasis, accelerated aging, neurodegeneration and cognitive deficits. As proliferation of neuronal progenitor/precursor cells (NPCs) is enhanced in young Bmal1(-/-) mice, we tested the hypothesis that this results in premature aging of hippocampal neurogenic niche in adult Bmal1(-/-) mice as compared to wildtype littermates. We found significantly reduced pool of hippocampal NPCs, scattered distribution, enhanced survival of NPCs and an increased differentiation of NPCs into the astroglial lineage at the expense of the neuronal lineage. Immunoreaction of the redox sensitive histone deacetylase Sirtuine 1, peroxisomal membrane protein at 70 kDa and expression of the cell cycle inhibitor p21(Waf1/CIP1) were increased in adult Bmal1(-/-) mice. In conclusion, genetic disruption of the molecular clockwork leads to accelerated age-dependent decline in adult neurogenesis presumably as a consequence of oxidative stress.

  7. MicroRNA-124 and -137 cooperativity controls caspase-3 activity through BCL2L13 in hippocampal neural stem cells

    PubMed Central

    Schouten, Marijn; Fratantoni, Silvina A.; Hubens, Chantal J.; Piersma, Sander R.; Pham, Thang V.; Bielefeld, Pascal; Voskuyl, Rob A.; Lucassen, Paul J.; Jimenez, Connie R.; Fitzsimons, Carlos P.

    2015-01-01

    Adult neurogenesis continuously contributes new neurons to hippocampal circuits and the programmed death of a subset of immature cells provides a primary mechanism controlling this contribution. Epileptic seizures induce strong structural changes in the hippocampus, including the induction of adult neurogenesis, changes in gene expression and mitochondrial dysfunction, which may all contribute to epileptogenesis. However, a possible interplay between this factors remains largely unexplored. Here, we investigated gene expression changes in the hippocampal dentate gyrus shortly after prolonged seizures induced by kainic acid, focusing on mitochondrial functions. Using comparative proteomics, we identified networks of proteins differentially expressed shortly after seizure induction, including members of the BCL2 family and other mitochondrial proteins. Within these networks, we report for the first time that the atypical BCL2 protein BCL2L13 controls caspase-3 activity and cytochrome C release in neural stem/progenitor cells. Furthermore, we identify BCL2L13 as a novel target of the cooperative action of microRNA-124 and microRNA-137, both upregulated shortly after seizure induction. This cooperative microRNA-mediated fine-tuning of BCL2L13 expression controls casp3 activity, favoring non-apoptotic caspase-3 functions in NSPC exposed to KA and thereby may contribute to the early neurogenic response to epileptic seizures in the dentate gyrus. PMID:26207921

  8. Acute and fractionated exposure to high-LET (56)Fe HZE-particle radiation both result in similar long-term deficits in adult hippocampal neurogenesis.

    PubMed

    Rivera, Phillip D; Shih, Hung-Ying; Leblanc, Junie A; Cole, Mara G; Amaral, Wellington Z; Mukherjee, Shibani; Zhang, Shichuan; Lucero, Melanie J; Decarolis, Nathan A; Chen, Benjamin P C; Eisch, Amelia J

    2013-12-01

    Astronauts on multi-year interplanetary missions will be exposed to a low, chronic dose of high-energy, high-charge particles. Studies in rodents show acute, nonfractionated exposure to these particles causes brain changes such as fewer adult-generated hippocampal neurons and stem cells that may be detrimental to cognition and mood regulation and thus compromise mission success. However, the influence of a low, chronic dose of these particles on neurogenesis and stem cells is unknown. To examine the influence of galactic cosmic radiation on neurogenesis, adult-generated stem and progenitor cells in Nestin-CreER(T2)/R26R-YFP transgenic mice were inducibly labeled to allow fate tracking. Mice were then sham exposed or given one acute 100 cGy (56)Fe-particle exposure or five fractionated 20 cGy (56)Fe-particle exposures. Adult-generated hippocampal neurons and stem cells were quantified 24 h or 3 months later. Both acute and fractionated exposure decreased the amount of proliferating cells and immature neurons relative to sham exposure. Unexpectedly, neither acute nor fractionated exposure decreased the number of adult neural stem cells relative to sham expsoure. Our findings show that single and fractionated exposures of (56)Fe-particle irradiation are similarly detrimental to adult-generated neurons. Implications for future missions and ground-based studies in space radiation are discussed. PMID:24320054

  9. Acute and Fractionated Exposure to High-LET 56Fe HZE-Particle Radiation Both Result in Similar Long-Term Deficits in Adult Hippocampal Neurogenesis

    PubMed Central

    Rivera, Phillip D.; Shih, Hung-Ying; LeBlanc, Junie A.; Cole, Mara G.; Amaral, Wellington Z.; Mukherjee, Shibani; Zhang, Shichuan; Lucero, Melanie J.; DeCarolis, Nathan A.; Chen, Benjamin P. C.; Eisch, Amelia J.

    2014-01-01

    Astronauts on multi-year interplanetary missions will be exposed to a low, chronic dose of high-energy, high-charge particles. Studies in rodents show acute, nonfractionated exposure to these particles causes brain changes such as fewer adult-generated hippocampal neurons and stem cells that may be detrimental to cognition and mood regulation and thus compromise mission success. However, the influence of a low, chronic dose of these particles on neurogenesis and stem cells is unknown. To examine the influence of galactic cosmic radiation on neurogenesis, adult-generated stem and progenitor cells in Nestin-CreERT2/R26R-YFP transgenic mice were inducibly labeled to allow fate tracking. Mice were then sham exposed or given one acute 100 cGy 56Fe-particle exposure or five fractionated 20 cGy 56Fe-particle exposures. Adult-generated hippocampal neurons and stem cells were quantified 24 h or 3 months later. Both acute and fractionated exposure decreased the amount of proliferating cells and immature neurons relative to sham exposure. Unexpectedly, neither acute nor fractionated exposure decreased the number of adult neural stem cells relative to sham expsoure. Our findings show that single and fractionated exposures of 56Fe-particle irradiation are similarly detrimental to adult-generated neurons. Implications for future missions and ground-based studies in space radiation are discussed. PMID:24320054

  10. Epigallocatechin-3-gallate rescues LPS-impaired adult hippocampal neurogenesis through suppressing the TLR4-NF-κB signaling pathway in mice

    PubMed Central

    Seong, Kyung-Joo; Lee, Hyun-Gwan; Kook, Min Suk; Ko, Hyun-Mi

    2016-01-01

    Adult hippocampal dentate granule neurons are generated from neural stem cells (NSCs) in the mammalian brain, and the fate specification of adult NSCs is precisely controlled by the local niches and environment, such as the subventricular zone (SVZ), dentate gyrus (DG), and Toll-like receptors (TLRs). Epigallocatechin-3-gallate (EGCG) is the main polyphenolic flavonoid in green tea that has neuroprotective activities, but there is no clear understanding of the role of EGCG in adult neurogenesis in the DG after neuroinflammation. Here, we investigate the effect and the mechanism of EGCG on adult neurogenesis impaired by lipopolysaccharides (LPS). LPS-induced neuroinflammation inhibited adult neurogenesis by suppressing the proliferation and differentiation of neural stem cells in the DG, which was indicated by the decreased number of Bromodeoxyuridine (BrdU)-, Doublecortin (DCX)- and Neuronal Nuclei (NeuN)-positive cells. In addition, microglia were recruited with activatingTLR4-NF-κB signaling in the adult hippocampus by LPS injection. Treating LPS-injured mice with EGCG restored the proliferation and differentiation of NSCs in the DG, which were decreased by LPS, and EGCG treatment also ameliorated the apoptosis of NSCs. Moreover, pro-inflammatory cytokine production induced by LPS was attenuated by EGCG treatment through modulating the TLR4-NF-κB pathway. These results illustrate that EGCG has a beneficial effect on impaired adult neurogenesis caused by LPSinduced neuroinflammation, and it may be applicable as a therapeutic agent against neurodegenerative disorders caused by inflammation. PMID:26807022

  11. Developmental and adult GAP-43 deficiency in mice dynamically alters hippocampal neurogenesis and mossy fiber volume.

    PubMed

    Latchney, Sarah E; Masiulis, Irene; Zaccaria, Kimberly J; Lagace, Diane C; Powell, Craig M; McCasland, James S; Eisch, Amelia J

    2014-01-01

    Growth-associated protein-43 (GAP-43) is a presynaptic protein that plays key roles in axonal growth and guidance and in modulating synapse formation. Previous work has demonstrated that mice lacking one allele of this gene (GAP-43+/- mice) exhibit hippocampal structural abnormalities, impaired spatial learning and stress-induced behavioral withdrawal and anxiety, behaviors that are dependent on proper hippocampal circuitry and function. Given the correlation between hippocampal function, synaptic connectivity and neurogenesis, we tested if behaviorally naïve GAP-43+/- mice had alterations in either neurogenesis or synaptic connectivity in the hippocampus during early postnatal development and young adulthood, and following behavior testing in older adults. To test our hypothesis, we examined hippocampal cell proliferation (Ki67), number of immature neuroblasts (doublecortin, DCX) and mossy fiber volume (synaptoporin) in behaviorally naïve postnatal day 9 (P9) and P26, and behaviorally experienced 5- to 7-month-old GAP-43+/- and +/+ littermate mice. P9 GAP-43+/- mice had fewer Ki67+ and DCX+ cells compared to +/+ mice, particularly in the posterior dentate gyrus, and smaller mossy fiber volume in the same region. In young adulthood, however, male GAP-43+/- mice had more Ki67+ and DCX+ cells and greater mossy fiber volume in the posterior dentate gyrus relative to male +/+ mice. These increases were not seen in females. In 5- to 7-month-old GAP-43+/- mice (whose behaviors were the focus of our prior publication), there was no global change in the number of proliferating or immature neurons relative to +/+ mice. However, more detailed analysis revealed fewer proliferative DCX+ cells in the anterior dentate gyrus of male GAP-43+/- mice compared to male +/+ mice. This reduction was not observed in females. These results suggest that young GAP-43+/- mice have decreased hippocampal neurogenesis and synaptic connectivity, but slightly older mice have greater hippocampal

  12. Survival of adult generated hippocampal neurons is altered in circadian arrhythmic mice.

    PubMed

    Rakai, Brooke D; Chrusch, Michael J; Spanswick, Simon C; Dyck, Richard H; Antle, Michael C

    2014-01-01

    The subgranular zone of the hippocampal formation gives rise to new neurons that populate the dentate gyrus throughout life. Cells in the hippocampus exhibit rhythmic clock gene expression and the circadian clock is known to regulate the cycle of cell division in other areas of the body. These facts suggest that the circadian clock may regulate adult neurogenesis in the hippocampus as well. In the present study, neurogenesis in the hippocampal subgranular zone was examined in arrhythmic Bmal1 knockout (-KO) mice and their rhythmic heterozygous and wildtype littermates. Proliferation and survival of newly generated subgranular zone cells were examined using bromodeoxyuridine labelling, while pyknosis (a measure of cell death) and hippocampal volume were examined in cresyl violet stained sections. There was no significant difference in cellular proliferation between any of the groups, yet survival of proliferating cells, 6 weeks after the bromodeoxyuridine injection, was significantly greater in the BMAL1-KO animals. The number of pyknotic cells was significantly decreased in Bmal1-KO animals, yet hippocampal volume remained the same across genotypes. These findings suggest that while a functional circadian clock is not necessary for normal proliferation of neuronal precursor cells, the normal pruning of newly generated neurons in the hippocampus may require a functional circadian clock. PMID:24941219

  13. Altered differentiation of CNS neural progenitor cells after transplantation into the injured adult rat spinal cord.

    PubMed

    Onifer, S M; Cannon, A B; Whittemore, S R

    1997-01-01

    Denervation of CNS neurons and peripheral organs is a consequence of traumatic SCI. Intraspinal transplantation of embryonic CNS neurons is a potential strategy for reinnervating these targets. Neural progenitor cell lines are being investigated as alternates to embryonic CNS neurons. RN33B is an immortalized neural progenitor cell line derived from embryonic rat raphe nuclei following infection with a retrovirus encoding the temperature-sensitive mutant of SV40 large T-antigen. Transplantation studies have shown that local epigenetic signals in intact or partially neuron-depleted adult rat hippocampal formation or striatum direct RN33B cell differentiation to complex multipolar morphologies resembling endogenous neurons. After transplantation into neuron-depleted regions of the hippocampal formation or striatum, RN33B cells were relatively undifferentiated or differentiated with bipolar morphologies. The present study examines RN33B cell differentiation after transplantation into normal spinal cord and under different lesion conditions. Adult rats underwent either unilateral lesion of lumbar spinal neurons by intraspinal injection of kainic acid or complete transection at the T10 spinal segment. Neonatal rats underwent either unilateral lesion of lumbar motoneurons by sciatic nerve crush or complete transection at the T10 segment. At 2 or 6-7 wk postinjury, lacZ-labeled RN33B cells were transplanted into the lumbar enlargement of injured and age-matched normal rats. At 2 wk posttransplantation, bipolar and some multipolar RN33B cells were found throughout normal rat gray matter. In contrast, only bipolar RN33B cells were seen in gray matter of kainic acid lesioned, sciatic nerve crush, or transection rats. These observations suggest that RN33B cell multipolar morphological differentiation in normal adult spinal cord is mediated by direct cell-cell interaction through surface molecules on endogenous neurons and may be suppressed by molecules released after SCI

  14. Impact of 5-HTTLPR on hippocampal subregional activation in older adults.

    PubMed

    Garrett, A; Gupta, S; Reiss, A L; Waring, J; Sudheimer, K; Anker, L; Sosa, N; Hallmayer, J F; O'Hara, R

    2015-01-01

    Studies have shown that a functional polymorphism of the serotonin transporter gene (5-HTTLPR) impacts performance on memory-related tasks and the hippocampal structures that subserve these tasks. The short (s) allele of 5-HTTLPR has been linked to greater susceptibility for impaired memory and smaller hippocampal volume compared to the long allele (l). However, previous studies have not examined the associations between 5-HTTLPR allele and activation in subregions of the hippocampus. In this study, we used functional magnetic resonance imaging (fMRI) to measure activation in hippocampal and temporal lobe subregions in 36 elderly non-clinical participants performing a face-name encoding and recognition task. Although there were no significant differences in task performance between s allele carriers and l homozygotes, right CA1 and right parahippocampal activation during recognition errors was significantly greater in individuals bearing the s allele. In an exploratory analysis, we determined that these effects were more pronounced in s allele carriers with the apolipoprotein ɛ4 allele. Our results suggest that older individuals with the s allele inefficiently allocate neural resources while making errors in recognizing face-name associations, which could negatively impact memory performance during more challenging tasks. PMID:26393485

  15. Impact of 5-HTTLPR on hippocampal subregional activation in older adults

    PubMed Central

    Garrett, A; Gupta, S; Reiss, A L; Waring, J; Sudheimer, K; Anker, L; Sosa, N; Hallmayer, J F; O'Hara, R

    2015-01-01

    Studies have shown that a functional polymorphism of the serotonin transporter gene (5-HTTLPR) impacts performance on memory-related tasks and the hippocampal structures that subserve these tasks. The short (s) allele of 5-HTTLPR has been linked to greater susceptibility for impaired memory and smaller hippocampal volume compared to the long allele (l). However, previous studies have not examined the associations between 5-HTTLPR allele and activation in subregions of the hippocampus. In this study, we used functional magnetic resonance imaging (fMRI) to measure activation in hippocampal and temporal lobe subregions in 36 elderly non-clinical participants performing a face–name encoding and recognition task. Although there were no significant differences in task performance between s allele carriers and l homozygotes, right CA1 and right parahippocampal activation during recognition errors was significantly greater in individuals bearing the s allele. In an exploratory analysis, we determined that these effects were more pronounced in s allele carriers with the apolipoprotein ɛ4 allele. Our results suggest that older individuals with the s allele inefficiently allocate neural resources while making errors in recognizing face–name associations, which could negatively impact memory performance during more challenging tasks. PMID:26393485

  16. Developmental effects of wheel running on hippocampal glutamate receptor expression in young and mature adult rats

    PubMed Central

    Staples, Miranda C.; Somkuwar, Sucharita S.; Mandyam, Chitra D.

    2015-01-01

    Recent evidence suggests that the behavioral benefits associated with voluntary wheel running in rodents may be due to modulation of glutamatergic transmission in the hippocampus, a brain region implicated in learning and memory. However, the expression of the n-Methyl-d-Aspartate glutamate receptor subunits (GluNs) in the hippocampus in response to chronic sustained voluntary wheel running has not yet been investigated. Further, the developmental effects during young and mature adulthood on wheel running output and GluN expression in hippocampal subregions has not been determined, and therefore is the main focus of this investigation. Eight-week-old and sixteen-week-old male Wistar rats were housed in home cages with free access to running wheels and running output was monitored for four weeks. Wheel access was terminated and tissue from the dorsal and ventral hippocampi were processed for Western blot analysis of GluN subunit expression. Young adult runners demonstrated an escalation in running output but this behavior was not evident in mature adult runners. In parallel, young adult runners demonstrated a significant increase in total GluN (1 and 2A) subunit expression in the dorsal hippocampus, and an opposing effect in the ventral hippocampus compared to age-matched sedentary controls; these changes in total protein expression were not associated with significant alterations in the phosphorylation of the GluN subunits. In contrast, mature adult runners demonstrated a reduction in total GluN2A expression in the dorsal hippocampus, without producing alterations in the ventral hippocampus compared to age-matched sedentary controls. In conclusion, differential running activity-mediated modulation of GluN subunit expression in the hippocampal subregions was revealed to be associated with developmental effects on running activity, which may contribute to altered hippocampal synaptic activity and behavioral outcomes in young and mature adult subjects. PMID:26220171

  17. Developmental effects of wheel running on hippocampal glutamate receptor expression in young and mature adult rats.

    PubMed

    Staples, M C; Somkuwar, S S; Mandyam, C D

    2015-10-01

    Recent evidence suggests that the behavioral benefits associated with voluntary wheel running in rodents may be due to modulation of glutamatergic transmission in the hippocampus, a brain region implicated in learning and memory. However, the expression of the glutamatergic ionotropic N-methyl-d-aspartate receptor (GluN) in the hippocampus in response to chronic sustained voluntary wheel running has not yet been investigated. Further, the developmental effects during young and mature adulthood on wheel running output and GluN expression in hippocampal subregions has not been determined, and therefore is the main focus of this investigation. Eight-week-old and 16-week-old male Wistar rats were housed in home cages with free access to running wheels and running output was monitored for 4weeks. Wheel access was terminated and tissues from the dorsal and ventral hippocampi were processed for Western blot analysis of GluN subunit expression. Young adult runners demonstrated an escalation in running output but this behavior was not evident in mature adult runners. In parallel, young adult runners demonstrated a significant increase in total GluN (1 and 2A) subunit expression in the dorsal hippocampus (DH), and an opposing effect in the ventral hippocampus (VH) compared to age-matched sedentary controls; these changes in total protein expression were not associated with significant alterations in the phosphorylation of the GluN subunits. In contrast, mature adult runners demonstrated a reduction in total GluN2A expression in the DH, without producing alterations in the VH compared to age-matched sedentary controls. In conclusion, differential running activity-mediated modulation of GluN subunit expression in the hippocampal subregions was revealed to be associated with developmental effects on running activity, which may contribute to altered hippocampal synaptic activity and behavioral outcomes in young and mature adult subjects.

  18. Impact of neonatal anoxia on adult rat hippocampal volume, neurogenesis and behavior.

    PubMed

    Takada, Silvia Honda; Motta-Teixeira, Lívia Clemente; Machado-Nils, Aline Vilar; Lee, Vitor Yonamine; Sampaio, Carlos Alberto; Polli, Roberson Saraiva; Malheiros, Jackeline Moraes; Takase, Luiz Fernando; Kihara, Alexandre Hiroaki; Covolan, Luciene; Xavier, Gilberto Fernando; Nogueira, Maria Inês

    2016-01-01

    Neonates that suffer oxygen deprivation during birth can have long lasting cognitive deficits, such as memory and learning impairments. Hippocampus, one of the main structures that participate in memory and learning processes, is a plastic and dynamic structure that conserves during life span the property of generating new cells which can become neurons, the so-called neurogenesis. The present study investigated whether a model of rat neonatal anoxia, that causes only respiratory distress, is able to alter the hippocampal volume, the neurogenesis rate and has functional implications in adult life. MRI analysis revealed significant hippocampal volume decrease in adult rats who had experienced neonatal anoxia compared to control animals for rostral, caudal and total hippocampus. In addition, these animals also had 55.7% decrease of double-labelled cells to BrdU and NeuN, reflecting a decrease in neurogenesis rate. Finally, behavioral analysis indicated that neonatal anoxia resulted in disruption of spatial working memory, similar to human condition, accompanied by an anxiogenic effect. The observed behavioral alterations caused by oxygen deprivation at birth might represent an outcome of the decreased hippocampal neurogenesis and volume, evidenced by immunohistochemistry and MRI analysis. Therefore, based on current findings we propose this model as suitable to explore new therapeutic approaches.

  19. Effect of voluntary running on adult hippocampal neurogenesis in cholinergic lesioned mice

    PubMed Central

    Ho, New Fei; Han, Siew Ping; Dawe, Gavin S

    2009-01-01

    Background Cholinergic neuronal dysfunction of the basal forebrain is observed in patients with Alzheimer's disease and dementia, and has been linked to decreased neurogenesis in the hippocampus, a region involved in learning and memory. Running is a robust inducer of adult hippocampal neurogenesis. This study aims to address the effect of running on hippocampal neurogenesis in lesioned mice, where septohippocampal cholinergic neurones have been selectively eliminated in the medial septum and diagonal band of Broca of the basal forebrain by infusion of mu-p75-saporin immunotoxin. Results Running increased the number of newborn cells in the dentate gyrus of the hippocampus in cholinergic denervated mice compared to non-lesioned mice 24 hours after injection of bromodeoxyuridine (BrdU). Although similar levels of surviving cells were present in cholinergic depleted animals and their respective controls four weeks after injection of BrdU, the majority of progenitors that proliferate in response to the initial period of running were not able to survive beyond one month without cholinergic input. Despite this, the running-induced increase in the number of surviving neurones was not affected by cholinergic depletion. Conclusion The lesion paradigm used here models aspects of the cholinergic deficits associated with Alzheimer's Disease and aging. We showed that running still increased the number of newborn cells in the adult hippocampal dentate gyrus in this model of neurodegenerative disease. PMID:19500352

  20. Exercise Can Rescue Recognition Memory Impairment in a Model with Reduced Adult Hippocampal Neurogenesis

    PubMed Central

    Lafenêtre, Pauline; Leske, Oliver; Ma-Högemeie, Zhanlu; Haghikia, Aiden; Bichler, Zoe; Wahle, Petra; Heumann, Rolf

    2009-01-01

    Running is a potent stimulator of cell proliferation in the adult dentate gyrus and these newly generated hippocampal neurons seem to be implicated in memory functions. Here we have used a mouse model expressing activated Ras under the direction of the neuronal Synapsin I promoter (named synRas mice). These mice develop down-regulated proliferation of adult hippocampal precursor cells and show decreased short-term recognition memory performances. Voluntary physical activity reversed the genetically blocked generation of hippocampal proliferating cells and enhanced the dendritic arborisation of the resulting doublecortin newly generated neurons. Moreover, running improved novelty recognition in both wild type and synRas littermates, compensating their memory deficits. Brain-derived neurotrophic factor (BDNF) has been proposed to be a potential mediator of physical exercise acting in the hippocampus on dentate neurons and their precursors. This was confirmed here by the identification of doublecortin-immunoreactive cells expressing tyrosine receptor kinase B BDNF receptor. While no difference in BDNF levels were detected in basal conditions between the synRas mice and their wild type littermates, running was associated with enhanced BDNF expression levels. Thus increased BDNF signalling is a candidate mechanism to explain the observed effects of running. Our studies demonstrate that voluntary physical activity has a robust beneficial effect even in mice with genetically restricted neurogenesis and cognition. PMID:20204139

  1. Exercise can rescue recognition memory impairment in a model with reduced adult hippocampal neurogenesis.

    PubMed

    Lafenêtre, Pauline; Leske, Oliver; Ma-Högemeie, Zhanlu; Haghikia, Aiden; Bichler, Zoe; Wahle, Petra; Heumann, Rolf

    2010-01-01

    Running is a potent stimulator of cell proliferation in the adult dentate gyrus and these newly generated hippocampal neurons seem to be implicated in memory functions. Here we have used a mouse model expressing activated Ras under the direction of the neuronal Synapsin I promoter (named synRas mice). These mice develop down-regulated proliferation of adult hippocampal precursor cells and show decreased short-term recognition memory performances. Voluntary physical activity reversed the genetically blocked generation of hippocampal proliferating cells and enhanced the dendritic arborisation of the resulting doublecortin newly generated neurons. Moreover, running improved novelty recognition in both wild type and synRas littermates, compensating their memory deficits. Brain-derived neurotrophic factor (BDNF) has been proposed to be a potential mediator of physical exercise acting in the hippocampus on dentate neurons and their precursors. This was confirmed here by the identification of doublecortin-immunoreactive cells expressing tyrosine receptor kinase B BDNF receptor. While no difference in BDNF levels were detected in basal conditions between the synRas mice and their wild type littermates, running was associated with enhanced BDNF expression levels. Thus increased BDNF signalling is a candidate mechanism to explain the observed effects of running. Our studies demonstrate that voluntary physical activity has a robust beneficial effect even in mice with genetically restricted neurogenesis and cognition.

  2. A ventral view on antidepressant action: roles for adult hippocampal neurogenesis along the dorsoventral axis.

    PubMed

    O'Leary, Olivia F; Cryan, John F

    2014-12-01

    Adult hippocampal neurogenesis is implicated in antidepressant action, stress responses, and cognitive functioning. The hippocampus is functionally segregated along its longitudinal axis into dorsal (dHi) and ventral (vHi) regions in rodents, and analogous posterior and anterior regions in primates, whereby the vHi preferentially regulates stress and anxiety, while the dHi preferentially regulates spatial learning and memory. Given the role of neurogenesis in functions preferentially regulated by the dHi or vHi, it is plausible that neurogenesis is preferentially regulated in either the dHi or vHi depending upon the stimulus. We appraise here the literature on the effects of stress and antidepressants on neurogenesis along the hippocampal longitudinal axis and explore whether preferential regulation of neurogenesis in the vHi/anterior hippocampus contributes to stress resilience and antidepressant action.

  3. Neural Plasticity and Proliferation in the Generation of Antidepressant Effects: Hippocampal Implication

    PubMed Central

    Pilar-Cuéllar, Fuencisla; Vidal, Rebeca; Díaz, Alvaro; Castro, Elena; dos Anjos, Severiano; Pascual-Brazo, Jesús; Linge, Raquel; Vargas, Veronica; Blanco, Helena; Martínez-Villayandre, Beatriz; Pazos, Ángel; Valdizán, Elsa M.

    2013-01-01

    It is widely accepted that changes underlying depression and antidepressant-like effects involve not only alterations in the levels of neurotransmitters as monoamines and their receptors in the brain, but also structural and functional changes far beyond. During the last two decades, emerging theories are providing new explanations about the neurobiology of depression and the mechanism of action of antidepressant strategies based on cellular changes at the CNS level. The neurotrophic/plasticity hypothesis of depression, proposed more than a decade ago, is now supported by multiple basic and clinical studies focused on the role of intracellular-signalling cascades that govern neural proliferation and plasticity. Herein, we review the state-of-the-art of the changes in these signalling pathways which appear to underlie both depressive disorders and antidepressant actions. We will especially focus on the hippocampal cellularity and plasticity modulation by serotonin, trophic factors as brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF) through intracellular signalling pathways—cAMP, Wnt/β-catenin, and mTOR. Connecting the classic monoaminergic hypothesis with proliferation/neuroplasticity-related evidence is an appealing and comprehensive attempt for improving our knowledge about the neurobiological events leading to depression and associated to antidepressant therapies. PMID:23862076

  4. Activation of NMDA receptors increases proliferation and differentiation of hippocampal neural progenitor cells.

    PubMed

    Joo, Jae-Yeol; Kim, Byung-Woo; Lee, Jeong-Sik; Park, Jin-Yong; Kim, Sunoh; Yun, Young-Joo; Lee, Sang-Hun; Lee, Suk-Ho; Rhim, Hyewhon; Son, Hyeon

    2007-04-15

    The prolonged effects of N-methyl-D-aspartate (NMDA) receptor activation on the proliferation and differentiation of hippocampal neural progenitor cells (NPCs) were studied. Under conditions of mitogen-mediated proliferation, a single NMDA pulse (5 microM) increased the fraction of 5-bromo-2-deoxyuridine (BrdU)-positive (BrdU(+)) cells after a delay of 72 hours. Similarly, a single systemic injection of NMDA (100 mg/kg) increased the number of BrdU(+) cells in the dentate gyrus (DG) after 28 days, but not after 3 days. NMDA receptor activation induced an immediate influx of Ca(2+) into the NPCs and the NPCs expressed and released vascular endothelial growth factor (VEGF) in an NMDA receptor-dependent manner within 72 hours. With repetitive stimulation at the same dose, NMDA stimulated the acquisition of a neuronal phenotype accompanied by an increase in the expression of proneural basic helix-loop-helix (bHLH) factors. Together these findings suggest that neurogenesis in the developing brain is likely to be both directly and indirectly regulated by complex interactions between Ca(2+) influx and excitation-releasable cytokines, even at mild levels of excitation. In addition, our results are the first to show that stimulation of NPCs may lead to either proliferation or neuronal differentiation, depending on the level of NMDA receptor activation.

  5. Hippocampal sub-regional shape and physical activity in older adults.

    PubMed

    Varma, Vijay R; Tang, Xiaoying; Carlson, Michelle C

    2016-08-01

    Hippocampal atrophy is a hallmark of Alzheimer's disease pathology, and a target biomarker region for testing intervention efficacy. Over the last few decades, a growing body of evidence from animal and human models suggests that physical activity (PA) is associated with structural benefits to the hippocampus in older adults. Very few human studies, however have explored hippocampal sub-regional specificity of PA; this is significant considering that sub-regions of the hippocampus are associated with distinct cognitive tasks and are differentially affected by disease pathology. This study used objective and self-reported measures of daily walking activity and exercise, and surface-based regional shape analysis using high-field hippocampal sub-regional partitions to explore sub-region specific hippocampal associations in a sample of nondemented, community-dwelling older adults at elevated sociodemographic risk for cognitive decline. Vertex-wise surface areas, which may be more sensitive than global volume measures, were calculated using shape diffeomorphometry, and PA was assessed using step activity monitors and PA questionnaires. We found that daily walking activity in a participant's environment was associated in cross-section mainly with larger surface areas of the subiculum in women. Associations remained significant when controlling for self-reported exercise. Prior studies have found that PA related to exercise and aerobic fitness may be most closely associated with the anterior hippocampus, particularly the dentate gyrus of the hippocampus. These novel findings are the first, to our knowledge, in human models to suggest that PA related to navigation that may not reach the level of moderate-intensity exercise may be associated with specific sub-regions of the hippocampus. These findings underscore the importance of better understanding the independent and related biological mechanisms and pathways by which increasing exercise as well as non

  6. Neonatal Hippocampal Damage Impairs Specific Food/Place Associations in Adult Macaques

    PubMed Central

    Glavis-Bloom, Courtney; Alvarado, Maria C.; Bachevalier, Jocelyne

    2013-01-01

    This study describes a novel spatial memory paradigm for monkeys and reports the effects of neonatal damage to the hippocampus on performance in adulthood. Monkeys were trained to forage in eight boxes hung on the walls of a large enclosure. Each box contained a different food item that varied in its intrinsic reward value, as determined from food preference testing. Monkeys were trained on a spatial and a cued version of the task. In the spatial task, the boxes looked identical and remained fixed in location whereas in the cued task, the boxes were individuated with colored plaques and changed location on each trial. Ten adult Rhesus macaques (5 neonatal sham-operated and 5 with neonatal neurotoxic hippocampal lesions) were allowed to forage once daily until they preferentially visited boxes containing preferred foods. The data suggest that all monkeys learned to discriminate preferred from nonpreferred food locations, but that monkeys with neonatal hippocampal damage committed significantly more working memory errors than controls in both tasks. Furthermore, following selective satiation, controls altered their foraging pattern to avoid the satiated food, whereas lesioned animals did not, suggesting that neonatal hippocampal lesions prohibit learning of specific food-place associations. We conclude that whereas an intact hippocampus is necessary to form specific item-in-place associations, in its absence, cortical areas may support more broad distinctions between food types that allow monkeys to discriminate places containing highly preferred foods. PMID:23398438

  7. Role of neuronal ras activity in adult hippocampal neurogenesis and cognition.

    PubMed

    Manns, Martina; Leske, Oliver; Gottfried, Sebastian; Bichler, Zoë; Lafenêtre, Pauline; Wahle, Petra; Heumann, Rolf

    2011-01-01

    Hippocampal neurogenesis in the adult mammalian brain is modulated by various signals like growth factors, hormones, neuropeptides, and neurotransmitters. All of these factors can (but not necessarily do) converge on the activation of the G protein Ras. We used a transgenic mouse model (synRas mice) expressing constitutively activated G12V-Harvey Ras selectively in differentiated neurons to investigate the possible effects onto neurogenesis. H-Ras activation in neurons attenuates hippocampal precursor cell generation at an early stage of the proliferative cascade before neuronal lineage determination occurs. Therefore it is unlikely that the transgenically activated H-Ras in neurons mediates this effect by a direct, intracellular signaling mechanism. Voluntary exercise restores neurogenesis up to wild type level presumably mediated by brain-derived neurotrophic factor. Reduced neurogenesis is linked to impairments in spatial short-term memory and object recognition, the latter can be rescued by voluntary exercise, as well. These data support the view that new cells significantly increase complexity that can be processed by the hippocampal network when experience requires high demands to associate stimuli over time and/or space.

  8. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    SciTech Connect

    Boku, Shuken; Nakagawa, Shin; Takamura, Naoki; Kato, Akiko; Takebayashi, Minoru; Hisaoka-Nakashima, Kazue; Omiya, Yuki; Inoue, Takeshi; Kusumi, Ichiro

    2013-05-17

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression and secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis.

  9. Childhood social inequalities influences neural processes in young adult caregiving.

    PubMed

    Kim, Pilyoung; Ho, Shaun S; Evans, Gary W; Liberzon, Israel; Swain, James E

    2015-12-01

    Childhood poverty is associated with harsh parenting with a risk of transmission to the next generation. This prospective study examined the relations between childhood poverty and non-parent adults' neural responses to infant cry sounds. While no main effects of poverty were revealed in contrasts of infant cry versus acoustically matched white noise, a gender by childhood poverty interaction emerged. In females, childhood poverty was associated with increased neural activations in the posterior insula, striatum, calcarine sulcus, hippocampus, and fusiform gyrus, while, in males, childhood poverty was associated with reduced levels of neural responses to infant cry in the same regions. Irrespective of gender, neural activation in these regions was associated with higher levels of annoyance with the cry sound and reduced desire to approach the crying infant. The findings suggest gender differences in neural and emotional responses to infant cry sounds among young adults growing up in poverty.

  10. A new chapter in the field of memory: adult hippocampal neurogenesis.

    PubMed

    Koehl, Muriel; Abrous, Djoher N

    2011-03-01

    Understanding the cellular mechanisms underlying learning and memory is a major challenge in neurobiology. Structural and functional changes occurring in the hippocampus such as synaptic remodeling and long-term potentiation are key signatures of long-term memory processes. The discovery of a de novo hippocampal production of neurons in the adult brain has been a breakthrough in the field of plasticity and memory, introducing a new actor that could sustain memory processes. Here we will review our current knowledge on the role of these adult new neurons in memory. In particular we will provide evidence showing that they are required for learning and memory and that an alteration in their production rate or maturation leads to memory impairments. Through a thorough survey of the literature, we will also acknowledge that there are many controversies regarding the specific role played by newborn neurons. The emerging picture is that they are involved in the establishment of spatiotemporal relationships among multiple environmental cues for the flexible use of the acquired information. Indeed, newborn neurons have been found to be required for separating events based on their spatial and temporal characteristics, a process that preserves the uniqueness of a memory representation. Thus, adult-born neurons are required for allocentric space representation, for long-term memory retention and for flexible inferential memory expression. Finally, we will conclude by highlighting directions for future research, emphasizing that the exact participation of newborn neurons in memory processes will not be approached without considering the hippocampal network in general.

  11. All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis.

    PubMed

    Vivar, Carmen; Potter, Michelle C; van Praag, Henriette

    2013-01-01

    Accumulating evidence from animal and human research shows exercise benefits learning and memory, which may reduce the risk of neurodegenerative diseases, and could delay age-related cognitive decline. Exercise-induced improvements in learning and memory are correlated with enhanced adult hippocampal neurogenesis and increased activity-dependent synaptic plasticity. In this present chapter we will highlight the effects of physical activity on cognition in rodents, as well as on dentate gyrus (DG) neurogenesis, synaptic plasticity, spine density, neurotransmission and growth factors, in particular brain-derived nerve growth factor (BDNF).

  12. All About Running: Synaptic Plasticity, Growth Factors and Adult Hippocampal Neurogenesis

    PubMed Central

    Vivar, Carmen; Potter, Michelle C.; van Praag, Henriette

    2015-01-01

    Accumulating evidence from animal and human research shows exercise benefits learning and memory, which may reduce the risk of neurodegenerative diseases, and could delay age-related cognitive decline. Exercise-induced improvements in learning and memory are correlated with enhanced adult hippocampal neurogenesis and increased activity-dependent synaptic plasticity. In this present chapter we will highlight the effects of physical activity on cognition in rodents, as well as on dentate gyrus (DG) neurogenesis, synaptic plasticity, spine density, neurotransmission and growth factors, in particular brain-derived nerve growth factor (BDNF). PMID:22847651

  13. NF-κB mediated regulation of adult hippocampal neurogenesis: relevance to mood disorders and antidepressant activity.

    PubMed

    Bortolotto, Valeria; Cuccurazzu, Bruna; Canonico, Pier Luigi; Grilli, Mariagrazia

    2014-01-01

    Adult hippocampal neurogenesis is a peculiar form of process of neuroplasticity that in recent years has gained great attention for its potential implication in cognition and in emotional behavior in physiological conditions. Moreover, a vast array of experimental studies suggested that adult hippocampal neurogenesis may be altered in various neuropsychiatric disorders, including major depression, where its disregulation may contribute to cognitive impairment and/or emotional aspects associated with those diseases. An intriguing area of interest is the potential influence of drugs on adult neurogenesis. In particular, several psychoactive drugs, including antidepressants, were shown to positively modulate adult hippocampal neurogenesis. Among molecules which could regulate adult hippocampal neurogenesis the NF- κ B family of transcription factors has been receiving particular attention from our and other laboratories. Herein we review recent data supporting the involvement of NF- κ B signaling pathways in the regulation of adult neurogenesis and in the effects of drugs that are endowed with proneurogenic and antidepressant activity. The potential implications of these findings on our current understanding of the process of adult neurogenesis in physiological and pathological conditions and on the search for novel antidepressants are also discussed. PMID:24678511

  14. Melatonin synergizes with citalopram to induce antidepressant-like behavior and to promote hippocampal neurogenesis in adult mice.

    PubMed

    Ramírez-Rodríguez, Gerardo; Vega-Rivera, Nelly Maritza; Oikawa-Sala, Julián; Gómez-Sánchez, Ariadna; Ortiz-López, Leonardo; Estrada-Camarena, Erika

    2014-05-01

    Adult hippocampal neurogenesis is affected in some neuropsychiatric disorders such as depression. Numerous evidence indicates that plasma levels of melatonin are decreased in depressed patients. Also, melatonin exerts positive effects on the hippocampal neurogenic process and on depressive-like behavior. In addition, antidepressants revert alterations of hippocampal neurogenesis present in models of depression following a similar time course to the improvement of behavior. In this study, we analyzed the effects of both, citalopram, a widely used antidepressant, and melatonin in the Porsolt forced swim test. In addition, we investigated the potential antidepressant role of the combination of melatonin and citalopram (MLTCITAL), its type of pharmacological interaction on depressive behavior, and its effect on hippocampal neurogenesis. Here, we found decreased immobility behavior in mice treated with melatonin (<14-33%) and citalopram (<17-30%). Additionally, the MLTCITAL combination also decreased immobility (<22-35%) in comparison with control mice, reflecting an antidepressant-like effect after 14 days of treatment. Moreover, MLTCITAL decreased plasma corticosterone levels (≤13%) and increased cell proliferation (>29%), survival (>39%), and the absolute number of -associated new neurons (>53%) in the dentate gyrus of the hippocampus. These results indicate that the MLTCITAL combination exerts synergism to induce an antidepressant-like action that could be related to the modulation of adult hippocampal neurogenesis. This outcome opens the opportunity of using melatonin to promote behavioral benefits and hippocampal neurogenesis in depression and also supports the use of the MLTCITAL combination as an alternative to treat depression.

  15. Neural Crest As the Source of Adult Stem Cells

    PubMed Central

    Pierret, Chris; Spears, Kathleen; Maruniak, Joel A.; Kirk, Mark D.

    2012-01-01

    Recent studies suggest that adult stem cells can cross germ layer boundaries. For example, bone marrow-derived stem cells appear to differentiate into neurons and glial cells, as well as other types of cells. How can stem cells from bone marrow, pancreas, skin, or fat become neurons and glia; in other words, what molecular and cellular events direct mesodermal cells to a neural fate? Transdifferentiation, dediffereniation, and fusion of donor adult stem cells with fully differentiated host cells have been proposed to explain the plasticity of adult stem cells. Here we review the origin of select adult stem cell populations and propose a unifying hypothesis to explain adult stem cell plasticity. In addition, we outline specific experiments to test our hypothesis. We propose that peripheral, tissue-derived, or adult stem cells are all progeny of the neural crest. PMID:16646675

  16. Hippocampal volumes among older Indian adults: Comparison with Alzheimer's disease and mild cognitive impairment

    PubMed Central

    Dhikav, Vikas; Duraisamy, Sharmila; Anand, Kuljeet Singh; Garga, Umesh Chandra

    2016-01-01

    Background: Hippocampal volume data from India have recently been reported in younger adults. Data in older adults are unknown. The present paper describes hippocampal volume from India among older adults and compares the same with patients having Alzheimer's disease (AD) and mild cognitive impairment (MCI). Materials and Methods: A total of 32 cognitively normal subjects, 20 patients with AD, and 13 patients with MCI were enrolled. Patients were evaluated for the diagnosis of AD/MCI using the National Institute of Neurological and Communicative Disorders and Stroke and the Related Disorders Association criteria and the Clinical Dementia Rating (CDR) Scale (score = 0.5), respectively. Hippocampal volume was measured using magnetic resonance imaging (MRI) machine by manual segmentation (Megnatom Symphony 1.5T scanner) three-dimensional (3D) sequences. Results: Age and duration of illness in the MCI group were 70.6 ± 8.6 years and 1.9 ± 0.9 years, respectively. In the AD group, age and duration of illness were 72 ± 8.1 years and 3.1 ± 2.2 years, respectively. In cognitively normal subjects, the age range was 45-88 years (66.9 ± 10.32) years. Mean mini–mental status examination (MMSE) score of healthy subjects was 28.28 ± 1.33. In the MCI group, MMSE was 27.05 ± 1.79. In the AD group, MMSE was 13.32 ± 5.6. In the healthy group, the hippocampal volume was 2.73 ± 0.53 cm3 on the left side and 2.77 ± 0.6 cm3 on the right side. Likewise, in MCI, the volume on the left side was 2.35 ± 0.42 cm3 and the volume on the right side was 2.36 ± 0.38 cm3. Similarly, in the AD group, the volume on the right side was 1.64 ± 0.55 cm3 and on the left side it was 1.59 ± 0.55 cm3. Post hoc analysis using Tukey's honestly significant difference (HSD) showed, using analysis of variance (ANOVA) that there was a statistically significant difference between healthy and AD (P ≤ 0.01), and between healthy and MCI (P ≤ 0.01) subjects. There was a correlation between MMSE

  17. A role for interleukin-1β in determining the lineage fate of embryonic rat hippocampal neural precursor cells.

    PubMed

    Green, Holly F; Treacy, Eimear; Keohane, Aoife K; Sullivan, Aideen M; O'Keeffe, Gerard W; Nolan, Yvonne M

    2012-03-01

    Neurogenesis occurs in the hippocampus of the developing and adult brain due to the presence of multipotent stem cells and restricted precursor cells at different stages of differentiation. It has been proposed that they may be of potential benefit for use in cell transplantation approaches for neurodegenerative disorders and trauma. Prolonged release of interleukin-1β (IL-1β) from activated microglia has a deleterious effect on hippocampal neurons and is implicated in the impaired neurogenesis and cognitive dysfunction associated with aging, Alzheimer's disease and depression. This study assessed the effect of IL-1β on the proliferation and differentiation of embryonic rat hippocampal NPCs in vitro. We show that IL-1R1 is expressed on proliferating NPCs and that IL-1β treatment decreases cell proliferation and neurosphere growth. When NPCs were differentiated in the presence of IL-1β, a significant reduction in the percentages of newly-born neurons and post-mitotic neurons and a significant increase in the percentage of astrocytes was observed in these cultures. These effects were attenuated by IL-1 receptor antagonist. These data reveal that IL-1β exerts an anti-proliferative, anti-neurogenic and pro-gliogenic effect on embryonic hippocampal NPCs, which is mediated by IL-1R1. The present results emphasise the consequences of an inflammatory environment during NPC development, and indicate that strategies to inhibit IL-1β signalling may be necessary to facilitate effective cell transplantation approaches or in conditions where endogenous hippocampal neurogenesis is impaired.

  18. Neuronal Splicing Regulator RBFOX3 (NeuN) Regulates Adult Hippocampal Neurogenesis and Synaptogenesis

    PubMed Central

    Lin, Meng-Ying; Chou, Chih-Hsuan; Wu, I-Ju; Huang, Guo-Jen; Gau, Susan Shur-Fen

    2016-01-01

    Dysfunction of RBFOX3 has been identified in neurodevelopmental disorders such as autism spectrum disorder, cognitive impairments and epilepsy and a causal relationship with these diseases has been previously demonstrated with Rbfox3 homozygous knockout mice. Despite the importance of RBFOX3 during neurodevelopment, the function of RBFOX3 regarding neurogenesis and synaptogenesis remains unclear. To address this critical question, we profiled the developmental expression pattern of Rbfox3 in the brain of wild-type mice and analyzed brain volume, disease-relevant behaviors, neurogenesis, synaptic plasticity, and synaptogenesis in Rbfox3 homozygous knockout mice and their corresponding wild-type counterparts. Here we report that expression of Rbfox3 differs developmentally for distinct brain regions. Moreover, Rbfox3 homozygous knockout mice exhibited cold hyperalgesia and impaired cognitive abilities. Focusing on hippocampal phenotypes, we found Rbfox3 homozygous knockout mice displayed deficits in neurogenesis, which was correlated with cognitive impairments. Furthermore, RBFOX3 regulates the exons of genes with synapse-related function. Synaptic plasticity and density, which are related to cognitive behaviors, were altered in the hippocampal dentate gyrus of Rbfox3 homozygous knockout mice; synaptic plasticity decreased and the density of synapses increased. Taken together, our results demonstrate the important role of RBFOX3 during neural development and maturation. In addition, abnormalities in synaptic structure and function occur in Rbfox3 homozygous knockout mice. Our findings may offer mechanistic explanations for human brain diseases associated with dysfunctional RBFOX3. PMID:27701470

  19. A place for the hippocampus in the cocaine addiction circuit: Potential roles for adult hippocampal neurogenesis.

    PubMed

    Castilla-Ortega, Estela; Serrano, Antonia; Blanco, Eduardo; Araos, Pedro; Suárez, Juan; Pavón, Francisco J; Rodríguez de Fonseca, Fernando; Santín, Luis J

    2016-07-01

    Cocaine addiction is a chronic brain disease in which the drug seeking habits and profound cognitive, emotional and motivational alterations emerge from drug-induced neuroadaptations on a vulnerable brain. Therefore, a 'cocaine addiction brain circuit' has been described to explain this disorder. Studies in both cocaine patients and rodents reveal the hippocampus as a main node in the cocaine addiction circuit. The contribution of the hippocampus to cocaine craving and the associated memories is essential to understand the chronic relapsing nature of addiction, which is the main obstacle for the recovery. Interestingly, the hippocampus holds a particular form of plasticity that is rare in the adult brain: the ability to generate new functional neurons. There is an active scientific debate on the contributions of these new neurons to the addicted brain. This review focuses on the potential role(s) of adult hippocampal neurogenesis (AHN) in cocaine addiction. Although the current evidence primarily originates from animal research, these preclinical studies support AHN as a relevant component for the hippocampal effects of cocaine. PMID:27118134

  20. A place for the hippocampus in the cocaine addiction circuit: Potential roles for adult hippocampal neurogenesis.

    PubMed

    Castilla-Ortega, Estela; Serrano, Antonia; Blanco, Eduardo; Araos, Pedro; Suárez, Juan; Pavón, Francisco J; Rodríguez de Fonseca, Fernando; Santín, Luis J

    2016-07-01

    Cocaine addiction is a chronic brain disease in which the drug seeking habits and profound cognitive, emotional and motivational alterations emerge from drug-induced neuroadaptations on a vulnerable brain. Therefore, a 'cocaine addiction brain circuit' has been described to explain this disorder. Studies in both cocaine patients and rodents reveal the hippocampus as a main node in the cocaine addiction circuit. The contribution of the hippocampus to cocaine craving and the associated memories is essential to understand the chronic relapsing nature of addiction, which is the main obstacle for the recovery. Interestingly, the hippocampus holds a particular form of plasticity that is rare in the adult brain: the ability to generate new functional neurons. There is an active scientific debate on the contributions of these new neurons to the addicted brain. This review focuses on the potential role(s) of adult hippocampal neurogenesis (AHN) in cocaine addiction. Although the current evidence primarily originates from animal research, these preclinical studies support AHN as a relevant component for the hippocampal effects of cocaine.

  1. Effects of combined nicotine and fluoxetine treatment on adult hippocampal neurogenesis and conditioned place preference.

    PubMed

    Faillace, M P; Zwiller, J; Bernabeu, R O

    2015-08-01

    Adult neurogenesis occurs in mammals within the dentate gyrus, a hippocampal subarea. It is known to be induced by antidepressant treatment and reduced in response to nicotine administration. We checked here whether the antidepressant fluoxetine would inverse the decrease in hippocampal neurogenesis caused by nicotine. It is shown that repeated, but not a single injection of rats with fluoxetine was able to abolish the decrease in adult dentate cell proliferation produced by nicotine treatment. We measured the expression of several biochemical parameters known to be associated with neurogenesis in the dentate gyrus. Both drugs increased the expression of p75 neurotrophin receptor, which promotes proliferation and early maturation of dentate gyrus cells. Using the conditioned place preference (CPP) paradigm, we also gave both drugs in a context in which their rewarding properties could be measured. Fluoxetine produced a significant but less robust CPP than nicotine. A single injection of fluoxetine was found to reduce nicotine-induced CPP. Moreover, the rewarding properties of nicotine were completely abolished in response to repeated fluoxetine injections. Expression of nicotine-induced CPP was accompanied by an increase of phospho-CREB (cyclic AMP-responsive element-binding protein) and HDAC2 (histone deacetylase 2) expression in the nucleus accumbens. The data suggest that fluoxetine reward, as opposed to nicotine reward, depends on dentate gyrus neurogenesis. Since fluoxetine was able to disrupt the association between nicotine and the environment, this antidepressant may be tested as a treatment for nicotine addiction using cue exposure therapy.

  2. Impact of N-tau on adult hippocampal neurogenesis, anxiety, and memory.

    PubMed

    Pristerà, Andrea; Saraulli, Daniele; Farioli-Vecchioli, Stefano; Strimpakos, Georgios; Costanzi, Marco; di Certo, Maria Grazia; Cannas, Sara; Ciotti, Maria Teresa; Tirone, Felice; Mattei, Elisabetta; Cestari, Vincenzo; Canu, Nadia

    2013-11-01

    Different pathological tau species are involved in memory loss in Alzheimer's disease, the most common cause of dementia among older people. However, little is known about how tau pathology directly affects adult hippocampal neurogenesis, a unique form of structural plasticity implicated in hippocampus-dependent spatial learning and mood-related behavior. To this aim, we generated a transgenic mouse model conditionally expressing a pathological tau fragment (26-230 aa of the longest human tau isoform, or N-tau) in nestin-positive stem/progenitor cells. We found that N-tau reduced the proliferation of progenitor cells in the adult dentate gyrus, reduced cell survival and increased cell death by a caspase-3-independent mechanism, and recruited microglia. Although the number of terminally differentiated neurons was reduced, these showed an increased dendritic arborization and spine density. This resulted in an increase of anxiety-related behavior and an impairment of episodic-like memory, whereas less complex forms of spatial learning remained unaltered. Understanding how pathological tau species directly affect neurogenesis is important for developing potential therapeutic strategies to direct neurogenic instructive cues for hippocampal function repair.

  3. Lead decreases cell survival, proliferation, and neuronal differentiation of primary cultured adult neural precursor cells through activation of the JNK and p38 MAP kinases.

    PubMed

    Engstrom, Anna; Wang, Hao; Xia, Zhengui

    2015-08-01

    Adult hippocampal neurogenesis is the process whereby adult neural precursor cells (aNPCs) in the subgranular zone (SGZ) of the dentate gyrus (DG) generate adult-born, functional neurons in the hippocampus. This process is modulated by various extracellular and intracellular stimuli, and the adult-born neurons have been implicated in hippocampus-dependent learning and memory. However, studies on how neurotoxic agents affect this process and the underlying mechanisms are limited. The goal of this study was to determine whether lead, a heavy metal, directly impairs critical processes in adult neurogenesis and to characterize the underlying signaling pathways using primary cultured SGZ-aNPCs isolated from adult mice. We report here that lead significantly increases apoptosis and inhibits proliferation in SGZ-aNPCs. In addition, lead significantly impairs spontaneous neuronal differentiation and maturation. Furthermore, we found that activation of the c-Jun NH2-terminal kinase (JNK) and p38 mitogen activated protein (MAP) kinase signaling pathways are important for lead cytotoxicity. Our data suggest that lead can directly act on adult neural stem cells and impair critical processes in adult hippocampal neurogenesis, which may contribute to its neurotoxicity and adverse effects on cognition in adults.

  4. Exercise modulates insulin-like growth factor 1-dependent and -independent effects on adult hippocampal neurogenesis and behaviour.

    PubMed

    Llorens-Martín, María; Torres-Alemán, Ignacio; Trejo, José Luis

    2010-06-01

    While physical exercise clearly has beneficial effects on the brain, fomenting neuroprotection as well as promoting neural plasticity and behavioural modifications, the cellular and molecular mechanisms mediating these effects are not yet fully understood. We have analyzed sedentary and exercised animals to examine the effects of activity on behaviour (spatial memory and anxiety--as measured by a fear/exploration conflict test), as well as on adult hippocampal neurogenesis (a well-known form of neural plasticity). We have found that the difference in activity between sedentary and exercised animals induced a decrease in the fear/exploration conflict scores (a measure usually accepted as an anxiolytic effect), while no changes are evident in terms of spatial memory learning. The short-term anxiolytic-like effect of exercise was IGF1-dependent and indeed, the recall of hippocampus-dependent spatial memory is impaired by blocking serum IGF1 (as observed by measuring serum IGF levels in the same animals used to analyze the behaviour), irrespective of the activity undertaken by the animals. On the other hand, activity affected neurogenesis as reflected by counting the numbers of several cell populations, while the dependence of this effect on IGF1 varied according to the differentiation state of the new neurons. Hence, while proliferating precursors and postmitotic immature neurons (measured by means of doublecortin and calretinin) are influenced by serum IGF1 levels in both sedentary and exercised animals, premitotic immature neurons (an intermediate stage) respond to exercise independently of serum IGF1. Therefore, we conclude that physical exercise has both serum IGF1-independent and -dependent effects on neural plasticity. Furthermore, several effects mediated by serum IGF1 are induced by physical activity while others are not (both in terms of behaviour and neural plasticity). These findings help to delimit the role of serum IGF1 as a mediator of the effects of

  5. Tumour necrosis factor-alpha impairs neuronal differentiation but not proliferation of hippocampal neural precursor cells: Role of Hes1.

    PubMed

    Keohane, Aoife; Ryan, Sinead; Maloney, Eimer; Sullivan, Aideen M; Nolan, Yvonne M

    2010-01-01

    Tumour necrosis factor-alpha (TNFalpha) is a pro-inflammatory cytokine, which influences neuronal survival and function yet there is limited information available on its effects on hippocampal neural precursor cells (NPCs). We show that TNFalpha treatment during proliferation had no effect on the percentage of proliferating cells prepared from embryonic rat hippocampal neurosphere cultures, nor did it affect cell fate towards either an astrocytic or neuronal lineage when cells were then allowed to differentiate. However, when cells were differentiated in the presence of TNFalpha, significantly reduced percentages of newly born and post-mitotic neurons, significantly increased percentages of astrocytes and increased expression of TNFalpha receptors, TNF-R1 and TNF-R2, as well as expression of the anti-neurogenic Hes1 gene, were observed. These data indicate that exposure of hippocampal NPCs to TNFalpha when they are undergoing differentiation but not proliferation has a detrimental effect on their neuronal lineage fate, which may be mediated through increased expression of Hes1.

  6. Prenatal lipopolysaccharide exposure increases depression-like behaviors and reduces hippocampal neurogenesis in adult rats.

    PubMed

    Lin, Yu-Lung; Wang, Sabrina

    2014-02-01

    Major depression is one of the most prevalent mental disorders in the population. In addition to genetic influences, disturbances in fetal nervous system development might be a contributing factor. Maternal infection during pregnancy may affect fetal brain development and consequently lead to neurological and mental disorders. Previously, we used low-dose lipopolysaccharide (LPS) exposure on embryonic day 10.5 to mimic mild maternal infection in rats and found that dopaminergic and serotonergic neurons were reduced in the offspring. The offspring also showed more anxiety-like behavior and an enhanced stress response. In the present study we used forced swim test and chronic mild stress challenge to assess depression-like behaviors in the affected offspring and examined their adult hippocampal neurogenesis and brain-derived neurotrophic factor (BDNF) concentration. Our results showed that prenatally LPS-exposed rats (LPS rats) displayed more depression-like behaviors and had reduced adult neurogenesis and BDNF. The behavioral abnormalities and reduction in adult neurogenesis could be reversed by chronic fluoxetine (FLX) treatment. This study demonstrates that during the critical time of embryonic development LPS exposure can produce long-term behavioral changes and reduction in adult neurogenesis. The findings of enhanced depression-like behaviors, reduced adult neurogenesis, and their responsiveness to chronic antidepressant treatment suggest that prenatal LPS exposure could serve as an animal model of depression.

  7. Volume of the hippocampal subfields in healthy adults: differential associations with age and a pro-inflammatory genetic variant.

    PubMed

    Raz, Naftali; Daugherty, Ana M; Bender, Andrew R; Dahle, Cheryl L; Land, Susan

    2015-09-01

    The hippocampus is one of the most age-sensitive brain regions, yet the mechanisms of hippocampal shrinkage remain unclear. Recent studies suggest that hippocampal subfields are differentially vulnerable to aging and differentially sensitive to vascular risk. Promoters of inflammation are frequently proposed as major contributors to brain aging and vascular disease but their effects on hippocampal subfields are unknown. We examined the associations of hippocampal subfield volumes with age, a vascular risk factor (hypertension), and genetic polymorphisms associated with variation in pro-inflammatory cytokines levels (IL-1β C-511T and IL-6 C-174G) and risk for Alzheimer's disease (APOEε4) in healthy adult volunteers (N = 80; age = 22-82 years). Volumes of three hippocampal subfields, cornu ammonis (CA) 1-2, CA3-dentate gyrus, and the subiculum were manually measured on high-resolution magnetic resonance images. Advanced age was differentially associated with smaller volume of CA1-2, whereas carriers of the T allele of IL-1β C-511T polymorphism had smaller volume of all hippocampal subfields than CC homozygotes did. Neither of the other genetic variants, nor diagnosis of hypertension, was associated with any of the measured volumes. The results support the notion that volumes of age-sensitive brain regions may be affected by pro-inflammatory factors that may be targeted by therapeutic interventions.

  8. Imidacloprid toxicity impairs spatial memory of echolocation bats through neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas.

    PubMed

    Hsiao, Chun-Jen; Lin, Ching-Lung; Lin, Tian-Yu; Wang, Sheue-Er; Wu, Chung-Hsin

    2016-04-13

    It has been reported that the decimation of honey bees was because of pesticides of imidacloprid. The imidacloprid is a wildly used neonicotinoid insecticide. However, whether imidacloprid toxicity interferes with the spatial memory of echolocation bats is still unclear. Thus, we compared the spatial memory of Formosan leaf-nosed bats, Hipposideros terasensis, before and after chronic treatment with a low dose of imidacloprid. We observed that stereotyped flight patterns of echolocation bats that received chronic imidacloprid treatment were quite different from their originally learned paths. We further found that neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas of echolocation bats that received imidacloprid treatment was significantly enhanced in comparison with echolocation bats that received sham treatment. Thus, we suggest that imidacloprid toxicity may interfere with the spatial memory of echolocation bats through neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas. The results provide direct evidence that pesticide toxicity causes a spatial memory disorder in echolocation bats. This implies that agricultural pesticides may pose severe threats to the survival of echolocation bats. PMID:26966783

  9. High efficacy of clonal growth and expansion of adult neural stem cells.

    PubMed

    Wachs, Frank-Peter; Couillard-Despres, Sebastien; Engelhardt, Maren; Wilhelm, Daniel; Ploetz, Sonja; Vroemen, Maurice; Kaesbauer, Johanna; Uyanik, Goekhan; Klucken, Jochen; Karl, Claudia; Tebbing, Johanna; Svendsen, Clive; Weidner, Norbert; Kuhn, Hans-Georg; Winkler, Juergen; Aigner, Ludwig

    2003-07-01

    Neural stem cells (NSCs) from the adult central nervous system are currently being investigated for their potential use in autologous cell replacement strategies. High expansion rates of NSCs in culture are crucial for the generation of a sufficient amount of cells needed for transplantation. Here, we describe efficient growth of adult NSCs in Neurobasal medium containing B27 supplement under clonal and low-density conditions in the absence of serum or conditioned medium. Expansion of up to 15-fold within 1 week was achieved on low-density NSC cultures derived from the lateral ventricle wall, the hippocampal formation, and the spinal cord of adult rats. A 27% single-cell cloning efficiency in Neurobasal/B27 combination further demonstrates its growth-promoting ability. Multipotency and nontumorgenicity of NSCs were retained despite the high rate of culture expansion. In addition, increased cell survival was obtained when Accutase, instead of trypsin, was used for enzymatic dissociation of NSC cultures. This work provides an important step toward the development of standardized protocols for highly efficient in vitro expansion of NSCs from the adult central nervous system to move more closely to the clinical use of NSCs. PMID:12861035

  10. Differential roles of TNFR1 and TNFR2 signaling in adult hippocampal neurogenesis

    PubMed Central

    Chen, Zhiguo; Palmer, Theo D.

    2013-01-01

    Tumor necrosis factor alpha (TNFα) is a potent inhibitor of neurogenesis in vitro but here we show that TNFα signaling has both positive and negative effects on neurogenesis in vivo and is required to moderate the negative impact of cranial irradiation on hippocampal neurogenesis. In vitro, basal levels of TNFα signaling through TNFR2 are required for normal neural progenitor cell proliferation while basal signaling through TNFR1 impairs neural progenitor proliferation. TNFR1 also mediates further reductions in proliferation and elevated cell death following exposure to recombinant TNFα. In vivo, TNFR1−/− and TNFα−/− animals have elevated baseline neurogenesis in the hippocampus, whereas absence of TNFR2 decreases baseline neurogenesis. TNFα is also implicated in defects in neurogenesis that follow radiation injury but we find that loss of TNFR1 has no protective effects on neurogenesis and loss of TNFα or TNFR2 worsened the effects of radiation injury on neurogenesis. We conclude that the immunomodulatory signaling of TNFα mediated by TNFR2 is more significant to radiation injury outcome than the proinflammatory signaling mediated through TNFR1. PMID:23402793

  11. Novel function of Tau in regulating the effects of external stimuli on adult hippocampal neurogenesis.

    PubMed

    Pallas-Bazarra, Noemí; Jurado-Arjona, Jerónimo; Navarrete, Marta; Esteban, Jose A; Hernández, Félix; Ávila, Jesús; Llorens-Martín, María

    2016-07-01

    Tau is a microtubule-associated neuronal protein found mainly in axons. However, its presence in dendrites and dendritic spines is particularly relevant due to its involvement in synaptic plasticity and neurodegeneration. Here, we show that Tau plays a novel in vivo role in the morphological and synaptic maturation of newborn hippocampal granule neurons under basal conditions. Furthermore, we reveal that Tau is involved in the selective cell death of immature granule neurons caused by acute stress. Also, Tau deficiency protects newborn neurons from the stress-induced dendritic atrophy and loss of postsynaptic densities (PSDs). Strikingly, we also demonstrate that Tau regulates the increase in newborn neuron survival triggered by environmental enrichment (EE). Moreover, newborn granule neurons from Tau(-/-) mice did not show any stimulatory effect of EE on dendritic development or on PSD generation. Thus, our data demonstrate that Tau(-/-) mice show impairments in the maturation of newborn granule neurons under basal conditions and that they are insensitive to the modulation of adult hippocampal neurogenesis exerted by both stimulatory and detrimental stimuli.

  12. Trading new neurons for status: Adult hippocampal neurogenesis in eusocial Damaraland mole-rats.

    PubMed

    Oosthuizen, M K; Amrein, I

    2016-06-01

    Diversity in social structures, from solitary to eusocial, is a prominent feature of subterranean African mole-rat species. Damaraland mole-rats are eusocial, they live in colonies that are characterized by a reproductive division of labor and a subdivision into castes based on physiology and behavior. Damaraland mole-rats are exceptionally long lived and reproductive animals show delayed aging compared to non-reproductive animals. In the present study, we described the hippocampal architecture and the rate of hippocampal neurogenesis of wild-derived, adult Damaraland mole-rats in relation to sex, relative age and social status or caste. Overall, Damaraland mole-rats were found to have a small hippocampus and low rates of neurogenesis. We found no correlation between neurogenesis and sex or relative age. Social status or caste was the most prominent modulator of neurogenesis. An inverse relationship between neurogenesis and social status was apparent, with queens displaying the lowest neurogenesis while the worker mole-rats had the most. As there is no natural progression from one caste to another, social status within a colony was relatively stable and is reflected in the level of neurogenesis. Our results correspond to those found in the naked mole-rat, and may reflect an evolutionary and environmentally conserved trait within social mole-rat species. PMID:26979050

  13. History of mild traumatic brain injury is associated with deficits in relational memory, reduced hippocampal volume, and less neural activity later in life

    PubMed Central

    Monti, Jim M.; Voss, Michelle W.; Pence, Ari; McAuley, Edward; Kramer, Arthur F.; Cohen, Neal J.

    2013-01-01

    Evidence suggests that a history of head trauma is associated with memory deficits later in life. The majority of previous research has focused on moderate-to-severe traumatic brain injury (TBI), but recent evidence suggests that even a mild TBI (mTBI) can interact with the aging process and produce reductions in memory performance. This study examined the association of mTBI with memory and the brain by comparing young and middle-aged adults who have had mTBI in their recent (several years ago) and remote (several decades ago) past, respectively, with control subjects on a face-scene relational memory paradigm while they underwent functional magnetic resonance imaging (fMRI). Hippocampal volumes were also examined from high-resolution structural images. Results indicated middle-aged adults with a head injury in their remote past had impaired memory compared to gender, age, and education matched control participants, consistent with previous results in the study of memory, aging, and TBI. The present findings extended previous results by demonstrating that these individuals also had smaller bilateral hippocampi, and had reduced neural activity during memory performance in cortical regions important for memory retrieval. These results indicate that a history of mTBI may be one of the many factors that negatively influence cognitive and brain health in aging. PMID:23986698

  14. Mice in an enriched environment learn more flexibly because of adult hippocampal neurogenesis.

    PubMed

    Garthe, Alexander; Roeder, Ingo; Kempermann, Gerd

    2016-02-01

    We here show that living in a stimulus-rich environment (ENR) improves water maze learning with respect to specific key indicators that in previous loss-of-function experiments have been shown to rely on adult hippocampal neurogenesis. Analyzing the strategies employed by mice to locate the hidden platform in the water maze revealed that ENR facilitated task acquisition by increasing the probability to use effective search strategies. ENR also enhanced the animals' behavioral flexibility, when the escape platform was moved to a new location. Treatment with temozolomide, which is known to reduce adult neurogenesis, abolished the effects of ENR on both acquisition and flexibility, while leaving other aspects of water maze learning untouched. These characteristic effects and interdependencies were not seen in parallel experiments with voluntary wheel running (RUN), a second pro-neurogenic behavioral stimulus. Since the histological assessment of adult neurogenesis is by necessity an end-point measure, the levels of neurogenesis over the course of the experiment can only be inferred and the present study focused on behavioral parameters as analytical endpoints. Although the correlation of physical activity with precursor cell proliferation and of learning and the survival of new neurons is well established, how the specific functional effects described here relate to dynamic changes in the stem cell niche remains to be addressed. Nevertheless, our findings support the hypothesis that adult neurogenesis is a critical mechanism underlying the beneficial effects of leading an active live, rich in experiences.

  15. Effects of adult dysthyroidism on the morphology of hippocampal granular cells in rats.

    PubMed

    Martí-Carbonell, Maria Assumpció; Garau, Adriana; Sala-Roca, Josefina; Balada, Ferran

    2012-01-01

    Thyroid hormones are essential for normal brain development and very important in the normal functioning of the brain. Thyroid hormones action in the adult brain has not been widely studied. The effects of adult hyperthyroidism are not as well understood as adult hypothyroidism, mainly in hippocampal granular cells. The purpose of the present study is to assess the consequences of adult hormone dysthyroidism (excess/deficiency of TH) on the morphology of dentate granule cells in the hippocampus by performing a quantitative study of dendritic arborizations and dendritic spines using Golgi impregnated material. Hypo-and hyperthyroidism were induced in rats by adding 0.02 percent methimazole and 1 percent L-thyroxine, respectively, to drinking water from 40 days of age. At 89 days, the animals' brains were removed and stained by a modified Golgi method and blood samples were collected in order to measure T4 serum levels. Neurons were selected and drawn using a camera lucida. Our results show that both methimazole and thyroxine treatment affect granule cell morphology. Treatments provoke alterations in the same direction, namely, reduction of certain dendritic-branching parameters that are more evident in the methimazole than in the thyroxine group. We also observe a decrease in spine density in both the methimazole and thyroxine groups. PMID:23093010

  16. Effects of prenatal chronic mild stress exposure on hippocampal cell proliferation, expression of GSK-3α, β and NR2B in adult offspring during fear extinction in rats.

    PubMed

    Li, Min; Li, Xiaobai; Zhang, Xinxin; Ren, Jintao; Jiang, Han; Wang, Yan; Ma, Yuchao; Cheng, Wenwen

    2014-06-01

    Stress during pregnancy has been implicated as a risk factor for the development of many mental disorders; however, the influence of prenatal stress on the fear or anxiety-related behaviors, especially the fear extinction in adult offspring has been little investigated. In order to investigate how prenatal stress affects fear extinction, which is regarded as a form of new learning that counteracts the expression of Pavlovian's conditioned fear, a rat model of prenatal chronic mild stress (PNS) was used to evaluate the effects of PNS on fear extinction in adult offspring. The expression of hippocampal glycogen synthase kinase-3s (GSK-3α, β), N-methyl-d-aspartic acid receptors (NMDARs)-2B and the hippocampal cell proliferation in dentate gyrus in the adult offspring during fear extinction were studied. Our results showed that PNS significantly reduced body weight of pups, indicating PNS might induce growth retardation in offspring. Moreover, PNS significantly enhanced the freezing behavior of offspring at the phase of extinction, suggesting PNS impaired the abilities of fear extinction learning. In addition, PNS significantly increased the levels of GSK-3α, β and NR2B, but reduced hippocampal cell proliferation during fear extinction. Taken together, our findings suggest that maternal stress during pregnancy can impair the fear extinction of adult offspring, probably by affecting the neural plasticity of brain.

  17. A Common Language: How Neuroimmunological Cross Talk Regulates Adult Hippocampal Neurogenesis.

    PubMed

    Leiter, Odette; Kempermann, Gerd; Walker, Tara L

    2016-01-01

    Immune regulation of the brain is generally studied in the context of injury or disease. Less is known about how the immune system regulates the brain during normal brain function. Recent work has redefined the field of neuroimmunology and, as long as their recruitment and activation are well regulated, immune cells are now known to have protective properties within the central nervous system in maintaining brain health. Adult neurogenesis, the process of new neuron generation in the adult brain, is highly plastic and regulated by diverse extrinsic and intrinsic cues. Emerging research has shown that immune cells and their secreted factors can influence adult neurogenesis, both under baseline conditions and during conditions known to change neurogenesis levels, such as aging and learning in an enriched environment. This review will discuss how, under nonpathological conditions, the immune system can interact with the neural stem cells to regulate adult neurogenesis with particular focus on the hippocampus-a region crucial for learning and memory.

  18. Influences of prenatal and postnatal stress on adult hippocampal neurogenesis: the double neurogenic niche hypothesis.

    PubMed

    Ortega-Martínez, Sylvia

    2015-03-15

    Adult hippocampal neurogenesis (AHN) is involved in learning, memory, and stress, and plays a significant role in neurodegenerative and psychiatric disorders. As an age-dependent process, AHN is largely influenced by changes that occur during the pre- and postnatal stages of brain development, and constitutes an important field of research. This review examines the current knowledge regarding the regulators of AHN and the influence of prenatal and postnatal stress on later AHN. In addition, a hypothesis is presented suggesting that each kind of stress influences a specific neurogenic pool, developmental or postnatal, that later becomes a precursor with important repercussions for AHN. This hypothesis is referred to as "the double neurogenic niche hypothesis." Discovering what receptors, transcription factors, or genes are specifically activated by different stressors is proposed as an essential line of future research in the field. Such knowledge shall constitute an important starting point toward the goal of modifying AHN in neurodegenerative or psychiatric diseases.

  19. Gastrin-releasing peptide contributes to the regulation of adult hippocampal neurogenesis and neuronal development.

    PubMed

    Walton, Noah M; de Koning, Anoek; Xie, Xiuyuan; Shin, Rick; Chen, Qian; Miyake, Shinichi; Tajinda, Katsunori; Gross, Adam K; Kogan, Jeffrey H; Heusner, Carrie L; Tamura, Kouichi; Matsumoto, Mitsuyuki

    2014-09-01

    In the postnatal hippocampus, newly generated neurons contribute to learning and memory. Disruptions in neurogenesis and neuronal development have been linked to cognitive impairment and are implicated in a broad variety of neurological and psychiatric disorders. To identify putative factors involved in this process, we examined hippocampal gene expression alterations in mice possessing a heterozygous knockout of the calcium/calmodulin-dependent protein kinase II alpha heterozygous knockout gene (CaMK2α-hKO), an established model of cognitive impairment that also displays altered neurogenesis and neuronal development. Using this approach, we identified gastrin-releasing peptide (GRP) as the most dysregulated gene. In wild-type mice, GRP labels NeuN-positive neurons, the lone exception being GRP-positive, NeuN-negative cells in the subgranular zone, suggesting GRP expression may be relevant to neurogenesis and/or neuronal development. Using a model of in vitro hippocampal neurogenesis, we determined that GRP signaling is essential for the continued survival and development of newborn neurons, both of which are blocked by transient knockdown of GRP's cognate receptor (GRPR). Furthermore, GRP appears to negatively regulate neurogenesis-associated proliferation in neural stem cells both in vitro and in vivo. Intracerebroventricular infusion of GRP resulted in a decrease in immature neuronal markers, increased cAMP response element-binding protein (CREB) phosphorylation, and decreased neurogenesis. Despite increased levels of GRP mRNA, CaMK2α-hKO mutant mice expressed reduced levels of GRP peptide. This lack of GRP may contribute to the elevated neurogenesis and impaired neuronal development, which are reversed following exogenous GRP infusion. Based on these findings, we hypothesize that GRP modulates neurogenesis and neuronal development and may contribute to hippocampus-associated cognitive impairment.

  20. Selection for tameness, a key behavioral trait of domestication, increases adult hippocampal neurogenesis in foxes.

    PubMed

    Huang, Shihhui; Slomianka, Lutz; Farmer, Andrew J; Kharlamova, Anastasiya V; Gulevich, Rimma G; Herbeck, Yury E; Trut, Lyudmila N; Wolfer, David P; Amrein, Irmgard

    2015-08-01

    Work on laboratory and wild rodents suggests that domestication may impact on the extent of adult hippocampal neurogenesis and its responsiveness to regulatory factors. There is, however, no model of laboratory rodents and their nondomesticated conspecifics that would allow a controlled comparison of the effect of domestication. Here, we present a controlled within-species comparison of adult hippocampal neurogenesis in farm-bred foxes (Vulpes vulpes) that differ in their genetically determined degree of tameness. Quantitative comparisons of cell proliferation (Ki67) and differentiating cells of neuronal lineage (doublecortin, DCX) in the hippocampus of foxes were performed as a proxy for neurogenesis. Higher neurogenesis was observed in tameness-selected foxes, notably in an extended subgranular zone of the middle and temporal compartments of the hippocampus. Increased neurogenesis is negatively associated with aggressive behavior. Across all animals, strong septotemporal gradients were found, with higher numbers of proliferating cells and young neurons relative to resident granule cells in the temporal than in the septal hippocampus. The opposite gradient was found for the ratio of DCX/Ki67- positive cells. When tameness-selected and unselected foxes are compared with rodents and primates, proliferation is similar, while the number of young neurons is higher. The difference may be mediated by an extended period of differentiation or higher rate of survival. On the background of this species-specific neurogenic pattern, selection of foxes for a single behavioral trait key to domestication, i.e., genetic tameness, is accompanied by global and region-specific increases in neurogenesis.

  1. Memory-enhancing effects of Cuscuta japonica Choisy via enhancement of adult hippocampal neurogenesis in mice.

    PubMed

    Moon, Minho; Jeong, Hyun Uk; Choi, Jin Gyu; Jeon, Seong Gak; Song, Eun Ji; Hong, Seon-Pyo; Oh, Myung Sook

    2016-09-15

    It is generally accepted that functional and structural changes within the hippocampus are involved in learning and memory and that adult neurogenesis in this region may modulate cognition. The extract of Cuscuta japonica Choisy (CJ) is a well-known traditional Chinese herbal medicine that has been used since ancient times as a rejuvenation remedy. The systemic effects of this herb are widely known and can be applied for the treatment of a number of physiological diseases, but there is a lack of evidence describing its effects on brain function. Thus, the present study investigated whether CJ would enhance memory function and/or increase hippocampal neurogenesis using mice orally administered with CJ water extract or vehicle for 21days. Performance on the novel object recognition and passive avoidance tests revealed that treatment with CJ dose-dependently improved the cognitive function of mice. Additionally, CJ increased the Ki-67-positive proliferating cells and the number of doublecortin-stained neuroblasts in the dentate gyrus (DG) of the hippocampus, and double labeling with 5-bromo-2-deoxyuridine and neuronal specific nuclear protein showed that CJ increased the number of mature neurons in the DG. Finally, CJ resulted in the upregulated expression of neurogenic differentiation factor, which is essential for the maturation and differentiation of granule cells in the hippocampus. Taken together, the present findings indicate that CJ stimulated neuronal cell proliferation, differentiation, and maturation, which are all processes associated with neurogenesis. Additionally, these findings suggest that CJ may improve learning and memory via the enhancement of adult hippocampal neurogenesis.

  2. p73 is an essential regulator of neural stem cell maintenance in embryonal and adult CNS neurogenesis.

    PubMed

    Talos, F; Abraham, A; Vaseva, A V; Holembowski, L; Tsirka, S E; Scheel, A; Bode, D; Dobbelstein, M; Brück, W; Moll, U M

    2010-12-01

    The p53 family member p73 is essential for brain development, but its precise role and scope remain unclear. Global p73 deficiency determines an overt and highly penetrant brain phenotype marked by cortical hypoplasia with ensuing hydrocephalus and hippocampal dysgenesis. The ΔNp73 isoform is known to function as a prosurvival factor of mature postmitotic neurons. In this study, we define a novel essential role of p73 in the regulation of the neural stem cell compartment. In both embryonic and adult neurogenesis, p73 has a critical role in maintaining an adequate neurogenic pool by promoting self-renewal and proliferation and inhibiting premature senescence of neural stem and early progenitor cells. Thus, products of the p73 gene locus are essential maintenance factors in the central nervous system, whose broad action stretches across the entire differentiation arch from stem cells to mature postmitotic neurons.

  3. Impaired long-term memory retention: common denominator for acutely or genetically reduced hippocampal neurogenesis in adult mice.

    PubMed

    Ben Abdallah, Nada M-B; Filipkowski, Robert K; Pruschy, Martin; Jaholkowski, Piotr; Winkler, Juergen; Kaczmarek, Leszek; Lipp, Hans-Peter

    2013-09-01

    In adult rodents, decreasing hippocampal neurogenesis experimentally using different approaches often impairs performance in hippocampus-dependent processes. Nonetheless, functional relevance of adult neurogenesis is far from being unraveled, and deficits so far described in animal models often lack reproducibility. One hypothesis is that such differences might be the consequence of the extent of the methodological specificity used to alter neurogenesis rather than the extent to which adult neurogenesis is altered. To address this, we focused on cranial irradiation, the most widely used technique to impair hippocampal neurogenesis and consequentially induce hippocampus-dependent behavioral deficits. To investigate the specificity of the technique, we thus exposed 4-5 months old female cyclin D2 knockout mice, a model lacking physiological levels of olfactory and hippocampal neurogenesis, to an X-ray dose of 10 Gy, reported to specifically affect transiently amplifying precursors. After a recovery period of 1.5 months, behavioral tests were performed and probed for locomotor activity, habituation, anxiety, and spatial learning and memory. Spatial learning in the Morris water maze was intact in all experimental groups. Although spatial memory retention assessed 24h following acquisition was also intact in all mice, irradiated wild type and cyclin D2 knockout mice displayed memory deficits one week after acquisition. In addition, we observed significant differences in tests addressing anxiety and locomotor activity dependent on the technique used to alter neurogenesis. Whereas irradiated mice were hyperactive regardless of their genotype, cyclin D2 knockout mice were hypoactive in most of the tests and displayed altered habituation. The present study emphasizes that different approaches aimed at decreasing adult hippocampal neurogenesis may result in distinct behavioral impairments related to locomotion and anxiety. In contrast, spatial long-term memory retention is

  4. Bilateral hippocampal volume reduction in adults with post-traumatic stress disorder: a meta-analysis of structural MRI studies.

    PubMed

    Smith, Michael E

    2005-01-01

    Over the last decade a significant number of studies have reported smaller hippocampal volume in individuals with symptoms of post-traumatic stress disorder (PTSD) relative to control groups, and in some cases hemispheric asymmetries in this effect have been noted. However these reported asymmetries have not been in a consistent direction, and other well-controlled studies have failed to observe any hippocampal volume difference. This paper reports a systematic review and meta-analysis of studies in which hippocampal volume was estimated from magnetic resonance images in adult patients with PTSD. After applying a variety of selection criteria intended to minimize potential confounds in pooled effect-size estimates, the meta-analysis included 13 studies of adult patients with PTSD that compared the patients to well-matched control groups, for a total of 215 patients and 325 control subjects. The studies varied with respect to participant age, gender distribution, source of trauma, severity of symptoms, duration of disorder, the nature of the control groups, and the methods employed for volumetric quantification. Despite these differences, pooled effect size calculations across the studies indicated significant volume differences in both hemispheres. On average PTSD patients had a 6.9% smaller left hippocampal volume and a 6.6% smaller right hippocampal volume compared with control subjects. These volume differences were smaller when comparing PTSD patients with control subjects exposed to similar levels of trauma, and larger when comparing PTSD patients to control subjects without significant trauma exposure. Such differences are consistent with the notion that exposure to stressful experiences can lead to hippocampal atrophy, although prospective studies would be necessary to unambiguously establish such a relationship. PMID:15988763

  5. The Timing of Differentiation of Adult Hippocampal Neurons Is Crucial for Spatial Memory

    PubMed Central

    Cinà, Irene; Aceti, Massimiliano; Micheli, Laura; Bacci, Alberto; Cestari, Vincenzo; Tirone, Felice

    2008-01-01

    Adult neurogenesis in the dentate gyrus plays a critical role in hippocampus-dependent spatial learning. It remains unknown, however, how new neurons become functionally integrated into spatial circuits and contribute to hippocampus-mediated forms of learning and memory. To investigate these issues, we used a mouse model in which the differentiation of adult-generated dentate gyrus neurons can be anticipated by conditionally expressing the pro-differentiative gene PC3 (Tis21/BTG2) in nestin-positive progenitor cells. In contrast to previous studies that affected the number of newly generated neurons, this strategy selectively changes their timing of differentiation. New, adult-generated dentate gyrus progenitors, in which the PC3 transgene was expressed, showed accelerated differentiation and significantly reduced dendritic arborization and spine density. Functionally, this genetic manipulation specifically affected different hippocampus-dependent learning and memory tasks, including contextual fear conditioning, and selectively reduced synaptic plasticity in the dentate gyrus. Morphological and functional analyses of hippocampal neurons at different stages of differentiation, following transgene activation within defined time-windows, revealed that the new, adult-generated neurons up to 3–4 weeks of age are required not only to acquire new spatial information but also to use previously consolidated memories. Thus, the correct unwinding of these key memory functions, which can be an expression of the ability of adult-generated neurons to link subsequent events in memory circuits, is critically dependent on the correct timing of the initial stages of neuron maturation and connection to existing circuits. PMID:18842068

  6. Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors.

    PubMed

    Seaberg, Raewyn M; van der Kooy, Derek

    2002-03-01

    Neurogenesis persists in two adult brain regions: the ventricular subependyma and the subgranular cell layer in the hippocampal dentate gyrus (DG). Previous work in many laboratories has shown explicitly that multipotential, self-renewing stem cells in the subependyma are the source of newly generated migrating neurons that traverse the rostral migratory stream and incorporate into the olfactory bulb as interneurons. These stem cells have been specifically isolated from the subependyma, and their properties of self-renewal and multipotentiality have been demonstrated in vitro. In contrast, it is a widely held assumption that the "hippocampal" stem cells that can be isolated in vitro from adult hippocampus reside in the neurogenic subgranular layer and represent the source of new granule cell neurons, but this has never been tested directly. Primary cell isolates derived from the precise microdissection of adult rodent neurogenic regions were compared using two very different commonly used culture methods: a clonal colony-forming (neurosphere) assay and a monolayer culture system. Importantly, both of these culture methods generated the same conclusion: stem cells can be isolated from hippocampus-adjacent regions of subependyma, but the adult DG proper does not contain a population of resident neural stem cells. Indeed, although the lateral ventricle and other ventricular subependymal regions directly adjacent to the hippocampus contain neural stem cells that exhibit long-term self-renewal and multipotentiality, separate neuronal and glial progenitors with limited self-renewal capacity are present in the adult DG, suggesting that neuron-specific progenitors and not multipotential stem cells are the source of newly generated DG neurons throughout adulthood.

  7. Seipin knockout in mice impairs stem cell proliferation and progenitor cell differentiation in the adult hippocampal dentate gyrus via reduced levels of PPARγ

    PubMed Central

    Li, Guoxi; Zhou, Libin; Zhu, Ying; Wang, Conghui; Sha, Sha; Xian, Xunde; Ji, Yong; Liu, George; Chen, Ling

    2015-01-01

    ABSTRACT The seipin gene (BSCL2) was originally identified in humans as a loss-of-function gene associated with congenital generalized lipodystrophy type 2 (CGL2). Neuronal seipin-knockout (seipin-nKO) mice display a depression-like phenotype with a reduced level of hippocampal peroxisome proliferator-activated receptor gamma (PPARγ). The present study investigated the influence of seipin deficiency on adult neurogenesis in the hippocampal dentate gyrus (DG) and the underlying mechanisms of the effects. We show that the proliferative capability of stem cells in seipin-nKO mice was substantially reduced compared to in wild-type (WT) mice, and that this could be rescued by the PPARγ agonist rosiglitazone (rosi). In seipin-nKO mice, neuronal differentiation of progenitor cells was inhibited, with the enhancement of astrogliogenesis; both of these effects were recovered by rosi treatment during early stages of progenitor cell differentiation. In addition, rosi treatment could correct the decline in hippocampal ERK2 phosphorylation and cyclin A mRNA level in seipin-nKO mice. The MEK inhibitor U0126 abolished the rosi-rescued cell proliferation and cyclin A expression in seipin-nKO mice. In seipin-nKO mice, the hippocampal Wnt3 protein level was less than that in WT mice, and there was a reduction of neurogenin 1 (Neurog1) and neurogenic differentiation 1 (NeuroD1) mRNA, levels of which were corrected by rosi treatment. STAT3 phosphorylation (Tyr705) was enhanced in seipin-nKO mice, and was further elevated by rosi treatment. Finally, rosi treatment for 10 days could alleviate the depression-like phenotype in seipin-nKO mice, and this alleviation was blocked by the MEK inhibitor U0126. The results indicate that, by reducing PPARγ, seipin deficiency impairs proliferation and differentiation of neural stem and progenitor cells, respectively, in the adult DG, which might be responsible for the production of the depression-like phenotype in seipin-nKO mice. PMID

  8. Neural recruitment and connectivity during emotional memory retrieval across the adult life span.

    PubMed

    Ford, Jaclyn H; Morris, John A; Kensinger, Elizabeth A

    2014-12-01

    Although research has identified age-related changes in neural recruitment during emotional memory encoding, it is unclear whether these differences extend to retrieval. In this study, participants engaged in a recognition task during a functional magnetic resonance imaging scan. They viewed neutral titles and indicated whether each title had been presented with an image during the study phase. Neural activity and connectivity during retrieval of titles associated with positive and negative images were compared with age (treated as a continuous variable) included as a regressor of interest. Aging was associated with increased prefrontal activation for retrieval of positive and negative memories, but this pattern was more widespread for negative memories. Aging also was associated with greater negative connectivity between a left hippocampal seed region and multiple regions of prefrontal cortex, but this effect of age occurred during negative retrieval only. These findings demonstrate that age-related changes in prefrontal recruitment and connectivity during retrieval depend on memory valence. The use of a life span approach also emphasized both continuities and discontinuities in recruitment and connectivity across the adult life span, highlighting the insights to be gained from using a full life span sample.

  9. Role of Wnt Signaling in the Control of Adult Hippocampal Functioning in Health and Disease: Therapeutic Implications

    PubMed Central

    Ortiz-Matamoros, Abril; Salcedo-Tello, Pamela; Avila-Muñoz, Evangelina; Zepeda, Angélica; Arias, Clorinda

    2013-01-01

    It is well recognized the role of the Wnt pathway in many developmental processes such as neuronal maturation, migration, neuronal connectivity and synaptic formation. Growing evidence is also demonstrating its function in the mature brain where is associated with modulation of axonal remodeling, dendrite outgrowth, synaptic activity, neurogenesis and behavioral plasticity. Proteins involved in Wnt signaling have been found expressed in the adult hippocampus suggesting that Wnt pathway plays a role in the hippocampal function through life. Indeed, Wnt ligands act locally to regulate neurogenesis, neuronal cell shape and pre- and postsynaptic assembly, events that are thought to underlie changes in synaptic function associated with long-term potentiation and with cognitive tasks such as learning and memory. Recent data have demonstrated the increased expression of the Wnt antagonist Dickkopf-1 (DKK1) in brains of Alzheimer´s disease (AD) patients suggesting that dysfunction of Wnt signaling could also contribute to AD pathology. We review here evidence of Wnt-associated molecules expression linked to physiological and pathological hippocampal functioning in the adult brain. The basic aspects of Wnt related mechanisms underlying hippocampal plasticity as well as evidence of how hippocampal dysfunction may rely on Wnt dysregulation is analyzed. This information would provide some clues about the possible therapeutic targets for developing treatments for neurodegenerative diseases associated with aberrant brain plasticity. PMID:24403870

  10. Fetal iron deficiency alters the proteome of adult rat hippocampal synaptosomes

    PubMed Central

    Dakoji, Srikanth; Reise, Kathryn H.; Storey, Kathleen K.; Georgieff, Michael K.

    2013-01-01

    Fetal and neonatal iron deficiency results in cognitive impairments in adulthood despite prompt postnatal iron replenishment. To systematically determine whether abnormal expression and localization of proteins that regulate adult synaptic efficacy are involved, we used a quantitative proteomic approach (isobaric tags for relative and absolute quantitation, iTRAQ) and pathway analysis to identify dysregulated proteins in hippocampal synapses of fetal iron deficiency model. Rat pups were made iron deficient (ID) from gestational day 2 through postnatal day (P) 7 by providing pregnant and nursing dams an ID diet (4 ppm Fe) after which they were rescued with an iron-sufficient diet (200 ppm Fe). This paradigm resulted in a 40% loss of brain iron at P15 with complete recovery by P56. Synaptosomes were prepared from hippocampi of the formerly iron-deficient (FID) and always iron-sufficient controls rats at P65 using a sucrose gradient method. Six replicates per group that underwent iTRAQ labeling and LC-MS/MS analysis for protein identification and comparison elucidated 331 differentially expressed proteins. Western analysis was used to confirm findings for selected proteins in the glutamate receptor signaling pathway, which regulates hippocampal synaptic plasticity, a cellular process critical for learning and memory. Bioinformatics were performed using knowledge-based Interactive Pathway Analysis. FID synaptosomes show altered expression of synaptic proteins-mediated cellular signalings, supporting persistent impacts of fetal iron deficiency on synaptic efficacy, which likely cause the cognitive dysfunction and neurobehavioral abnormalities. Importantly, the findings uncover previously unsuspected pathways, including neuronal nitric oxide synthase signaling, identifying additional mechanisms that may contribute to the long-term biobehavioral deficits. PMID:24089371

  11. Genetic influences on exercise-induced adult hippocampal neurogenesis across 12 divergent mouse strains

    PubMed Central

    Clark, Peter J.; Kohman, Rachel A.; Miller, Daniel S.; Bhattacharya, Tushar K.; Brzezinska, Weronika J.; Rhodes, Justin S.

    2011-01-01

    New neurons are continuously born in the hippocampus of several mammalian species throughout adulthood. Adult neurogenesis represents a natural model for understanding how to grow and incorporate new nerve cells into pre-existing circuits in the brain. Finding molecules or biological pathways that increase neurogenesis has broad potential for regenerative medicine. One strategy is to identify mouse strains that display large versus small increases in neurogenesis in response to wheel running so the strains can be contrasted to find common genes or biological pathways associated with enhanced neuron formation. Therefore, mice from 12 different isogenic strains were housed with or without running wheels for 43 days to measure the genetic regulation of exercise-induced neurogenesis. The first 10 days mice received daily injections of BrdU to label dividing cells. Neurogenesis was measured as the total number of BrdU cells co-expressing NeuN mature neuronal marker in the hippocampal granule cell layer by immunohistochemistry. Exercise increased neurogenesis in all strains, but the magnitude significantly depended on genotype. Strain means for distance run on wheels, but not distance traveled in cages without wheels, were significantly correlated with strain mean level of neurogenesis. Further, certain strains displayed greater neurogenesis than others for a fixed level of running. Strain means for neurogenesis under sedentary conditions were not correlated with neurogenesis under runner conditions suggesting that different genes influence baseline versus exercise-induced neurogenesis. Genetic contributions to exercise-induced hippocampal neurogenesis suggest that it may be possible to identify genes and pathways associated with enhanced neuroplastic responses to exercise. PMID:21223504

  12. Mice in an enriched environment learn more flexibly because of adult hippocampal neurogenesis

    PubMed Central

    Garthe, Alexander; Roeder, Ingo

    2016-01-01

    ABSTRACT We here show that living in a stimulus‐rich environment (ENR) improves water maze learning with respect to specific key indicators that in previous loss‐of‐function experiments have been shown to rely on adult hippocampal neurogenesis. Analyzing the strategies employed by mice to locate the hidden platform in the water maze revealed that ENR facilitated task acquisition by increasing the probability to use effective search strategies. ENR also enhanced the animals’ behavioral flexibility, when the escape platform was moved to a new location. Treatment with temozolomide, which is known to reduce adult neurogenesis, abolished the effects of ENR on both acquisition and flexibility, while leaving other aspects of water maze learning untouched. These characteristic effects and interdependencies were not seen in parallel experiments with voluntary wheel running (RUN), a second pro‐neurogenic behavioral stimulus. Since the histological assessment of adult neurogenesis is by necessity an end‐point measure, the levels of neurogenesis over the course of the experiment can only be inferred and the present study focused on behavioral parameters as analytical endpoints. Although the correlation of physical activity with precursor cell proliferation and of learning and the survival of new neurons is well established, how the specific functional effects described here relate to dynamic changes in the stem cell niche remains to be addressed. Nevertheless, our findings support the hypothesis that adult neurogenesis is a critical mechanism underlying the beneficial effects of leading an active live, rich in experiences. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:26311488

  13. Altered adult hippocampal neuronal maturation in a rat model of fetal alcohol syndrome.

    PubMed

    Gil-Mohapel, Joana; Boehme, Fanny; Patten, Anna; Cox, Adrian; Kainer, Leah; Giles, Erica; Brocardo, Patricia S; Christie, Brian R

    2011-04-12

    Exposure to ethanol during pregnancy can be devastating to the developing nervous system, leading to significant central nervous system dysfunction. The hippocampus, one of the two brain regions where neurogenesis persists into adulthood, is particularly sensitive to the teratogenic effects of ethanol. In the present study, we tested a rat model of fetal alcohol syndrome (FAS) with ethanol administered via gavage throughout all three trimester equivalents. Subsequently, we assessed cell proliferation, as well as neuronal survival, and differentiation in the dentate gyrus of the hippocampus of adolescent (35 days old), young adult (60 days old) and adult (90 days old) Sprague-Dawley rats. Using both extrinsic (bromodeoxyuridine) and intrinsic (Ki-67) markers, we observed no significant alterations in cell proliferation and survival in ethanol-exposed animals when compared with their pair-fed and ad libitum controls. However, we detected a significant increase in the number of new immature neurons in animals that were exposed to ethanol throughout all three trimester equivalents. This result might reflect a compensatory mechanism to counteract the deleterious effects of prenatal ethanol exposure or an ethanol-induced arrest of the neurogenic process at the early neuronal maturation stages. Taken together these results indicate that exposure to ethanol during the period of brain development causes a long-lasting dysregulation of the neurogenic process, a mechanism that might contribute, at least in part, to the hippocampal deficits that have been reported in rodent models of FAS.

  14. Long-term rearrangements of hippocampal mossy fiber terminal connectivity in the adult regulated by experience.

    PubMed

    Galimberti, Ivan; Gogolla, Nadine; Alberi, Stefano; Santos, Alexandre Ferrao; Muller, Dominique; Caroni, Pico

    2006-06-01

    We investigated rearrangements of connectivity between hippocampal mossy fibers and CA3 pyramidal neurons. We found that mossy fibers establish 10-15 local terminal arborization complexes (LMT-Cs) in CA3, which exhibit major differences in size and divergence in adult mice. LMT-Cs exhibited two types of long-term rearrangements in connectivity in the adult: progressive expansion of LMT-C subsets along individual dendrites throughout life, and pronounced increases in LMT-C complexities in response to an enriched environment. In organotypic slice cultures, subsets of LMT-Cs also rearranged extensively and grew over weeks and months, altering the strength of preexisting connectivity, and establishing or dismantling connections with pyramidal neurons. Differences in LMT-C plasticity reflected properties of individual LMT-Cs, not mossy fibers. LMT-C maintenance and growth were regulated by spiking activity, mGluR2-sensitive transmitter release from LMTs, and PKC. Thus, subsets of terminal arborization complexes by mossy fibers rearrange their local connectivities in response to experience and age throughout life.

  15. Effect of postnatal methamphetamine trauma and adolescent methylphenidate treatment on adult hippocampal neurogenesis in gerbils.

    PubMed

    Schaefers, Andrea T; Teuchert-Noodt, Gertraud; Bagorda, Francesco; Brummelte, Susanne

    2009-08-15

    Methylphenidate (e.g. Ritalin) is the most common drug used in the treatment of attention-deficit hyperactivity disorder. However, only a few studies have investigated the neuroanatomical long-term effects of this treatment. Prolonged application of methylphenidate during adolescence causes alterations in dopaminergic fiber or receptor densities in adult rodents. This study was conducted to investigate the effects of adolescent methylphenidate treatment on adult hippocampal neurogenesis in male gerbils (Meriones unguiculatus). Animals were first treated with either a single methamphetamine challenge on postnatal day 14 (to cause a disturbance in the dopaminergic system, to mimic the disturbed dopaminergic system seen in ADHD children) or saline and then received a daily oral application of 5 mg/kg methylphenidate or water from postnatal day 30-60 or were left undisturbed. On postnatal 90 gerbils were injected with bromodeoxyuridine (BrdU, a DNA synthesis marker) and sacrificed seven days later. Results reveal that the pretreatment with methamphetamine causes a decrease in the number of BrdU-positive cells in the dentate gyrus. Methylphenidate treatment however did not cause any differences in the number of labelled cells in any group. This implies that, despite methylphenidate's efficiency in inducing changes in the dopaminergic system and associated areas, it might be less effective in altering neurogenesis in the hippocampus.

  16. Pharmacological reduction of adult hippocampal neurogenesis modifies functional brain circuits in mice exposed to a cocaine conditioned place preference paradigm.

    PubMed

    Castilla-Ortega, Estela; Blanco, Eduardo; Serrano, Antonia; Ladrón de Guevara-Miranda, David; Pedraz, María; Estivill-Torrús, Guillermo; Pavón, Francisco Javier; Rodríguez de Fonseca, Fernando; Santín, Luis J

    2016-05-01

    We investigated the role of adult hippocampal neurogenesis in cocaine-induced conditioned place preference (CPP) behaviour and the functional brain circuitry involved. Adult hippocampal neurogenesis was pharmacologically reduced with temozolomide (TMZ), and mice were tested for cocaine-induced CPP to study c-Fos expression in the hippocampus and in extrahippocampal addiction-related areas. Correlational and multivariate analysis revealed that, under normal conditions, the hippocampus showed widespread functional connectivity with other brain areas and strongly contributed to the functional brain module associated with CPP expression. However, the neurogenesis-reduced mice showed normal CPP acquisition but engaged an alternate brain circuit where the functional connectivity of the dentate gyrus was notably reduced and other areas (the medial prefrontal cortex, accumbens and paraventricular hypothalamic nucleus) were recruited instead of the hippocampus. A second experiment unveiled that mice acquiring the cocaine-induced CPP under neurogenesis-reduced conditions were delayed in extinguishing their drug-seeking behaviour. But if the inhibited neurons were generated after CPP acquisition, extinction was not affected but an enhanced long-term CPP retention was found, suggesting that some roles of the adult-born neurons may differ depending on whether they are generated before or after drug-contextual associations are established. Importantly, cocaine-induced reinstatement of CPP behaviour was increased in the TMZ mice, regardless of the time of neurogenesis inhibition. The results show that adult hippocampal neurogenesis sculpts the addiction-related functional brain circuits, and reduction of the adult-born hippocampal neurons increases cocaine seeking in the CPP model.

  17. Pharmacological reduction of adult hippocampal neurogenesis modifies functional brain circuits in mice exposed to a cocaine conditioned place preference paradigm.

    PubMed

    Castilla-Ortega, Estela; Blanco, Eduardo; Serrano, Antonia; Ladrón de Guevara-Miranda, David; Pedraz, María; Estivill-Torrús, Guillermo; Pavón, Francisco Javier; Rodríguez de Fonseca, Fernando; Santín, Luis J

    2016-05-01

    We investigated the role of adult hippocampal neurogenesis in cocaine-induced conditioned place preference (CPP) behaviour and the functional brain circuitry involved. Adult hippocampal neurogenesis was pharmacologically reduced with temozolomide (TMZ), and mice were tested for cocaine-induced CPP to study c-Fos expression in the hippocampus and in extrahippocampal addiction-related areas. Correlational and multivariate analysis revealed that, under normal conditions, the hippocampus showed widespread functional connectivity with other brain areas and strongly contributed to the functional brain module associated with CPP expression. However, the neurogenesis-reduced mice showed normal CPP acquisition but engaged an alternate brain circuit where the functional connectivity of the dentate gyrus was notably reduced and other areas (the medial prefrontal cortex, accumbens and paraventricular hypothalamic nucleus) were recruited instead of the hippocampus. A second experiment unveiled that mice acquiring the cocaine-induced CPP under neurogenesis-reduced conditions were delayed in extinguishing their drug-seeking behaviour. But if the inhibited neurons were generated after CPP acquisition, extinction was not affected but an enhanced long-term CPP retention was found, suggesting that some roles of the adult-born neurons may differ depending on whether they are generated before or after drug-contextual associations are established. Importantly, cocaine-induced reinstatement of CPP behaviour was increased in the TMZ mice, regardless of the time of neurogenesis inhibition. The results show that adult hippocampal neurogenesis sculpts the addiction-related functional brain circuits, and reduction of the adult-born hippocampal neurons increases cocaine seeking in the CPP model. PMID:25870909

  18. Reward cues in space: commonalities and differences in neural coding by hippocampal and ventral striatal ensembles

    PubMed Central

    Lansink, Carien S.; Jackson, Jadin; Lankelma, Jan V.; Ito, Rutsuko; Robbins, Trevor W.; Everitt, Barry J.; Pennartz, Cyriel M.A.

    2012-01-01

    Forming place-reward associations critically depends on the integrity of the hippocampal-ventral striatal system. The ventral striatum receives a strong hippocampal input conveying spatial-contextual information, but it is unclear how this structure integrates this information to invigorate reward-directed behavior. Neuronal ensembles in rat hippocampus and ventral striatum were simultaneously recorded during a conditioning task in which navigation depended on path integration. In contrast to hippocampus, ventral striatal neurons showed low spatial selectivity, but rather coded behavioral task phases towards reaching goal sites. Outcome-predicting cues induced a remapping of firing patterns in the hippocampus, consistent with its role in episodic memory. Ventral striatum remapped in conjunction with the hippocampus, indicating that remapping can take place in multiple brain regions engaged in the same task. Subsets of ventral striatal neurons showed a “flip” from high activity when cue lights were illuminated to low activity in intertrial intervals, or vice versa. The cues induced an increase in spatial information transmission and sparsity in both structures. These effects were paralleled by an enhanced temporal specificity of ensemble coding and a more accurate reconstruction of the animal’s position from population firing patterns. Altogether, the results reveal strong differences in spatial processing between hippocampal area CA1 and ventral striatum, but indicate similarities in how discrete cues impact on this processing. PMID:22956836

  19. Monitoring neurodegeneration in diabetes using adult neural stem cells derived from the olfactory bulb

    PubMed Central

    2013-01-01

    Introduction Neurons have the intrinsic capacity to produce insulin, similar to pancreatic cells. Adult neural stem cells (NSCs), which give rise to functional neurons, can be established and cultured not only by intracerebral collection, which requires difficult surgery, but also by collection from the olfactory bulb (OB), which is relatively easy. Adult neurogenesis in the hippocampus (HPC) is significantly decreased in diabetes patients. As a result, learning and memory functions, for which the HPC is responsible, decrease. Methods In the present study, we compared the effect of diabetes on neurogenesis and insulin expression in adult NSCs. Adult NSCs were derived from the HPC or OB of streptozotocin-induced diabetic rats. Comparative gene-expression analyses were carried out by using extracted tissues and established adult NSC cultures from the HPC or OB in diabetic rats. Results Diabetes progression influenced important genes that were required for insulin expression in both OB- and HPC-derived cells. Additionally, we found that the expression levels of several genes, such as voltage-gated sodium channels, glutamate transporters, and glutamate receptors, were significantly different in OB and HPC cells collected from diabetic rats. Conclusions By using identified diabetes-response genes, OB NSCs from diabetes patients can be used during diabetes progression to monitor processes that cause neurodegeneration in the central nervous system (CNS). Because hippocampal NSCs and OB NSCs exhibited similar gene-expression profiles during diabetes progression, OB NSCs, which are more easily collected and established than HPC NSCs, may potentially be used for screening of effective drugs for neurodegenerative disorders that cause malignant damage to CNS functions. PMID:23673084

  20. Short-term calorie restriction enhances adult hippocampal neurogenesis and remote fear memory in a Ghsr-dependent manner

    PubMed Central

    Hornsby, Amanda K.E.; Redhead, Yushi T.; Rees, Daniel J.; Ratcliff, Michael S.G.; Reichenbach, Alex; Wells, Timothy; Francis, Lewis; Amstalden, Katia; Andrews, Zane B.; Davies, Jeffrey S.

    2016-01-01

    The beneficial effects of calorie restriction (CR) have been described at both organismal and cellular levels in multiple organs. However, our understanding of the causal mediators of such hormesis is poorly understood, particularly in the context of higher brain function. Here, we show that the receptor for the orexigenic hormone acyl-ghrelin, the growth hormone secretagogue receptor (Ghsr), is enriched in the neurogenic niche of the hippocampal dentate gyrus (DG). Acute elevation of acyl-ghrelin levels by injection or by overnight CR, increased DG levels of the neurogenic transcription factor, Egr-1. Two weeks of CR increased the subsequent number of mature newborn neurons in the DG of adult wild-type but not Ghsr−/− mice. CR wild-type mice also showed improved remote contextual fear memory. Our findings suggest that Ghsr mediates the beneficial effects of CR on enhancing adult hippocampal neurogenesis and memory. PMID:26460782

  1. Homeostatic regulation of adult hippocampal neurogenesis in aging rats: long-term effects of early exercise

    PubMed Central

    Merkley, Christina M.; Jian, Charles; Mosa, Adam; Tan, Yao-Fang; Wojtowicz, J. Martin

    2014-01-01

    Adult neurogenesis is highly responsive to environmental and physiological factors. The majority of studies to date have examined short-term consequences of enhancing or blocking neurogenesis but long-term changes remain less well understood. Current evidence for age-related declines in neurogenesis warrant further investigation into these long-term changes. In this report we address the hypothesis that early life experience, such as a period of voluntary running in juvenile rats, can alter properties of adult neurogenesis for the remainder of the animal's life. The results indicate that the number of proliferating and differentiating neuronal precursors is not altered in runners beyond the initial weeks post-running, suggesting homeostatic regulation of these processes. However, the rate of neuronal maturation and survival during a 4 week period after cell division was enhanced up to 11 months of age (the end of the study period). This study is the first to show that a transient period of physical activity at a young age promotes changes in neurogenesis that persist over the long-term, which is important for our understanding of the modulation of neurogenesis by exercise with age. Functional integration of adult-born neurons within the hippocampus that resist homeostatic regulation with aging, rather than the absolute number of adult-born neurons, may be an essential feature of adult neurogenesis that promotes the maintenance of neural plasticity in old age. PMID:25071426

  2. Neural stem cells in the adult human brain

    PubMed Central

    Gonzalez-Perez, Oscar

    2012-01-01

    For decades, it was believed that the adult brain was a quiescent organ unable to produce new neurons. At the beginning of the1960's, this dogma was challenged by a small group of neuroscientists. To date, it is well-known that new neurons are generated in the adult brain throughout life. Adult neurogenesis is primary confined to the subventricular zone (SVZ) of the forebrain and the subgranular zone of the dentate gyrus within the hippocampus. In both the human and the rodent brain, the primary progenitor of adult SVZ is a subpopulation of astrocytes that have stem-cell-like features. The human SVZ possesses a peculiar cell composition and displays important organizational differences when compared to the SVZ of other mammals. Some evidence suggests that the human SVZ may be not only an endogenous source of neural precursor cells for brain repair, but also a source of brain tumors. In this review, we described the cytoarchitecture and cellular composition of the SVZ in the adult human brain. We also discussed some clinical implications of SVZ, such as: stem-cell-based therapies against neurodegenerative diseases and its potential as a source of malignant cells. Understanding the biology of human SVZ and its neural progenitors is one of the crucial steps to develop novel therapies against neurological diseases in humans. PMID:23181200

  3. Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging

    PubMed Central

    Stein, Liana R; Imai, Shin-ichiro

    2014-01-01

    Neural stem/progenitor cell (NSPC) proliferation and self-renewal, as well as insult-induced differentiation, decrease markedly with age. The molecular mechanisms responsible for these declines remain unclear. Here, we show that levels of NAD+ and nicotinamide phosphoribosyltransferase (Nampt), the rate-limiting enzyme in mammalian NAD+ biosynthesis, decrease with age in the hippocampus. Ablation of Nampt in adult NSPCs reduced their pool and proliferation in vivo. The decrease in the NSPC pool during aging can be rescued by enhancing hippocampal NAD+ levels. Nampt is the main source of NSPC NAD+ levels and required for G1/S progression of the NSPC cell cycle. Nampt is also critical in oligodendrocytic lineage fate decisions through a mechanism mediated redundantly by Sirt1 and Sirt2. Ablation of Nampt in the adult NSPCs in vivo reduced NSPC-mediated oligodendrogenesis upon insult. These phenotypes recapitulate defects in NSPCs during aging, giving rise to the possibility that Nampt-mediated NAD+ biosynthesis is a mediator of age-associated functional declines in NSPCs. PMID:24811750

  4. Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice.

    PubMed

    Fabel, Klaus; Wolf, Susanne A; Ehninger, Dan; Babu, Harish; Leal-Galicia, Perla; Kempermann, Gerd

    2009-01-01

    Voluntary physical exercise (wheel running, RUN) and environmental enrichment both stimulate adult hippocampal neurogenesis but do so by different mechanisms. RUN induces precursor cell proliferation, whereas ENR exerts a survival-promoting effect on newborn cells. In addition, continued RUN prevented the physiologically occurring age-related decline in precursor cell in the dentate gyrus but did not lead to a corresponding increase in net neurogenesis. We hypothesized that in the absence of appropriate cognitive stimuli the potential for neurogenesis could not be realized but that an increased potential by proliferating precursor cells due to RUN could actually lead to more adult neurogenesis if an appropriate survival-promoting stimulus follows the exercise. We thus asked whether a sequential combination of RUN and ENR (RUNENR) would show additive effects that are distinct from the application of either paradigm alone. We found that the effects of 10 days of RUN followed by 35 days of ENR were additive in that the combined stimulation yielded an approximately 30% greater increase in new neurons than either stimulus alone, which also increased neurogenesis. Surprisingly, this result indicates that although overall the amount of proliferating cells in the dentate gyrus is poorly predictive of net adult neurogenesis, an increased neurogenic potential nevertheless provides the basis for a greater efficiency of the same survival-promoting stimulus. We thus propose that physical activity can "prime" the neurogenic region of the dentate gyrus for increased neurogenesis in the case the animal is exposed to an additional cognitive stimulus, here represented by the enrichment paradigm.

  5. Voluntary running prevents progressive memory decline and increases adult hippocampal neurogenesis and growth factor expression after whole-brain irradiation.

    PubMed

    Wong-Goodrich, Sarah J E; Pfau, Madeline L; Flores, Catherine T; Fraser, Jennifer A; Williams, Christina L; Jones, Lee W

    2010-11-15

    Whole-brain irradiation (WBI) therapy produces progressive learning and memory deficits in patients with primary or secondary brain tumors. Exercise enhances memory and adult hippocampal neurogenesis in the intact brain, so we hypothesized that exercise may be an effective treatment to alleviate consequences of WBI. Previous studies using animal models to address this issue have yielded mixed results and have not examined potential molecular mechanisms. We investigated the short- and long-term effects of WBI on spatial learning and memory retention and determined whether voluntary running after WBI aids recovery of brain and cognitive function. Forty adult female C57Bl/6 mice given a single dose of 5 Gy or sham WBI were trained 2.5 weeks and up to 4 months after WBI in a Barnes maze. Half of the mice received daily voluntary wheel access starting 1 month after sham or WBI. Daily running following WBI prevented the marked decline in spatial memory retention observed months after irradiation. Bromodeoxyuridine (BrdUrd) immunolabeling and enzyme-linked immunosorbent assay indicated that this behavioral rescue was accompanied by a partial restoration of newborn BrdUrd+/NeuN+ neurons in the dentate gyrus and increased hippocampal expression of brain-derived vascular endothelial growth factor and insulin-like growth factor-1, and occurred despite irradiation-induced elevations in hippocampal proinflammatory cytokines. WBI in adult mice produced a progressive memory decline consistent with what has been reported in cancer patients receiving WBI therapy. Our findings show that running can abrogate this memory decline and aid recovery of adult hippocampal plasticity, thus highlighting exercise as a potential therapeutic intervention.

  6. Prenatal alcohol exposure alters synaptic activity of adult hippocampal dentate granule cells under conditions of enriched environment.

    PubMed

    Kajimoto, Kenta; Valenzuela, C Fernando; Allan, Andrea M; Ge, Shaoyu; Gu, Yan; Cunningham, Lee Anna

    2016-08-01

    Prenatal alcohol exposure (PAE) results in fetal alcohol spectrum disorder (FASD), which is characterized by a wide range of cognitive and behavioral deficits that may be linked to impaired hippocampal function and adult neurogenesis. Preclinical studies in mouse models of FASD indicate that PAE markedly attenuates enrichment-mediated increases in the number of adult-generated hippocampal dentate granule cells (aDGCs), but whether synaptic activity is also affected has not been studied. Here, we utilized retroviral birth-dating coupled with whole cell patch electrophysiological recordings to assess the effects of PAE on enrichment-mediated changes in excitatory and inhibitory synaptic activity as a function of DGC age. We found that exposure to an enriched environment (EE) had no effect on baseline synaptic activity of 4- or 8-week-old aDGCs from control mice, but significantly enhanced the excitatory/inhibitory ratio of synaptic activity in 8-week-old aDGCs from PAE mice. In contrast, exposure to EE significantly enhanced the excitatory/inhibitory ratio of synaptic activity in older pre-existing DGCs situated in the outer dentate granule cell layer (i.e., those generated during embryonic development; dDGCs) in control mice, an effect that was blunted in PAE mice. These findings indicate distinct electrophysiological responses of hippocampal DGCs to behavioral challenge based on cellular ontogenetic age, and suggest that PAE disrupts EE-mediated changes in overall hippocampal network activity. These findings may have implications for future therapeutic targeting of hippocampal dentate circuitry in clinical FASD. © 2016 Wiley Periodicals, Inc. PMID:27009742

  7. Prenatal stress enhances stress- and corticotropin-releasing factor-induced stimulation of hippocampal acetylcholine release in adult rats.

    PubMed

    Day, J C; Koehl, M; Deroche, V; Le Moal, M; Maccari, S

    1998-03-01

    There is growing evidence that stressors occurring during pregnancy can impair biological and behavioral responses to stress in the adult offspring. For instance, prenatal stress enhances emotional reactivity, anxiety, and depressive-like behaviors associated with a prolonged stress-induced corticosterone secretion and a reduction in hippocampal corticosteroid receptors. Among the neurotransmitters involved in these hormonal and behavioral responses, acetylcholine may play a critical role. However, it is unknown whether prenatal stressful events also may influence the development of cholinergic systems. In the present study, hippocampal acetylcholine was measured, by in vivo microdialysis, in both male and female adult prenatally stressed rats, under basal conditions, after a mild stress (saline injection) or after intracerebroventricular administration of corticotropin-releasing factor (CRF; 0.1 nM). No difference in basal release of acetylcholine was observed between control and prenatally stressed rats of both genders. Mild stress was found to increase hippocampal acetylcholine release to a greater extent in prenatally stressed rats than in controls. In males, the CRF-induced increase in hippocampal acetylcholine release was larger in prenatally stressed rats, as compared with controls, during the first hour after the injection and in females during the third hour after the injection. These data indicate that prenatal stress has long-term effects on the development of forebrain cholinergic systems. The augmented increase in hippocampal acetylcholine release after the mild stress and CRF injection in prenatally stressed rats may be involved in some of the hormonal and behavioral abnormalities found in prenatally stressed rats. PMID:9465013

  8. Apolipoprotein E ϵ4 is positively related to spatial performance but unrelated to hippocampal volume in healthy young adults.

    PubMed

    Stening, Eva; Persson, Jonas; Eriksson, Elias; Wahlund, Lars-Olof; Zetterberg, Henrik; Söderlund, Hedvig

    2016-02-15

    The apolipoprotein E (APOE) ϵ4 allele is known to be a major genetic risk factor for Alzheimer's disease (AD). It has been linked to especially episodic memory decline and hippocampal atrophy in both healthy and demented elderly populations. In young adults, ϵ4 carriers have shown better performance in episodic memory compared to non-carriers. Spatial memory, however, has not been thoroughly assessed in relation to APOE in spite of its dependence on the hippocampus. In this study, we assessed the effect of APOE genotype on a variety of spatial and episodic memory tasks as well as hippocampal volume assessed through manual tracing in a sample of young adults (N=123). We also assessed whether potential effects were modulated by sex. The presence of one or more ϵ4 alleles had positive effects on spatial function and memory and object location memory, but no effect on word recognition. Men were superior to women in spatial function and memory but there were no sex differences in the other tasks. In spite of APOE ϵ4 carriers having superior performance in several memory tasks, no difference was found as a function of APOE genotype in hippocampal volume. To our knowledge, this study is the first to show that APOE ϵ4 has a positive effect on spatial ability in young adults.

  9. Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial.

    PubMed

    Wagner, Gerd; Herbsleb, Marco; de la Cruz, Feliberto; Schumann, Andy; Brünner, Franziska; Schachtzabel, Claudia; Gussew, Alexander; Puta, Christian; Smesny, Stefan; Gabriel, Holger W; Reichenbach, Jürgen R; Bär, Karl-Jürgen

    2015-10-01

    Interventional studies suggest that changes in physical fitness affect brain function and structure. We studied the influence of high intensity physical exercise on hippocampal volume and metabolism in 17 young healthy male adults during a 6-week exercise program compared with matched controls. We further aimed to relate these changes to hypothesized changes in exercised-induced brain-derived neurotrophic factor (BDNF), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α). We show profound improvement of physical fitness in most subjects and a positive correlation between the degree of fitness improvement and increased BDNF levels. We unexpectedly observed an average volume decrease of about 2%, which was restricted to right hippocampal subfields CA2/3, subiculum, and dentate gyrus and which correlated with fitness improvement and increased BDNF levels negatively. This result indicates that mainly those subjects who did not benefit from the exercise program show decreased hippocampal volume, reduced BDNF levels, and increased TNF-α concentrations. While spectroscopy results do not indicate any neuronal loss (unchanged N-acetylaspartate levels) decreased glutamate-glutamine levels were observed in the right anterior hippocampus in the exercise group only. Responder characteristics need to be studied in more detail. Our results point to an important role of the inflammatory response after exercise on changes in hippocampal structure. PMID:26082010

  10. Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial.

    PubMed

    Wagner, Gerd; Herbsleb, Marco; de la Cruz, Feliberto; Schumann, Andy; Brünner, Franziska; Schachtzabel, Claudia; Gussew, Alexander; Puta, Christian; Smesny, Stefan; Gabriel, Holger W; Reichenbach, Jürgen R; Bär, Karl-Jürgen

    2015-10-01

    Interventional studies suggest that changes in physical fitness affect brain function and structure. We studied the influence of high intensity physical exercise on hippocampal volume and metabolism in 17 young healthy male adults during a 6-week exercise program compared with matched controls. We further aimed to relate these changes to hypothesized changes in exercised-induced brain-derived neurotrophic factor (BDNF), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α). We show profound improvement of physical fitness in most subjects and a positive correlation between the degree of fitness improvement and increased BDNF levels. We unexpectedly observed an average volume decrease of about 2%, which was restricted to right hippocampal subfields CA2/3, subiculum, and dentate gyrus and which correlated with fitness improvement and increased BDNF levels negatively. This result indicates that mainly those subjects who did not benefit from the exercise program show decreased hippocampal volume, reduced BDNF levels, and increased TNF-α concentrations. While spectroscopy results do not indicate any neuronal loss (unchanged N-acetylaspartate levels) decreased glutamate-glutamine levels were observed in the right anterior hippocampus in the exercise group only. Responder characteristics need to be studied in more detail. Our results point to an important role of the inflammatory response after exercise on changes in hippocampal structure.

  11. An old test for new neurons: refining the Morris water maze to study the functional relevance of adult hippocampal neurogenesis

    PubMed Central

    Garthe, Alexander; Kempermann, Gerd

    2013-01-01

    The Morris water maze represents the de-facto standard for testing hippocampal function in laboratory rodents. In the field of adult hippocampal neurogenesis, however, using this paradigm to assess the functional relevance of the new neurons yielded surprisingly inconsistent results. While some authors found aspects of water maze performance to be linked to adult neurogenesis, others obtained different results or could not demonstrate any effect of manipulating adult neurogenesis. In this review we discuss evidence that the large diversity of protocols and setups used is an important aspect in interpreting the differences in the results that have been obtained. Even simple parameters such as pool size, number, and configuration of visual landmarks, or number of trials can become highly relevant for getting the new neurons involved at all. Sets of parameters are often chosen with implicit or explicit concepts in mind and these might lead to different views on the function of adult-generated neurons. We propose that the classical parameters usually used to measure spatial learning performance in the water maze might not be particularly well-suited to sensitively and specifically detect the supposedly highly specific functional changes elicited by the experimental modulation of adult hippocampal neurogenesis. As adult neurogenesis is supposed to affect specific aspects of information processing only in the hippocampus, any claim for a functional relevance of the new neurons has to be based on hippocampus-specific parameters. We also placed a special emphasis on the fact that the dentate gyrus (DG) facilitates the differentiation between contexts as opposed to just differentiating places. In conclusion, while the Morris water maze has proven to be one of the most effective testing paradigms to assess hippocampus-dependent spatial learning, new and more specific questions ask for new parameters. Therefore, the full potential of the water maze task remains to be tapped

  12. Low Proliferation and Differentiation Capacities of Adult Hippocampal Stem Cells Correlate with Memory Dysfunction in Humans

    ERIC Educational Resources Information Center

    Coras, Roland; Siebzehnrubl, Florian A.; Pauli, Elisabeth; Huttner, Hagen B.; Njunting, Marleisje; Kobow, Katja; Villmann, Carmen; Hahnen, Eric; Neuhuber, Winfried; Weigel, Daniel; Buchfelder, Michael; Stefan, Hermann; Beck, Heinz; Steindler, Dennis A.; Blumcke, Ingmar

    2010-01-01

    The hippocampal dentate gyrus maintains its capacity to generate new neurons throughout life. In animal models, hippocampal neurogenesis is increased by cognitive tasks, and experimental ablation of neurogenesis disrupts specific modalities of learning and memory. In humans, the impact of neurogenesis on cognition remains unclear. Here, we…

  13. Stimulus Similarity and Encoding Time Influence Incidental Recognition Memory in Adult Monkeys with Selective Hippocampal Lesions

    ERIC Educational Resources Information Center

    Zeamer, Alyson; Meunier, Martine; Bachevalier, Jocelyne

    2011-01-01

    Recognition memory impairment after selective hippocampal lesions in monkeys is more profound when measured with visual paired-comparison (VPC) than with delayed nonmatching-to-sample (DNMS). To clarify this issue, we assessed the impact of stimuli similarity and encoding duration on the VPC performance in monkeys with hippocampal lesions and…

  14. A Common Language: How Neuroimmunological Cross Talk Regulates Adult Hippocampal Neurogenesis.

    PubMed

    Leiter, Odette; Kempermann, Gerd; Walker, Tara L

    2016-01-01

    Immune regulation of the brain is generally studied in the context of injury or disease. Less is known about how the immune system regulates the brain during normal brain function. Recent work has redefined the field of neuroimmunology and, as long as their recruitment and activation are well regulated, immune cells are now known to have protective properties within the central nervous system in maintaining brain health. Adult neurogenesis, the process of new neuron generation in the adult brain, is highly plastic and regulated by diverse extrinsic and intrinsic cues. Emerging research has shown that immune cells and their secreted factors can influence adult neurogenesis, both under baseline conditions and during conditions known to change neurogenesis levels, such as aging and learning in an enriched environment. This review will discuss how, under nonpathological conditions, the immune system can interact with the neural stem cells to regulate adult neurogenesis with particular focus on the hippocampus-a region crucial for learning and memory. PMID:27143977

  15. A Common Language: How Neuroimmunological Cross Talk Regulates Adult Hippocampal Neurogenesis

    PubMed Central

    Leiter, Odette; Kempermann, Gerd; Walker, Tara L.

    2016-01-01

    Immune regulation of the brain is generally studied in the context of injury or disease. Less is known about how the immune system regulates the brain during normal brain function. Recent work has redefined the field of neuroimmunology and, as long as their recruitment and activation are well regulated, immune cells are now known to have protective properties within the central nervous system in maintaining brain health. Adult neurogenesis, the process of new neuron generation in the adult brain, is highly plastic and regulated by diverse extrinsic and intrinsic cues. Emerging research has shown that immune cells and their secreted factors can influence adult neurogenesis, both under baseline conditions and during conditions known to change neurogenesis levels, such as aging and learning in an enriched environment. This review will discuss how, under nonpathological conditions, the immune system can interact with the neural stem cells to regulate adult neurogenesis with particular focus on the hippocampus—a region crucial for learning and memory. PMID:27143977

  16. Protein kinase C regulates mood-related behaviors and adult hippocampal cell proliferation in rats.

    PubMed

    Abrial, Erika; Etievant, Adeline; Bétry, Cécile; Scarna, Hélène; Lucas, Guillaume; Haddjeri, Nasser; Lambás-Señas, Laura

    2013-06-01

    The neurobiological mechanisms underlying the pathophysiology and therapeutics of bipolar disorder are still unknown. In recent years, protein kinase C (PKC) has emerged as a potential key player in mania. To further investigate the role of this signaling system in mood regulation, we examined the effects of PKC modulators in behavioral tests modeling several facets of bipolar disorder and in adult hippocampal cell proliferation in rats. Our results showed that a single injection of the PKC inhibitors tamoxifen (80 mg/kg, i.p.) and chelerythrine (3 mg/kg, s.c.) attenuated amphetamine-induced hyperlocomotion and decreased risk-taking behavior, supporting the efficacy of PKC blockade in acute mania. Moreover, chronic exposure to tamoxifen (10 mg/kg/day, i.p., for 14 days) or chelerythrine (0.3 mg/kg/day, s.c., for 14 days) caused depressive-like behavior in the forced swim test, and resulted in a reduction of cell proliferation in the dentate gyrus of the hippocampus. Finally, we showed that, contrary to the PKC inhibitors, the PKC activator phorbol 12-myristate 13-acetate (PMA) enhanced risk-taking behavior and induced an antidepressant-like effect. Taken together, these findings support the involvement of PKC in regulating opposite facets of bipolar disorder, and emphasize a major role for PKC in this disease. PMID:23228462

  17. Gender Differences in the Neurobiology of Anxiety: Focus on Adult Hippocampal Neurogenesis

    PubMed Central

    Marques, Alessandra Aparecida; Bevilaqua, Mário Cesar do Nascimento; da Fonseca, Alberto Morais Pinto; Nardi, Antonio Egidio; Thuret, Sandrine; Dias, Gisele Pereira

    2016-01-01

    Although the literature reports a higher incidence of anxiety disorders in women, the majority of basic research has focused on male rodents, thus resulting in a lack of knowledge on the neurobiology of anxiety in females. Bridging this gap is crucial for the design of effective translational interventions in women. One of the key brain mechanisms likely to regulate anxious behavior is adult hippocampal neurogenesis (AHN). This review paper aims to discuss the evidence on the differences between male and female rodents with regard to anxiety-related behavior and physiology, with a special focus on AHN. The differences between male and female physiologies are greatly influenced by hormonal differences. Gonadal hormones and their fluctuations during the estrous cycle have often been identified as agents responsible for sexual dimorphism in behavior and AHN. During sexual maturity, hormone levels fluctuate cyclically in females more than in males, increasing the stress response and the susceptibility to anxiety. It is therefore of great importance that future research investigates anxiety and other neurophysiological aspects in the female model, so that results can be more accurately applicable to the female population. PMID:26885403

  18. Effects of postnatal alcohol exposure on hippocampal gene expression and learning in adult mice.

    PubMed

    Lee, Dong Hoon; Moon, Jihye; Ryu, Jinhyun; Jeong, Joo Yeon; Roh, Gu Seob; Kim, Hyun Joon; Cho, Gyeong Jae; Choi, Wan Sung; Kang, Sang Soo

    2016-04-28

    Fetal alcohol syndrome (FAS) is a condition resulting from excessive drinking by pregnant women. Symptoms of FAS include abnormal facial features, stunted growth, intellectual deficits and attentional dysfunction. Many studies have investigated FAS, but its underlying mechanisms remain unknown. This study evaluated the relationship between alcohol exposure during the synaptogenesis period in postnatal mice and subsequent cognitive function in adult mice. We delivered two injections, separated by 2 h, of ethanol (3 g/kg, ethanol/saline, 20% v/v) to ICR mice on postnatal day 7. After 10 weeks, we conducted a behavioral test, sacrificed the animals, harvested brain tissue and analyzed hippocampal gene expression using a microarray. In ethanol-treated mice, there was a reduction in brain size and decreased neuronal cell number in the cortex, and also cognitive impairment. cDNA microarray results indicated that 1,548 genes showed a > 2-fold decrease in expression relative to control, whereas 974 genes showed a > 2-fold increase in expression relative to control. Many of these genes were related to signal transduction, synaptogenesis and cell membrane formation, which are highlighted in our findings. PMID:26960969

  19. 56Fe particle exposure results in a long-lasting increase in a cellular index of genomic instability and transiently suppresses adult hippocampal neurogenesis in vivo

    NASA Astrophysics Data System (ADS)

    DeCarolis, Nathan A.; Rivera, Phillip D.; Ahn, Francisca; Amaral, Wellington Z.; LeBlanc, Junie A.; Malhotra, Shveta; Shih, Hung-Ying; Petrik, David; Melvin, Neal R.; Chen, Benjamin P. C.; Eisch, Amelia J.

    2014-07-01

    The high-LET HZE particles from galactic cosmic radiation pose tremendous health risks to astronauts, as they may incur sub-threshold brain injury or maladaptations that may lead to cognitive impairment. The health effects of HZE particles are difficult to predict and unfeasible to prevent. This underscores the importance of estimating radiation risks to the central nervous system as a whole as well as to specific brain regions like the hippocampus, which is central to learning and memory. Given that neurogenesis in the hippocampus has been linked to learning and memory, we investigated the response and recovery of neurogenesis and neural stem cells in the adult mouse hippocampal dentate gyrus after HZE particle exposure using two nestin transgenic reporter mouse lines to label and track radial glia stem cells (Nestin-GFP and Nestin-CreERT2/R26R:YFP mice, respectively). Mice were subjected to 56Fe particle exposure (0 or 1 Gy, at either 300 or 1000 MeV/n) and brains were harvested at early (24 h), intermediate (7 d), and/or long time points (2-3 mo) post-irradiation. 56Fe particle exposure resulted in a robust increase in 53BP1+ foci at both the intermediate and long time points post-irradiation, suggesting long-term genomic instability in the brain. However, 56Fe particle exposure only produced a transient decrease in immature neuron number at the intermediate time point, with no significant decrease at the long time point post-irradiation. 56Fe particle exposure similarly produced a transient decrease in dividing progenitors, with fewer progenitors labeled at the early time point but equal number labeled at the intermediate time point, suggesting a recovery of neurogenesis. Notably, 56Fe particle exposure did not change the total number of nestin-expressing neural stem cells. These results highlight that despite the persistence of an index of genomic instability, 56Fe particle-induced deficits in adult hippocampal neurogenesis may be transient. These data support

  20. (56)Fe Particle Exposure Results in a Long-Lasting Increase in a Cellular Index of Genomic Instability and Transiently Suppresses Adult Hippocampal Neurogenesis in Vivo.

    PubMed

    DeCarolis, Nathan A; Rivera, Phillip D; Ahn, Francisca; Amaral, Wellington Z; LeBlanc, Junie A; Malhotra, Shveta; Shih, Hung-Ying; Petrik, David; Melvin, Neal; Chen, Benjamin P C; Eisch, Amelia J

    2014-07-01

    The high-LET HZE particles from galactic cosmic radiation pose tremendous health risks to astronauts, as they may incur sub-threshold brain injury or maladaptations that may lead to cognitive impairment. The health effects of HZE particles are difficult to predict and unfeasible to prevent. This underscores the importance of estimating radiation risks to the central nervous system as a whole as well as to specific brain regions like the hippocampus, which is central to learning and memory. Given that neurogenesis in the hippocampus has been linked to learning and memory, we investigated the response and recovery of neurogenesis and neural stem cells in the adult mouse hippocampal dentate gyrus after HZE particle exposure using two nestin transgenic reporter mouse lines to label and track radial glia stem cells (Nestin-GFP and Nestin-CreER(T2)/R26R:YFP mice, respectively). Mice were subjected to (56)Fe particle exposure (0 or 1 Gy, at either 300 or 1000 MeV/n) and brains were harvested at early (24h), intermediate (7d), and/or long time points (2-3mo) post-irradiation. (56)Fe particle exposure resulted in a robust increase in 53BP1+ foci at both the intermediate and long time points post-irradiation, suggesting long-term genomic instability in the brain. However, (56)Fe particle exposure only produced a transient decrease in immature neuron number at the intermediate time point, with no significant decrease at the long time point post-irradiation. (56)Fe particle exposure similarly produced a transient decrease in dividing progenitors, with fewer progenitors labeled at the early time point but equal number labeled at the intermediate time point, suggesting a recovery of neurogenesis. Notably, (56)Fe particle exposure did not change the total number of nestin-expressing neural stem cells. These results highlight that despite the persistence of an index of genomic instability, (56)Fe particle-induced deficits in adult hippocampal neurogenesis may be transient. These

  1. 56Fe Particle Exposure Results in a Long-Lasting Increase in a Cellular Index of Genomic Instability and Transiently Suppresses Adult Hippocampal Neurogenesis in Vivo

    PubMed Central

    DeCarolis, Nathan A.; Rivera, Phillip D.; Ahn, Francisca; Amaral, Wellington Z.; LeBlanc, Junie A.; Malhotra, Shveta; Shih, Hung-Ying; Petrik, David; Melvin, Neal; Chen, Benjamin P.C.; Eisch, Amelia J.

    2014-01-01

    The high-LET HZE particles from galactic cosmic radiation pose tremendous health risks to astronauts, as they may incur sub-threshold brain injury or maladaptations that may lead to cognitive impairment. The health effects of HZE particles are difficult to predict and unfeasible to prevent. This underscores the importance of estimating radiation risks to the central nervous system as a whole as well as to specific brain regions like the hippocampus, which is central to learning and memory. Given that neurogenesis in the hippocampus has been linked to learning and memory, we investigated the response and recovery of neurogenesis and neural stem cells in the adult mouse hippocampal dentate gyrus after HZE particle exposure using two nestin transgenic reporter mouse lines to label and track radial glia stem cells (Nestin-GFP and Nestin-CreERT2/R26R:YFP mice, respectively). Mice were subjected to 56Fe particle exposure (0 or 1 Gy, at either 300 or 1000 MeV/n) and brains were harvested at early (24h), intermediate (7d), and/or long time points (2–3mo) post-irradiation. 56Fe particle exposure resulted in a robust increase in 53BP1+ foci at both the intermediate and long time points post-irradiation, suggesting long-term genomic instability in the brain. However, 56Fe particle exposure only produced a transient decrease in immature neuron number at the intermediate time point, with no significant decrease at the long time point post-irradiation. 56Fe particle exposure similarly produced a transient decrease in dividing progenitors, with fewer progenitors labeled at the early time point but equal number labeled at the intermediate time point, suggesting a recovery of neurogenesis. Notably, 56Fe particle exposure did not change the total number of nestin-expressing neural stem cells. These results highlight that despite the persistence of an index of genomic instability, 56Fe particle-induced deficits in adult hippocampal neurogenesis may be transient. These data support

  2. Accumulation of abnormal adult-generated hippocampal granule cells predicts seizure frequency and severity

    PubMed Central

    Hester, Michael S.; Danzer, Steve C.

    2013-01-01

    Accumulation of abnormally integrated, adult-born, hippocampal dentate granule cells (DGC) is hypothesized to contribute to the development of temporal lobe epilepsy (TLE). DGCs have long been implicated in TLE, as they regulate excitatory signaling through the hippocampus and exhibit neuroplastic changes during epileptogenesis. Furthermore, DGCs are unusual in that they are continually generated throughout life, with aberrant integration of new cells underlying the majority of restructuring in the dentate during epileptogenesis. While it is known that these abnormal networks promote abnormal neuronal firing and hyperexcitability, it has yet to be established whether they directly contribute to seizure generation. If abnormal DGCs do contribute, a reasonable prediction would be that the severity of epilepsy will be correlated with the number or load of abnormal DGCs. To test this prediction, we utilized a conditional, inducible transgenic mouse model to fate-map adult-generated DGCs. Mossy cell loss, also implicated in epileptogenesis, was assessed as well. Transgenic mice rendered epileptic using the pilocarpine-status epilepticus model of epilepsy were monitored 24/7 by video/EEG for four weeks to determine seizure frequency and severity. Positive correlations were found between seizure frequency and: 1) the percentage of hilar ectopic DGCs, 2) the amount of mossy fiber sprouting and 3) the extent of mossy cell death. In addition, mossy fiber sprouting and mossy cell death were correlated with seizure severity. These studies provide correlative evidence in support of the hypothesis that abnormal DGCs contribute to the development of TLE, and also support a role for mossy cell loss. PMID:23699504

  3. Multifractal analysis of information processing in hippocampal neural ensembles during working memory under Δ9-tetrahydrocannabinol administration

    PubMed Central

    Fetterhoff, Dustin; Opris, Ioan; Simpson, Sean L.; Deadwyler, Sam A.; Hampson, Robert E.; Kraft, Robert A.

    2014-01-01

    Background Multifractal analysis quantifies the time-scale-invariant properties in data by describing the structure of variability over time. By applying this analysis to hippocampal interspike interval sequences recorded during performance of a working memory task, a measure of long-range temporal correlations and multifractal dynamics can reveal single neuron correlates of information processing. New method Wavelet leaders-based multifractal analysis (WLMA) was applied to hippocampal interspike intervals recorded during a working memory task. WLMA can be used to identify neurons likely to exhibit information processing relevant to operation of brain–computer interfaces and nonlinear neuronal models. Results Neurons involved in memory processing (“Functional Cell Types” or FCTs) showed a greater degree of multifractal firing properties than neurons without task-relevant firing characteristics. In addition, previously unidentified FCTs were revealed because multifractal analysis suggested further functional classification. The cannabinoid-type 1 receptor partial agonist, tetrahydrocannabinol (THC), selectively reduced multifractal dynamics in FCT neurons compared to non-FCT neurons. Comparison with existing methods WLMA is an objective tool for quantifying the memory-correlated complexity represented by FCTs that reveals additional information compared to classification of FCTs using traditional z-scores to identify neuronal correlates of behavioral events. Conclusion z-Score-based FCT classification provides limited information about the dynamical range of neuronal activity characterized by WLMA. Increased complexity, as measured with multifractal analysis, may be a marker of functional involvement in memory processing. The level of multifractal attributes can be used to differentially emphasize neural signals to improve computational models and algorithms underlying brain–computer interfaces. PMID:25086297

  4. Apolipoprotein E4 reduces evoked hippocampal acetylcholine release in adult mice.

    PubMed

    Dolejší, Eva; Liraz, Ori; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; Michaelson, Daniel M

    2016-02-01

    Apolipoprotein E4 (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease. We utilized apoE4-targeted replacement mice (approved by the Tel Aviv University Animal Care Committee) to investigate whether cholinergic dysfunction, which increases during aging and is a hallmark of Alzheimer's disease, is accentuated by apoE4. This revealed that levels of the pre-synaptic cholinergic marker, vesicular acetylcholine transporter in the hippocampus and the corresponding electrically evoked release of acetylcholine, are similar in 4-month-old apoE4 and apolipoprotein E3 (apoE3) mice. Both parameters decrease with age. This decrease is, however, significantly more pronounced in the apoE4 mice. The levels of cholinacetyltransferase (ChAT), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) were similar in the hippocampus of young apoE4 and apoE3 mice and decreased during aging. For ChAT, this decrease was similar in the apoE4 and apoE3 mice, whereas it was more pronounced in the apoE4 mice, regarding their corresponding AChE and BuChE levels. The level of muscarinic receptors was higher in the apoE4 than in the apoE3 mice at 4 months and increased to similar levels with age. However, the relative representation of the M1 receptor subtype decreased during aging in apoE4 mice. These results demonstrate impairment of the evoked release of acetylcholine in hippocampus by apoE4 in 12-month-old mice but not in 4-month-old mice. The levels of ChAT and the extent of the M2 receptor-mediated autoregulation of ACh release were similar in the adult mice, suggesting that the apoE4-related inhibition of hippocampal ACh release in these mice is not driven by these parameters. Evoked ACh release from hippocampal and cortical slices is similar in 4-month-old apoE4 and apoE3 mice but is specifically and significantly reduced in hippocampus, but not cortex, of 12-month-old apoE4 mice. This effect is accompanied by decreased VAChT levels. These findings show that

  5. Adult attachment style modulates neural responses in a mentalizing task.

    PubMed

    Schneider-Hassloff, H; Straube, B; Nuscheler, B; Wemken, G; Kircher, T

    2015-09-10

    Adult attachment style (AAS) is a personality trait that affects social cognition. Behavioral data suggest that AAS influences mentalizing proficiency, i.e. the ability to predict and explain people's behavior with reference to mental states, but the neural correlates are unknown. We here tested how the AAS dimensions "avoidance" (AV) and "anxiety" (ANX) modulate neural correlates of mentalizing. We measured brain activation using functional magnetic resonance imaging (fMRI) in 164 healthy subjects during an interactive mentalizing paradigm (Prisoner's Dilemma Game). AAS was assessed with the Relationship Scales Questionnaire, including the subscales AV and ANX. Our task elicited a strong activation of the mentalizing network, including bilateral precuneus, (anterior, middle, and posterior) cingulate cortices, temporal poles, inferior frontal gyri (IFG), temporoparietal junctions, superior medial frontal gyri as well as right medial orbital frontal gyrus, superior temporal gyrus, middle frontal gyrus (MFG), and amygdala. We found that AV is positively and ANX negatively correlated with task-associated neural activity in the right amygdala, MFG, midcingulate cortex, and superior parietal lobule, and in bilateral IFG. These data suggest that avoidantly attached adults activate brain areas implicated in emotion regulation and cognitive control to a larger extent than anxiously attached individuals during mentalizing. PMID:26162239

  6. Enriched Environment Altered Aberrant Hippocampal Neurogenesis and Improved Long-Term Consequences After Temporal Lobe Epilepsy in Adult Rats.

    PubMed

    Zhang, Xiaoqian; Liu, Tingting; Zhou, Zhike; Mu, Xiaopeng; Song, Chengguang; Xiao, Ting; Zhao, Mei; Zhao, Chuansheng

    2015-06-01

    Abnormal hippocampal neurogenesis is thought to contribute to cognitive impairments in chronic temporal lobe epilepsy (TLE). Stromal cell-derived factor-1 (SDF-1) and its specific receptor CXCR4 play important roles in neurogenesis. We investigated whether enriched environment (EE) might be beneficial for TLE. Adult rats were randomly assigned as control rats, rats subjected to status epilepticus (SE), or post-SE rats treated with EE for 30 days. We used immunofluorescence staining to analyze the hippocampal neurogenesis and Nissl staining to evaluate hippocampal damage. Electroencephalography was used to measure the duration of spontaneous seizures. Cognitive function was evaluated by Morris water maze. Western blot was used to measure the expression of SDF-1 and CXCR4 in the hippocampus. In the present study, we found the TLE model resulted in aberrant neurogenesis such as reduced proliferation, intensified dendritic development of newborn neurons, as well as spontaneous seizures and cognitive impairments. More importantly, EE treatment significantly increased the cell proliferation and survival, extended the apical dendrites, and delayed the attenuation of the expression of SDF-1 and CXCR4, accompanied by decreased long-term seizure activity and improved cognitive impairments in adult rats after TLE. These results provided morphological evidence that EE might be beneficial for treating TLE. PMID:25946980

  7. The microtubule destabilizing protein stathmin controls the transition from dividing neuronal precursors to postmitotic neurons during adult hippocampal neurogenesis.

    PubMed

    Boekhoorn, Karin; van Dis, Vera; Goedknegt, Erika; Sobel, André; Lucassen, Paul J; Hoogenraad, Casper C

    2014-12-01

    The hippocampus is one of the two areas in the mammalian brain where adult neurogenesis occurs. Adult neurogenesis is well known to be involved in hippocampal physiological functions as well as pathophysiological conditions. Microtubules (MTs), providing intracellular transport, stability, and transmitting force, are indispensable for neurogenesis by facilitating cell division, migration, growth, and differentiation. Although there are several examples of MT-stabilizing proteins regulating different aspects of adult neurogenesis, relatively little is known about the function of MT-destabilizing proteins. Stathmin is such a MT-destabilizing protein largely restricted to the CNS, and in contrast to its developmental family members, stathmin is also expressed at significant levels in the adult brain, notably in areas involved in adult neurogenesis. Here, we show an important role for stathmin during adult neurogenesis in the subgranular zone of the mouse hippocampus. After carefully mapping stathmin expression in the adult dentate gyrus (DG), we investigated its role in hippocampal neurogenesis making use of stathmin knockout mice. Although hippocampus development appears normal in these animals, different aspects of adult neurogenesis are affected. First, the number of proliferating Ki-67+ cells is decreased in stathmin knockout mice, as well as the expression of the immature markers Nestin and PSA-NCAM. However, newborn cells that do survive express more frequently the adult marker NeuN and have a more mature morphology. Furthermore, our data suggest that migration in the DG might be affected. We propose a model in which stathmin controls the transition from neuronal precursors to early postmitotic neurons.

  8. The microtubule destabilizing protein stathmin controls the transition from dividing neuronal precursors to postmitotic neurons during adult hippocampal neurogenesis.

    PubMed

    Boekhoorn, Karin; van Dis, Vera; Goedknegt, Erika; Sobel, André; Lucassen, Paul J; Hoogenraad, Casper C

    2014-12-01

    The hippocampus is one of the two areas in the mammalian brain where adult neurogenesis occurs. Adult neurogenesis is well known to be involved in hippocampal physiological functions as well as pathophysiological conditions. Microtubules (MTs), providing intracellular transport, stability, and transmitting force, are indispensable for neurogenesis by facilitating cell division, migration, growth, and differentiation. Although there are several examples of MT-stabilizing proteins regulating different aspects of adult neurogenesis, relatively little is known about the function of MT-destabilizing proteins. Stathmin is such a MT-destabilizing protein largely restricted to the CNS, and in contrast to its developmental family members, stathmin is also expressed at significant levels in the adult brain, notably in areas involved in adult neurogenesis. Here, we show an important role for stathmin during adult neurogenesis in the subgranular zone of the mouse hippocampus. After carefully mapping stathmin expression in the adult dentate gyrus (DG), we investigated its role in hippocampal neurogenesis making use of stathmin knockout mice. Although hippocampus development appears normal in these animals, different aspects of adult neurogenesis are affected. First, the number of proliferating Ki-67+ cells is decreased in stathmin knockout mice, as well as the expression of the immature markers Nestin and PSA-NCAM. However, newborn cells that do survive express more frequently the adult marker NeuN and have a more mature morphology. Furthermore, our data suggest that migration in the DG might be affected. We propose a model in which stathmin controls the transition from neuronal precursors to early postmitotic neurons. PMID:24909416

  9. Diversity in neural firing dynamics supports both rigid and learned hippocampal sequences

    PubMed Central

    Grosmark, Andres D.; Buzsáki, György

    2016-01-01

    Cell assembly sequences during learning are “replayed” during hippocampal ripples and contribute to the consolidation of episodic memories. However, neuronal sequences may also reflect preexisting dynamics. We report that sequences of place-cell firing in a novel environment are formed from a combination of the contributions of a rigid, predominantly fast-firing subset of pyramidal neurons with low spatial specificity and limited change across sleep-experience-sleep and a slow-firing plastic subset. Slow-firing cells, rather than fast-firing cells, gained high place specificity during exploration, elevated their association with ripples, and showed increased bursting and temporal coactivation during postexperience sleep. Thus, slow- and fast-firing neurons, although forming a continuous distribution, have different coding and plastic properties. PMID:27013730

  10. Axonal control of the adult neural stem cell niche.

    PubMed

    Tong, Cheuk Ka; Chen, Jiadong; Cebrián-Silla, Arantxa; Mirzadeh, Zaman; Obernier, Kirsten; Guinto, Cristina D; Tecott, Laurence H; García-Verdugo, Jose Manuel; Kriegstein, Arnold; Alvarez-Buylla, Arturo

    2014-04-01

    The ventricular-subventricular zone (V-SVZ) is an extensive germinal niche containing neural stem cells (NSCs) in the walls of the lateral ventricles of the adult brain. How the adult brain's neural activity influences the behavior of adult NSCs remains largely unknown. We show that serotonergic (5HT) axons originating from a small group of neurons in the raphe form an extensive plexus on most of the ventricular walls. Electron microscopy revealed intimate contacts between 5HT axons and NSCs (B1) or ependymal cells (E1) and these cells were labeled by a transsynaptic viral tracer injected into the raphe. B1 cells express the 5HT receptors 2C and 5A. Electrophysiology showed that activation of these receptors in B1 cells induced small inward currents. Intraventricular infusion of 5HT2C agonist or antagonist increased or decreased V-SVZ proliferation, respectively. These results indicate that supraependymal 5HT axons directly interact with NSCs to regulate neurogenesis via 5HT2C. PMID:24561083

  11. Axonal Control of the Adult Neural Stem Cell Niche

    PubMed Central

    Tong, Cheuk Ka; Chen, Jiadong; Cebrián-Silla, Arantxa; Mirzadeh, Zaman; Obernier, Kirsten; Guinto, Cristina D.; Tecott, Laurence H.; García-Verdugo, Jose Manuel; Kriegstein, Arnold; Alvarez-Buylla, Arturo

    2014-01-01

    SUMMARY The ventricular-subventricular zone (V-SVZ) is an extensive germinal niche containing neural stem cells (NSC) in the walls of the lateral ventricles of the adult brain. How the adult brain’s neural activity influences the behavior of adult NSCs remains largely unknown. We show that serotonergic (5HT) axons originating from a small group of neurons in the raphe form an extensive plexus on most of the ventricular walls. Electron microscopy revealed intimate contacts between 5HT axons and NSCs (B1) or ependymal cells (E1) and these cells were labeled by a transsynaptic viral tracer injected into the raphe. B1 cells express the 5HT receptors 2C and 5A. Electrophysiology showed that activation of these receptors in B1 cells induced small inward currents. Intraventricular infusion of 5HT2C agonist or antagonist increased or decreased V-SVZ proliferation, respectively. These results indicate that supraependymal 5HT axons directly interact with NSCs to regulate neurogenesis via 5HT2C. PMID:24561083

  12. Live Imaging of Adult Neural Stem Cells in Rodents

    PubMed Central

    Ortega, Felipe; Costa, Marcos R.

    2016-01-01

    The generation of cells of the neural lineage within the brain is not restricted to early development. New neurons, oligodendrocytes, and astrocytes are produced in the adult brain throughout the entire murine life. However, despite the extensive research performed in the field of adult neurogenesis during the past years, fundamental questions regarding the cell biology of adult neural stem cells (aNSCs) remain to be uncovered. For instance, it is crucial to elucidate whether a single aNSC is capable of differentiating into all three different macroglial cell types in vivo or these distinct progenies constitute entirely separate lineages. Similarly, the cell cycle length, the time and mode of division (symmetric vs. asymmetric) that these cells undergo within their lineage progression are interesting questions under current investigation. In this sense, live imaging constitutes a valuable ally in the search of reliable answers to the previous questions. In spite of the current limitations of technology new approaches are being developed and outstanding amount of knowledge is being piled up providing interesting insights in the behavior of aNSCs. Here, we will review the state of the art of live imaging as well as the alternative models that currently offer new answers to critical questions. PMID:27013941

  13. Impaired hippocampal plasticity and altered neurogenesis in adult Ube3a maternal deficient mouse model for Angelman syndrome.

    PubMed

    Mardirossian, Sandrine; Rampon, Claire; Salvert, Denise; Fort, Patrice; Sarda, Nicole

    2009-12-01

    Angelman syndrome (AS) is a severe neurodevelopmental disorder characterized by mental retardation, seizures and sleep disturbances. It results from lack of the functional maternal allele of UBE3A gene. Ube3a maternal-deficient mice (Ube3a m-/p+), animal models for AS, are impaired in hippocampal-dependent learning tasks as compared with control (Ube3a m+/p+) mice. We first examined the basal expression of immediate early genes which expression is required for synaptic plasticity and memory formation. We found that basal expression of c-fos and Arc genes is reduced in the DG of Ube3a maternal deficient mice compared to their non-transgenic littermates. We then examined whether adult hippocampal neurogenesis, which likely serves as a mechanism toward brain plasticity, is altered in these transgenic mice. Neurogenesis occurs throughout life in mammalian dentate gyrus (DG) and recent findings suggest that newborn granule cells are involved in some forms of learning and memory. Whether maternal Ube3a deletion is detrimental on hippocampal neurogenesis is unclear. Herein, we show, using the mitotic marker Ki67, the birthdating marker 5-bromo-2'-dexoyuridine (BrdU) and the marker doublecortin (DCX) to respectively label cell proliferation, cell survival or young neuron production, that the Ube3a maternal deletion does not affect the proliferation nor the survival of newborn cells in the hippocampus. In contrast, using the postmitotic neuronal marker (NeuN), we show that Ube3a maternal deletion is associated with a lower fraction of BrdU+/NeuN+ newborn neurons among the population of surviving new cells in the hippocampus. Collectively, these findings suggest that some aspects of adult neurogenesis and plasticity are affected by Ube3a deletion and may contribute to the hippocampal dysfunction observed in AS mice.

  14. Environmental enrichment rescues DYRK1A activity and hippocampal adult neurogenesis in TgDyrk1A.

    PubMed

    Pons-Espinal, Meritxell; Martinez de Lagran, Maria; Dierssen, Mara

    2013-12-01

    Hippocampal adult neurogenesis disruptions have been suggested as one of the neuronal plasticity mechanisms underlying learning and memory impairment in Down syndrome (DS). However, it remains unknown whether specific candidate genes are implicated in these phenotypes in the multifactorial context of DS. Here we report that transgenic mice (TgDyrk1A) with overdosage of Dyrk1A, a DS candidate gene, show important alterations in adult neurogenesis including reduced cell proliferation rate, altered cell cycle progression and reduced cell cycle exit leading to premature migration, differentiation and reduced survival of newly born cells. In addition, less proportion of newborn hippocampal TgDyrk1A neurons are activated upon learning, suggesting reduced integration in learning circuits. Some of these alterations were DYRK1A kinase-dependent since we could rescue those using a DYRK1A inhibitor, epigallocatechin-3-gallate. Environmental enrichment also normalized DYRK1A kinase overdosage in the hippocampus, and rescued adult neurogenesis alterations in TgDyrk1A mice. We conclude that Dyrk1A is a good candidate to explain neuronal plasticity deficits in DS and that normalizing the excess of DYRK1A kinase activity either pharmacologically or using environmental stimulation can correct adult neurogenesis defects in DS.

  15. Environmental enrichment rescues DYRK1A activity and hippocampal adult neurogenesis in TgDyrk1A.

    PubMed

    Pons-Espinal, Meritxell; Martinez de Lagran, Maria; Dierssen, Mara

    2013-12-01

    Hippocampal adult neurogenesis disruptions have been suggested as one of the neuronal plasticity mechanisms underlying learning and memory impairment in Down syndrome (DS). However, it remains unknown whether specific candidate genes are implicated in these phenotypes in the multifactorial context of DS. Here we report that transgenic mice (TgDyrk1A) with overdosage of Dyrk1A, a DS candidate gene, show important alterations in adult neurogenesis including reduced cell proliferation rate, altered cell cycle progression and reduced cell cycle exit leading to premature migration, differentiation and reduced survival of newly born cells. In addition, less proportion of newborn hippocampal TgDyrk1A neurons are activated upon learning, suggesting reduced integration in learning circuits. Some of these alterations were DYRK1A kinase-dependent since we could rescue those using a DYRK1A inhibitor, epigallocatechin-3-gallate. Environmental enrichment also normalized DYRK1A kinase overdosage in the hippocampus, and rescued adult neurogenesis alterations in TgDyrk1A mice. We conclude that Dyrk1A is a good candidate to explain neuronal plasticity deficits in DS and that normalizing the excess of DYRK1A kinase activity either pharmacologically or using environmental stimulation can correct adult neurogenesis defects in DS. PMID:23969234

  16. Intraoperative Neural Response Telemetry and Neural Recovery Function: a Comparative Study between Adults and Children.

    PubMed

    Carvalho, Bettina; Hamerschmidt, Rogerio; Wiemes, Gislaine

    2015-01-01

    Introduction Neural response telemetry (NRT) is a method of capturing the action potential of the distal portion of the auditory nerve in cochlear implant (CI) users, using the CI itself to elicit and record the answers. In addition, it can also measure the recovery function of the auditory nerve (REC), that is, the refractory properties of the nerve. It is not clear in the literature whether the responses from adults are the same as those from children. Objective To compare the results of NRT and REC between adults and children undergoing CI surgery. Methods Cross-sectional, descriptive, and retrospective study of the results of NRT and REC for patients undergoing IC at our service. The NRT is assessed by the level of amplitude (microvolts) and REC as a function of three parameters: A (saturation level, in microvolts), t0 (absolute refractory period, in seconds), and tau (curve of the model function), measured in three electrodes (apical, medial, and basal). Results Fifty-two patients were evaluated with intraoperative NRT (26 adults and 26 children), and 24 with REC (12 adults and 12 children). No statistically significant difference was found between intraoperative responses of adults and children for NRT or for REC's three parameters, except for parameter A of the basal electrode. Conclusion The results of intraoperative NRT and REC were not different between adults and children, except for parameter A of the basal electrode. PMID:25992145

  17. Intraoperative Neural Response Telemetry and Neural Recovery Function: a Comparative Study between Adults and Children

    PubMed Central

    Carvalho, Bettina; Hamerschmidt, Rogerio; Wiemes, Gislaine

    2014-01-01

    Introduction Neural response telemetry (NRT) is a method of capturing the action potential of the distal portion of the auditory nerve in cochlear implant (CI) users, using the CI itself to elicit and record the answers. In addition, it can also measure the recovery function of the auditory nerve (REC), that is, the refractory properties of the nerve. It is not clear in the literature whether the responses from adults are the same as those from children. Objective To compare the results of NRT and REC between adults and children undergoing CI surgery. Methods Cross-sectional, descriptive, and retrospective study of the results of NRT and REC for patients undergoing IC at our service. The NRT is assessed by the level of amplitude (microvolts) and REC as a function of three parameters: A (saturation level, in microvolts), t0 (absolute refractory period, in seconds), and tau (curve of the model function), measured in three electrodes (apical, medial, and basal). Results Fifty-two patients were evaluated with intraoperative NRT (26 adults and 26 children), and 24 with REC (12 adults and 12 children). No statistically significant difference was found between intraoperative responses of adults and children for NRT or for REC's three parameters, except for parameter A of the basal electrode. Conclusion The results of intraoperative NRT and REC were not different between adults and children, except for parameter A of the basal electrode. PMID:25992145

  18. Hippocampal injury-induced cognitive and mood dysfunction, altered neurogenesis, and epilepsy: can early neural stem cell grafting intervention provide protection?

    PubMed

    Shetty, Ashok K

    2014-09-01

    Damage to the hippocampus can occur through many causes including head trauma, ischemia, stroke, status epilepticus, and Alzheimer's disease. Certain changes such as increased levels of neurogenesis and elevated concentrations of multiple neurotrophic factors that ensue in the acute phase after injury seem beneficial for restraining hippocampal dysfunction. However, many alterations that arise in the intermediate to chronic phase after injury such as abnormal migration of newly born neurons, aberrant synaptic reorganization, progressive loss of inhibitory gamma-amino butyric acid positive interneurons including those expressing reelin, greatly declined neurogenesis, and sustained inflammation are detrimental. Consequently, the net effect of postinjury plasticity in the hippocampus remains inadequate for promoting significant functional recovery. Hence, ideal therapeutic interventions ought to be efficient for restraining these detrimental changes in order to block the propensity of most hippocampal injuries to evolve into learning deficits, memory dysfunction, depression, and temporal lobe epilepsy. Neural stem cell (NSC) grafting into the hippocampus early after injury appears alluring from this perspective because several recent studies have demonstrated the therapeutic value of this intervention, especially for preventing/easing memory dysfunction, depression, and temporal lobe epilepsy development in the chronic phase after injury. These beneficial effects of NSC grafting appeared to be mediated through considerable modulation of aberrant hippocampal postinjury plasticity with additions of new inhibitory gamma-amino butyric acid positive interneurons and astrocytes secreting a variety of neurotrophic factors and anticonvulsant proteins. This review presents advancements made in NSC grafting therapy for treating hippocampal injury in animal models of excitotoxic injury, traumatic brain injury, Alzheimer's disease, and status epilepticus; potential mechanisms of

  19. Isolation, culture and analysis of adult subependymal neural stem cells.

    PubMed

    Belenguer, Germán; Domingo-Muelas, Ana; Ferrón, Sacri R; Morante-Redolat, José Manuel; Fariñas, Isabel

    2016-01-01

    Individual cells dissected from the subependymal neurogenic niche of the adult mouse brain proliferate in medium containing basic fibroblast growth factor (bFGF) and/or epidermal growth factor (EGF) as mitogens, to produce multipotent clonal aggregates called neurospheres. These cultures constitute a powerful tool for the study of neural stem cells (NSCs) provided that they allow the analysis of their features and potential capacity in a controlled environment that can be modulated and monitored more accurately than in vivo. Clonogenic and population analyses under mitogen addition or withdrawal allow the quantification of the self-renewing and multilineage potency of these cells and the identification of the mechanisms involved in these properties. Here, we describe a set of procedures developed and/or modified by our group including several experimental options that can be used either independently or in combination for the ex vivo assessment of cell properties of NSCs obtained from the adult subependymal niche. PMID:27016251

  20. Biology of the adult enteric neural stem cell.

    PubMed

    Estrada-Mondaca, Sandino; Carreón-Rodríguez, Alfonso; Belkind-Gerson, Jaime

    2007-01-01

    An increasing body of evidence has accumulated in recent years supporting the existence of neural stem cells in the adult gut. There are at least three groups that have obtained them using different methodologies and have described them in vitro. There is a growing amount of knowledge on their biology, but many questions are yet unanswered. Among these questions is whether these cells are part of a permanent undifferentiated pool or are recruited in a regular basis; in addition, the factors and genes involved in their survival, proliferation, migration, and differentiation are largely unknown. Finally, with between 10 and 20% of adults suffering from diseases involving the enteric nervous system, most notably irritable bowel syndrome and gastroesophageal reflux, what is the possible role of enteric nervous stem cells in health and disease?

  1. Wireless hippocampal neural recording via a multiple input RF receiver to construct place-specific firing fields.

    PubMed

    Lee, Seung Bae; Manns, Joseph R; Ghovanloo, Maysam

    2012-01-01

    This paper reports scientifically meaningful in vivo experiments using a 32-channel wireless neural recording system (WINeR). The WINeR system is divided into transmitter (Tx) and receiver (Rx) parts. On the Tx side, we had WINeR-6, a system-on-a-chip (SoC) that operated based on time division multiplexing (TDM) of pulse width modulated (PWM) samples. The chip was fabricated in a 0.5-µm CMOS process, occupying 4.9 × 3.3 mm(2) and consuming 15 mW from ±1.5V supplies. The Rx used two antennas with separate pathways to down-convert the RF signal from a large area. A time-to-digital converter (TDC) in an FPGA converted the PWM pulses into digitized samples. In order to further increase the wireless coverage area and eliminate blind spots within a large experimental arena, two receivers were synchronized. The WINeR system was used to record epileptic activities from a rat that was injected with tetanus toxin (TT) in the dorsal hippocampus. In a different in vivo experiment, place-specific firing fields of place cells, which are parts of the hippocampal-dependent memory, were mapped from a series of behavioral experiments from a rat running in a circular track. Results from the same animal were compared against a commercial hard-wired recording system to evaluate the quality of the wireless recordings.

  2. Directed differentiation of postnatal hippocampal neural stem cells generates nuclear receptor related-1 protein- and tyrosine hydroxylase-expressing cells

    PubMed Central

    Ding, Yinxiu; Zhang, Zixin; Ma, Jiangbo; Xia, Hechun; Wang, Yin; Liu, Yinming; Ma, Quanrui; Sun, Tao; Liu, Juan

    2016-01-01

    Parkinson's disease (PD) is a severe neurodegenerative disorder. Although the detailed underlying molecular mechanism remains to be elucidated, the major pathological feature of PD is the loss of dopaminergic (DA) neurons of the substantia nigra. The use of donor stem cells to replace DA neurons may be a key breakthrough in the treatment of PD. In the present study, the growth kinetics of hippocampal neural stem cells (Hip-NSCs) isolated from postnatal mice and cultured in vitro were observed, specifically the generation of cells expressing DA neuronal markers nuclear receptor related-1 protein (Nurr1) and tyrosine hydroxylase (TH). It was revealed that Hip-NSCs differentiated primarily into astrocytes when cultured in serum-containing medium. However, in low serum conditions, the number of βIII tubulin-positive neurons increased markedly. The proportion of Nurr1-positive cells and TH-positive neurons, significantly increased with increasing duration of directed differentiation of Hip-NSCs (P=0.0187 and 0.0254, respectively). The results of the present study reveal that Hip-NSCs may be induced to differentiate in vitro into neurons expressing Nurr1 and TH, known to be critical regulators of DA neuronal fate. Additionally, their expression may be necessary to facilitate neuronal maturation in vitro. These data suggest that Hip-NSCs may serve as a source of DA neurons for cell therapy in patients diagnosed with PD. PMID:27432537

  3. Resveratrol: A Potential Hippocampal Plasticity Enhancer.

    PubMed

    Dias, Gisele Pereira; Cocks, Graham; do Nascimento Bevilaqua, Mário Cesar; Nardi, Antonio Egidio; Thuret, Sandrine

    2016-01-01

    The search for molecules capable of restoring altered hippocampal plasticity in psychiatric and neurological conditions is one of the most important tasks of modern neuroscience. It is well established that neural plasticity, such as the ability of the postnatal hippocampus to continuously generate newly functional neurons throughout life, a process called adult hippocampal neurogenesis (AHN), can be modulated not only by pharmacological agents, physical exercise, and environmental enrichment, but also by "nutraceutical" agents. In this review we focus on resveratrol, a phenol and phytoalexin found in the skin of grapes and red berries, as well as in nuts. Resveratrol has been reported to have antioxidant and antitumor properties, but its effects as a neural plasticity inducer are still debated. The current review examines recent evidence implicating resveratrol in regulating hippocampal neural plasticity and in mitigating the effects of various disorders and diseases on this important brain structure. Overall, findings show that resveratrol can improve cognition and mood and enhance hippocampal plasticity and AHN; however, some studies report opposite effects, with resveratrol inhibiting aspects of AHN. Therefore, further investigation is needed to resolve these controversies before resveratrol can be established as a safe coadjuvant in preventing and treating neuropsychiatric conditions. PMID:27313836

  4. Resveratrol: A Potential Hippocampal Plasticity Enhancer

    PubMed Central

    Dias, Gisele Pereira; Cocks, Graham; do Nascimento Bevilaqua, Mário Cesar; Nardi, Antonio Egidio

    2016-01-01

    The search for molecules capable of restoring altered hippocampal plasticity in psychiatric and neurological conditions is one of the most important tasks of modern neuroscience. It is well established that neural plasticity, such as the ability of the postnatal hippocampus to continuously generate newly functional neurons throughout life, a process called adult hippocampal neurogenesis (AHN), can be modulated not only by pharmacological agents, physical exercise, and environmental enrichment, but also by “nutraceutical” agents. In this review we focus on resveratrol, a phenol and phytoalexin found in the skin of grapes and red berries, as well as in nuts. Resveratrol has been reported to have antioxidant and antitumor properties, but its effects as a neural plasticity inducer are still debated. The current review examines recent evidence implicating resveratrol in regulating hippocampal neural plasticity and in mitigating the effects of various disorders and diseases on this important brain structure. Overall, findings show that resveratrol can improve cognition and mood and enhance hippocampal plasticity and AHN; however, some studies report opposite effects, with resveratrol inhibiting aspects of AHN. Therefore, further investigation is needed to resolve these controversies before resveratrol can be established as a safe coadjuvant in preventing and treating neuropsychiatric conditions. PMID:27313836

  5. Glycogen Synthase Kinase 3 Inhibition Promotes Adult Hippocampal Neurogenesis in Vitro and in Vivo

    PubMed Central

    2012-01-01

    Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase originally identified as a regulator of glycogen metabolism but it also plays a pivotal role in numerous cellular functions, including differentiation, cell cycle regulation, and proliferation. The dentate gyrus of the hippocampus, together with the subventricular zone of the lateral ventricles, is one of the regions in which neurogenesis takes place in the adult brain. Here, using a chemical genetic approach that involves the use of several diverse inhibitors of GSK-3 as pharmacological tools, we show that inhibition of GSK-3 induces proliferation, migration, and differentiation of neural stem cells toward a neuronal phenotype in in vitro studies. Also, we demonstrate that inhibition of GSK-3 with the small molecule NP03112, called tideglusib, induces neurogenesis in the dentate gyrus of the hippocampus of adult rats. Taken together, our results suggest that GSK-3 should be considered as a new target molecule for modulating the production and integration of new neurons in the hippocampus as a treatment for neurodegenerative diseases or brain injury and, consequently, its inhibitors may represent new potential therapeutic drugs in neuroregenerative medicine. PMID:23173075

  6. Glycogen synthase kinase 3 inhibition promotes adult hippocampal neurogenesis in vitro and in vivo.

    PubMed

    Morales-Garcia, Jose A; Luna-Medina, Rosario; Alonso-Gil, Sandra; Sanz-Sancristobal, Marina; Palomo, Valle; Gil, Carmen; Santos, Angel; Martinez, Ana; Perez-Castillo, Ana

    2012-11-21

    Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase originally identified as a regulator of glycogen metabolism but it also plays a pivotal role in numerous cellular functions, including differentiation, cell cycle regulation, and proliferation. The dentate gyrus of the hippocampus, together with the subventricular zone of the lateral ventricles, is one of the regions in which neurogenesis takes place in the adult brain. Here, using a chemical genetic approach that involves the use of several diverse inhibitors of GSK-3 as pharmacological tools, we show that inhibition of GSK-3 induces proliferation, migration, and differentiation of neural stem cells toward a neuronal phenotype in in vitro studies. Also, we demonstrate that inhibition of GSK-3 with the small molecule NP03112, called tideglusib, induces neurogenesis in the dentate gyrus of the hippocampus of adult rats. Taken together, our results suggest that GSK-3 should be considered as a new target molecule for modulating the production and integration of new neurons in the hippocampus as a treatment for neurodegenerative diseases or brain injury and, consequently, its inhibitors may represent new potential therapeutic drugs in neuroregenerative medicine.

  7. Neural Processing of Emotional Prosody across the Adult Lifespan

    PubMed Central

    Demenescu, Liliana Ramona; Kato, Yutaka; Mathiak, Klaus

    2015-01-01

    Emotion recognition deficits emerge with the increasing age, in particular, a decline in the identification of sadness. However, little is known about the age-related changes of emotion processing in sensory, affective, and executive brain areas. This functional magnetic resonance imaging (fMRI) study investigated neural correlates of auditory processing of prosody across adult lifespan. Unattended detection of emotional prosody changes was assessed in 21 young (age range: 18–35 years), 19 middle-aged (age range: 36–55 years), and 15 older (age range: 56–75 years) adults. Pseudowords uttered with neutral prosody were standards in an oddball paradigm with angry, sad, happy, and gender deviants (total 20% deviants). Changes in emotional prosody and voice gender elicited bilateral superior temporal gyri (STG) responses reflecting automatic encoding of prosody. At the right STG, responses to sad deviants decreased linearly with age, whereas happy events exhibited a nonlinear relationship. In contrast to behavioral data, no age by sex interaction emerged on the neural networks. The aging decline of emotion processing of prosodic cues emerges already at an early automatic stage of information processing at the level of the auditory cortex. However, top-down modulation may lead to an additional perceptional bias, for example, towards positive stimuli, and may depend on context factors such as the listener's sex. PMID:26583118

  8. Neural Processing of Emotional Prosody across the Adult Lifespan.

    PubMed

    Demenescu, Liliana Ramona; Kato, Yutaka; Mathiak, Klaus

    2015-01-01

    Emotion recognition deficits emerge with the increasing age, in particular, a decline in the identification of sadness. However, little is known about the age-related changes of emotion processing in sensory, affective, and executive brain areas. This functional magnetic resonance imaging (fMRI) study investigated neural correlates of auditory processing of prosody across adult lifespan. Unattended detection of emotional prosody changes was assessed in 21 young (age range: 18-35 years), 19 middle-aged (age range: 36-55 years), and 15 older (age range: 56-75 years) adults. Pseudowords uttered with neutral prosody were standards in an oddball paradigm with angry, sad, happy, and gender deviants (total 20% deviants). Changes in emotional prosody and voice gender elicited bilateral superior temporal gyri (STG) responses reflecting automatic encoding of prosody. At the right STG, responses to sad deviants decreased linearly with age, whereas happy events exhibited a nonlinear relationship. In contrast to behavioral data, no age by sex interaction emerged on the neural networks. The aging decline of emotion processing of prosodic cues emerges already at an early automatic stage of information processing at the level of the auditory cortex. However, top-down modulation may lead to an additional perceptional bias, for example, towards positive stimuli, and may depend on context factors such as the listener's sex. PMID:26583118

  9. Time-dependent enhancement of hippocampus-dependent memory after treatment with memantine: Implications for enhanced hippocampal adult neurogenesis.

    PubMed

    Ishikawa, Rie; Kim, Ryang; Namba, Takashi; Kohsaka, Shinichi; Uchino, Shigeo; Kida, Satoshi

    2014-07-01

    Adult hippocampal neurogenesis has been suggested to play modulatory roles in learning and memory. Importantly, previous studies have shown that newborn neurons in the adult hippocampus are integrated into the dentate gyrus circuit and are recruited more efficiently into the hippocampal memory trace of mice when they become 3 weeks old. Interestingly, a single high-dose treatment with the N-methyl-d-aspartate receptor antagonist memantine (MEM) has been shown to increase hippocampal neurogenesis dramatically by promoting cell proliferation. In the present study, to understand the impact of increased adult neurogenesis on memory performance, we examined the effects of a single treatment of MEM on hippocampus-dependent memory in mice. Interestingly, mice treated with MEM showed an improvement of hippocampus-dependent spatial and social recognition memories when they were trained and tested at 3-6 weeks, but not at 3 days or 4 months, after treatment with MEM. Importantly, we observed a significant positive correlation between the scores for spatial memory (probe trial in the Morris water maze task) and the number of young mature neurons (3 weeks old) in MEM-treated mice, but not saline-treated mice. We also observed that the young mature neurons generated by treatment with MEM were recruited into the trace of spatial memory similarly to those generated through endogenous neurogenesis. Taken together, our observations suggest that treatment with MEM temporally improves hippocampus-dependent memory formation and that the newborn neurons increased by treatment with MEM contribute to this improvement when they become 3 weeks old.

  10. The effects of chronic stress on hippocampal adult neurogenesis and dendritic plasticity are reversed by selective MAO-A inhibition.

    PubMed

    Morais, Mónica; Santos, Paulo A R; Mateus-Pinheiro, António; Patrício, Patrícia; Pinto, Luísa; Sousa, Nuno; Pedroso, Pedro; Almeida, Susana; Filipe, Augusto; Bessa, João M

    2014-12-01

    There is accumulating evidence that adult neurogenesis and dendritic plasticity in the hippocampus are neuroplastic phenomena, highly sensitive to the effects of chronic stress and treatment with most classes of antidepressant drugs, being involved in the onset and recovery from depression. However, the effects of antidepressants that act through the selective inhibition of monoamine oxidase subtype A (MAO-A) in these phenomena are still largely unknown. In the present study, adult neurogenesis and neuronal morphology were examined in the hippocampus of rats exposed to chronic mild stress (CMS) and treated with the selective reversible MAO-A inhibitor (RIMA) drug, pirlindole and the selective serotonin reuptake inhibitor (SSRI), fluoxetine. The results provide the first demonstration that selective MAO-A inhibition with pirlindole is able to revert the behavioural effects of stress exposure while promoting hippocampal adult neurogenesis and rescuing the stress-induced dendritic atrophy of granule neurons.

  11. Synaptic dysfunction, memory deficits and hippocampal atrophy due to ablation of mitochondrial fission in adult forebrain neurons

    PubMed Central

    Oettinghaus, B; Schulz, J M; Restelli, L M; Licci, M; Savoia, C; Schmidt, A; Schmitt, K; Grimm, A; Morè, L; Hench, J; Tolnay, M; Eckert, A; D'Adamo, P; Franken, P; Ishihara, N; Mihara, K; Bischofberger, J; Scorrano, L; Frank, S

    2016-01-01

    Well-balanced mitochondrial fission and fusion processes are essential for nervous system development. Loss of function of the main mitochondrial fission mediator, dynamin-related protein 1 (Drp1), is lethal early during embryonic development or around birth, but the role of mitochondrial fission in adult neurons remains unclear. Here we show that inducible Drp1 ablation in neurons of the adult mouse forebrain results in progressive, neuronal subtype-specific alterations of mitochondrial morphology in the hippocampus that are marginally responsive to antioxidant treatment. Furthermore, DRP1 loss affects synaptic transmission and memory function. Although these changes culminate in hippocampal atrophy, they are not sufficient to cause neuronal cell death within 10 weeks of genetic Drp1 ablation. Collectively, our in vivo observations clarify the role of mitochondrial fission in neurons, demonstrating that Drp1 ablation in adult forebrain neurons compromises critical neuronal functions without causing overt neurodegeneration. PMID:25909888

  12. Monocyte chemoattractant protein-1 affects migration of hippocampal neural progenitors following status epilepticus in rats

    PubMed Central

    2013-01-01

    Background Epilepsy is a common brain disorder characterized by a chronic predisposition to generate spontaneous seizures. The mechanisms for epilepsy formation remain unknown. A growing body of evidence suggests the involvement of inflammatory processes in epileptogenesis. In the present study, we investigated the involvement of monocyte chemoattractant protein-1 (MCP-1) in aberrant migration of hippocampal progenitors in rats after the insult of status epilepticus (SE). Methods SE was induced with pilocarpine in Sprague–Dawley rats. Transcriptional expression of MCP-1 in the dentate gyrus (DG) was measured using quantitative real-time PCR. From 1 to 28 days after SE, the temporal profiles of MCP-1 protein expression in DG were evaluated using enzyme-linked immunosorbent assay. Chemokine (C-C motif) receptor 2 (CCR2) expression in doublecortin-positive neuronal progenitors was examined using double-labeling immunohistochemistry. The involvement of MCP-1/CCR2 signaling in aberrant neuronal progenitor migration in the epileptic hippocampus was assessed in the SE rats using a CCR2 antagonist, RS102895, and the ectopic migration of neuronal progenitors was determined using Prox1/doublecortin double immunostaining. Results After SE, MCP-1 gene was significantly upregulated and its corresponding protein expression in the DG was significantly increased on days 1 and 3. Some hilar ectopic progenitor cells of SE rats expressed the MCP-1 receptor, CCR2. Notably, the ectopic migration of neuronal progenitors into hilus was attenuated by a blockade of the MCP-1/CCR2 interaction with a selective CCR2 inhibitor, RS102895. Conclusions An increase in dentate MCP-1 is associated with seizure-induced aberrant migration of neuronal progenitors through the interaction with CCR2. The upregulation of MCP-1 after an insult of SE may play a role in the generation of epilepsy. PMID:23339567

  13. Deep-brain magnetic stimulation promotes adult hippocampal neurogenesis and alleviates stress-related behaviors in mouse models for neuropsychiatric disorders

    PubMed Central

    2014-01-01

    Background Repetitive Transcranial Magnetic Stimulation (rTMS)/ Deep-brain Magnetic Stimulation (DMS) is an effective therapy for various neuropsychiatric disorders including major depression disorder. The molecular and cellular mechanisms underlying the impacts of rTMS/DMS on the brain are not yet fully understood. Results Here we studied the effects of deep-brain magnetic stimulation to brain on the molecular and cellular level. We examined the adult hippocampal neurogenesis and hippocampal synaptic plasticity of rodent under stress conditions with deep-brain magnetic stimulation treatment. We found that DMS promotes adult hippocampal neurogenesis significantly and facilitates the development of adult new-born neurons. Remarkably, DMS exerts anti-depression effects in the learned helplessness mouse model and rescues hippocampal long-term plasticity impaired by restraint stress in rats. Moreover, DMS alleviates the stress response in a mouse model for Rett syndrome and prolongs the life span of these animals dramatically. Conclusions Deep-brain magnetic stimulation greatly facilitates adult hippocampal neurogenesis and maturation, also alleviates depression and stress-related responses in animal models. PMID:24512669

  14. Running rescues defective adult neurogenesis by shortening the length of the cell cycle of neural stem and progenitor cells.

    PubMed

    Farioli-Vecchioli, Stefano; Mattera, Andrea; Micheli, Laura; Ceccarelli, Manuela; Leonardi, Luca; Saraulli, Daniele; Costanzi, Marco; Cestari, Vincenzo; Rouault, Jean-Pierre; Tirone, Felice

    2014-07-01

    Physical exercise increases the generation of new neurons in adult neurogenesis. However, only few studies have investigated the beneficial effects of physical exercise in paradigms of impaired neurogenesis. Here, we demonstrate that running fully reverses the deficient adult neurogenesis within the hippocampus and subventricular zone of the lateral ventricle, observed in mice lacking the antiproliferative gene Btg1. We also evaluated for the first time how running influences the cell cycle kinetics of stem and precursor subpopulations of wild-type and Btg1-null mice, using a new method to determine the cell cycle length. Our data show that in wild-type mice running leads to a cell cycle shortening only of NeuroD1-positive progenitor cells. In contrast, in Btg1-null mice, physical exercise fully reactivates the defective hippocampal neurogenesis, by shortening the S-phase length and the overall cell cycle duration of both neural stem (glial fibrillary acidic protein(+) and Sox2(+)) and progenitor (NeuroD1(+)) cells. These events are sufficient and necessary to reactivate the hyperproliferation observed in Btg1-null early-postnatal mice and to expand the pool of adult neural stem and progenitor cells. Such a sustained increase of cell proliferation in Btg1-null mice after running provides a long-lasting increment of proliferation, differentiation, and production of newborn neurons, which rescues the impaired pattern separation previously identified in Btg1-null mice. This study shows that running positively affects the cell cycle kinetics of specific subpopulations of newly generated neurons and suggests that the plasticity of neural stem cells without cell cycle inhibitory control is reactivated by running, with implications for the long-term modulation of neurogenesis.

  15. Treadmill running frequency on anxiety and hippocampal adenosine receptors density in adult and middle-aged rats.

    PubMed

    Costa, Marcelo S; Ardais, Ana Paula; Fioreze, Gabriela T; Mioranzza, Sabrina; Botton, Paulo Henrique S; Portela, Luis Valmor; Souza, Diogo O; Porciúncula, Lisiane O

    2012-01-10

    Physical exercise protocols have varied widely across studies raising the question of whether there is an optimal intensity, duration and frequency that would produce maximal benefits in attenuating symptoms related to anxiety disorders. Although physical exercise causes modifications in neurotransmission systems, the involvement of neuromodulators such as adenosine has not been investigated after chronic exercise training. Anxiety-related behavior was assessed in the elevated plus-maze in adult and middle-aged rats submitted to 8 weeks of treadmill running 1, 3 or 7 days/week. The speed of running was weekly adjusted to maintain moderate intensity. The hippocampal adenosine A1 and A2A receptors densities were also assessed. Treadmill running protocol was efficient in increasing physical exercise capacity in adult and middle-aged rats. All frequencies of treadmill running equally decreased the time spent in the open arms in adult animals. Middle-aged treadmill control rats presented lower time spent in the open arms than adult treadmill control rats. However, treadmill running one day/week reversed this age effect. Adenosine A1 receptor was not changed between groups, but treadmill running counteracted the age-related increase in adenosine A2A receptors. Although treadmill running, independent from frequency, triggered anxiety in adult rats and treadmill running one day/week reversed the age-related anxiety, no consistent relationship was found with hippocampal adenosine receptors densities. Thus, our data suggest that as a complementary therapy in the management of mental disturbances, the frequency and intensity of physical exercise should be taken into account according to age. Besides, this is the first study reporting the modulation of adenosine receptors after chronic physical exercise, which could be important to prevent neurological disorders associated to increase in adenosine A2A receptors.

  16. Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring.

    PubMed

    Boulle, Fabien; Pawluski, Jodi L; Homberg, Judith R; Machiels, Barbie; Kroeze, Yvet; Kumar, Neha; Steinbusch, Harry W M; Kenis, Gunter; van den Hove, Daniel L A

    2016-04-01

    A growing number of infants are exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. Perinatal exposure to SSRI medications alter neuroplasticity and increase depressive- and anxiety-related behaviors, particularly in male offspring as little work has been done in female offspring to date. The long-term effects of SSRI on development can also differ with previous exposure to prenatal stress, a model of maternal depression. Because of the limited work done on the role of developmental SSRI exposure on neurobehavioral outcomes in female offspring, the aim of the present study was to investigate how developmental fluoxetine exposure affects anxiety and depression-like behavior, as well as the regulation of hippocampal brain-derived neurotrophic factor (BDNF) signaling in the hippocampus of adult female offspring. To do this female Sprague-Dawley rat offspring were exposed to prenatal stress and fluoxetine via the dam, for a total of four groups of female offspring: 1) No Stress+Vehicle, 2) No Stress+Fluoxetine, 3) Prenatal Stress+Vehicle, and 4) Prenatal Stress+Fluoxetine. Primary results show that, in adult female offspring, developmental SSRI exposure significantly increases behavioral despair measures on the forced swim test, decreases hippocampal BDNF exon IV mRNA levels, and increases levels of the repressive histone 3 lysine 27 tri-methylated mark at the corresponding promoter. There was also a significant negative correlation between hippocampal BDNF exon IV mRNA levels and immobility in the forced swim test. No effects of prenatal stress or developmental fluoxetine exposure were seen on tests of anxiety-like behavior. This research provides important evidence for the long-term programming effects of early-life exposure to SSRIs on female offspring, particularily with regard to affect-related behaviors and their underlying molecular mechanisms. PMID:26844865

  17. Effects of long-term malnutrition and rehabilitation on the hippocampal formation of the adult rat. A morphometric study.

    PubMed Central

    Andrade, J P; Madeira, M D; Paula-Barbosa, M M

    1995-01-01

    We have previously shown that the numerical density of dentate granule and CA3 pyramidal cells of adult rats is reduced after lengthy periods of low-protein diet. In this study, the total number of these neurons was estimated, together with those for the hilar and CA1 pyramidal cells in order to obtain a complete and unbiased insight into the effects of malnutrition and rehabilitation from malnutrition on the structure of the hippocampal formation. Groups of 2-month-old rats were fed a low protein diet (8% casein) for 6, 12 and 18 months and compared with age-matched control and recovery rats. The recovery group was fed a low protein diet for 6 months and then switched to normal diet during the same period. Total numbers of neurons of each hippocampal region were calculated from their numerical density, estimated with the physical disector, and from the volume of the respective cell layers, after correction for the tissue shrinkage factor. The total number of granule, hilar, CA1 and CA3 pyramidal cells was reduced in all groups of malnourished rats including the recovery group. No differences were found between malnourished and recovery groups. These findings indicate that a prolonged low protein diet, started in adult life, leads to a deficit in neuronal numbers in the hippocampal formation, and that it may also disrupt the normal process of cell acquisition in the dentate gyrus. Moreover, our data support the view that the morphological alterations induced by a low protein intake are irreversible. Images Fig. 1 Fig. 2 Fig. 3 PMID:7592001

  18. The role of dietary polyphenols on adult hippocampal neurogenesis: molecular mechanisms and behavioural effects on depression and anxiety.

    PubMed

    Dias, Gisele Pereira; Cavegn, Nicole; Nix, Alina; do Nascimento Bevilaqua, Mário Cesar; Stangl, Doris; Zainuddin, Muhammad Syahrul Anwar; Nardi, Antonio Egidio; Gardino, Patricia Franca; Thuret, Sandrine

    2012-01-01

    Although it has been long believed that new neurons were only generated during development, there is now growing evidence indicating that at least two regions in the brain are capable of continuously generating functional neurons: the subventricular zone and the dentate gyrus of the hippocampus. Adult hippocampal neurogenesis (AHN) is a widely observed phenomenon verified in different adult mammalian species including humans. Factors such as environmental enrichment, voluntary exercise, and diet have been linked to increased levels of AHN. Conversely, aging, stress, anxiety and depression have been suggested to hinder it. However, the mechanisms underlying these effects are still unclear and yet to be determined. In this paper, we discuss some recent findings addressing the effects of different dietary polyphenols on hippocampal cell proliferation and differentiation, models of anxiety, and depression as well as some proposed molecular mechanisms underlying those effects with particular focus on those related to AHN. As a whole, dietary polyphenols seem to exert positive effects on anxiety and depression, possibly in part via regulation of AHN. Studies on the effects of dietary polyphenols on behaviour and AHN may play an important role in the approach to use diet as part of the therapeutic interventions for mental-health-related conditions.

  19. Hippocampal neuroligin-2 links early-life stress with impaired social recognition and increased aggression in adult mice.

    PubMed

    Kohl, Christine; Wang, Xiao-Dong; Grosse, Jocelyn; Fournier, Céline; Harbich, Daniela; Westerholz, Sören; Li, Ji-Tao; Bacq, Alexandre; Sippel, Claudia; Hausch, Felix; Sandi, Carmen; Schmidt, Mathias V

    2015-05-01

    Early-life stress is a key risk factor for the development of neuropsychiatric disorders later in life. Neuronal cell adhesion molecules have been strongly implicated in the pathophysiology of psychiatric disorders and in modulating social behaviors associated with these diseases. Neuroligin-2 is a synaptic cell adhesion molecule, located at the postsynaptic membrane of inhibitory GABAergic synapses, and is involved in synaptic stabilization and maturation. Alterations in neuroligin-2 expression have previously been associated with changes in social behavior linked to psychiatric disorders, including schizophrenia and autism. In this study, we show that early-life stress, induced by limited nesting and bedding material, leads to impaired social recognition and increased aggression in adult mice, accompanied by increased expression levels of hippocampal neuroligin-2. Viral overexpression of hippocampal neuroligin-2 in adulthood mimics early-life stress-induced alterations in social behavior and social cognition. Moreover, viral knockdown of neuroligin-2 in the adult hippocampus attenuates the early-life stress-induced behavioral changes. Our results highlight the importance of neuroligin-2 in mediating early-life stress effects on social behavior and social cognition and its promising role as a novel therapeutic target for neuropsychiatric disorders.

  20. Variability of doublecortin-associated dendrite maturation in adult hippocampal neurogenesis is independent of the regulation of precursor cell proliferation

    PubMed Central

    Plümpe, Tobias; Ehninger, Dan; Steiner, Barbara; Klempin, Friederike; Jessberger, Sebastian; Brandt, Moritz; Römer, Benedikt; Rodriguez, Gerardo Ramirez; Kronenberg, Golo; Kempermann, Gerd

    2006-01-01

    Background In the course of adult hippocampal neurogenesis most regulation takes place during the phase of doublecortin (DCX) expression, either as pro-proliferative effect on precursor cells or as survival-promoting effect on postmitotic cells. We here obtained quantitative data about the proliferative population and the dynamics of postmitotic dendrite development during the period of DCX expression. The question was, whether any indication could be obtained that the initiation of dendrite development is timely bound to the exit from the cell cycle. Alternatively, the temporal course of morphological maturation might be subject to additional regulatory events. Results We found that (1) 20% of the DCX population were precursor cells in cell cycle, whereas more than 70% were postmitotic, (2) the time span until newborn cells had reached the most mature stage associated with DCX expression varied between 3 days and several weeks, (3) positive or negative regulation of precursor cell proliferation did not alter the pattern and dynamics of dendrite development. Dendrite maturation was largely independent of close contacts to astrocytes. Conclusion These data imply that dendrite maturation of immature neurons is initiated at varying times after cell cycle exit, is variable in duration, and is controlled independently of the regulation of precursor cell proliferation. We conclude that in addition to the major regulatory events in cell proliferation and selective survival, additional micro-regulatory events influence the course of adult hippocampal neurogenesis. PMID:17105671

  1. The relationship of contextual cueing and hippocampal volume in amnestic MCI patients and cognitively normal older adults

    PubMed Central

    Negash, Selam; Kliot, Daria; Howard, Darlene V.; Howard, James H.; Das, Sandhistu R.; Yushkevich, Paul A.; Pluta, John B.; Arnold, Steven E.; Wolk, David A.

    2015-01-01

    Objective There is currently some debate as to whether hippocampus mediates contextual cueing. In the present study, we examined contextual cueing in patients diagnosed with mild cognitive impairment (MCI) and healthy older adults, with the main goal of investigating the role of hippocampus in this form of learning. Method amnestic MCI (aMCI) patients and healthy controls completed the contextual cueing task, in which they were asked to search for a target (a horizontal T) in an array of distractors (rotated L’s). Unbeknownst to them, the spatial arrangement of elements on some displays was repeated thus making the configuration a contextual cue to the location of the target. In contrast, the configuration for novel displays was generated randomly on each trial. The difference in response times between repeated and novel configurations served as a measure of contextual learning. Results aMCI patients, as a group, were able to learn spatial contextual cues as well as healthy older adults. However, better learning on this task was associated with higher hippocampal volume, particularly in right hemisphere. Further, contextual cueing performance was significantly associated with hippocampal volume, even after controlling for age and MCI status. Conclusions These findings support the role of the hippocampus in learning of spatial contexts, and also suggest that the contextual cueing paradigm can be useful in detecting neuropathological changes associated with the hippocampus. PMID:25991413

  2. The Neural Basis of Speech Parsing in Children and Adults

    PubMed Central

    McNealy, Kristin; Mazziotta, John C.; Dapretto, Mirella

    2011-01-01

    Word segmentation, detecting word boundaries in continuous speech, is a fundamental aspect of language learning that can occur solely by the computation of statistical and speech cues. Fifty-four children underwent functional magnetic resonance imaging (fMRI) while listening to three streams of concatenated syllables, which contained either high statistical regularities, high statistical regularities and speech cues, or no easily-detectable cues. Significant signal increases over time in temporal cortices suggest that children utilized the cues to implicitly segment the speech streams. This was confirmed by the findings of a second fMRI run where children displayed reliably greater activity in left inferior frontal gyrus when listening to ‘words’ that occurred more frequently in the streams of speech they just heard. Finally, comparisons between activity observed in these children vs. previously-studied adults indicate significant developmental changes in the neural substrate of speech parsing. PMID:20136936

  3. Voluntary exercise induces adult hippocampal neurogenesis and BDNF expression in a rodent model of fetal alcohol spectrum disorders.

    PubMed

    Boehme, Fanny; Gil-Mohapel, Joana; Cox, Adrian; Patten, Anna; Giles, Erica; Brocardo, Patricia S; Christie, Brian R

    2011-05-01

    Alcohol consumption during pregnancy can result in a myriad of health problems in the affected offspring ranging from growth deficiencies to central nervous system impairments that result in cognitive deficits. Adult hippocampal neurogenesis is thought to play a role in cognition (i.e. learning and memory) and can be modulated by extrinsic factors such as alcohol consumption and physical exercise. We examined the impact of voluntary physical exercise on adult hippocampal neurogenesis in a rat model of fetal alcohol spectrum disorders (FASD). Intragastric intubation was used to deliver ethanol to rats in a highly controlled fashion through all three trimester equivalents (i.e. throughout gestation and during the first 10 days of postnatal life). Ethanol-exposed animals and their pair-fed and ad libitum controls were left undisturbed until they reached a young adult stage at which point they had free access to a running wheel for 12 days. Prenatal and early postnatal ethanol exposure altered cell proliferation in young adult female rats and increased early neuronal maturation without affecting cell survival in the dentate gyrus (DG) of the hippocampus. Voluntary wheel running increased cell proliferation, neuronal maturation and cell survival as well as levels of brain-derived neurotrophic factor in the DG of both ethanol-exposed female rats and their pair-fed and ad libitum controls. These results indicate that the capacity of the brain to respond to exercise is not impaired in this model of FASD, highlighting the potential therapeutic value of physical exercise for this developmental disorder.

  4. Sex differences in resilience to childhood maltreatment: effects of trauma history on hippocampal volume, general cognition and subclinical psychosis in healthy adults.

    PubMed

    Samplin, Erin; Ikuta, Toshikazu; Malhotra, Anil K; Szeszko, Philip R; Derosse, Pamela

    2013-09-01

    Recent data suggests that a history of childhood maltreatment is associated with reductions in hippocampal volume in healthy adults. Because this association is also evident in adults with psychiatric illness, it has been suggested that reductions in hippocampal volume associated with childhood maltreatment may be a risk factor for psychiatric illness. Such an interpretation suggests that healthy adults with a history of childhood maltreatment are more resilient to the effects of maltreatment. Current models of resilience suggest, however, that resiliency should be measured across multiple domains of functioning. The present study sought to investigate childhood maltreatment in relationship to hippocampal volumes in healthy adults and to address the question of whether the putative resiliency extends to other domains of functioning. Sixty-seven healthy Caucasian adults were assessed for a history of childhood emotional abuse, emotional neglect and physical abuse and received high resolution structural MR imaging scans. Participants with and without histories of abuse or neglect were compared on measures of total hippocampal volume, general cognitive ability and subclinical psychopathology. Our results suggest that childhood emotional abuse is associated with reduced hippocampus volume in males, but not in females. However, emotional abuse was associated with higher levels of subclinical psychopathology in both males and females. These data suggest that while females may be more resilient to the neurological effects of childhood maltreatment, they are not more resilient to the psychiatric symptoms associated with childhood maltreatment. Further research is needed to elucidate the mechanisms involved in these different levels of resilience.

  5. Sex Differences in Resilience to Childhood Maltreatment: Effects of trauma history on hippocampal volume, general cognition and subclinical psychosis in healthy adults

    PubMed Central

    Samplin, Erin; Ikuta, Toshikazu; Malhotra, Anil K.; Szeszko, Philip R.; DeRosse, Pamela

    2013-01-01

    Recent data suggests that a history of childhood maltreatment is associated with reductions in hippocampal volume in healthy adults. Because this association is also evident in adults with psychiatric illness, it has been suggested that reductions in hippocampal volume associated with childhood maltreatment may be a risk factor for psychiatric illness. Such an interpretation suggests that healthy adults with a history of childhood maltreatment are more resilient to the effects of maltreatment. Current models of resilience suggest, however, that resiliency should be measured across multiple domains of functioning. The present study sought to investigate childhood maltreatment in relationship to hippocampal volumes in healthy adults and to address the question of whether the putative resiliency extends to other domains of functioning. Sixty-seven healthy Caucasian adults were assessed for a history of childhood emotional abuse, emotional neglect and physical abuse and received high resolution structural MR imaging scans. Participants with and without histories of abuse or neglect were compared on measures of total hippocampal volume, general cognitive ability and subclinical psychopathology. Our results suggest that childhood emotional abuse is associated with reduced hippocampus volume in males, but not in females. However, emotional abuse was associated with higher levels of subclinical psychopathology in both males and females. These data suggest that while females may be more resilient to the neurological effects of childhood maltreatment, they are not more resilient to the psychiatric symptoms associated with childhood maltreatment. Further research is needed to elucidate the mechanisms involved in these different levels of resilience. PMID:23726669

  6. Flexible rule use: common neural substrates in children and adults.

    PubMed

    Wendelken, Carter; Munakata, Yuko; Baym, Carol; Souza, Michael; Bunge, Silvia A

    2012-07-01

    Flexible rule-guided behavior develops gradually, and requires the ability to remember the rules, switch between them as needed, and implement them in the face of competing information. Our goals for this study were twofold: first, to assess whether these components of rule-guided behavior are separable at the neural level, and second, to identify age-related differences in one or more component that could support the emergence of increasingly accurate and flexible rule use over development. We collected event-related fMRI data while 36 children aged 8-13 and adults aged 20-27 performed a task that manipulated rule representation, rule switching, and stimulus incongruency. Several regions - left dorsolateral prefrontal cortex (DLPFC), left posterior parietal cortex, and pre-supplementary motor area - were engaged by both the rule representation and the rule-switching manipulations. These regions were engaged similarly across age groups, though contrasting timecourses of activation in left DLPFC suggest that children updated task rules more slowly than did adults. These findings support the idea that common networks can contribute to a variety of executive functions, and that some developmental changes take the form of changes in temporal dynamics rather than qualitative changes in the network of brain regions engaged.

  7. Effects of monomethylarsonic and monomethylarsonous acid on evoked synaptic potentials in hippocampal slices of adult and young rats

    SciTech Connect

    Krueger, Katharina Straub, Heidrun; Hirner, Alfred V.; Hippler, Joerg; Binding, Norbert; Musshoff, Ulrich

    2009-04-01

    Arsenite and its metabolites, dimethylarsinic or dimethylarsinous acid, have previously been shown to disturb synaptic transmission in hippocampal slices of rats (Krueger, K., Gruner, J., Madeja, M., Hartmann, L.M., Hirner, A.V., Binding, N., Mu{beta}hoff, U., 2006a. Blockade and enhancement of glutamate receptor responses in Xenopus oocytes by methylated arsenicals. Arch. Toxicol. 80, 492-501, Krueger, K., Straub, H., Binding, N., Mu{beta}hoff, U., 2006b. Effects of arsenite on long-term potentiation in hippocampal slices from adult and young rats. Toxicol. Lett. 165, 167-173, Krueger, K., Repges, H., Hippler, J., Hartmann, L.M., Hirner, A.V., Straub, H., Binding, N., Mu{beta}hoff, U., 2007. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats. Toxicol. Appl. Pharmacol. 225, 40-46). The present experiments investigate, whether the important arsenic metabolites monomethylarsonic acid (MMA{sup V}) and monomethylarsonous acid (MMA{sup III}) also influence the synaptic functions of the hippocampus. In hippocampal slices of young (14-21 days-old) and adult (2-4 months-old) rats, evoked synaptic field potentials from the Schaffer collateral-CA1 synapse were measured under control conditions and during and after 30 and 60 min of application of the arsenic compounds. MMA{sup V} had no effect on the synapse functions neither in slices of adult nor in those from young rats. However, MMA{sup III} strongly influenced the synaptic transmission: it totally depressed the amplitudes of fEPSPs at concentrations of 50 {mu}mol/l (adult rats) and 25 {mu}mol/l (young rats) and LTP amplitudes at concentrations of 25 {mu}mol/l (adult rats) and 10 {mu}mol/l (young rats), respectively. In contrast, application of 1 {mu}mol/l MMA{sup III} led to an enhancement of the LTP amplitude in young rats, which is interpretable by an enhancing effect on NMDA receptors and a lack of the blocking effect on AMPA receptors at

  8. Cessation of voluntary wheel running increases anxiety-like behavior and impairs adult hippocampal neurogenesis in mice.

    PubMed

    Nishijima, Takeshi; Llorens-Martín, María; Tejeda, Gonzalo Sanchez; Inoue, Koshiro; Yamamura, Yuhei; Soya, Hideaki; Trejo, José Luis; Torres-Alemán, Ignacio

    2013-05-15

    While increasing evidence demonstrates that physical exercise promotes brain health, little is known on how the reduction of physical activity affects brain function. We investigated whether the cessation of wheel running alters anxiety-like and depression-like behaviors and its impact on adult hippocampal neurogenesis in mice. Male C57BL/6 mice (4 weeks old) were assigned to one of the following groups, and housed until 21 weeks old; (1) no exercise control (noEx), housed in a standard cage; (2) exercise (Ex), housed in a running wheel cage; and (3) exercise-no exercise (Ex-noEx), housed in a running wheel cage for 8 weeks and subsequently in a standard cage. Behavioral evaluations suggested that Ex-noEx mice were more anxious compared to noEx control mice, but no differences were found in depression-like behavior. The number of BrdU-labeled surviving cells in the dentate gyrus was significantly higher in Ex but not in Ex-noEx compared with noEx, indicating that the facilitative effects of exercise on cell survival are reversible. Surprisingly, the ratio of differentiation of BrdU-positive cells to doublecortin-positive immature neurons was significantly lower in Ex-noEx compared to the other groups, suggesting that the cessation of wheel running impairs an important component of hippocampal neurogenesis in mice. These results indicate that hippocampal adaptation to physical inactivity is not simply a return to the conditions present in sedentary mice. As the impaired neurogenesis is predicted to increase a vulnerability to stress-induced mood disorders, the reduction of physical activity may contribute to a greater risk of these disorders.

  9. Decreased functional connectivity in dorsolateral prefrontal cortical networks in adult macaques with neonatal hippocampal lesions: Relations to visual working memory deficits.

    PubMed

    Meng, Yuguang; Hu, Xiaoping; Bachevalier, Jocelyne; Zhang, Xiaodong

    2016-10-01

    Neonatal hippocampal lesions in monkeys impairs normal performance on both relational and working memory tasks, suggesting that the early lesions have impacted the normal development of prefrontal-hippocampal functional interactions necessary for normal performance on these tasks. Given that working memory processes engage distributed neuronal networks associated with the prefrontal cortex, it is critical to explore the integrity of distributed neural networks of dorsolateral prefrontal cortex (dlPFC) following neonatal hippocampal lesions in monkeys. We used resting-state functional MRI to assess functional connectivity of dlPFC networks in monkeys with neonatal neurotoxic hippocampal lesion (Neo-Hibo, n=4) and sham-operated control animals (Neo-C, n=4). Significant differences in the patterns of dlPFC functional networks were found between Groups Neo-Hibo and Neo-C. The within-group maps and the between-group comparisons yielded a highly coherent picture showing altered interactions of core regions of the working memory network (medial prefrontal cortex and posterior parietal cortex) as well as the dorsal (fundus of superior temporal area and superior temporal cortex) and ventral (V4 and infero-temporal cortex) visual processing areas in animals with Neo-Hibo lesions. Correlations between functional connectivity changes and working memory impairment in the same animals were found only between the dlPFC and visual cortical areas (V4 and infero-temporal cortex). Thus, the impact of the neonatal hippocampal lesions extends to multiple cortical areas interconnected with the dlPFC.

  10. Cholinergic afferent stimulation induces axonal function plasticity in adult hippocampal granule cells.

    PubMed

    Martinello, Katiuscia; Huang, Zhuo; Lujan, Rafael; Tran, Baouyen; Watanabe, Masahiko; Cooper, Edward C; Brown, David A; Shah, Mala M

    2015-01-21

    Acetylcholine critically influences hippocampal-dependent learning. Cholinergic fibers innervate hippocampal neuron axons, dendrites, and somata. The effects of acetylcholine on axonal information processing, though, remain unknown. By stimulating cholinergic fibers and making electrophysiological recordings from hippocampal dentate gyrus granule cells, we show that synaptically released acetylcholine preferentially lowered the action potential threshold, enhancing intrinsic excitability and synaptic potential-spike coupling. These effects persisted for at least 30 min after the stimulation paradigm and were due to muscarinic receptor activation. This caused sustained elevation of axonal intracellular Ca(2+) via T-type Ca(2+) channels, as indicated by two-photon imaging. The enhanced Ca(2+) levels inhibited an axonal KV7/M current, decreasing the spike threshold. In support, immunohistochemistry revealed muscarinic M1 receptor, CaV3.2, and KV7.2/7.3 subunit localization in granule cell axons. Since alterations in axonal signaling affect neuronal firing patterns and neurotransmitter release, this is an unreported cellular mechanism by which acetylcholine might, at least partly, enhance cognitive processing. PMID:25578363

  11. [Alteration of neural oscillations in hippocampal CA3 area in the fast avoidance response rat before and after electric shock avoidance training].

    PubMed

    Wang, Wei-Wei; Wang, Dan-Dan; Wang, Dan; Guan, Yan; Tang, Ying-Ying; Ye, Zheng; Li, Jing; Li, Min; Zhu, Zai-Man; Pan, Qun-Wan

    2015-10-25

    The purpose of the present study is to explore the relationship of spatial learning ability and specific electrical activities of neural oscillations in the rat. The fast and general avoidance response groups were selected on the basis of the animals' responses to the electric shock in Y type maze, and their local field potentials (LFPs) of hippocampal CA3 area were recorded by wireless telemetry before and after shock avoidance training, respectively. The components of neural oscillations related to spatial identifying and learning ability were analyzed. The results showed that, compared with the general avoidance response group, the fast avoidance response group did not show any differences of LFPs in hippocampal CA3 area before electric shock avoidance trial, but showed significantly increased percentages of 0-10 Hz and 30-40 Hz rhythm in right hippocampal CA3 area after the shock avoidance training (P < 0.01 or P < 0.05). Fast Fourier transform showed that percentage increase of 0-10 Hz band occurred mainly in θ (3-7 Hz) frequency, and 30-40 Hz frequency change was equivalent to the γ1 band. Furthermore, compared with those before training, only the percentages of β, β2 (20-30 Hz) and γ1 rhythm increased (P < 0.01 or P < 0.05) in fast avoidance response rats after training, while the θ rhythm percentage remained unchanged. In contrast, θ rhythm percentage and the large amplitude (intensity: +2.5 - -2.5 db) θ waves in right CA3 area of general avoidance response rats were significantly reduced after training (P < 0.01). These results suggest that the increased percentages of β2 and γ1 rhythm and high-level (unchanged) percentage of θ rhythm in the right hippocampus CA3 area might be related to strong spatial cognition ability of fast avoidance response rats.

  12. Fimbria-fornix (FF)-transected hippocampal extracts induce the activation of astrocytes in vitro.

    PubMed

    Zou, Linqing; Li, Haoming; Jin, Guohua; Tian, Meiling; Qin, Jianbing; Zhao, Heyan

    2014-03-01

    Hippocampus is one of the neurogenesis areas in adult mammals, but the function of astrocytes in this area is still less known. In our previous study, the fimbria-fornix (FF)-transected hippocampal extracts promoted the proliferation and neuronal differentiation of radial glial cells in vitro. To explore the effects of hippocampal extracts on gliogenesis, the hippocampal astrocytes were treated by normal or ff-transected hippocampal extracts in vitro. The cells were immunostained by brain lipid-binding protein (BLBP), nestin, and SOX2 to assess their state of activation. The effects of astrocyte-conditioned medium on the neuronal differentiation of hippocampal neural stem cells (NSCs) were also investigated. After treatment of FF-transected hippocampal extracts, the number of BLBP, nestin, and Sox-positive cells were obviously more than the cells which treated by normal hippocampal extracts, these cells maintained a state of activation and the activated astrocyte-conditioned medium also promoted the differentiation of NSCs into more neurons. These findings suggest that the astrocytes can be activated by FF-transected hippocampal extracts and these activated cells also can promote the neuronal differentiation of hippocampal NSCs in vitro.

  13. Neural correlates of executive attention in adults born very preterm.

    PubMed

    Daamen, Marcel; Bäuml, Josef G; Scheef, Lukas; Meng, Chun; Jurcoane, Alina; Jaekel, Julia; Sorg, Christian; Busch, Barbara; Baumann, Nicole; Bartmann, Peter; Wolke, Dieter; Wohlschläger, Afra; Boecker, Henning

    2015-01-01

    Very preterm birth is associated with an increased prevalence of attention problems and may especially impair executive attention, i.e., top-down control of attentional selection in situations where distracting information interferes with the processing of task-relevant stimuli. While there are initial findings linking structural brain alterations in preterm-born individuals with attention problems, the functional basis of these problems are not well understood. The present study used an fMRI adaptation of the Attentional Network Test to examine the neural correlates of executive attention in a large sample of N = 86 adults born very preterm and/or with very low birth weight (VP/VLBW), and N = 100 term-born controls. Executive attention was measured by comparing task behavior and brain activations associated with the processing of incongruent vs. congruent arrow flanker stimuli. Consistent with subtle impairments of executive attention, the VP/VLBW group showed lower accuracy and a tendency for increased response times during the processing of incongruent stimuli. Both groups showed similar activation patters, especially within expected fronto-cingulo-parietal areas, but no significant between-group differences. Our results argue for a maintained attention-relevant network organization in high-functioning preterm born adults in spite of subtle deficits in executive attention. Gestational age and neonatal treatment variables showed associations with task behavior, and brain activation in the dorsal ACC and lateral occipital areas, suggesting that the degree of prematurity (and related neonatal complications) has subtle modulatory influences on executive attention processing. PMID:26640769

  14. Peripheral telomere length and hippocampal volume in adolescents with major depressive disorder.

    PubMed

    Henje Blom, E; Han, L K M; Connolly, C G; Ho, T C; Lin, J; LeWinn, K Z; Simmons, A N; Sacchet, M D; Mobayed, N; Luna, M E; Paulus, M; Epel, E S; Blackburn, E H; Wolkowitz, O M; Yang, T T

    2015-01-01

    Several studies have reported that adults with major depressive disorder have shorter telomere length and reduced hippocampal volumes. Moreover, studies of adult populations without major depressive disorder suggest a relationship between peripheral telomere length and hippocampal volume. However, the relationship of these findings in adolescents with major depressive disorder has yet to be explored. We examined whether adolescent major depressive disorder is associated with altered peripheral telomere length and hippocampal volume, and whether these measures relate to one another. In 54 unmedicated adolescents (13-18 years) with major depressive disorder and 63 well-matched healthy controls, telomere length was assessed from saliva using quantitative polymerase chain reaction methods, and bilateral hippocampal volumes were measured with magnetic resonance imaging. After adjusting for age and sex (and total brain volume in the hippocampal analysis), adolescents with major depressive disorder exhibited significantly shorter telomere length and significantly smaller right, but not left hippocampal volume. When corrected for age, sex, diagnostic group and total brain volume, telomere length was not significantly associated with left or right hippocampal volume, suggesting that these cellular and neural processes may be mechanistically distinct during adolescence. Our findings suggest that shortening of telomere length and reduction of hippocampal volume are already present in early-onset major depressive disorder and thus unlikely to be only a result of accumulated years of exposure to major depressive disorder. PMID:26556285

  15. Peripheral telomere length and hippocampal volume in adolescents with major depressive disorder.

    PubMed

    Henje Blom, E; Han, L K M; Connolly, C G; Ho, T C; Lin, J; LeWinn, K Z; Simmons, A N; Sacchet, M D; Mobayed, N; Luna, M E; Paulus, M; Epel, E S; Blackburn, E H; Wolkowitz, O M; Yang, T T

    2015-11-10

    Several studies have reported that adults with major depressive disorder have shorter telomere length and reduced hippocampal volumes. Moreover, studies of adult populations without major depressive disorder suggest a relationship between peripheral telomere length and hippocampal volume. However, the relationship of these findings in adolescents with major depressive disorder has yet to be explored. We examined whether adolescent major depressive disorder is associated with altered peripheral telomere length and hippocampal volume, and whether these measures relate to one another. In 54 unmedicated adolescents (13-18 years) with major depressive disorder and 63 well-matched healthy controls, telomere length was assessed from saliva using quantitative polymerase chain reaction methods, and bilateral hippocampal volumes were measured with magnetic resonance imaging. After adjusting for age and sex (and total brain volume in the hippocampal analysis), adolescents with major depressive disorder exhibited significantly shorter telomere length and significantly smaller right, but not left hippocampal volume. When corrected for age, sex, diagnostic group and total brain volume, telomere length was not significantly associated with left or right hippocampal volume, suggesting that these cellular and neural processes may be mechanistically distinct during adolescence. Our findings suggest that shortening of telomere length and reduction of hippocampal volume are already present in early-onset major depressive disorder and thus unlikely to be only a result of accumulated years of exposure to major depressive disorder.

  16. Peripheral telomere length and hippocampal volume in adolescents with major depressive disorder

    PubMed Central

    Henje Blom, E; Han, L K M; Connolly, C G; Ho, T C; Lin, J; LeWinn, K Z; Simmons, A N; Sacchet, M D; Mobayed, N; Luna, M E; Paulus, M; Epel, E S; Blackburn, E H; Wolkowitz, O M; Yang, T T

    2015-01-01

    Several studies have reported that adults with major depressive disorder have shorter telomere length and reduced hippocampal volumes. Moreover, studies of adult populations without major depressive disorder suggest a relationship between peripheral telomere length and hippocampal volume. However, the relationship of these findings in adolescents with major depressive disorder has yet to be explored. We examined whether adolescent major depressive disorder is associated with altered peripheral telomere length and hippocampal volume, and whether these measures relate to one another. In 54 unmedicated adolescents (13–18 years) with major depressive disorder and 63 well-matched healthy controls, telomere length was assessed from saliva using quantitative polymerase chain reaction methods, and bilateral hippocampal volumes were measured with magnetic resonance imaging. After adjusting for age and sex (and total brain volume in the hippocampal analysis), adolescents with major depressive disorder exhibited significantly shorter telomere length and significantly smaller right, but not left hippocampal volume. When corrected for age, sex, diagnostic group and total brain volume, telomere length was not significantly associated with left or right hippocampal volume, suggesting that these cellular and neural processes may be mechanistically distinct during adolescence. Our findings suggest that shortening of telomere length and reduction of hippocampal volume are already present in early-onset major depressive disorder and thus unlikely to be only a result of accumulated years of exposure to major depressive disorder. PMID:26556285

  17. Intra-hippocampal injection of lipopolysaccharide inhibits kindled seizures and retards kindling rate in adult rats.

    PubMed

    Ahmadi, Amin; Sayyah, Mohammad; Khoshkholgh-Sima, Baharak; Choopani, Samira; Kazemi, Jafar; Sadegh, Mehdi; Moradpour, Farshad; Nahrevanian, Hossein

    2013-04-01

    Neuroinflammation facilitates seizure acquisition and epileptogenesis in developing brain. Yet, the studies on impact of neuroinflammation on mature brain epileptogenesis have led to inconsistent results. Hippocampus is particularly vulnerable to damage caused by ischemia, hypoxia and trauma, and the consequent neuroinflammation, which can lead in turn to epilepsy. Lipopolysaccharide (LPS) is extensively used in experimental studies to induce neuroinflammation. In this study, effect of acute and chronic intra-CA1 infusion of LPS on amygdala-kindled seizures and epileptogenesis was examined in mature rats. LPS (5 μg/rat) inhibited evoked amygdala afterdischarges and behavioral seizures. Anticonvulsant effect of LPS was observed 0.5 h after administration and continued up to 24 h. This effect was accompanied by intra-hippocampal elevation of nitric oxide (NO), interleukin1-β, and tumor necrosis factor-α and was prevented by microglia inhibitor, naloxone, NO synthase inhibitor, Nω-nitro-L-arginine methyl ester, cyclooxygenase inhibitor, piroxicam, and interleukin1-β receptor antagonist, interleukin1-ra. Moreover, daily intra-hippocampal injection of LPS significantly retarded kindling rate. In order to further elucidate the effect of LPS on synaptic transmission and short-term plasticity, changes in field excitatory postsynaptic potentials and population spikes were measured in stratum radiatum and stratum pyramidale of LPS-treated kindled rats. LPS impaired baseline synaptic transmission in hippocampal Schaffer collateral-CA1 synapse and reduced the magnitude of paired-pulse facilitation. Our results suggest that direct suppression of presynaptic mechanisms in Schaffer collateral-CA1 synapses, as well as the inflammatory mediators released by LPS in the hippocampus, is involved in antiepileptic effect of LPS.

  18. Chronic ethanol consumption transiently reduces adult neural progenitor cell proliferation.

    PubMed

    Rice, Ann C; Bullock, M Ross; Shelton, Keith L

    2004-06-11

    Adult neural stem/progenitor cells proliferate throughout the life of the animal in the subependymal zone and the subgranular zone of the dentate gyrus (DG). Treatments such as enriched environment, dietary restriction, running and anti-depressants increase proliferation, however, stress and opiates have been shown to decrease proliferation. While models of binge ethanol drinking decreases proliferation, few studies have characterized the effect chronic ethanol usage has on progenitor cell proliferation. In this study, we have examined changes in the progenitor cell proliferation rate following chronic ethanol consumption. Animals were given a nutritionally balanced liquid diet containing 6.5% v/v ethanol or an isocalorically balanced liquid diet. Bromodeoxyuridine (BrdU) was administered (150 mg/kg x 3) and the animals sacrificed 2 h after the last injection on days 3, 10 or 30 of the ethanol diet. Coronal brain blocks were paraffin embedded and 6 microm sections sliced and immunohistochemically stained for BrdU. Quantitation of the number of BrdU-labeled cells in the subgranular zone of the DG revealed a significant decrease only at the 3-day time-point, with recovery by the 10- and 30-day time-points. Thus, the progenitor cell proliferation rate is transiently decreased by chronic ethanol usage. This data suggests that chronic alcohol use results in a compensatory response that restores the progenitor cell proliferation rate.

  19. Histological correlates of N40 auditory evoked potentials in adult rats after neonatal ventral hippocampal lesion: animal model of schizophrenia.

    PubMed

    Romero-Pimentel, A L; Vázquez-Roque, R A; Camacho-Abrego, I; Hoffman, K L; Linares, P; Flores, G; Manjarrez, E

    2014-11-01

    The neonatal ventral hippocampal lesion (NVHL) is an established neurodevelopmental rat model of schizophrenia. Rats with NVHL exhibit several behavioral, molecular and physiological abnormalities that are similar to those found in schizophrenics. Schizophrenia is a severe psychiatric illness characterized by profound disturbances of mental functions including neurophysiological deficits in brain information processing. These deficits can be assessed by auditory evoked potentials (AEPs), where schizophrenics exhibit abnormalities in amplitude, duration and latency of such AEPs. The aim of the present study was to compare the density of cells in the temporal cerebral cortex and the N40-AEP of adult NVHL rats versus adult sham rats. We found that rats with NVHL exhibit significant lower amplitude of the N40-AEP and a significant lower number of cells in bilateral regions of the temporal cerebral cortex compared to sham rats. Because the AEP recordings were obtained from anesthetized rats, we suggest that NVHL leads to inappropriate innervation in thalamic-cortical pathways in the adult rat, leading to altered function of cortical networks involved in processing of primary auditory information.

  20. Acute Exercise Improves Prefrontal Cortex but not Hippocampal Function in Healthy Adults.

    PubMed

    Basso, Julia C; Shang, Andrea; Elman, Meredith; Karmouta, Ryan; Suzuki, Wendy A

    2015-11-01

    The effects of acute aerobic exercise on cognitive functions in humans have been the subject of much investigation; however, these studies are limited by several factors, including a lack of randomized controlled designs, focus on only a single cognitive function, and testing during or shortly after exercise. Using a randomized controlled design, the present study asked how a single bout of aerobic exercise affects a range of frontal- and medial temporal lobe-dependent cognitive functions and how long these effects last. We randomly assigned 85 subjects to either a vigorous intensity acute aerobic exercise group or a video watching control group. All subjects completed a battery of cognitive tasks both before and 30, 60, 90, or 120 min after the intervention. This battery included the Hopkins Verbal Learning Test-Revised, the Modified Benton Visual Retention Test, the Stroop Color and Word Test, the Symbol Digit Modalities Test, the Digit Span Test, the Trail Making Test, and the Controlled Oral Word Association Test. Based on these measures, composite scores were formed to independently assess prefrontal cortex- and hippocampal-dependent cognition. A three-way mixed Analysis of Variance was used to determine whether differences existed between groups in the change in cognitive function from pre- to post-intervention testing. Acute exercise improved prefrontal cortex- but not hippocampal-dependent functioning, with no differences found between delay groups. Vigorous acute aerobic exercise has beneficial effects on prefrontal cortex-dependent cognition and these effects can last for up to 2 hr after exercise.

  1. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats

    SciTech Connect

    Krueger, Katharina Repges, Hendrik; Hippler, Joerg; Hartmann, Louise M.; Hirner, Alfred V.; Straub, Heidrun; Binding, Norbert; Musshoff, Ulrich

    2007-11-15

    In this study, the effects of pentavalent dimethylarsinic acid ((CH{sub 3}){sub 2}AsO(OH); DMA{sup V}) and trivalent dimethylarsinous acid ((CH{sub 3}){sub 2}As(OH); DMA{sup III}) on synaptic transmission generated by the excitatory Schaffer collateral-CA1 synapse were tested in hippocampal slices of young (14-21 day-old) and adult (2-4 month-old) rats. Both compounds were applied in concentrations of 1 to 100 {mu}mol/l. DMA{sup V} had no effect on the amplitudes of evoked fEPSPs or the induction of LTP recorded from the CA1 dendritic region either in adult or in young rats. However, application of DMA{sup III} significantly reduced the amplitudes of evoked fEPSPs in a concentration-dependent manner with a total depression following application of 100 {mu}mol/l DMA{sup III} in adult and 10 {mu}mol/l DMA{sup III} in young rats. Moreover, DMA{sup III} significantly affected the LTP-induction. Application of 10 {mu}mol/l DMA{sup III} resulted in a complete failure of the postsynaptic potentiation of the fEPSP amplitudes in slices taken both from adult and young rats. The depressant effect was not reversible after a 30-min washout of the DMA{sup III}. In slices of young rats, the depressant effects of DMA{sup III} were more pronounced than in those taken from adult ones. Compared to the (absent) effect of DMA{sup V} on synaptic transmission, the trivalent compound possesses a considerably higher neurotoxic potential.

  2. Hippocampal Dosimetry Predicts Neurocognitive Function Impairment After Fractionated Stereotactic Radiotherapy for Benign or Low-Grade Adult Brain Tumors

    SciTech Connect

    Gondi, Vinai; Hermann, Bruce P.; Mehta, Minesh P.; Tome, Wolfgang A.

    2012-07-15

    Purpose: To prospectively evaluate the association between hippocampal dose and long-term neurocognitive function (NCF) impairment for benign or low-grade adult brain tumors treated with fractionated stereotactic radiotherapy (FSRT). Methods and Materials: Adult patients with benign or low-grade adult brain tumors were treated with FSRT per institutional practice. No attempt was made to spare the hippocampus. NCF testing was conducted at baseline and 18 months follow-up, on a prospective clinical trial. Regression-based standardized z scores were calculated by using similar healthy control individuals evaluated at the same test-retest interval. NCF impairment was defined as a z score {<=}-1.5. After delineation of the bilateral hippocampi according to the Radiation Therapy Oncology Group contouring atlas, dose-volume histograms were generated for the left and right hippocampi and for the composite pair. Biologically equivalent doses in 2-Gy fractions (EQD{sub 2}) assuming an {alpha}/{beta} ratio of 2 Gy were computed. Fisher's exact test and binary logistic regression were used for univariate and multivariate analyses, respectively. Dose-response data were fit to a nonlinear model. Results: Of 29 patients enrolled in this trial, 18 completed both baseline and 18-month NCF testing. An EQD{sub 2} to 40% of the bilateral hippocampi >7.3 Gy was associated with impairment in Wechsler Memory Scale-III Word List (WMS-WL) delayed recall (odds ratio [OR] 19.3; p = 0.043). The association between WMS-WL delayed recall and EQD{sub 2} to 100% of the bilateral hippocampi >0.0 Gy trended to significance (OR 14.8; p = 0.068). Conclusion: EQD{sub 2} to 40% of the bilateral hippocampi greater than 7.3 Gy is associated with long-term impairment in list-learning delayed recall after FSRT for benign or low-grade adult brain tumors. Given that modern intensity-modulated radiotherapy techniques can reduce the dose to the bilateral hippocampi below this dosimetric threshold, patients

  3. Hippocampal Dosimetry Predicts Neurocognitive Function Impairment After Fractionated Stereotactic Radiotherapy for Benign or Low-Grade Adult Brain Tumors

    SciTech Connect

    Gondi, Vinai; Hermann, Bruce P.; Mehta, Minesh P.; Tome, Wolfgang A.

    2013-02-01

    Purpose: To prospectively evaluate the association between hippocampal dose and long-term neurocognitive function (NCF) impairment for benign or low-grade adult brain tumors treated with fractionated stereotactic radiotherapy (FSRT). Methods and Materials: Adult patients with benign or low-grade adult brain tumors were treated with FSRT per institutional practice. No attempt was made to spare the hippocampus. NCF testing was conducted at baseline and 18 months follow-up, on a prospective clinical trial. Regression-based standardized z scores were calculated by using similar healthy control individuals evaluated at the same test-retest interval. NCF impairment was defined as a z score {<=}-1.5. After delineation of the bilateral hippocampi according to the Radiation Therapy Oncology Group contouring atlas, dose-volume histograms were generated for the left and right hippocampi and for the composite pair. Biologically equivalent doses in 2-Gy fractions (EQD{sub 2}) assuming an {alpha}/{beta} ratio of 2 Gy were computed. Fisher's exact test and binary logistic regression were used for univariate and multivariate analyses, respectively. Dose-response data were fit to a nonlinear model. Results: Of 29 patients enrolled in this trial, 18 completed both baseline and 18-month NCF testing. An EQD{sub 2} to 40% of the bilateral hippocampi >7.3 Gy was associated with impairment in Wechsler Memory Scale-III Word List (WMS-WL) delayed recall (odds ratio [OR] 19.3; p = 0.043). The association between WMS-WL delayed recall and EQD{sub 2} to 100% of the bilateral hippocampi >0.0 Gy trended to significance (OR 14.8; p = 0.068). Conclusion: EQD{sub 2} to 40% of the bilateral hippocampi greater than 7.3 Gy is associated with long-term impairment in list-learning delayed recall after FSRT for benign or low-grade adult brain tumors. Given that modern intensity-modulated radiotherapy techniques can reduce the dose to the bilateral hippocampi below this dosimetric threshold, patients

  4. Transcriptional profiling of adult neural stem-like cells from the human brain.

    PubMed

    Sandberg, Cecilie Jonsgar; Vik-Mo, Einar O; Behnan, Jinan; Helseth, Eirik; Langmoen, Iver A

    2014-01-01

    There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33-60). Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate). We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6), foetal human neural stem cells (n = 1) and human brain tissues (n = 12). The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular fate.

  5. Transcriptional Profiling of Adult Neural Stem-Like Cells from the Human Brain

    PubMed Central

    Sandberg, Cecilie Jonsgar; Vik-Mo, Einar O.; Behnan, Jinan; Helseth, Eirik; Langmoen, Iver A.

    2014-01-01

    There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33–60). Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate). We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6), foetal human neural stem cells (n = 1) and human brain tissues (n = 12). The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular fate. PMID

  6. Long-term deficiency of circulating and hippocampal insulin-like growth factor I induces depressive behavior in adult mice: A potential model of geriatric depression

    PubMed Central

    Mitschelen, Matthew; Yan, Han; Farley, Julie A.; Warrington, Junie P.; Han, Song; Hereñú, Claudia B.; Csiszar, Anna; Ungvari, Zoltan; Bailey-Downs, Lora C.; Bass, Caroline E.; Sonntag, William E.

    2011-01-01

    Numerous studies support the hypothesis that deficiency of insulin-like growth factor I (IGF-1) in adults contributes to depression, but direct evidence is limited. Many psychological and pro-cognitive effects have been attributed to IGF-1, but appropriate animal models of adult-onset IGF-1 deficiency are lacking. In this study, we use a viral-mediated Cre-loxP system to knockout the Igf1 gene in either the liver, neurons of the CA1 region of the hippocampus, or both. Knockout of liver Igf1 reduced serum IGF-1 levels by 40% and hippocampal IGF-1 levels by 26%. Knockout of Igf1 in CA1 reduced hippocampal IGF-1 levels by 13%. The most severe reduction in hippocampal IGF-1 occurred in the group with knockouts in both liver and CA1 (36% reduction), and was associated with a 3.5-fold increase in immobility in the forced swim test. Reduction of either circulating or hippocampal IGF-1 levels did not alter anxiety measured in an open field and elevated plus maze, nor locomotion in the open field. Furthermore, local compensation for deficiencies in circulating IGF-1 did not occur in the hippocampus, nor were serum levels of IGF-1 upregulated in response to the moderate decline of hippocampal IGF-1 caused by the knockouts in CA1. We conclude that adult-onset IGF-1 deficiency alone is sufficient to induce a depressive phenotype in mice. Furthermore, our results suggest that individuals with low brain levels of IGF-1 are at increased risk for depression and these behavioral effects are not ameliorated by increased local IGF-1 production or transport. Our study supports the hypothesis that the natural IGF-1 decline in aging humans may contribute to geriatric depression. PMID:21524689

  7. Musical experience strengthens the neural representation of sounds important for communication in middle-aged adults.

    PubMed

    Parbery-Clark, Alexandra; Anderson, Samira; Hittner, Emily; Kraus, Nina

    2012-01-01

    Older adults frequently complain that while they can hear a person talking, they cannot understand what is being said; this difficulty is exacerbated by background noise. Peripheral hearing loss cannot fully account for this age-related decline in speech-in-noise ability, as declines in central processing also contribute to this problem. Given that musicians have enhanced speech-in-noise perception, we aimed to define the effects of musical experience on subcortical responses to speech and speech-in-noise perception in middle-aged adults. Results reveal that musicians have enhanced neural encoding of speech in quiet and noisy settings. Enhancements include faster neural response timing, higher neural response consistency, more robust encoding of speech harmonics, and greater neural precision. Taken together, we suggest that musical experience provides perceptual benefits in an aging population by strengthening the underlying neural pathways necessary for the accurate representation of important temporal and spectral features of sound.

  8. Musical experience strengthens the neural representation of sounds important for communication in middle-aged adults

    PubMed Central

    Parbery-Clark, Alexandra; Anderson, Samira; Hittner, Emily; Kraus, Nina

    2012-01-01

    Older adults frequently complain that while they can hear a person talking, they cannot understand what is being said; this difficulty is exacerbated by background noise. Peripheral hearing loss cannot fully account for this age-related decline in speech-in-noise ability, as declines in central processing also contribute to this problem. Given that musicians have enhanced speech-in-noise perception, we aimed to define the effects of musical experience on subcortical responses to speech and speech-in-noise perception in middle-aged adults. Results reveal that musicians have enhanced neural encoding of speech in quiet and noisy settings. Enhancements include faster neural response timing, higher neural response consistency, more robust encoding of speech harmonics, and greater neural precision. Taken together, we suggest that musical experience provides perceptual benefits in an aging population by strengthening the underlying neural pathways necessary for the accurate representation of important temporal and spectral features of sound. PMID:23189051

  9. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2.

    PubMed

    Chugh, Deepti; Ali, Idrish; Bakochi, Anahita; Bahonjic, Elma; Etholm, Lars; Ekdahl, Christine T

    2015-01-01

    Synapsins are pre-synaptic vesicle-associated proteins linked to the pathogenesis of epilepsy through genetic association studies in humans. Deletion of synapsins causes an excitatory/inhibitory imbalance, exemplified by the epileptic phenotype of synapsin knockout mice. These mice develop handling-induced tonic-clonic seizures starting at the age of about 3 months. Hence, they provide an opportunity to study epileptogenic alterations in a temporally controlled manner. Here, we evaluated brain inflammation, synaptic protein expression, and adult hippocampal neurogenesis in the epileptogenic (1 and 2 months of age) and tonic-clonic (3.5-4 months) phase of synapsin 2 knockout mice using immunohistochemical and biochemical assays. In the epileptogenic phase, region-specific microglial activation was evident, accompanied by an increase in the chemokine receptor CX3CR1, interleukin-6, and tumor necrosis factor-α, and a decrease in chemokine keratinocyte chemoattractant/ growth-related oncogene. Both post-synaptic density-95 and gephyrin, scaffolding proteins at excitatory and inhibitory synapses, respectively, showed a significant up-regulation primarily in the cortex. Furthermore, we observed an increase in the inhibitory adhesion molecules neuroligin-2 and neurofascin and potassium chloride co-transporter KCC2. Decreased expression of γ-aminobutyric acid receptor-δ subunit and cholecystokinin was also evident. Surprisingly, hippocampal neurogenesis was reduced in the epileptogenic phase. Taken together, we report molecular alterations in brain inflammation and excitatory/inhibitory balance that could serve as potential targets for therapeutics and diagnostic biomarkers. In addition, the regional differences in brain inflammation and synaptic protein expression indicate an epileptogenic zone from where the generalized seizures in synapsin 2 knockout mice may be initiated or spread. PMID:26177381

  10. Primary cilia regulate proliferation of amplifying progenitors in adult hippocampus: implications for learning and memory.

    PubMed

    Amador-Arjona, Alejandro; Elliott, Jimmy; Miller, Amber; Ginbey, Ashley; Pazour, Gregory J; Enikolopov, Grigori; Roberts, Amanda J; Terskikh, Alexey V

    2011-07-01

    Integration of new neurons into the adult hippocampus has been linked to specific types of learning. Primary cilia were found to be required for the formation of adult neural stem cells (NSCs) in the hippocampal dentate gyrus during development. However, the requirement of cilia in maintenance of adult NSCs is unknown. We developed a genetic mouse model in which fetal/perinatal brain development is unaffected, but adult hippocampal neurogenesis is constantly reduced by conditional ablation of primary cilia in adult GFAP(+) neural stem/progenitor cells. We found that this approach specifically reduces the number of hippocampal amplifying progenitors (also called type 2a cells) without affecting the number of radial NSCs (or type 1 cells). Constant reduction of adult hippocampal neurogenesis produced a delay rather than a permanent deficiency in spatial learning without affecting the retention of long-term memories. Decreased neurogenesis also altered spatial novelty recognition and hippocampus-independent cue conditioning. Here, we propose that adult hippocampal newborn neurons increase the efficiency of generating the new representations of spatial memories and that reduction of adult hippocampal neurogenesis may be biased toward cue-based strategies. This novel mouse model provides evidences that cognitive deficits associated with ciliary defects (ciliopathies) might be, in part, mediated by the deficiency of primary cilia in adult hippocampal stem/progenitor cells. PMID:21734285

  11. Primary cilia regulate proliferation of amplifying progenitors in adult hippocampus: implications for learning and memory.

    PubMed

    Amador-Arjona, Alejandro; Elliott, Jimmy; Miller, Amber; Ginbey, Ashley; Pazour, Gregory J; Enikolopov, Grigori; Roberts, Amanda J; Terskikh, Alexey V

    2011-07-01

    Integration of new neurons into the adult hippocampus has been linked to specific types of learning. Primary cilia were found to be required for the formation of adult neural stem cells (NSCs) in the hippocampal dentate gyrus during development. However, the requirement of cilia in maintenance of adult NSCs is unknown. We developed a genetic mouse model in which fetal/perinatal brain development is unaffected, but adult hippocampal neurogenesis is constantly reduced by conditional ablation of primary cilia in adult GFAP(+) neural stem/progenitor cells. We found that this approach specifically reduces the number of hippocampal amplifying progenitors (also called type 2a cells) without affecting the number of radial NSCs (or type 1 cells). Constant reduction of adult hippocampal neurogenesis produced a delay rather than a permanent deficiency in spatial learning without affecting the retention of long-term memories. Decreased neurogenesis also altered spatial novelty recognition and hippocampus-independent cue conditioning. Here, we propose that adult hippocampal newborn neurons increase the efficiency of generating the new representations of spatial memories and that reduction of adult hippocampal neurogenesis may be biased toward cue-based strategies. This novel mouse model provides evidences that cognitive deficits associated with ciliary defects (ciliopathies) might be, in part, mediated by the deficiency of primary cilia in adult hippocampal stem/progenitor cells.

  12. Different Mechanisms Must Be Considered to Explain the Increase in Hippocampal Neural Precursor Cell Proliferation by Physical Activity

    PubMed Central

    Overall, Rupert W.; Walker, Tara L.; Fischer, Tim J.; Brandt, Moritz D.; Kempermann, Gerd

    2016-01-01

    The number of proliferating neural precursor cells in the adult hippocampus is strongly increased by physical activity. The mechanisms through which this behavioral stimulus induces cell proliferation, however, are not yet understood. In fact, even the mode of proliferation of the stem and progenitor cells is not exactly known. Evidence exists for several mechanisms including cell cycle shortening, reduced cell death and stem cell recruitment, but as yet no model can account for all observations. An appreciation of how the cells proliferate, however, is crucial to our ability to model the neurogenic process and predict its behavior in response to pro-neurogenic stimuli. In a recent study, we addressed modulation of the cell cycle length as one possible mode of regulation of precursor cell proliferation in running mice. Our results indicated that the observed increase in number of proliferating cells could not be explained through a shortening of the cell cycle. We must therefore consider other mechanisms by which physical activity leads to enhanced precursor cell proliferation. Here we review the evidence for and against several different hypotheses and discuss the implications for future research in the field. PMID:27536215

  13. Bilateral reductions in hippocampal volume in adults with epilepsy and a history of febrile seizures

    PubMed Central

    Barr, W.; Ashtari, M.; Schaul, N.

    1997-01-01

    OBJECTIVES—To examine the degree and frequency of reductions in hippocampal volume in patients with temporal lobe epilepsy with and without a history of febrile seizures.
METHODS—In vivo measures of hippocampal volume were computed from three dimensional gradient echo (FLASH) images in 44 patients undergoing comprehensive evaluations for epilepsy surgery. Twenty one patients (48%) reported a history of febrile seizures. The volumes from these patients were compared with those from 23 patients without a history of febrile seizures and 34 healthy controls.
RESULTS—The febrile seizure group had significant reductions in volume, both ipsilateral (30% decrease) and contralateral (15% decrease), to the EEG seizure focus. Twelve of 18 patients with febrile seizures exhibited clinically significant ipsilateral volume reductions, defined as volumes falling 2 SD below the mean obtained from the control sample. Only four of 19 patients without febrile seizures exhibited this degree of reduction. No significant correlations were found between seizure variables (for example, duration of epilepsy, seizure frequency) and ipsilateral reductions in volume. However, a significant inverse correlation (r=−0.45, P<0.05) between seizure frequency and the volume of the hippocampus contralateral to the seizure focus was found in the febrile seizure group.
CONCLUSION—These results suggest that a history of febrile seizures is associated with the finding of a smaller hippocampus on the side ipsilateral to the subsequent temporal lobe focus whereas chronic factors seem to be be related to pathology contralateral to the seizure focus.

 PMID:9343124

  14. Abnormal hippocampal structure and function in clinical anxiety and comorbid depression.

    PubMed

    Cha, Jiook; Greenberg, Tsafrir; Song, Inkyung; Blair Simpson, Helen; Posner, Jonathan; Mujica-Parodi, Lilianne R

    2016-05-01

    Given the high prevalence rates of comorbidity of anxiety and depressive disorders, identifying a common neural pathway to both disorders is important not only for better diagnosis and treatment, but also for a more complete conceptualization of each disease. Hippocampal abnormalities have been implicated in anxiety and depression, separately; however, it remains unknown whether these abnormalities are also implicated in their comorbidity. Here we address this question by testing 32 adults with generalized anxiety disorder (15 GAD only and 17 comorbid MDD) and 25 healthy controls (HC) using multimodal MRI (structure, diffusion and functional) and automated hippocampal segmentation. We demonstrate that (i) abnormal microstructure of the CA1 and CA2-3 is associated with GAD/MDD comorbidity and (ii) decreased anterior hippocampal reactivity in response to repetition of the threat cue is associated with GAD (with or without MDD comorbidity). In addition, mediation-structural equation modeling (SEM) reveals that our hippocampal and dimensional symptom data are best explained by a model describing a significant influence of abnormal hippocampal microstructure on both anxiety and depression-mediated through its impact on abnormal hippocampal threat processing. Collectively, our findings show a strong association between changes in hippocampal microstructure and threat processing, which together may present a common neural pathway to comorbidity of anxiety and depression.

  15. BDNF-induced LTP is associated with rapid Arc/Arg3.1-dependent enhancement in adult hippocampal neurogenesis

    PubMed Central

    Kuipers, Sjoukje D.; Trentani, Andrea; Tiron, Adrian; Mao, Xiaosong; Kuhl, Dietmar; Bramham, Clive R.

    2016-01-01

    Adult neurogenesis in the hippocampus is a remarkable phenomenon involved in various aspects of learning and memory as well as disease pathophysiology. Brain-derived neurotrophic factor (BDNF) represents a major player in the regulation of this unique form of neuroplasticity, yet the mechanisms underlying its pro-neurogenic actions remain unclear. Here, we examined the effects associated with brief (25 min), unilateral infusion of BDNF in the rat dentate gyrus. Acute BDNF infusion induced long-term potentiation (LTP) of medial perforant path-evoked synaptic transmission and, concomitantly, enhanced hippocampal neurogenesis bilaterally, reflected by increased dentate gyrus BrdU + cell numbers. Importantly, inhibition of activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) translation through local, unilateral infusion of anti-sense oligodeoxynucleotides (ArcAS) prior to BDNF infusion blocked both BDNF-LTP induction and the associated pro-neurogenic effects. Notably, basal rates of proliferation and newborn cell survival were unaltered in homozygous Arc/Arg3.1 knockout mice. Taken together these findings link the pro-neurogenic effects of acute BDNF infusion to induction of Arc/Arg3.1-dependent LTP in the adult rodent dentate gyrus. PMID:26888068

  16. Differences in Feedback- and Inhibition-Related Neural Activity in Adult ADHD

    ERIC Educational Resources Information Center

    Dibbets, Pauline; Evers, Lisbeth; Hurks, Petra; Marchetta, Natalie; Jolles, Jelle

    2009-01-01

    The objective of this study was to examine response inhibition- and feedback-related neural activity in adults with attention deficit hyperactivity disorder (ADHD) using event-related functional MRI. Sixteen male adults with ADHD and 13 healthy/normal controls participated in this study and performed a modified Go/NoGo task. Behaviourally,…

  17. Adaptive peripheral immune response increases proliferation of neural precursor cells in the adult hippocampus.

    PubMed

    Wolf, Susanne A; Steiner, Barbara; Wengner, Antje; Lipp, Martin; Kammertoens, Thomas; Kempermann, Gerd

    2009-09-01

    To understand the link between peripheral immune activation and neuronal precursor biology, we investigated the effect of T-cell activation on adult hippocampal neurogenesis in female C57Bl/6 mice. A peripheral adaptive immune response triggered by adjuvant-induced rheumatoid arthritis (2 microg/microl methylated BSA) or staphylococcus enterotoxin B (EC(50) of 0.25 microg/ml per 20 g body weight) was associated with a transient increase in hippocampal precursor cell proliferation and neurogenesis as assessed by immunohistochemistry and confocal microscopy. Both treatments were paralleled by an increase in corticosterone levels in the hippocampus 1- to 2-fold over the physiological amount measured by quantitative radioimmunoassay. In contrast, intraperitoneal administration of the innate immune response activator lipopolysaccaride (EC(50) of 0.5 microg/ml per 20 g body weight) led to a chronic 5-fold increase of hippocampal glucocorticoid levels and a decrease of adult neurogenesis. In vitro exposure of murine neuronal progenitor cells to corticosterone triggered either cell death at high (1.5 nM) or proliferation at low (0.25 nM) concentrations. This effect could be blocked using a viral vector system expressing a transdomain of the glucocorticoid receptor. We suggest an evolutionary relevant communication route for the brain to respond to environmental stressors like inflammation mediated by glucocorticoid levels in the hippocampus.

  18. Bumetanide promotes neural precursor cell regeneration and dendritic development in the hippocampal dentate gyrus in the chronic stage of cerebral ischemia

    PubMed Central

    Xu, Wang-shu; Sun, Xuan; Song, Cheng-guang; Mu, Xiao-peng; Ma, Wen-ping; Zhang, Xing-hu; Zhao, Chuan-sheng

    2016-01-01

    Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic stage of cerebral ischemia. We established a rat model of cerebral ischemia by injecting endothelin-1 in the left cortical motor area and left corpus striatum. Seven days later, bumetanide 200 µg/kg/day was injected into the lateral ventricle for 21 consecutive days with a mini-osmotic pump. Results demonstrated that the number of neuroblasts cells and the total length of dendrites increased, escape latency reduced, and the number of platform crossings increased in the rat hippocampal dentate gyrus in the chronic stage of cerebral ischemia. These findings suggest that bumetanide promoted neural precursor cell regeneration, dendritic development and the recovery of cognitive function, and protected brain tissue in the chronic stage of ischemia. PMID:27335557

  19. Decreased functional connectivity in dorsolateral prefrontal cortical networks in adult macaques with neonatal hippocampal lesions: Relations to visual working memory deficits.

    PubMed

    Meng, Yuguang; Hu, Xiaoping; Bachevalier, Jocelyne; Zhang, Xiaodong

    2016-10-01

    Neonatal hippocampal lesions in monkeys impairs normal performance on both relational and working memory tasks, suggesting that the early lesions have impacted the normal development of prefrontal-hippocampal functional interactions necessary for normal performance on these tasks. Given that working memory processes engage distributed neuronal networks associated with the prefrontal cortex, it is critical to explore the integrity of distributed neural networks of dorsolateral prefrontal cortex (dlPFC) following neonatal hippocampal lesions in monkeys. We used resting-state functional MRI to assess functional connectivity of dlPFC networks in monkeys with neonatal neurotoxic hippocampal lesion (Neo-Hibo, n=4) and sham-operated control animals (Neo-C, n=4). Significant differences in the patterns of dlPFC functional networks were found between Groups Neo-Hibo and Neo-C. The within-group maps and the between-group comparisons yielded a highly coherent picture showing altered interactions of core regions of the working memory network (medial prefrontal cortex and posterior parietal cortex) as well as the dorsal (fundus of superior temporal area and superior temporal cortex) and ventral (V4 and infero-temporal cortex) visual processing areas in animals with Neo-Hibo lesions. Correlations between functional connectivity changes and working memory impairment in the same animals were found only between the dlPFC and visual cortical areas (V4 and infero-temporal cortex). Thus, the impact of the neonatal hippocampal lesions extends to multiple cortical areas interconnected with the dlPFC. PMID:27063864

  20. When are new hippocampal neurons, born in the adult brain, integrated into the network that processes spatial information?

    PubMed

    Sandoval, C Jimena; Martínez-Claros, Marisela; Bello-Medina, Paola C; Pérez, Oswaldo; Ramírez-Amaya, Víctor

    2011-03-09

    Adult-born neurons in the dentate gyrus (DG) functionally integrate into the behaviorally relevant hippocampal networks, showing a specific Arc-expression response to spatial exploration when mature. However, it is not clear when, during the 4- to 6-week interval that is critical for survival and maturation of these neurons, this specific response develops. Therefore, we characterized Arc expression after spatial exploration or cage control conditions in adult-born neurons from rats that were injected with BrdU on one day and were sacrificed 1, 7, 15, 30, and 45 days post-BrdU injection (PBI). Triple immunostaining for NeuN, Arc, and BrdU was analyzed through the different DG layers. Arc protein expression in BrdU-positive cells was observed from day 1 to day 15 PBI but was not related to behavioral stimulation. The specific Arc-expression response to spatial exploration was observed from day 30 and 45 in about 5% of the BrdU-positive cell population. Most of the BrdU-positive neurons expressing Arc in response to spatial exploration (∼90%) were located in DG layer 1, and no Arc expression was observed in cells located in the subgranular zone (SGZ). Using the current data and that obtained previously, we propose a mathematical model suggesting that new neurons are unlikely to respond to exploration by expressing Arc after they are 301 days old, and also that in a 7-month-old rat the majority (60%) of the neurons that respond to exploration must have been born during adulthood; thus, suggesting that adult neurogenesis in the DG is highly relevant for spatial information processing.

  1. When are new hippocampal neurons, born in the adult brain, integrated into the network that processes spatial information?

    PubMed

    Sandoval, C Jimena; Martínez-Claros, Marisela; Bello-Medina, Paola C; Pérez, Oswaldo; Ramírez-Amaya, Víctor

    2011-01-01

    Adult-born neurons in the dentate gyrus (DG) functionally integrate into the behaviorally relevant hippocampal networks, showing a specific Arc-expression response to spatial exploration when mature. However, it is not clear when, during the 4- to 6-week interval that is critical for survival and maturation of these neurons, this specific response develops. Therefore, we characterized Arc expression after spatial exploration or cage control conditions in adult-born neurons from rats that were injected with BrdU on one day and were sacrificed 1, 7, 15, 30, and 45 days post-BrdU injection (PBI). Triple immunostaining for NeuN, Arc, and BrdU was analyzed through the different DG layers. Arc protein expression in BrdU-positive cells was observed from day 1 to day 15 PBI but was not related to behavioral stimulation. The specific Arc-expression response to spatial exploration was observed from day 30 and 45 in about 5% of the BrdU-positive cell population. Most of the BrdU-positive neurons expressing Arc in response to spatial exploration (∼90%) were located in DG layer 1, and no Arc expression was observed in cells located in the subgranular zone (SGZ). Using the current data and that obtained previously, we propose a mathematical model suggesting that new neurons are unlikely to respond to exploration by expressing Arc after they are 301 days old, and also that in a 7-month-old rat the majority (60%) of the neurons that respond to exploration must have been born during adulthood; thus, suggesting that adult neurogenesis in the DG is highly relevant for spatial information processing. PMID:21408012

  2. Impacts of thyroxine combined with donepezil on hippocampal ultrastructures and expressions of synaptotagmin-1 and SNAP-25 in adult rats with hypothyroidism

    PubMed Central

    Yang, Hao; Zha, Xiaoxue; Cai, Yaojun; Wang, Fen; Wu, Zhangbi; Wu, Bo; Jia, Xuemei; Zhu, Defa

    2015-01-01

    The study aims to observe the impacts of thyroxine (T4) combined with donepezil (DON) on hippocampal ultrastructures and expressions of synaptotagmin-1 and SNAP-25 in adult rats with hypothyroidism. All rats were randomly divided into five groups: the normal control group (CON), the hypothyroidism group (Hypo), the T4 treatment group (T4), the DON treatment group (DON) and the T4+DON combined treatment group (T4+DON). Technique of Electron Microscope (TEM) was used to observe the hippocampal ultrastructures of each group, Western blot and real-time RT-PCR were performed to analyze the protein and mRNA expressions of syt-1 and SNAP-25 in the hippocampus of each group. TEM revealed that the Hypo group exhibited the significant vacuolar degeneration of mitochondria in the hippocampal neurons, the free ribosomes were sparse, the synaptic structures were damaged, and the number of synaptic vesicles was reduced, the above injuries in the T4 or DON group were improved, and the performance of the T4+DON group was the most close to the CON group. From the protein and mRNA levels, the dorsal hippocampal syt-1 expression of the Hypo group was significantly reduced, while SNAP-25 was significantly increased, the expressions were partially recovered after the T4 treatment, and the T4+DON combined treatment made the expression return to normal. The adult hypothyroid rats exhibited pathological damages in the hippocampal ultrastructures, the expression of syt-1 was downregulated, while that of SNAP-25 was upregulated, the T4+DON combined therapy could repair the above injuries, and the roles were better than the single drug treatment. PMID:26770386

  3. Impacts of thyroxine combined with donepezil on hippocampal ultrastructures and expressions of synaptotagmin-1 and SNAP-25 in adult rats with hypothyroidism.

    PubMed

    Yang, Hao; Zha, Xiaoxue; Cai, Yaojun; Wang, Fen; Wu, Zhangbi; Wu, Bo; Jia, Xuemei; Zhu, Defa

    2015-01-01

    The study aims to observe the impacts of thyroxine (T4) combined with donepezil (DON) on hippocampal ultrastructures and expressions of synaptotagmin-1 and SNAP-25 in adult rats with hypothyroidism. All rats were randomly divided into five groups: the normal control group (CON), the hypothyroidism group (Hypo), the T4 treatment group (T4), the DON treatment group (DON) and the T4+DON combined treatment group (T4+DON). Technique of Electron Microscope (TEM) was used to observe the hippocampal ultrastructures of each group, Western blot and real-time RT-PCR were performed to analyze the protein and mRNA expressions of syt-1 and SNAP-25 in the hippocampus of each group. TEM revealed that the Hypo group exhibited the significant vacuolar degeneration of mitochondria in the hippocampal neurons, the free ribosomes were sparse, the synaptic structures were damaged, and the number of synaptic vesicles was reduced, the above injuries in the T4 or DON group were improved, and the performance of the T4+DON group was the most close to the CON group. From the protein and mRNA levels, the dorsal hippocampal syt-1 expression of the Hypo group was significantly reduced, while SNAP-25 was significantly increased, the expressions were partially recovered after the T4 treatment, and the T4+DON combined treatment made the expression return to normal. The adult hypothyroid rats exhibited pathological damages in the hippocampal ultrastructures, the expression of syt-1 was downregulated, while that of SNAP-25 was upregulated, the T4+DON combined therapy could repair the above injuries, and the roles were better than the single drug treatment.

  4. Not all water mazes are created equal: cyclin D2 knockout mice with constitutively suppressed adult hippocampal neurogenesis do show specific spatial learning deficits.

    PubMed

    Garthe, A; Huang, Z; Kaczmarek, L; Filipkowski, R K; Kempermann, G

    2014-04-01

    Studies using the Morris water maze to assess hippocampal function in animals, in which adult hippocampal neurogenesis had been suppressed, have yielded seemingly contradictory results. Cyclin D2 knockout (Ccnd2(-/-)) mice, for example, have constitutively suppressed adult hippocampal neurogenesis but had no overt phenotype in the water maze. In other paradigms, however, ablation of adult neurogenesis was associated with specific deficits in the water maze. Therefore, we hypothesized that the neurogenesis-related phenotype might also become detectable in Ccnd2(-/-) mice, if we used the exact setup and protocol that in our previous study had revealed deficits in mice with suppressed adult neurogenesis. Ccnd2(-/-) mice indeed learned the task and developed a normal preference for the goal quadrant, but were significantly less precise for the exact goal position and were slower in acquiring efficient and spatially more precise search strategies. Upon goal reversal (when the hidden platform was moved to a new position) Ccnd2(-/-) mice showed increased perseverance at the former platform location, implying that they were less flexible in updating the previously learned information. Both with respect to adult neurogenesis and behavioral performance, Ccnd2(+/-) mice ranged between wild types and knockouts. Importantly, hippocampus-dependent learning was not generally impaired by the mutation, but specifically functional aspects relying on precise and flexible encoding were affected. Whether ablation of adult neurogenesis causes a specific behavioral phenotype thus also depends on the actual task demands. The test parameters appear to be important variables influencing whether a task can pick up a contribution of adult neurogenesis to test performance.

  5. Alcohol and pregnancy: Effects on maternal care, HPA axis function, and hippocampal neurogenesis in adult females.

    PubMed

    Workman, Joanna L; Raineki, Charlis; Weinberg, Joanne; Galea, Liisa A M

    2015-07-01

    Chronic alcohol consumption negatively affects health, and has additional consequences if consumption occurs during pregnancy as prenatal alcohol exposure adversely affects offspring development. While much is known on the effects of prenatal alcohol exposure in offspring less is known about effects of alcohol in dams. Here, we examine whether chronic alcohol consumption during gestation alters maternal behavior, hippocampal neurogenesis and HPA axis activity in late postpartum female rats compared with nulliparous rats. Rats were assigned to alcohol, pair-fed or ad libitum control treatment groups for 21 days (for pregnant rats, this occurred gestation days 1-21). Maternal behavior was assessed throughout the postpartum period. Twenty-one days after alcohol exposure, we assessed doublecortin (DCX) (an endogenous protein expressed in immature neurons) expression in the dorsal and ventral hippocampus and HPA axis activity. Alcohol consumption during pregnancy reduced nursing and increased self-directed and negative behaviors, but spared licking and grooming behavior. Alcohol consumption increased corticosterone and adrenal mass only in nulliparous females. Surprisingly, alcohol consumption did not alter DCX-expressing cell density. However, postpartum females had fewer DCX-expressing cells (and of these cells more immature proliferating cells but fewer postmitotic cells) than nulliparous females. Collectively, these data suggest that alcohol consumption during pregnancy disrupts maternal care without affecting HPA function or neurogenesis in dams. Conversely, alcohol altered HPA function in nulliparous females only, suggesting that reproductive experience buffers the long-term effects of alcohol on the HPA axis. PMID:25900594

  6. Alcohol and pregnancy: Effects on maternal care, HPA axis function, and hippocampal neurogenesis in adult females.

    PubMed

    Workman, Joanna L; Raineki, Charlis; Weinberg, Joanne; Galea, Liisa A M

    2015-07-01

    Chronic alcohol consumption negatively affects health, and has additional consequences if consumption occurs during pregnancy as prenatal alcohol exposure adversely affects offspring development. While much is known on the effects of prenatal alcohol exposure in offspring less is known about effects of alcohol in dams. Here, we examine whether chronic alcohol consumption during gestation alters maternal behavior, hippocampal neurogenesis and HPA axis activity in late postpartum female rats compared with nulliparous rats. Rats were assigned to alcohol, pair-fed or ad libitum control treatment groups for 21 days (for pregnant rats, this occurred gestation days 1-21). Maternal behavior was assessed throughout the postpartum period. Twenty-one days after alcohol exposure, we assessed doublecortin (DCX) (an endogenous protein expressed in immature neurons) expression in the dorsal and ventral hippocampus and HPA axis activity. Alcohol consumption during pregnancy reduced nursing and increased self-directed and negative behaviors, but spared licking and grooming behavior. Alcohol consumption increased corticosterone and adrenal mass only in nulliparous females. Surprisingly, alcohol consumption did not alter DCX-expressing cell density. However, postpartum females had fewer DCX-expressing cells (and of these cells more immature proliferating cells but fewer postmitotic cells) than nulliparous females. Collectively, these data suggest that alcohol consumption during pregnancy disrupts maternal care without affecting HPA function or neurogenesis in dams. Conversely, alcohol altered HPA function in nulliparous females only, suggesting that reproductive experience buffers the long-term effects of alcohol on the HPA axis.

  7. Increased Amygdalar and Hippocampal Volumes in Young Adults with Social Anxiety

    PubMed Central

    Machado-de-Sousa, João Paulo; Osório, Flávia de Lima; Jackowski, Andrea P.; Bressan, Rodrigo A.; Chagas, Marcos H. N.; Torro-Alves, Nelson; DePaula, André L. D.; Crippa, José A. S.; Hallak, Jaime E. C.

    2014-01-01

    Background Functional neuroimaging studies have consistently shown abnormal limbic activation patterns in socially anxious individuals, but structural data on the amygdala and hippocampus of these patients are scarce. This study explored the existence of structural differences in the whole brain, amygdala, and hippocampus of subjects with clinical and subthreshold social anxiety compared to healthy controls. We hypothesized that there would be volumetric differences across groups, without predicting their direction (i.e. enlargement or reduction). Methods Subjects classified as having social anxiety disorder (n = 12), subthreshold social anxiety (n = 12) and healthy controls (n = 14) underwent structural magnetic resonance imaging scans. The amygdala and hippocampus were defined a priori as regions of interest and volumes were calculated by manual tracing. Whole brain volume was calculated using voxel-based morphometry. Results The bilateral amygdala and left hippocampus were enlarged in socially anxious individuals relative to controls. The volume of the right hippocampus was enlarged in subthreshold social anxiety participants relative to controls. No differences were found across groups in respect to total brain volume. Conclusions Our results show amygdalar and hippocampal volume alterations in social anxiety, possibly associated with symptom severity. The time course of such alterations and the cellular and molecular bases of limbic plasticity in social anxiety should be further investigated. PMID:24523911

  8. Adult neurogenesis and cellular brain repair with neural progenitors, precursors and stem cells

    PubMed Central

    Shivraj Sohur, U; Emsley, Jason G; Mitchell, Bartley D; Macklis, Jeffrey D

    2006-01-01

    Recent work in neuroscience has shown that the adult central nervous system (CNS) contains neural progenitors, precursors and stem cells that are capable of generating new neurons, astrocytes and oligodendrocytes. While challenging the previous dogma that no new neurons are born in the adult mammalian CNS, these findings bring with them the future possibilities for development of novel neural repair strategies. The purpose of this review is to present the current knowledge about constitutively occurring adult mammalian neurogenesis, highlight the critical differences between ‘neurogenic’ and ‘non-neurogenic’ regions in the adult brain, and describe the cardinal features of two well-described neurogenic regions—the subventricular zone/olfactory bulb system and the dentate gyrus of the hippocampus. We also provide an overview of presently used models for studying neural precursors in vitro, mention some precursor transplantation models and emphasize that, in this rapidly growing field of neuroscience, one must be cautious with respect to a variety of methodological considerations for studying neural precursor cells both in vitro and in vivo. The possibility of repairing neural circuitry by manipulating neurogenesis is an intriguing one, and, therefore, we also review recent efforts to understand the conditions under which neurogenesis can be induced in non-neurogenic regions of the adult CNS. This work aims towards molecular and cellular manipulation of endogenous neural precursors in situ, without transplantation. We conclude this review with a discussion of what might be the function of newly generated neurons in the adult brain, and provide a summary of present thinking about the consequences of disturbed adult neurogenesis and the reaction of neurogenic regions to disease. PMID:16939970

  9. Restricted nature of adult neural stem cells: re-evaluation of their potential for brain repair

    PubMed Central

    Obernier, Kirsten; Tong, Cheuk Ka; Alvarez-Buylla, Arturo

    2014-01-01

    Neural stem cells (NSCs) in the walls of the lateral ventricles continue to produce new neurons and oligodendrocytes throughout life. The identification of NSCs, long-range neuronal migration, and the integration of new neurons into fully formed mature neural circuits—all in the juvenile or adult brain—has dramatically changed concepts in neurodevelopment and suggests new strategies for brain repair. Yet, the latter has to be seen in perspective: NSCs in the adult are heterogeneous and highly regionally specified; young neurons derived from these primary progenitors migrate and integrate in specific brain regions. Neurogenesis appears to have a function in brain plasticity rather than brain repair. If similar processes could be induced in regions of the brain that are normally not a target of new neurons, therapeutic neuronal replacement may one day reinstate neural circuit plasticity and possibly repair broken neural circuits. PMID:24987325

  10. Gene-environment interaction in programming hippocampal plasticity: focus on adult neurogenesis

    PubMed Central

    Koehl, Muriel

    2015-01-01

    Interactions between genes and environment are a critical feature of development and both contribute to shape individuality. They are at the core of vulnerability resiliency for mental illnesses. During the early postnatal period, several brain structures involved in cognitive and emotional processing, such as the hippocampus, still develop and it is likely that interferences with this neuronal development, which is genetically determined, might lead to long-lasting structural and functional consequences and increase the risk of developing psychopathology. One particular target is adult neurogenesis, which is involved in the regulation of cognitive and emotional processes. Insights into the dynamic interplay between genes and environmental factors in setting up individual rates of neurogenesis have come from laboratory studies exploring experience-dependent changes in adult neurogenesis as a function of individual’s genetic makeup. These studies have implications for our understanding of the mechanisms regulating adult neurogenesis, which could constitute a link between environmental challenges and psychopathology. PMID:26300723

  11. Neural Correlates Associated with Successful Working Memory Performance in Older Adults as Revealed by Spatial ICA

    PubMed Central

    Saliasi, Emi; Geerligs, Linda; Lorist, Monicque M.; Maurits, Natasha M.

    2014-01-01

    To investigate which neural correlates are associated with successful working memory performance, fMRI was recorded in healthy younger and older adults during performance on an n-back task with varying task demands. To identify functional networks supporting working memory processes, we used independent component analysis (ICA) decomposition of the fMRI data. Compared to younger adults, older adults showed a larger neural (BOLD) response in the more complex (2-back) than in the baseline (0-back) task condition, in the ventral lateral prefrontal cortex (VLPFC) and in the right fronto-parietal network (FPN). Our results indicated that a higher BOLD response in the VLPFC was associated with increased performance accuracy in older adults, in both the baseline and the more complex task condition. This ‘BOLD-performance’ relationship suggests that the neural correlates linked with successful performance in the older adults are not uniquely related to specific working memory processes present in the complex but not in the baseline task condition. Furthermore, the selective presence of this relationship in older but not in younger adults suggests that increased neural activity in the VLPFC serves a compensatory role in the aging brain which benefits task performance in the elderly. PMID:24911016

  12. Neural correlates associated with successful working memory performance in older adults as revealed by spatial ICA.

    PubMed

    Saliasi, Emi; Geerligs, Linda; Lorist, Monicque M; Maurits, Natasha M

    2014-01-01

    To investigate which neural correlates are associated with successful working memory performance, fMRI was recorded in healthy younger and older adults during performance on an n-back task with varying task demands. To identify functional networks supporting working memory processes, we used independent component analysis (ICA) decomposition of the fMRI data. Compared to younger adults, older adults showed a larger neural (BOLD) response in the more complex (2-back) than in the baseline (0-back) task condition, in the ventral lateral prefrontal cortex (VLPFC) and in the right fronto-parietal network (FPN). Our results indicated that a higher BOLD response in the VLPFC was associated with increased performance accuracy in older adults, in the more complex task condition. This 'BOLD-performance' relationship suggests that the neural correlates linked with successful performance in the older adults are related to specific working memory processes present in the complex but not in the baseline task condition [corrected].Furthermore, the selective presence of this relationship in older but not in younger adults suggests that increased neural activity in the VLPFC serves a compensatory role in the aging brain which benefits task performance in the elderly.

  13. Voluntary exercise followed by chronic stress strikingly increases mature adult-born hippocampal neurons and prevents stress-induced deficits in 'what-when-where' memory.

    PubMed

    Castilla-Ortega, Estela; Rosell-Valle, Cristina; Pedraza, Carmen; Rodríguez de Fonseca, Fernando; Estivill-Torrús, Guillermo; Santín, Luis J

    2014-03-01

    We investigated whether voluntary exercise prevents the deleterious effects of chronic stress on episodic-like memory and adult hippocampal neurogenesis. After bromodeoxyuridine (BrdU) administration, mice were assigned to receive standard housing, chronic intermittent restraint stress, voluntary exercise or a combination of both (stress starting on the seventh day of exercise). Twenty-four days later, mice were tested in a 'what-when-where' object recognition memory task. Adult hippocampal neurogenesis (proliferation, differentiation, survival and apoptosis) and c-Fos expression in the hippocampus and extra-hippocampal areas (medial prefrontal cortex, amygdala, paraventricular hypothalamic nucleus, accumbens and perirhinal cortex) were assessed after behavior. Chronic intermittent restraint stress impaired neurogenesis and the 'when' memory, while exercise promoted neurogenesis and improved the 'where' memory. The 'when' and 'where' memories correlated with c-Fos expression in CA1 and the dentate gyrus, respectively. Furthermore, analysis suggested that each treatment induced a distinct pattern of functional connectivity among the areas analyzed for c-Fos. In the animals in which stress and exercise were combined, stress notably reduced the amount of voluntary exercise performed. Nevertheless, exercise still improved memory and counteracted the stress induced-deficits in neurogenesis and behavior. Interestingly, compared with the other three treatments, the stressed exercising animals showed a larger increase in cell survival, the maturation of new neurons and apoptosis in the dentate gyrus, with a considerable increase in the number of 24-day-old BrdU+cells that differentiated into mature neurons. The interaction between exercise and stress in enhancing the number of adult-born hippocampal neurons supports a role of exercise-induced neurogenesis in stressful conditions. PMID:24333647

  14. The longitudinal study of rat hippocampus influenced by stress: early adverse experience enhances hippocampal vulnerability and working memory deficit in adult rats.

    PubMed

    Jin, Fengkui; Li, Lei; Shi, Mei; Li, Zhenzi; Zhou, Jinghua; Chen, Li

    2013-06-01

    Epidemiologic studies indicate that early adverse experience is related to learning disabilities in adults, but the neurobiological mechanisms have not yet been identified. We used longitudinal animal experiments to test the hypothesis that early life stress enhances hippocampal vulnerability and working memory deficit in adult rats. The expression of Synaptophysin (SYN) and apoptosis (Apo) in hippocampal CA3 and dentate gyrus (DG) regions were examined to evaluate the effects of environmental factors on the hippocampus. The working memory errors via radial 8-arm maze were studied to evaluate the long-term effect of early stress on rats' spatial learning ability. Our results indicated that chronic restraint stress in early life and forced cold water swimming stress in adulthood reduced SYN expression and increased Apo levels in rat hippocampus, but the hippocampal damage tended to recover when rats returned to a non-stress environment. In addition, when the rats were exposed to forced cold water swimming stress during adulthood, SYN expression (CA3 and DG regions) and Apo levels (CA3 region) in rat hippocampus showed statistical difference between early restraint stress group and non-early restraint stress group (rats exposed to stress in adulthood only). One month after the two groups of rats returned to non-stress environment, this difference of SYN expression (CA3 and DG regions) and working memory deficit between the two groups was still statistically significant. Our study findings suggested that early adverse experience enhances hippocampal vulnerability and working memory deficit in adult rats, and reduces structural plasticity of hippocampus.

  15. Relationship between brain accumulation of manganese and aberration of hippocampal adult neurogenesis after oral exposure to manganese chloride in mice.

    PubMed

    Kikuchihara, Yoh; Abe, Hajime; Tanaka, Takeshi; Kato, Mizuho; Wang, Liyun; Ikarashi, Yoshiaki; Yoshida, Toshinori; Shibutani, Makoto

    2015-05-01

    We previously found persistent aberration of hippocampal adult neurogenesis, along with brain manganese (Mn) accumulation, in mouse offspring after developmental exposure to 800-ppm dietary Mn. Reduction of parvalbumin (Pvalb)(+) γ-aminobutyric acid (GABA)-ergic interneurons in the hilus of the dentate gyrus along with promoter region hypermethylation are thought to be responsible for this aberrant neurogenesis. The present study was conducted to examine the relationship between the induction of aberrant neurogenesis and brain Mn accumulation after oral Mn exposure as well as the responsible mechanism in young adult animals. We used two groups of mice with 28- or 56-day exposure periods to oral MnCl2·xH2O at 800 ppm as Mn, a dose sufficient to lead to aberrant neurogenesis after developmental exposure. A third group of mice received intravenous injections of Mn at 5-mg/kg body weight once weekly for 28 days. The 28-day oral Mn exposure did not cause aberrations in neurogenesis. In contrast, 56-day oral exposure caused aberrations in neurogenesis suggestive of reductions in type 2b and type 3 progenitor cells and immature granule cells in the dentate subgranular zone. Brain Mn accumulation in 56-day exposed cases, as well as in directly Mn-injected cases occurred in parallel with reduction of Pvalb(+) GABAergic interneurons in the dentate hilus, suggesting that this may be responsible for aberrant neurogenesis. For reduction of Pvalb(+) interneurons, suppression of brain-derived neurotrophic factor-mediated signaling of mature granule cells may occur via suppression of c-Fos-mediated neuronal plasticity due to direct Mn-toxicity rather than promoter region hypermethylation of Pvalb.

  16. No effect of running and laboratory housing on adult hippocampal neurogenesis in wild caught long-tailed wood mouse

    PubMed Central

    Hauser, Thomas; Klaus, Fabienne; Lipp, Hans-Peter; Amrein, Irmgard

    2009-01-01

    Background Studies of adult hippocampal neurogenesis (AHN) in laboratory rodents have raised hopes for therapeutic interventions in neurodegenerative diseases and mood disorders, as AHN can be modulated by physical exercise, stress and environmental changes in these animals. Since it is not known whether cell proliferation and neurogenesis in wild living mice can be experimentally changed, this study investigates the responsiveness of AHN to voluntary running and to environmental change in wild caught long-tailed wood mice (Apodemus sylvaticus). Results Statistical analyses show that running had no impact on cell proliferation (p = 0.44), neurogenesis (p = 0.94) or survival of newly born neurons (p = 0.58). Likewise, housing in the laboratory has no effect on AHN. In addition, interindividual differences in the level of neurogenesis are not related to interindividual differences of running wheel performance (rs = -0.09, p = 0.79). There is a correlation between the number of proliferating cells and the number of cells of neuronal lineage (rs = 0.63, p < 0.001) and the number of pyknotic cells (rs = 0.5, p = 0.009), respectively. Conclusion Plasticity of adult neurogenesis is an established feature in strains of house mice and brown rats. Here, we demonstrate that voluntary running and environmental changes which are effective in house mice and brown rats cannot influence AHN in long-tailed wood mice. This indicates that in wild long-tailed wood mice different regulatory mechanisms act on cell proliferation and neurogenesis. If this difference reflects a species-specific adaptation or a broader adaptive strategy to a natural vs. domestic environment is unknown. PMID:19419549

  17. Exercise and environment as an intervention for neonatal alcohol effects on hippocampal adult neurogenesis and learning.

    PubMed

    Hamilton, G F; Jablonski, S A; Schiffino, F L; St Cyr, S A; Stanton, M E; Klintsova, A Y

    2014-04-18

    Neonatal alcohol exposure impairs cognition and learning in adulthood and permanently damages the hippocampus. Wheel running (WR) improves hippocampus-associated learning and memory and increases the genesis and survival of newly generated neurons in the hippocampal dentate gyrus. WR significantly increases proliferation of newly generated dentate granule cells in alcohol-exposed (AE) and control rats on Postnatal Day (PD) 42 but only control rats show an increased number of surviving cells thirty days after WR (Helfer et al., 2009b). The present studies examined whether proliferation-promoting WR followed by survival-enhancing environmental complexity (EC) during adolescence could increase survival of new neurons in AE rats. On PD 4-9, pups were intubated with alcohol in a binge-like manner (5.25g/kg/day, AE), were sham-intubated (SI), or were reared normally (suckle control, SC). On PD 30 animals were assigned to WR (PD 30-42) followed by EC (PD 42-72; WR/EC) or were socially housed (SH/SH) for the duration of the experiment. All animals were injected with 200mg/kg bromodeoxyuridine (BrdU) on PD 41. In Experiment 1, survival of newly generated cells was significantly enhanced in the AE-WR/EC group in comparison with AE-SH/SH group. Experiment 2A examined trace eyeblink conditioning. In the SH/SH condition, AE impaired trace eyeblink conditioning relative to SI and SC controls. In the WR/EC condition, AE rats performed as well as controls. In Experiment 2B, the same intervention was examined using the context preexposure facilitation effect (CPFE); a hippocampus-dependent variant of contextual fear conditioning. Again, the WR/EC intervention reversed the deficit in conditioned fear to the context that was evident in the SH/SH condition. Post-weaning environmental manipulations promote cell survival and reverse learning deficits in rats that were exposed to alcohol during development. These manipulations may provide a basis for developing interventions that

  18. Exercise and environment as an intervention for neonatal alcohol effects on hippocampal adult neurogenesis and learning.

    PubMed

    Hamilton, G F; Jablonski, S A; Schiffino, F L; St Cyr, S A; Stanton, M E; Klintsova, A Y

    2014-04-18

    Neonatal alcohol exposure impairs cognition and learning in adulthood and permanently damages the hippocampus. Wheel running (WR) improves hippocampus-associated learning and memory and increases the genesis and survival of newly generated neurons in the hippocampal dentate gyrus. WR significantly increases proliferation of newly generated dentate granule cells in alcohol-exposed (AE) and control rats on Postnatal Day (PD) 42 but only control rats show an increased number of surviving cells thirty days after WR (Helfer et al., 2009b). The present studies examined whether proliferation-promoting WR followed by survival-enhancing environmental complexity (EC) during adolescence could increase survival of new neurons in AE rats. On PD 4-9, pups were intubated with alcohol in a binge-like manner (5.25g/kg/day, AE), were sham-intubated (SI), or were reared normally (suckle control, SC). On PD 30 animals were assigned to WR (PD 30-42) followed by EC (PD 42-72; WR/EC) or were socially housed (SH/SH) for the duration of the experiment. All animals were injected with 200mg/kg bromodeoxyuridine (BrdU) on PD 41. In Experiment 1, survival of newly generated cells was significantly enhanced in the AE-WR/EC group in comparison with AE-SH/SH group. Experiment 2A examined trace eyeblink conditioning. In the SH/SH condition, AE impaired trace eyeblink conditioning relative to SI and SC controls. In the WR/EC condition, AE rats performed as well as controls. In Experiment 2B, the same intervention was examined using the context preexposure facilitation effect (CPFE); a hippocampus-dependent variant of contextual fear conditioning. Again, the WR/EC intervention reversed the deficit in conditioned fear to the context that was evident in the SH/SH condition. Post-weaning environmental manipulations promote cell survival and reverse learning deficits in rats that were exposed to alcohol during development. These manipulations may provide a basis for developing interventions that

  19. Empathy in hippocampal amnesia.

    PubMed

    Beadle, J N; Tranel, D; Cohen, N J; Duff, M C

    2013-01-01

    Empathy is critical to the quality of our relationships with others and plays an important role in life satisfaction and well-being. The scientific investigation of empathy has focused on characterizing its cognitive and neural substrates, and has pointed to the importance of a network of brain regions involved in emotional experience and perspective taking (e.g., ventromedial prefrontal cortex, amygdala, anterior insula, cingulate). While the hippocampus has rarely been the focus of empathy research, the hallmark properties of the hippocampal declarative memory system (e.g., representational flexibility, relational binding, on-line processing capacity) make it well-suited to meet some of the crucial demands of empathy, and a careful investigation of this possibility could make a significant contribution to the neuroscientific understanding of empathy. The present study is a preliminary investigation of the role of the hippocampal declarative memory system in empathy. Participants were three patients (1 female) with focal, bilateral hippocampal (HC) damage and severe declarative memory impairments and three healthy demographically matched comparison participants. Empathy was measured as a trait through a battery of gold standard questionnaires and through on-line ratings and prosocial behavior in response to a series of empathy inductions. Patients with hippocampal amnesia reported lower cognitive and emotional trait empathy than healthy comparison participants. Unlike healthy comparison participants, in response to the empathy inductions hippocampal patients reported no increase in empathy ratings or prosocial behavior. The results provide preliminary evidence for a role for hippocampal declarative memory in empathy.

  20. Empathy in Hippocampal Amnesia

    PubMed Central

    Beadle, J. N.; Tranel, D.; Cohen, N. J.; Duff, M. C.

    2013-01-01

    Empathy is critical to the quality of our relationships with others and plays an important role in life satisfaction and well-being. The scientific investigation of empathy has focused on characterizing its cognitive and neural substrates, and has pointed to the importance of a network of brain regions involved in emotional experience and perspective taking (e.g., ventromedial prefrontal cortex, amygdala, anterior insula, cingulate). While the hippocampus has rarely been the focus of empathy research, the hallmark properties of the hippocampal declarative memory system (e.g., representational flexibility, relational binding, on-line processing capacity) make it well-suited to meet some of the crucial demands of empathy, and a careful investigation of this possibility could make a significant contribution to the neuroscientific understanding of empathy. The present study is a preliminary investigation of the role of the hippocampal declarative memory system in empathy. Participants were three patients (1 female) with focal, bilateral hippocampal (HC) damage and severe declarative memory impairments and three healthy demographically matched comparison participants. Empathy was measured as a trait through a battery of gold standard questionnaires and through on-line ratings and prosocial behavior in response to a series of empathy inductions. Patients with hippocampal amnesia reported lower cognitive and emotional trait empathy than healthy comparison participants. Unlike healthy comparison participants, in response to the empathy inductions hippocampal patients reported no increase in empathy ratings or prosocial behavior. The results provide preliminary evidence for a role for hippocampal declarative memory in empathy. PMID:23526601

  1. The relationship between behavior acquisition and persistence abilities: Involvement of adult hippocampal neurogenesis.

    PubMed

    Gradari, Simona; Pérez-Domper, Paloma; Butler, Ray G; Martínez-Cué, Carmen; de Polavieja, Gonzalo G; Trejo, José Luis

    2016-07-01

    The influence of the learning process on the persistence of the newly acquired behavior is relevant both for our knowledge of the learning/memory mechanisms and for the educational policy. However, it is unclear whether during an operant conditioning process with a continuous reinforcement paradigm, individual differences in acquisition are also associated to differences in persistence of the acquired behavior. In parallel, adult neurogenesis has been implicated in spatial learning and memory, but the specific role of the immature neurons born in the adult brain is not well known for this process. We have addressed both questions by analyzing the relationship between water maze task acquisition scores, the persistence of the acquired behavior, and the size of the different subpopulations of immature neurons in the adult murine hippocampus. We have found that task acquisition and persistence rates were negatively correlated: the faster the animals find the water maze platform at the end of acquisition stage, the less they persist in searching for it at the learned position in a subsequent non-reinforced trial; accordingly, the correlation in the number of some new neurons' subpopulations and the acquisition rate is negative while with persistence in acquired behavior is positive. These findings reveal an unexpected relationship between the efficiency to learn a task and the persistence of the new behavior after a non-reinforcement paradigm, and suggest that the immature neurons might be involved in different roles in acquisition and persistence/extinction of a learning task. © 2016 Wiley Periodicals, Inc. PMID:26788800

  2. Hippocampal volume and cingulum bundle fractional anisotropy are independently associated with verbal memory in older adults.

    PubMed

    Ezzati, Ali; Katz, Mindy J; Lipton, Michael L; Zimmerman, Molly E; Lipton, Richard B

    2016-09-01

    The objective of this study was to investigate the relationship of medial temporal lobe and posterior cingulate cortex (PCC) volumetrics as well as fractional anisotropy of the cingulum angular bundle (CAB) and the cingulum cingulate gyrus (CCG) bundle to performance on measures of verbal memory in non-demented older adults. The participants were 100 non-demented adults over the age of 70 years from the Einstein Aging Study. Volumetric data were estimated from T1-weighted images. The entire cingulum was reconstructed using diffusion tensor MRI and probabilistic tractography. Association between verbal episodic memory and MRI measures including volume of hippocampus (HIP), entorhinal cortex (ERC), PCC and fractional anisotropy of CAB and CCG bundle were modeled using linear regression. Relationships between atrophy of these structures and regional cingulum fractional anisotropy were also explored. Decreased HIP volume on the left and decreased fractional anisotropy of left CAB were associated with lower memory performance. Volume changes in ERC, PCC and CCG disruption were not associated with memory performance. In regression models, left HIP volume and left CAB-FA were each independently associated with episodic memory. The results suggest that microstructural changes in the left CAB and decreased left HIP volume independently influence episodic memory performance in older adults without dementia. The importance of these findings in age and illness-related memory decline require additional exploration. PMID:26424564

  3. The relationship between behavior acquisition and persistence abilities: Involvement of adult hippocampal neurogenesis.

    PubMed

    Gradari, Simona; Pérez-Domper, Paloma; Butler, Ray G; Martínez-Cué, Carmen; de Polavieja, Gonzalo G; Trejo, José Luis

    2016-07-01

    The influence of the learning process on the persistence of the newly acquired behavior is relevant both for our knowledge of the learning/memory mechanisms and for the educational policy. However, it is unclear whether during an operant conditioning process with a continuous reinforcement paradigm, individual differences in acquisition are also associated to differences in persistence of the acquired behavior. In parallel, adult neurogenesis has been implicated in spatial learning and memory, but the specific role of the immature neurons born in the adult brain is not well known for this process. We have addressed both questions by analyzing the relationship between water maze task acquisition scores, the persistence of the acquired behavior, and the size of the different subpopulations of immature neurons in the adult murine hippocampus. We have found that task acquisition and persistence rates were negatively correlated: the faster the animals find the water maze platform at the end of acquisition stage, the less they persist in searching for it at the learned position in a subsequent non-reinforced trial; accordingly, the correlation in the number of some new neurons' subpopulations and the acquisition rate is negative while with persistence in acquired behavior is positive. These findings reveal an unexpected relationship between the efficiency to learn a task and the persistence of the new behavior after a non-reinforcement paradigm, and suggest that the immature neurons might be involved in different roles in acquisition and persistence/extinction of a learning task. © 2016 Wiley Periodicals, Inc.

  4. The neural underpinnings of reading skill in deaf adults.

    PubMed

    Emmorey, Karen; McCullough, Stephen; Weisberg, Jill

    2016-09-01

    We investigated word-level reading circuits in skilled deaf readers (N=14; mean reading age=19.5years) and less skilled deaf readers (N=14; mean reading age=12years) who were all highly proficient users of American Sign Language. During fMRI scanning, participants performed a semantic decision (concrete concept?), a phonological decision (two syllables?), and a false-font control task (string underlined?). No significant group differences were observed with the full participant set. However, an analysis with the 10 most and 10 least skilled readers revealed that for the semantic task (vs. control task), proficient deaf readers exhibited greater activation in left inferior frontal and middle temporal gyri than less proficient readers. No group differences were observed for the phonological task. Whole-brain correlation analyses (all participants) revealed that for the semantic task, reading ability correlated positively with neural activity in the right inferior frontal gyrus and in a region associated with the orthography-semantics interface, located anterior to the visual word form area. Reading ability did not correlate with neural activity during the phonological task. Accuracy on the semantic task correlated positively with neural activity in left anterior temporal lobe (a region linked to conceptual processing), while accuracy on the phonological task correlated positively with neural activity in left posterior inferior frontal gyrus (a region linked to syllabification processes during speech production). Finally, reading comprehension scores correlated positively with vocabulary and print exposure measures, but not with phonological awareness scores. PMID:27448530

  5. The neural underpinnings of reading skill in deaf adults.

    PubMed

    Emmorey, Karen; McCullough, Stephen; Weisberg, Jill

    2016-09-01

    We investigated word-level reading circuits in skilled deaf readers (N=14; mean reading age=19.5years) and less skilled deaf readers (N=14; mean reading age=12years) who were all highly proficient users of American Sign Language. During fMRI scanning, participants performed a semantic decision (concrete concept?), a phonological decision (two syllables?), and a false-font control task (string underlined?). No significant group differences were observed with the full participant set. However, an analysis with the 10 most and 10 least skilled readers revealed that for the semantic task (vs. control task), proficient deaf readers exhibited greater activation in left inferior frontal and middle temporal gyri than less proficient readers. No group differences were observed for the phonological task. Whole-brain correlation analyses (all participants) revealed that for the semantic task, reading ability correlated positively with neural activity in the right inferior frontal gyrus and in a region associated with the orthography-semantics interface, located anterior to the visual word form area. Reading ability did not correlate with neural activity during the phonological task. Accuracy on the semantic task correlated positively with neural activity in left anterior temporal lobe (a region linked to conceptual processing), while accuracy on the phonological task correlated positively with neural activity in left posterior inferior frontal gyrus (a region linked to syllabification processes during speech production). Finally, reading comprehension scores correlated positively with vocabulary and print exposure measures, but not with phonological awareness scores.

  6. Neural correlates of single word reading in bilingual children and adults.

    PubMed

    Hernandez, Arturo E; Woods, Elizabeth A; Bradley, Kailyn A L

    2015-04-01

    The present study compared the neural correlates of language processing in children and adult Spanish-English bilinguals. Participants were asked to perform a visual lexical processing task in both Spanish and English while being scanned with fMRI. Both children and adults recruited a similar network of left hemisphere "language" areas and showed similar proficiency profiles in Spanish. In terms of behavior, adults showed better language proficiency in English relative to children. Furthermore, neural activity in adults was observed in the bilateral MTG. Age-related differences were observed in Spanish in the right MTG. The current results confirm the presence of neural activity in a set of left hemisphere areas in both adult and child bilinguals when reading words in each language. They also reveal that differences in neural activity are not entirely driven by changes in language proficiency during visual word processing. This indicates that both skill development and age can play a role in brain activity seen across development.

  7. Non-Viral Generation of Neural Precursor-like Cells from Adult Human Fibroblasts

    PubMed Central

    Maucksch, C; Firmin, E; Butler-Munro, C; Montgomery, JM; Dottori, M; Connor, B

    2012-01-01

    Recent studies have reported direct reprogramming of human fibroblasts to mature neurons by the introduction of defined neural genes. This technology has potential use in the areas of neurological disease modeling and drug development. However, use of induced neurons for large-scale drug screening and cell-based replacement strategies is limited due to their inability to expand once reprogrammed. We propose it would be more desirable to induce expandable neural precursor cells directly from human fibroblasts. To date several pluripotent and neural transcription factors have been shown to be capable of converting mouse fibroblasts to neural stem/precursor-like cells when delivered by viral vectors. Here we extend these findings and demonstrate that transient ectopic insertion of the transcription factors SOX2 and PAX6 to adult human fibroblasts through use of non-viral plasmid transfection or protein transduction allows the generation of induced neural precursor (iNP) colonies expressing a range of neural stem and pro-neural genes. Upon differentiation, iNP cells give rise to neurons exhibiting typical neuronal morphologies and expressing multiple neuronal markers including tyrosine hydroxylase and GAD65/67. Importantly, iNP-derived neurons demonstrate electrophysiological properties of functionally mature neurons with the capacity to generate action potentials. In addition, iNP cells are capable of differentiating into glial fibrillary acidic protein (GFAP)-expressing astrocytes. This study represents a novel virusfree approach for direct reprogramming of human fibroblasts to a neural precursor fate. PMID:24693194

  8. The circadian molecular clock regulates adult hippocampal neurogenesis by controlling the timing of cell-cycle entry and exit.

    PubMed

    Bouchard-Cannon, Pascale; Mendoza-Viveros, Lucia; Yuen, Andrew; Kærn, Mads; Cheng, Hai-Ying M

    2013-11-27

    The subgranular zone (SGZ) of the adult hippocampus contains a pool of quiescent neural progenitor cells (QNPs) that are capable of entering the cell cycle and producing newborn neurons. The mechanisms that control the timing and extent of adult neurogenesis are not well understood. Here, we show that QNPs of the adult SGZ express molecular-clock components and proliferate in a rhythmic fashion. The clock proteins PERIOD2 and BMAL1 are critical for proper control of neurogenesis. The absence of PERIOD2 abolishes the gating of cell-cycle entrance of QNPs, whereas genetic ablation of bmal1 results in constitutively high levels of proliferation and delayed cell-cycle exit. We use mathematical model simulations to show that these observations may arise from clock-driven expression of a cell-cycle inhibitor that targets the cyclin D/Cdk4-6 complex. Our findings may have broad implications for the circadian clock in timing cell-cycle events of other stem cell populations throughout the body.

  9. Neural Mechanisms Underlying Action Observation in Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Virji-Babul, Naznin; Moiseev, Alexander; Cheung, Teresa; Weeks, Daniel J.; Cheyne, Douglas; Ribary, Urs

    2010-01-01

    Results of a magnetoencephalography (MEG) brain imaging study conducted to examine the cortical responses during action execution and action observation in 10 healthy adults and 8 age-matched adults with Down syndrome are reported. During execution, the motor responses were strongly lateralized on the ipsilateral rather than the contralateral side…

  10. The effects of high-frequency oscillations in hippocampal electrical activities on the classification of epileptiform events using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Chiu, Alan W. L.; Jahromi, Shokrollah S.; Khosravani, Houman; Carlen, Peter L.; Bardakjian, Berj L.

    2006-03-01

    The existence of hippocampal high-frequency electrical activities (greater than 100 Hz) during the progression of seizure episodes in both human and animal experimental models of epilepsy has been well documented (Bragin A, Engel J, Wilson C L, Fried I and Buzsáki G 1999 Hippocampus 9 137-42 Khosravani H, Pinnegar C R, Mitchell J R, Bardakjian B L, Federico P and Carlen P L 2005 Epilepsia 46 1-10). However, this information has not been studied between successive seizure episodes or utilized in the application of seizure classification. In this study, we examine the dynamical changes of an in vitro low Mg2+ rat hippocampal slice model of epilepsy at different frequency bands using wavelet transforms and artificial neural networks. By dividing the time-frequency spectrum of each seizure-like event (SLE) into frequency bins, we can analyze their burst-to-burst variations within individual SLEs as well as between successive SLE episodes. Wavelet energy and wavelet entropy are estimated for intracellular and extracellular electrical recordings using sufficiently high sampling rates (10 kHz). We demonstrate that the activities of high-frequency oscillations in the 100-400 Hz range increase as the slice approaches SLE onsets and in later episodes of SLEs. Utilizing the time-dependent relationship between different frequency bands, we can achieve frequency-dependent state classification. We demonstrate that activities in the frequency range 100-400 Hz are critical for the accurate classification of the different states of electrographic seizure-like episodes (containing interictal, preictal and ictal states) in brain slices undergoing recurrent spontaneous SLEs. While preictal activities can be classified with an average accuracy of 77.4 ± 6.7% utilizing the frequency spectrum in the range 0-400 Hz, we can also achieve a similar level of accuracy by using a nonlinear relationship between 100-400 Hz and <4 Hz frequency bands only.

  11. Brain Insulin-Like Growth Factor-I Directs the Transition from Stem Cells to Mature Neurons During Postnatal/Adult Hippocampal Neurogenesis.

    PubMed

    Nieto-Estévez, Vanesa; Oueslati-Morales, Carlos O; Li, Lingling; Pickel, James; Morales, Aixa V; Vicario-Abejón, Carlos

    2016-08-01

    The specific actions of insulin-like growth factor-I (IGF-I) and the role of brain-derived IGF-I during hippocampal neurogenesis have not been fully defined. To address the influence of IGF-I on the stages of hippocampal neurogenesis, we studied a postnatal/adult global Igf-I knockout (KO) mice (Igf-I(-/-) ) and a nervous system Igf-I conditional KO (Igf-I(Δ/Δ) ). In both KO mice we found an accumulation of Tbr2(+) -intermediate neuronal progenitors, some of which were displaced in the outer granule cell layer (GCL) and the molecular layer (ML) of the dentate gyrus (DG). Similarly, more ectopic Ki67(+) - cycling cells were detected. Thus, the GCL was disorganized with significant numbers of Prox1(+) -granule neurons outside this layer and altered morphology of radial glial cells (RGCs). Dividing progenitors were also generated in greater numbers in clonal hippocampal stem cell (HPSC) cultures from the KO mice. Indeed, higher levels of Hes5 and Ngn2, transcription factors that maintain the stem and progenitor cell state, were expressed in both HPSCs and the GCL-ML from the Igf-I(Δ/Δ) mice. To determine the impact of Igf-I deletion on neuronal generation in vivo, progenitors in Igf-I(-/-) and Igf-I(+/+) mice were labeled with a GFP-expressing vector. This revealed that in the Igf-I(-/-) mice more GFP(+) -immature neurons were formed and they had less complex dendritic trees. These findings indicate that local IGF-I plays critical roles during postnatal/adult hippocampal neurogenesis, regulating the transition from HPSCs and progenitors to mature granule neurons in a cell stage-dependent manner. Stem Cells 2016;34:2194-2209. PMID:27144663

  12. Individual differences in the neural signature of subjective value among older adults.

    PubMed

    Halfmann, Kameko; Hedgcock, William; Kable, Joseph; Denburg, Natalie L

    2016-07-01

    Some healthy older adults show departures from standard decision-making patterns exhibited by younger adults. We asked if such departures are uniform or if heterogeneous aging processes can designate which older adults show differing decision patterns. Thirty-three healthy older adults with varying decision-making patterns on a complex decision task (the Iowa Gambling Task) completed an intertemporal choice task while undergoing functional magnetic resonance imaging. We examined whether value representation in the canonical valuation network differed across older adults based on complex decision-making ability. Older adults with advantageous decision patterns showed increased activity in the valuation network, including the ventromedial prefrontal cortex (VMPFC) and striatum. In contrast, older adults with disadvantageous decision patterns showed reduced or absent activation in the VMPFC and striatum, and these older adults also showed greater blood oxygen level dependent signal temporal variability in the striatum. Our results suggest that a reduced representation of value in the brain, possibly driven by increased neural noise, relates to suboptimal decision-making in a subset of older adults, which could translate to poor decision-making in many aspects of life, including finance, health and long-term care. Understanding the connection between suboptimal decision-making and neural value signals is a step toward mitigating age-related decision-making impairments.

  13. Perinatal exposure to methoxychlor enhances adult cognitive responses and hippocampal neurogenesis in mice

    PubMed Central

    Martini, Mariangela; Calandreau, Ludovic; Jouhanneau, Mélanie; Mhaouty-Kodja, Sakina; Keller, Matthieu

    2014-01-01

    During perinatal life, sex steroids, such as estradiol, have marked effects on the development and function of the nervous system. Environmental estrogens or xenoestrogens are man-made chemicals, which animal and human population encounter in the environment and which are able to disrupt the functioning of the endocrine system. Scientific interest in the effects of exposure to xenoestrogens has focused more on fertility and reproductive behaviors, while the effects on cognitive behaviors have received less attention. Therefore, the present study explored whether the organochlorine insecticide Methoxychlor (MXC), with known xenoestrogens properties, administered during the perinatal period (from gestational day 11 to postnatal day 8) to pregnant-lactating females, at an environmentally relevant dose (20 µg/kg (body weight)/day), would also affect learning and memory functions depending on the hippocampus of male and female offspring mice in adulthood. When tested in adulthood, MXC perinatal exposure led to an increase in anxiety-like behavior and in short-term spatial working memory in both sexes. Emotional learning was also assessed using a contextual fear paradigm and MXC treated male and female mice showed an enhanced freezing behavior compared to controls. These results were correlated with an increased survival of adult generated cells in the adult hippocampus. In conclusion, our results show that perinatal exposure to an environmentally relevant dose of MXC has an organizational effect on hippocampus-dependent memory and emotional behaviors. PMID:24982620

  14. Comprehensive neural networks for guilty feelings in young adults.

    PubMed

    Nakagawa, Seishu; Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta

    2015-01-15

    Feelings of guilt are associated with widespread self and social cognitions, e.g., empathy, moral reasoning, and punishment. Neural correlates directly related to the degree of feelings of guilt have not been detected, probably due to the small numbers of subjects, whereas there are growing numbers of neuroimaging studies of feelings of guilt. We hypothesized that the neural networks for guilty feelings are widespread and include the insula, inferior parietal lobule (IPL), amygdala, subgenual cingulate cortex (SCC), and ventromedial prefrontal cortex (vmPFC), which are essential for cognitions of guilt. We investigated the association between regional gray matter density (rGMD) and feelings of guilt in 764 healthy young students (422 males, 342 females; 20.7 ± 1.8 years) using magnetic resonance imaging and the guilty feeling scale (GFS) for the younger generation which comprises interpersonal situation (IPS) and rule-breaking situation (RBS) scores. Both the IPS and RBS were negatively related to the rGMD in the right posterior insula (PI). The IPS scores were negatively correlated with rGMD in the left anterior insula (AI), right IPL, and vmPFC using small volume correction. A post hoc analysis performed on the significant clusters identified through these analyses revealed that rGMD activity in the right IPL showed a significant negative association with the empathy quotient. These findings at the whole-brain level are the widespread comprehensive neural network regions for guilty feelings. Interestingly, the novel finding in this study is that the PI was implicated as a common region for feelings of guilt with interaction between the IPS and RBS. Additionally, the neural networks including the IPL were associated with empathy and with regions implicated in moral reasoning (AI and vmPFC), and punishment (AI).

  15. Hippocampal-dependent Pavlovian conditioning in adult rats exposed to binge-like doses of ethanol as neonates.

    PubMed

    Lindquist, Derick H

    2013-04-01

    Binge-like postnatal ethanol exposure produces significant damage throughout the brain in rats, including the cerebellum and hippocampus. In the current study, cue- and context-mediated Pavlovian conditioning were assessed in adult rats exposed to moderately low (3E; 3g/kg/day) or high (5E; 5g/kg/day) doses of ethanol across postnatal days 4-9. Ethanol-exposed and control groups were presented with 8 sessions of trace eyeblink conditioning followed by another 8 sessions of delay eyeblink conditioning, with an altered context presented over the last two sessions. Both forms of conditioning rely on the brainstem and cerebellum, while the more difficult trace conditioning also requires the hippocampus. The hippocampus is also needed to gate or modulate expression of the eyeblink conditioned response (CR) based on contextual cues. Results indicate that the ethanol-exposed rats were not significantly impaired in trace EBC relative to control subjects. In terms of CR topography, peak amplitude was significantly reduced by both doses of alcohol, whereas onset latency but not peak latency was significantly lengthened in the 5E rats across the latter half of delay EBC in the original training context. Neither dosage resulted in significant impairment in the contextual gating of the behavioral response, as revealed by similar decreases in CR production across all four treatment groups following introduction of the novel context. Results suggest ethanol-induced brainstem-cerebellar damage can account for the present results, independent of the putative disruption in hippocampal development and function proposed to occur following postnatal ethanol exposure.

  16. Opioid Receptor-Dependent Sex Differences in Synaptic Plasticity in the Hippocampal Mossy Fiber Pathway of the Adult Rat

    PubMed Central

    Harte-Hargrove, Lauren C.; Varga-Wesson, Ada; Duffy, Aine M.; Milner, Teresa A.

    2015-01-01

    The mossy fiber (MF) pathway is critical to hippocampal function and influenced by gonadal hormones. Physiological data are limited, so we asked whether basal transmission and long-term potentiation (LTP) differed in slices of adult male and female rats. The results showed small sex differences in basal transmission but striking sex differences in opioid receptor sensitivity and LTP. When slices were made from females on proestrous morning, when serum levels of 17β-estradiol peak, the nonspecific opioid receptor antagonist naloxone (1 μm) enhanced MF transmission but there was no effect in males, suggesting preferential opioid receptor-dependent inhibition in females when 17β-estradiol levels are elevated. The μ-opioid receptor (MOR) antagonist Cys2,Tyr3,Orn5,Pen7-amide (CTOP; 300 nm) had a similar effect but the δ-opioid receptor (DOR) antagonist naltrindole (NTI; 1 μm) did not, implicating MORs in female MF transmission. The GABAB receptor antagonist saclofen (200 μm) occluded effects of CTOP but the GABAA receptor antagonist bicuculline (10 μm) did not. For LTP, a low-frequency (LF) protocol was used because higher frequencies elicited hyperexcitability in females. Proestrous females exhibited LF-LTP but males did not, suggesting a lower threshold for synaptic plasticity when 17β-estradiol is elevated. NTI blocked LF-LTP in proestrous females, but CTOP did not. Electron microscopy revealed more DOR-labeled spines of pyramidal cells in proestrous females than males. Therefore, we suggest that increased postsynaptic DORs mediate LF-LTP in proestrous females. The results show strong MOR regulation of MF transmission only in females and identify a novel DOR-dependent form of MF LTP specific to proestrus. PMID:25632146

  17. Impact of cocaine on adult hippocampal neurogenesis in an animal model of differential propensity to drug abuse

    PubMed Central

    García-Fuster, M. Julia; Perez, Javier A.; Clinton, Sarah M.; Watson, Stanley J; Akil, Huda

    2014-01-01

    Hippocampal plasticity (e.g., neurogenesis) likely plays an important role in maintaining addictive behavior and/or relapse. This study assessed whether rats with differential propensity to drug-seeking behavior, bred Low-Responders (bLR) and bred High-Responders (bHR) to novelty, show differential neurogenesis regulation after cocaine exposure. Using specific immunological markers, we labeled distinct populations of adult stem cells in the dentate gyrus at different time-points of the cocaine sensitization process; Ki-67 for newly born cells, NeuroD for cells born partway, and BrdU for older cells born prior to sensitization. Results show that: (1) bHRs exhibited greater psychomotor response to cocaine than bLRs. (2) Acute cocaine did not alter cell proliferation in bLR/bHR rats. (3) Chronic cocaine decreased cell proliferation in bLRs only, which became amplified through the course of abstinence. (4) Neither chronic cocaine nor cocaine abstinence affected the survival of immature neurons in either phenotype. (5) Cocaine abstinence decreased survival of mature neurons in bHRs only, an effect that paralleled the greater psychomotor response to cocaine. (6) Cocaine treatment did not affect the ratio of neurons to glia in bLR/bHR rats as most cells differentiated into neurons in both lines. Thus, cocaine exerts distinct effects on neurogenesis in bLR versus bHR rats, with a decrease in the birth of new progenitor cells in bLRs and a suppression of the survival of new neurons in bHRs which likely leads to an earlier decrease in formation of new connections. This latter effect in bHRs could contribute to their enhanced degree of cocaine-induced psychomotor behavioral sensitization. PMID:20104651

  18. Adult Hippocampal Neurogenesis, Aging and Neurodegenerative Diseases: Possible Strategies to Prevent Cognitive Impairment.

    PubMed

    Vivar, Carmen

    2015-01-01

    The adult brain of humans and other mammals continuously generates new neurons throughout life. However, this neurogenic capacity is limited to two brain areas, the dentate gyrus (DG of the hippocampus and the subventricular zone (SVZ of the lateral ventricle. Although the DG generates new neurons, its neurogenic capacity declines with age and neurodegenerative diseases such as Alzheimer's disease (AD and Huntington's disease (HD. This review focuses on the role of newly-born neurons in cognitive processes, and discusses some of the strategies proposed in humans and animals to enhance neurogenesis and counteract age-related cognitive deficits, such as physical exercise and intake of natural products like omega-3 fatty acids, curcumin and flavanols. PMID:26059358

  19. The Neural Basis of Sustained and Transient Attentional Control in Young Adults with ADHD

    PubMed Central

    Banich, Marie T.; Burgess, Gregory C.; Depue, Brendan E.; Ruzic, Luka; Bidwell, L. Cinnamon; Hitt-Laustsen, Sena; Du, Yiping P.; Willcutt, Erik G.

    2013-01-01

    Differences in neural activation during performance on an attentionally demanding Stroop task were examined between 23 young adults with ADHD carefully selected to not be co-morbid for other psychiatric disorders and 23 matched controls. A hybrid blocked/single-trial design allowed for examination of more sustained vs. more transient aspects of attentional control. Our results indicated neural dysregulation across a wide range of brain regions including those involved in overall arousal, top-down attentional control, late-stage and response selection and inhibition. Furthermore, this dysregulation was most notable in lateral regions of DLPFC for sustained attentional control and in medial areas for transient aspects of attentional control. Because of the careful selection and matching of our two groups, these results provide strong evidence that the neural systems of attentional control are dysregulated in young adults with ADHD and are similar to dysregulations seen in children and adolescents with ADHD. PMID:19619566

  20. The Neural Basis of Sustained and Transient Attentional Control in Young Adults with ADHD

    ERIC Educational Resources Information Center

    Banich, Marie T.; Burgess, Gregory C.; Depue, Brendan E.; Ruzic, Luka; Bidwell, L. Cinnamon; Hitt-Laustsen, Sena; Du, Yiping P.; Willcutt, Erik G.

    2009-01-01

    Differences in neural activation during performance on an attentionally demanding Stroop task were examined between 23 young adults with ADHD carefully selected to not be co-morbid for other psychiatric disorders and 23 matched controls. A hybrid blocked/single-trial design allowed for examination of more sustained vs. more transient aspects of…

  1. Skin-derived neural precursors competitively generate functional myelin in adult demyelinated mice.

    PubMed

    Mozafari, Sabah; Laterza, Cecilia; Roussel, Delphine; Bachelin, Corinne; Marteyn, Antoine; Deboux, Cyrille; Martino, Gianvito; Baron-Van Evercooren, Anne

    2015-09-01

    Induced pluripotent stem cell-derived (iPS-derived) neural precursor cells may represent the ideal autologous cell source for cell-based therapy to promote remyelination and neuroprotection in myelin diseases. So far, the therapeutic potential of reprogrammed cells has been evaluated in neonatal demyelinating models. However, the repair efficacy and safety of these cells has not been well addressed in the demyelinated adult CNS, which has decreased cell plasticity and scarring. Moreover, it is not clear if these induced pluripotent-derived cells have the same reparative capacity as physiologically committed CNS-derived precursors. Here, we performed a side-by-side comparison of CNS-derived and skin-derived neural precursors in culture and following engraftment in murine models of adult spinal cord demyelination. Grafted induced neural precursors exhibited a high capacity for survival, safe integration, migration, and timely differentiation into mature bona fide oligodendrocytes. Moreover, grafted skin-derived neural precursors generated compact myelin around host axons and restored nodes of Ranvier and conduction velocity as efficiently as CNS-derived precursors while outcompeting endogenous cells. Together, these results provide important insights into the biology of reprogrammed cells in adult demyelinating conditions and support use of these cells for regenerative biomedicine of myelin diseases that affect the adult CNS.

  2. Neural Correlates of Working Memory Performance in Adolescents and Young Adults with Dyslexia

    ERIC Educational Resources Information Center

    Vasic, Nenad; Lohr, Christina; Steinbrink, Claudia; Martin, Claudia; Wolf, Robert Christian

    2008-01-01

    Behavioral studies indicate deficits in phonological working memory (WM) and executive functioning in dyslexics. However, little is known about the underlying functional neuroanatomy. In the present study, neural correlates of WM in adolescents and young adults with dyslexia were investigated using event-related functional magnetic resonance…

  3. The Neuropsychiatric Disease-Associated Gene cacna1c Mediates Survival of Young Hippocampal Neurons123

    PubMed Central

    Lee, Anni S.; Kabir, Zeeba D.; Knobbe, Whitney; Orr, Madeline; Burgdorf, Caitlin; Huntington, Paula; McDaniel, Latisha; Britt, Jeremiah K.; Hoffmann, Franz; Brat, Daniel J.; Rajadhyaksha, Anjali M.

    2016-01-01

    Genetic variations in CACNA1C, which encodes the Cav1.2 subunit of L-type calcium channels (LTCCs), are associated with multiple forms of neuropsychiatric disease that manifest high anxiety in patients. In parallel, mice harboring forebrain-specific conditional knockout of cacna1c (forebrain-Cav1.2 cKO) display unusually high anxiety-like behavior. LTCCs in general, including the Cav1.3 subunit, have been shown to mediate differentiation of neural precursor cells (NPCs). However, it has not previously been determined whether Cav1.2 affects postnatal hippocampal neurogenesis in vivo. Here, we show that forebrain-Cav1.2 cKO mice exhibit enhanced cell death of young hippocampal neurons, with no change in NPC proliferation, hippocampal size, dentate gyrus thickness, or corticosterone levels compared with wild-type littermates. These mice also exhibit deficits in brain levels of brain-derived neurotrophic factor (BDNF), and Cre recombinase-mediated knockdown of adult hippocampal Cav1.2 recapitulates the deficit in young hippocampal neurons survival. Treatment of forebrain-Cav1.2 cKO mice with the neuroprotective agent P7C3-A20 restored the net magnitude of postnatal hippocampal neurogenesis to wild-type levels without ameliorating their deficit in BDNF expression. The role of Cav1.2 in young hippocampal neurons survival may provide new approaches for understanding and treating neuropsychiatric disease associated with aberrations in CACNA1C. Visual Abstract PMID:27066530

  4. The novel steroidal alkaloids dendrogenin A and B promote proliferation of adult neural stem cells

    SciTech Connect

    Khalifa, Shaden A.M.; Medina, Philippe de; Erlandsson, Anna; El-Seedi, Hesham R.; Silvente-Poirot, Sandrine; Poirot, Marc

    2014-04-11

    Highlights: • Dendrogenin A and B are new aminoalkyl oxysterols. • Dendrogenins stimulated neural stem cells proliferation. • Dendrogenins induce neuronal outgrowth from neurospheres. • Dendrogenins provide new therapeutic options for neurodegenerative disorders. - Abstract: Dendrogenin A (DDA) and dendrogenin B (DDB) are new aminoalkyl oxysterols which display re-differentiation of tumor cells of neuronal origin at nanomolar concentrations. We analyzed the influence of dendrogenins on adult mice neural stem cell proliferation, sphere formation and differentiation. DDA and DDB were found to have potent proliferative effects in neural stem cells. Additionally, they induce neuronal outgrowth from neurospheres during in vitro cultivation. Taken together, our results demonstrate a novel role for dendrogenins A and B in neural stem cell proliferation and differentiation which further increases their likely importance to compensate for neuronal cell loss in the brain.

  5. Sox2-mediated regulation of adult neural crest precursors and skin repair.

    PubMed

    Johnston, Adam P W; Naska, Sibel; Jones, Karen; Jinno, Hiroyuki; Kaplan, David R; Miller, Freda D

    2013-01-01

    Nerve-derived neural crest cells are essential for regeneration in certain animals, such as newts. Here, we asked whether they play a similar role during mammalian tissue repair, focusing on Sox2-positive neural crest precursors in skin. In adult skin, Sox2 was expressed in nerve-terminal-associated neural crest precursor cells (NCPCs) around the hair follicle bulge, and following injury was induced in nerve-derived cells, likely dedifferentiated Schwann cell precursors. At later times postinjury, Sox2-positive cells were scattered throughout the regenerating dermis, and lineage tracing showed that these were all neural-crest-derived NCPCs. These Sox2-positive NCPCs were functionally important, since acute deletion of Sox2 prior to injury caused a decrease of NCPCs in the wound and aberrant skin repair. These data demonstrate that Sox2 regulates skin repair, likely by controlling NCPCs, and raise the possibility that nerve-derived NCPCs may play a general role in mammalian tissue repair.

  6. Stroke Increases Neural Stem Cells and Angiogenesis in the Neurogenic Niche of the Adult Mouse

    PubMed Central

    Zhang, Rui Lan; Chopp, Michael; Roberts, Cynthia; Liu, Xianshuang; Wei, Min; Nejad-Davarani, Siamak P.; Wang, Xinli; Zhang, Zheng Gang

    2014-01-01

    The unique cellular and vascular architecture of the adult ventricular-subventricular zone (V/SVZ) neurogenic niche plays an important role in regulating neural stem cell function. However, the in vivo identification of neural stem cells and their relationship to blood vessels within this niche in response to stroke remain largely unknown. Using whole-mount preparation of the lateral ventricle wall, we examined the architecture of neural stem cells and blood vessels in the V/SVZ of adult mouse over the course of 3 months after onset of focal cerebral ischemia. Stroke substantially increased the number of glial fibrillary acidic protein (GFAP) positive neural stem cells that are in contact with the cerebrospinal fluid (CSF) via their apical processes at the center of pinwheel structures formed by ependymal cells residing in the lateral ventricle. Long basal processes of these cells extended to blood vessels beneath the ependymal layer. Moreover, stroke increased V/SVZ endothelial cell proliferation from 2% in non-ischemic mice to 12 and 15% at 7 and 14 days after stroke, respectively. Vascular volume in the V/SVZ was augmented from 3% of the total volume prior to stroke to 6% at 90 days after stroke. Stroke-increased angiogenesis was closely associated with neuroblasts that expanded to nearly encompass the entire lateral ventricular wall in the V/SVZ. These data indicate that stroke induces long-term alterations of the neural stem cell and vascular architecture of the adult V/SVZ neurogenic niche. These post-stroke structural changes may provide insight into neural stem cell mediation of stroke-induced neurogenesis through the interaction of neural stem cells with proteins in the CSF and their sub-ependymal neurovascular interaction. PMID:25437857

  7. Neuropeptides and hippocampal neurogenesis.

    PubMed

    Zaben, M J; Gray, W P

    2013-12-01

    Hippocampal neurogenesis is important for modulating the behavioural responses to stress and for certain forms of learning and memory. The mechanisms underlying the necessary coupling of neuronal activity to neural stem/progenitor cell (NSPC) function remain poorly understood. Within the dentate subgranular stem cell niche, local interneurons appear to play an important part in this excitation-neurogenesis coupling via GABAergic transmission, which promotes neuronal differentiation and integration. Neuropeptides such as neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and galanin have emerged as important mediators for signalling local and extrinsic interneuronal activity to subgranular zone precursors. Here we review the distribution of these neuropeptides and their receptors in the neurogenic area of the hippocampus and their precise effects on hippocampal neurogenesis. We also discuss neuropeptides' potential involvement in functional aspects of hippocampal neurogenesis particularly their involvement in the modulation of learning and memory and behavior responses.

  8. Neural Correlates of Letter Reversal in Children and Adults

    PubMed Central

    Kalra, Priya; Yee, Debbie; Sinha, Pawan; Gabrieli, John D. E.

    2014-01-01

    Children often make letter reversal errors when first learning to read and write, even for letters whose reversed forms do not appear in normal print. However, the brain basis of such letter reversal in children learning to read is unknown. The present study compared the neuroanatomical correlates (via functional magnetic resonance imaging) and the electrophysiological correlates (via event-related potentials or ERPs) of this phenomenon in children, ages 5–12, relative to young adults. When viewing reversed letters relative to typically oriented letters, adults exhibited widespread occipital, parietal, and temporal lobe activations, including activation in the functionally localized visual word form area (VWFA) in left occipito-temporal cortex. Adults exhibited significantly greater activation than children in all of these regions; children only exhibited such activation in a limited frontal region. Similarly, on the P1 and N170 ERP components, adults exhibited significantly greater differences between typical and reversed letters than children, who failed to exhibit significant differences between typical and reversed letters. These findings indicate that adults distinguish typical and reversed letters in the early stages of specialized brain processing of print, but that children do not recognize this distinction during the early stages of processing. Specialized brain processes responsible for early stages of letter perception that distinguish between typical and reversed letters may develop slowly and remain immature even in older children who no longer produce letter reversals in their writing. PMID:24859328

  9. Adult hippocampal neurogenesis is functionally important for stress-induced social avoidance

    PubMed Central

    Lagace, Diane C.; Donovan, Michael H.; DeCarolis, Nathan A.; Farnbauch, Laure A.; Malhotra, Shveta; Berton, Olivier; Nestler, Eric J.; Krishnan, Vaishnav; Eisch, Amelia J.

    2010-01-01

    The long-term response to chronic stress is variable, with some individuals developing maladaptive functioning, although other “resilient” individuals do not. Stress reduces neurogenesis in the dentate gyrus subgranular zone (SGZ), but it is unknown if stress-induced changes in neurogenesis contribute to individual vulnerability. Using a chronic social defeat stress model, we explored whether the susceptibility to stress-induced social avoidance was related to changes in SGZ proliferation and neurogenesis. Immediately after social defeat, stress-exposed mice (irrespective of whether they displayed social avoidance) had fewer proliferating SGZ cells labeled with the S-phase marker BrdU. The decrease was transient, because BrdU cell numbers were normalized 24 h later. The survival of BrdU cells labeled before defeat stress was also not altered. However, 4 weeks later, mice that displayed social avoidance had more surviving dentate gyrus neurons. Thus, dentate gyrus neurogenesis is increased after social defeat stress selectively in mice that display persistent social avoidance. Supporting a functional role for adult-generated dentate gyrus neurons, ablation of neurogenesis via cranial ray irradiation robustly inhibited social avoidance. These data show that the time window after cessation of stress is a critical period for the establishment of persistent cellular and behavioral responses to stress and that a compensatory enhancement in neurogenesis is related to the long-term individual differences in maladaptive responses to stress. PMID:20176946

  10. Maternal Exercise during Pregnancy Increases BDNF Levels and Cell Numbers in the Hippocampal Formation but Not in the Cerebral Cortex of Adult Rat Offspring.

    PubMed

    Gomes da Silva, Sérgio; de Almeida, Alexandre Aparecido; Fernandes, Jansen; Lopim, Glauber Menezes; Cabral, Francisco Romero; Scerni, Débora Amado; de Oliveira-Pinto, Ana Virgínia; Lent, Roberto; Arida, Ricardo Mario

    2016-01-01

    Clinical evidence has shown that physical exercise during pregnancy may alter brain development and improve cognitive function of offspring. However, the mechanisms through which maternal exercise might promote such effects are not well understood. The present study examined levels of brain-derived neurotrophic factor (BDNF) and absolute cell numbers in the hippocampal formation and cerebral cortex of rat pups born from mothers exercised during pregnancy. Additionally, we evaluated the cognitive abilities of adult offspring in different behavioral paradigms (exploratory activity and habituation in open field tests, spatial memory in a water maze test, and aversive memory in a step-down inhibitory avoidance task). Results showed that maternal exercise during pregnancy increased BDNF levels and absolute numbers of neuronal and non-neuronal cells in the hippocampal formation of offspring. No differences in BDNF levels or cell numbers were detected in the cerebral cortex. It was also observed that offspring from exercised mothers exhibited better cognitive performance in nonassociative (habituation) and associative (spatial learning) mnemonic tasks than did offspring from sedentary mothers. Our findings indicate that maternal exercise during pregnancy enhances offspring cognitive function (habituation behavior and spatial learning) and increases BDNF levels and cell numbers in the hippocampal formation of offspring. PMID:26771675

  11. Maternal Exercise during Pregnancy Increases BDNF Levels and Cell Numbers in the Hippocampal Formation but Not in the Cerebral Cortex of Adult Rat Offspring.

    PubMed

    Gomes da Silva, Sérgio; de Almeida, Alexandre Aparecido; Fernandes, Jansen; Lopim, Glauber Menezes; Cabral, Francisco Romero; Scerni, Débora Amado; de Oliveira-Pinto, Ana Virgínia; Lent, Roberto; Arida, Ricardo Mario

    2016-01-01

    Clinical evidence has shown that physical exercise during pregnancy may alter brain development and improve cognitive function of offspring. However, the mechanisms through which maternal exercise might promote such effects are not well understood. The present study examined levels of brain-derived neurotrophic factor (BDNF) and absolute cell numbers in the hippocampal formation and cerebral cortex of rat pups born from mothers exercised during pregnancy. Additionally, we evaluated the cognitive abilities of adult offspring in different behavioral paradigms (exploratory activity and habituation in open field tests, spatial memory in a water maze test, and aversive memory in a step-down inhibitory avoidance task). Results showed that maternal exercise during pregnancy increased BDNF levels and absolute numbers of neuronal and non-neuronal cells in the hippocampal formation of offspring. No differences in BDNF levels or cell numbers were detected in the cerebral cortex. It was also observed that offspring from exercised mothers exhibited better cognitive performance in nonassociative (habituation) and associative (spatial learning) mnemonic tasks than did offspring from sedentary mothers. Our findings indicate that maternal exercise during pregnancy enhances offspring cognitive function (habituation behavior and spatial learning) and increases BDNF levels and cell numbers in the hippocampal formation of offspring.

  12. Neural processing of emotional pictures and words: a comparison of young and older adults.

    PubMed

    Leclerc, Christina M; Kensinger, Elizabeth A

    2011-01-01

    Recent findings have revealed age-related changes in neural recruitment during the processing of emotional information. The present study examined whether these age-related changes would be more pronounced for words, thought to be processed in a controlled manner versus relatively automatically processed pictures. Compared to young adults, older adults showed less amygdala activation, and more medial prefrontal cortex (PFC) activation, for negative than positive pictures. The opposite pattern was observed for words. Older adults showed a positivity effect in memory for words, but not for pictures, suggesting that their positivity effect may stem from age-related changes in medial PFC engagement during encoding.

  13. Large-scale live imaging of adult neural stem cells in their endogenous niche

    PubMed Central

    Dray, Nicolas; Bedu, Sébastien; Vuillemin, Nelly; Alunni, Alessandro; Coolen, Marion; Krecsmarik, Monika; Supatto, Willy; Beaurepaire, Emmanuel; Bally-Cuif, Laure

    2015-01-01

    Live imaging of adult neural stem cells (aNSCs) in vivo is a technical challenge in the vertebrate brain. Here, we achieve long-term imaging of the adult zebrafish telencephalic neurogenic niche and track a population of >1000 aNSCs over weeks, by taking advantage of fish transparency at near-infrared wavelengths and of intrinsic multiphoton landmarks. This methodology enables us to describe the frequency, distribution and modes of aNSCs divisions across the entire germinal zone of the adult pallium, and to highlight regional differences in these parameters. PMID:26395477

  14. Mouse genetic differences in voluntary wheel running, adult hippocampal neurogenesis and learning on the multi-strain-adapted plus water maze.

    PubMed

    Merritt, Jennifer R; Rhodes, Justin S

    2015-03-01

    Moderate levels of aerobic exercise broadly enhance cognition throughout the lifespan. One hypothesized contributing mechanism is increased adult hippocampal neurogenesis. Recently, we measured the effects of voluntary wheel running on adult hippocampal neurogenesis in 12 different mouse strains, and found increased neurogenesis in all strains, ranging from 2- to 5-fold depending on the strain. The purpose of this study was to determine the extent to which increased neurogenesis from wheel running is associated with enhanced performance on the water maze for 5 of the 12 strains, chosen based on their levels of neurogenesis observed in the previous study (C57BL/6 J, 129S1/SvImJ, B6129SF1/J, DBA/2 J, and B6D2F1/J). Mice were housed with or without a running wheels for 30 days then tested for learning and memory on the plus water maze, adapted for multiple strains, and rotarod test of motor performance. The first 10 days, animals were injected with BrdU to label dividing cells. After behavioral testing animals were euthanized to measure adult hippocampal neurogenesis using standard methods. Levels of neurogenesis depended on strain but all mice had a similar increase in neurogenesis in response to exercise. All mice acquired the water maze but performance depended on strain. Exercise improved water maze performance in all strains to a similar degree. Rotarod performance depended on strain. Exercise improved rotarod performance only in DBA/2 J and B6D2F1/J mice. Taken together, results demonstrate that despite different levels of neurogenesis, memory performance and motor coordination in these mouse strains, all strains have the capacity to increase neurogenesis and improve learning on the water maze through voluntary wheel running.

  15. Mouse genetic differences in voluntary wheel running, adult hippocampal neurogenesis and learning on the multi-strain-adapted plus water maze

    PubMed Central

    Merritt, Jennifer; Rhodes, Justin S.

    2014-01-01

    Moderate levels of aerobic exercise broadly enhance cognition throughout the lifespan. One hypothesized contributing mechanism is increased adult hippocampal neurogenesis. Recently, we measured the effects of voluntary wheel running on adult hippocampal neurogenesis in 12 different mouse strains, and found increased neurogenesis in all strains, ranging from 2 to 5 fold depending on the strain. The purpose of this study was to determine the extent to which increased neurogenesis from wheel running is associated with enhanced performance on the water maze for 5 of the 12 strains, chosen based on their levels of neurogenesis observed in the previous study (C57BL/6J, 129S1/SvImJ, B6129SF1/J, DBA/2J, and B6D2F1/J). Mice were housed with or without a running wheels for 30 days then tested for learning and memory on the plus water maze, adapted for multiple strains, and rotarod test of motor performance. The first 10 days, animals were injected with BrdU to label dividing cells. After behavioral testing animals were euthanized to measure adult hippocampal neurogenesis using standard methods. Levels of neurogenesis depended on strain but all mice had a similar increase in neurogenesis in response to exercise. All mice acquired the water maze but performance depended on strain. Exercise improved water maze performance in all strains to a similar degree. Rotarod performance depended on strain. Exercise improved rotarod performance only in DBA/2J and B6D2F1/J mice. Taken together, results demonstrate that despite different levels of neurogenesis, memory performance and motor coordination in these mouse strains, all strains have the capacity to increase neurogenesis and improve learning on the water maze through voluntary wheel running. PMID:25435316

  16. Chemotherapy, cognitive impairment and hippocampal toxicity.

    PubMed

    Dietrich, J; Prust, M; Kaiser, J

    2015-11-19

    Cancer therapies can be associated with significant central nervous system (CNS) toxicity. While radiation-induced brain damage has been long recognized both in pediatric and adult cancer patients, CNS toxicity from chemotherapy has only recently been acknowledged. Clinical studies suggest that the most frequent neurotoxic adverse effects associated with chemotherapy include memory and learning deficits, alterations of attention, concentration, processing speed and executive function. Preclinical studies have started to shed light on how chemotherapy targets the CNS both on cellular and molecular levels to disrupt neural function and brain plasticity. Potential mechanisms include direct cellular toxicity, alterations in cellular metabolism, oxidative stress, and induction of pro-inflammatory processes with subsequent disruption of normal cellular and neurological function. Damage to neural progenitor cell populations within germinal zones of the adult CNS has been identified as one of the key mechanisms by which chemotherapy might exert long-lasting and progressive neurotoxic effects. Based on the important role of the hippocampus for maintenance of brain plasticity throughout life, several experimental studies have focused on the study of chemotherapy effects on hippocampal neurogenesis and associated learning and memory. An increasing body of literature from both animal studies and neuroimaging studies in cancer patients suggests a possible relationship between chemotherapy induced hippocampal damage and the spectrum of neurocognitive deficits and mood alterations observed in cancer patients. This review aims to briefly summarize current preclinical and neuroimaging studies that are providing a potential link between the neurotoxic effects of chemotherapy and hippocampal dysfunction, highlighting challenges and future directions in this field of investigation.

  17. Chemotherapy, cognitive impairment and hippocampal toxicity.

    PubMed

    Dietrich, J; Prust, M; Kaiser, J

    2015-11-19

    Cancer therapies can be associated with significant central nervous system (CNS) toxicity. While radiation-induced brain damage has been long recognized both in pediatric and adult cancer patients, CNS toxicity from chemotherapy has only recently been acknowledged. Clinical studies suggest that the most frequent neurotoxic adverse effects associated with chemotherapy include memory and learning deficits, alterations of attention, concentration, processing speed and executive function. Preclinical studies have started to shed light on how chemotherapy targets the CNS both on cellular and molecular levels to disrupt neural function and brain plasticity. Potential mechanisms include direct cellular toxicity, alterations in cellular metabolism, oxidative stress, and induction of pro-inflammatory processes with subsequent disruption of normal cellular and neurological function. Damage to neural progenitor cell populations within germinal zones of the adult CNS has been identified as one of the key mechanisms by which chemotherapy might exert long-lasting and progressive neurotoxic effects. Based on the important role of the hippocampus for maintenance of brain plasticity throughout life, several experimental studies have focused on the study of chemotherapy effects on hippocampal neurogenesis and associated learning and memory. An increasing body of literature from both animal studies and neuroimaging studies in cancer patients suggests a possible relationship between chemotherapy induced hippocampal damage and the spectrum of neurocognitive deficits and mood alterations observed in cancer patients. This review aims to briefly summarize current preclinical and neuroimaging studies that are providing a potential link between the neurotoxic effects of chemotherapy and hippocampal dysfunction, highlighting challenges and future directions in this field of investigation. PMID:26086545

  18. Impaired contextual fear extinction and hippocampal synaptic plasticity in adult rats induced by prenatal morphine exposure.

    PubMed

    Tan, Ji-Wei; Duan, Ting-Ting; Zhou, Qi-Xin; Ding, Ze-Yang; Jing, Liang; Cao, Jun; Wang, Li-Ping; Mao, Rong-Rong; Xu, Lin

    2015-07-01

    Prenatal opiate exposure causes a series of neurobehavioral disturbances by affecting brain development. However, the question of whether prenatal opiate exposure increases vulnerability to memory-related neuropsychiatric disorders in adult offspring remains largely unknown. Here, we found that rats prenatally exposed to morphine (PM) showed impaired acquisition but enhanced maintenance of contextual fear memory compared with control animals that were prenatally exposed to saline (PS). The impairment of acquisition was rescued by increasing the intensity of footshocks (1.2 mA rather than 0.8 mA). Meanwhile, we also found that PM rats exhibited impaired extinction of contextual fear, which is associated with enhanced maintenance of fear memory. The impaired extinction lasted for 1 week following extinction training. Furthermore, PM rats exhibited reduced anxiety-like behavior in the elevated plus-maze and light/dark box test without differences in locomotor activity. These alterations in PM rats were mirrored by abnormalities in synaptic plasticity in the Schaffer collateral-CA1 synapses of the hippocampus in vivo. PS rats showed blocked long-term potentiation and enabled long-term depression in CA1 synapses following contextual fear conditioning, while prenatal morphine exposure restricted synaptic plasticity in CA1 synapses. The smaller long-term potentiation in PM rats was not further blocked by contextual fear conditioning, and the long-term depression enabled by contextual fear conditioning was abolished. Taken together, our results provide the first evidence suggesting that prenatal morphine exposure may increase vulnerability to fear memory-related neuropsychiatric disorders in adulthood.

  19. Assigning Function to Adult-Born Neurons: A Theoretical Framework for Characterizing Neural Manipulation of Learning

    PubMed Central

    Hersman, Sarah; Rodriguez Barrera, Vanessa; Fanselow, Michael

    2016-01-01

    Neuroscientists are concerned with neural processes or computations, but these may not be directly observable. In the field of learning, a behavioral procedure is observed to lead to performance outcomes, but differing inferences on underlying internal processes can lead to difficulties in interpreting conflicting results. An example of this challenge is how many functions have been attributed to adult-born granule cells in the dentate gyrus. Some of these functions were suggested by computational models of the properties of these neurons, while others were hypothesized after manipulations of adult-born neurons resulted in changes to behavioral metrics. This review seeks to provide a framework, based in learning theory classification of behavioral procedures, of the processes that may be underlying behavioral results after manipulating procedure and observing performance. We propose that this framework can serve to clarify experimental findings on adult-born neurons as well as other classes of neural manipulations and their effects on behavior. PMID:26778981

  20. Experience-Dependent Neural Plasticity in the Adult Damaged Brain

    ERIC Educational Resources Information Center

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper…

  1. Protective Effects of a Rhodiola Crenulata Extract and Salidroside on Hippocampal Neurogenesis against Streptozotocin-Induced Neural Injury in the Rat

    PubMed Central

    Qu, Ze-qiang; Zhou, Yan; Zeng, Yuan-shan; Lin, Yu-kun; Li, Yan; Zhong, Zhi-qiang; Chan, Wood Yee

    2012-01-01

    Previously we have demonstrated that a Rhodiola crenulata extract (RCE), containing a potent antioxidant salidroside, promotes neurogenesis in the hippocampus of depressive rats. The current study was designed to further investigate the protective effect of the RCE on neurogenesis in a rat model of Alzheimer's disease (AD) induced by an intracerebroventricular injection of streptozotocin (STZ), and to determine whether this neuroprotective effect is induced by the antioxidative activity of salidroside. Our results showed that pretreatment with the RCE significantly improved the impaired neurogenesis and simultaneously reduced the oxidative stress in the hippocampus of AD rats. In vitro studies revealed that (1) exposure of neural stem cells (NSCs) from the hippocampus to STZ strikingly increased intracellular reactive oxygen species (ROS) levels, induced cell death and perturbed cell proliferation and differentiation, (2) hydrogen peroxide induced similar cellular activities as STZ, (3) pre-incubation of STZ-treated NSCs with catalase, an antioxidant, suppressed all these cellular activities induced by STZ, and (4) likewise, pre-incubation of STZ-treated NSCs with salidroside, also an antioxidant, suppressed all these activities as catalase: reduction of ROS levels and NSC death with simultaneous increases in proliferation and differentiation. Our findings indicated that the RCE improved the impaired hippocampal neurogenesis in the rat model of AD through protecting NSCs by its main ingredient salidroside which scavenged intracellular ROS. PMID:22235318

  2. Neural correlates of conceptual object priming in young and older adults: An event-related fMRI study

    PubMed Central

    Ballesteros, Soledad; Bischof, Gérard N.; Goh, Joshua O.; Park, Denise C.

    2012-01-01

    In this event-related fMRI study, we investigated age-related differences in brain activity associated with conceptual repetition priming in young and older adults. Participants performed a speeded “living/non-living” classification task with three repetitions of familiar objects. Both young and older adults showed a similar magnitude of behavioral priming to repeated objects and evidencing repetition-related activation reductions in fusiform gyrus, superior occipital, middle and inferior temporal cortex, as well as inferior frontal and insula regions. The neural priming effect in young adults was extensive and continued through both the second and third stimulus repetitions, whereas neural priming in older adults was markedly attenuated and reached floor at the second repetition. In young adults, greater neural priming in multiple brain regions correlated with greater behavioral facilitation whereas in older adults, only activation reduction in the left inferior frontal correlated with faster behavioral responses. These findings provide evidence for altered neural priming in older adults despite preserved behavioral priming, and suggest the possibility that age-invariant behavioral priming is observed as a result of more sustained neural processing of stimuli in older adults which may be a form of compensatory neural activity. PMID:23102512

  3. Neural correlates of conceptual object priming in young and older adults: an event-related functional magnetic resonance imaging study.

    PubMed

    Ballesteros, Soledad; Bischof, Gérard N; Goh, Joshua O; Park, Denise C

    2013-04-01

    In this event-related functional magnetic resonance imaging study, we investigated age-related differences in brain activity associated with conceptual repetition priming in young and older adults. Participants performed a speeded "living/nonliving" classification task with 3 repetitions of familiar objects. Both young and older adults showed a similar magnitude of behavioral priming to repeated objects and evidenced repetition-related activation reductions in fusiform gyrus, superior occipital, middle, and inferior temporal cortex, and inferior frontal and insula regions. The neural priming effect in young adults was extensive and continued through both the second and third stimulus repetitions, and neural priming in older adults was markedly attenuated and reached floor at the second repetition. In young adults, greater neural priming in multiple brain regions correlated with greater behavioral facilitation and in older adults, only activation reduction in the left inferior frontal correlated with faster behavioral responses. These findings provide evidence for altered neural priming in older adults despite preserved behavioral priming, and suggest the possibility that age-invariant behavioral priming is observed as a result of more sustained neural processing of stimuli in older adults which might be a form of compensatory neural activity.

  4. Neural correlates of conceptual object priming in young and older adults: an event-related functional magnetic resonance imaging study.

    PubMed

    Ballesteros, Soledad; Bischof, Gérard N; Goh, Joshua O; Park, Denise C

    2013-04-01

    In this event-related functional magnetic resonance imaging study, we investigated age-related differences in brain activity associated with conceptual repetition priming in young and older adults. Participants performed a speeded "living/nonliving" classification task with 3 repetitions of familiar objects. Both young and older adults showed a similar magnitude of behavioral priming to repeated objects and evidenced repetition-related activation reductions in fusiform gyrus, superior occipital, middle, and inferior temporal cortex, and inferior frontal and insula regions. The neural priming effect in young adults was extensive and continued through both the second and third stimulus repetitions, and neural priming in older adults was markedly attenuated and reached floor at the second repetition. In young adults, greater neural priming in multiple brain regions correlated with greater behavioral facilitation and in older adults, only activation reduction in the left inferior frontal correlated with faster behavioral responses. These findings provide evidence for altered neural priming in older adults despite preserved behavioral priming, and suggest the possibility that age-invariant behavioral priming is observed as a result of more sustained neural processing of stimuli in older adults which might be a form of compensatory neural activity. PMID:23102512

  5. Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors

    PubMed Central

    Figueres-Oñate, Maria; López-Mascaraque, Laura

    2016-01-01

    Neurons are generated during embryonic development and in adulthood, although adult neurogenesis is restricted to two main brain regions, the hippocampus and olfactory bulb. The subventricular zone (SVZ) of the lateral ventricles generates neural stem/progenitor cells that continually provide the olfactory bulb (OB) with new granule or periglomerular neurons, cells that arrive from the SVZ via the rostral migratory stream. The continued neurogenesis and the adequate integration of these newly generated interneurons is essential to maintain homeostasis in the olfactory bulb, where the differentiation of these cells into specific neural cell types is strongly influenced by temporal cues. Therefore, identifying the critical features that control the generation of adult OB interneurons at either pre- or post-natal stages is important to understand the dynamic contribution of neural stem cells. Here, we used in utero and neonatal SVZ electroporation along with a transposase-mediated stable integration plasmid, in order to track interneurons and glial lineages in the OB. These plasmids are valuable tools to study the development of OB interneurons from embryonic and post-natal SVZ progenitors. Accordingly, we examined the location and identity of the adult progeny of embryonic and post-natally transfected progenitors by examining neurochemical markers in the adult OB. These data reveal the different cell types in the olfactory bulb that are generated in function of age and different electroporation conditions. PMID:27242400

  6. Regenerative medicine using adult neural stem cells: the potential for diabetes therapy and other pharmaceutical applications.

    PubMed

    Kuwabara, Tomoko; Asashima, Makoto

    2012-06-01

    Neural stem cells (NSCs), which are responsible for continuous neurogenesis during the adult stage, are present in human adults. The typical neurogenic regions are the hippocampus and the subventricular zone; recent studies have revealed that NSCs also exist in the olfactory bulb. Olfactory bulb-derived neural stem cells (OB NSCs) have the potential to be used in therapeutic applications and can be easily harvested without harm to the patient. Through the combined influence of extrinsic cues and innate programming, adult neurogenesis is a finely regulated process occurring in a specialized cellular environment, a niche. Understanding the regulatory mechanisms of adult NSCs and their cellular niche is not only important to understand the physiological roles of neurogenesis in adulthood, but also to provide the knowledge necessary for developing new therapeutic applications using adult NSCs in other organs with similar regulatory environments. Diabetes is a devastating disease affecting more than 200 million people worldwide. Numerous diabetic patients suffer increased symptom severity after the onset, involving complications such as retinopathy and nephropathy. Therefore, the development of treatments for fundamental diabetes is important. The utilization of autologous cells from patients with diabetes may address challenges regarding the compatibility of donor tissues as well as provide the means to naturally and safely restore function, reducing future risks while also providing a long-term cure. Here, we review recent findings regarding the use of adult OB NSCs as a potential diabetes cure, and discuss the potential of OB NSC-based pharmaceutical applications for neuronal diseases and mental disorders.

  7. Augmenting saturated LTP by broadly spaced episodes of theta-burst stimulation in hippocampal area CA1 of adult rats and mice

    PubMed Central

    Cao, Guan

    2014-01-01

    Hippocampal long-term potentiation (LTP) is a model system for studying cellular mechanisms of learning and memory. Recent interest in mechanisms underlying the advantage of spaced over massed learning has prompted investigation into the effects of distributed episodes of LTP induction. The amount of LTP induced in hippocampal area CA1 by one train (1T) of theta-burst stimulation (TBS) in young Sprague-Dawley rats was further enhanced by additional bouts of 1T given at 1-h intervals. However, in young Long-Evans (LE) rats, 1T did not initially saturate LTP. Instead, a stronger LTP induction paradigm using eight trains of TBS (8T) induced saturated LTP in hippocampal slices from both young and adult LE rats as well as adult mice. The saturated LTP induced by 8T could be augmented by another episode of 8T following an interval of at least 90 min. The success rate across animals and slices in augmenting LTP by an additional episode of 8T increased significantly with longer intervals between the first and last episodes, ranging from 0% at 30- and 60-min intervals to 13–66% at 90- to 180-min intervals to 90–100% at 240-min intervals. Augmentation above initially saturated LTP was blocked by the N-methyl-d-aspartate (NMDA) glutamate receptor antagonist d-2-amino-5-phosphonovaleric acid (d-APV). These findings suggest that the strength of induction and interval between episodes of TBS, as well as the strain and age of the animal, are important components in the augmentation of LTP. PMID:25057146

  8. Adult Palatum as a Novel Source of Neural Crest-Related Stem Cells

    PubMed Central

    Widera, Darius; Zander, Christin; Heidbreder, Meike; Kasperek, Yvonne; Noll, Thomas; Seitz, Oliver; Saldamli, Belma; Sudhoff, Holger; Sader, Robert; Kaltschmidt, Christian; Kaltschmidt, Barbara

    2009-01-01

    Somatic neural and neural crest stem cells are promising sources for cellular therapy of several neurodegenerative diseases. However, because of practical considerations such as inadequate accessibility of the source material, the application of neural crest stem cells is strictly limited. The secondary palate is a highly regenerative and heavily innervated tissue, which develops embryonically under direct contribution of neural crest cells. Here, we describe for the first time the presence of nestin-positive neural crest-related stem cells within Meissner corpuscles and Merkel cell-neurite complexes located in the hard palate of adult Wistar rats. After isolation, palatal neural crest-related stem cells (pNC-SCs) were cultivated in the presence of epidermal growth factor and fibroblast growth factor under serum-free conditions, resulting in large amounts of neurospheres. We used immunocytochemical techniques and reverse transcriptase-polymerase chain reaction to assess the expression profile of pNC-SCs. In addition to the expression of neural crest stem cell markers such as Nestin, Sox2, and p75, we detected the expression of Klf4, Oct4, and c-Myc. pNC-SCs differentiated efficiently into neuronal and glial cells. Finally, we investigated the potential expression of stemness markers within the human palate. We identified expression of stem cell markers nestin and CD133 and the transcription factors needed for reprogramming of somatic cells into pluripotent cells: Sox2, Oct4, Klf4, and c-Myc. These data show that cells isolated from palatal rugae form neurospheres, are highly plastic, and express neural crest stem cell markers. In addition, pNC-SCs may have the ability to differentiate into functional neurons and glial cells, serving as a starting point for therapeutic studies. Stem Cells 2009;27:1899–1910 PMID:19544446

  9. A transcriptional mechanism integrating inputs from extracellular signals to activate hippocampal stem cells.

    PubMed

    Andersen, Jimena; Urbán, Noelia; Achimastou, Angeliki; Ito, Ayako; Simic, Milesa; Ullom, Kristy; Martynoga, Ben; Lebel, Mélanie; Göritz, Christian; Frisén, Jonas; Nakafuku, Masato; Guillemot, François

    2014-09-01

    The activity of adult stem cells is regulated by signals emanating from the surrounding tissue. Many niche signals have been identified, but it is unclear how they influence the choice of stem cells to remain quiescent or divide. Here we show that when stem cells of the adult hippocampus receive activating signals, they first induce the expression of the transcription factor Ascl1 and only subsequently exit quiescence. Moreover, lowering Ascl1 expression reduces the proliferation rate of hippocampal stem cells, and inactivating Ascl1 blocks quiescence exit completely, rendering them unresponsive to activating stimuli. Ascl1 promotes the proliferation of hippocampal stem cells by directly regulating the expression of cell-cycle regulatory genes. Ascl1 is similarly required for stem cell activation in the adult subventricular zone. Our results support a model whereby Ascl1 integrates inputs from both stimulatory and inhibitory signals and converts them into a transcriptional program activating adult neural stem cells.

  10. A Transcriptional Mechanism Integrating Inputs from Extracellular Signals to Activate Hippocampal Stem Cells

    PubMed Central

    Andersen, Jimena; Urbán, Noelia; Achimastou, Angeliki; Ito, Ayako; Simic, Milesa; Ullom, Kristy; Martynoga, Ben; Lebel, Mélanie; Göritz, Christian; Frisén, Jonas; Nakafuku, Masato; Guillemot, François

    2014-01-01

    Summary The activity of adult stem cells is regulated by signals emanating from the surrounding tissue. Many niche signals have been identified, but it is unclear how they influence the choice of stem cells to remain quiescent or divide. Here we show that when stem cells of the adult hippocampus receive activating signals, they first induce the expression of the transcription factor Ascl1 and only subsequently exit quiescence. Moreover, lowering Ascl1 expression reduces the proliferation rate of hippocampal stem cells, and inactivating Ascl1 blocks quiescence exit completely, rendering them unresponsive to activating stimuli. Ascl1 promotes the proliferation of hippocampal stem cells by directly regulating the expression of cell-cycle regulatory genes. Ascl1 is similarly required for stem cell activation in the adult subventricular zone. Our results support a model whereby Ascl1 integrates inputs from both stimulatory and inhibitory signals and converts them into a transcriptional program activating adult neural stem cells. PMID:25189209

  11. Stimulation of dendrogenesis and neural maturation in adult mammals.

    PubMed

    Soto-Vázquez, Ramón; Labastida-López, Carlos; Romero-Castello, Samuel; Benítez-King, Gloria; Parra-Cervantes, Patricia

    2016-05-01

    This work is the result of a technical research patent on dendritogenesis and neuronal maturation, in which the existence was determined of patent documents involving the use of melatonin for the treatment of anxiety, obesity and related diseases of the peripheral and CNS. In this study, an analysis of the state of the art in order to collect technical and scientific elements for the drafting of a new patent on the use of the melatonin molecule in stimulating neuronal maturation in dendritogenesis and mammals was conducted in adults. This study is based on an invention related with this novel use of melatonin. PMID:27087552

  12. Adult retinal pigment epithelium cells express neural progenitor properties and the neuronal precursor protein doublecortin.

    PubMed

    Engelhardt, Maren; Bogdahn, Ulrich; Aigner, Ludwig

    2005-04-01

    The adult mammalian retina is devoid of any detectable neurogenesis. However, different cell types have been suggested to potentially act as neural progenitors in the adult mammalian retina in vitro, such as ciliary body (CB), Muller glia, and retinal pigment epithelium (RPE) cells. In rodents and humans, strong evidence for neural stem or progenitor properties exists only for CB-derived cells, but not for other retinal cell types. Here, we provide a comparative analysis of adult rat CB- and RPE-derived cells suggesting that the two cell types share certain neural progenitor properties in vitro. CB and RPE cells expressed neural progenitor markers such as Nestin, Flk-1, Hes1, and Musashi. They proliferated under adherent and neurosphere conditions and showed limited self-renewal. Moreover, they differentiated into neuronal and glial cells based on the expression of differentiation markers such as the young neuronal marker beta-III tubulin and the glial and progenitor markers GFAP and NG2. Expression of beta-III tubulin was found in cells with neuronal and non-neuronal morphology. A subpopulation of RPE- and CB-derived progenitor cells expressed the neurogenesis-specific protein doublecortin (DCX). Interestingly, DCX expression defined a beta-III tubulin-positive CB and RPE fraction with a distinct neuronal morphology. In summary, the data suggest that RPE cells share with CB cells the potential to de-differentiate into a cell type with neural progenitor-like identity. In addition, DCX expression might define the neuronal-differentiating RPE- and CB-derived progenitor population. PMID:15804431

  13. 12-Deoxyphorbols Promote Adult Neurogenesis by Inducing Neural Progenitor Cell Proliferation via PKC Activation

    PubMed Central

    Geribaldi-Doldán, Noelia; Flores-Giubi, Eugenia; Murillo-Carretero, Maribel; García-Bernal, Francisco; Carrasco, Manuel; Macías-Sánchez, Antonio J.; Domínguez-Riscart, Jesús; Verástegui, Cristina; Hernández-Galán, Rosario

    2016-01-01

    Background: Neuropsychiatric and neurological disorders frequently occur after brain insults associated with neuronal loss. Strategies aimed to facilitate neuronal renewal by promoting neurogenesis constitute a promising therapeutic option to treat neuronal death-associated disorders. In the adult brain, generation of new neurons occurs physiologically throughout the entire life controlled by extracellular molecules coupled to intracellular signaling cascades. Proteins participating in these cascades within neurogenic regions constitute potential pharmacological targets to promote neuronal regeneration of injured areas of the central nervous system. Methodology: We have performed in vitro and in vivo approaches to determine neural progenitor cell proliferation to understand whether activation of kinases of the protein kinase C family facilitates neurogenesis in the adult brain. Results: We have demonstrated that protein kinase C activation by phorbol-12-myristate-13-acetate induces neural progenitor cell proliferation in vitro. We also show that the nontumorogenic protein kinase C activator prostratin exerts a proliferative effect on neural progenitor cells in vitro. This effect can be reverted by addition of the protein kinase C inhibitor G06850, demonstrating that the effect of prostratin is mediated by protein kinase C activation. Additionally, we show that prostratin treatment in vivo induces proliferation of neural progenitor cells within the dentate gyrus of the hippocampus and the subventricular zone. Finally, we describe a library of diterpenes with a 12-deoxyphorbol structure similar to that of prostratin that induces a stronger effect than prostratin on neural progenitor cell proliferation both in vitro and in vivo. Conclusions: This work suggests that protein kinase C activation is a promising strategy to expand the endogenous neural progenitor cell population to promote neurogenesis and highlights the potential of 12-deoxyphorbols as pharmaceutical

  14. Role of astrocytes as neural stem cells in the adult brain

    PubMed Central

    Gonzalez-Perez, Oscar; Quiñones-Hinojosa, Alfredo

    2012-01-01

    In the adult mammalian brain, bona fide neural stem cells were discovered in the subventricular zone (SVZ), the largest neurogenic niche lining the striatal wall of the lateral ventricles of the brain. In this region resides a subpopulation of astrocytes that express the glial fibrillary acidic protein (GFAP), nestin and LeX. Astonishingly, these GFAP-expressing progenitors display stem-cell-like features both in vivo and in vitro. Throughout life SVZ astrocytes give rise to interneurons and oligodendrocyte precursors, which populate the olfactory bulb and the white matter, respectively. The role of the progenies of SVZ astrocytes has not been fully elucidated, but some evidence indicates that the new neurons play a role in olfactory discrimination, whereas oligodendrocytes contribute to myelinate white matter tracts. In this chapter, we describe the astrocytic nature of adult neural stem cells, their organization into the SVZ and some of their molecular and genetic characteristics. PMID:23619383

  15. Isolation of neural crest derived chromaffin progenitors from adult adrenal medulla.

    PubMed

    Chung, Kuei-Fang; Sicard, Flavie; Vukicevic, Vladimir; Hermann, Andreas; Storch, Alexander; Huttner, Wieland B; Bornstein, Stefan R; Ehrhart-Bornstein, Monika

    2009-10-01

    Chromaffin cells of the adrenal medulla are neural crest-derived cells of the sympathoadrenal lineage. Unlike the closely-related sympathetic neurons, a subpopulation of proliferation-competent cells exists even in the adult. Here, we describe the isolation, expansion, and in vitro characterization of proliferation-competent progenitor cells from the bovine adrenal medulla. Similar to neurospheres, these cells, when prevented from adherence to the culture dish, grew in spheres, which we named chromospheres. These chromospheres were devoid of mRNA specific for smooth muscle cells (MYH11) or endothelial cells (PECAM1). During sphere formation, markers for differentiated chromaffin cells, such as phenylethanolamine-N-methyl transferase, were downregulated while neural progenitor markers nestin, vimentin, musashi 1, and nerve growth factor receptor, as well as markers of neural crest progenitor cells such as Sox1 and Sox9, were upregulated. Clonal analysis and bromo-2'-deoxyuridine-incorporation analysis demonstrated the self-renewing capacity of chromosphere cells. Differentiation protocols using NGF and BMP4 or dexamethasone induced neuronal or endocrine differentiation, respectively. Electrophysiological analyses of neural cells derived from chromospheres revealed functional properties of mature nerve cells, such as tetrodotoxin-sensitive sodium channels and action potentials. Our study provides evidence that proliferation and differentiation competent chromaffin progenitor cells can be isolated from adult adrenal medulla and that these cells might harbor the potential for the treatment of neurodegenerative diseases, such as Parkinson's disease. PMID:19609938

  16. Effects of addictive drugs on adult neural stem/progenitor cells.

    PubMed

    Xu, Chi; Loh, Horace H; Law, Ping-Yee

    2016-01-01

    Neural stem/progenitor cells (NSPCs) undergo a series of developmental processes before giving rise to newborn neurons, astrocytes and oligodendrocytes in adult neurogenesis. During the past decade, the role of NSPCs has been highlighted by studies on adult neurogenesis modulated by addictive drugs. It has been proven that these drugs regulate the proliferation, differentiation and survival of adult NSPCs in different manners, which results in the varying consequences of adult neurogenesis. The effects of addictive drugs on NSPCs are exerted via a variety of different mechanisms and pathways, which interact with one another and contribute to the complexity of NSPC regulation. Here, we review the effects of different addictive drugs on NSPCs, and the related experimental methods and paradigms. We also discuss the current understanding of major signaling molecules, especially the putative common mechanisms, underlying such effects. Finally, we review the future directions of research in this area. PMID:26468052

  17. Behavioral and neural differences during two versions of cognitive shifting tasks in young children and adults.

    PubMed

    Moriguchi, Yusuke; Hiraki, Kazuo

    2014-05-01

    The present study examined how young children and adult participants activated inferior prefrontal regions when they were given different cognitive shifting tasks. Children and adults were given two versions of the Dimensional Change Card Sort task (the standard and advanced versions), and brain activations during the tasks were examined using near infrared spectroscopy. On the behavioral level, the performance of both children and adults deteriorated during the advanced version as compared to the standard version. On the neural level, adults exhibited similar bilateral inferior prefrontal activations during the advanced version and the standard version. On the other hand, children showed the significant differences of the activations between the regions during the advanced version, but not during the standard version. The results indicated that children recruited different inferior prefrontal areas depending on the demands of cognitive shifting. PMID:23765326

  18. Neural correlates of inhibitory control in adult ADHD: Evidence from the Milwaukee longitudinal sample

    PubMed Central

    Mulligan, Richard C.; Knopik, Valerie S.; Sweet, Lawrence H.; Fischer, Mariellen; Seidenberg, Michael; Rao, Stephen M.

    2011-01-01

    Only a few studies have investigated the neural substrate of response inhibition in adult ADHD using Stop-Signal and Go/No-Go tasks. Inconsistencies and methodological limitations in the existing literature have resulted in limited conclusions regarding underlying pathophysiology. We examined the neural basis of response inhibition in a group of adults diagnosed with ADHD in childhood and who continue to meet criteria for ADHD while addressing limitations present in earlier studies. Adults with ADHD (n=12) and controls (n=12) were recruited from an ongoing longitudinal study and were matched for age, IQ, and education. Individuals with comorbid conditions were excluded. Functional MRI was used to identify and compare the brain activation patterns during correct trials of a response inhibition task (Go/No-Go). Our results showed that the control group recruited a more extensive network of brain regions than the ADHD group during correct inhibition trials. Adults with ADHD showed reduced brain activation in the right frontal eye field, pre-supplementary motor area, left precentral gyrus, and the inferior parietal lobe bilaterally. During successful inhibition of an inappropriate response, adults with ADHD display reduced activation in fronto-parietal networks previously implicated in working memory, goal-oriented attention, and response selection. This profile of brain activation may be specifically associated with ADHD in adulthood. PMID:21937201

  19. Establishment of long term cultures of neural stem cells from adult sea bass, Dicentrarchus labrax.

    PubMed

    Servili, Arianna; Bufalino, Mary Rose; Nishikawa, Ryuhei; Sanchez de Melo, Ivan; Muñoz-Cueto, Jose A; Lee, Lucy E J

    2009-02-01

    Long term cell cultures could be obtained from brains of adult sea bass (Dicentrarchus labrax) up to 5 days post mortem. On three different occasions, sea bass brain tissues were dissected, dispersed and cultured in Leibovitz's L-15 media supplemented with 10% fetal bovine serum. The resulting cellular preparations could be passaged within 2 or 3 weeks of growth. The neural cells derived from the first trial (SBB-W1) have now been passaged over 24 times within two years. These cells have been cryopreserved and thawed successfully. SBB-W1 cells are slow growing with doubling times requiring at least 7 days at 22 degrees C. These long term cell cultures could be grown in suspension as neurospheres that were immunopositive for nestin, a marker for neural stem cells, or grown as adherent monolayers displaying both glial and neural morphologies. Immunostaining with anti-glial fibrillary acidic protein (a glial marker) and anti-neurofilament (a neuronal marker), yielded positive staining in most cells, suggesting their possible identity as neural stem cells. Furthermore, Sox 2, a marker for neural stem cells, could be detected from these cell extracts as well as proliferating cell nuclear antigen, a marker for proliferating cells. SBB-W1 could be transfected using pEGFP-N1 indicating their viability and suitability as convenient models for neurophysiological or neurotoxicological studies.

  20. Convergent genesis of an adult neural crest-like dermal stem cell from distinct developmental origins.

    PubMed

    Jinno, Hiroyuki; Morozova, Olena; Jones, Karen L; Biernaskie, Jeffrey A; Paris, Maryline; Hosokawa, Ryoichi; Rudnicki, Michael A; Chai, Yang; Rossi, Fabio; Marra, Marco A; Miller, Freda D

    2010-11-01

    Skin-derived precursors (SKPs) are multipotent dermal stem cells that reside within a hair follicle niche and that share properties with embryonic neural crest precursors. Here, we have asked whether SKPs and their endogenous dermal precursors originate from the neural crest or whether, like the dermis itself, they originate from multiple developmental origins. To do this, we used two different mouse Cre lines that allow us to perform lineage tracing: Wnt1-cre, which targets cells deriving from the neural crest, and Myf5-cre, which targets cells of a somite origin. By crossing these Cre lines to reporter mice, we show that the endogenous follicle-associated dermal precursors in the face derive from the neural crest, and those in the dorsal trunk derive from the somites, as do the SKPs they generate. Despite these different developmental origins, SKPs from these two locations are functionally similar, even with regard to their ability to differentiate into Schwann cells, a cell type only thought to be generated from the neural crest. Analysis of global gene expression using microarrays confirmed that facial and dorsal SKPs exhibit a very high degree of similarity, and that they are also very similar to SKPs derived from ventral dermis, which has a lateral plate origin. However, these developmentally distinct SKPs also retain differential expression of a small number of genes that reflect their developmental origins. Thus, an adult neural crest-like dermal precursor can be generated from a non-neural crest origin, a finding with broad implications for the many neuroendocrine cells in the body.

  1. Epigenetics, hippocampal neurogenesis, and neuropsychiatric disorders: unraveling the genome to understand the mind

    PubMed Central

    Hsieh, Jenny; Eisch, Amelia J.

    2010-01-01

    In mature, differentiated neurons in the central nervous system (CNS), epigenetic mechanisms – including DNA methylation, histone modification, and regulatory noncoding RNAs – play critical roles in encoding experience and environmental stimuli into stable, behaviorally-meaningful changes in gene expression. For example, epigenetic changes in mature hippocampal neurons have been implicated in learning and memory and in a variety of neuropsychiatric disorders, including depression. With all the recent (and warranted) attention given to epigenetic modifications in mature neurons, it is easy to forget that epigenetic mechanisms were initially described for their ability to promote differentiation and drive cell fate in embryonic and early postnatal development, including neurogenesis. Given the discovery of ongoing neurogenesis in the adult brain and the intriguing links among adult hippocampal neurogenesis, hippocampal function, and neuropsychiatric disorders, it is timely to complement the ongoing discussions on the role of epigenetics in mature neurons with a review on what is currently known about the role of epigenetics in adult hippocampal neurogenesis. The process of adult hippocampal neurogenesis is complex, with neural stem cells (NSCs) giving rise to fate-restricted progenitors and eventually mature dentate gyrus granule cells. Notably, neurogenesis occurs within an increasingly well-defined “neurogenic niche”, where mature cellular elements like vasculature, astrocytes, and neurons release signals that can dynamically regulate neurogenesis. Here we review the evidence that key stages and aspects of adult neurogenesis are driven by epigenetic mechanisms. We discuss the intrinsic changes occurring within NSCs and their progeny that are critical for neurogenesis. We also discuss how extrinsic changes occurring in cellular components in the niche can result in altered neurogenesis. Finally we describe the potential relevance of epigenetics for

  2. GABAA receptor-mediated feedforward and feedback inhibition differentially modulate the gain and the neural code transformation in hippocampal CA1 pyramidal cells.

    PubMed

    Jang, Hyun Jae; Park, Kyerl; Lee, Jaedong; Kim, Hyuncheol; Han, Kyu Hun; Kwag, Jeehyun

    2015-12-01

    Diverse variety of hippocampal interneurons exists in the CA1 area, which provides either feedforward (FF) or feedback (FB) inhibition to CA1 pyramidal cell (PC). However, how the two different inhibitory network architectures modulate the computational mode of CA1 PC is unknown. By investigating the CA3 PC rate-driven input-output function of CA1 PC using in vitro electrophysiology, in vitro-simulation of inhibitory network, and in silico computational modeling, we demonstrated for the first time that GABAA receptor-mediated FF and FB inhibition differentially modulate the gain, the spike precision, the neural code transformation and the information capacity of CA1 PC. Recruitment of FF inhibition buffered the CA1 PC spikes to theta-frequency regardless of the input frequency, abolishing the gain and making CA1 PC insensitive to its inputs. Instead, temporal variability of the CA1 PC spikes was increased, promoting the rate-to-temporal code transformation to enhance the information capacity of CA1 PC. In contrast, the recruitment of FB inhibition sub-linearly transformed the input rate to spike output rate with high gain and low spike temporal variability, promoting the rate-to-rate code transformation. These results suggest that GABAA receptor-mediated FF and FB inhibitory circuits could serve as network mechanisms for differentially modulating the gain of CA1 PC, allowing CA1 PC to switch between different computational modes using rate and temporal codes ad hoc. Such switch will allow CA1 PC to efficiently respond to spatio-temporally dynamic inputs and expand its computational capacity during different behavioral and neuromodulatory states in vivo.

  3. Long-Term Mild, rather than Intense, Exercise Enhances Adult Hippocampal Neurogenesis and Greatly Changes the Transcriptomic Profile of the Hippocampus.

    PubMed

    Inoue, Koshiro; Okamoto, Masahiro; Shibato, Junko; Lee, Min Chul; Matsui, Takashi; Rakwal, Randeep; Soya, Hideaki

    2015-01-01

    Our six-week treadmill running training (forced exercise) model has revealed that mild exercise (ME) with an intensity below the lactate threshold (LT) is sufficient to enhance spatial memory, while intense exercise (IE) above the LT negates such benefits. To help understand the unrevealed neuronal and signaling/molecular mechanisms of the intensity-dependent cognitive change, in this rat model, we here investigated plasma corticosterone concentration as a marker of stress, adult hippocampal neurogenesis (AHN) as a potential contributor to this ME-induced spatial memory, and comprehensively delineated the hippocampal transcriptomic profile using a whole-genome DNA microarray analysis approach through comparison with IE. Results showed that only IE had the higher corticosterone concentration than control, and that the less intense exercise (ME) is better suited to improve AHN, especially in regards to the survival and maturation of newborn neurons. DNA microarray analysis using a 4 × 44 K Agilent chip revealed that ME regulated more genes than did IE (ME: 604 genes, IE: 415 genes), and only 41 genes were modified with both exercise intensities. The identified molecular components did not comprise well-known factors related to exercise-induced AHN, such as brain-derived neurotrophic factor. Rather, network analysis of the data using Ingenuity Pathway Analysis algorithms revealed that the ME-influenced genes were principally related to lipid metabolism, protein synthesis and inflammatory response, which are recognized as associated with AHN. In contrast, IE-influenced genes linked to excessive inflammatory immune response, which is a negative regulator of hippocampal neuroadaptation, were identified. Collectively, these results in a treadmill running model demonstrate that long-term ME, but not of IE, with minimizing running stress, has beneficial effects on increasing AHN, and provides an ME-specific gene inventory containing some potential regulators of this

  4. Long-Term Mild, rather than Intense, Exercise Enhances Adult Hippocampal Neurogenesis and Greatly Changes the Transcriptomic Profile of the Hippocampus

    PubMed Central

    Inoue, Koshiro; Okamoto, Masahiro; Shibato, Junko; Lee, Min Chul; Matsui, Takashi; Rakwal, Randeep; Soya, Hideaki

    2015-01-01

    Our six-week treadmill running training (forced exercise) model has revealed that mild exercise (ME) with an intensity below the lactate threshold (LT) is sufficient to enhance spatial memory, while intense exercise (IE) above the LT negates such benefits. To help understand the unrevealed neuronal and signaling/molecular mechanisms of the intensity-dependent cognitive change, in this rat model, we here investigated plasma corticosterone concentration as a marker of stress, adult hippocampal neurogenesis (AHN) as a potential contributor to this ME-induced spatial memory, and comprehensively delineated the hippocampal transcriptomic profile using a whole-genome DNA microarray analysis approach through comparison with IE. Results showed that only IE had the higher corticosterone concentration than control, and that the less intense exercise (ME) is better suited to improve AHN, especially in regards to the survival and maturation of newborn neurons. DNA microarray analysis using a 4 × 44 K Agilent chip revealed that ME regulated more genes than did IE (ME: 604 genes, IE: 415 genes), and only 41 genes were modified with both exercise intensities. The identified molecular components did not comprise well-known factors related to exercise-induced AHN, such as brain-derived neurotrophic factor. Rather, network analysis of the data using Ingenuity Pathway Analysis algorithms revealed that the ME-influenced genes were principally related to lipid metabolism, protein synthesis and inflammatory response, which are recognized as associated with AHN. In contrast, IE-influenced genes linked to excessive inflammatory immune response, which is a negative regulator of hippocampal neuroadaptation, were identified. Collectively, these results in a treadmill running model demonstrate that long-term ME, but not of IE, with minimizing running stress, has beneficial effects on increasing AHN, and provides an ME-specific gene inventory containing some potential regulators of this

  5. Tianeptine reverses stress-induced asymmetrical hippocampal volume and N-acetylaspartate loss in rats: an in vivo study.

    PubMed

    Liu, Wei; Shu, Xi-Ji; Chen, Fu-Yin; Zhu, Cheng; Sun, Xiao-Hai; Liu, Li-Jiang; Ai, Yong-Xun; Li, Yu-Guang; Zhao, Hu

    2011-12-30

    Stress-induced hippocampal volume loss and decrease in N-acetylaspartate (NAA) level have been reported to be associated with impaired neural plasticity and neuronal damage in adults. Accordingly, reversing structural and metabolite damage in the hippocampus may be a desirable goal for antidepressant therapy. The present study investigated the effects of tianeptine on chronic stress-induced hippocampal volume loss and metabolite alterations in vivo in 24 Sprague-Dawley rats. Rats were subjected to a consecutive 28-day forced swimming test stress. Tianeptine (50mg/kg) or saline was administered intragastrically 4h after swimming each day. Spontaneous behaviors, serum corticosterone concentration, hippocampal volume and NAA level were evaluated after stress. Chronic tianeptine treatment counteracted the chronic stress-induced suppression of spontaneous behaviors, elevated serum corticosterone concentration, reduced hippocampal volume and decreased NAA level. Moreover, we found asymmetrical right-left hippocampal volume loss in stressed rats, with the left hippocampus more sensitive to chronic stress than the right hippocampus. In addition, stressed rats showed a decreased level of hippocampal metabolites, without significant loss of hippocampal volume. These findings provide experimental evidence for impaired structural plasticity of the brain being an important feature of depressive illness and suggest that prophylactic tianeptine treatments could reverse structural changes in brain. The structural and neurochemical alterations in the hippocampus may be valuable indexes for evaluating the prophylactic and curative effect of antidepressant treatments in depressive and stress-related disorders.

  6. Radial glia and neural progenitors in the adult zebrafish central nervous system.

    PubMed

    Than-Trong, Emmanuel; Bally-Cuif, Laure

    2015-08-01

    The adult central nervous system (CNS) of the zebrafish, owing to its enrichment in constitutive neurogenic niches, is becoming an increasingly used model to address fundamental questions pertaining to adult neural stem cell (NSC) biology, adult neurogenesis and neuronal repair. Studies conducted in several CNS territories (notably the telencephalon, retina, midbrain, cerebellum and spinal cord) highlighted the presence, in these niches, of progenitor cells displaying NSC-like characters. While pointing to radial glial cells (RG) as major long-lasting, constitutively active and/or activatable progenitors in most domains, these studies also revealed a high heterogeneity in the progenitor subtypes used at the top of neurogenic hierarchies, including the persistence of neuroepithelial (NE) progenitors in some areas. Likewise, dissecting the molecular pathways underlying RG maintenance and recruitment under physiological conditions and upon repair in the zebrafish model revealed shared processes but also specific cascades triggering or sustaining reparative NSC recruitment. Together, the zebrafish adult brain reveals an extensive complexity of adult NSC niches, properties and control pathways, which extends existing understanding of adult NSC biology and gives access to novel mechanisms of efficient NSC maintenance and recruitment in an adult vertebrate brain. PMID:25976648

  7. Lithium increases proliferation of hippocampal neural stem/progenitor cells and rescues irradiation-induced cell cycle arrest in vitro.

    PubMed

    Zanni, Giulia; Di Martino, Elena; Omelyanenko, Anna; Andäng, Michael; Delle, Ulla; Elmroth, Kecke; Blomgren, Klas

    2015-11-10

    Radiotherapy in children causes debilitating cognitive decline, partly linked to impaired neurogenesis. Irradiation targets primarily cancer cells but also endogenous neural stem/progenitor cells (NSPCs) leading to cell death or cell cycle arrest. Here we evaluated the effects of lithium on proliferation, cell cycle and DNA damage after irradiation of young NSPCs in vitro.NSPCs were treated with 1 or 3 mM LiCl and we investigated proliferation capacity (neurosphere volume and bromodeoxyuridine (BrdU) incorporation). Using flow cytometry, we analysed apoptosis (annexin V), cell cycle (propidium iodide) and DNA damage (γH2AX) after irradiation (3.5 Gy) of lithium-treated NSPCs.Lithium increased BrdU incorporation and, dose-dependently, the number of cells in replicative phase as well as neurosphere growth. Irradiation induced cell cycle arrest in G1 and G2/M phases. Treatment with 3 mM LiCl was sufficient to increase NSPCs in S phase, boost neurosphere growth and reduce DNA damage. Lithium did not affect the levels of apoptosis, suggesting that it does not rescue NSPCs committed to apoptosis due to accumulated DNA damage.Lithium is a very promising candidate for protection of the juvenile brain from radiotherapy and for its potential to thereby improve the quality of life for those children who survive their cancer.

  8. Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects.

    PubMed

    Jiang, Wen; Zhang, Yun; Xiao, Lan; Van Cleemput, Jamie; Ji, Shao-Ping; Bai, Guang; Zhang, Xia

    2005-11-01

    The hippocampal dentate gyrus in the adult mammalian brain contains neural stem/progenitor cells (NS/PCs) capable of generating new neurons, i.e., neurogenesis. Most drugs of abuse examined to date decrease adult hippocampal neurogenesis, but the effects of cannabis (marijuana or cannabinoids) on hippocampal neurogenesis remain unknown. This study aimed at investigating the potential regulatory capacity of the potent synthetic cannabinoid HU210 on hippocampal neurogenesis and its possible correlation with behavioral change. We show that both embryonic and adult rat hippocampal NS/PCs are immunoreactive for CB1 cannabinoid receptors, indicating that cannabinoids could act on CB1 receptors to regulate neurogenesis. This hypothesis is supported by further findings that HU210 promotes proliferation, but not differentiation, of cultured embryonic hippocampal NS/PCs likely via a sequential activation of CB1 receptors, G(i/o) proteins, and ERK signaling. Chronic, but not acute, HU210 treatment promoted neurogenesis in the hippocampal dentate gyrus of adult rats and exerted anxiolytic- and antidepressant-like effects. X-irradiation of the hippocampus blocked both the neurogenic and behavioral effects of chronic HU210 treatment, suggesting that chronic HU210 treatment produces anxiolytic- and antidepressant-like effects likely via promotion of hippocampal neurogenesis.

  9. Resting state neural networks for visual Chinese word processing in Chinese adults and children.

    PubMed

    Li, Ling; Liu, Jiangang; Chen, Feiyan; Feng, Lu; Li, Hong; Tian, Jie; Lee, Kang

    2013-07-01

    This study examined the resting state neural networks for visual Chinese word processing in Chinese children and adults. Both the functional connectivity (FC) and amplitude of low frequency fluctuation (ALFF) approaches were used to analyze the fMRI data collected when Chinese participants were not engaged in any specific explicit tasks. We correlated time series extracted from the visual word form area (VWFA) with those in other regions in the brain. We also performed ALFF analysis in the resting state FC networks. The FC results revealed that, regarding the functionally connected brain regions, there exist similar intrinsically organized resting state networks for visual Chinese word processing in adults and children, suggesting that such networks may already be functional after 3-4 years of informal exposure to reading plus 3-4 years formal schooling. The ALFF results revealed that children appear to recruit more neural resources than adults in generally reading-irrelevant brain regions. Differences between child and adult ALFF results suggest that children's intrinsic word processing network during the resting state, though similar in functional connectivity, is still undergoing development. Further exposure to visual words and experience with reading are needed for children to develop a mature intrinsic network for word processing. The developmental course of the intrinsically organized word processing network may parallel that of the explicit word processing network.

  10. Quiescent adult neural stem cells are exceptionally sensitive to cosmic radiation.

    PubMed

    Encinas, Juan M; Vazquez, Marcelo E; Switzer, Robert C; Chamberland, Dennis W; Nick, Harry; Levine, Howard G; Scarpa, Philip J; Enikolopov, Grigori; Steindler, Dennis A

    2008-03-01

    Generation of new neurons in the adult brain, a process that is likely to be essential for learning, memory, and mood regulation, is impaired by radiation. Therefore, radiation exposure might have not only such previously expected consequences as increased probability of developing cancer, but might also impair cognitive function and emotional stability. Radiation exposure is encountered in settings ranging from cancer therapy to space travel; evaluating the neurogenic risks of radiation requires identifying the at-risk populations of stem and progenitor cells in the adult brain. Here we have used a novel reporter mouse line to find that early neural progenitors are selectively affected by conditions simulating the space radiation environment. This is reflected both in a decrease in the number of these progenitors in the neurogenic regions and in an increase in the number of dying cells in these regions. Unexpectedly, we found that quiescent neural stem cells, rather than their rapidly dividing progeny, are most sensitive to radiation. Since these stem cells are responsible for adult neurogenesis, their death would have a profound impact on the production of new neurons in the irradiated adult brain. Our finding raises an important concern about cognitive and emotional risks associated with radiation exposure.

  11. Molecular Biomarkers for Embryonic and Adult Neural Stem Cell and Neurogenesis

    PubMed Central

    Zhang, Juan; Jiao, Jianwei

    2015-01-01

    The procedure of neurogenesis has made numerous achievements in the past decades, during which various molecular biomarkers have been emerging and have been broadly utilized for the investigation of embryonic and adult neural stem cell (NSC). Nevertheless, there is not a consistent and systematic illustration to depict the functional characteristics of the specific markers expressed in distinct cell types during the different stages of neurogenesis. Here we gathered and generalized a series of NSC biomarkers emerging during the procedures of embryonic and adult neural stem cell, which may be used to identify the subpopulation cells with distinguishing characters in different timeframes of neurogenesis. The identifications of cell patterns will provide applications to the detailed investigations of diverse developmental cell stages and the extents of cell differentiation, which will facilitate the tracing of cell time-course and fate determination of specific cell types and promote the further and literal discoveries of embryonic and adult neurogenesis. Meanwhile, via the utilization of comprehensive applications under the aiding of the systematic knowledge framework, researchers may broaden their insights into the derivation and establishment of novel technologies to analyze the more detailed process of embryogenesis and adult neurogenesis. PMID:26421301

  12. In contrast to many other mammals, cetaceans have relatively small hippocampi that appear to lack adult neurogenesis.

    PubMed

    Patzke, Nina; Spocter, Muhammad A; Karlsson, Karl Æ; Bertelsen, Mads F; Haagensen, Mark; Chawana, Richard; Streicher, Sonja; Kaswera, Consolate; Gilissen, Emmanuel; Alagaili, Abdulaziz N; Mohammed, Osama B; Reep, Roger L; Bennett, Nigel C; Siegel, Jerry M; Ihunwo, Amadi O; Manger, Paul R

    2015-01-01

    The hippocampus is essential for the formation and retrieval of memories and is a crucial neural structure sub-serving complex cognition. Adult hippocampal neurogenesis, the birth, migration and integration of new neurons, is thought to contribute to hippocampal circuit plasticity to augment function. We evaluated hippocampal volume in relation to brain volume in 375 mammal species and examined 71 mammal species for the presence of adult hippocampal neurogenesis using immunohistochemistry for doublecortin, an endogenous marker of immature neurons that can be used as a proxy marker for the presence of adult neurogenesis. We identified that the hippocampus in cetaceans (whales, dolphins and porpoises) is both absolutely and relatively small for their overall brain size, and found that the mammalian hippocampus scaled as an exponential function in relation to brain volume. In contrast, the amygdala was found to scale as a linear function of brain volume, but again, the relative size of the amygdala in cetaceans was small. The cetacean hippocampus lacks staining for doublecortin in the dentate gyrus and thus shows no clear signs of adult hippocampal neurogenesis. This lack of evidence of adult hippocampal neurogenesis, along with the small hippocampus, questions current assumptions regarding cognitive abilities associated with hippocampal function in the cetaceans. These anatomical features of the cetacean hippocampus may be related to the lack of postnatal sleep, causing a postnatal cessation of hippocampal neurogenesis. PMID:24178679

  13. In contrast to many other mammals, cetaceans have relatively small hippocampi that appear to lack adult neurogenesis.

    PubMed

    Patzke, Nina; Spocter, Muhammad A; Karlsson, Karl Æ; Bertelsen, Mads F; Haagensen, Mark; Chawana, Richard; Streicher, Sonja; Kaswera, Consolate; Gilissen, Emmanuel; Alagaili, Abdulaziz N; Mohammed, Osama B; Reep, Roger L; Bennett, Nigel C; Siegel, Jerry M; Ihunwo, Amadi O; Manger, Paul R

    2015-01-01

    The hippocampus is essential for the formation and retrieval of memories and is a crucial neural structure sub-serving complex cognition. Adult hippocampal neurogenesis, the birth, migration and integration of new neurons, is thought to contribute to hippocampal circuit plasticity to augment function. We evaluated hippocampal volume in relation to brain volume in 375 mammal species and examined 71 mammal species for the presence of adult hippocampal neurogenesis using immunohistochemistry for doublecortin, an endogenous marker of immature neurons that can be used as a proxy marker for the presence of adult neurogenesis. We identified that the hippocampus in cetaceans (whales, dolphins and porpoises) is both absolutely and relatively small for their overall brain size, and found that the mammalian hippocampus scaled as an exponential function in relation to brain volume. In contrast, the amygdala was found to scale as a linear function of brain volume, but again, the relative size of the amygdala in cetaceans was small. The cetacean hippocampus lacks staining for doublecortin in the dentate gyrus and thus shows no clear signs of adult hippocampal neurogenesis. This lack of evidence of adult hippocampal neurogenesis, along with the small hippocampus, questions current assumptions regarding cognitive abilities associated with hippocampal function in the cetaceans. These anatomical features of the cetacean hippocampus may be related to the lack of postnatal sleep, causing a postnatal cessation of hippocampal neurogenesis.

  14. Neuritin: a gene induced by neural activity and neurotrophins that promotes neuritogenesis.

    PubMed

    Naeve, G S; Ramakrishnan, M; Kramer, R; Hevroni, D; Citri, Y; Theill, L E

    1997-03-18

    Neural activity and neurotrophins induce synaptic remodeling in part by altering gene expression. A cDNA encoding a glycosylphoshatidylinositol-anchored protein was identified by screening for hippocampal genes that are induced by neural activity. This molecule, named neuritin, is expressed in postmitotic-differentiating neurons of the developing nervous system and neuronal structures associated with plasticity in the adult. Neuritin message is induced by neuronal activity and by the activity-regulated neurotrophins BDNF and NT-3. Purified recombinant neuritin promotes neurite outgrowth and arborization in primary embryonic hippocampal and cortical cultures. These data implicate neuritin as a downstream effector of activity-induced neurite outgrowth. PMID:9122250

  15. Buttressing a balanced brain: Target-derived FGF signaling regulates excitatory/inhibitory tone and adult neurogenesis within the maturating hippocampal network.

    PubMed

    Dabrowski, Ania; Umemori, Hisashi

    2016-01-01

    Brain development involves multiple levels of molecular coordination in forming a functional nervous system. The hippocampus is a brain area that is important for memory formation and spatial reasoning. During early postnatal development of the hippocampal circuit, Fibroblast growth factor 22 (FGF22) and FGF7 act to establish a balance of excitatory and inhibitory tone. Both FGFs are secreted from CA3 dendrites, acting on excitatory or inhibitory axon terminals formed onto CA3 dendrites, respectively. Mechanistically, FGF22 utilizes FGFR2b and FGFR1b to induce synaptic vesicle recruitment within axons of dentate granule cells (DGCs), and FGF7 utilizes FGFR2b to induce synaptic vesicle recruitment within interneuron axons. FGF signaling eventually induces gene expression in the presynaptic neurons; however, the effects of FGF22-induced gene expression within DGCs and FGF7-induced gene expression within interneurons in the context of a developing hippocampal circuit have yet to be explored. Here, we propose one hypothetical mechanism of FGF22-induced gene expression in controlling adult neurogenesis. PMID:27605441

  16. Prediction of Clinical Deterioration in Hospitalized Adult Patients with Hematologic Malignancies Using a Neural Network Model

    PubMed Central

    Hu, Scott B.; Wong, Deborah J. L.; Correa, Aditi; Li, Ning; Deng, Jane C.

    2016-01-01

    Introduction Clinical deterioration (ICU transfer and cardiac arrest) occurs during approximately 5–10% of hospital admissions. Existing prediction models have a high false positive rate, leading to multiple false alarms and alarm fatigue. We used routine vital signs and laboratory values obtained from the electronic medical record (EMR) along with a machine learning algorithm called a neural network to develop a prediction model that would increase the predictive accuracy and decrease false alarm rates. Design Retrospective cohort study. Setting The hematologic malignancy unit in an academic medical center in the United States. Patient Population Adult patients admitted to the hematologic malignancy unit from 2009 to 2010. Intervention None. Measurements and Main Results Vital signs and laboratory values were obtained from the electronic medical record system and then used as predictors (features). A neural network was used to build a model to predict clinical deterioration events (ICU transfer and cardiac arrest). The performance of the neural network model was compared to the VitalPac Early Warning Score (ViEWS). Five hundred sixty five consecutive total admissions were available with 43 admissions resulting in clinical deterioration. Using simulation, the neural network outperformed the ViEWS model with a positive predictive value of 82% compared to 24%, respectively. Conclusion We developed and tested a neural network-based prediction model for clinical deterioration in patients hospitalized in the hematologic malignancy unit. Our neural network model outperformed an existing model, substantially increasing the positive predictive value, allowing the clinician to be confident in the alarm raised. This system can be readily implemented in a real-time fashion in existing EMR systems. PMID:27532679

  17. Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve

    PubMed Central

    Lang, Hainan; Xing, Yazhi; Brown, LaShardai N.; Samuvel, Devadoss J.; Panganiban, Clarisse H.; Havens, Luke T.; Balasubramanian, Sundaravadivel; Wegner, Michael; Krug, Edward L.; Barth, Jeremy L.

    2015-01-01

    The auditory nerve is the primary conveyor of hearing information from sensory hair cells to the brain. It has been believed that loss of the auditory nerve is irreversible in the adult mammalian ear, resulting in sensorineural hearing loss. We examined the regenerative potential of the auditory nerve in a mouse model of auditory neuropathy. Following neuronal degeneration, quiescent glial cells converted to an activated state showing a decrease in nuclear chromatin condensation, altered histone deacetylase expression and up-regulation of numerous genes associated with neurogenesis or development. Neurosphere formation assays showed that adult auditory nerves contain neural stem/progenitor cells (NSPs) that were within a Sox2-positive glial population. Production of neurospheres from auditory nerve cells was stimulated by acute neuronal injury and hypoxic conditioning. These results demonstrate that a subset of glial cells in the adult auditory nerve exhibit several characteristics of NSPs and are therefore potential targets for promoting auditory nerve regeneration. PMID:26307538

  18. Adult human neural stem cell therapeutics: Current developmental status and prospect

    PubMed Central

    Nam, Hyun; Lee, Kee-Hang; Nam, Do-Hyun; Joo, Kyeung Min

    2015-01-01

    Over the past two decades, regenerative therapies using stem cell technologies have been developed for various neurological diseases. Although stem cell therapy is an attractive option to reverse neural tissue damage and to recover neurological deficits, it is still under development so as not to show significant treatment effects in clinical settings. In this review, we discuss the scientific and clinical basics of adult neural stem cells (aNSCs), and their current developmental status as cell therapeutics for neurological disease. Compared with other types of stem cells, aNSCs have clinical advantages, such as limited proliferation, inborn differentiation potential into functional neural cells, and no ethical issues. In spite of the merits of aNSCs, difficulties in the isolation from the normal brain, and in the in vitro expansion, have blocked preclinical and clinical study using aNSCs. However, several groups have recently developed novel techniques to isolate and expand aNSCs from normal adult brains, and showed successful applications of aNSCs to neurological diseases. With new technologies for aNSCs and their clinical strengths, previous hurdles in stem cell therapies for neurological diseases could be overcome, to realize clinically efficacious regenerative stem cell therapeutics. PMID:25621112

  19. Adult human neural stem cell therapeutics: Current developmental status and prospect.

    PubMed

    Nam, Hyun; Lee, Kee-Hang; Nam, Do-Hyun; Joo, Kyeung Min

    2015-01-26

    Over the past two decades, regenerative therapies using stem cell technologies have been developed for various neurological diseases. Although stem cell therapy is an attractive option to reverse neural tissue damage and to recover neurological deficits, it is still under development so as not to show significant treatment effects in clinical settings. In this review, we discuss the scientific and clinical basics of adult neural stem cells (aNSCs), and their current developmental status as cell therapeutics for neurological disease. Compared with other types of stem cells, aNSCs have clinical advantages, such as limited proliferation, inborn differentiation potential into functional neural cells, and no ethical issues. In spite of the merits of aNSCs, difficulties in the isolation from the normal brain, and in the in vitro expansion, have blocked preclinical and clinical study using aNSCs. However, several groups have recently developed novel techniques to isolate and expand aNSCs from normal adult brains, and showed successful applications of aNSCs to neurological diseases. With new technologies for aNSCs and their clinical strengths, previous hurdles in stem cell therapies for neurological diseases could be overcome, to realize clinically efficacious regenerative stem cell therapeutics.

  20. Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis.

    PubMed

    Gregorian, Caroline; Nakashima, Jonathan; Le Belle, Janel; Ohab, John; Kim, Rachel; Liu, Annie; Smith, Kate Barzan; Groszer, Matthias; Garcia, A Denise; Sofroniew, Michael V; Carmichael, S Thomas; Kornblum, Harley I; Liu, Xin; Wu, Hong

    2009-02-11

    Here we show that conditional deletion of Pten in a subpopulation of adult neural stem cells in the subependymal zone (SEZ) leads to persistently enhanced neural stem cell self-renewal without sign of exhaustion. These Pten null SEZ-born neural stem cells and progenies can follow the endogenous migration, differentiation, and integration pathways and contribute to constitutive neurogenesis in the olfactory bulb. As a result, Pten deleted animals have increased olfactory bulb mass and enhanced olfactory function. Pten null cells in the olfactory bulb can establish normal connections with peripheral olfactory epithelium and help olfactory bulb recovery from acute damage. Following a focal stroke, Pten null progenitors give rise to greater numbers of neuroblasts that migrate to peri-infarct cortex. However, in contrast to the olfactory bulb, no significant long-term survival and integration can be observed, indicating that additional factors are necessary for long-term survival of newly born neurons after stroke. These data suggest that manipulating PTEN-controlled signaling pathways may be a useful step in facilitating endogenous neural stem/progenitor expansion for the treatment of disorders or lesions in regions associated with constitutive neurogenesis. PMID:19211894

  1. Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis.

    PubMed

    Gregorian, Caroline; Nakashima, Jonathan; Le Belle, Janel; Ohab, John; Kim, Rachel; Liu, Annie; Smith, Kate Barzan; Groszer, Matthias; Garcia, A Denise; Sofroniew, Michael V; Carmichael, S Thomas; Kornblum, Harley I; Liu, Xin; Wu, Hong

    2009-02-11

    Here we show that conditional deletion of Pten in a subpopulation of adult neural stem cells in the subependymal zone (SEZ) leads to persistently enhanced neural stem cell self-renewal without sign of exhaustion. These Pten null SEZ-born neural stem cells and progenies can follow the endogenous migration, differentiation, and integration pathways and contribute to constitutive neurogenesis in the olfactory bulb. As a result, Pten deleted animals have increased olfactory bulb mass and enhanced olfactory function. Pten null cells in the olfactory bulb can establish normal connections with peripheral olfactory epithelium and help olfactory bulb recovery from acute damage. Following a focal stroke, Pten null progenitors give rise to greater numbers of neuroblasts that migrate to peri-infarct cortex. However, in contrast to the olfactory bulb, no significant long-term survival and integration can be observed, indicating that additional factors are necessary for long-term survival of newly born neurons after stroke. These data suggest that manipulating PTEN-controlled signaling pathways may be a useful step in facilitating endogenous neural stem/progenitor expansion for the treatment of disorders or lesions in regions associated with constitutive neurogenesis.

  2. Residual Neural Processing of Musical Sound Features in Adult Cochlear Implant Users

    PubMed Central

    Timm, Lydia; Vuust, Peter; Brattico, Elvira; Agrawal, Deepashri; Debener, Stefan; Büchner, Andreas; Dengler, Reinhard; Wittfoth, Matthias

    2014-01-01

    Auditory processing in general and music perception in particular are hampered in adult cochlear implant (CI) users. To examine the residual music perception skills and their underlying neural correlates in CI users implanted in adolescence or adulthood, we conducted an electrophysiological and behavioral study comparing adult CI users with normal-hearing age-matched controls (NH controls). We used a newly developed musical multi-feature paradigm, which makes it possible to test automatic auditory discrimination of six different types of sound feature changes inserted within a musical enriched setting lasting only 20 min. The presentation of stimuli did not require the participants’ attention, allowing the study of the early automatic stage of feature processing in the auditory cortex. For the CI users, we obtained mismatch negativity (MMN) brain responses to five feature changes but not to changes of rhythm, whereas we obtained MMNs for all the feature changes in the NH controls. Furthermore, the MMNs to deviants of pitch of CI users were reduced in amplitude and later than those of NH controls for changes of pitch and guitar timber. No other group differences in MMN parameters were found to changes in intensity and saxophone timber. Furthermore, the MMNs in CI users reflected the behavioral scores from a respective discrimination task and were correlated with patients’ age and speech intelligibility. Our results suggest that even though CI users are not performing at the same level as NH controls in neural discrimination of pitch-based features, they do possess potential neural abilities for music processing. However, CI users showed a disrupted ability to automatically discriminate rhythmic changes compared with controls. The current behavioral and MMN findings highlight the residual neural skills for music processing even in CI users who have been implanted in adolescence or adulthood. Highlights: -Automatic brain responses to musical feature changes

  3. Ly6C(hi) Monocytes Provide a Link between Antibiotic-Induced Changes in Gut Microbiota and Adult Hippocampal Neurogenesis.

    PubMed

    Möhle, Luisa; Mattei, Daniele; Heimesaat, Markus M; Bereswill, Stefan; Fischer, André; Alutis, Marie; French, Timothy; Hambardzumyan, Dolores; Matzinger, Polly; Dunay, Ildiko R; Wolf, Susanne A

    2016-05-31

    Antibiotics, though remarkably useful, can also cause certain adverse effects. We detected that treatment of adult mice with antibiotics decreases hippocampal neurogenesis and memory retention. Reconstitution with normal gut flora (SPF) did not completely reverse the deficits in neurogenesis unless the mice also had access to a running wheel or received probiotics. In parallel to an increase in neurogenesis and memory retention, both SPF-reconstituted mice that ran and mice supplemented with probiotics exhibited higher numbers of Ly6C(hi) monocytes in the brain than antibiotic-treated mice. Elimination of Ly6C(hi) monocytes by antibody depletion or the use of knockout mice resulted in decreased neurogenesis, whereas adoptive transfer of Ly6C(hi) monocytes rescued neurogenesis after antibiotic treatment. We propose that the rescue of neurogenesis and behavior deficits in antibiotic-treated mice by exercise and probiotics is partially mediated by Ly6C(hi) monocytes.

  4. Ly6C(hi) Monocytes Provide a Link between Antibiotic-Induced Changes in Gut Microbiota and Adult Hippocampal Neurogenesis.

    PubMed

    Möhle, Luisa; Mattei, Daniele; Heimesaat, Markus M; Bereswill, Stefan; Fischer, André; Alutis, Marie; French, Timothy; Hambardzumyan, Dolores; Matzinger, Polly; Dunay, Ildiko R; Wolf, Susanne A

    2016-05-31

    Antibiotics, though remarkably useful, can also cause certain adverse effects. We detected that treatment of adult mice with antibiotics decreases hippocampal neurogenesis and memory retention. Reconstitution with normal gut flora (SPF) did not completely reverse the deficits in neurogenesis unless the mice also had access to a running wheel or received probiotics. In parallel to an increase in neurogenesis and memory retention, both SPF-reconstituted mice that ran and mice supplemented with probiotics exhibited higher numbers of Ly6C(hi) monocytes in the brain than antibiotic-treated mice. Elimination of Ly6C(hi) monocytes by antibody depletion or the use of knockout mice resulted in decreased neurogenesis, whereas adoptive transfer of Ly6C(hi) monocytes rescued neurogenesis after antibiotic treatment. We propose that the rescue of neurogenesis and behavior deficits in antibiotic-treated mice by exercise and probiotics is partially mediated by Ly6C(hi) monocytes. PMID:27210745

  5. Exercise prevents high-fat diet-induced impairment of flexible memory expression in the water maze and modulates adult hippocampal neurogenesis in mice.

    PubMed

    Klein, C; Jonas, W; Iggena, D; Empl, L; Rivalan, M; Wiedmer, P; Spranger, J; Hellweg, R; Winter, Y; Steiner, B

    2016-05-01

    Obesity is currently one of the most serious threats to human health in the western civilization. A growing body of evidence suggests that obesity is associated with cognitive dysfunction. Physical exercise not only improves fitness but it has also been shown in human and animal studies to increase hippocampus-dependent learning and memory. High-fat diet (HFD)-induced obesity and physical exercise both modulate adult hippocampal neurogenesis. Adult neurogenesis has been demonstrated to play a role in hippocampus-dependent learning and memory, particularly flexible memory expression. Here, we investigated the effects of twelve weeks of HFD vs. control diet (CD) and voluntary physical activity (wheel running; -R) vs. inactivity (sedentary; -S) on hippocampal neurogenesis and spatial learning and flexible memory function in female C57Bl/6 mice assessed in the Morris water maze. HFD was initiated either in adolescent mice combined with long-term concurrent exercise (preventive approach) or in young adult mice with 14days of subsequent exercise (therapeutic approach). HFD resulted in impaired flexible memory expression only when initiated in adolescent (HFD-S) but not in young adult mice, which was successfully prevented by concurrent exercise (HFD-R). Histological analysis revealed a reduction of immature neurons in the hippocampus of the memory-impaired HFD-S mice of the preventive approach. Long-term physical exercise also led to accelerated spatial learning during the acquisition period, which was accompanied by increased numbers of newborn mature neurons (HFD-R and CD-R). Short-term exercise of 14days in the therapeutic group was not effective in improving spatial learning or memory. We show that (1) alterations in learning and flexible memory expression are accompanied by changes in the number of neuronal cells at different maturation stages; (2) these neuronal cells are in turn differently affected by HFD; (3) adolescent mice are specifically susceptible to the

  6. Exercise prevents high-fat diet-induced impairment of flexible memory expression in the water maze and modulates adult hippocampal neurogenesis in mice.

    PubMed

    Klein, C; Jonas, W; Iggena, D; Empl, L; Rivalan, M; Wiedmer, P; Spranger, J; Hellweg, R; Winter, Y; Steiner, B

    2016-05-01

    Obesity is currently one of the most serious threats to human health in the western civilization. A growing body of evidence suggests that obesity is associated with cognitive dysfunction. Physical exercise not only improves fitness but it has also been shown in human and animal studies to increase hippocampus-dependent learning and memory. High-fat diet (HFD)-induced obesity and physical exercise both modulate adult hippocampal neurogenesis. Adult neurogenesis has been demonstrated to play a role in hippocampus-dependent learning and memory, particularly flexible memory expression. Here, we investigated the effects of twelve weeks of HFD vs. control diet (CD) and voluntary physical activity (wheel running; -R) vs. inactivity (sedentary; -S) on hippocampal neurogenesis and spatial learning and flexible memory function in female C57Bl/6 mice assessed in the Morris water maze. HFD was initiated either in adolescent mice combined with long-term concurrent exercise (preventive approach) or in young adult mice with 14days of subsequent exercise (therapeutic approach). HFD resulted in impaired flexible memory expression only when initiated in adolescent (HFD-S) but not in young adult mice, which was successfully prevented by concurrent exercise (HFD-R). Histological analysis revealed a reduction of immature neurons in the hippocampus of the memory-impaired HFD-S mice of the preventive approach. Long-term physical exercise also led to accelerated spatial learning during the acquisition period, which was accompanied by increased numbers of newborn mature neurons (HFD-R and CD-R). Short-term exercise of 14days in the therapeutic group was not effective in improving spatial learning or memory. We show that (1) alterations in learning and flexible memory expression are accompanied by changes in the number of neuronal cells at different maturation stages; (2) these neuronal cells are in turn differently affected by HFD; (3) adolescent mice are specifically susceptible to the

  7. Glycidol induces axonopathy by adult-stage exposure and aberration of hippocampal neurogenesis affecting late-stage differentiation by developmental exposure in rats.

    PubMed

    Akane, Hirotoshi; Shiraki, Ayako; Imatanaka, Nobuya; Akahori, Yumi; Itahashi, Megu; Ohishi, Takumi; Mitsumori, Kunitoshi; Shibutani, Makoto

    2013-07-01

    To investigate the neurotoxicity profile of glycidol and its effect on developmental hippocampal neurogenesis, pregnant Sprague Dawley rats were given drinking water containing 0, 100, 300, or 1000 ppm glycidol from gestational day 6 until weaning on day 21 after delivery. At 1000 ppm, dams showed progressively worsening gait abnormalities, and histopathological examination showed generation of neurofilament-L(+) spheroids in the cerebellar granule layer and dorsal funiculus of the medulla oblongata, central chromatolysis in the trigeminal nerve ganglion cells, and axonal degeneration in the sciatic nerves. Decreased dihydropyrimidinase-like 3(+) immature granule cells in the subgranular zone (SGZ) and increased immature reelin(+) or calbindin-2(+) γ-aminobutyric acid-ergic interneurons and neuron-specific nuclear protein (NeuN)(+) mature neurons were found in the dentate hilus of the offspring of the 1000 ppm group on weaning. Hilar changes remained until postnatal day 77, with the increases in reelin(+) and NeuN(+) cells being present at ≥ 300 ppm, although the SGZ change disappeared. Thus, glycidol caused axon injury in the central and peripheral nervous systems of adult rats, suggesting that glycidol targets the newly generating nerve terminals of immature granule cells, resulting in the suppression of late-stage hippocampal neurogenesis. The sustained hilar changes may be a sign of continued aberrations in neurogenesis and migration. The no-observed-adverse-effect level was determined to be 300 ppm (48.8mg/kg body weight/day) for dams and 100 ppm (18.5mg/kg body weight/day) for offspring. The sustained developmental exposure effect on offspring neurogenesis was more sensitive than the adult axonal injury.

  8. Adult neurogenesis, neural stem cells and Alzheimer's disease: developments, limitations, problems and promises.

    PubMed

    Taupin, Philippe

    2009-12-01

    Alzheimer's disease (AD) is an irreversible progressive neurodegenerative disease, leading to severe incapacity and death. It is the most common form of dementia among older people. AD is characterized in the brain by amyloid plaques, neurofibrillary tangles, neuronal degeneration, aneuploidy and enhanced neurogenesis and by cognitive, behavioral and physical impairments. Inherited mutations in several genes and genetic, acquired and environmental risk factors have been reported as causes for developing the disease, for which there is currently no cure. Current treatments for AD involve drugs and occupational therapies, and future developments involve early diagnosis and stem cell therapy. In this manuscript, we will review and discuss the recent developments, limitations, problems and promises on AD, particularly related to aneuploidy, adult neurogenesis, neural stem cells (NSCs) and cellular therapy. Though adult neurogenesis may be beneficial for regeneration of the nervous system, it may underly the pathogenesis of AD. Cellular therapy is a promising strategy for AD. Limitations in protocols to establish homogeneous populations of neural progenitor and stem cells and niches for neurogenesis need to be resolved and unlocked, for the full potential of adult NSCs to be realized for therapy.

  9. An Alzheimer’s Disease Genetic Risk Score Predicts Longitudinal Thinning of Hippocampal Complex Subregions in Healthy Older Adults

    PubMed Central

    Mahmood, Zanjbeel; Lau, Edward P.; Karacozoff, Alexandra M.; Small, Gary W.; Bookheimer, Susan Y.

    2016-01-01

    Abstract Variants at 21 genetic loci have been associated with an increased risk for Alzheimer’s disease (AD). An important unresolved question is whether multiple genetic risk factors can be combined to increase the power to detect changes in neuroimaging biomarkers for AD. We acquired high-resolution structural images of the hippocampus in 66 healthy, older human subjects. For 45 of these subjects, longitudinal 2-year follow-up data were also available. We calculated an additive AD genetic risk score for each participant and contrasted this with a weighted risk score (WRS) approach. Each score included APOE (apolipoprotein E), CLU (clusterin), PICALM (phosphatidylinositol binding clathrin assembly protein), and family history of AD. Both unweighted risk score (URS) and WRS correlated strongly with the percentage change in thickness across the whole hippocampal complex (URS: r = −0.40; p = 0.003; WRS: r = −0.25, p = 0.048), driven by a strong relationship to entorhinal cortex thinning (URS: r = −0.35; p = 0.009; WRS: r = −0.35, p = 0.009). By contrast, at baseline the risk scores showed no relationship to thickness in any hippocampal complex subregion. These results provide compelling evidence that polygenic AD risk scores may be especially sensitive to structural change over time in regions affected early in AD, like the hippocampus and adjacent entorhinal cortex. This work also supports the paradigm of studying genetic risk for disease in healthy volunteers. Together, these findings will inform clinical trial design by supporting the idea that genetic prescreening in healthy control subjects can be useful to maximize the ability to detect an effect on a longitudinal neuroimaging endpoint, like hippocampal complex cortical thickness. PMID:27482534

  10. Her4-positive population in the tectum opticum is proliferating neural precursors in the adult zebrafish brain.

    PubMed

    Jung, Seung-Hyun; Kim, Hyung-Seok; Ryu, Jae-Ho; Gwak, Jung-Woo; Bae, Young-Ki; Kim, Cheol-Hee; Yeo, Sang-Yeob

    2012-06-01

    Previous studies have shown that Notch signaling not only regulates the number of early differentiating neurons, but also maintains proliferating neural precursors in the neural tube. Although it is well known that Notch signaling is closely related to the differentiation of adult neural stem cells, none of transgenic zebrafish provides a tool to figure out the relationship between Notch signaling and the differentiation of neural precursors. The goal of this study was to characterize Her4-positive cells by comparing the expression of a fluorescent Her4 reporter in Tg[her4-dRFP] animals with a GFAP reporter in Tg[gfap-GFP] adult zebrafish. BrdU incorporation indicated that dRFP-positive cells were proliferating and a double labeling assay revealed that a significant fraction of the Her4-dRFP positive population was also GFAP-GFP positive. Our observations suggest that a reporter line with Notch-dependent gene expression can provide a tool to examine proliferating neural precursors and/or neuronal/glial precursors in the development of the adult nervous system to examine the model in which Notch signaling maintains proliferating neural precursors in the neural tube.

  11. The effect of age on relational encoding as revealed by hippocampal functional connectivity.

    PubMed

    Foster, Chris M; Picklesimer, Milton E; Mulligan, Neil W; Giovanello, Kelly S

    2016-10-01

    The neural processes mediating cognition occur in networks distributed throughout the brain. The encoding and retrieval of relational memories, memories for multiple items or multifeatural events, is supported by a network of brain regions, particularly the hippocampus. The hippocampal coupling hypothesis suggests that the hippocampus is functionally connected with the default mode network (DMN) during retrieval, but during encoding, decouples from the DMN. Based on prior research suggesting that older adults are less able to modulate between brain network states, we tested the hypothesis that older adults' hippocampus would show functional connectivity with the DMN during relational encoding. The results suggest that, while the hippocampus is functionally connected to some regions of the DMN during relational encoding in both younger and older adults, older adults show additional DMN connectivity. Such age-related changes in network modulation appear not to be mediated by compensatory processes, but rather to reflect a form of neural inefficiency, most likely due to reduced inhibition. PMID:27496142

  12. Distinct neural correlates of emotional and cognitive empathy in older adults

    PubMed Central

    Moore, Raeanne C.; Dev, Sheena I.; Jeste, Dilip V.; Dziobek, Isabel; Eyler, Lisa T.

    2014-01-01

    Empathy is thought to be a mechanism underlying prosocial behavior across the lifespan, yet little is known about how levels of empathy relate to individual differences in brain functioning among older adults. In this exploratory study, we examined the neural correlates of affective and cognitive empathy in older adults. Thirty older adults (M=79 years) underwent fMRI scanning and neuropsychological testing and completed a test of affective and cognitive empathy. Brain response during processing of cognitive and emotional stimuli was measured by fMRI in a priori and task-related regions and was correlated with levels of empathy. Older adults with higher levels of affective empathy showed more deactivation in the amygdala and insula during a working memory task, whereas those with higher cognitive empathy showed greater insula activation during a response inhibition task. Our preliminary findings suggest that brain systems linked to emotional and social processing respond differently among older adults with more or less affective and cognitive empathy. That these relationships can be seen both during affective and non-emotional tasks of “cold” cognitive abilities suggests that empathy may impact social behavior through both emotional and cognitive mechanisms. PMID:25770039

  13. Mesenchymal stem cells instruct oligodendrogenic fate decision on adult neural stem cells.

    PubMed

    Rivera, Francisco J; Couillard-Despres, Sebastien; Pedre, Xiomara; Ploetz, Sonja; Caioni, Massimiliano; Lois, Carlos; Bogdahn, Ulrich; Aigner, Ludwig

    2006-10-01

    Adult stem cells reside in different tissues and organs of the adult organism. Among these cells are MSCs that are located in the adult bone marrow and NSCs that exist in the adult central nervous system (CNS). In transplantation experiments, MSCs demonstrated neuroprotective and neuroregenerative effects that were associated with functional improvements. The underlying mechanisms are largely unidentified. Here, we reveal that the interactions between adult MSCs and NSCs, mediated by soluble factors, induce oligodendrogenic fate decision in NSCs at the expense of astrogenesis. This was demonstrated (a) by an increase in the percentage of cells expressing the oligodendrocyte markers GalC and myelin basic protein, (b) by a reduction in the percentage of glial fibrillary acidic protein (GFAP)-expressing cells, and (c) by the expression pattern of cell fate determinants specific for oligodendrogenic differentiation. Thus, it involved enhanced expression of the oligodendrogenic transcription factors Olig1, Olig2, and Nkx2.2 and diminished expression of Id2, an inhibitor of oligodendrogenic differentiation. Results of (a) 5-bromo-2'-deoxyuridine pulse-labeling of cells, (b) cell fate analysis, and (c) cell death/survival analysis suggested an inductive mechanism and excluded a selection process. A candidate factor screen excluded a number of growth factors, cytokines, and neurotrophins that have previously been shown to influence neurogenesis and neural differentiation from the oligodendrogenic activity derived from the MSCs. This work might have major implications for the development of future transplantation strategies for the treatment of degenerative diseases in the CNS. PMID:16763198

  14. Distinct neural correlates of emotional and cognitive empathy in older adults.

    PubMed

    Moore, Raeanne C; Dev, Sheena I; Jeste, Dilip V; Dziobek, Isabel; Eyler, Lisa T

    2015-04-30

    Empathy is thought to be a mechanism underlying prosocial behavior across the lifespan, yet little is known about how levels of empathy relate to individual differences in brain functioning among older adults. In this exploratory study, we examined the neural correlates of affective and cognitive empathy in older adults. Thirty older adults (M=79 years) underwent fMRI scanning and neuropsychological testing and completed a test of affective and cognitive empathy. Brain response during processing of cognitive and emotional stimuli was measured by fMRI in a priori and task-related regions and was correlated with levels of empathy. Older adults with higher levels of affective empathy showed more deactivation in the amygdala and insula during a working memory task, whereas those with higher cognitive empathy showed greater insula activation during a response inhibition task. Our preliminary findings suggest that brain systems linked to emotional and social processing respond differently among older adults with more or less affective and cognitive empathy. That these relationships can be seen both during affective and non-emotional tasks of "cold" cognitive abilities suggests that empathy may impact social behavior through both emotional and cognitive mechanisms.

  15. Distinct neural correlates of emotional and cognitive empathy in older adults.

    PubMed

    Moore, Raeanne C; Dev, Sheena I; Jeste, Dilip V; Dziobek, Isabel; Eyler, Lisa T

    2015-04-30

    Empathy is thought to be a mechanism underlying prosocial behavior across the lifespan, yet little is known about how levels of empathy relate to individual differences in brain functioning among older adults. In this exploratory study, we examined the neural correlates of affective and cognitive empathy in older adults. Thirty older adults (M=79 years) underwent fMRI scanning and neuropsychological testing and completed a test of affective and cognitive empathy. Brain response during processing of cognitive and emotional stimuli was measured by fMRI in a priori and task-related regions and was correlated with levels of empathy. Older adults with higher levels of affective empathy showed more deactivation in the amygdala and insula during a working memory task, whereas those with higher cognitive empathy showed greater insula activation during a response inhibition task. Our preliminary findings suggest that brain systems linked to emotional and social processing respond differently among older adults with more or less affective and cognitive empathy. That these relationships can be seen both during affective and non-emotional tasks of "cold" cognitive abilities suggests that empathy may impact social behavior through both emotional and cognitive mechanisms. PMID:25770039

  16. The interplay of early-life stress, nutrition, and immune activation programs adult hippocampal structure and function

    PubMed Central

    Hoeijmakers, Lianne; Lucassen, Paul J.; Korosi, Aniko

    2015-01-01

    Early-life adversity increases the vulnerability to develop psychopathologies and cognitive decline later in life. This association is supported by clinical and preclinical studies. Remarkably, experiences of stress during this sensitive period, in the form of abuse or neglect but also early malnutrition or an early immune challenge elicit very similar long-term effects on brain structure and function. During early-life, both exogenous factors like nutrition and maternal care, as well as endogenous modulators, including stress hormones and mediator of immunological activity affect brain development. The interplay of these key elements and their underlying molecular mechanisms are not fully understood. We discuss here the hypothesis that exposure to early-life adversity (specifically stress, under/malnutrition and infection) leads to life-long alterations in hippocampal-related cognitive functions, at least partly via changes in hippocampal neurogenesis. We further discuss how these different key elements of the early-life environment interact and affect one another and suggest that it is a synergistic action of these elements that shapes cognition throughout life. Finally, we consider different intervention studies aiming to prevent these early-life adversity induced consequences. The emerging evidence for the intriguing interplay of stress, nutrition, and immune activity in the early-life programming calls for a more in depth understanding of the interaction of these elements and the underlying mechanisms. This knowledge will help to develop intervention strategies that will converge on a more complete set of changes induced by early-life adversity. PMID:25620909

  17. The interplay of early-life stress, nutrition, and immune activation programs adult hippocampal structure and function.

    PubMed

    Hoeijmakers, Lianne; Lucassen, Paul J; Korosi, Aniko

    2014-01-01

    Early-life adversity increases the vulnerability to develop psychopathologies and cognitive decline later in life. This association is supported by clinical and preclinical studies. Remarkably, experiences of stress during this sensitive period, in the form of abuse or neglect but also early malnutrition or an early immune challenge elicit very similar long-term effects on brain structure and function. During early-life, both exogenous factors like nutrition and maternal care, as well as endogenous modulators, including stress hormones and mediator of immunological activity affect brain development. The interplay of these key elements and their underlying molecular mechanisms are not fully understood. We discuss here the hypothesis that exposure to early-life adversity (specifically stress, under/malnutrition and infection) leads to life-long alterations in hippocampal-related cognitive functions, at least partly via changes in hippocampal neurogenesis. We further discuss how these different key elements of the early-life environment interact and affect one another and suggest that it is a synergistic action of these elements that shapes cognition throughout life. Finally, we consider different intervention studies aiming to prevent these early-life adversity induced consequences. The emerging evidence for the intriguing interplay of stress, nutrition, and immune activity in the early-life programming calls for a more in depth understanding of the interaction of these elements and the underlying mechanisms. This knowledge will help to develop intervention strategies that will converge on a more complete set of changes induced by early-life adversity.

  18. Lifestyle Shapes the Dialogue between Environment, Microglia, and Adult Neurogenesis.

    PubMed

    Valero, Jorge; Paris, Iñaki; Sierra, Amanda

    2016-04-20

    Lifestyle modulates brain function. Diet, stress levels, and physical exercise among other factors influence the "brain cognitive reserve", that is, the capacity of the brain to maintain a normal function when confronting neurodegenerative diseases, injury, and/or aging. This cognitive reserve relays on several cellular and molecular elements that contribute to brain plasticity allowing adaptive responses to cognitive demands, and one of its key components is the hippocampal neurogenic reserve. Hippocampal neural stem cells give rise to new neurons that integrate into the local circuitry and contribute to hippocampal functions such as memory and learning. Importantly, adult hippocampal neurogenesis is well-known to be modulated by the demands of the environment and lifestyle factors. Diet, stress, and physical exercise directly act on neural stem cells and/or their progeny, but, in addition, they may also indirectly affect neurogenesis by acting on microglia. Microglia, the guardians of the brain, rapidly sense changes in the brain milieu, and it has been recently shown that their function is affected by lifestyle factors. However, few studies have analyzed the modulatory effect of microglia on adult neurogenesis in these conditions. Here, we review the current knowledge about the dialogue maintained between microglia and the hippocampal neurogenic cascade. Understanding how the communication between microglia and hippocampal neurogenesis is affected by lifestyle choices is crucial to maintain the brain cognitive reserve and prevent the maladaptive responses that emerge during disease or injury through adulthood and aging. PMID:26971802

  19. Lifestyle Shapes the Dialogue between Environment, Microglia, and Adult Neurogenesis.

    PubMed

    Valero, Jorge; Paris, Iñaki; Sierra, Amanda

    2016-04-20

    Lifestyle modulates brain function. Diet, stress levels, and physical exercise among other factors influence the "brain cognitive reserve", that is, the capacity of the brain to maintain a normal function when confronting neurodegenerative diseases, injury, and/or aging. This cognitive reserve relays on several cellular and molecular elements that contribute to brain plasticity allowing adaptive responses to cognitive demands, and one of its key components is the hippocampal neurogenic reserve. Hippocampal neural stem cells give rise to new neurons that integrate into the local circuitry and contribute to hippocampal functions such as memory and learning. Importantly, adult hippocampal neurogenesis is well-known to be modulated by the demands of the environment and lifestyle factors. Diet, stress, and physical exercise directly act on neural stem cells and/or their progeny, but, in addition, they may also indirectly affect neurogenesis by acting on microglia. Microglia, the guardians of the brain, rapidly sense changes in the brain milieu, and it has been recently shown that their function is affected by lifestyle factors. However, few studies have analyzed the modulatory effect of microglia on adult neurogenesis in these conditions. Here, we review the current knowledge about the dialogue maintained between microglia and the hippocampal neurogenic cascade. Understanding how the communication between microglia and hippocampal neurogenesis is affected by lifestyle choices is crucial to maintain the brain cognitive reserve and prevent the maladaptive responses that emerge during disease or injury through adulthood and aging.

  20. Age-Associated Increase in BMP Signaling Inhibits Hippocampal Neurogenesis.

    PubMed

    Yousef, Hanadie; Morgenthaler, Adam; Schlesinger, Christina; Bugaj, Lukasz; Conboy, Irina M; Schaffer, David V

    2015-05-01

    Hippocampal neurogenesis, the product of resident neural stem cell proliferation and differentiation, persists into adulthood but decreases with organismal aging, which may contribute to the age-related decline in cognitive function. The mechanisms that underlie this decrease in neurogenesis are not well understood, although evidence in general indicates that extrinsic changes in an aged stem cell niche can contribute to functional decline in old stem cells. Bone morphogenetic protein (BMP) family members are intercellular signaling proteins that regulate stem and progenitor cell quiescence, proliferation, and differentiation in various tissues and are likewise critical regulators of neurogenesis in young adults. Here, we establish that BMP signaling increases significantly in old murine hippocampi and inhibits neural progenitor cell proliferation. Furthermore, direct in vivo attenuation of BMP signaling via genetic and transgenic perturbations in aged mice led to elevated neural stem cell proliferation, and subsequent neurogenesis, in old hippocampi. Such advances in our understanding of mechanisms underlying decreased hippocampal neurogenesis with age may offer targets for the treatment of age-related cognitive decline.

  1. Neural Correlates of Dual-Task Walking: Effects of Cognitive versus Motor Interference in Young Adults

    PubMed Central

    Beurskens, Rainer; Steinberg, Fabian; Antoniewicz, Franziska; Wolff, Wanja; Granacher, Urs

    2016-01-01

    Walking while concurrently performing cognitive and/or motor interference tasks is the norm rather than the exception during everyday life and there is evidence from behavioral studies that it negatively affects human locomotion. However, there is hardly any information available regarding the underlying neural correlates of single- and dual-task walking. We had 12 young adults (23.8 ± 2.8 years) walk while concurrently performing a cognitive interference (CI) or a motor interference (MI) task. Simultaneously, neural activation in frontal, central, and parietal brain areas was registered using a mobile EEG system. Results showed that the MI task but not the CI task affected walking performance in terms of significantly decreased gait velocity and stride length and significantly increased stride time and tempo-spatial variability. Average activity in alpha and beta frequencies was significantly modulated during both CI and MI walking conditions in frontal and central brain regions, indicating an increased cognitive load during dual-task walking. Our results suggest that impaired motor performance during dual-task walking is mirrored in neural activation patterns of the brain. This finding is in line with established cognitive theories arguing that dual-task situations overstrain cognitive capabilities resulting in motor performance decrements. PMID:27200192

  2. Hydrogel formulation determines cell fate of fetal and adult neural progenitor cells.

    PubMed

    Aurand, Emily R; Wagner, Jennifer L; Shandas, Robin; Bjugstad, Kimberly B

    2014-01-01

    Hydrogels provide a unique tool for neural tissue engineering. These materials can be customized for certain functions, i.e. to provide cell/drug delivery or act as a physical scaffold. Unfortunately, hydrogel complexities can negatively impact their biocompatibility, resulting in unintended consequences. These adverse effects may be combated with a better understanding of hydrogel chemical, physical, and mechanical properties, and how these properties affect encapsulated neural cells. We defined the polymerization and degradation rates and compressive moduli of 25 hydrogels formulated from different concentrations of hyaluronic acid (HA) and poly(ethylene glycol) (PEG). Changes in compressive modulus were driven primarily by the HA concentration. The in vitro biocompatibility of fetal-derived (fNPC) and adult-derived (aNPC) neural progenitor cells was dependent on hydrogel formulation. Acute survival of fNPC benefited from hydrogel encapsulation. NPC differentiation was divergent: fNPC differentiated into mostly glial cells, compared with neuronal differentiation of aNPC. Differentiation was influenced in part by the hydrogel mechanical properties. This study indicates that there can be a wide range of HA and PEG hydrogels compatible with NPC. Additionally, this is the first study comparing hydrogel encapsulation of NPC derived from different aged sources, with data suggesting that fNPC and aNPC respond dissimilarly within the same hydrogel formulation.

  3. Localization and osteoblastic differentiation potential of neural crest-derived cells in oral tissues of adult mice.

    PubMed

    Ono, Miki; Suzawa, Tetsuo; Takami, Masamichi; Yamamoto, Gou; Hosono, Tomohiko; Yamada, Atsushi; Suzuki, Dai; Yoshimura, Kentaro; Watahiki, Junichi; Hayashi, Ryuhei; Arata, Satoru; Mishima, Kenji; Nishida, Kohji; Osumi, Noriko; Maki, Koutaro; Kamijo, Ryutaro

    2015-09-01

    In embryos, neural crest cells emerge from the dorsal region of the fusing neural tube and migrate throughout tissues to differentiate into various types of cells including osteoblasts. In adults, subsets of neural crest-derived cells (NCDCs) reside as stem cells and are considered to be useful cell sources for regenerative medicine strategies. Numerous studies have suggested that stem cells with a neural crest origin persist into adulthood, especially those within the mammalian craniofacial compartment. However, their distribution as well as capacity to differentiate into osteoblasts in adults is not fully understood. To analyze the precise distribution and characteristics of NCDCs in adult oral tissues, we utilized an established line of double transgenic (P0-Cre/CAG-CAT-EGFP) mice in which NCDCs express green fluorescent protein (GFP) throughout their life. GFP-positive cells were scattered like islands throughout tissues of the palate, gingiva, tongue, and buccal mucosa in adult mice, with those isolated from the latter shown to form spheres, typical cell clusters composed of stem cells, under low-adherent conditions. Furthermore, GFP-positive cells had markedly increased alkaline phosphatase (a marker enzyme of osteoblast differentiation) activity and mineralization as shown by alizarin red staining, in the presence of bone morphogenetic protein (BMP)-2. These results suggest that NCDCs reside in various adult oral tissues and possess potential to differentiate into osteoblastic cells. NCDCs in adults may be a useful cell source for bone regeneration strategies.

  4. Neural stem cells in the adult ciliary epithelium express GFAP and are regulated by Wnt signaling

    SciTech Connect

    Das, Ani V.; Zhao Xing; James, Jackson; Kim, Min; Cowan, Kenneth H.; Ahmad, Iqbal . E-mail: iahmad@unmc.edu

    2006-01-13

    The identification of neural stem cells with retinal potential in the ciliary epithelium (CE) of the adult mammals is of considerable interest because of their potential for replacing or rescuing degenerating retinal neurons in disease or injury. The evaluation of such a potential requires characterization of these cells with regard to their phenotypic properties, potential, and regulatory mechanisms. Here, we demonstrate that rat CE stem cells/progenitors in neurosphere culture display astrocytic nature in terms of expressing glial intermediate neurofilament protein, GFAP. The GFAP-expressing CE stem cells/progenitors form neurospheres in proliferating conditions and generate neurons when shifted to differentiating conditions. These cells express components of the canonical Wnt pathway and its activation promotes their proliferation. Furthermore, we demonstrate that the activation of the canonical Wnt pathway influences neuronal differentiation of CE stem cells/progenitors in a context dependent manner. Our observations suggest that CE stem cells/progenitors share phenotypic properties and regulatory mechanism(s) with neural stem cells elsewhere in the adult CNS.

  5. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish

    PubMed Central

    Hui, Subhra Prakash; Nag, Tapas Chandra; Ghosh, Sukla

    2015-01-01

    Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration. PMID:26630262

  6. Nogo Receptor Signaling Restricts Adult Neural Plasticity by Limiting Synaptic AMPA Receptor Delivery

    PubMed Central

    Jitsuki, Susumu; Nakajima, Waki; Takemoto, Kiwamu; Sano, Akane; Tada, Hirobumi; Takahashi-Jitsuki, Aoi; Takahashi, Takuya

    2016-01-01

    Experience-dependent plasticity is limited in the adult brain, and its molecular and cellular mechanisms are poorly understood. Removal of the myelin-inhibiting signaling protein, Nogo receptor (NgR1), restores adult neural plasticity. Here we found that, in NgR1-deficient mice, whisker experience-driven synaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) insertion in the barrel cortex, which is normally complete by 2 weeks after birth, lasts into adulthood. In vivo live imaging by two-photon microscopy revealed more AMPAR on the surface of spines in the adult barrel cortex of NgR1-deficient than on those of wild-type (WT) mice. Furthermore, we observed that whisker stimulation produced new spines in the adult barrel cortex of mutant but not WT mice, and that the newly synthesized spines contained surface AMPAR. These results suggest that Nogo signaling limits plasticity by restricting synaptic AMPAR delivery in coordination with anatomical plasticity. PMID:26472557

  7. Inhibition of glycogen synthase kinase-3 enhances the differentiation and reduces the proliferation of adult human olfactory epithelium neural precursors

    SciTech Connect

    Manceur, Aziza P.; Tseng, Michael; Holowacz, Tamara; Witterick, Ian; Weksberg, Rosanna; McCurdy, Richard D.; Warsh, Jerry J.; Audet, Julie

    2011-09-10

    The olfactory epithelium (OE) contains neural precursor cells which can be easily harvested from a minimally invasive nasal biopsy, making them a valuable cell source to study human neural cell lineages in health and disease. Glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology and treatment of neuropsychiatric disorders and also in the regulation of murine neural precursor cell fate in vitro and in vivo. In this study, we examined the impact of decreased GSK-3 activity on the fate of adult human OE neural precursors in vitro. GSK-3 inhibition was achieved using ATP-competitive (6-bromoindirubin-3'-oxime and CHIR99021) or substrate-competitive (TAT-eIF2B) inhibitors to eliminate potential confounding effects on cell fate due to off-target kinase inhibition. GSK-3 inhibitors decreased the number of neural precursor cells in OE cell cultures through a reduction in proliferation. Decreased proliferation was not associated with a reduction in cell survival but was accompanied by a reduction in nestin expression and a substantial increase in the expression of the neuronal differentiation markers MAP1B and neurofilament (NF-M) after 10 days in culture. Taken together, these results suggest that GSK-3 inhibition promotes the early stages of neuronal differentiation in cultures of adult human neural precursors and provide insights into the mechanisms by which alterations in GSK-3 signaling affect adult human neurogenesis, a cellular process strongly suspected to play a role in the etiology of neuropsychiatric disorders.

  8. Gestational Chronodisruption Impairs Hippocampal Expression of NMDA Receptor Subunits Grin1b/Grin3a and Spatial Memory in the Adult Offspring

    PubMed Central

    Vilches, Nelson; Spichiger, Carlos; Mendez, Natalia; Abarzua-Catalan, Lorena; Galdames, Hugo A.; Hazlerigg, David G.; Richter, Hans G.; Torres-Farfan, Claudia

    2014-01-01

    Epidemiological and experimental evidence correlates adverse intrauterine conditions with the onset of disease later in life. For a fetus to achieve a successful transition to extrauterine life, a myriad of temporally integrated humoral/biophysical signals must be accurately provided by the mother. We and others have shown the existence of daily rhythms in the fetus, with peripheral clocks being entrained by maternal cues, such as transplacental melatonin signaling. Among developing tissues, the fetal hippocampus is a key structure for learning and memory processing that may be anticipated as a sensitive target of gestational chronodisruption. Here, we used pregnant rats exposed to constant light treated with or without melatonin as a model of gestational chronodisruption, to investigate effects on the putative fetal hippocampus clock, as well as on adult offspring’s rhythms, endocrine and spatial memory outcomes. The hippocampus of fetuses gestated under light:dark photoperiod (12:12 LD) displayed daily oscillatory expression of the clock genes Bmal1 and Per2, clock-controlled genes Mtnr1b, Slc2a4, Nr3c1 and NMDA receptor subunits 1B-3A-3B. In contrast, in the hippocampus of fetuses gestated under constant light (LL), these oscillations were suppressed. In the adult LL offspring (reared in LD during postpartum), we observed complete lack of day/night differences in plasma melatonin and decreased day/night differences in plasma corticosterone. In the adult LL offspring, overall hippocampal day/night difference of gene expression was decreased, which was accompanied by a significant deficit of spatial memory. Notably, maternal melatonin replacement to dams subjected to gestational chronodisruption prevented the effects observed in both, LL fetuses and adult LL offspring. Collectively, the present data point to adverse effects of gestational chronodisruption on long-term cognitive function; raising challenging questions about the consequences of shift work during

  9. The common and distinct neural bases of affect labeling and reappraisal in healthy adults

    PubMed Central

    Burklund, Lisa J.; Creswell, J. David; Irwin, Michael R.; Lieberman, Matthew D.

    2014-01-01

    Emotion regulation is commonly characterized as involving conscious and intentional attempts to change felt emotions, such as, for example, through reappraisal whereby one intentionally decreases the intensity of one's emotional response to a particular stimulus or situation by reinterpreting it in a less threatening way. However, there is growing evidence and appreciation that some types of emotion regulation are unintentional or incidental, meaning that affective modulation is a consequence but not an explicit goal. For example, affect labeling involves simply verbally labeling the emotional content of an external stimulus or one's own affective responses without an intentional goal of altering emotional responses, yet has been associated with reduced affective responses at the neural and experiential levels. Although both intentional and incidental emotional regulation strategies have been associated with diminished limbic responses and self-reported distress, little previous research has directly compared their underlying neural mechanisms. In this study, we examined the extent to which incidental and intentional emotion regulation, namely, affect labeling and reappraisal, produced common and divergent neural and self-report responses to aversive images relative to an observe-only control condition in a sample of healthy older adults (N = 39). Affect labeling and reappraisal produced common activations in several prefrontal regulatory regions, with affect labeling producing stronger responses in direct comparisons. Affect labeling and reappraisal were also associated with similar decreases in amygdala activity. Finally, affect labeling and reappraisal were associated with correlated reductions in self-reported distress. Together these results point to common neurocognitive mechanisms involved in affect labeling and reappraisal, supporting the idea that intentional and incidental emotion regulation may utilize overlapping neural processes. PMID:24715880

  10. Modeling Impaired Hippocampal Neurogenesis after Radiation Exposure.

    PubMed

    Cacao, Eliedonna; Cucinotta, Francis A

    2016-03-01

    Radiation impairment of neurogenesis in the hippocampal dentate gyrus is one of several factors associated with cognitive detriments after treatment of brain cancers in children and adults with radiation therapy. Mouse models have been used to study radiation-induced changes in neurogenesis, however the models are limited in the number of doses, dose fractions, age and time after exposure conditions that have been studied. The purpose of this study is to develop a novel predictive mathematical model of radiation-induced changes to neurogenesis using a system of nonlinear ordinary differential equations (ODEs) to represent the time, age and dose-dependent changes to several cell populations participating in neurogenesis as reported in mouse experiments exposed to low-LET radiation. We considered four compartments to model hippocampal neurogenesis and, consequently, the effects of radiation treatment in altering neurogenesis: (1) neural stem cells (NSCs), (2) neuronal progenitor cells or neuroblasts (NB), (3) immature neurons (ImN) and (4) glioblasts (GB). Because neurogenesis is decreasing with increasing mouse age, a description of the age-related dynamics of hippocampal neurogenesis is considered in the model, which is shown to be an important factor in comparisons to experimental data. A key feature of the model is the description of negative feedback regulation on early and late neuronal proliferation after radiation exposure. The model is augmented with parametric descriptions of the dose and time after irradiation dependences of activation of microglial cells and a possible shift of NSC proliferation from neurogenesis to gliogenesis reported at higher doses (∼10 Gy). Predictions for dose-fractionation regimes and for different mouse ages, and prospects for future work are then discussed.

  11. Modeling Impaired Hippocampal Neurogenesis after Radiation Exposure.

    PubMed

    Cacao, Eliedonna; Cucinotta, Francis A

    2016-03-01

    Radiation impairment of neurogenesis in the hippocampal dentate gyrus is one of several factors associated with cognitive detriments after treatment of brain cancers in children and adults with radiation therapy. Mouse models have been used to study radiation-induced changes in neurogenesis, however the models are limited in the number of doses, dose fractions, age and time after exposure conditions that have been studied. The purpose of this study is to develop a novel predictive mathematical model of radiation-induced changes to neurogenesis using a system of nonlinear ordinary differential equations (ODEs) to represent the time, age and dose-dependent changes to several cell populations participating in neurogenesis as reported in mouse experiments exposed to low-LET radiation. We considered four compartments to model hippocampal neurogenesis and, consequently, the effects of radiation treatment in altering neurogenesis: (1) neural stem cells (NSCs), (2) neuronal progenitor cells or neuroblasts (NB), (3) immature neurons (ImN) and (4) glioblasts (GB). Because neurogenesis is decreasing with increasing mouse age, a description of the age-related dynamics of hippocampal neurogenesis is considered in the model, which is shown to be an important factor in comparisons to experimental data. A key feature of the model is the description of negative feedback regulation on early and late neuronal proliferation after radiation exposure. The model is augmented with parametric descriptions of the dose and time after irradiation dependences of activation of microglial cells and a possible shift of NSC proliferation from neurogenesis to gliogenesis reported at higher doses (∼10 Gy). Predictions for dose-fractionation regimes and for different mouse ages, and prospects for future work are then discussed. PMID:26943452

  12. Electrical and Pharmacological Stimuli Reveal a Greater Susceptibility for CA3 Network Excitability in Hippocampal Slices from Aged vs. Adult Fischer 344 Rats

    PubMed Central

    Kanak, Daniel J.; Jones, Ryan T.; Tokhi, Ashish; Willingham, Amy L.; Zaveri, Hitten P.; Rose, Gregory M.; Patrylo, Peter R.

    2011-01-01

    Clinical data and experimental studies in rats have shown that the aged CNS is more susceptible to the proconvulsive effects of the excitotoxic glutamate analogues kainate (KA) and domoate (DA), which bind high-affinity receptors localized at mossy fiber (MF) synapses in the CA3 subregion of the hippocampus. Although decreased renal clearance appears to play a role in the hypersensitivity of the aged hippocampus to systemically-administered DA, it is unclear if the excitability of the CA3 network is also altered with age. Therefore, this study monitored CA3 field potential activity in hippocampal slices from aged and adult male Fischer 344 rats in response to electrical and pharmacological network stimulation targeted to the MF-CA3 circuit. Network challenges with repetitive hilar stimulation or bath application of nanomolar concentrations of KA more readily elicited excitable network activity (e.g. population spike facilitation, multiple population spikes, and epileptiform bursts) in slices from aged vs. adult rats, although basal network excitability was comparable between age groups. Additionally, exposure to 200 nM KA often abolished epileptiform activity and revealed theta or gamma oscillations instead. However, slices from aged rats were less sensitive to the rhythmogenic effects of 200 nM KA. Taken together, these findings suggest that aging decreases the capacity of the CA3 network to constrain the spread of excitability during focal excitatory network challenges. PMID:22396884

  13. Prenatal stress alters circadian activity of hypothalamo-pituitary-adrenal axis and hippocampal corticosteroid receptors in adult rats of both gender.

    PubMed

    Koehl, M; Darnaudéry, M; Dulluc, J; Van Reeth, O; Le Moal, M; Maccari, S

    1999-09-01

    Prenatal stress impairs activity of the hypothalamo-pituitary-adrenal (HPA) axis in response to stress in adult offspring. So far, very few data are available on the effects of prenatal stress on circadian functioning of the HPA axis. Here, we studied the effects of prenatal stress on the circadian rhythm of corticosterone secretion in male and female adult rats. To evaluate the effects of prenatal stress on various regulatory components of corticosterone secretion, we also assessed the diurnal fluctuation of adrenocorticotropin, total and free corticosterone levels, and hippocampal corticosteroid receptors. Finally, in the search of possible maternal factors, we studied the effects of repeated restraint stress on the pattern of corticosterone secretion in pregnant female rats. Results demonstrate that prenatal stress induced higher levels of total and free corticosterone secretion at the end of the light period in both males and females, and hypercorticism over the entire diurnal cycle in females. No diurnal fluctuation of adrenocorticotropin was observed in any group studied. The effects of prenatal stress on corticosterone secretion could be mediated, at least in part, by a reduction in corticosteroid receptors at specific times of day. Results also show that prepartal stress alters the pattern of corticosterone secretion in pregnant females. Those data indicate that prenatally stressed rats exhibit an altered temporal functioning of the HPA axis, which, taken together with their abnormal response to stress, reinforces the idea of a general homeostatic dysfunction in those animals. PMID:10440731

  14. Hippocampal structure and function are maintained despite severe innate peripheral inflammation.

    PubMed

    Süß, Patrick; Kalinichenko, Liubov; Baum, Wolfgang; Reichel, Martin; Kornhuber, Johannes; Loskarn, Sandra; Ettle, Benjamin; Distler, Jörg H W; Schett, Georg; Winkler, Jürgen; Müller, Christian P; Schlachetzki, Johannes C M

    2015-10-01

    Chronic peripheral inflammation mediated by cytokines such as TNFα, IL-1β, and IL-6 is associated with psychiatric disorders like depression and anxiety. However, it remains elusive which distinct type of peripheral inflammation triggers neuroinflammation and affects hippocampal plasticity resulting in depressive-like behavior. We hypothesized that chronic peripheral inflammation in the human TNF-α transgenic (TNFtg) mouse model of rheumatoid arthritis spreads into the central nervous system and induces depressive state manifested in specific behavioral pattern and impaired adult hippocampal neurogenesis. TNFtg mice showed severe erosive arthritis with increased IL-1β and IL-6 expression in tarsal joints with highly elevated human TNF-α levels in the serum. Intriguingly, IL-1β and IL-6 mRNA levels were not altered in the hippocampus of TNFtg mice. In contrast to the pronounced monocytosis in joints and spleen of TNFtg mice, signs of hippocampal microgliosis or astrocytosis were lacking. Furthermore, locomotion was impaired, but there was no locomotion-independent depressive behavior in TNFtg mice. Proliferation and maturation of hippocampal neural precursor cells as well as survival of newly generated neurons were preserved in the dentate gyrus of TNFtg mice despite reduced motor activity and peripheral inflammatory signature. We conclude that peripheral inflammation in TNFtg mice is mediated by chronic activation of the innate immune system. However, severe peripheral inflammation, though impairing locomotor activity, does not elicit depressive-like behavior. These structural and functional findings indicate the maintenance of hippocampal immunity, cellular plasticity, and behavior despite peripheral innate inflammation.

  15. VGF (TLQP-62)-induced neurogenesis targets early phase neural progenitor cells in the adult hippocampus and requires glutamate and BDNF signaling.

    PubMed

    Thakker-Varia, Smita; Behnke, Joseph; Doobin, David; Dalal, Vidhi; Thakkar, Keya; Khadim, Farah; Wilson, Elizabeth; Palmieri, Alicia; Antila, Hanna; Rantamaki, Tomi; Alder, Janet

    2014-05-01

    The neuropeptide VGF (non-acronymic), which has antidepressant-like effects, enhances adult hippocampal neurogenesis as well as synaptic activity and plasticity in the hippocampus, however the interaction between these processes and the mechanism underlying this regulation remain unclear. In this study, we demonstrate that VGF-derived peptide TLQP-62 specifically enhances the generation of early progenitor cells in nestin-GFP mice. Specifically, TLQP-62 significantly increases the number of Type 2a neural progenitor cells (NPCs) while reducing the number of more differentiated Type 3 cells. The effect of TLQP-62 on proliferation rather than differentiation was confirmed using NPCs in vitro; TLQP-62 but not scrambled peptide PEHN-62 increases proliferation in a cell line as well as in primary progenitors from adult hippocampus. Moreover, TLQP-62 but not scrambled peptide increases Cyclin D mRNA expression. The proliferation of NPCs induced by TLQP-62 requires synaptic activity, in particular through NMDA and metabotropic glutamate receptors. The activation of glutamate receptors by TLQP-62 activation induces phosphorylation of CaMKII through NMDA receptors and protein kinase D through metabotropic glutamate receptor 5 (mGluR5). Furthermore, pharmacological antagonists to CaMKII and PKD inhibit TLQP-62-induced proliferation of NPCs indicating that these signaling molecules downstream of glutamate receptors are essential for the actions of TLQP-62 on neurogenesis. We also show that TLQP-62 gradually activates Brain-Derived Neurotrophic Factor (BDNF)-receptor TrkB in vitro and that Trk signaling is required for TLQP-62-induced proliferation of NPCs. Understanding the precise molecular mechanism of how TLQP-62 influences neurogenesis may reveal mechanisms by which VGF-derived peptides act as antidepressant-like agents.

  16. Effects of thyroxine and donepezil on hippocampal acetylcholine content, acetylcholinesterase activity, synaptotagmin-1 and SNAP-25 expression in hypothyroid adult rats.

    PubMed

    Wang, Fen; Zeng, Xianzhong; Zhu, Yangbo; Ning, Dan; Liu, Junxia; Liu, Chunlei; Jia, Xuemei; Zhu, Defa

    2015-02-01

    A growing number of studies have revealed that neurocognitive impairment, induced by adult-onset hypothyroidism, may not be fully restored by traditional hormone substitution therapies, including thyroxine (T4). The present study has investigated the effect of T4 and donepezil (DON; an acetylcholinesterase (AChE) inhibitor) treatment on the hypothyroidism-induced alterations of acetylcholine (ACh) content and AChE activity. Furthermore, we examined synaptotagmin-1 (syt-1) and SNAP-25 expression in the hippocampus of adult rats. Adding 0.05% propylthiouracil to their drinking water for five weeks induced hypothyroidism in the rat models. From the fourth week, the rats were treated with T4, DON or a combination of both. Concentration of ACh and the activity of AChE was determined colorimetrically. The results demonstrated that hypothyroidism